1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
38 #include "coretypes.h"
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
53 #include "fixed-value.h"
55 #include "basic-block.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
69 /* Datastructures maintained for currently processed function in RTL form. */
71 struct rtl_data x_rtl
;
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
83 static GTY(()) int label_num
= 1;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers
;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
94 rtx global_rtl
[GR_MAX
];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
110 REAL_VALUE_TYPE dconst0
;
111 REAL_VALUE_TYPE dconst1
;
112 REAL_VALUE_TYPE dconst2
;
113 REAL_VALUE_TYPE dconstm1
;
114 REAL_VALUE_TYPE dconsthalf
;
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
118 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
151 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
157 htab_t const_int_htab
;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
161 htab_t mem_attrs_htab
;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
165 htab_t reg_attrs_htab
;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
169 htab_t const_double_htab
;
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
173 htab_t const_fixed_htab
;
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
181 static rtx
make_call_insn_raw (rtx
);
182 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
183 static void set_used_decls (tree
);
184 static void mark_label_nuses (rtx
);
185 static hashval_t
const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t
const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx
lookup_const_double (rtx
);
190 static hashval_t
const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx
lookup_const_fixed (rtx
);
193 static hashval_t
mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs
*get_mem_attrs (alias_set_type
, tree
, rtx
, rtx
, unsigned int,
197 static hashval_t
reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs
*get_reg_attrs (tree
, int);
200 static tree
component_ref_for_mem_expr (tree
);
201 static rtx
gen_const_vector (enum machine_mode
, int);
202 static void copy_rtx_if_shared_1 (rtx
*orig
);
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability
= -1;
208 /* Returns a hash code for X (which is a really a CONST_INT). */
211 const_int_htab_hash (const void *x
)
213 return (hashval_t
) INTVAL ((const_rtx
) x
);
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
221 const_int_htab_eq (const void *x
, const void *y
)
223 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
228 const_double_htab_hash (const void *x
)
230 const_rtx
const value
= (const_rtx
) x
;
233 if (GET_MODE (value
) == VOIDmode
)
234 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
237 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h
^= GET_MODE (value
);
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
247 const_double_htab_eq (const void *x
, const void *y
)
249 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
251 if (GET_MODE (a
) != GET_MODE (b
))
253 if (GET_MODE (a
) == VOIDmode
)
254 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
255 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
258 CONST_DOUBLE_REAL_VALUE (b
));
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
264 const_fixed_htab_hash (const void *x
)
266 const_rtx
const value
= (const_rtx
) x
;
269 h
= fixed_hash (CONST_FIXED_VALUE (value
));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h
^= GET_MODE (value
);
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
279 const_fixed_htab_eq (const void *x
, const void *y
)
281 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
283 if (GET_MODE (a
) != GET_MODE (b
))
285 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
291 mem_attrs_htab_hash (const void *x
)
293 const mem_attrs
*const p
= (const mem_attrs
*) x
;
295 return (p
->alias
^ (p
->align
* 1000)
296 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
297 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
306 mem_attrs_htab_eq (const void *x
, const void *y
)
308 const mem_attrs
*const p
= (const mem_attrs
*) x
;
309 const mem_attrs
*const q
= (const mem_attrs
*) y
;
311 return (p
->alias
== q
->alias
&& p
->offset
== q
->offset
312 && p
->size
== q
->size
&& p
->align
== q
->align
313 && (p
->expr
== q
->expr
314 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
315 && operand_equal_p (p
->expr
, q
->expr
, 0))));
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
323 get_mem_attrs (alias_set_type alias
, tree expr
, rtx offset
, rtx size
,
324 unsigned int align
, enum machine_mode mode
)
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias
== 0 && expr
== 0 && offset
== 0
334 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
335 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
336 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
341 attrs
.offset
= offset
;
345 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
348 *slot
= ggc_alloc (sizeof (mem_attrs
));
349 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
352 return (mem_attrs
*) *slot
;
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
358 reg_attrs_htab_hash (const void *x
)
360 const reg_attrs
*const p
= (const reg_attrs
*) x
;
362 return ((p
->offset
* 1000) ^ (long) p
->decl
);
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
370 reg_attrs_htab_eq (const void *x
, const void *y
)
372 const reg_attrs
*const p
= (const reg_attrs
*) x
;
373 const reg_attrs
*const q
= (const reg_attrs
*) y
;
375 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
382 get_reg_attrs (tree decl
, int offset
)
387 /* If everything is the default, we can just return zero. */
388 if (decl
== 0 && offset
== 0)
392 attrs
.offset
= offset
;
394 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
397 *slot
= ggc_alloc (sizeof (reg_attrs
));
398 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
401 return (reg_attrs
*) *slot
;
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
412 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
413 MEM_VOLATILE_P (x
) = true;
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
424 gen_raw_REG (enum machine_mode mode
, int regno
)
426 rtx x
= gen_rtx_raw_REG (mode
, regno
);
427 ORIGINAL_REGNO (x
) = regno
;
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
440 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
441 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
445 return const_true_rtx
;
448 /* Look up the CONST_INT in the hash table. */
449 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
450 (hashval_t
) arg
, INSERT
);
452 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
458 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
460 return GEN_INT (trunc_int_for_mode (c
, mode
));
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
471 lookup_const_double (rtx real
)
473 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
483 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
485 rtx real
= rtx_alloc (CONST_DOUBLE
);
486 PUT_MODE (real
, mode
);
490 return lookup_const_double (real
);
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
498 lookup_const_fixed (rtx fixed
)
500 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
513 rtx fixed
= rtx_alloc (CONST_FIXED
);
514 PUT_MODE (fixed
, mode
);
518 return lookup_const_fixed (fixed
);
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
527 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode
!= VOIDmode
)
544 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
545 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
550 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
551 return gen_int_mode (i0
, mode
);
553 gcc_assert (GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
);
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
560 /* We use VOIDmode for integers. */
561 value
= rtx_alloc (CONST_DOUBLE
);
562 PUT_MODE (value
, VOIDmode
);
564 CONST_DOUBLE_LOW (value
) = i0
;
565 CONST_DOUBLE_HIGH (value
) = i1
;
567 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
568 XWINT (value
, i
) = 0;
570 return lookup_const_double (value
);
574 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
590 if (mode
== Pmode
&& !reload_in_progress
)
592 if (regno
== FRAME_POINTER_REGNUM
593 && (!reload_completed
|| frame_pointer_needed
))
594 return frame_pointer_rtx
;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno
== HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed
|| frame_pointer_needed
))
598 return hard_frame_pointer_rtx
;
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno
== ARG_POINTER_REGNUM
)
602 return arg_pointer_rtx
;
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
606 return return_address_pointer_rtx
;
608 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
610 return pic_offset_table_rtx
;
611 if (regno
== STACK_POINTER_REGNUM
)
612 return stack_pointer_rtx
;
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
630 && regno
< FIRST_PSEUDO_REGISTER
631 && reg_raw_mode
[regno
] == mode
)
632 return regno_reg_rtx
[regno
];
635 return gen_raw_REG (mode
, regno
);
639 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
641 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
643 /* This field is not cleared by the mere allocation of the rtx, so
650 /* Generate a memory referring to non-trapping constant memory. */
653 gen_const_mem (enum machine_mode mode
, rtx addr
)
655 rtx mem
= gen_rtx_MEM (mode
, addr
);
656 MEM_READONLY_P (mem
) = 1;
657 MEM_NOTRAP_P (mem
) = 1;
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
665 gen_frame_mem (enum machine_mode mode
, rtx addr
)
667 rtx mem
= gen_rtx_MEM (mode
, addr
);
668 MEM_NOTRAP_P (mem
) = 1;
669 set_mem_alias_set (mem
, get_frame_alias_set ());
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
677 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
679 rtx mem
= gen_rtx_MEM (mode
, addr
);
680 MEM_NOTRAP_P (mem
) = 1;
681 if (!cfun
->calls_alloca
)
682 set_mem_alias_set (mem
, get_frame_alias_set ());
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
690 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
691 const_rtx reg
, unsigned int offset
)
693 unsigned int isize
= GET_MODE_SIZE (imode
);
694 unsigned int osize
= GET_MODE_SIZE (omode
);
696 /* All subregs must be aligned. */
697 if (offset
% osize
!= 0)
700 /* The subreg offset cannot be outside the inner object. */
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
708 if (omode
== word_mode
)
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
717 && GET_MODE_INNER (imode
) == omode
)
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
735 /* Paradoxical subregs must have offset zero. */
739 /* This is a normal subreg. Verify that the offset is representable. */
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
745 unsigned int regno
= REGNO (reg
);
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
749 && GET_MODE_INNER (imode
) == omode
)
751 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
755 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize
< UNITS_PER_WORD
)
766 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
767 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
768 if (offset
% UNITS_PER_WORD
!= low_off
)
775 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
777 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
778 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
787 enum machine_mode inmode
;
789 inmode
= GET_MODE (reg
);
790 if (inmode
== VOIDmode
)
792 return gen_rtx_SUBREG (mode
, reg
,
793 subreg_lowpart_offset (mode
, inmode
));
796 /* gen_rtvec (n, [rt1, ..., rtn])
798 ** This routine creates an rtvec and stores within it the
799 ** pointers to rtx's which are its arguments.
804 gen_rtvec (int n
, ...)
813 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
815 vector
= XALLOCAVEC (rtx
, n
);
817 for (i
= 0; i
< n
; i
++)
818 vector
[i
] = va_arg (p
, rtx
);
820 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
824 return gen_rtvec_v (save_n
, vector
);
828 gen_rtvec_v (int n
, rtx
*argp
)
834 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
836 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
838 for (i
= 0; i
< n
; i
++)
839 rt_val
->elem
[i
] = *argp
++;
844 /* Return the number of bytes between the start of an OUTER_MODE
845 in-memory value and the start of an INNER_MODE in-memory value,
846 given that the former is a lowpart of the latter. It may be a
847 paradoxical lowpart, in which case the offset will be negative
848 on big-endian targets. */
851 byte_lowpart_offset (enum machine_mode outer_mode
,
852 enum machine_mode inner_mode
)
854 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
855 return subreg_lowpart_offset (outer_mode
, inner_mode
);
857 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
860 /* Generate a REG rtx for a new pseudo register of mode MODE.
861 This pseudo is assigned the next sequential register number. */
864 gen_reg_rtx (enum machine_mode mode
)
867 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
869 gcc_assert (can_create_pseudo_p ());
871 /* If a virtual register with bigger mode alignment is generated,
872 increase stack alignment estimation because it might be spilled
874 if (SUPPORTS_STACK_ALIGNMENT
875 && crtl
->stack_alignment_estimated
< align
876 && !crtl
->stack_realign_processed
)
877 crtl
->stack_alignment_estimated
= align
;
879 if (generating_concat_p
880 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
881 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
883 /* For complex modes, don't make a single pseudo.
884 Instead, make a CONCAT of two pseudos.
885 This allows noncontiguous allocation of the real and imaginary parts,
886 which makes much better code. Besides, allocating DCmode
887 pseudos overstrains reload on some machines like the 386. */
888 rtx realpart
, imagpart
;
889 enum machine_mode partmode
= GET_MODE_INNER (mode
);
891 realpart
= gen_reg_rtx (partmode
);
892 imagpart
= gen_reg_rtx (partmode
);
893 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
896 /* Make sure regno_pointer_align, and regno_reg_rtx are large
897 enough to have an element for this pseudo reg number. */
899 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
901 int old_size
= crtl
->emit
.regno_pointer_align_length
;
905 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
906 memset (tmp
+ old_size
, 0, old_size
);
907 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
909 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
910 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
911 regno_reg_rtx
= new1
;
913 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
916 val
= gen_raw_REG (mode
, reg_rtx_no
);
917 regno_reg_rtx
[reg_rtx_no
++] = val
;
921 /* Update NEW with the same attributes as REG, but with OFFSET added
922 to the REG_OFFSET. */
925 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
927 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
928 REG_OFFSET (reg
) + offset
);
931 /* Generate a register with same attributes as REG, but with OFFSET
932 added to the REG_OFFSET. */
935 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
938 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
940 update_reg_offset (new_rtx
, reg
, offset
);
944 /* Generate a new pseudo-register with the same attributes as REG, but
945 with OFFSET added to the REG_OFFSET. */
948 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
950 rtx new_rtx
= gen_reg_rtx (mode
);
952 update_reg_offset (new_rtx
, reg
, offset
);
956 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
957 new register is a (possibly paradoxical) lowpart of the old one. */
960 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
962 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
963 PUT_MODE (reg
, mode
);
966 /* Copy REG's attributes from X, if X has any attributes. If REG and X
967 have different modes, REG is a (possibly paradoxical) lowpart of X. */
970 set_reg_attrs_from_value (rtx reg
, rtx x
)
974 /* Hard registers can be reused for multiple purposes within the same
975 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
977 if (HARD_REGISTER_P (reg
))
980 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
983 if (MEM_OFFSET (x
) && GET_CODE (MEM_OFFSET (x
)) == CONST_INT
)
985 = get_reg_attrs (MEM_EXPR (x
), INTVAL (MEM_OFFSET (x
)) + offset
);
987 mark_reg_pointer (reg
, MEM_ALIGN (x
));
992 update_reg_offset (reg
, x
, offset
);
994 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
998 /* Generate a REG rtx for a new pseudo register, copying the mode
999 and attributes from X. */
1002 gen_reg_rtx_and_attrs (rtx x
)
1004 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1005 set_reg_attrs_from_value (reg
, x
);
1009 /* Set the register attributes for registers contained in PARM_RTX.
