1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
43 b = base or radix, here always 2
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 27.
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits. */
70 /* Used to classify two numbers simultaneously. */
71 #define CLASS2(A, B) ((A) << 2 | (B))
73 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
74 #error "Some constant folding done by hand to avoid shift count warnings"
77 static void get_zero (REAL_VALUE_TYPE
*, int);
78 static void get_canonical_qnan (REAL_VALUE_TYPE
*, int);
79 static void get_canonical_snan (REAL_VALUE_TYPE
*, int);
80 static void get_inf (REAL_VALUE_TYPE
*, int);
81 static bool sticky_rshift_significand (REAL_VALUE_TYPE
*,
82 const REAL_VALUE_TYPE
*, unsigned int);
83 static void rshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
85 static void lshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
87 static void lshift_significand_1 (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
88 static bool add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*,
89 const REAL_VALUE_TYPE
*);
90 static bool sub_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
91 const REAL_VALUE_TYPE
*, int);
92 static void neg_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
93 static int cmp_significands (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
94 static int cmp_significand_0 (const REAL_VALUE_TYPE
*);
95 static void set_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
96 static void clear_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
97 static bool test_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
98 static void clear_significand_below (REAL_VALUE_TYPE
*, unsigned int);
99 static bool div_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
100 const REAL_VALUE_TYPE
*);
101 static void normalize (REAL_VALUE_TYPE
*);
103 static bool do_add (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
104 const REAL_VALUE_TYPE
*, int);
105 static bool do_multiply (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
106 const REAL_VALUE_TYPE
*);
107 static bool do_divide (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
108 const REAL_VALUE_TYPE
*);
109 static int do_compare (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*, int);
110 static void do_fix_trunc (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
112 static unsigned long rtd_divmod (REAL_VALUE_TYPE
*, REAL_VALUE_TYPE
*);
114 static const REAL_VALUE_TYPE
* ten_to_ptwo (int);
115 static const REAL_VALUE_TYPE
* ten_to_mptwo (int);
116 static const REAL_VALUE_TYPE
* real_digit (int);
117 static void times_pten (REAL_VALUE_TYPE
*, int);
119 static void round_for_format (const struct real_format
*, REAL_VALUE_TYPE
*);
121 /* Initialize R with a positive zero. */
124 get_zero (REAL_VALUE_TYPE
*r
, int sign
)
126 memset (r
, 0, sizeof (*r
));
130 /* Initialize R with the canonical quiet NaN. */
133 get_canonical_qnan (REAL_VALUE_TYPE
*r
, int sign
)
135 memset (r
, 0, sizeof (*r
));
142 get_canonical_snan (REAL_VALUE_TYPE
*r
, int sign
)
144 memset (r
, 0, sizeof (*r
));
152 get_inf (REAL_VALUE_TYPE
*r
, int sign
)
154 memset (r
, 0, sizeof (*r
));
160 /* Right-shift the significand of A by N bits; put the result in the
161 significand of R. If any one bits are shifted out, return true. */
164 sticky_rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
167 unsigned long sticky
= 0;
168 unsigned int i
, ofs
= 0;
170 if (n
>= HOST_BITS_PER_LONG
)
172 for (i
= 0, ofs
= n
/ HOST_BITS_PER_LONG
; i
< ofs
; ++i
)
174 n
&= HOST_BITS_PER_LONG
- 1;
179 sticky
|= a
->sig
[ofs
] & (((unsigned long)1 << n
) - 1);
180 for (i
= 0; i
< SIGSZ
; ++i
)
183 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
184 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
185 << (HOST_BITS_PER_LONG
- n
)));
190 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
191 r
->sig
[i
] = a
->sig
[ofs
+ i
];
192 for (; i
< SIGSZ
; ++i
)
199 /* Right-shift the significand of A by N bits; put the result in the
203 rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
206 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
208 n
&= HOST_BITS_PER_LONG
- 1;
211 for (i
= 0; i
< SIGSZ
; ++i
)
214 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
215 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
216 << (HOST_BITS_PER_LONG
- n
)));
221 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
222 r
->sig
[i
] = a
->sig
[ofs
+ i
];
223 for (; i
< SIGSZ
; ++i
)
228 /* Left-shift the significand of A by N bits; put the result in the
232 lshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
235 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
237 n
&= HOST_BITS_PER_LONG
- 1;
240 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
241 r
->sig
[SIGSZ
-1-i
] = a
->sig
[SIGSZ
-1-i
-ofs
];
242 for (; i
< SIGSZ
; ++i
)
243 r
->sig
[SIGSZ
-1-i
] = 0;
246 for (i
= 0; i
< SIGSZ
; ++i
)
249 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
]) << n
)
250 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
-1])
251 >> (HOST_BITS_PER_LONG
- n
)));
255 /* Likewise, but N is specialized to 1. */
258 lshift_significand_1 (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
262 for (i
= SIGSZ
- 1; i
> 0; --i
)
263 r
->sig
[i
] = (a
->sig
[i
] << 1) | (a
->sig
[i
-1] >> (HOST_BITS_PER_LONG
- 1));
264 r
->sig
[0] = a
->sig
[0] << 1;
267 /* Add the significands of A and B, placing the result in R. Return
268 true if there was carry out of the most significant word. */
271 add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
272 const REAL_VALUE_TYPE
*b
)
277 for (i
= 0; i
< SIGSZ
; ++i
)
279 unsigned long ai
= a
->sig
[i
];
280 unsigned long ri
= ai
+ b
->sig
[i
];
296 /* Subtract the significands of A and B, placing the result in R. CARRY is
297 true if there's a borrow incoming to the least significant word.
298 Return true if there was borrow out of the most significant word. */
301 sub_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
302 const REAL_VALUE_TYPE
*b
, int carry
)
306 for (i
= 0; i
< SIGSZ
; ++i
)
308 unsigned long ai
= a
->sig
[i
];
309 unsigned long ri
= ai
- b
->sig
[i
];
325 /* Negate the significand A, placing the result in R. */
328 neg_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
333 for (i
= 0; i
< SIGSZ
; ++i
)
335 unsigned long ri
, ai
= a
->sig
[i
];
354 /* Compare significands. Return tri-state vs zero. */
357 cmp_significands (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
361 for (i
= SIGSZ
- 1; i
>= 0; --i
)
363 unsigned long ai
= a
->sig
[i
];
364 unsigned long bi
= b
->sig
[i
];
375 /* Return true if A is nonzero. */
378 cmp_significand_0 (const REAL_VALUE_TYPE
*a
)
382 for (i
= SIGSZ
- 1; i
>= 0; --i
)
389 /* Set bit N of the significand of R. */
392 set_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
394 r
->sig
[n
/ HOST_BITS_PER_LONG
]
395 |= (unsigned long)1 << (n
% HOST_BITS_PER_LONG
);
398 /* Clear bit N of the significand of R. */
401 clear_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
403 r
->sig
[n
/ HOST_BITS_PER_LONG
]
404 &= ~((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
407 /* Test bit N of the significand of R. */
410 test_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
412 /* ??? Compiler bug here if we return this expression directly.
413 The conversion to bool strips the "&1" and we wind up testing
414 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
415 int t
= (r
->sig
[n
/ HOST_BITS_PER_LONG
] >> (n
% HOST_BITS_PER_LONG
)) & 1;
419 /* Clear bits 0..N-1 of the significand of R. */
422 clear_significand_below (REAL_VALUE_TYPE
*r
, unsigned int n
)
424 int i
, w
= n
/ HOST_BITS_PER_LONG
;
426 for (i
= 0; i
< w
; ++i
)
429 r
->sig
[w
] &= ~(((unsigned long)1 << (n
% HOST_BITS_PER_LONG
)) - 1);
432 /* Divide the significands of A and B, placing the result in R. Return
433 true if the division was inexact. */
436 div_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
437 const REAL_VALUE_TYPE
*b
)
440 int i
, bit
= SIGNIFICAND_BITS
- 1;
441 unsigned long msb
, inexact
;
444 memset (r
->sig
, 0, sizeof (r
->sig
));
450 msb
= u
.sig
[SIGSZ
-1] & SIG_MSB
;
451 lshift_significand_1 (&u
, &u
);
453 if (msb
|| cmp_significands (&u
, b
) >= 0)
455 sub_significands (&u
, &u
, b
, 0);
456 set_significand_bit (r
, bit
);
461 for (i
= 0, inexact
= 0; i
< SIGSZ
; i
++)
467 /* Adjust the exponent and significand of R such that the most
468 significant bit is set. We underflow to zero and overflow to
469 infinity here, without denormals. (The intermediate representation
470 exponent is large enough to handle target denormals normalized.) */
473 normalize (REAL_VALUE_TYPE
*r
)
481 /* Find the first word that is nonzero. */
482 for (i
= SIGSZ
- 1; i
>= 0; i
--)
484 shift
+= HOST_BITS_PER_LONG
;
488 /* Zero significand flushes to zero. */
496 /* Find the first bit that is nonzero. */
498 if (r
->sig
[i
] & ((unsigned long)1 << (HOST_BITS_PER_LONG
- 1 - j
)))
504 exp
= REAL_EXP (r
) - shift
;
506 get_inf (r
, r
->sign
);
507 else if (exp
< -MAX_EXP
)
508 get_zero (r
, r
->sign
);
511 SET_REAL_EXP (r
, exp
);
512 lshift_significand (r
, r
, shift
);
517 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
518 result may be inexact due to a loss of precision. */
521 do_add (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
522 const REAL_VALUE_TYPE
*b
, int subtract_p
)
526 bool inexact
= false;
528 /* Determine if we need to add or subtract. */
530 subtract_p
= (sign
^ b
->sign
) ^ subtract_p
;
532 switch (CLASS2 (a
->cl
, b
->cl
))
534 case CLASS2 (rvc_zero
, rvc_zero
):
535 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
536 get_zero (r
, sign
& !subtract_p
);
539 case CLASS2 (rvc_zero
, rvc_normal
):
540 case CLASS2 (rvc_zero
, rvc_inf
):
541 case CLASS2 (rvc_zero
, rvc_nan
):
543 case CLASS2 (rvc_normal
, rvc_nan
):
544 case CLASS2 (rvc_inf
, rvc_nan
):
545 case CLASS2 (rvc_nan
, rvc_nan
):
546 /* ANY + NaN = NaN. */
547 case CLASS2 (rvc_normal
, rvc_inf
):
550 r
->sign
= sign
^ subtract_p
;
553 case CLASS2 (rvc_normal
, rvc_zero
):
554 case CLASS2 (rvc_inf
, rvc_zero
):
555 case CLASS2 (rvc_nan
, rvc_zero
):
557 case CLASS2 (rvc_nan
, rvc_normal
):
558 case CLASS2 (rvc_nan
, rvc_inf
):
559 /* NaN + ANY = NaN. */
560 case CLASS2 (rvc_inf
, rvc_normal
):
565 case CLASS2 (rvc_inf
, rvc_inf
):
567 /* Inf - Inf = NaN. */
568 get_canonical_qnan (r
, 0);
570 /* Inf + Inf = Inf. */
574 case CLASS2 (rvc_normal
, rvc_normal
):
581 /* Swap the arguments such that A has the larger exponent. */
582 dexp
= REAL_EXP (a
) - REAL_EXP (b
);
585 const REAL_VALUE_TYPE
*t
;
592 /* If the exponents are not identical, we need to shift the
593 significand of B down. */
596 /* If the exponents are too far apart, the significands
597 do not overlap, which makes the subtraction a noop. */
598 if (dexp
>= SIGNIFICAND_BITS
)
605 inexact
|= sticky_rshift_significand (&t
, b
, dexp
);
611 if (sub_significands (r
, a
, b
, inexact
))
613 /* We got a borrow out of the subtraction. That means that
614 A and B had the same exponent, and B had the larger
615 significand. We need to swap the sign and negate the
618 neg_significand (r
, r
);
623 if (add_significands (r
, a
, b
))
625 /* We got carry out of the addition. This means we need to
626 shift the significand back down one bit and increase the
628 inexact
|= sticky_rshift_significand (r
, r
, 1);
629 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
640 SET_REAL_EXP (r
, exp
);
641 /* Zero out the remaining fields. */
646 /* Re-normalize the result. */
649 /* Special case: if the subtraction results in zero, the result
651 if (r
->cl
== rvc_zero
)
654 r
->sig
[0] |= inexact
;
659 /* Calculate R = A * B. Return true if the result may be inexact. */
662 do_multiply (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
663 const REAL_VALUE_TYPE
*b
)
665 REAL_VALUE_TYPE u
, t
, *rr
;
666 unsigned int i
, j
, k
;
667 int sign
= a
->sign
^ b
->sign
;
668 bool inexact
= false;
670 switch (CLASS2 (a
->cl
, b
->cl
))
672 case CLASS2 (rvc_zero
, rvc_zero
):
673 case CLASS2 (rvc_zero
, rvc_normal
):
674 case CLASS2 (rvc_normal
, rvc_zero
):
675 /* +-0 * ANY = 0 with appropriate sign. */
679 case CLASS2 (rvc_zero
, rvc_nan
):
680 case CLASS2 (rvc_normal
, rvc_nan
):
681 case CLASS2 (rvc_inf
, rvc_nan
):
682 case CLASS2 (rvc_nan
, rvc_nan
):
683 /* ANY * NaN = NaN. */
688 case CLASS2 (rvc_nan
, rvc_zero
):
689 case CLASS2 (rvc_nan
, rvc_normal
):
690 case CLASS2 (rvc_nan
, rvc_inf
):
691 /* NaN * ANY = NaN. */
696 case CLASS2 (rvc_zero
, rvc_inf
):
697 case CLASS2 (rvc_inf
, rvc_zero
):
699 get_canonical_qnan (r
, sign
);
702 case CLASS2 (rvc_inf
, rvc_inf
):
703 case CLASS2 (rvc_normal
, rvc_inf
):
704 case CLASS2 (rvc_inf
, rvc_normal
):
705 /* Inf * Inf = Inf, R * Inf = Inf */
709 case CLASS2 (rvc_normal
, rvc_normal
):
716 if (r
== a
|| r
== b
)
722 /* Collect all the partial products. Since we don't have sure access
723 to a widening multiply, we split each long into two half-words.
