* tree-inline.c (estimate_num_insns_1): Make OpenMP directives
[official-gcc.git] / gcc / fold-const.c
blob67991076577de6d85fa523598d10988490a4e177
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant, an overflowable flag and prior
43 overflow indicators. It forces the value to fit the type and sets
44 TREE_OVERFLOW and TREE_CONSTANT_OVERFLOW as appropriate. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "flags.h"
51 #include "tree.h"
52 #include "real.h"
53 #include "rtl.h"
54 #include "expr.h"
55 #include "tm_p.h"
56 #include "toplev.h"
57 #include "ggc.h"
58 #include "hashtab.h"
59 #include "langhooks.h"
60 #include "md5.h"
62 /* The following constants represent a bit based encoding of GCC's
63 comparison operators. This encoding simplifies transformations
64 on relational comparison operators, such as AND and OR. */
65 enum comparison_code {
66 COMPCODE_FALSE = 0,
67 COMPCODE_LT = 1,
68 COMPCODE_EQ = 2,
69 COMPCODE_LE = 3,
70 COMPCODE_GT = 4,
71 COMPCODE_LTGT = 5,
72 COMPCODE_GE = 6,
73 COMPCODE_ORD = 7,
74 COMPCODE_UNORD = 8,
75 COMPCODE_UNLT = 9,
76 COMPCODE_UNEQ = 10,
77 COMPCODE_UNLE = 11,
78 COMPCODE_UNGT = 12,
79 COMPCODE_NE = 13,
80 COMPCODE_UNGE = 14,
81 COMPCODE_TRUE = 15
84 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
85 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
86 static bool negate_mathfn_p (enum built_in_function);
87 static bool negate_expr_p (tree);
88 static tree negate_expr (tree);
89 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
90 static tree associate_trees (tree, tree, enum tree_code, tree);
91 static tree const_binop (enum tree_code, tree, tree, int);
92 static enum comparison_code comparison_to_compcode (enum tree_code);
93 static enum tree_code compcode_to_comparison (enum comparison_code);
94 static tree combine_comparisons (enum tree_code, enum tree_code,
95 enum tree_code, tree, tree, tree);
96 static int truth_value_p (enum tree_code);
97 static int operand_equal_for_comparison_p (tree, tree, tree);
98 static int twoval_comparison_p (tree, tree *, tree *, int *);
99 static tree eval_subst (tree, tree, tree, tree, tree);
100 static tree pedantic_omit_one_operand (tree, tree, tree);
101 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
102 static tree make_bit_field_ref (tree, tree, int, int, int);
103 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
104 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
105 enum machine_mode *, int *, int *,
106 tree *, tree *);
107 static int all_ones_mask_p (tree, int);
108 static tree sign_bit_p (tree, tree);
109 static int simple_operand_p (tree);
110 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
111 static tree make_range (tree, int *, tree *, tree *);
112 static tree build_range_check (tree, tree, int, tree, tree);
113 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
114 tree);
115 static tree fold_range_test (enum tree_code, tree, tree, tree);
116 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
117 static tree unextend (tree, int, int, tree);
118 static tree fold_truthop (enum tree_code, tree, tree, tree);
119 static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
120 static tree extract_muldiv (tree, tree, enum tree_code, tree);
121 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree);
122 static int multiple_of_p (tree, tree, tree);
123 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
124 tree, tree,
125 tree, tree, int);
126 static bool fold_real_zero_addition_p (tree, tree, int);
127 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
128 tree, tree, tree);
129 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
130 static tree fold_div_compare (enum tree_code, tree, tree, tree);
131 static bool reorder_operands_p (tree, tree);
132 static tree fold_negate_const (tree, tree);
133 static tree fold_not_const (tree, tree);
134 static tree fold_relational_const (enum tree_code, tree, tree, tree);
136 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
137 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
138 and SUM1. Then this yields nonzero if overflow occurred during the
139 addition.
141 Overflow occurs if A and B have the same sign, but A and SUM differ in
142 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
143 sign. */
144 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
146 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
147 We do that by representing the two-word integer in 4 words, with only
148 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
149 number. The value of the word is LOWPART + HIGHPART * BASE. */
151 #define LOWPART(x) \
152 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
153 #define HIGHPART(x) \
154 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
155 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
157 /* Unpack a two-word integer into 4 words.
158 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
159 WORDS points to the array of HOST_WIDE_INTs. */
161 static void
162 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
164 words[0] = LOWPART (low);
165 words[1] = HIGHPART (low);
166 words[2] = LOWPART (hi);
167 words[3] = HIGHPART (hi);
170 /* Pack an array of 4 words into a two-word integer.
171 WORDS points to the array of words.
172 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
174 static void
175 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
176 HOST_WIDE_INT *hi)
178 *low = words[0] + words[1] * BASE;
179 *hi = words[2] + words[3] * BASE;
182 /* T is an INT_CST node. OVERFLOWABLE indicates if we are interested
183 in overflow of the value, when >0 we are only interested in signed
184 overflow, for <0 we are interested in any overflow. OVERFLOWED
185 indicates whether overflow has already occurred. CONST_OVERFLOWED
186 indicates whether constant overflow has already occurred. We force
187 T's value to be within range of T's type (by setting to 0 or 1 all
188 the bits outside the type's range). We set TREE_OVERFLOWED if,
189 OVERFLOWED is nonzero,
190 or OVERFLOWABLE is >0 and signed overflow occurs
191 or OVERFLOWABLE is <0 and any overflow occurs
192 We set TREE_CONSTANT_OVERFLOWED if,
193 CONST_OVERFLOWED is nonzero
194 or we set TREE_OVERFLOWED.
195 We return either the original T, or a copy. */
197 tree
198 force_fit_type (tree t, int overflowable,
199 bool overflowed, bool overflowed_const)
201 unsigned HOST_WIDE_INT low;
202 HOST_WIDE_INT high;
203 unsigned int prec;
204 int sign_extended_type;
206 gcc_assert (TREE_CODE (t) == INTEGER_CST);
208 low = TREE_INT_CST_LOW (t);
209 high = TREE_INT_CST_HIGH (t);
211 if (POINTER_TYPE_P (TREE_TYPE (t))
212 || TREE_CODE (TREE_TYPE (t)) == OFFSET_TYPE)
213 prec = POINTER_SIZE;
214 else
215 prec = TYPE_PRECISION (TREE_TYPE (t));
216 /* Size types *are* sign extended. */
217 sign_extended_type = (!TYPE_UNSIGNED (TREE_TYPE (t))
218 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
219 && TYPE_IS_SIZETYPE (TREE_TYPE (t))));
221 /* First clear all bits that are beyond the type's precision. */
223 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
225 else if (prec > HOST_BITS_PER_WIDE_INT)
226 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
227 else
229 high = 0;
230 if (prec < HOST_BITS_PER_WIDE_INT)
231 low &= ~((HOST_WIDE_INT) (-1) << prec);
234 if (!sign_extended_type)
235 /* No sign extension */;
236 else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
237 /* Correct width already. */;
238 else if (prec > HOST_BITS_PER_WIDE_INT)
240 /* Sign extend top half? */
241 if (high & ((unsigned HOST_WIDE_INT)1
242 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
243 high |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
245 else if (prec == HOST_BITS_PER_WIDE_INT)
247 if ((HOST_WIDE_INT)low < 0)
248 high = -1;
250 else
252 /* Sign extend bottom half? */
253 if (low & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
255 high = -1;
256 low |= (HOST_WIDE_INT)(-1) << prec;
260 /* If the value changed, return a new node. */
261 if (overflowed || overflowed_const
262 || low != TREE_INT_CST_LOW (t) || high != TREE_INT_CST_HIGH (t))
264 t = build_int_cst_wide (TREE_TYPE (t), low, high);
266 if (overflowed
267 || overflowable < 0
268 || (overflowable > 0 && sign_extended_type))
270 t = copy_node (t);
271 TREE_OVERFLOW (t) = 1;
272 TREE_CONSTANT_OVERFLOW (t) = 1;
274 else if (overflowed_const)
276 t = copy_node (t);
277 TREE_CONSTANT_OVERFLOW (t) = 1;
281 return t;
284 /* Add two doubleword integers with doubleword result.
285 Each argument is given as two `HOST_WIDE_INT' pieces.
286 One argument is L1 and H1; the other, L2 and H2.
287 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
290 add_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
291 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
292 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
294 unsigned HOST_WIDE_INT l;
295 HOST_WIDE_INT h;
297 l = l1 + l2;
298 h = h1 + h2 + (l < l1);
300 *lv = l;
301 *hv = h;
302 return OVERFLOW_SUM_SIGN (h1, h2, h);
305 /* Negate a doubleword integer with doubleword result.
306 Return nonzero if the operation overflows, assuming it's signed.
307 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
308 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
311 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
312 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
314 if (l1 == 0)
316 *lv = 0;
317 *hv = - h1;
318 return (*hv & h1) < 0;
320 else
322 *lv = -l1;
323 *hv = ~h1;
324 return 0;
328 /* Multiply two doubleword integers with doubleword result.
329 Return nonzero if the operation overflows, assuming it's signed.
330 Each argument is given as two `HOST_WIDE_INT' pieces.
331 One argument is L1 and H1; the other, L2 and H2.
332 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
335 mul_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
336 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
337 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
339 HOST_WIDE_INT arg1[4];
340 HOST_WIDE_INT arg2[4];
341 HOST_WIDE_INT prod[4 * 2];
342 unsigned HOST_WIDE_INT carry;
343 int i, j, k;
344 unsigned HOST_WIDE_INT toplow, neglow;
345 HOST_WIDE_INT tophigh, neghigh;
347 encode (arg1, l1, h1);
348 encode (arg2, l2, h2);
350 memset (prod, 0, sizeof prod);
352 for (i = 0; i < 4; i++)
354 carry = 0;
355 for (j = 0; j < 4; j++)
357 k = i + j;
358 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
359 carry += arg1[i] * arg2[j];
360 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
361 carry += prod[k];
362 prod[k] = LOWPART (carry);
363 carry = HIGHPART (carry);
365 prod[i + 4] = carry;
368 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
370 /* Check for overflow by calculating the top half of the answer in full;
371 it should agree with the low half's sign bit. */
372 decode (prod + 4, &toplow, &tophigh);
373 if (h1 < 0)
375 neg_double (l2, h2, &neglow, &neghigh);
376 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
378 if (h2 < 0)
380 neg_double (l1, h1, &neglow, &neghigh);
381 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
383 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
386 /* Shift the doubleword integer in L1, H1 left by COUNT places
387 keeping only PREC bits of result.
388 Shift right if COUNT is negative.
389 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
390 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
392 void
393 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
394 HOST_WIDE_INT count, unsigned int prec,
395 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
397 unsigned HOST_WIDE_INT signmask;
399 if (count < 0)
401 rshift_double (l1, h1, -count, prec, lv, hv, arith);
402 return;
405 if (SHIFT_COUNT_TRUNCATED)
406 count %= prec;
408 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
410 /* Shifting by the host word size is undefined according to the
411 ANSI standard, so we must handle this as a special case. */
412 *hv = 0;
413 *lv = 0;
415 else if (count >= HOST_BITS_PER_WIDE_INT)
417 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
418 *lv = 0;
420 else
422 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
423 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
424 *lv = l1 << count;
427 /* Sign extend all bits that are beyond the precision. */
429 signmask = -((prec > HOST_BITS_PER_WIDE_INT
430 ? ((unsigned HOST_WIDE_INT) *hv
431 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
432 : (*lv >> (prec - 1))) & 1);
434 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
436 else if (prec >= HOST_BITS_PER_WIDE_INT)
438 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
439 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
441 else
443 *hv = signmask;
444 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
445 *lv |= signmask << prec;
449 /* Shift the doubleword integer in L1, H1 right by COUNT places
450 keeping only PREC bits of result. COUNT must be positive.
451 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
452 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
454 void
455 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
456 HOST_WIDE_INT count, unsigned int prec,
457 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
458 int arith)
460 unsigned HOST_WIDE_INT signmask;
462 signmask = (arith
463 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
464 : 0);
466 if (SHIFT_COUNT_TRUNCATED)
467 count %= prec;
469 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
471 /* Shifting by the host word size is undefined according to the
472 ANSI standard, so we must handle this as a special case. */
473 *hv = 0;
474 *lv = 0;
476 else if (count >= HOST_BITS_PER_WIDE_INT)
478 *hv = 0;
479 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
481 else
483 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
484 *lv = ((l1 >> count)
485 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
488 /* Zero / sign extend all bits that are beyond the precision. */
490 if (count >= (HOST_WIDE_INT)prec)
492 *hv = signmask;
493 *lv = signmask;
495 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
497 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
499 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
500 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
502 else
504 *hv = signmask;
505 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
506 *lv |= signmask << (prec - count);
510 /* Rotate the doubleword integer in L1, H1 left by COUNT places
511 keeping only PREC bits of result.
512 Rotate right if COUNT is negative.
513 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
515 void
516 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
517 HOST_WIDE_INT count, unsigned int prec,
518 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
520 unsigned HOST_WIDE_INT s1l, s2l;
521 HOST_WIDE_INT s1h, s2h;
523 count %= prec;
524 if (count < 0)
525 count += prec;
527 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
528 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
529 *lv = s1l | s2l;
530 *hv = s1h | s2h;
533 /* Rotate the doubleword integer in L1, H1 left by COUNT places
534 keeping only PREC bits of result. COUNT must be positive.
535 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
537 void
538 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
539 HOST_WIDE_INT count, unsigned int prec,
540 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
542 unsigned HOST_WIDE_INT s1l, s2l;
543 HOST_WIDE_INT s1h, s2h;
545 count %= prec;
546 if (count < 0)
547 count += prec;
549 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
550 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
551 *lv = s1l | s2l;
552 *hv = s1h | s2h;
555 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
556 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
557 CODE is a tree code for a kind of division, one of
558 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
559 or EXACT_DIV_EXPR
560 It controls how the quotient is rounded to an integer.
561 Return nonzero if the operation overflows.
562 UNS nonzero says do unsigned division. */
565 div_and_round_double (enum tree_code code, int uns,
566 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
567 HOST_WIDE_INT hnum_orig,
568 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
569 HOST_WIDE_INT hden_orig,
570 unsigned HOST_WIDE_INT *lquo,
571 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
572 HOST_WIDE_INT *hrem)
574 int quo_neg = 0;
575 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
576 HOST_WIDE_INT den[4], quo[4];
577 int i, j;
578 unsigned HOST_WIDE_INT work;
579 unsigned HOST_WIDE_INT carry = 0;
580 unsigned HOST_WIDE_INT lnum = lnum_orig;
581 HOST_WIDE_INT hnum = hnum_orig;
582 unsigned HOST_WIDE_INT lden = lden_orig;
583 HOST_WIDE_INT hden = hden_orig;
584 int overflow = 0;
586 if (hden == 0 && lden == 0)
587 overflow = 1, lden = 1;
589 /* Calculate quotient sign and convert operands to unsigned. */
590 if (!uns)
592 if (hnum < 0)
594 quo_neg = ~ quo_neg;
595 /* (minimum integer) / (-1) is the only overflow case. */
596 if (neg_double (lnum, hnum, &lnum, &hnum)
597 && ((HOST_WIDE_INT) lden & hden) == -1)
598 overflow = 1;
600 if (hden < 0)
602 quo_neg = ~ quo_neg;
603 neg_double (lden, hden, &lden, &hden);
607 if (hnum == 0 && hden == 0)
608 { /* single precision */
609 *hquo = *hrem = 0;
610 /* This unsigned division rounds toward zero. */
611 *lquo = lnum / lden;
612 goto finish_up;
615 if (hnum == 0)
616 { /* trivial case: dividend < divisor */
617 /* hden != 0 already checked. */
618 *hquo = *lquo = 0;
619 *hrem = hnum;
620 *lrem = lnum;
621 goto finish_up;
624 memset (quo, 0, sizeof quo);
626 memset (num, 0, sizeof num); /* to zero 9th element */
627 memset (den, 0, sizeof den);
629 encode (num, lnum, hnum);
630 encode (den, lden, hden);
632 /* Special code for when the divisor < BASE. */
633 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
635 /* hnum != 0 already checked. */
636 for (i = 4 - 1; i >= 0; i--)
638 work = num[i] + carry * BASE;
639 quo[i] = work / lden;
640 carry = work % lden;
643 else
645 /* Full double precision division,
646 with thanks to Don Knuth's "Seminumerical Algorithms". */
647 int num_hi_sig, den_hi_sig;
648 unsigned HOST_WIDE_INT quo_est, scale;
650 /* Find the highest nonzero divisor digit. */
651 for (i = 4 - 1;; i--)
652 if (den[i] != 0)
654 den_hi_sig = i;
655 break;
658 /* Insure that the first digit of the divisor is at least BASE/2.
659 This is required by the quotient digit estimation algorithm. */
661 scale = BASE / (den[den_hi_sig] + 1);
662 if (scale > 1)
663 { /* scale divisor and dividend */
664 carry = 0;
665 for (i = 0; i <= 4 - 1; i++)
667 work = (num[i] * scale) + carry;
668 num[i] = LOWPART (work);
669 carry = HIGHPART (work);
672 num[4] = carry;
673 carry = 0;
674 for (i = 0; i <= 4 - 1; i++)
676 work = (den[i] * scale) + carry;
677 den[i] = LOWPART (work);
678 carry = HIGHPART (work);
679 if (den[i] != 0) den_hi_sig = i;
683 num_hi_sig = 4;
685 /* Main loop */
686 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
688 /* Guess the next quotient digit, quo_est, by dividing the first
689 two remaining dividend digits by the high order quotient digit.
690 quo_est is never low and is at most 2 high. */
691 unsigned HOST_WIDE_INT tmp;
693 num_hi_sig = i + den_hi_sig + 1;
694 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
695 if (num[num_hi_sig] != den[den_hi_sig])
696 quo_est = work / den[den_hi_sig];
697 else
698 quo_est = BASE - 1;
700 /* Refine quo_est so it's usually correct, and at most one high. */
701 tmp = work - quo_est * den[den_hi_sig];
702 if (tmp < BASE
703 && (den[den_hi_sig - 1] * quo_est
704 > (tmp * BASE + num[num_hi_sig - 2])))
705 quo_est--;
707 /* Try QUO_EST as the quotient digit, by multiplying the
708 divisor by QUO_EST and subtracting from the remaining dividend.
709 Keep in mind that QUO_EST is the I - 1st digit. */
711 carry = 0;
712 for (j = 0; j <= den_hi_sig; j++)
714 work = quo_est * den[j] + carry;
715 carry = HIGHPART (work);
716 work = num[i + j] - LOWPART (work);
717 num[i + j] = LOWPART (work);
718 carry += HIGHPART (work) != 0;
721 /* If quo_est was high by one, then num[i] went negative and
722 we need to correct things. */
723 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
725 quo_est--;
726 carry = 0; /* add divisor back in */
727 for (j = 0; j <= den_hi_sig; j++)
729 work = num[i + j] + den[j] + carry;
730 carry = HIGHPART (work);
731 num[i + j] = LOWPART (work);
734 num [num_hi_sig] += carry;
737 /* Store the quotient digit. */
738 quo[i] = quo_est;
742 decode (quo, lquo, hquo);
744 finish_up:
745 /* If result is negative, make it so. */
746 if (quo_neg)
747 neg_double (*lquo, *hquo, lquo, hquo);
749 /* Compute trial remainder: rem = num - (quo * den) */
750 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
751 neg_double (*lrem, *hrem, lrem, hrem);
752 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
754 switch (code)
756 case TRUNC_DIV_EXPR:
757 case TRUNC_MOD_EXPR: /* round toward zero */
758 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
759 return overflow;
761 case FLOOR_DIV_EXPR:
762 case FLOOR_MOD_EXPR: /* round toward negative infinity */
763 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
765 /* quo = quo - 1; */
766 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
767 lquo, hquo);
769 else
770 return overflow;
771 break;
773 case CEIL_DIV_EXPR:
774 case CEIL_MOD_EXPR: /* round toward positive infinity */
775 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
777 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
778 lquo, hquo);
780 else
781 return overflow;
782 break;
784 case ROUND_DIV_EXPR:
785 case ROUND_MOD_EXPR: /* round to closest integer */
787 unsigned HOST_WIDE_INT labs_rem = *lrem;
788 HOST_WIDE_INT habs_rem = *hrem;
789 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
790 HOST_WIDE_INT habs_den = hden, htwice;
792 /* Get absolute values. */
793 if (*hrem < 0)
794 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
795 if (hden < 0)
796 neg_double (lden, hden, &labs_den, &habs_den);
798 /* If (2 * abs (lrem) >= abs (lden)) */
799 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
800 labs_rem, habs_rem, &ltwice, &htwice);
802 if (((unsigned HOST_WIDE_INT) habs_den
803 < (unsigned HOST_WIDE_INT) htwice)
804 || (((unsigned HOST_WIDE_INT) habs_den
805 == (unsigned HOST_WIDE_INT) htwice)
806 && (labs_den < ltwice)))
808 if (*hquo < 0)
809 /* quo = quo - 1; */
810 add_double (*lquo, *hquo,
811 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
812 else
813 /* quo = quo + 1; */
814 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
815 lquo, hquo);
817 else
818 return overflow;
820 break;
822 default:
823 gcc_unreachable ();
826 /* Compute true remainder: rem = num - (quo * den) */
827 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
828 neg_double (*lrem, *hrem, lrem, hrem);
829 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
830 return overflow;
833 /* If ARG2 divides ARG1 with zero remainder, carries out the division
834 of type CODE and returns the quotient.
835 Otherwise returns NULL_TREE. */
837 static tree
838 div_if_zero_remainder (enum tree_code code, tree arg1, tree arg2)
840 unsigned HOST_WIDE_INT int1l, int2l;
841 HOST_WIDE_INT int1h, int2h;
842 unsigned HOST_WIDE_INT quol, reml;
843 HOST_WIDE_INT quoh, remh;
844 tree type = TREE_TYPE (arg1);
845 int uns = TYPE_UNSIGNED (type);
847 int1l = TREE_INT_CST_LOW (arg1);
848 int1h = TREE_INT_CST_HIGH (arg1);
849 int2l = TREE_INT_CST_LOW (arg2);
850 int2h = TREE_INT_CST_HIGH (arg2);
852 div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
853 &quol, &quoh, &reml, &remh);
854 if (remh != 0 || reml != 0)
855 return NULL_TREE;
857 return build_int_cst_wide (type, quol, quoh);
860 /* Return true if the built-in mathematical function specified by CODE
861 is odd, i.e. -f(x) == f(-x). */
863 static bool
864 negate_mathfn_p (enum built_in_function code)
866 switch (code)
868 CASE_FLT_FN (BUILT_IN_ASIN):
869 CASE_FLT_FN (BUILT_IN_ASINH):
870 CASE_FLT_FN (BUILT_IN_ATAN):
871 CASE_FLT_FN (BUILT_IN_ATANH):
872 CASE_FLT_FN (BUILT_IN_CBRT):
873 CASE_FLT_FN (BUILT_IN_SIN):
874 CASE_FLT_FN (BUILT_IN_SINH):
875 CASE_FLT_FN (BUILT_IN_TAN):
876 CASE_FLT_FN (BUILT_IN_TANH):
877 return true;
879 default:
880 break;
882 return false;
885 /* Check whether we may negate an integer constant T without causing
886 overflow. */
888 bool
889 may_negate_without_overflow_p (tree t)
891 unsigned HOST_WIDE_INT val;
892 unsigned int prec;
893 tree type;
895 gcc_assert (TREE_CODE (t) == INTEGER_CST);
897 type = TREE_TYPE (t);
898 if (TYPE_UNSIGNED (type))
899 return false;
901 prec = TYPE_PRECISION (type);
902 if (prec > HOST_BITS_PER_WIDE_INT)
904 if (TREE_INT_CST_LOW (t) != 0)
905 return true;
906 prec -= HOST_BITS_PER_WIDE_INT;
907 val = TREE_INT_CST_HIGH (t);
909 else
910 val = TREE_INT_CST_LOW (t);
911 if (prec < HOST_BITS_PER_WIDE_INT)
912 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
913 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
916 /* Determine whether an expression T can be cheaply negated using
917 the function negate_expr. */
919 static bool
920 negate_expr_p (tree t)
922 tree type;
924 if (t == 0)
925 return false;
927 type = TREE_TYPE (t);
929 STRIP_SIGN_NOPS (t);
930 switch (TREE_CODE (t))
932 case INTEGER_CST:
933 if (TYPE_UNSIGNED (type) || ! flag_trapv)
934 return true;
936 /* Check that -CST will not overflow type. */
937 return may_negate_without_overflow_p (t);
938 case BIT_NOT_EXPR:
939 return INTEGRAL_TYPE_P (type);
941 case REAL_CST:
942 case NEGATE_EXPR:
943 return true;
945 case COMPLEX_CST:
946 return negate_expr_p (TREE_REALPART (t))
947 && negate_expr_p (TREE_IMAGPART (t));
949 case PLUS_EXPR:
950 if (FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
951 return false;
952 /* -(A + B) -> (-B) - A. */
953 if (negate_expr_p (TREE_OPERAND (t, 1))
954 && reorder_operands_p (TREE_OPERAND (t, 0),
955 TREE_OPERAND (t, 1)))
956 return true;
957 /* -(A + B) -> (-A) - B. */
958 return negate_expr_p (TREE_OPERAND (t, 0));
960 case MINUS_EXPR:
961 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
962 return (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
963 && reorder_operands_p (TREE_OPERAND (t, 0),
964 TREE_OPERAND (t, 1));
966 case MULT_EXPR:
967 if (TYPE_UNSIGNED (TREE_TYPE (t)))
968 break;
970 /* Fall through. */
972 case RDIV_EXPR:
973 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
974 return negate_expr_p (TREE_OPERAND (t, 1))
975 || negate_expr_p (TREE_OPERAND (t, 0));
976 break;
978 case TRUNC_DIV_EXPR:
979 case ROUND_DIV_EXPR:
980 case FLOOR_DIV_EXPR:
981 case CEIL_DIV_EXPR:
982 case EXACT_DIV_EXPR:
983 if (TYPE_UNSIGNED (TREE_TYPE (t)) || flag_wrapv)
984 break;
985 return negate_expr_p (TREE_OPERAND (t, 1))
986 || negate_expr_p (TREE_OPERAND (t, 0));
988 case NOP_EXPR:
989 /* Negate -((double)float) as (double)(-float). */
990 if (TREE_CODE (type) == REAL_TYPE)
992 tree tem = strip_float_extensions (t);
993 if (tem != t)
994 return negate_expr_p (tem);
996 break;
998 case CALL_EXPR:
999 /* Negate -f(x) as f(-x). */
1000 if (negate_mathfn_p (builtin_mathfn_code (t)))
1001 return negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1)));
1002 break;
1004 case RSHIFT_EXPR:
1005 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1006 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1008 tree op1 = TREE_OPERAND (t, 1);
1009 if (TREE_INT_CST_HIGH (op1) == 0
1010 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1011 == TREE_INT_CST_LOW (op1))
1012 return true;
1014 break;
1016 default:
1017 break;
1019 return false;
1022 /* Given T, an expression, return the negation of T. Allow for T to be
1023 null, in which case return null. */
1025 static tree
1026 negate_expr (tree t)
1028 tree type;
1029 tree tem;
1031 if (t == 0)
1032 return 0;
1034 type = TREE_TYPE (t);
1035 STRIP_SIGN_NOPS (t);
1037 switch (TREE_CODE (t))
1039 /* Convert - (~A) to A + 1. */
1040 case BIT_NOT_EXPR:
1041 if (INTEGRAL_TYPE_P (type))
1042 return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (t, 0),
1043 build_int_cst (type, 1));
1044 break;
1046 case INTEGER_CST:
1047 tem = fold_negate_const (t, type);
1048 if (! TREE_OVERFLOW (tem)
1049 || TYPE_UNSIGNED (type)
1050 || ! flag_trapv)
1051 return tem;
1052 break;
1054 case REAL_CST:
1055 tem = fold_negate_const (t, type);
1056 /* Two's complement FP formats, such as c4x, may overflow. */
1057 if (! TREE_OVERFLOW (tem) || ! flag_trapping_math)
1058 return fold_convert (type, tem);
1059 break;
1061 case COMPLEX_CST:
1063 tree rpart = negate_expr (TREE_REALPART (t));
1064 tree ipart = negate_expr (TREE_IMAGPART (t));
1066 if ((TREE_CODE (rpart) == REAL_CST
1067 && TREE_CODE (ipart) == REAL_CST)
1068 || (TREE_CODE (rpart) == INTEGER_CST
1069 && TREE_CODE (ipart) == INTEGER_CST))
1070 return build_complex (type, rpart, ipart);
1072 break;
1074 case NEGATE_EXPR:
1075 return fold_convert (type, TREE_OPERAND (t, 0));
1077 case PLUS_EXPR:
1078 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1080 /* -(A + B) -> (-B) - A. */
1081 if (negate_expr_p (TREE_OPERAND (t, 1))
1082 && reorder_operands_p (TREE_OPERAND (t, 0),
1083 TREE_OPERAND (t, 1)))
1085 tem = negate_expr (TREE_OPERAND (t, 1));
1086 tem = fold_build2 (MINUS_EXPR, TREE_TYPE (t),
1087 tem, TREE_OPERAND (t, 0));
1088 return fold_convert (type, tem);
1091 /* -(A + B) -> (-A) - B. */
1092 if (negate_expr_p (TREE_OPERAND (t, 0)))
1094 tem = negate_expr (TREE_OPERAND (t, 0));
1095 tem = fold_build2 (MINUS_EXPR, TREE_TYPE (t),
1096 tem, TREE_OPERAND (t, 1));
1097 return fold_convert (type, tem);
1100 break;
1102 case MINUS_EXPR:
1103 /* - (A - B) -> B - A */
1104 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1105 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1106 return fold_convert (type,
1107 fold_build2 (MINUS_EXPR, TREE_TYPE (t),
1108 TREE_OPERAND (t, 1),
1109 TREE_OPERAND (t, 0)));
1110 break;
1112 case MULT_EXPR:
1113 if (TYPE_UNSIGNED (TREE_TYPE (t)))
1114 break;
1116 /* Fall through. */
1118 case RDIV_EXPR:
1119 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
1121 tem = TREE_OPERAND (t, 1);
1122 if (negate_expr_p (tem))
1123 return fold_convert (type,
1124 fold_build2 (TREE_CODE (t), TREE_TYPE (t),
1125 TREE_OPERAND (t, 0),
1126 negate_expr (tem)));
1127 tem = TREE_OPERAND (t, 0);
1128 if (negate_expr_p (tem))
1129 return fold_convert (type,
1130 fold_build2 (TREE_CODE (t), TREE_TYPE (t),
1131 negate_expr (tem),
1132 TREE_OPERAND (t, 1)));
1134 break;
1136 case TRUNC_DIV_EXPR:
1137 case ROUND_DIV_EXPR:
1138 case FLOOR_DIV_EXPR:
1139 case CEIL_DIV_EXPR:
1140 case EXACT_DIV_EXPR:
1141 if (!TYPE_UNSIGNED (TREE_TYPE (t)) && !flag_wrapv)
1143 tem = TREE_OPERAND (t, 1);
1144 if (negate_expr_p (tem))
1145 return fold_convert (type,
1146 fold_build2 (TREE_CODE (t), TREE_TYPE (t),
1147 TREE_OPERAND (t, 0),
1148 negate_expr (tem)));
1149 tem = TREE_OPERAND (t, 0);
1150 if (negate_expr_p (tem))
1151 return fold_convert (type,
1152 fold_build2 (TREE_CODE (t), TREE_TYPE (t),
1153 negate_expr (tem),
1154 TREE_OPERAND (t, 1)));
1156 break;
1158 case NOP_EXPR:
1159 /* Convert -((double)float) into (double)(-float). */
1160 if (TREE_CODE (type) == REAL_TYPE)
1162 tem = strip_float_extensions (t);
1163 if (tem != t && negate_expr_p (tem))
1164 return fold_convert (type, negate_expr (tem));
1166 break;
1168 case CALL_EXPR:
1169 /* Negate -f(x) as f(-x). */
1170 if (negate_mathfn_p (builtin_mathfn_code (t))
1171 && negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1))))
1173 tree fndecl, arg, arglist;
1175 fndecl = get_callee_fndecl (t);
1176 arg = negate_expr (TREE_VALUE (TREE_OPERAND (t, 1)));
1177 arglist = build_tree_list (NULL_TREE, arg);
1178 return build_function_call_expr (fndecl, arglist);
1180 break;
1182 case RSHIFT_EXPR:
1183 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1184 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1186 tree op1 = TREE_OPERAND (t, 1);
1187 if (TREE_INT_CST_HIGH (op1) == 0
1188 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1189 == TREE_INT_CST_LOW (op1))
1191 tree ntype = TYPE_UNSIGNED (type)
1192 ? lang_hooks.types.signed_type (type)
1193 : lang_hooks.types.unsigned_type (type);
1194 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1195 temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
1196 return fold_convert (type, temp);
1199 break;
1201 default:
1202 break;
1205 tem = fold_build1 (NEGATE_EXPR, TREE_TYPE (t), t);
1206 return fold_convert (type, tem);
1209 /* Split a tree IN into a constant, literal and variable parts that could be
1210 combined with CODE to make IN. "constant" means an expression with
1211 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1212 commutative arithmetic operation. Store the constant part into *CONP,
1213 the literal in *LITP and return the variable part. If a part isn't
1214 present, set it to null. If the tree does not decompose in this way,
1215 return the entire tree as the variable part and the other parts as null.
1217 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1218 case, we negate an operand that was subtracted. Except if it is a
1219 literal for which we use *MINUS_LITP instead.
1221 If NEGATE_P is true, we are negating all of IN, again except a literal
1222 for which we use *MINUS_LITP instead.
1224 If IN is itself a literal or constant, return it as appropriate.
1226 Note that we do not guarantee that any of the three values will be the
1227 same type as IN, but they will have the same signedness and mode. */
1229 static tree
1230 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1231 tree *minus_litp, int negate_p)
1233 tree var = 0;
1235 *conp = 0;
1236 *litp = 0;
1237 *minus_litp = 0;
1239 /* Strip any conversions that don't change the machine mode or signedness. */
1240 STRIP_SIGN_NOPS (in);
1242 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
1243 *litp = in;
1244 else if (TREE_CODE (in) == code
1245 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1246 /* We can associate addition and subtraction together (even
1247 though the C standard doesn't say so) for integers because
1248 the value is not affected. For reals, the value might be
1249 affected, so we can't. */
1250 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1251 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1253 tree op0 = TREE_OPERAND (in, 0);
1254 tree op1 = TREE_OPERAND (in, 1);
1255 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1256 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1258 /* First see if either of the operands is a literal, then a constant. */
1259 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
1260 *litp = op0, op0 = 0;
1261 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
1262 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1264 if (op0 != 0 && TREE_CONSTANT (op0))
1265 *conp = op0, op0 = 0;
1266 else if (op1 != 0 && TREE_CONSTANT (op1))
1267 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1269 /* If we haven't dealt with either operand, this is not a case we can
1270 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1271 if (op0 != 0 && op1 != 0)
1272 var = in;
1273 else if (op0 != 0)
1274 var = op0;
1275 else
1276 var = op1, neg_var_p = neg1_p;
1278 /* Now do any needed negations. */
1279 if (neg_litp_p)
1280 *minus_litp = *litp, *litp = 0;
1281 if (neg_conp_p)
1282 *conp = negate_expr (*conp);
1283 if (neg_var_p)
1284 var = negate_expr (var);
1286 else if (TREE_CONSTANT (in))
1287 *conp = in;
1288 else
1289 var = in;
1291 if (negate_p)
1293 if (*litp)
1294 *minus_litp = *litp, *litp = 0;
1295 else if (*minus_litp)
1296 *litp = *minus_litp, *minus_litp = 0;
1297 *conp = negate_expr (*conp);
1298 var = negate_expr (var);
1301 return var;
1304 /* Re-associate trees split by the above function. T1 and T2 are either
1305 expressions to associate or null. Return the new expression, if any. If
1306 we build an operation, do it in TYPE and with CODE. */
1308 static tree
1309 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1311 if (t1 == 0)
1312 return t2;
1313 else if (t2 == 0)
1314 return t1;
1316 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1317 try to fold this since we will have infinite recursion. But do
1318 deal with any NEGATE_EXPRs. */
1319 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1320 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1322 if (code == PLUS_EXPR)
1324 if (TREE_CODE (t1) == NEGATE_EXPR)
1325 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1326 fold_convert (type, TREE_OPERAND (t1, 0)));
1327 else if (TREE_CODE (t2) == NEGATE_EXPR)
1328 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1329 fold_convert (type, TREE_OPERAND (t2, 0)));
1330 else if (integer_zerop (t2))
1331 return fold_convert (type, t1);
1333 else if (code == MINUS_EXPR)
1335 if (integer_zerop (t2))
1336 return fold_convert (type, t1);
1339 return build2 (code, type, fold_convert (type, t1),
1340 fold_convert (type, t2));
1343 return fold_build2 (code, type, fold_convert (type, t1),
1344 fold_convert (type, t2));
1347 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1348 to produce a new constant. Return NULL_TREE if we don't know how
1349 to evaluate CODE at compile-time.
1351 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1353 tree
1354 int_const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1356 unsigned HOST_WIDE_INT int1l, int2l;
1357 HOST_WIDE_INT int1h, int2h;
1358 unsigned HOST_WIDE_INT low;
1359 HOST_WIDE_INT hi;
1360 unsigned HOST_WIDE_INT garbagel;
1361 HOST_WIDE_INT garbageh;
1362 tree t;
1363 tree type = TREE_TYPE (arg1);
1364 int uns = TYPE_UNSIGNED (type);
1365 int is_sizetype
1366 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1367 int overflow = 0;
1369 int1l = TREE_INT_CST_LOW (arg1);
1370 int1h = TREE_INT_CST_HIGH (arg1);
1371 int2l = TREE_INT_CST_LOW (arg2);
1372 int2h = TREE_INT_CST_HIGH (arg2);
1374 switch (code)
1376 case BIT_IOR_EXPR:
1377 low = int1l | int2l, hi = int1h | int2h;
1378 break;
1380 case BIT_XOR_EXPR:
1381 low = int1l ^ int2l, hi = int1h ^ int2h;
1382 break;
1384 case BIT_AND_EXPR:
1385 low = int1l & int2l, hi = int1h & int2h;
1386 break;
1388 case RSHIFT_EXPR:
1389 int2l = -int2l;
1390 case LSHIFT_EXPR:
1391 /* It's unclear from the C standard whether shifts can overflow.
1392 The following code ignores overflow; perhaps a C standard
1393 interpretation ruling is needed. */
1394 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1395 &low, &hi, !uns);
1396 break;
1398 case RROTATE_EXPR:
1399 int2l = - int2l;
1400 case LROTATE_EXPR:
1401 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1402 &low, &hi);
1403 break;
1405 case PLUS_EXPR:
1406 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1407 break;
1409 case MINUS_EXPR:
1410 neg_double (int2l, int2h, &low, &hi);
1411 add_double (int1l, int1h, low, hi, &low, &hi);
1412 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1413 break;
1415 case MULT_EXPR:
1416 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1417 break;
1419 case TRUNC_DIV_EXPR:
1420 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1421 case EXACT_DIV_EXPR:
1422 /* This is a shortcut for a common special case. */
1423 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1424 && ! TREE_CONSTANT_OVERFLOW (arg1)
1425 && ! TREE_CONSTANT_OVERFLOW (arg2)
1426 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1428 if (code == CEIL_DIV_EXPR)
1429 int1l += int2l - 1;
1431 low = int1l / int2l, hi = 0;
1432 break;
1435 /* ... fall through ... */
1437 case ROUND_DIV_EXPR:
1438 if (int2h == 0 && int2l == 0)
1439 return NULL_TREE;
1440 if (int2h == 0 && int2l == 1)
1442 low = int1l, hi = int1h;
1443 break;
1445 if (int1l == int2l && int1h == int2h
1446 && ! (int1l == 0 && int1h == 0))
1448 low = 1, hi = 0;
1449 break;
1451 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1452 &low, &hi, &garbagel, &garbageh);
1453 break;
1455 case TRUNC_MOD_EXPR:
1456 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1457 /* This is a shortcut for a common special case. */
1458 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1459 && ! TREE_CONSTANT_OVERFLOW (arg1)
1460 && ! TREE_CONSTANT_OVERFLOW (arg2)
1461 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1463 if (code == CEIL_MOD_EXPR)
1464 int1l += int2l - 1;
1465 low = int1l % int2l, hi = 0;
1466 break;
1469 /* ... fall through ... */
1471 case ROUND_MOD_EXPR:
1472 if (int2h == 0 && int2l == 0)
1473 return NULL_TREE;
1474 overflow = div_and_round_double (code, uns,
1475 int1l, int1h, int2l, int2h,
1476 &garbagel, &garbageh, &low, &hi);
1477 break;
1479 case MIN_EXPR:
1480 case MAX_EXPR:
1481 if (uns)
1482 low = (((unsigned HOST_WIDE_INT) int1h
1483 < (unsigned HOST_WIDE_INT) int2h)
1484 || (((unsigned HOST_WIDE_INT) int1h
1485 == (unsigned HOST_WIDE_INT) int2h)
1486 && int1l < int2l));
1487 else
1488 low = (int1h < int2h
1489 || (int1h == int2h && int1l < int2l));
1491 if (low == (code == MIN_EXPR))
1492 low = int1l, hi = int1h;
1493 else
1494 low = int2l, hi = int2h;
1495 break;
1497 default:
1498 return NULL_TREE;
1501 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1503 if (notrunc)
1505 /* Propagate overflow flags ourselves. */
1506 if (((!uns || is_sizetype) && overflow)
1507 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1509 t = copy_node (t);
1510 TREE_OVERFLOW (t) = 1;
1511 TREE_CONSTANT_OVERFLOW (t) = 1;
1513 else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
1515 t = copy_node (t);
1516 TREE_CONSTANT_OVERFLOW (t) = 1;
1519 else
1520 t = force_fit_type (t, 1,
1521 ((!uns || is_sizetype) && overflow)
1522 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2),
1523 TREE_CONSTANT_OVERFLOW (arg1)
1524 | TREE_CONSTANT_OVERFLOW (arg2));
1526 return t;
1529 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1530 constant. We assume ARG1 and ARG2 have the same data type, or at least
1531 are the same kind of constant and the same machine mode.
1533 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1535 static tree
1536 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1538 STRIP_NOPS (arg1);
1539 STRIP_NOPS (arg2);
1541 if (TREE_CODE (arg1) == INTEGER_CST)
1542 return int_const_binop (code, arg1, arg2, notrunc);
1544 if (TREE_CODE (arg1) == REAL_CST)
1546 enum machine_mode mode;
1547 REAL_VALUE_TYPE d1;
1548 REAL_VALUE_TYPE d2;
1549 REAL_VALUE_TYPE value;
1550 REAL_VALUE_TYPE result;
1551 bool inexact;
1552 tree t, type;
1554 /* The following codes are handled by real_arithmetic. */
1555 switch (code)
1557 case PLUS_EXPR:
1558 case MINUS_EXPR:
1559 case MULT_EXPR:
1560 case RDIV_EXPR:
1561 case MIN_EXPR:
1562 case MAX_EXPR:
1563 break;
1565 default:
1566 return NULL_TREE;
1569 d1 = TREE_REAL_CST (arg1);
1570 d2 = TREE_REAL_CST (arg2);
1572 type = TREE_TYPE (arg1);
1573 mode = TYPE_MODE (type);
1575 /* Don't perform operation if we honor signaling NaNs and
1576 either operand is a NaN. */
1577 if (HONOR_SNANS (mode)
1578 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1579 return NULL_TREE;
1581 /* Don't perform operation if it would raise a division
1582 by zero exception. */
1583 if (code == RDIV_EXPR
1584 && REAL_VALUES_EQUAL (d2, dconst0)
1585 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1586 return NULL_TREE;
1588 /* If either operand is a NaN, just return it. Otherwise, set up
1589 for floating-point trap; we return an overflow. */
1590 if (REAL_VALUE_ISNAN (d1))
1591 return arg1;
1592 else if (REAL_VALUE_ISNAN (d2))
1593 return arg2;
1595 inexact = real_arithmetic (&value, code, &d1, &d2);
1596 real_convert (&result, mode, &value);
1598 /* Don't constant fold this floating point operation if
1599 the result has overflowed and flag_trapping_math. */
1601 if (flag_trapping_math
1602 && MODE_HAS_INFINITIES (mode)
1603 && REAL_VALUE_ISINF (result)
1604 && !REAL_VALUE_ISINF (d1)
1605 && !REAL_VALUE_ISINF (d2))
1606 return NULL_TREE;
1608 /* Don't constant fold this floating point operation if the
1609 result may dependent upon the run-time rounding mode and
1610 flag_rounding_math is set, or if GCC's software emulation
1611 is unable to accurately represent the result. */
1613 if ((flag_rounding_math
1614 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
1615 && !flag_unsafe_math_optimizations))
1616 && (inexact || !real_identical (&result, &value)))
1617 return NULL_TREE;
1619 t = build_real (type, result);
1621 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1622 TREE_CONSTANT_OVERFLOW (t)
1623 = TREE_OVERFLOW (t)
1624 | TREE_CONSTANT_OVERFLOW (arg1)
1625 | TREE_CONSTANT_OVERFLOW (arg2);
1626 return t;
1629 if (TREE_CODE (arg1) == COMPLEX_CST)
1631 tree type = TREE_TYPE (arg1);
1632 tree r1 = TREE_REALPART (arg1);
1633 tree i1 = TREE_IMAGPART (arg1);
1634 tree r2 = TREE_REALPART (arg2);
1635 tree i2 = TREE_IMAGPART (arg2);
1636 tree t;
1638 switch (code)
1640 case PLUS_EXPR:
1641 t = build_complex (type,
1642 const_binop (PLUS_EXPR, r1, r2, notrunc),
1643 const_binop (PLUS_EXPR, i1, i2, notrunc));
1644 break;
1646 case MINUS_EXPR:
1647 t = build_complex (type,
1648 const_binop (MINUS_EXPR, r1, r2, notrunc),
1649 const_binop (MINUS_EXPR, i1, i2, notrunc));
1650 break;
1652 case MULT_EXPR:
1653 t = build_complex (type,
1654 const_binop (MINUS_EXPR,
1655 const_binop (MULT_EXPR,
1656 r1, r2, notrunc),
1657 const_binop (MULT_EXPR,
1658 i1, i2, notrunc),
1659 notrunc),
1660 const_binop (PLUS_EXPR,
1661 const_binop (MULT_EXPR,
1662 r1, i2, notrunc),
1663 const_binop (MULT_EXPR,
1664 i1, r2, notrunc),
1665 notrunc));
1666 break;
1668 case RDIV_EXPR:
1670 tree t1, t2, real, imag;
1671 tree magsquared
1672 = const_binop (PLUS_EXPR,
1673 const_binop (MULT_EXPR, r2, r2, notrunc),
1674 const_binop (MULT_EXPR, i2, i2, notrunc),
1675 notrunc);
1677 t1 = const_binop (PLUS_EXPR,
1678 const_binop (MULT_EXPR, r1, r2, notrunc),
1679 const_binop (MULT_EXPR, i1, i2, notrunc),
1680 notrunc);
1681 t2 = const_binop (MINUS_EXPR,
1682 const_binop (MULT_EXPR, i1, r2, notrunc),
1683 const_binop (MULT_EXPR, r1, i2, notrunc),
1684 notrunc);
1686 if (INTEGRAL_TYPE_P (TREE_TYPE (r1)))
1688 real = const_binop (TRUNC_DIV_EXPR, t1, magsquared, notrunc);
1689 imag = const_binop (TRUNC_DIV_EXPR, t2, magsquared, notrunc);
1691 else
1693 real = const_binop (RDIV_EXPR, t1, magsquared, notrunc);
1694 imag = const_binop (RDIV_EXPR, t2, magsquared, notrunc);
1695 if (!real || !imag)
1696 return NULL_TREE;
1699 t = build_complex (type, real, imag);
1701 break;
1703 default:
1704 return NULL_TREE;
1706 return t;
1708 return NULL_TREE;
1711 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1712 indicates which particular sizetype to create. */
1714 tree
1715 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1717 return build_int_cst (sizetype_tab[(int) kind], number);
1720 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1721 is a tree code. The type of the result is taken from the operands.
