Fix PR#.
[official-gcc.git] / gcc / tree-vectorizer.c
blob437b145db0f63ab36f0f23787fff0113f4c137d6
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software
3 Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Loop Vectorization Pass.
24 This pass tries to vectorize loops. This first implementation focuses on
25 simple inner-most loops, with no conditional control flow, and a set of
26 simple operations which vector form can be expressed using existing
27 tree codes (PLUS, MULT etc).
29 For example, the vectorizer transforms the following simple loop:
31 short a[N]; short b[N]; short c[N]; int i;
33 for (i=0; i<N; i++){
34 a[i] = b[i] + c[i];
37 as if it was manually vectorized by rewriting the source code into:
39 typedef int __attribute__((mode(V8HI))) v8hi;
40 short a[N]; short b[N]; short c[N]; int i;
41 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
42 v8hi va, vb, vc;
44 for (i=0; i<N/8; i++){
45 vb = pb[i];
46 vc = pc[i];
47 va = vb + vc;
48 pa[i] = va;
51 The main entry to this pass is vectorize_loops(), in which
52 the vectorizer applies a set of analyses on a given set of loops,
53 followed by the actual vectorization transformation for the loops that
54 had successfully passed the analysis phase.
56 Throughout this pass we make a distinction between two types of
57 data: scalars (which are represented by SSA_NAMES), and memory references
58 ("data-refs"). These two types of data require different handling both
59 during analysis and transformation. The types of data-refs that the
60 vectorizer currently supports are ARRAY_REFS which base is an array DECL
61 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
62 accesses are required to have a simple (consecutive) access pattern.
64 Analysis phase:
65 ===============
66 The driver for the analysis phase is vect_analyze_loop_nest().
67 It applies a set of analyses, some of which rely on the scalar evolution
68 analyzer (scev) developed by Sebastian Pop.
70 During the analysis phase the vectorizer records some information
71 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
72 loop, as well as general information about the loop as a whole, which is
73 recorded in a "loop_vec_info" struct attached to each loop.
75 Transformation phase:
76 =====================
77 The loop transformation phase scans all the stmts in the loop, and
78 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
79 the loop that needs to be vectorized. It insert the vector code sequence
80 just before the scalar stmt S, and records a pointer to the vector code
81 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
82 attached to S). This pointer will be used for the vectorization of following
83 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
84 otherwise, we rely on dead code elimination for removing it.
86 For example, say stmt S1 was vectorized into stmt VS1:
88 VS1: vb = px[i];
89 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
90 S2: a = b;
92 To vectorize stmt S2, the vectorizer first finds the stmt that defines
93 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
94 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
95 resulting sequence would be:
97 VS1: vb = px[i];
98 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
99 VS2: va = vb;
100 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
102 Operands that are not SSA_NAMEs, are data-refs that appear in
103 load/store operations (like 'x[i]' in S1), and are handled differently.
105 Target modeling:
106 =================
107 Currently the only target specific information that is used is the
108 size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
109 support different sizes of vectors, for now will need to specify one value
110 for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
112 Since we only vectorize operations which vector form can be
113 expressed using existing tree codes, to verify that an operation is
114 supported, the vectorizer checks the relevant optab at the relevant
115 machine_mode (e.g, optab_handler (add_optab, V8HImode)->insn_code). If
116 the value found is CODE_FOR_nothing, then there's no target support, and
117 we can't vectorize the stmt.
119 For additional information on this project see:
120 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
123 #include "config.h"
124 #include "system.h"
125 #include "coretypes.h"
126 #include "tm.h"
127 #include "ggc.h"
128 #include "tree.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "basic-block.h"
132 #include "diagnostic.h"
133 #include "tree-flow.h"
134 #include "tree-dump.h"
135 #include "timevar.h"
136 #include "cfgloop.h"
137 #include "cfglayout.h"
138 #include "expr.h"
139 #include "recog.h"
140 #include "optabs.h"
141 #include "params.h"
142 #include "toplev.h"
143 #include "tree-chrec.h"
144 #include "tree-data-ref.h"
145 #include "tree-scalar-evolution.h"
146 #include "input.h"
147 #include "hashtab.h"
148 #include "tree-vectorizer.h"
149 #include "tree-pass.h"
150 #include "langhooks.h"
152 /*************************************************************************
153 General Vectorization Utilities
154 *************************************************************************/
156 /* vect_dump will be set to stderr or dump_file if exist. */
157 FILE *vect_dump;
159 /* vect_verbosity_level set to an invalid value
160 to mark that it's uninitialized. */
161 enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
163 /* Loop location. */
164 static LOC vect_loop_location;
166 /* Bitmap of virtual variables to be renamed. */
167 bitmap vect_memsyms_to_rename;
169 /* Vector mapping GIMPLE stmt to stmt_vec_info. */
170 VEC(vec_void_p,heap) *stmt_vec_info_vec;
173 /*************************************************************************
174 Simple Loop Peeling Utilities
176 Utilities to support loop peeling for vectorization purposes.
177 *************************************************************************/
180 /* Renames the use *OP_P. */
182 static void
183 rename_use_op (use_operand_p op_p)
185 tree new_name;
187 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
188 return;
190 new_name = get_current_def (USE_FROM_PTR (op_p));
192 /* Something defined outside of the loop. */
193 if (!new_name)
194 return;
196 /* An ordinary ssa name defined in the loop. */
198 SET_USE (op_p, new_name);
202 /* Renames the variables in basic block BB. */
204 static void
205 rename_variables_in_bb (basic_block bb)
207 gimple_stmt_iterator gsi;
208 gimple stmt;
209 use_operand_p use_p;
210 ssa_op_iter iter;
211 edge e;
212 edge_iterator ei;
213 struct loop *loop = bb->loop_father;
215 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
217 stmt = gsi_stmt (gsi);
218 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
219 rename_use_op (use_p);
222 FOR_EACH_EDGE (e, ei, bb->succs)
224 if (!flow_bb_inside_loop_p (loop, e->dest))
225 continue;
226 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
227 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
232 /* Renames variables in new generated LOOP. */
234 void
235 rename_variables_in_loop (struct loop *loop)
237 unsigned i;
238 basic_block *bbs;
240 bbs = get_loop_body (loop);
242 for (i = 0; i < loop->num_nodes; i++)
243 rename_variables_in_bb (bbs[i]);
245 free (bbs);
249 /* Update the PHI nodes of NEW_LOOP.
251 NEW_LOOP is a duplicate of ORIG_LOOP.
252 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
253 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
254 executes before it. */
256 static void
257 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
258 struct loop *new_loop, bool after)
260 tree new_ssa_name;
261 gimple phi_new, phi_orig;
262 tree def;
263 edge orig_loop_latch = loop_latch_edge (orig_loop);
264 edge orig_entry_e = loop_preheader_edge (orig_loop);
265 edge new_loop_exit_e = single_exit (new_loop);
266 edge new_loop_entry_e = loop_preheader_edge (new_loop);
267 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
268 gimple_stmt_iterator gsi_new, gsi_orig;
271 step 1. For each loop-header-phi:
272 Add the first phi argument for the phi in NEW_LOOP
273 (the one associated with the entry of NEW_LOOP)
275 step 2. For each loop-header-phi:
276 Add the second phi argument for the phi in NEW_LOOP
277 (the one associated with the latch of NEW_LOOP)
279 step 3. Update the phis in the successor block of NEW_LOOP.
281 case 1: NEW_LOOP was placed before ORIG_LOOP:
282 The successor block of NEW_LOOP is the header of ORIG_LOOP.
283 Updating the phis in the successor block can therefore be done
284 along with the scanning of the loop header phis, because the
285 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
286 phi nodes, organized in the same order.
288 case 2: NEW_LOOP was placed after ORIG_LOOP:
289 The successor block of NEW_LOOP is the original exit block of
290 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
291 We postpone updating these phis to a later stage (when
292 loop guards are added).
296 /* Scan the phis in the headers of the old and new loops
297 (they are organized in exactly the same order). */
299 for (gsi_new = gsi_start_phis (new_loop->header),
300 gsi_orig = gsi_start_phis (orig_loop->header);
301 !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
302 gsi_next (&gsi_new), gsi_next (&gsi_orig))
304 phi_new = gsi_stmt (gsi_new);
305 phi_orig = gsi_stmt (gsi_orig);
307 /* step 1. */
308 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
309 add_phi_arg (phi_new, def, new_loop_entry_e);
311 /* step 2. */
312 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
313 if (TREE_CODE (def) != SSA_NAME)
314 continue;
316 new_ssa_name = get_current_def (def);
317 if (!new_ssa_name)
319 /* This only happens if there are no definitions
320 inside the loop. use the phi_result in this case. */
321 new_ssa_name = PHI_RESULT (phi_new);
324 /* An ordinary ssa name defined in the loop. */
325 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
327 /* step 3 (case 1). */
328 if (!after)
330 gcc_assert (new_loop_exit_e == orig_entry_e);
331 SET_PHI_ARG_DEF (phi_orig,
332 new_loop_exit_e->dest_idx,
333 new_ssa_name);
339 /* Update PHI nodes for a guard of the LOOP.
341 Input:
342 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
343 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
344 originates from the guard-bb, skips LOOP and reaches the (unique) exit
345 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
346 We denote this bb NEW_MERGE_BB because before the guard code was added
347 it had a single predecessor (the LOOP header), and now it became a merge
348 point of two paths - the path that ends with the LOOP exit-edge, and
349 the path that ends with GUARD_EDGE.
350 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
351 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
353 ===> The CFG before the guard-code was added:
354 LOOP_header_bb:
355 loop_body
356 if (exit_loop) goto update_bb
357 else goto LOOP_header_bb
358 update_bb:
360 ==> The CFG after the guard-code was added:
361 guard_bb:
362 if (LOOP_guard_condition) goto new_merge_bb
363 else goto LOOP_header_bb
364 LOOP_header_bb:
365 loop_body
366 if (exit_loop_condition) goto new_merge_bb
367 else goto LOOP_header_bb
368 new_merge_bb:
369 goto update_bb
370 update_bb:
372 ==> The CFG after this function:
373 guard_bb:
374 if (LOOP_guard_condition) goto new_merge_bb
375 else goto LOOP_header_bb
376 LOOP_header_bb:
377 loop_body
378 if (exit_loop_condition) goto new_exit_bb
379 else goto LOOP_header_bb
380 new_exit_bb:
381 new_merge_bb:
382 goto update_bb
383 update_bb:
385 This function:
386 1. creates and updates the relevant phi nodes to account for the new
387 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
388 1.1. Create phi nodes at NEW_MERGE_BB.