725 Consider the long-hand form of a four half-word multiplication:
735 We construct partial products of the widened half-word products
736 that are known to not overlap, e.g. DF+DH. Each such partial
737 product is given its proper exponent, which allows us to sum them
738 and obtain the finished product. */
740 for (i
= 0; i
< SIGSZ
* 2; ++i
)
742 unsigned long ai
= a
->sig
[i
/ 2];
744 ai
>>= HOST_BITS_PER_LONG
/ 2;
746 ai
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
751 for (j
= 0; j
< 2; ++j
)
753 int exp
= (REAL_EXP (a
) - (2*SIGSZ
-1-i
)*(HOST_BITS_PER_LONG
/2)
754 + (REAL_EXP (b
) - (1-j
)*(HOST_BITS_PER_LONG
/2)));
763 /* Would underflow to zero, which we shouldn't bother adding. */
768 memset (&u
, 0, sizeof (u
));
770 SET_REAL_EXP (&u
, exp
);
772 for (k
= j
; k
< SIGSZ
* 2; k
+= 2)
774 unsigned long bi
= b
->sig
[k
/ 2];
776 bi
>>= HOST_BITS_PER_LONG
/ 2;
778 bi
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
780 u
.sig
[k
/ 2] = ai
* bi
;
784 inexact
|= do_add (rr
, rr
, &u
, 0);
795 /* Calculate R = A / B. Return true if the result may be inexact. */
798 do_divide (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
799 const REAL_VALUE_TYPE
*b
)
801 int exp
, sign
= a
->sign
^ b
->sign
;
802 REAL_VALUE_TYPE t
, *rr
;
805 switch (CLASS2 (a
->cl
, b
->cl
))
807 case CLASS2 (rvc_zero
, rvc_zero
):
809 case CLASS2 (rvc_inf
, rvc_inf
):
810 /* Inf / Inf = NaN. */
811 get_canonical_qnan (r
, sign
);
814 case CLASS2 (rvc_zero
, rvc_normal
):
815 case CLASS2 (rvc_zero
, rvc_inf
):
817 case CLASS2 (rvc_normal
, rvc_inf
):
822 case CLASS2 (rvc_normal
, rvc_zero
):
824 case CLASS2 (rvc_inf
, rvc_zero
):
829 case CLASS2 (rvc_zero
, rvc_nan
):
830 case CLASS2 (rvc_normal
, rvc_nan
):
831 case CLASS2 (rvc_inf
, rvc_nan
):
832 case CLASS2 (rvc_nan
, rvc_nan
):
833 /* ANY / NaN = NaN. */
838 case CLASS2 (rvc_nan
, rvc_zero
):
839 case CLASS2 (rvc_nan
, rvc_normal
):
840 case CLASS2 (rvc_nan
, rvc_inf
):
841 /* NaN / ANY = NaN. */
846 case CLASS2 (rvc_inf
, rvc_normal
):
851 case CLASS2 (rvc_normal
, rvc_normal
):
858 if (r
== a
|| r
== b
)
863 /* Make sure all fields in the result are initialized. */
868 exp
= REAL_EXP (a
) - REAL_EXP (b
) + 1;
879 SET_REAL_EXP (rr
, exp
);
881 inexact
= div_significands (rr
, a
, b
);
883 /* Re-normalize the result. */
885 rr
->sig
[0] |= inexact
;
893 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
894 one of the two operands is a NaN. */
897 do_compare (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
,
902 switch (CLASS2 (a
->cl
, b
->cl
))
904 case CLASS2 (rvc_zero
, rvc_zero
):
905 /* Sign of zero doesn't matter for compares. */
908 case CLASS2 (rvc_inf
, rvc_zero
):
909 case CLASS2 (rvc_inf
, rvc_normal
):
910 case CLASS2 (rvc_normal
, rvc_zero
):
911 return (a
->sign
? -1 : 1);
913 case CLASS2 (rvc_inf
, rvc_inf
):
914 return -a
->sign
- -b
->sign
;
916 case CLASS2 (rvc_zero
, rvc_normal
):
917 case CLASS2 (rvc_zero
, rvc_inf
):
918 case CLASS2 (rvc_normal
, rvc_inf
):
919 return (b
->sign
? 1 : -1);
921 case CLASS2 (rvc_zero
, rvc_nan
):
922 case CLASS2 (rvc_normal
, rvc_nan
):
923 case CLASS2 (rvc_inf
, rvc_nan
):
924 case CLASS2 (rvc_nan
, rvc_nan
):
925 case CLASS2 (rvc_nan
, rvc_zero
):
926 case CLASS2 (rvc_nan
, rvc_normal
):
927 case CLASS2 (rvc_nan
, rvc_inf
):
930 case CLASS2 (rvc_normal
, rvc_normal
):
937 if (a
->sign
!= b
->sign
)
938 return -a
->sign
- -b
->sign
;
940 if (a
->decimal
|| b
->decimal
)
941 return decimal_do_compare (a
, b
, nan_result
);
943 if (REAL_EXP (a
) > REAL_EXP (b
))
945 else if (REAL_EXP (a
) < REAL_EXP (b
))
948 ret
= cmp_significands (a
, b
);
950 return (a
->sign
? -ret
: ret
);
953 /* Return A truncated to an integral value toward zero. */
956 do_fix_trunc (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
970 decimal_do_fix_trunc (r
, a
);
973 if (REAL_EXP (r
) <= 0)
974 get_zero (r
, r
->sign
);
975 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
976 clear_significand_below (r
, SIGNIFICAND_BITS
- REAL_EXP (r
));
984 /* Perform the binary or unary operation described by CODE.
985 For a unary operation, leave OP1 NULL. This function returns
986 true if the result may be inexact due to loss of precision. */
989 real_arithmetic (REAL_VALUE_TYPE
*r
, int icode
, const REAL_VALUE_TYPE
*op0
,
990 const REAL_VALUE_TYPE
*op1
)
992 enum tree_code code
= icode
;
994 if (op0
->decimal
|| (op1
&& op1
->decimal
))
995 return decimal_real_arithmetic (r
, icode
, op0
, op1
);
1000 return do_add (r
, op0
, op1
, 0);
1003 return do_add (r
, op0
, op1
, 1);
1006 return do_multiply (r
, op0
, op1
);
1009 return do_divide (r
, op0
, op1
);
1012 if (op1
->cl
== rvc_nan
)
1014 else if (do_compare (op0
, op1
, -1) < 0)
1021 if (op1
->cl
== rvc_nan
)
1023 else if (do_compare (op0
, op1
, 1) < 0)
1039 case FIX_TRUNC_EXPR
:
1040 do_fix_trunc (r
, op0
);
1049 /* Legacy. Similar, but return the result directly. */
1052 real_arithmetic2 (int icode
, const REAL_VALUE_TYPE
*op0
,
1053 const REAL_VALUE_TYPE
*op1
)
1056 real_arithmetic (&r
, icode
, op0
, op1
);
1061 real_compare (int icode
, const REAL_VALUE_TYPE
*op0
,
1062 const REAL_VALUE_TYPE
*op1
)
1064 enum tree_code code
= icode
;
1069 return do_compare (op0
, op1
, 1) < 0;
1071 return do_compare (op0
, op1
, 1) <= 0;
1073 return do_compare (op0
, op1
, -1) > 0;
1075 return do_compare (op0
, op1
, -1) >= 0;
1077 return do_compare (op0
, op1
, -1) == 0;
1079 return do_compare (op0
, op1
, -1) != 0;
1080 case UNORDERED_EXPR
:
1081 return op0
->cl
== rvc_nan
|| op1
->cl
== rvc_nan
;
1083 return op0
->cl
!= rvc_nan
&& op1
->cl
!= rvc_nan
;
1085 return do_compare (op0
, op1
, -1) < 0;
1087 return do_compare (op0
, op1
, -1) <= 0;
1089 return do_compare (op0
, op1
, 1) > 0;
1091 return do_compare (op0
, op1
, 1) >= 0;
1093 return do_compare (op0
, op1
, 0) == 0;
1095 return do_compare (op0
, op1
, 0) != 0;
1102 /* Return floor log2(R). */
1105 real_exponent (const REAL_VALUE_TYPE
*r
)
1113 return (unsigned int)-1 >> 1;
1115 return REAL_EXP (r
);
1121 /* R = OP0 * 2**EXP. */
1124 real_ldexp (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*op0
, int exp
)
1135 exp
+= REAL_EXP (op0
);
1137 get_inf (r
, r
->sign
);
1138 else if (exp
< -MAX_EXP
)
1139 get_zero (r
, r
->sign
);
1141 SET_REAL_EXP (r
, exp
);
1149 /* Determine whether a floating-point value X is infinite. */
1152 real_isinf (const REAL_VALUE_TYPE
*r
)
1154 return (r
->cl
== rvc_inf
);
1157 /* Determine whether a floating-point value X is a NaN. */
1160 real_isnan (const REAL_VALUE_TYPE
*r
)
1162 return (r
->cl
== rvc_nan
);
1165 /* Determine whether a floating-point value X is finite. */
1168 real_isfinite (const REAL_VALUE_TYPE
*r
)
1170 return (r
->cl
!= rvc_nan
) && (r
->cl
!= rvc_inf
);
1173 /* Determine whether a floating-point value X is negative. */
1176 real_isneg (const REAL_VALUE_TYPE
*r
)
1181 /* Determine whether a floating-point value X is minus zero. */
1184 real_isnegzero (const REAL_VALUE_TYPE
*r
)
1186 return r
->sign
&& r
->cl
== rvc_zero
;
1189 /* Compare two floating-point objects for bitwise identity. */
1192 real_identical (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
1198 if (a
->sign
!= b
->sign
)
1208 if (a
->decimal
!= b
->decimal
)
1210 if (REAL_EXP (a
) != REAL_EXP (b
))
1215 if (a
->signalling
!= b
->signalling
)
1217 /* The significand is ignored for canonical NaNs. */
1218 if (a
->canonical
|| b
->canonical
)
1219 return a
->canonical
== b
->canonical
;
1226 for (i
= 0; i
< SIGSZ
; ++i
)
1227 if (a
->sig
[i
] != b
->sig
[i
])
1233 /* Try to change R into its exact multiplicative inverse in machine
