2012-11-29 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / tree-cfg.c
blobb79c3af3cf3ae07944a3a674730d76d1b7b041ba
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "ggc.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
37 #include "except.h"
38 #include "cfgloop.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
43 #include "target.h"
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
48 /* Local declarations. */
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity = 20;
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
66 static struct pointer_map_t *edge_to_cases;
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
72 static bitmap touched_switch_bbs;
74 /* CFG statistics. */
75 struct cfg_stats_d
77 long num_merged_labels;
80 static struct cfg_stats_d cfg_stats;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
88 location_t locus;
89 int discriminator;
91 static htab_t discriminator_per_locus;
93 /* Basic blocks and flowgraphs. */
94 static void make_blocks (gimple_seq);
95 static void factor_computed_gotos (void);
97 /* Edges. */
98 static void make_edges (void);
99 static void make_cond_expr_edges (basic_block);
100 static void make_gimple_switch_edges (basic_block);
101 static void make_goto_expr_edges (basic_block);
102 static void make_gimple_asm_edges (basic_block);
103 static unsigned int locus_map_hash (const void *);
104 static int locus_map_eq (const void *, const void *);
105 static void assign_discriminator (location_t, basic_block);
106 static edge gimple_redirect_edge_and_branch (edge, basic_block);
107 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
108 static unsigned int split_critical_edges (void);
110 /* Various helpers. */
111 static inline bool stmt_starts_bb_p (gimple, gimple);
112 static int gimple_verify_flow_info (void);
113 static void gimple_make_forwarder_block (edge);
114 static void gimple_cfg2vcg (FILE *);
115 static gimple first_non_label_stmt (basic_block);
116 static bool verify_gimple_transaction (gimple);
118 /* Flowgraph optimization and cleanup. */
119 static void gimple_merge_blocks (basic_block, basic_block);
120 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
121 static void remove_bb (basic_block);
122 static edge find_taken_edge_computed_goto (basic_block, tree);
123 static edge find_taken_edge_cond_expr (basic_block, tree);
124 static edge find_taken_edge_switch_expr (basic_block, tree);
125 static tree find_case_label_for_value (gimple, tree);
127 void
128 init_empty_tree_cfg_for_function (struct function *fn)
130 /* Initialize the basic block array. */
131 init_flow (fn);
132 profile_status_for_function (fn) = PROFILE_ABSENT;
133 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
134 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
135 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
136 vec_safe_grow_cleared (basic_block_info_for_function (fn),
137 initial_cfg_capacity);
139 /* Build a mapping of labels to their associated blocks. */
140 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
141 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
142 initial_cfg_capacity);
144 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
145 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
146 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
147 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
149 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
150 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
151 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
152 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
155 void
156 init_empty_tree_cfg (void)
158 init_empty_tree_cfg_for_function (cfun);
161 /*---------------------------------------------------------------------------
162 Create basic blocks
163 ---------------------------------------------------------------------------*/
165 /* Entry point to the CFG builder for trees. SEQ is the sequence of
166 statements to be added to the flowgraph. */
168 static void
169 build_gimple_cfg (gimple_seq seq)
171 /* Register specific gimple functions. */
172 gimple_register_cfg_hooks ();
174 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
176 init_empty_tree_cfg ();
178 found_computed_goto = 0;
179 make_blocks (seq);
181 /* Computed gotos are hell to deal with, especially if there are
182 lots of them with a large number of destinations. So we factor
183 them to a common computed goto location before we build the
184 edge list. After we convert back to normal form, we will un-factor
185 the computed gotos since factoring introduces an unwanted jump. */
186 if (found_computed_goto)
187 factor_computed_gotos ();
189 /* Make sure there is always at least one block, even if it's empty. */
190 if (n_basic_blocks == NUM_FIXED_BLOCKS)
191 create_empty_bb (ENTRY_BLOCK_PTR);
193 /* Adjust the size of the array. */
194 if (basic_block_info->length () < (size_t) n_basic_blocks)
195 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
197 /* To speed up statement iterator walks, we first purge dead labels. */
198 cleanup_dead_labels ();
200 /* Group case nodes to reduce the number of edges.
201 We do this after cleaning up dead labels because otherwise we miss
202 a lot of obvious case merging opportunities. */
203 group_case_labels ();
205 /* Create the edges of the flowgraph. */
206 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
207 free);
208 make_edges ();
209 cleanup_dead_labels ();
210 htab_delete (discriminator_per_locus);
212 /* Debugging dumps. */
214 /* Write the flowgraph to a VCG file. */
216 int local_dump_flags;
217 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
218 if (vcg_file)
220 gimple_cfg2vcg (vcg_file);
221 dump_end (TDI_vcg, vcg_file);
226 static unsigned int
227 execute_build_cfg (void)
229 gimple_seq body = gimple_body (current_function_decl);
231 build_gimple_cfg (body);
232 gimple_set_body (current_function_decl, NULL);
233 if (dump_file && (dump_flags & TDF_DETAILS))
235 fprintf (dump_file, "Scope blocks:\n");
236 dump_scope_blocks (dump_file, dump_flags);
238 return 0;
241 struct gimple_opt_pass pass_build_cfg =
244 GIMPLE_PASS,
245 "cfg", /* name */
246 OPTGROUP_NONE, /* optinfo_flags */
247 NULL, /* gate */
248 execute_build_cfg, /* execute */
249 NULL, /* sub */
250 NULL, /* next */
251 0, /* static_pass_number */
252 TV_TREE_CFG, /* tv_id */
253 PROP_gimple_leh, /* properties_required */
254 PROP_cfg, /* properties_provided */
255 0, /* properties_destroyed */
256 0, /* todo_flags_start */
257 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
262 /* Return true if T is a computed goto. */
264 static bool
265 computed_goto_p (gimple t)
267 return (gimple_code (t) == GIMPLE_GOTO
268 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
272 /* Search the CFG for any computed gotos. If found, factor them to a
273 common computed goto site. Also record the location of that site so
274 that we can un-factor the gotos after we have converted back to
275 normal form. */
277 static void
278 factor_computed_gotos (void)
280 basic_block bb;
281 tree factored_label_decl = NULL;
282 tree var = NULL;
283 gimple factored_computed_goto_label = NULL;
284 gimple factored_computed_goto = NULL;
286 /* We know there are one or more computed gotos in this function.