389 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
390 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
391 2. preserves loop-closed-ssa-form by creating the required phi nodes
392 at the exit of LOOP (i.e, in NEW_EXIT_BB).
394 There are two flavors to this function:
396 slpeel_update_phi_nodes_for_guard1:
397 Here the guard controls whether we enter or skip LOOP, where LOOP is a
398 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
399 for variables that have phis in the loop header.
401 slpeel_update_phi_nodes_for_guard2:
402 Here the guard controls whether we enter or skip LOOP, where LOOP is an
403 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
404 for variables that have phis in the loop exit.
406 I.E., the overall structure is:
408 loop1_preheader_bb:
409 guard1 (goto loop1/merge1_bb)
410 loop1
411 loop1_exit_bb:
412 guard2 (goto merge1_bb/merge2_bb)
413 merge1_bb
414 loop2
415 loop2_exit_bb
416 merge2_bb
417 next_bb
419 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
420 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
421 that have phis in loop1->header).
423 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
424 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
425 that have phis in next_bb). It also adds some of these phis to
426 loop1_exit_bb.
428 slpeel_update_phi_nodes_for_guard1 is always called before
429 slpeel_update_phi_nodes_for_guard2. They are both needed in order
430 to create correct data-flow and loop-closed-ssa-form.
432 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
433 that change between iterations of a loop (and therefore have a phi-node
434 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
435 phis for variables that are used out of the loop (and therefore have
436 loop-closed exit phis). Some variables may be both updated between
437 iterations and used after the loop. This is why in loop1_exit_bb we
438 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
439 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
441 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
442 an original loop. i.e., we have:
444 orig_loop
445 guard_bb (goto LOOP/new_merge)
446 new_loop <-- LOOP
447 new_exit
448 new_merge
449 next_bb
451 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
452 have:
454 new_loop
455 guard_bb (goto LOOP/new_merge)
456 orig_loop <-- LOOP
457 new_exit
458 new_merge
459 next_bb
461 The SSA names defined in the original loop have a current
462 reaching definition that that records the corresponding new
463 ssa-name used in the new duplicated loop copy.
466 /* Function slpeel_update_phi_nodes_for_guard1
468 Input:
469 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
470 - DEFS - a bitmap of ssa names to mark new names for which we recorded
471 information.
473 In the context of the overall structure, we have:
475 loop1_preheader_bb:
476 guard1 (goto loop1/merge1_bb)
477 LOOP-> loop1
478 loop1_exit_bb:
479 guard2 (goto merge1_bb/merge2_bb)
480 merge1_bb
481 loop2
482 loop2_exit_bb
483 merge2_bb
484 next_bb
486 For each name updated between loop iterations (i.e - for each name that has
487 an entry (loop-header) phi in LOOP) we create a new phi in:
488 1. merge1_bb (to account for the edge from guard1)
489 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
492 static void
493 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
494 bool is_new_loop, basic_block *new_exit_bb,
495 bitmap *defs)
497 gimple orig_phi, new_phi;
498 gimple update_phi, update_phi2;
499 tree guard_arg, loop_arg;
500 basic_block new_merge_bb = guard_edge->dest;
501 edge e = EDGE_SUCC (new_merge_bb, 0);
502 basic_block update_bb = e->dest;
503 basic_block orig_bb = loop->header;
504 edge new_exit_e;
505 tree current_new_name;
506 tree name;
507 gimple_stmt_iterator gsi_orig, gsi_update;
509 /* Create new bb between loop and new_merge_bb. */
510 *new_exit_bb = split_edge (single_exit (loop));
512 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
514 for (gsi_orig = gsi_start_phis (orig_bb),
515 gsi_update = gsi_start_phis (update_bb);
516 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
517 gsi_next (&gsi_orig), gsi_next (&gsi_update))
519 orig_phi = gsi_stmt (gsi_orig);
520 update_phi = gsi_stmt (gsi_update);
522 /* Virtual phi; Mark it for renaming. We actually want to call
523 mar_sym_for_renaming, but since all ssa renaming datastructures
524 are going to be freed before we get to call ssa_update, we just
525 record this name for now in a bitmap, and will mark it for
526 renaming later. */
527 name = PHI_RESULT (orig_phi);
528 if (!is_gimple_reg (SSA_NAME_VAR (name)))
529 bitmap_set_bit (vect_memsyms_to_rename, DECL_UID (SSA_NAME_VAR (name)));
531 /** 1. Handle new-merge-point phis **/
533 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
534 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
535 new_merge_bb);
537 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
538 of LOOP. Set the two phi args in NEW_PHI for these edges: */
539 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
540 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
542 add_phi_arg (new_phi, loop_arg, new_exit_e);
543 add_phi_arg (new_phi, guard_arg, guard_edge);
545 /* 1.3. Update phi in successor block. */
546 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
547 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
548 SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
549 update_phi2 = new_phi;
552 /** 2. Handle loop-closed-ssa-form phis **/
554 if (!is_gimple_reg (PHI_RESULT (orig_phi)))
555 continue;
557 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
558 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
559 *new_exit_bb);
561 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
562 add_phi_arg (new_phi, loop_arg, single_exit (loop));
564 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
565 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
566 SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
568 /* 2.4. Record the newly created name with set_current_def.
569 We want to find a name such that
570 name = get_current_def (orig_loop_name)
571 and to set its current definition as follows:
572 set_current_def (name, new_phi_name)
574 If LOOP is a new loop then loop_arg is already the name we're
575 looking for. If LOOP is the original loop, then loop_arg is
576 the orig_loop_name and the relevant name is recorded in its
577 current reaching definition. */
578 if (is_new_loop)
579 current_new_name = loop_arg;
580 else
582 current_new_name = get_current_def (loop_arg);
583 /* current_def is not available only if the variable does not
584 change inside the loop, in which case we also don't care
585 about recording a current_def for it because we won't be
586 trying to create loop-exit-phis for it. */
587 if (!current_new_name)
588 continue;
590 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
592 set_current_def (current_new_name, PHI_RESULT (new_phi));
593 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
598 /* Function slpeel_update_phi_nodes_for_guard2
600 Input:
601 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
603 In the context of the overall structure, we have:
605 loop1_preheader_bb:
606 guard1 (goto loop1/merge1_bb)
607 loop1
608 loop1_exit_bb:
609 guard2 (goto merge1_bb/merge2_bb)
610 merge1_bb
611 LOOP-> loop2
612 loop2_exit_bb
613 merge2_bb
614 next_bb
616 For each name used out side the loop (i.e - for each name that has an exit
617 phi in next_bb) we create a new phi in:
618 1. merge2_bb (to account for the edge from guard_bb)
619 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
620 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
621 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
624 static void
625 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
626 bool is_new_loop, basic_block *new_exit_bb)
628 gimple orig_phi, new_phi;
629 gimple update_phi, update_phi2;
630 tree guard_arg, loop_arg;
631 basic_block new_merge_bb = guard_edge->dest;
632 edge e = EDGE_SUCC (new_merge_bb, 0);
633 basic_block update_bb = e->dest;
634 edge new_exit_e;
635 tree orig_def, orig_def_new_name;
636 tree new_name, new_name2;
637 tree arg;
638 gimple_stmt_iterator gsi;
640 /* Create new bb between loop and new_merge_bb. */
641 *new_exit_bb = split_edge (single_exit (loop));
643 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
645 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
647 update_phi = gsi_stmt (gsi);
648 orig_phi = update_phi;
649 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
650 /* This loop-closed-phi actually doesn't represent a use
651 out of the loop - the phi arg is a constant. */
652 if (TREE_CODE (orig_def) != SSA_NAME)
653 continue;
654 orig_def_new_name = get_current_def (orig_def);
655 arg = NULL_TREE;
657 /** 1. Handle new-merge-point phis **/
659 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
660 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
661 new_merge_bb);
663 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
664 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
665 new_name = orig_def;
666 new_name2 = NULL_TREE;
667 if (orig_def_new_name)
669 new_name = orig_def_new_name;
670 /* Some variables have both loop-entry-phis and loop-exit-phis.
671 Such variables were given yet newer names by phis placed in
672 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
673 new_name2 = get_current_def (get_current_def (orig_name)). */
674 new_name2 = get_current_def (new_name);
677 if (is_new_loop)
679 guard_arg = orig_def;
680 loop_arg = new_name;
682 else
684 guard_arg = new_name;
685 loop_arg = orig_def;
687 if (new_name2)
688 guard_arg = new_name2;
690 add_phi_arg (new_phi, loop_arg, new_exit_e);
691 add_phi_arg (new_phi, guard_arg, guard_edge);
693 /* 1.3. Update phi in successor block. */
694 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
695 SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
696 update_phi2 = new_phi;
699 /** 2. Handle loop-closed-ssa-form phis **/
701 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
702 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
703 *new_exit_bb);
705 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
706 add_phi_arg (new_phi, loop_arg, single_exit (loop));
708 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
709 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
710 SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
713 /** 3. Handle loop-closed-ssa-form phis for first loop **/
715 /* 3.1. Find the relevant names that need an exit-phi in
716 GUARD_BB, i.e. names for which
717 slpeel_update_phi_nodes_for_guard1 had not already created a
718 phi node. This is the case for names that are used outside
719 the loop (and therefore need an exit phi) but are not updated
720 across loop iterations (and therefore don't have a
721 loop-header-phi).
723 slpeel_update_phi_nodes_for_guard1 is responsible for
724 creating loop-exit phis in GUARD_BB for names that have a
725 loop-header-phi. When such a phi is created we also record
726 the new name in its current definition. If this new name
727 exists, then guard_arg was set to this new name (see 1.2
728 above). Therefore, if guard_arg is not this new name, this
729 is an indication that an exit-phi in GUARD_BB was not yet
730 created, so we take care of it here. */
731 if (guard_arg == new_name2)
732 continue;
733 arg = guard_arg;
735 /* 3.2. Generate new phi node in GUARD_BB: */
736 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
737 guard_edge->src);
739 /* 3.3. GUARD_BB has one incoming edge: */
740 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
741 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0));
743 /* 3.4. Update phi in successor of GUARD_BB: */
744 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
745 == guard_arg);
746 SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
751 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
752 that starts at zero, increases by one and its limit is NITERS.
