1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
31 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-ssa-propagate.h"
35 #include "langhooks.h"
37 #include "value-prof.h"
40 /* This file implements a generic value propagation engine based on
41 the same propagation used by the SSA-CCP algorithm [1].
43 Propagation is performed by simulating the execution of every
44 statement that produces the value being propagated. Simulation
47 1- Initially, all edges of the CFG are marked not executable and
48 the CFG worklist is seeded with all the statements in the entry
49 basic block (block 0).
51 2- Every statement S is simulated with a call to the call-back
52 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
55 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
56 interest and does not affect any of the work lists.
58 SSA_PROP_VARYING: The value produced by S cannot be determined
59 at compile time. Further simulation of S is not required.
60 If S is a conditional jump, all the outgoing edges for the
61 block are considered executable and added to the work
64 SSA_PROP_INTERESTING: S produces a value that can be computed
65 at compile time. Its result can be propagated into the
66 statements that feed from S. Furthermore, if S is a
67 conditional jump, only the edge known to be taken is added
68 to the work list. Edges that are known not to execute are
71 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
72 return value from SSA_PROP_VISIT_PHI has the same semantics as
75 4- Three work lists are kept. Statements are only added to these
76 lists if they produce one of SSA_PROP_INTERESTING or
79 CFG_BLOCKS contains the list of blocks to be simulated.
80 Blocks are added to this list if their incoming edges are
83 VARYING_SSA_EDGES contains the list of statements that feed
84 from statements that produce an SSA_PROP_VARYING result.
85 These are simulated first to speed up processing.
87 INTERESTING_SSA_EDGES contains the list of statements that
88 feed from statements that produce an SSA_PROP_INTERESTING
91 5- Simulation terminates when all three work lists are drained.
93 Before calling ssa_propagate, it is important to clear
94 prop_simulate_again_p for all the statements in the program that
95 should be simulated. This initialization allows an implementation
96 to specify which statements should never be simulated.
98 It is also important to compute def-use information before calling
103 [1] Constant propagation with conditional branches,
104 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106 [2] Building an Optimizing Compiler,
107 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109 [3] Advanced Compiler Design and Implementation,
110 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
112 /* Function pointers used to parameterize the propagation engine. */
113 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt
;
114 static ssa_prop_visit_phi_fn ssa_prop_visit_phi
;
116 /* Keep track of statements that have been added to one of the SSA
117 edges worklists. This flag is used to avoid visiting statements
118 unnecessarily when draining an SSA edge worklist. If while
119 simulating a basic block, we find a statement with
120 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
121 processing from visiting it again.
123 NOTE: users of the propagation engine are not allowed to use
124 the GF_PLF_1 flag. */
125 #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1
127 /* A bitmap to keep track of executable blocks in the CFG. */
128 static sbitmap executable_blocks
;
130 /* Array of control flow edges on the worklist. */
131 static VEC(basic_block
,heap
) *cfg_blocks
;
133 static unsigned int cfg_blocks_num
= 0;
134 static int cfg_blocks_tail
;
135 static int cfg_blocks_head
;
137 static sbitmap bb_in_list
;
139 /* Worklist of SSA edges which will need reexamination as their
140 definition has changed. SSA edges are def-use edges in the SSA
141 web. For each D-U edge, we store the target statement or PHI node
143 static GTY(()) VEC(gimple
,gc
) *interesting_ssa_edges
;
145 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
146 list of SSA edges is split into two. One contains all SSA edges
147 who need to be reexamined because their lattice value changed to
148 varying (this worklist), and the other contains all other SSA edges
149 to be reexamined (INTERESTING_SSA_EDGES).
151 Since most values in the program are VARYING, the ideal situation
152 is to move them to that lattice value as quickly as possible.