1722 Both must be the same type integer type and it must be a size type.
1723 If the operands are constant, so is the result. */
1725 tree
1726 size_binop (enum tree_code code, tree arg0, tree arg1)
1728 tree type = TREE_TYPE (arg0);
1730 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1731 && type == TREE_TYPE (arg1));
1733 /* Handle the special case of two integer constants faster. */
1734 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1736 /* And some specific cases even faster than that. */
1737 if (code == PLUS_EXPR && integer_zerop (arg0))
1738 return arg1;
1739 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1740 && integer_zerop (arg1))
1741 return arg0;
1742 else if (code == MULT_EXPR && integer_onep (arg0))
1743 return arg1;
1745 /* Handle general case of two integer constants. */
1746 return int_const_binop (code, arg0, arg1, 0);
1749 if (arg0 == error_mark_node || arg1 == error_mark_node)
1750 return error_mark_node;
1752 return fold_build2 (code, type, arg0, arg1);
1755 /* Given two values, either both of sizetype or both of bitsizetype,
1756 compute the difference between the two values. Return the value
1757 in signed type corresponding to the type of the operands. */
1759 tree
1760 size_diffop (tree arg0, tree arg1)
1762 tree type = TREE_TYPE (arg0);
1763 tree ctype;
1765 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1766 && type == TREE_TYPE (arg1));
1768 /* If the type is already signed, just do the simple thing. */
1769 if (!TYPE_UNSIGNED (type))
1770 return size_binop (MINUS_EXPR, arg0, arg1);
1772 ctype = type == bitsizetype ? sbitsizetype : ssizetype;
1774 /* If either operand is not a constant, do the conversions to the signed
1775 type and subtract. The hardware will do the right thing with any
1776 overflow in the subtraction. */
1777 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1778 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
1779 fold_convert (ctype, arg1));
1781 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1782 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1783 overflow) and negate (which can't either). Special-case a result
1784 of zero while we're here. */
1785 if (tree_int_cst_equal (arg0, arg1))
1786 return build_int_cst (ctype, 0);
1787 else if (tree_int_cst_lt (arg1, arg0))
1788 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1789 else
1790 return size_binop (MINUS_EXPR, build_int_cst (ctype, 0),
1791 fold_convert (ctype, size_binop (MINUS_EXPR,
1792 arg1, arg0)));
1795 /* A subroutine of fold_convert_const handling conversions of an
1796 INTEGER_CST to another integer type. */
1798 static tree
1799 fold_convert_const_int_from_int (tree type, tree arg1)
1801 tree t;
1803 /* Given an integer constant, make new constant with new type,
1804 appropriately sign-extended or truncated. */
1805 t = build_int_cst_wide (type, TREE_INT_CST_LOW (arg1),
1806 TREE_INT_CST_HIGH (arg1));
1808 t = force_fit_type (t,
1809 /* Don't set the overflow when
1810 converting a pointer */
1811 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1812 (TREE_INT_CST_HIGH (arg1) < 0
1813 && (TYPE_UNSIGNED (type)
1814 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1815 | TREE_OVERFLOW (arg1),
1816 TREE_CONSTANT_OVERFLOW (arg1));
1818 return t;
1821 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1822 to an integer type. */
1824 static tree
1825 fold_convert_const_int_from_real (enum tree_code code, tree type, tree arg1)
1827 int overflow = 0;
1828 tree t;
1830 /* The following code implements the floating point to integer
1831 conversion rules required by the Java Language Specification,
1832 that IEEE NaNs are mapped to zero and values that overflow
1833 the target precision saturate, i.e. values greater than
1834 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1835 are mapped to INT_MIN. These semantics are allowed by the
1836 C and C++ standards that simply state that the behavior of
1837 FP-to-integer conversion is unspecified upon overflow. */
1839 HOST_WIDE_INT high, low;
1840 REAL_VALUE_TYPE r;
1841 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1843 switch (code)
1845 case FIX_TRUNC_EXPR:
1846 real_trunc (&r, VOIDmode, &x);
1847 break;
1849 case FIX_CEIL_EXPR:
1850 real_ceil (&r, VOIDmode, &x);
1851 break;
1853 case FIX_FLOOR_EXPR:
1854 real_floor (&r, VOIDmode, &x);
1855 break;
1857 case FIX_ROUND_EXPR:
1858 real_round (&r, VOIDmode, &x);
1859 break;
1861 default:
1862 gcc_unreachable ();
1865 /* If R is NaN, return zero and show we have an overflow. */
1866 if (REAL_VALUE_ISNAN (r))
1868 overflow = 1;
1869 high = 0;
1870 low = 0;
1873 /* See if R is less than the lower bound or greater than the
1874 upper bound. */
1876 if (! overflow)
1878 tree lt = TYPE_MIN_VALUE (type);
1879 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1880 if (REAL_VALUES_LESS (r, l))
1882 overflow = 1;
1883 high = TREE_INT_CST_HIGH (lt);
1884 low = TREE_INT_CST_LOW (lt);
1888 if (! overflow)
1890 tree ut = TYPE_MAX_VALUE (type);
1891 if (ut)
1893 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1894 if (REAL_VALUES_LESS (u, r))
1896 overflow = 1;
1897 high = TREE_INT_CST_HIGH (ut);
1898 low = TREE_INT_CST_LOW (ut);
1903 if (! overflow)
1904 REAL_VALUE_TO_INT (&low, &high, r);
1906 t = build_int_cst_wide (type, low, high);
1908 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg1),
1909 TREE_CONSTANT_OVERFLOW (arg1));
1910 return t;
1913 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1914 to another floating point type. */
1916 static tree
1917 fold_convert_const_real_from_real (tree type, tree arg1)
1919 REAL_VALUE_TYPE value;
1920 tree t;
1922 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1923 t = build_real (type, value);
1925 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1926 TREE_CONSTANT_OVERFLOW (t)
1927 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1928 return t;
1931 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1932 type TYPE. If no simplification can be done return NULL_TREE. */
1934 static tree
1935 fold_convert_const (enum tree_code code, tree type, tree arg1)
1937 if (TREE_TYPE (arg1) == type)
1938 return arg1;
1940 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1942 if (TREE_CODE (arg1) == INTEGER_CST)
1943 return fold_convert_const_int_from_int (type, arg1);
1944 else if (TREE_CODE (arg1) == REAL_CST)
1945 return fold_convert_const_int_from_real (code, type, arg1);
1947 else if (TREE_CODE (type) == REAL_TYPE)
1949 if (TREE_CODE (arg1) == INTEGER_CST)
1950 return build_real_from_int_cst (type, arg1);
1951 if (TREE_CODE (arg1) == REAL_CST)
1952 return fold_convert_const_real_from_real (type, arg1);
1954 return NULL_TREE;
1957 /* Construct a vector of zero elements of vector type TYPE. */
1959 static tree
1960 build_zero_vector (tree type)
1962 tree elem, list;
1963 int i, units;
1965 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1966 units = TYPE_VECTOR_SUBPARTS (type);
1968 list = NULL_TREE;
1969 for (i = 0; i < units; i++)
1970 list = tree_cons (NULL_TREE, elem, list);
1971 return build_vector (type, list);
1974 /* Convert expression ARG to type TYPE. Used by the middle-end for
1975 simple conversions in preference to calling the front-end's convert. */
1977 tree
1978 fold_convert (tree type, tree arg)
1980 tree orig = TREE_TYPE (arg);
1981 tree tem;
1983 if (type == orig)
1984 return arg;
1986 if (TREE_CODE (arg) == ERROR_MARK
1987 || TREE_CODE (type) == ERROR_MARK
1988 || TREE_CODE (orig) == ERROR_MARK)
1989 return error_mark_node;
1991 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)
1992 || lang_hooks.types_compatible_p (TYPE_MAIN_VARIANT (type),
1993 TYPE_MAIN_VARIANT (orig)))
1994 return fold_build1 (NOP_EXPR, type, arg);
1996 switch (TREE_CODE (type))
1998 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1999 case POINTER_TYPE: case REFERENCE_TYPE:
2000 case OFFSET_TYPE:
2001 if (TREE_CODE (arg) == INTEGER_CST)
2003 tem = fold_convert_const (NOP_EXPR, type, arg);
2004 if (tem != NULL_TREE)
2005 return tem;
2007 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2008 || TREE_CODE (orig) == OFFSET_TYPE)
2009 return fold_build1 (NOP_EXPR, type, arg);
2010 if (TREE_CODE (orig) == COMPLEX_TYPE)
2012 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2013 return fold_convert (type, tem);
2015 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2016 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2017 return fold_build1 (NOP_EXPR, type, arg);
2019 case REAL_TYPE:
2020 if (TREE_CODE (arg) == INTEGER_CST)
2022 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2023 if (tem != NULL_TREE)
2024 return tem;
2026 else if (TREE_CODE (arg) == REAL_CST)
2028 tem = fold_convert_const (NOP_EXPR, type, arg);
2029 if (tem != NULL_TREE)
2030 return tem;
2033 switch (TREE_CODE (orig))
2035 case INTEGER_TYPE:
2036 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2037 case POINTER_TYPE: case REFERENCE_TYPE:
2038 return fold_build1 (FLOAT_EXPR, type, arg);
2040 case REAL_TYPE:
2041 return fold_build1 (NOP_EXPR, type, arg);
2043 case COMPLEX_TYPE:
2044 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2045 return fold_convert (type, tem);
2047 default:
2048 gcc_unreachable ();
2051 case COMPLEX_TYPE:
2052 switch (TREE_CODE (orig))
2054 case INTEGER_TYPE:
2055 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2056 case POINTER_TYPE: case REFERENCE_TYPE:
2057 case REAL_TYPE:
2058 return build2 (COMPLEX_EXPR, type,
2059 fold_convert (TREE_TYPE (type), arg),
2060 fold_convert (TREE_TYPE (type), integer_zero_node));
2061 case COMPLEX_TYPE:
2063 tree rpart, ipart;
2065 if (TREE_CODE (arg) == COMPLEX_EXPR)
2067 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
2068 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
2069 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2072 arg = save_expr (arg);
2073 rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2074 ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
2075 rpart = fold_convert (TREE_TYPE (type), rpart);
2076 ipart = fold_convert (TREE_TYPE (type), ipart);
2077 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2080 default:
2081 gcc_unreachable ();
2084 case VECTOR_TYPE:
2085 if (integer_zerop (arg))
2086 return build_zero_vector (type);
2087 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2088 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2089 || TREE_CODE (orig) == VECTOR_TYPE);
2090 return fold_build1 (VIEW_CONVERT_EXPR, type, arg);
2092 case VOID_TYPE:
2093 return fold_build1 (NOP_EXPR, type, fold_ignored_result (arg));
2095 default:
2096 gcc_unreachable ();
2100 /* Return false if expr can be assumed not to be an lvalue, true
2101 otherwise. */
2103 static bool
2104 maybe_lvalue_p (tree x)
2106 /* We only need to wrap lvalue tree codes. */
2107 switch (TREE_CODE (x))
2109 case VAR_DECL:
2110 case PARM_DECL:
2111 case RESULT_DECL:
2112 case LABEL_DECL:
2113 case FUNCTION_DECL:
2114 case SSA_NAME:
2116 case COMPONENT_REF:
2117 case INDIRECT_REF:
2118 case ALIGN_INDIRECT_REF:
2119 case MISALIGNED_INDIRECT_REF:
2120 case ARRAY_REF:
2121 case ARRAY_RANGE_REF:
2122 case BIT_FIELD_REF:
2123 case OBJ_TYPE_REF:
2125 case REALPART_EXPR:
2126 case IMAGPART_EXPR:
2127 case PREINCREMENT_EXPR:
2128 case PREDECREMENT_EXPR:
2129 case SAVE_EXPR:
2130 case TRY_CATCH_EXPR:
2131 case WITH_CLEANUP_EXPR:
2132 case COMPOUND_EXPR:
2133 case MODIFY_EXPR:
2134 case TARGET_EXPR:
2135 case COND_EXPR:
2136 case BIND_EXPR:
2137 case MIN_EXPR:
2138 case MAX_EXPR:
2139 break;
2141 default:
2142 /* Assume the worst for front-end tree codes. */
2143 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2144 break;
2145 return false;
2148 return true;
2151 /* Return an expr equal to X but certainly not valid as an lvalue. */
2153 tree
2154 non_lvalue (tree x)
2156 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2157 us. */
2158 if (in_gimple_form)
2159 return x;
2161 if (! maybe_lvalue_p (x))
2162 return x;
2163 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2166 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2167 Zero means allow extended lvalues. */
2169 int pedantic_lvalues;
2171 /* When pedantic, return an expr equal to X but certainly not valid as a
2172 pedantic lvalue. Otherwise, return X. */
2174 static tree
2175 pedantic_non_lvalue (tree x)
2177 if (pedantic_lvalues)
2178 return non_lvalue (x);
2179 else
2180 return x;
2183 /* Given a tree comparison code, return the code that is the logical inverse
2184 of the given code. It is not safe to do this for floating-point
2185 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2186 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2188 enum tree_code
2189 invert_tree_comparison (enum tree_code code, bool honor_nans)
2191 if (honor_nans && flag_trapping_math)
2192 return ERROR_MARK;
2194 switch (code)
2196 case EQ_EXPR:
2197 return NE_EXPR;
2198 case NE_EXPR:
2199 return EQ_EXPR;
2200 case GT_EXPR:
2201 return honor_nans ? UNLE_EXPR : LE_EXPR;
2202 case GE_EXPR:
2203 return honor_nans ? UNLT_EXPR : LT_EXPR;
2204 case LT_EXPR:
2205 return honor_nans ? UNGE_EXPR : GE_EXPR;
2206 case LE_EXPR:
2207 return honor_nans ? UNGT_EXPR : GT_EXPR;
2208 case LTGT_EXPR:
2209 return UNEQ_EXPR;
2210 case UNEQ_EXPR:
2211 return LTGT_EXPR;
2212 case UNGT_EXPR:
2213 return LE_EXPR;
2214 case UNGE_EXPR:
2215 return LT_EXPR;
2216 case UNLT_EXPR:
2217 return GE_EXPR;
2218 case UNLE_EXPR:
2219 return GT_EXPR;
2220 case ORDERED_EXPR:
2221 return UNORDERED_EXPR;
2222 case UNORDERED_EXPR:
2223 return ORDERED_EXPR;
2224 default:
2225 gcc_unreachable ();
2229 /* Similar, but return the comparison that results if the operands are
2230 swapped. This is safe for floating-point. */
2232 enum tree_code
2233 swap_tree_comparison (enum tree_code code)
2235 switch (code)
2237 case EQ_EXPR:
2238 case NE_EXPR:
2239 case ORDERED_EXPR:
2240 case UNORDERED_EXPR:
2241 case LTGT_EXPR:
2242 case UNEQ_EXPR:
2243 return code;
2244 case GT_EXPR:
2245 return LT_EXPR;
2246 case GE_EXPR:
2247 return LE_EXPR;
2248 case LT_EXPR:
2249 return GT_EXPR;
2250 case LE_EXPR:
2251 return GE_EXPR;
2252 case UNGT_EXPR:
2253 return UNLT_EXPR;
2254 case UNGE_EXPR:
2255 return UNLE_EXPR;
2256 case UNLT_EXPR:
2257 return UNGT_EXPR;
2258 case UNLE_EXPR:
2259 return UNGE_EXPR;
2260 default:
2261 gcc_unreachable ();
2266 /* Convert a comparison tree code from an enum tree_code representation
2267 into a compcode bit-based encoding. This function is the inverse of
2268 compcode_to_comparison. */
2270 static enum comparison_code
2271 comparison_to_compcode (enum tree_code code)
2273 switch (code)
2275 case LT_EXPR:
2276 return COMPCODE_LT;
2277 case EQ_EXPR:
2278 return COMPCODE_EQ;
2279 case LE_EXPR:
2280 return COMPCODE_LE;
2281 case GT_EXPR:
2282 return COMPCODE_GT;
2283 case NE_EXPR:
2284 return COMPCODE_NE;
2285 case GE_EXPR:
2286 return COMPCODE_GE;
2287 case ORDERED_EXPR:
2288 return COMPCODE_ORD;
2289 case UNORDERED_EXPR:
2290 return COMPCODE_UNORD;
2291 case UNLT_EXPR:
2292 return COMPCODE_UNLT;
2293 case UNEQ_EXPR:
2294 return COMPCODE_UNEQ;
2295 case UNLE_EXPR:
2296 return COMPCODE_UNLE;
2297 case UNGT_EXPR:
2298 return COMPCODE_UNGT;
2299 case LTGT_EXPR:
2300 return COMPCODE_LTGT;
2301 case UNGE_EXPR:
2302 return COMPCODE_UNGE;
2303 default:
2304 gcc_unreachable ();
2308 /* Convert a compcode bit-based encoding of a comparison operator back
2309 to GCC's enum tree_code representation. This function is the
2310 inverse of comparison_to_compcode. */
2312 static enum tree_code
2313 compcode_to_comparison (enum comparison_code code)
2315 switch (code)
2317 case COMPCODE_LT:
2318 return LT_EXPR;
2319 case COMPCODE_EQ:
2320 return EQ_EXPR;
2321 case COMPCODE_LE:
2322 return LE_EXPR;
2323 case COMPCODE_GT:
2324 return GT_EXPR;
2325 case COMPCODE_NE:
2326 return NE_EXPR;
2327 case COMPCODE_GE:
2328 return GE_EXPR;
2329 case COMPCODE_ORD:
2330 return ORDERED_EXPR;
2331 case COMPCODE_UNORD:
2332 return UNORDERED_EXPR;
2333 case COMPCODE_UNLT:
2334 return UNLT_EXPR;
2335 case COMPCODE_UNEQ:
2336 return UNEQ_EXPR;
2337 case COMPCODE_UNLE:
2338 return UNLE_EXPR;
2339 case COMPCODE_UNGT:
2340 return UNGT_EXPR;
2341 case COMPCODE_LTGT:
2342 return LTGT_EXPR;
2343 case COMPCODE_UNGE:
2344 return UNGE_EXPR;
2345 default:
2346 gcc_unreachable ();
2350 /* Return a tree for the comparison which is the combination of
2351 doing the AND or OR (depending on CODE) of the two operations LCODE
2352 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2353 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2354 if this makes the transformation invalid. */
2356 tree
2357 combine_comparisons (enum tree_code code, enum tree_code lcode,
2358 enum tree_code rcode, tree truth_type,
2359 tree ll_arg, tree lr_arg)
2361 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2362 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2363 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2364 enum comparison_code compcode;
2366 switch (code)
2368 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2369 compcode = lcompcode & rcompcode;
2370 break;
2372 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2373 compcode = lcompcode | rcompcode;
2374 break;
2376 default:
2377 return NULL_TREE;
2380 if (!honor_nans)
2382 /* Eliminate unordered comparisons, as well as LTGT and ORD
2383 which are not used unless the mode has NaNs. */
2384 compcode &= ~COMPCODE_UNORD;
2385 if (compcode == COMPCODE_LTGT)
2386 compcode = COMPCODE_NE;
2387 else if (compcode == COMPCODE_ORD)
2388 compcode = COMPCODE_TRUE;
2390 else if (flag_trapping_math)
2392 /* Check that the original operation and the optimized ones will trap
2393 under the same condition. */
2394 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2395 && (lcompcode != COMPCODE_EQ)
2396 && (lcompcode != COMPCODE_ORD);
2397 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2398 && (rcompcode != COMPCODE_EQ)
2399 && (rcompcode != COMPCODE_ORD);
2400 bool trap = (compcode & COMPCODE_UNORD) == 0
2401 && (compcode != COMPCODE_EQ)
2402 && (compcode != COMPCODE_ORD);
2404 /* In a short-circuited boolean expression the LHS might be
2405 such that the RHS, if evaluated, will never trap. For
2406 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2407 if neither x nor y is NaN. (This is a mixed blessing: for
2408 example, the expression above will never trap, hence
2409 optimizing it to x < y would be invalid). */
2410 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2411 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2412 rtrap = false;
2414 /* If the comparison was short-circuited, and only the RHS
2415 trapped, we may now generate a spurious trap. */
2416 if (rtrap && !ltrap
2417 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2418 return NULL_TREE;
2420 /* If we changed the conditions that cause a trap, we lose. */
2421 if ((ltrap || rtrap) != trap)
2422 return NULL_TREE;
2425 if (compcode == COMPCODE_TRUE)
2426 return constant_boolean_node (true, truth_type);
2427 else if (compcode == COMPCODE_FALSE)
2428 return constant_boolean_node (false, truth_type);
2429 else
2430 return fold_build2 (compcode_to_comparison (compcode),
2431 truth_type, ll_arg, lr_arg);
2434 /* Return nonzero if CODE is a tree code that represents a truth value. */
2436 static int
2437 truth_value_p (enum tree_code code)
2439 return (TREE_CODE_CLASS (code) == tcc_comparison
2440 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2441 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2442 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2445 /* Return nonzero if two operands (typically of the same tree node)
2446 are necessarily equal. If either argument has side-effects this
2447 function returns zero. FLAGS modifies behavior as follows:
2449 If OEP_ONLY_CONST is set, only return nonzero for constants.
2450 This function tests whether the operands are indistinguishable;
2451 it does not test whether they are equal using C's == operation.
2452 The distinction is important for IEEE floating point, because
2453 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2454 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2456 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2457 even though it may hold multiple values during a function.
2458 This is because a GCC tree node guarantees that nothing else is
2459 executed between the evaluation of its "operands" (which may often
2460 be evaluated in arbitrary order). Hence if the operands themselves
2461 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2462 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2463 unset means assuming isochronic (or instantaneous) tree equivalence.
2464 Unless comparing arbitrary expression trees, such as from different
2465 statements, this flag can usually be left unset.
2467 If OEP_PURE_SAME is set, then pure functions with identical arguments
2468 are considered the same. It is used when the caller has other ways
2469 to ensure that global memory is unchanged in between. */
2472 operand_equal_p (tree arg0, tree arg1, unsigned int flags)
2474 /* If either is ERROR_MARK, they aren't equal. */
2475 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
2476 return 0;
2478 /* If both types don't have the same signedness, then we can't consider
2479 them equal. We must check this before the STRIP_NOPS calls
2480 because they may change the signedness of the arguments. */
2481 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2482 return 0;
2484 STRIP_NOPS (arg0);
2485 STRIP_NOPS (arg1);
2487 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2488 /* This is needed for conversions and for COMPONENT_REF.
2489 Might as well play it safe and always test this. */
2490 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2491 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2492 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2493 return 0;
2495 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2496 We don't care about side effects in that case because the SAVE_EXPR
2497 takes care of that for us. In all other cases, two expressions are
2498 equal if they have no side effects. If we have two identical
2499 expressions with side effects that should be treated the same due
2500 to the only side effects being identical SAVE_EXPR's, that will
2501 be detected in the recursive calls below. */
2502 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2503 && (TREE_CODE (arg0) == SAVE_EXPR
2504 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2505 return 1;
2507 /* Next handle constant cases, those for which we can return 1 even
2508 if ONLY_CONST is set. */
2509 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2510 switch (TREE_CODE (arg0))
2512 case INTEGER_CST:
2513 return (! TREE_CONSTANT_OVERFLOW (arg0)
2514 && ! TREE_CONSTANT_OVERFLOW (arg1)
2515 && tree_int_cst_equal (arg0, arg1));
2517 case REAL_CST:
2518 return (! TREE_CONSTANT_OVERFLOW (arg0)
2519 && ! TREE_CONSTANT_OVERFLOW (arg1)
2520 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2521 TREE_REAL_CST (arg1)));
2523 case VECTOR_CST:
2525 tree v1, v2;
2527 if (TREE_CONSTANT_OVERFLOW (arg0)
2528 || TREE_CONSTANT_OVERFLOW (arg1))
2529 return 0;
2531 v1 = TREE_VECTOR_CST_ELTS (arg0);
2532 v2 = TREE_VECTOR_CST_ELTS (arg1);
2533 while (v1 && v2)
2535 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
2536 flags))
2537 return 0;
2538 v1 = TREE_CHAIN (v1);
2539 v2 = TREE_CHAIN (v2);
2542 return v1 == v2;
2545 case COMPLEX_CST:
2546 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2547 flags)
2548 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2549 flags));
2551 case STRING_CST:
2552 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2553 && ! memcmp (TREE_STRING_POINTER (arg0),
2554 TREE_STRING_POINTER (arg1),
2555 TREE_STRING_LENGTH (arg0)));
2557 case ADDR_EXPR:
2558 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2560 default:
2561 break;
2564 if (flags & OEP_ONLY_CONST)
2565 return 0;
2567 /* Define macros to test an operand from arg0 and arg1 for equality and a
2568 variant that allows null and views null as being different from any
2569 non-null value. In the latter case, if either is null, the both
2570 must be; otherwise, do the normal comparison. */
2571 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2572 TREE_OPERAND (arg1, N), flags)
2574 #define OP_SAME_WITH_NULL(N) \
2575 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2576 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2578 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2580 case tcc_unary:
2581 /* Two conversions are equal only if signedness and modes match. */
2582 switch (TREE_CODE (arg0))
2584 case NOP_EXPR:
2585 case CONVERT_EXPR:
2586 case FIX_CEIL_EXPR:
2587 case FIX_TRUNC_EXPR:
2588 case FIX_FLOOR_EXPR:
2589 case FIX_ROUND_EXPR:
2590 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2591 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2592 return 0;
2593 break;
2594 default:
2595 break;
2598 return OP_SAME (0);
2601 case tcc_comparison:
2602 case tcc_binary:
2603 if (OP_SAME (0) && OP_SAME (1))
2604 return 1;
2606 /* For commutative ops, allow the other order. */
2607 return (commutative_tree_code (TREE_CODE (arg0))
2608 && operand_equal_p (TREE_OPERAND (arg0, 0),
2609 TREE_OPERAND (arg1, 1), flags)
2610 && operand_equal_p (TREE_OPERAND (arg0, 1),
2611 TREE_OPERAND (arg1, 0), flags));
2613 case tcc_reference:
2614 /* If either of the pointer (or reference) expressions we are
2615 dereferencing contain a side effect, these cannot be equal. */
2616 if (TREE_SIDE_EFFECTS (arg0)
2617 || TREE_SIDE_EFFECTS (arg1))
2618 return 0;
2620 switch (TREE_CODE (arg0))
2622 case INDIRECT_REF:
2623 case ALIGN_INDIRECT_REF:
2624 case MISALIGNED_INDIRECT_REF:
2625 case REALPART_EXPR:
2626 case IMAGPART_EXPR:
2627 return OP_SAME (0);
2629 case ARRAY_REF:
2630 case ARRAY_RANGE_REF:
2631 /* Operands 2 and 3 may be null. */
2632 return (OP_SAME (0)
2633 && OP_SAME (1)
2634 && OP_SAME_WITH_NULL (2)
2635 && OP_SAME_WITH_NULL (3));
2637 case COMPONENT_REF:
2638 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2639 may be NULL when we're called to compare MEM_EXPRs. */
2640 return OP_SAME_WITH_NULL (0)
2641 && OP_SAME (1)
2642 && OP_SAME_WITH_NULL (2);
2644 case BIT_FIELD_REF:
2645 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2647 default:
2648 return 0;
2651 case tcc_expression:
2652 switch (TREE_CODE (arg0))
2654 case ADDR_EXPR:
2655 case TRUTH_NOT_EXPR:
2656 return OP_SAME (0);
2658 case TRUTH_ANDIF_EXPR:
2659 case TRUTH_ORIF_EXPR:
2660 return OP_SAME (0) && OP_SAME (1);
2662 case TRUTH_AND_EXPR:
2663 case TRUTH_OR_EXPR:
2664 case TRUTH_XOR_EXPR:
2665 if (OP_SAME (0) && OP_SAME (1))
2666 return 1;
2668 /* Otherwise take into account this is a commutative operation. */
2669 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2670 TREE_OPERAND (arg1, 1), flags)
2671 && operand_equal_p (TREE_OPERAND (arg0, 1),
2672 TREE_OPERAND (arg1, 0), flags));
2674 case CALL_EXPR:
2675 /* If the CALL_EXPRs call different functions, then they
2676 clearly can not be equal. */
2677 if (!OP_SAME (0))
2678 return 0;
2681 unsigned int cef = call_expr_flags (arg0);
2682 if (flags & OEP_PURE_SAME)
2683 cef &= ECF_CONST | ECF_PURE;
2684 else
2685 cef &= ECF_CONST;
2686 if (!cef)
2687 return 0;
2690 /* Now see if all the arguments are the same. operand_equal_p
2691 does not handle TREE_LIST, so we walk the operands here
2692 feeding them to operand_equal_p. */
2693 arg0 = TREE_OPERAND (arg0, 1);
2694 arg1 = TREE_OPERAND (arg1, 1);
2695 while (arg0 && arg1)
2697 if (! operand_equal_p (TREE_VALUE (arg0), TREE_VALUE (arg1),
2698 flags))
2699 return 0;
2701 arg0 = TREE_CHAIN (arg0);
2702 arg1 = TREE_CHAIN (arg1);
2705 /* If we get here and both argument lists are exhausted
2706 then the CALL_EXPRs are equal. */
2707 return ! (arg0 || arg1);
2709 default:
2710 return 0;
2713 case tcc_declaration:
2714 /* Consider __builtin_sqrt equal to sqrt. */
2715 return (TREE_CODE (arg0) == FUNCTION_DECL
2716 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2717 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2718 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2720 default:
2721 return 0;
2724 #undef OP_SAME
2725 #undef OP_SAME_WITH_NULL
2728 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2729 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2731 When in doubt, return 0. */
2733 static int
2734 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2736 int unsignedp1, unsignedpo;
2737 tree primarg0, primarg1, primother;
2738 unsigned int correct_width;
2740 if (operand_equal_p (arg0, arg1, 0))
2741 return 1;
2743 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2744 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2745 return 0;
2747 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2748 and see if the inner values are the same. This removes any
2749 signedness comparison, which doesn't matter here. */
2750 primarg0 = arg0, primarg1 = arg1;
2751 STRIP_NOPS (primarg0);
2752 STRIP_NOPS (primarg1);
2753 if (operand_equal_p (primarg0, primarg1, 0))
2754 return 1;
2756 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2757 actual comparison operand, ARG0.
2759 First throw away any conversions to wider types
2760 already present in the operands. */
2762 primarg1 = get_narrower (arg1, &unsignedp1);
2763 primother = get_narrower (other, &unsignedpo);
2765 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2766 if (unsignedp1 == unsignedpo
2767 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2768 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2770 tree type = TREE_TYPE (arg0);
2772 /* Make sure shorter operand is extended the right way
2773 to match the longer operand. */
2774 primarg1 = fold_convert (lang_hooks.types.signed_or_unsigned_type
2775 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2777 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
2778 return 1;
2781 return 0;
2784 /* See if ARG is an expression that is either a comparison or is performing
2785 arithmetic on comparisons. The comparisons must only be comparing
2786 two different values, which will be stored in *CVAL1 and *CVAL2; if
2787 they are nonzero it means that some operands have already been found.
2788 No variables may be used anywhere else in the expression except in the
2789 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2790 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2792 If this is true, return 1. Otherwise, return zero. */
2794 static int
2795 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2797 enum tree_code code = TREE_CODE (arg);
2798 enum tree_code_class class = TREE_CODE_CLASS (code);
2800 /* We can handle some of the tcc_expression cases here. */
2801 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
2802 class = tcc_unary;
2803 else if (class == tcc_expression
2804 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2805 || code == COMPOUND_EXPR))
2806 class = tcc_binary;
2808 else if (class == tcc_expression && code == SAVE_EXPR
2809 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2811 /* If we've already found a CVAL1 or CVAL2, this expression is
2812 two complex to handle. */
2813 if (*cval1 || *cval2)
2814 return 0;
2816 class = tcc_unary;
2817 *save_p = 1;
2820 switch (class)
2822 case tcc_unary:
2823 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2825 case tcc_binary:
2826 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2827 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2828 cval1, cval2, save_p));
2830 case tcc_constant:
2831 return 1;
2833 case tcc_expression:
2834 if (code == COND_EXPR)
2835 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2836 cval1, cval2, save_p)
2837 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2838 cval1, cval2, save_p)
2839 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2840 cval1, cval2, save_p));
2841 return 0;
2843 case tcc_comparison:
2844 /* First see if we can handle the first operand, then the second. For
2845 the second operand, we know *CVAL1 can't be zero. It must be that
2846 one side of the comparison is each of the values; test for the
2847 case where this isn't true by failing if the two operands
2848 are the same. */
2850 if (operand_equal_p (TREE_OPERAND (arg, 0),
2851 TREE_OPERAND (arg, 1), 0))
2852 return 0;
2854 if (*cval1 == 0)
2855 *cval1 = TREE_OPERAND (arg, 0);
2856 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2858 else if (*cval2 == 0)
2859 *cval2 = TREE_OPERAND (arg, 0);
2860 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2862 else
2863 return 0;
2865 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2867 else if (*cval2 == 0)
2868 *cval2 = TREE_OPERAND (arg, 1);
2869 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2871 else
2872 return 0;
2874 return 1;
2876 default:
2877 return 0;
2881 /* ARG is a tree that is known to contain just arithmetic operations and
2882 comparisons. Evaluate the operations in the tree substituting NEW0 for
2883 any occurrence of OLD0 as an operand of a comparison and likewise for
2884 NEW1 and OLD1. */
2886 static tree
2887 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
2889 tree type = TREE_TYPE (arg);
2890 enum tree_code code = TREE_CODE (arg);
2891 enum tree_code_class class = TREE_CODE_CLASS (code);
2893 /* We can handle some of the tcc_expression cases here. */
2894 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
2895 class = tcc_unary;
2896 else if (class == tcc_expression
2897 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2898 class = tcc_binary;
2900 switch (class)
2902 case tcc_unary:
2903 return fold_build1 (code, type,
2904 eval_subst (TREE_OPERAND (arg, 0),
2905 old0, new0, old1, new1));
2907 case tcc_binary:
2908 return fold_build2 (code, type,
2909 eval_subst (TREE_OPERAND (arg, 0),
2910 old0, new0, old1, new1),
2911 eval_subst (TREE_OPERAND (arg, 1),
2912 old0, new0, old1, new1));
2914 case tcc_expression:
2915 switch (code)
2917 case SAVE_EXPR:
2918 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2920 case COMPOUND_EXPR:
2921 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2923 case COND_EXPR:
2924 return fold_build3 (code, type,
2925 eval_subst (TREE_OPERAND (arg, 0),
2926 old0, new0, old1, new1),
2927 eval_subst (TREE_OPERAND (arg, 1),
2928 old0, new0, old1, new1),
2929 eval_subst (TREE_OPERAND (arg, 2),
2930 old0, new0, old1, new1));
2931 default:
2932 break;
2934 /* Fall through - ??? */
2936 case tcc_comparison:
2938 tree arg0 = TREE_OPERAND (arg, 0);
2939 tree arg1 = TREE_OPERAND (arg, 1);
2941 /* We need to check both for exact equality and tree equality. The
2942 former will be true if the operand has a side-effect. In that
2943 case, we know the operand occurred exactly once. */
2945 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2946 arg0 = new0;
2947 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2948 arg0 = new1;
2950 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2951 arg1 = new0;
2952 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2953 arg1 = new1;
2955 return fold_build2 (code, type, arg0, arg1);
2958 default:
2959 return arg;
2963 /* Return a tree for the case when the result of an expression is RESULT
2964 converted to TYPE and OMITTED was previously an operand of the expression
2965 but is now not needed (e.g., we folded OMITTED * 0).
2967 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2968 the conversion of RESULT to TYPE. */
2970 tree
2971 omit_one_operand (tree type, tree result, tree omitted)
2973 tree t = fold_convert (type, result);
2975 if (TREE_SIDE_EFFECTS (omitted))
2976 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
2978 return non_lvalue (t);
2981 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2983 static tree
2984 pedantic_omit_one_operand (tree type, tree result, tree omitted)
2986 tree t = fold_convert (type, result);
2988 if (TREE_SIDE_EFFECTS (omitted))
2989 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
2991 return pedantic_non_lvalue (t);
2994 /* Return a tree for the case when the result of an expression is RESULT
2995 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
2996 of the expression but are now not needed.
2998 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
2999 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3000 evaluated before OMITTED2. Otherwise, if neither has side effects,
3001 just do the conversion of RESULT to TYPE. */
3003 tree
3004 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
3006 tree t = fold_convert (type, result);
3008 if (TREE_SIDE_EFFECTS (omitted2))
3009 t = build2 (COMPOUND_EXPR, type, omitted2, t);
3010 if (TREE_SIDE_EFFECTS (omitted1))
3011 t = build2 (COMPOUND_EXPR, type, omitted1, t);
3013 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
3017 /* Return a simplified tree node for the truth-negation of ARG. This
3018 never alters ARG itself. We assume that ARG is an operation that
3019 returns a truth value (0 or 1).
3021 FIXME: one would think we would fold the result, but it causes
3022 problems with the dominator optimizer. */
3023 tree
3024 invert_truthvalue (tree arg)
3026 tree type = TREE_TYPE (arg);
3027 enum tree_code code = TREE_CODE (arg);
3029 if (code == ERROR_MARK)
3030 return arg;
3032 /* If this is a comparison, we can simply invert it, except for
3033 floating-point non-equality comparisons, in which case we just
3034 enclose a TRUTH_NOT_EXPR around what we have. */
3036 if (TREE_CODE_CLASS (code) == tcc_comparison)
3038 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3039 if (FLOAT_TYPE_P (op_type)
3040 && flag_trapping_math
3041 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3042 && code != NE_EXPR && code != EQ_EXPR)
3043 return build1 (TRUTH_NOT_EXPR, type, arg);
3044 else
3046 code = invert_tree_comparison (code,
3047 HONOR_NANS (TYPE_MODE (op_type)));
3048 if (code == ERROR_MARK)
3049 return build1 (TRUTH_NOT_EXPR, type, arg);
3050 else
3051 return build2 (code, type,
3052 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
3056 switch (code)
3058 case INTEGER_CST:
3059 return constant_boolean_node (integer_zerop (arg), type);
3061 case TRUTH_AND_EXPR:
3062 return build2 (TRUTH_OR_EXPR, type,
3063 invert_truthvalue (TREE_OPERAND (arg, 0)),
3064 invert_truthvalue (TREE_OPERAND (arg, 1)));
3066 case TRUTH_OR_EXPR:
3067 return build2 (TRUTH_AND_EXPR, type,
3068 invert_truthvalue (TREE_OPERAND (arg, 0)),
3069 invert_truthvalue (TREE_OPERAND (arg, 1)));
3071 case TRUTH_XOR_EXPR:
3072 /* Here we can invert either operand. We invert the first operand
3073 unless the second operand is a TRUTH_NOT_EXPR in which case our
3074 result is the XOR of the first operand with the inside of the
3075 negation of the second operand. */
3077 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3078 return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3079 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3080 else
3081 return build2 (TRUTH_XOR_EXPR, type,
3082 invert_truthvalue (TREE_OPERAND (arg, 0)),
3083 TREE_OPERAND (arg, 1));
3085 case TRUTH_ANDIF_EXPR:
3086 return build2 (TRUTH_ORIF_EXPR, type,
3087 invert_truthvalue (TREE_OPERAND (arg, 0)),
3088 invert_truthvalue (TREE_OPERAND (arg, 1)));
3090 case TRUTH_ORIF_EXPR:
3091 return build2 (TRUTH_ANDIF_EXPR, type,
3092 invert_truthvalue (TREE_OPERAND (arg, 0)),
3093 invert_truthvalue (TREE_OPERAND (arg, 1)));
3095 case TRUTH_NOT_EXPR:
3096 return TREE_OPERAND (arg, 0);
3098 case COND_EXPR:
3100 tree arg1 = TREE_OPERAND (arg, 1);
3101 tree arg2 = TREE_OPERAND (arg, 2);
3102 /* A COND_EXPR may have a throw as one operand, which
3103 then has void type. Just leave void operands
3104 as they are. */
3105 return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
3106 VOID_TYPE_P (TREE_TYPE (arg1))
3107 ? arg1 : invert_truthvalue (arg1),
3108 VOID_TYPE_P (TREE_TYPE (arg2))
3109 ? arg2 : invert_truthvalue (arg2));
3112 case COMPOUND_EXPR:
3113 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
3114 invert_truthvalue (TREE_OPERAND (arg, 1)));
3116 case NON_LVALUE_EXPR:
3117 return invert_truthvalue (TREE_OPERAND (arg, 0));
3119 case NOP_EXPR:
3120 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3121 break;
3123 case CONVERT_EXPR:
3124 case FLOAT_EXPR:
3125 return build1 (TREE_CODE (arg), type,
3126 invert_truthvalue (TREE_OPERAND (arg, 0)));
3128 case BIT_AND_EXPR:
3129 if (!integer_onep (TREE_OPERAND (arg, 1)))
3130 break;
3131 return build2 (EQ_EXPR, type, arg,
3132 build_int_cst (type, 0));
3134 case SAVE_EXPR:
3135 return build1 (TRUTH_NOT_EXPR, type, arg);
3137 case CLEANUP_POINT_EXPR:
3138 return build1 (CLEANUP_POINT_EXPR, type,
3139 invert_truthvalue (TREE_OPERAND (arg, 0)));
3141 default:
3142 break;
3144 gcc_assert (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE);
3145 return build1 (TRUTH_NOT_EXPR, type, arg);
3148 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3149 operands are another bit-wise operation with a common input. If so,
3150 distribute the bit operations to save an operation and possibly two if
3151 constants are involved. For example, convert
3152 (A | B) & (A | C) into A | (B & C)
3153 Further simplification will occur if B and C are constants.
3155 If this optimization cannot be done, 0 will be returned. */
3157 static tree
3158 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3160 tree common;
3161 tree left, right;
3163 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3164 || TREE_CODE (arg0) == code
3165 || (TREE_CODE (arg0) != BIT_AND_EXPR
3166 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3167 return 0;
3169 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3171 common = TREE_OPERAND (arg0, 0);
3172 left = TREE_OPERAND (arg0, 1);
3173 right = TREE_OPERAND (arg1, 1);
3175 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3177 common = TREE_OPERAND (arg0, 0);
3178 left = TREE_OPERAND (arg0, 1);
3179 right = TREE_OPERAND (arg1, 0);
3181 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3183 common = TREE_OPERAND (arg0, 1);
3184 left = TREE_OPERAND (arg0, 0);
3185 right = TREE_OPERAND (arg1, 1);
3187 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3189 common = TREE_OPERAND (arg0, 1);
3190 left = TREE_OPERAND (arg0, 0);
3191 right = TREE_OPERAND (arg1, 0);
3193 else
3194 return 0;
3196 return fold_build2 (TREE_CODE (arg0), type, common,
3197 fold_build2 (code, type, left, right));
3200 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3201 with code CODE. This optimization is unsafe. */
3202 static tree
3203 distribute_real_division (enum tree_code code, tree type, tree arg0, tree arg1)
3205 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3206 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3208 /* (A / C) +- (B / C) -> (A +- B) / C. */
3209 if (mul0 == mul1
3210 && operand_equal_p (TREE_OPERAND (arg0, 1),
3211 TREE_OPERAND (arg1, 1), 0))
3212 return fold_build2 (mul0 ? MULT_EXPR : RDIV_EXPR, type,
3213 fold_build2 (code, type,
3214 TREE_OPERAND (arg0, 0),
3215 TREE_OPERAND (arg1, 0)),
3216 TREE_OPERAND (arg0, 1));
3218 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3219 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3220 TREE_OPERAND (arg1, 0), 0)
3221 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3222 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3224 REAL_VALUE_TYPE r0, r1;
3225 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3226 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3227 if (!mul0)
3228 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3229 if (!mul1)
3230 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3231 real_arithmetic (&r0, code, &r0, &r1);
3232 return fold_build2 (MULT_EXPR, type,
3233 TREE_OPERAND (arg0, 0),
3234 build_real (type, r0));
3237 return NULL_TREE;
3240 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3241 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3243 static tree
3244 make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
3245 int unsignedp)
3247 tree result;
3249 if (bitpos == 0)
3251 tree size = TYPE_SIZE (TREE_TYPE (inner));
3252 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3253 || POINTER_TYPE_P (TREE_TYPE (inner)))
3254 && host_integerp (size, 0)
3255 && tree_low_cst (size, 0) == bitsize)
3256 return fold_convert (type, inner);
3259 result = build3 (BIT_FIELD_REF, type, inner,
3260 size_int (bitsize), bitsize_int (bitpos));
3262 BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
3264 return result;
3267 /* Optimize a bit-field compare.