1010 Use needed values from memory attributes of MEM. */
1013 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1015 if (REG_P (parm_rtx
))
1016 set_reg_attrs_from_value (parm_rtx
, mem
);
1017 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1019 /* Check for a NULL entry in the first slot, used to indicate that the
1020 parameter goes both on the stack and in registers. */
1021 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1022 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1024 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1025 if (REG_P (XEXP (x
, 0)))
1026 REG_ATTRS (XEXP (x
, 0))
1027 = get_reg_attrs (MEM_EXPR (mem
),
1028 INTVAL (XEXP (x
, 1)));
1033 /* Set the REG_ATTRS for registers in value X, given that X represents
1037 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1039 if (GET_CODE (x
) == SUBREG
)
1041 gcc_assert (subreg_lowpart_p (x
));
1046 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1048 if (GET_CODE (x
) == CONCAT
)
1050 if (REG_P (XEXP (x
, 0)))
1051 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1052 if (REG_P (XEXP (x
, 1)))
1053 REG_ATTRS (XEXP (x
, 1))
1054 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1056 if (GET_CODE (x
) == PARALLEL
)
1060 /* Check for a NULL entry, used to indicate that the parameter goes
1061 both on the stack and in registers. */
1062 if (XEXP (XVECEXP (x
, 0, 0), 0))
1067 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1069 rtx y
= XVECEXP (x
, 0, i
);
1070 if (REG_P (XEXP (y
, 0)))
1071 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1076 /* Assign the RTX X to declaration T. */
1079 set_decl_rtl (tree t
, rtx x
)
1081 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1083 set_reg_attrs_for_decl_rtl (t
, x
);
1086 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1087 if the ABI requires the parameter to be passed by reference. */
1090 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1092 DECL_INCOMING_RTL (t
) = x
;
1093 if (x
&& !by_reference_p
)
1094 set_reg_attrs_for_decl_rtl (t
, x
);
1097 /* Identify REG (which may be a CONCAT) as a user register. */
1100 mark_user_reg (rtx reg
)
1102 if (GET_CODE (reg
) == CONCAT
)
1104 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1105 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1109 gcc_assert (REG_P (reg
));
1110 REG_USERVAR_P (reg
) = 1;
1114 /* Identify REG as a probable pointer register and show its alignment
1115 as ALIGN, if nonzero. */
1118 mark_reg_pointer (rtx reg
, int align
)
1120 if (! REG_POINTER (reg
))
1122 REG_POINTER (reg
) = 1;
1125 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1127 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1128 /* We can no-longer be sure just how aligned this pointer is. */
1129 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1132 /* Return 1 plus largest pseudo reg number used in the current function. */
1140 /* Return 1 + the largest label number used so far in the current function. */
1143 max_label_num (void)
1148 /* Return first label number used in this function (if any were used). */
1151 get_first_label_num (void)
1153 return first_label_num
;
1156 /* If the rtx for label was created during the expansion of a nested
1157 function, then first_label_num won't include this label number.
1158 Fix this now so that array indices work later. */
1161 maybe_set_first_label_num (rtx x
)
1163 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1164 first_label_num
= CODE_LABEL_NUMBER (x
);
1167 /* Return a value representing some low-order bits of X, where the number
1168 of low-order bits is given by MODE. Note that no conversion is done
1169 between floating-point and fixed-point values, rather, the bit
1170 representation is returned.
1172 This function handles the cases in common between gen_lowpart, below,
1173 and two variants in cse.c and combine.c. These are the cases that can
1174 be safely handled at all points in the compilation.
1176 If this is not a case we can handle, return 0. */
1179 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1181 int msize
= GET_MODE_SIZE (mode
);
1184 enum machine_mode innermode
;
1186 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1187 so we have to make one up. Yuk. */
1188 innermode
= GET_MODE (x
);
1189 if (GET_CODE (x
) == CONST_INT
1190 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1191 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1192 else if (innermode
== VOIDmode
)
1193 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1195 xsize
= GET_MODE_SIZE (innermode
);
1197 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1199 if (innermode
== mode
)
1202 /* MODE must occupy no more words than the mode of X. */
1203 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1204 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1207 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1208 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1211 offset
= subreg_lowpart_offset (mode
, innermode
);
1213 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1214 && (GET_MODE_CLASS (mode
) == MODE_INT
1215 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1217 /* If we are getting the low-order part of something that has been
1218 sign- or zero-extended, we can either just use the object being
1219 extended or make a narrower extension. If we want an even smaller
1220 piece than the size of the object being extended, call ourselves
1223 This case is used mostly by combine and cse. */
1225 if (GET_MODE (XEXP (x
, 0)) == mode
)
1227 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1228 return gen_lowpart_common (mode
, XEXP (x
, 0));
1229 else if (msize
< xsize
)
1230 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1232 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1233 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1234 || GET_CODE (x
) == CONST_DOUBLE
|| GET_CODE (x
) == CONST_INT
)
1235 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1237 /* Otherwise, we can't do this. */
1242 gen_highpart (enum machine_mode mode
, rtx x
)
1244 unsigned int msize
= GET_MODE_SIZE (mode
);
1247 /* This case loses if X is a subreg. To catch bugs early,
1248 complain if an invalid MODE is used even in other cases. */
1249 gcc_assert (msize
<= UNITS_PER_WORD
1250 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1252 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1253 subreg_highpart_offset (mode
, GET_MODE (x
)));
1254 gcc_assert (result
);
1256 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1257 the target if we have a MEM. gen_highpart must return a valid operand,
1258 emitting code if necessary to do so. */
1261 result
= validize_mem (result
);
1262 gcc_assert (result
);
1268 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1269 be VOIDmode constant. */
1271 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1273 if (GET_MODE (exp
) != VOIDmode
)
1275 gcc_assert (GET_MODE (exp
) == innermode
);
1276 return gen_highpart (outermode
, exp
);
1278 return simplify_gen_subreg (outermode
, exp
, innermode
,
1279 subreg_highpart_offset (outermode
, innermode
));
1282 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1285 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1287 unsigned int offset
= 0;
1288 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1292 if (WORDS_BIG_ENDIAN
)
1293 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1294 if (BYTES_BIG_ENDIAN
)
1295 offset
+= difference
% UNITS_PER_WORD
;
1301 /* Return offset in bytes to get OUTERMODE high part
1302 of the value in mode INNERMODE stored in memory in target format. */
1304 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1306 unsigned int offset
= 0;
1307 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1309 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1313 if (! WORDS_BIG_ENDIAN
)
1314 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1315 if (! BYTES_BIG_ENDIAN
)
1316 offset
+= difference
% UNITS_PER_WORD
;
1322 /* Return 1 iff X, assumed to be a SUBREG,
1323 refers to the least significant part of its containing reg.
1324 If X is not a SUBREG, always return 1 (it is its own low part!). */
1327 subreg_lowpart_p (const_rtx x
)
1329 if (GET_CODE (x
) != SUBREG
)
1331 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1334 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1335 == SUBREG_BYTE (x
));
1338 /* Return subword OFFSET of operand OP.
1339 The word number, OFFSET, is interpreted as the word number starting
1340 at the low-order address. OFFSET 0 is the low-order word if not
1341 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1343 If we cannot extract the required word, we return zero. Otherwise,
1344 an rtx corresponding to the requested word will be returned.
1346 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1347 reload has completed, a valid address will always be returned. After
1348 reload, if a valid address cannot be returned, we return zero.
1350 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1351 it is the responsibility of the caller.
1353 MODE is the mode of OP in case it is a CONST_INT.
1355 ??? This is still rather broken for some cases. The problem for the
1356 moment is that all callers of this thing provide no 'goal mode' to
1357 tell us to work with. This exists because all callers were written
1358 in a word based SUBREG world.
1359 Now use of this function can be deprecated by simplify_subreg in most
1364 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1366 if (mode
== VOIDmode
)
1367 mode
= GET_MODE (op
);
1369 gcc_assert (mode
!= VOIDmode
);
1371 /* If OP is narrower than a word, fail. */
1373 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1376 /* If we want a word outside OP, return zero. */
1378 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1381 /* Form a new MEM at the requested address. */
1384 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1386 if (! validate_address
)
1389 else if (reload_completed
)
1391 if (! strict_memory_address_p (word_mode
, XEXP (new_rtx
, 0)))
1395 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1398 /* Rest can be handled by simplify_subreg. */
1399 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1402 /* Similar to `operand_subword', but never return 0. If we can't
1403 extract the required subword, put OP into a register and try again.