153 Thus, it doesn't make sense to process any other type of lattice
154 value until all VARYING values are propagated fully, which is one
155 thing using the VARYING worklist achieves. In addition, if we
156 don't use a separate worklist for VARYING edges, we end up with
157 situations where lattice values move from
158 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
159 static GTY(()) VEC(gimple
,gc
) *varying_ssa_edges
;
162 /* Return true if the block worklist empty. */
165 cfg_blocks_empty_p (void)
167 return (cfg_blocks_num
== 0);
171 /* Add a basic block to the worklist. The block must not be already
172 in the worklist, and it must not be the ENTRY or EXIT block. */
175 cfg_blocks_add (basic_block bb
)
179 gcc_assert (bb
!= ENTRY_BLOCK_PTR
&& bb
!= EXIT_BLOCK_PTR
);
180 gcc_assert (!TEST_BIT (bb_in_list
, bb
->index
));
182 if (cfg_blocks_empty_p ())
184 cfg_blocks_tail
= cfg_blocks_head
= 0;
190 if (cfg_blocks_num
> VEC_length (basic_block
, cfg_blocks
))
192 /* We have to grow the array now. Adjust to queue to occupy
193 the full space of the original array. We do not need to
194 initialize the newly allocated portion of the array
195 because we keep track of CFG_BLOCKS_HEAD and
197 cfg_blocks_tail
= VEC_length (basic_block
, cfg_blocks
);
199 VEC_safe_grow (basic_block
, heap
, cfg_blocks
, 2 * cfg_blocks_tail
);
201 /* Minor optimization: we prefer to see blocks with more
202 predecessors later, because there is more of a chance that
203 the incoming edges will be executable. */
204 else if (EDGE_COUNT (bb
->preds
)
205 >= EDGE_COUNT (VEC_index (basic_block
, cfg_blocks
,
206 cfg_blocks_head
)->preds
))
207 cfg_blocks_tail
= ((cfg_blocks_tail
+ 1)
208 % VEC_length (basic_block
, cfg_blocks
));
211 if (cfg_blocks_head
== 0)
212 cfg_blocks_head
= VEC_length (basic_block
, cfg_blocks
);
218 VEC_replace (basic_block
, cfg_blocks
,
219 head
? cfg_blocks_head
: cfg_blocks_tail
,
221 SET_BIT (bb_in_list
, bb
->index
);
225 /* Remove a block from the worklist. */
228 cfg_blocks_get (void)
232 bb
= VEC_index (basic_block
, cfg_blocks
, cfg_blocks_head
);
234 gcc_assert (!cfg_blocks_empty_p ());
237 cfg_blocks_head
= ((cfg_blocks_head
+ 1)
238 % VEC_length (basic_block
, cfg_blocks
));
240 RESET_BIT (bb_in_list
, bb
->index
);
246 /* We have just defined a new value for VAR. If IS_VARYING is true,
247 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
248 them to INTERESTING_SSA_EDGES. */
251 add_ssa_edge (tree var
, bool is_varying
)
253 imm_use_iterator iter
;
256 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
258 gimple use_stmt
= USE_STMT (use_p
);
260 if (prop_simulate_again_p (use_stmt
)
261 && !gimple_plf (use_stmt
, STMT_IN_SSA_EDGE_WORKLIST
))
263 gimple_set_plf (use_stmt
, STMT_IN_SSA_EDGE_WORKLIST
, true);
265 VEC_safe_push (gimple
, gc
, varying_ssa_edges
, use_stmt
);
267 VEC_safe_push (gimple
, gc
, interesting_ssa_edges
, use_stmt
);
273 /* Add edge E to the control flow worklist. */
276 add_control_edge (edge e
)
278 basic_block bb
= e
->dest
;
279 if (bb
== EXIT_BLOCK_PTR
)
282 /* If the edge had already been executed, skip it. */
283 if (e
->flags
& EDGE_EXECUTABLE
)
286 e
->flags
|= EDGE_EXECUTABLE
;
288 /* If the block is already in the list, we're done. */
289 if (TEST_BIT (bb_in_list
, bb
->index
))
294 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
295 fprintf (dump_file
, "Adding Destination of edge (%d -> %d) to worklist\n\n",
296 e
->src
->index
, e
->dest
->index
);
300 /* Simulate the execution of STMT and update the work lists accordingly. */
303 simulate_stmt (gimple stmt
)
305 enum ssa_prop_result val
= SSA_PROP_NOT_INTERESTING
;
306 edge taken_edge
= NULL
;
307 tree output_name
= NULL_TREE
;
309 /* Don't bother visiting statements that are already
310 considered varying by the propagator. */
311 if (!prop_simulate_again_p (stmt
))
314 if (gimple_code (stmt
) == GIMPLE_PHI
)
316 val
= ssa_prop_visit_phi (stmt
);
317 output_name
= gimple_phi_result (stmt
);
320 val
= ssa_prop_visit_stmt (stmt
