1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
44 CONSTANT -> V_i has been found to hold a constant
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
81 a_11 = PHI (a_9, a_10)
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
115 #include "coretypes.h"
120 #include "basic-block.h"
121 #include "function.h"
122 #include "gimple-pretty-print.h"
123 #include "tree-flow.h"
124 #include "tree-pass.h"
125 #include "tree-ssa-propagate.h"
126 #include "value-prof.h"
127 #include "langhooks.h"
129 #include "diagnostic-core.h"
131 #include "gimple-fold.h"
135 /* Possible lattice values. */
144 struct prop_value_d
{
146 ccp_lattice_t lattice_val
;
148 /* Propagated value. */
151 /* Mask that applies to the propagated value during CCP. For
152 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
156 typedef struct prop_value_d prop_value_t
;
158 /* Array of propagated constant values. After propagation,
159 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
160 the constant is held in an SSA name representing a memory store
161 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
162 memory reference used to store (i.e., the LHS of the assignment
164 static prop_value_t
*const_val
;
166 static void canonicalize_float_value (prop_value_t
*);
167 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
169 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
172 dump_lattice_value (FILE *outf
, const char *prefix
, prop_value_t val
)
174 switch (val
.lattice_val
)
177 fprintf (outf
, "%sUNINITIALIZED", prefix
);
180 fprintf (outf
, "%sUNDEFINED", prefix
);
183 fprintf (outf
, "%sVARYING", prefix
);
186 fprintf (outf
, "%sCONSTANT ", prefix
);
187 if (TREE_CODE (val
.value
) != INTEGER_CST
188 || double_int_zero_p (val
.mask
))
189 print_generic_expr (outf
, val
.value
, dump_flags
);
192 double_int cval
= double_int_and_not (tree_to_double_int (val
.value
),
194 fprintf (outf
, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
195 prefix
, cval
.high
, cval
.low
);
196 fprintf (outf
, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX
")",
197 val
.mask
.high
, val
.mask
.low
);
206 /* Print lattice value VAL to stderr. */
208 void debug_lattice_value (prop_value_t val
);
211 debug_lattice_value (prop_value_t val
)
213 dump_lattice_value (stderr
, "", val
);
214 fprintf (stderr
, "\n");
218 /* Compute a default value for variable VAR and store it in the
219 CONST_VAL array. The following rules are used to get default
222 1- Global and static variables that are declared constant are
225 2- Any other value is considered UNDEFINED. This is useful when
226 considering PHI nodes. PHI arguments that are undefined do not
227 change the constant value of the PHI node, which allows for more
228 constants to be propagated.
230 3- Variables defined by statements other than assignments and PHI
231 nodes are considered VARYING.
233 4- Initial values of variables that are not GIMPLE registers are
234 considered VARYING. */
237 get_default_value (tree var
)
239 tree sym
= SSA_NAME_VAR (var
);
240 prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, { 0, 0 } };
243 stmt
= SSA_NAME_DEF_STMT (var
);
245 if (gimple_nop_p (stmt
))
247 /* Variables defined by an empty statement are those used
248 before being initialized. If VAR is a local variable, we
249 can assume initially that it is UNDEFINED, otherwise we must
250 consider it VARYING. */
251 if (is_gimple_reg (sym
)
252 && TREE_CODE (sym
) == VAR_DECL
)
253 val
.lattice_val
= UNDEFINED
;
256 val
.lattice_val
= VARYING
;
257 val
.mask
= double_int_minus_one
;
260 else if (is_gimple_assign (stmt
)
261 /* Value-returning GIMPLE_CALL statements assign to
262 a variable, and are treated similarly to GIMPLE_ASSIGN. */
263 || (is_gimple_call (stmt
)
264 && gimple_call_lhs (stmt
) != NULL_TREE
)
265 || gimple_code (stmt
) == GIMPLE_PHI
)
268 if (gimple_assign_single_p (stmt
)
269 && DECL_P (gimple_assign_rhs1 (stmt
))
270 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
272 val
.lattice_val
= CONSTANT
;
276 /* Any other variable defined by an assignment or a PHI node
277 is considered UNDEFINED. */
278 val
.lattice_val
= UNDEFINED
;
282 /* Otherwise, VAR will never take on a constant value. */
283 val
.lattice_val
= VARYING
;
284 val
.mask
= double_int_minus_one
;
291 /* Get the constant value associated with variable VAR. */
293 static inline prop_value_t
*
298 if (const_val
== NULL
)
301 val
= &const_val
[SSA_NAME_VERSION (var
)];
302 if (val
->lattice_val
== UNINITIALIZED
)
303 *val
= get_default_value (var
);
305 canonicalize_float_value (val
);
310 /* Return the constant tree value associated with VAR. */
313 get_constant_value (tree var
)
316 if (TREE_CODE (var
) != SSA_NAME
)
318 if (is_gimple_min_invariant (var
))
322 val
= get_value (var
);
324 && val
->lattice_val
== CONSTANT
325 && (TREE_CODE (val
->value
) != INTEGER_CST
326 || double_int_zero_p (val
->mask
)))
331 /* Sets the value associated with VAR to VARYING. */
334 set_value_varying (tree var
)
336 prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
338 val
->lattice_val
= VARYING
;
339 val
->value
= NULL_TREE
;
340 val
->mask
= double_int_minus_one
;
343 /* For float types, modify the value of VAL to make ccp work correctly
344 for non-standard values (-0, NaN):
346 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
347 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
348 This is to fix the following problem (see PR 29921): Suppose we have
352 and we set value of y to NaN. This causes value of x to be set to NaN.
353 When we later determine that y is in fact VARYING, fold uses the fact
354 that HONOR_NANS is false, and we try to change the value of x to 0,
355 causing an ICE. With HONOR_NANS being false, the real appearance of
356 NaN would cause undefined behavior, though, so claiming that y (and x)
357 are UNDEFINED initially is correct. */
360 canonicalize_float_value (prop_value_t
*val
)
362 enum machine_mode mode
;
366 if (val
->lattice_val
!= CONSTANT
367 || TREE_CODE (val
->value
) != REAL_CST
)
370 d
= TREE_REAL_CST (val
->value
);
371 type
= TREE_TYPE (val
->value
);
372 mode
= TYPE_MODE (type
);
374 if (!HONOR_SIGNED_ZEROS (mode
)
375 && REAL_VALUE_MINUS_ZERO (d
))
377 val
->value
= build_real (type
, dconst0
);
381 if (!HONOR_NANS (mode
)
382 && REAL_VALUE_ISNAN (d
))
384 val
->lattice_val
= UNDEFINED
;
390 /* Return whether the lattice transition is valid. */
393 valid_lattice_transition (prop_value_t old_val
, prop_value_t new_val
)
395 /* Lattice transitions must always be monotonically increasing in
397 if (old_val
.lattice_val
< new_val
.lattice_val
)
400 if (old_val
.lattice_val
!= new_val
.lattice_val
)
403 if (!old_val
.value
&& !new_val
.value
)
406 /* Now both lattice values are CONSTANT. */
408 /* Allow transitioning from PHI <&x, not executable> == &x
409 to PHI <&x, &y> == common alignment. */
410 if (TREE_CODE (old_val
.value
) != INTEGER_CST
411 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
414 /* Bit-lattices have to agree in the still valid bits. */
415 if (TREE_CODE (old_val
.value
) == INTEGER_CST
416 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
417 return double_int_equal_p
418 (double_int_and_not (tree_to_double_int (old_val
.value
),
420 double_int_and_not (tree_to_double_int (new_val
.value
),
423 /* Otherwise constant values have to agree. */
424 return operand_equal_p (old_val
.value
, new_val
.value
, 0);
427 /* Set the value for variable VAR to NEW_VAL. Return true if the new
428 value is different from VAR's previous value. */
431 set_lattice_value (tree var
, prop_value_t new_val
)
433 /* We can deal with old UNINITIALIZED values just fine here. */
434 prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
436 canonicalize_float_value (&new_val
);
438 /* We have to be careful to not go up the bitwise lattice
439 represented by the mask.
