1 /* Predictive commoning.
2 Copyright (C) 2005, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 upto RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
170 for (i = 0; i < n; i++)
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
189 #include "coretypes.h"
194 #include "tree-flow.h"
196 #include "tree-data-ref.h"
197 #include "tree-scalar-evolution.h"
198 #include "tree-chrec.h"
200 #include "diagnostic.h"
201 #include "tree-pass.h"
202 #include "tree-affine.h"
203 #include "tree-inline.h"
205 /* The maximum number of iterations between the considered memory
208 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
210 /* Data references (or phi nodes that carry data reference values across
215 /* The reference itself. */
216 struct data_reference
*ref
;
218 /* The statement in that the reference appears. */
221 /* In case that STMT is a phi node, this field is set to the SSA name
222 defined by it in replace_phis_by_defined_names (in order to avoid
223 pointing to phi node that got reallocated in the meantime). */
224 tree name_defined_by_phi
;
226 /* Distance of the reference from the root of the chain (in number of
227 iterations of the loop). */
230 /* Number of iterations offset from the first reference in the component. */
233 /* Number of the reference in a component, in dominance ordering. */
236 /* True if the memory reference is always accessed when the loop is
238 unsigned always_accessed
: 1;
242 DEF_VEC_ALLOC_P (dref
, heap
);
244 /* Type of the chain of the references. */
248 /* The addresses of the references in the chain are constant. */
251 /* There are only loads in the chain. */
254 /* Root of the chain is store, the rest are loads. */
257 /* A combination of two chains. */
261 /* Chains of data references. */
265 /* Type of the chain. */
266 enum chain_type type
;
268 /* For combination chains, the operator and the two chains that are
269 combined, and the type of the result. */
272 struct chain
*ch1
, *ch2
;
274 /* The references in the chain. */
275 VEC(dref
,heap
) *refs
;
277 /* The maximum distance of the reference in the chain from the root. */
280 /* The variables used to copy the value throughout iterations. */
281 VEC(tree
,heap
) *vars
;
283 /* Initializers for the variables. */
284 VEC(tree
,heap
) *inits
;
286 /* True if there is a use of a variable with the maximal distance
287 that comes after the root in the loop. */
288 unsigned has_max_use_after
: 1;
290 /* True if all the memory references in the chain are always accessed. */
291 unsigned all_always_accessed
: 1;
293 /* True if this chain was combined together with some other chain. */
294 unsigned combined
: 1;
298 DEF_VEC_ALLOC_P (chain_p
, heap
);
300 /* Describes the knowledge about the step of the memory references in
305 /* The step is zero. */
308 /* The step is nonzero. */
311 /* The step may or may not be nonzero. */
315 /* Components of the data dependence graph. */
319 /* The references in the component. */
320 VEC(dref
,heap
) *refs
;
322 /* What we know about the step of the references in the component. */
323 enum ref_step_type comp_step
;
325 /* Next component in the list. */
326 struct component
*next
;
329 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
331 static bitmap looparound_phis
;
333 /* Cache used by tree_to_aff_combination_expand. */
335 static struct pointer_map_t
*name_expansions
;
337 /* Dumps data reference REF to FILE. */
339 extern void dump_dref (FILE *, dref
);
341 dump_dref (FILE *file
, dref ref
)
346 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
347 fprintf (file
, " (id %u%s)\n", ref
->pos
,
348 DR_IS_READ (ref
->ref
) ? "" : ", write");
350 fprintf (file
, " offset ");
351 dump_double_int (file
, ref
->offset
, false);
352 fprintf (file
, "\n");
354 fprintf (file
, " distance %u\n", ref
->distance
);
358 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
359 fprintf (file
, " looparound ref\n");
361 fprintf (file
, " combination ref\n");
362 fprintf (file
, " in statement ");
363 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
364 fprintf (file
, "\n");
365 fprintf (file
, " distance %u\n", ref
->distance
);
370 /* Dumps CHAIN to FILE. */
372 extern void dump_chain (FILE *, chain_p
);
374 dump_chain (FILE *file
, chain_p chain
)
377 const char *chain_type
;
384 chain_type
= "Load motion";
388 chain_type
= "Loads-only";
392 chain_type
= "Store-loads";
396 chain_type
= "Combination";
403 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
404 chain
->combined
? " (combined)" : "");
405 if (chain
->type
!= CT_INVARIANT
)
406 fprintf (file
, " max distance %u%s\n", chain
->length
,
407 chain
->has_max_use_after
? "" : ", may reuse first");
409 if (chain
->type
== CT_COMBINATION
)
411 fprintf (file
, " equal to %p %s %p in type ",
412 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
413 (void *) chain
->ch2
);
414 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
415 fprintf (file
, "\n");
420 fprintf (file
, " vars");
421 for (i
= 0; VEC_iterate (tree
, chain
->vars
, i
, var
); i
++)
424 print_generic_expr (file
, var
, TDF_SLIM
);
426 fprintf (file
, "\n");
431 fprintf (file
, " inits");
432 for (i
= 0; VEC_iterate (tree
, chain
->inits
, i
, var
); i
++)
435 print_generic_expr (file
, var
, TDF_SLIM
);
437 fprintf (file
, "\n");
440 fprintf (file
, " references:\n");
441 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
444 fprintf (file
, "\n");
447 /* Dumps CHAINS to FILE. */
449 extern void dump_chains (FILE *, VEC (chain_p
, heap
) *);
451 dump_chains (FILE *file
, VEC (chain_p
, heap
) *chains
)
456 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
457 dump_chain (file
, chain
);
460 /* Dumps COMP to FILE. */
462 extern void dump_component (FILE *, struct component
*);
464 dump_component (FILE *file
, struct component
*comp
)
469 fprintf (file
, "Component%s:\n",
470 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
471 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
473 fprintf (file
, "\n");
476 /* Dumps COMPS to FILE. */
478 extern void dump_components (FILE *, struct component
*);
480 dump_components (FILE *file
, struct component
*comps
)
482 struct component
*comp
;
484 for (comp
= comps
; comp
; comp
= comp
->next
)
485 dump_component (file
, comp
);
488 /* Frees a chain CHAIN. */
491 release_chain (chain_p chain
)
499 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, ref
); i
++)
502 VEC_free (dref
, heap
, chain
->refs
);
503 VEC_free (tree
, heap
, chain
->vars
);
504 VEC_free (tree
, heap
, chain
->inits
);
512 release_chains (VEC (chain_p
, heap
) *chains
)
517 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
518 release_chain (chain
);
519 VEC_free (chain_p
, heap
, chains
);
522 /* Frees a component COMP. */
525 release_component (struct component
*comp
)
527 VEC_free (dref
, heap
, comp
->refs
);
531 /* Frees list of components COMPS. */
534 release_components (struct component
*comps
)
536 struct component
*act
, *next
;
538 for (act
= comps
; act
; act
= next
)
541 release_component (act
);
545 /* Finds a root of tree given by FATHERS containing A, and performs path