, &taken_edge
, &output_name
);
322 if (val
== SSA_PROP_VARYING
)
324 prop_set_simulate_again (stmt
, false);
326 /* If the statement produced a new varying value, add the SSA
327 edges coming out of OUTPUT_NAME. */
329 add_ssa_edge (output_name
, true);
331 /* If STMT transfers control out of its basic block, add
332 all outgoing edges to the work list. */
333 if (stmt_ends_bb_p (stmt
))
337 basic_block bb
= gimple_bb (stmt
);
338 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
339 add_control_edge (e
);
342 else if (val
== SSA_PROP_INTERESTING
)
344 /* If the statement produced new value, add the SSA edges coming
345 out of OUTPUT_NAME. */
347 add_ssa_edge (output_name
, false);
349 /* If we know which edge is going to be taken out of this block,
350 add it to the CFG work list. */
352 add_control_edge (taken_edge
);
356 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
357 drain. This pops statements off the given WORKLIST and processes
358 them until there are no more statements on WORKLIST.
359 We take a pointer to WORKLIST because it may be reallocated when an
360 SSA edge is added to it in simulate_stmt. */
363 process_ssa_edge_worklist (VEC(gimple
,gc
) **worklist
)
365 /* Drain the entire worklist. */
366 while (VEC_length (gimple
, *worklist
) > 0)
370 /* Pull the statement to simulate off the worklist. */
371 gimple stmt
= VEC_pop (gimple
, *worklist
);
373 /* If this statement was already visited by simulate_block, then
374 we don't need to visit it again here. */
375 if (!gimple_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
))
378 /* STMT is no longer in a worklist. */
379 gimple_set_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
, false);
381 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
383 fprintf (dump_file
, "\nSimulating statement (from ssa_edges): ");
384 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
387 bb
= gimple_bb (stmt
);
389 /* PHI nodes are always visited, regardless of whether or not
390 the destination block is executable. Otherwise, visit the
391 statement only if its block is marked executable. */
392 if (gimple_code (stmt
) == GIMPLE_PHI
393 || TEST_BIT (executable_blocks
, bb
->index
))
394 simulate_stmt (stmt
);
399 /* Simulate the execution of BLOCK. Evaluate the statement associated
400 with each variable reference inside the block. */
403 simulate_block (basic_block block
)
405 gimple_stmt_iterator gsi
;
407 /* There is nothing to do for the exit block. */
408 if (block
== EXIT_BLOCK_PTR
)
411 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
412 fprintf (dump_file
, "\nSimulating block %d\n", block
->index
);
414 /* Always simulate PHI nodes, even if we have simulated this block
416 for (gsi
= gsi_start_phis (block
); !gsi_end_p (gsi
); gsi_next (&gsi
))
417 simulate_stmt (gsi_stmt (gsi
));
419 /* If this is the first time we've simulated this block, then we
420 must simulate each of its statements. */
421 if (!TEST_BIT (executable_blocks
, block
->index
))
423 gimple_stmt_iterator j
;
424 unsigned int normal_edge_count
;
428 /* Note that we have simulated this block. */
429 SET_BIT (executable_blocks
, block
->index
);
431 for (j
= gsi_start_bb (block
); !gsi_end_p (j
); gsi_next (&j
))
433 gimple stmt
= gsi_stmt (j
);
435 /* If this statement is already in the worklist then
436 "cancel" it. The reevaluation implied by the worklist
437 entry will produce the same value we generate here and
438 thus reevaluating it again from the worklist is
440 if (gimple_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
))
441 gimple_set_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
, false);
443 simulate_stmt (stmt
);
446 /* We can not predict when abnormal and EH edges will be executed, so
447 once a block is considered executable, we consider any
448 outgoing abnormal edges as executable.
450 TODO: This is not exactly true. Simplifying statement might
451 prove it non-throwing and also computed goto can be handled
452 when destination is known.
