2017-10-02 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc.git] / gcc / cse.c
blob672fd2eaea970e408525d1f6d0baed53f0a57a09
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "cfgcleanup.h"
38 #include "alias.h"
39 #include "toplev.h"
40 #include "params.h"
41 #include "rtlhooks-def.h"
42 #include "tree-pass.h"
43 #include "dbgcnt.h"
44 #include "rtl-iter.h"
46 /* The basic idea of common subexpression elimination is to go
47 through the code, keeping a record of expressions that would
48 have the same value at the current scan point, and replacing
49 expressions encountered with the cheapest equivalent expression.
51 It is too complicated to keep track of the different possibilities
52 when control paths merge in this code; so, at each label, we forget all
53 that is known and start fresh. This can be described as processing each
54 extended basic block separately. We have a separate pass to perform
55 global CSE.
57 Note CSE can turn a conditional or computed jump into a nop or
58 an unconditional jump. When this occurs we arrange to run the jump
59 optimizer after CSE to delete the unreachable code.
61 We use two data structures to record the equivalent expressions:
62 a hash table for most expressions, and a vector of "quantity
63 numbers" to record equivalent (pseudo) registers.
65 The use of the special data structure for registers is desirable
66 because it is faster. It is possible because registers references
67 contain a fairly small number, the register number, taken from
68 a contiguously allocated series, and two register references are
69 identical if they have the same number. General expressions
70 do not have any such thing, so the only way to retrieve the
71 information recorded on an expression other than a register
72 is to keep it in a hash table.
74 Registers and "quantity numbers":
76 At the start of each basic block, all of the (hardware and pseudo)
77 registers used in the function are given distinct quantity
78 numbers to indicate their contents. During scan, when the code
79 copies one register into another, we copy the quantity number.
80 When a register is loaded in any other way, we allocate a new
81 quantity number to describe the value generated by this operation.
82 `REG_QTY (N)' records what quantity register N is currently thought
83 of as containing.
85 All real quantity numbers are greater than or equal to zero.
86 If register N has not been assigned a quantity, `REG_QTY (N)' will
87 equal -N - 1, which is always negative.
89 Quantity numbers below zero do not exist and none of the `qty_table'
90 entries should be referenced with a negative index.
92 We also maintain a bidirectional chain of registers for each
93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
100 If two registers have the same quantity number, it must be true that
101 REG expressions with qty_table `mode' must be in the hash table for both
102 registers and must be in the same class.
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
109 Constants and quantity numbers
111 When a quantity has a known constant value, that value is stored
112 in the appropriate qty_table `const_rtx'. This is in addition to
113 putting the constant in the hash table as is usual for non-regs.
115 Whether a reg or a constant is preferred is determined by the configuration
116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
119 When a quantity has a known nearly constant value (such as an address
120 of a stack slot), that value is stored in the appropriate qty_table
121 `const_rtx'.
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
129 Other expressions:
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
135 hash codes.
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
140 Register references in an expression are canonicalized before hashing
141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
164 must be removed.
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
174 `REG_TICK' and `REG_IN_TABLE', accessors for members of
175 cse_reg_info, are used to detect this case. REG_TICK (i) is
176 incremented whenever a value is stored in register i.
177 REG_IN_TABLE (i) holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value REG_TICK (i)
179 had when the references were entered. If we want to enter a
180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181 remove old references. Until we want to enter a new entry, the
182 mere fact that the two vectors don't match makes the entries be
183 ignored if anyone tries to match them.
185 Registers themselves are entered in the hash table as well as in
186 the equivalent-register chains. However, `REG_TICK' and
187 `REG_IN_TABLE' do not apply to expressions which are simple
188 register references. These expressions are removed from the table
189 immediately when they become invalid, and this can be done even if
190 we do not immediately search for all the expressions that refer to
191 the register.
193 A CLOBBER rtx in an instruction invalidates its operand for further
194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
195 invalidates everything that resides in memory.
197 Related expressions:
199 Constant expressions that differ only by an additive integer
200 are called related. When a constant expression is put in
201 the table, the related expression with no constant term
202 is also entered. These are made to point at each other
203 so that it is possible to find out if there exists any
204 register equivalent to an expression related to a given expression. */
206 /* Length of qty_table vector. We know in advance we will not need
207 a quantity number this big. */
209 static int max_qty;
211 /* Next quantity number to be allocated.
212 This is 1 + the largest number needed so far. */
214 static int next_qty;
216 /* Per-qty information tracking.
218 `first_reg' and `last_reg' track the head and tail of the
219 chain of registers which currently contain this quantity.
221 `mode' contains the machine mode of this quantity.
223 `const_rtx' holds the rtx of the constant value of this
224 quantity, if known. A summations of the frame/arg pointer
225 and a constant can also be entered here. When this holds
226 a known value, `const_insn' is the insn which stored the
227 constant value.
229 `comparison_{code,const,qty}' are used to track when a
230 comparison between a quantity and some constant or register has
231 been passed. In such a case, we know the results of the comparison
232 in case we see it again. These members record a comparison that
233 is known to be true. `comparison_code' holds the rtx code of such
234 a comparison, else it is set to UNKNOWN and the other two
235 comparison members are undefined. `comparison_const' holds
236 the constant being compared against, or zero if the comparison
237 is not against a constant. `comparison_qty' holds the quantity
238 being compared against when the result is known. If the comparison
239 is not with a register, `comparison_qty' is -1. */
241 struct qty_table_elem
243 rtx const_rtx;
244 rtx_insn *const_insn;
245 rtx comparison_const;
246 int comparison_qty;
247 unsigned int first_reg, last_reg;
248 /* The sizes of these fields should match the sizes of the
249 code and mode fields of struct rtx_def (see rtl.h). */
250 ENUM_BITFIELD(rtx_code) comparison_code : 16;
251 ENUM_BITFIELD(machine_mode) mode : 8;
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem *qty_table;
257 /* For machines that have a CC0, we do not record its value in the hash
258 table since its use is guaranteed to be the insn immediately following
259 its definition and any other insn is presumed to invalidate it.
261 Instead, we store below the current and last value assigned to CC0.
262 If it should happen to be a constant, it is stored in preference
263 to the actual assigned value. In case it is a constant, we store
264 the mode in which the constant should be interpreted. */
266 static rtx this_insn_cc0, prev_insn_cc0;
267 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
269 /* Insn being scanned. */
271 static rtx_insn *this_insn;
272 static bool optimize_this_for_speed_p;
274 /* Index by register number, gives the number of the next (or
275 previous) register in the chain of registers sharing the same
276 value.
278 Or -1 if this register is at the end of the chain.
280 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
282 /* Per-register equivalence chain. */
283 struct reg_eqv_elem
285 int next, prev;
288 /* The table of all register equivalence chains. */
289 static struct reg_eqv_elem *reg_eqv_table;
291 struct cse_reg_info
293 /* The timestamp at which this register is initialized. */
294 unsigned int timestamp;
296 /* The quantity number of the register's current contents. */
297 int reg_qty;
299 /* The number of times the register has been altered in the current
300 basic block. */
301 int reg_tick;
303 /* The REG_TICK value at which rtx's containing this register are
304 valid in the hash table. If this does not equal the current
305 reg_tick value, such expressions existing in the hash table are
306 invalid. */
307 int reg_in_table;
309 /* The SUBREG that was set when REG_TICK was last incremented. Set
310 to -1 if the last store was to the whole register, not a subreg. */
311 unsigned int subreg_ticked;
314 /* A table of cse_reg_info indexed by register numbers. */
315 static struct cse_reg_info *cse_reg_info_table;
317 /* The size of the above table. */
318 static unsigned int cse_reg_info_table_size;
320 /* The index of the first entry that has not been initialized. */
321 static unsigned int cse_reg_info_table_first_uninitialized;
323 /* The timestamp at the beginning of the current run of
324 cse_extended_basic_block. We increment this variable at the beginning of
325 the current run of cse_extended_basic_block. The timestamp field of a
326 cse_reg_info entry matches the value of this variable if and only
327 if the entry has been initialized during the current run of
328 cse_extended_basic_block. */
329 static unsigned int cse_reg_info_timestamp;
331 /* A HARD_REG_SET containing all the hard registers for which there is
332 currently a REG expression in the hash table. Note the difference
333 from the above variables, which indicate if the REG is mentioned in some
334 expression in the table. */
336 static HARD_REG_SET hard_regs_in_table;
338 /* True if CSE has altered the CFG. */
339 static bool cse_cfg_altered;
341 /* True if CSE has altered conditional jump insns in such a way
342 that jump optimization should be redone. */
343 static bool cse_jumps_altered;
345 /* True if we put a LABEL_REF into the hash table for an INSN
346 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
347 to put in the note. */
348 static bool recorded_label_ref;
350 /* canon_hash stores 1 in do_not_record
351 if it notices a reference to CC0, PC, or some other volatile
352 subexpression. */
354 static int do_not_record;
356 /* canon_hash stores 1 in hash_arg_in_memory
357 if it notices a reference to memory within the expression being hashed. */
359 static int hash_arg_in_memory;
361 /* The hash table contains buckets which are chains of `struct table_elt's,
362 each recording one expression's information.
363 That expression is in the `exp' field.
365 The canon_exp field contains a canonical (from the point of view of
366 alias analysis) version of the `exp' field.
368 Those elements with the same hash code are chained in both directions
369 through the `next_same_hash' and `prev_same_hash' fields.
371 Each set of expressions with equivalent values
372 are on a two-way chain through the `next_same_value'
373 and `prev_same_value' fields, and all point with
374 the `first_same_value' field at the first element in
375 that chain. The chain is in order of increasing cost.
376 Each element's cost value is in its `cost' field.
378 The `in_memory' field is nonzero for elements that
379 involve any reference to memory. These elements are removed
380 whenever a write is done to an unidentified location in memory.
381 To be safe, we assume that a memory address is unidentified unless
382 the address is either a symbol constant or a constant plus
383 the frame pointer or argument pointer.
385 The `related_value' field is used to connect related expressions
386 (that differ by adding an integer).
387 The related expressions are chained in a circular fashion.
388 `related_value' is zero for expressions for which this
389 chain is not useful.
391 The `cost' field stores the cost of this element's expression.
392 The `regcost' field stores the value returned by approx_reg_cost for
393 this element's expression.
395 The `is_const' flag is set if the element is a constant (including
396 a fixed address).
398 The `flag' field is used as a temporary during some search routines.
400 The `mode' field is usually the same as GET_MODE (`exp'), but
401 if `exp' is a CONST_INT and has no machine mode then the `mode'
402 field is the mode it was being used as. Each constant is
403 recorded separately for each mode it is used with. */
405 struct table_elt
407 rtx exp;
408 rtx canon_exp;
409 struct table_elt *next_same_hash;
410 struct table_elt *prev_same_hash;
411 struct table_elt *next_same_value;
412 struct table_elt *prev_same_value;
413 struct table_elt *first_same_value;
414 struct table_elt *related_value;
415 int cost;
416 int regcost;
417 /* The size of this field should match the size
418 of the mode field of struct rtx_def (see rtl.h). */
419 ENUM_BITFIELD(machine_mode) mode : 8;
420 char in_memory;
421 char is_const;
422 char flag;
425 /* We don't want a lot of buckets, because we rarely have very many
426 things stored in the hash table, and a lot of buckets slows
427 down a lot of loops that happen frequently. */
428 #define HASH_SHIFT 5
429 #define HASH_SIZE (1 << HASH_SHIFT)
430 #define HASH_MASK (HASH_SIZE - 1)
432 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
433 register (hard registers may require `do_not_record' to be set). */
435 #define HASH(X, M) \
436 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
437 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
438 : canon_hash (X, M)) & HASH_MASK)
440 /* Like HASH, but without side-effects. */
441 #define SAFE_HASH(X, M) \
442 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
443 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
444 : safe_hash (X, M)) & HASH_MASK)
446 /* Determine whether register number N is considered a fixed register for the
447 purpose of approximating register costs.
448 It is desirable to replace other regs with fixed regs, to reduce need for
449 non-fixed hard regs.
450 A reg wins if it is either the frame pointer or designated as fixed. */
451 #define FIXED_REGNO_P(N) \
452 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
453 || fixed_regs[N] || global_regs[N])
455 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
456 hard registers and pointers into the frame are the cheapest with a cost
457 of 0. Next come pseudos with a cost of one and other hard registers with
458 a cost of 2. Aside from these special cases, call `rtx_cost'. */
460 #define CHEAP_REGNO(N) \
461 (REGNO_PTR_FRAME_P (N) \
462 || (HARD_REGISTER_NUM_P (N) \
463 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
465 #define COST(X, MODE) \
466 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
467 #define COST_IN(X, MODE, OUTER, OPNO) \
468 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
470 /* Get the number of times this register has been updated in this
471 basic block. */
473 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
475 /* Get the point at which REG was recorded in the table. */
477 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
479 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
480 SUBREG). */
482 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
484 /* Get the quantity number for REG. */
486 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
488 /* Determine if the quantity number for register X represents a valid index
489 into the qty_table. */
491 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
493 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
495 #define CHEAPER(X, Y) \
496 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
498 static struct table_elt *table[HASH_SIZE];
500 /* Chain of `struct table_elt's made so far for this function
501 but currently removed from the table. */
503 static struct table_elt *free_element_chain;
505 /* Set to the cost of a constant pool reference if one was found for a
506 symbolic constant. If this was found, it means we should try to
507 convert constants into constant pool entries if they don't fit in
508 the insn. */
510 static int constant_pool_entries_cost;
511 static int constant_pool_entries_regcost;
513 /* Trace a patch through the CFG. */
515 struct branch_path
517 /* The basic block for this path entry. */
518 basic_block bb;
521 /* This data describes a block that will be processed by
522 cse_extended_basic_block. */
524 struct cse_basic_block_data
526 /* Total number of SETs in block. */
527 int nsets;
528 /* Size of current branch path, if any. */
529 int path_size;
530 /* Current path, indicating which basic_blocks will be processed. */
531 struct branch_path *path;
535 /* Pointers to the live in/live out bitmaps for the boundaries of the
536 current EBB. */
537 static bitmap cse_ebb_live_in, cse_ebb_live_out;
539 /* A simple bitmap to track which basic blocks have been visited
540 already as part of an already processed extended basic block. */
541 static sbitmap cse_visited_basic_blocks;
543 static bool fixed_base_plus_p (rtx x);
544 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
545 static int preferable (int, int, int, int);
546 static void new_basic_block (void);
547 static void make_new_qty (unsigned int, machine_mode);
548 static void make_regs_eqv (unsigned int, unsigned int);
549 static void delete_reg_equiv (unsigned int);
550 static int mention_regs (rtx);
551 static int insert_regs (rtx, struct table_elt *, int);
552 static void remove_from_table (struct table_elt *, unsigned);
553 static void remove_pseudo_from_table (rtx, unsigned);
554 static struct table_elt *lookup (rtx, unsigned, machine_mode);
555 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
556 static rtx lookup_as_function (rtx, enum rtx_code);
557 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
558 machine_mode, int, int);
559 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
560 machine_mode);
561 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
562 static void invalidate (rtx, machine_mode);
563 static void remove_invalid_refs (unsigned int);
564 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
565 machine_mode);
566 static void rehash_using_reg (rtx);
567 static void invalidate_memory (void);
568 static void invalidate_for_call (void);
569 static rtx use_related_value (rtx, struct table_elt *);
571 static inline unsigned canon_hash (rtx, machine_mode);
572 static inline unsigned safe_hash (rtx, machine_mode);
573 static inline unsigned hash_rtx_string (const char *);
575 static rtx canon_reg (rtx, rtx_insn *);
576 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
577 machine_mode *,
578 machine_mode *);
579 static rtx fold_rtx (rtx, rtx_insn *);
580 static rtx equiv_constant (rtx);
581 static void record_jump_equiv (rtx_insn *, bool);
582 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
583 int);
584 static void cse_insn (rtx_insn *);
585 static void cse_prescan_path (struct cse_basic_block_data *);
586 static void invalidate_from_clobbers (rtx_insn *);
587 static void invalidate_from_sets_and_clobbers (rtx_insn *);
588 static rtx cse_process_notes (rtx, rtx, bool *);
589 static void cse_extended_basic_block (struct cse_basic_block_data *);
590 extern void dump_class (struct table_elt*);
591 static void get_cse_reg_info_1 (unsigned int regno);
592 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
594 static void flush_hash_table (void);
595 static bool insn_live_p (rtx_insn *, int *);
596 static bool set_live_p (rtx, rtx_insn *, int *);
597 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
598 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
599 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
600 bool);
603 #undef RTL_HOOKS_GEN_LOWPART
604 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
606 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
608 /* Nonzero if X has the form (PLUS frame-pointer integer). */
610 static bool
611 fixed_base_plus_p (rtx x)
613 switch (GET_CODE (x))
615 case REG:
616 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
617 return true;
618 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
619 return true;
620 return false;
622 case PLUS:
623 if (!CONST_INT_P (XEXP (x, 1)))
624 return false;
625 return fixed_base_plus_p (XEXP (x, 0));
627 default:
628 return false;
632 /* Dump the expressions in the equivalence class indicated by CLASSP.
633 This function is used only for debugging. */
634 DEBUG_FUNCTION void
635 dump_class (struct table_elt *classp)
637 struct table_elt *elt;
639 fprintf (stderr, "Equivalence chain for ");
640 print_rtl (stderr, classp->exp);
641 fprintf (stderr, ": \n");
643 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
645 print_rtl (stderr, elt->exp);
646 fprintf (stderr, "\n");
650 /* Return an estimate of the cost of the registers used in an rtx.
651 This is mostly the number of different REG expressions in the rtx;
652 however for some exceptions like fixed registers we use a cost of
653 0. If any other hard register reference occurs, return MAX_COST. */
655 static int
656 approx_reg_cost (const_rtx x)
658 int cost = 0;
659 subrtx_iterator::array_type array;
660 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
662 const_rtx x = *iter;
663 if (REG_P (x))
665 unsigned int regno = REGNO (x);
666 if (!CHEAP_REGNO (regno))
668 if (regno < FIRST_PSEUDO_REGISTER)
670 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
671 return MAX_COST;
672 cost += 2;
674 else
675 cost += 1;
679 return cost;
682 /* Return a negative value if an rtx A, whose costs are given by COST_A
683 and REGCOST_A, is more desirable than an rtx B.
684 Return a positive value if A is less desirable, or 0 if the two are
685 equally good. */
686 static int
687 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
689 /* First, get rid of cases involving expressions that are entirely
690 unwanted. */
691 if (cost_a != cost_b)
693 if (cost_a == MAX_COST)
694 return 1;
695 if (cost_b == MAX_COST)
696 return -1;
699 /* Avoid extending lifetimes of hardregs. */
700 if (regcost_a != regcost_b)
702 if (regcost_a == MAX_COST)
703 return 1;
704 if (regcost_b == MAX_COST)
705 return -1;
708 /* Normal operation costs take precedence. */
709 if (cost_a != cost_b)
710 return cost_a - cost_b;
711 /* Only if these are identical consider effects on register pressure. */
712 if (regcost_a != regcost_b)
713 return regcost_a - regcost_b;
714 return 0;
717 /* Internal function, to compute cost when X is not a register; called
718 from COST macro to keep it simple. */
720 static int
721 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
723 scalar_int_mode int_mode, inner_mode;
724 return ((GET_CODE (x) == SUBREG
725 && REG_P (SUBREG_REG (x))
726 && is_int_mode (mode, &int_mode)
727 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
728 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
729 && subreg_lowpart_p (x)
730 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
732 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
736 /* Initialize CSE_REG_INFO_TABLE. */
738 static void
739 init_cse_reg_info (unsigned int nregs)
741 /* Do we need to grow the table? */
742 if (nregs > cse_reg_info_table_size)
744 unsigned int new_size;
746 if (cse_reg_info_table_size < 2048)
748 /* Compute a new size that is a power of 2 and no smaller
749 than the large of NREGS and 64. */
750 new_size = (cse_reg_info_table_size
751 ? cse_reg_info_table_size : 64);
753 while (new_size < nregs)
754 new_size *= 2;
756 else
758 /* If we need a big table, allocate just enough to hold
759 NREGS registers. */
760 new_size = nregs;
763 /* Reallocate the table with NEW_SIZE entries. */
764 free (cse_reg_info_table);
765 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
766 cse_reg_info_table_size = new_size;
767 cse_reg_info_table_first_uninitialized = 0;
770 /* Do we have all of the first NREGS entries initialized? */
771 if (cse_reg_info_table_first_uninitialized < nregs)
773 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
774 unsigned int i;
776 /* Put the old timestamp on newly allocated entries so that they
777 will all be considered out of date. We do not touch those
778 entries beyond the first NREGS entries to be nice to the
779 virtual memory. */
780 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
781 cse_reg_info_table[i].timestamp = old_timestamp;
783 cse_reg_info_table_first_uninitialized = nregs;
787 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
789 static void
790 get_cse_reg_info_1 (unsigned int regno)
792 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
793 entry will be considered to have been initialized. */
794 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
796 /* Initialize the rest of the entry. */
797 cse_reg_info_table[regno].reg_tick = 1;
798 cse_reg_info_table[regno].reg_in_table = -1;
799 cse_reg_info_table[regno].subreg_ticked = -1;
800 cse_reg_info_table[regno].reg_qty = -regno - 1;
803 /* Find a cse_reg_info entry for REGNO. */
805 static inline struct cse_reg_info *
806 get_cse_reg_info (unsigned int regno)
808 struct cse_reg_info *p = &cse_reg_info_table[regno];
810 /* If this entry has not been initialized, go ahead and initialize
811 it. */
812 if (p->timestamp != cse_reg_info_timestamp)
813 get_cse_reg_info_1 (regno);
815 return p;
818 /* Clear the hash table and initialize each register with its own quantity,
819 for a new basic block. */
821 static void
822 new_basic_block (void)
824 int i;
826 next_qty = 0;
828 /* Invalidate cse_reg_info_table. */
829 cse_reg_info_timestamp++;
831 /* Clear out hash table state for this pass. */
832 CLEAR_HARD_REG_SET (hard_regs_in_table);
834 /* The per-quantity values used to be initialized here, but it is
835 much faster to initialize each as it is made in `make_new_qty'. */
837 for (i = 0; i < HASH_SIZE; i++)
839 struct table_elt *first;
841 first = table[i];
842 if (first != NULL)
844 struct table_elt *last = first;
846 table[i] = NULL;
848 while (last->next_same_hash != NULL)
849 last = last->next_same_hash;
851 /* Now relink this hash entire chain into
852 the free element list. */
854 last->next_same_hash = free_element_chain;
855 free_element_chain = first;
859 prev_insn_cc0 = 0;
862 /* Say that register REG contains a quantity in mode MODE not in any
863 register before and initialize that quantity. */
865 static void
866 make_new_qty (unsigned int reg, machine_mode mode)
868 int q;
869 struct qty_table_elem *ent;
870 struct reg_eqv_elem *eqv;
872 gcc_assert (next_qty < max_qty);
874 q = REG_QTY (reg) = next_qty++;
875 ent = &qty_table[q];
876 ent->first_reg = reg;
877 ent->last_reg = reg;
878 ent->mode = mode;
879 ent->const_rtx = ent->const_insn = NULL;
880 ent->comparison_code = UNKNOWN;
882 eqv = &reg_eqv_table[reg];
883 eqv->next = eqv->prev = -1;
886 /* Make reg NEW equivalent to reg OLD.
887 OLD is not changing; NEW is. */
889 static void
890 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
892 unsigned int lastr, firstr;
893 int q = REG_QTY (old_reg);
894 struct qty_table_elem *ent;
896 ent = &qty_table[q];
898 /* Nothing should become eqv until it has a "non-invalid" qty number. */
899 gcc_assert (REGNO_QTY_VALID_P (old_reg));
901 REG_QTY (new_reg) = q;
902 firstr = ent->first_reg;
903 lastr = ent->last_reg;
905 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
906 hard regs. Among pseudos, if NEW will live longer than any other reg
907 of the same qty, and that is beyond the current basic block,
908 make it the new canonical replacement for this qty. */
909 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
910 /* Certain fixed registers might be of the class NO_REGS. This means
911 that not only can they not be allocated by the compiler, but
912 they cannot be used in substitutions or canonicalizations
913 either. */
914 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
915 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
916 || (new_reg >= FIRST_PSEUDO_REGISTER
917 && (firstr < FIRST_PSEUDO_REGISTER
918 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
919 && !bitmap_bit_p (cse_ebb_live_out, firstr))
920 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
921 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
923 reg_eqv_table[firstr].prev = new_reg;
924 reg_eqv_table[new_reg].next = firstr;
925 reg_eqv_table[new_reg].prev = -1;
926 ent->first_reg = new_reg;
928 else
930 /* If NEW is a hard reg (known to be non-fixed), insert at end.
931 Otherwise, insert before any non-fixed hard regs that are at the
932 end. Registers of class NO_REGS cannot be used as an
933 equivalent for anything. */
934 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
935 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
936 && new_reg >= FIRST_PSEUDO_REGISTER)
937 lastr = reg_eqv_table[lastr].prev;
938 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
939 if (reg_eqv_table[lastr].next >= 0)
940 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
941 else
942 qty_table[q].last_reg = new_reg;
943 reg_eqv_table[lastr].next = new_reg;
944 reg_eqv_table[new_reg].prev = lastr;
948 /* Remove REG from its equivalence class. */
950 static void
951 delete_reg_equiv (unsigned int reg)
953 struct qty_table_elem *ent;
954 int q = REG_QTY (reg);
955 int p, n;
957 /* If invalid, do nothing. */
958 if (! REGNO_QTY_VALID_P (reg))
959 return;
961 ent = &qty_table[q];
963 p = reg_eqv_table[reg].prev;
964 n = reg_eqv_table[reg].next;
966 if (n != -1)
967 reg_eqv_table[n].prev = p;
968 else
969 ent->last_reg = p;
970 if (p != -1)
971 reg_eqv_table[p].next = n;
972 else
973 ent->first_reg = n;
975 REG_QTY (reg) = -reg - 1;
978 /* Remove any invalid expressions from the hash table
979 that refer to any of the registers contained in expression X.
981 Make sure that newly inserted references to those registers
982 as subexpressions will be considered valid.
984 mention_regs is not called when a register itself
985 is being stored in the table.
987 Return 1 if we have done something that may have changed the hash code
988 of X. */
990 static int
991 mention_regs (rtx x)
993 enum rtx_code code;
994 int i, j;
995 const char *fmt;
996 int changed = 0;
998 if (x == 0)
999 return 0;
1001 code = GET_CODE (x);
1002 if (code == REG)
1004 unsigned int regno = REGNO (x);
1005 unsigned int endregno = END_REGNO (x);
1006 unsigned int i;
1008 for (i = regno; i < endregno; i++)
1010 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1011 remove_invalid_refs (i);
1013 REG_IN_TABLE (i) = REG_TICK (i);
1014 SUBREG_TICKED (i) = -1;
1017 return 0;
1020 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1021 pseudo if they don't use overlapping words. We handle only pseudos
1022 here for simplicity. */
1023 if (code == SUBREG && REG_P (SUBREG_REG (x))
1024 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1026 unsigned int i = REGNO (SUBREG_REG (x));
1028 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1030 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1031 the last store to this register really stored into this
1032 subreg, then remove the memory of this subreg.
