1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010,
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
31 #include "insn-config.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
39 #include "diagnostic-core.h"
43 #include "tree-pass.h"
49 #ifndef HAVE_conditional_move
50 #define HAVE_conditional_move 0
62 #ifndef MAX_CONDITIONAL_EXECUTE
63 #define MAX_CONDITIONAL_EXECUTE \
64 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
68 #define IFCVT_MULTIPLE_DUMPS 1
70 #define NULL_BLOCK ((basic_block) NULL)
72 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
73 static int num_possible_if_blocks
;
75 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 static int num_updated_if_blocks
;
79 /* # of changes made. */
80 static int num_true_changes
;
82 /* Whether conditional execution changes were made. */
83 static int cond_exec_changed_p
;
85 /* Forward references. */
86 static int count_bb_insns (const_basic_block
);
87 static bool cheap_bb_rtx_cost_p (const_basic_block
, int, int);
88 static rtx
first_active_insn (basic_block
);
89 static rtx
last_active_insn (basic_block
, int);
90 static rtx
find_active_insn_before (basic_block
, rtx
);
91 static rtx
find_active_insn_after (basic_block
, rtx
);
92 static basic_block
block_fallthru (basic_block
);
93 static int cond_exec_process_insns (ce_if_block_t
*, rtx
, rtx
, rtx
, rtx
, int);
94 static rtx
cond_exec_get_condition (rtx
);
95 static rtx
noce_get_condition (rtx
, rtx
*, bool);
96 static int noce_operand_ok (const_rtx
);
97 static void merge_if_block (ce_if_block_t
*);
98 static int find_cond_trap (basic_block
, edge
, edge
);
99 static basic_block
find_if_header (basic_block
, int);
100 static int block_jumps_and_fallthru_p (basic_block
, basic_block
);
101 static int noce_find_if_block (basic_block
, edge
, edge
, int);
102 static int cond_exec_find_if_block (ce_if_block_t
*);
103 static int find_if_case_1 (basic_block
, edge
, edge
);
104 static int find_if_case_2 (basic_block
, edge
, edge
);
105 static int dead_or_predicable (basic_block
, basic_block
, basic_block
,
107 static void noce_emit_move_insn (rtx
, rtx
);
108 static rtx
block_has_only_trap (basic_block
);
110 /* Count the number of non-jump active insns in BB. */
113 count_bb_insns (const_basic_block bb
)
116 rtx insn
= BB_HEAD (bb
);
120 if (CALL_P (insn
) || NONJUMP_INSN_P (insn
))
123 if (insn
== BB_END (bb
))
125 insn
= NEXT_INSN (insn
);
131 /* Determine whether the total insn_rtx_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated.
135 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
136 as those insns are being speculated. MAX_COST is scaled with SCALE
137 plus a small fudge factor. */
140 cheap_bb_rtx_cost_p (const_basic_block bb
, int scale
, int max_cost
)
143 rtx insn
= BB_HEAD (bb
);
144 bool speed
= optimize_bb_for_speed_p (bb
);
146 /* Our branch probability/scaling factors are just estimates and don't
147 account for cases where we can get speculation for free and other
148 secondary benefits. So we fudge the scale factor to make speculating
149 appear a little more profitable. */
150 scale
+= REG_BR_PROB_BASE
/ 8;
155 if (NONJUMP_INSN_P (insn
))
157 int cost
= insn_rtx_cost (PATTERN (insn
), speed
) * REG_BR_PROB_BASE
;
161 /* If this instruction is the load or set of a "stack" register,
162 such as a floating point register on x87, then the cost of
163 speculatively executing this insn may need to include
164 the additional cost of popping its result off of the
165 register stack. Unfortunately, correctly recognizing and
166 accounting for this additional overhead is tricky, so for
167 now we simply prohibit such speculative execution. */
170 rtx set
= single_set (insn
);
171 if (set
&& STACK_REG_P (SET_DEST (set
)))
177 if (count
>= max_cost
)
180 else if (CALL_P (insn
))
183 if (insn
== BB_END (bb
))
185 insn
= NEXT_INSN (insn
);
191 /* Return the first non-jump active insn in the basic block. */
194 first_active_insn (basic_block bb
)
196 rtx insn
= BB_HEAD (bb
);
200 if (insn
== BB_END (bb
))
202 insn
= NEXT_INSN (insn
);
205 while (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
207 if (insn
== BB_END (bb
))
209 insn
= NEXT_INSN (insn
);
218 /* Return the last non-jump active (non-jump) insn in the basic block. */
221 last_active_insn (basic_block bb
, int skip_use_p
)
223 rtx insn
= BB_END (bb
);
224 rtx head
= BB_HEAD (bb
);
228 || DEBUG_INSN_P (insn
)
230 && NONJUMP_INSN_P (insn
)
231 && GET_CODE (PATTERN (insn
)) == USE
))
235 insn
= PREV_INSN (insn
);
244 /* Return the active insn before INSN inside basic block CURR_BB. */
247 find_active_insn_before (basic_block curr_bb
, rtx insn
)
249 if (!insn
|| insn
== BB_HEAD (curr_bb
))
252 while ((insn
= PREV_INSN (insn
)) != NULL_RTX
)
254 if (NONJUMP_INSN_P (insn
) || JUMP_P (insn
) || CALL_P (insn
))
257 /* No other active insn all the way to the start of the basic block. */
258 if (insn
== BB_HEAD (curr_bb
))
265 /* Return the active insn after INSN inside basic block CURR_BB. */
268 find_active_insn_after (basic_block curr_bb
, rtx insn
)
270 if (!insn
|| insn
== BB_END (curr_bb
))
273 while ((insn
= NEXT_INSN (insn
)) != NULL_RTX
)
275 if (NONJUMP_INSN_P (insn
) || JUMP_P (insn
) || CALL_P (insn
))
278 /* No other active insn all the way to the end of the basic block. */
279 if (insn
== BB_END (curr_bb
))
286 /* Return the basic block reached by falling though the basic block BB. */
289 block_fallthru (basic_block bb
)
291 edge e
= find_fallthru_edge (bb
->succs
);
293 return (e
) ? e
->dest
: NULL_BLOCK
;
296 /* Go through a bunch of insns, converting them to conditional
297 execution format if possible. Return TRUE if all of the non-note
298 insns were processed. */
301 cond_exec_process_insns (ce_if_block_t
*ce_info ATTRIBUTE_UNUSED
,
302 /* if block information */rtx start
,
303 /* first insn to look at */rtx end
,
304 /* last insn to look at */rtx test
,
305 /* conditional execution test */rtx prob_val
,
306 /* probability of branch taken. */int mod_ok
)
308 int must_be_last
= FALSE
;
316 for (insn
= start
; ; insn
= NEXT_INSN (insn
))
318 /* dwarf2out can't cope with conditional prologues. */
319 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
322 if (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
325 gcc_assert(NONJUMP_INSN_P (insn
) || CALL_P (insn
));
327 /* Remove USE insns that get in the way. */
328 if (reload_completed
&& GET_CODE (PATTERN (insn
)) == USE
)
330 /* ??? Ug. Actually unlinking the thing is problematic,
331 given what we'd have to coordinate with our callers. */
332 SET_INSN_DELETED (insn
);
336 /* Last insn wasn't last? */
340 if (modified_in_p (test
, insn
))
347 /* Now build the conditional form of the instruction. */
348 pattern
= PATTERN (insn
);
349 xtest
= copy_rtx (test
);
351 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
353 if (GET_CODE (pattern
) == COND_EXEC
)
355 if (GET_MODE (xtest
) != GET_MODE (COND_EXEC_TEST (pattern
)))
358 xtest
= gen_rtx_AND (GET_MODE (xtest
), xtest
,
359 COND_EXEC_TEST (pattern
));
360 pattern
= COND_EXEC_CODE (pattern
);
363 pattern
= gen_rtx_COND_EXEC (VOIDmode
, xtest
, pattern
);
365 /* If the machine needs to modify the insn being conditionally executed,
366 say for example to force a constant integer operand into a temp
367 register, do so here. */
368 #ifdef IFCVT_MODIFY_INSN
369 IFCVT_MODIFY_INSN (ce_info
, pattern
, insn
);
374 validate_change (insn
, &PATTERN (insn
), pattern
, 1);
376 if (CALL_P (insn
) && prob_val
)
377 validate_change (insn
, ®_NOTES (insn
),
378 alloc_EXPR_LIST (REG_BR_PROB
, prob_val
,
379 REG_NOTES (insn
)), 1);
389 /* Return the condition for a jump. Do not do any special processing. */
392 cond_exec_get_condition (rtx jump
)
396 if (any_condjump_p (jump
))
397 test_if
= SET_SRC (pc_set (jump
));
400 cond
= XEXP (test_if
, 0);
402 /* If this branches to JUMP_LABEL when the condition is false,
403 reverse the condition. */
404 if (GET_CODE (XEXP (test_if
, 2)) == LABEL_REF
405 && XEXP (XEXP (test_if
, 2), 0) == JUMP_LABEL (jump
))
407 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
411 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
418 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
419 to conditional execution. Return TRUE if we were successful at
420 converting the block. */
423 cond_exec_process_if_block (ce_if_block_t
* ce_info
,
424 /* if block information */int do_multiple_p
)
426 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
427 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
428 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
429 rtx test_expr
; /* expression in IF_THEN_ELSE that is tested */
430 rtx then_start
; /* first insn in THEN block */
431 rtx then_end
; /* last insn + 1 in THEN block */
432 rtx else_start
= NULL_RTX
; /* first insn in ELSE block or NULL */
433 rtx else_end
= NULL_RTX
; /* last insn + 1 in ELSE block */
434 int max
; /* max # of insns to convert. */
435 int then_mod_ok
; /* whether conditional mods are ok in THEN */
436 rtx true_expr
; /* test for else block insns */
437 rtx false_expr
; /* test for then block insns */
438 rtx true_prob_val
; /* probability of else block */
439 rtx false_prob_val
; /* probability of then block */
440 rtx then_last_head
= NULL_RTX
; /* Last match at the head of THEN */
441 rtx else_last_head
= NULL_RTX
; /* Last match at the head of ELSE */
442 rtx then_first_tail
= NULL_RTX
; /* First match at the tail of THEN */
443 rtx else_first_tail
= NULL_RTX
; /* First match at the tail of ELSE */
444 int then_n_insns
, else_n_insns
, n_insns
;
445 enum rtx_code false_code
;
447 /* If test is comprised of && or || elements, and we've failed at handling
448 all of them together, just use the last test if it is the special case of
449 && elements without an ELSE block. */
450 if (!do_multiple_p
&& ce_info
->num_multiple_test_blocks
)
452 if (else_bb
|| ! ce_info
->and_and_p
)
455 ce_info
->test_bb
= test_bb
= ce_info
->last_test_bb
;
456 ce_info
->num_multiple_test_blocks
= 0;
457 ce_info
->num_and_and_blocks
= 0;
458 ce_info
->num_or_or_blocks
= 0;
461 /* Find the conditional jump to the ELSE or JOIN part, and isolate
463 test_expr
= cond_exec_get_condition (BB_END (test_bb
));
467 /* If the conditional jump is more than just a conditional jump,
468 then we can not do conditional execution conversion on this block. */
469 if (! onlyjump_p (BB_END (test_bb
)))
472 /* Collect the bounds of where we're to search, skipping any labels, jumps
473 and notes at the beginning and end of the block. Then count the total
474 number of insns and see if it is small enough to convert. */
475 then_start
= first_active_insn (then_bb
);
476 then_end
= last_active_insn (then_bb
, TRUE
);
477 then_n_insns
= ce_info
->num_then_insns
= count_bb_insns (then_bb
);
478 n_insns
= then_n_insns
;
479 max
= MAX_CONDITIONAL_EXECUTE
;
486 else_start
= first_active_insn (else_bb
);
487 else_end
= last_active_insn (else_bb
, TRUE
);
488 else_n_insns
= ce_info
->num_else_insns
= count_bb_insns (else_bb
);
489 n_insns
+= else_n_insns
;
491 /* Look for matching sequences at the head and tail of the two blocks,
492 and limit the range of insns to be converted if possible. */
493 n_matching
= flow_find_cross_jump (then_bb
, else_bb
,
494 &then_first_tail
, &else_first_tail
,
496 if (then_first_tail
== BB_HEAD (then_bb
))
497 then_start
= then_end
= NULL_RTX
;
498 if (else_first_tail
== BB_HEAD (else_bb
))
499 else_start
= else_end
= NULL_RTX
;
504 then_end
= find_active_insn_before (then_bb
, then_first_tail
);
506 else_end
= find_active_insn_before (else_bb
, else_first_tail
);
507 n_insns
-= 2 * n_matching
;
510 if (then_start
&& else_start
)
512 int longest_match
= MIN (then_n_insns
- n_matching
,
513 else_n_insns
- n_matching
);
515 = flow_find_head_matching_sequence (then_bb
, else_bb
,
524 /* We won't pass the insns in the head sequence to
525 cond_exec_process_insns, so we need to test them here
526 to make sure that they don't clobber the condition. */
527 for (insn
= BB_HEAD (then_bb
);
528 insn
!= NEXT_INSN (then_last_head
);
529 insn
= NEXT_INSN (insn
))
530 if (!LABEL_P (insn
) && !NOTE_P (insn
)
531 && !DEBUG_INSN_P (insn
)
532 && modified_in_p (test_expr
, insn
))
536 if (then_last_head
== then_end
)
537 then_start
= then_end
= NULL_RTX
;
538 if (else_last_head
== else_end
)
539 else_start
= else_end
= NULL_RTX
;
544 then_start
= find_active_insn_after (then_bb
, then_last_head
);
546 else_start
= find_active_insn_after (else_bb
, else_last_head
);
547 n_insns
-= 2 * n_matching
;
555 /* Map test_expr/test_jump into the appropriate MD tests to use on
556 the conditionally executed code. */
558 true_expr
= test_expr
;
560 false_code
= reversed_comparison_code (true_expr
, BB_END (test_bb
));
561 if (false_code
!= UNKNOWN
)
562 false_expr
= gen_rtx_fmt_ee (false_code
, GET_MODE (true_expr
),
563 XEXP (true_expr
, 0), XEXP (true_expr
, 1));
565 false_expr
= NULL_RTX
;
567 #ifdef IFCVT_MODIFY_TESTS
568 /* If the machine description needs to modify the tests, such as setting a
569 conditional execution register from a comparison, it can do so here. */
570 IFCVT_MODIFY_TESTS (ce_info
, true_expr
, false_expr
);
572 /* See if the conversion failed. */
573 if (!true_expr
|| !false_expr
)
577 true_prob_val
= find_reg_note (BB_END (test_bb
), REG_BR_PROB
, NULL_RTX
);
580 true_prob_val
= XEXP (true_prob_val
, 0);
581 false_prob_val
= GEN_INT (REG_BR_PROB_BASE
- INTVAL (true_prob_val
));
584 false_prob_val
= NULL_RTX
;
586 /* If we have && or || tests, do them here. These tests are in the adjacent
587 blocks after the first block containing the test. */
588 if (ce_info
->num_multiple_test_blocks
> 0)
590 basic_block bb
= test_bb
;
591 basic_block last_test_bb
= ce_info
->last_test_bb
;
600 enum rtx_code f_code
;
602 bb
= block_fallthru (bb
);
603 start
= first_active_insn (bb
);
604 end
= last_active_insn (bb
, TRUE
);
606 && ! cond_exec_process_insns (ce_info
, start
, end
, false_expr
,
607 false_prob_val
, FALSE
))
610 /* If the conditional jump is more than just a conditional jump, then
611 we can not do conditional execution conversion on this block. */
612 if (! onlyjump_p (BB_END (bb
)))
615 /* Find the conditional jump and isolate the test. */
616 t
= cond_exec_get_condition (BB_END (bb
));
620 f_code
= reversed_comparison_code (t
, BB_END (bb
));
621 if (f_code
== UNKNOWN
)
624 f
= gen_rtx_fmt_ee (f_code
, GET_MODE (t
), XEXP (t
, 0), XEXP (t
, 1));
625 if (ce_info
->and_and_p
)
627 t
= gen_rtx_AND (GET_MODE (t
), true_expr
, t
);
628 f
= gen_rtx_IOR (GET_MODE (t
), false_expr
, f
);
632 t
= gen_rtx_IOR (GET_MODE (t
), true_expr
, t
);
633 f
= gen_rtx_AND (GET_MODE (t
), false_expr
, f
);
636 /* If the machine description needs to modify the tests, such as
637 setting a conditional execution register from a comparison, it can
639 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
640 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info
, bb
, t
, f
);
642 /* See if the conversion failed. */
650 while (bb
!= last_test_bb
);
653 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
654 on then THEN block. */
655 then_mod_ok
= (else_bb
== NULL_BLOCK
);
657 /* Go through the THEN and ELSE blocks converting the insns if possible
658 to conditional execution. */
662 || ! cond_exec_process_insns (ce_info
, then_start
, then_end
,
663 false_expr
, false_prob_val
,
667 if (else_bb
&& else_end
668 && ! cond_exec_process_insns (ce_info
, else_start
, else_end
,
669 true_expr
, true_prob_val
, TRUE
))
672 /* If we cannot apply the changes, fail. Do not go through the normal fail
673 processing, since apply_change_group will call cancel_changes. */
674 if (! apply_change_group ())
676 #ifdef IFCVT_MODIFY_CANCEL
677 /* Cancel any machine dependent changes. */
678 IFCVT_MODIFY_CANCEL (ce_info
);
683 #ifdef IFCVT_MODIFY_FINAL
684 /* Do any machine dependent final modifications. */
685 IFCVT_MODIFY_FINAL (ce_info
);
688 /* Conversion succeeded. */
690 fprintf (dump_file
, "%d insn%s converted to conditional execution.\n",
691 n_insns
, (n_insns
== 1) ? " was" : "s were");
693 /* Merge the blocks! If we had matching sequences, make sure to delete one
694 copy at the appropriate location first: delete the copy in the THEN branch
695 for a tail sequence so that the remaining one is executed last for both
696 branches, and delete the copy in the ELSE branch for a head sequence so
697 that the remaining one is executed first for both branches. */
700 rtx from
= then_first_tail
;
702 from
= find_active_insn_after (then_bb
, from
);
703 delete_insn_chain (from
, BB_END (then_bb
), false);
706 delete_insn_chain (first_active_insn (else_bb
), else_last_head
, false);
708 merge_if_block (ce_info
);
709 cond_exec_changed_p
= TRUE
;
713 #ifdef IFCVT_MODIFY_CANCEL
714 /* Cancel any machine dependent changes. */
715 IFCVT_MODIFY_CANCEL (ce_info
);
722 /* Used by noce_process_if_block to communicate with its subroutines.