440 ??? This doesn't seem to be the best place to enforce this. */
441 if (new_val
.lattice_val
== CONSTANT
442 && old_val
->lattice_val
== CONSTANT
443 && TREE_CODE (new_val
.value
) == INTEGER_CST
444 && TREE_CODE (old_val
->value
) == INTEGER_CST
)
447 diff
= double_int_xor (tree_to_double_int (new_val
.value
),
448 tree_to_double_int (old_val
->value
));
449 new_val
.mask
= double_int_ior (new_val
.mask
,
450 double_int_ior (old_val
->mask
, diff
));
453 gcc_assert (valid_lattice_transition (*old_val
, new_val
));
455 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
456 caller that this was a non-transition. */
457 if (old_val
->lattice_val
!= new_val
.lattice_val
458 || (new_val
.lattice_val
== CONSTANT
459 && TREE_CODE (new_val
.value
) == INTEGER_CST
460 && (TREE_CODE (old_val
->value
) != INTEGER_CST
461 || !double_int_equal_p (new_val
.mask
, old_val
->mask
))))
463 /* ??? We would like to delay creation of INTEGER_CSTs from
464 partially constants here. */
466 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
468 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
469 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
474 gcc_assert (new_val
.lattice_val
!= UNINITIALIZED
);
481 static prop_value_t
get_value_for_expr (tree
, bool);
482 static prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
483 static void bit_value_binop_1 (enum tree_code
, tree
, double_int
*, double_int
*,
484 tree
, double_int
, double_int
,
485 tree
, double_int
, double_int
);
487 /* Return a double_int that can be used for bitwise simplifications
491 value_to_double_int (prop_value_t val
)
494 && TREE_CODE (val
.value
) == INTEGER_CST
)
495 return tree_to_double_int (val
.value
);
497 return double_int_zero
;
500 /* Return the value for the address expression EXPR based on alignment
504 get_value_from_alignment (tree expr
)
506 tree type
= TREE_TYPE (expr
);
508 unsigned HOST_WIDE_INT bitpos
;
511 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
513 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
515 = double_int_and_not (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
516 ? double_int_mask (TYPE_PRECISION (type
))
517 : double_int_minus_one
,
518 uhwi_to_double_int (align
/ BITS_PER_UNIT
- 1));
519 val
.lattice_val
= double_int_minus_one_p (val
.mask
) ? VARYING
: CONSTANT
;
520 if (val
.lattice_val
== CONSTANT
)
522 = double_int_to_tree (type
, uhwi_to_double_int (bitpos
/ BITS_PER_UNIT
));
524 val
.value
= NULL_TREE
;
529 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
530 return constant bits extracted from alignment information for
531 invariant addresses. */
534 get_value_for_expr (tree expr
, bool for_bits_p
)
538 if (TREE_CODE (expr
) == SSA_NAME
)
540 val
= *get_value (expr
);
542 && val
.lattice_val
== CONSTANT
543 && TREE_CODE (val
.value
) == ADDR_EXPR
)
544 val
= get_value_from_alignment (val
.value
);
546 else if (is_gimple_min_invariant (expr
)
547 && (!for_bits_p
|| TREE_CODE (expr
) != ADDR_EXPR
))
549 val
.lattice_val
= CONSTANT
;
551 val
.mask
= double_int_zero
;
552 canonicalize_float_value (&val
);
554 else if (TREE_CODE (expr
) == ADDR_EXPR
)
555 val
= get_value_from_alignment (expr
);
558 val
.lattice_val
= VARYING
;
559 val
.mask
= double_int_minus_one
;
560 val
.value
= NULL_TREE
;
565 /* Return the likely CCP lattice value for STMT.
567 If STMT has no operands, then return CONSTANT.
569 Else if undefinedness of operands of STMT cause its value to be
570 undefined, then return UNDEFINED.
572 Else if any operands of STMT are constants, then return CONSTANT.
574 Else return VARYING. */
577 likely_value (gimple stmt
)
579 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
584 enum gimple_code code
= gimple_code (stmt
);
586 /* This function appears to be called only for assignments, calls,
587 conditionals, and switches, due to the logic in visit_stmt. */
588 gcc_assert (code
== GIMPLE_ASSIGN
589 || code
== GIMPLE_CALL
590 || code
== GIMPLE_COND
591 || code
== GIMPLE_SWITCH
);
593 /* If the statement has volatile operands, it won't fold to a
595 if (gimple_has_volatile_ops (stmt
))
598 /* Arrive here for more complex cases. */
599 has_constant_operand
= false;
600 has_undefined_operand
= false;
601 all_undefined_operands
= true;
602 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
604 prop_value_t
*val
= get_value (use
);
606 if (val
->lattice_val
== UNDEFINED
)
607 has_undefined_operand
= true;
609 all_undefined_operands
= false;
611 if (val
->lattice_val
== CONSTANT
)
612 has_constant_operand
= true;
615 /* There may be constants in regular rhs operands. For calls we
616 have to ignore lhs, fndecl and static chain, otherwise only
618 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
619 i
< gimple_num_ops (stmt
); ++i
)
621 tree op
= gimple_op (stmt
, i
);
622 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
624 if (is_gimple_min_invariant (op
))
625 has_constant_operand
= true;
628 if (has_constant_operand
)
629 all_undefined_operands
= false;
631 /* If the operation combines operands like COMPLEX_EXPR make sure to
632 not mark the result UNDEFINED if only one part of the result is
634 if (has_undefined_operand
&& all_undefined_operands
)
636 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
638 switch (gimple_assign_rhs_code (stmt
))
640 /* Unary operators are handled with all_undefined_operands. */
643 case POINTER_PLUS_EXPR
:
644 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
645 Not bitwise operators, one VARYING operand may specify the
646 result completely. Not logical operators for the same reason.
647 Not COMPLEX_EXPR as one VARYING operand makes the result partly
648 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
649 the undefined operand may be promoted. */
653 /* If any part of an address is UNDEFINED, like the index
654 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
661 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
662 fall back to CONSTANT. During iteration UNDEFINED may still drop
664 if (has_undefined_operand
)
667 /* We do not consider virtual operands here -- load from read-only
668 memory may have only VARYING virtual operands, but still be
670 if (has_constant_operand
671 || gimple_references_memory_p (stmt
))
677 /* Returns true if STMT cannot be constant. */
680 surely_varying_stmt_p (gimple stmt
)
682 /* If the statement has operands that we cannot handle, it cannot be
684 if (gimple_has_volatile_ops (stmt
))
687 /* If it is a call and does not return a value or is not a
688 builtin and not an indirect call, it is varying. */
689 if (is_gimple_call (stmt
))
692 if (!gimple_call_lhs (stmt
)
693 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
694 && !DECL_BUILT_IN (fndecl
)))
698 /* Any other store operation is not interesting. */
699 else if (gimple_vdef (stmt
))
702 /* Anything other than assignments and conditional jumps are not
703 interesting for CCP. */
704 if (gimple_code (stmt
) != GIMPLE_ASSIGN
705 && gimple_code (stmt
) != GIMPLE_COND
706 && gimple_code (stmt
) != GIMPLE_SWITCH
707 && gimple_code (stmt
) != GIMPLE_CALL
)
713 /* Initialize local data structures for CCP. */
716 ccp_initialize (void)
720 const_val
= XCNEWVEC (prop_value_t
, num_ssa_names
);
722 /* Initialize simulation flags for PHI nodes and statements. */
725 gimple_stmt_iterator i
;
727 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
729 gimple stmt
= gsi_stmt (i
);
732 /* If the statement is a control insn, then we do not
733 want to avoid simulating the statement once. Failure
734 to do so means that those edges will never get added. */
735 if (stmt_ends_bb_p (stmt
))
738 is_varying
= surely_varying_stmt_p (stmt
);
745 /* If the statement will not produce a constant, mark
746 all its outputs VARYING. */
747 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
748 set_value_varying (def
);
750 prop_set_simulate_again (stmt
, !is_varying
);
754 /* Now process PHI nodes. We never clear the simulate_again flag on
755 phi nodes, since we do not know which edges are executable yet,
756 except for phi nodes for virtual operands when we do not do store ccp. */
759 gimple_stmt_iterator i
;
761 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
763 gimple phi
= gsi_stmt (i
);
765 if (!is_gimple_reg (gimple_phi_result (phi
)))
766 prop_set_simulate_again (phi
, false);
768 prop_set_simulate_again (phi
, true);
773 /* Debug count support. Reset the values of ssa names
774 VARYING when the total number ssa names analyzed is
775 beyond the debug count specified. */
781 for (i
= 0; i
< num_ssa_names
; i
++)
785 const_val
[i
].lattice_val
= VARYING
;
786 const_val
[i
].mask
= double_int_minus_one
;
787 const_val
[i
].value
= NULL_TREE
;
793 /* Do final substitution of propagated values, cleanup the flowgraph and
794 free allocated storage.