1033 Otherwise, remove any memory of the entire register and
1034 all its subregs from the table. */
1035 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1036 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1037 remove_invalid_refs (i);
1038 else
1039 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1042 REG_IN_TABLE (i) = REG_TICK (i);
1043 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1044 return 0;
1047 /* If X is a comparison or a COMPARE and either operand is a register
1048 that does not have a quantity, give it one. This is so that a later
1049 call to record_jump_equiv won't cause X to be assigned a different
1050 hash code and not found in the table after that call.
1052 It is not necessary to do this here, since rehash_using_reg can
1053 fix up the table later, but doing this here eliminates the need to
1054 call that expensive function in the most common case where the only
1055 use of the register is in the comparison. */
1057 if (code == COMPARE || COMPARISON_P (x))
1059 if (REG_P (XEXP (x, 0))
1060 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1061 if (insert_regs (XEXP (x, 0), NULL, 0))
1063 rehash_using_reg (XEXP (x, 0));
1064 changed = 1;
1067 if (REG_P (XEXP (x, 1))
1068 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1069 if (insert_regs (XEXP (x, 1), NULL, 0))
1071 rehash_using_reg (XEXP (x, 1));
1072 changed = 1;
1076 fmt = GET_RTX_FORMAT (code);
1077 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1078 if (fmt[i] == 'e')
1079 changed |= mention_regs (XEXP (x, i));
1080 else if (fmt[i] == 'E')
1081 for (j = 0; j < XVECLEN (x, i); j++)
1082 changed |= mention_regs (XVECEXP (x, i, j));
1084 return changed;
1087 /* Update the register quantities for inserting X into the hash table
1088 with a value equivalent to CLASSP.
1089 (If the class does not contain a REG, it is irrelevant.)
1090 If MODIFIED is nonzero, X is a destination; it is being modified.
1091 Note that delete_reg_equiv should be called on a register
1092 before insert_regs is done on that register with MODIFIED != 0.
1094 Nonzero value means that elements of reg_qty have changed
1095 so X's hash code may be different. */
1097 static int
1098 insert_regs (rtx x, struct table_elt *classp, int modified)
1100 if (REG_P (x))
1102 unsigned int regno = REGNO (x);
1103 int qty_valid;
1105 /* If REGNO is in the equivalence table already but is of the
1106 wrong mode for that equivalence, don't do anything here. */
1108 qty_valid = REGNO_QTY_VALID_P (regno);
1109 if (qty_valid)
1111 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1113 if (ent->mode != GET_MODE (x))
1114 return 0;
1117 if (modified || ! qty_valid)
1119 if (classp)
1120 for (classp = classp->first_same_value;
1121 classp != 0;
1122 classp = classp->next_same_value)
1123 if (REG_P (classp->exp)
1124 && GET_MODE (classp->exp) == GET_MODE (x))
1126 unsigned c_regno = REGNO (classp->exp);
1128 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1130 /* Suppose that 5 is hard reg and 100 and 101 are
1131 pseudos. Consider
1133 (set (reg:si 100) (reg:si 5))
1134 (set (reg:si 5) (reg:si 100))
1135 (set (reg:di 101) (reg:di 5))
1137 We would now set REG_QTY (101) = REG_QTY (5), but the
1138 entry for 5 is in SImode. When we use this later in
1139 copy propagation, we get the register in wrong mode. */
1140 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1141 continue;
1143 make_regs_eqv (regno, c_regno);
1144 return 1;
1147 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1148 than REG_IN_TABLE to find out if there was only a single preceding
1149 invalidation - for the SUBREG - or another one, which would be
1150 for the full register. However, if we find here that REG_TICK
1151 indicates that the register is invalid, it means that it has
1152 been invalidated in a separate operation. The SUBREG might be used
1153 now (then this is a recursive call), or we might use the full REG
1154 now and a SUBREG of it later. So bump up REG_TICK so that
1155 mention_regs will do the right thing. */
1156 if (! modified
1157 && REG_IN_TABLE (regno) >= 0
1158 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1159 REG_TICK (regno)++;
1160 make_new_qty (regno, GET_MODE (x));
1161 return 1;
1164 return 0;
1167 /* If X is a SUBREG, we will likely be inserting the inner register in the
1168 table. If that register doesn't have an assigned quantity number at
1169 this point but does later, the insertion that we will be doing now will
1170 not be accessible because its hash code will have changed. So assign
1171 a quantity number now. */
1173 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1174 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1176 insert_regs (SUBREG_REG (x), NULL, 0);
1177 mention_regs (x);
1178 return 1;
1180 else
1181 return mention_regs (x);
1185 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1186 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1187 CST is equal to an anchor. */
1189 static bool
1190 compute_const_anchors (rtx cst,
1191 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1192 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1194 HOST_WIDE_INT n = INTVAL (cst);
1196 *lower_base = n & ~(targetm.const_anchor - 1);
1197 if (*lower_base == n)
1198 return false;
1200 *upper_base =
1201 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1202 *upper_offs = n - *upper_base;
1203 *lower_offs = n - *lower_base;
1204 return true;
1207 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1209 static void
1210 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1211 machine_mode mode)
1213 struct table_elt *elt;
1214 unsigned hash;
1215 rtx anchor_exp;
1216 rtx exp;
1218 anchor_exp = GEN_INT (anchor);
1219 hash = HASH (anchor_exp, mode);
1220 elt = lookup (anchor_exp, hash, mode);
1221 if (!elt)
1222 elt = insert (anchor_exp, NULL, hash, mode);
1224 exp = plus_constant (mode, reg, offs);
1225 /* REG has just been inserted and the hash codes recomputed. */
1226 mention_regs (exp);
1227 hash = HASH (exp, mode);
1229 /* Use the cost of the register rather than the whole expression. When
1230 looking up constant anchors we will further offset the corresponding
1231 expression therefore it does not make sense to prefer REGs over
1232 reg-immediate additions. Prefer instead the oldest expression. Also
1233 don't prefer pseudos over hard regs so that we derive constants in
1234 argument registers from other argument registers rather than from the
1235 original pseudo that was used to synthesize the constant. */
1236 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1239 /* The constant CST is equivalent to the register REG. Create
1240 equivalences between the two anchors of CST and the corresponding
1241 register-offset expressions using REG. */
1243 static void
1244 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1246 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1248 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1249 &upper_base, &upper_offs))
1250 return;
1252 /* Ignore anchors of value 0. Constants accessible from zero are
1253 simple. */
1254 if (lower_base != 0)
1255 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1257 if (upper_base != 0)
1258 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1261 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1262 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1263 valid expression. Return the cheapest and oldest of such expressions. In
1264 *OLD, return how old the resulting expression is compared to the other
1265 equivalent expressions. */
1267 static rtx
1268 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1269 unsigned *old)
1271 struct table_elt *elt;
1272 unsigned idx;
1273 struct table_elt *match_elt;
1274 rtx match;
1276 /* Find the cheapest and *oldest* expression to maximize the chance of
1277 reusing the same pseudo. */
1279 match_elt = NULL;
1280 match = NULL_RTX;
1281 for (elt = anchor_elt->first_same_value, idx = 0;
1282 elt;
1283 elt = elt->next_same_value, idx++)
1285 if (match_elt && CHEAPER (match_elt, elt))
1286 return match;
1288 if (REG_P (elt->exp)
1289 || (GET_CODE (elt->exp) == PLUS
1290 && REG_P (XEXP (elt->exp, 0))
1291 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1293 rtx x;
1295 /* Ignore expressions that are no longer valid. */
1296 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1297 continue;
1299 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1300 if (REG_P (x)
1301 || (GET_CODE (x) == PLUS
1302 && IN_RANGE (INTVAL (XEXP (x, 1)),
1303 -targetm.const_anchor,
1304 targetm.const_anchor - 1)))
1306 match = x;
1307 match_elt = elt;
1308 *old = idx;
1313 return match;
1316 /* Try to express the constant SRC_CONST using a register+offset expression
1317 derived from a constant anchor. Return it if successful or NULL_RTX,
1318 otherwise. */
1320 static rtx
1321 try_const_anchors (rtx src_const, machine_mode mode)
1323 struct table_elt *lower_elt, *upper_elt;
1324 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1325 rtx lower_anchor_rtx, upper_anchor_rtx;
1326 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1327 unsigned lower_old, upper_old;
1329 /* CONST_INT is used for CC modes, but we should leave those alone. */
1330 if (GET_MODE_CLASS (mode) == MODE_CC)
1331 return NULL_RTX;
1333 gcc_assert (SCALAR_INT_MODE_P (mode));
1334 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1335 &upper_base, &upper_offs))
1336 return NULL_RTX;
1338 lower_anchor_rtx = GEN_INT (lower_base);
1339 upper_anchor_rtx = GEN_INT (upper_base);
1340 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1341 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1343 if (lower_elt)
1344 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1345 if (upper_elt)
1346 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1348 if (!lower_exp)
1349 return upper_exp;
1350 if (!upper_exp)
1351 return lower_exp;
1353 /* Return the older expression. */
1354 return (upper_old > lower_old ? upper_exp : lower_exp);
1357 /* Look in or update the hash table. */
1359 /* Remove table element ELT from use in the table.
1360 HASH is its hash code, made using the HASH macro.
1361 It's an argument because often that is known in advance
1362 and we save much time not recomputing it. */
1364 static void
1365 remove_from_table (struct table_elt *elt, unsigned int hash)
1367 if (elt == 0)
1368 return;
1370 /* Mark this element as removed. See cse_insn. */
1371 elt->first_same_value = 0;
1373 /* Remove the table element from its equivalence class. */
1376 struct table_elt *prev = elt->prev_same_value;
1377 struct table_elt *next = elt->next_same_value;
1379 if (next)
1380 next->prev_same_value = prev;
1382 if (prev)
1383 prev->next_same_value = next;
1384 else
1386 struct table_elt *newfirst = next;
1387 while (next)
1389 next->first_same_value = newfirst;
1390 next = next->next_same_value;
1395 /* Remove the table element from its hash bucket. */
1398 struct table_elt *prev = elt->prev_same_hash;
1399 struct table_elt *next = elt->next_same_hash;
1401 if (next)
1402 next->prev_same_hash = prev;
1404 if (prev)
1405 prev->next_same_hash = next;
1406 else if (table[hash] == elt)
1407 table[hash] = next;
1408 else
1410 /* This entry is not in the proper hash bucket. This can happen
1411 when two classes were merged by `merge_equiv_classes'. Search
1412 for the hash bucket that it heads. This happens only very
1413 rarely, so the cost is acceptable. */
1414 for (hash = 0; hash < HASH_SIZE; hash++)
1415 if (table[hash] == elt)
1416 table[hash] = next;
1420 /* Remove the table element from its related-value circular chain. */
1422 if (elt->related_value != 0 && elt->related_value != elt)
1424 struct table_elt *p = elt->related_value;
1426 while (p->related_value != elt)
1427 p = p->related_value;
1428 p->related_value = elt->related_value;
1429 if (p->related_value == p)
1430 p->related_value = 0;
1433 /* Now add it to the free element chain. */
1434 elt->next_same_hash = free_element_chain;
1435 free_element_chain = elt;
1438 /* Same as above, but X is a pseudo-register. */
1440 static void
1441 remove_pseudo_from_table (rtx x, unsigned int hash)
1443 struct table_elt *elt;
1445 /* Because a pseudo-register can be referenced in more than one
1446 mode, we might have to remove more than one table entry. */
1447 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1448 remove_from_table (elt, hash);
1451 /* Look up X in the hash table and return its table element,
1452 or 0 if X is not in the table.
1454 MODE is the machine-mode of X, or if X is an integer constant
1455 with VOIDmode then MODE is the mode with which X will be used.
1457 Here we are satisfied to find an expression whose tree structure
1458 looks like X. */
1460 static struct table_elt *
1461 lookup (rtx x, unsigned int hash, machine_mode mode)
1463 struct table_elt *p;
1465 for (p = table[hash]; p; p = p->next_same_hash)
1466 if (mode == p->mode && ((x == p->exp && REG_P (x))
1467 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1468 return p;
1470 return 0;
1473 /* Like `lookup' but don't care whether the table element uses invalid regs.
1474 Also ignore discrepancies in the machine mode of a register. */
1476 static struct table_elt *
1477 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1479 struct table_elt *p;
1481 if (REG_P (x))
1483 unsigned int regno = REGNO (x);
1485 /* Don't check the machine mode when comparing registers;
1486 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1487 for (p = table[hash]; p; p = p->next_same_hash)
1488 if (REG_P (p->exp)
1489 && REGNO (p->exp) == regno)
1490 return p;
1492 else
1494 for (p = table[hash]; p; p = p->next_same_hash)
1495 if (mode == p->mode
1496 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1497 return p;
1500 return 0;
1503 /* Look for an expression equivalent to X and with code CODE.
1504 If one is found, return that expression. */
1506 static rtx
1507 lookup_as_function (rtx x, enum rtx_code code)
1509 struct table_elt *p
1510 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1512 if (p == 0)
1513 return 0;
1515 for (p = p->first_same_value; p; p = p->next_same_value)
1516 if (GET_CODE (p->exp) == code
1517 /* Make sure this is a valid entry in the table. */
1518 && exp_equiv_p (p->exp, p->exp, 1, false))
1519 return p->exp;
1521 return 0;
1524 /* Insert X in the hash table, assuming HASH is its hash code and
1525 CLASSP is an element of the class it should go in (or 0 if a new
1526 class should be made). COST is the code of X and reg_cost is the
1527 cost of registers in X. It is inserted at the proper position to
1528 keep the class in the order cheapest first.
1530 MODE is the machine-mode of X, or if X is an integer constant
1531 with VOIDmode then MODE is the mode with which X will be used.
1533 For elements of equal cheapness, the most recent one
1534 goes in front, except that the first element in the list
1535 remains first unless a cheaper element is added. The order of
1536 pseudo-registers does not matter, as canon_reg will be called to
1537 find the cheapest when a register is retrieved from the table.
1539 The in_memory field in the hash table element is set to 0.
1540 The caller must set it nonzero if appropriate.
1542 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1543 and if insert_regs returns a nonzero value
1544 you must then recompute its hash code before calling here.
1546 If necessary, update table showing constant values of quantities. */
1548 static struct table_elt *
1549 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1550 machine_mode mode, int cost, int reg_cost)
1552 struct table_elt *elt;
1554 /* If X is a register and we haven't made a quantity for it,
1555 something is wrong. */
1556 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1558 /* If X is a hard register, show it is being put in the table. */
1559 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1560 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1562 /* Put an element for X into the right hash bucket. */
1564 elt = free_element_chain;
1565 if (elt)
1566 free_element_chain = elt->next_same_hash;
1567 else
1568 elt = XNEW (struct table_elt);
1570 elt->exp = x;
1571 elt->canon_exp = NULL_RTX;
1572 elt->cost = cost;
1573 elt->regcost = reg_cost;
1574 elt->next_same_value = 0;
1575 elt->prev_same_value = 0;
1576 elt->next_same_hash = table[hash];
1577 elt->prev_same_hash = 0;
1578 elt->related_value = 0;
1579 elt->in_memory = 0;
1580 elt->mode = mode;
1581 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1583 if (table[hash])
1584 table[hash]->prev_same_hash = elt;
1585 table[hash] = elt;
1587 /* Put it into the proper value-class. */
1588 if (classp)
1590 classp = classp->first_same_value;
1591 if (CHEAPER (elt, classp))
1592 /* Insert at the head of the class. */
1594 struct table_elt *p;
1595 elt->next_same_value = classp;
1596 classp->prev_same_value = elt;
1597 elt->first_same_value = elt;
1599 for (p = classp; p; p = p->next_same_value)
1600 p->first_same_value = elt;
1602 else
1604 /* Insert not at head of the class. */
1605 /* Put it after the last element cheaper than X. */
1606 struct table_elt *p, *next;
1608 for (p = classp;
1609 (next = p->next_same_value) && CHEAPER (next, elt);
1610 p = next)
1613 /* Put it after P and before NEXT. */
1614 elt->next_same_value = next;
1615 if (next)
1616 next->prev_same_value = elt;
1618 elt->prev_same_value = p;
1619 p->next_same_value = elt;
1620 elt->first_same_value = classp;
1623 else
1624 elt->first_same_value = elt;
1626 /* If this is a constant being set equivalent to a register or a register
1627 being set equivalent to a constant, note the constant equivalence.
1629 If this is a constant, it cannot be equivalent to a different constant,
1630 and a constant is the only thing that can be cheaper than a register. So
1631 we know the register is the head of the class (before the constant was
1632 inserted).
1634 If this is a register that is not already known equivalent to a
1635 constant, we must check the entire class.
1637 If this is a register that is already known equivalent to an insn,
1638 update the qtys `const_insn' to show that `this_insn' is the latest
1639 insn making that quantity equivalent to the constant. */
1641 if (elt->is_const && classp && REG_P (classp->exp)
1642 && !REG_P (x))
1644 int exp_q = REG_QTY (REGNO (classp->exp));
1645 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1647 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1648 exp_ent->const_insn = this_insn;
1651 else if (REG_P (x)
1652 && classp
1653 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1654 && ! elt->is_const)
1656 struct table_elt *p;
1658 for (p = classp; p != 0; p = p->next_same_value)
1660 if (p->is_const && !REG_P (p->exp))
1662 int x_q = REG_QTY (REGNO (x));
1663 struct qty_table_elem *x_ent = &qty_table[x_q];
1665 x_ent->const_rtx
1666 = gen_lowpart (GET_MODE (x), p->exp);
1667 x_ent->const_insn = this_insn;
1668 break;
1673 else if (REG_P (x)
1674 && qty_table[REG_QTY (REGNO (x))].const_rtx
1675 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1676 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1678 /* If this is a constant with symbolic value,
1679 and it has a term with an explicit integer value,
1680 link it up with related expressions. */
1681 if (GET_CODE (x) == CONST)
1683 rtx subexp = get_related_value (x);
1684 unsigned subhash;
1685 struct table_elt *subelt, *subelt_prev;
1687 if (subexp != 0)
1689 /* Get the integer-free subexpression in the hash table. */
1690 subhash = SAFE_HASH (subexp, mode);
1691 subelt = lookup (subexp, subhash, mode);
1692 if (subelt == 0)
1693 subelt = insert (subexp, NULL, subhash, mode);
1694 /* Initialize SUBELT's circular chain if it has none. */
1695 if (subelt->related_value == 0)
1696 subelt->related_value = subelt;
1697 /* Find the element in the circular chain that precedes SUBELT. */
1698 subelt_prev = subelt;
1699 while (subelt_prev->related_value != subelt)
1700 subelt_prev = subelt_prev->related_value;
1701 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1702 This way the element that follows SUBELT is the oldest one. */
1703 elt->related_value = subelt_prev->related_value;
1704 subelt_prev->related_value = elt;
1708 return elt;
1711 /* Wrap insert_with_costs by passing the default costs. */
1713 static struct table_elt *
1714 insert (rtx x, struct table_elt *classp, unsigned int hash,
1715 machine_mode mode)
1717 return insert_with_costs (x, classp, hash, mode,
1718 COST (x, mode), approx_reg_cost (x));
1722 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1723 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1724 the two classes equivalent.
1726 CLASS1 will be the surviving class; CLASS2 should not be used after this
1727 call.
1729 Any invalid entries in CLASS2 will not be copied. */
1731 static void
1732 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1734 struct table_elt *elt, *next, *new_elt;
1736 /* Ensure we start with the head of the classes. */
1737 class1 = class1->first_same_value;
1738 class2 = class2->first_same_value;
1740 /* If they were already equal, forget it. */
1741 if (class1 == class2)
1742 return;
1744 for (elt = class2; elt; elt = next)
1746 unsigned int hash;
1747 rtx exp = elt->exp;
1748 machine_mode mode = elt->mode;
1750 next = elt->next_same_value;
1752 /* Remove old entry, make a new one in CLASS1's class.
1753 Don't do this for invalid entries as we cannot find their
1754 hash code (it also isn't necessary). */
1755 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1757 bool need_rehash = false;
1759 hash_arg_in_memory = 0;
1760 hash = HASH (exp, mode);
1762 if (REG_P (exp))
1764 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1765 delete_reg_equiv (REGNO (exp));
1768 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1769 remove_pseudo_from_table (exp, hash);
1770 else
1771 remove_from_table (elt, hash);
1773 if (insert_regs (exp, class1, 0) || need_rehash)
1775 rehash_using_reg (exp);
1776 hash = HASH (exp, mode);
1778 new_elt = insert (exp, class1, hash, mode);
1779 new_elt->in_memory = hash_arg_in_memory;
1780 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1781 new_elt->cost = MAX_COST;
1786 /* Flush the entire hash table. */
1788 static void
1789 flush_hash_table (void)
1791 int i;
1792 struct table_elt *p;
1794 for (i = 0; i < HASH_SIZE; i++)
1795 for (p = table[i]; p; p = table[i])
1797 /* Note that invalidate can remove elements
1798 after P in the current hash chain. */
1799 if (REG_P (p->exp))
1800 invalidate (p->exp, VOIDmode);
1801 else
1802 remove_from_table (p, i);
1806 /* Check whether an anti dependence exists between X and EXP. MODE and
1807 ADDR are as for canon_anti_dependence. */
1809 static bool
1810 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1812 subrtx_iterator::array_type array;
1813 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1815 const_rtx x = *iter;
1816 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1817 return true;
1819 return false;
1822 /* Remove from the hash table, or mark as invalid, all expressions whose
1823 values could be altered by storing in X. X is a register, a subreg, or
1824 a memory reference with nonvarying address (because, when a memory
1825 reference with a varying address is stored in, all memory references are
1826 removed by invalidate_memory so specific invalidation is superfluous).
1827 FULL_MODE, if not VOIDmode, indicates that this much should be
1828 invalidated instead of just the amount indicated by the mode of X. This
1829 is only used for bitfield stores into memory.
1831 A nonvarying address may be just a register or just a symbol reference,
1832 or it may be either of those plus a numeric offset. */
1834 static void
1835 invalidate (rtx x, machine_mode full_mode)
1837 int i;
1838 struct table_elt *p;
1839 rtx addr;
1841 switch (GET_CODE (x))
1843 case REG:
1845 /* If X is a register, dependencies on its contents are recorded
1846 through the qty number mechanism. Just change the qty number of
1847 the register, mark it as invalid for expressions that refer to it,
1848 and remove it itself. */
1849 unsigned int regno = REGNO (x);
1850 unsigned int hash = HASH (x, GET_MODE (x));
1852 /* Remove REGNO from any quantity list it might be on and indicate
1853 that its value might have changed. If it is a pseudo, remove its
1854 entry from the hash table.
1856 For a hard register, we do the first two actions above for any
1857 additional hard registers corresponding to X. Then, if any of these
1858 registers are in the table, we must remove any REG entries that
1859 overlap these registers. */
1861 delete_reg_equiv (regno);
1862 REG_TICK (regno)++;
1863 SUBREG_TICKED (regno) = -1;
1865 if (regno >= FIRST_PSEUDO_REGISTER)
1866 remove_pseudo_from_table (x, hash);
1867 else
1869 HOST_WIDE_INT in_table
1870 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1871 unsigned int endregno = END_REGNO (x);
1872 unsigned int tregno, tendregno, rn;
1873 struct table_elt *p, *next;
1875 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1877 for (rn = regno + 1; rn < endregno; rn++)
1879 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1880 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1881 delete_reg_equiv (rn);
1882 REG_TICK (rn)++;
1883 SUBREG_TICKED (rn) = -1;
1886 if (in_table)
1887 for (hash = 0; hash < HASH_SIZE; hash++)
1888 for (p = table[hash]; p; p = next)
1890 next = p->next_same_hash;
1892 if (!REG_P (p->exp)
1893 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1894 continue;
1896 tregno = REGNO (p->exp);
1897 tendregno = END_REGNO (p->exp);
1898 if (tendregno > regno && tregno < endregno)
1899 remove_from_table (p, hash);
1903 return;
1905 case SUBREG:
1906 invalidate (SUBREG_REG (x), VOIDmode);
1907 return;
1909 case PARALLEL:
1910 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1911 invalidate (XVECEXP (x, 0, i), VOIDmode);
1912 return;
1914 case EXPR_LIST:
1915 /* This is part of a disjoint return value; extract the location in
1916 question ignoring the offset. */
1917 invalidate (XEXP (x, 0), VOIDmode);
1918 return;
1920 case MEM:
1921 addr = canon_rtx (get_addr (XEXP (x, 0)));
1922 /* Calculate the canonical version of X here so that
1923 true_dependence doesn't generate new RTL for X on each call. */
1924 x = canon_rtx (x);
1926 /* Remove all hash table elements that refer to overlapping pieces of
1927 memory. */
1928 if (full_mode == VOIDmode)
1929 full_mode = GET_MODE (x);
1931 for (i = 0; i < HASH_SIZE; i++)
1933 struct table_elt *next;
1935 for (p = table[i]; p; p = next)
1937 next = p->next_same_hash;
1938 if (p->in_memory)
1940 /* Just canonicalize the expression once;
1941 otherwise each time we call invalidate
1942 true_dependence will canonicalize the
1943 expression again. */
1944 if (!p->canon_exp)
1945 p->canon_exp = canon_rtx (p->exp);
1946 if (check_dependence (p->canon_exp, x, full_mode, addr))
1947 remove_from_table (p, i);
1951 return;
1953 default:
1954 gcc_unreachable ();
1958 /* Invalidate DEST. Used when DEST is not going to be added
1959 into the hash table for some reason, e.g. do_not_record
1960 flagged on it. */
1962 static void
1963 invalidate_dest (rtx dest)
1965 if (REG_P (dest)
1966 || GET_CODE (dest) == SUBREG
1967 || MEM_P (dest))
1968 invalidate (dest, VOIDmode);
1969 else if (GET_CODE (dest) == STRICT_LOW_PART
1970 || GET_CODE (dest) == ZERO_EXTRACT)
1971 invalidate (XEXP (dest, 0), GET_MODE (dest));
1974 /* Remove all expressions that refer to register REGNO,
1975 since they are already invalid, and we are about to
1976 mark that register valid again and don't want the old
1977 expressions to reappear as valid. */
1979 static void
1980 remove_invalid_refs (unsigned int regno)
1982 unsigned int i;
1983 struct table_elt *p, *next;
1985 for (i = 0; i < HASH_SIZE; i++)
1986 for (p = table[i]; p; p = next)
1988 next = p->next_same_hash;
1989 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
1990 remove_from_table (p, i);
1994 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1995 and mode MODE. */
1996 static void
1997 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1998 machine_mode mode)
2000 unsigned int i;
2001 struct table_elt *p, *next;
2002 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2004 for (i = 0; i < HASH_SIZE; i++)
2005 for (p = table[i]; p; p = next)
2007 rtx exp = p->exp;
2008 next = p->next_same_hash;
2010 if (!REG_P (exp)
2011 && (GET_CODE (exp) != SUBREG
2012 || !REG_P (SUBREG_REG (exp))
2013 || REGNO (SUBREG_REG (exp)) != regno
2014 || (((SUBREG_BYTE (exp)
2015 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2016 && SUBREG_BYTE (exp) <= end))
2017 && refers_to_regno_p (regno, p->exp))
2018 remove_from_table (p, i);
2022 /* Recompute the hash codes of any valid entries in the hash table that
2023 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2025 This is called when we make a jump equivalence. */
2027 static void
2028 rehash_using_reg (rtx x)
2030 unsigned int i;
2031 struct table_elt *p, *next;
2032 unsigned hash;
2034 if (GET_CODE (x) == SUBREG)
2035 x = SUBREG_REG (x);
2037 /* If X is not a register or if the register is known not to be in any
2038 valid entries in the table, we have no work to do. */
2040 if (!REG_P (x)
2041 || REG_IN_TABLE (REGNO (x)) < 0
2042 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2043 return;
2045 /* Scan all hash chains looking for valid entries that mention X.