724 The subroutines know that A and B may be evaluated freely. They
725 know that X is a register. They should insert new instructions
726 before cond_earliest. */
730 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
731 basic_block test_bb
, then_bb
, else_bb
, join_bb
;
733 /* The jump that ends TEST_BB. */
736 /* The jump condition. */
739 /* New insns should be inserted before this one. */
742 /* Insns in the THEN and ELSE block. There is always just this
743 one insns in those blocks. The insns are single_set insns.
744 If there was no ELSE block, INSN_B is the last insn before
745 COND_EARLIEST, or NULL_RTX. In the former case, the insn
746 operands are still valid, as if INSN_B was moved down below
750 /* The SET_SRC of INSN_A and INSN_B. */
753 /* The SET_DEST of INSN_A. */
756 /* True if this if block is not canonical. In the canonical form of
757 if blocks, the THEN_BB is the block reached via the fallthru edge
758 from TEST_BB. For the noce transformations, we allow the symmetric
760 bool then_else_reversed
;
762 /* Estimated cost of the particular branch instruction. */
766 static rtx
noce_emit_store_flag (struct noce_if_info
*, rtx
, int, int);
767 static int noce_try_move (struct noce_if_info
*);
768 static int noce_try_store_flag (struct noce_if_info
*);
769 static int noce_try_addcc (struct noce_if_info
*);
770 static int noce_try_store_flag_constants (struct noce_if_info
*);
771 static int noce_try_store_flag_mask (struct noce_if_info
*);
772 static rtx
noce_emit_cmove (struct noce_if_info
*, rtx
, enum rtx_code
, rtx
,
774 static int noce_try_cmove (struct noce_if_info
*);
775 static int noce_try_cmove_arith (struct noce_if_info
*);
776 static rtx
noce_get_alt_condition (struct noce_if_info
*, rtx
, rtx
*);
777 static int noce_try_minmax (struct noce_if_info
*);
778 static int noce_try_abs (struct noce_if_info
*);
779 static int noce_try_sign_mask (struct noce_if_info
*);
781 /* Helper function for noce_try_store_flag*. */
784 noce_emit_store_flag (struct noce_if_info
*if_info
, rtx x
, int reversep
,
787 rtx cond
= if_info
->cond
;
791 cond_complex
= (! general_operand (XEXP (cond
, 0), VOIDmode
)
792 || ! general_operand (XEXP (cond
, 1), VOIDmode
));
794 /* If earliest == jump, or when the condition is complex, try to
795 build the store_flag insn directly. */
799 rtx set
= pc_set (if_info
->jump
);
800 cond
= XEXP (SET_SRC (set
), 0);
801 if (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
802 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (if_info
->jump
))
803 reversep
= !reversep
;
804 if (if_info
->then_else_reversed
)
805 reversep
= !reversep
;
809 code
= reversed_comparison_code (cond
, if_info
->jump
);
811 code
= GET_CODE (cond
);
813 if ((if_info
->cond_earliest
== if_info
->jump
|| cond_complex
)
814 && (normalize
== 0 || STORE_FLAG_VALUE
== normalize
))
818 tmp
= gen_rtx_fmt_ee (code
, GET_MODE (x
), XEXP (cond
, 0),
820 tmp
= gen_rtx_SET (VOIDmode
, x
, tmp
);
823 tmp
= emit_insn (tmp
);
825 if (recog_memoized (tmp
) >= 0)
831 if_info
->cond_earliest
= if_info
->jump
;
839 /* Don't even try if the comparison operands or the mode of X are weird. */
840 if (cond_complex
|| !SCALAR_INT_MODE_P (GET_MODE (x
)))
843 return emit_store_flag (x
, code
, XEXP (cond
, 0),
844 XEXP (cond
, 1), VOIDmode
,
845 (code
== LTU
|| code
== LEU
846 || code
== GEU
|| code
== GTU
), normalize
);
849 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
850 X is the destination/target and Y is the value to copy. */
853 noce_emit_move_insn (rtx x
, rtx y
)
855 enum machine_mode outmode
;
859 if (GET_CODE (x
) != STRICT_LOW_PART
)
861 rtx seq
, insn
, target
;
865 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
866 otherwise construct a suitable SET pattern ourselves. */
867 insn
= (OBJECT_P (y
) || CONSTANT_P (y
) || GET_CODE (y
) == SUBREG
)
868 ? emit_move_insn (x
, y
)
869 : emit_insn (gen_rtx_SET (VOIDmode
, x
, y
));
873 if (recog_memoized (insn
) <= 0)
875 if (GET_CODE (x
) == ZERO_EXTRACT
)
877 rtx op
= XEXP (x
, 0);
878 unsigned HOST_WIDE_INT size
= INTVAL (XEXP (x
, 1));
879 unsigned HOST_WIDE_INT start
= INTVAL (XEXP (x
, 2));
881 /* store_bit_field expects START to be relative to
882 BYTES_BIG_ENDIAN and adjusts this value for machines with
883 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
884 invoke store_bit_field again it is necessary to have the START
885 value from the first call. */
886 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
889 start
= BITS_PER_UNIT
- start
- size
;
892 gcc_assert (REG_P (op
));
893 start
= BITS_PER_WORD
- start
- size
;
897 gcc_assert (start
< (MEM_P (op
) ? BITS_PER_UNIT
: BITS_PER_WORD
));
898 store_bit_field (op
, size
, start
, 0, 0, GET_MODE (x
), y
);
902 switch (GET_RTX_CLASS (GET_CODE (y
)))
905 ot
= code_to_optab (GET_CODE (y
));
909 target
= expand_unop (GET_MODE (y
), ot
, XEXP (y
, 0), x
, 0);
910 if (target
!= NULL_RTX
)
913 emit_move_insn (x
, target
);
922 ot
= code_to_optab (GET_CODE (y
));
926 target
= expand_binop (GET_MODE (y
), ot
,
927 XEXP (y
, 0), XEXP (y
, 1),
929 if (target
!= NULL_RTX
)
932 emit_move_insn (x
, target
);
949 inner
= XEXP (outer
, 0);
950 outmode
= GET_MODE (outer
);
951 bitpos
= SUBREG_BYTE (outer
) * BITS_PER_UNIT
;
952 store_bit_field (inner
, GET_MODE_BITSIZE (outmode
), bitpos
,
956 /* Return sequence of instructions generated by if conversion. This
957 function calls end_sequence() to end the current stream, ensures
958 that are instructions are unshared, recognizable non-jump insns.
959 On failure, this function returns a NULL_RTX. */
962 end_ifcvt_sequence (struct noce_if_info
*if_info
)
965 rtx seq
= get_insns ();
967 set_used_flags (if_info
->x
);
968 set_used_flags (if_info
->cond
);
969 unshare_all_rtl_in_chain (seq
);
972 /* Make sure that all of the instructions emitted are recognizable,
973 and that we haven't introduced a new jump instruction.
974 As an exercise for the reader, build a general mechanism that
975 allows proper placement of required clobbers. */
976 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
978 || recog_memoized (insn
) == -1)
984 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
985 "if (a == b) x = a; else x = b" into "x = b". */
988 noce_try_move (struct noce_if_info
*if_info
)
990 rtx cond
= if_info
->cond
;
991 enum rtx_code code
= GET_CODE (cond
);
994 if (code
!= NE
&& code
!= EQ
)
997 /* This optimization isn't valid if either A or B could be a NaN
999 if (HONOR_NANS (GET_MODE (if_info
->x
))
1000 || HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
)))
1003 /* Check whether the operands of the comparison are A and in
1005 if ((rtx_equal_p (if_info
->a
, XEXP (cond
, 0))
1006 && rtx_equal_p (if_info
->b
, XEXP (cond
, 1)))
1007 || (rtx_equal_p (if_info
->a
, XEXP (cond
, 1))
1008 && rtx_equal_p (if_info
->b
, XEXP (cond
, 0))))
1010 y
= (code
== EQ
) ? if_info
->a
: if_info
->b
;
1012 /* Avoid generating the move if the source is the destination. */
1013 if (! rtx_equal_p (if_info
->x
, y
))
1016 noce_emit_move_insn (if_info
->x
, y
);
1017 seq
= end_ifcvt_sequence (if_info
);
1021 emit_insn_before_setloc (seq
, if_info
->jump
,
1022 INSN_LOCATOR (if_info
->insn_a
));
1029 /* Convert "if (test) x = 1; else x = 0".