454 At the same time, if this block has only one successor that is
455 reached by non-abnormal edges, then add that successor to the
457 normal_edge_count
= 0;
459 FOR_EACH_EDGE (e
, ei
, block
->succs
)
461 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
462 add_control_edge (e
);
470 if (normal_edge_count
== 1)
471 add_control_edge (normal_edge
);
476 /* Initialize local data structures and work lists. */
485 /* Worklists of SSA edges. */
486 interesting_ssa_edges
= VEC_alloc (gimple
, gc
, 20);
487 varying_ssa_edges
= VEC_alloc (gimple
, gc
, 20);
489 executable_blocks
= sbitmap_alloc (last_basic_block
);
490 sbitmap_zero (executable_blocks
);
492 bb_in_list
= sbitmap_alloc (last_basic_block
);
493 sbitmap_zero (bb_in_list
);
495 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
496 dump_immediate_uses (dump_file
);
498 cfg_blocks
= VEC_alloc (basic_block
, heap
, 20);
499 VEC_safe_grow (basic_block
, heap
, cfg_blocks
, 20);
501 /* Initially assume that every edge in the CFG is not executable.
502 (including the edges coming out of ENTRY_BLOCK_PTR). */
505 gimple_stmt_iterator si
;
507 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
508 gimple_set_plf (gsi_stmt (si
), STMT_IN_SSA_EDGE_WORKLIST
, false);
510 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
511 gimple_set_plf (gsi_stmt (si
), STMT_IN_SSA_EDGE_WORKLIST
, false);
513 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
514 e
->flags
&= ~EDGE_EXECUTABLE
;
517 /* Seed the algorithm by adding the successors of the entry block to the
519 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
520 add_control_edge (e
);
524 /* Free allocated storage. */
529 VEC_free (gimple
, gc
, interesting_ssa_edges
);
530 VEC_free (gimple
, gc
, varying_ssa_edges
);
531 VEC_free (basic_block
, heap
, cfg_blocks
);
533 sbitmap_free (bb_in_list
);
534 sbitmap_free (executable_blocks
);
538 /* Return true if EXPR is an acceptable right-hand-side for a
539 GIMPLE assignment. We validate the entire tree, not just
540 the root node, thus catching expressions that embed complex
541 operands that are not permitted in GIMPLE. This function
542 is needed because the folding routines in fold-const.c
543 may return such expressions in some cases, e.g., an array
544 access with an embedded index addition. It may make more
545 sense to have folding routines that are sensitive to the
546 constraints on GIMPLE operands, rather than abandoning any
547 any attempt to fold if the usual folding turns out to be too
551 valid_gimple_rhs_p (tree expr
)
553 enum tree_code code
= TREE_CODE (expr
);
555 switch (TREE_CODE_CLASS (code
))
557 case tcc_declaration
:
558 if (!is_gimple_variable (expr
))
563 /* All constants are ok. */
568 if (!is_gimple_val (TREE_OPERAND (expr
, 0))
569 || !is_gimple_val (TREE_OPERAND (expr
, 1)))
574 if (!is_gimple_val (TREE_OPERAND (expr
, 0)))
584 if (is_gimple_min_invariant (expr
))
586 t
= TREE_OPERAND (expr
, 0);
587 while (handled_component_p (t
))
589 /* ??? More checks needed, see the GIMPLE verifier. */
590 if ((TREE_CODE (t
) == ARRAY_REF
591 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
592 && !is_gimple_val (TREE_OPERAND (t
, 1)))
594 t
= TREE_OPERAND (t
, 0);
596 if (!is_gimple_id (t
))
602 if (get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
)
604 if (((code
== VEC_COND_EXPR
|| code
== COND_EXPR
)
605 ? !is_gimple_condexpr (TREE_OPERAND (expr
, 0))
606 : !is_gimple_val (TREE_OPERAND (expr
, 0)))
607 || !is_gimple_val (TREE_OPERAND (expr
, 1))
608 || !is_gimple_val (TREE_OPERAND (expr
, 2)))
619 case tcc_exceptional
:
620 if (code