2046 If we find one and it is in the wrong hash chain, move it. */
2048 for (i = 0; i < HASH_SIZE; i++)
2049 for (p = table[i]; p; p = next)
2051 next = p->next_same_hash;
2052 if (reg_mentioned_p (x, p->exp)
2053 && exp_equiv_p (p->exp, p->exp, 1, false)
2054 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2056 if (p->next_same_hash)
2057 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2059 if (p->prev_same_hash)
2060 p->prev_same_hash->next_same_hash = p->next_same_hash;
2061 else
2062 table[i] = p->next_same_hash;
2064 p->next_same_hash = table[hash];
2065 p->prev_same_hash = 0;
2066 if (table[hash])
2067 table[hash]->prev_same_hash = p;
2068 table[hash] = p;
2073 /* Remove from the hash table any expression that is a call-clobbered
2074 register. Also update their TICK values. */
2076 static void
2077 invalidate_for_call (void)
2079 unsigned int regno, endregno;
2080 unsigned int i;
2081 unsigned hash;
2082 struct table_elt *p, *next;
2083 int in_table = 0;
2084 hard_reg_set_iterator hrsi;
2086 /* Go through all the hard registers. For each that is clobbered in
2087 a CALL_INSN, remove the register from quantity chains and update
2088 reg_tick if defined. Also see if any of these registers is currently
2089 in the table. */
2090 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2092 delete_reg_equiv (regno);
2093 if (REG_TICK (regno) >= 0)
2095 REG_TICK (regno)++;
2096 SUBREG_TICKED (regno) = -1;
2098 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2101 /* In the case where we have no call-clobbered hard registers in the
2102 table, we are done. Otherwise, scan the table and remove any
2103 entry that overlaps a call-clobbered register. */
2105 if (in_table)
2106 for (hash = 0; hash < HASH_SIZE; hash++)
2107 for (p = table[hash]; p; p = next)
2109 next = p->next_same_hash;
2111 if (!REG_P (p->exp)
2112 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2113 continue;
2115 regno = REGNO (p->exp);
2116 endregno = END_REGNO (p->exp);
2118 for (i = regno; i < endregno; i++)
2119 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2121 remove_from_table (p, hash);
2122 break;
2127 /* Given an expression X of type CONST,
2128 and ELT which is its table entry (or 0 if it
2129 is not in the hash table),
2130 return an alternate expression for X as a register plus integer.
2131 If none can be found, return 0. */
2133 static rtx
2134 use_related_value (rtx x, struct table_elt *elt)
2136 struct table_elt *relt = 0;
2137 struct table_elt *p, *q;
2138 HOST_WIDE_INT offset;
2140 /* First, is there anything related known?
2141 If we have a table element, we can tell from that.
2142 Otherwise, must look it up. */
2144 if (elt != 0 && elt->related_value != 0)
2145 relt = elt;
2146 else if (elt == 0 && GET_CODE (x) == CONST)
2148 rtx subexp = get_related_value (x);
2149 if (subexp != 0)
2150 relt = lookup (subexp,
2151 SAFE_HASH (subexp, GET_MODE (subexp)),
2152 GET_MODE (subexp));
2155 if (relt == 0)
2156 return 0;
2158 /* Search all related table entries for one that has an
2159 equivalent register. */
2161 p = relt;
2162 while (1)
2164 /* This loop is strange in that it is executed in two different cases.
2165 The first is when X is already in the table. Then it is searching
2166 the RELATED_VALUE list of X's class (RELT). The second case is when
2167 X is not in the table. Then RELT points to a class for the related
2168 value.
2170 Ensure that, whatever case we are in, that we ignore classes that have
2171 the same value as X. */
2173 if (rtx_equal_p (x, p->exp))
2174 q = 0;
2175 else
2176 for (q = p->first_same_value; q; q = q->next_same_value)
2177 if (REG_P (q->exp))
2178 break;
2180 if (q)
2181 break;
2183 p = p->related_value;
2185 /* We went all the way around, so there is nothing to be found.
2186 Alternatively, perhaps RELT was in the table for some other reason
2187 and it has no related values recorded. */
2188 if (p == relt || p == 0)
2189 break;
2192 if (q == 0)
2193 return 0;
2195 offset = (get_integer_term (x) - get_integer_term (p->exp));
2196 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2197 return plus_constant (q->mode, q->exp, offset);
2201 /* Hash a string. Just add its bytes up. */
2202 static inline unsigned
2203 hash_rtx_string (const char *ps)
2205 unsigned hash = 0;
2206 const unsigned char *p = (const unsigned char *) ps;
2208 if (p)
2209 while (*p)
2210 hash += *p++;
2212 return hash;
2215 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2216 When the callback returns true, we continue with the new rtx. */
2218 unsigned
2219 hash_rtx_cb (const_rtx x, machine_mode mode,
2220 int *do_not_record_p, int *hash_arg_in_memory_p,
2221 bool have_reg_qty, hash_rtx_callback_function cb)
2223 int i, j;
2224 unsigned hash = 0;
2225 enum rtx_code code;
2226 const char *fmt;
2227 machine_mode newmode;
2228 rtx newx;
2230 /* Used to turn recursion into iteration. We can't rely on GCC's
2231 tail-recursion elimination since we need to keep accumulating values
2232 in HASH. */
2233 repeat:
2234 if (x == 0)
2235 return hash;
2237 /* Invoke the callback first. */
2238 if (cb != NULL
2239 && ((*cb) (x, mode, &newx, &newmode)))
2241 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2242 hash_arg_in_memory_p, have_reg_qty, cb);
2243 return hash;
2246 code = GET_CODE (x);
2247 switch (code)
2249 case REG:
2251 unsigned int regno = REGNO (x);
2253 if (do_not_record_p && !reload_completed)
2255 /* On some machines, we can't record any non-fixed hard register,
2256 because extending its life will cause reload problems. We
2257 consider ap, fp, sp, gp to be fixed for this purpose.
2259 We also consider CCmode registers to be fixed for this purpose;
2260 failure to do so leads to failure to simplify 0<100 type of
2261 conditionals.
2263 On all machines, we can't record any global registers.
2264 Nor should we record any register that is in a small
2265 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2266 bool record;
2268 if (regno >= FIRST_PSEUDO_REGISTER)
2269 record = true;
2270 else if (x == frame_pointer_rtx
2271 || x == hard_frame_pointer_rtx
2272 || x == arg_pointer_rtx
2273 || x == stack_pointer_rtx
2274 || x == pic_offset_table_rtx)
2275 record = true;
2276 else if (global_regs[regno])
2277 record = false;
2278 else if (fixed_regs[regno])
2279 record = true;
2280 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2281 record = true;
2282 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2283 record = false;
2284 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2285 record = false;
2286 else
2287 record = true;
2289 if (!record)
2291 *do_not_record_p = 1;
2292 return 0;
2296 hash += ((unsigned int) REG << 7);
2297 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2298 return hash;
2301 /* We handle SUBREG of a REG specially because the underlying
2302 reg changes its hash value with every value change; we don't
2303 want to have to forget unrelated subregs when one subreg changes. */
2304 case SUBREG:
2306 if (REG_P (SUBREG_REG (x)))
2308 hash += (((unsigned int) SUBREG << 7)
2309 + REGNO (SUBREG_REG (x))
2310 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2311 return hash;
2313 break;
2316 case CONST_INT:
2317 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2318 + (unsigned int) INTVAL (x));
2319 return hash;
2321 case CONST_WIDE_INT:
2322 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2323 hash += CONST_WIDE_INT_ELT (x, i);
2324 return hash;
2326 case CONST_DOUBLE:
2327 /* This is like the general case, except that it only counts
2328 the integers representing the constant. */
2329 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2330 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2331 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2332 + (unsigned int) CONST_DOUBLE_HIGH (x));
2333 else
2334 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2335 return hash;
2337 case CONST_FIXED:
2338 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2339 hash += fixed_hash (CONST_FIXED_VALUE (x));
2340 return hash;
2342 case CONST_VECTOR:
2344 int units;
2345 rtx elt;
2347 units = CONST_VECTOR_NUNITS (x);
2349 for (i = 0; i < units; ++i)
2351 elt = CONST_VECTOR_ELT (x, i);
2352 hash += hash_rtx_cb (elt, GET_MODE (elt),
2353 do_not_record_p, hash_arg_in_memory_p,
2354 have_reg_qty, cb);
2357 return hash;
2360 /* Assume there is only one rtx object for any given label. */
2361 case LABEL_REF:
2362 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2363 differences and differences between each stage's debugging dumps. */
2364 hash += (((unsigned int) LABEL_REF << 7)
2365 + CODE_LABEL_NUMBER (label_ref_label (x)));
2366 return hash;
2368 case SYMBOL_REF:
2370 /* Don't hash on the symbol's address to avoid bootstrap differences.
2371 Different hash values may cause expressions to be recorded in
2372 different orders and thus different registers to be used in the
2373 final assembler. This also avoids differences in the dump files
2374 between various stages. */
2375 unsigned int h = 0;
2376 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2378 while (*p)
2379 h += (h << 7) + *p++; /* ??? revisit */
2381 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2382 return hash;
2385 case MEM:
2386 /* We don't record if marked volatile or if BLKmode since we don't
2387 know the size of the move. */
2388 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2390 *do_not_record_p = 1;
2391 return 0;
2393 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2394 *hash_arg_in_memory_p = 1;
2396 /* Now that we have already found this special case,
2397 might as well speed it up as much as possible. */
2398 hash += (unsigned) MEM;
2399 x = XEXP (x, 0);
2400 goto repeat;
2402 case USE:
2403 /* A USE that mentions non-volatile memory needs special
2404 handling since the MEM may be BLKmode which normally
2405 prevents an entry from being made. Pure calls are
2406 marked by a USE which mentions BLKmode memory.
2407 See calls.c:emit_call_1. */
2408 if (MEM_P (XEXP (x, 0))
2409 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2411 hash += (unsigned) USE;
2412 x = XEXP (x, 0);
2414 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2415 *hash_arg_in_memory_p = 1;
2417 /* Now that we have already found this special case,
2418 might as well speed it up as much as possible. */
2419 hash += (unsigned) MEM;
2420 x = XEXP (x, 0);
2421 goto repeat;
2423 break;
2425 case PRE_DEC:
2426 case PRE_INC:
2427 case POST_DEC:
2428 case POST_INC:
2429 case PRE_MODIFY:
2430 case POST_MODIFY:
2431 case PC:
2432 case CC0:
2433 case CALL:
2434 case UNSPEC_VOLATILE:
2435 if (do_not_record_p) {
2436 *do_not_record_p = 1;
2437 return 0;
2439 else
2440 return hash;
2441 break;
2443 case ASM_OPERANDS:
2444 if (do_not_record_p && MEM_VOLATILE_P (x))
2446 *do_not_record_p = 1;
2447 return 0;
2449 else
2451 /* We don't want to take the filename and line into account. */
2452 hash += (unsigned) code + (unsigned) GET_MODE (x)
2453 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2454 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2455 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2457 if (ASM_OPERANDS_INPUT_LENGTH (x))
2459 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2461 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2462 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2463 do_not_record_p, hash_arg_in_memory_p,
2464 have_reg_qty, cb)
2465 + hash_rtx_string
2466 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2469 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2470 x = ASM_OPERANDS_INPUT (x, 0);
2471 mode = GET_MODE (x);
2472 goto repeat;
2475 return hash;
2477 break;
2479 default:
2480 break;
2483 i = GET_RTX_LENGTH (code) - 1;
2484 hash += (unsigned) code + (unsigned) GET_MODE (x);
2485 fmt = GET_RTX_FORMAT (code);
2486 for (; i >= 0; i--)
2488 switch (fmt[i])
2490 case 'e':
2491 /* If we are about to do the last recursive call
2492 needed at this level, change it into iteration.
2493 This function is called enough to be worth it. */
2494 if (i == 0)
2496 x = XEXP (x, i);
2497 goto repeat;
2500 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2501 hash_arg_in_memory_p,
2502 have_reg_qty, cb);
2503 break;
2505 case 'E':
2506 for (j = 0; j < XVECLEN (x, i); j++)
2507 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2508 hash_arg_in_memory_p,
2509 have_reg_qty, cb);
2510 break;
2512 case 's':
2513 hash += hash_rtx_string (XSTR (x, i));
2514 break;
2516 case 'i':
2517 hash += (unsigned int) XINT (x, i);
2518 break;
2520 case '0': case 't':
2521 /* Unused. */
2522 break;
2524 default:
2525 gcc_unreachable ();
2529 return hash;
2532 /* Hash an rtx. We are careful to make sure the value is never negative.
2533 Equivalent registers hash identically.
2534 MODE is used in hashing for CONST_INTs only;
2535 otherwise the mode of X is used.
2537 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2539 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2540 a MEM rtx which does not have the MEM_READONLY_P flag set.
2542 Note that cse_insn knows that the hash code of a MEM expression
2543 is just (int) MEM plus the hash code of the address. */
2545 unsigned
2546 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2547 int *hash_arg_in_memory_p, bool have_reg_qty)
2549 return hash_rtx_cb (x, mode, do_not_record_p,
2550 hash_arg_in_memory_p, have_reg_qty, NULL);
2553 /* Hash an rtx X for cse via hash_rtx.
2554 Stores 1 in do_not_record if any subexpression is volatile.
2555 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2556 does not have the MEM_READONLY_P flag set. */
2558 static inline unsigned
2559 canon_hash (rtx x, machine_mode mode)
2561 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2564 /* Like canon_hash but with no side effects, i.e. do_not_record
2565 and hash_arg_in_memory are not changed. */
2567 static inline unsigned
2568 safe_hash (rtx x, machine_mode mode)
2570 int dummy_do_not_record;
2571 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2574 /* Return 1 iff X and Y would canonicalize into the same thing,
2575 without actually constructing the canonicalization of either one.
2576 If VALIDATE is nonzero,
2577 we assume X is an expression being processed from the rtl
2578 and Y was found in the hash table. We check register refs
2579 in Y for being marked as valid.
2581 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2584 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2586 int i, j;
2587 enum rtx_code code;
2588 const char *fmt;
2590 /* Note: it is incorrect to assume an expression is equivalent to itself
2591 if VALIDATE is nonzero. */
2592 if (x == y && !validate)
2593 return 1;
2595 if (x == 0 || y == 0)
2596 return x == y;
2598 code = GET_CODE (x);
2599 if (code != GET_CODE (y))
2600 return 0;
2602 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2603 if (GET_MODE (x) != GET_MODE (y))
2604 return 0;
2606 /* MEMs referring to different address space are not equivalent. */
2607 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2608 return 0;
2610 switch (code)
2612 case PC:
2613 case CC0:
2614 CASE_CONST_UNIQUE:
2615 return x == y;
2617 case LABEL_REF:
2618 return label_ref_label (x) == label_ref_label (y);
2620 case SYMBOL_REF:
2621 return XSTR (x, 0) == XSTR (y, 0);
2623 case REG:
2624 if (for_gcse)
2625 return REGNO (x) == REGNO (y);
2626 else
2628 unsigned int regno = REGNO (y);
2629 unsigned int i;
2630 unsigned int endregno = END_REGNO (y);
2632 /* If the quantities are not the same, the expressions are not
2633 equivalent. If there are and we are not to validate, they
2634 are equivalent. Otherwise, ensure all regs are up-to-date. */
2636 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2637 return 0;
2639 if (! validate)
2640 return 1;
2642 for (i = regno; i < endregno; i++)
2643 if (REG_IN_TABLE (i) != REG_TICK (i))
2644 return 0;
2646 return 1;
2649 case MEM:
2650 if (for_gcse)
2652 /* A volatile mem should not be considered equivalent to any
2653 other. */
2654 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2655 return 0;
2657 /* Can't merge two expressions in different alias sets, since we
2658 can decide that the expression is transparent in a block when
2659 it isn't, due to it being set with the different alias set.
2661 Also, can't merge two expressions with different MEM_ATTRS.
2662 They could e.g. be two different entities allocated into the
2663 same space on the stack (see e.g. PR25130). In that case, the
2664 MEM addresses can be the same, even though the two MEMs are
2665 absolutely not equivalent.
2667 But because really all MEM attributes should be the same for
2668 equivalent MEMs, we just use the invariant that MEMs that have
2669 the same attributes share the same mem_attrs data structure. */
2670 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2671 return 0;
2673 /* If we are handling exceptions, we cannot consider two expressions
2674 with different trapping status as equivalent, because simple_mem
2675 might accept one and reject the other. */
2676 if (cfun->can_throw_non_call_exceptions
2677 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2678 return 0;
2680 break;
2682 /* For commutative operations, check both orders. */
2683 case PLUS:
2684 case MULT:
2685 case AND:
2686 case IOR:
2687 case XOR:
2688 case NE:
2689 case EQ:
2690 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2691 validate, for_gcse)
2692 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2693 validate, for_gcse))
2694 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2695 validate, for_gcse)
2696 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2697 validate, for_gcse)));
2699 case ASM_OPERANDS:
2700 /* We don't use the generic code below because we want to
2701 disregard filename and line numbers. */
2703 /* A volatile asm isn't equivalent to any other. */
2704 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2705 return 0;
2707 if (GET_MODE (x) != GET_MODE (y)
2708 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2709 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2710 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2711 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2712 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2713 return 0;
2715 if (ASM_OPERANDS_INPUT_LENGTH (x))
2717 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2718 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2719 ASM_OPERANDS_INPUT (y, i),
2720 validate, for_gcse)
2721 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2722 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2723 return 0;
2726 return 1;
2728 default:
2729 break;
2732 /* Compare the elements. If any pair of corresponding elements
2733 fail to match, return 0 for the whole thing. */
2735 fmt = GET_RTX_FORMAT (code);
2736 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2738 switch (fmt[i])
2740 case 'e':
2741 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2742 validate, for_gcse))
2743 return 0;
2744 break;
2746 case 'E':
2747 if (XVECLEN (x, i) != XVECLEN (y, i))
2748 return 0;
2749 for (j = 0; j < XVECLEN (x, i); j++)
2750 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2751 validate, for_gcse))
2752 return 0;
2753 break;
2755 case 's':
2756 if (strcmp (XSTR (x, i), XSTR (y, i)))
2757 return 0;
2758 break;
2760 case 'i':
2761 if (XINT (x, i) != XINT (y, i))
2762 return 0;
2763 break;
2765 case 'w':
2766 if (XWINT (x, i) != XWINT (y, i))
2767 return 0;
2768 break;
2770 case '0':
2771 case 't':
2772 break;
2774 default:
2775 gcc_unreachable ();
2779 return 1;
2782 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2783 the result if necessary. INSN is as for canon_reg. */
2785 static void
2786 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2788 if (*xloc)
2790 rtx new_rtx = canon_reg (*xloc, insn);
2792 /* If replacing pseudo with hard reg or vice versa, ensure the
2793 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2794 gcc_assert (insn && new_rtx);
2795 validate_change (insn, xloc, new_rtx, 1);
2799 /* Canonicalize an expression:
2800 replace each register reference inside it
2801 with the "oldest" equivalent register.
2803 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2804 after we make our substitution. The calls are made with IN_GROUP nonzero
2805 so apply_change_group must be called upon the outermost return from this
2806 function (unless INSN is zero). The result of apply_change_group can
2807 generally be discarded since the changes we are making are optional. */
2809 static rtx
2810 canon_reg (rtx x, rtx_insn *insn)
2812 int i;
2813 enum rtx_code code;
2814 const char *fmt;
2816 if (x == 0)
2817 return x;
2819 code = GET_CODE (x);
2820 switch (code)
2822 case PC:
2823 case CC0:
2824 case CONST:
2825 CASE_CONST_ANY:
2826 case SYMBOL_REF:
2827 case LABEL_REF:
2828 case ADDR_VEC:
2829 case ADDR_DIFF_VEC:
2830 return x;
2832 case REG:
2834 int first;
2835 int q;
2836 struct qty_table_elem *ent;
2838 /* Never replace a hard reg, because hard regs can appear
2839 in more than one machine mode, and we must preserve the mode
2840 of each occurrence. Also, some hard regs appear in
2841 MEMs that are shared and mustn't be altered. Don't try to
2842 replace any reg that maps to a reg of class NO_REGS. */
2843 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2844 || ! REGNO_QTY_VALID_P (REGNO (x)))
2845 return x;
2847 q = REG_QTY (REGNO (x));
2848 ent = &qty_table[q];
2849 first = ent->first_reg;
2850 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2851 : REGNO_REG_CLASS (first) == NO_REGS ? x
2852 : gen_rtx_REG (ent->mode, first));
2855 default:
2856 break;
2859 fmt = GET_RTX_FORMAT (code);
2860 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2862 int j;
2864 if (fmt[i] == 'e')
2865 validate_canon_reg (&XEXP (x, i), insn);
2866 else if (fmt[i] == 'E')
2867 for (j = 0; j < XVECLEN (x, i); j++)
2868 validate_canon_reg (&XVECEXP (x, i, j), insn);
2871 return x;
2874 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2875 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2876 what values are being compared.
2878 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2879 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2880 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2881 compared to produce cc0.
2883 The return value is the comparison operator and is either the code of
2884 A or the code corresponding to the inverse of the comparison. */
2886 static enum rtx_code
2887 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2888 machine_mode *pmode1, machine_mode *pmode2)
2890 rtx arg1, arg2;
2891 hash_set<rtx> *visited = NULL;
2892 /* Set nonzero when we find something of interest. */
2893 rtx x = NULL;
2895 arg1 = *parg1, arg2 = *parg2;
2897 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2899 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2901 int reverse_code = 0;
2902 struct table_elt *p = 0;
2904 /* Remember state from previous iteration. */
2905 if (x)
2907 if (!visited)
2908 visited = new hash_set<rtx>;
2909 visited->add (x);
2910 x = 0;
2913 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2914 On machines with CC0, this is the only case that can occur, since
2915 fold_rtx will return the COMPARE or item being compared with zero
2916 when given CC0. */
2918 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2919 x = arg1;
2921 /* If ARG1 is a comparison operator and CODE is testing for
2922 STORE_FLAG_VALUE, get the inner arguments. */
2924 else if (COMPARISON_P (arg1))
2926 #ifdef FLOAT_STORE_FLAG_VALUE
2927 REAL_VALUE_TYPE fsfv;
2928 #endif
2930 if (code == NE
2931 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2932 && code == LT && STORE_FLAG_VALUE == -1)
2933 #ifdef FLOAT_STORE_FLAG_VALUE
2934 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2935 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2936 REAL_VALUE_NEGATIVE (fsfv)))
2937 #endif
2939 x = arg1;
2940 else if (code == EQ
2941 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2942 && code == GE && STORE_FLAG_VALUE == -1)
2943 #ifdef FLOAT_STORE_FLAG_VALUE
2944 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2945 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2946 REAL_VALUE_NEGATIVE (fsfv)))
2947 #endif
2949 x = arg1, reverse_code = 1;
2952 /* ??? We could also check for
2954 (ne (and (eq (...) (const_int 1))) (const_int 0))
2956 and related forms, but let's wait until we see them occurring. */
2958 if (x == 0)
2959 /* Look up ARG1 in the hash table and see if it has an equivalence
2960 that lets us see what is being compared. */
2961 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2962 if (p)
2964 p = p->first_same_value;
2966 /* If what we compare is already known to be constant, that is as
2967 good as it gets.
2968 We need to break the loop in this case, because otherwise we
2969 can have an infinite loop when looking at a reg that is known
2970 to be a constant which is the same as a comparison of a reg
2971 against zero which appears later in the insn stream, which in
2972 turn is constant and the same as the comparison of the first reg
2973 against zero... */
2974 if (p->is_const)
2975 break;
2978 for (; p; p = p->next_same_value)
2980 machine_mode inner_mode = GET_MODE (p->exp);
2981 #ifdef FLOAT_STORE_FLAG_VALUE
2982 REAL_VALUE_TYPE fsfv;
2983 #endif
2985 /* If the entry isn't valid, skip it. */
2986 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2987 continue;
2989 /* If it's a comparison we've used before, skip it. */
2990 if (visited && visited->contains (p->exp))
2991 continue;
2993 if (GET_CODE (p->exp) == COMPARE
2994 /* Another possibility is that this machine has a compare insn
2995 that includes the comparison code. In that case, ARG1 would
2996 be equivalent to a comparison operation that would set ARG1 to
2997 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2998 ORIG_CODE is the actual comparison being done; if it is an EQ,
2999 we must reverse ORIG_CODE. On machine with a negative value
3000 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3001 || ((code == NE
3002 || (code == LT
3003 && val_signbit_known_set_p (inner_mode,
3004 STORE_FLAG_VALUE))
3005 #ifdef FLOAT_STORE_FLAG_VALUE
3006 || (code == LT
3007 && SCALAR_FLOAT_MODE_P (inner_mode)
3008 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3009 REAL_VALUE_NEGATIVE (fsfv)))
3010 #endif
3012 && COMPARISON_P (p->exp)))
3014 x = p->exp;
3015 break;
3017 else if ((code == EQ
3018 || (code == GE
3019 && val_signbit_known_set_p (inner_mode,
3020 STORE_FLAG_VALUE))
3021 #ifdef FLOAT_STORE_FLAG_VALUE
3022 || (code == GE
3023 && SCALAR_FLOAT_MODE_P (inner_mode)
3024 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3025 REAL_VALUE_NEGATIVE (fsfv)))
3026 #endif
3028 && COMPARISON_P (p->exp))
3030 reverse_code = 1;
3031 x = p->exp;
3032 break;
3035 /* If this non-trapping address, e.g. fp + constant, the
3036 equivalent is a better operand since it may let us predict
3037 the value of the comparison. */
3038 else if (!rtx_addr_can_trap_p (p->exp))
3040 arg1 = p->exp;
3041 continue;
3045 /* If we didn't find a useful equivalence for ARG1, we are done.
