PR target/84564
[official-gcc.git] / gcc / config / arm / arm.h
blobbbf3937a592a14d35adbf3afcff0b6829cd5c584
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2018 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
20 Under Section 7 of GPL version 3, you are granted additional
21 permissions described in the GCC Runtime Library Exception, version
22 3.1, as published by the Free Software Foundation.
24 You should have received a copy of the GNU General Public License and
25 a copy of the GCC Runtime Library Exception along with this program;
26 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
27 <http://www.gnu.org/licenses/>. */
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
32 /* We can't use machine_mode inside a generator file because it
33 hasn't been created yet; we shouldn't be using any code that
34 needs the real definition though, so this ought to be safe. */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
42 #include "config/vxworks-dummy.h"
44 /* The architecture define. */
45 extern char arm_arch_name[];
47 /* Target CPU builtins. */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
50 #include "config/arm/arm-opts.h"
52 /* The processor for which instructions should be scheduled. */
53 extern enum processor_type arm_tune;
55 typedef enum arm_cond_code
57 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
58 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
60 arm_cc;
62 extern arm_cc arm_current_cc;
64 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
66 /* The maximum number of instructions that is beneficial to
67 conditionally execute. */
68 #undef MAX_CONDITIONAL_EXECUTE
69 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
71 extern int arm_target_label;
72 extern int arm_ccfsm_state;
73 extern GTY(()) rtx arm_target_insn;
74 /* Callback to output language specific object attributes. */
75 extern void (*arm_lang_output_object_attributes_hook)(void);
77 /* This type is the user-visible __fp16. We need it in a few places in
78 the backend. Defined in arm-builtins.c. */
79 extern tree arm_fp16_type_node;
82 #undef CPP_SPEC
83 #define CPP_SPEC "%(subtarget_cpp_spec) \
84 %{mfloat-abi=soft:%{mfloat-abi=hard: \
85 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
86 %{mbig-endian:%{mlittle-endian: \
87 %e-mbig-endian and -mlittle-endian may not be used together}}"
89 #ifndef CC1_SPEC
90 #define CC1_SPEC ""
91 #endif
93 /* This macro defines names of additional specifications to put in the specs
94 that can be used in various specifications like CC1_SPEC. Its definition
95 is an initializer with a subgrouping for each command option.
97 Each subgrouping contains a string constant, that defines the
98 specification name, and a string constant that used by the GCC driver
99 program.
101 Do not define this macro if it does not need to do anything. */
102 #define EXTRA_SPECS \
103 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
104 { "asm_cpu_spec", ASM_CPU_SPEC }, \
105 SUBTARGET_EXTRA_SPECS
107 #ifndef SUBTARGET_EXTRA_SPECS
108 #define SUBTARGET_EXTRA_SPECS
109 #endif
111 #ifndef SUBTARGET_CPP_SPEC
112 #define SUBTARGET_CPP_SPEC ""
113 #endif
115 /* Tree Target Specification. */
116 #define TARGET_ARM_P(flags) (!TARGET_THUMB_P (flags))
117 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
118 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
119 #define TARGET_32BIT_P(flags) (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
121 /* Run-time Target Specification. */
122 /* Use hardware floating point instructions. */
123 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT \
124 && bitmap_bit_p (arm_active_target.isa, \
125 isa_bit_vfpv2))
126 #define TARGET_SOFT_FLOAT (!TARGET_HARD_FLOAT)
127 /* User has permitted use of FP instructions, if they exist for this
128 target. */
129 #define TARGET_MAYBE_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
130 /* Use hardware floating point calling convention. */
131 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
132 #define TARGET_IWMMXT (arm_arch_iwmmxt)
133 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
134 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
135 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT)
136 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
137 #define TARGET_ARM (! TARGET_THUMB)
138 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
139 #define TARGET_BACKTRACE (crtl->is_leaf \
140 ? TARGET_TPCS_LEAF_FRAME \
141 : TARGET_TPCS_FRAME)
142 #define TARGET_AAPCS_BASED \
143 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
145 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
146 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
147 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
149 /* Only 16-bit thumb code. */
150 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
151 /* Arm or Thumb-2 32-bit code. */
152 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
153 /* 32-bit Thumb-2 code. */
154 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
155 /* Thumb-1 only. */
156 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
158 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN \
159 && !TARGET_THUMB1)
161 #define TARGET_CRC32 (arm_arch_crc)
163 /* The following two macros concern the ability to execute coprocessor
164 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
165 only ever tested when we know we are generating for VFP hardware; we need
166 to be more careful with TARGET_NEON as noted below. */
168 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
169 #define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
171 /* FPU supports VFPv3 instructions. */
172 #define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv3))
174 /* FPU supports FPv5 instructions. */
175 #define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_fpv5))
177 /* FPU only supports VFP single-precision instructions. */
178 #define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
180 /* FPU supports VFP double-precision instructions. */
181 #define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
183 /* FPU supports half-precision floating-point with NEON element load/store. */
184 #define TARGET_NEON_FP16 \
185 (bitmap_bit_p (arm_active_target.isa, isa_bit_neon) \
186 && bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
188 /* FPU supports VFP half-precision floating-point conversions. */
189 #define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
191 /* FPU supports converting between HFmode and DFmode in a single hardware
192 step. */
193 #define TARGET_FP16_TO_DOUBLE \
194 (TARGET_HARD_FLOAT && (TARGET_FP16 && TARGET_VFP5))
196 /* FPU supports fused-multiply-add operations. */
197 #define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv4))
199 /* FPU supports Crypto extensions. */
200 #define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
202 /* FPU supports Neon instructions. The setting of this macro gets
203 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
204 and TARGET_HARD_FLOAT to ensure that NEON instructions are
205 available. */
206 #define TARGET_NEON \
207 (TARGET_32BIT && TARGET_HARD_FLOAT \
208 && bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
210 /* FPU supports ARMv8.1 Adv.SIMD extensions. */
211 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
213 /* Supports the Dot Product AdvSIMD extensions. */
214 #define TARGET_DOTPROD (TARGET_NEON \
215 && bitmap_bit_p (arm_active_target.isa, \
216 isa_bit_dotprod) \
217 && arm_arch8_2)
219 /* FPU supports the floating point FP16 instructions for ARMv8.2-A
220 and later. */
221 #define TARGET_VFP_FP16INST \
222 (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 && arm_fp16_inst)
224 /* Target supports the floating point FP16 instructions from ARMv8.2-A
225 and later. */
226 #define TARGET_FP16FML (TARGET_NEON \
227 && bitmap_bit_p (arm_active_target.isa, \
228 isa_bit_fp16fml) \
229 && arm_arch8_2)
231 /* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later. */
232 #define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
234 /* Q-bit is present. */
235 #define TARGET_ARM_QBIT \
236 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
237 /* Saturation operation, e.g. SSAT. */
238 #define TARGET_ARM_SAT \
239 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
240 /* "DSP" multiply instructions, eg. SMULxy. */
241 #define TARGET_DSP_MULTIPLY \
242 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
243 /* Integer SIMD instructions, and extend-accumulate instructions. */
244 #define TARGET_INT_SIMD \
245 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
247 /* Should MOVW/MOVT be used in preference to a constant pool. */
248 #define TARGET_USE_MOVT \
249 (TARGET_HAVE_MOVT \
250 && (arm_disable_literal_pool \
251 || (!optimize_size && !current_tune->prefer_constant_pool)))
253 /* Nonzero if this chip provides the DMB instruction. */
254 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
256 /* Nonzero if this chip implements a memory barrier via CP15. */
257 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
258 && ! TARGET_THUMB1)
260 /* Nonzero if this chip implements a memory barrier instruction. */
261 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
263 /* Nonzero if this chip supports ldrex and strex */
264 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) \
265 || arm_arch7 \
266 || (arm_arch8 && !arm_arch_notm))
268 /* Nonzero if this chip supports LPAE. */
269 #define TARGET_HAVE_LPAE (arm_arch_lpae)
271 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
272 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) \
273 || arm_arch7 \
274 || (arm_arch8 && !arm_arch_notm))
276 /* Nonzero if this chip supports ldrexd and strexd. */
277 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
278 || arm_arch7) && arm_arch_notm)
280 /* Nonzero if this chip supports load-acquire and store-release. */
281 #define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
283 /* Nonzero if this chip supports LDAEXD and STLEXD. */
284 #define TARGET_HAVE_LDACQEXD (TARGET_ARM_ARCH >= 8 \
285 && TARGET_32BIT \
286 && arm_arch_notm)
288 /* Nonzero if this chip provides the MOVW and MOVT instructions. */
289 #define TARGET_HAVE_MOVT (arm_arch_thumb2 || arm_arch8)
291 /* Nonzero if this chip provides the CBZ and CBNZ instructions. */
292 #define TARGET_HAVE_CBZ (arm_arch_thumb2 || arm_arch8)
294 /* Nonzero if integer division instructions supported. */
295 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
296 || (TARGET_THUMB && arm_arch_thumb_hwdiv))
298 /* Nonzero if disallow volatile memory access in IT block. */
299 #define TARGET_NO_VOLATILE_CE (arm_arch_no_volatile_ce)
301 /* Should NEON be used for 64-bits bitops. */
302 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
304 /* Should constant I be slplit for OP. */
305 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
306 ((optimize >= 2) \
307 && can_create_pseudo_p () \
308 && !const_ok_for_op (i, op))
310 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
311 then TARGET_AAPCS_BASED must be true -- but the converse does not
312 hold. TARGET_BPABI implies the use of the BPABI runtime library,
313 etc., in addition to just the AAPCS calling conventions. */
314 #ifndef TARGET_BPABI
315 #define TARGET_BPABI false
316 #endif
318 /* Transform lane numbers on big endian targets. This is used to allow for the
319 endianness difference between NEON architectural lane numbers and those
320 used in RTL */
321 #define NEON_ENDIAN_LANE_N(mode, n) \
322 (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
324 /* Support for a compile-time default CPU, et cetera. The rules are:
325 --with-arch is ignored if -march or -mcpu are specified.
