cgraph.c (cgraph_make_decl_local): Handle DECL_ONE_ONLY similarly to DECL_COMDAT.
[official-gcc.git] / gcc / graphite-clast-to-gimple.c
blobc8356d34a63296fd0090fbd89410f603428b2895
1 /* Translation of CLAST (CLooG AST) to Gimple.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "diagnostic-core.h"
25 #include "tree-flow.h"
26 #include "tree-dump.h"
27 #include "cfgloop.h"
28 #include "tree-chrec.h"
29 #include "tree-data-ref.h"
30 #include "tree-scalar-evolution.h"
31 #include "sese.h"
33 #ifdef HAVE_cloog
34 #include "cloog/cloog.h"
35 #include "ppl_c.h"
36 #include "graphite-cloog-util.h"
37 #include "graphite-ppl.h"
38 #include "graphite-poly.h"
39 #include "graphite-clast-to-gimple.h"
40 #include "graphite-dependences.h"
41 #include "graphite-cloog-compat.h"
43 /* This flag is set when an error occurred during the translation of
44 CLAST to Gimple. */
45 static bool gloog_error;
47 /* Verifies properties that GRAPHITE should maintain during translation. */
49 static inline void
50 graphite_verify (void)
52 #ifdef ENABLE_CHECKING
53 verify_loop_structure ();
54 verify_dominators (CDI_DOMINATORS);
55 verify_loop_closed_ssa (true);
56 #endif
59 /* Stores the INDEX in a vector for a given clast NAME. */
61 typedef struct clast_name_index {
62 int index;
63 const char *name;
64 } *clast_name_index_p;
66 /* Returns a pointer to a new element of type clast_name_index_p built
67 from NAME and INDEX. */
69 static inline clast_name_index_p
70 new_clast_name_index (const char *name, int index)
72 clast_name_index_p res = XNEW (struct clast_name_index);
74 res->name = name;
75 res->index = index;
76 return res;
79 /* For a given clast NAME, returns -1 if it does not correspond to any
80 parameter, or otherwise, returns the index in the PARAMS or
81 SCATTERING_DIMENSIONS vector. */
83 static inline int
84 clast_name_to_index (clast_name_p name, htab_t index_table)
86 struct clast_name_index tmp;
87 PTR *slot;
89 #ifdef CLOOG_ORG
90 gcc_assert (name->type == clast_expr_name);
91 tmp.name = ((const struct clast_name*) name)->name;
92 #else
93 tmp.name = name;
94 #endif
96 slot = htab_find_slot (index_table, &tmp, NO_INSERT);
98 if (slot && *slot)
99 return ((struct clast_name_index *) *slot)->index;
101 return -1;
104 /* Records in INDEX_TABLE the INDEX for NAME. */
106 static inline void
107 save_clast_name_index (htab_t index_table, const char *name, int index)
109 struct clast_name_index tmp;
110 PTR *slot;
112 tmp.name = name;
113 slot = htab_find_slot (index_table, &tmp, INSERT);
115 if (slot)
117 free (*slot);
119 *slot = new_clast_name_index (name, index);
123 /* Computes a hash function for database element ELT. */
125 static inline hashval_t
126 clast_name_index_elt_info (const void *elt)
128 return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
131 /* Compares database elements E1 and E2. */
133 static inline int
134 eq_clast_name_indexes (const void *e1, const void *e2)
136 const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
137 const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
139 return (elt1->name == elt2->name);
142 /* For a given scattering dimension, return the new induction variable
143 associated to it. */
145 static inline tree
146 newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
148 return VEC_index (tree, newivs, depth);
153 /* Returns the tree variable from the name NAME that was given in
154 Cloog representation. */
156 static tree
157 clast_name_to_gcc (clast_name_p name, sese region, VEC (tree, heap) *newivs,
158 htab_t newivs_index, htab_t params_index)
160 int index;
161 VEC (tree, heap) *params = SESE_PARAMS (region);
163 if (params && params_index)
165 index = clast_name_to_index (name, params_index);
167 if (index >= 0)
168 return VEC_index (tree, params, index);
171 gcc_assert (newivs && newivs_index);
172 index = clast_name_to_index (name, newivs_index);
173 gcc_assert (index >= 0);
175 return newivs_to_depth_to_newiv (newivs, index);
178 /* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
180 static tree
181 max_signed_precision_type (tree type1, tree type2)
183 int p1 = TYPE_PRECISION (type1);
184 int p2 = TYPE_PRECISION (type2);
185 int precision;
186 tree type;
187 enum machine_mode mode;
189 if (p1 > p2)
190 precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
191 else
192 precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
194 if (precision > BITS_PER_WORD)
196 gloog_error = true;
197 return integer_type_node;
200 mode = smallest_mode_for_size (precision, MODE_INT);
201 precision = GET_MODE_PRECISION (mode);
202 type = build_nonstandard_integer_type (precision, false);
204 if (!type)
206 gloog_error = true;
207 return integer_type_node;
210 return type;
213 /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
215 static tree
216 max_precision_type (tree type1, tree type2)
218 if (POINTER_TYPE_P (type1))
219 return type1;
221 if (POINTER_TYPE_P (type2))
222 return type2;
224 if (!TYPE_UNSIGNED (type1)
225 || !TYPE_UNSIGNED (type2))
226 return max_signed_precision_type (type1, type2);
228 return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
231 static tree
232 clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
233 htab_t, htab_t);
235 /* Converts a Cloog reduction expression R with reduction operation OP
236 to a GCC expression tree of type TYPE. */
238 static tree
239 clast_to_gcc_expression_red (tree type, enum tree_code op,
240 struct clast_reduction *r,
241 sese region, VEC (tree, heap) *newivs,