796 Return TRUE when something was optimized. */
801 bool something_changed
;
806 /* Derive alignment and misalignment information from partially
807 constant pointers in the lattice. */
808 for (i
= 1; i
< num_ssa_names
; ++i
)
810 tree name
= ssa_name (i
);
812 unsigned int tem
, align
;
815 || !POINTER_TYPE_P (TREE_TYPE (name
)))
818 val
= get_value (name
);
819 if (val
->lattice_val
!= CONSTANT
820 || TREE_CODE (val
->value
) != INTEGER_CST
)
823 /* Trailing constant bits specify the alignment, trailing value
824 bits the misalignment. */
826 align
= (tem
& -tem
);
828 set_ptr_info_alignment (get_ptr_info (name
), align
,
829 TREE_INT_CST_LOW (val
->value
) & (align
- 1));
832 /* Perform substitutions based on the known constant values. */
833 something_changed
= substitute_and_fold (get_constant_value
,
834 ccp_fold_stmt
, true);
838 return something_changed
;;
842 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
845 any M UNDEFINED = any
846 any M VARYING = VARYING
847 Ci M Cj = Ci if (i == j)
848 Ci M Cj = VARYING if (i != j)
852 ccp_lattice_meet (prop_value_t
*val1
, prop_value_t
*val2
)
854 if (val1
->lattice_val
== UNDEFINED
)
856 /* UNDEFINED M any = any */
859 else if (val2
->lattice_val
== UNDEFINED
)
861 /* any M UNDEFINED = any
862 Nothing to do. VAL1 already contains the value we want. */
865 else if (val1
->lattice_val
== VARYING
866 || val2
->lattice_val
== VARYING
)
868 /* any M VARYING = VARYING. */
869 val1
->lattice_val
= VARYING
;
870 val1
->mask
= double_int_minus_one
;
871 val1
->value
= NULL_TREE
;
873 else if (val1
->lattice_val
== CONSTANT
874 && val2
->lattice_val
== CONSTANT
875 && TREE_CODE (val1
->value
) == INTEGER_CST
876 && TREE_CODE (val2
->value
) == INTEGER_CST
)
878 /* Ci M Cj = Ci if (i == j)
879 Ci M Cj = VARYING if (i != j)
881 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
884 = double_int_ior (double_int_ior (val1
->mask
,
886 double_int_xor (tree_to_double_int (val1
->value
),
887 tree_to_double_int (val2
->value
)));
888 if (double_int_minus_one_p (val1
->mask
))
890 val1
->lattice_val
= VARYING
;
891 val1
->value
= NULL_TREE
;
894 else if (val1
->lattice_val
== CONSTANT
895 && val2
->lattice_val
== CONSTANT
896 && simple_cst_equal (val1
->value
, val2
->value
) == 1)
898 /* Ci M Cj = Ci if (i == j)
899 Ci M Cj = VARYING if (i != j)
901 VAL1 already contains the value we want for equivalent values. */
903 else if (val1
->lattice_val
== CONSTANT
904 && val2
->lattice_val
== CONSTANT
905 && (TREE_CODE (val1
->value
) == ADDR_EXPR
906 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
908 /* When not equal addresses are involved try meeting for
910 prop_value_t tem
= *val2
;
911 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
912 *val1
= get_value_for_expr (val1
->value
, true);
913 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
914 tem
= get_value_for_expr (val2
->value
, true);
915 ccp_lattice_meet (val1
, &tem
);
919 /* Any other combination is VARYING. */
920 val1
->lattice_val
= VARYING
;
921 val1
->mask
= double_int_minus_one
;
922 val1
->value
= NULL_TREE
;
927 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
928 lattice values to determine PHI_NODE's lattice value. The value of a
929 PHI node is determined calling ccp_lattice_meet with all the arguments
930 of the PHI node that are incoming via executable edges. */
932 static enum ssa_prop_result
933 ccp_visit_phi_node (gimple phi
)
936 prop_value_t
*old_val
, new_val
;
938 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
940 fprintf (dump_file
, "\nVisiting PHI node: ");
941 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
944 old_val
= get_value (gimple_phi_result (phi
));
945 switch (old_val
->lattice_val
)
948 return SSA_PROP_VARYING
;
955 new_val
.lattice_val
= UNDEFINED
;
956 new_val
.value
= NULL_TREE
;
963 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
965 /* Compute the meet operator over all the PHI arguments flowing
966 through executable edges. */
967 edge e
= gimple_phi_arg_edge (phi
, i
);
969 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
972 "\n Argument #%d (%d -> %d %sexecutable)\n",
973 i
, e
->src
->index
, e
->dest
->index
,
974 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
977 /* If the incoming edge is executable, Compute the meet operator for
978 the existing value of the PHI node and the current PHI argument. */
979 if (e
->flags
& EDGE_EXECUTABLE
)
981 tree arg
= gimple_phi_arg (phi
, i
)->def
;
982 prop_value_t arg_val
= get_value_for_expr (arg
, false);
984 ccp_lattice_meet (&new_val
, &arg_val
);
986 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
988 fprintf (dump_file
, "\t");
989 print_generic_expr (dump_file
, arg
, dump_flags
);
990 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
991 fprintf (dump_file
, "\n");
994 if (new_val
.lattice_val
== VARYING
)
999 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1001 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
1002 fprintf (dump_file
, "\n\n");
1005 /* Make the transition to the new value. */
1006 if (set_lattice_value (gimple_phi_result (phi
), new_val
))
1008 if (new_val
.lattice_val
== VARYING
)
1009 return SSA_PROP_VARYING
;
1011 return SSA_PROP_INTERESTING
;
1014 return SSA_PROP_NOT_INTERESTING
;
1017 /* Return the constant value for OP or OP otherwise. */
1020 valueize_op (tree op
)
1022 if (TREE_CODE (op
) == SSA_NAME
)
1024 tree tem
= get_constant_value (op
);
1031 /* CCP specific front-end to the non-destructive constant folding
1034 Attempt to simplify the RHS of STMT knowing that one or more
1035 operands are constants.