549 component_of (unsigned fathers
[], unsigned a
)
553 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
556 for (; a
!= root
; a
= n
)
565 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
566 components, A and B are components to merge. */
569 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
571 unsigned ca
= component_of (fathers
, a
);
572 unsigned cb
= component_of (fathers
, b
);
577 if (sizes
[ca
] < sizes
[cb
])
579 sizes
[cb
] += sizes
[ca
];
584 sizes
[ca
] += sizes
[cb
];
589 /* Returns true if A is a reference that is suitable for predictive commoning
590 in the innermost loop that contains it. REF_STEP is set according to the
591 step of the reference A. */
594 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
596 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
599 || !is_gimple_reg_type (TREE_TYPE (ref
))
600 || tree_could_throw_p (ref
))
603 if (integer_zerop (step
))
604 *ref_step
= RS_INVARIANT
;
605 else if (integer_nonzerop (step
))
606 *ref_step
= RS_NONZERO
;
613 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
616 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
620 tree_to_aff_combination_expand (DR_OFFSET (dr
), sizetype
, offset
,
622 aff_combination_const (&delta
, sizetype
, tree_to_double_int (DR_INIT (dr
)));
623 aff_combination_add (offset
, &delta
);
626 /* Determines number of iterations of the innermost enclosing loop before B
627 refers to exactly the same location as A and stores it to OFF. If A and
628 B do not have the same step, they never meet, or anything else fails,
629 returns false, otherwise returns true. Both A and B are assumed to
630 satisfy suitable_reference_p. */
633 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
636 aff_tree diff
, baseb
, step
;
639 /* Check that both the references access the location in the same type. */
640 typea
= TREE_TYPE (DR_REF (a
));
641 typeb
= TREE_TYPE (DR_REF (b
));
642 if (!useless_type_conversion_p (typeb
, typea
))
645 /* Check whether the base address and the step of both references is the
647 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
648 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
651 if (integer_zerop (DR_STEP (a
)))
653 /* If the references have loop invariant address, check that they access
654 exactly the same location. */
655 *off
= double_int_zero
;
656 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
657 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
660 /* Compare the offsets of the addresses, and check whether the difference
661 is a multiple of step. */
662 aff_combination_dr_offset (a
, &diff
);
663 aff_combination_dr_offset (b
, &baseb
);
664 aff_combination_scale (&baseb
, double_int_minus_one
);
665 aff_combination_add (&diff
, &baseb
);
667 tree_to_aff_combination_expand (DR_STEP (a
), sizetype
,
668 &step
, &name_expansions
);
669 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
672 /* Returns the last basic block in LOOP for that we are sure that
673 it is executed whenever the loop is entered. */
676 last_always_executed_block (struct loop
*loop
)
679 VEC (edge
, heap
) *exits
= get_loop_exit_edges (loop
);
681 basic_block last
= loop
->latch
;
683 for (i
= 0; VEC_iterate (edge
, exits
, i
, ex
); i
++)
684 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
685 VEC_free (edge
, heap
, exits
);
690 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
692 static struct component
*
693 split_data_refs_to_components (struct loop
*loop
,
694 VEC (data_reference_p
, heap
) *datarefs
,
695 VEC (ddr_p
, heap
) *depends
)
697 unsigned i
, n
= VEC_length (data_reference_p
, datarefs
);
698 unsigned ca
, ia
, ib
, bad
;
699 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
700 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
701 struct component
**comps
;
702 struct data_reference
*dr
, *dra
, *drb
;
703 struct data_dependence_relation
*ddr
;
704 struct component
*comp_list
= NULL
, *comp
;
706 basic_block last_always_executed
= last_always_executed_block (loop
);
708 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
712 /* A fake reference for call or asm_expr that may clobber memory;
716 dr
->aux
= (void *) (size_t) i
;
721 /* A component reserved for the "bad" data references. */
725 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
727 enum ref_step_type dummy
;
729 if (!suitable_reference_p (dr
, &dummy
))
731 ia
= (unsigned) (size_t) dr
->aux
;
732 merge_comps (comp_father
, comp_size
, n
, ia
);
736 for (i
= 0; VEC_iterate (ddr_p
, depends
, i
, ddr
); i
++)
738 double_int dummy_off
;
740 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
745 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
746 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
750 bad
= component_of (comp_father
, n
);
752 /* If both A and B are reads, we may ignore unsuitable dependences. */
753 if (DR_IS_READ (dra
) && DR_IS_READ (drb
)
754 && (ia
== bad
|| ib
== bad
755 || !determine_offset (dra
, drb
, &dummy_off
)))
758 merge_comps (comp_father
, comp_size
, ia
, ib
);
761 comps
= XCNEWVEC (struct component
*, n
);
762 bad
= component_of (comp_father
, n
);
763 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
765 ia
= (unsigned) (size_t) dr
->aux
;
766 ca
= component_of (comp_father
, ia
);
773 comp
= XCNEW (struct component
);
774 comp
->refs
= VEC_alloc (dref
, heap
, comp_size
[ca
]);
778 dataref
= XCNEW (struct dref
);
780 dataref
->stmt
= DR_STMT (dr
);
781 dataref
->offset
= double_int_zero
;
782 dataref
->distance
= 0;
784 dataref
->always_accessed
785 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
786 gimple_bb (dataref
->stmt
));
787 dataref
->pos
= VEC_length (dref
, comp
->refs
);
788 VEC_quick_push (dref
, comp
->refs
, dataref
);
791 for (i
= 0; i
< n
; i
++)
796 comp
->next
= comp_list
;
808 /* Returns true if the component COMP satisfies the conditions
809 described in 2) at the beginning of this file. LOOP is the current
813 suitable_component_p (struct loop
*loop
, struct component
*comp
)
817 basic_block ba
, bp
= loop
->header
;
818 bool ok
, has_write
= false;
820 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
822 ba
= gimple_bb (a
->stmt
);
824 if (!just_once_each_iteration_p (loop
, ba
))
827 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
830 if (!DR_IS_READ (a
->ref
))
834 first
= VEC_index (dref
, comp
->refs
, 0);
835 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
837 first
->offset
= double_int_zero
;
839 for (i
= 1; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
841 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
844 #ifdef ENABLE_CHECKING
846 enum ref_step_type a_step
;
847 ok
= suitable_reference_p (a
->ref
, &a_step
);
848 gcc_assert (ok
&& a_step
== comp
->comp_step
);
853 /* If there is a write inside the component, we must know whether the
854 step is nonzero or not -- we would not otherwise be able to recognize
855 whether the value accessed by reads comes from the OFFSET-th iteration
856 or the previous one. */
857 if (has_write
&& comp
->comp_step
== RS_ANY
)
863 /* Check the conditions on references inside each of components COMPS,