1234 mode MODE. Return true if successful. */
1237 exact_real_inverse (enum machine_mode mode
, REAL_VALUE_TYPE
*r
)
1239 const REAL_VALUE_TYPE
*one
= real_digit (1);
1243 if (r
->cl
!= rvc_normal
)
1246 /* Check for a power of two: all significand bits zero except the MSB. */
1247 for (i
= 0; i
< SIGSZ
-1; ++i
)
1250 if (r
->sig
[SIGSZ
-1] != SIG_MSB
)
1253 /* Find the inverse and truncate to the required mode. */
1254 do_divide (&u
, one
, r
);
1255 real_convert (&u
, mode
, &u
);
1257 /* The rounding may have overflowed. */
1258 if (u
.cl
!= rvc_normal
)
1260 for (i
= 0; i
< SIGSZ
-1; ++i
)
1263 if (u
.sig
[SIGSZ
-1] != SIG_MSB
)
1270 /* Render R as an integer. */
1273 real_to_integer (const REAL_VALUE_TYPE
*r
)
1275 unsigned HOST_WIDE_INT i
;
1286 i
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1293 return decimal_real_to_integer (r
);
1295 if (REAL_EXP (r
) <= 0)
1297 /* Only force overflow for unsigned overflow. Signed overflow is
1298 undefined, so it doesn't matter what we return, and some callers
1299 expect to be able to use this routine for both signed and
1300 unsigned conversions. */
1301 if (REAL_EXP (r
) > HOST_BITS_PER_WIDE_INT
)
1304 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1305 i
= r
->sig
[SIGSZ
-1];
1308 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1309 i
= r
->sig
[SIGSZ
-1];
1310 i
= i
<< (HOST_BITS_PER_LONG
- 1) << 1;
1311 i
|= r
->sig
[SIGSZ
-2];
1314 i
>>= HOST_BITS_PER_WIDE_INT
- REAL_EXP (r
);
1325 /* Likewise, but to an integer pair, HI+LOW. */
1328 real_to_integer2 (HOST_WIDE_INT
*plow
, HOST_WIDE_INT
*phigh
,
1329 const REAL_VALUE_TYPE
*r
)
1332 HOST_WIDE_INT low
, high
;
1345 high
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1358 decimal_real_to_integer2 (plow
, phigh
, r
);
1365 /* Only force overflow for unsigned overflow. Signed overflow is
1366 undefined, so it doesn't matter what we return, and some callers
1367 expect to be able to use this routine for both signed and
1368 unsigned conversions. */
1369 if (exp
> 2*HOST_BITS_PER_WIDE_INT
)
1372 rshift_significand (&t
, r
, 2*HOST_BITS_PER_WIDE_INT
- exp
);
1373 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1375 high
= t
.sig
[SIGSZ
-1];
1376 low
= t
.sig
[SIGSZ
-2];
1380 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2*HOST_BITS_PER_LONG
);
1381 high
= t
.sig
[SIGSZ
-1];
1382 high
= high
<< (HOST_BITS_PER_LONG
- 1) << 1;
1383 high
|= t
.sig
[SIGSZ
-2];
1385 low
= t
.sig
[SIGSZ
-3];
1386 low
= low
<< (HOST_BITS_PER_LONG
- 1) << 1;
1387 low
|= t
.sig
[SIGSZ
-4];
1395 low
= -low
, high
= ~high
;
1407 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1408 of NUM / DEN. Return the quotient and place the remainder in NUM.
1409 It is expected that NUM / DEN are close enough that the quotient is
1412 static unsigned long
1413 rtd_divmod (REAL_VALUE_TYPE
*num
, REAL_VALUE_TYPE
*den
)
1415 unsigned long q
, msb
;
1416 int expn
= REAL_EXP (num
), expd
= REAL_EXP (den
);
1425 msb
= num
->sig
[SIGSZ
-1] & SIG_MSB
;
1427 lshift_significand_1 (num
, num
);
1429 if (msb
|| cmp_significands (num
, den
) >= 0)
1431 sub_significands (num
, num
, den
, 0);
1435 while (--expn
>= expd
);
1437 SET_REAL_EXP (num
, expd
);
1443 /* Render R as a decimal floating point constant. Emit DIGITS significant
1444 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1445 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1446 zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
1447 to a string that, when parsed back in mode MODE, yields the same value. */
1449 #define M_LOG10_2 0.30102999566398119521
1452 real_to_decimal_for_mode (char *str
, const REAL_VALUE_TYPE
*r_orig
,
1453 size_t buf_size
, size_t digits
,
1454 int crop_trailing_zeros
, enum machine_mode mode
)
1456 const struct real_format
*fmt
= NULL
;
1457 const REAL_VALUE_TYPE
*one
, *ten
;
1458 REAL_VALUE_TYPE r
, pten
, u
, v
;
1459 int dec_exp
, cmp_one
, digit
;
1461 char *p
, *first
, *last
;
1465 if (mode
!= VOIDmode
)
1467 fmt
= REAL_MODE_FORMAT (mode
);
1475 strcpy (str
, (r
.sign
? "-0.0" : "0.0"));
1480 strcpy (str
, (r
.sign
? "-Inf" : "+Inf"));
1483 /* ??? Print the significand as well, if not canonical? */
1484 sprintf (str
, "%c%cNaN", (r_orig
->sign
? '-' : '+'),
1485 (r_orig
->signalling
? 'S' : 'Q'));
1493 decimal_real_to_decimal (str
, &r
, buf_size
, digits
, crop_trailing_zeros
);
1497 /* Bound the number of digits printed by the size of the representation. */
1498 max_digits
= SIGNIFICAND_BITS
* M_LOG10_2
;
1499 if (digits
== 0 || digits
> max_digits
)
1500 digits
= max_digits
;
1502 /* Estimate the decimal exponent, and compute the length of the string it
1503 will print as. Be conservative and add one to account for possible
1504 overflow or rounding error. */
1505 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
1506 for (max_digits
= 1; dec_exp
; max_digits
++)
1509 /* Bound the number of digits printed by the size of the output buffer. */
1510 max_digits
= buf_size
- 1 - 1 - 2 - max_digits
- 1;
1511 gcc_assert (max_digits
<= buf_size
);
1512 if (digits
> max_digits
)
1513 digits
= max_digits
;
1515 one
= real_digit (1);
1516 ten
= ten_to_ptwo (0);
1524 cmp_one
= do_compare (&r
, one
, 0);
1529 /* Number is greater than one. Convert significand to an integer
1530 and strip trailing decimal zeros. */
1533 SET_REAL_EXP (&u
, SIGNIFICAND_BITS
- 1);
1535 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1536 m
= floor_log2 (max_digits
);
1538 /* Iterate over the bits of the possible powers of 10 that might
1539 be present in U and eliminate them. That is, if we find that
1540 10**2**M divides U evenly, keep the division and increase
1546 do_divide (&t
, &u
, ten_to_ptwo (m
));
1547 do_fix_trunc (&v
, &t
);
1548 if (cmp_significands (&v
, &t
) == 0)
1556 /* Revert the scaling to integer that we performed earlier. */
1557 SET_REAL_EXP (&u
, REAL_EXP (&u
) + REAL_EXP (&r
)
1558 - (SIGNIFICAND_BITS
- 1));
1561 /* Find power of 10. Do this by dividing out 10**2**M when
1562 this is larger than the current remainder. Fill PTEN with
1563 the power of 10 that we compute. */
1564 if (REAL_EXP (&r
) > 0)
1566 m
= floor_log2 ((int)(REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1569 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1570 if (do_compare (&u
, ptentwo
, 0) >= 0)
1572 do_divide (&u
, &u
, ptentwo
);
1573 do_multiply (&pten
, &pten
, ptentwo
);
1580 /* We managed to divide off enough tens in the above reduction
1581 loop that we've now got a negative exponent. Fall into the
1582 less-than-one code to compute the proper value for PTEN. */
1589 /* Number is less than one. Pad significand with leading
1595 /* Stop if we'd shift bits off the bottom. */
1599 do_multiply (&u
, &v
, ten
);
1601 /* Stop if we're now >= 1. */
1602 if (REAL_EXP (&u
) > 0)
1610 /* Find power of 10. Do this by multiplying in P=10**2**M when
1611 the current remainder is smaller than 1/P. Fill PTEN with the
1612 power of 10 that we compute. */
1613 m
= floor_log2 ((int)(-REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1616 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1617 const REAL_VALUE_TYPE
*ptenmtwo
= ten_to_mptwo (m
);
1619 if (do_compare (&v
, ptenmtwo
, 0) <= 0)
1621 do_multiply (&v
, &v
, ptentwo
);
1622 do_multiply (&pten
, &pten
, ptentwo
);
1628 /* Invert the positive power of 10 that we've collected so far. */
1629 do_divide (&pten
, one
, &pten
);
1637 /* At this point, PTEN should contain the nearest power of 10 smaller
1638 than R, such that this division produces the first digit.