1037 If simplification is possible, return the simplified RHS,
1038 otherwise return the original RHS or NULL_TREE. */
1041 ccp_fold (gimple stmt
)
1043 location_t loc
= gimple_location (stmt
);
1044 switch (gimple_code (stmt
))
1048 /* Handle comparison operators that can appear in GIMPLE form. */
1049 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1050 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1051 enum tree_code code
= gimple_cond_code (stmt
);
1052 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1057 /* Return the constant switch index. */
1058 return valueize_op (gimple_switch_index (stmt
));
1063 return gimple_fold_stmt_to_constant_1 (stmt
, valueize_op
);
1070 /* Apply the operation CODE in type TYPE to the value, mask pair
1071 RVAL and RMASK representing a value of type RTYPE and set
1072 the value, mask pair *VAL and *MASK to the result. */
1075 bit_value_unop_1 (enum tree_code code
, tree type
,
1076 double_int
*val
, double_int
*mask
,
1077 tree rtype
, double_int rval
, double_int rmask
)
1083 *val
= double_int_not (rval
);
1088 double_int temv
, temm
;
1089 /* Return ~rval + 1. */
1090 bit_value_unop_1 (BIT_NOT_EXPR
, type
, &temv
, &temm
, type
, rval
, rmask
);
1091 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1093 type
, double_int_one
, double_int_zero
);
1101 /* First extend mask and value according to the original type. */
1102 uns
= TYPE_UNSIGNED (rtype
);
1103 *mask
= double_int_ext (rmask
, TYPE_PRECISION (rtype
), uns
);
1104 *val
= double_int_ext (rval
, TYPE_PRECISION (rtype
), uns
);
1106 /* Then extend mask and value according to the target type. */
1107 uns
= TYPE_UNSIGNED (type
);
1108 *mask
= double_int_ext (*mask
, TYPE_PRECISION (type
), uns
);
1109 *val
= double_int_ext (*val
, TYPE_PRECISION (type
), uns
);
1114 *mask
= double_int_minus_one
;
1119 /* Apply the operation CODE in type TYPE to the value, mask pairs
1120 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1121 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1124 bit_value_binop_1 (enum tree_code code
, tree type
,
1125 double_int
*val
, double_int
*mask
,
1126 tree r1type
, double_int r1val
, double_int r1mask
,
1127 tree r2type
, double_int r2val
, double_int r2mask
)
1129 bool uns
= TYPE_UNSIGNED (type
);
1130 /* Assume we'll get a constant result. Use an initial varying value,
1131 we fall back to varying in the end if necessary. */
1132 *mask
= double_int_minus_one
;
1136 /* The mask is constant where there is a known not
1137 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1138 *mask
= double_int_and (double_int_ior (r1mask
, r2mask
),
1139 double_int_and (double_int_ior (r1val
, r1mask
),
1140 double_int_ior (r2val
, r2mask
)));
1141 *val
= double_int_and (r1val
, r2val
);
1145 /* The mask is constant where there is a known
1146 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1147 *mask
= double_int_and_not
1148 (double_int_ior (r1mask
, r2mask
),
1149 double_int_ior (double_int_and_not (r1val
, r1mask
),
1150 double_int_and_not (r2val
, r2mask
)));
1151 *val
= double_int_ior (r1val
, r2val
);
1156 *mask
= double_int_ior (r1mask
, r2mask
);
1157 *val
= double_int_xor (r1val
, r2val
);
1162 if (double_int_zero_p (r2mask
))
1164 HOST_WIDE_INT shift
= r2val
.low
;
1165 if (code
== RROTATE_EXPR
)
1167 *mask
= double_int_lrotate (r1mask
, shift
, TYPE_PRECISION (type
));
1168 *val
= double_int_lrotate (r1val
, shift
, TYPE_PRECISION (type
));
1174 /* ??? We can handle partially known shift counts if we know
1175 its sign. That way we can tell that (x << (y | 8)) & 255
1177 if (double_int_zero_p (r2mask
))
1179 HOST_WIDE_INT shift
= r2val
.low
;
1180 if (code
== RSHIFT_EXPR
)
1182 /* We need to know if we are doing a left or a right shift
1183 to properly shift in zeros for left shift and unsigned
1184 right shifts and the sign bit for signed right shifts.
1185 For signed right shifts we shift in varying in case
1186 the sign bit was varying. */
1189 *mask
= double_int_lshift (r1mask
, shift
,
1190 TYPE_PRECISION (type
), false);
1191 *val
= double_int_lshift (r1val
, shift
,
1192 TYPE_PRECISION (type
), false);
1197 *mask
= double_int_rshift (r1mask
, shift
,
1198 TYPE_PRECISION (type
), !uns
);
1199 *val
= double_int_rshift (r1val
, shift
,
1200 TYPE_PRECISION (type
), !uns
);
1211 case POINTER_PLUS_EXPR
:
1214 /* Do the addition with unknown bits set to zero, to give carry-ins of
1215 zero wherever possible. */
1216 lo
= double_int_add (double_int_and_not (r1val
, r1mask
),
1217 double_int_and_not (r2val
, r2mask
));
1218 lo
= double_int_ext (lo
, TYPE_PRECISION (type
), uns
);
1219 /* Do the addition with unknown bits set to one, to give carry-ins of
1220 one wherever possible. */
1221 hi
= double_int_add (double_int_ior (r1val
, r1mask
),
1222 double_int_ior (r2val
, r2mask
));
1223 hi
= double_int_ext (hi
, TYPE_PRECISION (type
), uns
);
1224 /* Each bit in the result is known if (a) the corresponding bits in
1225 both inputs are known, and (b) the carry-in to that bit position
1226 is known. We can check condition (b) by seeing if we got the same
1227 result with minimised carries as with maximised carries. */
1228 *mask
= double_int_ior (double_int_ior (r1mask
, r2mask
),
1229 double_int_xor (lo
, hi
));
1230 *mask
= double_int_ext (*mask
, TYPE_PRECISION (type
), uns
);
1231 /* It shouldn't matter whether we choose lo or hi here. */
1238 double_int temv
, temm
;
1239 bit_value_unop_1 (NEGATE_EXPR
, r2type
, &temv
, &temm
,
1240 r2type
, r2val
, r2mask
);
1241 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1242 r1type
, r1val
, r1mask
,
1243 r2type
, temv
, temm
);
1249 /* Just track trailing zeros in both operands and transfer
1250 them to the other. */
1251 int r1tz
= double_int_ctz (double_int_ior (r1val
, r1mask
));
1252 int r2tz
= double_int_ctz (double_int_ior (r2val
, r2mask
));
1253 if (r1tz
+ r2tz
>= HOST_BITS_PER_DOUBLE_INT
)
1255 *mask
= double_int_zero
;
1256 *val
= double_int_zero
;
1258 else if (r1tz
+ r2tz
> 0)
1260 *mask
= double_int_not (double_int_mask (r1tz
+ r2tz
));
1261 *mask
= double_int_ext (*mask
, TYPE_PRECISION (type
), uns
);
1262 *val
= double_int_zero
;
1270 double_int m
= double_int_ior (r1mask
, r2mask
);
1271 if (!double_int_equal_p (double_int_and_not (r1val