!= SSA_NAME
)
632 /* Return true if EXPR is a CALL_EXPR suitable for representation
633 as a single GIMPLE_CALL statement. If the arguments require
634 further gimplification, return false. */
637 valid_gimple_call_p (tree expr
)
641 if (TREE_CODE (expr
) != CALL_EXPR
)
644 nargs
= call_expr_nargs (expr
);
645 for (i
= 0; i
< nargs
; i
++)
647 tree arg
= CALL_EXPR_ARG (expr
, i
);
648 if (is_gimple_reg_type (arg
))
650 if (!is_gimple_val (arg
))
654 if (!is_gimple_lvalue (arg
))
662 /* Make SSA names defined by OLD_STMT point to NEW_STMT
663 as their defining statement. */
666 move_ssa_defining_stmt_for_defs (gimple new_stmt
, gimple old_stmt
)
671 if (gimple_in_ssa_p (cfun
))
673 /* Make defined SSA_NAMEs point to the new
674 statement as their definition. */
675 FOR_EACH_SSA_TREE_OPERAND (var
, old_stmt
, iter
, SSA_OP_ALL_DEFS
)
677 if (TREE_CODE (var
) == SSA_NAME
)
678 SSA_NAME_DEF_STMT (var
) = new_stmt
;
683 /* Helper function for update_gimple_call and update_call_from_tree.
684 A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
687 finish_update_gimple_call (gimple_stmt_iterator
*si_p
, gimple new_stmt
,
690 gimple_call_set_lhs (new_stmt
, gimple_call_lhs (stmt
));
691 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
692 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
693 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
694 gimple_set_location (new_stmt
, gimple_location (stmt
));
695 if (gimple_block (new_stmt
) == NULL_TREE
)
696 gimple_set_block (new_stmt
, gimple_block (stmt
));
697 gsi_replace (si_p
, new_stmt
, false);
700 /* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
701 with number of arguments NARGS, where the arguments in GIMPLE form
702 follow NARGS argument. */
705 update_gimple_call (gimple_stmt_iterator
*si_p
, tree fn
, int nargs
, ...)
708 gimple new_stmt
, stmt
= gsi_stmt (*si_p
);
710 gcc_assert (is_gimple_call (stmt
));
711 va_start (ap
, nargs
);
712 new_stmt
= gimple_build_call_valist (fn
, nargs
, ap
);
713 finish_update_gimple_call (si_p
, new_stmt
, stmt
);
718 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
719 value of EXPR, which is expected to be the result of folding the
720 call. This can only be done if EXPR is a CALL_EXPR with valid
721 GIMPLE operands as arguments, or if it is a suitable RHS expression
722 for a GIMPLE_ASSIGN. More complex expressions will require
723 gimplification, which will introduce additional statements. In this
724 event, no update is performed, and the function returns false.
725 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
726 replace the statement at *SI_P with an entirely new statement.
727 The new statement need not be a call, e.g., if the original call
728 folded to a constant. */
731 update_call_from_tree (gimple_stmt_iterator
*si_p
, tree expr
)
733 gimple stmt
= gsi_stmt (*si_p
);
735 if (valid_gimple_call_p (expr
))
737 /* The call has simplified to another call. */
738 tree fn
= CALL_EXPR_FN (expr
);
740 unsigned nargs
= call_expr_nargs (expr
);
741 VEC(tree
, heap
) *args
= NULL
;
746 args
= VEC_alloc (tree
, heap
, nargs
);
747 VEC_safe_grow (tree
, heap
, args
, nargs
);
749 for (i
= 0; i
< nargs
; i
++)
750 VEC_replace (tree
, args
, i
, CALL_EXPR_ARG (expr
, i
));
753 new_stmt
= gimple_build_call_vec (fn
, args
);
754 finish_update_gimple_call (si_p
, new_stmt
, stmt
);
755 VEC_free (tree
, heap
, args
);
759 else if (valid_gimple_rhs_p (expr
))
761 tree lhs
= gimple_call_lhs (stmt
);
764 /* The call has simplified to an expression
765 that cannot be represented as a GIMPLE_CALL. */
768 /* A value is expected.