1640 Using a divide-step primitive that returns the complete integral
1641 remainder avoids the rounding error that would be produced if
1642 we were to use do_divide here and then simply multiply by 10 for
1643 each subsequent digit. */
1645 digit
= rtd_divmod (&r
, &pten
);
1647 /* Be prepared for error in that division via underflow ... */
1648 if (digit
== 0 && cmp_significand_0 (&r
))
1650 /* Multiply by 10 and try again. */
1651 do_multiply (&r
, &r
, ten
);
1652 digit
= rtd_divmod (&r
, &pten
);
1654 gcc_assert (digit
!= 0);
1657 /* ... or overflow. */
1667 gcc_assert (digit
<= 10);
1671 /* Generate subsequent digits. */
1672 while (--digits
> 0)
1674 do_multiply (&r
, &r
, ten
);
1675 digit
= rtd_divmod (&r
, &pten
);
1680 /* Generate one more digit with which to do rounding. */
1681 do_multiply (&r
, &r
, ten
);
1682 digit
= rtd_divmod (&r
, &pten
);
1684 /* Round the result. */
1685 if (fmt
&& fmt
->round_towards_zero
)
1687 /* If the format uses round towards zero when parsing the string
1688 back in, we need to always round away from zero here. */
1689 if (cmp_significand_0 (&r
))
1691 round_up
= digit
> 0;
1697 /* Round to nearest. If R is nonzero there are additional
1698 nonzero digits to be extracted. */
1699 if (cmp_significand_0 (&r
))
1701 /* Round to even. */
1702 else if ((p
[-1] - '0') & 1)
1706 round_up
= digit
> 5;
1723 /* Carry out of the first digit. This means we had all 9's and
1724 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1732 /* Insert the decimal point. */
1733 first
[0] = first
[1];
1736 /* If requested, drop trailing zeros. Never crop past "1.0". */
1737 if (crop_trailing_zeros
)
1738 while (last
> first
+ 3 && last
[-1] == '0')
1741 /* Append the exponent. */
1742 sprintf (last
, "e%+d", dec_exp
);
1744 #ifdef ENABLE_CHECKING
1745 /* Verify that we can read the original value back in. */
1746 if (mode
!= VOIDmode
)
1748 real_from_string (&r
, str
);
1749 real_convert (&r
, mode
, &r
);
1750 gcc_assert (real_identical (&r
, r_orig
));
1755 /* Likewise, except always uses round-to-nearest. */
1758 real_to_decimal (char *str
, const REAL_VALUE_TYPE
*r_orig
, size_t buf_size
,
1759 size_t digits
, int crop_trailing_zeros
)
1761 real_to_decimal_for_mode (str
, r_orig
, buf_size
,
1762 digits
, crop_trailing_zeros
, VOIDmode
);
1765 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1766 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1767 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1768 strip trailing zeros. */
1771 real_to_hexadecimal (char *str
, const REAL_VALUE_TYPE
*r
, size_t buf_size
,
1772 size_t digits
, int crop_trailing_zeros
)
1774 int i
, j
, exp
= REAL_EXP (r
);
1787 strcpy (str
, (r
->sign
? "-Inf" : "+Inf"));
1790 /* ??? Print the significand as well, if not canonical? */
1791 sprintf (str
, "%c%cNaN", (r
->sign
? '-' : '+'),
1792 (r
->signalling
? 'S' : 'Q'));
1800 /* Hexadecimal format for decimal floats is not interesting. */
1801 strcpy (str
, "N/A");
1806 digits
= SIGNIFICAND_BITS
/ 4;
1808 /* Bound the number of digits printed by the size of the output buffer. */
1810 sprintf (exp_buf
, "p%+d", exp
);
1811 max_digits
= buf_size
- strlen (exp_buf
) - r
->sign
- 4 - 1;
1812 gcc_assert (max_digits
<= buf_size
);
1813 if (digits
> max_digits
)
1814 digits
= max_digits
;
1825 for (i
= SIGSZ
- 1; i
>= 0; --i
)
1826 for (j
= HOST_BITS_PER_LONG
- 4; j
>= 0; j
-= 4)
1828 *p
++ = "0123456789abcdef"[(r
->sig
[i
] >> j
) & 15];
1834 if (crop_trailing_zeros
)
1835 while (p
> first
+ 1 && p
[-1] == '0')
1838 sprintf (p
, "p%+d", exp
);
1841 /* Initialize R from a decimal or hexadecimal string. The string is
1842 assumed to have been syntax checked already. Return -1 if the
1843 value underflows, +1 if overflows, and 0 otherwise. */
1846 real_from_string (REAL_VALUE_TYPE
*r
, const char *str
)
1858 else if (*str
== '+')
1861 if (!strncmp (str
, "QNaN", 4))
1863 get_canonical_qnan (r
, sign
);
1866 else if (!strncmp (str
, "SNaN", 4))
1868 get_canonical_snan (r
, sign
);
1871 else if (!strncmp (str
, "Inf", 3))
1877 if (str
[0] == '0' && (str
[1] == 'x' || str
[1] == 'X'))
1879 /* Hexadecimal floating point. */
1880 int pos
= SIGNIFICAND_BITS
- 4, d
;
1888 d
= hex_value (*str
);
1893 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1894 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1898 /* Ensure correct rounding by setting last bit if there is
1899 a subsequent nonzero digit. */
1907 if (pos
== SIGNIFICAND_BITS
- 4)
1914 d
= hex_value (*str
);
1919 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1920 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1924 /* Ensure correct rounding by setting last bit if there is
1925 a subsequent nonzero digit. */
1931 /* If the mantissa is zero, ignore the exponent. */
1932 if (!cmp_significand_0 (r
))
1935 if (*str
== 'p' || *str
== 'P')
1937 bool exp_neg
= false;
1945 else if (*str
== '+')
1949 while (ISDIGIT (*str
))
1955 /* Overflowed the exponent. */
1970 SET_REAL_EXP (r
, exp
);
1976 /* Decimal floating point. */
1977 const REAL_VALUE_TYPE
*ten
= ten_to_ptwo (0);
1982 while (ISDIGIT (*str
))
1985 do_multiply (r
, r
, ten
);
1987 do_add (r
, r
, real_digit (d
), 0);
1992 if (r
->cl
== rvc_zero
)
1997 while (ISDIGIT (*str
))
2000 do_multiply (r
, r
, ten
);
2002 do_add (r
, r
, real_digit (d
), 0);
2007 /* If the mantissa is zero, ignore the exponent. */
2008 if (r
->cl
== rvc_zero
)
2011 if (*str
== 'e' || *str
== 'E')
2013 bool exp_neg
= false;
2021 else if (*str
== '+')
2025 while (ISDIGIT (*str
))
2031 /* Overflowed the exponent. */
2045 times_pten (r
, exp
);
2064 /* Legacy. Similar, but return the result directly. */
2067 real_from_string2 (const char *s
, enum machine_mode mode
)
2071 real_from_string (&r
, s
);
2072 if (mode
!= VOIDmode
)
2073 real_convert (&r
, mode
, &r
);
2078 /* Initialize R from string S and desired MODE. */
2081 real_from_string3 (REAL_VALUE_TYPE
*r
, const char *s
, enum machine_mode mode
)
2083 if (DECIMAL_FLOAT_MODE_P (mode
))
2084 decimal_real_from_string (r
, s
);
2086 real_from_string (r
, s
);
2088 if (mode
!= VOIDmode
)
2089 real_convert (r
, mode
, r
);
2092 /* Initialize R from the integer pair HIGH+LOW. */
2095 real_from_integer (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2096 unsigned HOST_WIDE_INT low
, HOST_WIDE_INT high
,
2099 if (low
== 0 && high
== 0)
2103 memset (r
, 0, sizeof (*r
));
2105 r
->sign
= high
< 0 && !unsigned_p
;
2106 SET_REAL_EXP (r
, 2 * HOST_BITS_PER_WIDE_INT
);
2117 if (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
)
2119 r
->sig
[SIGSZ
-1] = high
;
2120 r
->sig
[SIGSZ
-2] = low
;
2124 gcc_assert (HOST_BITS_PER_LONG
*2 == HOST_BITS_PER_WIDE_INT
);
2125 r
->sig
[SIGSZ
-1] = high
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2126 r
->sig
[SIGSZ
-2] = high
;
2127 r
->sig
[SIGSZ
-3] = low
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2128 r
->sig
[SIGSZ
-4] = low
;
2134 if (mode
!= VOIDmode
)
2135 real_convert (r
, mode
, r
);
2138 /* Returns 10**2**N. */
2140 static const REAL_VALUE_TYPE
*
2143 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2145 gcc_assert (n
>= 0);
2146 gcc_assert (n
< EXP_BITS
);
2148 if (tens
[n
].cl
== rvc_zero
)
2150 if (n
< (HOST_BITS_PER_WIDE_INT
== 64 ? 5 : 4))
2152 HOST_WIDE_INT t
= 10;
2155 for (i
= 0; i
< n
; ++i
)
2158 real_from_integer (&tens
[n
], VOIDmode
, t
, 0, 1);
2162 const REAL_VALUE_TYPE
*t
= ten_to_ptwo (n
- 1);
2163 do_multiply (&tens
[n
], t
, t
);
2170 /* Returns 10**(-2**N). */
2172 static const REAL_VALUE_TYPE
*
2173 ten_to_mptwo (int n
)
2175 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2177 gcc_assert (n
>= 0);
2178 gcc_assert (n
< EXP_BITS
);
2180 if (tens
[n
].cl
== rvc_zero
)
2181 do_divide (&tens
[n
], real_digit (1), ten_to_ptwo (n
));
2188 static const REAL_VALUE_TYPE
*
2191 static REAL_VALUE_TYPE num
[10];
2193 gcc_assert (n
>= 0);
2194 gcc_assert (n
<= 9);
2196 if (n
> 0 && num
[n
].cl
== rvc_zero
)
2197 real_from_integer (&num
[n
], VOIDmode
, n
, 0, 1);
2202 /* Multiply R by 10**EXP. */
2205 times_pten (REAL_VALUE_TYPE
*r
, int exp
)
2207 REAL_VALUE_TYPE pten
, *rr
;
2208 bool negative
= (exp
< 0);
2214 pten
= *real_digit (1);
2220 for (i
= 0; exp
> 0; ++i
, exp
>>= 1)
2222 do_multiply (rr
, rr
, ten_to_ptwo (i
));
2225 do_divide (r
, r
, &pten
);
2228 /* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
2230 const REAL_VALUE_TYPE
*
2233 static REAL_VALUE_TYPE value
;
2235 /* Initialize mathematical constants for constant folding builtins.
2236 These constants need to be given to at least 160 bits precision. */
2237 if (value
.cl
== rvc_zero
)
2240 mpfr_init2 (m
, SIGNIFICAND_BITS
);
2241 mpfr_set_ui (m
, 1, GMP_RNDN
);
2242 mpfr_exp (m
, m
, GMP_RNDN
);
2243 real_from_mpfr (&value
, m
, NULL_TREE
, GMP_RNDN
);
2250 /* Returns the special REAL_VALUE_TYPE corresponding to 1/3. */
2252 const REAL_VALUE_TYPE
*
2253 dconst_third_ptr (void)
2255 static REAL_VALUE_TYPE value
;
2257 /* Initialize mathematical constants for constant folding builtins.
2258 These constants need to be given to at least 160 bits precision. */
2259 if (value
.cl
== rvc_zero
)
2261 real_arithmetic (&value
, RDIV_EXPR
, &dconst1
, real_digit (3));
2266 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
2268 const REAL_VALUE_TYPE
*
2269 dconst_sqrt2_ptr (void)
2271 static REAL_VALUE_TYPE value
;
2273 /* Initialize mathematical constants for constant folding builtins.
2274 These constants need to be given to at least 160 bits precision. */
2275 if (value
.cl
== rvc_zero
)
2278 mpfr_init2 (m
, SIGNIFICAND_BITS
);
2279 mpfr_sqrt_ui (m
, 2, GMP_RNDN
);
2280 real_from_mpfr (&value
, m
, NULL_TREE
, GMP_RNDN
);
2286 /* Fills R with +Inf. */
2289 real_inf (REAL_VALUE_TYPE
*r
)
2294 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2295 we force a QNaN, else we force an SNaN. The string, if not empty,
2296 is parsed as a number and placed in the significand. Return true
2297 if the string was successfully parsed. */
2300 real_nan (REAL_VALUE_TYPE
*r
, const char *str
, int quiet
,
2301 enum machine_mode mode
)
2303 const struct real_format
*fmt
;
2305 fmt
= REAL_MODE_FORMAT (mode
);
2311 get_canonical_qnan (r
, 0);
2313 get_canonical_snan (r
, 0);
2319 memset (r
, 0, sizeof (*r
));
2322 /* Parse akin to strtol into the significand of R. */
2324 while (ISSPACE (*str
))
2328 else if (*str
== '+')
2333 if (*str
== 'x' || *str
== 'X')
2342 while ((d
= hex_value (*str
)) < base
)
2349 lshift_significand (r
, r
, 3);
2352 lshift_significand (r
, r
, 4);
2355 lshift_significand_1 (&u
, r
);
2356 lshift_significand (r
, r
, 3);
2357 add_significands (r
, r
, &u
);
2365 add_significands (r
, r
, &u
);
2370 /* Must have consumed the entire string for success. */
2374 /* Shift the significand into place such that the bits
2375 are in the most significant bits for the format. */
2376 lshift_significand (r
, r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2378 /* Our MSB is always unset for NaNs. */
2379 r
->sig
[SIGSZ
-1] &= ~SIG_MSB
;
2381 /* Force quiet or signalling NaN. */
2382 r
->signalling
= !quiet
;
2388 /* Fills R with the largest finite value representable in mode MODE.