1404 The second attempt must succeed. We always validate the address in
1407 MODE is the mode of OP, in case it is CONST_INT. */
1410 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1412 rtx result
= operand_subword (op
, offset
, 1, mode
);
1417 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1419 /* If this is a register which can not be accessed by words, copy it
1420 to a pseudo register. */
1422 op
= copy_to_reg (op
);
1424 op
= force_reg (mode
, op
);
1427 result
= operand_subword (op
, offset
, 1, mode
);
1428 gcc_assert (result
);
1433 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1434 or (2) a component ref of something variable. Represent the later with
1435 a NULL expression. */
1438 component_ref_for_mem_expr (tree ref
)
1440 tree inner
= TREE_OPERAND (ref
, 0);
1442 if (TREE_CODE (inner
) == COMPONENT_REF
)
1443 inner
= component_ref_for_mem_expr (inner
);
1446 /* Now remove any conversions: they don't change what the underlying
1447 object is. Likewise for SAVE_EXPR. */
1448 while (CONVERT_EXPR_P (inner
)
1449 || TREE_CODE (inner
) == VIEW_CONVERT_EXPR
1450 || TREE_CODE (inner
) == SAVE_EXPR
)
1451 inner
= TREE_OPERAND (inner
, 0);
1453 if (! DECL_P (inner
))
1457 if (inner
== TREE_OPERAND (ref
, 0))
1460 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), inner
,
1461 TREE_OPERAND (ref
, 1), NULL_TREE
);
1464 /* Returns 1 if both MEM_EXPR can be considered equal
1468 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1473 if (! expr1
|| ! expr2
)
1476 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1479 if (TREE_CODE (expr1
) == COMPONENT_REF
)
1481 mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1482 TREE_OPERAND (expr2
, 0))
1483 && mem_expr_equal_p (TREE_OPERAND (expr1
, 1), /* field decl */
1484 TREE_OPERAND (expr2
, 1));
1486 if (INDIRECT_REF_P (expr1
))
1487 return mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1488 TREE_OPERAND (expr2
, 0));
1490 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1491 have been resolved here. */
1492 gcc_assert (DECL_P (expr1
));
1494 /* Decls with different pointers can't be equal. */
1498 /* Given REF (a MEM) and T, either the type of X or the expression
1499 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1500 if we are making a new object of this type. BITPOS is nonzero if
1501 there is an offset outstanding on T that will be applied later. */
1504 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1505 HOST_WIDE_INT bitpos
)
1507 alias_set_type alias
= MEM_ALIAS_SET (ref
);
1508 tree expr
= MEM_EXPR (ref
);
1509 rtx offset
= MEM_OFFSET (ref
);
1510 rtx size
= MEM_SIZE (ref
);
1511 unsigned int align
= MEM_ALIGN (ref
);
1512 HOST_WIDE_INT apply_bitpos
= 0;
1515 /* It can happen that type_for_mode was given a mode for which there
1516 is no language-level type. In which case it returns NULL, which
1521 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1522 if (type
== error_mark_node
)
1525 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1526 wrong answer, as it assumes that DECL_RTL already has the right alias
1527 info. Callers should not set DECL_RTL until after the call to
1528 set_mem_attributes. */
1529 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1531 /* Get the alias set from the expression or type (perhaps using a
1532 front-end routine) and use it. */
1533 alias
= get_alias_set (t
);
1535 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1536 MEM_IN_STRUCT_P (ref
)
1537 = AGGREGATE_TYPE_P (type
) || TREE_CODE (type
) == COMPLEX_TYPE
;
1538 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1540 /* If we are making an object of this type, or if this is a DECL, we know
1541 that it is a scalar if the type is not an aggregate. */
1542 if ((objectp
|| DECL_P (t
))
1543 && ! AGGREGATE_TYPE_P (type
)
1544 && TREE_CODE (type
) != COMPLEX_TYPE
)
1545 MEM_SCALAR_P (ref
) = 1;
1547 /* We can set the alignment from the type if we are making an object,
1548 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1549 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
1550 || TREE_CODE (t
) == ALIGN_INDIRECT_REF
1551 || TYPE_ALIGN_OK (type
))
1552 align
= MAX (align
, TYPE_ALIGN (type
));
1554 if (TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
1556 if (integer_zerop (TREE_OPERAND (t
, 1)))
1557 /* We don't know anything about the alignment. */
1558 align
= BITS_PER_UNIT
;
1560 align
= tree_low_cst (TREE_OPERAND (t
, 1), 1);
1563 /* If the size is known, we can set that. */
1564 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1565 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1567 /* If T is not a type, we may be able to deduce some more information about
1573 if (TREE_THIS_VOLATILE (t
))
1574 MEM_VOLATILE_P (ref
) = 1;
1576 /* Now remove any conversions: they don't change what the underlying
1577 object is. Likewise for SAVE_EXPR. */
1578 while (CONVERT_EXPR_P (t
)
1579 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1580 || TREE_CODE (t
) == SAVE_EXPR
)
1581 t
= TREE_OPERAND (t
, 0);
1583 /* We may look through structure-like accesses for the purposes of
1584 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1586 while (TREE_CODE (base
) == COMPONENT_REF
1587 || TREE_CODE (base
) == REALPART_EXPR
1588 || TREE_CODE (base
) == IMAGPART_EXPR
1589 || TREE_CODE (base
) == BIT_FIELD_REF
)
1590 base
= TREE_OPERAND (base
, 0);
1594 if (CODE_CONTAINS_STRUCT (TREE_CODE (base
), TS_DECL_WITH_VIS
))
1595 MEM_NOTRAP_P (ref
) = !DECL_WEAK (base
);
1597 MEM_NOTRAP_P (ref
) = 1;
1600 MEM_NOTRAP_P (ref
) = TREE_THIS_NOTRAP (base
);
1602 base
= get_base_address (base
);
1603 if (base
&& DECL_P (base
)
1604 && TREE_READONLY (base
)
1605 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
)))
1607 tree base_type
= TREE_TYPE (base
);
1608 gcc_assert (!(base_type
&& TYPE_NEEDS_CONSTRUCTING (base_type
))
1609 || DECL_ARTIFICIAL (base
));
1610 MEM_READONLY_P (ref
) = 1;
1613 /* If this expression uses it's parent's alias set, mark it such
1614 that we won't change it. */
1615 if (component_uses_parent_alias_set (t
))
1616 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1618 /* If this is a decl, set the attributes of the MEM from it. */
1622 offset
= const0_rtx
;
1623 apply_bitpos
= bitpos
;
1624 size
= (DECL_SIZE_UNIT (t
)
1625 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1626 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1627 align
= DECL_ALIGN (t
);
1630 /* If this is a constant, we know the alignment. */
1631 else if (CONSTANT_CLASS_P (t
))
1633 align
= TYPE_ALIGN (type
);
1634 #ifdef CONSTANT_ALIGNMENT
1635 align
= CONSTANT_ALIGNMENT (t
, align
);
1639 /* If this is a field reference and not a bit-field, record it. */
1640 /* ??? There is some information that can be gleaned from bit-fields,
1641 such as the word offset in the structure that might be modified.
1642 But skip it for now. */
1643 else if (TREE_CODE (t
) == COMPONENT_REF
1644 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1646 expr
= component_ref_for_mem_expr (t
);
1647 offset
= const0_rtx
;
1648 apply_bitpos
= bitpos
;
1649 /* ??? Any reason the field size would be different than
1650 the size we got from the type? */
1653 /* If this is an array reference, look for an outer field reference. */
1654 else if (TREE_CODE (t
) == ARRAY_REF
)
1656 tree off_tree
= size_zero_node
;
1657 /* We can't modify t, because we use it at the end of the
1663 tree index
= TREE_OPERAND (t2
, 1);
1664 tree low_bound
= array_ref_low_bound (t2
);
1665 tree unit_size
= array_ref_element_size (t2
);
1667 /* We assume all arrays have sizes that are a multiple of a byte.
1668 First subtract the lower bound, if any, in the type of the
1669 index, then convert to sizetype and multiply by the size of
1670 the array element. */
1671 if (! integer_zerop (low_bound
))
1672 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1675 off_tree
= size_binop (PLUS_EXPR
,
1676 size_binop (MULT_EXPR
,
1677 fold_convert (sizetype
,
1681 t2
= TREE_OPERAND (t2
, 0);
1683 while (TREE_CODE (t2
) == ARRAY_REF
);
1689 if (host_integerp (off_tree
, 1))
1691 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1692 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1693 align
= DECL_ALIGN (t2
);
1694 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1696 offset
= GEN_INT (ioff
);
1697 apply_bitpos
= bitpos
;
1700 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1702 expr
= component_ref_for_mem_expr (t2
);
1703 if (host_integerp (off_tree
, 1))
1705 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1706 apply_bitpos
= bitpos
;
1708 /* ??? Any reason the field size would be different than
1709 the size we got from the type? */
1711 else if (flag_argument_noalias
> 1
1712 && (INDIRECT_REF_P (t2
))
1713 && TREE_CODE (TREE_OPERAND (t2
, 0)) == PARM_DECL
)
1720 /* If this is a Fortran indirect argument reference, record the
1722 else if (flag_argument_noalias
> 1
1723 && (INDIRECT_REF_P (t
))
1724 && TREE_CODE (TREE_OPERAND (t
, 0)) == PARM_DECL
)
1731 /* If we modified OFFSET based on T, then subtract the outstanding
1732 bit position offset. Similarly, increase the size of the accessed
1733 object to contain the negative offset. */
1736 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1738 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1741 if (TREE_CODE (t
) == ALIGN_INDIRECT_REF
)
1743 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1744 we're overlapping. */
1749 /* Now set the attributes we computed above. */
1751 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1753 /* If this is already known to be a scalar or aggregate, we are done. */
1754 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1757 /* If it is a reference into an aggregate, this is part of an aggregate.
1758 Otherwise we don't know. */
1759 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1760 || TREE_CODE (t
) == ARRAY_RANGE_REF
1761 || TREE_CODE (t
) == BIT_FIELD_REF
)
1762 MEM_IN_STRUCT_P (ref
) = 1;
1766 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1768 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1771 /* Set MEM to the decl that REG refers to. */
1774 set_mem_attrs_from_reg (rtx mem
, rtx reg
)
1777 = get_mem_attrs (MEM_ALIAS_SET (mem
), REG_EXPR (reg
),
1778 GEN_INT (REG_OFFSET (reg
)),
1779 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1782 /* Set the alias set of MEM to SET. */
1785 set_mem_alias_set (rtx mem
, alias_set_type set
)
1787 #ifdef ENABLE_CHECKING
1788 /* If the new and old alias sets don't conflict, something is wrong. */
1789 gcc_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1792 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1793 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1797 /* Set the alignment of MEM to ALIGN bits. */
1800 set_mem_align (rtx mem
, unsigned int align
)
1802 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1803 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1807 /* Set the expr for MEM to EXPR. */
1810 set_mem_expr (rtx mem
, tree expr
)
1813 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1814 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1817 /* Set the offset of MEM to OFFSET. */
1820 set_mem_offset (rtx mem
, rtx offset
)
1822 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1823 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1827 /* Set the size of MEM to SIZE. */
1830 set_mem_size (rtx mem
, rtx size
)
1832 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1833 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1837 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1838 and its address changed to ADDR. (VOIDmode means don't change the mode.
1839 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1840 returned memory location is required to be valid. The memory
1841 attributes are not changed. */
1844 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1848 gcc_assert (MEM_P (memref
));
1849 if (mode
== VOIDmode
)
1850 mode
= GET_MODE (memref
);
1852 addr
= XEXP (memref
, 0);
1853 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1854 && (!validate
|| memory_address_p (mode
, addr
)))
1859 if (reload_in_progress
|| reload_completed
)
1860 gcc_assert (memory_address_p (mode
, addr
));
1862 addr
= memory_address (mode
, addr
);
1865 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1868 new_rtx
= gen_rtx_MEM (mode
, addr
);
1869 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1873 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1874 way we are changing MEMREF, so we only preserve the alias set. */
1877 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1879 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1), size
;
1880 enum machine_mode mmode
= GET_MODE (new_rtx
);
1883 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1884 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1886 /* If there are no changes, just return the original memory reference. */
1887 if (new_rtx
== memref
)
1889 if (MEM_ATTRS (memref
) == 0
1890 || (MEM_EXPR (memref
) == NULL
1891 && MEM_OFFSET (memref
) == NULL
1892 && MEM_SIZE (memref
) == size
1893 && MEM_ALIGN (memref
) == align
))
1896 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1897 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1901 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
, mmode
);
1906 /* Return a memory reference like MEMREF, but with its mode changed
1907 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1908 nonzero, the memory address is forced to be valid.
1909 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1910 and caller is responsible for adjusting MEMREF base register. */
1913 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1914 int validate
, int adjust
)
1916 rtx addr
= XEXP (memref
, 0);
1918 rtx memoffset
= MEM_OFFSET (memref
);
1920 unsigned int memalign
= MEM_ALIGN (memref
);
1922 /* If there are no changes, just return the original memory reference. */
1923 if (mode
== GET_MODE (memref
) && !offset
1924 && (!validate
|| memory_address_p (mode
, addr
)))
1927 /* ??? Prefer to create garbage instead of creating shared rtl.
1928 This may happen even if offset is nonzero -- consider
1929 (plus (plus reg reg) const_int) -- so do this always. */
1930 addr
= copy_rtx (addr
);
1934 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1935 object, we can merge it into the LO_SUM. */
1936 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1938 && (unsigned HOST_WIDE_INT
) offset
1939 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1940 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
1941 plus_constant (XEXP (addr
, 1), offset
));
1943 addr
= plus_constant (addr
, offset
);
1946 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
1948 /* Compute the new values of the memory attributes due to this adjustment.
1949 We add the offsets and update the alignment. */
1951 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
1953 /* Compute the new alignment by taking the MIN of the alignment and the
1954 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1959 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
1961 /* We can compute the size in a number of ways. */
1962 if (GET_MODE (new_rtx
) != BLKmode
)
1963 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx
)));
1964 else if (MEM_SIZE (memref
))
1965 size
= plus_constant (MEM_SIZE (memref
), -offset
);
1967 MEM_ATTRS (new_rtx
) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
1968 memoffset
, size
, memalign
, GET_MODE (new_rtx
));
1970 /* At some point, we should validate that this offset is within the object,
1971 if all the appropriate values are known. */
1975 /* Return a memory reference like MEMREF, but with its mode changed
1976 to MODE and its address changed to ADDR, which is assumed to be
1977 MEMREF offset by OFFSET bytes. If VALIDATE is
1978 nonzero, the memory address is forced to be valid. */
1981 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
1982 HOST_WIDE_INT offset
, int validate
)
1984 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
1985 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
1988 /* Return a memory reference like MEMREF, but whose address is changed by
1989 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1990 known to be in OFFSET (possibly 1). */
1993 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
1995 rtx new_rtx
, addr
= XEXP (memref
, 0);
1997 new_rtx
= simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1999 /* At this point we don't know _why_ the address is invalid. It
2000 could have secondary memory references, multiplies or anything.
2002 However, if we did go and rearrange things, we can wind up not
2003 being able to recognize the magic around pic_offset_table_rtx.