1031 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1032 tried in noce_try_store_flag_constants after noce_try_cmove has had
1033 a go at the conversion. */
1036 noce_try_store_flag (struct noce_if_info
*if_info
)
1041 if (CONST_INT_P (if_info
->b
)
1042 && INTVAL (if_info
->b
) == STORE_FLAG_VALUE
1043 && if_info
->a
== const0_rtx
)
1045 else if (if_info
->b
== const0_rtx
1046 && CONST_INT_P (if_info
->a
)
1047 && INTVAL (if_info
->a
) == STORE_FLAG_VALUE
1048 && (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1056 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, 0);
1059 if (target
!= if_info
->x
)
1060 noce_emit_move_insn (if_info
->x
, target
);
1062 seq
= end_ifcvt_sequence (if_info
);
1066 emit_insn_before_setloc (seq
, if_info
->jump
,
1067 INSN_LOCATOR (if_info
->insn_a
));
1077 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1080 noce_try_store_flag_constants (struct noce_if_info
*if_info
)
1084 HOST_WIDE_INT itrue
, ifalse
, diff
, tmp
;
1085 int normalize
, can_reverse
;
1086 enum machine_mode mode
;
1088 if (CONST_INT_P (if_info
->a
)
1089 && CONST_INT_P (if_info
->b
))
1091 mode
= GET_MODE (if_info
->x
);
1092 ifalse
= INTVAL (if_info
->a
);
1093 itrue
= INTVAL (if_info
->b
);
1095 /* Make sure we can represent the difference between the two values. */
1096 if ((itrue
- ifalse
> 0)
1097 != ((ifalse
< 0) != (itrue
< 0) ? ifalse
< 0 : ifalse
< itrue
))
1100 diff
= trunc_int_for_mode (itrue
- ifalse
, mode
);
1102 can_reverse
= (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1106 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1108 else if (ifalse
== 0 && exact_log2 (itrue
) >= 0
1109 && (STORE_FLAG_VALUE
== 1
1110 || if_info
->branch_cost
>= 2))
1112 else if (itrue
== 0 && exact_log2 (ifalse
) >= 0 && can_reverse
1113 && (STORE_FLAG_VALUE
== 1 || if_info
->branch_cost
>= 2))
1114 normalize
= 1, reversep
= 1;
1115 else if (itrue
== -1
1116 && (STORE_FLAG_VALUE
== -1
1117 || if_info
->branch_cost
>= 2))
1119 else if (ifalse
== -1 && can_reverse
1120 && (STORE_FLAG_VALUE
== -1 || if_info
->branch_cost
>= 2))
1121 normalize
= -1, reversep
= 1;
1122 else if ((if_info
->branch_cost
>= 2 && STORE_FLAG_VALUE
== -1)
1123 || if_info
->branch_cost
>= 3)
1130 tmp
= itrue
; itrue
= ifalse
; ifalse
= tmp
;
1131 diff
= trunc_int_for_mode (-diff
, mode
);
1135 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, normalize
);
1142 /* if (test) x = 3; else x = 4;
1143 => x = 3 + (test == 0); */
1144 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1146 target
= expand_simple_binop (mode
,
1147 (diff
== STORE_FLAG_VALUE
1149 GEN_INT (ifalse
), target
, if_info
->x
, 0,
1153 /* if (test) x = 8; else x = 0;
1154 => x = (test != 0) << 3; */
1155 else if (ifalse
== 0 && (tmp
= exact_log2 (itrue
)) >= 0)
1157 target
= expand_simple_binop (mode
, ASHIFT
,
1158 target
, GEN_INT (tmp
), if_info
->x
, 0,
1162 /* if (test) x = -1; else x = b;
1163 => x = -(test != 0) | b; */
1164 else if (itrue
== -1)
1166 target
= expand_simple_binop (mode
, IOR
,
1167 target
, GEN_INT (ifalse
), if_info
->x
, 0,
1171 /* if (test) x = a; else x = b;
1172 => x = (-(test != 0) & (b - a)) + a; */
1175 target
= expand_simple_binop (mode
, AND
,
1176 target
, GEN_INT (diff
), if_info
->x
, 0,
1179 target
= expand_simple_binop (mode
, PLUS
,
1180 target
, GEN_INT (ifalse
),
1181 if_info
->x
, 0, OPTAB_WIDEN
);
1190 if (target
!= if_info
->x
)
1191 noce_emit_move_insn (if_info
->x
, target
);
1193 seq
= end_ifcvt_sequence (if_info
);
1197 emit_insn_before_setloc (seq
, if_info
->jump
,
1198 INSN_LOCATOR (if_info
->insn_a
));
1205 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1206 similarly for "foo--". */
1209 noce_try_addcc (struct noce_if_info
*if_info
)
1212 int subtract
, normalize
;
1214 if (GET_CODE (if_info
->a
) == PLUS
1215 && rtx_equal_p (XEXP (if_info
->a
, 0), if_info
->b
)
1216 && (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1219 rtx cond
= if_info
->cond
;
1220 enum rtx_code code
= reversed_comparison_code (cond
, if_info
->jump
);
1222 /* First try to use addcc pattern. */
1223 if (general_operand (XEXP (cond
, 0), VOIDmode
)
1224 && general_operand (XEXP (cond
, 1), VOIDmode
))
1227 target
= emit_conditional_add (if_info
->x
, code
,
1232 XEXP (if_info
->a
, 1),
1233 GET_MODE (if_info
->x
),
1234 (code
== LTU
|| code
== GEU
1235 || code
== LEU
|| code
== GTU
));
1238 if (target
!= if_info
->x
)
1239 noce_emit_move_insn (if_info
->x
, target
);
1241 seq
= end_ifcvt_sequence (if_info
);
1245 emit_insn_before_setloc (seq
, if_info
->jump
,
1246 INSN_LOCATOR (if_info
->insn_a
));
1252 /* If that fails, construct conditional increment or decrement using
1254 if (if_info
->branch_cost
>= 2
1255 && (XEXP (if_info
->a
, 1) == const1_rtx
1256 || XEXP (if_info
->a
, 1) == constm1_rtx
))
1259 if (STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1260 subtract
= 0, normalize
= 0;
1261 else if (-STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1262 subtract
= 1, normalize
= 0;
1264 subtract
= 0, normalize
= INTVAL (XEXP (if_info
->a
, 1));
1267 target
= noce_emit_store_flag (if_info
,
1268 gen_reg_rtx (GET_MODE (if_info
->x
)),
1272 target
= expand_simple_binop (GET_MODE (if_info
->x
),
1273 subtract
? MINUS
: PLUS
,
1274 if_info
->b
, target
, if_info
->x
,
1278 if (target
!= if_info
->x
)
1279 noce_emit_move_insn (if_info
->x
, target
);
1281 seq
= end_ifcvt_sequence (if_info
);
1285 emit_insn_before_setloc (seq
, if_info
->jump
,
1286 INSN_LOCATOR (if_info
->insn_a
));
1296 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1299 noce_try_store_flag_mask (struct noce_if_info
*if_info
)
1305 if ((if_info
->branch_cost
>= 2
1306 || STORE_FLAG_VALUE
== -1)
1307 && ((if_info
->a
== const0_rtx
1308 && rtx_equal_p (if_info
->b
, if_info
->x
))
1309 || ((reversep
= (reversed_comparison_code (if_info
->cond
,
1312 && if_info
->b
== const0_rtx
1313 && rtx_equal_p (if_info
->a
, if_info
->x
))))
1316 target
= noce_emit_store_flag (if_info
,
1317 gen_reg_rtx (GET_MODE (if_info
->x
)),
1320 target
= expand_simple_binop (GET_MODE (if_info
->x
), AND
,
1322 target
, if_info
->x
, 0,
1327 if (target
!= if_info
->x
)
1328 noce_emit_move_insn (if_info
->x
, target
);
1330 seq
= end_ifcvt_sequence (if_info
);
1334 emit_insn_before_setloc (seq
, if_info
->jump
,
1335 INSN_LOCATOR (if_info
->insn_a
));
1345 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1348 noce_emit_cmove (struct noce_if_info
*if_info
, rtx x
, enum rtx_code code
,
1349 rtx cmp_a
, rtx cmp_b
, rtx vfalse
, rtx vtrue
)
1351 rtx target ATTRIBUTE_UNUSED
;
1352 int unsignedp ATTRIBUTE_UNUSED
;
1354 /* If earliest == jump, try to build the cmove insn directly.
1355 This is helpful when combine has created some complex condition
1356 (like for alpha's cmovlbs) that we can't hope to regenerate
1357 through the normal interface. */
1359 if (if_info
->cond_earliest
== if_info
->jump
)
1363 tmp
= gen_rtx_fmt_ee (code
, GET_MODE (if_info
->cond
), cmp_a
, cmp_b
);
1364 tmp
= gen_rtx_IF_THEN_ELSE (GET_MODE (x
), tmp
, vtrue
, vfalse
);
1365 tmp
= gen_rtx_SET (VOIDmode
, x
, tmp
);
1368 tmp
= emit_insn (tmp
);
1370 if (recog_memoized (tmp
) >= 0)
1382 /* Don't even try if the comparison operands are weird. */
1383 if (! general_operand (cmp_a
, GET_MODE (cmp_a
))
1384 || ! general_operand (cmp_b
, GET_MODE (cmp_b
)))
1387 #if HAVE_conditional_move
1388 unsignedp
= (code
== LTU
|| code
== GEU
1389 || code
== LEU
|| code
== GTU
);
1391 target
= emit_conditional_move (x
, code
, cmp_a
, cmp_b
, VOIDmode
,
1392 vtrue
, vfalse
, GET_MODE (x
),
1397 /* We might be faced with a situation like:
1400 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1401 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1403 We can't do a conditional move in mode M, but it's possible that we
1404 could do a conditional move in mode N instead and take a subreg of
1407 If we can't create new pseudos, though, don't bother. */
1408 if (reload_completed
)
1411 if (GET_CODE (vtrue
) == SUBREG
&& GET_CODE (vfalse
) == SUBREG
)
1413 rtx reg_vtrue
= SUBREG_REG (vtrue
);
1414 rtx reg_vfalse
= SUBREG_REG (vfalse
);
1415 unsigned int byte_vtrue
= SUBREG_BYTE (vtrue
);
1416 unsigned int byte_vfalse
= SUBREG_BYTE (vfalse
);
1417 rtx promoted_target
;
1419 if (GET_MODE (reg_vtrue
) != GET_MODE (reg_vfalse
)
1420 || byte_vtrue
!= byte_vfalse
1421 || (SUBREG_PROMOTED_VAR_P (vtrue
)
1422 != SUBREG_PROMOTED_VAR_P (vfalse
))
1423 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue
)
1424 != SUBREG_PROMOTED_UNSIGNED_P (vfalse
)))
1427 promoted_target
= gen_reg_rtx (GET_MODE (reg_vtrue
));
1429 target
= emit_conditional_move (promoted_target
, code
, cmp_a
, cmp_b
,
1430 VOIDmode
, reg_vtrue
, reg_vfalse
,
1431 GET_MODE (reg_vtrue
), unsignedp
);
1432 /* Nope, couldn't do it in that mode either. */
1436 target
= gen_rtx_SUBREG (GET_MODE (vtrue
), promoted_target
, byte_vtrue
);
1437 SUBREG_PROMOTED_VAR_P (target
) = SUBREG_PROMOTED_VAR_P (vtrue
);
1438 SUBREG_PROMOTED_UNSIGNED_SET (target
, SUBREG_PROMOTED_UNSIGNED_P (vtrue
));
1439 emit_move_insn (x
, target
);
1445 /* We'll never get here, as noce_process_if_block doesn't call the
1446 functions involved. Ifdef code, however, should be discouraged
1447 because it leads to typos in the code not selected. However,
1448 emit_conditional_move won't exist either. */
1453 /* Try only simple constants and registers here. More complex cases
1454 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1455 has had a go at it. */
1458 noce_try_cmove (struct noce_if_info
*if_info
)
1463 if ((CONSTANT_P (if_info
->a
) || register_operand (if_info
->a
, VOIDmode
))
1464 && (CONSTANT_P (if_info
->b
) || register_operand (if_info
->b
, VOIDmode
)))
1468 code
= GET_CODE (if_info
->cond
);
1469 target
= noce_emit_cmove (if_info
, if_info
->x
, code
,
1470 XEXP (if_info
->cond
, 0),
1471 XEXP (if_info
->cond
, 1),
1472 if_info
->a
, if_info
->b
);
1476 if (target
!= if_info
->x
)
1477 noce_emit_move_insn (if_info
->x
, target
);
1479 seq
= end_ifcvt_sequence (if_info
);
1483 emit_insn_before_setloc (seq
, if_info
->jump
,
1484 INSN_LOCATOR (if_info
->insn_a
));
1497 /* Try more complex cases involving conditional_move. */
1500 noce_try_cmove_arith (struct noce_if_info
*if_info
)
1512 /* A conditional move from two memory sources is equivalent to a
1513 conditional on their addresses followed by a load. Don't do this
1514 early because it'll screw alias analysis. Note that we've
1515 already checked for no side effects. */
1516 /* ??? FIXME: Magic number 5. */
1517 if (cse_not_expected
1518 && MEM_P (a
) && MEM_P (b
)
1519 && MEM_ADDR_SPACE (a
) == MEM_ADDR_SPACE (b
)
1520 && if_info
->branch_cost
>= 5)
1522 enum machine_mode address_mode
= get_address_mode (a
);
1526 x
= gen_reg_rtx (address_mode
);
1530 /* ??? We could handle this if we knew that a load from A or B could
1531 not trap or fault. This is also true if we've already loaded
1532 from the address along the path from ENTRY. */
1533 else if (may_trap_or_fault_p (a
) || may_trap_or_fault_p (b
))
1536 /* if (test) x = a + b; else x = c - d;
1543 code
= GET_CODE (if_info
->cond
);
1544 insn_a
= if_info
->insn_a
;
1545 insn_b
= if_info
->insn_b
;
1547 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1548 if insn_rtx_cost can't be estimated. */
1552 = insn_rtx_cost (PATTERN (insn_a
),
1553 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a
)));
1554 if (insn_cost
== 0 || insn_cost
> COSTS_N_INSNS (if_info
->branch_cost
))
1563 += insn_rtx_cost (PATTERN (insn_b
),
1564 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b
)));
1565 if (insn_cost
== 0 || insn_cost
> COSTS_N_INSNS (if_info
->branch_cost
))
1569 /* Possibly rearrange operands to make things come out more natural. */
1570 if (reversed_comparison_code (if_info
->cond
, if_info
->jump
) != UNKNOWN
)
1573 if (rtx_equal_p (b
, x
))
1575 else if (general_operand (b
, GET_MODE (b
)))
1580 code
= reversed_comparison_code (if_info
->cond
, if_info
->jump
);
1581 tmp
= a
, a
= b
, b
= tmp
;
1582 tmp
= insn_a
, insn_a
= insn_b
, insn_b
= tmp
;
1591 /* If either operand is complex, load it into a register first.
1592 The best way to do this is to copy the original insn. In this
1593 way we preserve any clobbers etc that the insn may have had.
1594 This is of course not possible in the IS_MEM case. */
1595 if (! general_operand (a
, GET_MODE (a
)))
1601 tmp
= gen_reg_rtx (GET_MODE (a
));
1602 tmp
= emit_insn (gen_rtx_SET (VOIDmode
, tmp
, a
));
1605 goto end_seq_and_fail
;
1608 a
= gen_reg_rtx (GET_MODE (a
));
1609 tmp
= copy_rtx (insn_a
);
1610 set
= single_set (tmp
);
1612 tmp
= emit_insn (PATTERN (tmp
));
1614 if (recog_memoized (tmp
) < 0)
1615 goto end_seq_and_fail
;
1617 if (! general_operand (b
, GET_MODE (b
)))
1623 tmp
= gen_reg_rtx (GET_MODE (b
));
1624 tmp
= gen_rtx_SET (VOIDmode
, tmp
, b
);
1627 goto end_seq_and_fail
;
1630 b
= gen_reg_rtx (GET_MODE (b
));
1631 tmp
= copy_rtx (insn_b
);
1632 set
= single_set (tmp
);
1634 tmp
= PATTERN (tmp
);
1637 /* If insn to set up A clobbers any registers B depends on, try to
1638 swap insn that sets up A with the one that sets up B. If even
1639 that doesn't help, punt. */
1640 last
= get_last_insn ();
1641 if (last
&& modified_in_p (orig_b
, last
))
1643 tmp
= emit_insn_before (tmp
, get_insns ());
1644 if (modified_in_p (orig_a
, tmp
))
1645 goto end_seq_and_fail
;
1648 tmp
= emit_insn (tmp
);
1650 if (recog_memoized (tmp
) < 0)
1651 goto end_seq_and_fail
;
1654 target
= noce_emit_cmove (if_info
, x
, code
, XEXP (if_info
->cond
, 0),
1655 XEXP (if_info
->cond
, 1), a
, b
);
1658 goto end_seq_and_fail
;
1660 /* If we're handling a memory for above, emit the load now. */
1663 tmp
= gen_rtx_MEM (GET_MODE (if_info
->x
), target
);
1665 /* Copy over flags as appropriate. */
1666 if (MEM_VOLATILE_P (if_info
->a
) || MEM_VOLATILE_P (if_info
->b
))
1667 MEM_VOLATILE_P (tmp
) = 1;
1668 if (MEM_ALIAS_SET (if_info
->a
) == MEM_ALIAS_SET (if_info
->b
))
1669 set_mem_alias_set (tmp
, MEM_ALIAS_SET (if_info
->a
));
1671 MIN (MEM_ALIGN (if_info
->a
), MEM_ALIGN (if_info
->b
)));
1673 gcc_assert (MEM_ADDR_SPACE (if_info
->a
) == MEM_ADDR_SPACE (if_info
->b
));
1674 set_mem_addr_space (tmp
, MEM_ADDR_SPACE (if_info
->a
));
1676 noce_emit_move_insn (if_info
->x
, tmp
);
1678 else if (target
!= x
)
1679 noce_emit_move_insn (x
, target
);
1681 tmp
= end_ifcvt_sequence (if_info
);
1685 emit_insn_before_setloc (tmp
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
1693 /* For most cases, the simplified condition we found is the best
1694 choice, but this is not the case for the min/max/abs transforms.
1695 For these we wish to know that it is A or B in the condition. */
1698 noce_get_alt_condition (struct noce_if_info
*if_info
, rtx target
,
1701 rtx cond
, set
, insn
;
1704 /* If target is already mentioned in the known condition, return it. */
1705 if (reg_mentioned_p (target
, if_info
->cond
))
1707 *earliest
= if_info
->cond_earliest
;
1708 return if_info
->cond
;
1711 set
= pc_set (if_info
->jump
);
1712 cond
= XEXP (SET_SRC (set
), 0);
1714 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
1715 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (if_info
->jump
);
1716 if (if_info
->then_else_reversed
)
1719 /* If we're looking for a constant, try to make the conditional
1720 have that constant in it. There are two reasons why it may
1721 not have the constant we want:
1723 1. GCC may have needed to put the constant in a register, because
1724 the target can't compare directly against that constant. For
1725 this case, we look for a SET immediately before the comparison
1726 that puts a constant in that register.