326 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
327 by --with-arch.
328 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
329 by -march).
330 --with-float is ignored if -mfloat-abi is specified.
331 --with-fpu is ignored if -mfpu is specified.
332 --with-abi is ignored if -mabi is specified.
333 --with-tls is ignored if -mtls-dialect is specified. */
334 #define OPTION_DEFAULT_SPECS \
335 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
336 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
337 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
338 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
339 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
340 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
341 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
342 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
344 extern const struct arm_fpu_desc
346 const char *name;
347 enum isa_feature isa_bits[isa_num_bits];
348 } all_fpus[];
350 /* Which floating point hardware to schedule for. */
351 extern int arm_fpu_attr;
353 #ifndef TARGET_DEFAULT_FLOAT_ABI
354 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
355 #endif
357 #ifndef ARM_DEFAULT_ABI
358 #define ARM_DEFAULT_ABI ARM_ABI_APCS
359 #endif
361 /* AAPCS based ABIs use short enums by default. */
362 #ifndef ARM_DEFAULT_SHORT_ENUMS
363 #define ARM_DEFAULT_SHORT_ENUMS \
364 (TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
365 #endif
367 /* Map each of the micro-architecture variants to their corresponding
368 major architecture revision. */
370 enum base_architecture
372 BASE_ARCH_0 = 0,
373 BASE_ARCH_2 = 2,
374 BASE_ARCH_3 = 3,
375 BASE_ARCH_3M = 3,
376 BASE_ARCH_4 = 4,
377 BASE_ARCH_4T = 4,
378 BASE_ARCH_5 = 5,
379 BASE_ARCH_5E = 5,
380 BASE_ARCH_5T = 5,
381 BASE_ARCH_5TE = 5,
382 BASE_ARCH_5TEJ = 5,
383 BASE_ARCH_6 = 6,
384 BASE_ARCH_6J = 6,
385 BASE_ARCH_6KZ = 6,
386 BASE_ARCH_6K = 6,
387 BASE_ARCH_6T2 = 6,
388 BASE_ARCH_6M = 6,
389 BASE_ARCH_6Z = 6,
390 BASE_ARCH_7 = 7,
391 BASE_ARCH_7A = 7,
392 BASE_ARCH_7R = 7,
393 BASE_ARCH_7M = 7,
394 BASE_ARCH_7EM = 7,
395 BASE_ARCH_8A = 8,
396 BASE_ARCH_8M_BASE = 8,
397 BASE_ARCH_8M_MAIN = 8,
398 BASE_ARCH_8R = 8
401 /* The major revision number of the ARM Architecture implemented by the target. */
402 extern enum base_architecture arm_base_arch;
404 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
405 extern int arm_arch3m;
407 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
408 extern int arm_arch4;
410 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
411 extern int arm_arch4t;
413 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
414 extern int arm_arch5;
416 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
417 extern int arm_arch5e;
419 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
420 extern int arm_arch6;
422 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
423 extern int arm_arch6k;
425 /* Nonzero if instructions present in ARMv6-M can be used. */
426 extern int arm_arch6m;
428 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
429 extern int arm_arch7;
431 /* Nonzero if instructions not present in the 'M' profile can be used. */
432 extern int arm_arch_notm;
434 /* Nonzero if instructions present in ARMv7E-M can be used. */
435 extern int arm_arch7em;
437 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
438 extern int arm_arch8;
440 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions. */
441 extern int arm_arch8_1;
443 /* Nonzero if this chip supports the ARM Architecture 8.2 extensions. */
444 extern int arm_arch8_2;
446 /* Nonzero if this chip supports the FP16 instructions extension of ARM
447 Architecture 8.2. */
448 extern int arm_fp16_inst;
450 /* Nonzero if this chip can benefit from load scheduling. */
451 extern int arm_ld_sched;
453 /* Nonzero if this chip is a StrongARM. */
454 extern int arm_tune_strongarm;
456 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
457 extern int arm_arch_iwmmxt;
459 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
460 extern int arm_arch_iwmmxt2;
462 /* Nonzero if this chip is an XScale. */
463 extern int arm_arch_xscale;
465 /* Nonzero if tuning for XScale. */
466 extern int arm_tune_xscale;
468 /* Nonzero if tuning for stores via the write buffer. */
469 extern int arm_tune_wbuf;
471 /* Nonzero if tuning for Cortex-A9. */
472 extern int arm_tune_cortex_a9;
474 /* Nonzero if we should define __THUMB_INTERWORK__ in the
475 preprocessor.
476 XXX This is a bit of a hack, it's intended to help work around
477 problems in GLD which doesn't understand that armv5t code is
478 interworking clean. */
479 extern int arm_cpp_interwork;
481 /* Nonzero if chip supports Thumb 1. */
482 extern int arm_arch_thumb1;
484 /* Nonzero if chip supports Thumb 2. */
485 extern int arm_arch_thumb2;
487 /* Nonzero if chip supports integer division instruction in ARM mode. */
488 extern int arm_arch_arm_hwdiv;
490 /* Nonzero if chip supports integer division instruction in Thumb mode. */
491 extern int arm_arch_thumb_hwdiv;
493 /* Nonzero if chip disallows volatile memory access in IT block. */
494 extern int arm_arch_no_volatile_ce;
496 /* Nonzero if we should use Neon to handle 64-bits operations rather
497 than core registers. */
498 extern int prefer_neon_for_64bits;
500 /* Nonzero if we shouldn't use literal pools. */
501 #ifndef USED_FOR_TARGET
502 extern bool arm_disable_literal_pool;
503 #endif
505 /* Nonzero if chip supports the ARMv8 CRC instructions. */
506 extern int arm_arch_crc;
508 /* Nonzero if chip supports the ARMv8-M Security Extensions. */
509 extern int arm_arch_cmse;
511 #ifndef TARGET_DEFAULT
512 #define TARGET_DEFAULT (MASK_APCS_FRAME)
513 #endif
515 /* Nonzero if PIC code requires explicit qualifiers to generate
516 PLT and GOT relocs rather than the assembler doing so implicitly.
517 Subtargets can override these if required. */
518 #ifndef NEED_GOT_RELOC
519 #define NEED_GOT_RELOC 0
520 #endif
521 #ifndef NEED_PLT_RELOC
522 #define NEED_PLT_RELOC 0
523 #endif
525 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
526 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
527 #endif
529 /* Nonzero if we need to refer to the GOT with a PC-relative
530 offset. In other words, generate
532 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
534 rather than
536 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
538 The default is true, which matches NetBSD. Subtargets can
539 override this if required. */
540 #ifndef GOT_PCREL
541 #define GOT_PCREL 1
542 #endif
544 /* Target machine storage Layout. */
547 /* Define this macro if it is advisable to hold scalars in registers
548 in a wider mode than that declared by the program. In such cases,
549 the value is constrained to be within the bounds of the declared
550 type, but kept valid in the wider mode. The signedness of the
551 extension may differ from that of the type. */
553 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
554 if (GET_MODE_CLASS (MODE) == MODE_INT \
555 && GET_MODE_SIZE (MODE) < 4) \
557 (MODE) = SImode; \
560 /* Define this if most significant bit is lowest numbered
561 in instructions that operate on numbered bit-fields. */
562 #define BITS_BIG_ENDIAN 0
564 /* Define this if most significant byte of a word is the lowest numbered.