242 htab_t newivs_index, htab_t params_index)
244 int i;
245 tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
246 newivs_index, params_index);
247 tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
249 for (i = 1; i < r->n; i++)
251 tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
252 newivs, newivs_index, params_index);
253 res = fold_build2 (op, type, res, t);
256 return res;
259 /* Converts a Cloog AST expression E back to a GCC expression tree of
260 type TYPE. */
262 static tree
263 clast_to_gcc_expression (tree type, struct clast_expr *e,
264 sese region, VEC (tree, heap) *newivs,
265 htab_t newivs_index, htab_t params_index)
267 switch (e->type)
269 case clast_expr_term:
271 struct clast_term *t = (struct clast_term *) e;
273 if (t->var)
275 if (mpz_cmp_si (t->val, 1) == 0)
277 tree name = clast_name_to_gcc (t->var, region, newivs,
278 newivs_index, params_index);
280 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
281 name = fold_convert (sizetype, name);
283 name = fold_convert (type, name);
284 return name;
287 else if (mpz_cmp_si (t->val, -1) == 0)
289 tree name = clast_name_to_gcc (t->var, region, newivs,
290 newivs_index, params_index);
292 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
293 name = fold_convert (sizetype, name);
295 name = fold_convert (type, name);
297 return fold_build1 (NEGATE_EXPR, type, name);
299 else
301 tree name = clast_name_to_gcc (t->var, region, newivs,
302 newivs_index, params_index);
303 tree cst = gmp_cst_to_tree (type, t->val);
305 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
306 name = fold_convert (sizetype, name);
308 name = fold_convert (type, name);
310 if (!POINTER_TYPE_P (type))
311 return fold_build2 (MULT_EXPR, type, cst, name);
313 gloog_error = true;
314 return cst;
317 else
318 return gmp_cst_to_tree (type, t->val);
321 case clast_expr_red:
323 struct clast_reduction *r = (struct clast_reduction *) e;
325 switch (r->type)
327 case clast_red_sum:
328 return clast_to_gcc_expression_red
329 (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
330 r, region, newivs, newivs_index, params_index);
332 case clast_red_min:
333 return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
334 newivs, newivs_index,
335 params_index);
337 case clast_red_max:
338 return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
339 newivs, newivs_index,
340 params_index);
342 default:
343 gcc_unreachable ();
345 break;
348 case clast_expr_bin:
350 struct clast_binary *b = (struct clast_binary *) e;
351 struct clast_expr *lhs = (struct clast_expr *) b->LHS;
352 tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
353 newivs_index, params_index);
354 tree tr = gmp_cst_to_tree (type, b->RHS);
356 switch (b->type)
358 case clast_bin_fdiv:
359 return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
361 case clast_bin_cdiv:
362 return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
364 case clast_bin_div:
365 return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
367 case clast_bin_mod:
368 return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
370 default:
371 gcc_unreachable ();
375 default:
376 gcc_unreachable ();
379 return NULL_TREE;
382 /* Return the precision needed to represent the value VAL. */
384 static int
385 precision_for_value (mpz_t val)
387 mpz_t x, y, two;
388 int precision;
390 mpz_init (x);
391 mpz_init (y);
392 mpz_init (two);
393 mpz_set_si (x, 2);
394 mpz_set (y, val);
395 mpz_set_si (two, 2);
396 precision = 1;
398 if (mpz_sgn (y) < 0)
399 mpz_neg (y, y);
401 while (mpz_cmp (y, x) >= 0)
403 mpz_mul (x, x, two);
404 precision++;
407 mpz_clear (x);
408 mpz_clear (y);
409 mpz_clear (two);
411 return precision;
414 /* Return the precision needed to represent the values between LOW and
415 UP. */
417 static int
418 precision_for_interval (mpz_t low, mpz_t up)
420 mpz_t diff;
421 int precision;
423 gcc_assert (mpz_cmp (low, up) <= 0);
425 mpz_init (diff);
426 mpz_sub (diff, up, low);
427 precision = precision_for_value (diff);
428 mpz_clear (diff);
430 return precision;
433 /* Return a type that could represent the integer value VAL. */
435 static tree
436 gcc_type_for_interval (mpz_t low, mpz_t up)
438 bool unsigned_p = true;
439 int precision, prec_up, prec_int;
440 tree type;
441 enum machine_mode mode;
443 gcc_assert (mpz_cmp (low, up) <= 0);
445 prec_up = precision_for_value (up);
446 prec_int = precision_for_interval (low, up);
447 precision = MAX (prec_up, prec_int);
449 if (precision > BITS_PER_WORD)
451 gloog_error = true;
452 return integer_type_node;
455 if (mpz_sgn (low) <= 0)
456 unsigned_p = false;
458 else if (precision < BITS_PER_WORD)
460 unsigned_p = false;
461 precision++;
464 mode = smallest_mode_for_size (precision, MODE_INT);
465 precision = GET_MODE_PRECISION (mode);
466 type = build_nonstandard_integer_type (precision, unsigned_p);
468 if (!type)
470 gloog_error = true;
471 return integer_type_node;
474 return type;
477 /* Return a type that could represent the integer value VAL, or
478 otherwise return NULL_TREE. */
480 static tree
481 gcc_type_for_value (mpz_t val)
483 return gcc_type_for_interval (val, val);
486 /* Return the type for the clast_term T used in STMT. */
488 static tree
489 gcc_type_for_clast_term (struct clast_term *t,
490 sese region, VEC (tree, heap) *newivs,
491 htab_t newivs_index, htab_t params_index)
493 gcc_assert (t->expr.type == clast_expr_term);
495 if (!t->var)
496 return gcc_type_for_value (t->val);