3269 There are two cases: First is a compare against a constant and the
3270 second is a comparison of two items where the fields are at the same
3271 bit position relative to the start of a chunk (byte, halfword, word)
3272 large enough to contain it. In these cases we can avoid the shift
3273 implicit in bitfield extractions.
3275 For constants, we emit a compare of the shifted constant with the
3276 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3277 compared. For two fields at the same position, we do the ANDs with the
3278 similar mask and compare the result of the ANDs.
3280 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3281 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3282 are the left and right operands of the comparison, respectively.
3284 If the optimization described above can be done, we return the resulting
3285 tree. Otherwise we return zero. */
3287 static tree
3288 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3289 tree lhs, tree rhs)
3291 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3292 tree type = TREE_TYPE (lhs);
3293 tree signed_type, unsigned_type;
3294 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3295 enum machine_mode lmode, rmode, nmode;
3296 int lunsignedp, runsignedp;
3297 int lvolatilep = 0, rvolatilep = 0;
3298 tree linner, rinner = NULL_TREE;
3299 tree mask;
3300 tree offset;
3302 /* Get all the information about the extractions being done. If the bit size
3303 if the same as the size of the underlying object, we aren't doing an
3304 extraction at all and so can do nothing. We also don't want to
3305 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3306 then will no longer be able to replace it. */
3307 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3308 &lunsignedp, &lvolatilep, false);
3309 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3310 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3311 return 0;
3313 if (!const_p)
3315 /* If this is not a constant, we can only do something if bit positions,
3316 sizes, and signedness are the same. */
3317 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3318 &runsignedp, &rvolatilep, false);
3320 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3321 || lunsignedp != runsignedp || offset != 0
3322 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3323 return 0;
3326 /* See if we can find a mode to refer to this field. We should be able to,
3327 but fail if we can't. */
3328 nmode = get_best_mode (lbitsize, lbitpos,
3329 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3330 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3331 TYPE_ALIGN (TREE_TYPE (rinner))),
3332 word_mode, lvolatilep || rvolatilep);
3333 if (nmode == VOIDmode)
3334 return 0;
3336 /* Set signed and unsigned types of the precision of this mode for the
3337 shifts below. */
3338 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3339 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3341 /* Compute the bit position and size for the new reference and our offset
3342 within it. If the new reference is the same size as the original, we
3343 won't optimize anything, so return zero. */
3344 nbitsize = GET_MODE_BITSIZE (nmode);
3345 nbitpos = lbitpos & ~ (nbitsize - 1);
3346 lbitpos -= nbitpos;
3347 if (nbitsize == lbitsize)
3348 return 0;
3350 if (BYTES_BIG_ENDIAN)
3351 lbitpos = nbitsize - lbitsize - lbitpos;
3353 /* Make the mask to be used against the extracted field. */
3354 mask = build_int_cst (unsigned_type, -1);
3355 mask = force_fit_type (mask, 0, false, false);
3356 mask = fold_convert (unsigned_type, mask);
3357 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3358 mask = const_binop (RSHIFT_EXPR, mask,
3359 size_int (nbitsize - lbitsize - lbitpos), 0);
3361 if (! const_p)
3362 /* If not comparing with constant, just rework the comparison
3363 and return. */
3364 return build2 (code, compare_type,
3365 build2 (BIT_AND_EXPR, unsigned_type,
3366 make_bit_field_ref (linner, unsigned_type,
3367 nbitsize, nbitpos, 1),
3368 mask),
3369 build2 (BIT_AND_EXPR, unsigned_type,
3370 make_bit_field_ref (rinner, unsigned_type,
3371 nbitsize, nbitpos, 1),
3372 mask));
3374 /* Otherwise, we are handling the constant case. See if the constant is too
3375 big for the field. Warn and return a tree of for 0 (false) if so. We do
3376 this not only for its own sake, but to avoid having to test for this
3377 error case below. If we didn't, we might generate wrong code.
3379 For unsigned fields, the constant shifted right by the field length should
3380 be all zero. For signed fields, the high-order bits should agree with
3381 the sign bit. */
3383 if (lunsignedp)
3385 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3386 fold_convert (unsigned_type, rhs),
3387 size_int (lbitsize), 0)))
3389 warning (0, "comparison is always %d due to width of bit-field",
3390 code == NE_EXPR);
3391 return constant_boolean_node (code == NE_EXPR, compare_type);
3394 else
3396 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
3397 size_int (lbitsize - 1), 0);
3398 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3400 warning (0, "comparison is always %d due to width of bit-field",
3401 code == NE_EXPR);
3402 return constant_boolean_node (code == NE_EXPR, compare_type);
3406 /* Single-bit compares should always be against zero. */
3407 if (lbitsize == 1 && ! integer_zerop (rhs))
3409 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3410 rhs = build_int_cst (type, 0);
3413 /* Make a new bitfield reference, shift the constant over the
3414 appropriate number of bits and mask it with the computed mask
3415 (in case this was a signed field). If we changed it, make a new one. */
3416 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
3417 if (lvolatilep)
3419 TREE_SIDE_EFFECTS (lhs) = 1;
3420 TREE_THIS_VOLATILE (lhs) = 1;
3423 rhs = const_binop (BIT_AND_EXPR,
3424 const_binop (LSHIFT_EXPR,
3425 fold_convert (unsigned_type, rhs),
3426 size_int (lbitpos), 0),
3427 mask, 0);
3429 return build2 (code, compare_type,
3430 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
3431 rhs);
3434 /* Subroutine for fold_truthop: decode a field reference.
3436 If EXP is a comparison reference, we return the innermost reference.
3438 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3439 set to the starting bit number.
3441 If the innermost field can be completely contained in a mode-sized
3442 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3444 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3445 otherwise it is not changed.
3447 *PUNSIGNEDP is set to the signedness of the field.
3449 *PMASK is set to the mask used. This is either contained in a
3450 BIT_AND_EXPR or derived from the width of the field.
3452 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3454 Return 0 if this is not a component reference or is one that we can't
3455 do anything with. */
3457 static tree
3458 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
3459 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3460 int *punsignedp, int *pvolatilep,
3461 tree *pmask, tree *pand_mask)
3463 tree outer_type = 0;
3464 tree and_mask = 0;
3465 tree mask, inner, offset;
3466 tree unsigned_type;
3467 unsigned int precision;
3469 /* All the optimizations using this function assume integer fields.
3470 There are problems with FP fields since the type_for_size call
3471 below can fail for, e.g., XFmode. */
3472 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3473 return 0;
3475 /* We are interested in the bare arrangement of bits, so strip everything
3476 that doesn't affect the machine mode. However, record the type of the
3477 outermost expression if it may matter below. */
3478 if (TREE_CODE (exp) == NOP_EXPR
3479 || TREE_CODE (exp) == CONVERT_EXPR
3480 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3481 outer_type = TREE_TYPE (exp);
3482 STRIP_NOPS (exp);
3484 if (TREE_CODE (exp) == BIT_AND_EXPR)
3486 and_mask = TREE_OPERAND (exp, 1);
3487 exp = TREE_OPERAND (exp, 0);
3488 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3489 if (TREE_CODE (and_mask) != INTEGER_CST)
3490 return 0;
3493 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3494 punsignedp, pvolatilep, false);
3495 if ((inner == exp && and_mask == 0)
3496 || *pbitsize < 0 || offset != 0
3497 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3498 return 0;
3500 /* If the number of bits in the reference is the same as the bitsize of
3501 the outer type, then the outer type gives the signedness. Otherwise
3502 (in case of a small bitfield) the signedness is unchanged. */
3503 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3504 *punsignedp = TYPE_UNSIGNED (outer_type);
3506 /* Compute the mask to access the bitfield. */
3507 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3508 precision = TYPE_PRECISION (unsigned_type);
3510 mask = build_int_cst (unsigned_type, -1);
3511 mask = force_fit_type (mask, 0, false, false);
3513 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3514 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3516 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3517 if (and_mask != 0)
3518 mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
3519 fold_convert (unsigned_type, and_mask), mask);
3521 *pmask = mask;
3522 *pand_mask = and_mask;
3523 return inner;
3526 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3527 bit positions. */
3529 static int
3530 all_ones_mask_p (tree mask, int size)
3532 tree type = TREE_TYPE (mask);
3533 unsigned int precision = TYPE_PRECISION (type);
3534 tree tmask;
3536 tmask = build_int_cst (lang_hooks.types.signed_type (type), -1);
3537 tmask = force_fit_type (tmask, 0, false, false);
3539 return
3540 tree_int_cst_equal (mask,
3541 const_binop (RSHIFT_EXPR,
3542 const_binop (LSHIFT_EXPR, tmask,
3543 size_int (precision - size),
3545 size_int (precision - size), 0));
3548 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3549 represents the sign bit of EXP's type. If EXP represents a sign
3550 or zero extension, also test VAL against the unextended type.
3551 The return value is the (sub)expression whose sign bit is VAL,
3552 or NULL_TREE otherwise. */
3554 static tree
3555 sign_bit_p (tree exp, tree val)
3557 unsigned HOST_WIDE_INT mask_lo, lo;
3558 HOST_WIDE_INT mask_hi, hi;
3559 int width;
3560 tree t;
3562 /* Tree EXP must have an integral type. */
3563 t = TREE_TYPE (exp);
3564 if (! INTEGRAL_TYPE_P (t))
3565 return NULL_TREE;
3567 /* Tree VAL must be an integer constant. */
3568 if (TREE_CODE (val) != INTEGER_CST
3569 || TREE_CONSTANT_OVERFLOW (val))
3570 return NULL_TREE;
3572 width = TYPE_PRECISION (t);
3573 if (width > HOST_BITS_PER_WIDE_INT)
3575 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
3576 lo = 0;
3578 mask_hi = ((unsigned HOST_WIDE_INT) -1
3579 >> (2 * HOST_BITS_PER_WIDE_INT - width));
3580 mask_lo = -1;
3582 else
3584 hi = 0;
3585 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
3587 mask_hi = 0;
3588 mask_lo = ((unsigned HOST_WIDE_INT) -1
3589 >> (HOST_BITS_PER_WIDE_INT - width));
3592 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3593 treat VAL as if it were unsigned. */
3594 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
3595 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
3596 return exp;
3598 /* Handle extension from a narrower type. */
3599 if (TREE_CODE (exp) == NOP_EXPR
3600 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3601 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3603 return NULL_TREE;
3606 /* Subroutine for fold_truthop: determine if an operand is simple enough
3607 to be evaluated unconditionally. */
3609 static int
3610 simple_operand_p (tree exp)
3612 /* Strip any conversions that don't change the machine mode. */
3613 STRIP_NOPS (exp);
3615 return (CONSTANT_CLASS_P (exp)
3616 || TREE_CODE (exp) == SSA_NAME
3617 || (DECL_P (exp)
3618 && ! TREE_ADDRESSABLE (exp)
3619 && ! TREE_THIS_VOLATILE (exp)
3620 && ! DECL_NONLOCAL (exp)
3621 /* Don't regard global variables as simple. They may be
3622 allocated in ways unknown to the compiler (shared memory,
3623 #pragma weak, etc). */
3624 && ! TREE_PUBLIC (exp)
3625 && ! DECL_EXTERNAL (exp)
3626 /* Loading a static variable is unduly expensive, but global
3627 registers aren't expensive. */
3628 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3631 /* The following functions are subroutines to fold_range_test and allow it to
3632 try to change a logical combination of comparisons into a range test.
3634 For example, both
3635 X == 2 || X == 3 || X == 4 || X == 5
3637 X >= 2 && X <= 5
3638 are converted to
3639 (unsigned) (X - 2) <= 3
3641 We describe each set of comparisons as being either inside or outside
3642 a range, using a variable named like IN_P, and then describe the
3643 range with a lower and upper bound. If one of the bounds is omitted,
3644 it represents either the highest or lowest value of the type.
3646 In the comments below, we represent a range by two numbers in brackets
3647 preceded by a "+" to designate being inside that range, or a "-" to
3648 designate being outside that range, so the condition can be inverted by
3649 flipping the prefix. An omitted bound is represented by a "-". For
3650 example, "- [-, 10]" means being outside the range starting at the lowest
3651 possible value and ending at 10, in other words, being greater than 10.
3652 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3653 always false.
3655 We set up things so that the missing bounds are handled in a consistent
3656 manner so neither a missing bound nor "true" and "false" need to be
3657 handled using a special case. */
3659 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3660 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3661 and UPPER1_P are nonzero if the respective argument is an upper bound
3662 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3663 must be specified for a comparison. ARG1 will be converted to ARG0's
3664 type if both are specified. */
3666 static tree
3667 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3668 tree arg1, int upper1_p)
3670 tree tem;
3671 int result;
3672 int sgn0, sgn1;
3674 /* If neither arg represents infinity, do the normal operation.
3675 Else, if not a comparison, return infinity. Else handle the special
3676 comparison rules. Note that most of the cases below won't occur, but
3677 are handled for consistency. */
3679 if (arg0 != 0 && arg1 != 0)
3681 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3682 arg0, fold_convert (TREE_TYPE (arg0), arg1));
3683 STRIP_NOPS (tem);
3684 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3687 if (TREE_CODE_CLASS (code) != tcc_comparison)
3688 return 0;
3690 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3691 for neither. In real maths, we cannot assume open ended ranges are
3692 the same. But, this is computer arithmetic, where numbers are finite.
3693 We can therefore make the transformation of any unbounded range with
3694 the value Z, Z being greater than any representable number. This permits
3695 us to treat unbounded ranges as equal. */
3696 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3697 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3698 switch (code)
3700 case EQ_EXPR:
3701 result = sgn0 == sgn1;
3702 break;
3703 case NE_EXPR:
3704 result = sgn0 != sgn1;
3705 break;
3706 case LT_EXPR:
3707 result = sgn0 < sgn1;
3708 break;
3709 case LE_EXPR:
3710 result = sgn0 <= sgn1;
3711 break;
3712 case GT_EXPR:
3713 result = sgn0 > sgn1;
3714 break;
3715 case GE_EXPR:
3716 result = sgn0 >= sgn1;
3717 break;
3718 default:
3719 gcc_unreachable ();
3722 return constant_boolean_node (result, type);
3725 /* Given EXP, a logical expression, set the range it is testing into
3726 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3727 actually being tested. *PLOW and *PHIGH will be made of the same type
3728 as the returned expression. If EXP is not a comparison, we will most
3729 likely not be returning a useful value and range. */
3731 static tree
3732 make_range (tree exp, int *pin_p, tree *plow, tree *phigh)
3734 enum tree_code code;
3735 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
3736 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
3737 int in_p, n_in_p;
3738 tree low, high, n_low, n_high;
3740 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3741 and see if we can refine the range. Some of the cases below may not
3742 happen, but it doesn't seem worth worrying about this. We "continue"
3743 the outer loop when we've changed something; otherwise we "break"
3744 the switch, which will "break" the while. */
3746 in_p = 0;
3747 low = high = build_int_cst (TREE_TYPE (exp), 0);
3749 while (1)
3751 code = TREE_CODE (exp);
3752 exp_type = TREE_TYPE (exp);
3754 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3756 if (TREE_CODE_LENGTH (code) > 0)
3757 arg0 = TREE_OPERAND (exp, 0);
3758 if (TREE_CODE_CLASS (code) == tcc_comparison
3759 || TREE_CODE_CLASS (code) == tcc_unary
3760 || TREE_CODE_CLASS (code) == tcc_binary)
3761 arg0_type = TREE_TYPE (arg0);
3762 if (TREE_CODE_CLASS (code) == tcc_binary
3763 || TREE_CODE_CLASS (code) == tcc_comparison
3764 || (TREE_CODE_CLASS (code) == tcc_expression
3765 && TREE_CODE_LENGTH (code) > 1))
3766 arg1 = TREE_OPERAND (exp, 1);
3769 switch (code)
3771 case TRUTH_NOT_EXPR:
3772 in_p = ! in_p, exp = arg0;
3773 continue;
3775 case EQ_EXPR: case NE_EXPR:
3776 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3777 /* We can only do something if the range is testing for zero
3778 and if the second operand is an integer constant. Note that
3779 saying something is "in" the range we make is done by
3780 complementing IN_P since it will set in the initial case of
3781 being not equal to zero; "out" is leaving it alone. */
3782 if (low == 0 || high == 0
3783 || ! integer_zerop (low) || ! integer_zerop (high)
3784 || TREE_CODE (arg1) != INTEGER_CST)
3785 break;
3787 switch (code)
3789 case NE_EXPR: /* - [c, c] */
3790 low = high = arg1;
3791 break;
3792 case EQ_EXPR: /* + [c, c] */
3793 in_p = ! in_p, low = high = arg1;
3794 break;
3795 case GT_EXPR: /* - [-, c] */
3796 low = 0, high = arg1;
3797 break;
3798 case GE_EXPR: /* + [c, -] */
3799 in_p = ! in_p, low = arg1, high = 0;
3800 break;
3801 case LT_EXPR: /* - [c, -] */
3802 low = arg1, high = 0;
3803 break;
3804 case LE_EXPR: /* + [-, c] */
3805 in_p = ! in_p, low = 0, high = arg1;
3806 break;
3807 default:
3808 gcc_unreachable ();
3811 /* If this is an unsigned comparison, we also know that EXP is
3812 greater than or equal to zero. We base the range tests we make
3813 on that fact, so we record it here so we can parse existing
3814 range tests. We test arg0_type since often the return type
3815 of, e.g. EQ_EXPR, is boolean. */
3816 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
3818 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3819 in_p, low, high, 1,
3820 build_int_cst (arg0_type, 0),
3821 NULL_TREE))
3822 break;
3824 in_p = n_in_p, low = n_low, high = n_high;
3826 /* If the high bound is missing, but we have a nonzero low
3827 bound, reverse the range so it goes from zero to the low bound
3828 minus 1. */
3829 if (high == 0 && low && ! integer_zerop (low))
3831 in_p = ! in_p;
3832 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3833 integer_one_node, 0);
3834 low = build_int_cst (arg0_type, 0);
3838 exp = arg0;
3839 continue;
3841 case NEGATE_EXPR:
3842 /* (-x) IN [a,b] -> x in [-b, -a] */
3843 n_low = range_binop (MINUS_EXPR, exp_type,
3844 build_int_cst (exp_type, 0),
3845 0, high, 1);
3846 n_high = range_binop (MINUS_EXPR, exp_type,
3847 build_int_cst (exp_type, 0),
3848 0, low, 0);
3849 low = n_low, high = n_high;
3850 exp = arg0;
3851 continue;
3853 case BIT_NOT_EXPR:
3854 /* ~ X -> -X - 1 */
3855 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
3856 build_int_cst (exp_type, 1));
3857 continue;
3859 case PLUS_EXPR: case MINUS_EXPR:
3860 if (TREE_CODE (arg1) != INTEGER_CST)
3861 break;
3863 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
3864 move a constant to the other side. */
3865 if (flag_wrapv && !TYPE_UNSIGNED (arg0_type))
3866 break;
3868 /* If EXP is signed, any overflow in the computation is undefined,
3869 so we don't worry about it so long as our computations on
3870 the bounds don't overflow. For unsigned, overflow is defined
3871 and this is exactly the right thing. */
3872 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3873 arg0_type, low, 0, arg1, 0);
3874 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3875 arg0_type, high, 1, arg1, 0);
3876 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3877 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3878 break;
3880 /* Check for an unsigned range which has wrapped around the maximum
3881 value thus making n_high < n_low, and normalize it. */
3882 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3884 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
3885 integer_one_node, 0);
3886 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
3887 integer_one_node, 0);
3889 /* If the range is of the form +/- [ x+1, x ], we won't
3890 be able to normalize it. But then, it represents the
3891 whole range or the empty set, so make it
3892 +/- [ -, - ]. */
3893 if (tree_int_cst_equal (n_low, low)
3894 && tree_int_cst_equal (n_high, high))
3895 low = high = 0;
3896 else
3897 in_p = ! in_p;
3899 else
3900 low = n_low, high = n_high;
3902 exp = arg0;
3903 continue;
3905 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3906 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
3907 break;
3909 if (! INTEGRAL_TYPE_P (arg0_type)
3910 || (low != 0 && ! int_fits_type_p (low, arg0_type))
3911 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
3912 break;
3914 n_low = low, n_high = high;
3916 if (n_low != 0)
3917 n_low = fold_convert (arg0_type, n_low);
3919 if (n_high != 0)
3920 n_high = fold_convert (arg0_type, n_high);
3923 /* If we're converting arg0 from an unsigned type, to exp,
3924 a signed type, we will be doing the comparison as unsigned.
3925 The tests above have already verified that LOW and HIGH
3926 are both positive.
3928 So we have to ensure that we will handle large unsigned
3929 values the same way that the current signed bounds treat
3930 negative values. */
3932 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
3934 tree high_positive;
3935 tree equiv_type = lang_hooks.types.type_for_mode
3936 (TYPE_MODE (arg0_type), 1);
3938 /* A range without an upper bound is, naturally, unbounded.
3939 Since convert would have cropped a very large value, use
3940 the max value for the destination type. */
3941 high_positive
3942 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3943 : TYPE_MAX_VALUE (arg0_type);
3945 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
3946 high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
3947 fold_convert (arg0_type,
3948 high_positive),
3949 fold_convert (arg0_type,
3950 integer_one_node));
3952 /* If the low bound is specified, "and" the range with the
3953 range for which the original unsigned value will be
3954 positive. */
3955 if (low != 0)
3957 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3958 1, n_low, n_high, 1,
3959 fold_convert (arg0_type,
3960 integer_zero_node),
3961 high_positive))
3962 break;
3964 in_p = (n_in_p == in_p);
3966 else
3968 /* Otherwise, "or" the range with the range of the input
3969 that will be interpreted as negative. */
3970 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3971 0, n_low, n_high, 1,
3972 fold_convert (arg0_type,
3973 integer_zero_node),
3974 high_positive))
3975 break;
3977 in_p = (in_p != n_in_p);
3981 exp = arg0;
3982 low = n_low, high = n_high;
3983 continue;
3985 default:
3986 break;
3989 break;
3992 /* If EXP is a constant, we can evaluate whether this is true or false. */
3993 if (TREE_CODE (exp) == INTEGER_CST)
3995 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3996 exp, 0, low, 0))
3997 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3998 exp, 1, high, 1)));
3999 low = high = 0;
4000 exp = 0;
4003 *pin_p = in_p, *plow = low, *phigh = high;
4004 return exp;
4007 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4008 type, TYPE, return an expression to test if EXP is in (or out of, depending
4009 on IN_P) the range. Return 0 if the test couldn't be created. */
4011 static tree
4012 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
4014 tree etype = TREE_TYPE (exp);
4015 tree value;
4017 #ifdef HAVE_canonicalize_funcptr_for_compare
4018 /* Disable this optimization for function pointer expressions
4019 on targets that require function pointer canonicalization. */
4020 if (HAVE_canonicalize_funcptr_for_compare
4021 && TREE_CODE (etype) == POINTER_TYPE
4022 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4023 return NULL_TREE;
4024 #endif
4026 if (! in_p)
4028 value = build_range_check (type, exp, 1, low, high);
4029 if (value != 0)
4030 return invert_truthvalue (value);
4032 return 0;
4035 if (low == 0 && high == 0)
4036 return build_int_cst (type, 1);
4038 if (low == 0)
4039 return fold_build2 (LE_EXPR, type, exp,
4040 fold_convert (etype, high));
4042 if (high == 0)
4043 return fold_build2 (GE_EXPR, type, exp,
4044 fold_convert (etype, low));
4046 if (operand_equal_p (low, high, 0))
4047 return fold_build2 (EQ_EXPR, type, exp,
4048 fold_convert (etype, low));
4050 if (integer_zerop (low))
4052 if (! TYPE_UNSIGNED (etype))
4054 etype = lang_hooks.types.unsigned_type (etype);
4055 high = fold_convert (etype, high);
4056 exp = fold_convert (etype, exp);
4058 return build_range_check (type, exp, 1, 0, high);
4061 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4062 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4064 unsigned HOST_WIDE_INT lo;
4065 HOST_WIDE_INT hi;
4066 int prec;
4068 prec = TYPE_PRECISION (etype);
4069 if (prec <= HOST_BITS_PER_WIDE_INT)
4071 hi = 0;
4072 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4074 else
4076 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4077 lo = (unsigned HOST_WIDE_INT) -1;
4080 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4082 if (TYPE_UNSIGNED (etype))
4084 etype = lang_hooks.types.signed_type (etype);
4085 exp = fold_convert (etype, exp);
4087 return fold_build2 (GT_EXPR, type, exp,
4088 build_int_cst (etype, 0));
4092 value = const_binop (MINUS_EXPR, high, low, 0);
4093 if (value != 0 && (!flag_wrapv || TREE_OVERFLOW (value))
4094 && ! TYPE_UNSIGNED (etype))
4096 tree utype, minv, maxv;
4098 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4099 for the type in question, as we rely on this here. */
4100 switch (TREE_CODE (etype))
4102 case INTEGER_TYPE:
4103 case ENUMERAL_TYPE:
4104 /* There is no requirement that LOW be within the range of ETYPE
4105 if the latter is a subtype. It must, however, be within the base
4106 type of ETYPE. So be sure we do the subtraction in that type. */
4107 if (TREE_TYPE (etype))
4108 etype = TREE_TYPE (etype);
4109 utype = lang_hooks.types.unsigned_type (etype);
4110 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4111 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4112 integer_one_node, 1);
4113 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4114 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4115 minv, 1, maxv, 1)))
4117 etype = utype;
4118 high = fold_convert (etype, high);
4119 low = fold_convert (etype, low);
4120 exp = fold_convert (etype, exp);
4121 value = const_binop (MINUS_EXPR, high, low, 0);
4123 break;
4124 default:
4125 break;
4129 if (value != 0 && ! TREE_OVERFLOW (value))
4131 /* There is no requirement that LOW be within the range of ETYPE
4132 if the latter is a subtype. It must, however, be within the base
4133 type of ETYPE. So be sure we do the subtraction in that type. */
4134 if (INTEGRAL_TYPE_P (etype) && TREE_TYPE (etype))
4136 etype = TREE_TYPE (etype);
4137 exp = fold_convert (etype, exp);
4138 low = fold_convert (etype, low);
4139 value = fold_convert (etype, value);
4142 return build_range_check (type,
4143 fold_build2 (MINUS_EXPR, etype, exp, low),
4144 1, build_int_cst (etype, 0), value);
4147 return 0;
4150 /* Given two ranges, see if we can merge them into one. Return 1 if we
4151 can, 0 if we can't. Set the output range into the specified parameters. */
4153 static int
4154 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4155 tree high0, int in1_p, tree low1, tree high1)
4157 int no_overlap;
4158 int subset;
4159 int temp;
4160 tree tem;
4161 int in_p;
4162 tree low, high;
4163 int lowequal = ((low0 == 0 && low1 == 0)
4164 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4165 low0, 0, low1, 0)));
4166 int highequal = ((high0 == 0 && high1 == 0)
4167 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4168 high0, 1, high1, 1)));
4170 /* Make range 0 be the range that starts first, or ends last if they
4171 start at the same value. Swap them if it isn't. */
4172 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4173 low0, 0, low1, 0))
4174 || (lowequal
4175 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4176 high1, 1, high0, 1))))
4178 temp = in0_p, in0_p = in1_p, in1_p = temp;
4179 tem = low0, low0 = low1, low1 = tem;
4180 tem = high0, high0 = high1, high1 = tem;
4183 /* Now flag two cases, whether the ranges are disjoint or whether the
4184 second range is totally subsumed in the first. Note that the tests
4185 below are simplified by the ones above. */
4186 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4187 high0, 1, low1, 0));
4188 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4189 high1, 1, high0, 1));
4191 /* We now have four cases, depending on whether we are including or
4192 excluding the two ranges. */
4193 if (in0_p && in1_p)
4195 /* If they don't overlap, the result is false. If the second range
4196 is a subset it is the result. Otherwise, the range is from the start
4197 of the second to the end of the first. */
4198 if (no_overlap)
4199 in_p = 0, low = high = 0;
4200 else if (subset)
4201 in_p = 1, low = low1, high = high1;
4202 else
4203 in_p = 1, low = low1, high = high0;
4206 else if (in0_p && ! in1_p)
4208 /* If they don't overlap, the result is the first range. If they are
4209 equal, the result is false. If the second range is a subset of the
4210 first, and the ranges begin at the same place, we go from just after
4211 the end of the first range to the end of the second. If the second
4212 range is not a subset of the first, or if it is a subset and both
4213 ranges end at the same place, the range starts at the start of the
4214 first range and ends just before the second range.
4215 Otherwise, we can't describe this as a single range. */
4216 if (no_overlap)
4217 in_p = 1, low = low0, high = high0;
4218 else if (lowequal && highequal)
4219 in_p = 0, low = high = 0;
4220 else if (subset && lowequal)
4222 in_p = 1, high = high0;
4223 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
4224 integer_one_node, 0);
4226 else if (! subset || highequal)
4228 in_p = 1, low = low0;
4229 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
4230 integer_one_node, 0);
4232 else
4233 return 0;
4236 else if (! in0_p && in1_p)
4238 /* If they don't overlap, the result is the second range. If the second
4239 is a subset of the first, the result is false. Otherwise,
4240 the range starts just after the first range and ends at the
4241 end of the second. */
4242 if (no_overlap)
4243 in_p = 1, low = low1, high = high1;
4244 else if (subset || highequal)
4245 in_p = 0, low = high = 0;
4246 else
4248 in_p = 1, high = high1;
4249 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
4250 integer_one_node, 0);
4254 else
4256 /* The case where we are excluding both ranges. Here the complex case
4257 is if they don't overlap. In that case, the only time we have a
4258 range is if they are adjacent. If the second is a subset of the
4259 first, the result is the first. Otherwise, the range to exclude
4260 starts at the beginning of the first range and ends at the end of the
4261 second. */
4262 if (no_overlap)
4264 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4265 range_binop (PLUS_EXPR, NULL_TREE,
4266 high0, 1,
4267 integer_one_node, 1),
4268 1, low1, 0)))
4269 in_p = 0, low = low0, high = high1;
4270 else
4272 /* Canonicalize - [min, x] into - [-, x]. */
4273 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4274 switch (TREE_CODE (TREE_TYPE (low0)))
4276 case ENUMERAL_TYPE:
4277 if (TYPE_PRECISION (TREE_TYPE (low0))
4278 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4279 break;
4280 /* FALLTHROUGH */
4281 case INTEGER_TYPE:
4282 if (tree_int_cst_equal (low0,
4283 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4284 low0 = 0;
4285 break;
4286 case POINTER_TYPE:
4287 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4288 && integer_zerop (low0))
4289 low0 = 0;
4290 break;
4291 default:
4292 break;
4295 /* Canonicalize - [x, max] into - [x, -]. */
4296 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4297 switch (TREE_CODE (TREE_TYPE (high1)))
4299 case ENUMERAL_TYPE:
4300 if (TYPE_PRECISION (TREE_TYPE (high1))
4301 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4302 break;
4303 /* FALLTHROUGH */
4304 case INTEGER_TYPE:
4305 if (tree_int_cst_equal (high1,
4306 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4307 high1 = 0;
4308 break;
4309 case POINTER_TYPE:
4310 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4311 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4312 high1, 1,
4313 integer_one_node, 1)))
4314 high1 = 0;
4315 break;
4316 default:
4317 break;
4320 /* The ranges might be also adjacent between the maximum and
4321 minimum values of the given type. For
4322 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4323 return + [x + 1, y - 1]. */
4324 if (low0 == 0 && high1 == 0)
4326 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
4327 integer_one_node, 1);
4328 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
4329 integer_one_node, 0);
4330 if (low == 0 || high == 0)
4331 return 0;
4333 in_p = 1;
4335 else
4336 return 0;
4339 else if (subset)
4340 in_p = 0, low = low0, high = high0;
4341 else
4342 in_p = 0, low = low0, high = high1;
4345 *pin_p = in_p, *plow = low, *phigh = high;
4346 return 1;
4350 /* Subroutine of fold, looking inside expressions of the form
4351 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4352 of the COND_EXPR. This function is being used also to optimize
4353 A op B ? C : A, by reversing the comparison first.
4355 Return a folded expression whose code is not a COND_EXPR
4356 anymore, or NULL_TREE if no folding opportunity is found. */
4358 static tree
4359 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
4361 enum tree_code comp_code = TREE_CODE (arg0);
4362 tree arg00 = TREE_OPERAND (arg0, 0);
4363 tree arg01 = TREE_OPERAND (arg0, 1);
4364 tree arg1_type = TREE_TYPE (arg1);
4365 tree tem;
4367 STRIP_NOPS (arg1);
4368 STRIP_NOPS (arg2);
4370 /* If we have A op 0 ? A : -A, consider applying the following
4371 transformations:
4373 A == 0? A : -A same as -A
4374 A != 0? A : -A same as A
4375 A >= 0? A : -A same as abs (A)
4376 A > 0? A : -A same as abs (A)
4377 A <= 0? A : -A same as -abs (A)
4378 A < 0? A : -A same as -abs (A)
4380 None of these transformations work for modes with signed
4381 zeros. If A is +/-0, the first two transformations will
4382 change the sign of the result (from +0 to -0, or vice
4383 versa). The last four will fix the sign of the result,
4384 even though the original expressions could be positive or
4385 negative, depending on the sign of A.
4387 Note that all these transformations are correct if A is
4388 NaN, since the two alternatives (A and -A) are also NaNs. */
4389 if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
4390 ? real_zerop (arg01)
4391 : integer_zerop (arg01))
4392 && ((TREE_CODE (arg2) == NEGATE_EXPR
4393 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4394 /* In the case that A is of the form X-Y, '-A' (arg2) may
4395 have already been folded to Y-X, check for that. */
4396 || (TREE_CODE (arg1) == MINUS_EXPR
4397 && TREE_CODE (arg2) == MINUS_EXPR
4398 && operand_equal_p (TREE_OPERAND (arg1, 0),
4399 TREE_OPERAND (arg2, 1), 0)
4400 && operand_equal_p (TREE_OPERAND (arg1, 1),
4401 TREE_OPERAND (arg2, 0), 0))))
4402 switch (comp_code)
4404 case EQ_EXPR:
4405 case UNEQ_EXPR:
4406 tem = fold_convert (arg1_type, arg1);
4407 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
4408 case NE_EXPR:
4409 case LTGT_EXPR:
4410 return pedantic_non_lvalue (fold_convert (type, arg1));
4411 case UNGE_EXPR:
4412 case UNGT_EXPR:
4413 if (flag_trapping_math)
4414 break;
4415 /* Fall through. */
4416 case GE_EXPR:
4417 case GT_EXPR:
4418 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4419 arg1 = fold_convert (lang_hooks.types.signed_type
4420 (TREE_TYPE (arg1)), arg1);
4421 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
4422 return pedantic_non_lvalue (fold_convert (type, tem));
4423 case UNLE_EXPR:
4424 case UNLT_EXPR:
4425 if (flag_trapping_math)
4426 break;
4427 case LE_EXPR:
4428 case LT_EXPR:
4429 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4430 arg1 = fold_convert (lang_hooks.types.signed_type
4431 (TREE_TYPE (arg1)), arg1);
4432 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
4433 return negate_expr (fold_convert (type, tem));
4434 default:
4435 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4436 break;
4439 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4440 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4441 both transformations are correct when A is NaN: A != 0
4442 is then true, and A == 0 is false. */
4444 if (integer_zerop (arg01) && integer_zerop (arg2))
4446 if (comp_code == NE_EXPR)
4447 return pedantic_non_lvalue (fold_convert (type, arg1));
4448 else if (comp_code == EQ_EXPR)
4449 return build_int_cst (type, 0);
4452 /* Try some transformations of A op B ? A : B.
4454 A == B? A : B same as B
4455 A != B? A : B same as A
4456 A >= B? A : B same as max (A, B)
4457 A > B? A : B same as max (B, A)
4458 A <= B? A : B same as min (A, B)
4459 A < B? A : B same as min (B, A)
4461 As above, these transformations don't work in the presence
4462 of signed zeros. For example, if A and B are zeros of
4463 opposite sign, the first two transformations will change
4464 the sign of the result. In the last four, the original
4465 expressions give different results for (A=+0, B=-0) and
4466 (A=-0, B=+0), but the transformed expressions do not.
4468 The first two transformations are correct if either A or B
4469 is a NaN. In the first transformation, the condition will
4470 be false, and B will indeed be chosen. In the case of the
4471 second transformation, the condition A != B will be true,
4472 and A will be chosen.
4474 The conversions to max() and min() are not correct if B is
4475 a number and A is not. The conditions in the original
4476 expressions will be false, so all four give B. The min()
4477 and max() versions would give a NaN instead. */
4478 if (operand_equal_for_comparison_p (arg01, arg2, arg00)
4479 /* Avoid these transformations if the COND_EXPR may be used
4480 as an lvalue in the C++ front-end. PR c++/19199. */
4481 && (in_gimple_form
4482 || strcmp (lang_hooks.name, "GNU C++") != 0
4483 || ! maybe_lvalue_p (arg1)
4484 || ! maybe_lvalue_p (arg2)))
4486 tree comp_op0 = arg00;
4487 tree comp_op1 = arg01;
4488 tree comp_type = TREE_TYPE (comp_op0);
4490 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4491 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4493 comp_type = type;
4494 comp_op0 = arg1;
4495 comp_op1 = arg2;
4498 switch (comp_code)
4500 case EQ_EXPR:
4501 return pedantic_non_lvalue (fold_convert (type, arg2));
4502 case NE_EXPR:
4503 return pedantic_non_lvalue (fold_convert (type, arg1));
4504 case LE_EXPR:
4505 case LT_EXPR:
4506 case UNLE_EXPR:
4507 case UNLT_EXPR:
4508 /* In C++ a ?: expression can be an lvalue, so put the
4509 operand which will be used if they are equal first
4510 so that we can convert this back to the
4511 corresponding COND_EXPR. */
4512 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4514 comp_op0 = fold_convert (comp_type, comp_op0);
4515 comp_op1 = fold_convert (comp_type, comp_op1);
4516 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4517 ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
4518 : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
4519 return pedantic_non_lvalue (fold_convert (type, tem));
4521 break;
4522 case GE_EXPR:
4523 case GT_EXPR:
4524 case UNGE_EXPR:
4525 case UNGT_EXPR:
4526 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4528 comp_op0 = fold_convert (comp_type, comp_op0);
4529 comp_op1 = fold_convert (comp_type, comp_op1);
4530 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4531 ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
4532 : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
4533 return pedantic_non_lvalue (fold_convert (type, tem));
4535 break;
4536 case UNEQ_EXPR:
4537 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4538 return pedantic_non_lvalue (fold_convert (type, arg2));
4539 break;
4540 case LTGT_EXPR:
4541 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4542 return pedantic_non_lvalue (fold_convert (type, arg1));
4543 break;
4544 default:
4545 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4546 break;
4550 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4551 we might still be able to simplify this. For example,
4552 if C1 is one less or one more than C2, this might have started
4553 out as a MIN or MAX and been transformed by this function.
4554 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4556 if (INTEGRAL_TYPE_P (type)
4557 && TREE_CODE (arg01) == INTEGER_CST
4558 && TREE_CODE (arg2) == INTEGER_CST)
4559 switch (comp_code)
4561 case EQ_EXPR:
4562 /* We can replace A with C1 in this case. */
4563 arg1 = fold_convert (type, arg01);
4564 return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
4566 case LT_EXPR:
4567 /* If C1 is C2 + 1, this is min(A, C2). */
4568 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4569 OEP_ONLY_CONST)
4570 && operand_equal_p (arg01,
4571 const_binop (PLUS_EXPR, arg2,
4572 integer_one_node, 0),
4573 OEP_ONLY_CONST))
4574 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
4575 type, arg1, arg2));
4576 break;
4578 case LE_EXPR:
4579 /* If C1 is C2 - 1, this is min(A, C2). */
4580 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4581 OEP_ONLY_CONST)
4582 && operand_equal_p (arg01,
4583 const_binop (MINUS_EXPR, arg2,
4584 integer_one_node, 0),
4585 OEP_ONLY_CONST))
4586 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
4587 type, arg1, arg2));
4588 break;
4590 case GT_EXPR:
4591 /* If C1 is C2 - 1, this is max(A, C2). */
4592 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4593 OEP_ONLY_CONST)
4594 && operand_equal_p (arg01,
4595 const_binop (MINUS_EXPR, arg2,
4596 integer_one_node, 0),
4597 OEP_ONLY_CONST))
4598 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
4599 type, arg1, arg2));
4600 break;
4602 case GE_EXPR:
4603 /* If C1 is C2 + 1, this is max(A, C2). */
4604 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4605 OEP_ONLY_CONST)
4606 && operand_equal_p (arg01,
4607 const_binop (PLUS_EXPR, arg2,
4608 integer_one_node, 0),
4609 OEP_ONLY_CONST))
4610 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
4611 type, arg1, arg2));
4612 break;
4613 case NE_EXPR:
4614 break;
4615 default:
4616 gcc_unreachable ();
4619 return NULL_TREE;
4624 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4625 #define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
4626 #endif
4628 /* EXP is some logical combination of boolean tests. See if we can
4629 merge it into some range test. Return the new tree if so. */
4631 static tree
4632 fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
4634 int or_op = (code == TRUTH_ORIF_EXPR
4635 || code == TRUTH_OR_EXPR);
4636 int in0_p, in1_p, in_p;
4637 tree low0, low1, low, high0, high1, high;
4638 tree lhs = make_range (op0, &in0_p, &low0, &high0);
4639 tree rhs = make_range (op1, &in1_p, &low1, &high1);
4640 tree tem;
4642 /* If this is an OR operation, invert both sides; we will invert
4643 again at the end. */
4644 if (or_op)
4645 in0_p = ! in0_p, in1_p = ! in1_p;
4647 /* If both expressions are the same, if we can merge the ranges, and we
4648 can build the range test, return it or it inverted. If one of the
4649 ranges is always true or always false, consider it to be the same
4650 expression as the other. */
4651 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4652 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4653 in1_p, low1, high1)
4654 && 0 != (tem = (build_range_check (type,
4655 lhs != 0 ? lhs
4656 : rhs != 0 ? rhs : integer_zero_node,
4657 in_p, low, high))))
4658 return or_op ? invert_truthvalue (tem) : tem;
4660 /* On machines where the branch cost is expensive, if this is a
4661 short-circuited branch and the underlying object on both sides
4662 is the same, make a non-short-circuit operation. */
4663 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4664 && lhs != 0 && rhs != 0
4665 && (code == TRUTH_ANDIF_EXPR
4666 || code == TRUTH_ORIF_EXPR)
4667 && operand_equal_p (lhs, rhs, 0))
4669 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4670 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4671 which cases we can't do this. */
4672 if (simple_operand_p (lhs))
4673 return build2 (code == TRUTH_ANDIF_EXPR
4674 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4675 type, op0, op1);
4677 else if (lang_hooks.decls.global_bindings_p () == 0
4678 && ! CONTAINS_PLACEHOLDER_P (lhs))
4680 tree common = save_expr (lhs);
4682 if (0 != (lhs = build_range_check (type, common,
4683 or_op ? ! in0_p : in0_p,
4684 low0, high0))
4685 && (0 != (rhs = build_range_check (type, common,
4686 or_op ? ! in1_p : in1_p,
4687 low1, high1))))
4688 return build2 (code == TRUTH_ANDIF_EXPR
4689 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4690 type, lhs, rhs);
4694 return 0;
4697 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
4698 bit value. Arrange things so the extra bits will be set to zero if and
4699 only if C is signed-extended to its full width. If MASK is nonzero,
4700 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4702 static tree
4703 unextend (tree c, int p, int unsignedp, tree mask)
4705 tree type = TREE_TYPE (c);
4706 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
4707 tree temp;
4709 if (p == modesize || unsignedp)
4710 return c;
4712 /* We work by getting just the sign bit into the low-order bit, then
4713 into the high-order bit, then sign-extend. We then XOR that value
4714 with C. */
4715 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
4716 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
4718 /* We must use a signed type in order to get an arithmetic right shift.
4719 However, we must also avoid introducing accidental overflows, so that
4720 a subsequent call to integer_zerop will work. Hence we must
4721 do the type conversion here. At this point, the constant is either
4722 zero or one, and the conversion to a signed type can never overflow.
4723 We could get an overflow if this conversion is done anywhere else. */
4724 if (TYPE_UNSIGNED (type))
4725 temp = fold_convert (lang_hooks.types.signed_type (type), temp);
4727 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
4728 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
4729 if (mask != 0)
4730 temp = const_binop (BIT_AND_EXPR, temp,
4731 fold_convert (TREE_TYPE (c), mask), 0);
4732 /* If necessary, convert the type back to match the type of C. */
4733 if (TYPE_UNSIGNED (type))
4734 temp = fold_convert (type, temp);
4736 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
4739 /* Find ways of folding logical expressions of LHS and RHS:
4740 Try to merge two comparisons to the same innermost item.
4741 Look for range tests like "ch >= '0' && ch <= '9'".
4742 Look for combinations of simple terms on machines with expensive branches
4743 and evaluate the RHS unconditionally.
4745 For example, if we have p->a == 2 && p->b == 4 and we can make an
4746 object large enough to span both A and B, we can do this with a comparison
4747 against the object ANDed with the a mask.
4749 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
4750 operations to do this with one comparison.
4752 We check for both normal comparisons and the BIT_AND_EXPRs made this by
4753 function and the one above.
4755 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
4756 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
4758 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
4759 two operands.
4761 We return the simplified tree or 0 if no optimization is possible. */
4763 static tree
4764 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
4766 /* If this is the "or" of two comparisons, we can do something if
4767 the comparisons are NE_EXPR. If this is the "and", we can do something
4768 if the comparisons are EQ_EXPR. I.e.,
4769 (a->b == 2 && a->c == 4) can become (a->new == NEW).
4771 WANTED_CODE is this operation code. For single bit fields, we can
4772 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
4773 comparison for one-bit fields. */
4775 enum tree_code wanted_code;
4776 enum tree_code lcode, rcode;
4777 tree ll_arg, lr_arg, rl_arg, rr_arg;
4778 tree ll_inner, lr_inner, rl_inner, rr_inner;
4779 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
4780 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
4781 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
4782 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
4783 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
4784 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
4785 enum machine_mode lnmode, rnmode;
4786 tree ll_mask, lr_mask, rl_mask, rr_mask;
4787 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
4788 tree l_const, r_const;
4789 tree lntype, rntype, result;
4790 int first_bit, end_bit;
4791 int volatilep;
4793 /* Start by getting the comparison codes. Fail if anything is volatile.