565 Most ARM processors are run in little endian mode, so that is the default.
566 If you want to have it run-time selectable, change the definition in a
567 cover file to be TARGET_BIG_ENDIAN. */
568 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
570 /* Define this if most significant word of a multiword number is the lowest
571 numbered. */
572 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
574 #define UNITS_PER_WORD 4
576 /* True if natural alignment is used for doubleword types. */
577 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
579 #define DOUBLEWORD_ALIGNMENT 64
581 #define PARM_BOUNDARY 32
583 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
585 #define PREFERRED_STACK_BOUNDARY \
586 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
588 #define FUNCTION_BOUNDARY_P(flags) (TARGET_THUMB_P (flags) ? 16 : 32)
589 #define FUNCTION_BOUNDARY (FUNCTION_BOUNDARY_P (target_flags))
591 /* The lowest bit is used to indicate Thumb-mode functions, so the
592 vbit must go into the delta field of pointers to member
593 functions. */
594 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
596 #define EMPTY_FIELD_BOUNDARY 32
598 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
600 #define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
602 /* XXX Blah -- this macro is used directly by libobjc. Since it
603 supports no vector modes, cut out the complexity and fall back
604 on BIGGEST_FIELD_ALIGNMENT. */
605 #ifdef IN_TARGET_LIBS
606 #define BIGGEST_FIELD_ALIGNMENT 64
607 #endif
609 /* Align definitions of arrays, unions and structures so that
610 initializations and copies can be made more efficient. This is not
611 ABI-changing, so it only affects places where we can see the
612 definition. Increasing the alignment tends to introduce padding,
613 so don't do this when optimizing for size/conserving stack space. */
614 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
615 (((COND) && ((ALIGN) < BITS_PER_WORD) \
616 && (TREE_CODE (EXP) == ARRAY_TYPE \
617 || TREE_CODE (EXP) == UNION_TYPE \
618 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
620 /* Align global data. */
621 #define DATA_ALIGNMENT(EXP, ALIGN) \
622 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
624 /* Similarly, make sure that objects on the stack are sensibly aligned. */
625 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
626 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
628 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
629 value set in previous versions of this toolchain was 8, which produces more
630 compact structures. The command line option -mstructure_size_boundary=<n>
631 can be used to change this value. For compatibility with the ARM SDK
632 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
633 0020D) page 2-20 says "Structures are aligned on word boundaries".
634 The AAPCS specifies a value of 8. */
635 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
637 /* This is the value used to initialize arm_structure_size_boundary. If a
638 particular arm target wants to change the default value it should change
639 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
640 for an example of this. */
641 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
642 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
643 #endif
645 /* Nonzero if move instructions will actually fail to work
646 when given unaligned data. */
647 #define STRICT_ALIGNMENT 1
649 /* wchar_t is unsigned under the AAPCS. */
650 #ifndef WCHAR_TYPE
651 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
653 #define WCHAR_TYPE_SIZE BITS_PER_WORD
654 #endif
656 /* Sized for fixed-point types. */
658 #define SHORT_FRACT_TYPE_SIZE 8
659 #define FRACT_TYPE_SIZE 16
660 #define LONG_FRACT_TYPE_SIZE 32
661 #define LONG_LONG_FRACT_TYPE_SIZE 64
663 #define SHORT_ACCUM_TYPE_SIZE 16
664 #define ACCUM_TYPE_SIZE 32
665 #define LONG_ACCUM_TYPE_SIZE 64
666 #define LONG_LONG_ACCUM_TYPE_SIZE 64
668 #define MAX_FIXED_MODE_SIZE 64
670 #ifndef SIZE_TYPE
671 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
672 #endif
674 #ifndef PTRDIFF_TYPE
675 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
676 #endif
678 /* AAPCS requires that structure alignment is affected by bitfields. */
679 #ifndef PCC_BITFIELD_TYPE_MATTERS
680 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
681 #endif
683 /* The maximum size of the sync library functions supported. */
684 #ifndef MAX_SYNC_LIBFUNC_SIZE
685 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
686 #endif
689 /* Standard register usage. */
691 /* Register allocation in ARM Procedure Call Standard
692 (S - saved over call, F - Frame-related).
694 r0 * argument word/integer result
695 r1-r3 argument word
697 r4-r8 S register variable
698 r9 S (rfp) register variable (real frame pointer)
700 r10 F S (sl) stack limit (used by -mapcs-stack-check)
701 r11 F S (fp) argument pointer
702 r12 (ip) temp workspace
703 r13 F S (sp) lower end of current stack frame
704 r14 (lr) link address/workspace
705 r15 F (pc) program counter
707 cc This is NOT a real register, but is used internally
708 to represent things that use or set the condition
709 codes.
710 sfp This isn't either. It is used during rtl generation
711 since the offset between the frame pointer and the
712 auto's isn't known until after register allocation.
713 afp Nor this, we only need this because of non-local
714 goto. Without it fp appears to be used and the
715 elimination code won't get rid of sfp. It tracks
716 fp exactly at all times.
718 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
720 /* s0-s15 VFP scratch (aka d0-d7).
721 s16-s31 S VFP variable (aka d8-d15).
722 vfpcc Not a real register. Represents the VFP condition
723 code flags. */
725 /* The stack backtrace structure is as follows:
726 fp points to here: | save code pointer | [fp]
727 | return link value | [fp, #-4]
728 | return sp value | [fp, #-8]
729 | return fp value | [fp, #-12]
730 [| saved r10 value |]
731 [| saved r9 value |]
732 [| saved r8 value |]
733 [| saved r7 value |]
734 [| saved r6 value |]
735 [| saved r5 value |]
736 [| saved r4 value |]
737 [| saved r3 value |]
738 [| saved r2 value |]
739 [| saved r1 value |]
740 [| saved r0 value |]
741 r0-r3 are not normally saved in a C function. */
743 /* 1 for registers that have pervasive standard uses
744 and are not available for the register allocator. */
745 #define FIXED_REGISTERS \
747 /* Core regs. */ \
748 0,0,0,0,0,0,0,0, \
749 0,0,0,0,0,1,0,1, \
750 /* VFP regs. */ \
751 1,1,1,1,1,1,1,1, \
752 1,1,1,1,1,1,1,1, \
753 1,1,1,1,1,1,1,1, \
754 1,1,1,1,1,1,1,1, \
755 1,1,1,1,1,1,1,1, \
756 1,1,1,1,1,1,1,1, \
757 1,1,1,1,1,1,1,1, \
758 1,1,1,1,1,1,1,1, \
759 /* IWMMXT regs. */ \
760 1,1,1,1,1,1,1,1, \
761 1,1,1,1,1,1,1,1, \
762 1,1,1,1, \
763 /* Specials. */ \
764 1,1,1,1 \
767 /* 1 for registers not available across function calls.
768 These must include the FIXED_REGISTERS and also any
769 registers that can be used without being saved.
770 The latter must include the registers where values are returned
771 and the register where structure-value addresses are passed.
772 Aside from that, you can include as many other registers as you like.
773 The CC is not preserved over function calls on the ARM 6, so it is
774 easier to assume this for all. SFP is preserved, since FP is. */
775 #define CALL_USED_REGISTERS \
777 /* Core regs. */ \
778 1,1,1,1,0,0,0,0, \
779 0,0,0,0,1,1,1,1, \
780 /* VFP Regs. */ \
781 1,1,1,1,1,1,1,1, \
782 1,1,1,1,1,1,1,1, \
783 1,1,1,1,1,1,1,1, \
784 1,1,1,1,1,1,1,1, \
785 1,1,1,1,1,1,1,1, \
786 1,1,1,1,1,1,1,1, \
787 1,1,1,1,1,1,1,1, \
788 1,1,1,1,1,1,1,1, \
789 /* IWMMXT regs. */ \
790 1,1,1,1,1,1,1,1, \
791 1,1,1,1,1,1,1,1, \
792 1,1,1,1, \
793 /* Specials. */ \
794 1,1,1,1 \
797 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
798 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
799 #endif
801 /* These are a couple of extensions to the formats accepted
802 by asm_fprintf:
803 %@ prints out ASM_COMMENT_START
804 %r prints out REGISTER_PREFIX reg_names[arg] */
805 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
806 case '@': \
807 fputs (ASM_COMMENT_START, FILE); \
808 break; \
810 case 'r': \
811 fputs (REGISTER_PREFIX, FILE); \
812 fputs (reg_names [va_arg (ARGS, int)], FILE); \
813 break;
815 /* Round X up to the nearest word. */
816 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
818 /* Convert fron bytes to ints. */
819 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
821 /* The number of (integer) registers required to hold a quantity of type MODE.
822 Also used for VFP registers. */
823 #define ARM_NUM_REGS(MODE) \
824 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
826 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
827 #define ARM_NUM_REGS2(MODE, TYPE) \
828 ARM_NUM_INTS ((MODE) == BLKmode ? \
829 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
831 /* The number of (integer) argument register available. */
832 #define NUM_ARG_REGS 4
834 /* And similarly for the VFP. */
835 #define NUM_VFP_ARG_REGS 16
837 /* Return the register number of the N'th (integer) argument. */
838 #define ARG_REGISTER(N) (N - 1)
840 /* Specify the registers used for certain standard purposes.
841 The values of these macros are register numbers. */
843 /* The number of the last argument register. */
844 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
846 /* The numbers of the Thumb register ranges. */
847 #define FIRST_LO_REGNUM 0
848 #define LAST_LO_REGNUM 7
849 #define FIRST_HI_REGNUM 8
850 #define LAST_HI_REGNUM 11
852 /* Overridden by config/arm/bpabi.h. */
853 #ifndef ARM_UNWIND_INFO
854 #define ARM_UNWIND_INFO 0
855 #endif
857 /* Use r0 and r1 to pass exception handling information. */
858 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
860 /* The register that holds the return address in exception handlers. */
861 #define ARM_EH_STACKADJ_REGNUM 2
862 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
864 #ifndef ARM_TARGET2_DWARF_FORMAT
865 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
866 #endif
868 /* ttype entries (the only interesting data references used)
869 use TARGET2 relocations. */
870 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
871 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
872 : DW_EH_PE_absptr)
874 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
875 as an invisible last argument (possible since varargs don't exist in
876 Pascal), so the following is not true. */
877 #define STATIC_CHAIN_REGNUM 12
879 /* Define this to be where the real frame pointer is if it is not possible to
880 work out the offset between the frame pointer and the automatic variables
881 until after register allocation has taken place. FRAME_POINTER_REGNUM
882 should point to a special register that we will make sure is eliminated.