864 and remove the unsuitable components from the list. The new list
865 of components is returned. The conditions are described in 2) at
866 the beginning of this file. LOOP is the current loop. */
868 static struct component
*
869 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
871 struct component
**comp
, *act
;
873 for (comp
= &comps
; *comp
; )
876 if (suitable_component_p (loop
, act
))
881 release_component (act
);
888 /* Compares two drefs A and B by their offset and position. Callback for
892 order_drefs (const void *a
, const void *b
)
894 const dref
*const da
= (const dref
*) a
;
895 const dref
*const db
= (const dref
*) b
;
896 int offcmp
= double_int_scmp ((*da
)->offset
, (*db
)->offset
);
901 return (*da
)->pos
- (*db
)->pos
;
904 /* Returns root of the CHAIN. */
907 get_chain_root (chain_p chain
)
909 return VEC_index (dref
, chain
->refs
, 0);
912 /* Adds REF to the chain CHAIN. */
915 add_ref_to_chain (chain_p chain
, dref ref
)
917 dref root
= get_chain_root (chain
);
920 gcc_assert (double_int_scmp (root
->offset
, ref
->offset
) <= 0);
921 dist
= double_int_add (ref
->offset
, double_int_neg (root
->offset
));
922 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE
), dist
) <= 0)
924 gcc_assert (double_int_fits_in_uhwi_p (dist
));
926 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
928 ref
->distance
= double_int_to_uhwi (dist
);
930 if (ref
->distance
>= chain
->length
)
932 chain
->length
= ref
->distance
;
933 chain
->has_max_use_after
= false;
936 if (ref
->distance
== chain
->length
937 && ref
->pos
> root
->pos
)
938 chain
->has_max_use_after
= true;
940 chain
->all_always_accessed
&= ref
->always_accessed
;
943 /* Returns the chain for invariant component COMP. */
946 make_invariant_chain (struct component
*comp
)
948 chain_p chain
= XCNEW (struct chain
);
952 chain
->type
= CT_INVARIANT
;
954 chain
->all_always_accessed
= true;
956 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, ref
); i
++)
958 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
959 chain
->all_always_accessed
&= ref
->always_accessed
;
965 /* Make a new chain rooted at REF. */
968 make_rooted_chain (dref ref
)
970 chain_p chain
= XCNEW (struct chain
);
972 chain
->type
= DR_IS_READ (ref
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
974 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
975 chain
->all_always_accessed
= ref
->always_accessed
;
982 /* Returns true if CHAIN is not trivial. */
985 nontrivial_chain_p (chain_p chain
)
987 return chain
!= NULL
&& VEC_length (dref
, chain
->refs
) > 1;
990 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
994 name_for_ref (dref ref
)
998 if (is_gimple_assign (ref
->stmt
))
1000 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1001 name
= gimple_assign_lhs (ref
->stmt
);
1003 name
= gimple_assign_rhs1 (ref
->stmt
);
1006 name
= PHI_RESULT (ref
->stmt
);
1008 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1011 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1012 iterations of the innermost enclosing loop). */
1015 valid_initializer_p (struct data_reference
*ref
,
1016 unsigned distance
, struct data_reference
*root
)
1018 aff_tree diff
, base
, step
;
1021 if (!DR_BASE_ADDRESS (ref
))
1024 /* Both REF and ROOT must be accessing the same object. */
1025 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1028 /* The initializer is defined outside of loop, hence its address must be
1029 invariant inside the loop. */
1030 gcc_assert (integer_zerop (DR_STEP (ref
)));
1032 /* If the address of the reference is invariant, initializer must access
1033 exactly the same location. */
1034 if (integer_zerop (DR_STEP (root
)))
1035 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1036 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1038 /* Verify that this index of REF is equal to the root's index at
1039 -DISTANCE-th iteration. */
1040 aff_combination_dr_offset (root
, &diff
);
1041 aff_combination_dr_offset (ref
, &base
);
1042 aff_combination_scale (&base
, double_int_minus_one
);
1043 aff_combination_add (&diff
, &base
);
1045 tree_to_aff_combination_expand (DR_STEP (root
), sizetype
, &step
,
1047 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1050 if (!double_int_equal_p (off
, uhwi_to_double_int (distance
)))
1056 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1057 initial value is correct (equal to initial value of REF shifted by one
1058 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1059 is the root of the current chain. */
1062 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1064 tree name
, init
, init_ref
;
1065 gimple phi
= NULL
, init_stmt
;
1066 edge latch
= loop_latch_edge (loop
);
1067 struct data_reference init_dr
;
1068 gimple_stmt_iterator psi
;
1070 if (is_gimple_assign (ref
->stmt
))
1072 if (DR_IS_READ (ref
->ref
))
1073 name
= gimple_assign_lhs (ref
->stmt
);
1075 name
= gimple_assign_rhs1 (ref
->stmt
);
1078 name
= PHI_RESULT (ref
->stmt
);
1082 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1084 phi
= gsi_stmt (psi
);
1085 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1089 if (gsi_end_p (psi
))
1092 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1093 if (TREE_CODE (init
) != SSA_NAME
)
1095 init_stmt
= SSA_NAME_DEF_STMT (init
);
1096 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1098 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1100 init_ref
= gimple_assign_rhs1 (init_stmt
);
1101 if (!REFERENCE_CLASS_P (init_ref
)
1102 && !DECL_P (init_ref
))
1105 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1106 loop enclosing PHI). */
1107 memset (&init_dr
, 0, sizeof (struct data_reference
));
1108 DR_REF (&init_dr
) = init_ref
;
1109 DR_STMT (&init_dr
) = phi
;
1110 dr_analyze_innermost (&init_dr
);
1112 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1118 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1121 insert_looparound_copy (chain_p chain
, dref ref
, gimple phi
)
1123 dref nw
= XCNEW (struct dref
), aref
;
1127 nw
->distance
= ref
->distance
+ 1;
1128 nw
->always_accessed
= 1;
1130 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, aref
); i
++)
1131 if (aref
->distance
>= nw
->distance
)
1133 VEC_safe_insert (dref
, heap
, chain
->refs
, i
, nw
);
1135 if (nw
->distance
> chain
->length
)
1137 chain
->length
= nw
->distance
;
1138 chain
->has_max_use_after
= false;
1142 /* For references in CHAIN that are copied around the LOOP (created previously
1143 by PRE, or by user), add the results of such copies to the chain. This
1144 enables us to remove the copies by unrolling, and may need less registers
1145 (also, it may allow us to combine chains together). */
1148 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1151 dref ref
, root
= get_chain_root (chain
);
1154 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, ref
); i
++)
1156 phi
= find_looparound_phi (loop
, ref
, root
);
1160 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1161 insert_looparound_copy (chain
, ref
, phi
);
1165 /* Find roots of the values and determine distances in the component COMP.