2004 This stuff is fragile, and is yet another example of why it is
2005 bad to expose PIC machinery too early. */
2006 if (! memory_address_p (GET_MODE (memref
), new_rtx
)
2007 && GET_CODE (addr
) == PLUS
2008 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2010 addr
= force_reg (GET_MODE (addr
), addr
);
2011 new_rtx
= simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
2014 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2015 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2017 /* If there are no changes, just return the original memory reference. */
2018 if (new_rtx
== memref
)
2021 /* Update the alignment to reflect the offset. Reset the offset, which
2024 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
2025 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
2026 GET_MODE (new_rtx
));
2030 /* Return a memory reference like MEMREF, but with its address changed to
2031 ADDR. The caller is asserting that the actual piece of memory pointed
2032 to is the same, just the form of the address is being changed, such as
2033 by putting something into a register. */
2036 replace_equiv_address (rtx memref
, rtx addr
)
2038 /* change_address_1 copies the memory attribute structure without change
2039 and that's exactly what we want here. */
2040 update_temp_slot_address (XEXP (memref
, 0), addr
);
2041 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2044 /* Likewise, but the reference is not required to be valid. */
2047 replace_equiv_address_nv (rtx memref
, rtx addr
)
2049 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2052 /* Return a memory reference like MEMREF, but with its mode widened to
2053 MODE and offset by OFFSET. This would be used by targets that e.g.
2054 cannot issue QImode memory operations and have to use SImode memory
2055 operations plus masking logic. */
2058 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2060 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1);
2061 tree expr
= MEM_EXPR (new_rtx
);
2062 rtx memoffset
= MEM_OFFSET (new_rtx
);
2063 unsigned int size
= GET_MODE_SIZE (mode
);
2065 /* If there are no changes, just return the original memory reference. */
2066 if (new_rtx
== memref
)
2069 /* If we don't know what offset we were at within the expression, then
2070 we can't know if we've overstepped the bounds. */
2076 if (TREE_CODE (expr
) == COMPONENT_REF
)
2078 tree field
= TREE_OPERAND (expr
, 1);
2079 tree offset
= component_ref_field_offset (expr
);
2081 if (! DECL_SIZE_UNIT (field
))
2087 /* Is the field at least as large as the access? If so, ok,
2088 otherwise strip back to the containing structure. */
2089 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2090 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2091 && INTVAL (memoffset
) >= 0)
2094 if (! host_integerp (offset
, 1))
2100 expr
= TREE_OPERAND (expr
, 0);
2102 = (GEN_INT (INTVAL (memoffset
)
2103 + tree_low_cst (offset
, 1)
2104 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2107 /* Similarly for the decl. */
2108 else if (DECL_P (expr
)
2109 && DECL_SIZE_UNIT (expr
)
2110 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2111 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2112 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2116 /* The widened memory access overflows the expression, which means
2117 that it could alias another expression. Zap it. */
2124 memoffset
= NULL_RTX
;
2126 /* The widened memory may alias other stuff, so zap the alias set. */
2127 /* ??? Maybe use get_alias_set on any remaining expression. */
2129 MEM_ATTRS (new_rtx
) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2130 MEM_ALIGN (new_rtx
), mode
);
2135 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2138 gen_label_rtx (void)
2140 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2141 NULL
, label_num
++, NULL
);
2144 /* For procedure integration. */
2146 /* Install new pointers to the first and last insns in the chain.
2147 Also, set cur_insn_uid to one higher than the last in use.
2148 Used for an inline-procedure after copying the insn chain. */
2151 set_new_first_and_last_insn (rtx first
, rtx last
)
2159 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2160 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2165 /* Go through all the RTL insn bodies and copy any invalid shared
2166 structure. This routine should only be called once. */
2169 unshare_all_rtl_1 (rtx insn
)
2171 /* Unshare just about everything else. */
2172 unshare_all_rtl_in_chain (insn
);
2174 /* Make sure the addresses of stack slots found outside the insn chain
2175 (such as, in DECL_RTL of a variable) are not shared
2176 with the insn chain.
2178 This special care is necessary when the stack slot MEM does not
2179 actually appear in the insn chain. If it does appear, its address
2180 is unshared from all else at that point. */
2181 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2184 /* Go through all the RTL insn bodies and copy any invalid shared
2185 structure, again. This is a fairly expensive thing to do so it
2186 should be done sparingly. */
2189 unshare_all_rtl_again (rtx insn
)
2194 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2197 reset_used_flags (PATTERN (p
));
2198 reset_used_flags (REG_NOTES (p
));
2201 /* Make sure that virtual stack slots are not shared. */
2202 set_used_decls (DECL_INITIAL (cfun
->decl
));
2204 /* Make sure that virtual parameters are not shared. */
2205 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2206 set_used_flags (DECL_RTL (decl
));
2208 reset_used_flags (stack_slot_list
);
2210 unshare_all_rtl_1 (insn
);
2214 unshare_all_rtl (void)
2216 unshare_all_rtl_1 (get_insns ());
2220 struct rtl_opt_pass pass_unshare_all_rtl
=
2224 "unshare", /* name */
2226 unshare_all_rtl
, /* execute */
2229 0, /* static_pass_number */
2231 0, /* properties_required */
2232 0, /* properties_provided */
2233 0, /* properties_destroyed */
2234 0, /* todo_flags_start */
2235 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */
2240 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2241 Recursively does the same for subexpressions. */
2244 verify_rtx_sharing (rtx orig
, rtx insn
)
2249 const char *format_ptr
;
2254 code
= GET_CODE (x
);
2256 /* These types may be freely shared. */
2272 /* SCRATCH must be shared because they represent distinct values. */
2274 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2279 if (shared_const_p (orig
))
2284 /* A MEM is allowed to be shared if its address is constant. */
2285 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2286 || reload_completed
|| reload_in_progress
)
2295 /* This rtx may not be shared. If it has already been seen,
2296 replace it with a copy of itself. */
2297 #ifdef ENABLE_CHECKING
2298 if (RTX_FLAG (x
, used
))
2300 error ("invalid rtl sharing found in the insn");
2302 error ("shared rtx");
2304 internal_error ("internal consistency failure");
2307 gcc_assert (!RTX_FLAG (x
, used
));
2309 RTX_FLAG (x
, used
) = 1;
2311 /* Now scan the subexpressions recursively. */
2313 format_ptr
= GET_RTX_FORMAT (code
);
2315 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2317 switch (*format_ptr
++)
2320 verify_rtx_sharing (XEXP (x
, i
), insn
);
2324 if (XVEC (x
, i
) != NULL
)
2327 int len
= XVECLEN (x
, i
);
2329 for (j
= 0; j
< len
; j
++)
2331 /* We allow sharing of ASM_OPERANDS inside single
2333 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2334 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2336 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2338 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2347 /* Go through all the RTL insn bodies and check that there is no unexpected
2348 sharing in between the subexpressions. */
2351 verify_rtl_sharing (void)
2355 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2358 reset_used_flags (PATTERN (p
));
2359 reset_used_flags (REG_NOTES (p
));
2360 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2363 rtx q
, sequence
= PATTERN (p
);
2365 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2367 q
= XVECEXP (sequence
, 0, i
);
2368 gcc_assert (INSN_P (q
));
2369 reset_used_flags (PATTERN (q
));
2370 reset_used_flags (REG_NOTES (q
));
2375 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2378 verify_rtx_sharing (PATTERN (p
), p
);
2379 verify_rtx_sharing (REG_NOTES (p
), p
);
2383 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2384 Assumes the mark bits are cleared at entry. */
2387 unshare_all_rtl_in_chain (rtx insn
)
2389 for (; insn
; insn
= NEXT_INSN (insn
))
2392 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2393 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2397 /* Go through all virtual stack slots of a function and mark them as
2398 shared. We never replace the DECL_RTLs themselves with a copy,
2399 but expressions mentioned into a DECL_RTL cannot be shared with
2400 expressions in the instruction stream.
2402 Note that reload may convert pseudo registers into memories in-place.
2403 Pseudo registers are always shared, but MEMs never are. Thus if we
2404 reset the used flags on MEMs in the instruction stream, we must set
2405 them again on MEMs that appear in DECL_RTLs. */
2408 set_used_decls (tree blk
)
2413 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2414 if (DECL_RTL_SET_P (t
))
2415 set_used_flags (DECL_RTL (t
));
2417 /* Now process sub-blocks. */
2418 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2422 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2423 Recursively does the same for subexpressions. Uses
2424 copy_rtx_if_shared_1 to reduce stack space. */
2427 copy_rtx_if_shared (rtx orig
)
2429 copy_rtx_if_shared_1 (&orig
);
2433 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2434 use. Recursively does the same for subexpressions. */
2437 copy_rtx_if_shared_1 (rtx
*orig1
)
2443 const char *format_ptr
;
2447 /* Repeat is used to turn tail-recursion into iteration. */
2454 code
= GET_CODE (x
);
2456 /* These types may be freely shared. */
2471 /* SCRATCH must be shared because they represent distinct values. */
2474 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2479 if (shared_const_p (x
))
2488 /* The chain of insns is not being copied. */
2495 /* This rtx may not be shared. If it has already been seen,
2496 replace it with a copy of itself. */
2498 if (RTX_FLAG (x
, used
))
2500 x
= shallow_copy_rtx (x
);
2503 RTX_FLAG (x
, used
) = 1;
2505 /* Now scan the subexpressions recursively.
2506 We can store any replaced subexpressions directly into X
2507 since we know X is not shared! Any vectors in X
2508 must be copied if X was copied. */
2510 format_ptr
= GET_RTX_FORMAT (code
);
2511 length
= GET_RTX_LENGTH (code
);
2514 for (i
= 0; i
< length
; i
++)
2516 switch (*format_ptr
++)
2520 copy_rtx_if_shared_1 (last_ptr
);
2521 last_ptr
= &XEXP (x
, i
);
2525 if (XVEC (x
, i
) != NULL
)
2528 int len
= XVECLEN (x
, i
);
2530 /* Copy the vector iff I copied the rtx and the length
2532 if (copied
&& len
> 0)
2533 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2535 /* Call recursively on all inside the vector. */
2536 for (j
= 0; j
< len
; j
++)
2539 copy_rtx_if_shared_1 (last_ptr
);
2540 last_ptr
= &XVECEXP (x
, i
, j
);
2555 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2556 to look for shared sub-parts. */
2559 reset_used_flags (rtx x
)
2563 const char *format_ptr
;
2566 /* Repeat is used to turn tail-recursion into iteration. */
2571 code
= GET_CODE (x
);
2573 /* These types may be freely shared so we needn't do any resetting
2595 /* The chain of insns is not being copied. */
2602 RTX_FLAG (x
, used
) = 0;
2604 format_ptr
= GET_RTX_FORMAT (code
);
2605 length
= GET_RTX_LENGTH (code
);
2607 for (i
= 0; i
< length
; i
++)
2609 switch (*format_ptr
++)
2617 reset_used_flags (XEXP (x
, i
));
2621 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2622 reset_used_flags (XVECEXP (x
, i
, j
));
2628 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2629 to look for shared sub-parts. */
2632 set_used_flags (rtx x
)
2636 const char *format_ptr
;
2641 code
= GET_CODE (x
);
2643 /* These types may be freely shared so we needn't do any resetting
2665 /* The chain of insns is not being copied. */
2672 RTX_FLAG (x
, used
) = 1;
2674 format_ptr
= GET_RTX_FORMAT (code
);
2675 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2677 switch (*format_ptr
++)
2680 set_used_flags (XEXP (x
, i
));
2684 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2685 set_used_flags (XVECEXP (x
, i
, j
));
2691 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2692 Return X or the rtx for the pseudo reg the value of X was copied into.