884 For the Thumb we have another problem. The TPCS defines the frame pointer
885 as r11, and GCC believes that it is always possible to use the frame pointer
886 as base register for addressing purposes. (See comments in
887 find_reloads_address()). But - the Thumb does not allow high registers,
888 including r11, to be used as base address registers. Hence our problem.
890 The solution used here, and in the old thumb port is to use r7 instead of
891 r11 as the hard frame pointer and to have special code to generate
892 backtrace structures on the stack (if required to do so via a command line
893 option) using r11. This is the only 'user visible' use of r11 as a frame
894 pointer. */
895 #define ARM_HARD_FRAME_POINTER_REGNUM 11
896 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
898 #define HARD_FRAME_POINTER_REGNUM \
899 (TARGET_ARM \
900 ? ARM_HARD_FRAME_POINTER_REGNUM \
901 : THUMB_HARD_FRAME_POINTER_REGNUM)
903 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
904 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
906 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
908 /* Register to use for pushing function arguments. */
909 #define STACK_POINTER_REGNUM SP_REGNUM
911 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
912 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
914 /* Need to sync with WCGR in iwmmxt.md. */
915 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
916 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
918 #define IS_IWMMXT_REGNUM(REGNUM) \
919 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
920 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
921 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
923 /* Base register for access to local variables of the function. */
924 #define FRAME_POINTER_REGNUM 102
926 /* Base register for access to arguments of the function. */
927 #define ARG_POINTER_REGNUM 103
929 #define FIRST_VFP_REGNUM 16
930 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
931 #define LAST_VFP_REGNUM \
932 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
934 #define IS_VFP_REGNUM(REGNUM) \
935 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
937 /* VFP registers are split into two types: those defined by VFP versions < 3
938 have D registers overlaid on consecutive pairs of S registers. VFP version 3
939 defines 16 new D registers (d16-d31) which, for simplicity and correctness
940 in various parts of the backend, we implement as "fake" single-precision
941 registers (which would be S32-S63, but cannot be used in that way). The
942 following macros define these ranges of registers. */
943 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
944 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
945 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
947 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
948 ((REGNUM) <= LAST_LO_VFP_REGNUM)
950 /* DFmode values are only valid in even register pairs. */
951 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
952 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
954 /* Neon Quad values must start at a multiple of four registers. */
955 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
956 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
958 /* Neon structures of vectors must be in even register pairs and there
959 must be enough registers available. Because of various patterns
960 requiring quad registers, we require them to start at a multiple of
961 four. */
962 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
963 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
964 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
966 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
967 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
968 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
969 #define FIRST_PSEUDO_REGISTER 104
971 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
973 /* Value should be nonzero if functions must have frame pointers.
974 Zero means the frame pointer need not be set up (and parms may be accessed
975 via the stack pointer) in functions that seem suitable.
976 If we have to have a frame pointer we might as well make use of it.
977 APCS says that the frame pointer does not need to be pushed in leaf
978 functions, or simple tail call functions. */
980 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
981 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
982 #endif
984 #define VALID_IWMMXT_REG_MODE(MODE) \
985 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
987 /* Modes valid for Neon D registers. */
988 #define VALID_NEON_DREG_MODE(MODE) \
989 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
990 || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
992 /* Modes valid for Neon Q registers. */
993 #define VALID_NEON_QREG_MODE(MODE) \
994 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
995 || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode)
997 /* Structure modes valid for Neon registers. */
998 #define VALID_NEON_STRUCT_MODE(MODE) \
999 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1000 || (MODE) == CImode || (MODE) == XImode)
1002 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1003 extern int arm_regs_in_sequence[];
1005 /* The order in which register should be allocated. It is good to use ip
1006 since no saving is required (though calls clobber it) and it never contains
1007 function parameters. It is quite good to use lr since other calls may
1008 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1009 least likely to contain a function parameter; in addition results are
1010 returned in r0.
1011 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1012 then D8-D15. The reason for doing this is to attempt to reduce register
1013 pressure when both single- and double-precision registers are used in a
1014 function. */
1016 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1017 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1018 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1020 #define REG_ALLOC_ORDER \
1022 /* General registers. */ \
1023 3, 2, 1, 0, 12, 14, 4, 5, \
1024 6, 7, 8, 9, 10, 11, \
1025 /* High VFP registers. */ \
1026 VREG(32), VREG(33), VREG(34), VREG(35), \
1027 VREG(36), VREG(37), VREG(38), VREG(39), \
1028 VREG(40), VREG(41), VREG(42), VREG(43), \
1029 VREG(44), VREG(45), VREG(46), VREG(47), \
1030 VREG(48), VREG(49), VREG(50), VREG(51), \
1031 VREG(52), VREG(53), VREG(54), VREG(55), \
1032 VREG(56), VREG(57), VREG(58), VREG(59), \
1033 VREG(60), VREG(61), VREG(62), VREG(63), \
1034 /* VFP argument registers. */ \
1035 VREG(15), VREG(14), VREG(13), VREG(12), \
1036 VREG(11), VREG(10), VREG(9), VREG(8), \
1037 VREG(7), VREG(6), VREG(5), VREG(4), \
1038 VREG(3), VREG(2), VREG(1), VREG(0), \
1039 /* VFP call-saved registers. */ \
1040 VREG(16), VREG(17), VREG(18), VREG(19), \
1041 VREG(20), VREG(21), VREG(22), VREG(23), \
1042 VREG(24), VREG(25), VREG(26), VREG(27), \
1043 VREG(28), VREG(29), VREG(30), VREG(31), \
1044 /* IWMMX registers. */ \
1045 WREG(0), WREG(1), WREG(2), WREG(3), \
1046 WREG(4), WREG(5), WREG(6), WREG(7), \
1047 WREG(8), WREG(9), WREG(10), WREG(11), \
1048 WREG(12), WREG(13), WREG(14), WREG(15), \
1049 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1050 /* Registers not for general use. */ \
1051 CC_REGNUM, VFPCC_REGNUM, \
1052 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1053 SP_REGNUM, PC_REGNUM \
1056 /* Use different register alloc ordering for Thumb. */
1057 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1059 /* Tell IRA to use the order we define rather than messing it up with its
1060 own cost calculations. */
1061 #define HONOR_REG_ALLOC_ORDER 1
1063 /* Interrupt functions can only use registers that have already been
1064 saved by the prologue, even if they would normally be
1065 call-clobbered. */
1066 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1067 (! IS_INTERRUPT (cfun->machine->func_type) || \
1068 df_regs_ever_live_p (DST))
1070 /* Register and constant classes. */
1072 /* Register classes. */
1073 enum reg_class
1075 NO_REGS,
1076 LO_REGS,
1077 STACK_REG,
1078 BASE_REGS,
1079 HI_REGS,
1080 CALLER_SAVE_REGS,
1081 GENERAL_REGS,
1082 CORE_REGS,
1083 VFP_D0_D7_REGS,
1084 VFP_LO_REGS,
1085 VFP_HI_REGS,
1086 VFP_REGS,
1087 IWMMXT_REGS,
1088 IWMMXT_GR_REGS,
1089 CC_REG,
1090 VFPCC_REG,
1091 SFP_REG,
1092 AFP_REG,
1093 ALL_REGS,
1094 LIM_REG_CLASSES
1097 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1099 /* Give names of register classes as strings for dump file. */
1100 #define REG_CLASS_NAMES \
1102 "NO_REGS", \
1103 "LO_REGS", \
1104 "STACK_REG", \
1105 "BASE_REGS", \
1106 "HI_REGS", \
1107 "CALLER_SAVE_REGS", \
1108 "GENERAL_REGS", \
1109 "CORE_REGS", \
1110 "VFP_D0_D7_REGS", \
1111 "VFP_LO_REGS", \
1112 "VFP_HI_REGS", \
1113 "VFP_REGS", \
1114 "IWMMXT_REGS", \
1115 "IWMMXT_GR_REGS", \
1116 "CC_REG", \
1117 "VFPCC_REG", \
1118 "SFP_REG", \
1119 "AFP_REG", \
1120 "ALL_REGS" \
1123 /* Define which registers fit in which classes.