754 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
756 void
757 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
759 tree indx_before_incr, indx_after_incr;
760 gimple cond_stmt;
761 gimple orig_cond;
762 edge exit_edge = single_exit (loop);
763 gimple_stmt_iterator loop_cond_gsi;
764 gimple_stmt_iterator incr_gsi;
765 bool insert_after;
766 tree init = build_int_cst (TREE_TYPE (niters), 0);
767 tree step = build_int_cst (TREE_TYPE (niters), 1);
768 LOC loop_loc;
769 enum tree_code code;
771 orig_cond = get_loop_exit_condition (loop);
772 gcc_assert (orig_cond);
773 loop_cond_gsi = gsi_for_stmt (orig_cond);
775 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
776 create_iv (init, step, NULL_TREE, loop,
777 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
779 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
780 true, NULL_TREE, true,
781 GSI_SAME_STMT);
782 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
783 true, GSI_SAME_STMT);
785 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
786 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
787 NULL_TREE);
789 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
791 /* Remove old loop exit test: */
792 gsi_remove (&loop_cond_gsi, true);
794 loop_loc = find_loop_location (loop);
795 if (dump_file && (dump_flags & TDF_DETAILS))
797 if (loop_loc != UNKNOWN_LOC)
798 fprintf (dump_file, "\nloop at %s:%d: ",
799 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
800 print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
803 loop->nb_iterations = niters;
807 /* Given LOOP this function generates a new copy of it and puts it
808 on E which is either the entry or exit of LOOP. */
810 struct loop *
811 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
813 struct loop *new_loop;
814 basic_block *new_bbs, *bbs;
815 bool at_exit;
816 bool was_imm_dom;
817 basic_block exit_dest;
818 gimple phi;
819 tree phi_arg;
820 edge exit, new_exit;
821 gimple_stmt_iterator gsi;
823 at_exit = (e == single_exit (loop));
824 if (!at_exit && e != loop_preheader_edge (loop))
825 return NULL;
827 bbs = get_loop_body (loop);
829 /* Check whether duplication is possible. */
830 if (!can_copy_bbs_p (bbs, loop->num_nodes))
832 free (bbs);
833 return NULL;
836 /* Generate new loop structure. */
837 new_loop = duplicate_loop (loop, loop_outer (loop));
838 if (!new_loop)
840 free (bbs);
841 return NULL;
844 exit_dest = single_exit (loop)->dest;
845 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
846 exit_dest) == loop->header ?
847 true : false);
849 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
851 exit = single_exit (loop);
852 copy_bbs (bbs, loop->num_nodes, new_bbs,
853 &exit, 1, &new_exit, NULL,
854 e->src);
856 /* Duplicating phi args at exit bbs as coming
857 also from exit of duplicated loop. */
858 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
860 phi = gsi_stmt (gsi);
861 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
862 if (phi_arg)
864 edge new_loop_exit_edge;
866 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
867 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
868 else
869 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
871 add_phi_arg (phi, phi_arg, new_loop_exit_edge);
875 if (at_exit) /* Add the loop copy at exit. */
877 redirect_edge_and_branch_force (e, new_loop->header);
878 PENDING_STMT (e) = NULL;
879 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
880 if (was_imm_dom)
881 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
883 else /* Add the copy at entry. */
885 edge new_exit_e;
886 edge entry_e = loop_preheader_edge (loop);
887 basic_block preheader = entry_e->src;
889 if (!flow_bb_inside_loop_p (new_loop,
890 EDGE_SUCC (new_loop->header, 0)->dest))
891 new_exit_e = EDGE_SUCC (new_loop->header, 0);
892 else
893 new_exit_e = EDGE_SUCC (new_loop->header, 1);
895 redirect_edge_and_branch_force (new_exit_e, loop->header);
896 PENDING_STMT (new_exit_e) = NULL;
897 set_immediate_dominator (CDI_DOMINATORS, loop->header,
898 new_exit_e->src);
900 /* We have to add phi args to the loop->header here as coming
901 from new_exit_e edge. */
902 for (gsi = gsi_start_phis (loop->header);
903 !gsi_end_p (gsi);
904 gsi_next (&gsi))
906 phi = gsi_stmt (gsi);
907 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
908 if (phi_arg)
909 add_phi_arg (phi, phi_arg, new_exit_e);
912 redirect_edge_and_branch_force (entry_e, new_loop->header);
913 PENDING_STMT (entry_e) = NULL;
914 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
917 free (new_bbs);
918 free (bbs);
920 return new_loop;
924 /* Given the condition statement COND, put it as the last statement
925 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
926 Assumes that this is the single exit of the guarded loop.
927 Returns the skip edge. */
929 static edge
930 slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
931 basic_block dom_bb)
933 gimple_stmt_iterator gsi;
934 edge new_e, enter_e;
935 gimple cond_stmt;
936 gimple_seq gimplify_stmt_list = NULL;
938 enter_e = EDGE_SUCC (guard_bb, 0);
939 enter_e->flags &= ~EDGE_FALLTHRU;
940 enter_e->flags |= EDGE_FALSE_VALUE;
941 gsi = gsi_last_bb (guard_bb);
943 cond =
944 force_gimple_operand (cond, &gimplify_stmt_list, true,
945 NULL_TREE);
946 cond_stmt = gimple_build_cond (NE_EXPR, cond, integer_zero_node,
947 NULL_TREE, NULL_TREE);
948 if (gimplify_stmt_list)
949 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
951 gsi = gsi_last_bb (guard_bb);
952 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
954 /* Add new edge to connect guard block to the merge/loop-exit block. */
955 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
956 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
957 return new_e;
961 /* This function verifies that the following restrictions apply to LOOP:
962 (1) it is innermost
963 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
964 (3) it is single entry, single exit
965 (4) its exit condition is the last stmt in the header
966 (5) E is the entry/exit edge of LOOP.
969 bool
970 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
972 edge exit_e = single_exit (loop);
973 edge entry_e = loop_preheader_edge (loop);
974 gimple orig_cond = get_loop_exit_condition (loop);
975 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
977 if (need_ssa_update_p ())
978 return false;
980 if (loop->inner
981 /* All loops have an outer scope; the only case loop->outer is NULL is for
982 the function itself. */
983 || !loop_outer (loop)
984 || loop->num_nodes != 2
985 || !empty_block_p (loop->latch)
986 || !single_exit (loop)
987 /* Verify that new loop exit condition can be trivially modified. */
988 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
989 || (e != exit_e && e != entry_e))
990 return false;
992 return true;
995 #ifdef ENABLE_CHECKING
996 void
997 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
998 struct loop *second_loop)
1000 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1001 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1002 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1004 /* A guard that controls whether the second_loop is to be executed or skipped
1005 is placed in first_loop->exit. first_loop->exit therefore has two
1006 successors - one is the preheader of second_loop, and the other is a bb
1007 after second_loop.
1009 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1011 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1012 of second_loop. */
1014 /* The preheader of new_loop is expected to have two predecessors:
1015 first_loop->exit and the block that precedes first_loop. */
1017 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1018 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1019 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1020 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1021 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1023 /* Verify that the other successor of first_loop->exit is after the
1024 second_loop. */
1025 /* TODO */
1027 #endif
1029 /* If the run time cost model check determines that vectorization is
1030 not profitable and hence scalar loop should be generated then set
1031 FIRST_NITERS to prologue peeled iterations. This will allow all the
1032 iterations to be executed in the prologue peeled scalar loop. */
1034 void
1035 set_prologue_iterations (basic_block bb_before_first_loop,
1036 tree first_niters,
1037 struct loop *loop,
1038 unsigned int th)
1040 edge e;
1041 basic_block cond_bb, then_bb;
1042 tree var, prologue_after_cost_adjust_name;
1043 gimple_stmt_iterator gsi;
1044 gimple newphi;
1045 edge e_true, e_false, e_fallthru;
1046 gimple cond_stmt;
1047 gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
1048 tree cost_pre_condition = NULL_TREE;
1049 tree scalar_loop_iters =
1050 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1052 e = single_pred_edge (bb_before_first_loop);
1053 cond_bb = split_edge(e);
1055 e = single_pred_edge (bb_before_first_loop);
1056 then_bb = split_edge(e);
1057 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1059 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1060 EDGE_FALSE_VALUE);
1061 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1063 e_true = EDGE_PRED (then_bb, 0);
1064 e_true->flags &= ~EDGE_FALLTHRU;
1065 e_true->flags |= EDGE_TRUE_VALUE;
1067 e_fallthru = EDGE_SUCC (then_bb, 0);
1069 cost_pre_condition =
1070 build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1071 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1072 cost_pre_condition =
1073 force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
1074 true, NULL_TREE);
1075 cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
1076 integer_zero_node, NULL_TREE, NULL_TREE);
1078 gsi = gsi_last_bb (cond_bb);
1079 if (gimplify_stmt_list)
1080 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1082 gsi = gsi_last_bb (cond_bb);
1083 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1085 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1086 "prologue_after_cost_adjust");
1087 add_referenced_var (var);
1088 prologue_after_cost_adjust_name =
1089 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1091 gsi = gsi_last_bb (then_bb);
1092 if (stmts)
1093 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1095 newphi = create_phi_node (var, bb_before_first_loop);
1096 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru);
1097 add_phi_arg (newphi, first_niters, e_false);
1099 first_niters = PHI_RESULT (newphi);
1103 /* Function slpeel_tree_peel_loop_to_edge.
1105 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1106 that is placed on the entry (exit) edge E of LOOP. After this transformation
1107 we have two loops one after the other - first-loop iterates FIRST_NITERS
1108 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1109 If the cost model indicates that it is profitable to emit a scalar
1110 loop instead of the vector one, then the prolog (epilog) loop will iterate
1111 for the entire unchanged scalar iterations of the loop.
1113 Input:
1114 - LOOP: the loop to be peeled.
1115 - E: the exit or entry edge of LOOP.
1116 If it is the entry edge, we peel the first iterations of LOOP. In this
1117 case first-loop is LOOP, and second-loop is the newly created loop.
1118 If it is the exit edge, we peel the last iterations of LOOP. In this
1119 case, first-loop is the newly created loop, and second-loop is LOOP.
1120 - NITERS: the number of iterations that LOOP iterates.
1121 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1122 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1123 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1124 is false, the caller of this function may want to take care of this
1125 (this can be useful if we don't want new stmts added to first-loop).
1126 - TH: cost model profitability threshold of iterations for vectorization.
1127 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1128 during versioning and hence needs to occur during
1129 prologue generation or whether cost model check
1130 has not occurred during prologue generation and hence
1131 needs to occur during epilogue generation.