498 return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
499 newivs_index, params_index));
502 static tree
503 gcc_type_for_clast_expr (struct clast_expr *, sese,
504 VEC (tree, heap) *, htab_t, htab_t);
506 /* Return the type for the clast_reduction R used in STMT. */
508 static tree
509 gcc_type_for_clast_red (struct clast_reduction *r, sese region,
510 VEC (tree, heap) *newivs,
511 htab_t newivs_index, htab_t params_index)
513 int i;
514 tree type = NULL_TREE;
516 if (r->n == 1)
517 return gcc_type_for_clast_expr (r->elts[0], region, newivs,
518 newivs_index, params_index);
520 switch (r->type)
522 case clast_red_sum:
523 case clast_red_min:
524 case clast_red_max:
525 type = gcc_type_for_clast_expr (r->elts[0], region, newivs,
526 newivs_index, params_index);
527 for (i = 1; i < r->n; i++)
528 type = max_precision_type (type, gcc_type_for_clast_expr
529 (r->elts[i], region, newivs,
530 newivs_index, params_index));
532 return type;
534 default:
535 break;
538 gcc_unreachable ();
539 return NULL_TREE;
542 /* Return the type for the clast_binary B used in STMT. */
544 static tree
545 gcc_type_for_clast_bin (struct clast_binary *b,
546 sese region, VEC (tree, heap) *newivs,
547 htab_t newivs_index, htab_t params_index)
549 tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region,
550 newivs, newivs_index, params_index);
551 tree r = gcc_type_for_value (b->RHS);
552 return max_signed_precision_type (l, r);
555 /* Returns the type for the CLAST expression E when used in statement
556 STMT. */
558 static tree
559 gcc_type_for_clast_expr (struct clast_expr *e,
560 sese region, VEC (tree, heap) *newivs,
561 htab_t newivs_index, htab_t params_index)
563 switch (e->type)
565 case clast_expr_term:
566 return gcc_type_for_clast_term ((struct clast_term *) e, region,
567 newivs, newivs_index, params_index);
569 case clast_expr_red:
570 return gcc_type_for_clast_red ((struct clast_reduction *) e, region,
571 newivs, newivs_index, params_index);
573 case clast_expr_bin:
574 return gcc_type_for_clast_bin ((struct clast_binary *) e, region,
575 newivs, newivs_index, params_index);
577 default:
578 gcc_unreachable ();
581 return NULL_TREE;
584 /* Returns the type for the equation CLEQ. */
586 static tree
587 gcc_type_for_clast_eq (struct clast_equation *cleq,
588 sese region, VEC (tree, heap) *newivs,
589 htab_t newivs_index, htab_t params_index)
591 tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
592 newivs_index, params_index);
593 tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs,
594 newivs_index, params_index);
595 return max_precision_type (l, r);
598 /* Translates a clast equation CLEQ to a tree. */
600 static tree
601 graphite_translate_clast_equation (sese region,
602 struct clast_equation *cleq,
603 VEC (tree, heap) *newivs,
604 htab_t newivs_index, htab_t params_index)
606 enum tree_code comp;
607 tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
608 params_index);
609 tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
610 newivs_index, params_index);
611 tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
612 newivs_index, params_index);
614 if (cleq->sign == 0)
615 comp = EQ_EXPR;
617 else if (cleq->sign > 0)
618 comp = GE_EXPR;
620 else
621 comp = LE_EXPR;
623 return fold_build2 (comp, boolean_type_node, lhs, rhs);
626 /* Creates the test for the condition in STMT. */
628 static tree
629 graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
630 VEC (tree, heap) *newivs,
631 htab_t newivs_index, htab_t params_index)
633 tree cond = NULL;
634 int i;
636 for (i = 0; i < stmt->n; i++)
638 tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
639 newivs, newivs_index,
640 params_index);
642 if (cond)
643 cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
644 else
645 cond = eq;
648 return cond;
651 /* Creates a new if region corresponding to Cloog's guard. */
653 static edge
654 graphite_create_new_guard (sese region, edge entry_edge,
655 struct clast_guard *stmt,
656 VEC (tree, heap) *newivs,
657 htab_t newivs_index, htab_t params_index)
659 tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
660 newivs_index, params_index);
661 edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
662 return exit_edge;
665 /* Compute the lower bound LOW and upper bound UP for the induction
666 variable at LEVEL for the statement PBB, based on the transformed
667 scattering of PBB: T|I|G|Cst, with T the scattering transform, I
668 the iteration domain, and G the context parameters. */
670 static void
671 compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
673 ppl_Pointset_Powerset_C_Polyhedron_t ps;
674 ppl_Linear_Expression_t le;
676 combine_context_id_scat (&ps, pbb, false);
678 /* Prepare the linear expression corresponding to the level that we
679 want to maximize/minimize. */
681 ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
682 + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
684 ppl_new_Linear_Expression_with_dimension (&le, dim);
685 ppl_set_coef (le, 2 * level + 1, 1);
688 ppl_max_for_le_pointset (ps, le, up);
689 ppl_min_for_le_pointset (ps, le, low);
690 ppl_delete_Linear_Expression (le);
691 ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
694 /* Compute the type for the induction variable at LEVEL for the
695 statement PBB, based on the transformed schedule of PBB. */
697 static tree
698 compute_type_for_level (poly_bb_p pbb, int level)
700 mpz_t low, up;
701 tree type;
703 mpz_init (low);
704 mpz_init (up);