4794 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
4795 it were surrounded with a NE_EXPR. */
4797 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
4798 return 0;
4800 lcode = TREE_CODE (lhs);
4801 rcode = TREE_CODE (rhs);
4803 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
4805 lhs = build2 (NE_EXPR, truth_type, lhs,
4806 build_int_cst (TREE_TYPE (lhs), 0));
4807 lcode = NE_EXPR;
4810 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
4812 rhs = build2 (NE_EXPR, truth_type, rhs,
4813 build_int_cst (TREE_TYPE (rhs), 0));
4814 rcode = NE_EXPR;
4817 if (TREE_CODE_CLASS (lcode) != tcc_comparison
4818 || TREE_CODE_CLASS (rcode) != tcc_comparison)
4819 return 0;
4821 ll_arg = TREE_OPERAND (lhs, 0);
4822 lr_arg = TREE_OPERAND (lhs, 1);
4823 rl_arg = TREE_OPERAND (rhs, 0);
4824 rr_arg = TREE_OPERAND (rhs, 1);
4826 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
4827 if (simple_operand_p (ll_arg)
4828 && simple_operand_p (lr_arg))
4830 tree result;
4831 if (operand_equal_p (ll_arg, rl_arg, 0)
4832 && operand_equal_p (lr_arg, rr_arg, 0))
4834 result = combine_comparisons (code, lcode, rcode,
4835 truth_type, ll_arg, lr_arg);
4836 if (result)
4837 return result;
4839 else if (operand_equal_p (ll_arg, rr_arg, 0)
4840 && operand_equal_p (lr_arg, rl_arg, 0))
4842 result = combine_comparisons (code, lcode,
4843 swap_tree_comparison (rcode),
4844 truth_type, ll_arg, lr_arg);
4845 if (result)
4846 return result;
4850 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
4851 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
4853 /* If the RHS can be evaluated unconditionally and its operands are
4854 simple, it wins to evaluate the RHS unconditionally on machines
4855 with expensive branches. In this case, this isn't a comparison
4856 that can be merged. Avoid doing this if the RHS is a floating-point
4857 comparison since those can trap. */
4859 if (BRANCH_COST >= 2
4860 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
4861 && simple_operand_p (rl_arg)
4862 && simple_operand_p (rr_arg))
4864 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
4865 if (code == TRUTH_OR_EXPR
4866 && lcode == NE_EXPR && integer_zerop (lr_arg)
4867 && rcode == NE_EXPR && integer_zerop (rr_arg)
4868 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4869 return build2 (NE_EXPR, truth_type,
4870 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4871 ll_arg, rl_arg),
4872 build_int_cst (TREE_TYPE (ll_arg), 0));
4874 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
4875 if (code == TRUTH_AND_EXPR
4876 && lcode == EQ_EXPR && integer_zerop (lr_arg)
4877 && rcode == EQ_EXPR && integer_zerop (rr_arg)
4878 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4879 return build2 (EQ_EXPR, truth_type,
4880 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4881 ll_arg, rl_arg),
4882 build_int_cst (TREE_TYPE (ll_arg), 0));
4884 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
4885 return build2 (code, truth_type, lhs, rhs);
4888 /* See if the comparisons can be merged. Then get all the parameters for
4889 each side. */
4891 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
4892 || (rcode != EQ_EXPR && rcode != NE_EXPR))
4893 return 0;
4895 volatilep = 0;
4896 ll_inner = decode_field_reference (ll_arg,
4897 &ll_bitsize, &ll_bitpos, &ll_mode,
4898 &ll_unsignedp, &volatilep, &ll_mask,
4899 &ll_and_mask);
4900 lr_inner = decode_field_reference (lr_arg,
4901 &lr_bitsize, &lr_bitpos, &lr_mode,
4902 &lr_unsignedp, &volatilep, &lr_mask,
4903 &lr_and_mask);
4904 rl_inner = decode_field_reference (rl_arg,
4905 &rl_bitsize, &rl_bitpos, &rl_mode,
4906 &rl_unsignedp, &volatilep, &rl_mask,
4907 &rl_and_mask);
4908 rr_inner = decode_field_reference (rr_arg,
4909 &rr_bitsize, &rr_bitpos, &rr_mode,
4910 &rr_unsignedp, &volatilep, &rr_mask,
4911 &rr_and_mask);
4913 /* It must be true that the inner operation on the lhs of each
4914 comparison must be the same if we are to be able to do anything.
4915 Then see if we have constants. If not, the same must be true for
4916 the rhs's. */
4917 if (volatilep || ll_inner == 0 || rl_inner == 0
4918 || ! operand_equal_p (ll_inner, rl_inner, 0))
4919 return 0;
4921 if (TREE_CODE (lr_arg) == INTEGER_CST
4922 && TREE_CODE (rr_arg) == INTEGER_CST)
4923 l_const = lr_arg, r_const = rr_arg;
4924 else if (lr_inner == 0 || rr_inner == 0
4925 || ! operand_equal_p (lr_inner, rr_inner, 0))
4926 return 0;
4927 else
4928 l_const = r_const = 0;
4930 /* If either comparison code is not correct for our logical operation,
4931 fail. However, we can convert a one-bit comparison against zero into
4932 the opposite comparison against that bit being set in the field. */
4934 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
4935 if (lcode != wanted_code)
4937 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
4939 /* Make the left operand unsigned, since we are only interested
4940 in the value of one bit. Otherwise we are doing the wrong
4941 thing below. */
4942 ll_unsignedp = 1;
4943 l_const = ll_mask;
4945 else
4946 return 0;
4949 /* This is analogous to the code for l_const above. */
4950 if (rcode != wanted_code)
4952 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
4954 rl_unsignedp = 1;
4955 r_const = rl_mask;
4957 else
4958 return 0;
4961 /* After this point all optimizations will generate bit-field
4962 references, which we might not want. */
4963 if (! lang_hooks.can_use_bit_fields_p ())
4964 return 0;
4966 /* See if we can find a mode that contains both fields being compared on
4967 the left. If we can't, fail. Otherwise, update all constants and masks
4968 to be relative to a field of that size. */
4969 first_bit = MIN (ll_bitpos, rl_bitpos);
4970 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
4971 lnmode = get_best_mode (end_bit - first_bit, first_bit,
4972 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
4973 volatilep);
4974 if (lnmode == VOIDmode)
4975 return 0;
4977 lnbitsize = GET_MODE_BITSIZE (lnmode);
4978 lnbitpos = first_bit & ~ (lnbitsize - 1);
4979 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
4980 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
4982 if (BYTES_BIG_ENDIAN)
4984 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
4985 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
4988 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
4989 size_int (xll_bitpos), 0);
4990 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
4991 size_int (xrl_bitpos), 0);
4993 if (l_const)
4995 l_const = fold_convert (lntype, l_const);
4996 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
4997 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
4998 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
4999 fold_build1 (BIT_NOT_EXPR,
5000 lntype, ll_mask),
5001 0)))
5003 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5005 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5008 if (r_const)
5010 r_const = fold_convert (lntype, r_const);
5011 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5012 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
5013 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5014 fold_build1 (BIT_NOT_EXPR,
5015 lntype, rl_mask),
5016 0)))
5018 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5020 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5024 /* If the right sides are not constant, do the same for it. Also,
5025 disallow this optimization if a size or signedness mismatch occurs
5026 between the left and right sides. */
5027 if (l_const == 0)
5029 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5030 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5031 /* Make sure the two fields on the right
5032 correspond to the left without being swapped. */
5033 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5034 return 0;
5036 first_bit = MIN (lr_bitpos, rr_bitpos);
5037 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5038 rnmode = get_best_mode (end_bit - first_bit, first_bit,
5039 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5040 volatilep);
5041 if (rnmode == VOIDmode)
5042 return 0;
5044 rnbitsize = GET_MODE_BITSIZE (rnmode);
5045 rnbitpos = first_bit & ~ (rnbitsize - 1);
5046 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5047 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5049 if (BYTES_BIG_ENDIAN)
5051 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5052 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5055 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
5056 size_int (xlr_bitpos), 0);
5057 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
5058 size_int (xrr_bitpos), 0);
5060 /* Make a mask that corresponds to both fields being compared.
5061 Do this for both items being compared. If the operands are the
5062 same size and the bits being compared are in the same position
5063 then we can do this by masking both and comparing the masked
5064 results. */
5065 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5066 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
5067 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5069 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5070 ll_unsignedp || rl_unsignedp);
5071 if (! all_ones_mask_p (ll_mask, lnbitsize))
5072 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5074 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
5075 lr_unsignedp || rr_unsignedp);
5076 if (! all_ones_mask_p (lr_mask, rnbitsize))
5077 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5079 return build2 (wanted_code, truth_type, lhs, rhs);
5082 /* There is still another way we can do something: If both pairs of
5083 fields being compared are adjacent, we may be able to make a wider
5084 field containing them both.
5086 Note that we still must mask the lhs/rhs expressions. Furthermore,
5087 the mask must be shifted to account for the shift done by
5088 make_bit_field_ref. */
5089 if ((ll_bitsize + ll_bitpos == rl_bitpos
5090 && lr_bitsize + lr_bitpos == rr_bitpos)
5091 || (ll_bitpos == rl_bitpos + rl_bitsize
5092 && lr_bitpos == rr_bitpos + rr_bitsize))
5094 tree type;
5096 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
5097 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5098 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
5099 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5101 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5102 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
5103 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5104 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
5106 /* Convert to the smaller type before masking out unwanted bits. */
5107 type = lntype;
5108 if (lntype != rntype)
5110 if (lnbitsize > rnbitsize)
5112 lhs = fold_convert (rntype, lhs);
5113 ll_mask = fold_convert (rntype, ll_mask);
5114 type = rntype;
5116 else if (lnbitsize < rnbitsize)
5118 rhs = fold_convert (lntype, rhs);
5119 lr_mask = fold_convert (lntype, lr_mask);
5120 type = lntype;
5124 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5125 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5127 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5128 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5130 return build2 (wanted_code, truth_type, lhs, rhs);
5133 return 0;
5136 /* Handle the case of comparisons with constants. If there is something in
5137 common between the masks, those bits of the constants must be the same.
5138 If not, the condition is always false. Test for this to avoid generating
5139 incorrect code below. */
5140 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
5141 if (! integer_zerop (result)
5142 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
5143 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
5145 if (wanted_code == NE_EXPR)
5147 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5148 return constant_boolean_node (true, truth_type);
5150 else
5152 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5153 return constant_boolean_node (false, truth_type);
5157 /* Construct the expression we will return. First get the component
5158 reference we will make. Unless the mask is all ones the width of
5159 that field, perform the mask operation. Then compare with the
5160 merged constant. */
5161 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5162 ll_unsignedp || rl_unsignedp);
5164 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5165 if (! all_ones_mask_p (ll_mask, lnbitsize))
5166 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
5168 return build2 (wanted_code, truth_type, result,
5169 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
5172 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5173 constant. */
5175 static tree
5176 optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
5178 tree arg0 = op0;
5179 enum tree_code op_code;
5180 tree comp_const = op1;
5181 tree minmax_const;
5182 int consts_equal, consts_lt;
5183 tree inner;
5185 STRIP_SIGN_NOPS (arg0);
5187 op_code = TREE_CODE (arg0);
5188 minmax_const = TREE_OPERAND (arg0, 1);
5189 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5190 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5191 inner = TREE_OPERAND (arg0, 0);
5193 /* If something does not permit us to optimize, return the original tree. */
5194 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5195 || TREE_CODE (comp_const) != INTEGER_CST
5196 || TREE_CONSTANT_OVERFLOW (comp_const)
5197 || TREE_CODE (minmax_const) != INTEGER_CST
5198 || TREE_CONSTANT_OVERFLOW (minmax_const))
5199 return NULL_TREE;
5201 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5202 and GT_EXPR, doing the rest with recursive calls using logical
5203 simplifications. */
5204 switch (code)
5206 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5208 /* FIXME: We should be able to invert code without building a
5209 scratch tree node, but doing so would require us to
5210 duplicate a part of invert_truthvalue here. */
5211 tree tem = invert_truthvalue (build2 (code, type, op0, op1));
5212 tem = optimize_minmax_comparison (TREE_CODE (tem),
5213 TREE_TYPE (tem),
5214 TREE_OPERAND (tem, 0),
5215 TREE_OPERAND (tem, 1));
5216 return invert_truthvalue (tem);
5219 case GE_EXPR:
5220 return
5221 fold_build2 (TRUTH_ORIF_EXPR, type,
5222 optimize_minmax_comparison
5223 (EQ_EXPR, type, arg0, comp_const),
5224 optimize_minmax_comparison
5225 (GT_EXPR, type, arg0, comp_const));
5227 case EQ_EXPR:
5228 if (op_code == MAX_EXPR && consts_equal)
5229 /* MAX (X, 0) == 0 -> X <= 0 */
5230 return fold_build2 (LE_EXPR, type, inner, comp_const);
5232 else if (op_code == MAX_EXPR && consts_lt)
5233 /* MAX (X, 0) == 5 -> X == 5 */
5234 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5236 else if (op_code == MAX_EXPR)
5237 /* MAX (X, 0) == -1 -> false */
5238 return omit_one_operand (type, integer_zero_node, inner);
5240 else if (consts_equal)
5241 /* MIN (X, 0) == 0 -> X >= 0 */
5242 return fold_build2 (GE_EXPR, type, inner, comp_const);
5244 else if (consts_lt)
5245 /* MIN (X, 0) == 5 -> false */
5246 return omit_one_operand (type, integer_zero_node, inner);
5248 else
5249 /* MIN (X, 0) == -1 -> X == -1 */
5250 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5252 case GT_EXPR:
5253 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5254 /* MAX (X, 0) > 0 -> X > 0
5255 MAX (X, 0) > 5 -> X > 5 */
5256 return fold_build2 (GT_EXPR, type, inner, comp_const);
5258 else if (op_code == MAX_EXPR)
5259 /* MAX (X, 0) > -1 -> true */
5260 return omit_one_operand (type, integer_one_node, inner);
5262 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5263 /* MIN (X, 0) > 0 -> false
5264 MIN (X, 0) > 5 -> false */
5265 return omit_one_operand (type, integer_zero_node, inner);
5267 else
5268 /* MIN (X, 0) > -1 -> X > -1 */
5269 return fold_build2 (GT_EXPR, type, inner, comp_const);
5271 default:
5272 return NULL_TREE;
5276 /* T is an integer expression that is being multiplied, divided, or taken a
5277 modulus (CODE says which and what kind of divide or modulus) by a
5278 constant C. See if we can eliminate that operation by folding it with
5279 other operations already in T. WIDE_TYPE, if non-null, is a type that
5280 should be used for the computation if wider than our type.
5282 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5283 (X * 2) + (Y * 4). We must, however, be assured that either the original
5284 expression would not overflow or that overflow is undefined for the type
5285 in the language in question.
5287 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5288 the machine has a multiply-accumulate insn or that this is part of an
5289 addressing calculation.
5291 If we return a non-null expression, it is an equivalent form of the
5292 original computation, but need not be in the original type. */
5294 static tree
5295 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type)
5297 /* To avoid exponential search depth, refuse to allow recursion past
5298 three levels. Beyond that (1) it's highly unlikely that we'll find
5299 something interesting and (2) we've probably processed it before
5300 when we built the inner expression. */
5302 static int depth;
5303 tree ret;
5305 if (depth > 3)
5306 return NULL;
5308 depth++;
5309 ret = extract_muldiv_1 (t, c, code, wide_type);
5310 depth--;
5312 return ret;
5315 static tree
5316 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type)
5318 tree type = TREE_TYPE (t);
5319 enum tree_code tcode = TREE_CODE (t);
5320 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5321 > GET_MODE_SIZE (TYPE_MODE (type)))
5322 ? wide_type : type);
5323 tree t1, t2;
5324 int same_p = tcode == code;
5325 tree op0 = NULL_TREE, op1 = NULL_TREE;
5327 /* Don't deal with constants of zero here; they confuse the code below. */
5328 if (integer_zerop (c))
5329 return NULL_TREE;
5331 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5332 op0 = TREE_OPERAND (t, 0);
5334 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5335 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5337 /* Note that we need not handle conditional operations here since fold
5338 already handles those cases. So just do arithmetic here. */
5339 switch (tcode)
5341 case INTEGER_CST:
5342 /* For a constant, we can always simplify if we are a multiply
5343 or (for divide and modulus) if it is a multiple of our constant. */
5344 if (code == MULT_EXPR
5345 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
5346 return const_binop (code, fold_convert (ctype, t),
5347 fold_convert (ctype, c), 0);
5348 break;
5350 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
5351 /* If op0 is an expression ... */
5352 if ((COMPARISON_CLASS_P (op0)
5353 || UNARY_CLASS_P (op0)
5354 || BINARY_CLASS_P (op0)
5355 || EXPRESSION_CLASS_P (op0))
5356 /* ... and is unsigned, and its type is smaller than ctype,
5357 then we cannot pass through as widening. */
5358 && ((TYPE_UNSIGNED (TREE_TYPE (op0))
5359 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
5360 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
5361 && (GET_MODE_SIZE (TYPE_MODE (ctype))
5362 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
5363 /* ... or this is a truncation (t is narrower than op0),
5364 then we cannot pass through this narrowing. */
5365 || (GET_MODE_SIZE (TYPE_MODE (type))
5366 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
5367 /* ... or signedness changes for division or modulus,
5368 then we cannot pass through this conversion. */
5369 || (code != MULT_EXPR
5370 && (TYPE_UNSIGNED (ctype)
5371 != TYPE_UNSIGNED (TREE_TYPE (op0))))))
5372 break;
5374 /* Pass the constant down and see if we can make a simplification. If
5375 we can, replace this expression with the inner simplification for
5376 possible later conversion to our or some other type. */
5377 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5378 && TREE_CODE (t2) == INTEGER_CST
5379 && ! TREE_CONSTANT_OVERFLOW (t2)
5380 && (0 != (t1 = extract_muldiv (op0, t2, code,
5381 code == MULT_EXPR
5382 ? ctype : NULL_TREE))))
5383 return t1;
5384 break;
5386 case ABS_EXPR:
5387 /* If widening the type changes it from signed to unsigned, then we
5388 must avoid building ABS_EXPR itself as unsigned. */
5389 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5391 tree cstype = (*lang_hooks.types.signed_type) (ctype);
5392 if ((t1 = extract_muldiv (op0, c, code, cstype)) != 0)
5394 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5395 return fold_convert (ctype, t1);
5397 break;
5399 /* FALLTHROUGH */
5400 case NEGATE_EXPR:
5401 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5402 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5403 break;
5405 case MIN_EXPR: case MAX_EXPR:
5406 /* If widening the type changes the signedness, then we can't perform
5407 this optimization as that changes the result. */
5408 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5409 break;
5411 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5412 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
5413 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
5415 if (tree_int_cst_sgn (c) < 0)
5416 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5418 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5419 fold_convert (ctype, t2));
5421 break;
5423 case LSHIFT_EXPR: case RSHIFT_EXPR:
5424 /* If the second operand is constant, this is a multiplication
5425 or floor division, by a power of two, so we can treat it that
5426 way unless the multiplier or divisor overflows. Signed
5427 left-shift overflow is implementation-defined rather than
5428 undefined in C90, so do not convert signed left shift into
5429 multiplication. */
5430 if (TREE_CODE (op1) == INTEGER_CST
5431 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5432 /* const_binop may not detect overflow correctly,
5433 so check for it explicitly here. */
5434 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
5435 && TREE_INT_CST_HIGH (op1) == 0
5436 && 0 != (t1 = fold_convert (ctype,
5437 const_binop (LSHIFT_EXPR,
5438 size_one_node,
5439 op1, 0)))
5440 && ! TREE_OVERFLOW (t1))
5441 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5442 ? MULT_EXPR : FLOOR_DIV_EXPR,
5443 ctype, fold_convert (ctype, op0), t1),
5444 c, code, wide_type);
5445 break;
5447 case PLUS_EXPR: case MINUS_EXPR:
5448 /* See if we can eliminate the operation on both sides. If we can, we
5449 can return a new PLUS or MINUS. If we can't, the only remaining
5450 cases where we can do anything are if the second operand is a
5451 constant. */
5452 t1 = extract_muldiv (op0, c, code, wide_type);
5453 t2 = extract_muldiv (op1, c, code, wide_type);
5454 if (t1 != 0 && t2 != 0
5455 && (code == MULT_EXPR
5456 /* If not multiplication, we can only do this if both operands
5457 are divisible by c. */
5458 || (multiple_of_p (ctype, op0, c)
5459 && multiple_of_p (ctype, op1, c))))
5460 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5461 fold_convert (ctype, t2));
5463 /* If this was a subtraction, negate OP1 and set it to be an addition.
5464 This simplifies the logic below. */
5465 if (tcode == MINUS_EXPR)
5466 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5468 if (TREE_CODE (op1) != INTEGER_CST)
5469 break;
5471 /* If either OP1 or C are negative, this optimization is not safe for
5472 some of the division and remainder types while for others we need
5473 to change the code. */
5474 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5476 if (code == CEIL_DIV_EXPR)
5477 code = FLOOR_DIV_EXPR;
5478 else if (code == FLOOR_DIV_EXPR)
5479 code = CEIL_DIV_EXPR;
5480 else if (code != MULT_EXPR
5481 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5482 break;
5485 /* If it's a multiply or a division/modulus operation of a multiple
5486 of our constant, do the operation and verify it doesn't overflow. */
5487 if (code == MULT_EXPR
5488 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5490 op1 = const_binop (code, fold_convert (ctype, op1),
5491 fold_convert (ctype, c), 0);
5492 /* We allow the constant to overflow with wrapping semantics. */
5493 if (op1 == 0
5494 || (TREE_OVERFLOW (op1) && ! flag_wrapv))
5495 break;
5497 else
5498 break;
5500 /* If we have an unsigned type is not a sizetype, we cannot widen
5501 the operation since it will change the result if the original
5502 computation overflowed. */
5503 if (TYPE_UNSIGNED (ctype)
5504 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
5505 && ctype != type)
5506 break;
5508 /* If we were able to eliminate our operation from the first side,
5509 apply our operation to the second side and reform the PLUS. */
5510 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5511 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
5513 /* The last case is if we are a multiply. In that case, we can
5514 apply the distributive law to commute the multiply and addition
5515 if the multiplication of the constants doesn't overflow. */
5516 if (code == MULT_EXPR)
5517 return fold_build2 (tcode, ctype,
5518 fold_build2 (code, ctype,
5519 fold_convert (ctype, op0),
5520 fold_convert (ctype, c)),
5521 op1);
5523 break;
5525 case MULT_EXPR:
5526 /* We have a special case here if we are doing something like
5527 (C * 8) % 4 since we know that's zero. */
5528 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5529 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5530 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5531 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5532 return omit_one_operand (type, integer_zero_node, op0);
5534 /* ... fall through ... */
5536 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5537 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5538 /* If we can extract our operation from the LHS, do so and return a
5539 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5540 do something only if the second operand is a constant. */
5541 if (same_p
5542 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5543 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5544 fold_convert (ctype, op1));
5545 else if (tcode == MULT_EXPR && code == MULT_EXPR
5546 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
5547 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5548 fold_convert (ctype, t1));
5549 else if (TREE_CODE (op1) != INTEGER_CST)
5550 return 0;
5552 /* If these are the same operation types, we can associate them
5553 assuming no overflow. */
5554 if (tcode == code
5555 && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
5556 fold_convert (ctype, c), 0))
5557 && ! TREE_OVERFLOW (t1))
5558 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
5560 /* If these operations "cancel" each other, we have the main
5561 optimizations of this pass, which occur when either constant is a
5562 multiple of the other, in which case we replace this with either an
5563 operation or CODE or TCODE.
5565 If we have an unsigned type that is not a sizetype, we cannot do
5566 this since it will change the result if the original computation
5567 overflowed. */
5568 if ((! TYPE_UNSIGNED (ctype)
5569 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
5570 && ! flag_wrapv
5571 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5572 || (tcode == MULT_EXPR
5573 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5574 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
5576 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5577 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5578 fold_convert (ctype,
5579 const_binop (TRUNC_DIV_EXPR,
5580 op1, c, 0)));
5581 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
5582 return fold_build2 (code, ctype, fold_convert (ctype, op0),
5583 fold_convert (ctype,
5584 const_binop (TRUNC_DIV_EXPR,
5585 c, op1, 0)));
5587 break;
5589 default:
5590 break;
5593 return 0;
5596 /* Return a node which has the indicated constant VALUE (either 0 or
5597 1), and is of the indicated TYPE. */
5599 tree
5600 constant_boolean_node (int value, tree type)
5602 if (type == integer_type_node)
5603 return value ? integer_one_node : integer_zero_node;
5604 else if (type == boolean_type_node)
5605 return value ? boolean_true_node : boolean_false_node;
5606 else
5607 return build_int_cst (type, value);
5611 /* Return true if expr looks like an ARRAY_REF and set base and
5612 offset to the appropriate trees. If there is no offset,
5613 offset is set to NULL_TREE. Base will be canonicalized to
5614 something you can get the element type from using
5615 TREE_TYPE (TREE_TYPE (base)). Offset will be the offset
5616 in bytes to the base. */
5618 static bool
5619 extract_array_ref (tree expr, tree *base, tree *offset)
5621 /* One canonical form is a PLUS_EXPR with the first
5622 argument being an ADDR_EXPR with a possible NOP_EXPR
5623 attached. */
5624 if (TREE_CODE (expr) == PLUS_EXPR)
5626 tree op0 = TREE_OPERAND (expr, 0);
5627 tree inner_base, dummy1;
5628 /* Strip NOP_EXPRs here because the C frontends and/or
5629 folders present us (int *)&x.a + 4B possibly. */
5630 STRIP_NOPS (op0);
5631 if (extract_array_ref (op0, &inner_base, &dummy1))
5633 *base = inner_base;
5634 if (dummy1 == NULL_TREE)
5635 *offset = TREE_OPERAND (expr, 1);
5636 else
5637 *offset = fold_build2 (PLUS_EXPR, TREE_TYPE (expr),
5638 dummy1, TREE_OPERAND (expr, 1));
5639 return true;
5642 /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
5643 which we transform into an ADDR_EXPR with appropriate
5644 offset. For other arguments to the ADDR_EXPR we assume
5645 zero offset and as such do not care about the ADDR_EXPR
5646 type and strip possible nops from it. */
5647 else if (TREE_CODE (expr) == ADDR_EXPR)
5649 tree op0 = TREE_OPERAND (expr, 0);
5650 if (TREE_CODE (op0) == ARRAY_REF)
5652 tree idx = TREE_OPERAND (op0, 1);
5653 *base = TREE_OPERAND (op0, 0);
5654 *offset = fold_build2 (MULT_EXPR, TREE_TYPE (idx), idx,
5655 array_ref_element_size (op0));
5657 else
5659 /* Handle array-to-pointer decay as &a. */
5660 if (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE)
5661 *base = TREE_OPERAND (expr, 0);
5662 else
5663 *base = expr;
5664 *offset = NULL_TREE;
5666 return true;
5668 /* The next canonical form is a VAR_DECL with POINTER_TYPE. */
5669 else if (SSA_VAR_P (expr)
5670 && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE)
5672 *base = expr;
5673 *offset = NULL_TREE;
5674 return true;
5677 return false;
5681 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
5682 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
5683 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
5684 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
5685 COND is the first argument to CODE; otherwise (as in the example
5686 given here), it is the second argument. TYPE is the type of the
5687 original expression. Return NULL_TREE if no simplification is
5688 possible. */
5690 static tree
5691 fold_binary_op_with_conditional_arg (enum tree_code code,
5692 tree type, tree op0, tree op1,
5693 tree cond, tree arg, int cond_first_p)
5695 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
5696 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
5697 tree test, true_value, false_value;
5698 tree lhs = NULL_TREE;
5699 tree rhs = NULL_TREE;
5701 /* This transformation is only worthwhile if we don't have to wrap
5702 arg in a SAVE_EXPR, and the operation can be simplified on at least
5703 one of the branches once its pushed inside the COND_EXPR. */
5704 if (!TREE_CONSTANT (arg))
5705 return NULL_TREE;
5707 if (TREE_CODE (cond) == COND_EXPR)
5709 test = TREE_OPERAND (cond, 0);
5710 true_value = TREE_OPERAND (cond, 1);
5711 false_value = TREE_OPERAND (cond, 2);
5712 /* If this operand throws an expression, then it does not make
5713 sense to try to perform a logical or arithmetic operation
5714 involving it. */
5715 if (VOID_TYPE_P (TREE_TYPE (true_value)))
5716 lhs = true_value;
5717 if (VOID_TYPE_P (TREE_TYPE (false_value)))
5718 rhs = false_value;
5720 else
5722 tree testtype = TREE_TYPE (cond);
5723 test = cond;
5724 true_value = constant_boolean_node (true, testtype);
5725 false_value = constant_boolean_node (false, testtype);
5728 arg = fold_convert (arg_type, arg);
5729 if (lhs == 0)
5731 true_value = fold_convert (cond_type, true_value);
5732 if (cond_first_p)
5733 lhs = fold_build2 (code, type, true_value, arg);
5734 else
5735 lhs = fold_build2 (code, type, arg, true_value);
5737 if (rhs == 0)
5739 false_value = fold_convert (cond_type, false_value);
5740 if (cond_first_p)
5741 rhs = fold_build2 (code, type, false_value, arg);
5742 else
5743 rhs = fold_build2 (code, type, arg, false_value);
5746 test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
5747 return fold_convert (type, test);
5751 /* Subroutine of fold() that checks for the addition of +/- 0.0.
5753 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
5754 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
5755 ADDEND is the same as X.
5757 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
5758 and finite. The problematic cases are when X is zero, and its mode
5759 has signed zeros. In the case of rounding towards -infinity,
5760 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
5761 modes, X + 0 is not the same as X because -0 + 0 is 0. */
5763 static bool
5764 fold_real_zero_addition_p (tree type, tree addend, int negate)
5766 if (!real_zerop (addend))
5767 return false;
5769 /* Don't allow the fold with -fsignaling-nans. */
5770 if (HONOR_SNANS (TYPE_MODE (type)))
5771 return false;
5773 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
5774 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
5775 return true;
5777 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
5778 if (TREE_CODE (addend) == REAL_CST
5779 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
5780 negate = !negate;
5782 /* The mode has signed zeros, and we have to honor their sign.
5783 In this situation, there is only one case we can return true for.
5784 X - 0 is the same as X unless rounding towards -infinity is
5785 supported. */
5786 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
5789 /* Subroutine of fold() that checks comparisons of built-in math
5790 functions against real constants.
5792 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
5793 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
5794 is the type of the result and ARG0 and ARG1 are the operands of the
5795 comparison. ARG1 must be a TREE_REAL_CST.
5797 The function returns the constant folded tree if a simplification
5798 can be made, and NULL_TREE otherwise. */
5800 static tree
5801 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
5802 tree type, tree arg0, tree arg1)
5804 REAL_VALUE_TYPE c;
5806 if (BUILTIN_SQRT_P (fcode))
5808 tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
5809 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
5811 c = TREE_REAL_CST (arg1);
5812 if (REAL_VALUE_NEGATIVE (c))
5814 /* sqrt(x) < y is always false, if y is negative. */
5815 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
5816 return omit_one_operand (type, integer_zero_node, arg);
5818 /* sqrt(x) > y is always true, if y is negative and we
5819 don't care about NaNs, i.e. negative values of x. */
5820 if (code == NE_EXPR || !HONOR_NANS (mode))
5821 return omit_one_operand (type, integer_one_node, arg);
5823 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5824 return fold_build2 (GE_EXPR, type, arg,
5825 build_real (TREE_TYPE (arg), dconst0));
5827 else if (code == GT_EXPR || code == GE_EXPR)
5829 REAL_VALUE_TYPE c2;
5831 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5832 real_convert (&c2, mode, &c2);
5834 if (REAL_VALUE_ISINF (c2))
5836 /* sqrt(x) > y is x == +Inf, when y is very large. */
5837 if (HONOR_INFINITIES (mode))
5838 return fold_build2 (EQ_EXPR, type, arg,
5839 build_real (TREE_TYPE (arg), c2));
5841 /* sqrt(x) > y is always false, when y is very large
5842 and we don't care about infinities. */
5843 return omit_one_operand (type, integer_zero_node, arg);
5846 /* sqrt(x) > c is the same as x > c*c. */
5847 return fold_build2 (code, type, arg,
5848 build_real (TREE_TYPE (arg), c2));
5850 else if (code == LT_EXPR || code == LE_EXPR)
5852 REAL_VALUE_TYPE c2;
5854 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5855 real_convert (&c2, mode, &c2);
5857 if (REAL_VALUE_ISINF (c2))
5859 /* sqrt(x) < y is always true, when y is a very large
5860 value and we don't care about NaNs or Infinities. */
5861 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
5862 return omit_one_operand (type, integer_one_node, arg);
5864 /* sqrt(x) < y is x != +Inf when y is very large and we
5865 don't care about NaNs. */
5866 if (! HONOR_NANS (mode))
5867 return fold_build2 (NE_EXPR, type, arg,
5868 build_real (TREE_TYPE (arg), c2));
5870 /* sqrt(x) < y is x >= 0 when y is very large and we
5871 don't care about Infinities. */
5872 if (! HONOR_INFINITIES (mode))
5873 return fold_build2 (GE_EXPR, type, arg,
5874 build_real (TREE_TYPE (arg), dconst0));
5876 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5877 if (lang_hooks.decls.global_bindings_p () != 0
5878 || CONTAINS_PLACEHOLDER_P (arg))
5879 return NULL_TREE;
5881 arg = save_expr (arg);
5882 return fold_build2 (TRUTH_ANDIF_EXPR, type,
5883 fold_build2 (GE_EXPR, type, arg,
5884 build_real (TREE_TYPE (arg),
5885 dconst0)),
5886 fold_build2 (NE_EXPR, type, arg,
5887 build_real (TREE_TYPE (arg),
5888 c2)));
5891 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5892 if (! HONOR_NANS (mode))
5893 return fold_build2 (code, type, arg,
5894 build_real (TREE_TYPE (arg), c2));
5896 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5897 if (lang_hooks.decls.global_bindings_p () == 0
5898 && ! CONTAINS_PLACEHOLDER_P (arg))
5900 arg = save_expr (arg);
5901 return fold_build2 (TRUTH_ANDIF_EXPR, type,
5902 fold_build2 (GE_EXPR, type, arg,
5903 build_real (TREE_TYPE (arg),
5904 dconst0)),
5905 fold_build2 (code, type, arg,
5906 build_real (TREE_TYPE (arg),
5907 c2)));
5912 return NULL_TREE;
5915 /* Subroutine of fold() that optimizes comparisons against Infinities,
5916 either +Inf or -Inf.
5918 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5919 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
5920 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
5922 The function returns the constant folded tree if a simplification
5923 can be made, and NULL_TREE otherwise. */
5925 static tree
5926 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
5928 enum machine_mode mode;
5929 REAL_VALUE_TYPE max;
5930 tree temp;
5931 bool neg;
5933 mode = TYPE_MODE (TREE_TYPE (arg0));
5935 /* For negative infinity swap the sense of the comparison. */
5936 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
5937 if (neg)
5938 code = swap_tree_comparison (code);
5940 switch (code)
5942 case GT_EXPR:
5943 /* x > +Inf is always false, if with ignore sNANs. */
5944 if (HONOR_SNANS (mode))
5945 return NULL_TREE;
5946 return omit_one_operand (type, integer_zero_node, arg0);
5948 case LE_EXPR:
5949 /* x <= +Inf is always true, if we don't case about NaNs. */
5950 if (! HONOR_NANS (mode))
5951 return omit_one_operand (type, integer_one_node, arg0);
5953 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
5954 if (lang_hooks.decls.global_bindings_p () == 0
5955 && ! CONTAINS_PLACEHOLDER_P (arg0))
5957 arg0 = save_expr (arg0);
5958 return fold_build2 (EQ_EXPR, type, arg0, arg0);
5960 break;
5962 case EQ_EXPR:
5963 case GE_EXPR:
5964 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
5965 real_maxval (&max, neg, mode);
5966 return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
5967 arg0, build_real (TREE_TYPE (arg0), max));
5969 case LT_EXPR:
5970 /* x < +Inf is always equal to x <= DBL_MAX. */
5971 real_maxval (&max, neg, mode);
5972 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
5973 arg0, build_real (TREE_TYPE (arg0), max));
5975 case NE_EXPR:
5976 /* x != +Inf is always equal to !(x > DBL_MAX). */
5977 real_maxval (&max, neg, mode);
5978 if (! HONOR_NANS (mode))
5979 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
5980 arg0, build_real (TREE_TYPE (arg0), max));
5982 /* The transformation below creates non-gimple code and thus is
5983 not appropriate if we are in gimple form. */
5984 if (in_gimple_form)
5985 return NULL_TREE;
5987 temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
5988 arg0, build_real (TREE_TYPE (arg0), max));
5989 return fold_build1 (TRUTH_NOT_EXPR, type, temp);
5991 default:
5992 break;
5995 return NULL_TREE;
5998 /* Subroutine of fold() that optimizes comparisons of a division by
5999 a nonzero integer constant against an integer constant, i.e.
6000 X/C1 op C2.
6002 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6003 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6004 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6006 The function returns the constant folded tree if a simplification
6007 can be made, and NULL_TREE otherwise. */
6009 static tree
6010 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6012 tree prod, tmp, hi, lo;
6013 tree arg00 = TREE_OPERAND (arg0, 0);
6014 tree arg01 = TREE_OPERAND (arg0, 1);
6015 unsigned HOST_WIDE_INT lpart;
6016 HOST_WIDE_INT hpart;
6017 int overflow;
6019 /* We have to do this the hard way to detect unsigned overflow.
6020 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
6021 overflow = mul_double (TREE_INT_CST_LOW (arg01),
6022 TREE_INT_CST_HIGH (arg01),
6023 TREE_INT_CST_LOW (arg1),
6024 TREE_INT_CST_HIGH (arg1), &lpart, &hpart);
6025 prod = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
6026 prod = force_fit_type (prod, -1, overflow, false);
6028 if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
6030 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
6031 lo = prod;
6033 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
6034 overflow = add_double (TREE_INT_CST_LOW (prod),
6035 TREE_INT_CST_HIGH (prod),
6036 TREE_INT_CST_LOW (tmp),
6037 TREE_INT_CST_HIGH (tmp),
6038 &lpart, &hpart);
6039 hi = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
6040 hi = force_fit_type (hi, -1, overflow | TREE_OVERFLOW (prod),
6041 TREE_CONSTANT_OVERFLOW (prod));
6043 else if (tree_int_cst_sgn (arg01) >= 0)
6045 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
6046 switch (tree_int_cst_sgn (arg1))
6048 case -1:
6049 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6050 hi = prod;
6051 break;
6053 case 0:
6054 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6055 hi = tmp;
6056 break;
6058 case 1:
6059 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6060 lo = prod;
6061 break;
6063 default:
6064 gcc_unreachable ();
6067 else
6069 /* A negative divisor reverses the relational operators. */
6070 code = swap_tree_comparison (code);
6072 tmp = int_const_binop (PLUS_EXPR, arg01, integer_one_node, 0);
6073 switch (tree_int_cst_sgn (arg1))
6075 case -1:
6076 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6077 lo = prod;
6078 break;
6080 case 0:
6081 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6082 lo = tmp;
6083 break;
6085 case 1:
6086 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6087 hi = prod;
6088 break;
6090 default:
6091 gcc_unreachable ();
6095 switch (code)
6097 case EQ_EXPR:
6098 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6099 return omit_one_operand (type, integer_zero_node, arg00);
6100 if (TREE_OVERFLOW (hi))
6101 return fold_build2 (GE_EXPR, type, arg00, lo);
6102 if (TREE_OVERFLOW (lo))
6103 return fold_build2 (LE_EXPR, type, arg00, hi);
6104 return build_range_check (type, arg00, 1, lo, hi);
6106 case NE_EXPR:
6107 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6108 return omit_one_operand (type, integer_one_node, arg00);
6109 if (TREE_OVERFLOW (hi))
6110 return fold_build2 (LT_EXPR, type, arg00, lo);
6111 if (TREE_OVERFLOW (lo))
6112 return fold_build2 (GT_EXPR, type, arg00, hi);
6113 return build_range_check (type, arg00, 0, lo, hi);
6115 case LT_EXPR:
6116 if (TREE_OVERFLOW (lo))
6117 return omit_one_operand (type, integer_zero_node, arg00);
6118 return fold_build2 (LT_EXPR, type, arg00, lo);
6120 case LE_EXPR:
6121 if (TREE_OVERFLOW (hi))
6122 return omit_one_operand (type, integer_one_node, arg00);
6123 return fold_build2 (LE_EXPR, type, arg00, hi);
6125 case GT_EXPR:
6126 if (TREE_OVERFLOW (hi))
6127 return omit_one_operand (type, integer_zero_node, arg00);
6128 return fold_build2 (GT_EXPR, type, arg00, hi);
6130 case GE_EXPR:
6131 if (TREE_OVERFLOW (lo))
6132 return omit_one_operand (type, integer_one_node, arg00);
6133 return fold_build2 (GE_EXPR, type, arg00, lo);
6135 default:
6136 break;
6139 return NULL_TREE;
6143 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6144 equality/inequality test, then return a simplified form of the test
6145 using a sign testing. Otherwise return NULL. TYPE is the desired
6146 result type. */
6148 static tree
6149 fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
6150 tree result_type)
6152 /* If this is testing a single bit, we can optimize the test. */
6153 if ((code == NE_EXPR || code == EQ_EXPR)
6154 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6155 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6157 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6158 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6159 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6161 if (arg00 != NULL_TREE
6162 /* This is only a win if casting to a signed type is cheap,
6163 i.e. when arg00's type is not a partial mode. */
6164 && TYPE_PRECISION (TREE_TYPE (arg00))
6165 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6167 tree stype = lang_hooks.types.signed_type (TREE_TYPE (arg00));
6168 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6169 result_type, fold_convert (stype, arg00),
6170 build_int_cst (stype, 0));
6174 return NULL_TREE;
6177 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6178 equality/inequality test, then return a simplified form of
6179 the test using shifts and logical operations. Otherwise return
6180 NULL. TYPE is the desired result type. */
6182 tree
6183 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
6184 tree result_type)
6186 /* If this is testing a single bit, we can optimize the test. */
6187 if ((code == NE_EXPR || code == EQ_EXPR)
6188 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6189 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6191 tree inner = TREE_OPERAND (arg0, 0);
6192 tree type = TREE_TYPE (arg0);
6193 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6194 enum machine_mode operand_mode = TYPE_MODE (type);
6195 int ops_unsigned;
6196 tree signed_type, unsigned_type, intermediate_type;
6197 tree tem;
6199 /* First, see if we can fold the single bit test into a sign-bit
6200 test. */
6201 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
6202 result_type);
6203 if (tem)
6204 return tem;
6206 /* Otherwise we have (A & C) != 0 where C is a single bit,
6207 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6208 Similarly for (A & C) == 0. */
6210 /* If INNER is a right shift of a constant and it plus BITNUM does
6211 not overflow, adjust BITNUM and INNER. */
6212 if (TREE_CODE (inner) == RSHIFT_EXPR
6213 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6214 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6215 && bitnum < TYPE_PRECISION (type)
6216 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6217 bitnum - TYPE_PRECISION (type)))
6219 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6220 inner = TREE_OPERAND (inner, 0);
6223 /* If we are going to be able to omit the AND below, we must do our
6224 operations as unsigned. If we must use the AND, we have a choice.