1134 Output:
1135 The function returns a pointer to the new loop-copy, or NULL if it failed
1136 to perform the transformation.
1138 The function generates two if-then-else guards: one before the first loop,
1139 and the other before the second loop:
1140 The first guard is:
1141 if (FIRST_NITERS == 0) then skip the first loop,
1142 and go directly to the second loop.
1143 The second guard is:
1144 if (FIRST_NITERS == NITERS) then skip the second loop.
1146 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1147 FORNOW the resulting code will not be in loop-closed-ssa form.
1150 struct loop*
1151 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1152 edge e, tree first_niters,
1153 tree niters, bool update_first_loop_count,
1154 unsigned int th, bool check_profitability)
1156 struct loop *new_loop = NULL, *first_loop, *second_loop;
1157 edge skip_e;
1158 tree pre_condition = NULL_TREE;
1159 bitmap definitions;
1160 basic_block bb_before_second_loop, bb_after_second_loop;
1161 basic_block bb_before_first_loop;
1162 basic_block bb_between_loops;
1163 basic_block new_exit_bb;
1164 edge exit_e = single_exit (loop);
1165 LOC loop_loc;
1166 tree cost_pre_condition = NULL_TREE;
1168 if (!slpeel_can_duplicate_loop_p (loop, e))
1169 return NULL;
1171 /* We have to initialize cfg_hooks. Then, when calling
1172 cfg_hooks->split_edge, the function tree_split_edge
1173 is actually called and, when calling cfg_hooks->duplicate_block,
1174 the function tree_duplicate_bb is called. */
1175 gimple_register_cfg_hooks ();
1178 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1179 Resulting CFG would be:
1181 first_loop:
1182 do {
1183 } while ...
1185 second_loop:
1186 do {
1187 } while ...
1189 orig_exit_bb:
1192 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1194 loop_loc = find_loop_location (loop);
1195 if (dump_file && (dump_flags & TDF_DETAILS))
1197 if (loop_loc != UNKNOWN_LOC)
1198 fprintf (dump_file, "\n%s:%d: note: ",
1199 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1200 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1202 return NULL;
1205 if (e == exit_e)
1207 /* NEW_LOOP was placed after LOOP. */
1208 first_loop = loop;
1209 second_loop = new_loop;
1211 else
1213 /* NEW_LOOP was placed before LOOP. */
1214 first_loop = new_loop;
1215 second_loop = loop;
1218 definitions = ssa_names_to_replace ();
1219 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1220 rename_variables_in_loop (new_loop);
1223 /* 2. Add the guard code in one of the following ways:
1225 2.a Add the guard that controls whether the first loop is executed.
1226 This occurs when this function is invoked for prologue or epilogue
1227 generation and when the cost model check can be done at compile time.
1229 Resulting CFG would be:
1231 bb_before_first_loop:
1232 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1233 GOTO first-loop
1235 first_loop:
1236 do {
1237 } while ...
1239 bb_before_second_loop:
1241 second_loop:
1242 do {
1243 } while ...
1245 orig_exit_bb:
1247 2.b Add the cost model check that allows the prologue
1248 to iterate for the entire unchanged scalar
1249 iterations of the loop in the event that the cost
1250 model indicates that the scalar loop is more
1251 profitable than the vector one. This occurs when
1252 this function is invoked for prologue generation
1253 and the cost model check needs to be done at run
1254 time.
1256 Resulting CFG after prologue peeling would be:
1258 if (scalar_loop_iterations <= th)
1259 FIRST_NITERS = scalar_loop_iterations
1261 bb_before_first_loop:
1262 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1263 GOTO first-loop
1265 first_loop:
1266 do {
1267 } while ...
1269 bb_before_second_loop:
1271 second_loop:
1272 do {
1273 } while ...
1275 orig_exit_bb:
1277 2.c Add the cost model check that allows the epilogue
1278 to iterate for the entire unchanged scalar
1279 iterations of the loop in the event that the cost
1280 model indicates that the scalar loop is more
1281 profitable than the vector one. This occurs when
1282 this function is invoked for epilogue generation
1283 and the cost model check needs to be done at run
1284 time.
1286 Resulting CFG after prologue peeling would be:
1288 bb_before_first_loop:
1289 if ((scalar_loop_iterations <= th)
1291 FIRST_NITERS == 0) GOTO bb_before_second_loop
1292 GOTO first-loop
1294 first_loop:
1295 do {
1296 } while ...
1298 bb_before_second_loop:
1300 second_loop:
1301 do {
1302 } while ...
1304 orig_exit_bb:
1307 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1308 bb_before_second_loop = split_edge (single_exit (first_loop));
1310 /* Epilogue peeling. */
1311 if (!update_first_loop_count)
1313 pre_condition =
1314 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1315 build_int_cst (TREE_TYPE (first_niters), 0));
1316 if (check_profitability)
1318 tree scalar_loop_iters
1319 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1320 (loop_vec_info_for_loop (loop)));
1321 cost_pre_condition =
1322 build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1323 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1325 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1326 cost_pre_condition, pre_condition);
1330 /* Prologue peeling. */
1331 else
1333 if (check_profitability)
1334 set_prologue_iterations (bb_before_first_loop, first_niters,
1335 loop, th);
1337 pre_condition =
1338 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1339 build_int_cst (TREE_TYPE (first_niters), 0));
1342 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1343 bb_before_second_loop, bb_before_first_loop);
1344 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1345 first_loop == new_loop,
1346 &new_exit_bb, &definitions);
1349 /* 3. Add the guard that controls whether the second loop is executed.
1350 Resulting CFG would be:
1352 bb_before_first_loop:
1353 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1354 GOTO first-loop
1356 first_loop:
1357 do {
1358 } while ...
1360 bb_between_loops:
1361 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1362 GOTO bb_before_second_loop
1364 bb_before_second_loop:
1366 second_loop:
1367 do {
1368 } while ...
1370 bb_after_second_loop:
1372 orig_exit_bb:
1375 bb_between_loops = new_exit_bb;
1376 bb_after_second_loop = split_edge (single_exit (second_loop));
1378 pre_condition =
1379 fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
1380 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
1381 bb_after_second_loop, bb_before_first_loop);
1382 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1383 second_loop == new_loop, &new_exit_bb);
1385 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1387 if (update_first_loop_count)
1388 slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1390 BITMAP_FREE (definitions);
1391 delete_update_ssa ();
1393 return new_loop;
1396 /* Function vect_get_loop_location.
1398 Extract the location of the loop in the source code.
1399 If the loop is not well formed for vectorization, an estimated
1400 location is calculated.
1401 Return the loop location if succeed and NULL if not. */
1404 find_loop_location (struct loop *loop)
1406 gimple stmt = NULL;
1407 basic_block bb;
1408 gimple_stmt_iterator si;
1410 if (!loop)
1411 return UNKNOWN_LOC;
1413 stmt = get_loop_exit_condition (loop);
1415 if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1416 return gimple_location (stmt);
1418 /* If we got here the loop is probably not "well formed",
1419 try to estimate the loop location */
1421 if (!loop->header)
1422 return UNKNOWN_LOC;
1424 bb = loop->header;
1426 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1428 stmt = gsi_stmt (si);
1429 if (gimple_location (stmt) != UNKNOWN_LOC)
1430 return gimple_location (stmt);
1433 return UNKNOWN_LOC;
1437 /*************************************************************************
1438 Vectorization Debug Information.
1439 *************************************************************************/
1441 /* Function vect_set_verbosity_level.
1443 Called from toplev.c upon detection of the
1444 -ftree-vectorizer-verbose=N option. */
1446 void
1447 vect_set_verbosity_level (const char *val)
1449 unsigned int vl;
1451 vl = atoi (val);
1452 if (vl < MAX_VERBOSITY_LEVEL)
1453 vect_verbosity_level = vl;
1454 else
1455 vect_verbosity_level = MAX_VERBOSITY_LEVEL - 1;
1459 /* Function vect_set_dump_settings.
1461 Fix the verbosity level of the vectorizer if the
1462 requested level was not set explicitly using the flag
1463 -ftree-vectorizer-verbose=N.
1464 Decide where to print the debugging information (dump_file/stderr).
1465 If the user defined the verbosity level, but there is no dump file,
1466 print to stderr, otherwise print to the dump file. */
1468 static void
1469 vect_set_dump_settings (void)
1471 vect_dump = dump_file;
1473 /* Check if the verbosity level was defined by the user: */
1474 if (vect_verbosity_level != MAX_VERBOSITY_LEVEL)
1476 /* If there is no dump file, print to stderr. */
1477 if (!dump_file)
1478 vect_dump = stderr;
1479 return;
1482 /* User didn't specify verbosity level: */
1483 if (dump_file && (dump_flags & TDF_DETAILS))
1484 vect_verbosity_level = REPORT_DETAILS;
1485 else if (dump_file && (dump_flags & TDF_STATS))
1486 vect_verbosity_level = REPORT_UNVECTORIZED_LOOPS;
1487 else
1488 vect_verbosity_level = REPORT_NONE;
1490 gcc_assert (dump_file || vect_verbosity_level == REPORT_NONE);
1494 /* Function debug_loop_details.
1496 For vectorization debug dumps. */
1498 bool
1499 vect_print_dump_info (enum verbosity_levels vl)
1501 if (vl > vect_verbosity_level)
1502 return false;
1504 if (!current_function_decl || !vect_dump)
1505 return false;
1507 if (vect_loop_location == UNKNOWN_LOC)
1508 fprintf (vect_dump, "\n%s:%d: note: ",
1509 DECL_SOURCE_FILE (current_function_decl),
1510 DECL_SOURCE_LINE (current_function_decl));
1511 else
1512 fprintf (vect_dump, "\n%s:%d: note: ",
1513 LOC_FILE (vect_loop_location), LOC_LINE (vect_loop_location));
1515 return true;
1519 /*************************************************************************
1520 Vectorization Utilities.
1521 *************************************************************************/
1523 /* Function new_stmt_vec_info.