2693 OTHER must be valid as a SET_DEST. */
2696 make_safe_from (rtx x
, rtx other
)
2699 switch (GET_CODE (other
))
2702 other
= SUBREG_REG (other
);
2704 case STRICT_LOW_PART
:
2707 other
= XEXP (other
, 0);
2716 && GET_CODE (x
) != SUBREG
)
2718 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2719 || reg_mentioned_p (other
, x
))))
2721 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2722 emit_move_insn (temp
, x
);
2728 /* Emission of insns (adding them to the doubly-linked list). */
2730 /* Return the first insn of the current sequence or current function. */
2738 /* Specify a new insn as the first in the chain. */
2741 set_first_insn (rtx insn
)
2743 gcc_assert (!PREV_INSN (insn
));
2747 /* Return the last insn emitted in current sequence or current function. */
2750 get_last_insn (void)
2755 /* Specify a new insn as the last in the chain. */
2758 set_last_insn (rtx insn
)
2760 gcc_assert (!NEXT_INSN (insn
));
2764 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2767 get_last_insn_anywhere (void)
2769 struct sequence_stack
*stack
;
2772 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2773 if (stack
->last
!= 0)
2778 /* Return the first nonnote insn emitted in current sequence or current
2779 function. This routine looks inside SEQUENCEs. */
2782 get_first_nonnote_insn (void)
2784 rtx insn
= first_insn
;
2789 for (insn
= next_insn (insn
);
2790 insn
&& NOTE_P (insn
);
2791 insn
= next_insn (insn
))
2795 if (NONJUMP_INSN_P (insn
)
2796 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2797 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2804 /* Return the last nonnote insn emitted in current sequence or current
2805 function. This routine looks inside SEQUENCEs. */
2808 get_last_nonnote_insn (void)
2810 rtx insn
= last_insn
;
2815 for (insn
= previous_insn (insn
);
2816 insn
&& NOTE_P (insn
);
2817 insn
= previous_insn (insn
))
2821 if (NONJUMP_INSN_P (insn
)
2822 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2823 insn
= XVECEXP (PATTERN (insn
), 0,
2824 XVECLEN (PATTERN (insn
), 0) - 1);
2831 /* Return a number larger than any instruction's uid in this function. */
2836 return cur_insn_uid
;
2839 /* Return the next insn. If it is a SEQUENCE, return the first insn
2843 next_insn (rtx insn
)
2847 insn
= NEXT_INSN (insn
);
2848 if (insn
&& NONJUMP_INSN_P (insn
)
2849 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2850 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2856 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2860 previous_insn (rtx insn
)
2864 insn
= PREV_INSN (insn
);
2865 if (insn
&& NONJUMP_INSN_P (insn
)
2866 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2867 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2873 /* Return the next insn after INSN that is not a NOTE. This routine does not
2874 look inside SEQUENCEs. */
2877 next_nonnote_insn (rtx insn
)
2881 insn
= NEXT_INSN (insn
);
2882 if (insn
== 0 || !NOTE_P (insn
))
2889 /* Return the previous insn before INSN that is not a NOTE. This routine does
2890 not look inside SEQUENCEs. */
2893 prev_nonnote_insn (rtx insn
)
2897 insn
= PREV_INSN (insn
);
2898 if (insn
== 0 || !NOTE_P (insn
))
2905 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2906 or 0, if there is none. This routine does not look inside
2910 next_real_insn (rtx insn
)
2914 insn
= NEXT_INSN (insn
);
2915 if (insn
== 0 || INSN_P (insn
))
2922 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2923 or 0, if there is none. This routine does not look inside
2927 prev_real_insn (rtx insn
)
2931 insn
= PREV_INSN (insn
);
2932 if (insn
== 0 || INSN_P (insn
))
2939 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2940 This routine does not look inside SEQUENCEs. */
2943 last_call_insn (void)
2947 for (insn
= get_last_insn ();
2948 insn
&& !CALL_P (insn
);
2949 insn
= PREV_INSN (insn
))
2955 /* Find the next insn after INSN that really does something. This routine
2956 does not look inside SEQUENCEs. Until reload has completed, this is the
2957 same as next_real_insn. */
2960 active_insn_p (const_rtx insn
)
2962 return (CALL_P (insn
) || JUMP_P (insn
)
2963 || (NONJUMP_INSN_P (insn
)
2964 && (! reload_completed
2965 || (GET_CODE (PATTERN (insn
)) != USE
2966 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
2970 next_active_insn (rtx insn
)
2974 insn
= NEXT_INSN (insn
);
2975 if (insn
== 0 || active_insn_p (insn
))
2982 /* Find the last insn before INSN that really does something. This routine
2983 does not look inside SEQUENCEs. Until reload has completed, this is the
2984 same as prev_real_insn. */
2987 prev_active_insn (rtx insn
)
2991 insn
= PREV_INSN (insn
);
2992 if (insn
== 0 || active_insn_p (insn
))
2999 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3002 next_label (rtx insn
)
3006 insn
= NEXT_INSN (insn
);
3007 if (insn
== 0 || LABEL_P (insn
))
3014 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3017 prev_label (rtx insn
)
3021 insn
= PREV_INSN (insn
);
3022 if (insn
== 0 || LABEL_P (insn
))
3029 /* Return the last label to mark the same position as LABEL. Return null
3030 if LABEL itself is null. */
3033 skip_consecutive_labels (rtx label
)
3037 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3045 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3046 and REG_CC_USER notes so we can find it. */
3049 link_cc0_insns (rtx insn
)
3051 rtx user
= next_nonnote_insn (insn
);
3053 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3054 user
= XVECEXP (PATTERN (user
), 0, 0);
3056 add_reg_note (user
, REG_CC_SETTER
, insn
);
3057 add_reg_note (insn
, REG_CC_USER
, user
);
3060 /* Return the next insn that uses CC0 after INSN, which is assumed to
3061 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3062 applied to the result of this function should yield INSN).
3064 Normally, this is simply the next insn. However, if a REG_CC_USER note
3065 is present, it contains the insn that uses CC0.
3067 Return 0 if we can't find the insn. */
3070 next_cc0_user (rtx insn
)
3072 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3075 return XEXP (note
, 0);
3077 insn
= next_nonnote_insn (insn
);
3078 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3079 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3081 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3087 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3088 note, it is the previous insn. */
3091 prev_cc0_setter (rtx insn
)
3093 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3096 return XEXP (note
, 0);
3098 insn
= prev_nonnote_insn (insn
);
3099 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3106 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3109 find_auto_inc (rtx
*xp
, void *data
)
3112 rtx reg
= (rtx
) data
;
3114 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3117 switch (GET_CODE (x
))
3125 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3136 /* Increment the label uses for all labels present in rtx. */
3139 mark_label_nuses (rtx x
)
3145 code
= GET_CODE (x
);
3146 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3147 LABEL_NUSES (XEXP (x
, 0))++;
3149 fmt
= GET_RTX_FORMAT (code
);
3150 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3153 mark_label_nuses (XEXP (x
, i
));
3154 else if (fmt
[i
] == 'E')
3155 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3156 mark_label_nuses (XVECEXP (x
, i
, j
));
3161 /* Try splitting insns that can be split for better scheduling.
3162 PAT is the pattern which might split.
3163 TRIAL is the insn providing PAT.
3164 LAST is nonzero if we should return the last insn of the sequence produced.
3166 If this routine succeeds in splitting, it returns the first or last
3167 replacement insn depending on the value of LAST. Otherwise, it
3168 returns TRIAL. If the insn to be returned can be split, it will be. */
3171 try_split (rtx pat
, rtx trial
, int last
)
3173 rtx before
= PREV_INSN (trial
);
3174 rtx after
= NEXT_INSN (trial
);
3175 int has_barrier
= 0;
3178 rtx insn_last
, insn
;
3181 if (any_condjump_p (trial
)
3182 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3183 split_branch_probability
= INTVAL (XEXP (note
, 0));
3184 probability
= split_branch_probability
;
3186 seq
= split_insns (pat
, trial
);
3188 split_branch_probability
= -1;
3190 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3191 We may need to handle this specially. */
3192 if (after
&& BARRIER_P (after
))
3195 after
= NEXT_INSN (after
);
3201 /* Avoid infinite loop if any insn of the result matches
3202 the original pattern. */
3206 if (INSN_P (insn_last
)
3207 && rtx_equal_p (PATTERN (insn_last
), pat
))
3209 if (!NEXT_INSN (insn_last
))
3211 insn_last
= NEXT_INSN (insn_last
);
3214 /* We will be adding the new sequence to the function. The splitters
3215 may have introduced invalid RTL sharing, so unshare the sequence now. */
3216 unshare_all_rtl_in_chain (seq
);
3219 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3223 mark_jump_label (PATTERN (insn
), insn
, 0);
3225 if (probability
!= -1
3226 && any_condjump_p (insn
)
3227 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3229 /* We can preserve the REG_BR_PROB notes only if exactly
3230 one jump is created, otherwise the machine description
3231 is responsible for this step using
3232 split_branch_probability variable. */
3233 gcc_assert (njumps
== 1);
3234 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3239 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3240 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3243 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3246 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3249 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3250 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3254 /* Copy notes, particularly those related to the CFG. */
3255 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3257 switch (REG_NOTE_KIND (note
))
3260 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3263 || (flag_non_call_exceptions
&& INSN_P (insn
)
3264 && may_trap_p (PATTERN (insn
))))
3265 add_reg_note (insn
, REG_EH_REGION
, XEXP (note
, 0));
3271 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3274 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3278 case REG_NON_LOCAL_GOTO
:
3279 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3282 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3288 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3290 rtx reg
= XEXP (note
, 0);
3291 if (!FIND_REG_INC_NOTE (insn
, reg
)
3292 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3293 add_reg_note (insn
, REG_INC
, reg
);
3303 /* If there are LABELS inside the split insns increment the
3304 usage count so we don't delete the label. */
3308 while (insn
!= NULL_RTX
)
3310 /* JUMP_P insns have already been "marked" above. */
3311 if (NONJUMP_INSN_P (insn
))
3312 mark_label_nuses (PATTERN (insn
));
3314 insn
= PREV_INSN (insn
);
3318 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3320 delete_insn (trial
);
3322 emit_barrier_after (tem
);
3324 /* Recursively call try_split for each new insn created; by the
3325 time control returns here that insn will be fully split, so
3326 set LAST and continue from the insn after the one returned.
3327 We can't use next_active_insn here since AFTER may be a note.
3328 Ignore deleted insns, which can be occur if not optimizing. */
3329 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3330 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3331 tem
= try_split (PATTERN (tem
), tem
, 1);
3333 /* Return either the first or the last insn, depending on which was
3336 ? (after
? PREV_INSN (after
) : last_insn
)
3337 : NEXT_INSN (before
);
3340 /* Make and return an INSN rtx, initializing all its slots.
3341 Store PATTERN in the pattern slots. */
3344 make_insn_raw (rtx pattern
)
3348 insn
= rtx_alloc (INSN
);
3350 INSN_UID (insn
) = cur_insn_uid
++;
3351 PATTERN (insn
) = pattern
;
3352 INSN_CODE (insn
) = -1;
3353 REG_NOTES (insn
) = NULL
;
3354 INSN_LOCATOR (insn
) = curr_insn_locator ();
3355 BLOCK_FOR_INSN (insn
) = NULL
;
3357 #ifdef ENABLE_RTL_CHECKING
3360 && (returnjump_p (insn
)
3361 || (GET_CODE (insn
) == SET
3362 && SET_DEST (insn
) == pc_rtx
)))
3364 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3372 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3375 make_jump_insn_raw (rtx pattern
)
3379 insn
= rtx_alloc (JUMP_INSN
);
3380 INSN_UID (insn
) = cur_insn_uid
++;
3382 PATTERN (insn
) = pattern
;
3383 INSN_CODE (insn
) = -1;
3384 REG_NOTES (insn
) = NULL
;
3385 JUMP_LABEL (insn
) = NULL
;
3386 INSN_LOCATOR (insn
) = curr_insn_locator ();
3387 BLOCK_FOR_INSN (insn
) = NULL
;
3392 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3395 make_call_insn_raw (rtx pattern
)
3399 insn
= rtx_alloc (CALL_INSN
);
3400 INSN_UID (insn
) = cur_insn_uid
++;
3402 PATTERN (insn
) = pattern
;
3403 INSN_CODE (insn
) = -1;
3404 REG_NOTES (insn
) = NULL
;
3405 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3406 INSN_LOCATOR (insn
) = curr_insn_locator ();
3407 BLOCK_FOR_INSN (insn
) = NULL
;
3412 /* Add INSN to the end of the doubly-linked list.