706 compute_bounds_for_level (pbb, level, low, up);
707 type = gcc_type_for_interval (low, up);
709 mpz_clear (low);
710 mpz_clear (up);
711 return type;
714 /* Walks a CLAST and returns the first statement in the body of a
715 loop. */
717 static struct clast_user_stmt *
718 clast_get_body_of_loop (struct clast_stmt *stmt)
720 if (!stmt
721 || CLAST_STMT_IS_A (stmt, stmt_user))
722 return (struct clast_user_stmt *) stmt;
724 if (CLAST_STMT_IS_A (stmt, stmt_for))
725 return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
727 if (CLAST_STMT_IS_A (stmt, stmt_guard))
728 return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
730 if (CLAST_STMT_IS_A (stmt, stmt_block))
731 return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
733 gcc_unreachable ();
736 /* Returns the type for the induction variable for the loop translated
737 from STMT_FOR. */
739 static tree
740 gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level,
741 tree lb_type, tree ub_type)
743 struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
744 struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
745 CloogStatement *cs = body->statement;
746 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
748 return max_signed_precision_type (lb_type, max_precision_type
749 (ub_type, compute_type_for_level
750 (pbb, level - 1)));
753 /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
754 induction variable for the new LOOP. New LOOP is attached to CFG
755 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
756 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
757 CLooG's scattering name to the induction variable created for the
758 loop of STMT. The new induction variable is inserted in the NEWIVS
759 vector. */
761 static struct loop *
762 graphite_create_new_loop (sese region, edge entry_edge,
763 struct clast_for *stmt,
764 loop_p outer, VEC (tree, heap) **newivs,
765 htab_t newivs_index, htab_t params_index, int level)
767 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs,
768 newivs_index, params_index);
769 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs,
770 newivs_index, params_index);
771 tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type);
772 tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
773 newivs_index, params_index);
774 tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
775 newivs_index, params_index);
776 tree stride = gmp_cst_to_tree (type, stmt->stride);
777 tree ivvar = create_tmp_var (type, "graphite_IV");
778 tree iv, iv_after_increment;
779 loop_p loop = create_empty_loop_on_edge
780 (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
781 outer ? outer : entry_edge->src->loop_father);
783 add_referenced_var (ivvar);
785 save_clast_name_index (newivs_index, stmt->iterator,
786 VEC_length (tree, *newivs));
787 VEC_safe_push (tree, heap, *newivs, iv);
788 return loop;
791 /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
792 induction variables of the loops around GBB in SESE. */
794 static void
795 build_iv_mapping (VEC (tree, heap) *iv_map, sese region,
796 VEC (tree, heap) *newivs, htab_t newivs_index,
797 struct clast_user_stmt *user_stmt,
798 htab_t params_index)
800 struct clast_stmt *t;
801 int depth = 0;
802 CloogStatement *cs = user_stmt->statement;
803 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
804 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
806 for (t = user_stmt->substitutions; t; t = t->next, depth++)
808 struct clast_expr *expr = (struct clast_expr *)
809 ((struct clast_assignment *)t)->RHS;
810 tree type = gcc_type_for_clast_expr (expr, region, newivs,
811 newivs_index, params_index);
812 tree new_name = clast_to_gcc_expression (type, expr, region, newivs,
813 newivs_index, params_index);
814 loop_p old_loop = gbb_loop_at_index (gbb, region, depth);
816 VEC_replace (tree, iv_map, old_loop->num, new_name);
820 /* Construct bb_pbb_def with BB and PBB. */
822 static bb_pbb_def *
823 new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
825 bb_pbb_def *bb_pbb_p;
827 bb_pbb_p = XNEW (bb_pbb_def);
828 bb_pbb_p->bb = bb;
829 bb_pbb_p->pbb = pbb;
831 return bb_pbb_p;
834 /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
836 static void
837 mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
839 bb_pbb_def tmp;
840 PTR *x;
842 tmp.bb = bb;
843 x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
845 if (x && !*x)
846 *x = new_bb_pbb_def (bb, pbb);
849 /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
851 static poly_bb_p
852 find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
854 bb_pbb_def tmp;
855 PTR *slot;
857 tmp.bb = bb;
858 slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
860 if (slot && *slot)
861 return ((bb_pbb_def *) *slot)->pbb;
863 return NULL;
866 /* Check data dependency in LOOP at scattering level LEVEL.
867 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
868 mapping. */
870 static bool
871 dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
873 unsigned i,j;
874 basic_block *bbs = get_loop_body_in_dom_order (loop);
876 for (i = 0; i < loop->num_nodes; i++)
878 poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
880 if (pbb1 == NULL)
881 continue;
883 for (j = 0; j < loop->num_nodes; j++)
885 poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
887 if (pbb2 == NULL)
888 continue;
890 if (dependency_between_pbbs_p (pbb1, pbb2, level))
892 free (bbs);
893 return true;
898 free (bbs);
900 return false;
903 /* Translates a clast user statement STMT to gimple.