6225 Normally unsigned is faster, but for some machines signed is. */
6226 #ifdef LOAD_EXTEND_OP
6227 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6228 && !flag_syntax_only) ? 0 : 1;
6229 #else
6230 ops_unsigned = 1;
6231 #endif
6233 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6234 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6235 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6236 inner = fold_convert (intermediate_type, inner);
6238 if (bitnum != 0)
6239 inner = build2 (RSHIFT_EXPR, intermediate_type,
6240 inner, size_int (bitnum));
6242 if (code == EQ_EXPR)
6243 inner = fold_build2 (BIT_XOR_EXPR, intermediate_type,
6244 inner, integer_one_node);
6246 /* Put the AND last so it can combine with more things. */
6247 inner = build2 (BIT_AND_EXPR, intermediate_type,
6248 inner, integer_one_node);
6250 /* Make sure to return the proper type. */
6251 inner = fold_convert (result_type, inner);
6253 return inner;
6255 return NULL_TREE;
6258 /* Check whether we are allowed to reorder operands arg0 and arg1,
6259 such that the evaluation of arg1 occurs before arg0. */
6261 static bool
6262 reorder_operands_p (tree arg0, tree arg1)
6264 if (! flag_evaluation_order)
6265 return true;
6266 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6267 return true;
6268 return ! TREE_SIDE_EFFECTS (arg0)
6269 && ! TREE_SIDE_EFFECTS (arg1);
6272 /* Test whether it is preferable two swap two operands, ARG0 and
6273 ARG1, for example because ARG0 is an integer constant and ARG1
6274 isn't. If REORDER is true, only recommend swapping if we can
6275 evaluate the operands in reverse order. */
6277 bool
6278 tree_swap_operands_p (tree arg0, tree arg1, bool reorder)
6280 STRIP_SIGN_NOPS (arg0);
6281 STRIP_SIGN_NOPS (arg1);
6283 if (TREE_CODE (arg1) == INTEGER_CST)
6284 return 0;
6285 if (TREE_CODE (arg0) == INTEGER_CST)
6286 return 1;
6288 if (TREE_CODE (arg1) == REAL_CST)
6289 return 0;
6290 if (TREE_CODE (arg0) == REAL_CST)
6291 return 1;
6293 if (TREE_CODE (arg1) == COMPLEX_CST)
6294 return 0;
6295 if (TREE_CODE (arg0) == COMPLEX_CST)
6296 return 1;
6298 if (TREE_CONSTANT (arg1))
6299 return 0;
6300 if (TREE_CONSTANT (arg0))
6301 return 1;
6303 if (optimize_size)
6304 return 0;
6306 if (reorder && flag_evaluation_order
6307 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6308 return 0;
6310 if (DECL_P (arg1))
6311 return 0;
6312 if (DECL_P (arg0))
6313 return 1;
6315 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6316 for commutative and comparison operators. Ensuring a canonical
6317 form allows the optimizers to find additional redundancies without
6318 having to explicitly check for both orderings. */
6319 if (TREE_CODE (arg0) == SSA_NAME
6320 && TREE_CODE (arg1) == SSA_NAME
6321 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6322 return 1;
6324 return 0;
6327 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6328 ARG0 is extended to a wider type. */
6330 static tree
6331 fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
6333 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6334 tree arg1_unw;
6335 tree shorter_type, outer_type;
6336 tree min, max;
6337 bool above, below;
6339 if (arg0_unw == arg0)
6340 return NULL_TREE;
6341 shorter_type = TREE_TYPE (arg0_unw);
6343 #ifdef HAVE_canonicalize_funcptr_for_compare
6344 /* Disable this optimization if we're casting a function pointer
6345 type on targets that require function pointer canonicalization. */
6346 if (HAVE_canonicalize_funcptr_for_compare
6347 && TREE_CODE (shorter_type) == POINTER_TYPE
6348 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6349 return NULL_TREE;
6350 #endif
6352 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6353 return NULL_TREE;
6355 arg1_unw = get_unwidened (arg1, shorter_type);
6357 /* If possible, express the comparison in the shorter mode. */
6358 if ((code == EQ_EXPR || code == NE_EXPR
6359 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6360 && (TREE_TYPE (arg1_unw) == shorter_type
6361 || (TREE_CODE (arg1_unw) == INTEGER_CST
6362 && (TREE_CODE (shorter_type) == INTEGER_TYPE
6363 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
6364 && int_fits_type_p (arg1_unw, shorter_type))))
6365 return fold_build2 (code, type, arg0_unw,
6366 fold_convert (shorter_type, arg1_unw));
6368 if (TREE_CODE (arg1_unw) != INTEGER_CST
6369 || TREE_CODE (shorter_type) != INTEGER_TYPE
6370 || !int_fits_type_p (arg1_unw, shorter_type))
6371 return NULL_TREE;
6373 /* If we are comparing with the integer that does not fit into the range
6374 of the shorter type, the result is known. */
6375 outer_type = TREE_TYPE (arg1_unw);
6376 min = lower_bound_in_type (outer_type, shorter_type);
6377 max = upper_bound_in_type (outer_type, shorter_type);
6379 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6380 max, arg1_unw));
6381 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6382 arg1_unw, min));
6384 switch (code)
6386 case EQ_EXPR:
6387 if (above || below)
6388 return omit_one_operand (type, integer_zero_node, arg0);
6389 break;
6391 case NE_EXPR:
6392 if (above || below)
6393 return omit_one_operand (type, integer_one_node, arg0);
6394 break;
6396 case LT_EXPR:
6397 case LE_EXPR:
6398 if (above)
6399 return omit_one_operand (type, integer_one_node, arg0);
6400 else if (below)
6401 return omit_one_operand (type, integer_zero_node, arg0);
6403 case GT_EXPR:
6404 case GE_EXPR:
6405 if (above)
6406 return omit_one_operand (type, integer_zero_node, arg0);
6407 else if (below)
6408 return omit_one_operand (type, integer_one_node, arg0);
6410 default:
6411 break;
6414 return NULL_TREE;
6417 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6418 ARG0 just the signedness is changed. */
6420 static tree
6421 fold_sign_changed_comparison (enum tree_code code, tree type,
6422 tree arg0, tree arg1)
6424 tree arg0_inner, tmp;
6425 tree inner_type, outer_type;
6427 if (TREE_CODE (arg0) != NOP_EXPR
6428 && TREE_CODE (arg0) != CONVERT_EXPR)
6429 return NULL_TREE;
6431 outer_type = TREE_TYPE (arg0);
6432 arg0_inner = TREE_OPERAND (arg0, 0);
6433 inner_type = TREE_TYPE (arg0_inner);
6435 #ifdef HAVE_canonicalize_funcptr_for_compare
6436 /* Disable this optimization if we're casting a function pointer
6437 type on targets that require function pointer canonicalization. */
6438 if (HAVE_canonicalize_funcptr_for_compare
6439 && TREE_CODE (inner_type) == POINTER_TYPE
6440 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
6441 return NULL_TREE;
6442 #endif
6444 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6445 return NULL_TREE;
6447 if (TREE_CODE (arg1) != INTEGER_CST
6448 && !((TREE_CODE (arg1) == NOP_EXPR
6449 || TREE_CODE (arg1) == CONVERT_EXPR)
6450 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6451 return NULL_TREE;
6453 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6454 && code != NE_EXPR
6455 && code != EQ_EXPR)
6456 return NULL_TREE;
6458 if (TREE_CODE (arg1) == INTEGER_CST)
6460 tmp = build_int_cst_wide (inner_type,
6461 TREE_INT_CST_LOW (arg1),
6462 TREE_INT_CST_HIGH (arg1));
6463 arg1 = force_fit_type (tmp, 0,
6464 TREE_OVERFLOW (arg1),
6465 TREE_CONSTANT_OVERFLOW (arg1));
6467 else
6468 arg1 = fold_convert (inner_type, arg1);
6470 return fold_build2 (code, type, arg0_inner, arg1);
6473 /* Tries to replace &a[idx] CODE s * delta with &a[idx CODE delta], if s is
6474 step of the array. Reconstructs s and delta in the case of s * delta
6475 being an integer constant (and thus already folded).
6476 ADDR is the address. MULT is the multiplicative expression.
6477 If the function succeeds, the new address expression is returned. Otherwise
6478 NULL_TREE is returned. */
6480 static tree
6481 try_move_mult_to_index (enum tree_code code, tree addr, tree op1)
6483 tree s, delta, step;
6484 tree ref = TREE_OPERAND (addr, 0), pref;
6485 tree ret, pos;
6486 tree itype;
6488 /* Canonicalize op1 into a possibly non-constant delta
6489 and an INTEGER_CST s. */
6490 if (TREE_CODE (op1) == MULT_EXPR)
6492 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
6494 STRIP_NOPS (arg0);
6495 STRIP_NOPS (arg1);
6497 if (TREE_CODE (arg0) == INTEGER_CST)
6499 s = arg0;
6500 delta = arg1;
6502 else if (TREE_CODE (arg1) == INTEGER_CST)
6504 s = arg1;
6505 delta = arg0;
6507 else
6508 return NULL_TREE;
6510 else if (TREE_CODE (op1) == INTEGER_CST)
6512 delta = op1;
6513 s = NULL_TREE;
6515 else
6517 /* Simulate we are delta * 1. */
6518 delta = op1;
6519 s = integer_one_node;
6522 for (;; ref = TREE_OPERAND (ref, 0))
6524 if (TREE_CODE (ref) == ARRAY_REF)
6526 itype = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
6527 if (! itype)
6528 continue;
6530 step = array_ref_element_size (ref);
6531 if (TREE_CODE (step) != INTEGER_CST)
6532 continue;
6534 if (s)
6536 if (! tree_int_cst_equal (step, s))
6537 continue;
6539 else
6541 /* Try if delta is a multiple of step. */
6542 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, delta, step);
6543 if (! tmp)
6544 continue;
6545 delta = tmp;
6548 break;
6551 if (!handled_component_p (ref))
6552 return NULL_TREE;
6555 /* We found the suitable array reference. So copy everything up to it,
6556 and replace the index. */
6558 pref = TREE_OPERAND (addr, 0);
6559 ret = copy_node (pref);
6560 pos = ret;
6562 while (pref != ref)
6564 pref = TREE_OPERAND (pref, 0);
6565 TREE_OPERAND (pos, 0) = copy_node (pref);
6566 pos = TREE_OPERAND (pos, 0);
6569 TREE_OPERAND (pos, 1) = fold_build2 (code, itype,
6570 fold_convert (itype,
6571 TREE_OPERAND (pos, 1)),
6572 fold_convert (itype, delta));
6574 return fold_build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
6578 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6579 means A >= Y && A != MAX, but in this case we know that
6580 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6582 static tree
6583 fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
6585 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6587 if (TREE_CODE (bound) == LT_EXPR)
6588 a = TREE_OPERAND (bound, 0);
6589 else if (TREE_CODE (bound) == GT_EXPR)
6590 a = TREE_OPERAND (bound, 1);
6591 else
6592 return NULL_TREE;
6594 typea = TREE_TYPE (a);
6595 if (!INTEGRAL_TYPE_P (typea)
6596 && !POINTER_TYPE_P (typea))
6597 return NULL_TREE;
6599 if (TREE_CODE (ineq) == LT_EXPR)
6601 a1 = TREE_OPERAND (ineq, 1);
6602 y = TREE_OPERAND (ineq, 0);
6604 else if (TREE_CODE (ineq) == GT_EXPR)
6606 a1 = TREE_OPERAND (ineq, 0);
6607 y = TREE_OPERAND (ineq, 1);
6609 else
6610 return NULL_TREE;
6612 if (TREE_TYPE (a1) != typea)
6613 return NULL_TREE;
6615 diff = fold_build2 (MINUS_EXPR, typea, a1, a);
6616 if (!integer_onep (diff))
6617 return NULL_TREE;
6619 return fold_build2 (GE_EXPR, type, a, y);
6622 /* Fold a sum or difference of at least one multiplication.
6623 Returns the folded tree or NULL if no simplification could be made. */
6625 static tree
6626 fold_plusminus_mult_expr (enum tree_code code, tree type, tree arg0, tree arg1)
6628 tree arg00, arg01, arg10, arg11;
6629 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6631 /* (A * C) +- (B * C) -> (A+-B) * C.
6632 (A * C) +- A -> A * (C+-1).
6633 We are most concerned about the case where C is a constant,
6634 but other combinations show up during loop reduction. Since
6635 it is not difficult, try all four possibilities. */
6637 if (TREE_CODE (arg0) == MULT_EXPR)
6639 arg00 = TREE_OPERAND (arg0, 0);
6640 arg01 = TREE_OPERAND (arg0, 1);
6642 else
6644 arg00 = arg0;
6645 if (!FLOAT_TYPE_P (type))
6646 arg01 = build_int_cst (type, 1);
6647 else
6648 arg01 = build_real (type, dconst1);
6650 if (TREE_CODE (arg1) == MULT_EXPR)
6652 arg10 = TREE_OPERAND (arg1, 0);
6653 arg11 = TREE_OPERAND (arg1, 1);
6655 else
6657 arg10 = arg1;
6658 if (!FLOAT_TYPE_P (type))
6659 arg11 = build_int_cst (type, 1);
6660 else
6661 arg11 = build_real (type, dconst1);
6663 same = NULL_TREE;
6665 if (operand_equal_p (arg01, arg11, 0))
6666 same = arg01, alt0 = arg00, alt1 = arg10;
6667 else if (operand_equal_p (arg00, arg10, 0))
6668 same = arg00, alt0 = arg01, alt1 = arg11;
6669 else if (operand_equal_p (arg00, arg11, 0))
6670 same = arg00, alt0 = arg01, alt1 = arg10;
6671 else if (operand_equal_p (arg01, arg10, 0))
6672 same = arg01, alt0 = arg00, alt1 = arg11;
6674 /* No identical multiplicands; see if we can find a common
6675 power-of-two factor in non-power-of-two multiplies. This
6676 can help in multi-dimensional array access. */
6677 else if (host_integerp (arg01, 0)
6678 && host_integerp (arg11, 0))
6680 HOST_WIDE_INT int01, int11, tmp;
6681 bool swap = false;
6682 tree maybe_same;
6683 int01 = TREE_INT_CST_LOW (arg01);
6684 int11 = TREE_INT_CST_LOW (arg11);
6686 /* Move min of absolute values to int11. */
6687 if ((int01 >= 0 ? int01 : -int01)
6688 < (int11 >= 0 ? int11 : -int11))
6690 tmp = int01, int01 = int11, int11 = tmp;
6691 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6692 maybe_same = arg01;
6693 swap = true;
6695 else
6696 maybe_same = arg11;
6698 if (exact_log2 (int11) > 0 && int01 % int11 == 0)
6700 alt0 = fold_build2 (MULT_EXPR, TREE_TYPE (arg00), arg00,
6701 build_int_cst (TREE_TYPE (arg00),
6702 int01 / int11));
6703 alt1 = arg10;
6704 same = maybe_same;
6705 if (swap)
6706 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6710 if (same)
6711 return fold_build2 (MULT_EXPR, type,
6712 fold_build2 (code, type,
6713 fold_convert (type, alt0),
6714 fold_convert (type, alt1)),
6715 fold_convert (type, same));
6717 return NULL_TREE;
6720 /* Fold a unary expression of code CODE and type TYPE with operand
6721 OP0. Return the folded expression if folding is successful.
6722 Otherwise, return NULL_TREE. */
6724 tree
6725 fold_unary (enum tree_code code, tree type, tree op0)
6727 tree tem;
6728 tree arg0;
6729 enum tree_code_class kind = TREE_CODE_CLASS (code);
6731 gcc_assert (IS_EXPR_CODE_CLASS (kind)
6732 && TREE_CODE_LENGTH (code) == 1);
6734 arg0 = op0;
6735 if (arg0)
6737 if (code == NOP_EXPR || code == CONVERT_EXPR
6738 || code == FLOAT_EXPR || code == ABS_EXPR)
6740 /* Don't use STRIP_NOPS, because signedness of argument type
6741 matters. */
6742 STRIP_SIGN_NOPS (arg0);
6744 else
6746 /* Strip any conversions that don't change the mode. This
6747 is safe for every expression, except for a comparison
6748 expression because its signedness is derived from its
6749 operands.
6751 Note that this is done as an internal manipulation within
6752 the constant folder, in order to find the simplest
6753 representation of the arguments so that their form can be
6754 studied. In any cases, the appropriate type conversions
6755 should be put back in the tree that will get out of the
6756 constant folder. */
6757 STRIP_NOPS (arg0);
6761 if (TREE_CODE_CLASS (code) == tcc_unary)
6763 if (TREE_CODE (arg0) == COMPOUND_EXPR)
6764 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
6765 fold_build1 (code, type, TREE_OPERAND (arg0, 1)));
6766 else if (TREE_CODE (arg0) == COND_EXPR)
6768 tree arg01 = TREE_OPERAND (arg0, 1);
6769 tree arg02 = TREE_OPERAND (arg0, 2);
6770 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
6771 arg01 = fold_build1 (code, type, arg01);
6772 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
6773 arg02 = fold_build1 (code, type, arg02);
6774 tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
6775 arg01, arg02);
6777 /* If this was a conversion, and all we did was to move into
6778 inside the COND_EXPR, bring it back out. But leave it if
6779 it is a conversion from integer to integer and the
6780 result precision is no wider than a word since such a
6781 conversion is cheap and may be optimized away by combine,
6782 while it couldn't if it were outside the COND_EXPR. Then return
6783 so we don't get into an infinite recursion loop taking the
6784 conversion out and then back in. */
6786 if ((code == NOP_EXPR || code == CONVERT_EXPR
6787 || code == NON_LVALUE_EXPR)
6788 && TREE_CODE (tem) == COND_EXPR
6789 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
6790 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
6791 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
6792 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
6793 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
6794 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
6795 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
6796 && (INTEGRAL_TYPE_P
6797 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
6798 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
6799 || flag_syntax_only))
6800 tem = build1 (code, type,
6801 build3 (COND_EXPR,
6802 TREE_TYPE (TREE_OPERAND
6803 (TREE_OPERAND (tem, 1), 0)),
6804 TREE_OPERAND (tem, 0),
6805 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
6806 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
6807 return tem;
6809 else if (COMPARISON_CLASS_P (arg0))
6811 if (TREE_CODE (type) == BOOLEAN_TYPE)
6813 arg0 = copy_node (arg0);
6814 TREE_TYPE (arg0) = type;
6815 return arg0;
6817 else if (TREE_CODE (type) != INTEGER_TYPE)
6818 return fold_build3 (COND_EXPR, type, arg0,
6819 fold_build1 (code, type,
6820 integer_one_node),
6821 fold_build1 (code, type,
6822 integer_zero_node));
6826 switch (code)
6828 case NOP_EXPR:
6829 case FLOAT_EXPR:
6830 case CONVERT_EXPR:
6831 case FIX_TRUNC_EXPR:
6832 case FIX_CEIL_EXPR:
6833 case FIX_FLOOR_EXPR:
6834 case FIX_ROUND_EXPR:
6835 if (TREE_TYPE (op0) == type)
6836 return op0;
6838 /* If we have (type) (a CMP b) and type is an integral type, return
6839 new expression involving the new type. */
6840 if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
6841 return fold_build2 (TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
6842 TREE_OPERAND (op0, 1));
6844 /* Handle cases of two conversions in a row. */
6845 if (TREE_CODE (op0) == NOP_EXPR
6846 || TREE_CODE (op0) == CONVERT_EXPR)
6848 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
6849 tree inter_type = TREE_TYPE (op0);
6850 int inside_int = INTEGRAL_TYPE_P (inside_type);
6851 int inside_ptr = POINTER_TYPE_P (inside_type);
6852 int inside_float = FLOAT_TYPE_P (inside_type);
6853 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
6854 unsigned int inside_prec = TYPE_PRECISION (inside_type);
6855 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
6856 int inter_int = INTEGRAL_TYPE_P (inter_type);
6857 int inter_ptr = POINTER_TYPE_P (inter_type);
6858 int inter_float = FLOAT_TYPE_P (inter_type);
6859 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
6860 unsigned int inter_prec = TYPE_PRECISION (inter_type);
6861 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
6862 int final_int = INTEGRAL_TYPE_P (type);
6863 int final_ptr = POINTER_TYPE_P (type);
6864 int final_float = FLOAT_TYPE_P (type);
6865 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
6866 unsigned int final_prec = TYPE_PRECISION (type);
6867 int final_unsignedp = TYPE_UNSIGNED (type);
6869 /* In addition to the cases of two conversions in a row
6870 handled below, if we are converting something to its own
6871 type via an object of identical or wider precision, neither
6872 conversion is needed. */
6873 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
6874 && ((inter_int && final_int) || (inter_float && final_float))
6875 && inter_prec >= final_prec)
6876 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
6878 /* Likewise, if the intermediate and final types are either both
6879 float or both integer, we don't need the middle conversion if
6880 it is wider than the final type and doesn't change the signedness
6881 (for integers). Avoid this if the final type is a pointer
6882 since then we sometimes need the inner conversion. Likewise if
6883 the outer has a precision not equal to the size of its mode. */
6884 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
6885 || (inter_float && inside_float)
6886 || (inter_vec && inside_vec))
6887 && inter_prec >= inside_prec
6888 && (inter_float || inter_vec
6889 || inter_unsignedp == inside_unsignedp)
6890 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
6891 && TYPE_MODE (type) == TYPE_MODE (inter_type))
6892 && ! final_ptr
6893 && (! final_vec || inter_prec == inside_prec))
6894 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
6896 /* If we have a sign-extension of a zero-extended value, we can
6897 replace that by a single zero-extension. */
6898 if (inside_int && inter_int && final_int
6899 && inside_prec < inter_prec && inter_prec < final_prec
6900 && inside_unsignedp && !inter_unsignedp)
6901 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
6903 /* Two conversions in a row are not needed unless:
6904 - some conversion is floating-point (overstrict for now), or
6905 - some conversion is a vector (overstrict for now), or
6906 - the intermediate type is narrower than both initial and
6907 final, or
6908 - the intermediate type and innermost type differ in signedness,
6909 and the outermost type is wider than the intermediate, or
6910 - the initial type is a pointer type and the precisions of the
6911 intermediate and final types differ, or
6912 - the final type is a pointer type and the precisions of the
6913 initial and intermediate types differ. */
6914 if (! inside_float && ! inter_float && ! final_float
6915 && ! inside_vec && ! inter_vec && ! final_vec
6916 && (inter_prec > inside_prec || inter_prec > final_prec)
6917 && ! (inside_int && inter_int
6918 && inter_unsignedp != inside_unsignedp
6919 && inter_prec < final_prec)
6920 && ((inter_unsignedp && inter_prec > inside_prec)
6921 == (final_unsignedp && final_prec > inter_prec))
6922 && ! (inside_ptr && inter_prec != final_prec)
6923 && ! (final_ptr && inside_prec != inter_prec)
6924 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
6925 && TYPE_MODE (type) == TYPE_MODE (inter_type))
6926 && ! final_ptr)
6927 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
6930 /* Handle (T *)&A.B.C for A being of type T and B and C
6931 living at offset zero. This occurs frequently in
6932 C++ upcasting and then accessing the base. */
6933 if (TREE_CODE (op0) == ADDR_EXPR
6934 && POINTER_TYPE_P (type)
6935 && handled_component_p (TREE_OPERAND (op0, 0)))
6937 HOST_WIDE_INT bitsize, bitpos;
6938 tree offset;
6939 enum machine_mode mode;
6940 int unsignedp, volatilep;
6941 tree base = TREE_OPERAND (op0, 0);
6942 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
6943 &mode, &unsignedp, &volatilep, false);
6944 /* If the reference was to a (constant) zero offset, we can use
6945 the address of the base if it has the same base type
6946 as the result type. */
6947 if (! offset && bitpos == 0
6948 && TYPE_MAIN_VARIANT (TREE_TYPE (type))
6949 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
6950 return fold_convert (type, build_fold_addr_expr (base));
6953 if (TREE_CODE (op0) == MODIFY_EXPR
6954 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
6955 /* Detect assigning a bitfield. */
6956 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
6957 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
6959 /* Don't leave an assignment inside a conversion
6960 unless assigning a bitfield. */
6961 tem = fold_build1 (code, type, TREE_OPERAND (op0, 1));
6962 /* First do the assignment, then return converted constant. */
6963 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
6964 TREE_NO_WARNING (tem) = 1;
6965 TREE_USED (tem) = 1;
6966 return tem;
6969 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
6970 constants (if x has signed type, the sign bit cannot be set
6971 in c). This folds extension into the BIT_AND_EXPR. */
6972 if (INTEGRAL_TYPE_P (type)
6973 && TREE_CODE (type) != BOOLEAN_TYPE
6974 && TREE_CODE (op0) == BIT_AND_EXPR
6975 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
6977 tree and = op0;
6978 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
6979 int change = 0;
6981 if (TYPE_UNSIGNED (TREE_TYPE (and))
6982 || (TYPE_PRECISION (type)
6983 <= TYPE_PRECISION (TREE_TYPE (and))))
6984 change = 1;
6985 else if (TYPE_PRECISION (TREE_TYPE (and1))
6986 <= HOST_BITS_PER_WIDE_INT
6987 && host_integerp (and1, 1))
6989 unsigned HOST_WIDE_INT cst;
6991 cst = tree_low_cst (and1, 1);
6992 cst &= (HOST_WIDE_INT) -1
6993 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
6994 change = (cst == 0);
6995 #ifdef LOAD_EXTEND_OP
6996 if (change
6997 && !flag_syntax_only
6998 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
6999 == ZERO_EXTEND))
7001 tree uns = lang_hooks.types.unsigned_type (TREE_TYPE (and0));
7002 and0 = fold_convert (uns, and0);
7003 and1 = fold_convert (uns, and1);
7005 #endif
7007 if (change)
7009 tem = build_int_cst_wide (type, TREE_INT_CST_LOW (and1),
7010 TREE_INT_CST_HIGH (and1));
7011 tem = force_fit_type (tem, 0, TREE_OVERFLOW (and1),
7012 TREE_CONSTANT_OVERFLOW (and1));
7013 return fold_build2 (BIT_AND_EXPR, type,
7014 fold_convert (type, and0), tem);
7018 /* Convert (T1)((T2)X op Y) into (T1)X op Y, for pointer types T1 and
7019 T2 being pointers to types of the same size. */
7020 if (POINTER_TYPE_P (type)
7021 && BINARY_CLASS_P (arg0)
7022 && TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7023 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0))))
7025 tree arg00 = TREE_OPERAND (arg0, 0);
7026 tree t0 = type;
7027 tree t1 = TREE_TYPE (arg00);
7028 tree tt0 = TREE_TYPE (t0);
7029 tree tt1 = TREE_TYPE (t1);
7030 tree s0 = TYPE_SIZE (tt0);
7031 tree s1 = TYPE_SIZE (tt1);
7033 if (s0 && s1 && operand_equal_p (s0, s1, OEP_ONLY_CONST))
7034 return build2 (TREE_CODE (arg0), t0, fold_convert (t0, arg00),
7035 TREE_OPERAND (arg0, 1));
7038 tem = fold_convert_const (code, type, arg0);
7039 return tem ? tem : NULL_TREE;
7041 case VIEW_CONVERT_EXPR:
7042 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
7043 return build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
7044 return NULL_TREE;
7046 case NEGATE_EXPR:
7047 if (negate_expr_p (arg0))
7048 return fold_convert (type, negate_expr (arg0));
7049 return NULL_TREE;
7051 case ABS_EXPR:
7052 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
7053 return fold_abs_const (arg0, type);
7054 else if (TREE_CODE (arg0) == NEGATE_EXPR)
7055 return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
7056 /* Convert fabs((double)float) into (double)fabsf(float). */
7057 else if (TREE_CODE (arg0) == NOP_EXPR
7058 && TREE_CODE (type) == REAL_TYPE)
7060 tree targ0 = strip_float_extensions (arg0);
7061 if (targ0 != arg0)
7062 return fold_convert (type, fold_build1 (ABS_EXPR,
7063 TREE_TYPE (targ0),
7064 targ0));
7066 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
7067 else if (tree_expr_nonnegative_p (arg0) || TREE_CODE (arg0) == ABS_EXPR)
7068 return arg0;
7070 /* Strip sign ops from argument. */
7071 if (TREE_CODE (type) == REAL_TYPE)
7073 tem = fold_strip_sign_ops (arg0);
7074 if (tem)
7075 return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
7077 return NULL_TREE;
7079 case CONJ_EXPR:
7080 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7081 return fold_convert (type, arg0);
7082 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7083 return build2 (COMPLEX_EXPR, type,
7084 TREE_OPERAND (arg0, 0),
7085 negate_expr (TREE_OPERAND (arg0, 1)));
7086 else if (TREE_CODE (arg0) == COMPLEX_CST)
7087 return build_complex (type, TREE_REALPART (arg0),
7088 negate_expr (TREE_IMAGPART (arg0)));
7089 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7090 return fold_build2 (TREE_CODE (arg0), type,
7091 fold_build1 (CONJ_EXPR, type,
7092 TREE_OPERAND (arg0, 0)),
7093 fold_build1 (CONJ_EXPR, type,
7094 TREE_OPERAND (arg0, 1)));
7095 else if (TREE_CODE (arg0) == CONJ_EXPR)
7096 return TREE_OPERAND (arg0, 0);
7097 return NULL_TREE;
7099 case BIT_NOT_EXPR:
7100 if (TREE_CODE (arg0) == INTEGER_CST)
7101 return fold_not_const (arg0, type);
7102 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
7103 return TREE_OPERAND (arg0, 0);
7104 /* Convert ~ (-A) to A - 1. */
7105 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
7106 return fold_build2 (MINUS_EXPR, type, TREE_OPERAND (arg0, 0),
7107 build_int_cst (type, 1));
7108 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
7109 else if (INTEGRAL_TYPE_P (type)
7110 && ((TREE_CODE (arg0) == MINUS_EXPR
7111 && integer_onep (TREE_OPERAND (arg0, 1)))
7112 || (TREE_CODE (arg0) == PLUS_EXPR
7113 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
7114 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
7115 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7116 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7117 && (tem = fold_unary (BIT_NOT_EXPR, type,
7118 fold_convert (type,
7119 TREE_OPERAND (arg0, 0)))))
7120 return fold_build2 (BIT_XOR_EXPR, type, tem,
7121 fold_convert (type, TREE_OPERAND (arg0, 1)));
7122 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7123 && (tem = fold_unary (BIT_NOT_EXPR, type,
7124 fold_convert (type,
7125 TREE_OPERAND (arg0, 1)))))
7126 return fold_build2 (BIT_XOR_EXPR, type,
7127 fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
7129 return NULL_TREE;
7131 case TRUTH_NOT_EXPR:
7132 /* The argument to invert_truthvalue must have Boolean type. */
7133 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
7134 arg0 = fold_convert (boolean_type_node, arg0);
7136 /* Note that the operand of this must be an int
7137 and its values must be 0 or 1.
7138 ("true" is a fixed value perhaps depending on the language,
7139 but we don't handle values other than 1 correctly yet.) */
7140 tem = invert_truthvalue (arg0);
7141 /* Avoid infinite recursion. */
7142 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
7143 return NULL_TREE;
7144 return fold_convert (type, tem);
7146 case REALPART_EXPR:
7147 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7148 return NULL_TREE;
7149 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7150 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
7151 TREE_OPERAND (arg0, 1));
7152 else if (TREE_CODE (arg0) == COMPLEX_CST)
7153 return TREE_REALPART (arg0);
7154 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7155 return fold_build2 (TREE_CODE (arg0), type,
7156 fold_build1 (REALPART_EXPR, type,
7157 TREE_OPERAND (arg0, 0)),
7158 fold_build1 (REALPART_EXPR, type,
7159 TREE_OPERAND (arg0, 1)));
7160 return NULL_TREE;
7162 case IMAGPART_EXPR:
7163 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7164 return fold_convert (type, integer_zero_node);
7165 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7166 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
7167 TREE_OPERAND (arg0, 0));
7168 else if (TREE_CODE (arg0) == COMPLEX_CST)
7169 return TREE_IMAGPART (arg0);
7170 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7171 return fold_build2 (TREE_CODE (arg0), type,
7172 fold_build1 (IMAGPART_EXPR, type,
7173 TREE_OPERAND (arg0, 0)),
7174 fold_build1 (IMAGPART_EXPR, type,
7175 TREE_OPERAND (arg0, 1)));
7176 return NULL_TREE;
7178 default:
7179 return NULL_TREE;
7180 } /* switch (code) */
7183 /* Fold a binary expression of code CODE and type TYPE with operands
7184 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
7185 Return the folded expression if folding is successful. Otherwise,
7186 return NULL_TREE. */
7188 static tree
7189 fold_minmax (enum tree_code code, tree type, tree op0, tree op1)
7191 enum tree_code compl_code;
7193 if (code == MIN_EXPR)
7194 compl_code = MAX_EXPR;
7195 else if (code == MAX_EXPR)
7196 compl_code = MIN_EXPR;
7197 else
7198 gcc_unreachable ();
7200 /* MIN (MAX (a, b), b) == b.  */
7201 if (TREE_CODE (op0) == compl_code
7202 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
7203 return omit_one_operand (type, op1, TREE_OPERAND (op0, 0));
7205 /* MIN (MAX (b, a), b) == b.  */
7206 if (TREE_CODE (op0) == compl_code
7207 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
7208 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
7209 return omit_one_operand (type, op1, TREE_OPERAND (op0, 1));
7211 /* MIN (a, MAX (a, b)) == a.  */
7212 if (TREE_CODE (op1) == compl_code
7213 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
7214 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
7215 return omit_one_operand (type, op0, TREE_OPERAND (op1, 1));
7217 /* MIN (a, MAX (b, a)) == a.  */
7218 if (TREE_CODE (op1) == compl_code
7219 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
7220 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
7221 return omit_one_operand (type, op0, TREE_OPERAND (op1, 0));
7223 return NULL_TREE;
7226 /* Fold a binary expression of code CODE and type TYPE with operands
7227 OP0 and OP1. Return the folded expression if folding is
7228 successful. Otherwise, return NULL_TREE. */
7230 tree
7231 fold_binary (enum tree_code code, tree type, tree op0, tree op1)
7233 tree t1 = NULL_TREE;
7234 tree tem;
7235 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
7236 enum tree_code_class kind = TREE_CODE_CLASS (code);
7238 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7239 && TREE_CODE_LENGTH (code) == 2
7240 && op0 != NULL_TREE
7241 && op1 != NULL_TREE);
7243 arg0 = op0;
7244 arg1 = op1;
7246 /* Strip any conversions that don't change the mode. This is
7247 safe for every expression, except for a comparison expression
7248 because its signedness is derived from its operands. So, in
7249 the latter case, only strip conversions that don't change the
7250 signedness.
7252 Note that this is done as an internal manipulation within the
7253 constant folder, in order to find the simplest representation
7254 of the arguments so that their form can be studied. In any
7255 cases, the appropriate type conversions should be put back in
7256 the tree that will get out of the constant folder. */
7258 if (kind == tcc_comparison)
7260 STRIP_SIGN_NOPS (arg0);
7261 STRIP_SIGN_NOPS (arg1);
7263 else
7265 STRIP_NOPS (arg0);
7266 STRIP_NOPS (arg1);
7269 /* Note that TREE_CONSTANT isn't enough: static var addresses are
7270 constant but we can't do arithmetic on them. */
7271 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
7272 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
7273 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
7274 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
7276 if (kind == tcc_binary)
7277 tem = const_binop (code, arg0, arg1, 0);
7278 else if (kind == tcc_comparison)
7279 tem = fold_relational_const (code, type, arg0, arg1);
7280 else
7281 tem = NULL_TREE;
7283 if (tem != NULL_TREE)
7285 if (TREE_TYPE (tem) != type)
7286 tem = fold_convert (type, tem);
7287 return tem;
7291 /* If this is a commutative operation, and ARG0 is a constant, move it
7292 to ARG1 to reduce the number of tests below. */
7293 if (commutative_tree_code (code)
7294 && tree_swap_operands_p (arg0, arg1, true))
7295 return fold_build2 (code, type, op1, op0);
7297 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
7299 First check for cases where an arithmetic operation is applied to a
7300 compound, conditional, or comparison operation. Push the arithmetic
7301 operation inside the compound or conditional to see if any folding
7302 can then be done. Convert comparison to conditional for this purpose.
7303 The also optimizes non-constant cases that used to be done in
7304 expand_expr.
7306 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
7307 one of the operands is a comparison and the other is a comparison, a
7308 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
7309 code below would make the expression more complex. Change it to a
7310 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
7311 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
7313 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
7314 || code == EQ_EXPR || code == NE_EXPR)
7315 && ((truth_value_p (TREE_CODE (arg0))
7316 && (truth_value_p (TREE_CODE (arg1))
7317 || (TREE_CODE (arg1) == BIT_AND_EXPR
7318 && integer_onep (TREE_OPERAND (arg1, 1)))))
7319 || (truth_value_p (TREE_CODE (arg1))
7320 && (truth_value_p (TREE_CODE (arg0))
7321 || (TREE_CODE (arg0) == BIT_AND_EXPR
7322 && integer_onep (TREE_OPERAND (arg0, 1)))))))
7324 tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
7325 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
7326 : TRUTH_XOR_EXPR,
7327 boolean_type_node,
7328 fold_convert (boolean_type_node, arg0),
7329 fold_convert (boolean_type_node, arg1));
7331 if (code == EQ_EXPR)
7332 tem = invert_truthvalue (tem);
7334 return fold_convert (type, tem);
7337 if (TREE_CODE_CLASS (code) == tcc_binary
7338 || TREE_CODE_CLASS (code) == tcc_comparison)
7340 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7341 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7342 fold_build2 (code, type,
7343 TREE_OPERAND (arg0, 1), op1));
7344 if (TREE_CODE (arg1) == COMPOUND_EXPR
7345 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
7346 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
7347 fold_build2 (code, type,
7348 op0, TREE_OPERAND (arg1, 1)));
7350 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
7352 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
7353 arg0, arg1,
7354 /*cond_first_p=*/1);
7355 if (tem != NULL_TREE)
7356 return tem;
7359 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
7361 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
7362 arg1, arg0,
7363 /*cond_first_p=*/0);
7364 if (tem != NULL_TREE)
7365 return tem;
7369 switch (code)
7371 case PLUS_EXPR:
7372 /* A + (-B) -> A - B */
7373 if (TREE_CODE (arg1) == NEGATE_EXPR)
7374 return fold_build2 (MINUS_EXPR, type,
7375 fold_convert (type, arg0),
7376 fold_convert (type, TREE_OPERAND (arg1, 0)));
7377 /* (-A) + B -> B - A */
7378 if (TREE_CODE (arg0) == NEGATE_EXPR
7379 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
7380 return fold_build2 (MINUS_EXPR, type,
7381 fold_convert (type, arg1),
7382 fold_convert (type, TREE_OPERAND (arg0, 0)));
7383 /* Convert ~A + 1 to -A. */
7384 if (INTEGRAL_TYPE_P (type)
7385 && TREE_CODE (arg0) == BIT_NOT_EXPR
7386 && integer_onep (arg1))
7387 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
7389 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
7390 same or one. */
7391 if ((TREE_CODE (arg0) == MULT_EXPR
7392 || TREE_CODE (arg1) == MULT_EXPR)
7393 && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
7395 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
7396 if (tem)
7397 return tem;
7400 if (! FLOAT_TYPE_P (type))
7402 if (integer_zerop (arg1))
7403 return non_lvalue (fold_convert (type, arg0));
7405 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
7406 with a constant, and the two constants have no bits in common,
7407 we should treat this as a BIT_IOR_EXPR since this may produce more
7408 simplifications. */
7409 if (TREE_CODE (arg0) == BIT_AND_EXPR
7410 && TREE_CODE (arg1) == BIT_AND_EXPR
7411 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7412 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
7413 && integer_zerop (const_binop (BIT_AND_EXPR,
7414 TREE_OPERAND (arg0, 1),
7415 TREE_OPERAND (arg1, 1), 0)))
7417 code = BIT_IOR_EXPR;
7418 goto bit_ior;
7421 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
7422 (plus (plus (mult) (mult)) (foo)) so that we can
7423 take advantage of the factoring cases below. */
7424 if (((TREE_CODE (arg0) == PLUS_EXPR
7425 || TREE_CODE (arg0) == MINUS_EXPR)
7426 && TREE_CODE (arg1) == MULT_EXPR)
7427 || ((TREE_CODE (arg1) == PLUS_EXPR
7428 || TREE_CODE (arg1) == MINUS_EXPR)
7429 && TREE_CODE (arg0) == MULT_EXPR))
7431 tree parg0, parg1, parg, marg;
7432 enum tree_code pcode;
7434 if (TREE_CODE (arg1) == MULT_EXPR)
7435 parg = arg0, marg = arg1;
7436 else
7437 parg = arg1, marg = arg0;
7438 pcode = TREE_CODE (parg);
7439 parg0 = TREE_OPERAND (parg, 0);
7440 parg1 = TREE_OPERAND (parg, 1);
7441 STRIP_NOPS (parg0);
7442 STRIP_NOPS (parg1);
7444 if (TREE_CODE (parg0) == MULT_EXPR
7445 && TREE_CODE (parg1) != MULT_EXPR)
7446 return fold_build2 (pcode, type,
7447 fold_build2 (PLUS_EXPR, type,
7448 fold_convert (type, parg0),
7449 fold_convert (type, marg)),
7450 fold_convert (type, parg1));
7451 if (TREE_CODE (parg0) != MULT_EXPR
7452 && TREE_CODE (parg1) == MULT_EXPR)
7453 return fold_build2 (PLUS_EXPR, type,
7454 fold_convert (type, parg0),
7455 fold_build2 (pcode, type,
7456 fold_convert (type, marg),
7457 fold_convert (type,
7458 parg1)));
7461 /* Try replacing &a[i1] + c * i2 with &a[i1 + i2], if c is step
7462 of the array. Loop optimizer sometimes produce this type of
7463 expressions. */
7464 if (TREE_CODE (arg0) == ADDR_EXPR)
7466 tem = try_move_mult_to_index (PLUS_EXPR, arg0, arg1);
7467 if (tem)
7468 return fold_convert (type, tem);
7470 else if (TREE_CODE (arg1) == ADDR_EXPR)
7472 tem = try_move_mult_to_index (PLUS_EXPR, arg1, arg0);
7473 if (tem)
7474 return fold_convert (type, tem);
7477 else
7479 /* See if ARG1 is zero and X + ARG1 reduces to X. */
7480 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
7481 return non_lvalue (fold_convert (type, arg0));
7483 /* Likewise if the operands are reversed. */
7484 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
7485 return non_lvalue (fold_convert (type, arg1));
7487 /* Convert X + -C into X - C. */
7488 if (TREE_CODE (arg1) == REAL_CST
7489 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
7491 tem = fold_negate_const (arg1, type);
7492 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
7493 return fold_build2 (MINUS_EXPR, type,
7494 fold_convert (type, arg0),
7495 fold_convert (type, tem));
7498 if (flag_unsafe_math_optimizations
7499 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
7500 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
7501 && (tem = distribute_real_division (code, type, arg0, arg1)))
7502 return tem;
7504 /* Convert x+x into x*2.0. */
7505 if (operand_equal_p (arg0, arg1, 0)
7506 && SCALAR_FLOAT_TYPE_P (type))
7507 return fold_build2 (MULT_EXPR, type, arg0,
7508 build_real (type, dconst2));
7510 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. */
7511 if (flag_unsafe_math_optimizations
7512 && TREE_CODE (arg1) == PLUS_EXPR
7513 && TREE_CODE (arg0) != MULT_EXPR)
7515 tree tree10 = TREE_OPERAND (arg1, 0);
7516 tree tree11 = TREE_OPERAND (arg1, 1);
7517 if (TREE_CODE (tree11) == MULT_EXPR
7518 && TREE_CODE (tree10) == MULT_EXPR)
7520 tree tree0;
7521 tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
7522 return fold_build2 (PLUS_EXPR, type, tree0, tree11);
7525 /* Convert (b*c + d*e) + a into b*c + (d*e +a). */
7526 if (flag_unsafe_math_optimizations
7527 && TREE_CODE (arg0) == PLUS_EXPR
7528 && TREE_CODE (arg1) != MULT_EXPR)
7530 tree tree00 = TREE_OPERAND (arg0, 0);
7531 tree tree01 = TREE_OPERAND (arg0, 1);
7532 if (TREE_CODE (tree01) == MULT_EXPR
7533 && TREE_CODE (tree00) == MULT_EXPR)
7535 tree tree0;
7536 tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
7537 return fold_build2 (PLUS_EXPR, type, tree00, tree0);
7542 bit_rotate:
7543 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
7544 is a rotate of A by C1 bits. */
7545 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
7546 is a rotate of A by B bits. */
7548 enum tree_code code0, code1;
7549 code0 = TREE_CODE (arg0);
7550 code1 = TREE_CODE (arg1);
7551 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
7552 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
7553 && operand_equal_p (TREE_OPERAND (arg0, 0),
7554 TREE_OPERAND (arg1, 0), 0)
7555 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
7557 tree tree01, tree11;
7558 enum tree_code code01, code11;
7560 tree01 = TREE_OPERAND (arg0, 1);
7561 tree11 = TREE_OPERAND (arg1, 1);
7562 STRIP_NOPS (tree01);
7563 STRIP_NOPS (tree11);
7564 code01 = TREE_CODE (tree01);
7565 code11 = TREE_CODE (tree11);
7566 if (code01 == INTEGER_CST
7567 && code11 == INTEGER_CST
7568 && TREE_INT_CST_HIGH (tree01) == 0
7569 && TREE_INT_CST_HIGH (tree11) == 0
7570 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
7571 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
7572 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
7573 code0 == LSHIFT_EXPR ? tree01 : tree11);
7574 else if (code11 == MINUS_EXPR)
7576 tree tree110, tree111;
7577 tree110 = TREE_OPERAND (tree11, 0);
7578 tree111 = TREE_OPERAND (tree11, 1);
7579 STRIP_NOPS (tree110);
7580 STRIP_NOPS (tree111);
7581 if (TREE_CODE (tree110) == INTEGER_CST
7582 && 0 == compare_tree_int (tree110,
7583 TYPE_PRECISION
7584 (TREE_TYPE (TREE_OPERAND
7585 (arg0, 0))))
7586 && operand_equal_p (tree01, tree111, 0))
7587 return build2 ((code0 == LSHIFT_EXPR
7588 ? LROTATE_EXPR
7589 : RROTATE_EXPR),
7590 type, TREE_OPERAND (arg0, 0), tree01);
7592 else if (code01 == MINUS_EXPR)
7594 tree tree010, tree011;
7595 tree010 = TREE_OPERAND (tree01, 0);
7596 tree011 = TREE_OPERAND (tree01, 1);
7597 STRIP_NOPS (tree010);
7598 STRIP_NOPS (tree011);
7599 if (TREE_CODE (tree010) == INTEGER_CST
7600 && 0 == compare_tree_int (tree010,
7601 TYPE_PRECISION
7602 (TREE_TYPE (TREE_OPERAND
7603 (arg0, 0))))
7604 && operand_equal_p (tree11, tree011, 0))
7605 return build2 ((code0 != LSHIFT_EXPR
7606 ? LROTATE_EXPR
7607 : RROTATE_EXPR),
7608 type, TREE_OPERAND (arg0, 0), tree11);
7613 associate:
7614 /* In most languages, can't associate operations on floats through
7615 parentheses. Rather than remember where the parentheses were, we
7616 don't associate floats at all, unless the user has specified
7617 -funsafe-math-optimizations. */
7619 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
7621 tree var0, con0, lit0, minus_lit0;
7622 tree var1, con1, lit1, minus_lit1;
7624 /* Split both trees into variables, constants, and literals. Then
7625 associate each group together, the constants with literals,
7626 then the result with variables. This increases the chances of
7627 literals being recombined later and of generating relocatable
7628 expressions for the sum of a constant and literal. */
7629 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
7630 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
7631 code == MINUS_EXPR);
7633 /* Only do something if we found more than two objects. Otherwise,
7634 nothing has changed and we risk infinite recursion. */
7635 if (2 < ((var0 != 0) + (var1 != 0)
7636 + (con0 != 0) + (con1 != 0)
7637 + (lit0 != 0) + (lit1 != 0)
7638 + (minus_lit0 != 0) + (minus_lit1 != 0)))
7640 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
7641 if (code == MINUS_EXPR)
7642 code = PLUS_EXPR;
7644 var0 = associate_trees (var0, var1, code, type);
7645 con0 = associate_trees (con0, con1, code, type);
7646 lit0 = associate_trees (lit0, lit1, code, type);
7647 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
7649 /* Preserve the MINUS_EXPR if the negative part of the literal is
7650 greater than the positive part. Otherwise, the multiplicative
7651 folding code (i.e extract_muldiv) may be fooled in case
7652 unsigned constants are subtracted, like in the following
7653 example: ((X*2 + 4) - 8U)/2. */
7654 if (minus_lit0 && lit0)
7656 if (TREE_CODE (lit0) == INTEGER_CST
7657 && TREE_CODE (minus_lit0) == INTEGER_CST
7658 && tree_int_cst_lt (lit0, minus_lit0))
7660 minus_lit0 = associate_trees (minus_lit0, lit0,
7661 MINUS_EXPR, type);
7662 lit0 = 0;
7664 else
7666 lit0 = associate_trees (lit0, minus_lit0,
7667 MINUS_EXPR, type);
7668 minus_lit0 = 0;
7671 if (minus_lit0)
7673 if (con0 == 0)
7674 return fold_convert (type,
7675 associate_trees (var0, minus_lit0,
7676 MINUS_EXPR, type));
7677 else
7679 con0 = associate_trees (con0, minus_lit0,
7680 MINUS_EXPR, type);
7681 return fold_convert (type,
7682 associate_trees (var0, con0,
7683 PLUS_EXPR, type));
7687 con0 = associate_trees (con0, lit0, code, type);
7688 return fold_convert (type, associate_trees (var0, con0,
7689 code, type));
7693 return NULL_TREE;
7695 case MINUS_EXPR:
7696 /* A - (-B) -> A + B */
7697 if (TREE_CODE (arg1) == NEGATE_EXPR)
7698 return fold_build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0));
7699 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
7700 if (TREE_CODE (arg0) == NEGATE_EXPR
7701 && (FLOAT_TYPE_P (type)
7702 || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv))
7703 && negate_expr_p (arg1)
7704 && reorder_operands_p (arg0, arg1))
7705 return fold_build2 (MINUS_EXPR, type, negate_expr (arg1),
7706 TREE_OPERAND (arg0, 0));
7707 /* Convert -A - 1 to ~A. */
7708 if (INTEGRAL_TYPE_P (type)
7709 && TREE_CODE (arg0) == NEGATE_EXPR
7710 && integer_onep (arg1))
7711 return fold_build1 (BIT_NOT_EXPR, type, TREE_OPERAND (arg0, 0));
7713 /* Convert -1 - A to ~A. */
7714 if (INTEGRAL_TYPE_P (type)
7715 && integer_all_onesp (arg0))
7716 return fold_build1 (BIT_NOT_EXPR, type, arg1);
7718 if (! FLOAT_TYPE_P (type))
7720 if (integer_zerop (arg0))
7721 return negate_expr (fold_convert (type, arg1));
7722 if (integer_zerop (arg1))
7723 return non_lvalue (fold_convert (type, arg0));
7725 /* Fold A - (A & B) into ~B & A. */
7726 if (!TREE_SIDE_EFFECTS (arg0)
7727 && TREE_CODE (arg1) == BIT_AND_EXPR)
7729 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
7730 return fold_build2 (BIT_AND_EXPR, type,
7731 fold_build1 (BIT_NOT_EXPR, type,
7732 TREE_OPERAND (arg1, 0)),
7733 arg0);
7734 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7735 return fold_build2 (BIT_AND_EXPR, type,
7736 fold_build1 (BIT_NOT_EXPR, type,
7737 TREE_OPERAND (arg1, 1)),
7738 arg0);
7741 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
7742 any power of 2 minus 1. */
7743 if (TREE_CODE (arg0) == BIT_AND_EXPR
7744 && TREE_CODE (arg1) == BIT_AND_EXPR
7745 && operand_equal_p (TREE_OPERAND (arg0, 0),
7746 TREE_OPERAND (arg1, 0), 0))
7748 tree mask0 = TREE_OPERAND (arg0, 1);
7749 tree mask1 = TREE_OPERAND (arg1, 1);
7750 tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
7752 if (operand_equal_p (tem, mask1, 0))
7754 tem = fold_build2 (BIT_XOR_EXPR, type,
7755 TREE_OPERAND (arg0, 0), mask1);
7756 return fold_build2 (MINUS_EXPR, type, tem, mask1);
7761 /* See if ARG1 is zero and X - ARG1 reduces to X. */
7762 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
7763 return non_lvalue (fold_convert (type, arg0));
7765 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
7766 ARG0 is zero and X + ARG0 reduces to X, since that would mean
7767 (-ARG1 + ARG0) reduces to -ARG1. */
7768 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
7769 return negate_expr (fold_convert (type, arg1));
7771 /* Fold &x - &x. This can happen from &x.foo - &x.