3413 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3418 PREV_INSN (insn
) = last_insn
;
3419 NEXT_INSN (insn
) = 0;
3421 if (NULL
!= last_insn
)
3422 NEXT_INSN (last_insn
) = insn
;
3424 if (NULL
== first_insn
)
3430 /* Add INSN into the doubly-linked list after insn AFTER. This and
3431 the next should be the only functions called to insert an insn once
3432 delay slots have been filled since only they know how to update a
3436 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3438 rtx next
= NEXT_INSN (after
);
3440 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3442 NEXT_INSN (insn
) = next
;
3443 PREV_INSN (insn
) = after
;
3447 PREV_INSN (next
) = insn
;
3448 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3449 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3451 else if (last_insn
== after
)
3455 struct sequence_stack
*stack
= seq_stack
;
3456 /* Scan all pending sequences too. */
3457 for (; stack
; stack
= stack
->next
)
3458 if (after
== stack
->last
)
3467 if (!BARRIER_P (after
)
3468 && !BARRIER_P (insn
)
3469 && (bb
= BLOCK_FOR_INSN (after
)))
3471 set_block_for_insn (insn
, bb
);
3473 df_insn_rescan (insn
);
3474 /* Should not happen as first in the BB is always
3475 either NOTE or LABEL. */
3476 if (BB_END (bb
) == after
3477 /* Avoid clobbering of structure when creating new BB. */
3478 && !BARRIER_P (insn
)
3479 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3483 NEXT_INSN (after
) = insn
;
3484 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3486 rtx sequence
= PATTERN (after
);
3487 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3491 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3492 the previous should be the only functions called to insert an insn
3493 once delay slots have been filled since only they know how to
3494 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3498 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3500 rtx prev
= PREV_INSN (before
);
3502 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3504 PREV_INSN (insn
) = prev
;
3505 NEXT_INSN (insn
) = before
;
3509 NEXT_INSN (prev
) = insn
;
3510 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3512 rtx sequence
= PATTERN (prev
);
3513 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3516 else if (first_insn
== before
)
3520 struct sequence_stack
*stack
= seq_stack
;
3521 /* Scan all pending sequences too. */
3522 for (; stack
; stack
= stack
->next
)
3523 if (before
== stack
->first
)
3525 stack
->first
= insn
;
3533 && !BARRIER_P (before
)
3534 && !BARRIER_P (insn
))
3535 bb
= BLOCK_FOR_INSN (before
);
3539 set_block_for_insn (insn
, bb
);
3541 df_insn_rescan (insn
);
3542 /* Should not happen as first in the BB is always either NOTE or
3544 gcc_assert (BB_HEAD (bb
) != insn
3545 /* Avoid clobbering of structure when creating new BB. */
3547 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3550 PREV_INSN (before
) = insn
;
3551 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3552 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3556 /* Replace insn with an deleted instruction note. */
3558 void set_insn_deleted (rtx insn
)
3560 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3561 PUT_CODE (insn
, NOTE
);
3562 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3566 /* Remove an insn from its doubly-linked list. This function knows how
3567 to handle sequences. */
3569 remove_insn (rtx insn
)
3571 rtx next
= NEXT_INSN (insn
);
3572 rtx prev
= PREV_INSN (insn
);
3575 /* Later in the code, the block will be marked dirty. */
3576 df_insn_delete (NULL
, INSN_UID (insn
));
3580 NEXT_INSN (prev
) = next
;
3581 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3583 rtx sequence
= PATTERN (prev
);
3584 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3587 else if (first_insn
== insn
)
3591 struct sequence_stack
*stack
= seq_stack
;
3592 /* Scan all pending sequences too. */
3593 for (; stack
; stack
= stack
->next
)
3594 if (insn
== stack
->first
)
3596 stack
->first
= next
;
3605 PREV_INSN (next
) = prev
;
3606 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3607 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3609 else if (last_insn
== insn
)
3613 struct sequence_stack
*stack
= seq_stack
;
3614 /* Scan all pending sequences too. */
3615 for (; stack
; stack
= stack
->next
)
3616 if (insn
== stack
->last
)
3624 if (!BARRIER_P (insn
)
3625 && (bb
= BLOCK_FOR_INSN (insn
)))
3628 df_set_bb_dirty (bb
);
3629 if (BB_HEAD (bb
) == insn
)
3631 /* Never ever delete the basic block note without deleting whole
3633 gcc_assert (!NOTE_P (insn
));
3634 BB_HEAD (bb
) = next
;
3636 if (BB_END (bb
) == insn
)
3641 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3644 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3646 gcc_assert (call_insn
&& CALL_P (call_insn
));
3648 /* Put the register usage information on the CALL. If there is already
3649 some usage information, put ours at the end. */
3650 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3654 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3655 link
= XEXP (link
, 1))
3658 XEXP (link
, 1) = call_fusage
;
3661 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3664 /* Delete all insns made since FROM.
3665 FROM becomes the new last instruction. */
3668 delete_insns_since (rtx from
)
3673 NEXT_INSN (from
) = 0;
3677 /* This function is deprecated, please use sequences instead.
3679 Move a consecutive bunch of insns to a different place in the chain.
3680 The insns to be moved are those between FROM and TO.
3681 They are moved to a new position after the insn AFTER.
3682 AFTER must not be FROM or TO or any insn in between.
3684 This function does not know about SEQUENCEs and hence should not be
3685 called after delay-slot filling has been done. */
3688 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3690 /* Splice this bunch out of where it is now. */
3691 if (PREV_INSN (from
))
3692 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3694 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3695 if (last_insn
== to
)
3696 last_insn
= PREV_INSN (from
);
3697 if (first_insn
== from
)
3698 first_insn
= NEXT_INSN (to
);
3700 /* Make the new neighbors point to it and it to them. */
3701 if (NEXT_INSN (after
))
3702 PREV_INSN (NEXT_INSN (after
)) = to
;
3704 NEXT_INSN (to
) = NEXT_INSN (after
);
3705 PREV_INSN (from
) = after
;
3706 NEXT_INSN (after
) = from
;
3707 if (after
== last_insn
)
3711 /* Same as function above, but take care to update BB boundaries. */
3713 reorder_insns (rtx from
, rtx to
, rtx after
)
3715 rtx prev
= PREV_INSN (from
);
3716 basic_block bb
, bb2
;
3718 reorder_insns_nobb (from
, to
, after
);
3720 if (!BARRIER_P (after
)
3721 && (bb
= BLOCK_FOR_INSN (after
)))
3724 df_set_bb_dirty (bb
);
3726 if (!BARRIER_P (from
)
3727 && (bb2
= BLOCK_FOR_INSN (from
)))
3729 if (BB_END (bb2
) == to
)
3730 BB_END (bb2
) = prev
;
3731 df_set_bb_dirty (bb2
);
3734 if (BB_END (bb
) == after
)
3737 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3739 df_insn_change_bb (x
, bb
);
3744 /* Emit insn(s) of given code and pattern
3745 at a specified place within the doubly-linked list.
3747 All of the emit_foo global entry points accept an object
3748 X which is either an insn list or a PATTERN of a single
3751 There are thus a few canonical ways to generate code and
3752 emit it at a specific place in the instruction stream. For
3753 example, consider the instruction named SPOT and the fact that
3754 we would like to emit some instructions before SPOT. We might
3758 ... emit the new instructions ...
3759 insns_head = get_insns ();
3762 emit_insn_before (insns_head, SPOT);
3764 It used to be common to generate SEQUENCE rtl instead, but that
3765 is a relic of the past which no longer occurs. The reason is that
3766 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3767 generated would almost certainly die right after it was created. */
3769 /* Make X be output before the instruction BEFORE. */
3772 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
3777 gcc_assert (before
);
3782 switch (GET_CODE (x
))
3793 rtx next
= NEXT_INSN (insn
);
3794 add_insn_before (insn
, before
, bb
);
3800 #ifdef ENABLE_RTL_CHECKING
3807 last
= make_insn_raw (x
);
3808 add_insn_before (last
, before
, bb
);
3815 /* Make an instruction with body X and code JUMP_INSN
3816 and output it before the instruction BEFORE. */
3819 emit_jump_insn_before_noloc (rtx x
, rtx before
)
3821 rtx insn
, last
= NULL_RTX
;
3823 gcc_assert (before
);
3825 switch (GET_CODE (x
))
3836 rtx next
= NEXT_INSN (insn
);
3837 add_insn_before (insn
, before
, NULL
);
3843 #ifdef ENABLE_RTL_CHECKING
3850 last
= make_jump_insn_raw (x
);
3851 add_insn_before (last
, before
, NULL
);
3858 /* Make an instruction with body X and code CALL_INSN
3859 and output it before the instruction BEFORE. */
3862 emit_call_insn_before_noloc (rtx x
, rtx before
)
3864 rtx last
= NULL_RTX
, insn
;
3866 gcc_assert (before
);
3868 switch (GET_CODE (x
))
3879 rtx next
= NEXT_INSN (insn
);
3880 add_insn_before (insn
, before
, NULL
);
3886 #ifdef ENABLE_RTL_CHECKING
3893 last
= make_call_insn_raw (x
);
3894 add_insn_before (last
, before
, NULL
);
3901 /* Make an insn of code BARRIER
3902 and output it before the insn BEFORE. */
3905 emit_barrier_before (rtx before
)
3907 rtx insn
= rtx_alloc (BARRIER
);
3909 INSN_UID (insn
) = cur_insn_uid
++;
3911 add_insn_before (insn
, before
, NULL
);
3915 /* Emit the label LABEL before the insn BEFORE. */
3918 emit_label_before (rtx label
, rtx before
)
3920 /* This can be called twice for the same label as a result of the
3921 confusion that follows a syntax error! So make it harmless. */
3922 if (INSN_UID (label
) == 0)
3924 INSN_UID (label
) = cur_insn_uid
++;
3925 add_insn_before (label
, before
, NULL
);
3931 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3934 emit_note_before (enum insn_note subtype
, rtx before
)
3936 rtx note
= rtx_alloc (NOTE
);
3937 INSN_UID (note
) = cur_insn_uid
++;
3938 NOTE_KIND (note
) = subtype
;
3939 BLOCK_FOR_INSN (note
) = NULL
;
3940 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3942 add_insn_before (note
, before
, NULL
);
3946 /* Helper for emit_insn_after, handles lists of instructions
3950 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
3954 if (!bb
&& !BARRIER_P (after
))
3955 bb
= BLOCK_FOR_INSN (after
);
3959 df_set_bb_dirty (bb
);
3960 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3961 if (!BARRIER_P (last
))
3963 set_block_for_insn (last
, bb
);
3964 df_insn_rescan (last
);
3966 if (!BARRIER_P (last
))
3968 set_block_for_insn (last
, bb
);
3969 df_insn_rescan (last
);
3971 if (BB_END (bb
) == after
)
3975 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3978 after_after
= NEXT_INSN (after
);
3980 NEXT_INSN (after
) = first
;
3981 PREV_INSN (first
) = after
;
3982 NEXT_INSN (last
) = after_after
;
3984 PREV_INSN (after_after
) = last
;
3986 if (after
== last_insn
)
3991 /* Make X be output after the insn AFTER and set the BB of insn. If
3992 BB is NULL, an attempt is made to infer the BB from AFTER. */
3995 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4004 switch (GET_CODE (x
))
4012 last
= emit_insn_after_1 (x
, after
, bb
);
4015 #ifdef ENABLE_RTL_CHECKING
4022 last
= make_insn_raw (x
);
4023 add_insn_after (last
, after
, bb
);
4031 /* Make an insn of code JUMP_INSN with body X
4032 and output it after the insn AFTER. */
4035 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4041 switch (GET_CODE (x
))
4049 last
= emit_insn_after_1 (x
, after
, NULL
);
4052 #ifdef ENABLE_RTL_CHECKING
4059 last
= make_jump_insn_raw (x
);
4060 add_insn_after (last
, after
, NULL
);
4067 /* Make an instruction with body X and code CALL_INSN
4068 and output it after the instruction AFTER. */
4071 emit_call_insn_after_noloc (rtx x
, rtx after
)
4077 switch (GET_CODE (x
))
4085 last
= emit_insn_after_1 (x
, after
, NULL
);
4088 #ifdef ENABLE_RTL_CHECKING
4095 last
= make_call_insn_raw (x
);
4096 add_insn_after (last
, after
, NULL
);
4103 /* Make an insn of code BARRIER
4104 and output it after the insn AFTER. */
4107 emit_barrier_after (rtx after
)
4109 rtx insn
= rtx_alloc (BARRIER
);
4111 INSN_UID (insn
) = cur_insn_uid
++;
4113 add_insn_after (insn
, after
, NULL
);
4117 /* Emit the label LABEL after the insn AFTER. */
4120 emit_label_after (rtx label
, rtx after
)
4122 /* This can be called twice for the same label
4123 as a result of the confusion that follows a syntax error!