287 Examine the last statement in each basic block to see if the block
288 ends with a computed goto. */
290 FOR_EACH_BB (bb)
292 gimple_stmt_iterator gsi = gsi_last_bb (bb);
293 gimple last;
295 if (gsi_end_p (gsi))
296 continue;
298 last = gsi_stmt (gsi);
300 /* Ignore the computed goto we create when we factor the original
301 computed gotos. */
302 if (last == factored_computed_goto)
303 continue;
305 /* If the last statement is a computed goto, factor it. */
306 if (computed_goto_p (last))
308 gimple assignment;
310 /* The first time we find a computed goto we need to create
311 the factored goto block and the variable each original
312 computed goto will use for their goto destination. */
313 if (!factored_computed_goto)
315 basic_block new_bb = create_empty_bb (bb);
316 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
318 /* Create the destination of the factored goto. Each original
319 computed goto will put its desired destination into this
320 variable and jump to the label we create immediately
321 below. */
322 var = create_tmp_var (ptr_type_node, "gotovar");
324 /* Build a label for the new block which will contain the
325 factored computed goto. */
326 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
327 factored_computed_goto_label
328 = gimple_build_label (factored_label_decl);
329 gsi_insert_after (&new_gsi, factored_computed_goto_label,
330 GSI_NEW_STMT);
332 /* Build our new computed goto. */
333 factored_computed_goto = gimple_build_goto (var);
334 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
337 /* Copy the original computed goto's destination into VAR. */
338 assignment = gimple_build_assign (var, gimple_goto_dest (last));
339 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
341 /* And re-vector the computed goto to the new destination. */
342 gimple_goto_set_dest (last, factored_label_decl);
348 /* Build a flowgraph for the sequence of stmts SEQ. */
350 static void
351 make_blocks (gimple_seq seq)
353 gimple_stmt_iterator i = gsi_start (seq);
354 gimple stmt = NULL;
355 bool start_new_block = true;
356 bool first_stmt_of_seq = true;
357 basic_block bb = ENTRY_BLOCK_PTR;
359 while (!gsi_end_p (i))
361 gimple prev_stmt;
363 prev_stmt = stmt;
364 stmt = gsi_stmt (i);
366 /* If the statement starts a new basic block or if we have determined
367 in a previous pass that we need to create a new block for STMT, do
368 so now. */
369 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
371 if (!first_stmt_of_seq)
372 gsi_split_seq_before (&i, &seq);
373 bb = create_basic_block (seq, NULL, bb);
374 start_new_block = false;
377 /* Now add STMT to BB and create the subgraphs for special statement
378 codes. */
379 gimple_set_bb (stmt, bb);
381 if (computed_goto_p (stmt))
382 found_computed_goto = true;
384 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
385 next iteration. */
386 if (stmt_ends_bb_p (stmt))
388 /* If the stmt can make abnormal goto use a new temporary
389 for the assignment to the LHS. This makes sure the old value
390 of the LHS is available on the abnormal edge. Otherwise
391 we will end up with overlapping life-ranges for abnormal
392 SSA names. */
393 if (gimple_has_lhs (stmt)
394 && stmt_can_make_abnormal_goto (stmt)
395 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
397 tree lhs = gimple_get_lhs (stmt);
398 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
399 gimple s = gimple_build_assign (lhs, tmp);
400 gimple_set_location (s, gimple_location (stmt));
401 gimple_set_block (s, gimple_block (stmt));
402 gimple_set_lhs (stmt, tmp);
403 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
404 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
405 DECL_GIMPLE_REG_P (tmp) = 1;
406 gsi_insert_after (&i, s, GSI_SAME_STMT);
408 start_new_block = true;
411 gsi_next (&i);
412 first_stmt_of_seq = false;
417 /* Create and return a new empty basic block after bb AFTER. */
419 static basic_block
420 create_bb (void *h, void *e, basic_block after)
422 basic_block bb;
424 gcc_assert (!e);
426 /* Create and initialize a new basic block. Since alloc_block uses
427 GC allocation that clears memory to allocate a basic block, we do
428 not have to clear the newly allocated basic block here. */
429 bb = alloc_block ();
431 bb->index = last_basic_block;
432 bb->flags = BB_NEW;
433 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
435 /* Add the new block to the linked list of blocks. */
436 link_block (bb, after);
438 /* Grow the basic block array if needed. */
439 if ((size_t) last_basic_block == basic_block_info->length ())
441 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
442 vec_safe_grow_cleared (basic_block_info, new_size);
445 /* Add the newly created block to the array. */
446 SET_BASIC_BLOCK (last_basic_block, bb);
448 n_basic_blocks++;
449 last_basic_block++;
451 return bb;
455 /*---------------------------------------------------------------------------
456 Edge creation
457 ---------------------------------------------------------------------------*/
459 /* Fold COND_EXPR_COND of each COND_EXPR. */
461 void
462 fold_cond_expr_cond (void)
464 basic_block bb;