1166 The references are redistributed into CHAINS. LOOP is the current
1170 determine_roots_comp (struct loop
*loop
,
1171 struct component
*comp
,
1172 VEC (chain_p
, heap
) **chains
)
1176 chain_p chain
= NULL
;
1178 /* Invariants are handled specially. */
1179 if (comp
->comp_step
== RS_INVARIANT
)
1181 chain
= make_invariant_chain (comp
);
1182 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1186 qsort (VEC_address (dref
, comp
->refs
), VEC_length (dref
, comp
->refs
),
1187 sizeof (dref
), order_drefs
);
1189 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
1191 if (!chain
|| !DR_IS_READ (a
->ref
))
1193 if (nontrivial_chain_p (chain
))
1194 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1196 release_chain (chain
);
1197 chain
= make_rooted_chain (a
);
1201 add_ref_to_chain (chain
, a
);
1204 if (nontrivial_chain_p (chain
))
1206 add_looparound_copies (loop
, chain
);
1207 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1210 release_chain (chain
);
1213 /* Find roots of the values and determine distances in components COMPS, and
1214 separates the references to CHAINS. LOOP is the current loop. */
1217 determine_roots (struct loop
*loop
,
1218 struct component
*comps
, VEC (chain_p
, heap
) **chains
)
1220 struct component
*comp
;
1222 for (comp
= comps
; comp
; comp
= comp
->next
)
1223 determine_roots_comp (loop
, comp
, chains
);
1226 /* Replace the reference in statement STMT with temporary variable
1227 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1228 the reference in the statement. IN_LHS is true if the reference
1229 is in the lhs of STMT, false if it is in rhs. */
1232 replace_ref_with (gimple stmt
, tree new_tree
, bool set
, bool in_lhs
)
1236 gimple_stmt_iterator bsi
, psi
;
1238 if (gimple_code (stmt
) == GIMPLE_PHI
)
1240 gcc_assert (!in_lhs
&& !set
);
1242 val
= PHI_RESULT (stmt
);
1243 bsi
= gsi_after_labels (gimple_bb (stmt
));
1244 psi
= gsi_for_stmt (stmt
);
1245 remove_phi_node (&psi
, false);
1247 /* Turn the phi node into GIMPLE_ASSIGN. */
1248 new_stmt
= gimple_build_assign (val
, new_tree
);
1249 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1253 /* Since the reference is of gimple_reg type, it should only
1254 appear as lhs or rhs of modify statement. */
1255 gcc_assert (is_gimple_assign (stmt
));
1257 bsi
= gsi_for_stmt (stmt
);
1259 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1262 gcc_assert (!in_lhs
);
1263 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1264 stmt
= gsi_stmt (bsi
);
1271 /* We have statement
1275 If OLD is a memory reference, then VAL is gimple_val, and we transform
1281 Otherwise, we are replacing a combination chain,
1282 VAL is the expression that performs the combination, and OLD is an
1283 SSA name. In this case, we transform the assignment to
1290 val
= gimple_assign_lhs (stmt
);
1291 if (TREE_CODE (val
) != SSA_NAME
)
1293 gcc_assert (gimple_assign_copy_p (stmt
));
1294 val
= gimple_assign_rhs1 (stmt
);
1306 val
= gimple_assign_lhs (stmt
);
1309 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1310 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1313 /* Returns the reference to the address of REF in the ITER-th iteration of
1314 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1315 try to preserve the original shape of the reference (not rewrite it
1316 as an indirect ref to the address), to make tree_could_trap_p in
1317 prepare_initializers_chain return false more often. */
1320 ref_at_iteration (struct loop
*loop
, tree ref
, int iter
)
1322 tree idx
, *idx_p
, type
, val
, op0
= NULL_TREE
, ret
;
1326 if (handled_component_p (ref
))
1328 op0
= ref_at_iteration (loop
, TREE_OPERAND (ref
, 0), iter
);
1332 else if (!INDIRECT_REF_P (ref
))
1333 return unshare_expr (ref
);
1335 if (TREE_CODE (ref
) == INDIRECT_REF
)
1337 ret
= build1 (INDIRECT_REF
, TREE_TYPE (ref
), NULL_TREE
);
1338 idx
= TREE_OPERAND (ref
, 0);
1339 idx_p
= &TREE_OPERAND (ret
, 0);
1341 else if (TREE_CODE (ref
) == COMPONENT_REF
)
1343 /* Check that the offset is loop invariant. */
1344 if (TREE_OPERAND (ref
, 2)
1345 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1348 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), op0
,
1349 unshare_expr (TREE_OPERAND (ref
, 1)),
1350 unshare_expr (TREE_OPERAND (ref
, 2)));
1352 else if (TREE_CODE (ref
) == ARRAY_REF
)
1354 /* Check that the lower bound and the step are loop invariant. */
1355 if (TREE_OPERAND (ref
, 2)
1356 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1358 if (TREE_OPERAND (ref
, 3)
1359 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 3)))
1362 ret
= build4 (ARRAY_REF
, TREE_TYPE (ref
), op0
, NULL_TREE
,
1363 unshare_expr (TREE_OPERAND (ref
, 2)),
1364 unshare_expr (TREE_OPERAND (ref
, 3)));
1365 idx
= TREE_OPERAND (ref
, 1);
1366 idx_p
= &TREE_OPERAND (ret
, 1);
1371 ok
= simple_iv (loop
, first_stmt (loop
->header
), idx
, &iv
, true);
1374 iv
.base
= expand_simple_operations (iv
.base
);
1375 if (integer_zerop (iv
.step
))
1376 *idx_p
= unshare_expr (iv
.base
);
1379 type
= TREE_TYPE (iv
.base
);
1380 if (POINTER_TYPE_P (type
))
1382 val
= fold_build2 (MULT_EXPR
, sizetype
, iv
.step
,
1384 val
= fold_build2 (POINTER_PLUS_EXPR
, type
, iv
.base
, val
);
1388 val
= fold_build2 (MULT_EXPR
, type
, iv
.step
,
1389 build_int_cst_type (type
, iter
));
1390 val
= fold_build2 (PLUS_EXPR
, type
, iv
.base
, val
);
1392 *idx_p
= unshare_expr (val
);
1398 /* Get the initialization expression for the INDEX-th temporary variable
1402 get_init_expr (chain_p chain
, unsigned index
)
1404 if (chain
->type
== CT_COMBINATION
)
1406 tree e1
= get_init_expr (chain
->ch1
, index
);
1407 tree e2
= get_init_expr (chain
->ch2
, index
);
1409 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1412 return VEC_index (tree
, chain
->inits
, index
);
1415 /* Marks all virtual operands of statement STMT for renaming. */
1418 mark_virtual_ops_for_renaming (gimple stmt
)
1423 if (gimple_code (stmt
) == GIMPLE_PHI
)
1425 var
= PHI_RESULT (stmt
);
1426 if (is_gimple_reg (var
))
1429 if (TREE_CODE (var
) == SSA_NAME
)
1430 var
= SSA_NAME_VAR (var
);
1431 mark_sym_for_renaming (var
);
1437 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_ALL_VIRTUALS
)
1439 if (TREE_CODE (var
) == SSA_NAME
)
1440 var
= SSA_NAME_VAR (var
);
1441 mark_sym_for_renaming (var
);
1445 /* Calls mark_virtual_ops_for_renaming for all members of LIST. */
1448 mark_virtual_ops_for_renaming_list (gimple_seq list
)
1450 gimple_stmt_iterator gsi
;
1452 for (gsi
= gsi_start (list
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1453 mark_virtual_ops_for_renaming (gsi_stmt (gsi
));
1456 /* Returns a new temporary variable used for the I-th variable carrying
1457 value of REF. The variable's uid is marked in TMP_VARS. */
1460 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1462 tree type
= TREE_TYPE (ref
);
1463 tree var
= create_tmp_var (type