1525 Create and initialize a new stmt_vec_info struct for STMT. */
1527 stmt_vec_info
1528 new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo)
1530 stmt_vec_info res;
1531 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
1533 STMT_VINFO_TYPE (res) = undef_vec_info_type;
1534 STMT_VINFO_STMT (res) = stmt;
1535 STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
1536 STMT_VINFO_RELEVANT (res) = 0;
1537 STMT_VINFO_LIVE_P (res) = false;
1538 STMT_VINFO_VECTYPE (res) = NULL;
1539 STMT_VINFO_VEC_STMT (res) = NULL;
1540 STMT_VINFO_IN_PATTERN_P (res) = false;
1541 STMT_VINFO_RELATED_STMT (res) = NULL;
1542 STMT_VINFO_DATA_REF (res) = NULL;
1544 STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
1545 STMT_VINFO_DR_OFFSET (res) = NULL;
1546 STMT_VINFO_DR_INIT (res) = NULL;
1547 STMT_VINFO_DR_STEP (res) = NULL;
1548 STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
1550 if (gimple_code (stmt) == GIMPLE_PHI
1551 && is_loop_header_bb_p (gimple_bb (stmt)))
1552 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
1553 else
1554 STMT_VINFO_DEF_TYPE (res) = vect_loop_def;
1555 STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
1556 STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
1557 STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
1558 STMT_SLP_TYPE (res) = 0;
1559 DR_GROUP_FIRST_DR (res) = NULL;
1560 DR_GROUP_NEXT_DR (res) = NULL;
1561 DR_GROUP_SIZE (res) = 0;
1562 DR_GROUP_STORE_COUNT (res) = 0;
1563 DR_GROUP_GAP (res) = 0;
1564 DR_GROUP_SAME_DR_STMT (res) = NULL;
1565 DR_GROUP_READ_WRITE_DEPENDENCE (res) = false;
1567 return res;
1570 /* Create a hash table for stmt_vec_info. */
1572 void
1573 init_stmt_vec_info_vec (void)
1575 gcc_assert (!stmt_vec_info_vec);
1576 stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50);
1579 /* Free hash table for stmt_vec_info. */
1581 void
1582 free_stmt_vec_info_vec (void)
1584 gcc_assert (stmt_vec_info_vec);
1585 VEC_free (vec_void_p, heap, stmt_vec_info_vec);
1588 /* Free stmt vectorization related info. */
1590 void
1591 free_stmt_vec_info (gimple stmt)
1593 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1595 if (!stmt_info)
1596 return;
1598 VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
1599 set_vinfo_for_stmt (stmt, NULL);
1600 free (stmt_info);
1604 /* Function bb_in_loop_p
1606 Used as predicate for dfs order traversal of the loop bbs. */
1608 static bool
1609 bb_in_loop_p (const_basic_block bb, const void *data)
1611 const struct loop *const loop = (const struct loop *)data;
1612 if (flow_bb_inside_loop_p (loop, bb))
1613 return true;
1614 return false;
1618 /* Function new_loop_vec_info.
1620 Create and initialize a new loop_vec_info struct for LOOP, as well as
1621 stmt_vec_info structs for all the stmts in LOOP. */
1623 loop_vec_info
1624 new_loop_vec_info (struct loop *loop)
1626 loop_vec_info res;
1627 basic_block *bbs;
1628 gimple_stmt_iterator si;
1629 unsigned int i, nbbs;
1631 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1632 LOOP_VINFO_LOOP (res) = loop;
1634 bbs = get_loop_body (loop);
1636 /* Create/Update stmt_info for all stmts in the loop. */
1637 for (i = 0; i < loop->num_nodes; i++)
1639 basic_block bb = bbs[i];
1641 /* BBs in a nested inner-loop will have been already processed (because
1642 we will have called vect_analyze_loop_form for any nested inner-loop).
1643 Therefore, for stmts in an inner-loop we just want to update the
1644 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
1645 loop_info of the outer-loop we are currently considering to vectorize
1646 (instead of the loop_info of the inner-loop).
1647 For stmts in other BBs we need to create a stmt_info from scratch. */
1648 if (bb->loop_father != loop)
1650 /* Inner-loop bb. */
1651 gcc_assert (loop->inner && bb->loop_father == loop->inner);
1652 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1654 gimple phi = gsi_stmt (si);
1655 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
1656 loop_vec_info inner_loop_vinfo =
1657 STMT_VINFO_LOOP_VINFO (stmt_info);
1658 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
1659 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
1661 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1663 gimple stmt = gsi_stmt (si);
1664 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1665 loop_vec_info inner_loop_vinfo =
1666 STMT_VINFO_LOOP_VINFO (stmt_info);
1667 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
1668 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
1671 else
1673 /* bb in current nest. */
1674 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1676 gimple phi = gsi_stmt (si);
1677 gimple_set_uid (phi, 0);
1678 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
1681 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1683 gimple stmt = gsi_stmt (si);
1684 gimple_set_uid (stmt, 0);
1685 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
1690 /* CHECKME: We want to visit all BBs before their successors (except for
1691 latch blocks, for which this assertion wouldn't hold). In the simple
1692 case of the loop forms we allow, a dfs order of the BBs would the same
1693 as reversed postorder traversal, so we are safe. */
1695 free (bbs);
1696 bbs = XCNEWVEC (basic_block, loop->num_nodes);
1697 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1698 bbs, loop->num_nodes, loop);
1699 gcc_assert (nbbs == loop->num_nodes);
1701 LOOP_VINFO_BBS (res) = bbs;
1702 LOOP_VINFO_NITERS (res) = NULL;
1703 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
1704 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
1705 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1706 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
1707 LOOP_VINFO_VECT_FACTOR (res) = 0;
1708 LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
1709 LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
1710 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1711 LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
1712 VEC_alloc (gimple, heap,
1713 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
1714 LOOP_VINFO_MAY_ALIAS_DDRS (res) =
1715 VEC_alloc (ddr_p, heap,
1716 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
1717 LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
1718 LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
1719 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
1721 return res;
1725 /* Function destroy_loop_vec_info.
1727 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1728 stmts in the loop. */
1730 void
1731 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1733 struct loop *loop;
1734 basic_block *bbs;
1735 int nbbs;
1736 gimple_stmt_iterator si;
1737 int j;
1738 VEC (slp_instance, heap) *slp_instances;
1739 slp_instance instance;
1741 if (!loop_vinfo)
1742 return;
1744 loop = LOOP_VINFO_LOOP (loop_vinfo);
1746 bbs = LOOP_VINFO_BBS (loop_vinfo);
1747 nbbs = loop->num_nodes;
1749 if (!clean_stmts)
1751 free (LOOP_VINFO_BBS (loop_vinfo));
1752 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
1753 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1754 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
1756 free (loop_vinfo);
1757 loop->aux = NULL;
1758 return;
1761 for (j = 0; j < nbbs; j++)
1763 basic_block bb = bbs[j];
1765 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1766 free_stmt_vec_info (gsi_stmt (si));
1768 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1770 gimple stmt = gsi_stmt (si);
1771 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1773 if (stmt_info)
1775 /* Check if this is a "pattern stmt" (introduced by the
1776 vectorizer during the pattern recognition pass). */
1777 bool remove_stmt_p = false;
1778 gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1779 if (orig_stmt)
1781 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
1782 if (orig_stmt_info
1783 && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
1784 remove_stmt_p = true;
1787 /* Free stmt_vec_info. */
1788 free_stmt_vec_info (stmt);
1790 /* Remove dead "pattern stmts". */
1791 if (remove_stmt_p)
1792 gsi_remove (&si, true);
1794 gsi_next (&si);
1798 free (LOOP_VINFO_BBS (loop_vinfo));
1799 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
1800 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1801 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
1802 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
1803 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1804 for (j = 0; VEC_iterate (slp_instance, slp_instances, j, instance); j++)
1805 vect_free_slp_tree (SLP_INSTANCE_TREE (instance));
1806 VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
1807 VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
1809 free (loop_vinfo);
1810 loop->aux = NULL;
1814 /* Function vect_force_dr_alignment_p.
1816 Returns whether the alignment of a DECL can be forced to be aligned
1817 on ALIGNMENT bit boundary. */
1819 bool
1820 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
1822 if (TREE_CODE (decl) != VAR_DECL)
1823 return false;
1825 if (DECL_EXTERNAL (decl))
1826 return false;
1828 if (TREE_ASM_WRITTEN (decl))
1829 return false;
1831 if (TREE_STATIC (decl))
1832 return (alignment <= MAX_OFILE_ALIGNMENT);
1833 else
1834 return (alignment <= MAX_STACK_ALIGNMENT);
1838 /* Function get_vectype_for_scalar_type.
1840 Returns the vector type corresponding to SCALAR_TYPE as supported
1841 by the target. */
1843 tree
1844 get_vectype_for_scalar_type (tree scalar_type)
1846 enum machine_mode inner_mode = TYPE_MODE (scalar_type);
1847 int nbytes = GET_MODE_SIZE (inner_mode);
1848 int nunits;
1849 tree vectype;
1851 if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD (inner_mode))
1852 return NULL_TREE;
1854 /* FORNOW: Only a single vector size per mode (UNITS_PER_SIMD_WORD)
1855 is expected. */
1856 nunits = UNITS_PER_SIMD_WORD (inner_mode) / nbytes;
1858 vectype = build_vector_type (scalar_type, nunits);
1859 if (vect_print_dump_info (REPORT_DETAILS))
1861 fprintf (vect_dump, "get vectype with %d units of type ", nunits);
1862 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
1865 if (!vectype)
1866 return NULL_TREE;
1868 if (vect_print_dump_info (REPORT_DETAILS))
1870 fprintf (vect_dump, "vectype: ");
1871 print_generic_expr (vect_dump, vectype, TDF_SLIM);
1874 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
1875 && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
1877 if (vect_print_dump_info (REPORT_DETAILS))
1878 fprintf (vect_dump, "mode not supported by target.");
1879 return NULL_TREE;
1882 return vectype;
1886 /* Function vect_supportable_dr_alignment
1888 Return whether the data reference DR is supported with respect to its
1889 alignment. */
1891 enum dr_alignment_support
1892 vect_supportable_dr_alignment (struct data_reference *dr)
1894 gimple stmt = DR_STMT (dr);
1895 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1896 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1897 enum machine_mode mode = (int) TYPE_MODE (vectype);
1898 struct loop *vect_loop = LOOP_VINFO_LOOP (STMT_VINFO_LOOP_VINFO (stmt_info));
1899 bool nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
1900 bool invariant_in_outerloop = false;
1902 if (aligned_access_p (dr))
1903 return dr_aligned;
1905 if (nested_in_vect_loop)
1907 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
1908 invariant_in_outerloop =
1909 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
1912 /* Possibly unaligned access. */
1914 /* We can choose between using the implicit realignment scheme (generating
1915 a misaligned_move stmt) and the explicit realignment scheme (generating
1916 aligned loads with a REALIGN_LOAD). There are two variants to the explicit
1917 realignment scheme: optimized, and unoptimized.