4124 So make it harmless. */
4125 if (INSN_UID (label
) == 0)
4127 INSN_UID (label
) = cur_insn_uid
++;
4128 add_insn_after (label
, after
, NULL
);
4134 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4137 emit_note_after (enum insn_note subtype
, rtx after
)
4139 rtx note
= rtx_alloc (NOTE
);
4140 INSN_UID (note
) = cur_insn_uid
++;
4141 NOTE_KIND (note
) = subtype
;
4142 BLOCK_FOR_INSN (note
) = NULL
;
4143 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4144 add_insn_after (note
, after
, NULL
);
4148 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4150 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4152 rtx last
= emit_insn_after_noloc (pattern
, after
, NULL
);
4154 if (pattern
== NULL_RTX
|| !loc
)
4157 after
= NEXT_INSN (after
);
4160 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4161 INSN_LOCATOR (after
) = loc
;
4164 after
= NEXT_INSN (after
);
4169 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4171 emit_insn_after (rtx pattern
, rtx after
)
4174 return emit_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4176 return emit_insn_after_noloc (pattern
, after
, NULL
);
4179 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4181 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4183 rtx last
= emit_jump_insn_after_noloc (pattern
, after
);
4185 if (pattern
== NULL_RTX
|| !loc
)
4188 after
= NEXT_INSN (after
);
4191 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4192 INSN_LOCATOR (after
) = loc
;
4195 after
= NEXT_INSN (after
);
4200 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4202 emit_jump_insn_after (rtx pattern
, rtx after
)
4205 return emit_jump_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4207 return emit_jump_insn_after_noloc (pattern
, after
);
4210 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4212 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4214 rtx last
= emit_call_insn_after_noloc (pattern
, after
);
4216 if (pattern
== NULL_RTX
|| !loc
)
4219 after
= NEXT_INSN (after
);
4222 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4223 INSN_LOCATOR (after
) = loc
;
4226 after
= NEXT_INSN (after
);
4231 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4233 emit_call_insn_after (rtx pattern
, rtx after
)
4236 return emit_call_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4238 return emit_call_insn_after_noloc (pattern
, after
);
4241 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4243 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4245 rtx first
= PREV_INSN (before
);
4246 rtx last
= emit_insn_before_noloc (pattern
, before
, NULL
);
4248 if (pattern
== NULL_RTX
|| !loc
)
4252 first
= get_insns ();
4254 first
= NEXT_INSN (first
);
4257 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4258 INSN_LOCATOR (first
) = loc
;
4261 first
= NEXT_INSN (first
);
4266 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4268 emit_insn_before (rtx pattern
, rtx before
)
4270 if (INSN_P (before
))
4271 return emit_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4273 return emit_insn_before_noloc (pattern
, before
, NULL
);
4276 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4278 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4280 rtx first
= PREV_INSN (before
);
4281 rtx last
= emit_jump_insn_before_noloc (pattern
, before
);
4283 if (pattern
== NULL_RTX
)
4286 first
= NEXT_INSN (first
);
4289 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4290 INSN_LOCATOR (first
) = loc
;
4293 first
= NEXT_INSN (first
);
4298 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4300 emit_jump_insn_before (rtx pattern
, rtx before
)
4302 if (INSN_P (before
))
4303 return emit_jump_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4305 return emit_jump_insn_before_noloc (pattern
, before
);
4308 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4310 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4312 rtx first
= PREV_INSN (before
);
4313 rtx last
= emit_call_insn_before_noloc (pattern
, before
);
4315 if (pattern
== NULL_RTX
)
4318 first
= NEXT_INSN (first
);
4321 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4322 INSN_LOCATOR (first
) = loc
;
4325 first
= NEXT_INSN (first
);
4330 /* like emit_call_insn_before_noloc,
4331 but set insn_locator according to before. */
4333 emit_call_insn_before (rtx pattern
, rtx before
)
4335 if (INSN_P (before
))
4336 return emit_call_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4338 return emit_call_insn_before_noloc (pattern
, before
);
4341 /* Take X and emit it at the end of the doubly-linked
4344 Returns the last insn emitted. */
4349 rtx last
= last_insn
;
4355 switch (GET_CODE (x
))
4366 rtx next
= NEXT_INSN (insn
);
4373 #ifdef ENABLE_RTL_CHECKING
4380 last
= make_insn_raw (x
);
4388 /* Make an insn of code JUMP_INSN with pattern X
4389 and add it to the end of the doubly-linked list. */
4392 emit_jump_insn (rtx x
)
4394 rtx last
= NULL_RTX
, insn
;
4396 switch (GET_CODE (x
))
4407 rtx next
= NEXT_INSN (insn
);
4414 #ifdef ENABLE_RTL_CHECKING
4421 last
= make_jump_insn_raw (x
);
4429 /* Make an insn of code CALL_INSN with pattern X
4430 and add it to the end of the doubly-linked list. */
4433 emit_call_insn (rtx x
)
4437 switch (GET_CODE (x
))
4445 insn
= emit_insn (x
);
4448 #ifdef ENABLE_RTL_CHECKING
4455 insn
= make_call_insn_raw (x
);
4463 /* Add the label LABEL to the end of the doubly-linked list. */
4466 emit_label (rtx label
)
4468 /* This can be called twice for the same label
4469 as a result of the confusion that follows a syntax error!
4470 So make it harmless. */
4471 if (INSN_UID (label
) == 0)
4473 INSN_UID (label
) = cur_insn_uid
++;
4479 /* Make an insn of code BARRIER
4480 and add it to the end of the doubly-linked list. */
4485 rtx barrier
= rtx_alloc (BARRIER
);
4486 INSN_UID (barrier
) = cur_insn_uid
++;
4491 /* Emit a copy of note ORIG. */
4494 emit_note_copy (rtx orig
)
4498 note
= rtx_alloc (NOTE
);
4500 INSN_UID (note
) = cur_insn_uid
++;
4501 NOTE_DATA (note
) = NOTE_DATA (orig
);
4502 NOTE_KIND (note
) = NOTE_KIND (orig
);
4503 BLOCK_FOR_INSN (note
) = NULL
;
4509 /* Make an insn of code NOTE or type NOTE_NO
4510 and add it to the end of the doubly-linked list. */
4513 emit_note (enum insn_note kind
)
4517 note
= rtx_alloc (NOTE
);
4518 INSN_UID (note
) = cur_insn_uid
++;
4519 NOTE_KIND (note
) = kind
;
4520 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4521 BLOCK_FOR_INSN (note
) = NULL
;
4526 /* Emit a clobber of lvalue X. */
4529 emit_clobber (rtx x
)
4531 /* CONCATs should not appear in the insn stream. */
4532 if (GET_CODE (x
) == CONCAT
)
4534 emit_clobber (XEXP (x
, 0));
4535 return emit_clobber (XEXP (x
, 1));
4537 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4540 /* Return a sequence of insns to clobber lvalue X. */
4554 /* Emit a use of rvalue X. */
4559 /* CONCATs should not appear in the insn stream. */
4560 if (GET_CODE (x
) == CONCAT
)
4562 emit_use (XEXP (x
, 0));
4563 return emit_use (XEXP (x
, 1));
4565 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4568 /* Return a sequence of insns to use rvalue X. */
4582 /* Cause next statement to emit a line note even if the line number
4586 force_next_line_note (void)
4591 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4592 note of this type already exists, remove it first. */
4595 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4597 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4603 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4604 has multiple sets (some callers assume single_set
4605 means the insn only has one set, when in fact it
4606 means the insn only has one * useful * set). */
4607 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4613 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4614 It serves no useful purpose and breaks eliminate_regs. */
4615 if (GET_CODE (datum
) == ASM_OPERANDS
)
4620 XEXP (note
, 0) = datum
;
4621 df_notes_rescan (insn
);
4629 XEXP (note
, 0) = datum
;
4635 add_reg_note (insn
, kind
, datum
);
4641 df_notes_rescan (insn
);
4647 return REG_NOTES (insn
);
4650 /* Return an indication of which type of insn should have X as a body.
4651 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4653 static enum rtx_code
4654 classify_insn (rtx x
)
4658 if (GET_CODE (x
) == CALL
)
4660 if (GET_CODE (x
) == RETURN
)
4662 if (GET_CODE (x
) == SET
)
4664 if (SET_DEST (x
) == pc_rtx
)
4666 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4671 if (GET_CODE (x
) == PARALLEL
)
4674 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4675 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4677 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4678 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4680 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4681 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4687 /* Emit the rtl pattern X as an appropriate kind of insn.
4688 If X is a label, it is simply added into the insn chain. */
4693 enum rtx_code code
= classify_insn (x
);
4698 return emit_label (x
);
4700 return emit_insn (x
);
4703 rtx insn
= emit_jump_insn (x
);
4704 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4705 return emit_barrier ();
4709 return emit_call_insn (x
);
4715 /* Space for free sequence stack entries. */
4716 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
4718 /* Begin emitting insns to a sequence. If this sequence will contain
4719 something that might cause the compiler to pop arguments to function
4720 calls (because those pops have previously been deferred; see
4721 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4722 before calling this function. That will ensure that the deferred
4723 pops are not accidentally emitted in the middle of this sequence. */
4726 start_sequence (void)
4728 struct sequence_stack
*tem
;
4730 if (free_sequence_stack
!= NULL
)
4732 tem
= free_sequence_stack
;
4733 free_sequence_stack
= tem
->next
;
4736 tem
= GGC_NEW (struct sequence_stack
);
4738 tem
->next
= seq_stack
;
4739 tem
->first
= first_insn
;
4740 tem
->last
= last_insn
;
4748 /* Set up the insn chain starting with FIRST as the current sequence,
4749 saving the previously current one. See the documentation for
4750 start_sequence for more information about how to use this function. */
4753 push_to_sequence (rtx first
)
4759 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4765 /* Like push_to_sequence, but take the last insn as an argument to avoid
4766 looping through the list. */
4769 push_to_sequence2 (rtx first
, rtx last
)
4777 /* Set up the outer-level insn chain
4778 as the current sequence, saving the previously current one. */
4781 push_topmost_sequence (void)
4783 struct sequence_stack
*stack
, *top
= NULL
;
4787 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4790 first_insn
= top
->first
;
4791 last_insn
= top
->last
;
4794 /* After emitting to the outer-level insn chain, update the outer-level
4795 insn chain, and restore the previous saved state. */
4798 pop_topmost_sequence (void)
4800 struct sequence_stack
*stack
, *top
= NULL
;
4802 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4805 top
->first
= first_insn
;
4806 top
->last
= last_insn
;
4811 /* After emitting to a sequence, restore previous saved state.
4813 To get the contents of the sequence just made, you must call
4814 `get_insns' *before* calling here.
4816 If the compiler might have deferred popping arguments while
4817 generating this sequence, and this sequence will not be immediately
4818 inserted into the instruction stream, use do_pending_stack_adjust
4819 before calling get_insns. That will ensure that the deferred
4820 pops are inserted into this sequence, and not into some random
4821 location in the instruction stream. See INHIBIT_DEFER_POP for more
4822 information about deferred popping of arguments. */
4827 struct sequence_stack
*tem
= seq_stack
;
4829 first_insn
= tem
->first
;
4830 last_insn
= tem
->last
;
4831 seq_stack
= tem
->next
;
4833 memset (tem
, 0, sizeof (*tem
));
4834 tem
->next
= free_sequence_stack
;
4835 free_sequence_stack
= tem
;
4838 /* Return 1 if currently emitting into a sequence. */
4841 in_sequence_p (void)
4843 return seq_stack
!= 0;
4846 /* Put the various virtual registers into REGNO_REG_RTX. */
4849 init_virtual_regs (void)
4851 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
4852 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
4853 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
4854 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
4855 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
4859 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4860 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
4861 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
4862 static int copy_insn_n_scratches
;
4864 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4865 copied an ASM_OPERANDS.
4866 In that case, it is the original input-operand vector. */
4867 static rtvec orig_asm_operands_vector
;
4869 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4870 copied an ASM_OPERANDS.
4871 In that case, it is the copied input-operand vector. */
4872 static rtvec copy_asm_operands_vector
;
4874 /* Likewise for the constraints vector. */
4875 static rtvec orig_asm_constraints_vector
;
4876 static rtvec copy_asm_constraints_vector
;
4878 /* Recursively create a new copy of an rtx for copy_insn.