1728 2. GCC may have canonicalized the conditional, for example
1729 replacing "if x < 4" with "if x <= 3". We can undo that (or
1730 make equivalent types of changes) to get the constants we need
1731 if they're off by one in the right direction. */
1733 if (CONST_INT_P (target
))
1735 enum rtx_code code
= GET_CODE (if_info
->cond
);
1736 rtx op_a
= XEXP (if_info
->cond
, 0);
1737 rtx op_b
= XEXP (if_info
->cond
, 1);
1740 /* First, look to see if we put a constant in a register. */
1741 prev_insn
= prev_nonnote_insn (if_info
->cond_earliest
);
1743 && BLOCK_FOR_INSN (prev_insn
)
1744 == BLOCK_FOR_INSN (if_info
->cond_earliest
)
1745 && INSN_P (prev_insn
)
1746 && GET_CODE (PATTERN (prev_insn
)) == SET
)
1748 rtx src
= find_reg_equal_equiv_note (prev_insn
);
1750 src
= SET_SRC (PATTERN (prev_insn
));
1751 if (CONST_INT_P (src
))
1753 if (rtx_equal_p (op_a
, SET_DEST (PATTERN (prev_insn
))))
1755 else if (rtx_equal_p (op_b
, SET_DEST (PATTERN (prev_insn
))))
1758 if (CONST_INT_P (op_a
))
1763 code
= swap_condition (code
);
1768 /* Now, look to see if we can get the right constant by
1769 adjusting the conditional. */
1770 if (CONST_INT_P (op_b
))
1772 HOST_WIDE_INT desired_val
= INTVAL (target
);
1773 HOST_WIDE_INT actual_val
= INTVAL (op_b
);
1778 if (actual_val
== desired_val
+ 1)
1781 op_b
= GEN_INT (desired_val
);
1785 if (actual_val
== desired_val
- 1)
1788 op_b
= GEN_INT (desired_val
);
1792 if (actual_val
== desired_val
- 1)
1795 op_b
= GEN_INT (desired_val
);
1799 if (actual_val
== desired_val
+ 1)
1802 op_b
= GEN_INT (desired_val
);
1810 /* If we made any changes, generate a new conditional that is
1811 equivalent to what we started with, but has the right
1813 if (code
!= GET_CODE (if_info
->cond
)
1814 || op_a
!= XEXP (if_info
->cond
, 0)
1815 || op_b
!= XEXP (if_info
->cond
, 1))
1817 cond
= gen_rtx_fmt_ee (code
, GET_MODE (cond
), op_a
, op_b
);
1818 *earliest
= if_info
->cond_earliest
;
1823 cond
= canonicalize_condition (if_info
->jump
, cond
, reverse
,
1824 earliest
, target
, false, true);
1825 if (! cond
|| ! reg_mentioned_p (target
, cond
))
1828 /* We almost certainly searched back to a different place.
1829 Need to re-verify correct lifetimes. */
1831 /* X may not be mentioned in the range (cond_earliest, jump]. */
1832 for (insn
= if_info
->jump
; insn
!= *earliest
; insn
= PREV_INSN (insn
))
1833 if (INSN_P (insn
) && reg_overlap_mentioned_p (if_info
->x
, PATTERN (insn
)))
1836 /* A and B may not be modified in the range [cond_earliest, jump). */
1837 for (insn
= *earliest
; insn
!= if_info
->jump
; insn
= NEXT_INSN (insn
))
1839 && (modified_in_p (if_info
->a
, insn
)
1840 || modified_in_p (if_info
->b
, insn
)))
1846 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1849 noce_try_minmax (struct noce_if_info
*if_info
)
1851 rtx cond
, earliest
, target
, seq
;
1852 enum rtx_code code
, op
;
1855 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1856 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1857 to get the target to tell us... */
1858 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
))
1859 || HONOR_NANS (GET_MODE (if_info
->x
)))
1862 cond
= noce_get_alt_condition (if_info
, if_info
->a
, &earliest
);
1866 /* Verify the condition is of the form we expect, and canonicalize
1867 the comparison code. */
1868 code
= GET_CODE (cond
);
1869 if (rtx_equal_p (XEXP (cond
, 0), if_info
->a
))
1871 if (! rtx_equal_p (XEXP (cond
, 1), if_info
->b
))
1874 else if (rtx_equal_p (XEXP (cond
, 1), if_info
->a
))
1876 if (! rtx_equal_p (XEXP (cond
, 0), if_info
->b
))
1878 code
= swap_condition (code
);
1883 /* Determine what sort of operation this is. Note that the code is for
1884 a taken branch, so the code->operation mapping appears backwards. */
1917 target
= expand_simple_binop (GET_MODE (if_info
->x
), op
,
1918 if_info
->a
, if_info
->b
,
1919 if_info
->x
, unsignedp
, OPTAB_WIDEN
);
1925 if (target
!= if_info
->x
)
1926 noce_emit_move_insn (if_info
->x
, target
);
1928 seq
= end_ifcvt_sequence (if_info
);
1932 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
1933 if_info
->cond
= cond
;
1934 if_info
->cond_earliest
= earliest
;
1939 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1940 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1944 noce_try_abs (struct noce_if_info
*if_info
)
1946 rtx cond
, earliest
, target
, seq
, a
, b
, c
;
1948 bool one_cmpl
= false;
1950 /* Reject modes with signed zeros. */
1951 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
)))
1954 /* Recognize A and B as constituting an ABS or NABS. The canonical
1955 form is a branch around the negation, taken when the object is the
1956 first operand of a comparison against 0 that evaluates to true. */
1959 if (GET_CODE (a
) == NEG
&& rtx_equal_p (XEXP (a
, 0), b
))
1961 else if (GET_CODE (b
) == NEG
&& rtx_equal_p (XEXP (b
, 0), a
))
1963 c
= a
; a
= b
; b
= c
;
1966 else if (GET_CODE (a
) == NOT
&& rtx_equal_p (XEXP (a
, 0), b
))
1971 else if (GET_CODE (b
) == NOT
&& rtx_equal_p (XEXP (b
, 0), a
))
1973 c
= a
; a
= b
; b
= c
;
1980 cond
= noce_get_alt_condition (if_info
, b
, &earliest
);
1984 /* Verify the condition is of the form we expect. */
1985 if (rtx_equal_p (XEXP (cond
, 0), b
))
1987 else if (rtx_equal_p (XEXP (cond
, 1), b
))
1995 /* Verify that C is zero. Search one step backward for a
1996 REG_EQUAL note or a simple source if necessary. */
1999 rtx set
, insn
= prev_nonnote_insn (earliest
);
2001 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (earliest
)
2002 && (set
= single_set (insn
))
2003 && rtx_equal_p (SET_DEST (set
), c
))
2005 rtx note
= find_reg_equal_equiv_note (insn
);
2015 && GET_CODE (XEXP (c
, 0)) == SYMBOL_REF
2016 && CONSTANT_POOL_ADDRESS_P (XEXP (c
, 0)))
2017 c
= get_pool_constant (XEXP (c
, 0));
2019 /* Work around funny ideas get_condition has wrt canonicalization.
2020 Note that these rtx constants are known to be CONST_INT, and
2021 therefore imply integer comparisons. */
2022 if (c
== constm1_rtx
&& GET_CODE (cond
) == GT
)
2024 else if (c
== const1_rtx
&& GET_CODE (cond
) == LT
)
2026 else if (c
!= CONST0_RTX (GET_MODE (b
)))
2029 /* Determine what sort of operation this is. */
2030 switch (GET_CODE (cond
))
2049 target
= expand_one_cmpl_abs_nojump (GET_MODE (if_info
->x
), b
,
2052 target
= expand_abs_nojump (GET_MODE (if_info
->x
), b
, if_info
->x
, 1);
2054 /* ??? It's a quandary whether cmove would be better here, especially
2055 for integers. Perhaps combine will clean things up. */
2056 if (target
&& negate
)
2059 target
= expand_simple_unop (GET_MODE (target
), NOT
, target
,
2062 target
= expand_simple_unop (GET_MODE (target
), NEG
, target
,
2072 if (target
!= if_info
->x
)
2073 noce_emit_move_insn (if_info
->x
, target
);
2075 seq
= end_ifcvt_sequence (if_info
);
2079 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
2080 if_info
->cond
= cond
;
2081 if_info
->cond_earliest
= earliest
;
2086 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2089 noce_try_sign_mask (struct noce_if_info
*if_info
)
2091 rtx cond
, t
, m
, c
, seq
;
2092 enum machine_mode mode
;
2094 bool t_unconditional
;
2096 cond
= if_info
->cond
;
2097 code
= GET_CODE (cond
);
2102 if (if_info
->a
== const0_rtx
)
2104 if ((code
== LT
&& c
== const0_rtx
)
2105 || (code
== LE
&& c
== constm1_rtx
))
2108 else if (if_info
->b
== const0_rtx
)
2110 if ((code
== GE
&& c
== const0_rtx
)
2111 || (code
== GT
&& c
== constm1_rtx
))
2115 if (! t
|| side_effects_p (t
))
2118 /* We currently don't handle different modes. */
2119 mode
= GET_MODE (t
);
2120 if (GET_MODE (m
) != mode
)
2123 /* This is only profitable if T is unconditionally executed/evaluated in the
2124 original insn sequence or T is cheap. The former happens if B is the
2125 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2126 INSN_B which can happen for e.g. conditional stores to memory. For the
2127 cost computation use the block TEST_BB where the evaluation will end up
2128 after the transformation. */
2131 && (if_info
->insn_b
== NULL_RTX
2132 || BLOCK_FOR_INSN (if_info
->insn_b
) == if_info
->test_bb
));
2133 if (!(t_unconditional
2134 || (set_src_cost (t
, optimize_bb_for_speed_p (if_info
->test_bb
))
2135 < COSTS_N_INSNS (2))))
2139 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2140 "(signed) m >> 31" directly. This benefits targets with specialized
2141 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2142 m
= emit_store_flag (gen_reg_rtx (mode
), LT
, m
, const0_rtx
, mode
, 0, -1);
2143 t
= m
? expand_binop (mode
, and_optab
, m
, t
, NULL_RTX
, 0, OPTAB_DIRECT
)
2152 noce_emit_move_insn (if_info
->x
, t
);
2154 seq
= end_ifcvt_sequence (if_info
);
2158 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
2163 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2167 noce_try_bitop (struct noce_if_info
*if_info
)
2169 rtx cond
, x
, a
, result
, seq
;
2170 enum machine_mode mode
;
2175 cond
= if_info
->cond
;
2176 code
= GET_CODE (cond
);
2178 /* Check for no else condition. */
2179 if (! rtx_equal_p (x
, if_info
->b
))
2182 /* Check for a suitable condition. */
2183 if (code
!= NE
&& code
!= EQ
)
2185 if (XEXP (cond
, 1) != const0_rtx
)
2187 cond
= XEXP (cond
, 0);
2189 /* ??? We could also handle AND here. */
2190 if (GET_CODE (cond
) == ZERO_EXTRACT
)
2192 if (XEXP (cond
, 1) != const1_rtx
2193 || !CONST_INT_P (XEXP (cond
, 2))
2194 || ! rtx_equal_p (x
, XEXP (cond
, 0)))
2196 bitnum
= INTVAL (XEXP (cond
, 2));
2197 mode
= GET_MODE (x
);
2198 if (BITS_BIG_ENDIAN
)
2199 bitnum
= GET_MODE_BITSIZE (mode
) - 1 - bitnum
;
2200 if (bitnum
< 0 || bitnum
>= HOST_BITS_PER_WIDE_INT
)
2207 if (GET_CODE (a
) == IOR
|| GET_CODE (a
) == XOR
)
2209 /* Check for "if (X & C) x = x op C". */
2210 if (! rtx_equal_p (x
, XEXP (a
, 0))
2211 || !CONST_INT_P (XEXP (a
, 1))
2212 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2213 != (unsigned HOST_WIDE_INT
) 1 << bitnum
)
2216 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2217 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2218 if (GET_CODE (a
) == IOR
)
2219 result
= (code
== NE
) ? a
: NULL_RTX
;
2220 else if (code
== NE
)
2222 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2223 result
= gen_int_mode ((HOST_WIDE_INT
) 1 << bitnum
, mode
);
2224 result
= simplify_gen_binary (IOR
, mode
, x
, result
);
2228 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2229 result
= gen_int_mode (~((HOST_WIDE_INT
) 1 << bitnum
), mode
);
2230 result
= simplify_gen_binary (AND
, mode
, x
, result
);
2233 else if (GET_CODE (a
) == AND
)
2235 /* Check for "if (X & C) x &= ~C". */
2236 if (! rtx_equal_p (x
, XEXP (a
, 0))
2237 || !CONST_INT_P (XEXP (a
, 1))
2238 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2239 != (~((HOST_WIDE_INT
) 1 << bitnum
) & GET_MODE_MASK (mode
)))
2242 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2243 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2244 result
= (code
== EQ
) ? a
: NULL_RTX
;
2252 noce_emit_move_insn (x
, result
);
2253 seq
= end_ifcvt_sequence (if_info
);
2257 emit_insn_before_setloc (seq
, if_info
->jump
,
2258 INSN_LOCATOR (if_info
->insn_a
));
2264 /* Similar to get_condition, only the resulting condition must be
2265 valid at JUMP, instead of at EARLIEST.
2267 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2268 THEN block of the caller, and we have to reverse the condition. */
2271 noce_get_condition (rtx jump
, rtx
*earliest
, bool then_else_reversed
)
2276 if (! any_condjump_p (jump
))
2279 set
= pc_set (jump
);
2281 /* If this branches to JUMP_LABEL when the condition is false,
2282 reverse the condition. */
2283 reverse
= (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
2284 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
));
2286 /* We may have to reverse because the caller's if block is not canonical,
2287 i.e. the THEN block isn't the fallthrough block for the TEST block
2288 (see find_if_header). */
2289 if (then_else_reversed
)
2292 /* If the condition variable is a register and is MODE_INT, accept it. */
2294 cond
= XEXP (SET_SRC (set
), 0);
2295 tmp
= XEXP (cond
, 0);
2296 if (REG_P (tmp
) && GET_MODE_CLASS (GET_MODE (tmp
)) == MODE_INT
2297 && (GET_MODE (tmp
) != BImode
2298 || !targetm
.small_register_classes_for_mode_p (BImode
)))
2303 cond
= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond
)),
2304 GET_MODE (cond
), tmp
, XEXP (cond
, 1));
2308 /* Otherwise, fall back on canonicalize_condition to do the dirty
2309 work of manipulating MODE_CC values and COMPARE rtx codes. */
2310 tmp
= canonicalize_condition (jump
, cond
, reverse
, earliest
,
2311 NULL_RTX
, false, true);
2313 /* We don't handle side-effects in the condition, like handling
2314 REG_INC notes and making sure no duplicate conditions are emitted. */
2315 if (tmp
!= NULL_RTX
&& side_effects_p (tmp
))
2321 /* Return true if OP is ok for if-then-else processing. */
2324 noce_operand_ok (const_rtx op
)
2326 if (side_effects_p (op
))
2329 /* We special-case memories, so handle any of them with
2330 no address side effects. */
2332 return ! side_effects_p (XEXP (op
, 0));
2334 return ! may_trap_p (op
);
2337 /* Return true if a write into MEM may trap or fault. */
2340 noce_mem_write_may_trap_or_fault_p (const_rtx mem
)
2344 if (MEM_READONLY_P (mem
))
2347 if (may_trap_or_fault_p (mem
))
2350 addr
= XEXP (mem
, 0);
2352 /* Call target hook to avoid the effects of -fpic etc.... */
2353 addr
= targetm
.delegitimize_address (addr
);
2356 switch (GET_CODE (addr
))
2364 addr
= XEXP (addr
, 0);
2368 addr
= XEXP (addr
, 1);
2371 if (CONST_INT_P (XEXP (addr
, 1)))
2372 addr
= XEXP (addr
, 0);
2379 if (SYMBOL_REF_DECL (addr
)
2380 && decl_readonly_section (SYMBOL_REF_DECL (addr
), 0))
2390 /* Return whether we can use store speculation for MEM. TOP_BB is the
2391 basic block above the conditional block where we are considering
2392 doing the speculative store. We look for whether MEM is set
2393 unconditionally later in the function. */
2396 noce_can_store_speculate_p (basic_block top_bb
, const_rtx mem
)
2398 basic_block dominator
;
2400 for (dominator
= get_immediate_dominator (CDI_POST_DOMINATORS
, top_bb
);
2402 dominator
= get_immediate_dominator (CDI_POST_DOMINATORS
, dominator
))
2406 FOR_BB_INSNS (dominator
, insn
)
2408 /* If we see something that might be a memory barrier, we
2409 have to stop looking. Even if the MEM is set later in
2410 the function, we still don't want to set it
2411 unconditionally before the barrier. */
2413 && (volatile_insn_p (PATTERN (insn
))
2414 || (CALL_P (insn
) && (!RTL_CONST_CALL_P (insn
)))))
2417 if (memory_modified_in_insn_p (mem
, insn
))
2419 if (modified_in_p (XEXP (mem
, 0), insn
))
2428 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2429 it without using conditional execution. Return TRUE if we were successful
2430 at converting the block. */
2433 noce_process_if_block (struct noce_if_info
*if_info
)
2435 basic_block test_bb
= if_info
->test_bb
; /* test block */
2436 basic_block then_bb
= if_info
->then_bb
; /* THEN */
2437 basic_block else_bb
= if_info
->else_bb
; /* ELSE or NULL */
2438 basic_block join_bb
= if_info
->join_bb
; /* JOIN */
2439 rtx jump
= if_info
->jump
;
2440 rtx cond
= if_info
->cond
;
2443 rtx orig_x
, x
, a
, b
;
2445 /* We're looking for patterns of the form
2447 (1) if (...) x = a; else x = b;
2448 (2) x = b; if (...) x = a;
2449 (3) if (...) x = a; // as if with an initial x = x.