2389 If SIGN is nonzero, R is set to the most negative finite value. */
2392 real_maxval (REAL_VALUE_TYPE
*r
, int sign
, enum machine_mode mode
)
2394 const struct real_format
*fmt
;
2397 fmt
= REAL_MODE_FORMAT (mode
);
2399 memset (r
, 0, sizeof (*r
));
2402 decimal_real_maxval (r
, sign
, mode
);
2407 SET_REAL_EXP (r
, fmt
->emax
);
2409 np2
= SIGNIFICAND_BITS
- fmt
->p
;
2410 memset (r
->sig
, -1, SIGSZ
* sizeof (unsigned long));
2411 clear_significand_below (r
, np2
);
2413 if (fmt
->pnan
< fmt
->p
)
2414 /* This is an IBM extended double format made up of two IEEE
2415 doubles. The value of the long double is the sum of the
2416 values of the two parts. The most significant part is
2417 required to be the value of the long double rounded to the
2418 nearest double. Rounding means we need a slightly smaller
2419 value for LDBL_MAX. */
2420 clear_significand_bit (r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2424 /* Fills R with 2**N. */
2427 real_2expN (REAL_VALUE_TYPE
*r
, int n
, enum machine_mode fmode
)
2429 memset (r
, 0, sizeof (*r
));
2434 else if (n
< -MAX_EXP
)
2439 SET_REAL_EXP (r
, n
);
2440 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2442 if (DECIMAL_FLOAT_MODE_P (fmode
))
2443 decimal_real_convert (r
, fmode
, r
);
2448 round_for_format (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
)
2452 bool round_up
= false;
2458 decimal_round_for_format (fmt
, r
);
2461 /* FIXME. We can come here via fp_easy_constant
2462 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2463 investigated whether this convert needs to be here, or
2464 something else is missing. */
2465 decimal_real_convert (r
, DFmode
, r
);
2469 emin2m1
= fmt
->emin
- 1;
2472 np2
= SIGNIFICAND_BITS
- p2
;
2476 get_zero (r
, r
->sign
);
2478 if (!fmt
->has_signed_zero
)
2483 get_inf (r
, r
->sign
);
2488 clear_significand_below (r
, np2
);
2498 /* Check the range of the exponent. If we're out of range,
2499 either underflow or overflow. */
2500 if (REAL_EXP (r
) > emax2
)
2502 else if (REAL_EXP (r
) <= emin2m1
)
2506 if (!fmt
->has_denorm
)
2508 /* Don't underflow completely until we've had a chance to round. */
2509 if (REAL_EXP (r
) < emin2m1
)
2514 diff
= emin2m1
- REAL_EXP (r
) + 1;
2518 /* De-normalize the significand. */
2519 r
->sig
[0] |= sticky_rshift_significand (r
, r
, diff
);
2520 SET_REAL_EXP (r
, REAL_EXP (r
) + diff
);
2524 if (!fmt
->round_towards_zero
)
2526 /* There are P2 true significand bits, followed by one guard bit,
2527 followed by one sticky bit, followed by stuff. Fold nonzero
2528 stuff into the sticky bit. */
2529 unsigned long sticky
;
2533 for (i
= 0, w
= (np2
- 1) / HOST_BITS_PER_LONG
; i
< w
; ++i
)
2534 sticky
|= r
->sig
[i
];
2536 & (((unsigned long)1 << ((np2
- 1) % HOST_BITS_PER_LONG
)) - 1);
2538 guard
= test_significand_bit (r
, np2
- 1);
2539 lsb
= test_significand_bit (r
, np2
);
2541 /* Round to even. */
2542 round_up
= guard
&& (sticky
|| lsb
);
2549 set_significand_bit (&u
, np2
);
2551 if (add_significands (r
, r
, &u
))
2553 /* Overflow. Means the significand had been all ones, and
2554 is now all zeros. Need to increase the exponent, and
2555 possibly re-normalize it. */
2556 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
2557 if (REAL_EXP (r
) > emax2
)
2559 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2563 /* Catch underflow that we deferred until after rounding. */
2564 if (REAL_EXP (r
) <= emin2m1
)
2567 /* Clear out trailing garbage. */
2568 clear_significand_below (r
, np2
);
2571 /* Extend or truncate to a new mode. */
2574 real_convert (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2575 const REAL_VALUE_TYPE
*a
)
2577 const struct real_format
*fmt
;
2579 fmt
= REAL_MODE_FORMAT (mode
);
2584 if (a
->decimal
|| fmt
->b
== 10)
2585 decimal_real_convert (r
, mode
, a
);
2587 round_for_format (fmt
, r
);
2589 /* round_for_format de-normalizes denormals. Undo just that part. */
2590 if (r
->cl
== rvc_normal
)
2594 /* Legacy. Likewise, except return the struct directly. */
2597 real_value_truncate (enum machine_mode mode
, REAL_VALUE_TYPE a
)
2600 real_convert (&r
, mode
, &a
);
2604 /* Return true if truncating to MODE is exact. */
2607 exact_real_truncate (enum machine_mode mode
, const REAL_VALUE_TYPE
*a
)
2609 const struct real_format
*fmt
;
2613 fmt
= REAL_MODE_FORMAT (mode
);
2616 /* Don't allow conversion to denormals. */
2617 emin2m1
= fmt
->emin
- 1;
2618 if (REAL_EXP (a
) <= emin2m1
)
2621 /* After conversion to the new mode, the value must be identical. */
2622 real_convert (&t
, mode
, a
);
2623 return real_identical (&t
, a
);
2626 /* Write R to the given target format. Place the words of the result
2627 in target word order in BUF. There are always 32 bits in each
2628 long, no matter the size of the host long.
2630 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2633 real_to_target_fmt (long *buf
, const REAL_VALUE_TYPE
*r_orig
,
2634 const struct real_format
*fmt
)
2640 round_for_format (fmt
, &r
);
2644 (*fmt
->encode
) (fmt
, buf
, &r
);
2649 /* Similar, but look up the format from MODE. */
2652 real_to_target (long *buf
, const REAL_VALUE_TYPE
*r
, enum machine_mode mode
)
2654 const struct real_format
*fmt
;
2656 fmt
= REAL_MODE_FORMAT (mode
);
2659 return real_to_target_fmt (buf
, r
, fmt
);
2662 /* Read R from the given target format. Read the words of the result
2663 in target word order in BUF. There are always 32 bits in each
2664 long, no matter the size of the host long. */
2667 real_from_target_fmt (REAL_VALUE_TYPE
*r
, const long *buf
,
2668 const struct real_format
*fmt
)
2670 (*fmt
->decode
) (fmt
, r
, buf
);
2673 /* Similar, but look up the format from MODE. */
2676 real_from_target (REAL_VALUE_TYPE
*r
, const long *buf
, enum machine_mode mode
)
2678 const struct real_format
*fmt
;
2680 fmt
= REAL_MODE_FORMAT (mode
);
2683 (*fmt
->decode
) (fmt
, r
, buf
);
2686 /* Return the number of bits of the largest binary value that the
2687 significand of MODE will hold. */
2688 /* ??? Legacy. Should get access to real_format directly. */
2691 significand_size (enum machine_mode mode
)
2693 const struct real_format
*fmt
;
2695 fmt
= REAL_MODE_FORMAT (mode
);
2701 /* Return the size in bits of the largest binary value that can be
2702 held by the decimal coefficient for this mode. This is one more
2703 than the number of bits required to hold the largest coefficient
2705 double log2_10
= 3.3219281;
2706 return fmt
->p
* log2_10
;
2711 /* Return a hash value for the given real value. */
2712 /* ??? The "unsigned int" return value is intended to be hashval_t,
2713 but I didn't want to pull hashtab.h into real.h. */
2716 real_hash (const REAL_VALUE_TYPE
*r
)
2721 h
= r
->cl
| (r
->sign
<< 2);
2729 h
|= REAL_EXP (r
) << 3;
2734 h
^= (unsigned int)-1;
2743 if (sizeof(unsigned long) > sizeof(unsigned int))
2744 for (i
= 0; i
< SIGSZ
; ++i
)
2746 unsigned long s
= r
->sig
[i
];
2747 h
^= s
^ (s
>> (HOST_BITS_PER_LONG
/ 2));
2750 for (i
= 0; i
< SIGSZ
; ++i
)
2756 /* IEEE single-precision format. */
2758 static void encode_ieee_single (const struct real_format
*fmt
,
2759 long *, const REAL_VALUE_TYPE
*);
2760 static void decode_ieee_single (const struct real_format
*,
2761 REAL_VALUE_TYPE
*, const long *);
2764 encode_ieee_single (const struct real_format
*fmt
, long *buf
,
2765 const REAL_VALUE_TYPE
*r
)
2767 unsigned long image
, sig
, exp
;
2768 unsigned long sign
= r
->sign
;
2769 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2772 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
2783 image
|= 0x7fffffff;
2790 sig
= (fmt
->canonical_nan_lsbs_set
? (1 << 22) - 1 : 0);
2791 if (r
->signalling
== fmt
->qnan_msb_set
)
2802 image
|= 0x7fffffff;
2806 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2807 whereas the intermediate representation is 0.F x 2**exp.
2808 Which means we're off by one. */
2812 exp
= REAL_EXP (r
) + 127 - 1;
2825 decode_ieee_single (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2828 unsigned long image
= buf
[0] & 0xffffffff;
2829 bool sign
= (image
>> 31) & 1;
2830 int exp
= (image
>> 23) & 0xff;
2832 memset (r
, 0, sizeof (*r
));
2833 image
<<= HOST_BITS_PER_LONG
- 24;
2838 if (image
&& fmt
->has_denorm
)
2842 SET_REAL_EXP (r
, -126);
2843 r
->sig
[SIGSZ
-1] = image
<< 1;
2846 else if (fmt
->has_signed_zero
)
2849 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
2855 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
2856 ^ fmt
->qnan_msb_set
);
2857 r
->sig
[SIGSZ
-1] = image
;
2869 SET_REAL_EXP (r
, exp
- 127 + 1);
2870 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
2874 const struct real_format ieee_single_format
=
2895 const struct real_format mips_single_format
=
2916 const struct real_format motorola_single_format
=
2937 /* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
2938 single precision with the following differences:
2939 - Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
2941 - NaNs are not supported.
2942 - The range of non-zero numbers in binary is
2943 (001)[1.]000...000 to (255)[1.]111...111.
2944 - Denormals can be represented, but are treated as +0.0 when
2945 used as an operand and are never generated as a result.
2946 - -0.0 can be represented, but a zero result is always +0.0.
2947 - the only supported rounding mode is trunction (towards zero). */
2948 const struct real_format spu_single_format
=
2969 /* IEEE double-precision format. */
2971 static void encode_ieee_double (const struct real_format
*fmt
,
2972 long *, const REAL_VALUE_TYPE
*);
2973 static void decode_ieee_double (const struct real_format
*,
2974 REAL_VALUE_TYPE
*, const long *);
2977 encode_ieee_double (const struct real_format
*fmt
, long *buf
,
2978 const REAL_VALUE_TYPE
*r
)
2980 unsigned long image_lo
, image_hi
, sig_lo
, sig_hi
, exp
;
2981 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2983 image_hi
= r
->sign
<< 31;
2986 if (HOST_BITS_PER_LONG
== 64)
2988 sig_hi
= r
->sig
[SIGSZ
-1];
2989 sig_lo
= (sig_hi
>> (64 - 53)) & 0xffffffff;
2990 sig_hi
= (sig_hi
>> (64 - 53 + 1) >> 31) & 0xfffff;
2994 sig_hi
= r
->sig
[SIGSZ
-1];
2995 sig_lo
= r
->sig
[SIGSZ
-2];
2996 sig_lo
= (sig_hi
<< 21) | (sig_lo
>> 11);
2997 sig_hi
= (sig_hi
>> 11) & 0xfffff;
3007 image_hi
|= 2047 << 20;
3010 image_hi
|= 0x7fffffff;
3011 image_lo
= 0xffffffff;
3020 if (fmt
->canonical_nan_lsbs_set
)
3022 sig_hi
= (1 << 19) - 1;
3023 sig_lo
= 0xffffffff;
3031 if (r
->signalling
== fmt
->qnan_msb_set
)
3032 sig_hi
&= ~(1 << 19);
3035 if (sig_hi
== 0 && sig_lo
== 0)
3038 image_hi
|= 2047 << 20;
3044 image_hi
|= 0x7fffffff;
3045 image_lo
= 0xffffffff;
3050 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3051 whereas the intermediate representation is 0.F x 2**exp.