, get_lsm_tmp_name (ref
, i
));
1465 /* We never access the components of the temporary variable in predictive
1467 if (TREE_CODE (type
) == COMPLEX_TYPE
1468 || TREE_CODE (type
) == VECTOR_TYPE
)
1469 DECL_GIMPLE_REG_P (var
) = 1;
1471 add_referenced_var (var
);
1472 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1476 /* Creates the variables for CHAIN, as well as phi nodes for them and
1477 initialization on entry to LOOP. Uids of the newly created
1478 temporary variables are marked in TMP_VARS. */
1481 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1484 unsigned n
= chain
->length
;
1485 dref root
= get_chain_root (chain
);
1486 bool reuse_first
= !chain
->has_max_use_after
;
1487 tree ref
, init
, var
, next
;
1490 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1492 /* If N == 0, then all the references are within the single iteration. And
1493 since this is an nonempty chain, reuse_first cannot be true. */
1494 gcc_assert (n
> 0 || !reuse_first
);
1496 chain
->vars
= VEC_alloc (tree
, heap
, n
+ 1);
1498 if (chain
->type
== CT_COMBINATION
)
1499 ref
= gimple_assign_lhs (root
->stmt
);
1501 ref
= DR_REF (root
->ref
);
1503 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1505 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1506 VEC_quick_push (tree
, chain
->vars
, var
);
1509 VEC_quick_push (tree
, chain
->vars
, VEC_index (tree
, chain
->vars
, 0));
1511 for (i
= 0; VEC_iterate (tree
, chain
->vars
, i
, var
); i
++)
1512 VEC_replace (tree
, chain
->vars
, i
, make_ssa_name (var
, NULL
));
1514 for (i
= 0; i
< n
; i
++)
1516 var
= VEC_index (tree
, chain
->vars
, i
);
1517 next
= VEC_index (tree
, chain
->vars
, i
+ 1);
1518 init
= get_init_expr (chain
, i
);
1520 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1523 mark_virtual_ops_for_renaming_list (stmts
);
1524 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1527 phi
= create_phi_node (var
, loop
->header
);
1528 SSA_NAME_DEF_STMT (var
) = phi
;
1529 add_phi_arg (phi
, init
, entry
);
1530 add_phi_arg (phi
, next
, latch
);
1534 /* Create the variables and initialization statement for root of chain
1535 CHAIN. Uids of the newly created temporary variables are marked
1539 initialize_root (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1541 dref root
= get_chain_root (chain
);
1542 bool in_lhs
= (chain
->type
== CT_STORE_LOAD
1543 || chain
->type
== CT_COMBINATION
);
1545 initialize_root_vars (loop
, chain
, tmp_vars
);
1546 replace_ref_with (root
->stmt
,
1547 VEC_index (tree
, chain
->vars
, chain
->length
),
1551 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1552 initialization on entry to LOOP if necessary. The ssa name for the variable
1553 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1554 around the loop is created. Uid of the newly created temporary variable
1555 is marked in TMP_VARS. INITS is the list containing the (single)
1559 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1560 VEC(tree
, heap
) **vars
, VEC(tree
, heap
) *inits
,
1564 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1567 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1569 /* Find the initializer for the variable, and check that it cannot
1571 init
= VEC_index (tree
, inits
, 0);
1573 *vars
= VEC_alloc (tree
, heap
, written
? 2 : 1);
1574 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1575 VEC_quick_push (tree
, *vars
, var
);
1577 VEC_quick_push (tree
, *vars
, VEC_index (tree
, *vars
, 0));
1579 for (i
= 0; VEC_iterate (tree
, *vars
, i
, var
); i
++)
1580 VEC_replace (tree
, *vars
, i
, make_ssa_name (var
, NULL
));
1582 var
= VEC_index (tree
, *vars
, 0);
1584 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1587 mark_virtual_ops_for_renaming_list (stmts
);
1588 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1593 next
= VEC_index (tree
, *vars
, 1);
1594 phi
= create_phi_node (var
, loop
->header
);
1595 SSA_NAME_DEF_STMT (var
) = phi
;
1596 add_phi_arg (phi
, init
, entry
);
1597 add_phi_arg (phi
, next
, latch
);
1601 gimple init_stmt
= gimple_build_assign (var
, init
);
1602 mark_virtual_ops_for_renaming (init_stmt
);
1603 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1608 /* Execute load motion for references in chain CHAIN. Uids of the newly
1609 created temporary variables are marked in TMP_VARS. */
1612 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1614 VEC (tree
, heap
) *vars
;
1616 unsigned n_writes
= 0, ridx
, i
;
1619 gcc_assert (chain
->type
== CT_INVARIANT
);
1620 gcc_assert (!chain
->combined
);
1621 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1622 if (!DR_IS_READ (a
->ref
))
1625 /* If there are no reads in the loop, there is nothing to do. */
1626 if (n_writes
== VEC_length (dref
, chain
->refs
))
1629 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1630 &vars
, chain
->inits
, tmp_vars
);
1633 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1635 bool is_read
= DR_IS_READ (a
->ref
);
1636 mark_virtual_ops_for_renaming (a
->stmt
);
1638 if (!DR_IS_READ (a
->ref
))
1643 var
= VEC_index (tree
, vars
, 0);
1644 var
= make_ssa_name (SSA_NAME_VAR (var
), NULL
);
1645 VEC_replace (tree
, vars
, 0, var
);
1651 replace_ref_with (a
->stmt
, VEC_index (tree
, vars
, ridx
),
1652 !is_read
, !is_read
);
1655 VEC_free (tree
, heap
, vars
);
1658 /* Returns the single statement in that NAME is used, excepting
1659 the looparound phi nodes contained in one of the chains. If there is no
1660 such statement, or more statements, NULL is returned. */
1663 single_nonlooparound_use (tree name
)
1666 imm_use_iterator it
;
1667 gimple stmt
, ret
= NULL
;
1669 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
1671 stmt
= USE_STMT (use
);
1673 if (gimple_code (stmt
) == GIMPLE_PHI
)
1675 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1676 could not be processed anyway, so just fail for them. */
1677 if (bitmap_bit_p (looparound_phis
,
1678 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
1683 else if (ret
!= NULL
)
1692 /* Remove statement STMT, as well as the chain of assignments in that it is
1696 remove_stmt (gimple stmt
)
1700 gimple_stmt_iterator psi
;
1702 if (gimple_code (stmt
) == GIMPLE_PHI
)
1704 name
= PHI_RESULT (stmt
);
1705 next
= single_nonlooparound_use (name
);
1706 psi
= gsi_for_stmt (stmt
);
1707 remove_phi_node (&psi
, true);
1710 || !gimple_assign_ssa_name_copy_p (next
)
1711 || gimple_assign_rhs1 (next
) != name
)
1719 gimple_stmt_iterator bsi
;
1721 bsi
= gsi_for_stmt (stmt
);
1723 name
= gimple_assign_lhs (stmt
);
1724 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1726 next
= single_nonlooparound_use (name
);
1728 mark_virtual_ops_for_renaming (stmt
);
1729 gsi_remove (&bsi
, true);
1730 release_defs (stmt
);
1733 || !gimple_assign_ssa_name_copy_p (next
)
1734 || gimple_assign_rhs1 (next
) != name
)
1741 /* Perform the predictive commoning optimization for a chain CHAIN.