905 - REGION is the sese region we used to generate the scop.
906 - NEXT_E is the edge where new generated code should be attached.
907 - CONTEXT_LOOP is the loop in which the generated code will be placed
908 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
909 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
910 the sese region. */
911 static edge
912 translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
913 VEC (tree, heap) **newivs,
914 htab_t newivs_index, htab_t bb_pbb_mapping,
915 htab_t params_index)
917 int i, nb_loops;
918 basic_block new_bb;
919 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
920 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
921 VEC (tree, heap) *iv_map;
923 if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
924 return next_e;
926 nb_loops = number_of_loops ();
927 iv_map = VEC_alloc (tree, heap, nb_loops);
928 for (i = 0; i < nb_loops; i++)
929 VEC_quick_push (tree, iv_map, NULL_TREE);
931 build_iv_mapping (iv_map, region, *newivs, newivs_index, stmt, params_index);
932 next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
933 next_e, iv_map);
934 VEC_free (tree, heap, iv_map);
936 new_bb = next_e->src;
937 mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
938 update_ssa (TODO_update_ssa);
940 return next_e;
943 /* Creates a new if region protecting the loop to be executed, if the execution
944 count is zero (lb > ub). */
946 static edge
947 graphite_create_new_loop_guard (sese region, edge entry_edge,
948 struct clast_for *stmt,
949 VEC (tree, heap) *newivs,
950 htab_t newivs_index, htab_t params_index)
952 tree cond_expr;
953 edge exit_edge;
954 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs,
955 newivs_index, params_index);
956 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs,
957 newivs_index, params_index);
958 tree type = max_precision_type (lb_type, ub_type);
959 tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
960 newivs_index, params_index);
961 tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
962 newivs_index, params_index);
963 /* When ub is simply a constant or a parameter, use lb <= ub. */
964 if (TREE_CODE (ub) == INTEGER_CST || TREE_CODE (ub) == SSA_NAME)
965 cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub);
966 else
968 tree one = (POINTER_TYPE_P (type)
969 ? size_one_node
970 : fold_convert (type, integer_one_node));
971 /* Adding +1 and using LT_EXPR helps with loop latches that have a
972 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
973 2^k-1 due to integer overflow, and the condition lb <= ub is true,
974 even if we do not want this. However lb < ub + 1 is false, as
975 expected. */
976 tree ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR
977 : PLUS_EXPR, type, ub, one);
979 cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one);
982 exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
984 return exit_edge;
987 static edge
988 translate_clast (sese, loop_p, struct clast_stmt *, edge,
989 VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
991 /* Create the loop for a clast for statement.
993 - REGION is the sese region we used to generate the scop.
994 - NEXT_E is the edge where new generated code should be attached.
995 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
996 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
997 the sese region. */
998 static edge
999 translate_clast_for_loop (sese region, loop_p context_loop,
1000 struct clast_for *stmt, edge next_e,
1001 VEC (tree, heap) **newivs,
1002 htab_t newivs_index, htab_t bb_pbb_mapping,
1003 int level, htab_t params_index)
1005 struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
1006 context_loop, newivs,
1007 newivs_index, params_index,
1008 level);
1009 edge last_e = single_exit (loop);
1010 edge to_body = single_succ_edge (loop->header);
1011 basic_block after = to_body->dest;
1013 /* Create a basic block for loop close phi nodes. */
1014 last_e = single_succ_edge (split_edge (last_e));
1016 /* Translate the body of the loop. */
1017 next_e = translate_clast (region, loop, stmt->body, to_body,
1018 newivs, newivs_index, bb_pbb_mapping, level + 1,
1019 params_index);
1020 redirect_edge_succ_nodup (next_e, after);
1021 set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
1023 if (flag_loop_parallelize_all
1024 && !dependency_in_loop_p (loop, bb_pbb_mapping,
1025 get_scattering_level (level)))
1026 loop->can_be_parallel = true;
1028 return last_e;
1031 /* Translates a clast for statement STMT to gimple. First a guard is created
1032 protecting the loop, if it is executed zero times. In this guard we create
1033 the real loop structure.
1035 - REGION is the sese region we used to generate the scop.
1036 - NEXT_E is the edge where new generated code should be attached.
1037 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1038 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1039 the sese region. */
1040 static edge
1041 translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
1042 edge next_e, VEC (tree, heap) **newivs,
1043 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1044 htab_t params_index)
1046 edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
1047 newivs_index, params_index);
1048 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1050 translate_clast_for_loop (region, context_loop, stmt, true_e, newivs,
1051 newivs_index, bb_pbb_mapping, level,
1052 params_index);
1053 return last_e;
1056 /* Translates a clast guard statement STMT to gimple.
1058 - REGION is the sese region we used to generate the scop.
1059 - NEXT_E is the edge where new generated code should be attached.
1060 - CONTEXT_LOOP is the loop in which the generated code will be placed
1061 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1062 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1063 the sese region. */
1064 static edge
1065 translate_clast_guard (sese region, loop_p context_loop,
1066 struct clast_guard *stmt, edge next_e,
1067 VEC (tree, heap) **newivs,
1068 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1069 htab_t params_index)
1071 edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
1072 newivs_index, params_index);
1073 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1075 translate_clast (region, context_loop, stmt->then, true_e,
1076 newivs, newivs_index, bb_pbb_mapping,
1077 level, params_index);
1078 return last_e;
1081 /* Translates a CLAST statement STMT to GCC representation in the
1082 context of a SESE.