3052 Which means we're off by one. */
3056 exp
= REAL_EXP (r
) + 1023 - 1;
3057 image_hi
|= exp
<< 20;
3066 if (FLOAT_WORDS_BIG_ENDIAN
)
3067 buf
[0] = image_hi
, buf
[1] = image_lo
;
3069 buf
[0] = image_lo
, buf
[1] = image_hi
;
3073 decode_ieee_double (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3076 unsigned long image_hi
, image_lo
;
3080 if (FLOAT_WORDS_BIG_ENDIAN
)
3081 image_hi
= buf
[0], image_lo
= buf
[1];
3083 image_lo
= buf
[0], image_hi
= buf
[1];
3084 image_lo
&= 0xffffffff;
3085 image_hi
&= 0xffffffff;
3087 sign
= (image_hi
>> 31) & 1;
3088 exp
= (image_hi
>> 20) & 0x7ff;
3090 memset (r
, 0, sizeof (*r
));
3092 image_hi
<<= 32 - 21;
3093 image_hi
|= image_lo
>> 21;
3094 image_hi
&= 0x7fffffff;
3095 image_lo
<<= 32 - 21;
3099 if ((image_hi
|| image_lo
) && fmt
->has_denorm
)
3103 SET_REAL_EXP (r
, -1022);
3104 if (HOST_BITS_PER_LONG
== 32)
3106 image_hi
= (image_hi
<< 1) | (image_lo
>> 31);
3108 r
->sig
[SIGSZ
-1] = image_hi
;
3109 r
->sig
[SIGSZ
-2] = image_lo
;
3113 image_hi
= (image_hi
<< 31 << 2) | (image_lo
<< 1);
3114 r
->sig
[SIGSZ
-1] = image_hi
;
3118 else if (fmt
->has_signed_zero
)
3121 else if (exp
== 2047 && (fmt
->has_nans
|| fmt
->has_inf
))
3123 if (image_hi
|| image_lo
)
3127 r
->signalling
= ((image_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3128 if (HOST_BITS_PER_LONG
== 32)
3130 r
->sig
[SIGSZ
-1] = image_hi
;
3131 r
->sig
[SIGSZ
-2] = image_lo
;
3134 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
;
3146 SET_REAL_EXP (r
, exp
- 1023 + 1);
3147 if (HOST_BITS_PER_LONG
== 32)
3149 r
->sig
[SIGSZ
-1] = image_hi
| SIG_MSB
;
3150 r
->sig
[SIGSZ
-2] = image_lo
;
3153 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
| SIG_MSB
;
3157 const struct real_format ieee_double_format
=
3178 const struct real_format mips_double_format
=
3199 const struct real_format motorola_double_format
=
3220 /* IEEE extended real format. This comes in three flavors: Intel's as
3221 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3222 12- and 16-byte images may be big- or little endian; Motorola's is
3223 always big endian. */
3225 /* Helper subroutine which converts from the internal format to the
3226 12-byte little-endian Intel format. Functions below adjust this
3227 for the other possible formats. */
3229 encode_ieee_extended (const struct real_format
*fmt
, long *buf
,
3230 const REAL_VALUE_TYPE
*r
)
3232 unsigned long image_hi
, sig_hi
, sig_lo
;
3233 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3235 image_hi
= r
->sign
<< 15;
3236 sig_hi
= sig_lo
= 0;
3248 /* Intel requires the explicit integer bit to be set, otherwise
3249 it considers the value a "pseudo-infinity". Motorola docs
3250 say it doesn't care. */
3251 sig_hi
= 0x80000000;
3256 sig_lo
= sig_hi
= 0xffffffff;
3266 if (fmt
->canonical_nan_lsbs_set
)
3268 sig_hi
= (1 << 30) - 1;
3269 sig_lo
= 0xffffffff;
3272 else if (HOST_BITS_PER_LONG
== 32)
3274 sig_hi
= r
->sig
[SIGSZ
-1];
3275 sig_lo
= r
->sig
[SIGSZ
-2];
3279 sig_lo
= r
->sig
[SIGSZ
-1];
3280 sig_hi
= sig_lo
>> 31 >> 1;
3281 sig_lo
&= 0xffffffff;
3283 if (r
->signalling
== fmt
->qnan_msb_set
)
3284 sig_hi
&= ~(1 << 30);
3287 if ((sig_hi
& 0x7fffffff) == 0 && sig_lo
== 0)
3290 /* Intel requires the explicit integer bit to be set, otherwise
3291 it considers the value a "pseudo-nan". Motorola docs say it
3293 sig_hi
|= 0x80000000;
3298 sig_lo
= sig_hi
= 0xffffffff;
3304 int exp
= REAL_EXP (r
);
3306 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3307 whereas the intermediate representation is 0.F x 2**exp.
3308 Which means we're off by one.
3310 Except for Motorola, which consider exp=0 and explicit
3311 integer bit set to continue to be normalized. In theory
3312 this discrepancy has been taken care of by the difference
3313 in fmt->emin in round_for_format. */
3320 gcc_assert (exp
>= 0);
3324 if (HOST_BITS_PER_LONG
== 32)
3326 sig_hi
= r
->sig
[SIGSZ
-1];
3327 sig_lo
= r
->sig
[SIGSZ
-2];
3331 sig_lo
= r
->sig
[SIGSZ
-1];
3332 sig_hi
= sig_lo
>> 31 >> 1;
3333 sig_lo
&= 0xffffffff;
3342 buf
[0] = sig_lo
, buf
[1] = sig_hi
, buf
[2] = image_hi
;
3345 /* Convert from the internal format to the 12-byte Motorola format
3346 for an IEEE extended real. */
3348 encode_ieee_extended_motorola (const struct real_format
*fmt
, long *buf
,
3349 const REAL_VALUE_TYPE
*r
)
3352 encode_ieee_extended (fmt
, intermed
, r
);
3354 /* Motorola chips are assumed always to be big-endian. Also, the
3355 padding in a Motorola extended real goes between the exponent and
3356 the mantissa. At this point the mantissa is entirely within
3357 elements 0 and 1 of intermed, and the exponent entirely within
3358 element 2, so all we have to do is swap the order around, and
3359 shift element 2 left 16 bits. */
3360 buf
[0] = intermed
[2] << 16;
3361 buf
[1] = intermed
[1];
3362 buf
[2] = intermed
[0];
3365 /* Convert from the internal format to the 12-byte Intel format for
3366 an IEEE extended real. */
3368 encode_ieee_extended_intel_96 (const struct real_format
*fmt
, long *buf
,
3369 const REAL_VALUE_TYPE
*r
)
3371 if (FLOAT_WORDS_BIG_ENDIAN
)
3373 /* All the padding in an Intel-format extended real goes at the high
3374 end, which in this case is after the mantissa, not the exponent.
3375 Therefore we must shift everything down 16 bits. */
3377 encode_ieee_extended (fmt
, intermed
, r
);
3378 buf
[0] = ((intermed
[2] << 16) | ((unsigned long)(intermed
[1] & 0xFFFF0000) >> 16));
3379 buf
[1] = ((intermed
[1] << 16) | ((unsigned long)(intermed
[0] & 0xFFFF0000) >> 16));
3380 buf
[2] = (intermed
[0] << 16);
3383 /* encode_ieee_extended produces what we want directly. */
3384 encode_ieee_extended (fmt
, buf
, r
);
3387 /* Convert from the internal format to the 16-byte Intel format for
3388 an IEEE extended real. */
3390 encode_ieee_extended_intel_128 (const struct real_format
*fmt
, long *buf
,
3391 const REAL_VALUE_TYPE
*r
)
3393 /* All the padding in an Intel-format extended real goes at the high end. */
3394 encode_ieee_extended_intel_96 (fmt
, buf
, r
);
3398 /* As above, we have a helper function which converts from 12-byte
3399 little-endian Intel format to internal format. Functions below
3400 adjust for the other possible formats. */
3402 decode_ieee_extended (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3405 unsigned long image_hi
, sig_hi
, sig_lo
;
3409 sig_lo
= buf
[0], sig_hi
= buf
[1], image_hi
= buf
[2];
3410 sig_lo
&= 0xffffffff;
3411 sig_hi
&= 0xffffffff;
3412 image_hi
&= 0xffffffff;
3414 sign
= (image_hi
>> 15) & 1;
3415 exp
= image_hi
& 0x7fff;
3417 memset (r
, 0, sizeof (*r
));
3421 if ((sig_hi
|| sig_lo
) && fmt
->has_denorm
)
3426 /* When the IEEE format contains a hidden bit, we know that
3427 it's zero at this point, and so shift up the significand
3428 and decrease the exponent to match. In this case, Motorola
3429 defines the explicit integer bit to be valid, so we don't
3430 know whether the msb is set or not. */
3431 SET_REAL_EXP (r
, fmt
->emin
);
3432 if (HOST_BITS_PER_LONG
== 32)
3434 r
->sig
[SIGSZ
-1] = sig_hi
;
3435 r
->sig
[SIGSZ
-2] = sig_lo
;
3438 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3442 else if (fmt
->has_signed_zero
)
3445 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3447 /* See above re "pseudo-infinities" and "pseudo-nans".
3448 Short summary is that the MSB will likely always be
3449 set, and that we don't care about it. */
3450 sig_hi
&= 0x7fffffff;
3452 if (sig_hi
|| sig_lo
)
3456 r
->signalling
= ((sig_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3457 if (HOST_BITS_PER_LONG
== 32)
3459 r
->sig
[SIGSZ
-1] = sig_hi
;
3460 r
->sig
[SIGSZ
-2] = sig_lo
;
3463 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3475 SET_REAL_EXP (r
, exp
- 16383 + 1);
3476 if (HOST_BITS_PER_LONG
== 32)
3478 r
->sig
[SIGSZ
-1] = sig_hi
;
3479 r
->sig
[SIGSZ
-2] = sig_lo
;
3482 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3486 /* Convert from the internal format to the 12-byte Motorola format
3487 for an IEEE extended real. */
3489 decode_ieee_extended_motorola (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3494 /* Motorola chips are assumed always to be big-endian. Also, the
3495 padding in a Motorola extended real goes between the exponent and
3496 the mantissa; remove it. */
3497 intermed
[0] = buf
[2];
3498 intermed
[1] = buf
[1];
3499 intermed
[2] = (unsigned long)buf
[0] >> 16;
3501 decode_ieee_extended (fmt
, r
, intermed
);
3504 /* Convert from the internal format to the 12-byte Intel format for
3505 an IEEE extended real. */
3507 decode_ieee_extended_intel_96 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3510 if (FLOAT_WORDS_BIG_ENDIAN
)
3512 /* All the padding in an Intel-format extended real goes at the high
3513 end, which in this case is after the mantissa, not the exponent.