2451 The later patterns require jumps to be more expensive.
2453 ??? For future expansion, look for multiple X in such patterns. */
2455 /* Look for one of the potential sets. */
2456 insn_a
= first_active_insn (then_bb
);
2458 || insn_a
!= last_active_insn (then_bb
, FALSE
)
2459 || (set_a
= single_set (insn_a
)) == NULL_RTX
)
2462 x
= SET_DEST (set_a
);
2463 a
= SET_SRC (set_a
);
2465 /* Look for the other potential set. Make sure we've got equivalent
2467 /* ??? This is overconservative. Storing to two different mems is
2468 as easy as conditionally computing the address. Storing to a
2469 single mem merely requires a scratch memory to use as one of the
2470 destination addresses; often the memory immediately below the
2471 stack pointer is available for this. */
2475 insn_b
= first_active_insn (else_bb
);
2477 || insn_b
!= last_active_insn (else_bb
, FALSE
)
2478 || (set_b
= single_set (insn_b
)) == NULL_RTX
2479 || ! rtx_equal_p (x
, SET_DEST (set_b
)))
2484 insn_b
= prev_nonnote_nondebug_insn (if_info
->cond_earliest
);
2485 /* We're going to be moving the evaluation of B down from above
2486 COND_EARLIEST to JUMP. Make sure the relevant data is still
2489 || BLOCK_FOR_INSN (insn_b
) != BLOCK_FOR_INSN (if_info
->cond_earliest
)
2490 || !NONJUMP_INSN_P (insn_b
)
2491 || (set_b
= single_set (insn_b
)) == NULL_RTX
2492 || ! rtx_equal_p (x
, SET_DEST (set_b
))
2493 || ! noce_operand_ok (SET_SRC (set_b
))
2494 || reg_overlap_mentioned_p (x
, SET_SRC (set_b
))
2495 || modified_between_p (SET_SRC (set_b
), insn_b
, jump
)
2496 /* Likewise with X. In particular this can happen when
2497 noce_get_condition looks farther back in the instruction
2498 stream than one might expect. */
2499 || reg_overlap_mentioned_p (x
, cond
)
2500 || reg_overlap_mentioned_p (x
, a
)
2501 || modified_between_p (x
, insn_b
, jump
))
2502 insn_b
= set_b
= NULL_RTX
;
2505 /* If x has side effects then only the if-then-else form is safe to
2506 convert. But even in that case we would need to restore any notes
2507 (such as REG_INC) at then end. That can be tricky if
2508 noce_emit_move_insn expands to more than one insn, so disable the
2509 optimization entirely for now if there are side effects. */
2510 if (side_effects_p (x
))
2513 b
= (set_b
? SET_SRC (set_b
) : x
);
2515 /* Only operate on register destinations, and even then avoid extending
2516 the lifetime of hard registers on small register class machines. */
2519 || (HARD_REGISTER_P (x
)
2520 && targetm
.small_register_classes_for_mode_p (GET_MODE (x
))))
2522 if (GET_MODE (x
) == BLKmode
)
2525 if (GET_CODE (x
) == ZERO_EXTRACT
2526 && (!CONST_INT_P (XEXP (x
, 1))
2527 || !CONST_INT_P (XEXP (x
, 2))))
2530 x
= gen_reg_rtx (GET_MODE (GET_CODE (x
) == STRICT_LOW_PART
2531 ? XEXP (x
, 0) : x
));
2534 /* Don't operate on sources that may trap or are volatile. */
2535 if (! noce_operand_ok (a
) || ! noce_operand_ok (b
))
2539 /* Set up the info block for our subroutines. */
2540 if_info
->insn_a
= insn_a
;
2541 if_info
->insn_b
= insn_b
;
2546 /* Try optimizations in some approximation of a useful order. */
2547 /* ??? Should first look to see if X is live incoming at all. If it
2548 isn't, we don't need anything but an unconditional set. */
2550 /* Look and see if A and B are really the same. Avoid creating silly
2551 cmove constructs that no one will fix up later. */
2552 if (rtx_equal_p (a
, b
))
2554 /* If we have an INSN_B, we don't have to create any new rtl. Just
2555 move the instruction that we already have. If we don't have an
2556 INSN_B, that means that A == X, and we've got a noop move. In
2557 that case don't do anything and let the code below delete INSN_A. */
2558 if (insn_b
&& else_bb
)
2562 if (else_bb
&& insn_b
== BB_END (else_bb
))
2563 BB_END (else_bb
) = PREV_INSN (insn_b
);
2564 reorder_insns (insn_b
, insn_b
, PREV_INSN (jump
));
2566 /* If there was a REG_EQUAL note, delete it since it may have been
2567 true due to this insn being after a jump. */
2568 if ((note
= find_reg_note (insn_b
, REG_EQUAL
, NULL_RTX
)) != 0)
2569 remove_note (insn_b
, note
);
2573 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2574 x must be executed twice. */
2575 else if (insn_b
&& side_effects_p (orig_x
))
2582 if (!set_b
&& MEM_P (orig_x
))
2584 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2585 for optimizations if writing to x may trap or fault,
2586 i.e. it's a memory other than a static var or a stack slot,
2587 is misaligned on strict aligned machines or is read-only. If
2588 x is a read-only memory, then the program is valid only if we
2589 avoid the store into it. If there are stores on both the
2590 THEN and ELSE arms, then we can go ahead with the conversion;
2591 either the program is broken, or the condition is always
2592 false such that the other memory is selected. */
2593 if (noce_mem_write_may_trap_or_fault_p (orig_x
))
2596 /* Avoid store speculation: given "if (...) x = a" where x is a
2597 MEM, we only want to do the store if x is always set
2598 somewhere in the function. This avoids cases like
2599 if (pthread_mutex_trylock(mutex))
2601 where we only want global_variable to be changed if the mutex
2602 is held. FIXME: This should ideally be expressed directly in
2604 if (!noce_can_store_speculate_p (test_bb
, orig_x
))
2608 if (noce_try_move (if_info
))
2610 if (noce_try_store_flag (if_info
))
2612 if (noce_try_bitop (if_info
))
2614 if (noce_try_minmax (if_info
))
2616 if (noce_try_abs (if_info
))
2618 if (HAVE_conditional_move
2619 && noce_try_cmove (if_info
))
2621 if (! targetm
.have_conditional_execution ())
2623 if (noce_try_store_flag_constants (if_info
))
2625 if (noce_try_addcc (if_info
))
2627 if (noce_try_store_flag_mask (if_info
))
2629 if (HAVE_conditional_move
2630 && noce_try_cmove_arith (if_info
))
2632 if (noce_try_sign_mask (if_info
))
2636 if (!else_bb
&& set_b
)
2638 insn_b
= set_b
= NULL_RTX
;
2647 /* If we used a temporary, fix it up now. */
2653 noce_emit_move_insn (orig_x
, x
);
2655 set_used_flags (orig_x
);
2656 unshare_all_rtl_in_chain (seq
);
2659 emit_insn_before_setloc (seq
, BB_END (test_bb
), INSN_LOCATOR (insn_a
));
2662 /* The original THEN and ELSE blocks may now be removed. The test block
2663 must now jump to the join block. If the test block and the join block
2664 can be merged, do so. */
2667 delete_basic_block (else_bb
);
2671 remove_edge (find_edge (test_bb
, join_bb
));
2673 remove_edge (find_edge (then_bb
, join_bb
));
2674 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
2675 delete_basic_block (then_bb
);
2678 if (can_merge_blocks_p (test_bb
, join_bb
))
2680 merge_blocks (test_bb
, join_bb
);
2684 num_updated_if_blocks
++;
2688 /* Check whether a block is suitable for conditional move conversion.
2689 Every insn must be a simple set of a register to a constant or a
2690 register. For each assignment, store the value in the array VALS,
2691 indexed by register number, then store the register number in
2692 REGS. COND is the condition we will test. */
2695 check_cond_move_block (basic_block bb
, rtx
*vals
, VEC (int, heap
) **regs
,
2700 /* We can only handle simple jumps at the end of the basic block.
2701 It is almost impossible to update the CFG otherwise. */
2703 if (JUMP_P (insn
) && !onlyjump_p (insn
))
2706 FOR_BB_INSNS (bb
, insn
)
2710 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
2712 set
= single_set (insn
);
2716 dest
= SET_DEST (set
);
2717 src
= SET_SRC (set
);
2719 || (HARD_REGISTER_P (dest
)
2720 && targetm
.small_register_classes_for_mode_p (GET_MODE (dest
))))
2723 if (!CONSTANT_P (src
) && !register_operand (src
, VOIDmode
))
2726 if (side_effects_p (src
) || side_effects_p (dest
))
2729 if (may_trap_p (src
) || may_trap_p (dest
))
2732 /* Don't try to handle this if the source register was
2733 modified earlier in the block. */
2735 && vals
[REGNO (src
)] != NULL
)
2736 || (GET_CODE (src
) == SUBREG
&& REG_P (SUBREG_REG (src
))
2737 && vals
[REGNO (SUBREG_REG (src
))] != NULL
))
2740 /* Don't try to handle this if the destination register was
2741 modified earlier in the block. */
2742 if (vals
[REGNO (dest
)] != NULL
)
2745 /* Don't try to handle this if the condition uses the
2746 destination register. */
2747 if (reg_overlap_mentioned_p (dest
, cond
))
2750 /* Don't try to handle this if the source register is modified
2751 later in the block. */
2752 if (!CONSTANT_P (src
)
2753 && modified_between_p (src
, insn
, NEXT_INSN (BB_END (bb
))))
2756 vals
[REGNO (dest
)] = src
;
2758 VEC_safe_push (int, heap
, *regs
, REGNO (dest
));
2764 /* Given a basic block BB suitable for conditional move conversion,
2765 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2766 register values depending on COND, emit the insns in the block as
2767 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2768 processed. The caller has started a sequence for the conversion.
2769 Return true if successful, false if something goes wrong. */
2772 cond_move_convert_if_block (struct noce_if_info
*if_infop
,
2773 basic_block bb
, rtx cond
,
2774 rtx
*then_vals
, rtx
*else_vals
,
2778 rtx insn
, cond_arg0
, cond_arg1
;
2780 code
= GET_CODE (cond
);
2781 cond_arg0
= XEXP (cond
, 0);
2782 cond_arg1
= XEXP (cond
, 1);
2784 FOR_BB_INSNS (bb
, insn
)
2786 rtx set
, target
, dest
, t
, e
;
2789 /* ??? Maybe emit conditional debug insn? */
2790 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
2792 set
= single_set (insn
);
2793 gcc_assert (set
&& REG_P (SET_DEST (set
)));
2795 dest
= SET_DEST (set
);
2796 regno
= REGNO (dest
);
2798 t
= then_vals
[regno
];
2799 e
= else_vals
[regno
];
2803 /* If this register was set in the then block, we already
2804 handled this case there. */
2817 target
= noce_emit_cmove (if_infop
, dest
, code
, cond_arg0
, cond_arg1
,
2823 noce_emit_move_insn (dest
, target
);
2829 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2830 it using only conditional moves. Return TRUE if we were successful at
2831 converting the block. */
2834 cond_move_process_if_block (struct noce_if_info
*if_info
)
2836 basic_block test_bb
= if_info
->test_bb
;
2837 basic_block then_bb
= if_info
->then_bb
;
2838 basic_block else_bb
= if_info
->else_bb
;
2839 basic_block join_bb
= if_info
->join_bb
;
2840 rtx jump
= if_info
->jump
;
2841 rtx cond
= if_info
->cond
;
2843 int max_reg
, size
, c
, reg
;
2846 VEC (int, heap
) *then_regs
= NULL
;
2847 VEC (int, heap
) *else_regs
= NULL
;
2850 /* Build a mapping for each block to the value used for each
2852 max_reg
= max_reg_num ();
2853 size
= (max_reg
+ 1) * sizeof (rtx
);
2854 then_vals
= (rtx
*) alloca (size
);
2855 else_vals
= (rtx
*) alloca (size
);
2856 memset (then_vals
, 0, size
);
2857 memset (else_vals
, 0, size
);
2859 /* Make sure the blocks are suitable. */
2860 if (!check_cond_move_block (then_bb
, then_vals
, &then_regs
, cond
)
2862 && !check_cond_move_block (else_bb
, else_vals
, &else_regs
, cond
)))
2864 VEC_free (int, heap
, then_regs
);
2865 VEC_free (int, heap
, else_regs
);
2869 /* Make sure the blocks can be used together. If the same register
2870 is set in both blocks, and is not set to a constant in both
2871 cases, then both blocks must set it to the same register. We
2872 have already verified that if it is set to a register, that the
2873 source register does not change after the assignment. Also count
2874 the number of registers set in only one of the blocks. */
2876 FOR_EACH_VEC_ELT (int, then_regs
, i
, reg
)
2878 if (!then_vals
[reg
] && !else_vals
[reg
])
2881 if (!else_vals
[reg
])
2885 if (!CONSTANT_P (then_vals
[reg
])
2886 && !CONSTANT_P (else_vals
[reg
])
2887 && !rtx_equal_p (then_vals
[reg
], else_vals
[reg
]))
2889 VEC_free (int, heap
, then_regs
);
2890 VEC_free (int, heap
, else_regs
);
2896 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2897 FOR_EACH_VEC_ELT (int, else_regs
, i
, reg
)
2898 if (!then_vals
[reg
])
2901 /* Make sure it is reasonable to convert this block. What matters
2902 is the number of assignments currently made in only one of the
2903 branches, since if we convert we are going to always execute
2905 if (c
> MAX_CONDITIONAL_EXECUTE
)
2907 VEC_free (int, heap
, then_regs
);
2908 VEC_free (int, heap
, else_regs
);
2912 /* Try to emit the conditional moves. First do the then block,
2913 then do anything left in the else blocks. */
2915 if (!cond_move_convert_if_block (if_info
, then_bb
, cond
,
2916 then_vals
, else_vals
, false)
2918 && !cond_move_convert_if_block (if_info
, else_bb
, cond
,
2919 then_vals
, else_vals
, true)))
2922 VEC_free (int, heap
, then_regs
);
2923 VEC_free (int, heap
, else_regs
);
2926 seq
= end_ifcvt_sequence (if_info
);
2929 VEC_free (int, heap
, then_regs
);
2930 VEC_free (int, heap
, else_regs
);
2934 loc_insn
= first_active_insn (then_bb
);
2937 loc_insn
= first_active_insn (else_bb
);
2938 gcc_assert (loc_insn
);
2940 emit_insn_before_setloc (seq
, jump
, INSN_LOCATOR (loc_insn
));
2944 delete_basic_block (else_bb
);
2948 remove_edge (find_edge (test_bb
, join_bb
));
2950 remove_edge (find_edge (then_bb
, join_bb
));
2951 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
2952 delete_basic_block (then_bb
);
2955 if (can_merge_blocks_p (test_bb
, join_bb
))
2957 merge_blocks (test_bb
, join_bb
);
2961 num_updated_if_blocks
++;
2963 VEC_free (int, heap
, then_regs
);
2964 VEC_free (int, heap
, else_regs
);
2969 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2970 IF-THEN-ELSE-JOIN block.