3046 Otherwise, set up for the next iteration. */
3047 if (x == 0)
3048 break;
3050 /* If we need to reverse the comparison, make sure that is
3051 possible -- we can't necessarily infer the value of GE from LT
3052 with floating-point operands. */
3053 if (reverse_code)
3055 enum rtx_code reversed = reversed_comparison_code (x, NULL);
3056 if (reversed == UNKNOWN)
3057 break;
3058 else
3059 code = reversed;
3061 else if (COMPARISON_P (x))
3062 code = GET_CODE (x);
3063 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3066 /* Return our results. Return the modes from before fold_rtx
3067 because fold_rtx might produce const_int, and then it's too late. */
3068 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3069 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3071 if (visited)
3072 delete visited;
3073 return code;
3076 /* If X is a nontrivial arithmetic operation on an argument for which
3077 a constant value can be determined, return the result of operating
3078 on that value, as a constant. Otherwise, return X, possibly with
3079 one or more operands changed to a forward-propagated constant.
3081 If X is a register whose contents are known, we do NOT return
3082 those contents here; equiv_constant is called to perform that task.
3083 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3085 INSN is the insn that we may be modifying. If it is 0, make a copy
3086 of X before modifying it. */
3088 static rtx
3089 fold_rtx (rtx x, rtx_insn *insn)
3091 enum rtx_code code;
3092 machine_mode mode;
3093 const char *fmt;
3094 int i;
3095 rtx new_rtx = 0;
3096 int changed = 0;
3098 /* Operands of X. */
3099 /* Workaround -Wmaybe-uninitialized false positive during
3100 profiledbootstrap by initializing them. */
3101 rtx folded_arg0 = NULL_RTX;
3102 rtx folded_arg1 = NULL_RTX;
3104 /* Constant equivalents of first three operands of X;
3105 0 when no such equivalent is known. */
3106 rtx const_arg0;
3107 rtx const_arg1;
3108 rtx const_arg2;
3110 /* The mode of the first operand of X. We need this for sign and zero
3111 extends. */
3112 machine_mode mode_arg0;
3114 if (x == 0)
3115 return x;
3117 /* Try to perform some initial simplifications on X. */
3118 code = GET_CODE (x);
3119 switch (code)
3121 case MEM:
3122 case SUBREG:
3123 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3124 than it would in other contexts. Basically its mode does not
3125 signify the size of the object read. That information is carried
3126 by size operand. If we happen to have a MEM of the appropriate
3127 mode in our tables with a constant value we could simplify the
3128 extraction incorrectly if we allowed substitution of that value
3129 for the MEM. */
3130 case ZERO_EXTRACT:
3131 case SIGN_EXTRACT:
3132 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3133 return new_rtx;
3134 return x;
3136 case CONST:
3137 CASE_CONST_ANY:
3138 case SYMBOL_REF:
3139 case LABEL_REF:
3140 case REG:
3141 case PC:
3142 /* No use simplifying an EXPR_LIST
3143 since they are used only for lists of args
3144 in a function call's REG_EQUAL note. */
3145 case EXPR_LIST:
3146 return x;
3148 case CC0:
3149 return prev_insn_cc0;
3151 case ASM_OPERANDS:
3152 if (insn)
3154 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3155 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3156 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3158 return x;
3160 case CALL:
3161 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3162 return x;
3163 break;
3165 /* Anything else goes through the loop below. */
3166 default:
3167 break;
3170 mode = GET_MODE (x);
3171 const_arg0 = 0;
3172 const_arg1 = 0;
3173 const_arg2 = 0;
3174 mode_arg0 = VOIDmode;
3176 /* Try folding our operands.
3177 Then see which ones have constant values known. */
3179 fmt = GET_RTX_FORMAT (code);
3180 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3181 if (fmt[i] == 'e')
3183 rtx folded_arg = XEXP (x, i), const_arg;
3184 machine_mode mode_arg = GET_MODE (folded_arg);
3186 switch (GET_CODE (folded_arg))
3188 case MEM:
3189 case REG:
3190 case SUBREG:
3191 const_arg = equiv_constant (folded_arg);
3192 break;
3194 case CONST:
3195 CASE_CONST_ANY:
3196 case SYMBOL_REF:
3197 case LABEL_REF:
3198 const_arg = folded_arg;
3199 break;
3201 case CC0:
3202 /* The cc0-user and cc0-setter may be in different blocks if
3203 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3204 will have been cleared as we exited the block with the
3205 setter.
3207 While we could potentially track cc0 in this case, it just
3208 doesn't seem to be worth it given that cc0 targets are not
3209 terribly common or important these days and trapping math
3210 is rarely used. The combination of those two conditions
3211 necessary to trip this situation is exceedingly rare in the
3212 real world. */
3213 if (!prev_insn_cc0)
3215 const_arg = NULL_RTX;
3217 else
3219 folded_arg = prev_insn_cc0;
3220 mode_arg = prev_insn_cc0_mode;
3221 const_arg = equiv_constant (folded_arg);
3223 break;
3225 default:
3226 folded_arg = fold_rtx (folded_arg, insn);
3227 const_arg = equiv_constant (folded_arg);
3228 break;
3231 /* For the first three operands, see if the operand
3232 is constant or equivalent to a constant. */
3233 switch (i)
3235 case 0:
3236 folded_arg0 = folded_arg;
3237 const_arg0 = const_arg;
3238 mode_arg0 = mode_arg;
3239 break;
3240 case 1:
3241 folded_arg1 = folded_arg;
3242 const_arg1 = const_arg;
3243 break;
3244 case 2:
3245 const_arg2 = const_arg;
3246 break;
3249 /* Pick the least expensive of the argument and an equivalent constant
3250 argument. */
3251 if (const_arg != 0
3252 && const_arg != folded_arg
3253 && (COST_IN (const_arg, mode_arg, code, i)
3254 <= COST_IN (folded_arg, mode_arg, code, i))
3256 /* It's not safe to substitute the operand of a conversion
3257 operator with a constant, as the conversion's identity
3258 depends upon the mode of its operand. This optimization
3259 is handled by the call to simplify_unary_operation. */
3260 && (GET_RTX_CLASS (code) != RTX_UNARY
3261 || GET_MODE (const_arg) == mode_arg0
3262 || (code != ZERO_EXTEND
3263 && code != SIGN_EXTEND
3264 && code != TRUNCATE
3265 && code != FLOAT_TRUNCATE
3266 && code != FLOAT_EXTEND
3267 && code != FLOAT
3268 && code != FIX
3269 && code != UNSIGNED_FLOAT
3270 && code != UNSIGNED_FIX)))
3271 folded_arg = const_arg;
3273 if (folded_arg == XEXP (x, i))
3274 continue;
3276 if (insn == NULL_RTX && !changed)
3277 x = copy_rtx (x);
3278 changed = 1;
3279 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3282 if (changed)
3284 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3285 consistent with the order in X. */
3286 if (canonicalize_change_group (insn, x))
3288 std::swap (const_arg0, const_arg1);
3289 std::swap (folded_arg0, folded_arg1);
3292 apply_change_group ();
3295 /* If X is an arithmetic operation, see if we can simplify it. */
3297 switch (GET_RTX_CLASS (code))
3299 case RTX_UNARY:
3301 /* We can't simplify extension ops unless we know the
3302 original mode. */
3303 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3304 && mode_arg0 == VOIDmode)
3305 break;
3307 new_rtx = simplify_unary_operation (code, mode,
3308 const_arg0 ? const_arg0 : folded_arg0,
3309 mode_arg0);
3311 break;
3313 case RTX_COMPARE:
3314 case RTX_COMM_COMPARE:
3315 /* See what items are actually being compared and set FOLDED_ARG[01]
3316 to those values and CODE to the actual comparison code. If any are
3317 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3318 do anything if both operands are already known to be constant. */
3320 /* ??? Vector mode comparisons are not supported yet. */
3321 if (VECTOR_MODE_P (mode))
3322 break;
3324 if (const_arg0 == 0 || const_arg1 == 0)
3326 struct table_elt *p0, *p1;
3327 rtx true_rtx, false_rtx;
3328 machine_mode mode_arg1;
3330 if (SCALAR_FLOAT_MODE_P (mode))
3332 #ifdef FLOAT_STORE_FLAG_VALUE
3333 true_rtx = (const_double_from_real_value
3334 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3335 #else
3336 true_rtx = NULL_RTX;
3337 #endif
3338 false_rtx = CONST0_RTX (mode);
3340 else
3342 true_rtx = const_true_rtx;
3343 false_rtx = const0_rtx;
3346 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3347 &mode_arg0, &mode_arg1);
3349 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3350 what kinds of things are being compared, so we can't do
3351 anything with this comparison. */
3353 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3354 break;
3356 const_arg0 = equiv_constant (folded_arg0);
3357 const_arg1 = equiv_constant (folded_arg1);
3359 /* If we do not now have two constants being compared, see
3360 if we can nevertheless deduce some things about the
3361 comparison. */
3362 if (const_arg0 == 0 || const_arg1 == 0)
3364 if (const_arg1 != NULL)
3366 rtx cheapest_simplification;
3367 int cheapest_cost;
3368 rtx simp_result;
3369 struct table_elt *p;
3371 /* See if we can find an equivalent of folded_arg0
3372 that gets us a cheaper expression, possibly a
3373 constant through simplifications. */
3374 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3375 mode_arg0);
3377 if (p != NULL)
3379 cheapest_simplification = x;
3380 cheapest_cost = COST (x, mode);
3382 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3384 int cost;
3386 /* If the entry isn't valid, skip it. */
3387 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3388 continue;
3390 /* Try to simplify using this equivalence. */
3391 simp_result
3392 = simplify_relational_operation (code, mode,
3393 mode_arg0,
3394 p->exp,
3395 const_arg1);
3397 if (simp_result == NULL)
3398 continue;
3400 cost = COST (simp_result, mode);
3401 if (cost < cheapest_cost)
3403 cheapest_cost = cost;
3404 cheapest_simplification = simp_result;
3408 /* If we have a cheaper expression now, use that
3409 and try folding it further, from the top. */
3410 if (cheapest_simplification != x)
3411 return fold_rtx (copy_rtx (cheapest_simplification),
3412 insn);
3416 /* See if the two operands are the same. */
3418 if ((REG_P (folded_arg0)
3419 && REG_P (folded_arg1)
3420 && (REG_QTY (REGNO (folded_arg0))
3421 == REG_QTY (REGNO (folded_arg1))))
3422 || ((p0 = lookup (folded_arg0,
3423 SAFE_HASH (folded_arg0, mode_arg0),
3424 mode_arg0))
3425 && (p1 = lookup (folded_arg1,
3426 SAFE_HASH (folded_arg1, mode_arg0),
3427 mode_arg0))
3428 && p0->first_same_value == p1->first_same_value))
3429 folded_arg1 = folded_arg0;
3431 /* If FOLDED_ARG0 is a register, see if the comparison we are
3432 doing now is either the same as we did before or the reverse
3433 (we only check the reverse if not floating-point). */
3434 else if (REG_P (folded_arg0))
3436 int qty = REG_QTY (REGNO (folded_arg0));
3438 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3440 struct qty_table_elem *ent = &qty_table[qty];
3442 if ((comparison_dominates_p (ent->comparison_code, code)
3443 || (! FLOAT_MODE_P (mode_arg0)
3444 && comparison_dominates_p (ent->comparison_code,
3445 reverse_condition (code))))
3446 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3447 || (const_arg1
3448 && rtx_equal_p (ent->comparison_const,
3449 const_arg1))
3450 || (REG_P (folded_arg1)
3451 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3453 if (comparison_dominates_p (ent->comparison_code, code))
3455 if (true_rtx)
3456 return true_rtx;
3457 else
3458 break;
3460 else
3461 return false_rtx;
3468 /* If we are comparing against zero, see if the first operand is
3469 equivalent to an IOR with a constant. If so, we may be able to
3470 determine the result of this comparison. */
3471 if (const_arg1 == const0_rtx && !const_arg0)
3473 rtx y = lookup_as_function (folded_arg0, IOR);
3474 rtx inner_const;
3476 if (y != 0
3477 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3478 && CONST_INT_P (inner_const)
3479 && INTVAL (inner_const) != 0)
3480 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3484 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3485 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3486 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3487 op0, op1);
3489 break;
3491 case RTX_BIN_ARITH:
3492 case RTX_COMM_ARITH:
3493 switch (code)
3495 case PLUS:
3496 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3497 with that LABEL_REF as its second operand. If so, the result is
3498 the first operand of that MINUS. This handles switches with an
3499 ADDR_DIFF_VEC table. */
3500 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3502 rtx y
3503 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3504 : lookup_as_function (folded_arg0, MINUS);
3506 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3507 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
3508 return XEXP (y, 0);
3510 /* Now try for a CONST of a MINUS like the above. */
3511 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3512 : lookup_as_function (folded_arg0, CONST))) != 0
3513 && GET_CODE (XEXP (y, 0)) == MINUS
3514 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3515 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
3516 return XEXP (XEXP (y, 0), 0);
3519 /* Likewise if the operands are in the other order. */
3520 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3522 rtx y
3523 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3524 : lookup_as_function (folded_arg1, MINUS);
3526 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3527 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
3528 return XEXP (y, 0);
3530 /* Now try for a CONST of a MINUS like the above. */
3531 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3532 : lookup_as_function (folded_arg1, CONST))) != 0
3533 && GET_CODE (XEXP (y, 0)) == MINUS
3534 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3535 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
3536 return XEXP (XEXP (y, 0), 0);
3539 /* If second operand is a register equivalent to a negative
3540 CONST_INT, see if we can find a register equivalent to the
3541 positive constant. Make a MINUS if so. Don't do this for
3542 a non-negative constant since we might then alternate between
3543 choosing positive and negative constants. Having the positive
3544 constant previously-used is the more common case. Be sure
3545 the resulting constant is non-negative; if const_arg1 were
3546 the smallest negative number this would overflow: depending
3547 on the mode, this would either just be the same value (and
3548 hence not save anything) or be incorrect. */
3549 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3550 && INTVAL (const_arg1) < 0
3551 /* This used to test
3553 -INTVAL (const_arg1) >= 0
3555 But The Sun V5.0 compilers mis-compiled that test. So
3556 instead we test for the problematic value in a more direct
3557 manner and hope the Sun compilers get it correct. */
3558 && INTVAL (const_arg1) !=
3559 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
3560 && REG_P (folded_arg1))
3562 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3563 struct table_elt *p
3564 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3566 if (p)
3567 for (p = p->first_same_value; p; p = p->next_same_value)
3568 if (REG_P (p->exp))
3569 return simplify_gen_binary (MINUS, mode, folded_arg0,
3570 canon_reg (p->exp, NULL));
3572 goto from_plus;
3574 case MINUS:
3575 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3576 If so, produce (PLUS Z C2-C). */
3577 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3579 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3580 if (y && CONST_INT_P (XEXP (y, 1)))
3581 return fold_rtx (plus_constant (mode, copy_rtx (y),
3582 -INTVAL (const_arg1)),
3583 NULL);
3586 /* Fall through. */
3588 from_plus:
3589 case SMIN: case SMAX: case UMIN: case UMAX:
3590 case IOR: case AND: case XOR:
3591 case MULT:
3592 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3593 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3594 is known to be of similar form, we may be able to replace the
3595 operation with a combined operation. This may eliminate the
3596 intermediate operation if every use is simplified in this way.
3597 Note that the similar optimization done by combine.c only works
3598 if the intermediate operation's result has only one reference. */
3600 if (REG_P (folded_arg0)
3601 && const_arg1 && CONST_INT_P (const_arg1))
3603 int is_shift
3604 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3605 rtx y, inner_const, new_const;
3606 rtx canon_const_arg1 = const_arg1;
3607 enum rtx_code associate_code;
3609 if (is_shift
3610 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3611 || INTVAL (const_arg1) < 0))
3613 if (SHIFT_COUNT_TRUNCATED)
3614 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3615 & (GET_MODE_BITSIZE (mode)
3616 - 1));
3617 else
3618 break;
3621 y = lookup_as_function (folded_arg0, code);
3622 if (y == 0)
3623 break;
3625 /* If we have compiled a statement like
3626 "if (x == (x & mask1))", and now are looking at
3627 "x & mask2", we will have a case where the first operand
3628 of Y is the same as our first operand. Unless we detect
3629 this case, an infinite loop will result. */
3630 if (XEXP (y, 0) == folded_arg0)
3631 break;
3633 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3634 if (!inner_const || !CONST_INT_P (inner_const))
3635 break;
3637 /* Don't associate these operations if they are a PLUS with the
3638 same constant and it is a power of two. These might be doable
3639 with a pre- or post-increment. Similarly for two subtracts of
3640 identical powers of two with post decrement. */
3642 if (code == PLUS && const_arg1 == inner_const
3643 && ((HAVE_PRE_INCREMENT
3644 && pow2p_hwi (INTVAL (const_arg1)))
3645 || (HAVE_POST_INCREMENT
3646 && pow2p_hwi (INTVAL (const_arg1)))
3647 || (HAVE_PRE_DECREMENT
3648 && pow2p_hwi (- INTVAL (const_arg1)))
3649 || (HAVE_POST_DECREMENT
3650 && pow2p_hwi (- INTVAL (const_arg1)))))
3651 break;
3653 /* ??? Vector mode shifts by scalar
3654 shift operand are not supported yet. */
3655 if (is_shift && VECTOR_MODE_P (mode))
3656 break;
3658 if (is_shift
3659 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3660 || INTVAL (inner_const) < 0))
3662 if (SHIFT_COUNT_TRUNCATED)
3663 inner_const = GEN_INT (INTVAL (inner_const)
3664 & (GET_MODE_BITSIZE (mode) - 1));
3665 else
3666 break;
3669 /* Compute the code used to compose the constants. For example,
3670 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3672 associate_code = (is_shift || code == MINUS ? PLUS : code);
3674 new_const = simplify_binary_operation (associate_code, mode,
3675 canon_const_arg1,
3676 inner_const);
3678 if (new_const == 0)
3679 break;
3681 /* If we are associating shift operations, don't let this
3682 produce a shift of the size of the object or larger.
3683 This could occur when we follow a sign-extend by a right
3684 shift on a machine that does a sign-extend as a pair
3685 of shifts. */
3687 if (is_shift
3688 && CONST_INT_P (new_const)
3689 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3691 /* As an exception, we can turn an ASHIFTRT of this
3692 form into a shift of the number of bits - 1. */
3693 if (code == ASHIFTRT)
3694 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3695 else if (!side_effects_p (XEXP (y, 0)))
3696 return CONST0_RTX (mode);
3697 else
3698 break;
3701 y = copy_rtx (XEXP (y, 0));
3703 /* If Y contains our first operand (the most common way this
3704 can happen is if Y is a MEM), we would do into an infinite
3705 loop if we tried to fold it. So don't in that case. */
3707 if (! reg_mentioned_p (folded_arg0, y))
3708 y = fold_rtx (y, insn);
3710 return simplify_gen_binary (code, mode, y, new_const);
3712 break;
3714 case DIV: case UDIV:
3715 /* ??? The associative optimization performed immediately above is
3716 also possible for DIV and UDIV using associate_code of MULT.
3717 However, we would need extra code to verify that the
3718 multiplication does not overflow, that is, there is no overflow
3719 in the calculation of new_const. */
3720 break;
3722 default:
3723 break;
3726 new_rtx = simplify_binary_operation (code, mode,
3727 const_arg0 ? const_arg0 : folded_arg0,
3728 const_arg1 ? const_arg1 : folded_arg1);
3729 break;
3731 case RTX_OBJ:
3732 /* (lo_sum (high X) X) is simply X. */
3733 if (code == LO_SUM && const_arg0 != 0
3734 && GET_CODE (const_arg0) == HIGH
3735 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3736 return const_arg1;
3737 break;
3739 case RTX_TERNARY:
3740 case RTX_BITFIELD_OPS:
3741 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3742 const_arg0 ? const_arg0 : folded_arg0,
3743 const_arg1 ? const_arg1 : folded_arg1,
3744 const_arg2 ? const_arg2 : XEXP (x, 2));
3745 break;
3747 default:
3748 break;
3751 return new_rtx ? new_rtx : x;
3754 /* Return a constant value currently equivalent to X.
3755 Return 0 if we don't know one. */
3757 static rtx
3758 equiv_constant (rtx x)
3760 if (REG_P (x)
3761 && REGNO_QTY_VALID_P (REGNO (x)))
3763 int x_q = REG_QTY (REGNO (x));
3764 struct qty_table_elem *x_ent = &qty_table[x_q];
3766 if (x_ent->const_rtx)
3767 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3770 if (x == 0 || CONSTANT_P (x))
3771 return x;
3773 if (GET_CODE (x) == SUBREG)
3775 machine_mode mode = GET_MODE (x);
3776 machine_mode imode = GET_MODE (SUBREG_REG (x));
3777 rtx new_rtx;
3779 /* See if we previously assigned a constant value to this SUBREG. */
3780 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3781 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3782 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3783 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3784 return new_rtx;
3786 /* If we didn't and if doing so makes sense, see if we previously
3787 assigned a constant value to the enclosing word mode SUBREG. */
3788 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3789 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3791 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3792 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3794 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3795 new_rtx = lookup_as_function (y, CONST_INT);
3796 if (new_rtx)
3797 return gen_lowpart (mode, new_rtx);
3801 /* Otherwise see if we already have a constant for the inner REG,
3802 and if that is enough to calculate an equivalent constant for
3803 the subreg. Note that the upper bits of paradoxical subregs
3804 are undefined, so they cannot be said to equal anything. */
3805 if (REG_P (SUBREG_REG (x))
3806 && !paradoxical_subreg_p (x)
3807 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3808 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3810 return 0;
3813 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3814 the hash table in case its value was seen before. */
3816 if (MEM_P (x))
3818 struct table_elt *elt;
3820 x = avoid_constant_pool_reference (x);
3821 if (CONSTANT_P (x))
3822 return x;
3824 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3825 if (elt == 0)
3826 return 0;
3828 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3829 if (elt->is_const && CONSTANT_P (elt->exp))
3830 return elt->exp;
3833 return 0;
3836 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3837 "taken" branch.
3839 In certain cases, this can cause us to add an equivalence. For example,
3840 if we are following the taken case of
3841 if (i == 2)
3842 we can add the fact that `i' and '2' are now equivalent.
3844 In any case, we can record that this comparison was passed. If the same
3845 comparison is seen later, we will know its value. */
3847 static void
3848 record_jump_equiv (rtx_insn *insn, bool taken)
3850 int cond_known_true;
3851 rtx op0, op1;
3852 rtx set;
3853 machine_mode mode, mode0, mode1;
3854 int reversed_nonequality = 0;
3855 enum rtx_code code;
3857 /* Ensure this is the right kind of insn. */
3858 gcc_assert (any_condjump_p (insn));
3860 set = pc_set (insn);
3862 /* See if this jump condition is known true or false. */
3863 if (taken)
3864 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3865 else
3866 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3868 /* Get the type of comparison being done and the operands being compared.
3869 If we had to reverse a non-equality condition, record that fact so we
3870 know that it isn't valid for floating-point. */
3871 code = GET_CODE (XEXP (SET_SRC (set), 0));
3872 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3873 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3875 /* On a cc0 target the cc0-setter and cc0-user may end up in different
3876 blocks. When that happens the tracking of the cc0-setter via
3877 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return
3878 NULL_RTX. In those cases, there's nothing to record. */
3879 if (op0 == NULL_RTX || op1 == NULL_RTX)
3880 return;
3882 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3883 if (! cond_known_true)
3885 code = reversed_comparison_code_parts (code, op0, op1, insn);
3887 /* Don't remember if we can't find the inverse. */
3888 if (code == UNKNOWN)
3889 return;
3892 /* The mode is the mode of the non-constant. */
3893 mode = mode0;
3894 if (mode1 != VOIDmode)
3895 mode = mode1;
3897 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3900 /* Yet another form of subreg creation. In this case, we want something in
3901 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3903 static rtx
3904 record_jump_cond_subreg (machine_mode mode, rtx op)
3906 machine_mode op_mode = GET_MODE (op);
3907 if (op_mode == mode || op_mode == VOIDmode)
3908 return op;
3909 return lowpart_subreg (mode, op, op_mode);
3912 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3913 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3914 Make any useful entries we can with that information. Called from
3915 above function and called recursively. */
3917 static void
3918 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3919 rtx op1, int reversed_nonequality)
3921 unsigned op0_hash, op1_hash;
3922 int op0_in_memory, op1_in_memory;
3923 struct table_elt *op0_elt, *op1_elt;
3925 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3926 we know that they are also equal in the smaller mode (this is also
3927 true for all smaller modes whether or not there is a SUBREG, but
3928 is not worth testing for with no SUBREG). */
3930 /* Note that GET_MODE (op0) may not equal MODE. */
3931 if (code == EQ && paradoxical_subreg_p (op0))
3933 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3934 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3935 if (tem)
3936 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3937 reversed_nonequality);
3940 if (code == EQ && paradoxical_subreg_p (op1))
3942 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3943 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3944 if (tem)
3945 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3946 reversed_nonequality);
3949 /* Similarly, if this is an NE comparison, and either is a SUBREG
3950 making a smaller mode, we know the whole thing is also NE. */
3952 /* Note that GET_MODE (op0) may not equal MODE;
3953 if we test MODE instead, we can get an infinite recursion
3954 alternating between two modes each wider than MODE. */
3956 if (code == NE
3957 && partial_subreg_p (op0)
3958 && subreg_lowpart_p (op0))
3960 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3961 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3962 if (tem)
3963 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3964 reversed_nonequality);
3967 if (code == NE
3968 && partial_subreg_p (op1)
3969 && subreg_lowpart_p (op1))
3971 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3972 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3973 if (tem)
3974 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3975 reversed_nonequality);
3978 /* Hash both operands. */
3980 do_not_record = 0;
3981 hash_arg_in_memory = 0;
3982 op0_hash = HASH (op0, mode);
3983 op0_in_memory = hash_arg_in_memory;
3985 if (do_not_record)
3986 return;
3988 do_not_record = 0;
3989 hash_arg_in_memory = 0;
3990 op1_hash = HASH (op1, mode);
3991 op1_in_memory = hash_arg_in_memory;
3993 if (do_not_record)
3994 return;
3996 /* Look up both operands. */
3997 op0_elt = lookup (op0, op0_hash, mode);
3998 op1_elt = lookup (op1, op1_hash, mode);
4000 /* If both operands are already equivalent or if they are not in the
4001 table but are identical, do nothing. */
4002 if ((op0_elt != 0 && op1_elt != 0
4003 && op0_elt->first_same_value == op1_elt->first_same_value)
4004 || op0 == op1 || rtx_equal_p (op0, op1))
4005 return;
4007 /* If we aren't setting two things equal all we can do is save this
4008 comparison. Similarly if this is floating-point. In the latter
4009 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4010 If we record the equality, we might inadvertently delete code
4011 whose intent was to change -0 to +0. */
4013 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4015 struct qty_table_elem *ent;
4016 int qty;
4018 /* If we reversed a floating-point comparison, if OP0 is not a
4019 register, or if OP1 is neither a register or constant, we can't
4020 do anything. */
4022 if (!REG_P (op1))
4023 op1 = equiv_constant (op1);
4025 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4026 || !REG_P (op0) || op1 == 0)
4027 return;
4029 /* Put OP0 in the hash table if it isn't already. This gives it a
4030 new quantity number. */
4031 if (op0_elt == 0)
4033 if (insert_regs (op0, NULL, 0))
4035 rehash_using_reg (op0);
4036 op0_hash = HASH (op0, mode);
4038 /* If OP0 is contained in OP1, this changes its hash code
4039 as well. Faster to rehash than to check, except
4040 for the simple case of a constant. */
4041 if (! CONSTANT_P (op1))
4042 op1_hash = HASH (op1,mode);
4045 op0_elt = insert (op0, NULL, op0_hash, mode);
4046 op0_elt->in_memory = op0_in_memory;
4049 qty = REG_QTY (REGNO (op0));
4050 ent = &qty_table[qty];
4052 ent->comparison_code = code;
4053 if (REG_P (op1))
4055 /* Look it up again--in case op0 and op1 are the same. */
4056 op1_elt = lookup (op1, op1_hash, mode);
4058 /* Put OP1 in the hash table so it gets a new quantity number. */
4059 if (op1_elt == 0)
4061 if (insert_regs (op1, NULL, 0))
4063 rehash_using_reg (op1);
4064 op1_hash = HASH (op1, mode);
4067 op1_elt = insert (op1, NULL, op1_hash, mode);
4068 op1_elt->in_memory = op1_in_memory;
4071 ent->comparison_const = NULL_RTX;
4072 ent->comparison_qty = REG_QTY (REGNO (op1));
4074 else
4076 ent->comparison_const = op1;
4077 ent->comparison_qty = -1;
4080 return;
4083 /* If either side is still missing an equivalence, make it now,
4084 then merge the equivalences. */
4086 if (op0_elt == 0)
4088 if (insert_regs (op0, NULL, 0))
4090 rehash_using_reg (op0);
4091 op0_hash = HASH (op0, mode);
4094 op0_elt = insert (op0, NULL, op0_hash, mode);
4095 op0_elt->in_memory = op0_in_memory;
4098 if (op1_elt == 0)
4100 if (insert_regs (op1, NULL, 0))
4102 rehash_using_reg (op1);
4103 op1_hash = HASH (op1, mode);
4106 op1_elt = insert (op1, NULL, op1_hash, mode);
4107 op1_elt->in_memory = op1_in_memory;
4110 merge_equiv_classes (op0_elt, op1_elt);
4113 /* CSE processing for one instruction.