466 FOR_EACH_BB (bb)
468 gimple stmt = last_stmt (bb);
470 if (stmt && gimple_code (stmt) == GIMPLE_COND)
472 location_t loc = gimple_location (stmt);
473 tree cond;
474 bool zerop, onep;
476 fold_defer_overflow_warnings ();
477 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
478 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
479 if (cond)
481 zerop = integer_zerop (cond);
482 onep = integer_onep (cond);
484 else
485 zerop = onep = false;
487 fold_undefer_overflow_warnings (zerop || onep,
488 stmt,
489 WARN_STRICT_OVERFLOW_CONDITIONAL);
490 if (zerop)
491 gimple_cond_make_false (stmt);
492 else if (onep)
493 gimple_cond_make_true (stmt);
498 /* Join all the blocks in the flowgraph. */
500 static void
501 make_edges (void)
503 basic_block bb;
504 struct omp_region *cur_region = NULL;
506 /* Create an edge from entry to the first block with executable
507 statements in it. */
508 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
510 /* Traverse the basic block array placing edges. */
511 FOR_EACH_BB (bb)
513 gimple last = last_stmt (bb);
514 bool fallthru;
516 if (last)
518 enum gimple_code code = gimple_code (last);
519 switch (code)
521 case GIMPLE_GOTO:
522 make_goto_expr_edges (bb);
523 fallthru = false;
524 break;
525 case GIMPLE_RETURN:
526 make_edge (bb, EXIT_BLOCK_PTR, 0);
527 fallthru = false;
528 break;
529 case GIMPLE_COND:
530 make_cond_expr_edges (bb);
531 fallthru = false;
532 break;
533 case GIMPLE_SWITCH:
534 make_gimple_switch_edges (bb);
535 fallthru = false;
536 break;
537 case GIMPLE_RESX:
538 make_eh_edges (last);
539 fallthru = false;
540 break;
541 case GIMPLE_EH_DISPATCH:
542 fallthru = make_eh_dispatch_edges (last);
543 break;
545 case GIMPLE_CALL:
546 /* If this function receives a nonlocal goto, then we need to
547 make edges from this call site to all the nonlocal goto
548 handlers. */
549 if (stmt_can_make_abnormal_goto (last))
550 make_abnormal_goto_edges (bb, true);
552 /* If this statement has reachable exception handlers, then
553 create abnormal edges to them. */
554 make_eh_edges (last);
556 /* BUILTIN_RETURN is really a return statement. */
557 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
558 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
559 /* Some calls are known not to return. */
560 else
561 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
562 break;
564 case GIMPLE_ASSIGN:
565 /* A GIMPLE_ASSIGN may throw internally and thus be considered
566 control-altering. */
567 if (is_ctrl_altering_stmt (last))
568 make_eh_edges (last);
569 fallthru = true;
570 break;
572 case GIMPLE_ASM:
573 make_gimple_asm_edges (bb);
574 fallthru = true;
575 break;
577 case GIMPLE_OMP_PARALLEL:
578 case GIMPLE_OMP_TASK:
579 case GIMPLE_OMP_FOR:
580 case GIMPLE_OMP_SINGLE:
581 case GIMPLE_OMP_MASTER:
582 case GIMPLE_OMP_ORDERED:
583 case GIMPLE_OMP_CRITICAL:
584 case GIMPLE_OMP_SECTION:
585 cur_region = new_omp_region (bb, code, cur_region);
586 fallthru = true;
587 break;
589 case GIMPLE_OMP_SECTIONS:
590 cur_region = new_omp_region (bb, code, cur_region);
591 fallthru = true;
592 break;
594 case GIMPLE_OMP_SECTIONS_SWITCH:
595 fallthru = false;
596 break;
598 case GIMPLE_OMP_ATOMIC_LOAD:
599 case GIMPLE_OMP_ATOMIC_STORE:
600 fallthru = true;
601 break;
603 case GIMPLE_OMP_RETURN:
604 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
605 somewhere other than the next block. This will be
606 created later. */
607 cur_region->exit = bb;
608 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
609 cur_region = cur_region->outer;
610 break;
612 case GIMPLE_OMP_CONTINUE:
613 cur_region->cont = bb;
614 switch (cur_region->type)
616 case GIMPLE_OMP_FOR:
617 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
618 succs edges as abnormal to prevent splitting
619 them. */
620 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
621 /* Make the loopback edge. */
622 make_edge (bb, single_succ (cur_region->entry),
623 EDGE_ABNORMAL);
625 /* Create an edge from GIMPLE_OMP_FOR to exit, which
626 corresponds to the case that the body of the loop
627 is not executed at all. */
628 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
629 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
630 fallthru = false;
631 break;
633 case GIMPLE_OMP_SECTIONS:
634 /* Wire up the edges into and out of the nested sections. */
636 basic_block switch_bb = single_succ (cur_region->entry);
638 struct omp_region *i;
639 for (i = cur_region->inner; i ; i = i->next)
641 gcc_assert (i->type == GIMPLE_OMP_SECTION);
642 make_edge (switch_bb, i->entry, 0);
643 make_edge (i->exit, bb, EDGE_FALLTHRU);
646 /* Make the loopback edge to the block with
647 GIMPLE_OMP_SECTIONS_SWITCH. */
648 make_edge (bb, switch_bb, 0);
650 /* Make the edge from the switch to exit. */
651 make_edge (switch_bb, bb->next_bb, 0);
652 fallthru = false;
654 break;
656 default:
657 gcc_unreachable ();
659 break;
661 case GIMPLE_TRANSACTION:
663 tree abort_label = gimple_transaction_label (last);
664 if (abort_label)
665 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
666 fallthru = true;
668 break;
670 default:
671 gcc_assert (!stmt_ends_bb_p (last));