769 Introduce a new GIMPLE_ASSIGN statement. */
770 STRIP_USELESS_TYPE_CONVERSION (expr
);
771 new_stmt
= gimple_build_assign (lhs
, expr
);
772 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
773 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
774 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
776 else if (!TREE_SIDE_EFFECTS (expr
))
778 /* No value is expected, and EXPR has no effect.
779 Replace it with an empty statement. */
780 new_stmt
= gimple_build_nop ();
781 if (gimple_in_ssa_p (cfun
))
783 unlink_stmt_vdef (stmt
);
789 /* No value is expected, but EXPR has an effect,
790 e.g., it could be a reference to a volatile
791 variable. Create an assignment statement
792 with a dummy (unused) lhs variable. */
793 STRIP_USELESS_TYPE_CONVERSION (expr
);
794 lhs
= create_tmp_var (TREE_TYPE (expr
), NULL
);
795 new_stmt
= gimple_build_assign (lhs
, expr
);
796 add_referenced_var (lhs
);
797 if (gimple_in_ssa_p (cfun
))
798 lhs
= make_ssa_name (lhs
, new_stmt
);
799 gimple_assign_set_lhs (new_stmt
, lhs
);
800 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
801 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
802 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
804 gimple_set_location (new_stmt
, gimple_location (stmt
));
805 gsi_replace (si_p
, new_stmt
, false);
809 /* The call simplified to an expression that is
810 not a valid GIMPLE RHS. */
815 /* Entry point to the propagation engine.
817 VISIT_STMT is called for every statement visited.
818 VISIT_PHI is called for every PHI node visited. */
821 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt
,
822 ssa_prop_visit_phi_fn visit_phi
)
824 ssa_prop_visit_stmt
= visit_stmt
;
825 ssa_prop_visit_phi
= visit_phi
;
829 /* Iterate until the worklists are empty. */
830 while (!cfg_blocks_empty_p ()
831 || VEC_length (gimple
, interesting_ssa_edges
) > 0
832 || VEC_length (gimple
, varying_ssa_edges
) > 0)
834 if (!cfg_blocks_empty_p ())
836 /* Pull the next block to simulate off the worklist. */
837 basic_block dest_block
= cfg_blocks_get ();
838 simulate_block (dest_block
);
841 /* In order to move things to varying as quickly as
842 possible,process the VARYING_SSA_EDGES worklist first. */
843 process_ssa_edge_worklist (&varying_ssa_edges
);
845 /* Now process the INTERESTING_SSA_EDGES worklist. */
846 process_ssa_edge_worklist (&interesting_ssa_edges
);
853 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
854 is a non-volatile pointer dereference, a structure reference or a
855 reference to a single _DECL. Ignore volatile memory references
856 because they are not interesting for the optimizers. */
859 stmt_makes_single_store (gimple stmt
)
863 if (gimple_code (stmt
) != GIMPLE_ASSIGN
864 && gimple_code (stmt
) != GIMPLE_CALL
)
867 if (!gimple_vdef (stmt
))
870 lhs
= gimple_get_lhs (stmt
);
872 /* A call statement may have a null LHS. */
876 return (!TREE_THIS_VOLATILE (lhs
)
878 || REFERENCE_CLASS_P (lhs
)));
882 /* Propagation statistics. */
887 long num_stmts_folded
;
891 static struct prop_stats_d prop_stats
;
893 /* Replace USE references in statement STMT with the values stored in
894 PROP_VALUE. Return true if at least one reference was replaced. */
897 replace_uses_in (gimple stmt
, ssa_prop_get_value_fn get_value
)
899 bool replaced
= false;
903 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
905 tree tuse
= USE_FROM_PTR (use
);
906 tree val
= (*get_value
) (tuse
);
908 if (val
== tuse
|| val
== NULL_TREE
)
911 if (gimple_code (stmt
) == GIMPLE_ASM
912 && !may_propagate_copy_into_asm (tuse
))
915 if (!may_propagate_copy (tuse
, val
))
918 if (TREE_CODE (val
) != SSA_NAME
)
919 prop_stats
.num_const_prop
++;
921 prop_stats
.num_copy_prop
++;
923 propagate_value (use