4115 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4116 but the few that "leak through" are cleaned up by cse_insn, and complex
4117 addressing modes are often formed here.
4119 The main function is cse_insn, and between here and that function
4120 a couple of helper functions is defined to keep the size of cse_insn
4121 within reasonable proportions.
4123 Data is shared between the main and helper functions via STRUCT SET,
4124 that contains all data related for every set in the instruction that
4125 is being processed.
4127 Note that cse_main processes all sets in the instruction. Most
4128 passes in GCC only process simple SET insns or single_set insns, but
4129 CSE processes insns with multiple sets as well. */
4131 /* Data on one SET contained in the instruction. */
4133 struct set
4135 /* The SET rtx itself. */
4136 rtx rtl;
4137 /* The SET_SRC of the rtx (the original value, if it is changing). */
4138 rtx src;
4139 /* The hash-table element for the SET_SRC of the SET. */
4140 struct table_elt *src_elt;
4141 /* Hash value for the SET_SRC. */
4142 unsigned src_hash;
4143 /* Hash value for the SET_DEST. */
4144 unsigned dest_hash;
4145 /* The SET_DEST, with SUBREG, etc., stripped. */
4146 rtx inner_dest;
4147 /* Nonzero if the SET_SRC is in memory. */
4148 char src_in_memory;
4149 /* Nonzero if the SET_SRC contains something
4150 whose value cannot be predicted and understood. */
4151 char src_volatile;
4152 /* Original machine mode, in case it becomes a CONST_INT.
4153 The size of this field should match the size of the mode
4154 field of struct rtx_def (see rtl.h). */
4155 ENUM_BITFIELD(machine_mode) mode : 8;
4156 /* Hash value of constant equivalent for SET_SRC. */
4157 unsigned src_const_hash;
4158 /* A constant equivalent for SET_SRC, if any. */
4159 rtx src_const;
4160 /* Table entry for constant equivalent for SET_SRC, if any. */
4161 struct table_elt *src_const_elt;
4162 /* Table entry for the destination address. */
4163 struct table_elt *dest_addr_elt;
4166 /* Special handling for (set REG0 REG1) where REG0 is the
4167 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4168 be used in the sequel, so (if easily done) change this insn to
4169 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4170 that computed their value. Then REG1 will become a dead store
4171 and won't cloud the situation for later optimizations.
4173 Do not make this change if REG1 is a hard register, because it will
4174 then be used in the sequel and we may be changing a two-operand insn
4175 into a three-operand insn.
4177 This is the last transformation that cse_insn will try to do. */
4179 static void
4180 try_back_substitute_reg (rtx set, rtx_insn *insn)
4182 rtx dest = SET_DEST (set);
4183 rtx src = SET_SRC (set);
4185 if (REG_P (dest)
4186 && REG_P (src) && ! HARD_REGISTER_P (src)
4187 && REGNO_QTY_VALID_P (REGNO (src)))
4189 int src_q = REG_QTY (REGNO (src));
4190 struct qty_table_elem *src_ent = &qty_table[src_q];
4192 if (src_ent->first_reg == REGNO (dest))
4194 /* Scan for the previous nonnote insn, but stop at a basic
4195 block boundary. */
4196 rtx_insn *prev = insn;
4197 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4200 prev = PREV_INSN (prev);
4202 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4204 /* Do not swap the registers around if the previous instruction
4205 attaches a REG_EQUIV note to REG1.
4207 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4208 from the pseudo that originally shadowed an incoming argument
4209 to another register. Some uses of REG_EQUIV might rely on it
4210 being attached to REG1 rather than REG2.
4212 This section previously turned the REG_EQUIV into a REG_EQUAL
4213 note. We cannot do that because REG_EQUIV may provide an
4214 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4215 if (NONJUMP_INSN_P (prev)
4216 && GET_CODE (PATTERN (prev)) == SET
4217 && SET_DEST (PATTERN (prev)) == src
4218 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4220 rtx note;
4222 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4223 validate_change (insn, &SET_DEST (set), src, 1);
4224 validate_change (insn, &SET_SRC (set), dest, 1);
4225 apply_change_group ();
4227 /* If INSN has a REG_EQUAL note, and this note mentions
4228 REG0, then we must delete it, because the value in
4229 REG0 has changed. If the note's value is REG1, we must
4230 also delete it because that is now this insn's dest. */
4231 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4232 if (note != 0
4233 && (reg_mentioned_p (dest, XEXP (note, 0))
4234 || rtx_equal_p (src, XEXP (note, 0))))
4235 remove_note (insn, note);
4241 /* Record all the SETs in this instruction into SETS_PTR,
4242 and return the number of recorded sets. */
4243 static int
4244 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4246 struct set *sets = *psets;
4247 int n_sets = 0;
4248 rtx x = PATTERN (insn);
4250 if (GET_CODE (x) == SET)
4252 /* Ignore SETs that are unconditional jumps.
4253 They never need cse processing, so this does not hurt.
4254 The reason is not efficiency but rather
4255 so that we can test at the end for instructions
4256 that have been simplified to unconditional jumps
4257 and not be misled by unchanged instructions
4258 that were unconditional jumps to begin with. */
4259 if (SET_DEST (x) == pc_rtx
4260 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4262 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4263 The hard function value register is used only once, to copy to
4264 someplace else, so it isn't worth cse'ing. */
4265 else if (GET_CODE (SET_SRC (x)) == CALL)
4267 else
4268 sets[n_sets++].rtl = x;
4270 else if (GET_CODE (x) == PARALLEL)
4272 int i, lim = XVECLEN (x, 0);
4274 /* Go over the expressions of the PARALLEL in forward order, to
4275 put them in the same order in the SETS array. */
4276 for (i = 0; i < lim; i++)
4278 rtx y = XVECEXP (x, 0, i);
4279 if (GET_CODE (y) == SET)
4281 /* As above, we ignore unconditional jumps and call-insns and
4282 ignore the result of apply_change_group. */
4283 if (SET_DEST (y) == pc_rtx
4284 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4286 else if (GET_CODE (SET_SRC (y)) == CALL)
4288 else
4289 sets[n_sets++].rtl = y;
4294 return n_sets;
4297 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4299 static void
4300 canon_asm_operands (rtx x, rtx_insn *insn)
4302 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4304 rtx input = ASM_OPERANDS_INPUT (x, i);
4305 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4307 input = canon_reg (input, insn);
4308 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4313 /* Where possible, substitute every register reference in the N_SETS
4314 number of SETS in INSN with the canonical register.
4316 Register canonicalization propagatest the earliest register (i.e.
4317 one that is set before INSN) with the same value. This is a very
4318 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4319 to RTL. For instance, a CONST for an address is usually expanded
4320 multiple times to loads into different registers, thus creating many
4321 subexpressions of the form:
4323 (set (reg1) (some_const))
4324 (set (mem (... reg1 ...) (thing)))
4325 (set (reg2) (some_const))
4326 (set (mem (... reg2 ...) (thing)))
4328 After canonicalizing, the code takes the following form:
4330 (set (reg1) (some_const))
4331 (set (mem (... reg1 ...) (thing)))
4332 (set (reg2) (some_const))
4333 (set (mem (... reg1 ...) (thing)))
4335 The set to reg2 is now trivially dead, and the memory reference (or
4336 address, or whatever) may be a candidate for further CSEing.
4338 In this function, the result of apply_change_group can be ignored;
4339 see canon_reg. */
4341 static void
4342 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4344 struct set *sets = *psets;
4345 rtx tem;
4346 rtx x = PATTERN (insn);
4347 int i;
4349 if (CALL_P (insn))
4351 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4352 if (GET_CODE (XEXP (tem, 0)) != SET)
4353 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4356 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4358 canon_reg (SET_SRC (x), insn);
4359 apply_change_group ();
4360 fold_rtx (SET_SRC (x), insn);
4362 else if (GET_CODE (x) == CLOBBER)
4364 /* If we clobber memory, canon the address.
4365 This does nothing when a register is clobbered
4366 because we have already invalidated the reg. */
4367 if (MEM_P (XEXP (x, 0)))
4368 canon_reg (XEXP (x, 0), insn);
4370 else if (GET_CODE (x) == USE
4371 && ! (REG_P (XEXP (x, 0))
4372 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4373 /* Canonicalize a USE of a pseudo register or memory location. */
4374 canon_reg (x, insn);
4375 else if (GET_CODE (x) == ASM_OPERANDS)
4376 canon_asm_operands (x, insn);
4377 else if (GET_CODE (x) == CALL)
4379 canon_reg (x, insn);
4380 apply_change_group ();
4381 fold_rtx (x, insn);
4383 else if (DEBUG_INSN_P (insn))
4384 canon_reg (PATTERN (insn), insn);
4385 else if (GET_CODE (x) == PARALLEL)
4387 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4389 rtx y = XVECEXP (x, 0, i);
4390 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4392 canon_reg (SET_SRC (y), insn);
4393 apply_change_group ();
4394 fold_rtx (SET_SRC (y), insn);
4396 else if (GET_CODE (y) == CLOBBER)
4398 if (MEM_P (XEXP (y, 0)))
4399 canon_reg (XEXP (y, 0), insn);
4401 else if (GET_CODE (y) == USE
4402 && ! (REG_P (XEXP (y, 0))
4403 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4404 canon_reg (y, insn);
4405 else if (GET_CODE (y) == ASM_OPERANDS)
4406 canon_asm_operands (y, insn);
4407 else if (GET_CODE (y) == CALL)
4409 canon_reg (y, insn);
4410 apply_change_group ();
4411 fold_rtx (y, insn);
4416 if (n_sets == 1 && REG_NOTES (insn) != 0
4417 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4419 /* We potentially will process this insn many times. Therefore,
4420 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4421 unique set in INSN.
4423 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4424 because cse_insn handles those specially. */
4425 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4426 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4427 remove_note (insn, tem);
4428 else
4430 canon_reg (XEXP (tem, 0), insn);
4431 apply_change_group ();
4432 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4433 df_notes_rescan (insn);
4437 /* Canonicalize sources and addresses of destinations.
4438 We do this in a separate pass to avoid problems when a MATCH_DUP is
4439 present in the insn pattern. In that case, we want to ensure that
4440 we don't break the duplicate nature of the pattern. So we will replace
4441 both operands at the same time. Otherwise, we would fail to find an
4442 equivalent substitution in the loop calling validate_change below.
4444 We used to suppress canonicalization of DEST if it appears in SRC,
4445 but we don't do this any more. */
4447 for (i = 0; i < n_sets; i++)
4449 rtx dest = SET_DEST (sets[i].rtl);
4450 rtx src = SET_SRC (sets[i].rtl);
4451 rtx new_rtx = canon_reg (src, insn);
4453 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4455 if (GET_CODE (dest) == ZERO_EXTRACT)
4457 validate_change (insn, &XEXP (dest, 1),
4458 canon_reg (XEXP (dest, 1), insn), 1);
4459 validate_change (insn, &XEXP (dest, 2),
4460 canon_reg (XEXP (dest, 2), insn), 1);
4463 while (GET_CODE (dest) == SUBREG
4464 || GET_CODE (dest) == ZERO_EXTRACT
4465 || GET_CODE (dest) == STRICT_LOW_PART)
4466 dest = XEXP (dest, 0);
4468 if (MEM_P (dest))
4469 canon_reg (dest, insn);
4472 /* Now that we have done all the replacements, we can apply the change
4473 group and see if they all work. Note that this will cause some
4474 canonicalizations that would have worked individually not to be applied
4475 because some other canonicalization didn't work, but this should not
4476 occur often.
4478 The result of apply_change_group can be ignored; see canon_reg. */
4480 apply_change_group ();
4483 /* Main function of CSE.
4484 First simplify sources and addresses of all assignments
4485 in the instruction, using previously-computed equivalents values.
4486 Then install the new sources and destinations in the table
4487 of available values. */
4489 static void
4490 cse_insn (rtx_insn *insn)
4492 rtx x = PATTERN (insn);
4493 int i;
4494 rtx tem;
4495 int n_sets = 0;
4497 rtx src_eqv = 0;
4498 struct table_elt *src_eqv_elt = 0;
4499 int src_eqv_volatile = 0;
4500 int src_eqv_in_memory = 0;
4501 unsigned src_eqv_hash = 0;
4503 struct set *sets = (struct set *) 0;
4505 if (GET_CODE (x) == SET)
4506 sets = XALLOCA (struct set);
4507 else if (GET_CODE (x) == PARALLEL)
4508 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4510 this_insn = insn;
4511 /* Records what this insn does to set CC0. */
4512 this_insn_cc0 = 0;
4513 this_insn_cc0_mode = VOIDmode;
4515 /* Find all regs explicitly clobbered in this insn,
4516 to ensure they are not replaced with any other regs
4517 elsewhere in this insn. */
4518 invalidate_from_sets_and_clobbers (insn);
4520 /* Record all the SETs in this instruction. */
4521 n_sets = find_sets_in_insn (insn, &sets);
4523 /* Substitute the canonical register where possible. */
4524 canonicalize_insn (insn, &sets, n_sets);
4526 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4527 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4528 latter condition is necessary because SRC_EQV is handled specially for
4529 this case, and if it isn't set, then there will be no equivalence
4530 for the destination. */
4531 if (n_sets == 1 && REG_NOTES (insn) != 0
4532 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4535 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4536 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4537 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4538 src_eqv = copy_rtx (XEXP (tem, 0));
4539 /* If DEST is of the form ZERO_EXTACT, as in:
4540 (set (zero_extract:SI (reg:SI 119)
4541 (const_int 16 [0x10])
4542 (const_int 16 [0x10]))
4543 (const_int 51154 [0xc7d2]))
4544 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4545 point. Note that this is different from SRC_EQV. We can however
4546 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4547 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4548 && CONST_INT_P (XEXP (tem, 0))
4549 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4550 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4552 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4553 /* This is the mode of XEXP (tem, 0) as well. */
4554 scalar_int_mode dest_mode
4555 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
4556 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4557 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4558 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4559 HOST_WIDE_INT mask;
4560 unsigned int shift;
4561 if (BITS_BIG_ENDIAN)
4562 shift = (GET_MODE_PRECISION (dest_mode)
4563 - INTVAL (pos) - INTVAL (width));
4564 else
4565 shift = INTVAL (pos);
4566 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4567 mask = HOST_WIDE_INT_M1;
4568 else
4569 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
4570 val = (val >> shift) & mask;
4571 src_eqv = GEN_INT (val);
4575 /* Set sets[i].src_elt to the class each source belongs to.
4576 Detect assignments from or to volatile things
4577 and set set[i] to zero so they will be ignored
4578 in the rest of this function.
4580 Nothing in this loop changes the hash table or the register chains. */
4582 for (i = 0; i < n_sets; i++)
4584 bool repeat = false;
4585 bool mem_noop_insn = false;
4586 rtx src, dest;
4587 rtx src_folded;
4588 struct table_elt *elt = 0, *p;
4589 machine_mode mode;
4590 rtx src_eqv_here;
4591 rtx src_const = 0;
4592 rtx src_related = 0;
4593 bool src_related_is_const_anchor = false;
4594 struct table_elt *src_const_elt = 0;
4595 int src_cost = MAX_COST;
4596 int src_eqv_cost = MAX_COST;
4597 int src_folded_cost = MAX_COST;
4598 int src_related_cost = MAX_COST;
4599 int src_elt_cost = MAX_COST;
4600 int src_regcost = MAX_COST;
4601 int src_eqv_regcost = MAX_COST;
4602 int src_folded_regcost = MAX_COST;
4603 int src_related_regcost = MAX_COST;
4604 int src_elt_regcost = MAX_COST;
4605 /* Set nonzero if we need to call force_const_mem on with the
4606 contents of src_folded before using it. */
4607 int src_folded_force_flag = 0;
4608 scalar_int_mode int_mode;
4610 dest = SET_DEST (sets[i].rtl);
4611 src = SET_SRC (sets[i].rtl);
4613 /* If SRC is a constant that has no machine mode,
4614 hash it with the destination's machine mode.
4615 This way we can keep different modes separate. */
4617 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4618 sets[i].mode = mode;
4620 if (src_eqv)
4622 machine_mode eqvmode = mode;
4623 if (GET_CODE (dest) == STRICT_LOW_PART)
4624 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4625 do_not_record = 0;
4626 hash_arg_in_memory = 0;
4627 src_eqv_hash = HASH (src_eqv, eqvmode);
4629 /* Find the equivalence class for the equivalent expression. */
4631 if (!do_not_record)
4632 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4634 src_eqv_volatile = do_not_record;
4635 src_eqv_in_memory = hash_arg_in_memory;
4638 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4639 value of the INNER register, not the destination. So it is not
4640 a valid substitution for the source. But save it for later. */
4641 if (GET_CODE (dest) == STRICT_LOW_PART)
4642 src_eqv_here = 0;
4643 else
4644 src_eqv_here = src_eqv;
4646 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4647 simplified result, which may not necessarily be valid. */
4648 src_folded = fold_rtx (src, NULL);
4650 #if 0
4651 /* ??? This caused bad code to be generated for the m68k port with -O2.
4652 Suppose src is (CONST_INT -1), and that after truncation src_folded
4653 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4654 At the end we will add src and src_const to the same equivalence
4655 class. We now have 3 and -1 on the same equivalence class. This
4656 causes later instructions to be mis-optimized. */
4657 /* If storing a constant in a bitfield, pre-truncate the constant
4658 so we will be able to record it later. */
4659 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4661 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4663 if (CONST_INT_P (src)
4664 && CONST_INT_P (width)
4665 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4666 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4667 src_folded
4668 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
4669 << INTVAL (width)) - 1));
4671 #endif
4673 /* Compute SRC's hash code, and also notice if it
4674 should not be recorded at all. In that case,
4675 prevent any further processing of this assignment. */
4676 do_not_record = 0;
4677 hash_arg_in_memory = 0;
4679 sets[i].src = src;
4680 sets[i].src_hash = HASH (src, mode);
4681 sets[i].src_volatile = do_not_record;
4682 sets[i].src_in_memory = hash_arg_in_memory;
4684 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4685 a pseudo, do not record SRC. Using SRC as a replacement for
4686 anything else will be incorrect in that situation. Note that
4687 this usually occurs only for stack slots, in which case all the
4688 RTL would be referring to SRC, so we don't lose any optimization
4689 opportunities by not having SRC in the hash table. */
4691 if (MEM_P (src)
4692 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4693 && REG_P (dest)
4694 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4695 sets[i].src_volatile = 1;
4697 else if (GET_CODE (src) == ASM_OPERANDS
4698 && GET_CODE (x) == PARALLEL)
4700 /* Do not record result of a non-volatile inline asm with
4701 more than one result. */
4702 if (n_sets > 1)
4703 sets[i].src_volatile = 1;
4705 int j, lim = XVECLEN (x, 0);
4706 for (j = 0; j < lim; j++)
4708 rtx y = XVECEXP (x, 0, j);
4709 /* And do not record result of a non-volatile inline asm
4710 with "memory" clobber. */
4711 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4713 sets[i].src_volatile = 1;
4714 break;
4719 #if 0
4720 /* It is no longer clear why we used to do this, but it doesn't
4721 appear to still be needed. So let's try without it since this
4722 code hurts cse'ing widened ops. */
4723 /* If source is a paradoxical subreg (such as QI treated as an SI),
4724 treat it as volatile. It may do the work of an SI in one context
4725 where the extra bits are not being used, but cannot replace an SI
4726 in general. */
4727 if (paradoxical_subreg_p (src))
4728 sets[i].src_volatile = 1;
4729 #endif
4731 /* Locate all possible equivalent forms for SRC. Try to replace
4732 SRC in the insn with each cheaper equivalent.
4734 We have the following types of equivalents: SRC itself, a folded
4735 version, a value given in a REG_EQUAL note, or a value related
4736 to a constant.
4738 Each of these equivalents may be part of an additional class
4739 of equivalents (if more than one is in the table, they must be in
4740 the same class; we check for this).
4742 If the source is volatile, we don't do any table lookups.
4744 We note any constant equivalent for possible later use in a
4745 REG_NOTE. */
4747 if (!sets[i].src_volatile)
4748 elt = lookup (src, sets[i].src_hash, mode);
4750 sets[i].src_elt = elt;
4752 if (elt && src_eqv_here && src_eqv_elt)
4754 if (elt->first_same_value != src_eqv_elt->first_same_value)
4756 /* The REG_EQUAL is indicating that two formerly distinct
4757 classes are now equivalent. So merge them. */
4758 merge_equiv_classes (elt, src_eqv_elt);
4759 src_eqv_hash = HASH (src_eqv, elt->mode);
4760 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4763 src_eqv_here = 0;
4766 else if (src_eqv_elt)
4767 elt = src_eqv_elt;
4769 /* Try to find a constant somewhere and record it in `src_const'.
4770 Record its table element, if any, in `src_const_elt'. Look in
4771 any known equivalences first. (If the constant is not in the
4772 table, also set `sets[i].src_const_hash'). */
4773 if (elt)
4774 for (p = elt->first_same_value; p; p = p->next_same_value)
4775 if (p->is_const)
4777 src_const = p->exp;
4778 src_const_elt = elt;
4779 break;
4782 if (src_const == 0
4783 && (CONSTANT_P (src_folded)
4784 /* Consider (minus (label_ref L1) (label_ref L2)) as
4785 "constant" here so we will record it. This allows us
4786 to fold switch statements when an ADDR_DIFF_VEC is used. */
4787 || (GET_CODE (src_folded) == MINUS
4788 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4789 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4790 src_const = src_folded, src_const_elt = elt;
4791 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4792 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4794 /* If we don't know if the constant is in the table, get its
4795 hash code and look it up. */
4796 if (src_const && src_const_elt == 0)
4798 sets[i].src_const_hash = HASH (src_const, mode);
4799 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4802 sets[i].src_const = src_const;
4803 sets[i].src_const_elt = src_const_elt;
4805 /* If the constant and our source are both in the table, mark them as
4806 equivalent. Otherwise, if a constant is in the table but the source
4807 isn't, set ELT to it. */
4808 if (src_const_elt && elt
4809 && src_const_elt->first_same_value != elt->first_same_value)
4810 merge_equiv_classes (elt, src_const_elt);
4811 else if (src_const_elt && elt == 0)
4812 elt = src_const_elt;
4814 /* See if there is a register linearly related to a constant
4815 equivalent of SRC. */
4816 if (src_const
4817 && (GET_CODE (src_const) == CONST
4818 || (src_const_elt && src_const_elt->related_value != 0)))
4820 src_related = use_related_value (src_const, src_const_elt);
4821 if (src_related)
4823 struct table_elt *src_related_elt
4824 = lookup (src_related, HASH (src_related, mode), mode);
4825 if (src_related_elt && elt)
4827 if (elt->first_same_value
4828 != src_related_elt->first_same_value)
4829 /* This can occur when we previously saw a CONST
4830 involving a SYMBOL_REF and then see the SYMBOL_REF
4831 twice. Merge the involved classes. */
4832 merge_equiv_classes (elt, src_related_elt);
4834 src_related = 0;
4835 src_related_elt = 0;
4837 else if (src_related_elt && elt == 0)
4838 elt = src_related_elt;
4842 /* See if we have a CONST_INT that is already in a register in a
4843 wider mode. */
4845 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4846 && is_int_mode (mode, &int_mode)
4847 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4849 opt_scalar_int_mode wider_mode_iter;
4850 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4852 scalar_int_mode wider_mode = wider_mode_iter.require ();
4853 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4854 break;
4856 struct table_elt *const_elt
4857 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4859 if (const_elt == 0)
4860 continue;
4862 for (const_elt = const_elt->first_same_value;
4863 const_elt; const_elt = const_elt->next_same_value)
4864 if (REG_P (const_elt->exp))
4866 src_related = gen_lowpart (int_mode, const_elt->exp);
4867 break;
4870 if (src_related != 0)
4871 break;
4875 /* Another possibility is that we have an AND with a constant in
4876 a mode narrower than a word. If so, it might have been generated
4877 as part of an "if" which would narrow the AND. If we already
4878 have done the AND in a wider mode, we can use a SUBREG of that
4879 value. */
4881 if (flag_expensive_optimizations && ! src_related
4882 && is_a <scalar_int_mode> (mode, &int_mode)
4883 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4884 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
4886 opt_scalar_int_mode tmode_iter;
4887 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4889 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4891 scalar_int_mode tmode = tmode_iter.require ();
4892 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4893 break;
4895 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4896 struct table_elt *larger_elt;
4898 if (inner)
4900 PUT_MODE (new_and, tmode);
4901 XEXP (new_and, 0) = inner;
4902 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4903 if (larger_elt == 0)
4904 continue;
4906 for (larger_elt = larger_elt->first_same_value;
4907 larger_elt; larger_elt = larger_elt->next_same_value)
4908 if (REG_P (larger_elt->exp))
4910 src_related
4911 = gen_lowpart (int_mode, larger_elt->exp);
4912 break;
4915 if (src_related)
4916 break;
4921 /* See if a MEM has already been loaded with a widening operation;
4922 if it has, we can use a subreg of that. Many CISC machines
4923 also have such operations, but this is only likely to be
4924 beneficial on these machines. */
4926 rtx_code extend_op;
4927 if (flag_expensive_optimizations && src_related == 0
4928 && MEM_P (src) && ! do_not_record
4929 && is_a <scalar_int_mode> (mode, &int_mode)
4930 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
4932 struct rtx_def memory_extend_buf;
4933 rtx memory_extend_rtx = &memory_extend_buf;
4935 /* Set what we are trying to extend and the operation it might
4936 have been extended with. */
4937 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4938 PUT_CODE (memory_extend_rtx, extend_op);
4939 XEXP (memory_extend_rtx, 0) = src;
4941 opt_scalar_int_mode tmode_iter;
4942 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4944 struct table_elt *larger_elt;
4946 scalar_int_mode tmode = tmode_iter.require ();
4947 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4948 break;
4950 PUT_MODE (memory_extend_rtx, tmode);
4951 larger_elt = lookup (memory_extend_rtx,
4952 HASH (memory_extend_rtx, tmode), tmode);
4953 if (larger_elt == 0)
4954 continue;
4956 for (larger_elt = larger_elt->first_same_value;
4957 larger_elt; larger_elt = larger_elt->next_same_value)
4958 if (REG_P (larger_elt->exp))
4960 src_related = gen_lowpart (int_mode, larger_elt->exp);
4961 break;
4964 if (src_related)
4965 break;
4969 /* Try to express the constant using a register+offset expression
4970 derived from a constant anchor. */
4972 if (targetm.const_anchor
4973 && !src_related
4974 && src_const
4975 && GET_CODE (src_const) == CONST_INT)
4977 src_related = try_const_anchors (src_const, mode);
4978 src_related_is_const_anchor = src_related != NULL_RTX;
4982 if (src == src_folded)
4983 src_folded = 0;
4985 /* At this point, ELT, if nonzero, points to a class of expressions
4986 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4987 and SRC_RELATED, if nonzero, each contain additional equivalent
4988 expressions. Prune these latter expressions by deleting expressions
4989 already in the equivalence class.