1918 We can optimize the realignment only if the step between consecutive
1919 vector loads is equal to the vector size. Since the vector memory
1920 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
1921 is guaranteed that the misalignment amount remains the same throughout the
1922 execution of the vectorized loop. Therefore, we can create the
1923 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
1924 at the loop preheader.
1926 However, in the case of outer-loop vectorization, when vectorizing a
1927 memory access in the inner-loop nested within the LOOP that is now being
1928 vectorized, while it is guaranteed that the misalignment of the
1929 vectorized memory access will remain the same in different outer-loop
1930 iterations, it is *not* guaranteed that is will remain the same throughout
1931 the execution of the inner-loop. This is because the inner-loop advances
1932 with the original scalar step (and not in steps of VS). If the inner-loop
1933 step happens to be a multiple of VS, then the misalignment remains fixed
1934 and we can use the optimized realignment scheme. For example:
1936 for (i=0; i<N; i++)
1937 for (j=0; j<M; j++)
1938 s += a[i+j];
1940 When vectorizing the i-loop in the above example, the step between
1941 consecutive vector loads is 1, and so the misalignment does not remain
1942 fixed across the execution of the inner-loop, and the realignment cannot
1943 be optimized (as illustrated in the following pseudo vectorized loop):
1945 for (i=0; i<N; i+=4)
1946 for (j=0; j<M; j++){
1947 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
1948 // when j is {0,1,2,3,4,5,6,7,...} respectively.
1949 // (assuming that we start from an aligned address).
1952 We therefore have to use the unoptimized realignment scheme:
1954 for (i=0; i<N; i+=4)
1955 for (j=k; j<M; j+=4)
1956 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
1957 // that the misalignment of the initial address is
1958 // 0).
1960 The loop can then be vectorized as follows:
1962 for (k=0; k<4; k++){
1963 rt = get_realignment_token (&vp[k]);
1964 for (i=0; i<N; i+=4){
1965 v1 = vp[i+k];
1966 for (j=k; j<M; j+=4){
1967 v2 = vp[i+j+VS-1];
1968 va = REALIGN_LOAD <v1,v2,rt>;
1969 vs += va;
1970 v1 = v2;
1973 } */
1975 if (DR_IS_READ (dr))
1977 if (optab_handler (vec_realign_load_optab, mode)->insn_code !=
1978 CODE_FOR_nothing
1979 && (!targetm.vectorize.builtin_mask_for_load
1980 || targetm.vectorize.builtin_mask_for_load ()))
1982 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1983 if (nested_in_vect_loop
1984 && (TREE_INT_CST_LOW (DR_STEP (dr))
1985 != GET_MODE_SIZE (TYPE_MODE (vectype))))
1986 return dr_explicit_realign;
1987 else
1988 return dr_explicit_realign_optimized;
1991 if (optab_handler (movmisalign_optab, mode)->insn_code !=
1992 CODE_FOR_nothing)
1993 /* Can't software pipeline the loads, but can at least do them. */
1994 return dr_unaligned_supported;
1997 /* Unsupported. */
1998 return dr_unaligned_unsupported;
2002 /* Function vect_is_simple_use.
2004 Input:
2005 LOOP - the loop that is being vectorized.
2006 OPERAND - operand of a stmt in LOOP.
2007 DEF - the defining stmt in case OPERAND is an SSA_NAME.
2009 Returns whether a stmt with OPERAND can be vectorized.
2010 Supportable operands are constants, loop invariants, and operands that are
2011 defined by the current iteration of the loop. Unsupportable operands are
2012 those that are defined by a previous iteration of the loop (as is the case
2013 in reduction/induction computations). */
2015 bool
2016 vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, gimple *def_stmt,
2017 tree *def, enum vect_def_type *dt)
2019 basic_block bb;
2020 stmt_vec_info stmt_vinfo;
2021 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2023 *def_stmt = NULL;
2024 *def = NULL_TREE;
2026 if (vect_print_dump_info (REPORT_DETAILS))
2028 fprintf (vect_dump, "vect_is_simple_use: operand ");
2029 print_generic_expr (vect_dump, operand, TDF_SLIM);
2032 if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
2034 *dt = vect_constant_def;
2035 return true;
2037 if (is_gimple_min_invariant (operand))
2039 *def = operand;
2040 *dt = vect_invariant_def;
2041 return true;
2044 if (TREE_CODE (operand) == PAREN_EXPR)
2046 if (vect_print_dump_info (REPORT_DETAILS))
2047 fprintf (vect_dump, "non-associatable copy.");
2048 operand = TREE_OPERAND (operand, 0);
2050 if (TREE_CODE (operand) != SSA_NAME)
2052 if (vect_print_dump_info (REPORT_DETAILS))
2053 fprintf (vect_dump, "not ssa-name.");
2054 return false;
2057 *def_stmt = SSA_NAME_DEF_STMT (operand);
2058 if (*def_stmt == NULL)
2060 if (vect_print_dump_info (REPORT_DETAILS))
2061 fprintf (vect_dump, "no def_stmt.");
2062 return false;
2065 if (vect_print_dump_info (REPORT_DETAILS))
2067 fprintf (vect_dump, "def_stmt: ");
2068 print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM);
2071 /* empty stmt is expected only in case of a function argument.
2072 (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
2073 if (gimple_nop_p (*def_stmt))
2075 *def = operand;
2076 *dt = vect_invariant_def;
2077 return true;
2080 bb = gimple_bb (*def_stmt);
2081 if (!flow_bb_inside_loop_p (loop, bb))
2082 *dt = vect_invariant_def;
2083 else
2085 stmt_vinfo = vinfo_for_stmt (*def_stmt);
2086 *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
2089 if (*dt == vect_unknown_def_type)
2091 if (vect_print_dump_info (REPORT_DETAILS))
2092 fprintf (vect_dump, "Unsupported pattern.");
2093 return false;
2096 if (vect_print_dump_info (REPORT_DETAILS))
2097 fprintf (vect_dump, "type of def: %d.",*dt);
2099 switch (gimple_code (*def_stmt))
2101 case GIMPLE_PHI:
2102 *def = gimple_phi_result (*def_stmt);
2103 break;
2105 case GIMPLE_ASSIGN:
2106 *def = gimple_assign_lhs (*def_stmt);
2107 break;
2109 case GIMPLE_CALL:
2110 *def = gimple_call_lhs (*def_stmt);
2111 if (*def != NULL)
2112 break;
2113 /* FALLTHRU */
2114 default:
2115 if (vect_print_dump_info (REPORT_DETAILS))
2116 fprintf (vect_dump, "unsupported defining stmt: ");
2117 return false;
2120 return true;
2124 /* Function supportable_widening_operation
2126 Check whether an operation represented by the code CODE is a
2127 widening operation that is supported by the target platform in
2128 vector form (i.e., when operating on arguments of type VECTYPE).
2130 Widening operations we currently support are NOP (CONVERT), FLOAT
2131 and WIDEN_MULT. This function checks if these operations are supported
2132 by the target platform either directly (via vector tree-codes), or via
2133 target builtins.
2135 Output:
2136 - CODE1 and CODE2 are codes of vector operations to be used when
2137 vectorizing the operation, if available.
2138 - DECL1 and DECL2 are decls of target builtin functions to be used
2139 when vectorizing the operation, if available. In this case,
2140 CODE1 and CODE2 are CALL_EXPR.
2141 - MULTI_STEP_CVT determines the number of required intermediate steps in
2142 case of multi-step conversion (like char->short->int - in that case
2143 MULTI_STEP_CVT will be 1).
2144 - INTERM_TYPES contains the intermediate type required to perform the
2145 widening operation (short in the above example). */
2147 bool
2148 supportable_widening_operation (enum tree_code code, gimple stmt, tree vectype,
2149 tree *decl1, tree *decl2,
2150 enum tree_code *code1, enum tree_code *code2,
2151 int *multi_step_cvt,
2152 VEC (tree, heap) **interm_types)
2154 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2155 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
2156 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2157 bool ordered_p;
2158 enum machine_mode vec_mode;
2159 enum insn_code icode1 = 0, icode2 = 0;
2160 optab optab1, optab2;
2161 tree type = gimple_expr_type (stmt);
2162 tree wide_vectype = get_vectype_for_scalar_type (type);
2163 enum tree_code c1, c2;
2165 /* The result of a vectorized widening operation usually requires two vectors
2166 (because the widened results do not fit int one vector). The generated
2167 vector results would normally be expected to be generated in the same
2168 order as in the original scalar computation, i.e. if 8 results are
2169 generated in each vector iteration, they are to be organized as follows:
2170 vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].
2172 However, in the special case that the result of the widening operation is
2173 used in a reduction computation only, the order doesn't matter (because
2174 when vectorizing a reduction we change the order of the computation).