2972 If so, we'll try to convert the insns to not require the branch,
2973 using only transformations that do not require conditional execution.
2975 Return TRUE if we were successful at converting the block. */
2978 noce_find_if_block (basic_block test_bb
, edge then_edge
, edge else_edge
,
2981 basic_block then_bb
, else_bb
, join_bb
;
2982 bool then_else_reversed
= false;
2985 struct noce_if_info if_info
;
2987 /* We only ever should get here before reload. */
2988 gcc_assert (!reload_completed
);
2990 /* Recognize an IF-THEN-ELSE-JOIN block. */
2991 if (single_pred_p (then_edge
->dest
)
2992 && single_succ_p (then_edge
->dest
)
2993 && single_pred_p (else_edge
->dest
)
2994 && single_succ_p (else_edge
->dest
)
2995 && single_succ (then_edge
->dest
) == single_succ (else_edge
->dest
))
2997 then_bb
= then_edge
->dest
;
2998 else_bb
= else_edge
->dest
;
2999 join_bb
= single_succ (then_bb
);
3001 /* Recognize an IF-THEN-JOIN block. */
3002 else if (single_pred_p (then_edge
->dest
)
3003 && single_succ_p (then_edge
->dest
)
3004 && single_succ (then_edge
->dest
) == else_edge
->dest
)
3006 then_bb
= then_edge
->dest
;
3007 else_bb
= NULL_BLOCK
;
3008 join_bb
= else_edge
->dest
;
3010 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3011 of basic blocks in cfglayout mode does not matter, so the fallthrough
3012 edge can go to any basic block (and not just to bb->next_bb, like in
3014 else if (single_pred_p (else_edge
->dest
)
3015 && single_succ_p (else_edge
->dest
)
3016 && single_succ (else_edge
->dest
) == then_edge
->dest
)
3018 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3019 To make this work, we have to invert the THEN and ELSE blocks
3020 and reverse the jump condition. */
3021 then_bb
= else_edge
->dest
;
3022 else_bb
= NULL_BLOCK
;
3023 join_bb
= single_succ (then_bb
);
3024 then_else_reversed
= true;
3027 /* Not a form we can handle. */
3030 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3031 if (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
3034 && single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
3037 num_possible_if_blocks
++;
3042 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3043 (else_bb
) ? "-ELSE" : "",
3044 pass
, test_bb
->index
, then_bb
->index
);
3047 fprintf (dump_file
, ", else %d", else_bb
->index
);
3049 fprintf (dump_file
, ", join %d\n", join_bb
->index
);
3052 /* If the conditional jump is more than just a conditional
3053 jump, then we can not do if-conversion on this block. */
3054 jump
= BB_END (test_bb
);
3055 if (! onlyjump_p (jump
))
3058 /* If this is not a standard conditional jump, we can't parse it. */
3059 cond
= noce_get_condition (jump
, &cond_earliest
, then_else_reversed
);
3063 /* We must be comparing objects whose modes imply the size. */
3064 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
3067 /* Initialize an IF_INFO struct to pass around. */
3068 memset (&if_info
, 0, sizeof if_info
);
3069 if_info
.test_bb
= test_bb
;
3070 if_info
.then_bb
= then_bb
;
3071 if_info
.else_bb
= else_bb
;
3072 if_info
.join_bb
= join_bb
;
3073 if_info
.cond
= cond
;
3074 if_info
.cond_earliest
= cond_earliest
;
3075 if_info
.jump
= jump
;
3076 if_info
.then_else_reversed
= then_else_reversed
;
3077 if_info
.branch_cost
= BRANCH_COST (optimize_bb_for_speed_p (test_bb
),
3078 predictable_edge_p (then_edge
));
3080 /* Do the real work. */
3082 if (noce_process_if_block (&if_info
))
3085 if (HAVE_conditional_move
3086 && cond_move_process_if_block (&if_info
))
3093 /* Merge the blocks and mark for local life update. */
3096 merge_if_block (struct ce_if_block
* ce_info
)
3098 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
3099 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
3100 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
3101 basic_block join_bb
= ce_info
->join_bb
; /* join block */
3102 basic_block combo_bb
;
3104 /* All block merging is done into the lower block numbers. */
3107 df_set_bb_dirty (test_bb
);
3109 /* Merge any basic blocks to handle && and || subtests. Each of
3110 the blocks are on the fallthru path from the predecessor block. */
3111 if (ce_info
->num_multiple_test_blocks
> 0)
3113 basic_block bb
= test_bb
;
3114 basic_block last_test_bb
= ce_info
->last_test_bb
;
3115 basic_block fallthru
= block_fallthru (bb
);
3120 fallthru
= block_fallthru (bb
);
3121 merge_blocks (combo_bb
, bb
);
3124 while (bb
!= last_test_bb
);
3127 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3128 label, but it might if there were || tests. That label's count should be
3129 zero, and it normally should be removed. */
3133 merge_blocks (combo_bb
, then_bb
);
3137 /* The ELSE block, if it existed, had a label. That label count
3138 will almost always be zero, but odd things can happen when labels
3139 get their addresses taken. */
3142 merge_blocks (combo_bb
, else_bb
);
3146 /* If there was no join block reported, that means it was not adjacent
3147 to the others, and so we cannot merge them. */
3151 rtx last
= BB_END (combo_bb
);
3153 /* The outgoing edge for the current COMBO block should already
3154 be correct. Verify this. */
3155 if (EDGE_COUNT (combo_bb
->succs
) == 0)
3156 gcc_assert (find_reg_note (last
, REG_NORETURN
, NULL
)
3157 || (NONJUMP_INSN_P (last
)
3158 && GET_CODE (PATTERN (last
)) == TRAP_IF
3159 && (TRAP_CONDITION (PATTERN (last
))
3160 == const_true_rtx
)));
3163 /* There should still be something at the end of the THEN or ELSE
3164 blocks taking us to our final destination. */
3165 gcc_assert (JUMP_P (last
)
3166 || (EDGE_SUCC (combo_bb
, 0)->dest
== EXIT_BLOCK_PTR
3168 && SIBLING_CALL_P (last
))
3169 || ((EDGE_SUCC (combo_bb
, 0)->flags
& EDGE_EH
)
3170 && can_throw_internal (last
)));
3173 /* The JOIN block may have had quite a number of other predecessors too.
3174 Since we've already merged the TEST, THEN and ELSE blocks, we should
3175 have only one remaining edge from our if-then-else diamond. If there
3176 is more than one remaining edge, it must come from elsewhere. There
3177 may be zero incoming edges if the THEN block didn't actually join
3178 back up (as with a call to a non-return function). */
3179 else if (EDGE_COUNT (join_bb
->preds
) < 2
3180 && join_bb
!= EXIT_BLOCK_PTR
)
3182 /* We can merge the JOIN cleanly and update the dataflow try
3183 again on this pass.*/
3184 merge_blocks (combo_bb
, join_bb
);
3189 /* We cannot merge the JOIN. */
3191 /* The outgoing edge for the current COMBO block should already
3192 be correct. Verify this. */
3193 gcc_assert (single_succ_p (combo_bb
)
3194 && single_succ (combo_bb
) == join_bb
);
3196 /* Remove the jump and cruft from the end of the COMBO block. */
3197 if (join_bb
!= EXIT_BLOCK_PTR
)
3198 tidy_fallthru_edge (single_succ_edge (combo_bb
));
3201 num_updated_if_blocks
++;
3204 /* Find a block ending in a simple IF condition and try to transform it
3205 in some way. When converting a multi-block condition, put the new code
3206 in the first such block and delete the rest. Return a pointer to this
3207 first block if some transformation was done. Return NULL otherwise. */
3210 find_if_header (basic_block test_bb
, int pass
)
3212 ce_if_block_t ce_info
;
3216 /* The kind of block we're looking for has exactly two successors. */
3217 if (EDGE_COUNT (test_bb
->succs
) != 2)
3220 then_edge
= EDGE_SUCC (test_bb
, 0);
3221 else_edge
= EDGE_SUCC (test_bb
, 1);
3223 if (df_get_bb_dirty (then_edge
->dest
))
3225 if (df_get_bb_dirty (else_edge
->dest
))
3228 /* Neither edge should be abnormal. */
3229 if ((then_edge
->flags
& EDGE_COMPLEX
)
3230 || (else_edge
->flags
& EDGE_COMPLEX
))
3233 /* Nor exit the loop. */
3234 if ((then_edge
->flags
& EDGE_LOOP_EXIT
)
3235 || (else_edge
->flags
& EDGE_LOOP_EXIT
))
3238 /* The THEN edge is canonically the one that falls through. */
3239 if (then_edge
->flags
& EDGE_FALLTHRU
)
3241 else if (else_edge
->flags
& EDGE_FALLTHRU
)
3244 else_edge
= then_edge
;
3248 /* Otherwise this must be a multiway branch of some sort. */
3251 memset (&ce_info
, 0, sizeof (ce_info
));
3252 ce_info
.test_bb
= test_bb
;
3253 ce_info
.then_bb
= then_edge
->dest
;
3254 ce_info
.else_bb
= else_edge
->dest
;
3255 ce_info
.pass
= pass
;
3257 #ifdef IFCVT_MACHDEP_INIT
3258 IFCVT_MACHDEP_INIT (&ce_info
);
3261 if (!reload_completed
3262 && noce_find_if_block (test_bb
, then_edge
, else_edge
, pass
))
3265 if (reload_completed
3266 && targetm
.have_conditional_execution ()
3267 && cond_exec_find_if_block (&ce_info
))
3271 && optab_handler (ctrap_optab
, word_mode
) != CODE_FOR_nothing
3272 && find_cond_trap (test_bb
, then_edge
, else_edge
))
3275 if (dom_info_state (CDI_POST_DOMINATORS
) >= DOM_NO_FAST_QUERY
3276 && (reload_completed
|| !targetm
.have_conditional_execution ()))
3278 if (find_if_case_1 (test_bb
, then_edge
, else_edge
))
3280 if (find_if_case_2 (test_bb
, then_edge
, else_edge
))
3288 fprintf (dump_file
, "Conversion succeeded on pass %d.\n", pass
);
3289 /* Set this so we continue looking. */
3290 cond_exec_changed_p
= TRUE
;
3291 return ce_info
.test_bb
;
3294 /* Return true if a block has two edges, one of which falls through to the next
3295 block, and the other jumps to a specific block, so that we can tell if the
3296 block is part of an && test or an || test. Returns either -1 or the number
3297 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3300 block_jumps_and_fallthru_p (basic_block cur_bb
, basic_block target_bb
)
3303 int fallthru_p
= FALSE
;
3310 if (!cur_bb
|| !target_bb
)
3313 /* If no edges, obviously it doesn't jump or fallthru. */
3314 if (EDGE_COUNT (cur_bb
->succs
) == 0)
3317 FOR_EACH_EDGE (cur_edge
, ei
, cur_bb
->succs
)
3319 if (cur_edge
->flags
& EDGE_COMPLEX
)
3320 /* Anything complex isn't what we want. */
3323 else if (cur_edge
->flags
& EDGE_FALLTHRU
)
3326 else if (cur_edge
->dest
== target_bb
)
3333 if ((jump_p
& fallthru_p
) == 0)
3336 /* Don't allow calls in the block, since this is used to group && and ||
3337 together for conditional execution support. ??? we should support
3338 conditional execution support across calls for IA-64 some day, but
3339 for now it makes the code simpler. */
3340 end
= BB_END (cur_bb
);
3341 insn
= BB_HEAD (cur_bb
);
3343 while (insn
!= NULL_RTX
)
3350 && !DEBUG_INSN_P (insn
)
3351 && GET_CODE (PATTERN (insn
)) != USE
3352 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3358 insn
= NEXT_INSN (insn
);
3364 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3365 block. If so, we'll try to convert the insns to not require the branch.