4991 Check for an equivalent identical to the destination. If found,
4992 this is the preferred equivalent since it will likely lead to
4993 elimination of the insn. Indicate this by placing it in
4994 `src_related'. */
4996 if (elt)
4997 elt = elt->first_same_value;
4998 for (p = elt; p; p = p->next_same_value)
5000 enum rtx_code code = GET_CODE (p->exp);
5002 /* If the expression is not valid, ignore it. Then we do not
5003 have to check for validity below. In most cases, we can use
5004 `rtx_equal_p', since canonicalization has already been done. */
5005 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5006 continue;
5008 /* Also skip paradoxical subregs, unless that's what we're
5009 looking for. */
5010 if (paradoxical_subreg_p (p->exp)
5011 && ! (src != 0
5012 && GET_CODE (src) == SUBREG
5013 && GET_MODE (src) == GET_MODE (p->exp)
5014 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5015 GET_MODE (SUBREG_REG (p->exp)))))
5016 continue;
5018 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5019 src = 0;
5020 else if (src_folded && GET_CODE (src_folded) == code
5021 && rtx_equal_p (src_folded, p->exp))
5022 src_folded = 0;
5023 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5024 && rtx_equal_p (src_eqv_here, p->exp))
5025 src_eqv_here = 0;
5026 else if (src_related && GET_CODE (src_related) == code
5027 && rtx_equal_p (src_related, p->exp))
5028 src_related = 0;
5030 /* This is the same as the destination of the insns, we want
5031 to prefer it. Copy it to src_related. The code below will
5032 then give it a negative cost. */
5033 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5034 src_related = dest;
5037 /* Find the cheapest valid equivalent, trying all the available
5038 possibilities. Prefer items not in the hash table to ones
5039 that are when they are equal cost. Note that we can never
5040 worsen an insn as the current contents will also succeed.
5041 If we find an equivalent identical to the destination, use it as best,
5042 since this insn will probably be eliminated in that case. */
5043 if (src)
5045 if (rtx_equal_p (src, dest))
5046 src_cost = src_regcost = -1;
5047 else
5049 src_cost = COST (src, mode);
5050 src_regcost = approx_reg_cost (src);
5054 if (src_eqv_here)
5056 if (rtx_equal_p (src_eqv_here, dest))
5057 src_eqv_cost = src_eqv_regcost = -1;
5058 else
5060 src_eqv_cost = COST (src_eqv_here, mode);
5061 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5065 if (src_folded)
5067 if (rtx_equal_p (src_folded, dest))
5068 src_folded_cost = src_folded_regcost = -1;
5069 else
5071 src_folded_cost = COST (src_folded, mode);
5072 src_folded_regcost = approx_reg_cost (src_folded);
5076 if (src_related)
5078 if (rtx_equal_p (src_related, dest))
5079 src_related_cost = src_related_regcost = -1;
5080 else
5082 src_related_cost = COST (src_related, mode);
5083 src_related_regcost = approx_reg_cost (src_related);
5085 /* If a const-anchor is used to synthesize a constant that
5086 normally requires multiple instructions then slightly prefer
5087 it over the original sequence. These instructions are likely
5088 to become redundant now. We can't compare against the cost
5089 of src_eqv_here because, on MIPS for example, multi-insn
5090 constants have zero cost; they are assumed to be hoisted from
5091 loops. */
5092 if (src_related_is_const_anchor
5093 && src_related_cost == src_cost
5094 && src_eqv_here)
5095 src_related_cost--;
5099 /* If this was an indirect jump insn, a known label will really be
5100 cheaper even though it looks more expensive. */
5101 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5102 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5104 /* Terminate loop when replacement made. This must terminate since
5105 the current contents will be tested and will always be valid. */
5106 while (1)
5108 rtx trial;
5110 /* Skip invalid entries. */
5111 while (elt && !REG_P (elt->exp)
5112 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5113 elt = elt->next_same_value;
5115 /* A paradoxical subreg would be bad here: it'll be the right
5116 size, but later may be adjusted so that the upper bits aren't
5117 what we want. So reject it. */
5118 if (elt != 0
5119 && paradoxical_subreg_p (elt->exp)
5120 /* It is okay, though, if the rtx we're trying to match
5121 will ignore any of the bits we can't predict. */
5122 && ! (src != 0
5123 && GET_CODE (src) == SUBREG
5124 && GET_MODE (src) == GET_MODE (elt->exp)
5125 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5126 GET_MODE (SUBREG_REG (elt->exp)))))
5128 elt = elt->next_same_value;
5129 continue;
5132 if (elt)
5134 src_elt_cost = elt->cost;
5135 src_elt_regcost = elt->regcost;
5138 /* Find cheapest and skip it for the next time. For items
5139 of equal cost, use this order:
5140 src_folded, src, src_eqv, src_related and hash table entry. */
5141 if (src_folded
5142 && preferable (src_folded_cost, src_folded_regcost,
5143 src_cost, src_regcost) <= 0
5144 && preferable (src_folded_cost, src_folded_regcost,
5145 src_eqv_cost, src_eqv_regcost) <= 0
5146 && preferable (src_folded_cost, src_folded_regcost,
5147 src_related_cost, src_related_regcost) <= 0
5148 && preferable (src_folded_cost, src_folded_regcost,
5149 src_elt_cost, src_elt_regcost) <= 0)
5151 trial = src_folded, src_folded_cost = MAX_COST;
5152 if (src_folded_force_flag)
5154 rtx forced = force_const_mem (mode, trial);
5155 if (forced)
5156 trial = forced;
5159 else if (src
5160 && preferable (src_cost, src_regcost,
5161 src_eqv_cost, src_eqv_regcost) <= 0
5162 && preferable (src_cost, src_regcost,
5163 src_related_cost, src_related_regcost) <= 0
5164 && preferable (src_cost, src_regcost,
5165 src_elt_cost, src_elt_regcost) <= 0)
5166 trial = src, src_cost = MAX_COST;
5167 else if (src_eqv_here
5168 && preferable (src_eqv_cost, src_eqv_regcost,
5169 src_related_cost, src_related_regcost) <= 0
5170 && preferable (src_eqv_cost, src_eqv_regcost,
5171 src_elt_cost, src_elt_regcost) <= 0)
5172 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5173 else if (src_related
5174 && preferable (src_related_cost, src_related_regcost,
5175 src_elt_cost, src_elt_regcost) <= 0)
5176 trial = src_related, src_related_cost = MAX_COST;
5177 else
5179 trial = elt->exp;
5180 elt = elt->next_same_value;
5181 src_elt_cost = MAX_COST;
5184 /* Avoid creation of overlapping memory moves. */
5185 if (MEM_P (trial) && MEM_P (dest) && !rtx_equal_p (trial, dest))
5187 rtx src, dest;
5189 /* BLKmode moves are not handled by cse anyway. */
5190 if (GET_MODE (trial) == BLKmode)
5191 break;
5193 src = canon_rtx (trial);
5194 dest = canon_rtx (SET_DEST (sets[i].rtl));
5196 if (!MEM_P (src) || !MEM_P (dest)
5197 || !nonoverlapping_memrefs_p (src, dest, false))
5198 break;
5201 /* Try to optimize
5202 (set (reg:M N) (const_int A))
5203 (set (reg:M2 O) (const_int B))
5204 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5205 (reg:M2 O)). */
5206 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5207 && CONST_INT_P (trial)
5208 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5209 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5210 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5211 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5212 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5213 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5214 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5215 <= HOST_BITS_PER_WIDE_INT))
5217 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5218 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5219 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5220 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5221 struct table_elt *dest_elt
5222 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5223 rtx dest_cst = NULL;
5225 if (dest_elt)
5226 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5227 if (p->is_const && CONST_INT_P (p->exp))
5229 dest_cst = p->exp;
5230 break;
5232 if (dest_cst)
5234 HOST_WIDE_INT val = INTVAL (dest_cst);
5235 HOST_WIDE_INT mask;
5236 unsigned int shift;
5237 /* This is the mode of DEST_CST as well. */
5238 scalar_int_mode dest_mode
5239 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
5240 if (BITS_BIG_ENDIAN)
5241 shift = GET_MODE_PRECISION (dest_mode)
5242 - INTVAL (pos) - INTVAL (width);
5243 else
5244 shift = INTVAL (pos);
5245 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5246 mask = HOST_WIDE_INT_M1;
5247 else
5248 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
5249 val &= ~(mask << shift);
5250 val |= (INTVAL (trial) & mask) << shift;
5251 val = trunc_int_for_mode (val, dest_mode);
5252 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5253 dest_reg, 1);
5254 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5255 GEN_INT (val), 1);
5256 if (apply_change_group ())
5258 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5259 if (note)
5261 remove_note (insn, note);
5262 df_notes_rescan (insn);
5264 src_eqv = NULL_RTX;
5265 src_eqv_elt = NULL;
5266 src_eqv_volatile = 0;
5267 src_eqv_in_memory = 0;
5268 src_eqv_hash = 0;
5269 repeat = true;
5270 break;
5275 /* We don't normally have an insn matching (set (pc) (pc)), so
5276 check for this separately here. We will delete such an
5277 insn below.
5279 For other cases such as a table jump or conditional jump
5280 where we know the ultimate target, go ahead and replace the
5281 operand. While that may not make a valid insn, we will
5282 reemit the jump below (and also insert any necessary
5283 barriers). */
5284 if (n_sets == 1 && dest == pc_rtx
5285 && (trial == pc_rtx
5286 || (GET_CODE (trial) == LABEL_REF
5287 && ! condjump_p (insn))))
5289 /* Don't substitute non-local labels, this confuses CFG. */
5290 if (GET_CODE (trial) == LABEL_REF
5291 && LABEL_REF_NONLOCAL_P (trial))
5292 continue;
5294 SET_SRC (sets[i].rtl) = trial;
5295 cse_jumps_altered = true;
5296 break;
5299 /* Similarly, lots of targets don't allow no-op
5300 (set (mem x) (mem x)) moves. */
5301 else if (n_sets == 1
5302 && MEM_P (trial)
5303 && MEM_P (dest)
5304 && rtx_equal_p (trial, dest)
5305 && !side_effects_p (dest)
5306 && (cfun->can_delete_dead_exceptions
5307 || insn_nothrow_p (insn)))
5309 SET_SRC (sets[i].rtl) = trial;
5310 mem_noop_insn = true;
5311 break;
5314 /* Reject certain invalid forms of CONST that we create. */
5315 else if (CONSTANT_P (trial)
5316 && GET_CODE (trial) == CONST
5317 /* Reject cases that will cause decode_rtx_const to
5318 die. On the alpha when simplifying a switch, we
5319 get (const (truncate (minus (label_ref)
5320 (label_ref)))). */
5321 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5322 /* Likewise on IA-64, except without the
5323 truncate. */
5324 || (GET_CODE (XEXP (trial, 0)) == MINUS
5325 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5326 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5327 /* Do nothing for this case. */
5330 /* Look for a substitution that makes a valid insn. */
5331 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5332 trial, 0))
5334 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5336 /* The result of apply_change_group can be ignored; see
5337 canon_reg. */
5339 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5340 apply_change_group ();
5342 break;
5345 /* If we previously found constant pool entries for
5346 constants and this is a constant, try making a
5347 pool entry. Put it in src_folded unless we already have done
5348 this since that is where it likely came from. */
5350 else if (constant_pool_entries_cost
5351 && CONSTANT_P (trial)
5352 && (src_folded == 0
5353 || (!MEM_P (src_folded)
5354 && ! src_folded_force_flag))
5355 && GET_MODE_CLASS (mode) != MODE_CC
5356 && mode != VOIDmode)
5358 src_folded_force_flag = 1;
5359 src_folded = trial;
5360 src_folded_cost = constant_pool_entries_cost;
5361 src_folded_regcost = constant_pool_entries_regcost;
5365 /* If we changed the insn too much, handle this set from scratch. */
5366 if (repeat)
5368 i--;
5369 continue;
5372 src = SET_SRC (sets[i].rtl);
5374 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5375 However, there is an important exception: If both are registers
5376 that are not the head of their equivalence class, replace SET_SRC
5377 with the head of the class. If we do not do this, we will have
5378 both registers live over a portion of the basic block. This way,
5379 their lifetimes will likely abut instead of overlapping. */
5380 if (REG_P (dest)
5381 && REGNO_QTY_VALID_P (REGNO (dest)))
5383 int dest_q = REG_QTY (REGNO (dest));
5384 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5386 if (dest_ent->mode == GET_MODE (dest)
5387 && dest_ent->first_reg != REGNO (dest)
5388 && REG_P (src) && REGNO (src) == REGNO (dest)
5389 /* Don't do this if the original insn had a hard reg as
5390 SET_SRC or SET_DEST. */
5391 && (!REG_P (sets[i].src)
5392 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5393 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5394 /* We can't call canon_reg here because it won't do anything if
5395 SRC is a hard register. */
5397 int src_q = REG_QTY (REGNO (src));
5398 struct qty_table_elem *src_ent = &qty_table[src_q];
5399 int first = src_ent->first_reg;
5400 rtx new_src
5401 = (first >= FIRST_PSEUDO_REGISTER
5402 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5404 /* We must use validate-change even for this, because this
5405 might be a special no-op instruction, suitable only to
5406 tag notes onto. */
5407 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5409 src = new_src;
5410 /* If we had a constant that is cheaper than what we are now
5411 setting SRC to, use that constant. We ignored it when we
5412 thought we could make this into a no-op. */
5413 if (src_const && COST (src_const, mode) < COST (src, mode)
5414 && validate_change (insn, &SET_SRC (sets[i].rtl),
5415 src_const, 0))
5416 src = src_const;
5421 /* If we made a change, recompute SRC values. */
5422 if (src != sets[i].src)
5424 do_not_record = 0;
5425 hash_arg_in_memory = 0;
5426 sets[i].src = src;
5427 sets[i].src_hash = HASH (src, mode);
5428 sets[i].src_volatile = do_not_record;
5429 sets[i].src_in_memory = hash_arg_in_memory;
5430 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5433 /* If this is a single SET, we are setting a register, and we have an
5434 equivalent constant, we want to add a REG_EQUAL note if the constant
5435 is different from the source. We don't want to do it for a constant
5436 pseudo since verifying that this pseudo hasn't been eliminated is a
5437 pain; moreover such a note won't help anything.
5439 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5440 which can be created for a reference to a compile time computable
5441 entry in a jump table. */
5442 if (n_sets == 1
5443 && REG_P (dest)
5444 && src_const
5445 && !REG_P (src_const)
5446 && !(GET_CODE (src_const) == SUBREG
5447 && REG_P (SUBREG_REG (src_const)))
5448 && !(GET_CODE (src_const) == CONST
5449 && GET_CODE (XEXP (src_const, 0)) == MINUS
5450 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5451 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5452 && !rtx_equal_p (src, src_const))
5454 /* Make sure that the rtx is not shared. */
5455 src_const = copy_rtx (src_const);
5457 /* Record the actual constant value in a REG_EQUAL note,
5458 making a new one if one does not already exist. */
5459 set_unique_reg_note (insn, REG_EQUAL, src_const);
5460 df_notes_rescan (insn);
5463 /* Now deal with the destination. */
5464 do_not_record = 0;
5466 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5467 while (GET_CODE (dest) == SUBREG
5468 || GET_CODE (dest) == ZERO_EXTRACT
5469 || GET_CODE (dest) == STRICT_LOW_PART)
5470 dest = XEXP (dest, 0);
5472 sets[i].inner_dest = dest;
5474 if (MEM_P (dest))
5476 #ifdef PUSH_ROUNDING
5477 /* Stack pushes invalidate the stack pointer. */
5478 rtx addr = XEXP (dest, 0);
5479 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5480 && XEXP (addr, 0) == stack_pointer_rtx)
5481 invalidate (stack_pointer_rtx, VOIDmode);
5482 #endif
5483 dest = fold_rtx (dest, insn);
5486 /* Compute the hash code of the destination now,
5487 before the effects of this instruction are recorded,
5488 since the register values used in the address computation
5489 are those before this instruction. */
5490 sets[i].dest_hash = HASH (dest, mode);
5492 /* Don't enter a bit-field in the hash table
5493 because the value in it after the store
5494 may not equal what was stored, due to truncation. */
5496 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5498 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5500 if (src_const != 0 && CONST_INT_P (src_const)
5501 && CONST_INT_P (width)
5502 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5503 && ! (INTVAL (src_const)
5504 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5505 /* Exception: if the value is constant,
5506 and it won't be truncated, record it. */
5508 else
5510 /* This is chosen so that the destination will be invalidated
5511 but no new value will be recorded.
5512 We must invalidate because sometimes constant
5513 values can be recorded for bitfields. */
5514 sets[i].src_elt = 0;
5515 sets[i].src_volatile = 1;
5516 src_eqv = 0;
5517 src_eqv_elt = 0;
5521 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5522 the insn. */
5523 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5525 /* One less use of the label this insn used to jump to. */
5526 cse_cfg_altered |= delete_insn_and_edges (insn);
5527 cse_jumps_altered = true;
5528 /* No more processing for this set. */
5529 sets[i].rtl = 0;
5532 /* Similarly for no-op MEM moves. */
5533 else if (mem_noop_insn)
5535 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5536 cse_cfg_altered = true;
5537 cse_cfg_altered |= delete_insn_and_edges (insn);
5538 /* No more processing for this set. */
5539 sets[i].rtl = 0;
5542 /* If this SET is now setting PC to a label, we know it used to
5543 be a conditional or computed branch. */
5544 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5545 && !LABEL_REF_NONLOCAL_P (src))
5547 /* We reemit the jump in as many cases as possible just in
5548 case the form of an unconditional jump is significantly
5549 different than a computed jump or conditional jump.
5551 If this insn has multiple sets, then reemitting the
5552 jump is nontrivial. So instead we just force rerecognition
5553 and hope for the best. */
5554 if (n_sets == 1)
5556 rtx_jump_insn *new_rtx;
5557 rtx note;
5559 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5560 new_rtx = emit_jump_insn_before (seq, insn);
5561 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5562 LABEL_NUSES (XEXP (src, 0))++;
5564 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5565 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5566 if (note)
5568 XEXP (note, 1) = NULL_RTX;
5569 REG_NOTES (new_rtx) = note;
5572 cse_cfg_altered |= delete_insn_and_edges (insn);
5573 insn = new_rtx;
5575 else
5576 INSN_CODE (insn) = -1;
5578 /* Do not bother deleting any unreachable code, let jump do it. */
5579 cse_jumps_altered = true;
5580 sets[i].rtl = 0;
5583 /* If destination is volatile, invalidate it and then do no further
5584 processing for this assignment. */
5586 else if (do_not_record)
5588 invalidate_dest (dest);
5589 sets[i].rtl = 0;
5592 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5594 do_not_record = 0;
5595 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5596 if (do_not_record)
5598 invalidate_dest (SET_DEST (sets[i].rtl));
5599 sets[i].rtl = 0;
5603 /* If setting CC0, record what it was set to, or a constant, if it
5604 is equivalent to a constant. If it is being set to a floating-point
5605 value, make a COMPARE with the appropriate constant of 0. If we
5606 don't do this, later code can interpret this as a test against
5607 const0_rtx, which can cause problems if we try to put it into an
5608 insn as a floating-point operand. */
5609 if (dest == cc0_rtx)
5611 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5612 this_insn_cc0_mode = mode;
5613 if (FLOAT_MODE_P (mode))
5614 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5615 CONST0_RTX (mode));
5619 /* Now enter all non-volatile source expressions in the hash table
5620 if they are not already present.
5621 Record their equivalence classes in src_elt.
5622 This way we can insert the corresponding destinations into
5623 the same classes even if the actual sources are no longer in them
5624 (having been invalidated). */
5626 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5627 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5629 struct table_elt *elt;
5630 struct table_elt *classp = sets[0].src_elt;
5631 rtx dest = SET_DEST (sets[0].rtl);
5632 machine_mode eqvmode = GET_MODE (dest);
5634 if (GET_CODE (dest) == STRICT_LOW_PART)
5636 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5637 classp = 0;
5639 if (insert_regs (src_eqv, classp, 0))
5641 rehash_using_reg (src_eqv);
5642 src_eqv_hash = HASH (src_eqv, eqvmode);
5644 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5645 elt->in_memory = src_eqv_in_memory;
5646 src_eqv_elt = elt;
5648 /* Check to see if src_eqv_elt is the same as a set source which
5649 does not yet have an elt, and if so set the elt of the set source
5650 to src_eqv_elt. */
5651 for (i = 0; i < n_sets; i++)
5652 if (sets[i].rtl && sets[i].src_elt == 0
5653 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5654 sets[i].src_elt = src_eqv_elt;
5657 for (i = 0; i < n_sets; i++)
5658 if (sets[i].rtl && ! sets[i].src_volatile
5659 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5661 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5663 /* REG_EQUAL in setting a STRICT_LOW_PART
5664 gives an equivalent for the entire destination register,
5665 not just for the subreg being stored in now.
5666 This is a more interesting equivalence, so we arrange later
5667 to treat the entire reg as the destination. */
5668 sets[i].src_elt = src_eqv_elt;
5669 sets[i].src_hash = src_eqv_hash;
5671 else
5673 /* Insert source and constant equivalent into hash table, if not
5674 already present. */
5675 struct table_elt *classp = src_eqv_elt;
5676 rtx src = sets[i].src;
5677 rtx dest = SET_DEST (sets[i].rtl);
5678 machine_mode mode
5679 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5681 /* It's possible that we have a source value known to be
5682 constant but don't have a REG_EQUAL note on the insn.
5683 Lack of a note will mean src_eqv_elt will be NULL. This
5684 can happen where we've generated a SUBREG to access a
5685 CONST_INT that is already in a register in a wider mode.
5686 Ensure that the source expression is put in the proper
5687 constant class. */
5688 if (!classp)
5689 classp = sets[i].src_const_elt;
5691 if (sets[i].src_elt == 0)
5693 struct table_elt *elt;
5695 /* Note that these insert_regs calls cannot remove
5696 any of the src_elt's, because they would have failed to
5697 match if not still valid. */
5698 if (insert_regs (src, classp, 0))
5700 rehash_using_reg (src);
5701 sets[i].src_hash = HASH (src, mode);
5703 elt = insert (src, classp, sets[i].src_hash, mode);
5704 elt->in_memory = sets[i].src_in_memory;
5705 /* If inline asm has any clobbers, ensure we only reuse
5706 existing inline asms and never try to put the ASM_OPERANDS
5707 into an insn that isn't inline asm. */
5708 if (GET_CODE (src) == ASM_OPERANDS
5709 && GET_CODE (x) == PARALLEL)
5710 elt->cost = MAX_COST;
5711 sets[i].src_elt = classp = elt;
5713 if (sets[i].src_const && sets[i].src_const_elt == 0
5714 && src != sets[i].src_const
5715 && ! rtx_equal_p (sets[i].src_const, src))
5716 sets[i].src_elt = insert (sets[i].src_const, classp,
5717 sets[i].src_const_hash, mode);
5720 else if (sets[i].src_elt == 0)
5721 /* If we did not insert the source into the hash table (e.g., it was
5722 volatile), note the equivalence class for the REG_EQUAL value, if any,
5723 so that the destination goes into that class. */
5724 sets[i].src_elt = src_eqv_elt;
5726 /* Record destination addresses in the hash table. This allows us to
5727 check if they are invalidated by other sets. */
5728 for (i = 0; i < n_sets; i++)
5730 if (sets[i].rtl)
5732 rtx x = sets[i].inner_dest;
5733 struct table_elt *elt;
5734 machine_mode mode;
5735 unsigned hash;
5737 if (MEM_P (x))
5739 x = XEXP (x, 0);
5740 mode = GET_MODE (x);
5741 hash = HASH (x, mode);
5742 elt = lookup (x, hash, mode);
5743 if (!elt)
5745 if (insert_regs (x, NULL, 0))
5747 rtx dest = SET_DEST (sets[i].rtl);
5749 rehash_using_reg (x);
5750 hash = HASH (x, mode);
5751 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5753 elt = insert (x, NULL, hash, mode);
5756 sets[i].dest_addr_elt = elt;
5758 else
5759 sets[i].dest_addr_elt = NULL;
5763 invalidate_from_clobbers (insn);
5765 /* Some registers are invalidated by subroutine calls. Memory is
5766 invalidated by non-constant calls. */
5768 if (CALL_P (insn))
5770 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5771 invalidate_memory ();
5772 else
5773 /* For const/pure calls, invalidate any argument slots, because
5774 those are owned by the callee. */
5775 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5776 if (GET_CODE (XEXP (tem, 0)) == USE
5777 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5778 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
5779 invalidate_for_call ();
5782 /* Now invalidate everything set by this instruction.