7772 This is unsafe for certain floats even in non-IEEE formats.
7773 In IEEE, it is unsafe because it does wrong for NaNs.
7774 Also note that operand_equal_p is always false if an operand
7775 is volatile. */
7777 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
7778 && operand_equal_p (arg0, arg1, 0))
7779 return fold_convert (type, integer_zero_node);
7781 /* A - B -> A + (-B) if B is easily negatable. */
7782 if (negate_expr_p (arg1)
7783 && ((FLOAT_TYPE_P (type)
7784 /* Avoid this transformation if B is a positive REAL_CST. */
7785 && (TREE_CODE (arg1) != REAL_CST
7786 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
7787 || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv)))
7788 return fold_build2 (PLUS_EXPR, type,
7789 fold_convert (type, arg0),
7790 fold_convert (type, negate_expr (arg1)));
7792 /* Try folding difference of addresses. */
7794 HOST_WIDE_INT diff;
7796 if ((TREE_CODE (arg0) == ADDR_EXPR
7797 || TREE_CODE (arg1) == ADDR_EXPR)
7798 && ptr_difference_const (arg0, arg1, &diff))
7799 return build_int_cst_type (type, diff);
7802 /* Fold &a[i] - &a[j] to i-j. */
7803 if (TREE_CODE (arg0) == ADDR_EXPR
7804 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
7805 && TREE_CODE (arg1) == ADDR_EXPR
7806 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
7808 tree aref0 = TREE_OPERAND (arg0, 0);
7809 tree aref1 = TREE_OPERAND (arg1, 0);
7810 if (operand_equal_p (TREE_OPERAND (aref0, 0),
7811 TREE_OPERAND (aref1, 0), 0))
7813 tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
7814 tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
7815 tree esz = array_ref_element_size (aref0);
7816 tree diff = build2 (MINUS_EXPR, type, op0, op1);
7817 return fold_build2 (MULT_EXPR, type, diff,
7818 fold_convert (type, esz));
7823 /* Try replacing &a[i1] - c * i2 with &a[i1 - i2], if c is step
7824 of the array. Loop optimizer sometimes produce this type of
7825 expressions. */
7826 if (TREE_CODE (arg0) == ADDR_EXPR)
7828 tem = try_move_mult_to_index (MINUS_EXPR, arg0, arg1);
7829 if (tem)
7830 return fold_convert (type, tem);
7833 if (flag_unsafe_math_optimizations
7834 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
7835 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
7836 && (tem = distribute_real_division (code, type, arg0, arg1)))
7837 return tem;
7839 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
7840 same or one. */
7841 if ((TREE_CODE (arg0) == MULT_EXPR
7842 || TREE_CODE (arg1) == MULT_EXPR)
7843 && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
7845 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
7846 if (tem)
7847 return tem;
7850 goto associate;
7852 case MULT_EXPR:
7853 /* (-A) * (-B) -> A * B */
7854 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
7855 return fold_build2 (MULT_EXPR, type,
7856 TREE_OPERAND (arg0, 0),
7857 negate_expr (arg1));
7858 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
7859 return fold_build2 (MULT_EXPR, type,
7860 negate_expr (arg0),
7861 TREE_OPERAND (arg1, 0));
7863 if (! FLOAT_TYPE_P (type))
7865 if (integer_zerop (arg1))
7866 return omit_one_operand (type, arg1, arg0);
7867 if (integer_onep (arg1))
7868 return non_lvalue (fold_convert (type, arg0));
7869 /* Transform x * -1 into -x. */
7870 if (integer_all_onesp (arg1))
7871 return fold_convert (type, negate_expr (arg0));
7873 /* (a * (1 << b)) is (a << b) */
7874 if (TREE_CODE (arg1) == LSHIFT_EXPR
7875 && integer_onep (TREE_OPERAND (arg1, 0)))
7876 return fold_build2 (LSHIFT_EXPR, type, arg0,
7877 TREE_OPERAND (arg1, 1));
7878 if (TREE_CODE (arg0) == LSHIFT_EXPR
7879 && integer_onep (TREE_OPERAND (arg0, 0)))
7880 return fold_build2 (LSHIFT_EXPR, type, arg1,
7881 TREE_OPERAND (arg0, 1));
7883 if (TREE_CODE (arg1) == INTEGER_CST
7884 && 0 != (tem = extract_muldiv (op0,
7885 fold_convert (type, arg1),
7886 code, NULL_TREE)))
7887 return fold_convert (type, tem);
7890 else
7892 /* Maybe fold x * 0 to 0. The expressions aren't the same
7893 when x is NaN, since x * 0 is also NaN. Nor are they the
7894 same in modes with signed zeros, since multiplying a
7895 negative value by 0 gives -0, not +0. */
7896 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
7897 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
7898 && real_zerop (arg1))
7899 return omit_one_operand (type, arg1, arg0);
7900 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
7901 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7902 && real_onep (arg1))
7903 return non_lvalue (fold_convert (type, arg0));
7905 /* Transform x * -1.0 into -x. */
7906 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7907 && real_minus_onep (arg1))
7908 return fold_convert (type, negate_expr (arg0));
7910 /* Convert (C1/X)*C2 into (C1*C2)/X. */
7911 if (flag_unsafe_math_optimizations
7912 && TREE_CODE (arg0) == RDIV_EXPR
7913 && TREE_CODE (arg1) == REAL_CST
7914 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
7916 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
7917 arg1, 0);
7918 if (tem)
7919 return fold_build2 (RDIV_EXPR, type, tem,
7920 TREE_OPERAND (arg0, 1));
7923 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
7924 if (operand_equal_p (arg0, arg1, 0))
7926 tree tem = fold_strip_sign_ops (arg0);
7927 if (tem != NULL_TREE)
7929 tem = fold_convert (type, tem);
7930 return fold_build2 (MULT_EXPR, type, tem, tem);
7934 if (flag_unsafe_math_optimizations)
7936 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
7937 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
7939 /* Optimizations of root(...)*root(...). */
7940 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
7942 tree rootfn, arg, arglist;
7943 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
7944 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
7946 /* Optimize sqrt(x)*sqrt(x) as x. */
7947 if (BUILTIN_SQRT_P (fcode0)
7948 && operand_equal_p (arg00, arg10, 0)
7949 && ! HONOR_SNANS (TYPE_MODE (type)))
7950 return arg00;
7952 /* Optimize root(x)*root(y) as root(x*y). */
7953 rootfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7954 arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
7955 arglist = build_tree_list (NULL_TREE, arg);
7956 return build_function_call_expr (rootfn, arglist);
7959 /* Optimize expN(x)*expN(y) as expN(x+y). */
7960 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
7962 tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7963 tree arg = fold_build2 (PLUS_EXPR, type,
7964 TREE_VALUE (TREE_OPERAND (arg0, 1)),
7965 TREE_VALUE (TREE_OPERAND (arg1, 1)));
7966 tree arglist = build_tree_list (NULL_TREE, arg);
7967 return build_function_call_expr (expfn, arglist);
7970 /* Optimizations of pow(...)*pow(...). */
7971 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
7972 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
7973 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
7975 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
7976 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
7977 1)));
7978 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
7979 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
7980 1)));
7982 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
7983 if (operand_equal_p (arg01, arg11, 0))
7985 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7986 tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
7987 tree arglist = tree_cons (NULL_TREE, arg,
7988 build_tree_list (NULL_TREE,
7989 arg01));
7990 return build_function_call_expr (powfn, arglist);
7993 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
7994 if (operand_equal_p (arg00, arg10, 0))
7996 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7997 tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
7998 tree arglist = tree_cons (NULL_TREE, arg00,
7999 build_tree_list (NULL_TREE,
8000 arg));
8001 return build_function_call_expr (powfn, arglist);
8005 /* Optimize tan(x)*cos(x) as sin(x). */
8006 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
8007 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
8008 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
8009 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
8010 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
8011 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
8012 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
8013 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
8015 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
8017 if (sinfn != NULL_TREE)
8018 return build_function_call_expr (sinfn,
8019 TREE_OPERAND (arg0, 1));
8022 /* Optimize x*pow(x,c) as pow(x,c+1). */
8023 if (fcode1 == BUILT_IN_POW
8024 || fcode1 == BUILT_IN_POWF
8025 || fcode1 == BUILT_IN_POWL)
8027 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
8028 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
8029 1)));
8030 if (TREE_CODE (arg11) == REAL_CST
8031 && ! TREE_CONSTANT_OVERFLOW (arg11)
8032 && operand_equal_p (arg0, arg10, 0))
8034 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
8035 REAL_VALUE_TYPE c;
8036 tree arg, arglist;
8038 c = TREE_REAL_CST (arg11);
8039 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
8040 arg = build_real (type, c);
8041 arglist = build_tree_list (NULL_TREE, arg);
8042 arglist = tree_cons (NULL_TREE, arg0, arglist);
8043 return build_function_call_expr (powfn, arglist);
8047 /* Optimize pow(x,c)*x as pow(x,c+1). */
8048 if (fcode0 == BUILT_IN_POW
8049 || fcode0 == BUILT_IN_POWF
8050 || fcode0 == BUILT_IN_POWL)
8052 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
8053 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
8054 1)));
8055 if (TREE_CODE (arg01) == REAL_CST
8056 && ! TREE_CONSTANT_OVERFLOW (arg01)
8057 && operand_equal_p (arg1, arg00, 0))
8059 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
8060 REAL_VALUE_TYPE c;
8061 tree arg, arglist;
8063 c = TREE_REAL_CST (arg01);
8064 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
8065 arg = build_real (type, c);
8066 arglist = build_tree_list (NULL_TREE, arg);
8067 arglist = tree_cons (NULL_TREE, arg1, arglist);
8068 return build_function_call_expr (powfn, arglist);
8072 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
8073 if (! optimize_size
8074 && operand_equal_p (arg0, arg1, 0))
8076 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
8078 if (powfn)
8080 tree arg = build_real (type, dconst2);
8081 tree arglist = build_tree_list (NULL_TREE, arg);
8082 arglist = tree_cons (NULL_TREE, arg0, arglist);
8083 return build_function_call_expr (powfn, arglist);
8088 goto associate;
8090 case BIT_IOR_EXPR:
8091 bit_ior:
8092 if (integer_all_onesp (arg1))
8093 return omit_one_operand (type, arg1, arg0);
8094 if (integer_zerop (arg1))
8095 return non_lvalue (fold_convert (type, arg0));
8096 if (operand_equal_p (arg0, arg1, 0))
8097 return non_lvalue (fold_convert (type, arg0));
8099 /* ~X | X is -1. */
8100 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8101 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8103 t1 = build_int_cst (type, -1);
8104 t1 = force_fit_type (t1, 0, false, false);
8105 return omit_one_operand (type, t1, arg1);
8108 /* X | ~X is -1. */
8109 if (TREE_CODE (arg1) == BIT_NOT_EXPR
8110 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8112 t1 = build_int_cst (type, -1);
8113 t1 = force_fit_type (t1, 0, false, false);
8114 return omit_one_operand (type, t1, arg0);
8117 t1 = distribute_bit_expr (code, type, arg0, arg1);
8118 if (t1 != NULL_TREE)
8119 return t1;
8121 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
8123 This results in more efficient code for machines without a NAND
8124 instruction. Combine will canonicalize to the first form
8125 which will allow use of NAND instructions provided by the
8126 backend if they exist. */
8127 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8128 && TREE_CODE (arg1) == BIT_NOT_EXPR)
8130 return fold_build1 (BIT_NOT_EXPR, type,
8131 build2 (BIT_AND_EXPR, type,
8132 TREE_OPERAND (arg0, 0),
8133 TREE_OPERAND (arg1, 0)));
8136 /* See if this can be simplified into a rotate first. If that
8137 is unsuccessful continue in the association code. */
8138 goto bit_rotate;
8140 case BIT_XOR_EXPR:
8141 if (integer_zerop (arg1))
8142 return non_lvalue (fold_convert (type, arg0));
8143 if (integer_all_onesp (arg1))
8144 return fold_build1 (BIT_NOT_EXPR, type, arg0);
8145 if (operand_equal_p (arg0, arg1, 0))
8146 return omit_one_operand (type, integer_zero_node, arg0);
8148 /* ~X ^ X is -1. */
8149 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8150 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8152 t1 = build_int_cst (type, -1);
8153 t1 = force_fit_type (t1, 0, false, false);
8154 return omit_one_operand (type, t1, arg1);
8157 /* X ^ ~X is -1. */
8158 if (TREE_CODE (arg1) == BIT_NOT_EXPR
8159 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8161 t1 = build_int_cst (type, -1);
8162 t1 = force_fit_type (t1, 0, false, false);
8163 return omit_one_operand (type, t1, arg0);
8166 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
8167 with a constant, and the two constants have no bits in common,
8168 we should treat this as a BIT_IOR_EXPR since this may produce more
8169 simplifications. */
8170 if (TREE_CODE (arg0) == BIT_AND_EXPR
8171 && TREE_CODE (arg1) == BIT_AND_EXPR
8172 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8173 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8174 && integer_zerop (const_binop (BIT_AND_EXPR,
8175 TREE_OPERAND (arg0, 1),
8176 TREE_OPERAND (arg1, 1), 0)))
8178 code = BIT_IOR_EXPR;
8179 goto bit_ior;
8182 /* (X | Y) ^ X -> Y & ~ X*/
8183 if (TREE_CODE (arg0) == BIT_IOR_EXPR
8184 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8186 tree t2 = TREE_OPERAND (arg0, 1);
8187 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
8188 arg1);
8189 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
8190 fold_convert (type, t1));
8191 return t1;
8194 /* (Y | X) ^ X -> Y & ~ X*/
8195 if (TREE_CODE (arg0) == BIT_IOR_EXPR
8196 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
8198 tree t2 = TREE_OPERAND (arg0, 0);
8199 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
8200 arg1);
8201 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
8202 fold_convert (type, t1));
8203 return t1;
8206 /* X ^ (X | Y) -> Y & ~ X*/
8207 if (TREE_CODE (arg1) == BIT_IOR_EXPR
8208 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
8210 tree t2 = TREE_OPERAND (arg1, 1);
8211 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
8212 arg0);
8213 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
8214 fold_convert (type, t1));
8215 return t1;
8218 /* X ^ (Y | X) -> Y & ~ X*/
8219 if (TREE_CODE (arg1) == BIT_IOR_EXPR
8220 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
8222 tree t2 = TREE_OPERAND (arg1, 0);
8223 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
8224 arg0);
8225 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
8226 fold_convert (type, t1));
8227 return t1;
8230 /* Convert ~X ^ ~Y to X ^ Y. */
8231 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8232 && TREE_CODE (arg1) == BIT_NOT_EXPR)
8233 return fold_build2 (code, type,
8234 fold_convert (type, TREE_OPERAND (arg0, 0)),
8235 fold_convert (type, TREE_OPERAND (arg1, 0)));
8237 /* See if this can be simplified into a rotate first. If that
8238 is unsuccessful continue in the association code. */
8239 goto bit_rotate;
8241 case BIT_AND_EXPR:
8242 if (integer_all_onesp (arg1))
8243 return non_lvalue (fold_convert (type, arg0));
8244 if (integer_zerop (arg1))
8245 return omit_one_operand (type, arg1, arg0);
8246 if (operand_equal_p (arg0, arg1, 0))
8247 return non_lvalue (fold_convert (type, arg0));
8249 /* ~X & X is always zero. */
8250 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8251 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8252 return omit_one_operand (type, integer_zero_node, arg1);
8254 /* X & ~X is always zero. */
8255 if (TREE_CODE (arg1) == BIT_NOT_EXPR
8256 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8257 return omit_one_operand (type, integer_zero_node, arg0);
8259 t1 = distribute_bit_expr (code, type, arg0, arg1);
8260 if (t1 != NULL_TREE)
8261 return t1;
8262 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
8263 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
8264 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
8266 unsigned int prec
8267 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
8269 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
8270 && (~TREE_INT_CST_LOW (arg1)
8271 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
8272 return fold_convert (type, TREE_OPERAND (arg0, 0));
8275 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
8277 This results in more efficient code for machines without a NOR
8278 instruction. Combine will canonicalize to the first form
8279 which will allow use of NOR instructions provided by the
8280 backend if they exist. */
8281 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8282 && TREE_CODE (arg1) == BIT_NOT_EXPR)
8284 return fold_build1 (BIT_NOT_EXPR, type,
8285 build2 (BIT_IOR_EXPR, type,
8286 TREE_OPERAND (arg0, 0),
8287 TREE_OPERAND (arg1, 0)));
8290 goto associate;
8292 case RDIV_EXPR:
8293 /* Don't touch a floating-point divide by zero unless the mode
8294 of the constant can represent infinity. */
8295 if (TREE_CODE (arg1) == REAL_CST
8296 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
8297 && real_zerop (arg1))
8298 return NULL_TREE;
8300 /* Optimize A / A to 1.0 if we don't care about
8301 NaNs or Infinities. */
8302 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
8303 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
8304 && operand_equal_p (arg0, arg1, 0))
8306 tree r = build_real (TREE_TYPE (arg0), dconst1);
8308 return omit_two_operands (type, r, arg0, arg1);
8311 /* (-A) / (-B) -> A / B */
8312 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
8313 return fold_build2 (RDIV_EXPR, type,
8314 TREE_OPERAND (arg0, 0),
8315 negate_expr (arg1));
8316 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
8317 return fold_build2 (RDIV_EXPR, type,
8318 negate_expr (arg0),
8319 TREE_OPERAND (arg1, 0));
8321 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
8322 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
8323 && real_onep (arg1))
8324 return non_lvalue (fold_convert (type, arg0));
8326 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
8327 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
8328 && real_minus_onep (arg1))
8329 return non_lvalue (fold_convert (type, negate_expr (arg0)));
8331 /* If ARG1 is a constant, we can convert this to a multiply by the
8332 reciprocal. This does not have the same rounding properties,
8333 so only do this if -funsafe-math-optimizations. We can actually
8334 always safely do it if ARG1 is a power of two, but it's hard to
8335 tell if it is or not in a portable manner. */
8336 if (TREE_CODE (arg1) == REAL_CST)
8338 if (flag_unsafe_math_optimizations
8339 && 0 != (tem = const_binop (code, build_real (type, dconst1),
8340 arg1, 0)))
8341 return fold_build2 (MULT_EXPR, type, arg0, tem);
8342 /* Find the reciprocal if optimizing and the result is exact. */
8343 if (optimize)
8345 REAL_VALUE_TYPE r;
8346 r = TREE_REAL_CST (arg1);
8347 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
8349 tem = build_real (type, r);
8350 return fold_build2 (MULT_EXPR, type,
8351 fold_convert (type, arg0), tem);
8355 /* Convert A/B/C to A/(B*C). */
8356 if (flag_unsafe_math_optimizations
8357 && TREE_CODE (arg0) == RDIV_EXPR)
8358 return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
8359 fold_build2 (MULT_EXPR, type,
8360 TREE_OPERAND (arg0, 1), arg1));
8362 /* Convert A/(B/C) to (A/B)*C. */
8363 if (flag_unsafe_math_optimizations
8364 && TREE_CODE (arg1) == RDIV_EXPR)
8365 return fold_build2 (MULT_EXPR, type,
8366 fold_build2 (RDIV_EXPR, type, arg0,
8367 TREE_OPERAND (arg1, 0)),
8368 TREE_OPERAND (arg1, 1));
8370 /* Convert C1/(X*C2) into (C1/C2)/X. */
8371 if (flag_unsafe_math_optimizations
8372 && TREE_CODE (arg1) == MULT_EXPR
8373 && TREE_CODE (arg0) == REAL_CST
8374 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
8376 tree tem = const_binop (RDIV_EXPR, arg0,
8377 TREE_OPERAND (arg1, 1), 0);
8378 if (tem)
8379 return fold_build2 (RDIV_EXPR, type, tem,
8380 TREE_OPERAND (arg1, 0));
8383 if (flag_unsafe_math_optimizations)
8385 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
8386 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
8388 /* Optimize sin(x)/cos(x) as tan(x). */
8389 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
8390 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
8391 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
8392 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
8393 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
8395 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
8397 if (tanfn != NULL_TREE)
8398 return build_function_call_expr (tanfn,
8399 TREE_OPERAND (arg0, 1));
8402 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
8403 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
8404 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
8405 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
8406 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
8407 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
8409 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
8411 if (tanfn != NULL_TREE)
8413 tree tmp = TREE_OPERAND (arg0, 1);
8414 tmp = build_function_call_expr (tanfn, tmp);
8415 return fold_build2 (RDIV_EXPR, type,
8416 build_real (type, dconst1), tmp);
8420 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
8421 NaNs or Infinities. */
8422 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
8423 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
8424 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
8426 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
8427 tree arg01 = TREE_VALUE (TREE_OPERAND (arg1, 1));
8429 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
8430 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
8431 && operand_equal_p (arg00, arg01, 0))
8433 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
8435 if (cosfn != NULL_TREE)
8436 return build_function_call_expr (cosfn,
8437 TREE_OPERAND (arg0, 1));
8441 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
8442 NaNs or Infinities. */
8443 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
8444 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
8445 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
8447 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
8448 tree arg01 = TREE_VALUE (TREE_OPERAND (arg1, 1));
8450 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
8451 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
8452 && operand_equal_p (arg00, arg01, 0))
8454 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
8456 if (cosfn != NULL_TREE)
8458 tree tmp = TREE_OPERAND (arg0, 1);
8459 tmp = build_function_call_expr (cosfn, tmp);
8460 return fold_build2 (RDIV_EXPR, type,
8461 build_real (type, dconst1),
8462 tmp);
8467 /* Optimize pow(x,c)/x as pow(x,c-1). */
8468 if (fcode0 == BUILT_IN_POW
8469 || fcode0 == BUILT_IN_POWF
8470 || fcode0 == BUILT_IN_POWL)
8472 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
8473 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
8474 if (TREE_CODE (arg01) == REAL_CST
8475 && ! TREE_CONSTANT_OVERFLOW (arg01)
8476 && operand_equal_p (arg1, arg00, 0))
8478 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
8479 REAL_VALUE_TYPE c;
8480 tree arg, arglist;
8482 c = TREE_REAL_CST (arg01);
8483 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
8484 arg = build_real (type, c);
8485 arglist = build_tree_list (NULL_TREE, arg);
8486 arglist = tree_cons (NULL_TREE, arg1, arglist);
8487 return build_function_call_expr (powfn, arglist);
8491 /* Optimize x/expN(y) into x*expN(-y). */
8492 if (BUILTIN_EXPONENT_P (fcode1))
8494 tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
8495 tree arg = negate_expr (TREE_VALUE (TREE_OPERAND (arg1, 1)));
8496 tree arglist = build_tree_list (NULL_TREE,
8497 fold_convert (type, arg));
8498 arg1 = build_function_call_expr (expfn, arglist);
8499 return fold_build2 (MULT_EXPR, type, arg0, arg1);
8502 /* Optimize x/pow(y,z) into x*pow(y,-z). */
8503 if (fcode1 == BUILT_IN_POW
8504 || fcode1 == BUILT_IN_POWF
8505 || fcode1 == BUILT_IN_POWL)
8507 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
8508 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
8509 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
8510 tree neg11 = fold_convert (type, negate_expr (arg11));
8511 tree arglist = tree_cons(NULL_TREE, arg10,
8512 build_tree_list (NULL_TREE, neg11));
8513 arg1 = build_function_call_expr (powfn, arglist);
8514 return fold_build2 (MULT_EXPR, type, arg0, arg1);
8517 return NULL_TREE;
8519 case TRUNC_DIV_EXPR:
8520 case ROUND_DIV_EXPR:
8521 case FLOOR_DIV_EXPR:
8522 case CEIL_DIV_EXPR:
8523 case EXACT_DIV_EXPR:
8524 if (integer_onep (arg1))
8525 return non_lvalue (fold_convert (type, arg0));
8526 if (integer_zerop (arg1))
8527 return NULL_TREE;
8528 /* X / -1 is -X. */
8529 if (!TYPE_UNSIGNED (type)
8530 && TREE_CODE (arg1) == INTEGER_CST
8531 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
8532 && TREE_INT_CST_HIGH (arg1) == -1)
8533 return fold_convert (type, negate_expr (arg0));
8535 /* Convert -A / -B to A / B when the type is signed and overflow is
8536 undefined. */
8537 if (!TYPE_UNSIGNED (type) && !flag_wrapv
8538 && TREE_CODE (arg0) == NEGATE_EXPR
8539 && negate_expr_p (arg1))
8540 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
8541 negate_expr (arg1));
8542 if (!TYPE_UNSIGNED (type) && !flag_wrapv
8543 && TREE_CODE (arg1) == NEGATE_EXPR
8544 && negate_expr_p (arg0))
8545 return fold_build2 (code, type, negate_expr (arg0),
8546 TREE_OPERAND (arg1, 0));
8548 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
8549 operation, EXACT_DIV_EXPR.
8551 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
8552 At one time others generated faster code, it's not clear if they do
8553 after the last round to changes to the DIV code in expmed.c. */
8554 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
8555 && multiple_of_p (type, arg0, arg1))
8556 return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
8558 if (TREE_CODE (arg1) == INTEGER_CST
8559 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE)))
8560 return fold_convert (type, tem);
8562 return NULL_TREE;
8564 case CEIL_MOD_EXPR:
8565 case FLOOR_MOD_EXPR:
8566 case ROUND_MOD_EXPR:
8567 case TRUNC_MOD_EXPR:
8568 /* X % 1 is always zero, but be sure to preserve any side
8569 effects in X. */
8570 if (integer_onep (arg1))
8571 return omit_one_operand (type, integer_zero_node, arg0);
8573 /* X % 0, return X % 0 unchanged so that we can get the
8574 proper warnings and errors. */
8575 if (integer_zerop (arg1))
8576 return NULL_TREE;
8578 /* 0 % X is always zero, but be sure to preserve any side
8579 effects in X. Place this after checking for X == 0. */
8580 if (integer_zerop (arg0))
8581 return omit_one_operand (type, integer_zero_node, arg1);
8583 /* X % -1 is zero. */
8584 if (!TYPE_UNSIGNED (type)
8585 && TREE_CODE (arg1) == INTEGER_CST
8586 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
8587 && TREE_INT_CST_HIGH (arg1) == -1)
8588 return omit_one_operand (type, integer_zero_node, arg0);
8590 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
8591 i.e. "X % C" into "X & C2", if X and C are positive. */
8592 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
8593 && (TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (arg0))
8594 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) >= 0)
8596 unsigned HOST_WIDE_INT high, low;
8597 tree mask;
8598 int l;
8600 l = tree_log2 (arg1);
8601 if (l >= HOST_BITS_PER_WIDE_INT)
8603 high = ((unsigned HOST_WIDE_INT) 1
8604 << (l - HOST_BITS_PER_WIDE_INT)) - 1;
8605 low = -1;
8607 else
8609 high = 0;
8610 low = ((unsigned HOST_WIDE_INT) 1 << l) - 1;
8613 mask = build_int_cst_wide (type, low, high);
8614 return fold_build2 (BIT_AND_EXPR, type,
8615 fold_convert (type, arg0), mask);
8618 /* X % -C is the same as X % C. */
8619 if (code == TRUNC_MOD_EXPR
8620 && !TYPE_UNSIGNED (type)
8621 && TREE_CODE (arg1) == INTEGER_CST
8622 && !TREE_CONSTANT_OVERFLOW (arg1)
8623 && TREE_INT_CST_HIGH (arg1) < 0
8624 && !flag_trapv
8625 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
8626 && !sign_bit_p (arg1, arg1))
8627 return fold_build2 (code, type, fold_convert (type, arg0),
8628 fold_convert (type, negate_expr (arg1)));
8630 /* X % -Y is the same as X % Y. */
8631 if (code == TRUNC_MOD_EXPR
8632 && !TYPE_UNSIGNED (type)
8633 && TREE_CODE (arg1) == NEGATE_EXPR
8634 && !flag_trapv)
8635 return fold_build2 (code, type, fold_convert (type, arg0),
8636 fold_convert (type, TREE_OPERAND (arg1, 0)));
8638 if (TREE_CODE (arg1) == INTEGER_CST
8639 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE)))
8640 return fold_convert (type, tem);
8642 return NULL_TREE;
8644 case LROTATE_EXPR:
8645 case RROTATE_EXPR:
8646 if (integer_all_onesp (arg0))
8647 return omit_one_operand (type, arg0, arg1);
8648 goto shift;
8650 case RSHIFT_EXPR:
8651 /* Optimize -1 >> x for arithmetic right shifts. */
8652 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
8653 return omit_one_operand (type, arg0, arg1);
8654 /* ... fall through ... */
8656 case LSHIFT_EXPR:
8657 shift:
8658 if (integer_zerop (arg1))
8659 return non_lvalue (fold_convert (type, arg0));
8660 if (integer_zerop (arg0))
8661 return omit_one_operand (type, arg0, arg1);
8663 /* Since negative shift count is not well-defined,
8664 don't try to compute it in the compiler. */
8665 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
8666 return NULL_TREE;
8668 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
8669 if (TREE_CODE (arg0) == code && host_integerp (arg1, false)
8670 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
8671 && host_integerp (TREE_OPERAND (arg0, 1), false)
8672 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
8674 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
8675 + TREE_INT_CST_LOW (arg1));
8677 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
8678 being well defined. */
8679 if (low >= TYPE_PRECISION (type))
8681 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
8682 low = low % TYPE_PRECISION (type);
8683 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
8684 return build_int_cst (type, 0);
8685 else
8686 low = TYPE_PRECISION (type) - 1;
8689 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
8690 build_int_cst (type, low));
8693 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
8694 into x & ((unsigned)-1 >> c) for unsigned types. */
8695 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
8696 || (TYPE_UNSIGNED (type)
8697 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
8698 && host_integerp (arg1, false)
8699 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
8700 && host_integerp (TREE_OPERAND (arg0, 1), false)
8701 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
8703 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
8704 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
8705 tree lshift;
8706 tree arg00;
8708 if (low0 == low1)
8710 arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
8712 lshift = build_int_cst (type, -1);
8713 lshift = int_const_binop (code, lshift, arg1, 0);
8715 return fold_build2 (BIT_AND_EXPR, type, arg00, lshift);
8719 /* Rewrite an LROTATE_EXPR by a constant into an
8720 RROTATE_EXPR by a new constant. */
8721 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
8723 tree tem = build_int_cst (NULL_TREE,
8724 GET_MODE_BITSIZE (TYPE_MODE (type)));
8725 tem = fold_convert (TREE_TYPE (arg1), tem);
8726 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
8727 return fold_build2 (RROTATE_EXPR, type, arg0, tem);
8730 /* If we have a rotate of a bit operation with the rotate count and
8731 the second operand of the bit operation both constant,
8732 permute the two operations. */
8733 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
8734 && (TREE_CODE (arg0) == BIT_AND_EXPR
8735 || TREE_CODE (arg0) == BIT_IOR_EXPR
8736 || TREE_CODE (arg0) == BIT_XOR_EXPR)
8737 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8738 return fold_build2 (TREE_CODE (arg0), type,
8739 fold_build2 (code, type,
8740 TREE_OPERAND (arg0, 0), arg1),
8741 fold_build2 (code, type,
8742 TREE_OPERAND (arg0, 1), arg1));
8744 /* Two consecutive rotates adding up to the width of the mode can
8745 be ignored. */
8746 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
8747 && TREE_CODE (arg0) == RROTATE_EXPR
8748 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8749 && TREE_INT_CST_HIGH (arg1) == 0
8750 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
8751 && ((TREE_INT_CST_LOW (arg1)
8752 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
8753 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
8754 return TREE_OPERAND (arg0, 0);
8756 return NULL_TREE;
8758 case MIN_EXPR:
8759 if (operand_equal_p (arg0, arg1, 0))
8760 return omit_one_operand (type, arg0, arg1);
8761 if (INTEGRAL_TYPE_P (type)
8762 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
8763 return omit_one_operand (type, arg1, arg0);
8764 tem = fold_minmax (MIN_EXPR, type, arg0, arg1);
8765 if (tem)
8766 return tem;
8767 goto associate;
8769 case MAX_EXPR:
8770 if (operand_equal_p (arg0, arg1, 0))
8771 return omit_one_operand (type, arg0, arg1);
8772 if (INTEGRAL_TYPE_P (type)
8773 && TYPE_MAX_VALUE (type)
8774 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
8775 return omit_one_operand (type, arg1, arg0);
8776 tem = fold_minmax (MAX_EXPR, type, arg0, arg1);
8777 if (tem)
8778 return tem;
8779 goto associate;
8781 case TRUTH_ANDIF_EXPR:
8782 /* Note that the operands of this must be ints
8783 and their values must be 0 or 1.
8784 ("true" is a fixed value perhaps depending on the language.) */
8785 /* If first arg is constant zero, return it. */
8786 if (integer_zerop (arg0))
8787 return fold_convert (type, arg0);
8788 case TRUTH_AND_EXPR:
8789 /* If either arg is constant true, drop it. */
8790 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
8791 return non_lvalue (fold_convert (type, arg1));
8792 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
8793 /* Preserve sequence points. */
8794 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
8795 return non_lvalue (fold_convert (type, arg0));
8796 /* If second arg is constant zero, result is zero, but first arg
8797 must be evaluated. */
8798 if (integer_zerop (arg1))
8799 return omit_one_operand (type, arg1, arg0);
8800 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
8801 case will be handled here. */
8802 if (integer_zerop (arg0))
8803 return omit_one_operand (type, arg0, arg1);
8805 /* !X && X is always false. */
8806 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
8807 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8808 return omit_one_operand (type, integer_zero_node, arg1);
8809 /* X && !X is always false. */
8810 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
8811 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8812 return omit_one_operand (type, integer_zero_node, arg0);
8814 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
8815 means A >= Y && A != MAX, but in this case we know that
8816 A < X <= MAX. */
8818 if (!TREE_SIDE_EFFECTS (arg0)
8819 && !TREE_SIDE_EFFECTS (arg1))
8821 tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
8822 if (tem && !operand_equal_p (tem, arg0, 0))
8823 return fold_build2 (code, type, tem, arg1);
8825 tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
8826 if (tem && !operand_equal_p (tem, arg1, 0))
8827 return fold_build2 (code, type, arg0, tem);
8830 truth_andor:
8831 /* We only do these simplifications if we are optimizing. */
8832 if (!optimize)
8833 return NULL_TREE;
8835 /* Check for things like (A || B) && (A || C). We can convert this
8836 to A || (B && C). Note that either operator can be any of the four
8837 truth and/or operations and the transformation will still be
8838 valid. Also note that we only care about order for the
8839 ANDIF and ORIF operators. If B contains side effects, this
8840 might change the truth-value of A. */
8841 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8842 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8843 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8844 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8845 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8846 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8848 tree a00 = TREE_OPERAND (arg0, 0);
8849 tree a01 = TREE_OPERAND (arg0, 1);
8850 tree a10 = TREE_OPERAND (arg1, 0);
8851 tree a11 = TREE_OPERAND (arg1, 1);
8852 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8853 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8854 && (code == TRUTH_AND_EXPR
8855 || code == TRUTH_OR_EXPR));
8857 if (operand_equal_p (a00, a10, 0))
8858 return fold_build2 (TREE_CODE (arg0), type, a00,
8859 fold_build2 (code, type, a01, a11));
8860 else if (commutative && operand_equal_p (a00, a11, 0))
8861 return fold_build2 (TREE_CODE (arg0), type, a00,
8862 fold_build2 (code, type, a01, a10));
8863 else if (commutative && operand_equal_p (a01, a10, 0))
8864 return fold_build2 (TREE_CODE (arg0), type, a01,
8865 fold_build2 (code, type, a00, a11));
8867 /* This case if tricky because we must either have commutative
8868 operators or else A10 must not have side-effects. */
8870 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8871 && operand_equal_p (a01, a11, 0))
8872 return fold_build2 (TREE_CODE (arg0), type,
8873 fold_build2 (code, type, a00, a10),
8874 a01);
8877 /* See if we can build a range comparison. */
8878 if (0 != (tem = fold_range_test (code, type, op0, op1)))
8879 return tem;
8881 /* Check for the possibility of merging component references. If our
8882 lhs is another similar operation, try to merge its rhs with our
8883 rhs. Then try to merge our lhs and rhs. */
8884 if (TREE_CODE (arg0) == code
8885 && 0 != (tem = fold_truthop (code, type,
8886 TREE_OPERAND (arg0, 1), arg1)))
8887 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
8889 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
8890 return tem;
8892 return NULL_TREE;
8894 case TRUTH_ORIF_EXPR:
8895 /* Note that the operands of this must be ints
8896 and their values must be 0 or true.
8897 ("true" is a fixed value perhaps depending on the language.) */
8898 /* If first arg is constant true, return it. */
8899 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
8900 return fold_convert (type, arg0);
8901 case TRUTH_OR_EXPR:
8902 /* If either arg is constant zero, drop it. */
8903 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
8904 return non_lvalue (fold_convert (type, arg1));
8905 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
8906 /* Preserve sequence points. */
8907 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
8908 return non_lvalue (fold_convert (type, arg0));
8909 /* If second arg is constant true, result is true, but we must
8910 evaluate first arg. */
8911 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
8912 return omit_one_operand (type, arg1, arg0);
8913 /* Likewise for first arg, but note this only occurs here for
8914 TRUTH_OR_EXPR. */
8915 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
8916 return omit_one_operand (type, arg0, arg1);
8918 /* !X || X is always true. */
8919 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
8920 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8921 return omit_one_operand (type, integer_one_node, arg1);
8922 /* X || !X is always true. */
8923 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
8924 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8925 return omit_one_operand (type, integer_one_node, arg0);
8927 goto truth_andor;
8929 case TRUTH_XOR_EXPR:
8930 /* If the second arg is constant zero, drop it. */
8931 if (integer_zerop (arg1))
8932 return non_lvalue (fold_convert (type, arg0));
8933 /* If the second arg is constant true, this is a logical inversion. */
8934 if (integer_onep (arg1))
8936 /* Only call invert_truthvalue if operand is a truth value. */
8937 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
8938 tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
8939 else
8940 tem = invert_truthvalue (arg0);
8941 return non_lvalue (fold_convert (type, tem));
8943 /* Identical arguments cancel to zero. */
8944 if (operand_equal_p (arg0, arg1, 0))
8945 return omit_one_operand (type, integer_zero_node, arg0);
8947 /* !X ^ X is always true. */
8948 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
8949 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8950 return omit_one_operand (type, integer_one_node, arg1);
8952 /* X ^ !X is always true. */
8953 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
8954 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8955 return omit_one_operand (type, integer_one_node, arg0);
8957 return NULL_TREE;
8959 case EQ_EXPR:
8960 case NE_EXPR:
8961 case LT_EXPR:
8962 case GT_EXPR:
8963 case LE_EXPR:
8964 case GE_EXPR:
8965 /* If one arg is a real or integer constant, put it last. */
8966 if (tree_swap_operands_p (arg0, arg1, true))
8967 return fold_build2 (swap_tree_comparison (code), type, op1, op0);
8969 /* ~a != C becomes a != ~C where C is a constant. Likewise for ==. */
8970 if (TREE_CODE (arg0) == BIT_NOT_EXPR && TREE_CODE (arg1) == INTEGER_CST
8971 && (code == NE_EXPR || code == EQ_EXPR))
8972 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
8973 fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
8974 arg1));
8976 /* bool_var != 0 becomes bool_var. */
8977 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
8978 && code == NE_EXPR)
8979 return non_lvalue (fold_convert (type, arg0));
8981 /* bool_var == 1 becomes bool_var. */
8982 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
8983 && code == EQ_EXPR)
8984 return non_lvalue (fold_convert (type, arg0));
8986 /* bool_var != 1 becomes !bool_var. */
8987 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
8988 && code == NE_EXPR)
8989 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
8991 /* bool_var == 0 becomes !bool_var. */
8992 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
8993 && code == EQ_EXPR)
8994 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
8996 /* If this is an equality comparison of the address of a non-weak
8997 object against zero, then we know the result. */
8998 if ((code == EQ_EXPR || code == NE_EXPR)
8999 && TREE_CODE (arg0) == ADDR_EXPR
9000 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
9001 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
9002 && integer_zerop (arg1))
9003 return constant_boolean_node (code != EQ_EXPR, type);
9005 /* If this is an equality comparison of the address of two non-weak,
9006 unaliased symbols neither of which are extern (since we do not
9007 have access to attributes for externs), then we know the result. */
9008 if ((code == EQ_EXPR || code == NE_EXPR)
9009 && TREE_CODE (arg0) == ADDR_EXPR
9010 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
9011 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
9012 && ! lookup_attribute ("alias",
9013 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
9014 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
9015 && TREE_CODE (arg1) == ADDR_EXPR
9016 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
9017 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
9018 && ! lookup_attribute ("alias",
9019 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
9020 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
9022 /* We know that we're looking at the address of two
9023 non-weak, unaliased, static _DECL nodes.