1124 This is an initializer for a vector of HARD_REG_SET
1125 of length N_REG_CLASSES. */
1126 #define REG_CLASS_CONTENTS \
1128 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1129 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1130 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1131 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1132 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1133 { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1134 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1135 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1136 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1137 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1138 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1139 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1140 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1141 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1142 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1143 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1144 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1145 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1146 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS */ \
1149 /* Any of the VFP register classes. */
1150 #define IS_VFP_CLASS(X) \
1151 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1152 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1154 /* The same information, inverted:
1155 Return the class number of the smallest class containing
1156 reg number REGNO. This could be a conditional expression
1157 or could index an array. */
1158 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1160 /* The class value for index registers, and the one for base regs. */
1161 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1162 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1164 /* For the Thumb the high registers cannot be used as base registers
1165 when addressing quantities in QI or HI mode; if we don't know the
1166 mode, then we must be conservative. */
1167 #define MODE_BASE_REG_CLASS(MODE) \
1168 (TARGET_32BIT ? CORE_REGS \
1169 : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
1170 : LO_REGS)
1172 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1173 instead of BASE_REGS. */
1174 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1176 /* When this hook returns true for MODE, the compiler allows
1177 registers explicitly used in the rtl to be used as spill registers
1178 but prevents the compiler from extending the lifetime of these
1179 registers. */
1180 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1181 arm_small_register_classes_for_mode_p
1183 /* Must leave BASE_REGS reloads alone */
1184 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1185 (lra_in_progress ? NO_REGS \
1186 : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1187 ? ((true_regnum (X) == -1 ? LO_REGS \
1188 : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS \
1189 : NO_REGS)) \
1190 : NO_REGS))
1192 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1193 (lra_in_progress ? NO_REGS \
1194 : (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1195 ? ((true_regnum (X) == -1 ? LO_REGS \
1196 : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS \
1197 : NO_REGS)) \
1198 : NO_REGS)
1200 /* Return the register class of a scratch register needed to copy IN into
1201 or out of a register in CLASS in MODE. If it can be done directly,
1202 NO_REGS is returned. */
1203 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1204 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1205 ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
1206 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1207 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1208 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1209 : TARGET_32BIT \
1210 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1211 ? GENERAL_REGS : NO_REGS) \
1212 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1214 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1215 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1216 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1217 ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
1218 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1219 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1220 coproc_secondary_reload_class (MODE, X, TRUE) : \
1221 (TARGET_32BIT ? \
1222 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1223 && CONSTANT_P (X)) \
1224 ? GENERAL_REGS : \
1225 (((MODE) == HImode && ! arm_arch4 \
1226 && (MEM_P (X) \
1227 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1228 && true_regnum (X) == -1))) \
1229 ? GENERAL_REGS : NO_REGS) \
1230 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1232 /* Return the maximum number of consecutive registers
1233 needed to represent mode MODE in a register of class CLASS.
1234 ARM regs are UNITS_PER_WORD bits.
1235 FIXME: Is this true for iWMMX? */
1236 #define CLASS_MAX_NREGS(CLASS, MODE) \
1237 (ARM_NUM_REGS (MODE))
1239 /* If defined, gives a class of registers that cannot be used as the
1240 operand of a SUBREG that changes the mode of the object illegally. */
1242 /* Stack layout; function entry, exit and calling. */
1244 /* Define this if pushing a word on the stack
1245 makes the stack pointer a smaller address. */
1246 #define STACK_GROWS_DOWNWARD 1
1248 /* Define this to nonzero if the nominal address of the stack frame
1249 is at the high-address end of the local variables;
1250 that is, each additional local variable allocated
1251 goes at a more negative offset in the frame. */
1252 #define FRAME_GROWS_DOWNWARD 1
1254 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1255 When present, it is one word in size, and sits at the top of the frame,
1256 between the soft frame pointer and either r7 or r11.
1258 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1259 and only then if some outgoing arguments are passed on the stack. It would
1260 be tempting to also check whether the stack arguments are passed by indirect
1261 calls, but there seems to be no reason in principle why a post-reload pass
1262 couldn't convert a direct call into an indirect one. */
1263 #define CALLER_INTERWORKING_SLOT_SIZE \
1264 (TARGET_CALLER_INTERWORKING \
1265 && maybe_ne (crtl->outgoing_args_size, 0) \
1266 ? UNITS_PER_WORD : 0)
1268 /* If we generate an insn to push BYTES bytes,
1269 this says how many the stack pointer really advances by. */
1270 /* The push insns do not do this rounding implicitly.
1271 So don't define this. */
1272 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1274 /* Define this if the maximum size of all the outgoing args is to be
1275 accumulated and pushed during the prologue. The amount can be
1276 found in the variable crtl->outgoing_args_size. */
1277 #define ACCUMULATE_OUTGOING_ARGS 1
1279 /* Offset of first parameter from the argument pointer register value. */
1280 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1282 /* Amount of memory needed for an untyped call to save all possible return
1283 registers. */
1284 #define APPLY_RESULT_SIZE arm_apply_result_size()
1286 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1287 values must be in memory. On the ARM, they need only do so if larger
1288 than a word, or if they contain elements offset from zero in the struct. */
1289 #define DEFAULT_PCC_STRUCT_RETURN 0
1291 /* These bits describe the different types of function supported
1292 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1293 normal function and an interworked function, for example. Knowing the
1294 type of a function is important for determining its prologue and
1295 epilogue sequences.
1296 Note value 7 is currently unassigned. Also note that the interrupt
1297 function types all have bit 2 set, so that they can be tested for easily.
1298 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1299 machine_function structure is initialized (to zero) func_type will
1300 default to unknown. This will force the first use of arm_current_func_type
1301 to call arm_compute_func_type. */
1302 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1303 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1304 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1305 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1306 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1307 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1309 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1311 /* In addition functions can have several type modifiers,
1312 outlined by these bit masks: */
1313 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1314 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1315 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1316 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1317 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1318 #define ARM_FT_CMSE_ENTRY (1 << 7) /* ARMv8-M non-secure entry function. */
1320 /* Some macros to test these flags. */
1321 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1322 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1323 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1324 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1325 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1326 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1327 #define IS_CMSE_ENTRY(t) (t & ARM_FT_CMSE_ENTRY)
1330 /* Structure used to hold the function stack frame layout. Offsets are
1331 relative to the stack pointer on function entry. Positive offsets are
1332 in the direction of stack growth.
1333 Only soft_frame is used in thumb mode. */
1335 typedef struct GTY(()) arm_stack_offsets
1337 int saved_args; /* ARG_POINTER_REGNUM. */
1338 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1339 int saved_regs;
1340 int soft_frame; /* FRAME_POINTER_REGNUM. */
1341 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1342 int outgoing_args; /* STACK_POINTER_REGNUM. */
1343 unsigned int saved_regs_mask;
1345 arm_stack_offsets;
1347 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1348 /* A C structure for machine-specific, per-function data.
1349 This is added to the cfun structure. */
1350 typedef struct GTY(()) machine_function
1352 /* Additional stack adjustment in __builtin_eh_throw. */
1353 rtx eh_epilogue_sp_ofs;
1354 /* Records if LR has to be saved for far jumps. */
1355 int far_jump_used;
1356 /* Records if ARG_POINTER was ever live. */
1357 int arg_pointer_live;
1358 /* Records if the save of LR has been eliminated. */
1359 int lr_save_eliminated;
1360 /* The size of the stack frame. Only valid after reload. */
1361 arm_stack_offsets stack_offsets;
1362 /* Records the type of the current function. */
1363 unsigned long func_type;
1364 /* Record if the function has a variable argument list. */
1365 int uses_anonymous_args;
1366 /* Records if sibcalls are blocked because an argument
1367 register is needed to preserve stack alignment. */
1368 int sibcall_blocked;
1369 /* The PIC register for this function. This might be a pseudo. */
1370 rtx pic_reg;
1371 /* Labels for per-function Thumb call-via stubs. One per potential calling
1372 register. We can never call via LR or PC. We can call via SP if a
1373 trampoline happens to be on the top of the stack. */
1374 rtx call_via[14];
1375 /* Set to 1 when a return insn is output, this means that the epilogue
1376 is not needed. */
1377 int return_used_this_function;
1378 /* When outputting Thumb-1 code, record the last insn that provides
1379 information about condition codes, and the comparison operands. */
1380 rtx thumb1_cc_insn;
1381 rtx thumb1_cc_op0;
1382 rtx thumb1_cc_op1;
1383 /* Also record the CC mode that is supported. */
1384 machine_mode thumb1_cc_mode;
1385 /* Set to 1 after arm_reorg has started. */
1386 int after_arm_reorg;
1388 machine_function;
1389 #endif
1391 /* As in the machine_function, a global set of call-via labels, for code
1392 that is in text_section. */
1393 extern GTY(()) rtx thumb_call_via_label[14];
1395 /* The number of potential ways of assigning to a co-processor. */
1396 #define ARM_NUM_COPROC_SLOTS 1
1398 /* Enumeration of procedure calling standard variants. We don't really
1399 support all of these yet. */
1400 enum arm_pcs
1402 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1403 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1404 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1405 /* This must be the last AAPCS variant. */
1406 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1407 ARM_PCS_ATPCS, /* ATPCS. */
1408 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1409 ARM_PCS_UNKNOWN
1412 /* Default procedure calling standard of current compilation unit. */
1413 extern enum arm_pcs arm_pcs_default;
1415 #if !defined (USED_FOR_TARGET)
1416 /* A C type for declaring a variable that is used as the first argument of
1417 `FUNCTION_ARG' and other related values. */
1418 typedef struct
1420 /* This is the number of registers of arguments scanned so far. */
1421 int nregs;
1422 /* This is the number of iWMMXt register arguments scanned so far. */
1423 int iwmmxt_nregs;
1424 int named_count;
1425 int nargs;
1426 /* Which procedure call variant to use for this call. */
1427 enum arm_pcs pcs_variant;
1429 /* AAPCS related state tracking. */
1430 int aapcs_arg_processed; /* No need to lay out this argument again. */
1431 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1432 this argument, or -1 if using core
1433 registers. */
1434 int aapcs_ncrn;
1435 int aapcs_next_ncrn;
1436 rtx aapcs_reg; /* Register assigned to this argument. */
1437 int aapcs_partial; /* How many bytes are passed in regs (if
1438 split between core regs and stack.