5783 If a SUBREG or other funny destination is being set,
5784 sets[i].rtl is still nonzero, so here we invalidate the reg
5785 a part of which is being set. */
5787 for (i = 0; i < n_sets; i++)
5788 if (sets[i].rtl)
5790 /* We can't use the inner dest, because the mode associated with
5791 a ZERO_EXTRACT is significant. */
5792 rtx dest = SET_DEST (sets[i].rtl);
5794 /* Needed for registers to remove the register from its
5795 previous quantity's chain.
5796 Needed for memory if this is a nonvarying address, unless
5797 we have just done an invalidate_memory that covers even those. */
5798 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5799 invalidate (dest, VOIDmode);
5800 else if (MEM_P (dest))
5801 invalidate (dest, VOIDmode);
5802 else if (GET_CODE (dest) == STRICT_LOW_PART
5803 || GET_CODE (dest) == ZERO_EXTRACT)
5804 invalidate (XEXP (dest, 0), GET_MODE (dest));
5807 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5808 the regs restored by the longjmp come from a later time
5809 than the setjmp. */
5810 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5812 flush_hash_table ();
5813 goto done;
5816 /* Make sure registers mentioned in destinations
5817 are safe for use in an expression to be inserted.
5818 This removes from the hash table
5819 any invalid entry that refers to one of these registers.
5821 We don't care about the return value from mention_regs because
5822 we are going to hash the SET_DEST values unconditionally. */
5824 for (i = 0; i < n_sets; i++)
5826 if (sets[i].rtl)
5828 rtx x = SET_DEST (sets[i].rtl);
5830 if (!REG_P (x))
5831 mention_regs (x);
5832 else
5834 /* We used to rely on all references to a register becoming
5835 inaccessible when a register changes to a new quantity,
5836 since that changes the hash code. However, that is not
5837 safe, since after HASH_SIZE new quantities we get a
5838 hash 'collision' of a register with its own invalid
5839 entries. And since SUBREGs have been changed not to
5840 change their hash code with the hash code of the register,
5841 it wouldn't work any longer at all. So we have to check
5842 for any invalid references lying around now.
5843 This code is similar to the REG case in mention_regs,
5844 but it knows that reg_tick has been incremented, and
5845 it leaves reg_in_table as -1 . */
5846 unsigned int regno = REGNO (x);
5847 unsigned int endregno = END_REGNO (x);
5848 unsigned int i;
5850 for (i = regno; i < endregno; i++)
5852 if (REG_IN_TABLE (i) >= 0)
5854 remove_invalid_refs (i);
5855 REG_IN_TABLE (i) = -1;
5862 /* We may have just removed some of the src_elt's from the hash table.
5863 So replace each one with the current head of the same class.
5864 Also check if destination addresses have been removed. */
5866 for (i = 0; i < n_sets; i++)
5867 if (sets[i].rtl)
5869 if (sets[i].dest_addr_elt
5870 && sets[i].dest_addr_elt->first_same_value == 0)
5872 /* The elt was removed, which means this destination is not
5873 valid after this instruction. */
5874 sets[i].rtl = NULL_RTX;
5876 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5877 /* If elt was removed, find current head of same class,
5878 or 0 if nothing remains of that class. */
5880 struct table_elt *elt = sets[i].src_elt;
5882 while (elt && elt->prev_same_value)
5883 elt = elt->prev_same_value;
5885 while (elt && elt->first_same_value == 0)
5886 elt = elt->next_same_value;
5887 sets[i].src_elt = elt ? elt->first_same_value : 0;
5891 /* Now insert the destinations into their equivalence classes. */
5893 for (i = 0; i < n_sets; i++)
5894 if (sets[i].rtl)
5896 rtx dest = SET_DEST (sets[i].rtl);
5897 struct table_elt *elt;
5899 /* Don't record value if we are not supposed to risk allocating
5900 floating-point values in registers that might be wider than
5901 memory. */
5902 if ((flag_float_store
5903 && MEM_P (dest)
5904 && FLOAT_MODE_P (GET_MODE (dest)))
5905 /* Don't record BLKmode values, because we don't know the
5906 size of it, and can't be sure that other BLKmode values
5907 have the same or smaller size. */
5908 || GET_MODE (dest) == BLKmode
5909 /* If we didn't put a REG_EQUAL value or a source into the hash
5910 table, there is no point is recording DEST. */
5911 || sets[i].src_elt == 0)
5912 continue;
5914 /* STRICT_LOW_PART isn't part of the value BEING set,
5915 and neither is the SUBREG inside it.
5916 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5917 if (GET_CODE (dest) == STRICT_LOW_PART)
5918 dest = SUBREG_REG (XEXP (dest, 0));
5920 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5921 /* Registers must also be inserted into chains for quantities. */
5922 if (insert_regs (dest, sets[i].src_elt, 1))
5924 /* If `insert_regs' changes something, the hash code must be
5925 recalculated. */
5926 rehash_using_reg (dest);
5927 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5930 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5931 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5932 if (paradoxical_subreg_p (dest))
5933 continue;
5935 elt = insert (dest, sets[i].src_elt,
5936 sets[i].dest_hash, GET_MODE (dest));
5938 /* If this is a constant, insert the constant anchors with the
5939 equivalent register-offset expressions using register DEST. */
5940 if (targetm.const_anchor
5941 && REG_P (dest)
5942 && SCALAR_INT_MODE_P (GET_MODE (dest))
5943 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5944 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5946 elt->in_memory = (MEM_P (sets[i].inner_dest)
5947 && !MEM_READONLY_P (sets[i].inner_dest));
5949 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5950 narrower than M2, and both M1 and M2 are the same number of words,
5951 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5952 make that equivalence as well.
5954 However, BAR may have equivalences for which gen_lowpart
5955 will produce a simpler value than gen_lowpart applied to
5956 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5957 BAR's equivalences. If we don't get a simplified form, make
5958 the SUBREG. It will not be used in an equivalence, but will
5959 cause two similar assignments to be detected.
5961 Note the loop below will find SUBREG_REG (DEST) since we have
5962 already entered SRC and DEST of the SET in the table. */
5964 if (GET_CODE (dest) == SUBREG
5965 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5966 / UNITS_PER_WORD)
5967 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5968 && !partial_subreg_p (dest)
5969 && sets[i].src_elt != 0)
5971 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5972 struct table_elt *elt, *classp = 0;
5974 for (elt = sets[i].src_elt->first_same_value; elt;
5975 elt = elt->next_same_value)
5977 rtx new_src = 0;
5978 unsigned src_hash;
5979 struct table_elt *src_elt;
5980 int byte = 0;
5982 /* Ignore invalid entries. */
5983 if (!REG_P (elt->exp)
5984 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5985 continue;
5987 /* We may have already been playing subreg games. If the
5988 mode is already correct for the destination, use it. */
5989 if (GET_MODE (elt->exp) == new_mode)
5990 new_src = elt->exp;
5991 else
5993 /* Calculate big endian correction for the SUBREG_BYTE.
5994 We have already checked that M1 (GET_MODE (dest))
5995 is not narrower than M2 (new_mode). */
5996 if (BYTES_BIG_ENDIAN)
5997 byte = (GET_MODE_SIZE (GET_MODE (dest))
5998 - GET_MODE_SIZE (new_mode));
6000 new_src = simplify_gen_subreg (new_mode, elt->exp,
6001 GET_MODE (dest), byte);
6004 /* The call to simplify_gen_subreg fails if the value
6005 is VOIDmode, yet we can't do any simplification, e.g.
6006 for EXPR_LISTs denoting function call results.
6007 It is invalid to construct a SUBREG with a VOIDmode
6008 SUBREG_REG, hence a zero new_src means we can't do
6009 this substitution. */
6010 if (! new_src)
6011 continue;
6013 src_hash = HASH (new_src, new_mode);
6014 src_elt = lookup (new_src, src_hash, new_mode);
6016 /* Put the new source in the hash table is if isn't
6017 already. */
6018 if (src_elt == 0)
6020 if (insert_regs (new_src, classp, 0))
6022 rehash_using_reg (new_src);
6023 src_hash = HASH (new_src, new_mode);
6025 src_elt = insert (new_src, classp, src_hash, new_mode);
6026 src_elt->in_memory = elt->in_memory;
6027 if (GET_CODE (new_src) == ASM_OPERANDS
6028 && elt->cost == MAX_COST)
6029 src_elt->cost = MAX_COST;
6031 else if (classp && classp != src_elt->first_same_value)
6032 /* Show that two things that we've seen before are
6033 actually the same. */
6034 merge_equiv_classes (src_elt, classp);
6036 classp = src_elt->first_same_value;
6037 /* Ignore invalid entries. */
6038 while (classp
6039 && !REG_P (classp->exp)
6040 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6041 classp = classp->next_same_value;
6046 /* Special handling for (set REG0 REG1) where REG0 is the
6047 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6048 be used in the sequel, so (if easily done) change this insn to
6049 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6050 that computed their value. Then REG1 will become a dead store
6051 and won't cloud the situation for later optimizations.
6053 Do not make this change if REG1 is a hard register, because it will
6054 then be used in the sequel and we may be changing a two-operand insn
6055 into a three-operand insn.
6057 Also do not do this if we are operating on a copy of INSN. */
6059 if (n_sets == 1 && sets[0].rtl)
6060 try_back_substitute_reg (sets[0].rtl, insn);
6062 done:;
6065 /* Remove from the hash table all expressions that reference memory. */
6067 static void
6068 invalidate_memory (void)
6070 int i;
6071 struct table_elt *p, *next;
6073 for (i = 0; i < HASH_SIZE; i++)
6074 for (p = table[i]; p; p = next)
6076 next = p->next_same_hash;
6077 if (p->in_memory)
6078 remove_from_table (p, i);
6082 /* Perform invalidation on the basis of everything about INSN,
6083 except for invalidating the actual places that are SET in it.
6084 This includes the places CLOBBERed, and anything that might
6085 alias with something that is SET or CLOBBERed. */
6087 static void
6088 invalidate_from_clobbers (rtx_insn *insn)
6090 rtx x = PATTERN (insn);
6092 if (GET_CODE (x) == CLOBBER)
6094 rtx ref = XEXP (x, 0);
6095 if (ref)
6097 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6098 || MEM_P (ref))
6099 invalidate (ref, VOIDmode);
6100 else if (GET_CODE (ref) == STRICT_LOW_PART
6101 || GET_CODE (ref) == ZERO_EXTRACT)
6102 invalidate (XEXP (ref, 0), GET_MODE (ref));
6105 else if (GET_CODE (x) == PARALLEL)
6107 int i;
6108 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6110 rtx y = XVECEXP (x, 0, i);
6111 if (GET_CODE (y) == CLOBBER)
6113 rtx ref = XEXP (y, 0);
6114 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6115 || MEM_P (ref))
6116 invalidate (ref, VOIDmode);
6117 else if (GET_CODE (ref) == STRICT_LOW_PART
6118 || GET_CODE (ref) == ZERO_EXTRACT)
6119 invalidate (XEXP (ref, 0), GET_MODE (ref));
6125 /* Perform invalidation on the basis of everything about INSN.
6126 This includes the places CLOBBERed, and anything that might
6127 alias with something that is SET or CLOBBERed. */
6129 static void
6130 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6132 rtx tem;
6133 rtx x = PATTERN (insn);
6135 if (CALL_P (insn))
6137 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6138 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6139 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6142 /* Ensure we invalidate the destination register of a CALL insn.
6143 This is necessary for machines where this register is a fixed_reg,
6144 because no other code would invalidate it. */
6145 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6146 invalidate (SET_DEST (x), VOIDmode);
6148 else if (GET_CODE (x) == PARALLEL)
6150 int i;
6152 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6154 rtx y = XVECEXP (x, 0, i);
6155 if (GET_CODE (y) == CLOBBER)
6157 rtx clobbered = XEXP (y, 0);
6159 if (REG_P (clobbered)
6160 || GET_CODE (clobbered) == SUBREG)
6161 invalidate (clobbered, VOIDmode);
6162 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6163 || GET_CODE (clobbered) == ZERO_EXTRACT)
6164 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6166 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6167 invalidate (SET_DEST (y), VOIDmode);
6172 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6173 and replace any registers in them with either an equivalent constant
6174 or the canonical form of the register. If we are inside an address,
6175 only do this if the address remains valid.
6177 OBJECT is 0 except when within a MEM in which case it is the MEM.
6179 Return the replacement for X. */
6181 static rtx
6182 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6184 enum rtx_code code = GET_CODE (x);
6185 const char *fmt = GET_RTX_FORMAT (code);
6186 int i;
6188 switch (code)
6190 case CONST:
6191 case SYMBOL_REF:
6192 case LABEL_REF:
6193 CASE_CONST_ANY:
6194 case PC:
6195 case CC0:
6196 case LO_SUM:
6197 return x;
6199 case MEM:
6200 validate_change (x, &XEXP (x, 0),
6201 cse_process_notes (XEXP (x, 0), x, changed), 0);
6202 return x;
6204 case EXPR_LIST:
6205 if (REG_NOTE_KIND (x) == REG_EQUAL)
6206 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6207 /* Fall through. */
6209 case INSN_LIST:
6210 case INT_LIST:
6211 if (XEXP (x, 1))
6212 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6213 return x;
6215 case SIGN_EXTEND:
6216 case ZERO_EXTEND:
6217 case SUBREG:
6219 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6220 /* We don't substitute VOIDmode constants into these rtx,
6221 since they would impede folding. */
6222 if (GET_MODE (new_rtx) != VOIDmode)
6223 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6224 return x;
6227 case UNSIGNED_FLOAT:
6229 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6230 /* We don't substitute negative VOIDmode constants into these rtx,
6231 since they would impede folding. */
6232 if (GET_MODE (new_rtx) != VOIDmode
6233 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6234 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6235 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6236 return x;
6239 case REG:
6240 i = REG_QTY (REGNO (x));
6242 /* Return a constant or a constant register. */
6243 if (REGNO_QTY_VALID_P (REGNO (x)))
6245 struct qty_table_elem *ent = &qty_table[i];
6247 if (ent->const_rtx != NULL_RTX
6248 && (CONSTANT_P (ent->const_rtx)
6249 || REG_P (ent->const_rtx)))
6251 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6252 if (new_rtx)
6253 return copy_rtx (new_rtx);
6257 /* Otherwise, canonicalize this register. */
6258 return canon_reg (x, NULL);
6260 default:
6261 break;
6264 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6265 if (fmt[i] == 'e')
6266 validate_change (object, &XEXP (x, i),
6267 cse_process_notes (XEXP (x, i), object, changed), 0);
6269 return x;
6272 static rtx
6273 cse_process_notes (rtx x, rtx object, bool *changed)
6275 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6276 if (new_rtx != x)
6277 *changed = true;
6278 return new_rtx;
6282 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6284 DATA is a pointer to a struct cse_basic_block_data, that is used to
6285 describe the path.
6286 It is filled with a queue of basic blocks, starting with FIRST_BB
6287 and following a trace through the CFG.
6289 If all paths starting at FIRST_BB have been followed, or no new path
6290 starting at FIRST_BB can be constructed, this function returns FALSE.
6291 Otherwise, DATA->path is filled and the function returns TRUE indicating
6292 that a path to follow was found.
6294 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6295 block in the path will be FIRST_BB. */
6297 static bool
6298 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6299 int follow_jumps)
6301 basic_block bb;
6302 edge e;
6303 int path_size;
6305 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6307 /* See if there is a previous path. */
6308 path_size = data->path_size;
6310 /* There is a previous path. Make sure it started with FIRST_BB. */
6311 if (path_size)
6312 gcc_assert (data->path[0].bb == first_bb);
6314 /* There was only one basic block in the last path. Clear the path and
6315 return, so that paths starting at another basic block can be tried. */
6316 if (path_size == 1)
6318 path_size = 0;
6319 goto done;
6322 /* If the path was empty from the beginning, construct a new path. */
6323 if (path_size == 0)
6324 data->path[path_size++].bb = first_bb;
6325 else
6327 /* Otherwise, path_size must be equal to or greater than 2, because
6328 a previous path exists that is at least two basic blocks long.
6330 Update the previous branch path, if any. If the last branch was
6331 previously along the branch edge, take the fallthrough edge now. */
6332 while (path_size >= 2)
6334 basic_block last_bb_in_path, previous_bb_in_path;
6335 edge e;
6337 --path_size;
6338 last_bb_in_path = data->path[path_size].bb;
6339 previous_bb_in_path = data->path[path_size - 1].bb;
6341 /* If we previously followed a path along the branch edge, try
6342 the fallthru edge now. */
6343 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6344 && any_condjump_p (BB_END (previous_bb_in_path))
6345 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6346 && e == BRANCH_EDGE (previous_bb_in_path))
6348 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6349 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6350 && single_pred_p (bb)
6351 /* We used to assert here that we would only see blocks
6352 that we have not visited yet. But we may end up
6353 visiting basic blocks twice if the CFG has changed
6354 in this run of cse_main, because when the CFG changes
6355 the topological sort of the CFG also changes. A basic
6356 blocks that previously had more than two predecessors
6357 may now have a single predecessor, and become part of
6358 a path that starts at another basic block.
6360 We still want to visit each basic block only once, so
6361 halt the path here if we have already visited BB. */
6362 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6364 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6365 data->path[path_size++].bb = bb;
6366 break;
6370 data->path[path_size].bb = NULL;
6373 /* If only one block remains in the path, bail. */
6374 if (path_size == 1)
6376 path_size = 0;
6377 goto done;
6381 /* Extend the path if possible. */
6382 if (follow_jumps)
6384 bb = data->path[path_size - 1].bb;
6385 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6387 if (single_succ_p (bb))
6388 e = single_succ_edge (bb);
6389 else if (EDGE_COUNT (bb->succs) == 2
6390 && any_condjump_p (BB_END (bb)))
6392 /* First try to follow the branch. If that doesn't lead
6393 to a useful path, follow the fallthru edge. */
6394 e = BRANCH_EDGE (bb);
6395 if (!single_pred_p (e->dest))
6396 e = FALLTHRU_EDGE (bb);
6398 else
6399 e = NULL;
6401 if (e
6402 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6403 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6404 && single_pred_p (e->dest)
6405 /* Avoid visiting basic blocks twice. The large comment
6406 above explains why this can happen. */
6407 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6409 basic_block bb2 = e->dest;
6410 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6411 data->path[path_size++].bb = bb2;
6412 bb = bb2;
6414 else
6415 bb = NULL;
6419 done:
6420 data->path_size = path_size;
6421 return path_size != 0;
6424 /* Dump the path in DATA to file F. NSETS is the number of sets
6425 in the path. */
6427 static void
6428 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6430 int path_entry;
6432 fprintf (f, ";; Following path with %d sets: ", nsets);
6433 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6434 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6435 fputc ('\n', dump_file);
6436 fflush (f);
6440 /* Return true if BB has exception handling successor edges. */
6442 static bool
6443 have_eh_succ_edges (basic_block bb)
6445 edge e;
6446 edge_iterator ei;
6448 FOR_EACH_EDGE (e, ei, bb->succs)
6449 if (e->flags & EDGE_EH)
6450 return true;
6452 return false;
6456 /* Scan to the end of the path described by DATA. Return an estimate of
6457 the total number of SETs of all insns in the path. */
6459 static void
6460 cse_prescan_path (struct cse_basic_block_data *data)
6462 int nsets = 0;
6463 int path_size = data->path_size;
6464 int path_entry;
6466 /* Scan to end of each basic block in the path. */
6467 for (path_entry = 0; path_entry < path_size; path_entry++)
6469 basic_block bb;
6470 rtx_insn *insn;
6472 bb = data->path[path_entry].bb;
6474 FOR_BB_INSNS (bb, insn)
6476 if (!INSN_P (insn))
6477 continue;
6479 /* A PARALLEL can have lots of SETs in it,
6480 especially if it is really an ASM_OPERANDS. */
6481 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6482 nsets += XVECLEN (PATTERN (insn), 0);
6483 else
6484 nsets += 1;
6488 data->nsets = nsets;
6491 /* Return true if the pattern of INSN uses a LABEL_REF for which
6492 there isn't a REG_LABEL_OPERAND note. */
6494 static bool
6495 check_for_label_ref (rtx_insn *insn)
6497 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6498 note for it, we must rerun jump since it needs to place the note. If
6499 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6500 don't do this since no REG_LABEL_OPERAND will be added. */
6501 subrtx_iterator::array_type array;
6502 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6504 const_rtx x = *iter;
6505 if (GET_CODE (x) == LABEL_REF
6506 && !LABEL_REF_NONLOCAL_P (x)
6507 && (!JUMP_P (insn)
6508 || !label_is_jump_target_p (label_ref_label (x), insn))
6509 && LABEL_P (label_ref_label (x))
6510 && INSN_UID (label_ref_label (x)) != 0
6511 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
6512 return true;
6514 return false;
6517 /* Process a single extended basic block described by EBB_DATA. */
6519 static void
6520 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6522 int path_size = ebb_data->path_size;
6523 int path_entry;
6524 int num_insns = 0;
6526 /* Allocate the space needed by qty_table. */
6527 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6529 new_basic_block ();
6530 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6531 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6532 for (path_entry = 0; path_entry < path_size; path_entry++)
6534 basic_block bb;
6535 rtx_insn *insn;
6537 bb = ebb_data->path[path_entry].bb;
6539 /* Invalidate recorded information for eh regs if there is an EH
6540 edge pointing to that bb. */
6541 if (bb_has_eh_pred (bb))
6543 df_ref def;
6545 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6546 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6547 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6550 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6551 FOR_BB_INSNS (bb, insn)
6553 /* If we have processed 1,000 insns, flush the hash table to
6554 avoid extreme quadratic behavior. We must not include NOTEs
6555 in the count since there may be more of them when generating
6556 debugging information. If we clear the table at different
6557 times, code generated with -g -O might be different than code
6558 generated with -O but not -g.
6560 FIXME: This is a real kludge and needs to be done some other
6561 way. */
6562 if (NONDEBUG_INSN_P (insn)
6563 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6565 flush_hash_table ();
6566 num_insns = 0;
6569 if (INSN_P (insn))
6571 /* Process notes first so we have all notes in canonical forms
6572 when looking for duplicate operations. */
6573 if (REG_NOTES (insn))
6575 bool changed = false;
6576 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6577 NULL_RTX, &changed);
6578 if (changed)
6579 df_notes_rescan (insn);
6582 cse_insn (insn);
6584 /* If we haven't already found an insn where we added a LABEL_REF,
6585 check this one. */
6586 if (INSN_P (insn) && !recorded_label_ref
6587 && check_for_label_ref (insn))
6588 recorded_label_ref = true;
6590 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6592 /* If the previous insn sets CC0 and this insn no
6593 longer references CC0, delete the previous insn.
6594 Here we use fact that nothing expects CC0 to be
6595 valid over an insn, which is true until the final
6596 pass. */
6597 rtx_insn *prev_insn;
6598 rtx tem;
6600 prev_insn = prev_nonnote_nondebug_insn (insn);
6601 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6602 && (tem = single_set (prev_insn)) != NULL_RTX
6603 && SET_DEST (tem) == cc0_rtx
6604 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6605 delete_insn (prev_insn);
6607 /* If this insn is not the last insn in the basic
6608 block, it will be PREV_INSN(insn) in the next
6609 iteration. If we recorded any CC0-related
6610 information for this insn, remember it. */
6611 if (insn != BB_END (bb))
6613 prev_insn_cc0 = this_insn_cc0;
6614 prev_insn_cc0_mode = this_insn_cc0_mode;
6620 /* With non-call exceptions, we are not always able to update
6621 the CFG properly inside cse_insn. So clean up possibly
6622 redundant EH edges here. */
6623 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6624 cse_cfg_altered |= purge_dead_edges (bb);
6626 /* If we changed a conditional jump, we may have terminated
6627 the path we are following. Check that by verifying that
6628 the edge we would take still exists. If the edge does
6629 not exist anymore, purge the remainder of the path.
6630 Note that this will cause us to return to the caller. */
6631 if (path_entry < path_size - 1)
6633 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6634 if (!find_edge (bb, next_bb))
6638 path_size--;
6640 /* If we truncate the path, we must also reset the
6641 visited bit on the remaining blocks in the path,
6642 or we will never visit them at all. */
6643 bitmap_clear_bit (cse_visited_basic_blocks,
6644 ebb_data->path[path_size].bb->index);
6645 ebb_data->path[path_size].bb = NULL;
6647 while (path_size - 1 != path_entry);
6648 ebb_data->path_size = path_size;
6652 /* If this is a conditional jump insn, record any known
6653 equivalences due to the condition being tested. */
6654 insn = BB_END (bb);
6655 if (path_entry < path_size - 1
6656 && EDGE_COUNT (bb->succs) == 2
6657 && JUMP_P (insn)
6658 && single_set (insn)
6659 && any_condjump_p (insn))
6661 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6662 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6663 record_jump_equiv (insn, taken);
6666 /* Clear the CC0-tracking related insns, they can't provide
6667 useful information across basic block boundaries. */
6668 prev_insn_cc0 = 0;
6671 gcc_assert (next_qty <= max_qty);
6673 free (qty_table);
6677 /* Perform cse on the instructions of a function.
6678 F is the first instruction.
6679 NREGS is one plus the highest pseudo-reg number used in the instruction.
6681 Return 2 if jump optimizations should be redone due to simplifications
6682 in conditional jump instructions.
6683 Return 1 if the CFG should be cleaned up because it has been modified.
6684 Return 0 otherwise. */
6686 static int
6687 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6689 struct cse_basic_block_data ebb_data;
6690 basic_block bb;
6691 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6692 int i, n_blocks;
6694 /* CSE doesn't use dominane info but can invalidate it in different ways.