3366 Return TRUE if we were successful at converting the block. */
3369 cond_exec_find_if_block (struct ce_if_block
* ce_info
)
3371 basic_block test_bb
= ce_info
->test_bb
;
3372 basic_block then_bb
= ce_info
->then_bb
;
3373 basic_block else_bb
= ce_info
->else_bb
;
3374 basic_block join_bb
= NULL_BLOCK
;
3379 ce_info
->last_test_bb
= test_bb
;
3381 /* We only ever should get here after reload,
3382 and if we have conditional execution. */
3383 gcc_assert (reload_completed
&& targetm
.have_conditional_execution ());
3385 /* Discover if any fall through predecessors of the current test basic block
3386 were && tests (which jump to the else block) or || tests (which jump to
3388 if (single_pred_p (test_bb
)
3389 && single_pred_edge (test_bb
)->flags
== EDGE_FALLTHRU
)
3391 basic_block bb
= single_pred (test_bb
);
3392 basic_block target_bb
;
3393 int max_insns
= MAX_CONDITIONAL_EXECUTE
;
3396 /* Determine if the preceding block is an && or || block. */
3397 if ((n_insns
= block_jumps_and_fallthru_p (bb
, else_bb
)) >= 0)
3399 ce_info
->and_and_p
= TRUE
;
3400 target_bb
= else_bb
;
3402 else if ((n_insns
= block_jumps_and_fallthru_p (bb
, then_bb
)) >= 0)
3404 ce_info
->and_and_p
= FALSE
;
3405 target_bb
= then_bb
;
3408 target_bb
= NULL_BLOCK
;
3410 if (target_bb
&& n_insns
<= max_insns
)
3412 int total_insns
= 0;
3415 ce_info
->last_test_bb
= test_bb
;
3417 /* Found at least one && or || block, look for more. */
3420 ce_info
->test_bb
= test_bb
= bb
;
3421 total_insns
+= n_insns
;
3424 if (!single_pred_p (bb
))
3427 bb
= single_pred (bb
);
3428 n_insns
= block_jumps_and_fallthru_p (bb
, target_bb
);
3430 while (n_insns
>= 0 && (total_insns
+ n_insns
) <= max_insns
);
3432 ce_info
->num_multiple_test_blocks
= blocks
;
3433 ce_info
->num_multiple_test_insns
= total_insns
;
3435 if (ce_info
->and_and_p
)
3436 ce_info
->num_and_and_blocks
= blocks
;
3438 ce_info
->num_or_or_blocks
= blocks
;
3442 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3443 other than any || blocks which jump to the THEN block. */
3444 if ((EDGE_COUNT (then_bb
->preds
) - ce_info
->num_or_or_blocks
) != 1)
3447 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3448 FOR_EACH_EDGE (cur_edge
, ei
, then_bb
->preds
)
3450 if (cur_edge
->flags
& EDGE_COMPLEX
)
3454 FOR_EACH_EDGE (cur_edge
, ei
, else_bb
->preds
)
3456 if (cur_edge
->flags
& EDGE_COMPLEX
)
3460 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3461 if (EDGE_COUNT (then_bb
->succs
) > 0
3462 && (!single_succ_p (then_bb
)
3463 || (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
3464 || (epilogue_completed
3465 && tablejump_p (BB_END (then_bb
), NULL
, NULL
))))
3468 /* If the THEN block has no successors, conditional execution can still
3469 make a conditional call. Don't do this unless the ELSE block has
3470 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3471 Check for the last insn of the THEN block being an indirect jump, which
3472 is listed as not having any successors, but confuses the rest of the CE
3473 code processing. ??? we should fix this in the future. */
3474 if (EDGE_COUNT (then_bb
->succs
) == 0)
3476 if (single_pred_p (else_bb
))
3478 rtx last_insn
= BB_END (then_bb
);
3481 && NOTE_P (last_insn
)
3482 && last_insn
!= BB_HEAD (then_bb
))
3483 last_insn
= PREV_INSN (last_insn
);
3486 && JUMP_P (last_insn
)
3487 && ! simplejump_p (last_insn
))
3491 else_bb
= NULL_BLOCK
;
3497 /* If the THEN block's successor is the other edge out of the TEST block,
3498 then we have an IF-THEN combo without an ELSE. */
3499 else if (single_succ (then_bb
) == else_bb
)
3502 else_bb
= NULL_BLOCK
;
3505 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3506 has exactly one predecessor and one successor, and the outgoing edge
3507 is not complex, then we have an IF-THEN-ELSE combo. */
3508 else if (single_succ_p (else_bb
)
3509 && single_succ (then_bb
) == single_succ (else_bb
)
3510 && single_pred_p (else_bb
)
3511 && !(single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
3512 && !(epilogue_completed
3513 && tablejump_p (BB_END (else_bb
), NULL
, NULL
)))
3514 join_bb
= single_succ (else_bb
);
3516 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3520 num_possible_if_blocks
++;
3525 "\nIF-THEN%s block found, pass %d, start block %d "
3526 "[insn %d], then %d [%d]",
3527 (else_bb
) ? "-ELSE" : "",
3530 BB_HEAD (test_bb
) ? (int)INSN_UID (BB_HEAD (test_bb
)) : -1,
3532 BB_HEAD (then_bb
) ? (int)INSN_UID (BB_HEAD (then_bb
)) : -1);
3535 fprintf (dump_file
, ", else %d [%d]",
3537 BB_HEAD (else_bb
) ? (int)INSN_UID (BB_HEAD (else_bb
)) : -1);
3539 fprintf (dump_file
, ", join %d [%d]",
3541 BB_HEAD (join_bb
) ? (int)INSN_UID (BB_HEAD (join_bb
)) : -1);
3543 if (ce_info
->num_multiple_test_blocks
> 0)
3544 fprintf (dump_file
, ", %d %s block%s last test %d [%d]",
3545 ce_info
->num_multiple_test_blocks
,
3546 (ce_info
->and_and_p
) ? "&&" : "||",
3547 (ce_info
->num_multiple_test_blocks
== 1) ? "" : "s",
3548 ce_info
->last_test_bb
->index
,
3549 ((BB_HEAD (ce_info
->last_test_bb
))
3550 ? (int)INSN_UID (BB_HEAD (ce_info
->last_test_bb
))
3553 fputc ('\n', dump_file
);
3556 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3557 first condition for free, since we've already asserted that there's a
3558 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3559 we checked the FALLTHRU flag, those are already adjacent to the last IF
3561 /* ??? As an enhancement, move the ELSE block. Have to deal with
3562 BLOCK notes, if by no other means than backing out the merge if they
3563 exist. Sticky enough I don't want to think about it now. */
3565 if (else_bb
&& (next
= next
->next_bb
) != else_bb
)
3567 if ((next
= next
->next_bb
) != join_bb
&& join_bb
!= EXIT_BLOCK_PTR
)
3575 /* Do the real work. */
3577 ce_info
->else_bb
= else_bb
;
3578 ce_info
->join_bb
= join_bb
;
3580 /* If we have && and || tests, try to first handle combining the && and ||
3581 tests into the conditional code, and if that fails, go back and handle
3582 it without the && and ||, which at present handles the && case if there
3583 was no ELSE block. */
3584 if (cond_exec_process_if_block (ce_info
, TRUE
))
3587 if (ce_info
->num_multiple_test_blocks
)
3591 if (cond_exec_process_if_block (ce_info
, FALSE
))
3598 /* Convert a branch over a trap, or a branch
3599 to a trap, into a conditional trap. */
3602 find_cond_trap (basic_block test_bb
, edge then_edge
, edge else_edge
)
3604 basic_block then_bb
= then_edge
->dest
;
3605 basic_block else_bb
= else_edge
->dest
;
3606 basic_block other_bb
, trap_bb
;
3607 rtx trap
, jump
, cond
, cond_earliest
, seq
;
3610 /* Locate the block with the trap instruction. */
3611 /* ??? While we look for no successors, we really ought to allow
3612 EH successors. Need to fix merge_if_block for that to work. */
3613 if ((trap
= block_has_only_trap (then_bb
)) != NULL
)
3614 trap_bb
= then_bb
, other_bb
= else_bb
;
3615 else if ((trap
= block_has_only_trap (else_bb
)) != NULL
)
3616 trap_bb
= else_bb
, other_bb
= then_bb
;
3622 fprintf (dump_file
, "\nTRAP-IF block found, start %d, trap %d\n",
3623 test_bb
->index
, trap_bb
->index
);
3626 /* If this is not a standard conditional jump, we can't parse it. */
3627 jump
= BB_END (test_bb
);
3628 cond
= noce_get_condition (jump
, &cond_earliest
, false);
3632 /* If the conditional jump is more than just a conditional jump, then
3633 we can not do if-conversion on this block. */
3634 if (! onlyjump_p (jump
))
3637 /* We must be comparing objects whose modes imply the size. */
3638 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
3641 /* Reverse the comparison code, if necessary. */
3642 code
= GET_CODE (cond
);
3643 if (then_bb
== trap_bb
)
3645 code
= reversed_comparison_code (cond
, jump
);
3646 if (code
== UNKNOWN
)
3650 /* Attempt to generate the conditional trap. */
3651 seq
= gen_cond_trap (code
, copy_rtx (XEXP (cond
, 0)),
3652 copy_rtx (XEXP (cond
, 1)),
3653 TRAP_CODE (PATTERN (trap
)));
3657 /* Emit the new insns before cond_earliest. */
3658 emit_insn_before_setloc (seq
, cond_earliest
, INSN_LOCATOR (trap
));
3660 /* Delete the trap block if possible. */
3661 remove_edge (trap_bb
== then_bb
? then_edge
: else_edge
);
3662 df_set_bb_dirty (test_bb
);
3663 df_set_bb_dirty (then_bb
);
3664 df_set_bb_dirty (else_bb
);
3666 if (EDGE_COUNT (trap_bb
->preds
) == 0)
3668 delete_basic_block (trap_bb
);
3672 /* Wire together the blocks again. */
3673 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
3674 single_succ_edge (test_bb
)->flags
|= EDGE_FALLTHRU
;
3679 lab
= JUMP_LABEL (jump
);
3680 newjump
= emit_jump_insn_after (gen_jump (lab
), jump
);
3681 LABEL_NUSES (lab
) += 1;
3682 JUMP_LABEL (newjump
) = lab
;
3683 emit_barrier_after (newjump
);
3687 if (can_merge_blocks_p (test_bb
, other_bb
))
3689 merge_blocks (test_bb
, other_bb
);
3693 num_updated_if_blocks
++;
3697 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3701 block_has_only_trap (basic_block bb
)
3705 /* We're not the exit block. */
3706 if (bb
== EXIT_BLOCK_PTR
)
3709 /* The block must have no successors. */
3710 if (EDGE_COUNT (bb
->succs
) > 0)
3713 /* The only instruction in the THEN block must be the trap. */
3714 trap
= first_active_insn (bb
);
3715 if (! (trap
== BB_END (bb
)
3716 && GET_CODE (PATTERN (trap
)) == TRAP_IF
3717 && TRAP_CONDITION (PATTERN (trap
)) == const_true_rtx
))
3723 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3724 transformable, but not necessarily the other. There need be no
3727 Return TRUE if we were successful at converting the block.
3729 Cases we'd like to look at:
3732 if (test) goto over; // x not live
3740 if (! test) goto label;
3743 if (test) goto E; // x not live
3757 (3) // This one's really only interesting for targets that can do
3758 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3759 // it results in multiple branches on a cache line, which often
3760 // does not sit well with predictors.
3762 if (test1) goto E; // predicted not taken
3778 (A) Don't do (2) if the branch is predicted against the block we're
3779 eliminating. Do it anyway if we can eliminate a branch; this requires
3780 that the sole successor of the eliminated block postdominate the other
3783 (B) With CE, on (3) we can steal from both sides of the if, creating
3792 Again, this is most useful if J postdominates.
3794 (C) CE substitutes for helpful life information.
3796 (D) These heuristics need a lot of work. */
3798 /* Tests for case 1 above. */
3801 find_if_case_1 (basic_block test_bb
, edge then_edge
, edge else_edge
)
3803 basic_block then_bb
= then_edge
->dest
;
3804 basic_block else_bb
= else_edge
->dest
;
3806 int then_bb_index
, then_prob
;
3807 rtx else_target
= NULL_RTX
;
3809 /* If we are partitioning hot/cold basic blocks, we don't want to
3810 mess up unconditional or indirect jumps that cross between hot
3813 Basic block partitioning may result in some jumps that appear to
3814 be optimizable (or blocks that appear to be mergeable), but which really
3815 must be left untouched (they are required to make it safely across
3816 partition boundaries). See the comments at the top of
3817 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3819 if ((BB_END (then_bb
)
3820 && find_reg_note (BB_END (then_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3821 || (BB_END (test_bb
)
3822 && find_reg_note (BB_END (test_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3823 || (BB_END (else_bb
)
3824 && find_reg_note (BB_END (else_bb
), REG_CROSSING_JUMP
,
3828 /* THEN has one successor. */
3829 if (!single_succ_p (then_bb
))
3832 /* THEN does not fall through, but is not strange either. */
3833 if (single_succ_edge (then_bb
)->flags
& (EDGE_COMPLEX
| EDGE_FALLTHRU
))
3836 /* THEN has one predecessor. */
3837 if (!single_pred_p (then_bb
))
3840 /* THEN must do something. */
3841 if (forwarder_block_p (then_bb
))
3844 num_possible_if_blocks
++;
3847 "\nIF-CASE-1 found, start %d, then %d\n",
3848 test_bb
->index
, then_bb
->index
);
3850 if (then_edge
->probability
)
3851 then_prob
= REG_BR_PROB_BASE
- then_edge
->probability
;
3853 then_prob
= REG_BR_PROB_BASE
/ 2;
3855 /* We're speculating from the THEN path, we want to make sure the cost
3856 of speculation is within reason. */
3857 if (! cheap_bb_rtx_cost_p (then_bb
, then_prob
,
3858 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge
->src
),
3859 predictable_edge_p (then_edge
)))))
3862 if (else_bb
== EXIT_BLOCK_PTR
)
3864 rtx jump
= BB_END (else_edge
->src
);
3865 gcc_assert (JUMP_P (jump
));
3866 else_target
= JUMP_LABEL (jump
);
3869 /* Registers set are dead, or are predicable. */
3870 if (! dead_or_predicable (test_bb
, then_bb
, else_bb
,
3871 single_succ_edge (then_bb
), 1))
3874 /* Conversion went ok, including moving the insns and fixing up the
3875 jump. Adjust the CFG to match. */
3877 /* We can avoid creating a new basic block if then_bb is immediately
3878 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3879 through to else_bb. */
3881 if (then_bb
->next_bb
== else_bb
3882 && then_bb
->prev_bb
== test_bb
3883 && else_bb
!= EXIT_BLOCK_PTR
)
3885 redirect_edge_succ (FALLTHRU_EDGE (test_bb
), else_bb
);
3888 else if (else_bb
== EXIT_BLOCK_PTR
)
3889 new_bb
= force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb
),
3890 else_bb
, else_target
);
3892 new_bb
= redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb
),
3895 df_set_bb_dirty (test_bb
);
3896 df_set_bb_dirty (else_bb
);
3898 then_bb_index
= then_bb
->index
;
3899 delete_basic_block (then_bb
);
3901 /* Make rest of code believe that the newly created block is the THEN_BB
3902 block we removed. */
3905 df_bb_replace (then_bb_index
, new_bb
);
3906 /* Since the fallthru edge was redirected from test_bb to new_bb,
3907 we need to ensure that new_bb is in the same partition as
3908 test bb (you can not fall through across section boundaries). */
3909 BB_COPY_PARTITION (new_bb
, test_bb
);
3913 num_updated_if_blocks
++;
3918 /* Test for case 2 above. */
3921 find_if_case_2 (basic_block test_bb
, edge then_edge
, edge else_edge
)
3923 basic_block then_bb
= then_edge
->dest
;
3924 basic_block else_bb
= else_edge
->dest
;
3926 int then_prob
, else_prob
;
3928 /* We do not want to speculate (empty) loop latches. */
3930 && else_bb
->loop_father
->latch
== else_bb
)
3933 /* If we are partitioning hot/cold basic blocks, we don't want to
3934 mess up unconditional or indirect jumps that cross between hot
3937 Basic block partitioning may result in some jumps that appear to
3938 be optimizable (or blocks that appear to be mergeable), but which really
3939 must be left untouched (they are required to make it safely across
3940 partition boundaries). See the comments at the top of
3941 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3943 if ((BB_END (then_bb
)
3944 && find_reg_note (BB_END (then_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3945 || (BB_END (test_bb
)
3946 && find_reg_note (BB_END (test_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3947 || (BB_END (else_bb
)
3948 && find_reg_note (BB_END (else_bb
), REG_CROSSING_JUMP
,
3952 /* ELSE has one successor. */
3953 if (!single_succ_p (else_bb
))
3956 else_succ
= single_succ_edge (else_bb
);
3958 /* ELSE outgoing edge is not complex. */
3959 if (else_succ
->flags
& EDGE_COMPLEX
)
3962 /* ELSE has one predecessor. */
3963 if (!single_pred_p (else_bb
))
3966 /* THEN is not EXIT. */
3967 if (then_bb
->index
< NUM_FIXED_BLOCKS
)
3970 if (else_edge
->probability
)
3972 else_prob
= else_edge
->probability
;
3973 then_prob
= REG_BR_PROB_BASE
- else_prob
;
3977 else_prob
= REG_BR_PROB_BASE
/ 2;
3978 then_prob
= REG_BR_PROB_BASE
/ 2;
3981 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3982 if (else_prob
> then_prob
)
3984 else if (else_succ
->dest
->index
< NUM_FIXED_BLOCKS
3985 || dominated_by_p (CDI_POST_DOMINATORS
, then_bb
,
3991 num_possible_if_blocks
++;
3994 "\nIF-CASE-2 found, start %d, else %d\n",
3995 test_bb
->index
, else_bb
->index
);
3997 /* We're speculating from the ELSE path, we want to make sure the cost
3998 of speculation is within reason. */
3999 if (! cheap_bb_rtx_cost_p (else_bb
, else_prob
,
4000 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge
->src
),
4001 predictable_edge_p (else_edge
)))))
4004 /* Registers set are dead, or are predicable. */
4005 if (! dead_or_predicable (test_bb
, else_bb
, then_bb
, else_succ
, 0))
4008 /* Conversion went ok, including moving the insns and fixing up the
4009 jump. Adjust the CFG to match. */
4011 df_set_bb_dirty (test_bb
);
4012 df_set_bb_dirty (then_bb
);
4013 delete_basic_block (else_bb
);
4016 num_updated_if_blocks
++;
4018 /* ??? We may now fallthru from one of THEN's successors into a join
4019 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4024 /* Used by the code above to perform the actual rtl transformations.