3514 Therefore we must shift everything up 16 bits. */
3517 intermed
[0] = (((unsigned long)buf
[2] >> 16) | (buf
[1] << 16));
3518 intermed
[1] = (((unsigned long)buf
[1] >> 16) | (buf
[0] << 16));
3519 intermed
[2] = ((unsigned long)buf
[0] >> 16);
3521 decode_ieee_extended (fmt
, r
, intermed
);
3524 /* decode_ieee_extended produces what we want directly. */
3525 decode_ieee_extended (fmt
, r
, buf
);
3528 /* Convert from the internal format to the 16-byte Intel format for
3529 an IEEE extended real. */
3531 decode_ieee_extended_intel_128 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3534 /* All the padding in an Intel-format extended real goes at the high end. */
3535 decode_ieee_extended_intel_96 (fmt
, r
, buf
);
3538 const struct real_format ieee_extended_motorola_format
=
3540 encode_ieee_extended_motorola
,
3541 decode_ieee_extended_motorola
,
3559 const struct real_format ieee_extended_intel_96_format
=
3561 encode_ieee_extended_intel_96
,
3562 decode_ieee_extended_intel_96
,
3580 const struct real_format ieee_extended_intel_128_format
=
3582 encode_ieee_extended_intel_128
,
3583 decode_ieee_extended_intel_128
,
3601 /* The following caters to i386 systems that set the rounding precision
3602 to 53 bits instead of 64, e.g. FreeBSD. */
3603 const struct real_format ieee_extended_intel_96_round_53_format
=
3605 encode_ieee_extended_intel_96
,
3606 decode_ieee_extended_intel_96
,
3624 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3625 numbers whose sum is equal to the extended precision value. The number
3626 with greater magnitude is first. This format has the same magnitude
3627 range as an IEEE double precision value, but effectively 106 bits of
3628 significand precision. Infinity and NaN are represented by their IEEE
3629 double precision value stored in the first number, the second number is
3630 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3632 static void encode_ibm_extended (const struct real_format
*fmt
,
3633 long *, const REAL_VALUE_TYPE
*);
3634 static void decode_ibm_extended (const struct real_format
*,
3635 REAL_VALUE_TYPE
*, const long *);
3638 encode_ibm_extended (const struct real_format
*fmt
, long *buf
,
3639 const REAL_VALUE_TYPE
*r
)
3641 REAL_VALUE_TYPE u
, normr
, v
;
3642 const struct real_format
*base_fmt
;
3644 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3646 /* Renormalize R before doing any arithmetic on it. */
3648 if (normr
.cl
== rvc_normal
)
3651 /* u = IEEE double precision portion of significand. */
3653 round_for_format (base_fmt
, &u
);
3654 encode_ieee_double (base_fmt
, &buf
[0], &u
);
3656 if (u
.cl
== rvc_normal
)
3658 do_add (&v
, &normr
, &u
, 1);
3659 /* Call round_for_format since we might need to denormalize. */
3660 round_for_format (base_fmt
, &v
);
3661 encode_ieee_double (base_fmt
, &buf
[2], &v
);
3665 /* Inf, NaN, 0 are all representable as doubles, so the
3666 least-significant part can be 0.0. */
3673 decode_ibm_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
, REAL_VALUE_TYPE
*r
,
3676 REAL_VALUE_TYPE u
, v
;
3677 const struct real_format
*base_fmt
;
3679 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3680 decode_ieee_double (base_fmt
, &u
, &buf
[0]);
3682 if (u
.cl
!= rvc_zero
&& u
.cl
!= rvc_inf
&& u
.cl
!= rvc_nan
)
3684 decode_ieee_double (base_fmt
, &v
, &buf
[2]);
3685 do_add (r
, &u
, &v
, 0);
3691 const struct real_format ibm_extended_format
=
3693 encode_ibm_extended
,
3694 decode_ibm_extended
,
3712 const struct real_format mips_extended_format
=
3714 encode_ibm_extended
,
3715 decode_ibm_extended
,
3734 /* IEEE quad precision format. */
3736 static void encode_ieee_quad (const struct real_format
*fmt
,
3737 long *, const REAL_VALUE_TYPE
*);
3738 static void decode_ieee_quad (const struct real_format
*,
3739 REAL_VALUE_TYPE
*, const long *);
3742 encode_ieee_quad (const struct real_format
*fmt
, long *buf
,
3743 const REAL_VALUE_TYPE
*r
)
3745 unsigned long image3
, image2
, image1
, image0
, exp
;
3746 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3749 image3
= r
->sign
<< 31;
3754 rshift_significand (&u
, r
, SIGNIFICAND_BITS
- 113);
3763 image3
|= 32767 << 16;
3766 image3
|= 0x7fffffff;
3767 image2
= 0xffffffff;
3768 image1
= 0xffffffff;
3769 image0
= 0xffffffff;
3776 image3
|= 32767 << 16;
3780 if (fmt
->canonical_nan_lsbs_set
)
3783 image2
= image1
= image0
= 0xffffffff;
3786 else if (HOST_BITS_PER_LONG
== 32)
3791 image3
|= u
.sig
[3] & 0xffff;
3796 image1
= image0
>> 31 >> 1;
3798 image3
|= (image2
>> 31 >> 1) & 0xffff;
3799 image0
&= 0xffffffff;
3800 image2
&= 0xffffffff;
3802 if (r
->signalling
== fmt
->qnan_msb_set
)
3806 if (((image3
& 0xffff) | image2
| image1
| image0
) == 0)
3811 image3
|= 0x7fffffff;
3812 image2
= 0xffffffff;
3813 image1
= 0xffffffff;
3814 image0
= 0xffffffff;
3819 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3820 whereas the intermediate representation is 0.F x 2**exp.
3821 Which means we're off by one. */
3825 exp
= REAL_EXP (r
) + 16383 - 1;
3826 image3
|= exp
<< 16;
3828 if (HOST_BITS_PER_LONG
== 32)
3833 image3
|= u
.sig
[3] & 0xffff;
3838 image1
= image0
>> 31 >> 1;
3840 image3
|= (image2
>> 31 >> 1) & 0xffff;
3841 image0
&= 0xffffffff;
3842 image2
&= 0xffffffff;
3850 if (FLOAT_WORDS_BIG_ENDIAN
)
3867 decode_ieee_quad (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3870 unsigned long image3
, image2
, image1
, image0
;
3874 if (FLOAT_WORDS_BIG_ENDIAN
)
3888 image0
&= 0xffffffff;
3889 image1
&= 0xffffffff;
3890 image2
&= 0xffffffff;
3892 sign
= (image3
>> 31) & 1;
3893 exp
= (image3
>> 16) & 0x7fff;
3896 memset (r
, 0, sizeof (*r
));
3900 if ((image3
| image2
| image1
| image0
) && fmt
->has_denorm
)
3905 SET_REAL_EXP (r
, -16382 + (SIGNIFICAND_BITS
- 112));
3906 if (HOST_BITS_PER_LONG
== 32)
3915 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3916 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3921 else if (fmt
->has_signed_zero
)
3924 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3926 if (image3
| image2
| image1
| image0
)
3930 r
->signalling
= ((image3
>> 15) & 1) ^ fmt
->qnan_msb_set
;
3932 if (HOST_BITS_PER_LONG
== 32)
3941 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3942 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3944 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3956 SET_REAL_EXP (r
, exp
- 16383 + 1);
3958 if (HOST_BITS_PER_LONG
== 32)
3967 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3968 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3970 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3971 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3975 const struct real_format ieee_quad_format
=
3996 const struct real_format mips_quad_format
=
4017 /* Descriptions of VAX floating point formats can be found beginning at
4019 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
4021 The thing to remember is that they're almost IEEE, except for word
4022 order, exponent bias, and the lack of infinities, nans, and denormals.
4024 We don't implement the H_floating format here, simply because neither
4025 the VAX or Alpha ports use it. */
4027 static void encode_vax_f (const struct real_format
*fmt
,
4028 long *, const REAL_VALUE_TYPE
*);
4029 static void decode_vax_f (const struct real_format
*,
4030 REAL_VALUE_TYPE
*, const long *);
4031 static void encode_vax_d (const struct real_format
*fmt
,
4032 long *, const REAL_VALUE_TYPE
*);
4033 static void decode_vax_d (const struct real_format
*,
4034 REAL_VALUE_TYPE
*, const long *);
4035 static void encode_vax_g (const struct real_format
*fmt
,
4036 long *, const REAL_VALUE_TYPE
*);
4037 static void decode_vax_g (const struct real_format
*,
4038 REAL_VALUE_TYPE
*, const long *);
4041 encode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4042 const REAL_VALUE_TYPE
*r
)
4044 unsigned long sign
, exp
, sig
, image
;
4046 sign
= r
->sign
<< 15;
4056 image
= 0xffff7fff | sign
;
4060 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
4061 exp
= REAL_EXP (r
) + 128;
4063 image
= (sig
<< 16) & 0xffff0000;
4077 decode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4078 REAL_VALUE_TYPE
*r
, const long *buf
)
4080 unsigned long image
= buf
[0] & 0xffffffff;
4081 int exp
= (image
>> 7) & 0xff;
4083 memset (r
, 0, sizeof (*r
));
4088 r
->sign
= (image
>> 15) & 1;
4089 SET_REAL_EXP (r
, exp
- 128);
4091 image
= ((image
& 0x7f) << 16) | ((image
>> 16) & 0xffff);
4092 r
->sig
[SIGSZ
-1] = (image
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
4097 encode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4098 const REAL_VALUE_TYPE
*r
)
4100 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
4105 image0
= image1
= 0;
4110 image0
= 0xffff7fff | sign
;
4111 image1
= 0xffffffff;
4115 /* Extract the significand into straight hi:lo. */
4116 if (HOST_BITS_PER_LONG
== 64)
4118 image0
= r
->sig
[SIGSZ
-1];
4119 image1
= (image0
>> (64 - 56)) & 0xffffffff;
4120 image0
= (image0
>> (64 - 56 + 1) >> 31) & 0x7fffff;
4124 image0
= r
->sig
[SIGSZ
-1];
4125 image1
= r
->sig
[SIGSZ
-2];
4126 image1
= (image0
<< 24) | (image1
>> 8);
4127 image0
= (image0
>> 8) & 0xffffff;
4130 /* Rearrange the half-words of the significand to match the
4132 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff007f;
4133 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
4135 /* Add the sign and exponent. */
4137 image0
|= (REAL_EXP (r
) + 128) << 7;
4144 if (FLOAT_WORDS_BIG_ENDIAN
)
4145 buf
[0] = image1
, buf
[1] = image0
;
4147 buf
[0] = image0
, buf
[1] = image1
;
4151 decode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4152 REAL_VALUE_TYPE
*r
, const long *buf
)
4154 unsigned long image0
, image1
;
4157 if (FLOAT_WORDS_BIG_ENDIAN
)
4158 image1
= buf
[0], image0
= buf
[1];
4160 image0
= buf
[0], image1
= buf
[1];
4161 image0
&= 0xffffffff;
4162 image1
&= 0xffffffff;
4164 exp
= (image0
>> 7) & 0xff;
4166 memset (r
, 0, sizeof (*r
));
4171 r
->sign
= (image0
>> 15) & 1;
4172 SET_REAL_EXP (r
, exp
- 128);
4174 /* Rearrange the half-words of the external format into
4175 proper ascending order. */
4176 image0
= ((image0
& 0x7f) << 16) | ((image0
>> 16) & 0xffff);
4177 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4179 if (HOST_BITS_PER_LONG
== 64)
4181 image0
= (image0
<< 31 << 1) | image1
;
4184 r
->sig
[SIGSZ
-1] = image0
;
4188 r
->sig
[SIGSZ
-1] = image0
;
4189 r
->sig
[SIGSZ
-2] = image1
;
4190 lshift_significand (r
, r
, 2*HOST_BITS_PER_LONG
- 56);
4191 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4197 encode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4198 const REAL_VALUE_TYPE
*r
)
4200 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
4205 image0
= image1
= 0;
4210 image0
= 0xffff7fff | sign
;
4211 image1
= 0xffffffff;
4215 /* Extract the significand into straight hi:lo. */
4216 if (HOST_BITS_PER_LONG
== 64)
4218 image0
= r
->sig
[SIGSZ
-1];
4219 image1
= (image0
>> (64 - 53)) & 0xffffffff;
4220 image0
= (image0
>> (64 - 53 + 1) >> 31) & 0xfffff;
4224 image0
= r
->sig
[SIGSZ
-1];
4225 image1
= r
->sig
[SIGSZ
-2];
4226 image1
= (image0
<< 21) | (image1
>> 11);
4227 image0
= (image0
>> 11) & 0xfffff;
4230 /* Rearrange the half-words of the significand to match the
4232 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff000f;
4233 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
4235 /* Add the sign and exponent. */
4237 image0
|= (REAL_EXP (r
) + 1024) << 4;
4244 if (FLOAT_WORDS_BIG_ENDIAN
)
4245 buf
[0] = image1
, buf
[1] = image0
;
4247 buf
[0] = image0
, buf
[1] = image1
;
4251 decode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4252 REAL_VALUE_TYPE
*r
, const long *buf
)
4254 unsigned long image0
, image1
;
4257 if (FLOAT_WORDS_BIG_ENDIAN
)
4258 image1
= buf
[0], image0
= buf
[1];
4260 image0
= buf
[0], image1
= buf
[1];
4261 image0
&= 0xffffffff;
4262 image1
&= 0xffffffff;
4264 exp
= (image0
>> 4) & 0x7ff;
4266 memset (r
, 0, sizeof (*r
));
4271 r
->sign
= (image0
>> 15) & 1;
4272 SET_REAL_EXP (r
, exp
- 1024);
4274 /* Rearrange the half-words of the external format into
4275 proper ascending order. */
4276 image0
= ((image0
& 0xf) << 16) | ((image0
>> 16) & 0xffff);
4277 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4279 if (HOST_BITS_PER_LONG
== 64)
4281 image0
= (image0
<< 31 << 1) | image1
;
4284 r
->sig
[SIGSZ
-1] = image0
;
4288 r
->sig
[SIGSZ
-1] = image0
;
4289 r
->sig
[SIGSZ
-2] = image1
;
4290 lshift_significand (r
, r
, 64 - 53);
4291 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4296 const struct real_format vax_f_format
=
4317 const struct real_format vax_d_format
=
4338 const struct real_format vax_g_format
=
4359 /* Encode real R into a single precision DFP value in BUF. */
4361 encode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4362 long *buf ATTRIBUTE_UNUSED
,
4363 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4365 encode_decimal32 (fmt
, buf
, r
);
4368 /* Decode a single precision DFP value in BUF into a real R. */
4370 decode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4371 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4372 const long *buf ATTRIBUTE_UNUSED
)
4374 decode_decimal32 (fmt
, r
, buf
);
4377 /* Encode real R into a double precision DFP value in BUF. */
4379 encode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4380 long *buf ATTRIBUTE_UNUSED
,
4381 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4383 encode_decimal64 (fmt
, buf
, r
);
4386 /* Decode a double precision DFP value in BUF into a real R. */
4388 decode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4389 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4390 const long *buf ATTRIBUTE_UNUSED
)
4392 decode_decimal64 (fmt
, r
, buf
);
4395 /* Encode real R into a quad precision DFP value in BUF. */
4397 encode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4398 long *buf ATTRIBUTE_UNUSED
,
4399 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4401 encode_decimal128 (fmt
, buf
, r
);
4404 /* Decode a quad precision DFP value in BUF into a real R. */
4406 decode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4407 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4408 const long *buf ATTRIBUTE_UNUSED
)
4410 decode_decimal128 (fmt
, r
, buf
);
4413 /* Single precision decimal floating point (IEEE 754). */
4414 const struct real_format decimal_single_format
=
4416 encode_decimal_single
,
4417 decode_decimal_single
,
4435 /* Double precision decimal floating point (IEEE 754). */
4436 const struct real_format decimal_double_format
=
4438 encode_decimal_double
,
4439 decode_decimal_double
,
4457 /* Quad precision decimal floating point (IEEE 754). */
4458 const struct real_format decimal_quad_format
=
4460 encode_decimal_quad
,
4461 decode_decimal_quad
,
4479 /* A synthetic "format" for internal arithmetic. It's the size of the
4480 internal significand minus the two bits needed for proper rounding.