1084 - NEXT_E is the edge where new generated code should be attached.
1085 - CONTEXT_LOOP is the loop in which the generated code will be placed
1086 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1087 static edge
1088 translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
1089 edge next_e, VEC (tree, heap) **newivs,
1090 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1091 htab_t params_index)
1093 if (!stmt)
1094 return next_e;
1096 if (CLAST_STMT_IS_A (stmt, stmt_root))
1097 ; /* Do nothing. */
1099 else if (CLAST_STMT_IS_A (stmt, stmt_user))
1100 next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
1101 next_e, newivs, newivs_index,
1102 bb_pbb_mapping, params_index);
1104 else if (CLAST_STMT_IS_A (stmt, stmt_for))
1105 next_e = translate_clast_for (region, context_loop,
1106 (struct clast_for *) stmt, next_e,
1107 newivs, newivs_index,
1108 bb_pbb_mapping, level, params_index);
1110 else if (CLAST_STMT_IS_A (stmt, stmt_guard))
1111 next_e = translate_clast_guard (region, context_loop,
1112 (struct clast_guard *) stmt, next_e,
1113 newivs, newivs_index,
1114 bb_pbb_mapping, level, params_index);
1116 else if (CLAST_STMT_IS_A (stmt, stmt_block))
1117 next_e = translate_clast (region, context_loop,
1118 ((struct clast_block *) stmt)->body,
1119 next_e, newivs, newivs_index,
1120 bb_pbb_mapping, level, params_index);
1121 else
1122 gcc_unreachable();
1124 recompute_all_dominators ();
1125 graphite_verify ();
1127 return translate_clast (region, context_loop, stmt->next, next_e,
1128 newivs, newivs_index,
1129 bb_pbb_mapping, level, params_index);
1132 /* Free the SCATTERING domain list. */
1134 static void
1135 free_scattering (CloogScatteringList *scattering)
1137 while (scattering)
1139 CloogScattering *dom = cloog_scattering (scattering);
1140 CloogScatteringList *next = cloog_next_scattering (scattering);
1142 cloog_scattering_free (dom);
1143 free (scattering);
1144 scattering = next;
1148 /* Initialize Cloog's parameter names from the names used in GIMPLE.
1149 Initialize Cloog's iterator names, using 'graphite_iterator_%d'
1150 from 0 to scop_nb_loops (scop). */
1152 static void
1153 initialize_cloog_names (scop_p scop, CloogProgram *prog)
1155 sese region = SCOP_REGION (scop);
1156 int i;
1157 int nb_iterators = scop_max_loop_depth (scop);
1158 int nb_scattering = cloog_program_nb_scattdims (prog);
1159 int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
1160 char **iterators = XNEWVEC (char *, nb_iterators * 2);
1161 char **scattering = XNEWVEC (char *, nb_scattering);
1162 char **parameters= XNEWVEC (char *, nb_parameters);
1164 cloog_program_set_names (prog, cloog_names_malloc ());
1166 for (i = 0; i < nb_parameters; i++)
1168 tree param = VEC_index (tree, SESE_PARAMS(region), i);
1169 const char *name = get_name (param);
1170 int len;
1172 if (!name)
1173 name = "T";
1175 len = strlen (name);
1176 len += 17;
1177 parameters[i] = XNEWVEC (char, len + 1);
1178 snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
1181 cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
1182 cloog_names_set_parameters (cloog_program_names (prog), parameters);
1184 for (i = 0; i < nb_iterators; i++)
1186 int len = 4 + 16;
1187 iterators[i] = XNEWVEC (char, len);
1188 snprintf (iterators[i], len, "git_%d", i);
1191 cloog_names_set_nb_iterators (cloog_program_names (prog),
1192 nb_iterators);
1193 cloog_names_set_iterators (cloog_program_names (prog),
1194 iterators);
1196 for (i = 0; i < nb_scattering; i++)
1198 int len = 5 + 16;
1199 scattering[i] = XNEWVEC (char, len);
1200 snprintf (scattering[i], len, "scat_%d", i);
1203 cloog_names_set_nb_scattering (cloog_program_names (prog),
1204 nb_scattering);
1205 cloog_names_set_scattering (cloog_program_names (prog),
1206 scattering);
1209 /* Initialize a CLooG input file. */
1211 static FILE *
1212 init_cloog_input_file (int scop_number)
1214 FILE *graphite_out_file;
1215 int len = strlen (dump_base_name);
1216 char *dumpname = XNEWVEC (char, len + 25);
1217 char *s_scop_number = XNEWVEC (char, 15);
1219 memcpy (dumpname, dump_base_name, len + 1);
1220 strip_off_ending (dumpname, len);
1221 sprintf (s_scop_number, ".%d", scop_number);
1222 strcat (dumpname, s_scop_number);
1223 strcat (dumpname, ".cloog");
1224 graphite_out_file = fopen (dumpname, "w+b");
1226 if (graphite_out_file == 0)
1227 fatal_error ("can%'t open %s for writing: %m", dumpname);
1229 free (dumpname);
1231 return graphite_out_file;
1234 /* Build cloog program for SCoP. */
1236 static void
1237 build_cloog_prog (scop_p scop, CloogProgram *prog,
1238 CloogOptions *options)
1240 int i;
1241 int max_nb_loops = scop_max_loop_depth (scop);
1242 poly_bb_p pbb;
1243 CloogLoop *loop_list = NULL;
1244 CloogBlockList *block_list = NULL;