4025 Return TRUE if successful.
4027 TEST_BB is the block containing the conditional branch. MERGE_BB
4028 is the block containing the code to manipulate. DEST_EDGE is an
4029 edge representing a jump to the join block; after the conversion,
4030 TEST_BB should be branching to its destination.
4031 REVERSEP is true if the sense of the branch should be reversed. */
4034 dead_or_predicable (basic_block test_bb
, basic_block merge_bb
,
4035 basic_block other_bb
, edge dest_edge
, int reversep
)
4037 basic_block new_dest
= dest_edge
->dest
;
4038 rtx head
, end
, jump
, earliest
= NULL_RTX
, old_dest
;
4039 bitmap merge_set
= NULL
;
4040 /* Number of pending changes. */
4041 int n_validated_changes
= 0;
4042 rtx new_dest_label
= NULL_RTX
;
4044 jump
= BB_END (test_bb
);
4046 /* Find the extent of the real code in the merge block. */
4047 head
= BB_HEAD (merge_bb
);
4048 end
= BB_END (merge_bb
);
4050 while (DEBUG_INSN_P (end
) && end
!= head
)
4051 end
= PREV_INSN (end
);
4053 /* If merge_bb ends with a tablejump, predicating/moving insn's
4054 into test_bb and then deleting merge_bb will result in the jumptable
4055 that follows merge_bb being removed along with merge_bb and then we
4056 get an unresolved reference to the jumptable. */
4057 if (tablejump_p (end
, NULL
, NULL
))
4061 head
= NEXT_INSN (head
);
4062 while (DEBUG_INSN_P (head
) && head
!= end
)
4063 head
= NEXT_INSN (head
);
4068 head
= end
= NULL_RTX
;
4071 head
= NEXT_INSN (head
);
4072 while (DEBUG_INSN_P (head
) && head
!= end
)
4073 head
= NEXT_INSN (head
);
4080 head
= end
= NULL_RTX
;
4083 end
= PREV_INSN (end
);
4084 while (DEBUG_INSN_P (end
) && end
!= head
)
4085 end
= PREV_INSN (end
);
4088 /* Disable handling dead code by conditional execution if the machine needs
4089 to do anything funny with the tests, etc. */
4090 #ifndef IFCVT_MODIFY_TESTS
4091 if (targetm
.have_conditional_execution ())
4093 /* In the conditional execution case, we have things easy. We know
4094 the condition is reversible. We don't have to check life info
4095 because we're going to conditionally execute the code anyway.
4096 All that's left is making sure the insns involved can actually
4101 cond
= cond_exec_get_condition (jump
);
4105 prob_val
= find_reg_note (jump
, REG_BR_PROB
, NULL_RTX
);
4107 prob_val
= XEXP (prob_val
, 0);
4111 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
4114 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
4117 prob_val
= GEN_INT (REG_BR_PROB_BASE
- INTVAL (prob_val
));
4120 if (cond_exec_process_insns (NULL
, head
, end
, cond
, prob_val
, 0)
4121 && verify_changes (0))
4122 n_validated_changes
= num_validated_changes ();
4130 /* If we allocated new pseudos (e.g. in the conditional move
4131 expander called from noce_emit_cmove), we must resize the
4133 if (max_regno
< max_reg_num ())
4134 max_regno
= max_reg_num ();
4136 /* Try the NCE path if the CE path did not result in any changes. */
4137 if (n_validated_changes
== 0)
4143 /* In the non-conditional execution case, we have to verify that there
4144 are no trapping operations, no calls, no references to memory, and
4145 that any registers modified are dead at the branch site. */
4147 if (!any_condjump_p (jump
))
4150 /* Find the extent of the conditional. */
4151 cond
= noce_get_condition (jump
, &earliest
, false);
4155 live
= BITMAP_ALLOC (®_obstack
);
4156 simulate_backwards_to_point (merge_bb
, live
, end
);
4157 success
= can_move_insns_across (head
, end
, earliest
, jump
,
4159 df_get_live_in (other_bb
), NULL
);
4164 /* Collect the set of registers set in MERGE_BB. */
4165 merge_set
= BITMAP_ALLOC (®_obstack
);
4167 FOR_BB_INSNS (merge_bb
, insn
)
4168 if (NONDEBUG_INSN_P (insn
))
4169 df_simulate_find_defs (insn
, merge_set
);
4171 #ifdef HAVE_simple_return
4172 /* If shrink-wrapping, disable this optimization when test_bb is
4173 the first basic block and merge_bb exits. The idea is to not
4174 move code setting up a return register as that may clobber a
4175 register used to pass function parameters, which then must be
4176 saved in caller-saved regs. A caller-saved reg requires the
4177 prologue, killing a shrink-wrap opportunity. */
4178 if ((flag_shrink_wrap
&& HAVE_simple_return
&& !epilogue_completed
)
4179 && ENTRY_BLOCK_PTR
->next_bb
== test_bb
4180 && single_succ_p (new_dest
)
4181 && single_succ (new_dest
) == EXIT_BLOCK_PTR
4182 && bitmap_intersect_p (df_get_live_in (new_dest
), merge_set
))
4187 return_regs
= BITMAP_ALLOC (®_obstack
);
4189 /* Start off with the intersection of regs used to pass
4190 params and regs used to return values. */
4191 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4192 if (FUNCTION_ARG_REGNO_P (i
)
4193 && targetm
.calls
.function_value_regno_p (i
))
4194 bitmap_set_bit (return_regs
, INCOMING_REGNO (i
));
4196 bitmap_and_into (return_regs
, df_get_live_out (ENTRY_BLOCK_PTR
));
4197 bitmap_and_into (return_regs
, df_get_live_in (EXIT_BLOCK_PTR
));
4198 if (!bitmap_empty_p (return_regs
))
4200 FOR_BB_INSNS_REVERSE (new_dest
, insn
)
4201 if (NONDEBUG_INSN_P (insn
))
4204 unsigned int uid
= INSN_UID (insn
);
4206 /* If this insn sets any reg in return_regs.. */
4207 for (def_rec
= DF_INSN_UID_DEFS (uid
); *def_rec
; def_rec
++)
4209 df_ref def
= *def_rec
;
4210 unsigned r
= DF_REF_REGNO (def
);
4212 if (bitmap_bit_p (return_regs
, r
))
4215 /* ..then add all reg uses to the set of regs
4216 we're interested in. */
4218 df_simulate_uses (insn
, return_regs
);
4220 if (bitmap_intersect_p (merge_set
, return_regs
))
4222 BITMAP_FREE (return_regs
);
4223 BITMAP_FREE (merge_set
);
4227 BITMAP_FREE (return_regs
);
4233 /* We don't want to use normal invert_jump or redirect_jump because
4234 we don't want to delete_insn called. Also, we want to do our own
4235 change group management. */
4237 old_dest
= JUMP_LABEL (jump
);
4238 if (other_bb
!= new_dest
)
4240 if (JUMP_P (BB_END (dest_edge
->src
)))
4241 new_dest_label
= JUMP_LABEL (BB_END (dest_edge
->src
));
4242 else if (new_dest
== EXIT_BLOCK_PTR
)
4243 new_dest_label
= ret_rtx
;
4245 new_dest_label
= block_label (new_dest
);
4248 ? ! invert_jump_1 (jump
, new_dest_label
)
4249 : ! redirect_jump_1 (jump
, new_dest_label
))
4253 if (verify_changes (n_validated_changes
))
4254 confirm_change_group ();
4258 if (other_bb
!= new_dest
)
4260 redirect_jump_2 (jump
, old_dest
, new_dest_label
, 0, reversep
);
4262 redirect_edge_succ (BRANCH_EDGE (test_bb
), new_dest
);
4265 gcov_type count
, probability
;
4266 count
= BRANCH_EDGE (test_bb
)->count
;
4267 BRANCH_EDGE (test_bb
)->count
= FALLTHRU_EDGE (test_bb
)->count
;
4268 FALLTHRU_EDGE (test_bb
)->count
= count
;
4269 probability
= BRANCH_EDGE (test_bb
)->probability
;
4270 BRANCH_EDGE (test_bb
)->probability
4271 = FALLTHRU_EDGE (test_bb
)->probability
;
4272 FALLTHRU_EDGE (test_bb
)->probability
= probability
;
4273 update_br_prob_note (test_bb
);
4277 /* Move the insns out of MERGE_BB to before the branch. */
4282 if (end
== BB_END (merge_bb
))
4283 BB_END (merge_bb
) = PREV_INSN (head
);
4285 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4286 notes being moved might become invalid. */
4292 if (! INSN_P (insn
))
4294 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
4297 set
= single_set (insn
);
4298 if (!set
|| !function_invariant_p (SET_SRC (set
))
4299 || !function_invariant_p (XEXP (note
, 0)))
4300 remove_note (insn
, note
);
4301 } while (insn
!= end
&& (insn
= NEXT_INSN (insn
)));
4303 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4304 notes referring to the registers being set might become invalid. */
4310 EXECUTE_IF_SET_IN_BITMAP (merge_set
, 0, i
, bi
)
4311 remove_reg_equal_equiv_notes_for_regno (i
);
4313 BITMAP_FREE (merge_set
);
4316 reorder_insns (head
, end
, PREV_INSN (earliest
));
4319 /* Remove the jump and edge if we can. */
4320 if (other_bb
== new_dest
)
4323 remove_edge (BRANCH_EDGE (test_bb
));
4324 /* ??? Can't merge blocks here, as then_bb is still in use.
4325 At minimum, the merge will get done just before bb-reorder. */
4334 BITMAP_FREE (merge_set
);
4339 /* Main entry point for all if-conversion. */
4349 df_live_add_problem ();
4350 df_live_set_all_dirty ();
4353 num_possible_if_blocks
= 0;
4354 num_updated_if_blocks
= 0;
4355 num_true_changes
= 0;
4357 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
4358 mark_loop_exit_edges ();
4359 loop_optimizer_finalize ();
4360 free_dominance_info (CDI_DOMINATORS
);
4362 /* Compute postdominators. */
4363 calculate_dominance_info (CDI_POST_DOMINATORS
);
4365 df_set_flags (DF_LR_RUN_DCE
);
4367 /* Go through each of the basic blocks looking for things to convert. If we
4368 have conditional execution, we make multiple passes to allow us to handle
4369 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4374 /* Only need to do dce on the first pass. */
4375 df_clear_flags (DF_LR_RUN_DCE
);
4376 cond_exec_changed_p
= FALSE
;
4379 #ifdef IFCVT_MULTIPLE_DUMPS
4380 if (dump_file
&& pass
> 1)
4381 fprintf (dump_file
, "\n\n========== Pass %d ==========\n", pass
);
4387 while (!df_get_bb_dirty (bb
)
4388 && (new_bb
= find_if_header (bb
, pass
)) != NULL
)
4392 #ifdef IFCVT_MULTIPLE_DUMPS
4393 if (dump_file
&& cond_exec_changed_p
)
4394 print_rtl_with_bb (dump_file
, get_insns (), dump_flags
);
4397 while (cond_exec_changed_p
);
4399 #ifdef IFCVT_MULTIPLE_DUMPS
4401 fprintf (dump_file
, "\n\n========== no more changes\n");
4404 free_dominance_info (CDI_POST_DOMINATORS
);
4409 clear_aux_for_blocks ();
4411 /* If we allocated new pseudos, we must resize the array for sched1. */
4412 if (max_regno
< max_reg_num ())
4413 max_regno
= max_reg_num ();
4415 /* Write the final stats. */
4416 if (dump_file
&& num_possible_if_blocks
> 0)
4419 "\n%d possible IF blocks searched.\n",
4420 num_possible_if_blocks
);
4422 "%d IF blocks converted.\n",
4423 num_updated_if_blocks
);
4425 "%d true changes made.\n\n\n",
4430 df_remove_problem (df_live
);
4432 #ifdef ENABLE_CHECKING
4433 verify_flow_info ();
4438 gate_handle_if_conversion (void)
4440 return (optimize
> 0)
4441 && dbg_cnt (if_conversion
);
4444 /* If-conversion and CFG cleanup. */
4446 rest_of_handle_if_conversion (void)
4448 if (flag_if_conversion
)
4452 dump_reg_info (dump_file
);
4453 dump_flow_info (dump_file
, dump_flags
);
4455 cleanup_cfg (CLEANUP_EXPENSIVE
);
4463 struct rtl_opt_pass pass_rtl_ifcvt
=
4468 gate_handle_if_conversion
, /* gate */
4469 rest_of_handle_if_conversion
, /* execute */
4472 0, /* static_pass_number */
4473 TV_IFCVT
, /* tv_id */
4474 0, /* properties_required */
4475 0, /* properties_provided */
4476 0, /* properties_destroyed */
4477 0, /* todo_flags_start */
4478 TODO_df_finish
| TODO_verify_rtl_sharing
|
4479 0 /* todo_flags_finish */
4484 gate_handle_if_after_combine (void)
4486 return optimize
> 0 && flag_if_conversion
4487 && dbg_cnt (if_after_combine
);
4491 /* Rerun if-conversion, as combine may have simplified things enough
4492 to now meet sequence length restrictions. */
4494 rest_of_handle_if_after_combine (void)
4500 struct rtl_opt_pass pass_if_after_combine
=
4505 gate_handle_if_after_combine
, /* gate */
4506 rest_of_handle_if_after_combine
, /* execute */
4509 0, /* static_pass_number */
4510 TV_IFCVT
, /* tv_id */
4511 0, /* properties_required */
4512 0, /* properties_provided */
4513 0, /* properties_destroyed */
4514 0, /* todo_flags_start */
4515 TODO_df_finish
| TODO_verify_rtl_sharing
|
4516 TODO_ggc_collect
/* todo_flags_finish */
4522 gate_handle_if_after_reload (void)
4524 return optimize
> 0 && flag_if_conversion2
4525 && dbg_cnt (if_after_reload
);
4529 rest_of_handle_if_after_reload (void)
4536 struct rtl_opt_pass pass_if_after_reload
=
4541 gate_handle_if_after_reload
, /* gate */
4542 rest_of_handle_if_after_reload
, /* execute */
4545 0, /* static_pass_number */
4546 TV_IFCVT2
, /* tv_id */
4547 0, /* properties_required */
4548 0, /* properties_provided */
4549 0, /* properties_destroyed */
4550 0, /* todo_flags_start */
4551 TODO_df_finish
| TODO_verify_rtl_sharing
|
4552 TODO_ggc_collect
/* todo_flags_finish */