1742 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1745 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
1752 if (chain
->combined
)
1754 /* For combined chains, just remove the statements that are used to
1755 compute the values of the expression (except for the root one). */
1756 for (i
= 1; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1757 remove_stmt (a
->stmt
);
1761 /* For non-combined chains, set up the variables that hold its value,
1762 and replace the uses of the original references by these
1764 root
= get_chain_root (chain
);
1765 mark_virtual_ops_for_renaming (root
->stmt
);
1767 initialize_root (loop
, chain
, tmp_vars
);
1768 for (i
= 1; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1770 mark_virtual_ops_for_renaming (a
->stmt
);
1771 var
= VEC_index (tree
, chain
->vars
, chain
->length
- a
->distance
);
1772 replace_ref_with (a
->stmt
, var
, false, false);
1777 /* Determines the unroll factor necessary to remove as many temporary variable
1778 copies as possible. CHAINS is the list of chains that will be
1782 determine_unroll_factor (VEC (chain_p
, heap
) *chains
)
1785 unsigned factor
= 1, af
, nfactor
, i
;
1786 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1788 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1790 if (chain
->type
== CT_INVARIANT
|| chain
->combined
)
1793 /* The best unroll factor for this chain is equal to the number of
1794 temporary variables that we create for it. */
1796 if (chain
->has_max_use_after
)
1799 nfactor
= factor
* af
/ gcd (factor
, af
);
1807 /* Perform the predictive commoning optimization for CHAINS.
1808 Uids of the newly created temporary variables are marked in TMP_VARS. */
1811 execute_pred_commoning (struct loop
*loop
, VEC (chain_p
, heap
) *chains
,
1817 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1819 if (chain
->type
== CT_INVARIANT
)
1820 execute_load_motion (loop
, chain
, tmp_vars
);
1822 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
1825 update_ssa (TODO_update_ssa_only_virtuals
);
1828 /* For each reference in CHAINS, if its defining statement is
1829 phi node, record the ssa name that is defined by it. */
1832 replace_phis_by_defined_names (VEC (chain_p
, heap
) *chains
)
1838 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1839 for (j
= 0; VEC_iterate (dref
, chain
->refs
, j
, a
); j
++)
1841 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
1843 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
1849 /* For each reference in CHAINS, if name_defined_by_phi is not
1850 NULL, use it to set the stmt field. */
1853 replace_names_by_phis (VEC (chain_p
, heap
) *chains
)
1859 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1860 for (j
= 0; VEC_iterate (dref
, chain
->refs
, j
, a
); j
++)
1861 if (a
->stmt
== NULL
)
1863 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
1864 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
1865 a
->name_defined_by_phi
= NULL_TREE
;
1869 /* Wrapper over execute_pred_commoning, to pass it as a callback
1870 to tree_transform_and_unroll_loop. */
1874 VEC (chain_p
, heap
) *chains
;
1879 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
1881 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
1883 /* Restore phi nodes that were replaced by ssa names before
1884 tree_transform_and_unroll_loop (see detailed description in
1885 tree_predictive_commoning_loop). */
1886 replace_names_by_phis (dta
->chains
);
1887 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
1890 /* Returns true if we can and should unroll LOOP FACTOR times. Number
1891 of iterations of the loop is returned in NITER. */
1894 should_unroll_loop_p (struct loop
*loop
, unsigned factor
,
1895 struct tree_niter_desc
*niter
)
1902 /* Check whether unrolling is possible. We only want to unroll loops
1903 for that we are able to determine number of iterations. We also
1904 want to split the extra iterations of the loop from its end,
1905 therefore we require that the loop has precisely one
1908 exit
= single_dom_exit (loop
);
1912 if (!number_of_iterations_exit (loop
, exit
, niter
, false))
1915 /* And of course, we must be able to duplicate the loop. */
1916 if (!can_duplicate_loop_p (loop
))
1919 /* The final loop should be small enough. */
1920 if (tree_num_loop_insns (loop
, &eni_size_weights
) * factor
1921 > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
))
1927 /* Base NAME and all the names in the chain of phi nodes that use it
1928 on variable VAR. The phi nodes are recognized by being in the copies of
1929 the header of the LOOP. */
1932 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
1935 imm_use_iterator iter
;
1938 SSA_NAME_VAR (name
) = var
;
1943 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
1945 if (gimple_code (stmt
) == GIMPLE_PHI
1946 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
1949 BREAK_FROM_IMM_USE_STMT (iter
);
1955 if (gimple_bb (phi
) == loop
->header
)
1956 e
= loop_latch_edge (loop
);
1958 e
= single_pred_edge (gimple_bb (stmt
));
1960 name
= PHI_RESULT (phi
);
1961 SSA_NAME_VAR (name
) = var
;
1965 /* Given an unrolled LOOP after predictive commoning, remove the
1966 register copies arising from phi nodes by changing the base
1967 variables of SSA names. TMP_VARS is the set of the temporary variables
1968 for those we want to perform this. */
1971 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
1975 tree name
, use
, var
;
1976 gimple_stmt_iterator psi
;
1978 e
= loop_latch_edge (loop
);
1979 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1981 phi
= gsi_stmt (psi
);
1982 name
= PHI_RESULT (phi
);
1983 var
= SSA_NAME_VAR (name
);
1984 if (!bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
1986 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1987 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
1989 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1990 stmt
= SSA_NAME_DEF_STMT (use
);
1991 while (gimple_code (stmt
) == GIMPLE_PHI
1992 /* In case we could not unroll the loop enough to eliminate
1993 all copies, we may reach the loop header before the defining
1994 statement (in that case, some register copies will be present
1995 in loop latch in the final code, corresponding to the newly
1996 created looparound phi nodes). */
1997 && gimple_bb (stmt
) != loop
->header
)
1999 gcc_assert (single_pred_p (gimple_bb (stmt
)));
2000 use
= PHI_ARG_DEF (stmt
, 0);
2001 stmt
= SSA_NAME_DEF_STMT (use
);
2004 base_names_in_chain_on (loop
, use
, var
);
2008 /* Returns true if CHAIN is suitable to be combined. */
2011 chain_can_be_combined_p (chain_p chain
)
2013 return (!chain
->combined
2014 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
2017 /* Returns the modify statement that uses NAME. Skips over assignment
2018 statements, NAME is replaced with the actual name used in the returned
2022 find_use_stmt (tree
*name
)
2027 /* Skip over assignments. */
2030 stmt
= single_nonlooparound_use (*name
);
2034 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2037 lhs
= gimple_assign_lhs (stmt
);
2038 if (TREE_CODE (lhs
) != SSA_NAME
)
2041 if (gimple_assign_copy_p (stmt
))
2043 rhs