1245 CloogScatteringList *scattering = NULL;
1246 int nbs = 2 * max_nb_loops + 1;
1247 int *scaldims;
1249 cloog_program_set_context
1250 (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop),
1251 scop_nb_params (scop), cloog_state));
1252 nbs = unify_scattering_dimensions (scop);
1253 scaldims = (int *) xmalloc (nbs * (sizeof (int)));
1254 cloog_program_set_nb_scattdims (prog, nbs);
1255 initialize_cloog_names (scop, prog);
1257 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
1259 CloogStatement *stmt;
1260 CloogBlock *block;
1261 CloogDomain *dom;
1263 /* Dead code elimination: when the domain of a PBB is empty,
1264 don't generate code for the PBB. */
1265 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
1266 continue;
1268 /* Build the new statement and its block. */
1269 stmt = cloog_statement_alloc (cloog_state, pbb_index (pbb));
1270 dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb),
1271 scop_nb_params (scop),
1272 cloog_state);
1273 block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
1274 cloog_statement_set_usr (stmt, pbb);
1276 /* Build loop list. */
1278 CloogLoop *new_loop_list = cloog_loop_malloc (cloog_state);
1279 cloog_loop_set_next (new_loop_list, loop_list);
1280 cloog_loop_set_domain (new_loop_list, dom);
1281 cloog_loop_set_block (new_loop_list, block);
1282 loop_list = new_loop_list;
1285 /* Build block list. */
1287 CloogBlockList *new_block_list = cloog_block_list_malloc ();
1289 cloog_block_list_set_next (new_block_list, block_list);
1290 cloog_block_list_set_block (new_block_list, block);
1291 block_list = new_block_list;
1294 /* Build scattering list. */
1296 /* XXX: Replace with cloog_domain_list_alloc(), when available. */
1297 CloogScatteringList *new_scattering
1298 = (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList));
1299 ppl_Polyhedron_t scat;
1300 CloogScattering *dom;
1302 scat = PBB_TRANSFORMED_SCATTERING (pbb);
1303 dom = new_Cloog_Scattering_from_ppl_Polyhedron
1304 (scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb),
1305 cloog_state);
1307 cloog_set_next_scattering (new_scattering, scattering);
1308 cloog_set_scattering (new_scattering, dom);
1309 scattering = new_scattering;
1313 cloog_program_set_loop (prog, loop_list);
1314 cloog_program_set_blocklist (prog, block_list);
1316 for (i = 0; i < nbs; i++)
1317 scaldims[i] = 0 ;
1319 cloog_program_set_scaldims (prog, scaldims);
1321 /* Extract scalar dimensions to simplify the code generation problem. */
1322 cloog_program_extract_scalars (prog, scattering, options);
1324 /* Dump a .cloog input file, if requested. This feature is only
1325 enabled in the Graphite branch. */
1326 if (0)
1328 static size_t file_scop_number = 0;
1329 FILE *cloog_file = init_cloog_input_file (file_scop_number);
1331 cloog_program_dump_cloog (cloog_file, prog, scattering);
1332 ++file_scop_number;
1335 /* Apply scattering. */
1336 cloog_program_scatter (prog, scattering, options);
1337 free_scattering (scattering);
1339 /* Iterators corresponding to scalar dimensions have to be extracted. */
1340 cloog_names_scalarize (cloog_program_names (prog), nbs,
1341 cloog_program_scaldims (prog));
1343 /* Free blocklist. */
1345 CloogBlockList *next = cloog_program_blocklist (prog);
1347 while (next)
1349 CloogBlockList *toDelete = next;
1350 next = cloog_block_list_next (next);
1351 cloog_block_list_set_next (toDelete, NULL);
1352 cloog_block_list_set_block (toDelete, NULL);
1353 cloog_block_list_free (toDelete);
1355 cloog_program_set_blocklist (prog, NULL);
1359 /* Return the options that will be used in GLOOG. */
1361 static CloogOptions *
1362 set_cloog_options (void)
1364 CloogOptions *options = cloog_options_malloc (cloog_state);
1366 /* Change cloog output language to C. If we do use FORTRAN instead, cloog
1367 will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
1368 we pass an incomplete program to cloog. */
1369 options->language = LANGUAGE_C;
1371 /* Enable complex equality spreading: removes dummy statements
1372 (assignments) in the generated code which repeats the
1373 substitution equations for statements. This is useless for
1374 GLooG. */
1375 options->esp = 1;
1377 #ifdef CLOOG_ORG
1378 /* Silence CLooG to avoid failing tests due to debug output to stderr. */
1379 options->quiet = 1;
1380 #else
1381 /* Enable C pretty-printing mode: normalizes the substitution
1382 equations for statements. */
1383 options->cpp = 1;
1384 #endif
1386 /* Allow cloog to build strides with a stride width different to one.
1387 This example has stride = 4:
1389 for (i = 0; i < 20; i += 4)
1390 A */
1391 options->strides = 1;
1393 /* Disable optimizations and make cloog generate source code closer to the
1394 input. This is useful for debugging, but later we want the optimized
1395 code.