672 fallthru = true;
675 else
676 fallthru = true;
678 if (fallthru)
680 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
681 if (last)
682 assign_discriminator (gimple_location (last), bb->next_bb);
686 if (root_omp_region)
687 free_omp_regions ();
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
696 static unsigned int
697 locus_map_hash (const void *item)
699 return ((const struct locus_discrim_map *) item)->locus;
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
705 static int
706 locus_map_eq (const void *va, const void *vb)
708 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
709 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
710 return a->locus == b->locus;
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
716 profiling. */
718 static int
719 next_discriminator_for_locus (location_t locus)
721 struct locus_discrim_map item;
722 struct locus_discrim_map **slot;
724 item.locus = locus;
725 item.discriminator = 0;
726 slot = (struct locus_discrim_map **)
727 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
728 (hashval_t) locus, INSERT);
729 gcc_assert (slot);
730 if (*slot == HTAB_EMPTY_ENTRY)
732 *slot = XNEW (struct locus_discrim_map);
733 gcc_assert (*slot);
734 (*slot)->locus = locus;
735 (*slot)->discriminator = 0;
737 (*slot)->discriminator++;
738 return (*slot)->discriminator;
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
743 static bool
744 same_line_p (location_t locus1, location_t locus2)
746 expanded_location from, to;
748 if (locus1 == locus2)
749 return true;
751 from = expand_location (locus1);
752 to = expand_location (locus2);
754 if (from.line != to.line)
755 return false;
756 if (from.file == to.file)
757 return true;
758 return (from.file != NULL
759 && to.file != NULL
760 && filename_cmp (from.file, to.file) == 0);
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
766 static void
767 assign_discriminator (location_t locus, basic_block bb)
769 gimple first_in_to_bb, last_in_to_bb;
771 if (locus == 0 || bb->discriminator != 0)
772 return;
774 first_in_to_bb = first_non_label_stmt (bb);
775 last_in_to_bb = last_stmt (bb);
776 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
777 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
778 bb->discriminator = next_discriminator_for_locus (locus);
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
783 static void
784 make_cond_expr_edges (basic_block bb)
786 gimple entry = last_stmt (bb);
787 gimple then_stmt, else_stmt;
788 basic_block then_bb, else_bb;
789 tree then_label, else_label;
790 edge e;
791 location_t entry_locus;
793 gcc_assert (entry);
794 gcc_assert (gimple_code (entry) == GIMPLE_COND);
796 entry_locus = gimple_location (entry);
798 /* Entry basic blocks for each component. */
799 then_label = gimple_cond_true_label (entry);
800 else_label = gimple_cond_false_label (entry);
801 then_bb = label_to_block (then_label);
802 else_bb = label_to_block (else_label);
803 then_stmt = first_stmt (then_bb);
804 else_stmt = first_stmt (else_bb);
806 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
807 assign_discriminator (entry_locus, then_bb);
808 e->goto_locus = gimple_location (then_stmt);
809 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
810 if (e)
812 assign_discriminator (entry_locus, else_bb);
813 e->goto_locus = gimple_location (else_stmt);
816 /* We do not need the labels anymore. */
817 gimple_cond_set_true_label (entry, NULL_TREE);
818 gimple_cond_set_false_label (entry, NULL_TREE);
822 /* Called for each element in the hash table (P) as we delete the
823 edge to cases hash table.
825 Clear all the TREE_CHAINs to prevent problems with copying of
826 SWITCH_EXPRs and structure sharing rules, then free the hash table
827 element. */
829 static bool
830 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
831 void *data ATTRIBUTE_UNUSED)
833 tree t, next;
835 for (t = (tree) *value; t; t = next)
837 next = CASE_CHAIN (t);
838 CASE_CHAIN (t) = NULL;
841 *value = NULL;
842 return true;
845 /* Start recording information mapping edges to case labels. */
847 void
848 start_recording_case_labels (void)
850 gcc_assert (edge_to_cases == NULL);
851 edge_to_cases = pointer_map_create ();
852 touched_switch_bbs = BITMAP_ALLOC (NULL);
855 /* Return nonzero if we are recording information for case labels. */
857 static bool
858 recording_case_labels_p (void)
860 return (edge_to_cases != NULL);
863 /* Stop recording information mapping edges to case labels and
864 remove any information we have recorded. */
865 void
866 end_recording_case_labels (void)
868 bitmap_iterator bi;
869 unsigned i;
870 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
871 pointer_map_destroy (edge_to_cases);
872 edge_to_cases = NULL;
873 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
875 basic_block bb = BASIC_BLOCK (i);
876 if (bb)
878 gimple stmt = last_stmt (bb);
879 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
880 group_case_labels_stmt (stmt);
883 BITMAP_FREE (touched_switch_bbs);
886 /* If we are inside a {start,end}_recording_cases block, then return
887 a chain of CASE_LABEL_EXPRs from T which reference E.