= gimple_assign_rhs1 (stmt
);
2049 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
2050 == GIMPLE_BINARY_RHS
)
2057 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2060 may_reassociate_p (tree type
, enum tree_code code
)
2062 if (FLOAT_TYPE_P (type
)
2063 && !flag_unsafe_math_optimizations
)
2066 return (commutative_tree_code (code
)
2067 && associative_tree_code (code
));
2070 /* If the operation used in STMT is associative and commutative, go through the
2071 tree of the same operations and returns its root. Distance to the root
2072 is stored in DISTANCE. */
2075 find_associative_operation_root (gimple stmt
, unsigned *distance
)
2079 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2080 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2083 if (!may_reassociate_p (type
, code
))
2088 lhs
= gimple_assign_lhs (stmt
);
2089 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2091 next
= find_use_stmt (&lhs
);
2093 || gimple_assign_rhs_code (next
) != code
)
2105 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2106 is no such statement, returns NULL_TREE. In case the operation used on
2107 NAME1 and NAME2 is associative and commutative, returns the root of the
2108 tree formed by this operation instead of the statement that uses NAME1 or
2112 find_common_use_stmt (tree
*name1
, tree
*name2
)
2114 gimple stmt1
, stmt2
;
2116 stmt1
= find_use_stmt (name1
);
2120 stmt2
= find_use_stmt (name2
);
2127 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2130 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2134 return (stmt1
== stmt2
? stmt1
: NULL
);
2137 /* Checks whether R1 and R2 are combined together using CODE, with the result
2138 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2139 if it is true. If CODE is ERROR_MARK, set these values instead. */
2142 combinable_refs_p (dref r1
, dref r2
,
2143 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2145 enum tree_code acode
;
2151 name1
= name_for_ref (r1
);
2152 name2
= name_for_ref (r2
);
2153 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2155 stmt
= find_common_use_stmt (&name1
, &name2
);
2160 acode
= gimple_assign_rhs_code (stmt
);
2161 aswap
= (!commutative_tree_code (acode
)
2162 && gimple_assign_rhs1 (stmt
) != name1
);
2163 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2165 if (*code
== ERROR_MARK
)
2173 return (*code
== acode
2175 && *rslt_type
== atype
);
2178 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2179 an assignment of the remaining operand. */
2182 remove_name_from_operation (gimple stmt
, tree op
)
2185 gimple_stmt_iterator si
;
2187 gcc_assert (is_gimple_assign (stmt
));
2189 if (gimple_assign_rhs1 (stmt
) == op
)
2190 other_op
= gimple_assign_rhs2 (stmt
);
2192 other_op
= gimple_assign_rhs1 (stmt
);
2194 si
= gsi_for_stmt (stmt
);
2195 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2197 /* We should not have reallocated STMT. */
2198 gcc_assert (gsi_stmt (si
) == stmt
);
2203 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2204 are combined in a single statement, and returns this statement. */
2207 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2209 gimple stmt1
, stmt2
, root1
, root2
, s1
, s2
;
2210 gimple new_stmt
, tmp_stmt
;
2211 tree new_name
, tmp_name
, var
, r1
, r2
;
2212 unsigned dist1
, dist2
;
2213 enum tree_code code
;
2214 tree type
= TREE_TYPE (name1
);
2215 gimple_stmt_iterator bsi
;
2217 stmt1
= find_use_stmt (&name1
);
2218 stmt2
= find_use_stmt (&name2
);
2219 root1
= find_associative_operation_root (stmt1
, &dist1
);
2220 root2
= find_associative_operation_root (stmt2
, &dist2
);
2221 code
= gimple_assign_rhs_code (stmt1
);
2223 gcc_assert (root1
&& root2
&& root1
== root2
2224 && code
== gimple_assign_rhs_code (stmt2
));
2226 /* Find the root of the nearest expression in that both NAME1 and NAME2
2233 while (dist1
> dist2
)
2235 s1
= find_use_stmt (&r1
);
2236 r1
= gimple_assign_lhs (s1
);
2239 while (dist2
> dist1
)
2241 s2
= find_use_stmt (&r2
);
2242 r2
= gimple_assign_lhs (s2
);
2248 s1
= find_use_stmt (&r1
);
2249 r1
= gimple_assign_lhs (s1
);
2250 s2
= find_use_stmt (&r2
);
2251 r2
= gimple_assign_lhs (s2
);
2254 /* Remove NAME1 and NAME2 from the statements in that they are used
2256 remove_name_from_operation (stmt1
, name1
);
2257 remove_name_from_operation (stmt2
, name2
);
2259 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2260 combine it with the rhs of S1. */
2261 var
= create_tmp_var (type
, "predreastmp");
2262 add_referenced_var (var
);
2263 new_name
= make_ssa_name (var
, NULL
);
2264 new_stmt
= gimple_build_assign_with_ops (code
, new_name
, name1
, name2
);
2266 var
= create_tmp_var (type
, "predreastmp");
2267 add_referenced_var (var
);
2268 tmp_name
= make_ssa_name (var
, NULL
);
2270 /* Rhs of S1 may now be either a binary expression with operation
2271 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2272 so that name1 or name2 was removed from it). */
2273 tmp_stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (s1
),
2275 gimple_assign_rhs1 (s1
),
2276 gimple_assign_rhs2 (s1
));
2278 bsi
= gsi_for_stmt (s1
);
2279 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2280 s1
= gsi_stmt (bsi
);
2283 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2284 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2289 /* Returns the statement that combines references R1 and R2. In case R1
2290 and R2 are not used in the same statement, but they are used with an
2291 associative and commutative operation in the same expression, reassociate
2292 the expression so that they are used in the same statement. */
2295 stmt_combining_refs (dref r1
, dref r2
)
2297 gimple stmt1
, stmt2
;
2298 tree name1
= name_for_ref (r1
);
2299 tree name2
= name_for_ref (r2
);
2301 stmt1
= find_use_stmt (&name1
);
2302 stmt2
= find_use_stmt (&name2
);
2306 return reassociate_to_the_same_stmt (name1
, name2
);
2309 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2310 description of the new chain is returned, otherwise we return NULL. */
2313 combine_chains (chain_p ch1
, chain_p ch2
)
2316 enum tree_code op
= ERROR_MARK
;
2321 tree rslt_type
= NULL_TREE
;
2325 if (ch1
->length
!= ch2
->length
)
2328 if (VEC_length (dref
, ch1
->refs
) != VEC_length (dref
, ch2
->refs
))
2331 for (i
= 0; (VEC_iterate (dref
, ch1
->refs
, i
, r1
)
2332 && VEC_iterate (dref
, ch2
->refs
, i
, r2
)); i
++)
2334 if (r1
->distance
!= r2
->distance
)
2337 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2348 new_chain
= XCNEW (struct chain
);
2349 new_chain
->type
= CT_COMBINATION
;
2351 new_chain
->ch1
= ch1
;
2352 new_chain
->ch2
= ch2
;
2353 new_chain
->rslt_type
= rslt_type
;
2354 new_chain
->length
= ch1
->length
;
2356 for (i
= 0; (VEC_iterate (dref
, ch1
->refs
, i
, r1
)
2357 && VEC_iterate (dref
, ch2
->refs
, i
, r2
)); i
++)
2359 nw
= XCNEW (struct dref
);
2360 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2361 nw
->distance
= r1
->distance
;
2363 VEC_safe_push (dref
, heap
, new_chain
->refs
, nw
);
2366 new_chain
->has_max_use_after
= false;
2367 root_stmt
= get_chain_root (new_chain
)->stmt
;
2368 for (i
= 1; VEC_iterate (dref