2175 Some targets can take advantage of this and generate more efficient code.
2176 For example, targets like Altivec, that support widen_mult using a sequence
2177 of {mult_even,mult_odd} generate the following vectors:
2178 vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
2180 When vectorizing outer-loops, we execute the inner-loop sequentially
2181 (each vectorized inner-loop iteration contributes to VF outer-loop
2182 iterations in parallel). We therefore don't allow to change the order
2183 of the computation in the inner-loop during outer-loop vectorization. */
2185 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
2186 && !nested_in_vect_loop_p (vect_loop, stmt))
2187 ordered_p = false;
2188 else
2189 ordered_p = true;
2191 if (!ordered_p
2192 && code == WIDEN_MULT_EXPR
2193 && targetm.vectorize.builtin_mul_widen_even
2194 && targetm.vectorize.builtin_mul_widen_even (vectype)
2195 && targetm.vectorize.builtin_mul_widen_odd
2196 && targetm.vectorize.builtin_mul_widen_odd (vectype))
2198 if (vect_print_dump_info (REPORT_DETAILS))
2199 fprintf (vect_dump, "Unordered widening operation detected.");
2201 *code1 = *code2 = CALL_EXPR;
2202 *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
2203 *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
2204 return true;
2207 switch (code)
2209 case WIDEN_MULT_EXPR:
2210 if (BYTES_BIG_ENDIAN)
2212 c1 = VEC_WIDEN_MULT_HI_EXPR;
2213 c2 = VEC_WIDEN_MULT_LO_EXPR;
2215 else
2217 c2 = VEC_WIDEN_MULT_HI_EXPR;
2218 c1 = VEC_WIDEN_MULT_LO_EXPR;
2220 break;
2222 CASE_CONVERT:
2223 if (BYTES_BIG_ENDIAN)
2225 c1 = VEC_UNPACK_HI_EXPR;
2226 c2 = VEC_UNPACK_LO_EXPR;
2228 else
2230 c2 = VEC_UNPACK_HI_EXPR;
2231 c1 = VEC_UNPACK_LO_EXPR;
2233 break;
2235 case FLOAT_EXPR:
2236 if (BYTES_BIG_ENDIAN)
2238 c1 = VEC_UNPACK_FLOAT_HI_EXPR;
2239 c2 = VEC_UNPACK_FLOAT_LO_EXPR;
2241 else
2243 c2 = VEC_UNPACK_FLOAT_HI_EXPR;
2244 c1 = VEC_UNPACK_FLOAT_LO_EXPR;
2246 break;
2248 case FIX_TRUNC_EXPR:
2249 /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
2250 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
2251 computing the operation. */
2252 return false;
2254 default:
2255 gcc_unreachable ();
2258 if (code == FIX_TRUNC_EXPR)
2260 /* The signedness is determined from output operand. */
2261 optab1 = optab_for_tree_code (c1, type, optab_default);
2262 optab2 = optab_for_tree_code (c2, type, optab_default);
2264 else
2266 optab1 = optab_for_tree_code (c1, vectype, optab_default);
2267 optab2 = optab_for_tree_code (c2, vectype, optab_default);
2270 if (!optab1 || !optab2)
2271 return false;
2273 vec_mode = TYPE_MODE (vectype);
2274 if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing
2275 || (icode2 = optab_handler (optab2, vec_mode)->insn_code)
2276 == CODE_FOR_nothing)
2277 return false;
2279 /* Check if it's a multi-step conversion that can be done using intermediate
2280 types. */
2281 if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
2282 || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
2284 int i;
2285 tree prev_type = vectype, intermediate_type;
2286 enum machine_mode intermediate_mode, prev_mode = vec_mode;
2287 optab optab3, optab4;
2289 if (!CONVERT_EXPR_CODE_P (code))
2290 return false;
2292 *code1 = c1;
2293 *code2 = c2;
2295 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
2296 intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
2297 to get to NARROW_VECTYPE, and fail if we do not. */
2298 *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
2299 for (i = 0; i < 3; i++)
2301 intermediate_mode = insn_data[icode1].operand[0].mode;
2302 intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
2303 TYPE_UNSIGNED (prev_type));
2304 optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
2305 optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
2307 if (!optab3 || !optab4
2308 || (icode1 = optab1->handlers[(int) prev_mode].insn_code)
2309 == CODE_FOR_nothing
2310 || insn_data[icode1].operand[0].mode != intermediate_mode
2311 || (icode2 = optab2->handlers[(int) prev_mode].insn_code)
2312 == CODE_FOR_nothing
2313 || insn_data[icode2].operand[0].mode != intermediate_mode
2314 || (icode1 = optab3->handlers[(int) intermediate_mode].insn_code)
2315 == CODE_FOR_nothing
2316 || (icode2 = optab4->handlers[(int) intermediate_mode].insn_code)
2317 == CODE_FOR_nothing)
2318 return false;
2320 VEC_quick_push (tree, *interm_types, intermediate_type);
2321 (*multi_step_cvt)++;
2323 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
2324 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
2325 return true;
2327 prev_type = intermediate_type;
2328 prev_mode = intermediate_mode;
2331 return false;
2334 *code1 = c1;
2335 *code2 = c2;
2336 return true;
2340 /* Function supportable_narrowing_operation
2342 Check whether an operation represented by the code CODE is a
2343 narrowing operation that is supported by the target platform in
2344 vector form (i.e., when operating on arguments of type VECTYPE).
2346 Narrowing operations we currently support are NOP (CONVERT) and
2347 FIX_TRUNC. This function checks if these operations are supported by
2348 the target platform directly via vector tree-codes.
2350 Output:
2351 - CODE1 is the code of a vector operation to be used when
2352 vectorizing the operation, if available.
2353 - MULTI_STEP_CVT determines the number of required intermediate steps in
2354 case of multi-step conversion (like int->short->char - in that case
2355 MULTI_STEP_CVT will be 1).
2356 - INTERM_TYPES contains the intermediate type required to perform the
2357 narrowing operation (short in the above example). */
2359 bool
2360 supportable_narrowing_operation (enum tree_code code,
2361 const_gimple stmt, tree vectype,
2362 enum tree_code *code1, int *multi_step_cvt,
2363 VEC (tree, heap) **interm_types)
2365 enum machine_mode vec_mode;
2366 enum insn_code icode1;
2367 optab optab1, interm_optab;
2368 tree type = gimple_expr_type (stmt);
2369 tree narrow_vectype = get_vectype_for_scalar_type (type);
2370 enum tree_code c1;
2371 tree intermediate_type, prev_type;
2372 int i;
2374 switch (code)
2376 CASE_CONVERT:
2377 c1 = VEC_PACK_TRUNC_EXPR;
2378 break;
2380 case FIX_TRUNC_EXPR:
2381 c1 = VEC_PACK_FIX_TRUNC_EXPR;
2382 break;
2384 case FLOAT_EXPR:
2385 /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
2386 tree code and optabs used for computing the operation. */
2387 return false;
2389 default:
2390 gcc_unreachable ();
2393 if (code == FIX_TRUNC_EXPR)
2394 /* The signedness is determined from output operand. */
2395 optab1 = optab_for_tree_code (c1, type, optab_default);
2396 else
2397 optab1 = optab_for_tree_code (c1, vectype, optab_default);
2399 if (!optab1)
2400 return false;
2402 vec_mode = TYPE_MODE (vectype);
2403 if ((icode1 = optab_handler (optab1, vec_mode)->insn_code)
2404 == CODE_FOR_nothing)
2405 return false;
2407 /* Check if it's a multi-step conversion that can be done using intermediate
2408 types. */
2409 if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
2411 enum machine_mode intermediate_mode, prev_mode = vec_mode;
2413 *code1 = c1;
2414 prev_type = vectype;
2415 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
2416 intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
2417 to get to NARROW_VECTYPE, and fail if we do not. */
2418 *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
2419 for (i = 0; i < 3; i++)
2421 intermediate_mode = insn_data[icode1].operand[0].mode;
2422 intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
2423 TYPE_UNSIGNED (prev_type));
2424 interm_optab = optab_for_tree_code (c1, intermediate_type,
2425 optab_default);
2426 if (!interm_optab
2427 || (icode1 = optab1->handlers[(int) prev_mode].insn_code)
2428 == CODE_FOR_nothing
2429 || insn_data[icode1].operand[0].mode != intermediate_mode
2430 || (icode1
2431 = interm_optab->handlers[(int) intermediate_mode].insn_code)
2432 == CODE_FOR_nothing)
2433 return false;
2435 VEC_quick_push (tree, *interm_types, intermediate_type);
2436 (*multi_step_cvt)++;
2438 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
2439 return true;
2441 prev_type = intermediate_type;
2442 prev_mode = intermediate_mode;
2445 return false;
2448 *code1 = c1;
2449 return true;
2453 /* Function reduction_code_for_scalar_code
2455 Input:
2456 CODE - tree_code of a reduction operations.
2458 Output:
2459 REDUC_CODE - the corresponding tree-code to be used to reduce the
2460 vector of partial results into a single scalar result (which
2461 will also reside in a vector).
2463 Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise. */
2465 bool
2466 reduction_code_for_scalar_code (enum tree_code code,
2467 enum tree_code *reduc_code)
2469 switch (code)
2471 case MAX_EXPR:
2472 *reduc_code = REDUC_MAX_EXPR;
2473 return true;
2475 case MIN_EXPR:
2476 *reduc_code = REDUC_MIN_EXPR;
2477 return true;
2479 case PLUS_EXPR:
2480 *reduc_code = REDUC_PLUS_EXPR;
2481 return true;
2483 default:
2484 return false;
2488 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2489 STMT is printed with a message MSG. */
2491 static void
2492 report_vect_op (gimple stmt, const char *msg)
2494 fprintf (vect_dump, "%s", msg);
2495 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
2498 /* Function vect_is_simple_reduction
2500 Detect a cross-iteration def-use cycle that represents a simple
2501 reduction computation. We look for the following pattern:
2503 loop_header:
2504 a1 = phi < a0, a2 >
2505 a3 = ...
2506 a2 = operation (a3, a1)
2508 such that:
2509 1. operation is commutative and associative and it is safe to
2510 change the order of the computation.
2511 2. no uses for a2 in the loop (a2 is used out of the loop)
2512 3. no uses of a1 in the loop besides the reduction operation.