889 Otherwise return NULL. */
891 static tree
892 get_cases_for_edge (edge e, gimple t)
894 void **slot;
895 size_t i, n;
897 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
898 chains available. Return NULL so the caller can detect this case. */
899 if (!recording_case_labels_p ())
900 return NULL;
902 slot = pointer_map_contains (edge_to_cases, e);
903 if (slot)
904 return (tree) *slot;
906 /* If we did not find E in the hash table, then this must be the first
907 time we have been queried for information about E & T. Add all the
908 elements from T to the hash table then perform the query again. */
910 n = gimple_switch_num_labels (t);
911 for (i = 0; i < n; i++)
913 tree elt = gimple_switch_label (t, i);
914 tree lab = CASE_LABEL (elt);
915 basic_block label_bb = label_to_block (lab);
916 edge this_edge = find_edge (e->src, label_bb);
918 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
919 a new chain. */
920 slot = pointer_map_insert (edge_to_cases, this_edge);
921 CASE_CHAIN (elt) = (tree) *slot;
922 *slot = elt;
925 return (tree) *pointer_map_contains (edge_to_cases, e);
928 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
930 static void
931 make_gimple_switch_edges (basic_block bb)
933 gimple entry = last_stmt (bb);
934 location_t entry_locus;
935 size_t i, n;
937 entry_locus = gimple_location (entry);
939 n = gimple_switch_num_labels (entry);
941 for (i = 0; i < n; ++i)
943 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
944 basic_block label_bb = label_to_block (lab);
945 make_edge (bb, label_bb, 0);
946 assign_discriminator (entry_locus, label_bb);
951 /* Return the basic block holding label DEST. */
953 basic_block
954 label_to_block_fn (struct function *ifun, tree dest)
956 int uid = LABEL_DECL_UID (dest);
958 /* We would die hard when faced by an undefined label. Emit a label to
959 the very first basic block. This will hopefully make even the dataflow
960 and undefined variable warnings quite right. */
961 if (seen_error () && uid < 0)
963 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
964 gimple stmt;
966 stmt = gimple_build_label (dest);
967 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
968 uid = LABEL_DECL_UID (dest);
970 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
971 return NULL;
972 return (*ifun->cfg->x_label_to_block_map)[uid];
975 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
976 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
978 void
979 make_abnormal_goto_edges (basic_block bb, bool for_call)
981 basic_block target_bb;
982 gimple_stmt_iterator gsi;
984 FOR_EACH_BB (target_bb)
985 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
987 gimple label_stmt = gsi_stmt (gsi);
988 tree target;
990 if (gimple_code (label_stmt) != GIMPLE_LABEL)
991 break;
993 target = gimple_label_label (label_stmt);
995 /* Make an edge to every label block that has been marked as a
996 potential target for a computed goto or a non-local goto. */
997 if ((FORCED_LABEL (target) && !for_call)
998 || (DECL_NONLOCAL (target) && for_call))
1000 make_edge (bb, target_bb, EDGE_ABNORMAL);
1001 break;
1006 /* Create edges for a goto statement at block BB. */
1008 static void
1009 make_goto_expr_edges (basic_block bb)
1011 gimple_stmt_iterator last = gsi_last_bb (bb);
1012 gimple goto_t = gsi_stmt (last);
1014 /* A simple GOTO creates normal edges. */
1015 if (simple_goto_p (goto_t))
1017 tree dest = gimple_goto_dest (goto_t);
1018 basic_block label_bb = label_to_block (dest);
1019 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1020 e->goto_locus = gimple_location (goto_t);
1021 assign_discriminator (e->goto_locus, label_bb);
1022 gsi_remove (&last, true);
1023 return;
1026 /* A computed GOTO creates abnormal edges. */
1027 make_abnormal_goto_edges (bb, false);
1030 /* Create edges for an asm statement with labels at block BB. */
1032 static void
1033 make_gimple_asm_edges (basic_block bb)
1035 gimple stmt = last_stmt (bb);
1036 location_t stmt_loc = gimple_location (stmt);
1037 int i, n = gimple_asm_nlabels (stmt);
1039 for (i = 0; i < n; ++i)
1041 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1042 basic_block label_bb = label_to_block (label);
1043 make_edge (bb, label_bb, 0);
1044 assign_discriminator (stmt_loc, label_bb);
1048 /*---------------------------------------------------------------------------
1049 Flowgraph analysis
1050 ---------------------------------------------------------------------------*/
1052 /* Cleanup useless labels in basic blocks. This is something we wish
1053 to do early because it allows us to group case labels before creating
1054 the edges for the CFG, and it speeds up block statement iterators in
1055 all passes later on.
1056 We rerun this pass after CFG is created, to get rid of the labels that
1057 are no longer referenced. After then we do not run it any more, since
1058 (almost) no new labels should be created. */
1060 /* A map from basic block index to the leading label of that block. */
1061 static struct label_record
1063 /* The label. */
1064 tree label;
1066 /* True if the label is referenced from somewhere. */
1067 bool used;
1068 } *label_for_bb;
1070 /* Given LABEL return the first label in the same basic block. */
1072 static tree
1073 main_block_label (tree label)
1075 basic_block bb = label_to_block (label);
1076 tree main_label = label_for_bb[bb->index].label;
1078 /* label_to_block possibly inserted undefined label into the chain. */
1079 if (!main_label)
1081 label_for_bb[bb->index].label = label;
1082 main_label = label;
1085 label_for_bb[bb->index].used = true;
1086 return main_label;
1089 /* Clean up redundant labels within the exception tree. */
1091 static void
1092 cleanup_dead_labels_eh (void)
1094 eh_landing_pad lp;
1095 eh_region r;
1096 tree lab;
1097 int i;
1099 if (cfun->eh == NULL)
1100 return;
1102 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1103 if (lp && lp->post_landing_pad)
1105 lab = main_block_label (lp->post_landing_pad);
1106 if (lab != lp->post_landing_pad)
1108 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1109 EH_LANDING_PAD_NR (lab) = lp->index;
1113 FOR_ALL_EH_REGION (r)
1114 switch (r->type)
1116 case ERT_CLEANUP:
1117 case ERT_MUST_NOT_THROW:
1118 break;
1120 case ERT_TRY:
1122 eh_catch c;
1123 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1125 lab = c->label;
1126 if (lab)
1127 c->label = main_block_label (lab);
1130 break;
1132 case ERT_ALLOWED_EXCEPTIONS:
1133 lab = r->u.allowed.label;
1134 if (lab)
1135 r->u.allowed.label = main_block_label (lab);
1136 break;
1141 /* Cleanup redundant labels. This is a three-step process:
1142 1) Find the leading label for each block.
1143 2) Redirect all references to labels to the leading labels.