9025 It is both wasteful and incorrect to call operand_equal_p
9026 to compare the two ADDR_EXPR nodes. It is wasteful in that
9027 all we need to do is test pointer equality for the arguments
9028 to the two ADDR_EXPR nodes. It is incorrect to use
9029 operand_equal_p as that function is NOT equivalent to a
9030 C equality test. It can in fact return false for two
9031 objects which would test as equal using the C equality
9032 operator. */
9033 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
9034 return constant_boolean_node (equal
9035 ? code == EQ_EXPR : code != EQ_EXPR,
9036 type);
9039 /* If this is a comparison of two exprs that look like an
9040 ARRAY_REF of the same object, then we can fold this to a
9041 comparison of the two offsets. */
9042 if (TREE_CODE_CLASS (code) == tcc_comparison)
9044 tree base0, offset0, base1, offset1;
9046 if (extract_array_ref (arg0, &base0, &offset0)
9047 && extract_array_ref (arg1, &base1, &offset1)
9048 && operand_equal_p (base0, base1, 0))
9050 /* Handle no offsets on both sides specially. */
9051 if (offset0 == NULL_TREE
9052 && offset1 == NULL_TREE)
9053 return fold_build2 (code, type, integer_zero_node,
9054 integer_zero_node);
9056 if (!offset0 || !offset1
9057 || TREE_TYPE (offset0) == TREE_TYPE (offset1))
9059 if (offset0 == NULL_TREE)
9060 offset0 = build_int_cst (TREE_TYPE (offset1), 0);
9061 if (offset1 == NULL_TREE)
9062 offset1 = build_int_cst (TREE_TYPE (offset0), 0);
9063 return fold_build2 (code, type, offset0, offset1);
9068 /* Transform comparisons of the form X +- C CMP X. */
9069 if ((code != EQ_EXPR && code != NE_EXPR)
9070 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9071 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
9072 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9073 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
9074 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9075 && !TYPE_UNSIGNED (TREE_TYPE (arg1))
9076 && !(flag_wrapv || flag_trapv))))
9078 tree arg01 = TREE_OPERAND (arg0, 1);
9079 enum tree_code code0 = TREE_CODE (arg0);
9080 int is_positive;
9082 if (TREE_CODE (arg01) == REAL_CST)
9083 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
9084 else
9085 is_positive = tree_int_cst_sgn (arg01);
9087 /* (X - c) > X becomes false. */
9088 if (code == GT_EXPR
9089 && ((code0 == MINUS_EXPR && is_positive >= 0)
9090 || (code0 == PLUS_EXPR && is_positive <= 0)))
9091 return constant_boolean_node (0, type);
9093 /* Likewise (X + c) < X becomes false. */
9094 if (code == LT_EXPR
9095 && ((code0 == PLUS_EXPR && is_positive >= 0)
9096 || (code0 == MINUS_EXPR && is_positive <= 0)))
9097 return constant_boolean_node (0, type);
9099 /* Convert (X - c) <= X to true. */
9100 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
9101 && code == LE_EXPR
9102 && ((code0 == MINUS_EXPR && is_positive >= 0)
9103 || (code0 == PLUS_EXPR && is_positive <= 0)))
9104 return constant_boolean_node (1, type);
9106 /* Convert (X + c) >= X to true. */
9107 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
9108 && code == GE_EXPR
9109 && ((code0 == PLUS_EXPR && is_positive >= 0)
9110 || (code0 == MINUS_EXPR && is_positive <= 0)))
9111 return constant_boolean_node (1, type);
9113 if (TREE_CODE (arg01) == INTEGER_CST)
9115 /* Convert X + c > X and X - c < X to true for integers. */
9116 if (code == GT_EXPR
9117 && ((code0 == PLUS_EXPR && is_positive > 0)
9118 || (code0 == MINUS_EXPR && is_positive < 0)))
9119 return constant_boolean_node (1, type);
9121 if (code == LT_EXPR
9122 && ((code0 == MINUS_EXPR && is_positive > 0)
9123 || (code0 == PLUS_EXPR && is_positive < 0)))
9124 return constant_boolean_node (1, type);
9126 /* Convert X + c <= X and X - c >= X to false for integers. */
9127 if (code == LE_EXPR
9128 && ((code0 == PLUS_EXPR && is_positive > 0)
9129 || (code0 == MINUS_EXPR && is_positive < 0)))
9130 return constant_boolean_node (0, type);
9132 if (code == GE_EXPR
9133 && ((code0 == MINUS_EXPR && is_positive > 0)
9134 || (code0 == PLUS_EXPR && is_positive < 0)))
9135 return constant_boolean_node (0, type);
9139 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
9140 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9141 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9142 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9143 && !TYPE_UNSIGNED (TREE_TYPE (arg1))
9144 && !(flag_wrapv || flag_trapv))
9145 && (TREE_CODE (arg1) == INTEGER_CST
9146 && !TREE_OVERFLOW (arg1)))
9148 tree const1 = TREE_OPERAND (arg0, 1);
9149 tree const2 = arg1;
9150 tree variable = TREE_OPERAND (arg0, 0);
9151 tree lhs;
9152 int lhs_add;
9153 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
9155 lhs = fold_build2 (lhs_add ? PLUS_EXPR : MINUS_EXPR,
9156 TREE_TYPE (arg1), const2, const1);
9157 if (TREE_CODE (lhs) == TREE_CODE (arg1)
9158 && (TREE_CODE (lhs) != INTEGER_CST
9159 || !TREE_OVERFLOW (lhs)))
9160 return fold_build2 (code, type, variable, lhs);
9163 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
9165 tree targ0 = strip_float_extensions (arg0);
9166 tree targ1 = strip_float_extensions (arg1);
9167 tree newtype = TREE_TYPE (targ0);
9169 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9170 newtype = TREE_TYPE (targ1);
9172 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9173 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9174 return fold_build2 (code, type, fold_convert (newtype, targ0),
9175 fold_convert (newtype, targ1));
9177 /* (-a) CMP (-b) -> b CMP a */
9178 if (TREE_CODE (arg0) == NEGATE_EXPR
9179 && TREE_CODE (arg1) == NEGATE_EXPR)
9180 return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
9181 TREE_OPERAND (arg0, 0));
9183 if (TREE_CODE (arg1) == REAL_CST)
9185 REAL_VALUE_TYPE cst;
9186 cst = TREE_REAL_CST (arg1);
9188 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9189 if (TREE_CODE (arg0) == NEGATE_EXPR)
9190 return
9191 fold_build2 (swap_tree_comparison (code), type,
9192 TREE_OPERAND (arg0, 0),
9193 build_real (TREE_TYPE (arg1),
9194 REAL_VALUE_NEGATE (cst)));
9196 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9197 /* a CMP (-0) -> a CMP 0 */
9198 if (REAL_VALUE_MINUS_ZERO (cst))
9199 return fold_build2 (code, type, arg0,
9200 build_real (TREE_TYPE (arg1), dconst0));
9202 /* x != NaN is always true, other ops are always false. */
9203 if (REAL_VALUE_ISNAN (cst)
9204 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
9206 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
9207 return omit_one_operand (type, tem, arg0);
9210 /* Fold comparisons against infinity. */
9211 if (REAL_VALUE_ISINF (cst))
9213 tem = fold_inf_compare (code, type, arg0, arg1);
9214 if (tem != NULL_TREE)
9215 return tem;
9219 /* If this is a comparison of a real constant with a PLUS_EXPR
9220 or a MINUS_EXPR of a real constant, we can convert it into a
9221 comparison with a revised real constant as long as no overflow
9222 occurs when unsafe_math_optimizations are enabled. */
9223 if (flag_unsafe_math_optimizations
9224 && TREE_CODE (arg1) == REAL_CST
9225 && (TREE_CODE (arg0) == PLUS_EXPR
9226 || TREE_CODE (arg0) == MINUS_EXPR)
9227 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9228 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9229 ? MINUS_EXPR : PLUS_EXPR,
9230 arg1, TREE_OPERAND (arg0, 1), 0))
9231 && ! TREE_CONSTANT_OVERFLOW (tem))
9232 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
9234 /* Likewise, we can simplify a comparison of a real constant with
9235 a MINUS_EXPR whose first operand is also a real constant, i.e.
9236 (c1 - x) < c2 becomes x > c1-c2. */
9237 if (flag_unsafe_math_optimizations
9238 && TREE_CODE (arg1) == REAL_CST
9239 && TREE_CODE (arg0) == MINUS_EXPR
9240 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
9241 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
9242 arg1, 0))
9243 && ! TREE_CONSTANT_OVERFLOW (tem))
9244 return fold_build2 (swap_tree_comparison (code), type,
9245 TREE_OPERAND (arg0, 1), tem);
9247 /* Fold comparisons against built-in math functions. */
9248 if (TREE_CODE (arg1) == REAL_CST
9249 && flag_unsafe_math_optimizations
9250 && ! flag_errno_math)
9252 enum built_in_function fcode = builtin_mathfn_code (arg0);
9254 if (fcode != END_BUILTINS)
9256 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
9257 if (tem != NULL_TREE)
9258 return tem;
9263 /* Convert foo++ == CONST into ++foo == CONST + INCR. */
9264 if (TREE_CONSTANT (arg1)
9265 && (TREE_CODE (arg0) == POSTINCREMENT_EXPR
9266 || TREE_CODE (arg0) == POSTDECREMENT_EXPR)
9267 /* This optimization is invalid for ordered comparisons
9268 if CONST+INCR overflows or if foo+incr might overflow.
9269 This optimization is invalid for floating point due to rounding.
9270 For pointer types we assume overflow doesn't happen. */
9271 && (POINTER_TYPE_P (TREE_TYPE (arg0))
9272 || (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9273 && (code == EQ_EXPR || code == NE_EXPR))))
9275 tree varop, newconst;
9277 if (TREE_CODE (arg0) == POSTINCREMENT_EXPR)
9279 newconst = fold_build2 (PLUS_EXPR, TREE_TYPE (arg0),
9280 arg1, TREE_OPERAND (arg0, 1));
9281 varop = build2 (PREINCREMENT_EXPR, TREE_TYPE (arg0),
9282 TREE_OPERAND (arg0, 0),
9283 TREE_OPERAND (arg0, 1));
9285 else
9287 newconst = fold_build2 (MINUS_EXPR, TREE_TYPE (arg0),
9288 arg1, TREE_OPERAND (arg0, 1));
9289 varop = build2 (PREDECREMENT_EXPR, TREE_TYPE (arg0),
9290 TREE_OPERAND (arg0, 0),
9291 TREE_OPERAND (arg0, 1));
9295 /* If VAROP is a reference to a bitfield, we must mask
9296 the constant by the width of the field. */
9297 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
9298 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop, 0), 1))
9299 && host_integerp (DECL_SIZE (TREE_OPERAND
9300 (TREE_OPERAND (varop, 0), 1)), 1))
9302 tree fielddecl = TREE_OPERAND (TREE_OPERAND (varop, 0), 1);
9303 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (fielddecl), 1);
9304 tree folded_compare, shift;
9306 /* First check whether the comparison would come out
9307 always the same. If we don't do that we would
9308 change the meaning with the masking. */
9309 folded_compare = fold_build2 (code, type,
9310 TREE_OPERAND (varop, 0), arg1);
9311 if (integer_zerop (folded_compare)
9312 || integer_onep (folded_compare))
9313 return omit_one_operand (type, folded_compare, varop);
9315 shift = build_int_cst (NULL_TREE,
9316 TYPE_PRECISION (TREE_TYPE (varop)) - size);
9317 shift = fold_convert (TREE_TYPE (varop), shift);
9318 newconst = fold_build2 (LSHIFT_EXPR, TREE_TYPE (varop),
9319 newconst, shift);
9320 newconst = fold_build2 (RSHIFT_EXPR, TREE_TYPE (varop),
9321 newconst, shift);
9324 return fold_build2 (code, type, varop, newconst);
9327 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
9328 This transformation affects the cases which are handled in later
9329 optimizations involving comparisons with non-negative constants. */
9330 if (TREE_CODE (arg1) == INTEGER_CST
9331 && TREE_CODE (arg0) != INTEGER_CST
9332 && tree_int_cst_sgn (arg1) > 0)
9334 switch (code)
9336 case GE_EXPR:
9337 arg1 = const_binop (MINUS_EXPR, arg1,
9338 build_int_cst (TREE_TYPE (arg1), 1), 0);
9339 return fold_build2 (GT_EXPR, type, arg0,
9340 fold_convert (TREE_TYPE (arg0), arg1));
9342 case LT_EXPR:
9343 arg1 = const_binop (MINUS_EXPR, arg1,
9344 build_int_cst (TREE_TYPE (arg1), 1), 0);
9345 return fold_build2 (LE_EXPR, type, arg0,
9346 fold_convert (TREE_TYPE (arg0), arg1));
9348 default:
9349 break;
9353 /* Comparisons with the highest or lowest possible integer of
9354 the specified size will have known values. */
9356 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
9358 if (TREE_CODE (arg1) == INTEGER_CST
9359 && ! TREE_CONSTANT_OVERFLOW (arg1)
9360 && width <= 2 * HOST_BITS_PER_WIDE_INT
9361 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9362 || POINTER_TYPE_P (TREE_TYPE (arg1))))
9364 HOST_WIDE_INT signed_max_hi;
9365 unsigned HOST_WIDE_INT signed_max_lo;
9366 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
9368 if (width <= HOST_BITS_PER_WIDE_INT)
9370 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
9371 - 1;
9372 signed_max_hi = 0;
9373 max_hi = 0;
9375 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
9377 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
9378 min_lo = 0;
9379 min_hi = 0;
9381 else
9383 max_lo = signed_max_lo;
9384 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
9385 min_hi = -1;
9388 else
9390 width -= HOST_BITS_PER_WIDE_INT;
9391 signed_max_lo = -1;
9392 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
9393 - 1;
9394 max_lo = -1;
9395 min_lo = 0;
9397 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
9399 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
9400 min_hi = 0;
9402 else
9404 max_hi = signed_max_hi;
9405 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
9409 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
9410 && TREE_INT_CST_LOW (arg1) == max_lo)
9411 switch (code)
9413 case GT_EXPR:
9414 return omit_one_operand (type, integer_zero_node, arg0);
9416 case GE_EXPR:
9417 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9419 case LE_EXPR:
9420 return omit_one_operand (type, integer_one_node, arg0);
9422 case LT_EXPR:
9423 return fold_build2 (NE_EXPR, type, arg0, arg1);
9425 /* The GE_EXPR and LT_EXPR cases above are not normally
9426 reached because of previous transformations. */
9428 default:
9429 break;
9431 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
9432 == max_hi
9433 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
9434 switch (code)
9436 case GT_EXPR:
9437 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
9438 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9439 case LE_EXPR:
9440 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
9441 return fold_build2 (NE_EXPR, type, arg0, arg1);
9442 default:
9443 break;
9445 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
9446 == min_hi
9447 && TREE_INT_CST_LOW (arg1) == min_lo)
9448 switch (code)
9450 case LT_EXPR:
9451 return omit_one_operand (type, integer_zero_node, arg0);
9453 case LE_EXPR:
9454 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9456 case GE_EXPR:
9457 return omit_one_operand (type, integer_one_node, arg0);
9459 case GT_EXPR:
9460 return fold_build2 (NE_EXPR, type, op0, op1);
9462 default:
9463 break;
9465 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
9466 == min_hi
9467 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
9468 switch (code)
9470 case GE_EXPR:
9471 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
9472 return fold_build2 (NE_EXPR, type, arg0, arg1);
9473 case LT_EXPR:
9474 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
9475 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9476 default:
9477 break;
9480 else if (!in_gimple_form
9481 && TREE_INT_CST_HIGH (arg1) == signed_max_hi
9482 && TREE_INT_CST_LOW (arg1) == signed_max_lo
9483 && TYPE_UNSIGNED (TREE_TYPE (arg1))
9484 /* signed_type does not work on pointer types. */
9485 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
9487 /* The following case also applies to X < signed_max+1
9488 and X >= signed_max+1 because previous transformations. */
9489 if (code == LE_EXPR || code == GT_EXPR)
9491 tree st0, st1;
9492 st0 = lang_hooks.types.signed_type (TREE_TYPE (arg0));
9493 st1 = lang_hooks.types.signed_type (TREE_TYPE (arg1));
9494 return fold_build2 (code == LE_EXPR ? GE_EXPR: LT_EXPR,
9495 type, fold_convert (st0, arg0),
9496 build_int_cst (st1, 0));
9502 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
9503 a MINUS_EXPR of a constant, we can convert it into a comparison with
9504 a revised constant as long as no overflow occurs. */
9505 if ((code == EQ_EXPR || code == NE_EXPR)
9506 && TREE_CODE (arg1) == INTEGER_CST
9507 && (TREE_CODE (arg0) == PLUS_EXPR
9508 || TREE_CODE (arg0) == MINUS_EXPR)
9509 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9510 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9511 ? MINUS_EXPR : PLUS_EXPR,
9512 arg1, TREE_OPERAND (arg0, 1), 0))
9513 && ! TREE_CONSTANT_OVERFLOW (tem))
9514 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
9516 /* Similarly for a NEGATE_EXPR. */
9517 else if ((code == EQ_EXPR || code == NE_EXPR)
9518 && TREE_CODE (arg0) == NEGATE_EXPR
9519 && TREE_CODE (arg1) == INTEGER_CST
9520 && 0 != (tem = negate_expr (arg1))
9521 && TREE_CODE (tem) == INTEGER_CST
9522 && ! TREE_CONSTANT_OVERFLOW (tem))
9523 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
9525 /* If we have X - Y == 0, we can convert that to X == Y and similarly
9526 for !=. Don't do this for ordered comparisons due to overflow. */
9527 else if ((code == NE_EXPR || code == EQ_EXPR)
9528 && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
9529 return fold_build2 (code, type,
9530 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
9532 else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
9533 && (TREE_CODE (arg0) == NOP_EXPR
9534 || TREE_CODE (arg0) == CONVERT_EXPR))
9536 /* If we are widening one operand of an integer comparison,
9537 see if the other operand is similarly being widened. Perhaps we
9538 can do the comparison in the narrower type. */
9539 tem = fold_widened_comparison (code, type, arg0, arg1);
9540 if (tem)
9541 return tem;
9543 /* Or if we are changing signedness. */
9544 tem = fold_sign_changed_comparison (code, type, arg0, arg1);
9545 if (tem)
9546 return tem;
9549 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9550 constant, we can simplify it. */
9551 else if (TREE_CODE (arg1) == INTEGER_CST
9552 && (TREE_CODE (arg0) == MIN_EXPR
9553 || TREE_CODE (arg0) == MAX_EXPR)
9554 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9556 tem = optimize_minmax_comparison (code, type, op0, op1);
9557 if (tem)
9558 return tem;
9560 return NULL_TREE;
9563 /* If we are comparing an ABS_EXPR with a constant, we can
9564 convert all the cases into explicit comparisons, but they may
9565 well not be faster than doing the ABS and one comparison.
9566 But ABS (X) <= C is a range comparison, which becomes a subtraction
9567 and a comparison, and is probably faster. */
9568 else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
9569 && TREE_CODE (arg0) == ABS_EXPR
9570 && ! TREE_SIDE_EFFECTS (arg0)
9571 && (0 != (tem = negate_expr (arg1)))
9572 && TREE_CODE (tem) == INTEGER_CST
9573 && ! TREE_CONSTANT_OVERFLOW (tem))
9574 return fold_build2 (TRUTH_ANDIF_EXPR, type,
9575 build2 (GE_EXPR, type,
9576 TREE_OPERAND (arg0, 0), tem),
9577 build2 (LE_EXPR, type,
9578 TREE_OPERAND (arg0, 0), arg1));
9580 /* Convert ABS_EXPR<x> >= 0 to true. */
9581 else if (code == GE_EXPR
9582 && tree_expr_nonnegative_p (arg0)
9583 && (integer_zerop (arg1)
9584 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
9585 && real_zerop (arg1))))
9586 return omit_one_operand (type, integer_one_node, arg0);
9588 /* Convert ABS_EXPR<x> < 0 to false. */
9589 else if (code == LT_EXPR
9590 && tree_expr_nonnegative_p (arg0)
9591 && (integer_zerop (arg1) || real_zerop (arg1)))
9592 return omit_one_operand (type, integer_zero_node, arg0);
9594 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
9595 else if ((code == EQ_EXPR || code == NE_EXPR)
9596 && TREE_CODE (arg0) == ABS_EXPR
9597 && (integer_zerop (arg1) || real_zerop (arg1)))
9598 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
9600 /* If this is an EQ or NE comparison with zero and ARG0 is
9601 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
9602 two operations, but the latter can be done in one less insn
9603 on machines that have only two-operand insns or on which a
9604 constant cannot be the first operand. */
9605 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
9606 && TREE_CODE (arg0) == BIT_AND_EXPR)
9608 tree arg00 = TREE_OPERAND (arg0, 0);
9609 tree arg01 = TREE_OPERAND (arg0, 1);
9610 if (TREE_CODE (arg00) == LSHIFT_EXPR
9611 && integer_onep (TREE_OPERAND (arg00, 0)))
9612 return
9613 fold_build2 (code, type,
9614 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
9615 build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
9616 arg01, TREE_OPERAND (arg00, 1)),
9617 fold_convert (TREE_TYPE (arg0),
9618 integer_one_node)),
9619 arg1);
9620 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
9621 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
9622 return
9623 fold_build2 (code, type,
9624 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
9625 build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
9626 arg00, TREE_OPERAND (arg01, 1)),
9627 fold_convert (TREE_TYPE (arg0),
9628 integer_one_node)),
9629 arg1);
9632 /* If this is an NE or EQ comparison of zero against the result of a
9633 signed MOD operation whose second operand is a power of 2, make
9634 the MOD operation unsigned since it is simpler and equivalent. */
9635 if ((code == NE_EXPR || code == EQ_EXPR)
9636 && integer_zerop (arg1)
9637 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
9638 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
9639 || TREE_CODE (arg0) == CEIL_MOD_EXPR
9640 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
9641 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
9642 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9644 tree newtype = lang_hooks.types.unsigned_type (TREE_TYPE (arg0));
9645 tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
9646 fold_convert (newtype,
9647 TREE_OPERAND (arg0, 0)),
9648 fold_convert (newtype,
9649 TREE_OPERAND (arg0, 1)));
9651 return fold_build2 (code, type, newmod,
9652 fold_convert (newtype, arg1));
9655 /* If this is an NE comparison of zero with an AND of one, remove the
9656 comparison since the AND will give the correct value. */
9657 if (code == NE_EXPR && integer_zerop (arg1)
9658 && TREE_CODE (arg0) == BIT_AND_EXPR
9659 && integer_onep (TREE_OPERAND (arg0, 1)))
9660 return fold_convert (type, arg0);
9662 /* If we have (A & C) == C where C is a power of 2, convert this into
9663 (A & C) != 0. Similarly for NE_EXPR. */
9664 if ((code == EQ_EXPR || code == NE_EXPR)
9665 && TREE_CODE (arg0) == BIT_AND_EXPR
9666 && integer_pow2p (TREE_OPERAND (arg0, 1))
9667 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9668 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
9669 arg0, fold_convert (TREE_TYPE (arg0),
9670 integer_zero_node));
9672 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
9673 bit, then fold the expression into A < 0 or A >= 0. */
9674 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
9675 if (tem)
9676 return tem;
9678 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
9679 Similarly for NE_EXPR. */
9680 if ((code == EQ_EXPR || code == NE_EXPR)
9681 && TREE_CODE (arg0) == BIT_AND_EXPR
9682 && TREE_CODE (arg1) == INTEGER_CST
9683 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9685 tree notc = fold_build1 (BIT_NOT_EXPR,
9686 TREE_TYPE (TREE_OPERAND (arg0, 1)),
9687 TREE_OPERAND (arg0, 1));
9688 tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
9689 arg1, notc);
9690 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
9691 if (integer_nonzerop (dandnotc))
9692 return omit_one_operand (type, rslt, arg0);
9695 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
9696 Similarly for NE_EXPR. */
9697 if ((code == EQ_EXPR || code == NE_EXPR)
9698 && TREE_CODE (arg0) == BIT_IOR_EXPR
9699 && TREE_CODE (arg1) == INTEGER_CST
9700 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9702 tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
9703 tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
9704 TREE_OPERAND (arg0, 1), notd);
9705 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
9706 if (integer_nonzerop (candnotd))
9707 return omit_one_operand (type, rslt, arg0);
9710 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
9711 and similarly for >= into !=. */
9712 if ((code == LT_EXPR || code == GE_EXPR)
9713 && TYPE_UNSIGNED (TREE_TYPE (arg0))
9714 && TREE_CODE (arg1) == LSHIFT_EXPR
9715 && integer_onep (TREE_OPERAND (arg1, 0)))
9716 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
9717 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
9718 TREE_OPERAND (arg1, 1)),
9719 build_int_cst (TREE_TYPE (arg0), 0));
9721 else if ((code == LT_EXPR || code == GE_EXPR)
9722 && TYPE_UNSIGNED (TREE_TYPE (arg0))
9723 && (TREE_CODE (arg1) == NOP_EXPR
9724 || TREE_CODE (arg1) == CONVERT_EXPR)
9725 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
9726 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
9727 return
9728 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
9729 fold_convert (TREE_TYPE (arg0),
9730 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
9731 TREE_OPERAND (TREE_OPERAND (arg1, 0),
9732 1))),
9733 build_int_cst (TREE_TYPE (arg0), 0));
9735 /* Simplify comparison of something with itself. (For IEEE
9736 floating-point, we can only do some of these simplifications.) */
9737 if (operand_equal_p (arg0, arg1, 0))
9739 switch (code)
9741 case EQ_EXPR:
9742 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9743 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9744 return constant_boolean_node (1, type);
9745 break;
9747 case GE_EXPR:
9748 case LE_EXPR:
9749 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9750 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9751 return constant_boolean_node (1, type);
9752 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9754 case NE_EXPR:
9755 /* For NE, we can only do this simplification if integer
9756 or we don't honor IEEE floating point NaNs. */
9757 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9758 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9759 break;
9760 /* ... fall through ... */
9761 case GT_EXPR:
9762 case LT_EXPR:
9763 return constant_boolean_node (0, type);
9764 default:
9765 gcc_unreachable ();
9769 /* If we are comparing an expression that just has comparisons
9770 of two integer values, arithmetic expressions of those comparisons,
9771 and constants, we can simplify it. There are only three cases
9772 to check: the two values can either be equal, the first can be
9773 greater, or the second can be greater. Fold the expression for
9774 those three values. Since each value must be 0 or 1, we have
9775 eight possibilities, each of which corresponds to the constant 0
9776 or 1 or one of the six possible comparisons.
9778 This handles common cases like (a > b) == 0 but also handles
9779 expressions like ((x > y) - (y > x)) > 0, which supposedly
9780 occur in macroized code. */
9782 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9784 tree cval1 = 0, cval2 = 0;
9785 int save_p = 0;
9787 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9788 /* Don't handle degenerate cases here; they should already
9789 have been handled anyway. */
9790 && cval1 != 0 && cval2 != 0
9791 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9792 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9793 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9794 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9795 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9796 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9797 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9799 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9800 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9802 /* We can't just pass T to eval_subst in case cval1 or cval2
9803 was the same as ARG1. */
9805 tree high_result
9806 = fold_build2 (code, type,
9807 eval_subst (arg0, cval1, maxval,
9808 cval2, minval),
9809 arg1);
9810 tree equal_result
9811 = fold_build2 (code, type,
9812 eval_subst (arg0, cval1, maxval,
9813 cval2, maxval),
9814 arg1);
9815 tree low_result
9816 = fold_build2 (code, type,
9817 eval_subst (arg0, cval1, minval,
9818 cval2, maxval),
9819 arg1);
9821 /* All three of these results should be 0 or 1. Confirm they
9822 are. Then use those values to select the proper code
9823 to use. */
9825 if ((integer_zerop (high_result)
9826 || integer_onep (high_result))
9827 && (integer_zerop (equal_result)
9828 || integer_onep (equal_result))
9829 && (integer_zerop (low_result)
9830 || integer_onep (low_result)))
9832 /* Make a 3-bit mask with the high-order bit being the
9833 value for `>', the next for '=', and the low for '<'. */
9834 switch ((integer_onep (high_result) * 4)
9835 + (integer_onep (equal_result) * 2)
9836 + integer_onep (low_result))
9838 case 0:
9839 /* Always false. */
9840 return omit_one_operand (type, integer_zero_node, arg0);
9841 case 1:
9842 code = LT_EXPR;
9843 break;
9844 case 2:
9845 code = EQ_EXPR;
9846 break;
9847 case 3:
9848 code = LE_EXPR;
9849 break;
9850 case 4:
9851 code = GT_EXPR;
9852 break;
9853 case 5:
9854 code = NE_EXPR;
9855 break;
9856 case 6:
9857 code = GE_EXPR;
9858 break;
9859 case 7:
9860 /* Always true. */
9861 return omit_one_operand (type, integer_one_node, arg0);
9864 if (save_p)
9865 return save_expr (build2 (code, type, cval1, cval2));
9866 else
9867 return fold_build2 (code, type, cval1, cval2);
9872 /* If this is a comparison of a field, we may be able to simplify it. */
9873 if (((TREE_CODE (arg0) == COMPONENT_REF
9874 && lang_hooks.can_use_bit_fields_p ())
9875 || TREE_CODE (arg0) == BIT_FIELD_REF)
9876 && (code == EQ_EXPR || code == NE_EXPR)
9877 /* Handle the constant case even without -O
9878 to make sure the warnings are given. */
9879 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
9881 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
9882 if (t1)
9883 return t1;
9886 /* Fold a comparison of the address of COMPONENT_REFs with the same
9887 type and component to a comparison of the address of the base
9888 object. In short, &x->a OP &y->a to x OP y and
9889 &x->a OP &y.a to x OP &y */
9890 if (TREE_CODE (arg0) == ADDR_EXPR
9891 && TREE_CODE (TREE_OPERAND (arg0, 0)) == COMPONENT_REF
9892 && TREE_CODE (arg1) == ADDR_EXPR
9893 && TREE_CODE (TREE_OPERAND (arg1, 0)) == COMPONENT_REF)
9895 tree cref0 = TREE_OPERAND (arg0, 0);
9896 tree cref1 = TREE_OPERAND (arg1, 0);
9897 if (TREE_OPERAND (cref0, 1) == TREE_OPERAND (cref1, 1))
9899 tree op0 = TREE_OPERAND (cref0, 0);
9900 tree op1 = TREE_OPERAND (cref1, 0);
9901 return fold_build2 (code, type,
9902 build_fold_addr_expr (op0),
9903 build_fold_addr_expr (op1));
9907 /* Optimize comparisons of strlen vs zero to a compare of the
9908 first character of the string vs zero. To wit,
9909 strlen(ptr) == 0 => *ptr == 0
9910 strlen(ptr) != 0 => *ptr != 0
9911 Other cases should reduce to one of these two (or a constant)
9912 due to the return value of strlen being unsigned. */
9913 if ((code == EQ_EXPR || code == NE_EXPR)
9914 && integer_zerop (arg1)
9915 && TREE_CODE (arg0) == CALL_EXPR)
9917 tree fndecl = get_callee_fndecl (arg0);
9918 tree arglist;
9920 if (fndecl
9921 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
9922 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
9923 && (arglist = TREE_OPERAND (arg0, 1))
9924 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
9925 && ! TREE_CHAIN (arglist))
9927 tree iref = build_fold_indirect_ref (TREE_VALUE (arglist));
9928 return fold_build2 (code, type, iref,
9929 build_int_cst (TREE_TYPE (iref), 0));
9933 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9934 into a single range test. */
9935 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9936 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9937 && TREE_CODE (arg1) == INTEGER_CST
9938 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9939 && !integer_zerop (TREE_OPERAND (arg0, 1))
9940 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9941 && !TREE_OVERFLOW (arg1))
9943 t1 = fold_div_compare (code, type, arg0, arg1);
9944 if (t1 != NULL_TREE)
9945 return t1;
9948 if ((code == EQ_EXPR || code == NE_EXPR)
9949 && integer_zerop (arg1)
9950 && tree_expr_nonzero_p (arg0))
9952 tree res = constant_boolean_node (code==NE_EXPR, type);
9953 return omit_one_operand (type, res, arg0);
9956 t1 = fold_relational_const (code, type, arg0, arg1);
9957 return t1 == NULL_TREE ? NULL_TREE : t1;
9959 case UNORDERED_EXPR:
9960 case ORDERED_EXPR:
9961 case UNLT_EXPR:
9962 case UNLE_EXPR:
9963 case UNGT_EXPR:
9964 case UNGE_EXPR:
9965 case UNEQ_EXPR:
9966 case LTGT_EXPR:
9967 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
9969 t1 = fold_relational_const (code, type, arg0, arg1);
9970 if (t1 != NULL_TREE)
9971 return t1;
9974 /* If the first operand is NaN, the result is constant. */
9975 if (TREE_CODE (arg0) == REAL_CST
9976 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
9977 && (code != LTGT_EXPR || ! flag_trapping_math))
9979 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
9980 ? integer_zero_node
9981 : integer_one_node;
9982 return omit_one_operand (type, t1, arg1);
9985 /* If the second operand is NaN, the result is constant. */
9986 if (TREE_CODE (arg1) == REAL_CST
9987 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
9988 && (code != LTGT_EXPR || ! flag_trapping_math))
9990 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
9991 ? integer_zero_node
9992 : integer_one_node;
9993 return omit_one_operand (type, t1, arg0);
9996 /* Simplify unordered comparison of something with itself. */
9997 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
9998 && operand_equal_p (arg0, arg1, 0))
9999 return constant_boolean_node (1, type);
10001 if (code == LTGT_EXPR
10002 && !flag_trapping_math
10003 && operand_equal_p (arg0, arg1, 0))
10004 return constant_boolean_node (0, type);
10006 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
10008 tree targ0 = strip_float_extensions (arg0);
10009 tree targ1 = strip_float_extensions (arg1);
10010 tree newtype = TREE_TYPE (targ0);
10012 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
10013 newtype = TREE_TYPE (targ1);
10015 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
10016 return fold_build2 (code, type, fold_convert (newtype, targ0),
10017 fold_convert (newtype, targ1));
10020 return NULL_TREE;
10022 case COMPOUND_EXPR:
10023 /* When pedantic, a compound expression can be neither an lvalue
10024 nor an integer constant expression. */
10025 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
10026 return NULL_TREE;
10027 /* Don't let (0, 0) be null pointer constant. */
10028 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
10029 : fold_convert (type, arg1);
10030 return pedantic_non_lvalue (tem);
10032 case COMPLEX_EXPR:
10033 if ((TREE_CODE (arg0) == REAL_CST
10034 && TREE_CODE (arg1) == REAL_CST)
10035 || (TREE_CODE (arg0) == INTEGER_CST
10036 && TREE_CODE (arg1) == INTEGER_CST))
10037 return build_complex (type, arg0, arg1);
10038 return NULL_TREE;
10040 case ASSERT_EXPR:
10041 /* An ASSERT_EXPR should never be passed to fold_binary. */
10042 gcc_unreachable ();
10044 default:
10045 return NULL_TREE;
10046 } /* switch (code) */
10049 /* Callback for walk_tree, looking for LABEL_EXPR.
10050 Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
10051 Do not check the sub-tree of GOTO_EXPR. */
10053 static tree
10054 contains_label_1 (tree *tp,
10055 int *walk_subtrees,
10056 void *data ATTRIBUTE_UNUSED)
10058 switch (TREE_CODE (*tp))
10060 case LABEL_EXPR:
10061 return *tp;
10062 case GOTO_EXPR:
10063 *walk_subtrees = 0;
10064 /* no break */
10065 default:
10066 return NULL_TREE;
10070 /* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
10071 accessible from outside the sub-tree. Returns NULL_TREE if no
10072 addressable label is found. */
10074 static bool
10075 contains_label_p (tree st)
10077 return (walk_tree (&st, contains_label_1 , NULL, NULL) != NULL_TREE);
10080 /* Fold a ternary expression of code CODE and type TYPE with operands
10081 OP0, OP1, and OP2. Return the folded expression if folding is
10082 successful. Otherwise, return NULL_TREE. */
10084 tree
10085 fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
10087 tree tem;
10088 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
10089 enum tree_code_class kind = TREE_CODE_CLASS (code);
10091 gcc_assert (IS_EXPR_CODE_CLASS (kind)
10092 && TREE_CODE_LENGTH (code) == 3);
10094 /* Strip any conversions that don't change the mode. This is safe
10095 for every expression, except for a comparison expression because
10096 its signedness is derived from its operands. So, in the latter
10097 case, only strip conversions that don't change the signedness.
10099 Note that this is done as an internal manipulation within the
10100 constant folder, in order to find the simplest representation of
10101 the arguments so that their form can be studied. In any cases,
10102 the appropriate type conversions should be put back in the tree
10103 that will get out of the constant folder. */
10104 if (op0)
10106 arg0 = op0;
10107 STRIP_NOPS (arg0);
10110 if (op1)
10112 arg1 = op1;
10113 STRIP_NOPS (arg1);
10116 switch (code)
10118 case COMPONENT_REF:
10119 if (TREE_CODE (arg0) == CONSTRUCTOR
10120 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
10122 unsigned HOST_WIDE_INT idx;
10123 tree field, value;
10124 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
10125 if (field == arg1)
10126 return value;
10128 return NULL_TREE;
10130 case COND_EXPR:
10131 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
10132 so all simple results must be passed through pedantic_non_lvalue. */
10133 if (TREE_CODE (arg0) == INTEGER_CST)
10135 tree unused_op = integer_zerop (arg0) ? op1 : op2;
10136 tem = integer_zerop (arg0) ? op2 : op1;
10137 /* Only optimize constant conditions when the selected branch
10138 has the same type as the COND_EXPR. This avoids optimizing
10139 away "c ? x : throw", where the throw has a void type.
10140 Avoid throwing away that operand which contains label. */
10141 if ((!TREE_SIDE_EFFECTS (unused_op)
10142 || !contains_label_p (unused_op))
10143 && (! VOID_TYPE_P (TREE_TYPE (tem))
10144 || VOID_TYPE_P (type)))
10145 return pedantic_non_lvalue (tem);
10146 return NULL_TREE;
10148 if (operand_equal_p (arg1, op2, 0))
10149 return pedantic_omit_one_operand (type, arg1, arg0);
10151 /* If we have A op B ? A : C, we may be able to convert this to a
10152 simpler expression, depending on the operation and the values
10153 of B and C. Signed zeros prevent all of these transformations,
10154 for reasons given above each one.
10156 Also try swapping the arguments and inverting the conditional. */
10157 if (COMPARISON_CLASS_P (arg0)
10158 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
10159 arg1, TREE_OPERAND (arg0, 1))
10160 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
10162 tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
10163 if (tem)
10164 return tem;
10167 if (COMPARISON_CLASS_P (arg0)
10168 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
10169 op2,
10170 TREE_OPERAND (arg0, 1))
10171 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
10173 tem = invert_truthvalue (arg0);
10174 if (COMPARISON_CLASS_P (tem))
10176 tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
10177 if (tem)
10178 return tem;
10182 /* If the second operand is simpler than the third, swap them
10183 since that produces better jump optimization results. */
10184 if (truth_value_p (TREE_CODE (arg0))
10185 && tree_swap_operands_p (op1, op2, false))
10187 /* See if this can be inverted. If it can't, possibly because
10188 it was a floating-point inequality comparison, don't do
10189 anything. */
10190 tem = invert_truthvalue (arg0);
10192 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
10193 return fold_build3 (code, type, tem, op2, op1);
10196 /* Convert A ? 1 : 0 to simply A. */
10197 if (integer_onep (op1)
10198 && integer_zerop (op2)
10199 /* If we try to convert OP0 to our type, the
10200 call to fold will try to move the conversion inside
10201 a COND, which will recurse. In that case, the COND_EXPR
10202 is probably the best choice, so leave it alone. */
10203 && type == TREE_TYPE (arg0))
10204 return pedantic_non_lvalue (arg0);
10206 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
10207 over COND_EXPR in cases such as floating point comparisons. */
10208 if (integer_zerop (op1)
10209 && integer_onep (op2)
10210 && truth_value_p (TREE_CODE (arg0)))
10211 return pedantic_non_lvalue (fold_convert (type,
10212 invert_truthvalue (arg0)));
10214 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
10215 if (TREE_CODE (arg0) == LT_EXPR
10216 && integer_zerop (TREE_OPERAND (arg0, 1))
10217 && integer_zerop (op2)
10218 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
10219 return fold_convert (type, fold_build2 (BIT_AND_EXPR,
10220 TREE_TYPE (tem), tem, arg1));
10222 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
10223 already handled above. */
10224 if (TREE_CODE (arg0) == BIT_AND_EXPR
10225 && integer_onep (TREE_OPERAND (arg0, 1))
10226 && integer_zerop (op2)
10227 && integer_pow2p (arg1))
10229 tree tem = TREE_OPERAND (arg0, 0);
10230 STRIP_NOPS (tem);
10231 if (TREE_CODE (tem) == RSHIFT_EXPR
10232 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
10233 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
10234 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
10235 return fold_build2 (BIT_AND_EXPR, type,
10236 TREE_OPERAND (tem, 0), arg1);
10239 /* A & N ? N : 0 is simply A & N if N is a power of two. This
10240 is probably obsolete because the first operand should be a
10241 truth value (that's why we have the two cases above), but let's
10242 leave it in until we can confirm this for all front-ends. */
10243 if (integer_zerop (op2)
10244 && TREE_CODE (arg0) == NE_EXPR
10245 && integer_zerop (TREE_OPERAND (arg0, 1))
10246 && integer_pow2p (arg1)
10247 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10248 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10249 arg1, OEP_ONLY_CONST))
10250 return pedantic_non_lvalue (fold_convert (type,
10251 TREE_OPERAND (arg0, 0)));
10253 /* Convert A ? B : 0 into A && B if A and B are truth values. */
10254 if (integer_zerop (op2)
10255 && truth_value_p (TREE_CODE (arg0))
10256 && truth_value_p (TREE_CODE (arg1)))
10257 return fold_build2 (TRUTH_ANDIF_EXPR, type, arg0, arg1);
10259 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
10260 if (integer_onep (op2)
10261 && truth_value_p (TREE_CODE (arg0))
10262 && truth_value_p (TREE_CODE (arg1)))
10264 /* Only perform transformation if ARG0 is easily inverted. */
10265 tem = invert_truthvalue (arg0);
10266 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
10267 return fold_build2 (TRUTH_ORIF_EXPR, type, tem, arg1);
10270 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
10271 if (integer_zerop (arg1)
10272 && truth_value_p (TREE_CODE (arg0))
10273 && truth_value_p (TREE_CODE (op2)))
10275 /* Only perform transformation if ARG0 is easily inverted. */
10276 tem = invert_truthvalue (arg0);
10277 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
10278 return fold_build2 (TRUTH_ANDIF_EXPR, type, tem, op2);
10281 /* Convert A ? 1 : B into A || B if A and B are truth values. */
10282 if (integer_onep (arg1)
10283 && truth_value_p (TREE_CODE (arg0))
10284 && truth_value_p (TREE_CODE (op2)))
10285 return fold_build2 (TRUTH_ORIF_EXPR, type, arg0, op2);
10287 return NULL_TREE;
10289 case CALL_EXPR:
10290 /* Check for a built-in function. */
10291 if (TREE_CODE (op0) == ADDR_EXPR
10292 && TREE_CODE (TREE_OPERAND (op0, 0)) == FUNCTION_DECL
10293 && DECL_BUILT_IN (TREE_OPERAND (op0, 0)))
10294 return fold_builtin (TREE_OPERAND (op0, 0), op1, false);
10295 /* Check for resolvable OBJ_TYPE_REF. The only sorts we can resolve
10296 here are when we've propagated the address of a decl into the
10297 object slot. */
10298 if (TREE_CODE (op0) == OBJ_TYPE_REF
10299 && lang_hooks.fold_obj_type_ref
10300 && TREE_CODE (OBJ_TYPE_REF_OBJECT (op0)) == ADDR_EXPR
10301 && DECL_P (TREE_OPERAND (OBJ_TYPE_REF_OBJECT (op0), 0)))
10303 tree t;
10305 /* ??? Caution: Broken ADDR_EXPR semantics means that
10306 looking at the type of the operand of the addr_expr
10307 can yield an array type. See silly exception in
10308 check_pointer_types_r. */
10310 t = TREE_TYPE (TREE_TYPE (OBJ_TYPE_REF_OBJECT (op0)));
10311 t = lang_hooks.fold_obj_type_ref (op0, t);
10312 if (t)
10313 return fold_build3 (code, type, t, op1, op2);
10315 return NULL_TREE;
10317 case BIT_FIELD_REF:
10318 if (TREE_CODE (arg0) == VECTOR_CST
10319 && type == TREE_TYPE (TREE_TYPE (arg0))
10320 && host_integerp (arg1, 1)
10321 && host_integerp (op2, 1))
10323 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
10324 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
10326 if (width != 0
10327 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
10328 && (idx % width) == 0
10329 && (idx = idx / width)
10330 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
10332 tree elements = TREE_VECTOR_CST_ELTS (arg0);
10333 while (idx-- > 0 && elements)
10334 elements = TREE_CHAIN (elements);
10335 if (elements)
10336 return TREE_VALUE (elements);
10337 else
10338 return fold_convert (type, integer_zero_node);
10341 return NULL_TREE;
10343 default:
10344 return NULL_TREE;
10345 } /* switch (code) */
10348 /* Perform constant folding and related simplification of EXPR.
10349 The related simplifications include x*1 => x, x*0 => 0, etc.,
10350 and application of the associative law.
10351 NOP_EXPR conversions may be removed freely (as long as we
10352 are careful not to change the type of the overall expression).