, m
),
1272 double_int_and_not (r2val
, m
)))
1274 *mask
= double_int_zero
;
1275 *val
= ((code
== EQ_EXPR
) ? double_int_zero
: double_int_one
);
1279 /* We know the result of a comparison is always one or zero. */
1280 *mask
= double_int_one
;
1281 *val
= double_int_zero
;
1289 double_int tem
= r1val
;
1295 code
= swap_tree_comparison (code
);
1302 /* If the most significant bits are not known we know nothing. */
1303 if (double_int_negative_p (r1mask
) || double_int_negative_p (r2mask
))
1306 /* For comparisons the signedness is in the comparison operands. */
1307 uns
= TYPE_UNSIGNED (r1type
);
1309 /* If we know the most significant bits we know the values
1310 value ranges by means of treating varying bits as zero
1311 or one. Do a cross comparison of the max/min pairs. */
1312 maxmin
= double_int_cmp (double_int_ior (r1val
, r1mask
),
1313 double_int_and_not (r2val
, r2mask
), uns
);
1314 minmax
= double_int_cmp (double_int_and_not (r1val
, r1mask
),
1315 double_int_ior (r2val
, r2mask
), uns
);
1316 if (maxmin
< 0) /* r1 is less than r2. */
1318 *mask
= double_int_zero
;
1319 *val
= double_int_one
;
1321 else if (minmax
> 0) /* r1 is not less or equal to r2. */
1323 *mask
= double_int_zero
;
1324 *val
= double_int_zero
;
1326 else if (maxmin
== minmax
) /* r1 and r2 are equal. */
1328 /* This probably should never happen as we'd have
1329 folded the thing during fully constant value folding. */
1330 *mask
= double_int_zero
;
1331 *val
= (code
== LE_EXPR
? double_int_one
: double_int_zero
);
1335 /* We know the result of a comparison is always one or zero. */
1336 *mask
= double_int_one
;
1337 *val
= double_int_zero
;
1346 /* Return the propagation value when applying the operation CODE to
1347 the value RHS yielding type TYPE. */
1350 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1352 prop_value_t rval
= get_value_for_expr (rhs
, true);
1353 double_int value
, mask
;
1356 if (rval
.lattice_val
== UNDEFINED
)
1359 gcc_assert ((rval
.lattice_val
== CONSTANT
1360 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1361 || double_int_minus_one_p (rval
.mask
));
1362 bit_value_unop_1 (code
, type
, &value
, &mask
,
1363 TREE_TYPE (rhs
), value_to_double_int (rval
), rval
.mask
);
1364 if (!double_int_minus_one_p (mask
))
1366 val
.lattice_val
= CONSTANT
;
1368 /* ??? Delay building trees here. */
1369 val
.value
= double_int_to_tree (type
, value
);
1373 val
.lattice_val
= VARYING
;
1374 val
.value
= NULL_TREE
;
1375 val
.mask
= double_int_minus_one
;
1380 /* Return the propagation value when applying the operation CODE to
1381 the values RHS1 and RHS2 yielding type TYPE. */
1384 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1386 prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1387 prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1388 double_int value
, mask
;
1391 if (r1val
.lattice_val
== UNDEFINED
1392 || r2val
.lattice_val
== UNDEFINED
)
1394 val
.lattice_val
= VARYING
;
1395 val
.value
= NULL_TREE
;
1396 val
.mask
= double_int_minus_one
;
1400 gcc_assert ((r1val
.lattice_val
== CONSTANT
1401 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1402 || double_int_minus_one_p (r1val
.mask
));
1403 gcc_assert ((r2val
.lattice_val
== CONSTANT
1404 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1405 || double_int_minus_one_p (r2val
.mask
));
1406 bit_value_binop_1 (code
, type
, &value
, &mask
,
1407 TREE_TYPE (rhs1
), value_to_double_int (r1val
), r1val
.mask
,
1408 TREE_TYPE (rhs2
), value_to_double_int (r2val
), r2val
.mask
);
1409 if (!double_int_minus_one_p (mask
))
1411 val
.lattice_val
= CONSTANT
;
1413 /* ??? Delay building trees here. */
1414 val
.value
= double_int_to_tree (type
, value
);
1418 val
.lattice_val
= VARYING
;
1419 val
.value
= NULL_TREE
;
1420 val
.mask
= double_int_minus_one
;
1425 /* Return the propagation value when applying __builtin_assume_aligned to
1429 bit_value_assume_aligned (gimple stmt
)
1431 tree ptr
= gimple_call_arg (stmt
, 0), align
, misalign
= NULL_TREE
;
1432 tree type
= TREE_TYPE (ptr
);
1433 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
1434 prop_value_t ptrval
= get_value_for_expr (ptr
, true);
1435 prop_value_t alignval
;
1436 double_int value
, mask
;
1438 if (ptrval
.lattice_val
== UNDEFINED
)
1440 gcc_assert ((ptrval
.lattice_val
== CONSTANT
1441 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
1442 || double_int_minus_one_p (ptrval
.mask
));
1443 align
= gimple_call_arg (stmt
, 1);
1444 if (!host_integerp (align
, 1))
1446 aligni
= tree_low_cst (align
, 1);
1448 || (aligni
& (aligni
- 1)) != 0)
1450 if (gimple_call_num_args (stmt
) > 2)
1452 misalign
= gimple_call_arg (stmt
, 2);
1453 if (!host_integerp (misalign
, 1))
1455 misaligni
= tree_low_cst (misalign
, 1);
1456 if (misaligni
>= aligni
)
1459 align
= build_int_cst_type (type
, -aligni
);
1460 alignval
= get_value_for_expr (align
, true);
1461 bit_value_binop_1 (BIT_AND_EXPR
, type
, &value
, &mask
,
1462 type
, value_to_double_int (ptrval
), ptrval
.mask
,
1463 type
, value_to_double_int (alignval
), alignval
.mask
);
1464 if (!double_int_minus_one_p (mask
))
1466 val
.lattice_val
= CONSTANT
;
1468 gcc_assert ((mask
.low
& (aligni
- 1)) == 0);
1469 gcc_assert ((value
.low
& (aligni
- 1)) == 0);
1470 value
.low
|= misaligni
;
1471 /* ??? Delay building trees here. */
1472 val
.value
= double_int_to_tree (type
, value
);
1476 val
.lattice_val
= VARYING
;
1477 val
.value
= NULL_TREE
;
1478 val
.mask
= double_int_minus_one
;
1483 /* Evaluate statement STMT.
1484 Valid only for assignments, calls, conditionals, and switches. */
1487 evaluate_stmt (gimple stmt
)
1490 tree simplified
= NULL_TREE
;
1491 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1492 bool is_constant
= false;
1495 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1497 fprintf (dump_file
, "which is likely ");
1498 switch (likelyvalue
)
1501 fprintf (dump_file
, "CONSTANT");
1504 fprintf (dump_file
, "UNDEFINED");
1507 fprintf (dump_file
, "VARYING");
1511 fprintf (dump_file
, "\n");
1514 /* If the statement is likely to have a CONSTANT result, then try
1515 to fold the statement to determine the constant value. */
1516 /* FIXME. This is the only place that we call ccp_fold.