1439 Zero otherwise. */
1440 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1441 int can_split; /* Argument can be split between core regs
1442 and the stack. */
1443 /* Private data for tracking VFP register allocation */
1444 unsigned aapcs_vfp_regs_free;
1445 unsigned aapcs_vfp_reg_alloc;
1446 int aapcs_vfp_rcount;
1447 MACHMODE aapcs_vfp_rmode;
1448 } CUMULATIVE_ARGS;
1449 #endif
1451 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1452 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
1454 /* For AAPCS, padding should never be below the argument. For other ABIs,
1455 * mimic the default. */
1456 #define PAD_VARARGS_DOWN \
1457 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1459 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1460 for a call to a function whose data type is FNTYPE.
1461 For a library call, FNTYPE is 0.
1462 On the ARM, the offset starts at 0. */
1463 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1464 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1466 /* 1 if N is a possible register number for function argument passing.
1467 On the ARM, r0-r3 are used to pass args. */
1468 #define FUNCTION_ARG_REGNO_P(REGNO) \
1469 (IN_RANGE ((REGNO), 0, 3) \
1470 || (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT \
1471 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1472 || (TARGET_IWMMXT_ABI \
1473 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1476 /* If your target environment doesn't prefix user functions with an
1477 underscore, you may wish to re-define this to prevent any conflicts. */
1478 #ifndef ARM_MCOUNT_NAME
1479 #define ARM_MCOUNT_NAME "*mcount"
1480 #endif
1482 /* Call the function profiler with a given profile label. The Acorn
1483 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1484 On the ARM the full profile code will look like:
1485 .data
1487 .word 0
1488 .text
1489 mov ip, lr
1490 bl mcount
1491 .word LP1
1493 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1494 will output the .text section.
1496 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1497 ``prof'' doesn't seem to mind about this!
1499 Note - this version of the code is designed to work in both ARM and
1500 Thumb modes. */
1501 #ifndef ARM_FUNCTION_PROFILER
1502 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1504 char temp[20]; \
1505 rtx sym; \
1507 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1508 IP_REGNUM, LR_REGNUM); \
1509 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1510 fputc ('\n', STREAM); \
1511 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1512 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1513 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1515 #endif
1517 #ifdef THUMB_FUNCTION_PROFILER
1518 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1519 if (TARGET_ARM) \
1520 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1521 else \
1522 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1523 #else
1524 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1525 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1526 #endif
1528 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1529 the stack pointer does not matter. The value is tested only in
1530 functions that have frame pointers.
1531 No definition is equivalent to always zero.
1533 On the ARM, the function epilogue recovers the stack pointer from the
1534 frame. */
1535 #define EXIT_IGNORE_STACK 1
1537 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1539 /* Determine if the epilogue should be output as RTL.
1540 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1541 #define USE_RETURN_INSN(ISCOND) \
1542 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1544 /* Definitions for register eliminations.
1546 This is an array of structures. Each structure initializes one pair
1547 of eliminable registers. The "from" register number is given first,
1548 followed by "to". Eliminations of the same "from" register are listed
1549 in order of preference.
1551 We have two registers that can be eliminated on the ARM. First, the
1552 arg pointer register can often be eliminated in favor of the stack
1553 pointer register. Secondly, the pseudo frame pointer register can always
1554 be eliminated; it is replaced with either the stack or the real frame
1555 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1556 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1558 #define ELIMINABLE_REGS \
1559 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1560 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1561 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1562 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1563 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1564 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1565 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1567 /* Define the offset between two registers, one to be eliminated, and the
1568 other its replacement, at the start of a routine. */
1569 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1570 if (TARGET_ARM) \
1571 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1572 else \
1573 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1575 /* Special case handling of the location of arguments passed on the stack. */
1576 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1578 /* Initialize data used by insn expanders. This is called from insn_emit,
1579 once for every function before code is generated. */
1580 #define INIT_EXPANDERS arm_init_expanders ()
1582 /* Length in units of the trampoline for entering a nested function. */
1583 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1585 /* Alignment required for a trampoline in bits. */
1586 #define TRAMPOLINE_ALIGNMENT 32
1588 /* Addressing modes, and classification of registers for them. */
1589 #define HAVE_POST_INCREMENT 1
1590 #define HAVE_PRE_INCREMENT TARGET_32BIT
1591 #define HAVE_POST_DECREMENT TARGET_32BIT
1592 #define HAVE_PRE_DECREMENT TARGET_32BIT
1593 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1594 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1595 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1596 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1598 enum arm_auto_incmodes
1600 ARM_POST_INC,
1601 ARM_PRE_INC,
1602 ARM_POST_DEC,
1603 ARM_PRE_DEC
1606 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1607 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1608 #define USE_LOAD_POST_INCREMENT(mode) \
1609 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1610 #define USE_LOAD_PRE_INCREMENT(mode) \
1611 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1612 #define USE_LOAD_POST_DECREMENT(mode) \
1613 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1614 #define USE_LOAD_PRE_DECREMENT(mode) \
1615 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1617 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1618 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1619 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1620 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1622 /* Macros to check register numbers against specific register classes. */
1624 /* These assume that REGNO is a hard or pseudo reg number.
1625 They give nonzero only if REGNO is a hard reg of the suitable class
1626 or a pseudo reg currently allocated to a suitable hard reg. */
1627 #define TEST_REGNO(R, TEST, VALUE) \
1628 ((R TEST VALUE) \
1629 || (reg_renumber && ((unsigned) reg_renumber[R] TEST VALUE)))
1631 /* Don't allow the pc to be used. */
1632 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1633 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1634 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1635 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1637 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1638 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1639 || (GET_MODE_SIZE (MODE) >= 4 \
1640 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1642 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1643 (TARGET_THUMB1 \
1644 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1645 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1647 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1648 For Thumb, we can not use SP + reg, so reject SP. */
1649 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1650 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1652 /* For ARM code, we don't care about the mode, but for Thumb, the index
1653 must be suitable for use in a QImode load. */
1654 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1655 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1656 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1658 /* Maximum number of registers that can appear in a valid memory address.
1659 Shifts in addresses can't be by a register. */
1660 #define MAX_REGS_PER_ADDRESS 2
1662 /* Recognize any constant value that is a valid address. */
1663 /* XXX We can address any constant, eventually... */
1664 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1665 #define CONSTANT_ADDRESS_P(X) \
1666 (GET_CODE (X) == SYMBOL_REF \
1667 && (CONSTANT_POOL_ADDRESS_P (X) \
1668 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1670 /* True if SYMBOL + OFFSET constants must refer to something within
1671 SYMBOL's section. */
1672 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1674 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1675 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1676 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1677 #endif
1679 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1680 #define SUBTARGET_NAME_ENCODING_LENGTHS
1681 #endif
1683 /* This is a C fragment for the inside of a switch statement.
1684 Each case label should return the number of characters to
1685 be stripped from the start of a function's name, if that
1686 name starts with the indicated character. */
1687 #define ARM_NAME_ENCODING_LENGTHS \
1688 case '*': return 1; \
1689 SUBTARGET_NAME_ENCODING_LENGTHS
1691 /* This is how to output a reference to a user-level label named NAME.
1692 `assemble_name' uses this. */
1693 #undef ASM_OUTPUT_LABELREF
1694 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1695 arm_asm_output_labelref (FILE, NAME)
1697 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1698 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1699 if (TARGET_THUMB2) \
1700 thumb2_asm_output_opcode (STREAM);
1702 /* The EABI specifies that constructors should go in .init_array.