1144 3) Cleanup all useless labels. */
1146 void
1147 cleanup_dead_labels (void)
1149 basic_block bb;
1150 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1152 /* Find a suitable label for each block. We use the first user-defined
1153 label if there is one, or otherwise just the first label we see. */
1154 FOR_EACH_BB (bb)
1156 gimple_stmt_iterator i;
1158 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1160 tree label;
1161 gimple stmt = gsi_stmt (i);
1163 if (gimple_code (stmt) != GIMPLE_LABEL)
1164 break;
1166 label = gimple_label_label (stmt);
1168 /* If we have not yet seen a label for the current block,
1169 remember this one and see if there are more labels. */
1170 if (!label_for_bb[bb->index].label)
1172 label_for_bb[bb->index].label = label;
1173 continue;
1176 /* If we did see a label for the current block already, but it
1177 is an artificially created label, replace it if the current
1178 label is a user defined label. */
1179 if (!DECL_ARTIFICIAL (label)
1180 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1182 label_for_bb[bb->index].label = label;
1183 break;
1188 /* Now redirect all jumps/branches to the selected label.
1189 First do so for each block ending in a control statement. */
1190 FOR_EACH_BB (bb)
1192 gimple stmt = last_stmt (bb);
1193 tree label, new_label;
1195 if (!stmt)
1196 continue;
1198 switch (gimple_code (stmt))
1200 case GIMPLE_COND:
1201 label = gimple_cond_true_label (stmt);
1202 if (label)
1204 new_label = main_block_label (label);
1205 if (new_label != label)
1206 gimple_cond_set_true_label (stmt, new_label);
1209 label = gimple_cond_false_label (stmt);
1210 if (label)
1212 new_label = main_block_label (label);
1213 if (new_label != label)
1214 gimple_cond_set_false_label (stmt, new_label);
1216 break;
1218 case GIMPLE_SWITCH:
1220 size_t i, n = gimple_switch_num_labels (stmt);
1222 /* Replace all destination labels. */
1223 for (i = 0; i < n; ++i)
1225 tree case_label = gimple_switch_label (stmt, i);
1226 label = CASE_LABEL (case_label);
1227 new_label = main_block_label (label);
1228 if (new_label != label)
1229 CASE_LABEL (case_label) = new_label;
1231 break;
1234 case GIMPLE_ASM:
1236 int i, n = gimple_asm_nlabels (stmt);
1238 for (i = 0; i < n; ++i)
1240 tree cons = gimple_asm_label_op (stmt, i);
1241 tree label = main_block_label (TREE_VALUE (cons));
1242 TREE_VALUE (cons) = label;
1244 break;
1247 /* We have to handle gotos until they're removed, and we don't
1248 remove them until after we've created the CFG edges. */
1249 case GIMPLE_GOTO:
1250 if (!computed_goto_p (stmt))
1252 label = gimple_goto_dest (stmt);
1253 new_label = main_block_label (label);
1254 if (new_label != label)
1255 gimple_goto_set_dest (stmt, new_label);
1257 break;
1259 case GIMPLE_TRANSACTION:
1261 tree label = gimple_transaction_label (stmt);
1262 if (label)
1264 tree new_label = main_block_label (label);
1265 if (new_label != label)
1266 gimple_transaction_set_label (stmt, new_label);
1269 break;
1271 default:
1272 break;
1276 /* Do the same for the exception region tree labels. */
1277 cleanup_dead_labels_eh ();
1279 /* Finally, purge dead labels. All user-defined labels and labels that
1280 can be the target of non-local gotos and labels which have their
1281 address taken are preserved. */
1282 FOR_EACH_BB (bb)
1284 gimple_stmt_iterator i;
1285 tree label_for_this_bb = label_for_bb[bb->index].label;
1287 if (!label_for_this_bb)
1288 continue;
1290 /* If the main label of the block is unused, we may still remove it. */
1291 if (!label_for_bb[bb->index].used)
1292 label_for_this_bb = NULL;
1294 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1296 tree label;
1297 gimple stmt = gsi_stmt (i);
1299 if (gimple_code (stmt) != GIMPLE_LABEL)
1300 break;
1302 label = gimple_label_label (stmt);
1304 if (label == label_for_this_bb
1305 || !DECL_ARTIFICIAL (label)
1306 || DECL_NONLOCAL (label)
1307 || FORCED_LABEL (label))
1308 gsi_next (&i);
1309 else
1310 gsi_remove (&i, true);
1314 free (label_for_bb);
1317 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1318 the ones jumping to the same label.
1319 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1321 void
1322 group_case_labels_stmt (gimple stmt)
1324 int old_size = gimple_switch_num_labels (stmt);
1325 int i, j, new_size = old_size;
1326 basic_block default_bb = NULL;
1328 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1330 /* Look for possible opportunities to merge cases. */
1331 i = 1;
1332 while (i < old_size)
1334 tree base_case, base_high;
1335 basic_block base_bb;
1337 base_case = gimple_switch_label (stmt, i);
1339 gcc_assert (base_case);
1340 base_bb = label_to_block (CASE_LABEL (base_case));
1342 /* Discard cases that have the same destination as the
1343 default case. */
1344 if (base_bb == default_bb)
1346 gimple_switch_set_label (stmt, i, NULL_TREE);
1347 i++;
1348 new_size--;
1349 continue;
1352 base_high = CASE_HIGH (base_case)
1353 ? CASE_HIGH (base_case)
1354 : CASE_LOW (base_case);
1355 i++;
1357 /* Try to merge case labels. Break out when we reach the end
1358 of the label vector or when we cannot merge the next case
1359 label with the current one. */
1360 while (i < old_size)
1362 tree merge_case = gimple_switch_label (stmt, i);
1363 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1364 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1366 /* Merge the cases if they jump to the same place,
1367 and their ranges are consecutive. */
1368 if (merge_bb == base_bb
1369 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1371 base_high = CASE_HIGH (merge_case) ?