1517 Since likely_value never returns CONSTANT for calls, we will
1518 not attempt to fold them, including builtins that may profit. */
1519 if (likelyvalue
== CONSTANT
)
1521 fold_defer_overflow_warnings ();
1522 simplified
= ccp_fold (stmt
);
1523 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1524 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1527 /* The statement produced a constant value. */
1528 val
.lattice_val
= CONSTANT
;
1529 val
.value
= simplified
;
1530 val
.mask
= double_int_zero
;
1533 /* If the statement is likely to have a VARYING result, then do not
1534 bother folding the statement. */
1535 else if (likelyvalue
== VARYING
)
1537 enum gimple_code code
= gimple_code (stmt
);
1538 if (code
== GIMPLE_ASSIGN
)
1540 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1542 /* Other cases cannot satisfy is_gimple_min_invariant
1544 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1545 simplified
= gimple_assign_rhs1 (stmt
);
1547 else if (code
== GIMPLE_SWITCH
)
1548 simplified
= gimple_switch_index (stmt
);
1550 /* These cannot satisfy is_gimple_min_invariant without folding. */
1551 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1552 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1555 /* The statement produced a constant value. */
1556 val
.lattice_val
= CONSTANT
;
1557 val
.value
= simplified
;
1558 val
.mask
= double_int_zero
;
1562 /* Resort to simplification for bitwise tracking. */
1563 if (flag_tree_bit_ccp
1564 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
))
1567 enum gimple_code code
= gimple_code (stmt
);
1569 val
.lattice_val
= VARYING
;
1570 val
.value
= NULL_TREE
;
1571 val
.mask
= double_int_minus_one
;
1572 if (code
== GIMPLE_ASSIGN
)
1574 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1575 tree rhs1
= gimple_assign_rhs1 (stmt
);
1576 switch (get_gimple_rhs_class (subcode
))
1578 case GIMPLE_SINGLE_RHS
:
1579 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1580 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1581 val
= get_value_for_expr (rhs1
, true);
1584 case GIMPLE_UNARY_RHS
:
1585 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1586 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1587 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt
))
1588 || POINTER_TYPE_P (gimple_expr_type (stmt
))))
1589 val
= bit_value_unop (subcode
, gimple_expr_type (stmt
), rhs1
);
1592 case GIMPLE_BINARY_RHS
:
1593 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1594 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1596 tree lhs
= gimple_assign_lhs (stmt
);
1597 tree rhs2
= gimple_assign_rhs2 (stmt
);
1598 val
= bit_value_binop (subcode
,
1599 TREE_TYPE (lhs
), rhs1
, rhs2
);
1606 else if (code
== GIMPLE_COND
)
1608 enum tree_code code
= gimple_cond_code (stmt
);
1609 tree rhs1
= gimple_cond_lhs (stmt
);
1610 tree rhs2
= gimple_cond_rhs (stmt
);
1611 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1612 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1613 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1615 else if (code
== GIMPLE_CALL
1616 && (fndecl
= gimple_call_fndecl (stmt
))
1617 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1619 switch (DECL_FUNCTION_CODE (fndecl
))
1621 case BUILT_IN_MALLOC
:
1622 case BUILT_IN_REALLOC
:
1623 case BUILT_IN_CALLOC
:
1624 case BUILT_IN_STRDUP
:
1625 case BUILT_IN_STRNDUP
:
1626 val
.lattice_val
= CONSTANT
;
1627 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1628 val
.mask
= shwi_to_double_int
1629 (~(((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
)
1630 / BITS_PER_UNIT
- 1));
1633 case BUILT_IN_ALLOCA
:
1634 case BUILT_IN_ALLOCA_WITH_ALIGN
:
1635 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
1636 ? TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1))
1637 : BIGGEST_ALIGNMENT
);
1638 val
.lattice_val
= CONSTANT
;
1639 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1640 val
.mask
= shwi_to_double_int
1641 (~(((HOST_WIDE_INT
) align
)
1642 / BITS_PER_UNIT
- 1));
1645 /* These builtins return their first argument, unmodified. */
1646 case BUILT_IN_MEMCPY
:
1647 case BUILT_IN_MEMMOVE
:
1648 case BUILT_IN_MEMSET
:
1649 case BUILT_IN_STRCPY
:
1650 case BUILT_IN_STRNCPY
:
1651 case BUILT_IN_MEMCPY_CHK
:
1652 case BUILT_IN_MEMMOVE_CHK
:
1653 case BUILT_IN_MEMSET_CHK
:
1654 case BUILT_IN_STRCPY_CHK
:
1655 case BUILT_IN_STRNCPY_CHK
:
1656 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
1659 case BUILT_IN_ASSUME_ALIGNED
:
1660 val
= bit_value_assume_aligned (stmt
);
1666 is_constant
= (val
.lattice_val
== CONSTANT
);
1671 /* The statement produced a nonconstant value. If the statement
1672 had UNDEFINED operands, then the result of the statement
1673 should be UNDEFINED. Otherwise, the statement is VARYING. */
1674 if (likelyvalue
== UNDEFINED
)
1676 val
.lattice_val
= likelyvalue
;
1677 val
.mask
= double_int_zero
;
1681 val
.lattice_val
= VARYING
;
1682 val
.mask
= double_int_minus_one
;
1685 val
.value
= NULL_TREE
;
1691 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1692 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1695 insert_clobber_before_stack_restore (tree saved_val
, tree var
, htab_t
*visited
)
1697 gimple stmt
, clobber_stmt
;
1699 imm_use_iterator iter
;
1700 gimple_stmt_iterator i
;
1703 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
1704 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1706 clobber
= build_constructor (TREE_TYPE (var
), NULL
);
1707 TREE_THIS_VOLATILE (clobber
) = 1;
1708 clobber_stmt
= gimple_build_assign (var
, clobber
);
1710 i
= gsi_for_stmt (stmt
);
1711 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
1713 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1715 if (*visited
== NULL
)
1716 *visited
= htab_create (10, htab_hash_pointer
, htab_eq_pointer
, NULL
);
1718 slot
= (gimple
*)htab_find_slot (*visited
, stmt
, INSERT
);
1723 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
1727 gcc_assert (is_gimple_debug (stmt
));
1730 /* Advance the iterator to the previous non-debug gimple statement in the same
1731 or dominating basic block. */
1734 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
1738 gsi_prev_nondebug (i
);
1739 while (gsi_end_p (*i
))
1741 dom
= get_immediate_dominator (CDI_DOMINATORS
, i
->bb
);
1742 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR
)
1745 *i
= gsi_last_bb (dom
);
1749 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1750 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1752 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1753 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1754 that case the function gives up without inserting the clobbers. */
1757 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
1761 htab_t visited
= NULL
;
1763 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
1765 stmt
= gsi_stmt (i
);
1767 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
1770 saved_val
= gimple_call_lhs (stmt
);
1771 if (saved_val
== NULL_TREE
)
1774 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
1778 if (visited
!= NULL
)
1779 htab_delete (visited
);
1782 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1783 fixed-size array and returns the address, if found, otherwise returns
1787 fold_builtin_alloca_with_align (gimple stmt
)
1789 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
1790 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
1793 lhs
= gimple_call_lhs (stmt
);
1794 if (lhs
== NULL_TREE
)
1797 /* Detect constant argument. */
1798 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
1799 if (arg
== NULL_TREE
1800 || TREE_CODE (arg
) != INTEGER_CST
1801 || !host_integerp (arg
, 1))
1804 size
= TREE_INT_CST_LOW (arg
);
1806 /* Heuristic: don't fold large allocas. */
1807 threshold
= (unsigned HOST_WIDE_INT
)PARAM_VALUE (PARAM_LARGE_STACK_FRAME
);
1808 /* In case the alloca is located at function entry, it has the same lifetime
1809 as a declared array, so we allow a larger size. */
1810 block
= gimple_block (stmt
);
1811 if (!(cfun
->after_inlining
1812 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
1814 if (size
> threshold
)
1817 /* Declare array. */
1818 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
1819 n_elem
= size
* 8 / BITS_PER_UNIT
;
1820 array_type
= build_array_type_nelts (elem_type
, n_elem
);
1821 var
= create_tmp_var (array_type
, NULL
);
1822 DECL_ALIGN (var
) = TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1));
1824 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
1825 if (pi
!= NULL
&& !pi
->pt
.anything
)
1829 singleton_p
= pt_solution_singleton_p (&pi
->pt
, &uid
);
1830 gcc_assert (singleton_p
);
1831 SET_DECL_PT_UID (var
, uid
);
1835 /* Fold alloca to the address of the array. */
1836 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
1839 /* Fold the stmt at *GSI with CCP specific information that propagating
1840 and regular folding does not catch. */
1843 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
1845 gimple stmt
= gsi_stmt (*gsi
);
1847 switch (gimple_code (stmt
))
1852 /* Statement evaluation will handle type mismatches in constants
1853 more gracefully than the final propagation. This allows us to
1854 fold more conditionals here. */
1855 val
= evaluate_stmt (stmt
);
1856 if (val
.lattice_val
!= CONSTANT
1857 || !double_int_zero_p (val
.mask
))