4879 This function differs from copy_rtx in that it handles SCRATCHes and
4880 ASM_OPERANDs properly.
4881 Normally, this function is not used directly; use copy_insn as front end.
4882 However, you could first copy an insn pattern with copy_insn and then use
4883 this function afterwards to properly copy any REG_NOTEs containing
4887 copy_insn_1 (rtx orig
)
4892 const char *format_ptr
;
4894 code
= GET_CODE (orig
);
4909 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
4914 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
4915 if (copy_insn_scratch_in
[i
] == orig
)
4916 return copy_insn_scratch_out
[i
];
4920 if (shared_const_p (orig
))
4924 /* A MEM with a constant address is not sharable. The problem is that
4925 the constant address may need to be reloaded. If the mem is shared,
4926 then reloading one copy of this mem will cause all copies to appear
4927 to have been reloaded. */
4933 /* Copy the various flags, fields, and other information. We assume
4934 that all fields need copying, and then clear the fields that should
4935 not be copied. That is the sensible default behavior, and forces
4936 us to explicitly document why we are *not* copying a flag. */
4937 copy
= shallow_copy_rtx (orig
);
4939 /* We do not copy the USED flag, which is used as a mark bit during
4940 walks over the RTL. */
4941 RTX_FLAG (copy
, used
) = 0;
4943 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4946 RTX_FLAG (copy
, jump
) = 0;
4947 RTX_FLAG (copy
, call
) = 0;
4948 RTX_FLAG (copy
, frame_related
) = 0;
4951 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
4953 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
4954 switch (*format_ptr
++)
4957 if (XEXP (orig
, i
) != NULL
)
4958 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
4963 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
4964 XVEC (copy
, i
) = copy_asm_constraints_vector
;
4965 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
4966 XVEC (copy
, i
) = copy_asm_operands_vector
;
4967 else if (XVEC (orig
, i
) != NULL
)
4969 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
4970 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
4971 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
4982 /* These are left unchanged. */
4989 if (code
== SCRATCH
)
4991 i
= copy_insn_n_scratches
++;
4992 gcc_assert (i
< MAX_RECOG_OPERANDS
);
4993 copy_insn_scratch_in
[i
] = orig
;
4994 copy_insn_scratch_out
[i
] = copy
;
4996 else if (code
== ASM_OPERANDS
)
4998 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
4999 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5000 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5001 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5007 /* Create a new copy of an rtx.
5008 This function differs from copy_rtx in that it handles SCRATCHes and
5009 ASM_OPERANDs properly.
5010 INSN doesn't really have to be a full INSN; it could be just the
5013 copy_insn (rtx insn
)
5015 copy_insn_n_scratches
= 0;
5016 orig_asm_operands_vector
= 0;
5017 orig_asm_constraints_vector
= 0;
5018 copy_asm_operands_vector
= 0;
5019 copy_asm_constraints_vector
= 0;
5020 return copy_insn_1 (insn
);
5023 /* Initialize data structures and variables in this file
5024 before generating rtl for each function. */
5032 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5033 last_location
= UNKNOWN_LOCATION
;
5034 first_label_num
= label_num
;
5037 /* Init the tables that describe all the pseudo regs. */
5039 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5041 crtl
->emit
.regno_pointer_align
5042 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5045 = GGC_NEWVEC (rtx
, crtl
->emit
.regno_pointer_align_length
);
5047 /* Put copies of all the hard registers into regno_reg_rtx. */
5048 memcpy (regno_reg_rtx
,
5049 static_regno_reg_rtx
,
5050 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5052 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5053 init_virtual_regs ();
5055 /* Indicate that the virtual registers and stack locations are
5057 REG_POINTER (stack_pointer_rtx
) = 1;
5058 REG_POINTER (frame_pointer_rtx
) = 1;
5059 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5060 REG_POINTER (arg_pointer_rtx
) = 1;
5062 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5063 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5064 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5065 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5066 REG_POINTER (virtual_cfa_rtx
) = 1;
5068 #ifdef STACK_BOUNDARY
5069 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5070 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5071 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5072 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5074 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5075 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5076 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5077 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5078 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5081 #ifdef INIT_EXPANDERS
5086 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5089 gen_const_vector (enum machine_mode mode
, int constant
)
5094 enum machine_mode inner
;
5096 units
= GET_MODE_NUNITS (mode
);
5097 inner
= GET_MODE_INNER (mode
);
5099 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5101 v
= rtvec_alloc (units
);
5103 /* We need to call this function after we set the scalar const_tiny_rtx
5105 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5107 for (i
= 0; i
< units
; ++i
)
5108 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5110 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5114 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5115 all elements are zero, and the one vector when all elements are one. */
5117 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5119 enum machine_mode inner
= GET_MODE_INNER (mode
);
5120 int nunits
= GET_MODE_NUNITS (mode
);
5124 /* Check to see if all of the elements have the same value. */
5125 x
= RTVEC_ELT (v
, nunits
- 1);
5126 for (i
= nunits
- 2; i
>= 0; i
--)
5127 if (RTVEC_ELT (v
, i
) != x
)
5130 /* If the values are all the same, check to see if we can use one of the
5131 standard constant vectors. */
5134 if (x
== CONST0_RTX (inner
))
5135 return CONST0_RTX (mode
);
5136 else if (x
== CONST1_RTX (inner
))
5137 return CONST1_RTX (mode
);
5140 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5143 /* Initialise global register information required by all functions. */
5146 init_emit_regs (void)
5150 /* Reset register attributes */
5151 htab_empty (reg_attrs_htab
);
5153 /* We need reg_raw_mode, so initialize the modes now. */
5154 init_reg_modes_target ();
5156 /* Assign register numbers to the globally defined register rtx. */
5157 pc_rtx
= gen_rtx_PC (VOIDmode
);
5158 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5159 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5160 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5161 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5162 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5163 virtual_incoming_args_rtx
=
5164 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5165 virtual_stack_vars_rtx
=
5166 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5167 virtual_stack_dynamic_rtx
=
5168 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5169 virtual_outgoing_args_rtx
=
5170 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5171 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5173 /* Initialize RTL for commonly used hard registers. These are
5174 copied into regno_reg_rtx as we begin to compile each function. */
5175 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5176 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5178 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5179 return_address_pointer_rtx
5180 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5183 #ifdef STATIC_CHAIN_REGNUM
5184 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
5186 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5187 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
5188 static_chain_incoming_rtx
5189 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
5192 static_chain_incoming_rtx
= static_chain_rtx
;
5196 static_chain_rtx
= STATIC_CHAIN
;
5198 #ifdef STATIC_CHAIN_INCOMING
5199 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
5201 static_chain_incoming_rtx
= static_chain_rtx
;
5205 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5206 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5208 pic_offset_table_rtx
= NULL_RTX
;
5211 /* Create some permanent unique rtl objects shared between all functions.
5212 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5215 init_emit_once (int line_numbers
)
5218 enum machine_mode mode
;
5219 enum machine_mode double_mode
;
5221 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5223 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5224 const_int_htab_eq
, NULL
);
5226 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5227 const_double_htab_eq
, NULL
);
5229 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5230 const_fixed_htab_eq
, NULL
);
5232 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5233 mem_attrs_htab_eq
, NULL
);
5234 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5235 reg_attrs_htab_eq
, NULL
);
5237 no_line_numbers
= ! line_numbers
;
5239 /* Compute the word and byte modes. */
5241 byte_mode
= VOIDmode
;
5242 word_mode
= VOIDmode
;
5243 double_mode
= VOIDmode
;
5245 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5247 mode
= GET_MODE_WIDER_MODE (mode
))
5249 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5250 && byte_mode
== VOIDmode
)
5253 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5254 && word_mode
== VOIDmode
)
5258 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5260 mode
= GET_MODE_WIDER_MODE (mode
))
5262 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5263 && double_mode
== VOIDmode
)
5267 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5269 #ifdef INIT_EXPANDERS
5270 /* This is to initialize {init|mark|free}_machine_status before the first
5271 call to push_function_context_to. This is needed by the Chill front
5272 end which calls push_function_context_to before the first call to
5273 init_function_start. */
5277 /* Create the unique rtx's for certain rtx codes and operand values. */
5279 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5280 tries to use these variables. */
5281 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5282 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5283 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5285 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5286 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5287 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5289 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5291 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5292 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5293 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5298 dconsthalf
= dconst1
;
5299 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5301 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5303 const REAL_VALUE_TYPE
*const r
=
5304 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5306 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5308 mode
= GET_MODE_WIDER_MODE (mode
))
5309 const_tiny_rtx
[i
][(int) mode
] =
5310 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5312 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5314 mode
= GET_MODE_WIDER_MODE (mode
))
5315 const_tiny_rtx
[i
][(int) mode
] =
5316 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5318 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5320 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5322 mode
= GET_MODE_WIDER_MODE (mode
))
5323 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5325 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5327 mode
= GET_MODE_WIDER_MODE (mode
))
5328 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5331 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5333 mode
= GET_MODE_WIDER_MODE (mode
))
5335 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5336 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5339 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5341 mode
= GET_MODE_WIDER_MODE (mode
))
5343 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5344 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5347 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5349 mode
= GET_MODE_WIDER_MODE (mode
))
5351 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5352 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5355 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5357 mode
= GET_MODE_WIDER_MODE (mode
))
5359 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5360 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5363 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5365 mode
= GET_MODE_WIDER_MODE (mode
))
5367 FCONST0(mode
).data
.high
= 0;
5368 FCONST0(mode
).data
.low
= 0;
5369 FCONST0(mode
).mode
= mode
;
5370 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5371 FCONST0 (mode
), mode
);
5374 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5376 mode
= GET_MODE_WIDER_MODE (mode
))
5378 FCONST0(mode
).data
.high
= 0;
5379 FCONST0(mode
).data
.low
= 0;
5380 FCONST0(mode
).mode
= mode
;
5381 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5382 FCONST0 (mode
), mode
);
5385 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5387 mode
= GET_MODE_WIDER_MODE (mode
))
5389 FCONST0(mode
).data
.high
= 0;
5390 FCONST0(mode
).data
.low
= 0;
5391 FCONST0(mode
).mode
= mode
;
5392 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5393 FCONST0 (mode
), mode
);
5395 /* We store the value 1. */
5396 FCONST1(mode
).data
.high
= 0;
5397 FCONST1(mode
).data
.low
= 0;
5398 FCONST1(mode
).mode
= mode
;
5399 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5400 2 * HOST_BITS_PER_WIDE_INT
,
5401 &FCONST1(mode
).data
.low
,
5402 &FCONST1(mode
).data
.high
,
5403 SIGNED_FIXED_POINT_MODE_P (mode
));
5404 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5405 FCONST1 (mode
), mode
);
5408 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5410 mode
= GET_MODE_WIDER_MODE (mode
))
5412 FCONST0(mode
).data
.high
= 0;
5413 FCONST0(mode
).data
.low
= 0;
5414 FCONST0(mode
).mode
= mode
;
5415 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5416 FCONST0 (mode
), mode
);
5418 /* We store the value 1. */
5419 FCONST1(mode
).data
.high
= 0;
5420 FCONST1(mode
).data
.low
= 0;
5421 FCONST1(mode
).mode
= mode
;
5422 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5423 2 * HOST_BITS_PER_WIDE_INT
,
5424 &FCONST1(mode
).data
.low
,
5425 &FCONST1(mode
).data
.high
,
5426 SIGNED_FIXED_POINT_MODE_P (mode
));
5427 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5428 FCONST1 (mode
), mode
);
5431 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5433 mode
= GET_MODE_WIDER_MODE (mode
))
5435 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5438 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5440 mode
= GET_MODE_WIDER_MODE (mode
))
5442 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5445 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5447 mode
= GET_MODE_WIDER_MODE (mode
))
5449 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5450 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5453 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5455 mode
= GET_MODE_WIDER_MODE (mode
))
5457 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5458 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5461 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5462 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5463 const_tiny_rtx
[0][i
] = const0_rtx
;
5465 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5466 if (STORE_FLAG_VALUE
== 1)
5467 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5470 /* Produce exact duplicate of insn INSN after AFTER.
5471 Care updating of libcall regions if present. */
5474 emit_copy_of_insn_after (rtx insn
, rtx after
)
5478 switch (GET_CODE (insn
))
5481 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5485 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5489 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5490 if (CALL_INSN_FUNCTION_USAGE (insn
))
5491 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5492 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5493 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5494 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5495 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5496 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5497 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5504 /* Update LABEL_NUSES. */
5505 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5507 INSN_LOCATOR (new_rtx
) = INSN_LOCATOR (insn
);
5509 /* If the old insn is frame related, then so is the new one. This is
5510 primarily needed for IA-64 unwind info which marks epilogue insns,
5511 which may be duplicated by the basic block reordering code. */
5512 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5514 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5515 will make them. REG_LABEL_TARGETs are created there too, but are
5516 supposed to be sticky, so we copy them. */
5517 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5518 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5520 if (GET_CODE (link
) == EXPR_LIST
)
5521 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5522 copy_insn_1 (XEXP (link
, 0)));
5524 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5527 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5531 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5533 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5535 if (hard_reg_clobbers
[mode
][regno
])
5536 return hard_reg_clobbers
[mode
][regno
];
5538 return (hard_reg_clobbers
[mode
][regno
] =
5539 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5542 #include "gt-emit-rtl.h"