1703 Other targets use .ctors for compatibility. */
1704 #ifndef ARM_EABI_CTORS_SECTION_OP
1705 #define ARM_EABI_CTORS_SECTION_OP \
1706 "\t.section\t.init_array,\"aw\",%init_array"
1707 #endif
1708 #ifndef ARM_EABI_DTORS_SECTION_OP
1709 #define ARM_EABI_DTORS_SECTION_OP \
1710 "\t.section\t.fini_array,\"aw\",%fini_array"
1711 #endif
1712 #define ARM_CTORS_SECTION_OP \
1713 "\t.section\t.ctors,\"aw\",%progbits"
1714 #define ARM_DTORS_SECTION_OP \
1715 "\t.section\t.dtors,\"aw\",%progbits"
1717 /* Define CTORS_SECTION_ASM_OP. */
1718 #undef CTORS_SECTION_ASM_OP
1719 #undef DTORS_SECTION_ASM_OP
1720 #ifndef IN_LIBGCC2
1721 # define CTORS_SECTION_ASM_OP \
1722 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1723 # define DTORS_SECTION_ASM_OP \
1724 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1725 #else /* !defined (IN_LIBGCC2) */
1726 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1727 so we cannot use the definition above. */
1728 # ifdef __ARM_EABI__
1729 /* The .ctors section is not part of the EABI, so we do not define
1730 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1731 from trying to use it. We do define it when doing normal
1732 compilation, as .init_array can be used instead of .ctors. */
1733 /* There is no need to emit begin or end markers when using
1734 init_array; the dynamic linker will compute the size of the
1735 array itself based on special symbols created by the static
1736 linker. However, we do need to arrange to set up
1737 exception-handling here. */
1738 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1739 # define CTOR_LIST_END /* empty */
1740 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1741 # define DTOR_LIST_END /* empty */
1742 # else /* !defined (__ARM_EABI__) */
1743 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1744 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1745 # endif /* !defined (__ARM_EABI__) */
1746 #endif /* !defined (IN_LIBCC2) */
1748 /* True if the operating system can merge entities with vague linkage
1749 (e.g., symbols in COMDAT group) during dynamic linking. */
1750 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1751 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1752 #endif
1754 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1756 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1757 and check its validity for a certain class.
1758 We have two alternate definitions for each of them.
1759 The usual definition accepts all pseudo regs; the other rejects
1760 them unless they have been allocated suitable hard regs.
1761 The symbol REG_OK_STRICT causes the latter definition to be used.
1762 Thumb-2 has the same restrictions as arm. */
1763 #ifndef REG_OK_STRICT
1765 #define ARM_REG_OK_FOR_BASE_P(X) \
1766 (REGNO (X) <= LAST_ARM_REGNUM \
1767 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1768 || REGNO (X) == FRAME_POINTER_REGNUM \
1769 || REGNO (X) == ARG_POINTER_REGNUM)
1771 #define ARM_REG_OK_FOR_INDEX_P(X) \
1772 ((REGNO (X) <= LAST_ARM_REGNUM \
1773 && REGNO (X) != STACK_POINTER_REGNUM) \
1774 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1775 || REGNO (X) == FRAME_POINTER_REGNUM \
1776 || REGNO (X) == ARG_POINTER_REGNUM)
1778 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1779 (REGNO (X) <= LAST_LO_REGNUM \
1780 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1781 || (GET_MODE_SIZE (MODE) >= 4 \
1782 && (REGNO (X) == STACK_POINTER_REGNUM \
1783 || (X) == hard_frame_pointer_rtx \
1784 || (X) == arg_pointer_rtx)))
1786 #define REG_STRICT_P 0
1788 #else /* REG_OK_STRICT */
1790 #define ARM_REG_OK_FOR_BASE_P(X) \
1791 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1793 #define ARM_REG_OK_FOR_INDEX_P(X) \
1794 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1796 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1797 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1799 #define REG_STRICT_P 1
1801 #endif /* REG_OK_STRICT */
1803 /* Now define some helpers in terms of the above. */
1805 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1806 (TARGET_THUMB1 \
1807 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1808 : ARM_REG_OK_FOR_BASE_P (X))
1810 /* For 16-bit Thumb, a valid index register is anything that can be used in
1811 a byte load instruction. */
1812 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1813 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1815 /* Nonzero if X is a hard reg that can be used as an index
1816 or if it is a pseudo reg. On the Thumb, the stack pointer
1817 is not suitable. */
1818 #define REG_OK_FOR_INDEX_P(X) \
1819 (TARGET_THUMB1 \
1820 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1821 : ARM_REG_OK_FOR_INDEX_P (X))
1823 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1824 For Thumb, we can not use SP + reg, so reject SP. */
1825 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1826 REG_OK_FOR_INDEX_P (X)
1828 #define ARM_BASE_REGISTER_RTX_P(X) \
1829 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1831 #define ARM_INDEX_REGISTER_RTX_P(X) \
1832 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1834 /* Specify the machine mode that this machine uses
1835 for the index in the tablejump instruction. */
1836 #define CASE_VECTOR_MODE Pmode
1838 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1839 || (TARGET_THUMB1 \
1840 && (optimize_size || flag_pic)))
1842 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1843 (TARGET_THUMB1 \
1844 ? (min >= 0 && max < 512 \
1845 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1846 : min >= -256 && max < 256 \
1847 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1848 : min >= 0 && max < 8192 \
1849 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1850 : min >= -4096 && max < 4096 \
1851 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1852 : SImode) \
1853 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
1854 : (max >= 0x200) ? HImode \
1855 : QImode))
1857 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1858 unsigned is probably best, but may break some code. */
1859 #ifndef DEFAULT_SIGNED_CHAR
1860 #define DEFAULT_SIGNED_CHAR 0
1861 #endif
1863 /* Max number of bytes we can move from memory to memory
1864 in one reasonably fast instruction. */
1865 #define MOVE_MAX 4
1867 #undef MOVE_RATIO
1868 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1870 /* Define if operations between registers always perform the operation
1871 on the full register even if a narrower mode is specified. */
1872 #define WORD_REGISTER_OPERATIONS 1
1874 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1875 will either zero-extend or sign-extend. The value of this macro should
1876 be the code that says which one of the two operations is implicitly
1877 done, UNKNOWN if none. */
1878 #define LOAD_EXTEND_OP(MODE) \
1879 (TARGET_THUMB ? ZERO_EXTEND : \
1880 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1881 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1883 /* Nonzero if access to memory by bytes is slow and undesirable. */
1884 #define SLOW_BYTE_ACCESS 0
1886 /* Immediate shift counts are truncated by the output routines (or was it
1887 the assembler?). Shift counts in a register are truncated by ARM. Note
1888 that the native compiler puts too large (> 32) immediate shift counts
1889 into a register and shifts by the register, letting the ARM decide what
1890 to do instead of doing that itself. */
1891 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1892 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1893 On the arm, Y in a register is used modulo 256 for the shift. Only for
1894 rotates is modulo 32 used. */
1895 /* #define SHIFT_COUNT_TRUNCATED 1 */
1897 /* Calling from registers is a massive pain. */
1898 #define NO_FUNCTION_CSE 1
1900 /* The machine modes of pointers and functions */
1901 #define Pmode SImode
1902 #define FUNCTION_MODE Pmode
1904 #define ARM_FRAME_RTX(X) \
1905 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1906 || (X) == arg_pointer_rtx)
1908 /* Try to generate sequences that don't involve branches, we can then use
1909 conditional instructions. */
1910 #define BRANCH_COST(speed_p, predictable_p) \
1911 ((arm_branch_cost != -1) ? arm_branch_cost : \
1912 (current_tune->branch_cost (speed_p, predictable_p)))
1914 /* False if short circuit operation is preferred. */
1915 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
1916 ((optimize_size) \
1917 ? (TARGET_THUMB ? false : true) \
1918 : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
1919 : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
1922 /* Position Independent Code. */
1923 /* We decide which register to use based on the compilation options and
1924 the assembler in use; this is more general than the APCS restriction of
1925 using sb (r9) all the time. */
1926 extern unsigned arm_pic_register;
1928 /* The register number of the register used to address a table of static
1929 data addresses in memory. */
1930 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1932 /* We can't directly access anything that contains a symbol,
1933 nor can we indirect via the constant pool. One exception is
1934 UNSPEC_TLS, which is always PIC. */
1935 #define LEGITIMATE_PIC_OPERAND_P(X) \
1936 (!(symbol_mentioned_p (X) \
1937 || label_mentioned_p (X) \
1938 || (GET_CODE (X) == SYMBOL_REF \
1939 && CONSTANT_POOL_ADDRESS_P (X) \
1940 && (symbol_mentioned_p (get_pool_constant (X)) \
1941 || label_mentioned_p (get_pool_constant (X))))) \
1942 || tls_mentioned_p (X))
1944 /* We need to know when we are making a constant pool; this determines
1945 whether data needs to be in the GOT or can be referenced via a GOT
1946 offset. */
1947 extern int making_const_table;
1949 /* Handle pragmas for compatibility with Intel's compilers. */
1950 /* Also abuse this to register additional C specific EABI attributes. */
1951 #define REGISTER_TARGET_PRAGMAS() do { \
1952 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
1953 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
1954 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
1955 arm_lang_object_attributes_init(); \
1956 arm_register_target_pragmas(); \
1957 } while (0)
1959 /* Condition code information. */
1960 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1961 return the mode to be used for the comparison. */
1963 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
1965 #define REVERSIBLE_CC_MODE(MODE) 1
1967 #define REVERSE_CONDITION(CODE,MODE) \
1968 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
1969 ? reverse_condition_maybe_unordered (code) \
1970 : reverse_condition (code))
1972 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1973 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1974 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1975 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1977 #define CC_STATUS_INIT \
1978 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
1980 #undef ASM_APP_ON
1981 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
1982 "\t.syntax divided\n")
1984 #undef ASM_APP_OFF
1985 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
1986 "\t.thumb\n\t.syntax unified\n")
1988 /* Output a push or a pop instruction (only used when profiling).