, val
);
932 /* Replace propagated values into all the arguments for PHI using the
933 values from PROP_VALUE. */
936 replace_phi_args_in (gimple phi
, ssa_prop_get_value_fn get_value
)
939 bool replaced
= false;
941 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
943 fprintf (dump_file
, "Folding PHI node: ");
944 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
947 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
949 tree arg
= gimple_phi_arg_def (phi
, i
);
951 if (TREE_CODE (arg
) == SSA_NAME
)
953 tree val
= (*get_value
) (arg
);
955 if (val
&& val
!= arg
&& may_propagate_copy (arg
, val
))
957 if (TREE_CODE (val
) != SSA_NAME
)
958 prop_stats
.num_const_prop
++;
960 prop_stats
.num_copy_prop
++;
962 propagate_value (PHI_ARG_DEF_PTR (phi
, i
), val
);
965 /* If we propagated a copy and this argument flows
966 through an abnormal edge, update the replacement
968 if (TREE_CODE (val
) == SSA_NAME
969 && gimple_phi_arg_edge (phi
, i
)->flags
& EDGE_ABNORMAL
)
970 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
975 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
978 fprintf (dump_file
, "No folding possible\n");
981 fprintf (dump_file
, "Folded into: ");
982 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
983 fprintf (dump_file
, "\n");
989 /* Perform final substitution and folding of propagated values.
991 PROP_VALUE[I] contains the single value that should be substituted
992 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
995 If FOLD_FN is non-NULL the function will be invoked on all statements
996 before propagating values for pass specific simplification.
998 DO_DCE is true if trivially dead stmts can be removed.
1000 If DO_DCE is true, the statements within a BB are walked from
1001 last to first element. Otherwise we scan from first to last element.
1003 Return TRUE when something changed. */
1006 substitute_and_fold (ssa_prop_get_value_fn get_value_fn
,
1007 ssa_prop_fold_stmt_fn fold_fn
,
1011 bool something_changed
= false;
1014 if (!get_value_fn
&& !fold_fn
)
1017 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1018 fprintf (dump_file
, "\nSubstituting values and folding statements\n\n");
1020 memset (&prop_stats
, 0, sizeof (prop_stats
));
1022 /* Substitute lattice values at definition sites. */
1024 for (i
= 1; i
< num_ssa_names
; ++i
)
1026 tree name
= ssa_name (i
);
1029 gimple_stmt_iterator gsi
;
1032 || !is_gimple_reg (name
))
1035 def_stmt
= SSA_NAME_DEF_STMT (name
);
1036 if (gimple_nop_p (def_stmt
)
1037 /* Do not substitute ASSERT_EXPR rhs, this will confuse VRP. */
1038 || (gimple_assign_single_p (def_stmt
)
1039 && gimple_assign_rhs_code (def_stmt
) == ASSERT_EXPR
)
1040 || !(val
= (*get_value_fn
) (name
))
1041 || !may_propagate_copy (name
, val
))
1044 gsi
= gsi_for_stmt (def_stmt
);
1045 if (is_gimple_assign (def_stmt
))
1047 gimple_assign_set_rhs_with_ops (&gsi
, TREE_CODE (val
),
1049 gcc_assert (gsi_stmt (gsi
) == def_stmt
);
1050 if (maybe_clean_eh_stmt (def_stmt
))
1051 gimple_purge_dead_eh_edges (gimple_bb (def_stmt
));
1052 update_stmt (def_stmt
);
1054 else if (is_gimple_call (def_stmt
))
1056 int flags
= gimple_call_flags (def_stmt
);
1058 /* Don't optimize away calls that have side-effects. */
1059 if ((flags
& (ECF_CONST
|ECF_PURE
)) == 0
1060 || (flags
& ECF_LOOPING_CONST_OR_PURE
))
1062 if (update_call_from_tree (&gsi
, val
)
1063 && maybe_clean_or_replace_eh_stmt (def_stmt
, gsi_stmt (gsi
)))
1064 gimple_purge_dead_eh_edges (gimple_bb (gsi_stmt (gsi
)));
1066 else if (gimple_code (def_stmt
) == GIMPLE_PHI
)
1068 gimple new_stmt
= gimple_build_assign (name
, val
);
1069 gimple_stmt_iterator gsi2
;
1070 SSA_NAME_DEF_STMT (name
) = new_stmt
;
1071 gsi2
= gsi_after_labels (gimple_bb (def_stmt