1372 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1373 CASE_HIGH (base_case) = base_high;
1374 gimple_switch_set_label (stmt, i, NULL_TREE);
1375 new_size--;
1376 i++;
1378 else
1379 break;
1383 /* Compress the case labels in the label vector, and adjust the
1384 length of the vector. */
1385 for (i = 0, j = 0; i < new_size; i++)
1387 while (! gimple_switch_label (stmt, j))
1388 j++;
1389 gimple_switch_set_label (stmt, i,
1390 gimple_switch_label (stmt, j++));
1393 gcc_assert (new_size <= old_size);
1394 gimple_switch_set_num_labels (stmt, new_size);
1397 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1398 and scan the sorted vector of cases. Combine the ones jumping to the
1399 same label. */
1401 void
1402 group_case_labels (void)
1404 basic_block bb;
1406 FOR_EACH_BB (bb)
1408 gimple stmt = last_stmt (bb);
1409 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1410 group_case_labels_stmt (stmt);
1414 /* Checks whether we can merge block B into block A. */
1416 static bool
1417 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1419 gimple stmt;
1420 gimple_stmt_iterator gsi;
1422 if (!single_succ_p (a))
1423 return false;
1425 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1426 return false;
1428 if (single_succ (a) != b)
1429 return false;
1431 if (!single_pred_p (b))
1432 return false;
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1458 /* Do not remove user forced labels or for -O0 any user labels. */
1459 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1460 return false;
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1472 gimple phi = gsi_stmt (gsi);
1473 /* Technically only new names matter. */
1474 if (name_registered_for_update_p (PHI_RESULT (phi)))
1475 return false;
1478 /* When not optimizing, don't merge if we'd lose goto_locus. */
1479 if (!optimize
1480 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1482 location_t goto_locus = single_succ_edge (a)->goto_locus;
1483 gimple_stmt_iterator prev, next;
1484 prev = gsi_last_nondebug_bb (a);
1485 next = gsi_after_labels (b);
1486 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1487 gsi_next_nondebug (&next);
1488 if ((gsi_end_p (prev)
1489 || gimple_location (gsi_stmt (prev)) != goto_locus)
1490 && (gsi_end_p (next)
1491 || gimple_location (gsi_stmt (next)) != goto_locus))
1492 return false;
1495 return true;
1498 /* Return true if the var whose chain of uses starts at PTR has no
1499 nondebug uses. */
1500 bool
1501 has_zero_uses_1 (const ssa_use_operand_t *head)
1503 const ssa_use_operand_t *ptr;
1505 for (ptr = head->next; ptr != head; ptr = ptr->next)
1506 if (!is_gimple_debug (USE_STMT (ptr)))
1507 return false;
1509 return true;
1512 /* Return true if the var whose chain of uses starts at PTR has a
1513 single nondebug use. Set USE_P and STMT to that single nondebug
1514 use, if so, or to NULL otherwise. */
1515 bool
1516 single_imm_use_1 (const ssa_use_operand_t *head,
1517 use_operand_p *use_p, gimple *stmt)
1519 ssa_use_operand_t *ptr, *single_use = 0;
1521 for (ptr = head->next; ptr != head; ptr = ptr->next)
1522 if (!is_gimple_debug (USE_STMT (ptr)))
1524 if (single_use)
1526 single_use = NULL;
1527 break;
1529 single_use = ptr;
1532 if (use_p)
1533 *use_p = single_use;
1535 if (stmt)
1536 *stmt = single_use ? single_use->loc.stmt : NULL;
1538 return !!single_use;
1541 /* Replaces all uses of NAME by VAL. */
1543 void
1544 replace_uses_by (tree name, tree val)
1546 imm_use_iterator imm_iter;
1547 use_operand_p use;
1548 gimple stmt;
1549 edge e;
1551 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1553 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1555 replace_exp (use, val);
1557 if (gimple_code (stmt) == GIMPLE_PHI)
1559 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1560 if (e->flags & EDGE_ABNORMAL)
1562 /* This can only occur for virtual operands, since
1563 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1564 would prevent replacement. */
1565 gcc_checking_assert (virtual_operand_p (name));
1566 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1571 if (gimple_code (stmt) != GIMPLE_PHI)
1573 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1574 gimple orig_stmt = stmt;
1575 size_t i;
1577 /* Mark the block if we changed the last stmt in it. */
1578 if (cfgcleanup_altered_bbs
1579 && stmt_ends_bb_p (stmt))
1580 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1582 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1583 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1584 only change sth from non-invariant to invariant, and only
1585 when propagating constants. */
1586 if (is_gimple_min_invariant (val))
1587 for (i = 0; i < gimple_num_ops (stmt); i++)
1589 tree op = gimple_op (stmt, i);
1590 /* Operands may be empty here. For example, the labels
1591 of a GIMPLE_COND are nulled out following the creation
1592 of the corresponding CFG edges. */
1593 if (op && TREE_CODE (op) == ADDR_EXPR)
1594 recompute_tree_invariant_for_addr_expr (op);
1597 if (fold_stmt (&gsi))
1598 stmt = gsi_stmt (gsi);
1600 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1601 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1603 update_stmt (stmt);
1607 gcc_checking_assert (has_zero_uses (name));
1609 /* Also update the trees stored in loop structures. */
1610 if (current_loops)
1612 struct loop *loop;
1613 loop_iterator li;
1615 FOR_EACH_LOOP (li, loop, 0)
1617 substitute_in_loop_info (loop, name, val);
1622 /* Merge block B into block A. */
1624 static void
1625 gimple_merge_blocks (basic_block a, basic_block b)
1627 gimple_stmt_iterator last, gsi, psi;
1629 if (dump_file)
1630 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1632 /* Remove all single-valued PHI nodes from block B of the form
1633 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1634 gsi = gsi_last_bb (a);
1635 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1637 gimple phi = gsi_stmt (psi);
1638 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1639 gimple copy;
1640 bool may_replace_uses = (virtual_operand_p (def)
1641 || may_propagate_copy (def, use));
1643 /* In case we maintain loop closed ssa form, do not propagate arguments