1397 XXX: We can not disable optimizations, as loop blocking is not working
1398 without them. */
1399 if (0)
1401 options->f = -1;
1402 options->l = INT_MAX;
1405 return options;
1408 /* Prints STMT to STDERR. */
1410 void
1411 print_clast_stmt (FILE *file, struct clast_stmt *stmt)
1413 CloogOptions *options = set_cloog_options ();
1415 clast_pprint (file, stmt, 0, options);
1416 cloog_options_free (options);
1419 /* Prints STMT to STDERR. */
1421 DEBUG_FUNCTION void
1422 debug_clast_stmt (struct clast_stmt *stmt)
1424 print_clast_stmt (stderr, stmt);
1427 /* Translate SCOP to a CLooG program and clast. These two
1428 representations should be freed together: a clast cannot be used
1429 without a program. */
1431 cloog_prog_clast
1432 scop_to_clast (scop_p scop)
1434 CloogOptions *options = set_cloog_options ();
1435 cloog_prog_clast pc;
1437 /* Connect new cloog prog generation to graphite. */
1438 pc.prog = cloog_program_malloc ();
1439 build_cloog_prog (scop, pc.prog, options);
1440 pc.prog = cloog_program_generate (pc.prog, options);
1441 pc.stmt = cloog_clast_create (pc.prog, options);
1443 cloog_options_free (options);
1444 return pc;
1447 /* Prints to FILE the code generated by CLooG for SCOP. */
1449 void
1450 print_generated_program (FILE *file, scop_p scop)
1452 CloogOptions *options = set_cloog_options ();
1454 cloog_prog_clast pc = scop_to_clast (scop);
1456 fprintf (file, " (prog: \n");
1457 cloog_program_print (file, pc.prog);
1458 fprintf (file, " )\n");
1460 fprintf (file, " (clast: \n");
1461 clast_pprint (file, pc.stmt, 0, options);
1462 fprintf (file, " )\n");
1464 cloog_options_free (options);
1465 cloog_clast_free (pc.stmt);
1466 cloog_program_free (pc.prog);
1469 /* Prints to STDERR the code generated by CLooG for SCOP. */
1471 DEBUG_FUNCTION void
1472 debug_generated_program (scop_p scop)
1474 print_generated_program (stderr, scop);
1477 /* Add CLooG names to parameter index. The index is used to translate
1478 back from CLooG names to GCC trees. */
1480 static void
1481 create_params_index (htab_t index_table, CloogProgram *prog) {
1482 CloogNames* names = cloog_program_names (prog);
1483 int nb_parameters = cloog_names_nb_parameters (names);
1484 char **parameters = cloog_names_parameters (names);
1485 int i;
1487 for (i = 0; i < nb_parameters; i++)
1488 save_clast_name_index (index_table, parameters[i], i);
1491 /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
1492 the given SCOP. Return true if code generation succeeded.
1493 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
1496 bool
1497 gloog (scop_p scop, htab_t bb_pbb_mapping)
1499 VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
1500 loop_p context_loop;
1501 sese region = SCOP_REGION (scop);
1502 ifsese if_region = NULL;
1503 htab_t newivs_index, params_index;
1504 cloog_prog_clast pc;
1506 timevar_push (TV_GRAPHITE_CODE_GEN);
1507 gloog_error = false;
1509 pc = scop_to_clast (scop);
1511 if (dump_file && (dump_flags & TDF_DETAILS))
1513 fprintf (dump_file, "\nCLAST generated by CLooG: \n");
1514 print_clast_stmt (dump_file, pc.stmt);
1515 fprintf (dump_file, "\n");
1518 recompute_all_dominators ();
1519 graphite_verify ();
1521 if_region = move_sese_in_condition (region);
1522 sese_insert_phis_for_liveouts (region,
1523 if_region->region->exit->src,
1524 if_region->false_region->exit,
1525 if_region->true_region->exit);
1526 recompute_all_dominators ();
1527 graphite_verify ();
1529 context_loop = SESE_ENTRY (region)->src->loop_father;
1530 newivs_index = htab_create (10, clast_name_index_elt_info,
1531 eq_clast_name_indexes, free);
1532 params_index = htab_create (10, clast_name_index_elt_info,
1533 eq_clast_name_indexes, free);
1535 create_params_index (params_index, pc.prog);
1537 translate_clast (region, context_loop, pc.stmt,
1538 if_region->true_region->entry,
1539 &newivs, newivs_index,
1540 bb_pbb_mapping, 1, params_index);
1541 graphite_verify ();
1542 scev_reset ();
1543 recompute_all_dominators ();
1544 graphite_verify ();
1546 if (gloog_error)
1547 set_ifsese_condition (if_region, integer_zero_node);
1549 free (if_region->true_region);
1550 free (if_region->region);
1551 free (if_region);
1553 htab_delete (newivs_index);
1554 htab_delete (params_index);
1555 VEC_free (tree, heap, newivs);
1556 cloog_clast_free (pc.stmt);
1557 cloog_program_free (pc.prog);
1558 timevar_pop (TV_GRAPHITE_CODE_GEN);
1560 if (dump_file && (dump_flags & TDF_DETAILS))
1562 loop_p loop;
1563 loop_iterator li;
1564 int num_no_dependency = 0;
1566 FOR_EACH_LOOP (li, loop, 0)
1567 if (loop->can_be_parallel)
1568 num_no_dependency++;
1570 fprintf (dump_file, "\n%d loops carried no dependency.\n",
1571 num_no_dependency);
1574 return !gloog_error;
1576 #endif