1862 fprintf (dump_file
, "Folding predicate ");
1863 print_gimple_expr (dump_file
, stmt
, 0, 0);
1864 fprintf (dump_file
, " to ");
1865 print_generic_expr (dump_file
, val
.value
, 0);
1866 fprintf (dump_file
, "\n");
1869 if (integer_zerop (val
.value
))
1870 gimple_cond_make_false (stmt
);
1872 gimple_cond_make_true (stmt
);
1879 tree lhs
= gimple_call_lhs (stmt
);
1880 int flags
= gimple_call_flags (stmt
);
1883 bool changed
= false;
1886 /* If the call was folded into a constant make sure it goes
1887 away even if we cannot propagate into all uses because of
1890 && TREE_CODE (lhs
) == SSA_NAME
1891 && (val
= get_constant_value (lhs
))
1892 /* Don't optimize away calls that have side-effects. */
1893 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
1894 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
1896 tree new_rhs
= unshare_expr (val
);
1898 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
1899 TREE_TYPE (new_rhs
)))
1900 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
1901 res
= update_call_from_tree (gsi
, new_rhs
);
1906 /* Internal calls provide no argument types, so the extra laxity
1907 for normal calls does not apply. */
1908 if (gimple_call_internal_p (stmt
))
1911 /* The heuristic of fold_builtin_alloca_with_align differs before and
1912 after inlining, so we don't require the arg to be changed into a
1913 constant for folding, but just to be constant. */
1914 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
))
1916 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
1919 bool res
= update_call_from_tree (gsi
, new_rhs
);
1920 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
1922 insert_clobbers_for_var (*gsi
, var
);
1927 /* Propagate into the call arguments. Compared to replace_uses_in
1928 this can use the argument slot types for type verification
1929 instead of the current argument type. We also can safely
1930 drop qualifiers here as we are dealing with constants anyway. */
1931 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
1932 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
1933 ++i
, argt
= TREE_CHAIN (argt
))
1935 tree arg
= gimple_call_arg (stmt
, i
);
1936 if (TREE_CODE (arg
) == SSA_NAME
1937 && (val
= get_constant_value (arg
))
1938 && useless_type_conversion_p
1939 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
1940 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
1942 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
1952 tree lhs
= gimple_assign_lhs (stmt
);
1955 /* If we have a load that turned out to be constant replace it
1956 as we cannot propagate into all uses in all cases. */
1957 if (gimple_assign_single_p (stmt
)
1958 && TREE_CODE (lhs
) == SSA_NAME
1959 && (val
= get_constant_value (lhs
)))
1961 tree rhs
= unshare_expr (val
);
1962 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
1963 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
1964 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1976 /* Visit the assignment statement STMT. Set the value of its LHS to the
1977 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1978 creates virtual definitions, set the value of each new name to that
1979 of the RHS (if we can derive a constant out of the RHS).
1980 Value-returning call statements also perform an assignment, and
1981 are handled here. */
1983 static enum ssa_prop_result
1984 visit_assignment (gimple stmt
, tree
*output_p
)
1987 enum ssa_prop_result retval
;
1989 tree lhs
= gimple_get_lhs (stmt
);
1991 gcc_assert (gimple_code (stmt
) != GIMPLE_CALL
1992 || gimple_call_lhs (stmt
) != NULL_TREE
);
1994 if (gimple_assign_single_p (stmt
)
1995 && gimple_assign_rhs_code (stmt
) == SSA_NAME
)
1996 /* For a simple copy operation, we copy the lattice values. */
1997 val
= *get_value (gimple_assign_rhs1 (stmt
));
1999 /* Evaluate the statement, which could be
2000 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2001 val
= evaluate_stmt (stmt
);
2003 retval
= SSA_PROP_NOT_INTERESTING
;
2005 /* Set the lattice value of the statement's output. */
2006 if (TREE_CODE (lhs
) == SSA_NAME
)
2008 /* If STMT is an assignment to an SSA_NAME, we only have one
2010 if (set_lattice_value (lhs
, val
))
2013 if (val
.lattice_val
== VARYING
)
2014 retval
= SSA_PROP_VARYING
;
2016 retval
= SSA_PROP_INTERESTING
;
2024 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2025 if it can determine which edge will be taken. Otherwise, return
2026 SSA_PROP_VARYING. */
2028 static enum ssa_prop_result
2029 visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
2034 block
= gimple_bb (stmt
);
2035 val
= evaluate_stmt (stmt
);
2036 if (val
.lattice_val
!= CONSTANT
2037 || !double_int_zero_p (val
.mask
))
2038 return SSA_PROP_VARYING
;
2040 /* Find which edge out of the conditional block will be taken and add it
2041 to the worklist. If no single edge can be determined statically,
2042 return SSA_PROP_VARYING to feed all the outgoing edges to the
2043 propagation engine. */
2044 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2046 return SSA_PROP_INTERESTING
;
2048 return SSA_PROP_VARYING
;
2052 /* Evaluate statement STMT. If the statement produces an output value and
2053 its evaluation changes the lattice value of its output, return
2054 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2057 If STMT is a conditional branch and we can determine its truth
2058 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2059 value, return SSA_PROP_VARYING. */
2061 static enum ssa_prop_result
2062 ccp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
2067 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2069 fprintf (dump_file
, "\nVisiting statement:\n");
2070 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2073 switch (gimple_code (stmt
))
2076 /* If the statement is an assignment that produces a single
2077 output value, evaluate its RHS to see if the lattice value of
2078 its output has changed. */
2079 return visit_assignment (stmt
, output_p
);
2082 /* A value-returning call also performs an assignment. */
2083 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2084 return visit_assignment (stmt
, output_p
);
2089 /* If STMT is a conditional branch, see if we can determine
2090 which branch will be taken. */
2091 /* FIXME. It appears that we should be able to optimize
2092 computed GOTOs here as well. */
2093 return visit_cond_stmt (stmt
, taken_edge_p
);
2099 /* Any other kind of statement is not interesting for constant
2100 propagation and, therefore, not worth simulating. */
2101 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2102 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2104 /* Definitions made by statements other than assignments to
2105 SSA_NAMEs represent unknown modifications to their outputs.
2106 Mark them VARYING. */
2107 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2109 prop_value_t v
= { VARYING
, NULL_TREE
, { -1, (HOST_WIDE_INT
) -1 } };
2110 set_lattice_value (def
, v
);
2113 return SSA_PROP_VARYING
;
2117 /* Main entry point for SSA Conditional Constant Propagation. */
2122 unsigned int todo
= 0;
2123 calculate_dominance_info (CDI_DOMINATORS
);
2125 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
2126 if (ccp_finalize ())
2127 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
| TODO_remove_unused_locals
);
2128 free_dominance_info (CDI_DOMINATORS
);
2136 return flag_tree_ccp
!= 0;
2140 struct gimple_opt_pass pass_ccp
=
2145 gate_ccp
, /* gate */
2146 do_ssa_ccp
, /* execute */
2149 0, /* static_pass_number */
2150 TV_TREE_CCP
, /* tv_id */
2151 PROP_cfg
| PROP_ssa
, /* properties_required */
2152 0, /* properties_provided */
2153 0, /* properties_destroyed */
2154 0, /* todo_flags_start */
2156 | TODO_verify_stmts
| TODO_ggc_collect
/* todo_flags_finish */
2162 /* Try to optimize out __builtin_stack_restore. Optimize it out
2163 if there is another __builtin_stack_restore in the same basic
2164 block and no calls or ASM_EXPRs are in between, or if this block's
2165 only outgoing edge is to EXIT_BLOCK and there are no calls or
2166 ASM_EXPRs after this __builtin_stack_restore. */
2169 optimize_stack_restore (gimple_stmt_iterator i
)
2174 basic_block bb
= gsi_bb (i
);
2175 gimple call
= gsi_stmt (i
);
2177 if (gimple_code (call
) != GIMPLE_CALL
2178 || gimple_call_num_args (call
) != 1
2179 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
2180 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
2183 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
2185 stmt
= gsi_stmt (i
);
2186 if (gimple_code (stmt
) == GIMPLE_ASM
)
2188 if (gimple_code (stmt
) != GIMPLE_CALL
)
2191 callee
= gimple_call_fndecl (stmt
);
2193 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2194 /* All regular builtins are ok, just obviously not alloca. */
2195 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
2196 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA_WITH_ALIGN
)
2199 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2200 goto second_stack_restore
;
2206 /* Allow one successor of the exit block, or zero successors. */
2207 switch (EDGE_COUNT (bb
->succs
))
2212 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR
)
2218 second_stack_restore
:
2220 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2221 If there are multiple uses, then the last one should remove the call.