, new_chain
->refs
, i
, nw
); i
++)
2370 if (nw
->distance
== new_chain
->length
2371 && !stmt_dominates_stmt_p (nw
->stmt
, root_stmt
))
2373 new_chain
->has_max_use_after
= true;
2378 ch1
->combined
= true;
2379 ch2
->combined
= true;
2383 /* Try to combine the CHAINS. */
2386 try_combine_chains (VEC (chain_p
, heap
) **chains
)
2389 chain_p ch1
, ch2
, cch
;
2390 VEC (chain_p
, heap
) *worklist
= NULL
;
2392 for (i
= 0; VEC_iterate (chain_p
, *chains
, i
, ch1
); i
++)
2393 if (chain_can_be_combined_p (ch1
))
2394 VEC_safe_push (chain_p
, heap
, worklist
, ch1
);
2396 while (!VEC_empty (chain_p
, worklist
))
2398 ch1
= VEC_pop (chain_p
, worklist
);
2399 if (!chain_can_be_combined_p (ch1
))
2402 for (j
= 0; VEC_iterate (chain_p
, *chains
, j
, ch2
); j
++)
2404 if (!chain_can_be_combined_p (ch2
))
2407 cch
= combine_chains (ch1
, ch2
);
2410 VEC_safe_push (chain_p
, heap
, worklist
, cch
);
2411 VEC_safe_push (chain_p
, heap
, *chains
, cch
);
2418 /* Sets alias information based on data reference DR for REF,
2422 set_alias_info (tree ref
, struct data_reference
*dr
)
2425 tree tag
= DR_SYMBOL_TAG (dr
);
2427 gcc_assert (tag
!= NULL_TREE
);
2429 ref
= get_base_address (ref
);
2430 if (!ref
|| !INDIRECT_REF_P (ref
))
2433 var
= SSA_NAME_VAR (TREE_OPERAND (ref
, 0));
2434 if (var_ann (var
)->symbol_mem_tag
)
2438 new_type_alias (var
, tag
, ref
);
2440 var_ann (var
)->symbol_mem_tag
= tag
;
2443 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2444 impossible because one of these initializers may trap, true otherwise. */
2447 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2449 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2450 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2454 edge entry
= loop_preheader_edge (loop
);
2456 /* Find the initializers for the variables, and check that they cannot
2458 chain
->inits
= VEC_alloc (tree
, heap
, n
);
2459 for (i
= 0; i
< n
; i
++)
2460 VEC_quick_push (tree
, chain
->inits
, NULL_TREE
);
2462 /* If we have replaced some looparound phi nodes, use their initializers
2463 instead of creating our own. */
2464 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, laref
); i
++)
2466 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2469 gcc_assert (laref
->distance
> 0);
2470 VEC_replace (tree
, chain
->inits
, n
- laref
->distance
,
2471 PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
));
2474 for (i
= 0; i
< n
; i
++)
2476 if (VEC_index (tree
, chain
->inits
, i
) != NULL_TREE
)
2479 init
= ref_at_iteration (loop
, DR_REF (dr
), (int) i
- n
);
2483 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
2486 init
= force_gimple_operand (init
, &stmts
, false, NULL_TREE
);
2489 mark_virtual_ops_for_renaming_list (stmts
);
2490 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2492 set_alias_info (init
, dr
);
2494 VEC_replace (tree
, chain
->inits
, i
, init
);
2500 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2501 be used because the initializers might trap. */
2504 prepare_initializers (struct loop
*loop
, VEC (chain_p
, heap
) *chains
)
2509 for (i
= 0; i
< VEC_length (chain_p
, chains
); )
2511 chain
= VEC_index (chain_p
, chains
, i
);
2512 if (prepare_initializers_chain (loop
, chain
))
2516 release_chain (chain
);
2517 VEC_unordered_remove (chain_p
, chains
, i
);
2522 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2526 tree_predictive_commoning_loop (struct loop
*loop
)
2528 VEC (data_reference_p
, heap
) *datarefs
;
2529 VEC (ddr_p
, heap
) *dependences
;
2530 struct component
*components
;
2531 VEC (chain_p
, heap
) *chains
= NULL
;
2532 unsigned unroll_factor
;
2533 struct tree_niter_desc desc
;
2534 bool unroll
= false;
2538 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2539 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
2541 /* Find the data references and split them into components according to their
2542 dependence relations. */
2543 datarefs
= VEC_alloc (data_reference_p
, heap
, 10);
2544 dependences
= VEC_alloc (ddr_p
, heap
, 10);
2545 compute_data_dependences_for_loop (loop
, true, &datarefs
, &dependences
);
2546 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2547 dump_data_dependence_relations (dump_file
, dependences
);
2549 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
2550 free_dependence_relations (dependences
);
2553 free_data_refs (datarefs
);
2557 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2559 fprintf (dump_file
, "Initial state:\n\n");
2560 dump_components (dump_file
, components
);
2563 /* Find the suitable components and split them into chains. */
2564 components
= filter_suitable_components (loop
, components
);
2566 tmp_vars
= BITMAP_ALLOC (NULL
);
2567 looparound_phis
= BITMAP_ALLOC (NULL
);
2568 determine_roots (loop
, components
, &chains
);
2569 release_components (components
);
2573 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2575 "Predictive commoning failed: no suitable chains\n");
2578 prepare_initializers (loop
, chains
);
2580 /* Try to combine the chains that are always worked with together. */
2581 try_combine_chains (&chains
);
2583 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2585 fprintf (dump_file
, "Before commoning:\n\n");
2586 dump_chains (dump_file
, chains
);
2589 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2590 that its number of iterations is divisible by the factor. */
2591 unroll_factor
= determine_unroll_factor (chains
);
2593 unroll
= should_unroll_loop_p (loop
, unroll_factor
, &desc
);
2594 exit
= single_dom_exit (loop
);
2596 /* Execute the predictive commoning transformations, and possibly unroll the
2600 struct epcc_data dta
;
2602 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2603 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
2605 dta
.chains
= chains
;
2606 dta
.tmp_vars
= tmp_vars
;
2608 update_ssa (TODO_update_ssa_only_virtuals
);
2610 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2611 execute_pred_commoning_cbck is called may cause phi nodes to be
2612 reallocated, which is a problem since CHAINS may point to these
2613 statements. To fix this, we store the ssa names defined by the
2614 phi nodes here instead of the phi nodes themselves, and restore
2615 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2616 replace_phis_by_defined_names (chains
);
2618 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
2619 execute_pred_commoning_cbck
, &dta
);
2620 eliminate_temp_copies (loop
, tmp_vars
);
2624 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2626 "Executing predictive commoning without unrolling.\n");
2627 execute_pred_commoning (loop
, chains
, tmp_vars
);
2631 release_chains (chains
);
2632 free_data_refs (datarefs
);
2633 BITMAP_FREE (tmp_vars
);
2634 BITMAP_FREE (looparound_phis
);
2636 free_affine_expand_cache (&name_expansions
);
2641 /* Runs predictive commoning. */
2644 tree_predictive_commoning (void)
2646 bool unrolled
= false;
2651 initialize_original_copy_tables ();
2652 FOR_EACH_LOOP (li
, loop
, LI_ONLY_INNERMOST
)
2654 unrolled
|= tree_predictive_commoning_loop (loop
);
2660 ret
= TODO_cleanup_cfg
;
2662 free_original_copy_tables ();