4481 The encode and decode routines exist only to satisfy our paranoia
4484 static void encode_internal (const struct real_format
*fmt
,
4485 long *, const REAL_VALUE_TYPE
*);
4486 static void decode_internal (const struct real_format
*,
4487 REAL_VALUE_TYPE
*, const long *);
4490 encode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4491 const REAL_VALUE_TYPE
*r
)
4493 memcpy (buf
, r
, sizeof (*r
));
4497 decode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4498 REAL_VALUE_TYPE
*r
, const long *buf
)
4500 memcpy (r
, buf
, sizeof (*r
));
4503 const struct real_format real_internal_format
=
4508 SIGNIFICAND_BITS
- 2,
4509 SIGNIFICAND_BITS
- 2,
4524 /* Calculate the square root of X in mode MODE, and store the result
4525 in R. Return TRUE if the operation does not raise an exception.
4526 For details see "High Precision Division and Square Root",
4527 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4528 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4531 real_sqrt (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4532 const REAL_VALUE_TYPE
*x
)
4534 static REAL_VALUE_TYPE halfthree
;
4535 static bool init
= false;
4536 REAL_VALUE_TYPE h
, t
, i
;
4539 /* sqrt(-0.0) is -0.0. */
4540 if (real_isnegzero (x
))
4546 /* Negative arguments return NaN. */
4549 get_canonical_qnan (r
, 0);
4553 /* Infinity and NaN return themselves. */
4554 if (!real_isfinite (x
))
4562 do_add (&halfthree
, &dconst1
, &dconsthalf
, 0);
4566 /* Initial guess for reciprocal sqrt, i. */
4567 exp
= real_exponent (x
);
4568 real_ldexp (&i
, &dconst1
, -exp
/2);
4570 /* Newton's iteration for reciprocal sqrt, i. */
4571 for (iter
= 0; iter
< 16; iter
++)
4573 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4574 do_multiply (&t
, x
, &i
);
4575 do_multiply (&h
, &t
, &i
);
4576 do_multiply (&t
, &h
, &dconsthalf
);
4577 do_add (&h
, &halfthree
, &t
, 1);
4578 do_multiply (&t
, &i
, &h
);
4580 /* Check for early convergence. */
4581 if (iter
>= 6 && real_identical (&i
, &t
))
4584 /* ??? Unroll loop to avoid copying. */
4588 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4589 do_multiply (&t
, x
, &i
);
4590 do_multiply (&h
, &t
, &i
);
4591 do_add (&i
, &dconst1
, &h
, 1);
4592 do_multiply (&h
, &t
, &i
);
4593 do_multiply (&i
, &dconsthalf
, &h
);
4594 do_add (&h
, &t
, &i
, 0);
4596 /* ??? We need a Tuckerman test to get the last bit. */
4598 real_convert (r
, mode
, &h
);
4602 /* Calculate X raised to the integer exponent N in mode MODE and store
4603 the result in R. Return true if the result may be inexact due to
4604 loss of precision. The algorithm is the classic "left-to-right binary
4605 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4606 Algorithms", "The Art of Computer Programming", Volume 2. */
4609 real_powi (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4610 const REAL_VALUE_TYPE
*x
, HOST_WIDE_INT n
)
4612 unsigned HOST_WIDE_INT bit
;
4614 bool inexact
= false;
4626 /* Don't worry about overflow, from now on n is unsigned. */
4634 bit
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
4635 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
4639 inexact
|= do_multiply (&t
, &t
, &t
);
4641 inexact
|= do_multiply (&t
, &t
, x
);
4649 inexact
|= do_divide (&t
, &dconst1
, &t
);
4651 real_convert (r
, mode
, &t
);
4655 /* Round X to the nearest integer not larger in absolute value, i.e.
4656 towards zero, placing the result in R in mode MODE. */
4659 real_trunc (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4660 const REAL_VALUE_TYPE
*x
)
4662 do_fix_trunc (r
, x
);
4663 if (mode
!= VOIDmode
)
4664 real_convert (r
, mode
, r
);
4667 /* Round X to the largest integer not greater in value, i.e. round
4668 down, placing the result in R in mode MODE. */
4671 real_floor (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4672 const REAL_VALUE_TYPE
*x
)
4676 do_fix_trunc (&t
, x
);
4677 if (! real_identical (&t
, x
) && x
->sign
)
4678 do_add (&t
, &t
, &dconstm1
, 0);
4679 if (mode
!= VOIDmode
)
4680 real_convert (r
, mode
, &t
);
4685 /* Round X to the smallest integer not less then argument, i.e. round
4686 up, placing the result in R in mode MODE. */
4689 real_ceil (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4690 const REAL_VALUE_TYPE
*x
)
4694 do_fix_trunc (&t
, x
);
4695 if (! real_identical (&t
, x
) && ! x
->sign
)
4696 do_add (&t
, &t
, &dconst1
, 0);
4697 if (mode
!= VOIDmode
)
4698 real_convert (r
, mode
, &t
);
4703 /* Round X to the nearest integer, but round halfway cases away from
4707 real_round (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4708 const REAL_VALUE_TYPE
*x
)
4710 do_add (r
, x
, &dconsthalf
, x
->sign
);
4711 do_fix_trunc (r
, r
);
4712 if (mode
!= VOIDmode
)
4713 real_convert (r
, mode
, r
);
4716 /* Set the sign of R to the sign of X. */
4719 real_copysign (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*x
)
4724 /* Convert from REAL_VALUE_TYPE to MPFR. The caller is responsible
4725 for initializing and clearing the MPFR parameter. */
4728 mpfr_from_real (mpfr_ptr m
, const REAL_VALUE_TYPE
*r
, mp_rnd_t rndmode
)
4730 /* We use a string as an intermediate type. */
4734 /* Take care of Infinity and NaN. */
4735 if (r
->cl
== rvc_inf
)
4737 mpfr_set_inf (m
, r
->sign
== 1 ? -1 : 1);
4741 if (r
->cl
== rvc_nan
)
4747 real_to_hexadecimal (buf
, r
, sizeof (buf
), 0, 1);
4748 /* mpfr_set_str() parses hexadecimal floats from strings in the same
4749 format that GCC will output them. Nothing extra is needed. */
4750 ret
= mpfr_set_str (m
, buf
, 16, rndmode
);
4751 gcc_assert (ret
== 0);
4754 /* Convert from MPFR to REAL_VALUE_TYPE, for a given type TYPE and rounding
4755 mode RNDMODE. TYPE is only relevant if M is a NaN. */
4758 real_from_mpfr (REAL_VALUE_TYPE
*r
, mpfr_srcptr m
, tree type
, mp_rnd_t rndmode
)
4760 /* We use a string as an intermediate type. */
4761 char buf
[128], *rstr
;
4764 /* Take care of Infinity and NaN. */
4768 if (mpfr_sgn (m
) < 0)
4769 *r
= REAL_VALUE_NEGATE (*r
);
4775 real_nan (r
, "", 1, TYPE_MODE (type
));
4779 rstr
= mpfr_get_str (NULL
, &exp
, 16, 0, m
, rndmode
);
4781 /* The additional 12 chars add space for the sprintf below. This
4782 leaves 6 digits for the exponent which is supposedly enough. */
4783 gcc_assert (rstr
!= NULL
&& strlen (rstr
) < sizeof (buf
) - 12);
4785 /* REAL_VALUE_ATOF expects the exponent for mantissa * 2**exp,
4786 mpfr_get_str returns the exponent for mantissa * 16**exp, adjust
4791 sprintf (buf
, "-0x.%sp%d", &rstr
[1], (int) exp
);
4793 sprintf (buf
, "0x.%sp%d", rstr
, (int) exp
);
4795 mpfr_free_str (rstr
);
4797 real_from_string (r
, buf
);
4800 /* Check whether the real constant value given is an integer. */
4803 real_isinteger (const REAL_VALUE_TYPE
*c
, enum machine_mode mode
)
4805 REAL_VALUE_TYPE cint
;
4807 real_trunc (&cint
, mode
, c
);
4808 return real_identical (c
, &cint
);
4811 /* Write into BUF the maximum representable finite floating-point
4812 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
4813 float string. LEN is the size of BUF, and the buffer must be large
4814 enough to contain the resulting string. */
4817 get_max_float (const struct real_format
*fmt
, char *buf
, size_t len
)
4822 strcpy (buf
, "0x0.");
4824 for (i
= 0, p
= buf
+ 4; i
+ 3 < n
; i
+= 4)
4827 *p
++ = "08ce"[n
- i
];
4828 sprintf (p
, "p%d", fmt
->emax
);
4829 if (fmt
->pnan
< fmt
->p
)
4831 /* This is an IBM extended double format made up of two IEEE
4832 doubles. The value of the long double is the sum of the
4833 values of the two parts. The most significant part is
4834 required to be the value of the long double rounded to the
4835 nearest double. Rounding means we need a slightly smaller
4836 value for LDBL_MAX. */
4837 buf
[4 + fmt
->pnan
/ 4] = "7bde"[fmt
->pnan
% 4];
4840 gcc_assert (strlen (buf
) < len
);