2514 Condition 1 is tested here.
2515 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized. */
2517 gimple
2518 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi)
2520 struct loop *loop = (gimple_bb (phi))->loop_father;
2521 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2522 edge latch_e = loop_latch_edge (loop);
2523 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2524 gimple def_stmt, def1, def2;
2525 enum tree_code code;
2526 tree op1, op2;
2527 tree type;
2528 int nloop_uses;
2529 tree name;
2530 imm_use_iterator imm_iter;
2531 use_operand_p use_p;
2533 gcc_assert (loop == vect_loop || flow_loop_nested_p (vect_loop, loop));
2535 name = PHI_RESULT (phi);
2536 nloop_uses = 0;
2537 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2539 gimple use_stmt = USE_STMT (use_p);
2540 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2541 && vinfo_for_stmt (use_stmt)
2542 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2543 nloop_uses++;
2544 if (nloop_uses > 1)
2546 if (vect_print_dump_info (REPORT_DETAILS))
2547 fprintf (vect_dump, "reduction used in loop.");
2548 return NULL;
2552 if (TREE_CODE (loop_arg) != SSA_NAME)
2554 if (vect_print_dump_info (REPORT_DETAILS))
2556 fprintf (vect_dump, "reduction: not ssa_name: ");
2557 print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
2559 return NULL;
2562 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2563 if (!def_stmt)
2565 if (vect_print_dump_info (REPORT_DETAILS))
2566 fprintf (vect_dump, "reduction: no def_stmt.");
2567 return NULL;
2570 if (!is_gimple_assign (def_stmt))
2572 if (vect_print_dump_info (REPORT_DETAILS))
2573 print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
2574 return NULL;
2577 name = gimple_assign_lhs (def_stmt);
2578 nloop_uses = 0;
2579 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2581 gimple use_stmt = USE_STMT (use_p);
2582 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2583 && vinfo_for_stmt (use_stmt)
2584 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2585 nloop_uses++;
2586 if (nloop_uses > 1)
2588 if (vect_print_dump_info (REPORT_DETAILS))
2589 fprintf (vect_dump, "reduction used in loop.");
2590 return NULL;
2594 code = gimple_assign_rhs_code (def_stmt);
2596 if (!commutative_tree_code (code) || !associative_tree_code (code))
2598 if (vect_print_dump_info (REPORT_DETAILS))
2599 report_vect_op (def_stmt, "reduction: not commutative/associative: ");
2600 return NULL;
2603 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2605 if (vect_print_dump_info (REPORT_DETAILS))
2606 report_vect_op (def_stmt, "reduction: not binary operation: ");
2607 return NULL;
2610 op1 = gimple_assign_rhs1 (def_stmt);
2611 op2 = gimple_assign_rhs2 (def_stmt);
2612 if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
2614 if (vect_print_dump_info (REPORT_DETAILS))
2615 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
2616 return NULL;
2619 /* Check that it's ok to change the order of the computation. */
2620 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2621 if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1))
2622 || TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2)))
2624 if (vect_print_dump_info (REPORT_DETAILS))
2626 fprintf (vect_dump, "reduction: multiple types: operation type: ");
2627 print_generic_expr (vect_dump, type, TDF_SLIM);
2628 fprintf (vect_dump, ", operands types: ");
2629 print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
2630 fprintf (vect_dump, ",");
2631 print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
2633 return NULL;
2636 /* Generally, when vectorizing a reduction we change the order of the
2637 computation. This may change the behavior of the program in some
2638 cases, so we need to check that this is ok. One exception is when
2639 vectorizing an outer-loop: the inner-loop is executed sequentially,
2640 and therefore vectorizing reductions in the inner-loop during
2641 outer-loop vectorization is safe. */
2643 /* CHECKME: check for !flag_finite_math_only too? */
2644 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2645 && !nested_in_vect_loop_p (vect_loop, def_stmt))
2647 /* Changing the order of operations changes the semantics. */
2648 if (vect_print_dump_info (REPORT_DETAILS))
2649 report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
2650 return NULL;
2652 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2653 && !nested_in_vect_loop_p (vect_loop, def_stmt))
2655 /* Changing the order of operations changes the semantics. */
2656 if (vect_print_dump_info (REPORT_DETAILS))
2657 report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
2658 return NULL;
2660 else if (SAT_FIXED_POINT_TYPE_P (type))
2662 /* Changing the order of operations changes the semantics. */
2663 if (vect_print_dump_info (REPORT_DETAILS))
2664 report_vect_op (def_stmt,
2665 "reduction: unsafe fixed-point math optimization: ");
2666 return NULL;
2669 /* reduction is safe. we're dealing with one of the following:
2670 1) integer arithmetic and no trapv
2671 2) floating point arithmetic, and special flags permit this optimization.
2673 def1 = SSA_NAME_DEF_STMT (op1);
2674 def2 = SSA_NAME_DEF_STMT (op2);
2675 if (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2))
2677 if (vect_print_dump_info (REPORT_DETAILS))
2678 report_vect_op (def_stmt, "reduction: no defs for operands: ");
2679 return NULL;
2683 /* Check that one def is the reduction def, defined by PHI,
2684 the other def is either defined in the loop ("vect_loop_def"),
2685 or it's an induction (defined by a loop-header phi-node). */
2687 if (def2 == phi
2688 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2689 && (is_gimple_assign (def1)
2690 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_induction_def
2691 || (gimple_code (def1) == GIMPLE_PHI
2692 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_loop_def
2693 && !is_loop_header_bb_p (gimple_bb (def1)))))
2695 if (vect_print_dump_info (REPORT_DETAILS))
2696 report_vect_op (def_stmt, "detected reduction:");
2697 return def_stmt;
2699 else if (def1 == phi
2700 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2701 && (is_gimple_assign (def2)
2702 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_induction_def
2703 || (gimple_code (def2) == GIMPLE_PHI
2704 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_loop_def
2705 && !is_loop_header_bb_p (gimple_bb (def2)))))
2707 /* Swap operands (just for simplicity - so that the rest of the code
2708 can assume that the reduction variable is always the last (second)
2709 argument). */
2710 if (vect_print_dump_info (REPORT_DETAILS))
2711 report_vect_op (def_stmt ,
2712 "detected reduction: need to swap operands:");
2713 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2714 gimple_assign_rhs2_ptr (def_stmt));
2715 return def_stmt;
2717 else
2719 if (vect_print_dump_info (REPORT_DETAILS))
2720 report_vect_op (def_stmt, "reduction: unknown pattern.");
2721 return NULL;
2726 /* Function vect_is_simple_iv_evolution.
2728 FORNOW: A simple evolution of an induction variables in the loop is
2729 considered a polynomial evolution with constant step. */
2731 bool
2732 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
2733 tree * step)
2735 tree init_expr;
2736 tree step_expr;
2737 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
2739 /* When there is no evolution in this loop, the evolution function
2740 is not "simple". */
2741 if (evolution_part == NULL_TREE)
2742 return false;
2744 /* When the evolution is a polynomial of degree >= 2
2745 the evolution function is not "simple". */
2746 if (tree_is_chrec (evolution_part))
2747 return false;
2749 step_expr = evolution_part;
2750 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
2752 if (vect_print_dump_info (REPORT_DETAILS))
2754 fprintf (vect_dump, "step: ");
2755 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
2756 fprintf (vect_dump, ", init: ");
2757 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
2760 *init = init_expr;
2761 *step = step_expr;
2763 if (TREE_CODE (step_expr) != INTEGER_CST)
2765 if (vect_print_dump_info (REPORT_DETAILS))
2766 fprintf (vect_dump, "step unknown.");
2767 return false;
2770 return true;
2774 /* Function vectorize_loops.
2776 Entry Point to loop vectorization phase. */
2778 unsigned
2779 vectorize_loops (void)
2781 unsigned int i;
2782 unsigned int num_vectorized_loops = 0;
2783 unsigned int vect_loops_num;
2784 loop_iterator li;
2785 struct loop *loop;
2787 vect_loops_num = number_of_loops ();
2789 /* Bail out if there are no loops. */
2790 if (vect_loops_num <= 1)
2791 return 0;
2793 /* Fix the verbosity level if not defined explicitly by the user. */
2794 vect_set_dump_settings ();
2796 /* Allocate the bitmap that records which virtual variables that
2797 need to be renamed. */
2798 vect_memsyms_to_rename = BITMAP_ALLOC (NULL);
2800 init_stmt_vec_info_vec ();
2802 /* ----------- Analyze loops. ----------- */
2804 /* If some loop was duplicated, it gets bigger number
2805 than all previously defined loops. This fact allows us to run
2806 only over initial loops skipping newly generated ones. */
2807 FOR_EACH_LOOP (li, loop, 0)
2809 loop_vec_info loop_vinfo;
2811 vect_loop_location = find_loop_location (loop);
2812 loop_vinfo = vect_analyze_loop (loop);
2813 loop->aux = loop_vinfo;
2815 if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
2816 continue;
2818 vect_transform_loop (loop_vinfo);
2819 num_vectorized_loops++;
2821 vect_loop_location = UNKNOWN_LOC;
2823 statistics_counter_event (cfun, "Vectorized loops", num_vectorized_loops);
2824 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS)
2825 || (vect_print_dump_info (REPORT_VECTORIZED_LOOPS)
2826 && num_vectorized_loops > 0))
2827 fprintf (vect_dump, "vectorized %u loops in function.\n",
2828 num_vectorized_loops);
2830 /* ----------- Finalize. ----------- */
2832 BITMAP_FREE (vect_memsyms_to_rename);
2834 for (i = 1; i < vect_loops_num; i++)
2836 loop_vec_info loop_vinfo;
2838 loop = get_loop (i);
2839 if (!loop)
2840 continue;
2841 loop_vinfo = (loop_vec_info) loop->aux;
2842 destroy_loop_vec_info (loop_vinfo, true);
2843 loop->aux = NULL;
2846 free_stmt_vec_info_vec ();
2848 return num_vectorized_loops > 0 ? TODO_cleanup_cfg : 0;
2851 /* Increase alignment of global arrays to improve vectorization potential.
2852 TODO:
2853 - Consider also structs that have an array field.
2854 - Use ipa analysis to prune arrays that can't be vectorized?
2855 This should involve global alignment analysis and in the future also
2856 array padding. */
2858 static unsigned int
2859 increase_alignment (void)
2861 struct varpool_node *vnode;
2863 /* Increase the alignment of all global arrays for vectorization. */
2864 for (vnode = varpool_nodes_queue;
2865 vnode;
2866 vnode = vnode->next_needed)
2868 tree vectype, decl = vnode->decl;
2869 unsigned int alignment;
2871 if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE)
2872 continue;
2873 vectype = get_vectype_for_scalar_type (TREE_TYPE (TREE_TYPE (decl)));
2874 if (!vectype)
2875 continue;
2876 alignment = TYPE_ALIGN (vectype);
2877 if (DECL_ALIGN (decl) >= alignment)
2878 continue;
2880 if (vect_can_force_dr_alignment_p (decl, alignment))
2882 DECL_ALIGN (decl) = TYPE_ALIGN (vectype);
2883 DECL_USER_ALIGN (decl) = 1;
2884 if (dump_file)
2886 fprintf (dump_file, "Increasing alignment of decl: ");
2887 print_generic_expr (dump_file, decl, TDF_SLIM);
2891 return 0;
2894 static bool
2895 gate_increase_alignment (void)
2897 return flag_section_anchors && flag_tree_vectorize;
2900 struct simple_ipa_opt_pass pass_ipa_increase_alignment =
2903 SIMPLE_IPA_PASS,
2904 "increase_alignment", /* name */
2905 gate_increase_alignment, /* gate */
2906 increase_alignment, /* execute */
2907 NULL, /* sub */
2908 NULL, /* next */
2909 0, /* static_pass_number */
2910 0, /* tv_id */
2911 0, /* properties_required */
2912 0, /* properties_provided */
2913 0, /* properties_destroyed */
2914 0, /* todo_flags_start */
2915 0 /* todo_flags_finish */