));
1072 gsi_insert_before (&gsi2
, new_stmt
, GSI_SAME_STMT
);
1073 remove_phi_node (&gsi
, false);
1076 something_changed
= true;
1079 /* Propagate into all uses and fold. */
1082 gimple_stmt_iterator i
;
1084 /* Propagate known values into PHI nodes. */
1086 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
1087 replace_phi_args_in (gsi_stmt (i
), get_value_fn
);
1089 /* Propagate known values into stmts. Do a backward walk if
1090 do_dce is true. In some case it exposes
1091 more trivially deletable stmts to walk backward. */
1092 for (i
= (do_dce
? gsi_last_bb (bb
) : gsi_start_bb (bb
)); !gsi_end_p (i
);)
1095 gimple stmt
= gsi_stmt (i
);
1097 enum gimple_code code
= gimple_code (stmt
);
1098 gimple_stmt_iterator oldi
;
1106 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1107 range information for names and they are discarded
1110 if (code
== GIMPLE_ASSIGN
1111 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == ASSERT_EXPR
)
1114 /* No point propagating into a stmt whose result is not used,
1115 but instead we might be able to remove a trivially dead stmt.
1116 Don't do this when called from VRP, since the SSA_NAME which
1117 is going to be released could be still referenced in VRP
1120 && gimple_get_lhs (stmt
)
1121 && TREE_CODE (gimple_get_lhs (stmt
)) == SSA_NAME
1122 && has_zero_uses (gimple_get_lhs (stmt
))
1123 && !stmt_could_throw_p (stmt
)
1124 && !gimple_has_side_effects (stmt
))
1126 gimple_stmt_iterator i2
;
1128 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1130 fprintf (dump_file
, "Removing dead stmt ");
1131 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1132 fprintf (dump_file
, "\n");
1134 prop_stats
.num_dce
++;
1135 i2
= gsi_for_stmt (stmt
);
1136 gsi_remove (&i2
, true);
1137 release_defs (stmt
);
1141 /* Replace the statement with its folded version and mark it
1143 did_replace
= false;
1144 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1146 fprintf (dump_file
, "Folding statement: ");
1147 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1152 /* Some statements may be simplified using propagator
1153 specific information. Do this before propagating
1154 into the stmt to not disturb pass specific information. */
1156 && (*fold_fn
)(&oldi
))
1159 prop_stats
.num_stmts_folded
++;
1160 stmt
= gsi_stmt (oldi
);
1164 /* Replace real uses in the statement. */
1166 did_replace
|= replace_uses_in (stmt
, get_value_fn
);
1168 /* If we made a replacement, fold the statement. */
1175 stmt
= gsi_stmt (oldi
);
1177 /* If we cleaned up EH information from the statement,
1179 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
1180 gimple_purge_dead_eh_edges (bb
);
1182 if (is_gimple_assign (stmt
)
1183 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1184 == GIMPLE_SINGLE_RHS
))
1186 tree rhs
= gimple_assign_rhs1 (stmt
);
1188 if (TREE_CODE (rhs
) == ADDR_EXPR
)
1189 recompute_tree_invariant_for_addr_expr (rhs
);
1192 /* Determine what needs to be done to update the SSA form. */
1194 if (!is_gimple_debug (stmt
))
1195 something_changed
= true;
1198 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1202 fprintf (dump_file
, "Folded into: ");
1203 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1204 fprintf (dump_file
, "\n");
1207 fprintf (dump_file
, "Not folded\n");
1212 statistics_counter_event (cfun
, "Constants propagated",
1213 prop_stats
.num_const_prop
);
1214 statistics_counter_event (cfun
, "Copies propagated",
1215 prop_stats
.num_copy_prop
);
1216 statistics_counter_event (cfun
, "Statements folded",
1217 prop_stats
.num_stmts_folded
);
1218 statistics_counter_event (cfun
, "Statements deleted",
1219 prop_stats
.num_dce
);
1220 return something_changed
;
1223 #include "gt-tree-ssa-propagate.h"