10353 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
10354 but we can constant-fold them if they have constant operands. */
10356 #ifdef ENABLE_FOLD_CHECKING
10357 # define fold(x) fold_1 (x)
10358 static tree fold_1 (tree);
10359 static
10360 #endif
10361 tree
10362 fold (tree expr)
10364 const tree t = expr;
10365 enum tree_code code = TREE_CODE (t);
10366 enum tree_code_class kind = TREE_CODE_CLASS (code);
10367 tree tem;
10369 /* Return right away if a constant. */
10370 if (kind == tcc_constant)
10371 return t;
10373 if (IS_EXPR_CODE_CLASS (kind))
10375 tree type = TREE_TYPE (t);
10376 tree op0, op1, op2;
10378 switch (TREE_CODE_LENGTH (code))
10380 case 1:
10381 op0 = TREE_OPERAND (t, 0);
10382 tem = fold_unary (code, type, op0);
10383 return tem ? tem : expr;
10384 case 2:
10385 op0 = TREE_OPERAND (t, 0);
10386 op1 = TREE_OPERAND (t, 1);
10387 tem = fold_binary (code, type, op0, op1);
10388 return tem ? tem : expr;
10389 case 3:
10390 op0 = TREE_OPERAND (t, 0);
10391 op1 = TREE_OPERAND (t, 1);
10392 op2 = TREE_OPERAND (t, 2);
10393 tem = fold_ternary (code, type, op0, op1, op2);
10394 return tem ? tem : expr;
10395 default:
10396 break;
10400 switch (code)
10402 case CONST_DECL:
10403 return fold (DECL_INITIAL (t));
10405 default:
10406 return t;
10407 } /* switch (code) */
10410 #ifdef ENABLE_FOLD_CHECKING
10411 #undef fold
10413 static void fold_checksum_tree (tree, struct md5_ctx *, htab_t);
10414 static void fold_check_failed (tree, tree);
10415 void print_fold_checksum (tree);
10417 /* When --enable-checking=fold, compute a digest of expr before
10418 and after actual fold call to see if fold did not accidentally
10419 change original expr. */
10421 tree
10422 fold (tree expr)
10424 tree ret;
10425 struct md5_ctx ctx;
10426 unsigned char checksum_before[16], checksum_after[16];
10427 htab_t ht;
10429 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
10430 md5_init_ctx (&ctx);
10431 fold_checksum_tree (expr, &ctx, ht);
10432 md5_finish_ctx (&ctx, checksum_before);
10433 htab_empty (ht);
10435 ret = fold_1 (expr);
10437 md5_init_ctx (&ctx);
10438 fold_checksum_tree (expr, &ctx, ht);
10439 md5_finish_ctx (&ctx, checksum_after);
10440 htab_delete (ht);
10442 if (memcmp (checksum_before, checksum_after, 16))
10443 fold_check_failed (expr, ret);
10445 return ret;
10448 void
10449 print_fold_checksum (tree expr)
10451 struct md5_ctx ctx;
10452 unsigned char checksum[16], cnt;
10453 htab_t ht;
10455 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
10456 md5_init_ctx (&ctx);
10457 fold_checksum_tree (expr, &ctx, ht);
10458 md5_finish_ctx (&ctx, checksum);
10459 htab_delete (ht);
10460 for (cnt = 0; cnt < 16; ++cnt)
10461 fprintf (stderr, "%02x", checksum[cnt]);
10462 putc ('\n', stderr);
10465 static void
10466 fold_check_failed (tree expr ATTRIBUTE_UNUSED, tree ret ATTRIBUTE_UNUSED)
10468 internal_error ("fold check: original tree changed by fold");
10471 static void
10472 fold_checksum_tree (tree expr, struct md5_ctx *ctx, htab_t ht)
10474 void **slot;
10475 enum tree_code code;
10476 struct tree_function_decl buf;
10477 int i, len;
10479 recursive_label:
10481 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
10482 <= sizeof (struct tree_function_decl))
10483 && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
10484 if (expr == NULL)
10485 return;
10486 slot = htab_find_slot (ht, expr, INSERT);
10487 if (*slot != NULL)
10488 return;
10489 *slot = expr;
10490 code = TREE_CODE (expr);
10491 if (TREE_CODE_CLASS (code) == tcc_declaration
10492 && DECL_ASSEMBLER_NAME_SET_P (expr))
10494 /* Allow DECL_ASSEMBLER_NAME to be modified. */
10495 memcpy ((char *) &buf, expr, tree_size (expr));
10496 expr = (tree) &buf;
10497 SET_DECL_ASSEMBLER_NAME (expr, NULL);
10499 else if (TREE_CODE_CLASS (code) == tcc_type
10500 && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)
10501 || TYPE_CACHED_VALUES_P (expr)
10502 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)))
10504 /* Allow these fields to be modified. */
10505 memcpy ((char *) &buf, expr, tree_size (expr));
10506 expr = (tree) &buf;
10507 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr) = 0;
10508 TYPE_POINTER_TO (expr) = NULL;
10509 TYPE_REFERENCE_TO (expr) = NULL;
10510 if (TYPE_CACHED_VALUES_P (expr))
10512 TYPE_CACHED_VALUES_P (expr) = 0;
10513 TYPE_CACHED_VALUES (expr) = NULL;
10516 md5_process_bytes (expr, tree_size (expr), ctx);
10517 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
10518 if (TREE_CODE_CLASS (code) != tcc_type
10519 && TREE_CODE_CLASS (code) != tcc_declaration
10520 && code != TREE_LIST)
10521 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
10522 switch (TREE_CODE_CLASS (code))
10524 case tcc_constant:
10525 switch (code)
10527 case STRING_CST:
10528 md5_process_bytes (TREE_STRING_POINTER (expr),
10529 TREE_STRING_LENGTH (expr), ctx);
10530 break;
10531 case COMPLEX_CST:
10532 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
10533 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
10534 break;
10535 case VECTOR_CST:
10536 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
10537 break;
10538 default:
10539 break;
10541 break;
10542 case tcc_exceptional:
10543 switch (code)
10545 case TREE_LIST:
10546 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
10547 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
10548 expr = TREE_CHAIN (expr);
10549 goto recursive_label;
10550 break;
10551 case TREE_VEC:
10552 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
10553 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
10554 break;
10555 default:
10556 break;
10558 break;
10559 case tcc_expression:
10560 case tcc_reference:
10561 case tcc_comparison:
10562 case tcc_unary:
10563 case tcc_binary:
10564 case tcc_statement:
10565 len = TREE_CODE_LENGTH (code);
10566 for (i = 0; i < len; ++i)
10567 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
10568 break;
10569 case tcc_declaration:
10570 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
10571 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
10572 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
10574 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
10575 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
10576 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
10577 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
10578 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
10580 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
10581 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
10583 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
10585 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
10586 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
10587 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
10589 break;
10590 case tcc_type:
10591 if (TREE_CODE (expr) == ENUMERAL_TYPE)
10592 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
10593 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
10594 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
10595 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
10596 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
10597 if (INTEGRAL_TYPE_P (expr)
10598 || SCALAR_FLOAT_TYPE_P (expr))
10600 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
10601 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
10603 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
10604 if (TREE_CODE (expr) == RECORD_TYPE
10605 || TREE_CODE (expr) == UNION_TYPE
10606 || TREE_CODE (expr) == QUAL_UNION_TYPE)
10607 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
10608 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
10609 break;
10610 default:
10611 break;
10615 #endif
10617 /* Fold a unary tree expression with code CODE of type TYPE with an
10618 operand OP0. Return a folded expression if successful. Otherwise,
10619 return a tree expression with code CODE of type TYPE with an
10620 operand OP0. */
10622 tree
10623 fold_build1_stat (enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
10625 tree tem;
10626 #ifdef ENABLE_FOLD_CHECKING
10627 unsigned char checksum_before[16], checksum_after[16];
10628 struct md5_ctx ctx;
10629 htab_t ht;
10631 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
10632 md5_init_ctx (&ctx);
10633 fold_checksum_tree (op0, &ctx, ht);
10634 md5_finish_ctx (&ctx, checksum_before);
10635 htab_empty (ht);
10636 #endif
10638 tem = fold_unary (code, type, op0);
10639 if (!tem)
10640 tem = build1_stat (code, type, op0 PASS_MEM_STAT);
10642 #ifdef ENABLE_FOLD_CHECKING
10643 md5_init_ctx (&ctx);
10644 fold_checksum_tree (op0, &ctx, ht);
10645 md5_finish_ctx (&ctx, checksum_after);
10646 htab_delete (ht);
10648 if (memcmp (checksum_before, checksum_after, 16))
10649 fold_check_failed (op0, tem);
10650 #endif
10651 return tem;
10654 /* Fold a binary tree expression with code CODE of type TYPE with
10655 operands OP0 and OP1. Return a folded expression if successful.
10656 Otherwise, return a tree expression with code CODE of type TYPE
10657 with operands OP0 and OP1. */
10659 tree
10660 fold_build2_stat (enum tree_code code, tree type, tree op0, tree op1
10661 MEM_STAT_DECL)
10663 tree tem;
10664 #ifdef ENABLE_FOLD_CHECKING
10665 unsigned char checksum_before_op0[16],
10666 checksum_before_op1[16],
10667 checksum_after_op0[16],
10668 checksum_after_op1[16];
10669 struct md5_ctx ctx;
10670 htab_t ht;
10672 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
10673 md5_init_ctx (&ctx);
10674 fold_checksum_tree (op0, &ctx, ht);
10675 md5_finish_ctx (&ctx, checksum_before_op0);
10676 htab_empty (ht);
10678 md5_init_ctx (&ctx);
10679 fold_checksum_tree (op1, &ctx, ht);
10680 md5_finish_ctx (&ctx, checksum_before_op1);
10681 htab_empty (ht);
10682 #endif
10684 tem = fold_binary (code, type, op0, op1);
10685 if (!tem)
10686 tem = build2_stat (code, type, op0, op1 PASS_MEM_STAT);
10688 #ifdef ENABLE_FOLD_CHECKING
10689 md5_init_ctx (&ctx);
10690 fold_checksum_tree (op0, &ctx, ht);
10691 md5_finish_ctx (&ctx, checksum_after_op0);
10692 htab_empty (ht);
10694 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
10695 fold_check_failed (op0, tem);
10697 md5_init_ctx (&ctx);
10698 fold_checksum_tree (op1, &ctx, ht);
10699 md5_finish_ctx (&ctx, checksum_after_op1);
10700 htab_delete (ht);
10702 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
10703 fold_check_failed (op1, tem);
10704 #endif
10705 return tem;
10708 /* Fold a ternary tree expression with code CODE of type TYPE with
10709 operands OP0, OP1, and OP2. Return a folded expression if
10710 successful. Otherwise, return a tree expression with code CODE of
10711 type TYPE with operands OP0, OP1, and OP2. */
10713 tree
10714 fold_build3_stat (enum tree_code code, tree type, tree op0, tree op1, tree op2
10715 MEM_STAT_DECL)
10717 tree tem;
10718 #ifdef ENABLE_FOLD_CHECKING
10719 unsigned char checksum_before_op0[16],
10720 checksum_before_op1[16],
10721 checksum_before_op2[16],
10722 checksum_after_op0[16],
10723 checksum_after_op1[16],
10724 checksum_after_op2[16];
10725 struct md5_ctx ctx;
10726 htab_t ht;
10728 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
10729 md5_init_ctx (&ctx);
10730 fold_checksum_tree (op0, &ctx, ht);
10731 md5_finish_ctx (&ctx, checksum_before_op0);
10732 htab_empty (ht);
10734 md5_init_ctx (&ctx);
10735 fold_checksum_tree (op1, &ctx, ht);
10736 md5_finish_ctx (&ctx, checksum_before_op1);
10737 htab_empty (ht);
10739 md5_init_ctx (&ctx);
10740 fold_checksum_tree (op2, &ctx, ht);
10741 md5_finish_ctx (&ctx, checksum_before_op2);
10742 htab_empty (ht);
10743 #endif
10745 tem = fold_ternary (code, type, op0, op1, op2);
10746 if (!tem)
10747 tem = build3_stat (code, type, op0, op1, op2 PASS_MEM_STAT);
10749 #ifdef ENABLE_FOLD_CHECKING
10750 md5_init_ctx (&ctx);
10751 fold_checksum_tree (op0, &ctx, ht);
10752 md5_finish_ctx (&ctx, checksum_after_op0);
10753 htab_empty (ht);
10755 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
10756 fold_check_failed (op0, tem);
10758 md5_init_ctx (&ctx);
10759 fold_checksum_tree (op1, &ctx, ht);
10760 md5_finish_ctx (&ctx, checksum_after_op1);
10761 htab_empty (ht);
10763 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
10764 fold_check_failed (op1, tem);
10766 md5_init_ctx (&ctx);
10767 fold_checksum_tree (op2, &ctx, ht);
10768 md5_finish_ctx (&ctx, checksum_after_op2);
10769 htab_delete (ht);
10771 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
10772 fold_check_failed (op2, tem);
10773 #endif
10774 return tem;
10777 /* Perform constant folding and related simplification of initializer
10778 expression EXPR. These behave identically to "fold_buildN" but ignore
10779 potential run-time traps and exceptions that fold must preserve. */
10781 #define START_FOLD_INIT \
10782 int saved_signaling_nans = flag_signaling_nans;\
10783 int saved_trapping_math = flag_trapping_math;\
10784 int saved_rounding_math = flag_rounding_math;\
10785 int saved_trapv = flag_trapv;\
10786 flag_signaling_nans = 0;\
10787 flag_trapping_math = 0;\
10788 flag_rounding_math = 0;\
10789 flag_trapv = 0
10791 #define END_FOLD_INIT \
10792 flag_signaling_nans = saved_signaling_nans;\
10793 flag_trapping_math = saved_trapping_math;\
10794 flag_rounding_math = saved_rounding_math;\
10795 flag_trapv = saved_trapv
10797 tree
10798 fold_build1_initializer (enum tree_code code, tree type, tree op)
10800 tree result;
10801 START_FOLD_INIT;
10803 result = fold_build1 (code, type, op);
10805 END_FOLD_INIT;
10806 return result;
10809 tree
10810 fold_build2_initializer (enum tree_code code, tree type, tree op0, tree op1)
10812 tree result;
10813 START_FOLD_INIT;
10815 result = fold_build2 (code, type, op0, op1);
10817 END_FOLD_INIT;
10818 return result;
10821 tree
10822 fold_build3_initializer (enum tree_code code, tree type, tree op0, tree op1,
10823 tree op2)
10825 tree result;
10826 START_FOLD_INIT;
10828 result = fold_build3 (code, type, op0, op1, op2);
10830 END_FOLD_INIT;
10831 return result;
10834 #undef START_FOLD_INIT
10835 #undef END_FOLD_INIT
10837 /* Determine if first argument is a multiple of second argument. Return 0 if
10838 it is not, or we cannot easily determined it to be.
10840 An example of the sort of thing we care about (at this point; this routine
10841 could surely be made more general, and expanded to do what the *_DIV_EXPR's
10842 fold cases do now) is discovering that
10844 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
10846 is a multiple of
10848 SAVE_EXPR (J * 8)
10850 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
10852 This code also handles discovering that
10854 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
10856 is a multiple of 8 so we don't have to worry about dealing with a
10857 possible remainder.
10859 Note that we *look* inside a SAVE_EXPR only to determine how it was
10860 calculated; it is not safe for fold to do much of anything else with the
10861 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
10862 at run time. For example, the latter example above *cannot* be implemented
10863 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
10864 evaluation time of the original SAVE_EXPR is not necessarily the same at
10865 the time the new expression is evaluated. The only optimization of this
10866 sort that would be valid is changing
10868 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
10870 divided by 8 to
10872 SAVE_EXPR (I) * SAVE_EXPR (J)
10874 (where the same SAVE_EXPR (J) is used in the original and the
10875 transformed version). */
10877 static int
10878 multiple_of_p (tree type, tree top, tree bottom)
10880 if (operand_equal_p (top, bottom, 0))
10881 return 1;
10883 if (TREE_CODE (type) != INTEGER_TYPE)
10884 return 0;
10886 switch (TREE_CODE (top))
10888 case BIT_AND_EXPR:
10889 /* Bitwise and provides a power of two multiple. If the mask is
10890 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
10891 if (!integer_pow2p (bottom))
10892 return 0;
10893 /* FALLTHRU */
10895 case MULT_EXPR:
10896 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
10897 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
10899 case PLUS_EXPR:
10900 case MINUS_EXPR:
10901 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
10902 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
10904 case LSHIFT_EXPR:
10905 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
10907 tree op1, t1;
10909 op1 = TREE_OPERAND (top, 1);
10910 /* const_binop may not detect overflow correctly,
10911 so check for it explicitly here. */
10912 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
10913 > TREE_INT_CST_LOW (op1)
10914 && TREE_INT_CST_HIGH (op1) == 0
10915 && 0 != (t1 = fold_convert (type,
10916 const_binop (LSHIFT_EXPR,
10917 size_one_node,
10918 op1, 0)))
10919 && ! TREE_OVERFLOW (t1))
10920 return multiple_of_p (type, t1, bottom);
10922 return 0;
10924 case NOP_EXPR:
10925 /* Can't handle conversions from non-integral or wider integral type. */
10926 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
10927 || (TYPE_PRECISION (type)
10928 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
10929 return 0;
10931 /* .. fall through ... */
10933 case SAVE_EXPR:
10934 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
10936 case INTEGER_CST:
10937 if (TREE_CODE (bottom) != INTEGER_CST
10938 || (TYPE_UNSIGNED (type)
10939 && (tree_int_cst_sgn (top) < 0
10940 || tree_int_cst_sgn (bottom) < 0)))
10941 return 0;
10942 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
10943 top, bottom, 0));
10945 default:
10946 return 0;
10950 /* Return true if `t' is known to be non-negative. */
10953 tree_expr_nonnegative_p (tree t)
10955 if (TYPE_UNSIGNED (TREE_TYPE (t)))
10956 return 1;
10958 switch (TREE_CODE (t))
10960 case ABS_EXPR:
10961 /* We can't return 1 if flag_wrapv is set because
10962 ABS_EXPR<INT_MIN> = INT_MIN. */
10963 if (!(flag_wrapv && INTEGRAL_TYPE_P (TREE_TYPE (t))))
10964 return 1;
10965 break;
10967 case INTEGER_CST:
10968 return tree_int_cst_sgn (t) >= 0;
10970 case REAL_CST:
10971 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
10973 case PLUS_EXPR:
10974 if (FLOAT_TYPE_P (TREE_TYPE (t)))
10975 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
10976 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10978 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
10979 both unsigned and at least 2 bits shorter than the result. */
10980 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
10981 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
10982 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
10984 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
10985 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
10986 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
10987 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
10989 unsigned int prec = MAX (TYPE_PRECISION (inner1),
10990 TYPE_PRECISION (inner2)) + 1;
10991 return prec < TYPE_PRECISION (TREE_TYPE (t));
10994 break;
10996 case MULT_EXPR:
10997 if (FLOAT_TYPE_P (TREE_TYPE (t)))
10999 /* x * x for floating point x is always non-negative. */
11000 if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
11001 return 1;
11002 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
11003 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
11006 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
11007 both unsigned and their total bits is shorter than the result. */
11008 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
11009 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
11010 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
11012 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
11013 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
11014 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
11015 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
11016 return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
11017 < TYPE_PRECISION (TREE_TYPE (t));
11019 return 0;
11021 case BIT_AND_EXPR:
11022 case MAX_EXPR:
11023 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
11024 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
11026 case BIT_IOR_EXPR:
11027 case BIT_XOR_EXPR:
11028 case MIN_EXPR:
11029 case RDIV_EXPR:
11030 case TRUNC_DIV_EXPR:
11031 case CEIL_DIV_EXPR:
11032 case FLOOR_DIV_EXPR:
11033 case ROUND_DIV_EXPR:
11034 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
11035 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
11037 case TRUNC_MOD_EXPR:
11038 case CEIL_MOD_EXPR:
11039 case FLOOR_MOD_EXPR:
11040 case ROUND_MOD_EXPR:
11041 case SAVE_EXPR:
11042 case NON_LVALUE_EXPR:
11043 case FLOAT_EXPR:
11044 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
11046 case COMPOUND_EXPR:
11047 case MODIFY_EXPR:
11048 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
11050 case BIND_EXPR:
11051 return tree_expr_nonnegative_p (expr_last (TREE_OPERAND (t, 1)));
11053 case COND_EXPR:
11054 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
11055 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
11057 case NOP_EXPR:
11059 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
11060 tree outer_type = TREE_TYPE (t);
11062 if (TREE_CODE (outer_type) == REAL_TYPE)
11064 if (TREE_CODE (inner_type) == REAL_TYPE)
11065 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
11066 if (TREE_CODE (inner_type) == INTEGER_TYPE)
11068 if (TYPE_UNSIGNED (inner_type))
11069 return 1;
11070 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
11073 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
11075 if (TREE_CODE (inner_type) == REAL_TYPE)
11076 return tree_expr_nonnegative_p (TREE_OPERAND (t,0));
11077 if (TREE_CODE (inner_type) == INTEGER_TYPE)
11078 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
11079 && TYPE_UNSIGNED (inner_type);
11082 break;
11084 case TARGET_EXPR:
11086 tree temp = TARGET_EXPR_SLOT (t);
11087 t = TARGET_EXPR_INITIAL (t);
11089 /* If the initializer is non-void, then it's a normal expression
11090 that will be assigned to the slot. */
11091 if (!VOID_TYPE_P (t))
11092 return tree_expr_nonnegative_p (t);
11094 /* Otherwise, the initializer sets the slot in some way. One common
11095 way is an assignment statement at the end of the initializer. */
11096 while (1)
11098 if (TREE_CODE (t) == BIND_EXPR)
11099 t = expr_last (BIND_EXPR_BODY (t));
11100 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
11101 || TREE_CODE (t) == TRY_CATCH_EXPR)
11102 t = expr_last (TREE_OPERAND (t, 0));
11103 else if (TREE_CODE (t) == STATEMENT_LIST)
11104 t = expr_last (t);
11105 else
11106 break;
11108 if (TREE_CODE (t) == MODIFY_EXPR
11109 && TREE_OPERAND (t, 0) == temp)
11110 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
11112 return 0;
11115 case CALL_EXPR:
11117 tree fndecl = get_callee_fndecl (t);
11118 tree arglist = TREE_OPERAND (t, 1);
11119 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
11120 switch (DECL_FUNCTION_CODE (fndecl))
11122 CASE_FLT_FN (BUILT_IN_ACOS):
11123 CASE_FLT_FN (BUILT_IN_ACOSH):
11124 CASE_FLT_FN (BUILT_IN_CABS):
11125 CASE_FLT_FN (BUILT_IN_COSH):
11126 CASE_FLT_FN (BUILT_IN_ERFC):
11127 CASE_FLT_FN (BUILT_IN_EXP):
11128 CASE_FLT_FN (BUILT_IN_EXP10):
11129 CASE_FLT_FN (BUILT_IN_EXP2):
11130 CASE_FLT_FN (BUILT_IN_FABS):
11131 CASE_FLT_FN (BUILT_IN_FDIM):
11132 CASE_FLT_FN (BUILT_IN_HYPOT):
11133 CASE_FLT_FN (BUILT_IN_POW10):
11134 CASE_INT_FN (BUILT_IN_FFS):
11135 CASE_INT_FN (BUILT_IN_PARITY):
11136 CASE_INT_FN (BUILT_IN_POPCOUNT):
11137 /* Always true. */
11138 return 1;
11140 CASE_FLT_FN (BUILT_IN_SQRT):
11141 /* sqrt(-0.0) is -0.0. */
11142 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
11143 return 1;
11144 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
11146 CASE_FLT_FN (BUILT_IN_ASINH):
11147 CASE_FLT_FN (BUILT_IN_ATAN):
11148 CASE_FLT_FN (BUILT_IN_ATANH):
11149 CASE_FLT_FN (BUILT_IN_CBRT):
11150 CASE_FLT_FN (BUILT_IN_CEIL):
11151 CASE_FLT_FN (BUILT_IN_ERF):
11152 CASE_FLT_FN (BUILT_IN_EXPM1):
11153 CASE_FLT_FN (BUILT_IN_FLOOR):
11154 CASE_FLT_FN (BUILT_IN_FMOD):
11155 CASE_FLT_FN (BUILT_IN_FREXP):
11156 CASE_FLT_FN (BUILT_IN_LCEIL):
11157 CASE_FLT_FN (BUILT_IN_LDEXP):
11158 CASE_FLT_FN (BUILT_IN_LFLOOR):
11159 CASE_FLT_FN (BUILT_IN_LLCEIL):
11160 CASE_FLT_FN (BUILT_IN_LLFLOOR):
11161 CASE_FLT_FN (BUILT_IN_LLRINT):
11162 CASE_FLT_FN (BUILT_IN_LLROUND):
11163 CASE_FLT_FN (BUILT_IN_LRINT):
11164 CASE_FLT_FN (BUILT_IN_LROUND):
11165 CASE_FLT_FN (BUILT_IN_MODF):
11166 CASE_FLT_FN (BUILT_IN_NEARBYINT):
11167 CASE_FLT_FN (BUILT_IN_POW):
11168 CASE_FLT_FN (BUILT_IN_RINT):
11169 CASE_FLT_FN (BUILT_IN_ROUND):
11170 CASE_FLT_FN (BUILT_IN_SIGNBIT):
11171 CASE_FLT_FN (BUILT_IN_SINH):
11172 CASE_FLT_FN (BUILT_IN_TANH):
11173 CASE_FLT_FN (BUILT_IN_TRUNC):
11174 /* True if the 1st argument is nonnegative. */
11175 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
11177 CASE_FLT_FN (BUILT_IN_FMAX):
11178 /* True if the 1st OR 2nd arguments are nonnegative. */
11179 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
11180 || tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
11182 CASE_FLT_FN (BUILT_IN_FMIN):
11183 /* True if the 1st AND 2nd arguments are nonnegative. */
11184 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
11185 && tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
11187 CASE_FLT_FN (BUILT_IN_COPYSIGN):
11188 /* True if the 2nd argument is nonnegative. */
11189 return tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
11191 default:
11192 break;
11196 /* ... fall through ... */
11198 default:
11199 if (truth_value_p (TREE_CODE (t)))
11200 /* Truth values evaluate to 0 or 1, which is nonnegative. */
11201 return 1;
11204 /* We don't know sign of `t', so be conservative and return false. */
11205 return 0;
11208 /* Return true when T is an address and is known to be nonzero.
11209 For floating point we further ensure that T is not denormal.
11210 Similar logic is present in nonzero_address in rtlanal.h. */
11212 bool
11213 tree_expr_nonzero_p (tree t)
11215 tree type = TREE_TYPE (t);
11217 /* Doing something useful for floating point would need more work. */
11218 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
11219 return false;
11221 switch (TREE_CODE (t))
11223 case ABS_EXPR:
11224 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
11226 case INTEGER_CST:
11227 /* We used to test for !integer_zerop here. This does not work correctly
11228 if TREE_CONSTANT_OVERFLOW (t). */
11229 return (TREE_INT_CST_LOW (t) != 0
11230 || TREE_INT_CST_HIGH (t) != 0);
11232 case PLUS_EXPR:
11233 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
11235 /* With the presence of negative values it is hard
11236 to say something. */
11237 if (!tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
11238 || !tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
11239 return false;
11240 /* One of operands must be positive and the other non-negative. */
11241 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
11242 || tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
11244 break;
11246 case MULT_EXPR:
11247 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
11249 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
11250 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
11252 break;
11254 case NOP_EXPR:
11256 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
11257 tree outer_type = TREE_TYPE (t);
11259 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
11260 && tree_expr_nonzero_p (TREE_OPERAND (t, 0)));
11262 break;
11264 case ADDR_EXPR:
11266 tree base = get_base_address (TREE_OPERAND (t, 0));
11268 if (!base)
11269 return false;
11271 /* Weak declarations may link to NULL. */
11272 if (VAR_OR_FUNCTION_DECL_P (base))
11273 return !DECL_WEAK (base);
11275 /* Constants are never weak. */
11276 if (CONSTANT_CLASS_P (base))
11277 return true;
11279 return false;
11282 case COND_EXPR:
11283 return (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
11284 && tree_expr_nonzero_p (TREE_OPERAND (t, 2)));
11286 case MIN_EXPR:
11287 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
11288 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
11290 case MAX_EXPR:
11291 if (tree_expr_nonzero_p (TREE_OPERAND (t, 0)))
11293 /* When both operands are nonzero, then MAX must be too. */
11294 if (tree_expr_nonzero_p (TREE_OPERAND (t, 1)))
11295 return true;
11297 /* MAX where operand 0 is positive is positive. */
11298 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
11300 /* MAX where operand 1 is positive is positive. */
11301 else if (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
11302 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
11303 return true;
11304 break;
11306 case COMPOUND_EXPR:
11307 case MODIFY_EXPR:
11308 case BIND_EXPR:
11309 return tree_expr_nonzero_p (TREE_OPERAND (t, 1));
11311 case SAVE_EXPR:
11312 case NON_LVALUE_EXPR:
11313 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
11315 case BIT_IOR_EXPR:
11316 return tree_expr_nonzero_p (TREE_OPERAND (t, 1))
11317 || tree_expr_nonzero_p (TREE_OPERAND (t, 0));
11319 case CALL_EXPR:
11320 return alloca_call_p (t);
11322 default:
11323 break;
11325 return false;
11328 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
11329 attempt to fold the expression to a constant without modifying TYPE,
11330 OP0 or OP1.
11332 If the expression could be simplified to a constant, then return
11333 the constant. If the expression would not be simplified to a
11334 constant, then return NULL_TREE. */
11336 tree
11337 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
11339 tree tem = fold_binary (code, type, op0, op1);
11340 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
11343 /* Given the components of a unary expression CODE, TYPE and OP0,
11344 attempt to fold the expression to a constant without modifying
11345 TYPE or OP0.
11347 If the expression could be simplified to a constant, then return
11348 the constant. If the expression would not be simplified to a
11349 constant, then return NULL_TREE. */
11351 tree
11352 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
11354 tree tem = fold_unary (code, type, op0);
11355 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
11358 /* If EXP represents referencing an element in a constant string
11359 (either via pointer arithmetic or array indexing), return the
11360 tree representing the value accessed, otherwise return NULL. */
11362 tree
11363 fold_read_from_constant_string (tree exp)
11365 if (TREE_CODE (exp) == INDIRECT_REF || TREE_CODE (exp) == ARRAY_REF)
11367 tree exp1 = TREE_OPERAND (exp, 0);
11368 tree index;
11369 tree string;
11371 if (TREE_CODE (exp) == INDIRECT_REF)
11372 string = string_constant (exp1, &index);
11373 else
11375 tree low_bound = array_ref_low_bound (exp);
11376 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
11378 /* Optimize the special-case of a zero lower bound.
11380 We convert the low_bound to sizetype to avoid some problems
11381 with constant folding. (E.g. suppose the lower bound is 1,
11382 and its mode is QI. Without the conversion,l (ARRAY
11383 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
11384 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
11385 if (! integer_zerop (low_bound))
11386 index = size_diffop (index, fold_convert (sizetype, low_bound));
11388 string = exp1;
11391 if (string
11392 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (string))
11393 && TREE_CODE (string) == STRING_CST
11394 && TREE_CODE (index) == INTEGER_CST
11395 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
11396 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
11397 == MODE_INT)
11398 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
11399 return fold_convert (TREE_TYPE (exp),
11400 build_int_cst (NULL_TREE,
11401 (TREE_STRING_POINTER (string)
11402 [TREE_INT_CST_LOW (index)])));
11404 return NULL;
11407 /* Return the tree for neg (ARG0) when ARG0 is known to be either
11408 an integer constant or real constant.
11410 TYPE is the type of the result. */
11412 static tree
11413 fold_negate_const (tree arg0, tree type)
11415 tree t = NULL_TREE;
11417 switch (TREE_CODE (arg0))
11419 case INTEGER_CST:
11421 unsigned HOST_WIDE_INT low;
11422 HOST_WIDE_INT high;
11423 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
11424 TREE_INT_CST_HIGH (arg0),
11425 &low, &high);
11426 t = build_int_cst_wide (type, low, high);
11427 t = force_fit_type (t, 1,
11428 (overflow | TREE_OVERFLOW (arg0))
11429 && !TYPE_UNSIGNED (type),
11430 TREE_CONSTANT_OVERFLOW (arg0));
11431 break;
11434 case REAL_CST:
11435 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
11436 break;
11438 default:
11439 gcc_unreachable ();
11442 return t;
11445 /* Return the tree for abs (ARG0) when ARG0 is known to be either
11446 an integer constant or real constant.
11448 TYPE is the type of the result. */
11450 tree
11451 fold_abs_const (tree arg0, tree type)
11453 tree t = NULL_TREE;
11455 switch (TREE_CODE (arg0))
11457 case INTEGER_CST:
11458 /* If the value is unsigned, then the absolute value is
11459 the same as the ordinary value. */
11460 if (TYPE_UNSIGNED (type))
11461 t = arg0;
11462 /* Similarly, if the value is non-negative. */
11463 else if (INT_CST_LT (integer_minus_one_node, arg0))
11464 t = arg0;
11465 /* If the value is negative, then the absolute value is
11466 its negation. */
11467 else
11469 unsigned HOST_WIDE_INT low;
11470 HOST_WIDE_INT high;
11471 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
11472 TREE_INT_CST_HIGH (arg0),
11473 &low, &high);
11474 t = build_int_cst_wide (type, low, high);
11475 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg0),
11476 TREE_CONSTANT_OVERFLOW (arg0));
11478 break;
11480 case REAL_CST:
11481 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
11482 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
11483 else
11484 t = arg0;
11485 break;
11487 default:
11488 gcc_unreachable ();
11491 return t;
11494 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
11495 constant. TYPE is the type of the result. */
11497 static tree
11498 fold_not_const (tree arg0, tree type)
11500 tree t = NULL_TREE;
11502 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
11504 t = build_int_cst_wide (type,
11505 ~ TREE_INT_CST_LOW (arg0),
11506 ~ TREE_INT_CST_HIGH (arg0));
11507 t = force_fit_type (t, 0, TREE_OVERFLOW (arg0),
11508 TREE_CONSTANT_OVERFLOW (arg0));
11510 return t;
11513 /* Given CODE, a relational operator, the target type, TYPE and two
11514 constant operands OP0 and OP1, return the result of the
11515 relational operation. If the result is not a compile time
11516 constant, then return NULL_TREE. */
11518 static tree
11519 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
11521 int result, invert;
11523 /* From here on, the only cases we handle are when the result is
11524 known to be a constant. */
11526 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
11528 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
11529 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
11531 /* Handle the cases where either operand is a NaN. */
11532 if (real_isnan (c0) || real_isnan (c1))
11534 switch (code)
11536 case EQ_EXPR:
11537 case ORDERED_EXPR:
11538 result = 0;
11539 break;
11541 case NE_EXPR:
11542 case UNORDERED_EXPR:
11543 case UNLT_EXPR:
11544 case UNLE_EXPR:
11545 case UNGT_EXPR:
11546 case UNGE_EXPR:
11547 case UNEQ_EXPR:
11548 result = 1;
11549 break;
11551 case LT_EXPR:
11552 case LE_EXPR:
11553 case GT_EXPR:
11554 case GE_EXPR:
11555 case LTGT_EXPR:
11556 if (flag_trapping_math)
11557 return NULL_TREE;
11558 result = 0;
11559 break;
11561 default:
11562 gcc_unreachable ();
11565 return constant_boolean_node (result, type);
11568 return constant_boolean_node (real_compare (code, c0, c1), type);
11571 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
11573 To compute GT, swap the arguments and do LT.
11574 To compute GE, do LT and invert the result.
11575 To compute LE, swap the arguments, do LT and invert the result.
11576 To compute NE, do EQ and invert the result.
11578 Therefore, the code below must handle only EQ and LT. */
11580 if (code == LE_EXPR || code == GT_EXPR)
11582 tree tem = op0;
11583 op0 = op1;
11584 op1 = tem;
11585 code = swap_tree_comparison (code);
11588 /* Note that it is safe to invert for real values here because we
11589 have already handled the one case that it matters. */
11591 invert = 0;
11592 if (code == NE_EXPR || code == GE_EXPR)
11594 invert = 1;
11595 code = invert_tree_comparison (code, false);
11598 /* Compute a result for LT or EQ if args permit;
11599 Otherwise return T. */
11600 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
11602 if (code == EQ_EXPR)
11603 result = tree_int_cst_equal (op0, op1);
11604 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
11605 result = INT_CST_LT_UNSIGNED (op0, op1);
11606 else
11607 result = INT_CST_LT (op0, op1);
11609 else
11610 return NULL_TREE;
11612 if (invert)
11613 result ^= 1;
11614 return constant_boolean_node (result, type);
11617 /* Build an expression for the a clean point containing EXPR with type TYPE.
11618 Don't build a cleanup point expression for EXPR which don't have side
11619 effects. */
11621 tree
11622 fold_build_cleanup_point_expr (tree type, tree expr)
11624 /* If the expression does not have side effects then we don't have to wrap
11625 it with a cleanup point expression. */
11626 if (!TREE_SIDE_EFFECTS (expr))
11627 return expr;
11629 /* If the expression is a return, check to see if the expression inside the
11630 return has no side effects or the right hand side of the modify expression
11631 inside the return. If either don't have side effects set we don't need to
11632 wrap the expression in a cleanup point expression. Note we don't check the
11633 left hand side of the modify because it should always be a return decl. */
11634 if (TREE_CODE (expr) == RETURN_EXPR)
11636 tree op = TREE_OPERAND (expr, 0);
11637 if (!op || !TREE_SIDE_EFFECTS (op))
11638 return expr;
11639 op = TREE_OPERAND (op, 1);
11640 if (!TREE_SIDE_EFFECTS (op))
11641 return expr;
11644 return build1 (CLEANUP_POINT_EXPR, type, expr);
11647 /* Build an expression for the address of T. Folds away INDIRECT_REF to
11648 avoid confusing the gimplify process. */
11650 tree
11651 build_fold_addr_expr_with_type (tree t, tree ptrtype)
11653 /* The size of the object is not relevant when talking about its address. */
11654 if (TREE_CODE (t) == WITH_SIZE_EXPR)
11655 t = TREE_OPERAND (t, 0);
11657 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
11658 if (TREE_CODE (t) == INDIRECT_REF
11659 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
11661 t = TREE_OPERAND (t, 0);
11662 if (TREE_TYPE (t) != ptrtype)
11663 t = build1 (NOP_EXPR, ptrtype, t);
11665 else
11667 tree base = t;
11669 while (handled_component_p (base))
11670 base = TREE_OPERAND (base, 0);
11671 if (DECL_P (base))
11672 TREE_ADDRESSABLE (base) = 1;
11674 t = build1 (ADDR_EXPR, ptrtype, t);
11677 return t;
11680 tree
11681 build_fold_addr_expr (tree t)
11683 return build_fold_addr_expr_with_type (t, build_pointer_type (TREE_TYPE (t)));
11686 /* Given a pointer value OP0 and a type TYPE, return a simplified version
11687 of an indirection through OP0, or NULL_TREE if no simplification is
11688 possible. */
11690 tree
11691 fold_indirect_ref_1 (tree type, tree op0)
11693 tree sub = op0;
11694 tree subtype;
11696 STRIP_NOPS (sub);
11697 subtype = TREE_TYPE (sub);
11698 if (!POINTER_TYPE_P (subtype))
11699 return NULL_TREE;
11701 if (TREE_CODE (sub) == ADDR_EXPR)
11703 tree op = TREE_OPERAND (sub, 0);
11704 tree optype = TREE_TYPE (op);
11705 /* *&p => p; make sure to handle *&"str"[cst] here. */
11706 if (type == optype)
11708 tree fop = fold_read_from_constant_string (op);
11709 if (fop)
11710 return fop;
11711 else
11712 return op;
11714 /* *(foo *)&fooarray => fooarray[0] */
11715 else if (TREE_CODE (optype) == ARRAY_TYPE
11716 && type == TREE_TYPE (optype))
11718 tree type_domain = TYPE_DOMAIN (optype);
11719 tree min_val = size_zero_node;
11720 if (type_domain && TYPE_MIN_VALUE (type_domain))
11721 min_val = TYPE_MIN_VALUE (type_domain);
11722 return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
11724 /* *(foo *)&complexfoo => __real__ complexfoo */
11725 else if (TREE_CODE (optype) == COMPLEX_TYPE
11726 && type == TREE_TYPE (optype))
11727 return fold_build1 (REALPART_EXPR, type, op);
11730 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
11731 if (TREE_CODE (sub) == PLUS_EXPR
11732 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
11734 tree op00 = TREE_OPERAND (sub, 0);
11735 tree op01 = TREE_OPERAND (sub, 1);
11736 tree op00type;
11738 STRIP_NOPS (op00);
11739 op00type = TREE_TYPE (op00);
11740 if (TREE_CODE (op00) == ADDR_EXPR
11741 && TREE_CODE (TREE_TYPE (op00type)) == COMPLEX_TYPE
11742 && type == TREE_TYPE (TREE_TYPE (op00type)))
11744 tree size = TYPE_SIZE_UNIT (type);
11745 if (tree_int_cst_equal (size, op01))
11746 return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (op00, 0));
11750 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
11751 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
11752 && type == TREE_TYPE (TREE_TYPE (subtype)))
11754 tree type_domain;
11755 tree min_val = size_zero_node;
11756 sub = build_fold_indirect_ref (sub);
11757 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
11758 if (type_domain && TYPE_MIN_VALUE (type_domain))
11759 min_val = TYPE_MIN_VALUE (type_domain);
11760 return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
11763 return NULL_TREE;
11766 /* Builds an expression for an indirection through T, simplifying some
11767 cases. */
11769 tree
11770 build_fold_indirect_ref (tree t)
11772 tree type = TREE_TYPE (TREE_TYPE (t));
11773 tree sub = fold_indirect_ref_1 (type, t);
11775 if (sub)
11776 return sub;
11777 else
11778 return build1 (INDIRECT_REF, type, t);
11781 /* Given an INDIRECT_REF T, return either T or a simplified version. */
11783 tree
11784 fold_indirect_ref (tree t)
11786 tree sub = fold_indirect_ref_1 (TREE_TYPE (t), TREE_OPERAND (t, 0));
11788 if (sub)
11789 return sub;
11790 else
11791 return t;
11794 /* Strip non-trapping, non-side-effecting tree nodes from an expression
11795 whose result is ignored. The type of the returned tree need not be
11796 the same as the original expression. */
11798 tree
11799 fold_ignored_result (tree t)
11801 if (!TREE_SIDE_EFFECTS (t))
11802 return integer_zero_node;
11804 for (;;)
11805 switch (TREE_CODE_CLASS (TREE_CODE (t)))
11807 case tcc_unary:
11808 t = TREE_OPERAND (t, 0);
11809 break;
11811 case tcc_binary:
11812 case tcc_comparison:
11813 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
11814 t = TREE_OPERAND (t, 0);
11815 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
11816 t = TREE_OPERAND (t, 1);
11817 else
11818 return t;
11819 break;
11821 case tcc_expression:
11822 switch (TREE_CODE (t))
11824 case COMPOUND_EXPR:
11825 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
11826 return t;
11827 t = TREE_OPERAND (t, 0);
11828 break;
11830 case COND_EXPR:
11831 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
11832 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
11833 return t;
11834 t = TREE_OPERAND (t, 0);
11835 break;
11837 default:
11838 return t;
11840 break;
11842 default:
11843 return t;
11847 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
11848 This can only be applied to objects of a sizetype. */
11850 tree
11851 round_up (tree value, int divisor)
11853 tree div = NULL_TREE;
11855 gcc_assert (divisor > 0);
11856 if (divisor == 1)
11857 return value;
11859 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
11860 have to do anything. Only do this when we are not given a const,
11861 because in that case, this check is more expensive than just
11862 doing it. */
11863 if (TREE_CODE (value) != INTEGER_CST)
11865 div = build_int_cst (TREE_TYPE (value), divisor);
11867 if (multiple_of_p (TREE_TYPE (value), value, div))
11868 return value;
11871 /* If divisor is a power of two, simplify this to bit manipulation. */
11872 if (divisor == (divisor & -divisor))
11874 tree t;
11876 t = build_int_cst (TREE_TYPE (value), divisor - 1);
11877 value = size_binop (PLUS_EXPR, value, t);
11878 t = build_int_cst (TREE_TYPE (value), -divisor);
11879 value = size_binop (BIT_AND_EXPR, value, t);
11881 else
11883 if (!div)
11884 div = build_int_cst (TREE_TYPE (value), divisor);
11885 value = size_binop (CEIL_DIV_EXPR, value, div);
11886 value = size_binop (MULT_EXPR, value, div);
11889 return value;
11892 /* Likewise, but round down. */
11894 tree
11895 round_down (tree value, int divisor)
11897 tree div = NULL_TREE;
11899 gcc_assert (divisor > 0);
11900 if (divisor == 1)
11901 return value;
11903 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
11904 have to do anything. Only do this when we are not given a const,
11905 because in that case, this check is more expensive than just
11906 doing it. */
11907 if (TREE_CODE (value) != INTEGER_CST)
11909 div = build_int_cst (TREE_TYPE (value), divisor);
11911 if (multiple_of_p (TREE_TYPE (value), value, div))
11912 return value;
11915 /* If divisor is a power of two, simplify this to bit manipulation. */
11916 if (divisor == (divisor & -divisor))
11918 tree t;
11920 t = build_int_cst (TREE_TYPE (value), -divisor);
11921 value = size_binop (BIT_AND_EXPR, value, t);
11923 else
11925 if (!div)
11926 div = build_int_cst (TREE_TYPE (value), divisor);
11927 value = size_binop (FLOOR_DIV_EXPR, value, div);
11928 value = size_binop (MULT_EXPR, value, div);
11931 return value;
11934 /* Returns the pointer to the base of the object addressed by EXP and
11935 extracts the information about the offset of the access, storing it
11936 to PBITPOS and POFFSET. */
11938 static tree
11939 split_address_to_core_and_offset (tree exp,
11940 HOST_WIDE_INT *pbitpos, tree *poffset)
11942 tree core;
11943 enum machine_mode mode;
11944 int unsignedp, volatilep;
11945 HOST_WIDE_INT bitsize;
11947 if (TREE_CODE (exp) == ADDR_EXPR)
11949 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
11950 poffset, &mode, &unsignedp, &volatilep,
11951 false);
11952 core = build_fold_addr_expr (core);
11954 else
11956 core = exp;
11957 *pbitpos = 0;
11958 *poffset = NULL_TREE;
11961 return core;
11964 /* Returns true if addresses of E1 and E2 differ by a constant, false
11965 otherwise. If they do, E1 - E2 is stored in *DIFF. */
11967 bool
11968 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
11970 tree core1, core2;
11971 HOST_WIDE_INT bitpos1, bitpos2;
11972 tree toffset1, toffset2, tdiff, type;
11974 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
11975 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
11977 if (bitpos1 % BITS_PER_UNIT != 0
11978 || bitpos2 % BITS_PER_UNIT != 0
11979 || !operand_equal_p (core1, core2, 0))
11980 return false;
11982 if (toffset1 && toffset2)
11984 type = TREE_TYPE (toffset1);
11985 if (type != TREE_TYPE (toffset2))
11986 toffset2 = fold_convert (type, toffset2);
11988 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
11989 if (!cst_and_fits_in_hwi (tdiff))
11990 return false;
11992 *diff = int_cst_value (tdiff);
11994 else if (toffset1 || toffset2)
11996 /* If only one of the offsets is non-constant, the difference cannot
11997 be a constant. */
11998 return false;
12000 else
12001 *diff = 0;
12003 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
12004 return true;
12007 /* Simplify the floating point expression EXP when the sign of the
12008 result is not significant. Return NULL_TREE if no simplification
12009 is possible. */
12011 tree
12012 fold_strip_sign_ops (tree exp)
12014 tree arg0, arg1;
12016 switch (TREE_CODE (exp))
12018 case ABS_EXPR:
12019 case NEGATE_EXPR:
12020 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
12021 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
12023 case MULT_EXPR:
12024 case RDIV_EXPR:
12025 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
12026 return NULL_TREE;
12027 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
12028 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
12029 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
12030 return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
12031 arg0 ? arg0 : TREE_OPERAND (exp, 0),
12032 arg1 ? arg1 : TREE_OPERAND (exp, 1));
12033 break;
12035 default:
12036 break;
12038 return NULL_TREE;