6695 For simplicity free dominance info here. */
6696 free_dominance_info (CDI_DOMINATORS);
6698 df_set_flags (DF_LR_RUN_DCE);
6699 df_note_add_problem ();
6700 df_analyze ();
6701 df_set_flags (DF_DEFER_INSN_RESCAN);
6703 reg_scan (get_insns (), max_reg_num ());
6704 init_cse_reg_info (nregs);
6706 ebb_data.path = XNEWVEC (struct branch_path,
6707 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6709 cse_cfg_altered = false;
6710 cse_jumps_altered = false;
6711 recorded_label_ref = false;
6712 constant_pool_entries_cost = 0;
6713 constant_pool_entries_regcost = 0;
6714 ebb_data.path_size = 0;
6715 ebb_data.nsets = 0;
6716 rtl_hooks = cse_rtl_hooks;
6718 init_recog ();
6719 init_alias_analysis ();
6721 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6723 /* Set up the table of already visited basic blocks. */
6724 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6725 bitmap_clear (cse_visited_basic_blocks);
6727 /* Loop over basic blocks in reverse completion order (RPO),
6728 excluding the ENTRY and EXIT blocks. */
6729 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6730 i = 0;
6731 while (i < n_blocks)
6733 /* Find the first block in the RPO queue that we have not yet
6734 processed before. */
6737 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6739 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6740 && i < n_blocks);
6742 /* Find all paths starting with BB, and process them. */
6743 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6745 /* Pre-scan the path. */
6746 cse_prescan_path (&ebb_data);
6748 /* If this basic block has no sets, skip it. */
6749 if (ebb_data.nsets == 0)
6750 continue;
6752 /* Get a reasonable estimate for the maximum number of qty's
6753 needed for this path. For this, we take the number of sets
6754 and multiply that by MAX_RECOG_OPERANDS. */
6755 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6757 /* Dump the path we're about to process. */
6758 if (dump_file)
6759 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6761 cse_extended_basic_block (&ebb_data);
6765 /* Clean up. */
6766 end_alias_analysis ();
6767 free (reg_eqv_table);
6768 free (ebb_data.path);
6769 sbitmap_free (cse_visited_basic_blocks);
6770 free (rc_order);
6771 rtl_hooks = general_rtl_hooks;
6773 if (cse_jumps_altered || recorded_label_ref)
6774 return 2;
6775 else if (cse_cfg_altered)
6776 return 1;
6777 else
6778 return 0;
6781 /* Count the number of times registers are used (not set) in X.
6782 COUNTS is an array in which we accumulate the count, INCR is how much
6783 we count each register usage.
6785 Don't count a usage of DEST, which is the SET_DEST of a SET which
6786 contains X in its SET_SRC. This is because such a SET does not
6787 modify the liveness of DEST.
6788 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6789 We must then count uses of a SET_DEST regardless, because the insn can't be
6790 deleted here. */
6792 static void
6793 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6795 enum rtx_code code;
6796 rtx note;
6797 const char *fmt;
6798 int i, j;
6800 if (x == 0)
6801 return;
6803 switch (code = GET_CODE (x))
6805 case REG:
6806 if (x != dest)
6807 counts[REGNO (x)] += incr;
6808 return;
6810 case PC:
6811 case CC0:
6812 case CONST:
6813 CASE_CONST_ANY:
6814 case SYMBOL_REF:
6815 case LABEL_REF:
6816 return;
6818 case CLOBBER:
6819 /* If we are clobbering a MEM, mark any registers inside the address
6820 as being used. */
6821 if (MEM_P (XEXP (x, 0)))
6822 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6823 return;
6825 case SET:
6826 /* Unless we are setting a REG, count everything in SET_DEST. */
6827 if (!REG_P (SET_DEST (x)))
6828 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6829 count_reg_usage (SET_SRC (x), counts,
6830 dest ? dest : SET_DEST (x),
6831 incr);
6832 return;
6834 case DEBUG_INSN:
6835 return;
6837 case CALL_INSN:
6838 case INSN:
6839 case JUMP_INSN:
6840 /* We expect dest to be NULL_RTX here. If the insn may throw,
6841 or if it cannot be deleted due to side-effects, mark this fact
6842 by setting DEST to pc_rtx. */
6843 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6844 || side_effects_p (PATTERN (x)))
6845 dest = pc_rtx;
6846 if (code == CALL_INSN)
6847 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6848 count_reg_usage (PATTERN (x), counts, dest, incr);
6850 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6851 use them. */
6853 note = find_reg_equal_equiv_note (x);
6854 if (note)
6856 rtx eqv = XEXP (note, 0);
6858 if (GET_CODE (eqv) == EXPR_LIST)
6859 /* This REG_EQUAL note describes the result of a function call.
6860 Process all the arguments. */
6863 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6864 eqv = XEXP (eqv, 1);
6866 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6867 else
6868 count_reg_usage (eqv, counts, dest, incr);
6870 return;
6872 case EXPR_LIST:
6873 if (REG_NOTE_KIND (x) == REG_EQUAL
6874 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6875 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6876 involving registers in the address. */
6877 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6878 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6880 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6881 return;
6883 case ASM_OPERANDS:
6884 /* Iterate over just the inputs, not the constraints as well. */
6885 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6886 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6887 return;
6889 case INSN_LIST:
6890 case INT_LIST:
6891 gcc_unreachable ();
6893 default:
6894 break;
6897 fmt = GET_RTX_FORMAT (code);
6898 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6900 if (fmt[i] == 'e')
6901 count_reg_usage (XEXP (x, i), counts, dest, incr);
6902 else if (fmt[i] == 'E')
6903 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6904 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6908 /* Return true if X is a dead register. */
6910 static inline int
6911 is_dead_reg (const_rtx x, int *counts)
6913 return (REG_P (x)
6914 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6915 && counts[REGNO (x)] == 0);
6918 /* Return true if set is live. */
6919 static bool
6920 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6921 int *counts)
6923 rtx_insn *tem;
6925 if (set_noop_p (set))
6928 else if (GET_CODE (SET_DEST (set)) == CC0
6929 && !side_effects_p (SET_SRC (set))
6930 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6931 || !INSN_P (tem)
6932 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6933 return false;
6934 else if (!is_dead_reg (SET_DEST (set), counts)
6935 || side_effects_p (SET_SRC (set)))
6936 return true;
6937 return false;
6940 /* Return true if insn is live. */
6942 static bool
6943 insn_live_p (rtx_insn *insn, int *counts)
6945 int i;
6946 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6947 return true;
6948 else if (GET_CODE (PATTERN (insn)) == SET)
6949 return set_live_p (PATTERN (insn), insn, counts);
6950 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6952 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6954 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6956 if (GET_CODE (elt) == SET)
6958 if (set_live_p (elt, insn, counts))
6959 return true;
6961 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6962 return true;
6964 return false;
6966 else if (DEBUG_INSN_P (insn))
6968 rtx_insn *next;
6970 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6971 if (NOTE_P (next))
6972 continue;
6973 else if (!DEBUG_INSN_P (next))
6974 return true;
6975 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6976 return false;
6978 return true;
6980 else
6981 return true;
6984 /* Count the number of stores into pseudo. Callback for note_stores. */
6986 static void
6987 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6989 int *counts = (int *) data;
6990 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6991 counts[REGNO (x)]++;
6994 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6995 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6996 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6997 Set *SEEN_REPL to true if we see a dead register that does have
6998 a replacement. */
7000 static bool
7001 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
7002 bool *seen_repl)
7004 subrtx_iterator::array_type array;
7005 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
7007 const_rtx x = *iter;
7008 if (is_dead_reg (x, counts))
7010 if (replacements && replacements[REGNO (x)] != NULL_RTX)
7011 *seen_repl = true;
7012 else
7013 return true;
7016 return false;
7019 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7020 Callback for simplify_replace_fn_rtx. */
7022 static rtx
7023 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7025 rtx *replacements = (rtx *) data;
7027 if (REG_P (x)
7028 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7029 && replacements[REGNO (x)] != NULL_RTX)
7031 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7032 return replacements[REGNO (x)];
7033 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7034 GET_MODE (replacements[REGNO (x)]));
7036 return NULL_RTX;
7039 /* Scan all the insns and delete any that are dead; i.e., they store a register
7040 that is never used or they copy a register to itself.
7042 This is used to remove insns made obviously dead by cse, loop or other
7043 optimizations. It improves the heuristics in loop since it won't try to
7044 move dead invariants out of loops or make givs for dead quantities. The
7045 remaining passes of the compilation are also sped up. */
7048 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7050 int *counts;
7051 rtx_insn *insn, *prev;
7052 rtx *replacements = NULL;
7053 int ndead = 0;
7055 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7056 /* First count the number of times each register is used. */
7057 if (MAY_HAVE_DEBUG_INSNS)
7059 counts = XCNEWVEC (int, nreg * 3);
7060 for (insn = insns; insn; insn = NEXT_INSN (insn))
7061 if (DEBUG_INSN_P (insn))
7062 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7063 NULL_RTX, 1);
7064 else if (INSN_P (insn))
7066 count_reg_usage (insn, counts, NULL_RTX, 1);
7067 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
7069 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7070 First one counts how many times each pseudo is used outside
7071 of debug insns, second counts how many times each pseudo is
7072 used in debug insns and third counts how many times a pseudo
7073 is stored. */
7075 else
7077 counts = XCNEWVEC (int, nreg);
7078 for (insn = insns; insn; insn = NEXT_INSN (insn))
7079 if (INSN_P (insn))
7080 count_reg_usage (insn, counts, NULL_RTX, 1);
7081 /* If no debug insns can be present, COUNTS is just an array
7082 which counts how many times each pseudo is used. */
7084 /* Pseudo PIC register should be considered as used due to possible
7085 new usages generated. */
7086 if (!reload_completed
7087 && pic_offset_table_rtx
7088 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7089 counts[REGNO (pic_offset_table_rtx)]++;
7090 /* Go from the last insn to the first and delete insns that only set unused
7091 registers or copy a register to itself. As we delete an insn, remove
7092 usage counts for registers it uses.
7094 The first jump optimization pass may leave a real insn as the last
7095 insn in the function. We must not skip that insn or we may end
7096 up deleting code that is not really dead.
7098 If some otherwise unused register is only used in DEBUG_INSNs,
7099 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7100 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7101 has been created for the unused register, replace it with
7102 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7103 for (insn = get_last_insn (); insn; insn = prev)
7105 int live_insn = 0;
7107 prev = PREV_INSN (insn);
7108 if (!INSN_P (insn))
7109 continue;
7111 live_insn = insn_live_p (insn, counts);
7113 /* If this is a dead insn, delete it and show registers in it aren't
7114 being used. */
7116 if (! live_insn && dbg_cnt (delete_trivial_dead))
7118 if (DEBUG_INSN_P (insn))
7119 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7120 NULL_RTX, -1);
7121 else
7123 rtx set;
7124 if (MAY_HAVE_DEBUG_INSNS
7125 && (set = single_set (insn)) != NULL_RTX
7126 && is_dead_reg (SET_DEST (set), counts)
7127 /* Used at least once in some DEBUG_INSN. */
7128 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7129 /* And set exactly once. */
7130 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7131 && !side_effects_p (SET_SRC (set))
7132 && asm_noperands (PATTERN (insn)) < 0)
7134 rtx dval, bind_var_loc;
7135 rtx_insn *bind;
7137 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7138 dval = make_debug_expr_from_rtl (SET_DEST (set));
7140 /* Emit a debug bind insn before the insn in which
7141 reg dies. */
7142 bind_var_loc =
7143 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7144 DEBUG_EXPR_TREE_DECL (dval),
7145 SET_SRC (set),
7146 VAR_INIT_STATUS_INITIALIZED);
7147 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7149 bind = emit_debug_insn_before (bind_var_loc, insn);
7150 df_insn_rescan (bind);
7152 if (replacements == NULL)
7153 replacements = XCNEWVEC (rtx, nreg);
7154 replacements[REGNO (SET_DEST (set))] = dval;
7157 count_reg_usage (insn, counts, NULL_RTX, -1);
7158 ndead++;
7160 cse_cfg_altered |= delete_insn_and_edges (insn);
7164 if (MAY_HAVE_DEBUG_INSNS)
7166 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7167 if (DEBUG_INSN_P (insn))
7169 /* If this debug insn references a dead register that wasn't replaced
7170 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7171 bool seen_repl = false;
7172 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7173 counts, replacements, &seen_repl))
7175 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7176 df_insn_rescan (insn);
7178 else if (seen_repl)
7180 INSN_VAR_LOCATION_LOC (insn)
7181 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7182 NULL_RTX, replace_dead_reg,
7183 replacements);
7184 df_insn_rescan (insn);
7187 free (replacements);
7190 if (dump_file && ndead)
7191 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7192 ndead);
7193 /* Clean up. */
7194 free (counts);
7195 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7196 return ndead;
7199 /* If LOC contains references to NEWREG in a different mode, change them
7200 to use NEWREG instead. */
7202 static void
7203 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7204 rtx *loc, rtx_insn *insn, rtx newreg)
7206 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7208 rtx *loc = *iter;
7209 rtx x = *loc;
7210 if (x
7211 && REG_P (x)
7212 && REGNO (x) == REGNO (newreg)
7213 && GET_MODE (x) != GET_MODE (newreg))
7215 validate_change (insn, loc, newreg, 1);
7216 iter.skip_subrtxes ();
7221 /* Change the mode of any reference to the register REGNO (NEWREG) to
7222 GET_MODE (NEWREG) in INSN. */
7224 static void
7225 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7227 int success;
7229 if (!INSN_P (insn))
7230 return;
7232 subrtx_ptr_iterator::array_type array;
7233 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7234 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7236 /* If the following assertion was triggered, there is most probably
7237 something wrong with the cc_modes_compatible back end function.
7238 CC modes only can be considered compatible if the insn - with the mode
7239 replaced by any of the compatible modes - can still be recognized. */
7240 success = apply_change_group ();
7241 gcc_assert (success);
7244 /* Change the mode of any reference to the register REGNO (NEWREG) to
7245 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7246 any instruction which modifies NEWREG. */
7248 static void
7249 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7251 rtx_insn *insn;
7253 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7255 if (! INSN_P (insn))
7256 continue;
7258 if (reg_set_p (newreg, insn))
7259 return;
7261 cse_change_cc_mode_insn (insn, newreg);
7265 /* BB is a basic block which finishes with CC_REG as a condition code
7266 register which is set to CC_SRC. Look through the successors of BB
7267 to find blocks which have a single predecessor (i.e., this one),
7268 and look through those blocks for an assignment to CC_REG which is
7269 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7270 permitted to change the mode of CC_SRC to a compatible mode. This
7271 returns VOIDmode if no equivalent assignments were found.
7272 Otherwise it returns the mode which CC_SRC should wind up with.
7273 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7274 but is passed unmodified down to recursive calls in order to prevent
7275 endless recursion.
7277 The main complexity in this function is handling the mode issues.
7278 We may have more than one duplicate which we can eliminate, and we
7279 try to find a mode which will work for multiple duplicates. */
7281 static machine_mode
7282 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7283 bool can_change_mode)
7285 bool found_equiv;
7286 machine_mode mode;
7287 unsigned int insn_count;
7288 edge e;
7289 rtx_insn *insns[2];
7290 machine_mode modes[2];
7291 rtx_insn *last_insns[2];
7292 unsigned int i;
7293 rtx newreg;
7294 edge_iterator ei;
7296 /* We expect to have two successors. Look at both before picking
7297 the final mode for the comparison. If we have more successors
7298 (i.e., some sort of table jump, although that seems unlikely),
7299 then we require all beyond the first two to use the same
7300 mode. */
7302 found_equiv = false;
7303 mode = GET_MODE (cc_src);
7304 insn_count = 0;
7305 FOR_EACH_EDGE (e, ei, bb->succs)
7307 rtx_insn *insn;
7308 rtx_insn *end;
7310 if (e->flags & EDGE_COMPLEX)
7311 continue;
7313 if (EDGE_COUNT (e->dest->preds) != 1
7314 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7315 /* Avoid endless recursion on unreachable blocks. */
7316 || e->dest == orig_bb)
7317 continue;
7319 end = NEXT_INSN (BB_END (e->dest));
7320 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7322 rtx set;
7324 if (! INSN_P (insn))
7325 continue;
7327 /* If CC_SRC is modified, we have to stop looking for
7328 something which uses it. */
7329 if (modified_in_p (cc_src, insn))
7330 break;
7332 /* Check whether INSN sets CC_REG to CC_SRC. */
7333 set = single_set (insn);
7334 if (set
7335 && REG_P (SET_DEST (set))
7336 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7338 bool found;
7339 machine_mode set_mode;
7340 machine_mode comp_mode;
7342 found = false;
7343 set_mode = GET_MODE (SET_SRC (set));
7344 comp_mode = set_mode;
7345 if (rtx_equal_p (cc_src, SET_SRC (set)))
7346 found = true;
7347 else if (GET_CODE (cc_src) == COMPARE
7348 && GET_CODE (SET_SRC (set)) == COMPARE
7349 && mode != set_mode
7350 && rtx_equal_p (XEXP (cc_src, 0),
7351 XEXP (SET_SRC (set), 0))
7352 && rtx_equal_p (XEXP (cc_src, 1),
7353 XEXP (SET_SRC (set), 1)))
7356 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7357 if (comp_mode != VOIDmode
7358 && (can_change_mode || comp_mode == mode))
7359 found = true;
7362 if (found)
7364 found_equiv = true;
7365 if (insn_count < ARRAY_SIZE (insns))
7367 insns[insn_count] = insn;
7368 modes[insn_count] = set_mode;
7369 last_insns[insn_count] = end;
7370 ++insn_count;
7372 if (mode != comp_mode)
7374 gcc_assert (can_change_mode);
7375 mode = comp_mode;
7377 /* The modified insn will be re-recognized later. */
7378 PUT_MODE (cc_src, mode);
7381 else
7383 if (set_mode != mode)
7385 /* We found a matching expression in the
7386 wrong mode, but we don't have room to
7387 store it in the array. Punt. This case
7388 should be rare. */
7389 break;
7391 /* INSN sets CC_REG to a value equal to CC_SRC
7392 with the right mode. We can simply delete
7393 it. */
7394 delete_insn (insn);
7397 /* We found an instruction to delete. Keep looking,
7398 in the hopes of finding a three-way jump. */
7399 continue;
7402 /* We found an instruction which sets the condition
7403 code, so don't look any farther. */
7404 break;
7407 /* If INSN sets CC_REG in some other way, don't look any
7408 farther. */
7409 if (reg_set_p (cc_reg, insn))
7410 break;
7413 /* If we fell off the bottom of the block, we can keep looking
7414 through successors. We pass CAN_CHANGE_MODE as false because
7415 we aren't prepared to handle compatibility between the
7416 further blocks and this block. */
7417 if (insn == end)
7419 machine_mode submode;
7421 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7422 if (submode != VOIDmode)
7424 gcc_assert (submode == mode);
7425 found_equiv = true;
7426 can_change_mode = false;
7431 if (! found_equiv)
7432 return VOIDmode;
7434 /* Now INSN_COUNT is the number of instructions we found which set
7435 CC_REG to a value equivalent to CC_SRC. The instructions are in
7436 INSNS. The modes used by those instructions are in MODES. */
7438 newreg = NULL_RTX;
7439 for (i = 0; i < insn_count; ++i)
7441 if (modes[i] != mode)
7443 /* We need to change the mode of CC_REG in INSNS[i] and
7444 subsequent instructions. */
7445 if (! newreg)
7447 if (GET_MODE (cc_reg) == mode)
7448 newreg = cc_reg;
7449 else
7450 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7452 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7453 newreg);
7456 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
7459 return mode;
7462 /* If we have a fixed condition code register (or two), walk through
7463 the instructions and try to eliminate duplicate assignments. */
7465 static void
7466 cse_condition_code_reg (void)
7468 unsigned int cc_regno_1;
7469 unsigned int cc_regno_2;
7470 rtx cc_reg_1;
7471 rtx cc_reg_2;
7472 basic_block bb;
7474 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7475 return;
7477 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7478 if (cc_regno_2 != INVALID_REGNUM)
7479 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7480 else
7481 cc_reg_2 = NULL_RTX;
7483 FOR_EACH_BB_FN (bb, cfun)
7485 rtx_insn *last_insn;
7486 rtx cc_reg;
7487 rtx_insn *insn;
7488 rtx_insn *cc_src_insn;
7489 rtx cc_src;
7490 machine_mode mode;
7491 machine_mode orig_mode;
7493 /* Look for blocks which end with a conditional jump based on a
7494 condition code register. Then look for the instruction which
7495 sets the condition code register. Then look through the
7496 successor blocks for instructions which set the condition
7497 code register to the same value. There are other possible
7498 uses of the condition code register, but these are by far the
7499 most common and the ones which we are most likely to be able
7500 to optimize. */
7502 last_insn = BB_END (bb);
7503 if (!JUMP_P (last_insn))
7504 continue;
7506 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7507 cc_reg = cc_reg_1;
7508 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7509 cc_reg = cc_reg_2;
7510 else
7511 continue;
7513 cc_src_insn = NULL;
7514 cc_src = NULL_RTX;
7515 for (insn = PREV_INSN (last_insn);
7516 insn && insn != PREV_INSN (BB_HEAD (bb));
7517 insn = PREV_INSN (insn))
7519 rtx set;
7521 if (! INSN_P (insn))
7522 continue;
7523 set = single_set (insn);
7524 if (set
7525 && REG_P (SET_DEST (set))
7526 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7528 cc_src_insn = insn;
7529 cc_src = SET_SRC (set);
7530 break;
7532 else if (reg_set_p (cc_reg, insn))
7533 break;
7536 if (! cc_src_insn)
7537 continue;
7539 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7540 continue;
7542 /* Now CC_REG is a condition code register used for a
7543 conditional jump at the end of the block, and CC_SRC, in
7544 CC_SRC_INSN, is the value to which that condition code
7545 register is set, and CC_SRC is still meaningful at the end of
7546 the basic block. */
7548 orig_mode = GET_MODE (cc_src);
7549 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7550 if (mode != VOIDmode)
7552 gcc_assert (mode == GET_MODE (cc_src));
7553 if (mode != orig_mode)
7555 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7557 cse_change_cc_mode_insn (cc_src_insn, newreg);
7559 /* Do the same in the following insns that use the
7560 current value of CC_REG within BB. */
7561 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7562 NEXT_INSN (last_insn),
7563 newreg);
7570 /* Perform common subexpression elimination. Nonzero value from
7571 `cse_main' means that jumps were simplified and some code may now
7572 be unreachable, so do jump optimization again. */
7573 static unsigned int
7574 rest_of_handle_cse (void)
7576 int tem;
7578 if (dump_file)
7579 dump_flow_info (dump_file, dump_flags);
7581 tem = cse_main (get_insns (), max_reg_num ());
7583 /* If we are not running more CSE passes, then we are no longer
7584 expecting CSE to be run. But always rerun it in a cheap mode. */
7585 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7587 if (tem == 2)
7589 timevar_push (TV_JUMP);
7590 rebuild_jump_labels (get_insns ());
7591 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7592 timevar_pop (TV_JUMP);
7594 else if (tem == 1 || optimize > 1)
7595 cse_cfg_altered |= cleanup_cfg (0);
7597 return 0;
7600 namespace {
7602 const pass_data pass_data_cse =
7604 RTL_PASS, /* type */
7605 "cse1", /* name */
7606 OPTGROUP_NONE, /* optinfo_flags */
7607 TV_CSE, /* tv_id */
7608 0, /* properties_required */
7609 0, /* properties_provided */
7610 0, /* properties_destroyed */
7611 0, /* todo_flags_start */
7612 TODO_df_finish, /* todo_flags_finish */
7615 class pass_cse : public rtl_opt_pass
7617 public:
7618 pass_cse (gcc::context *ctxt)
7619 : rtl_opt_pass (pass_data_cse, ctxt)
7622 /* opt_pass methods: */
7623 virtual bool gate (function *) { return optimize > 0; }
7624 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7626 }; // class pass_cse
7628 } // anon namespace
7630 rtl_opt_pass *
7631 make_pass_cse (gcc::context *ctxt)
7633 return new pass_cse (ctxt);
7637 /* Run second CSE pass after loop optimizations. */
7638 static unsigned int
7639 rest_of_handle_cse2 (void)
7641 int tem;
7643 if (dump_file)
7644 dump_flow_info (dump_file, dump_flags);
7646 tem = cse_main (get_insns (), max_reg_num ());
7648 /* Run a pass to eliminate duplicated assignments to condition code
7649 registers. We have to run this after bypass_jumps, because it
7650 makes it harder for that pass to determine whether a jump can be
7651 bypassed safely. */
7652 cse_condition_code_reg ();
7654 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7656 if (tem == 2)
7658 timevar_push (TV_JUMP);
7659 rebuild_jump_labels (get_insns ());
7660 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7661 timevar_pop (TV_JUMP);
7663 else if (tem == 1)
7664 cse_cfg_altered |= cleanup_cfg (0);
7666 cse_not_expected = 1;
7667 return 0;
7671 namespace {
7673 const pass_data pass_data_cse2 =
7675 RTL_PASS, /* type */
7676 "cse2", /* name */
7677 OPTGROUP_NONE, /* optinfo_flags */
7678 TV_CSE2, /* tv_id */
7679 0, /* properties_required */
7680 0, /* properties_provided */
7681 0, /* properties_destroyed */
7682 0, /* todo_flags_start */
7683 TODO_df_finish, /* todo_flags_finish */
7686 class pass_cse2 : public rtl_opt_pass
7688 public:
7689 pass_cse2 (gcc::context *ctxt)
7690 : rtl_opt_pass (pass_data_cse2, ctxt)
7693 /* opt_pass methods: */
7694 virtual bool gate (function *)
7696 return optimize > 0 && flag_rerun_cse_after_loop;
7699 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7701 }; // class pass_cse2
7703 } // anon namespace
7705 rtl_opt_pass *
7706 make_pass_cse2 (gcc::context *ctxt)
7708 return new pass_cse2 (ctxt);
7711 /* Run second CSE pass after loop optimizations. */
7712 static unsigned int
7713 rest_of_handle_cse_after_global_opts (void)
7715 int save_cfj;
7716 int tem;
7718 /* We only want to do local CSE, so don't follow jumps. */
7719 save_cfj = flag_cse_follow_jumps;
7720 flag_cse_follow_jumps = 0;
7722 rebuild_jump_labels (get_insns ());
7723 tem = cse_main (get_insns (), max_reg_num ());
7724 cse_cfg_altered |= purge_all_dead_edges ();
7725 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7727 cse_not_expected = !flag_rerun_cse_after_loop;
7729 /* If cse altered any jumps, rerun jump opts to clean things up. */
7730 if (tem == 2)
7732 timevar_push (TV_JUMP);
7733 rebuild_jump_labels (get_insns ());
7734 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7735 timevar_pop (TV_JUMP);
7737 else if (tem == 1)
7738 cse_cfg_altered |= cleanup_cfg (0);
7740 flag_cse_follow_jumps = save_cfj;
7741 return 0;
7744 namespace {
7746 const pass_data pass_data_cse_after_global_opts =
7748 RTL_PASS, /* type */
7749 "cse_local", /* name */
7750 OPTGROUP_NONE, /* optinfo_flags */
7751 TV_CSE, /* tv_id */
7752 0, /* properties_required */
7753 0, /* properties_provided */
7754 0, /* properties_destroyed */
7755 0, /* todo_flags_start */
7756 TODO_df_finish, /* todo_flags_finish */
7759 class pass_cse_after_global_opts : public rtl_opt_pass
7761 public:
7762 pass_cse_after_global_opts (gcc::context *ctxt)
7763 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7766 /* opt_pass methods: */
7767 virtual bool gate (function *)
7769 return optimize > 0 && flag_rerun_cse_after_global_opts;
7772 virtual unsigned int execute (function *)
7774 return rest_of_handle_cse_after_global_opts ();
7777 }; // class pass_cse_after_global_opts
7779 } // anon namespace
7781 rtl_opt_pass *
7782 make_pass_cse_after_global_opts (gcc::context *ctxt)
7784 return new pass_cse_after_global_opts (ctxt);