2222 In any case, whether the call to __builtin_stack_save can be removed
2223 or not is irrelevant to removing the call to __builtin_stack_restore. */
2224 if (has_single_use (gimple_call_arg (call
, 0)))
2226 gimple stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2227 if (is_gimple_call (stack_save
))
2229 callee
= gimple_call_fndecl (stack_save
);
2231 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2232 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2234 gimple_stmt_iterator stack_save_gsi
;
2237 stack_save_gsi
= gsi_for_stmt (stack_save
);
2238 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2239 update_call_from_tree (&stack_save_gsi
, rhs
);
2244 /* No effect, so the statement will be deleted. */
2245 return integer_zero_node
;
2248 /* If va_list type is a simple pointer and nothing special is needed,
2249 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2250 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2251 pointer assignment. */
2254 optimize_stdarg_builtin (gimple call
)
2256 tree callee
, lhs
, rhs
, cfun_va_list
;
2257 bool va_list_simple_ptr
;
2258 location_t loc
= gimple_location (call
);
2260 if (gimple_code (call
) != GIMPLE_CALL
)
2263 callee
= gimple_call_fndecl (call
);
2265 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2266 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2267 && (TREE_TYPE (cfun_va_list
) == void_type_node
2268 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2270 switch (DECL_FUNCTION_CODE (callee
))
2272 case BUILT_IN_VA_START
:
2273 if (!va_list_simple_ptr
2274 || targetm
.expand_builtin_va_start
!= NULL
2275 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
2278 if (gimple_call_num_args (call
) != 2)
2281 lhs
= gimple_call_arg (call
, 0);
2282 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2283 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2284 != TYPE_MAIN_VARIANT (cfun_va_list
))
2287 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2288 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
2289 1, integer_zero_node
);
2290 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2291 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2293 case BUILT_IN_VA_COPY
:
2294 if (!va_list_simple_ptr
)
2297 if (gimple_call_num_args (call
) != 2)
2300 lhs
= gimple_call_arg (call
, 0);
2301 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2302 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2303 != TYPE_MAIN_VARIANT (cfun_va_list
))
2306 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2307 rhs
= gimple_call_arg (call
, 1);
2308 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2309 != TYPE_MAIN_VARIANT (cfun_va_list
))
2312 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2313 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2315 case BUILT_IN_VA_END
:
2316 /* No effect, so the statement will be deleted. */
2317 return integer_zero_node
;
2324 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2325 the incoming jumps. Return true if at least one jump was changed. */
2328 optimize_unreachable (gimple_stmt_iterator i
)
2330 basic_block bb
= gsi_bb (i
);
2331 gimple_stmt_iterator gsi
;
2337 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2339 stmt
= gsi_stmt (gsi
);
2341 if (is_gimple_debug (stmt
))
2344 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2346 /* Verify we do not need to preserve the label. */
2347 if (FORCED_LABEL (gimple_label_label (stmt
)))
2353 /* Only handle the case that __builtin_unreachable is the first statement
2354 in the block. We rely on DCE to remove stmts without side-effects
2355 before __builtin_unreachable. */
2356 if (gsi_stmt (gsi
) != gsi_stmt (i
))
2361 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2363 gsi
= gsi_last_bb (e
->src
);
2364 if (gsi_end_p (gsi
))
2367 stmt
= gsi_stmt (gsi
);
2368 if (gimple_code (stmt
) == GIMPLE_COND
)
2370 if (e
->flags
& EDGE_TRUE_VALUE
)
2371 gimple_cond_make_false (stmt
);
2372 else if (e
->flags
& EDGE_FALSE_VALUE
)
2373 gimple_cond_make_true (stmt
);
2379 /* Todo: handle other cases, f.i. switch statement. */
2389 /* A simple pass that attempts to fold all builtin functions. This pass
2390 is run after we've propagated as many constants as we can. */
2393 execute_fold_all_builtins (void)
2395 bool cfg_changed
= false;
2397 unsigned int todoflags
= 0;
2401 gimple_stmt_iterator i
;
2402 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
2404 gimple stmt
, old_stmt
;
2405 tree callee
, result
;
2406 enum built_in_function fcode
;
2408 stmt
= gsi_stmt (i
);
2410 if (gimple_code (stmt
) != GIMPLE_CALL
)
2415 callee
= gimple_call_fndecl (stmt
);
2416 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2421 fcode
= DECL_FUNCTION_CODE (callee
);
2423 result
= gimple_fold_builtin (stmt
);
2426 gimple_remove_stmt_histograms (cfun
, stmt
);
2429 switch (DECL_FUNCTION_CODE (callee
))
2431 case BUILT_IN_CONSTANT_P
:
2432 /* Resolve __builtin_constant_p. If it hasn't been
2433 folded to integer_one_node by now, it's fairly
2434 certain that the value simply isn't constant. */
2435 result
= integer_zero_node
;
2438 case BUILT_IN_ASSUME_ALIGNED
:
2439 /* Remove __builtin_assume_aligned. */
2440 result
= gimple_call_arg (stmt
, 0);
2443 case BUILT_IN_STACK_RESTORE
:
2444 result
= optimize_stack_restore (i
);
2450 case BUILT_IN_UNREACHABLE
:
2451 if (optimize_unreachable (i
))
2455 case BUILT_IN_VA_START
:
2456 case BUILT_IN_VA_END
:
2457 case BUILT_IN_VA_COPY
:
2458 /* These shouldn't be folded before pass_stdarg. */
2459 result
= optimize_stdarg_builtin (stmt
);
2469 if (result
== NULL_TREE
)
2472 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2474 fprintf (dump_file
, "Simplified\n ");
2475 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2479 if (!update_call_from_tree (&i
, result
))
2481 gimplify_and_update_call_from_tree (&i
, result
);
2482 todoflags
|= TODO_update_address_taken
;
2485 stmt
= gsi_stmt (i
);
2488 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
2489 && gimple_purge_dead_eh_edges (bb
))
2492 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2494 fprintf (dump_file
, "to\n ");
2495 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2496 fprintf (dump_file
, "\n");
2499 /* Retry the same statement if it changed into another
2500 builtin, there might be new opportunities now. */
2501 if (gimple_code (stmt
) != GIMPLE_CALL
)
2506 callee
= gimple_call_fndecl (stmt
);
2508 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2509 || DECL_FUNCTION_CODE (callee
) == fcode
)
2514 /* Delete unreachable blocks. */
2516 todoflags
|= TODO_cleanup_cfg
;
2522 struct gimple_opt_pass pass_fold_builtins
=
2528 execute_fold_all_builtins
, /* execute */
2531 0, /* static_pass_number */
2532 TV_NONE
, /* tv_id */
2533 PROP_cfg
| PROP_ssa
, /* properties_required */
2534 0, /* properties_provided */
2535 0, /* properties_destroyed */
2536 0, /* todo_flags_start */
2538 | TODO_update_ssa
/* todo_flags_finish */