1989 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
1990 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
1991 that r7 isn't used by the function profiler, so we can use it as a
1992 scratch reg. WARNING: This isn't safe in the general case! It may be
1993 sensitive to future changes in final.c:profile_function. */
1994 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
1995 do \
1997 if (TARGET_THUMB1 \
1998 && (REGNO) == STATIC_CHAIN_REGNUM) \
2000 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2001 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2002 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2004 else \
2005 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2006 } while (0)
2009 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2010 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2011 do \
2013 if (TARGET_THUMB1 \
2014 && (REGNO) == STATIC_CHAIN_REGNUM) \
2016 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2017 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2018 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2020 else \
2021 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2022 } while (0)
2024 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2025 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2027 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2028 default alignment from elfos.h. */
2029 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2030 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2032 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2033 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2034 ? 1 : 0)
2036 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2037 arm_declare_function_name ((STREAM), (NAME), (DECL));
2039 /* For aliases of functions we use .thumb_set instead. */
2040 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2041 do \
2043 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2044 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2046 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2048 fprintf (FILE, "\t.thumb_set "); \
2049 assemble_name (FILE, LABEL1); \
2050 fprintf (FILE, ","); \
2051 assemble_name (FILE, LABEL2); \
2052 fprintf (FILE, "\n"); \
2054 else \
2055 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2057 while (0)
2059 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2060 /* To support -falign-* switches we need to use .p2align so
2061 that alignment directives in code sections will be padded
2062 with no-op instructions, rather than zeroes. */
2063 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2064 if ((LOG) != 0) \
2066 if ((MAX_SKIP) == 0) \
2067 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2068 else \
2069 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2070 (int) (LOG), (int) (MAX_SKIP)); \
2072 #endif
2074 /* Add two bytes to the length of conditionally executed Thumb-2
2075 instructions for the IT instruction. */
2076 #define ADJUST_INSN_LENGTH(insn, length) \
2077 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2078 length += 2;
2080 /* Only perform branch elimination (by making instructions conditional) if
2081 we're optimizing. For Thumb-2 check if any IT instructions need
2082 outputting. */
2083 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2084 if (TARGET_ARM && optimize) \
2085 arm_final_prescan_insn (INSN); \
2086 else if (TARGET_THUMB2) \
2087 thumb2_final_prescan_insn (INSN); \
2088 else if (TARGET_THUMB1) \
2089 thumb1_final_prescan_insn (INSN)
2091 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2092 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2093 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2094 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2095 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2096 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2097 : 0))))
2099 /* A C expression whose value is RTL representing the value of the return
2100 address for the frame COUNT steps up from the current frame. */
2102 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2103 arm_return_addr (COUNT, FRAME)
2105 /* Mask of the bits in the PC that contain the real return address
2106 when running in 26-bit mode. */
2107 #define RETURN_ADDR_MASK26 (0x03fffffc)
2109 /* Pick up the return address upon entry to a procedure. Used for
2110 dwarf2 unwind information. This also enables the table driven
2111 mechanism. */
2112 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2113 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2115 /* Used to mask out junk bits from the return address, such as
2116 processor state, interrupt status, condition codes and the like. */
2117 #define MASK_RETURN_ADDR \
2118 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2119 in 26 bit mode, the condition codes must be masked out of the \
2120 return address. This does not apply to ARM6 and later processors \
2121 when running in 32 bit mode. */ \
2122 ((arm_arch4 || TARGET_THUMB) \
2123 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2124 : arm_gen_return_addr_mask ())
2127 /* Do not emit .note.GNU-stack by default. */
2128 #ifndef NEED_INDICATE_EXEC_STACK
2129 #define NEED_INDICATE_EXEC_STACK 0
2130 #endif
2132 #define TARGET_ARM_ARCH \
2133 (arm_base_arch) \
2135 /* The highest Thumb instruction set version supported by the chip. */
2136 #define TARGET_ARM_ARCH_ISA_THUMB \
2137 (arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
2139 /* Expands to an upper-case char of the target's architectural
2140 profile. */
2141 #define TARGET_ARM_ARCH_PROFILE \
2142 (arm_active_target.profile)
2144 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2145 Bit 0 for bytes, up to bit 3 for double-words. */
2146 #define TARGET_ARM_FEATURE_LDREX \
2147 ((TARGET_HAVE_LDREX ? 4 : 0) \
2148 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2149 | (TARGET_HAVE_LDREXD ? 8 : 0))
2151 /* Set as a bit mask indicating the available widths of hardware floating
2152 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2153 32-bit support, bit 3 indicates 64-bit support. */
2154 #define TARGET_ARM_FP \
2155 (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4 \
2156 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2157 : 0)
2160 /* Set as a bit mask indicating the available widths of floating point
2161 types for hardware NEON floating point. This is the same as
2162 TARGET_ARM_FP without the 64-bit bit set. */
2163 #define TARGET_NEON_FP \
2164 (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2165 : 0)
2167 /* Name of the automatic fpu-selection option. */
2168 #define FPUTYPE_AUTO "auto"
2170 /* The maximum number of parallel loads or stores we support in an ldm/stm
2171 instruction. */
2172 #define MAX_LDM_STM_OPS 4
2174 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2175 extern const char *arm_rewrite_march (int argc, const char **argv);
2176 extern const char *arm_asm_auto_mfpu (int argc, const char **argv);
2177 #define ASM_CPU_SPEC_FUNCTIONS \
2178 { "rewrite_mcpu", arm_rewrite_mcpu }, \
2179 { "rewrite_march", arm_rewrite_march }, \
2180 { "asm_auto_mfpu", arm_asm_auto_mfpu },
2182 #define ASM_CPU_SPEC \
2183 " %{mfpu=auto:%<mfpu=auto %:asm_auto_mfpu(%{march=*: arch %*})}" \
2184 " %{mcpu=generic-*:-march=%:rewrite_march(%{mcpu=generic-*:%*});" \
2185 " march=*:-march=%:rewrite_march(%{march=*:%*});" \
2186 " mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})" \
2187 " }"
2189 extern const char *arm_target_thumb_only (int argc, const char **argv);
2190 #define TARGET_MODE_SPEC_FUNCTIONS \
2191 { "target_mode_check", arm_target_thumb_only },
2193 /* -mcpu=native handling only makes sense with compiler running on
2194 an ARM chip. */
2195 #if defined(__arm__)
2196 extern const char *host_detect_local_cpu (int argc, const char **argv);
2197 #define HAVE_LOCAL_CPU_DETECT
2198 # define MCPU_MTUNE_NATIVE_FUNCTIONS \
2199 { "local_cpu_detect", host_detect_local_cpu },
2200 # define MCPU_MTUNE_NATIVE_SPECS \
2201 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2202 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2203 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2204 #else
2205 # define MCPU_MTUNE_NATIVE_FUNCTIONS
2206 # define MCPU_MTUNE_NATIVE_SPECS ""
2207 #endif
2209 const char *arm_canon_arch_option (int argc, const char **argv);
2211 #define CANON_ARCH_SPEC_FUNCTION \
2212 { "canon_arch", arm_canon_arch_option },
2214 const char *arm_be8_option (int argc, const char **argv);
2215 #define BE8_SPEC_FUNCTION \
2216 { "be8_linkopt", arm_be8_option },
2218 # define EXTRA_SPEC_FUNCTIONS \
2219 MCPU_MTUNE_NATIVE_FUNCTIONS \
2220 ASM_CPU_SPEC_FUNCTIONS \
2221 CANON_ARCH_SPEC_FUNCTION \
2222 TARGET_MODE_SPEC_FUNCTIONS \
2223 BE8_SPEC_FUNCTION
2225 /* Automatically add -mthumb for Thumb-only targets if mode isn't specified
2226 via the configuration option --with-mode or via the command line. The
2227 function target_mode_check is called to do the check with either:
2228 - an array of -march values if any is given;
2229 - an array of -mcpu values if any is given;
2230 - an empty array. */
2231 #define TARGET_MODE_SPECS \
2232 " %{!marm:%{!mthumb:%:target_mode_check(%{march=*:arch %*;mcpu=*:cpu %*;:})}}"
2234 /* Generate a canonical string to represent the architecture selected. */
2235 #define ARCH_CANONICAL_SPECS \
2236 " -march=%:canon_arch(%{mcpu=*: cpu %*} " \
2237 " %{march=*: arch %*} " \
2238 " %{mfpu=*: fpu %*} " \
2239 " %{mfloat-abi=*: abi %*}" \
2240 " %<march=*) "
2242 /* Complete set of specs for the driver. Commas separate the
2243 individual rules so that any option suppression (%<opt...)is
2244 completed before starting subsequent rules. */
2245 #define DRIVER_SELF_SPECS \
2246 MCPU_MTUNE_NATIVE_SPECS, \
2247 TARGET_MODE_SPECS, \
2248 ARCH_CANONICAL_SPECS
2250 #define TARGET_SUPPORTS_WIDE_INT 1
2252 /* For switching between functions with different target attributes. */
2253 #define SWITCHABLE_TARGET 1
2255 /* Define SECTION_ARM_PURECODE as the ARM specific section attribute
2256 representation for SHF_ARM_PURECODE in GCC. */
2257 #define SECTION_ARM_PURECODE SECTION_MACH_DEP
2259 #endif /* ! GCC_ARM_H */