1644 of loop exit phi nodes. */
1645 if (current_loops
1646 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1647 && !virtual_operand_p (def)
1648 && TREE_CODE (use) == SSA_NAME
1649 && a->loop_father != b->loop_father)
1650 may_replace_uses = false;
1652 if (!may_replace_uses)
1654 gcc_assert (!virtual_operand_p (def));
1656 /* Note that just emitting the copies is fine -- there is no problem
1657 with ordering of phi nodes. This is because A is the single
1658 predecessor of B, therefore results of the phi nodes cannot
1659 appear as arguments of the phi nodes. */
1660 copy = gimple_build_assign (def, use);
1661 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1662 remove_phi_node (&psi, false);
1664 else
1666 /* If we deal with a PHI for virtual operands, we can simply
1667 propagate these without fussing with folding or updating
1668 the stmt. */
1669 if (virtual_operand_p (def))
1671 imm_use_iterator iter;
1672 use_operand_p use_p;
1673 gimple stmt;
1675 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1676 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1677 SET_USE (use_p, use);
1679 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1680 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1682 else
1683 replace_uses_by (def, use);
1685 remove_phi_node (&psi, true);
1689 /* Ensure that B follows A. */
1690 move_block_after (b, a);
1692 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1693 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1695 /* Remove labels from B and set gimple_bb to A for other statements. */
1696 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1698 gimple stmt = gsi_stmt (gsi);
1699 if (gimple_code (stmt) == GIMPLE_LABEL)
1701 tree label = gimple_label_label (stmt);
1702 int lp_nr;
1704 gsi_remove (&gsi, false);
1706 /* Now that we can thread computed gotos, we might have
1707 a situation where we have a forced label in block B
1708 However, the label at the start of block B might still be
1709 used in other ways (think about the runtime checking for
1710 Fortran assigned gotos). So we can not just delete the
1711 label. Instead we move the label to the start of block A. */
1712 if (FORCED_LABEL (label))
1714 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1715 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1717 /* Other user labels keep around in a form of a debug stmt. */
1718 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1720 gimple dbg = gimple_build_debug_bind (label,
1721 integer_zero_node,
1722 stmt);
1723 gimple_debug_bind_reset_value (dbg);
1724 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1727 lp_nr = EH_LANDING_PAD_NR (label);
1728 if (lp_nr)
1730 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1731 lp->post_landing_pad = NULL;
1734 else
1736 gimple_set_bb (stmt, a);
1737 gsi_next (&gsi);
1741 /* Merge the sequences. */
1742 last = gsi_last_bb (a);
1743 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1744 set_bb_seq (b, NULL);
1746 if (cfgcleanup_altered_bbs)
1747 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1751 /* Return the one of two successors of BB that is not reachable by a
1752 complex edge, if there is one. Else, return BB. We use
1753 this in optimizations that use post-dominators for their heuristics,
1754 to catch the cases in C++ where function calls are involved. */
1756 basic_block
1757 single_noncomplex_succ (basic_block bb)
1759 edge e0, e1;
1760 if (EDGE_COUNT (bb->succs) != 2)
1761 return bb;
1763 e0 = EDGE_SUCC (bb, 0);
1764 e1 = EDGE_SUCC (bb, 1);
1765 if (e0->flags & EDGE_COMPLEX)
1766 return e1->dest;
1767 if (e1->flags & EDGE_COMPLEX)
1768 return e0->dest;
1770 return bb;
1773 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1775 void
1776 notice_special_calls (gimple call)
1778 int flags = gimple_call_flags (call);
1780 if (flags & ECF_MAY_BE_ALLOCA)
1781 cfun->calls_alloca = true;
1782 if (flags & ECF_RETURNS_TWICE)
1783 cfun->calls_setjmp = true;
1787 /* Clear flags set by notice_special_calls. Used by dead code removal
1788 to update the flags. */
1790 void
1791 clear_special_calls (void)
1793 cfun->calls_alloca = false;
1794 cfun->calls_setjmp = false;
1797 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1799 static void
1800 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1802 /* Since this block is no longer reachable, we can just delete all
1803 of its PHI nodes. */
1804 remove_phi_nodes (bb);
1806 /* Remove edges to BB's successors. */
1807 while (EDGE_COUNT (bb->succs) > 0)
1808 remove_edge (EDGE_SUCC (bb, 0));
1812 /* Remove statements of basic block BB. */
1814 static void
1815 remove_bb (basic_block bb)
1817 gimple_stmt_iterator i;
1819 if (dump_file)
1821 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1822 if (dump_flags & TDF_DETAILS)
1824 dump_bb (dump_file, bb, 0, dump_flags);
1825 fprintf (dump_file, "\n");
1829 if (current_loops)
1831 struct loop *loop = bb->loop_father;
1833 /* If a loop gets removed, clean up the information associated
1834 with it. */
1835 if (loop->latch == bb
1836 || loop->header == bb)
1837 free_numbers_of_iterations_estimates_loop (loop);
1840 /* Remove all the instructions in the block. */
1841 if (bb_seq (bb) != NULL)
1843 /* Walk backwards so as to get a chance to substitute all
1844 released DEFs into debug stmts. See
1845 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1846 details. */
1847 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1849 gimple stmt = gsi_stmt (i);
1850 if (gimple_code (stmt) == GIMPLE_LABEL
1851 && (FORCED_LABEL (gimple_label_label (stmt))
1852 || DECL_NONLOCAL (gimple_label_label (stmt))))
1854 basic_block new_bb;
1855 gimple_stmt_iterator new_gsi;
1857 /* A non-reachable non-local label may still be referenced.
1858 But it no longer needs to carry the extra semantics of
1859 non-locality. */
1860 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1862 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1863 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1866 new_bb = bb->prev_bb;
1867 new_gsi = gsi_start_bb (new_bb);
1868 gsi_remove (&i, false);
1869 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1871 else
1873 /* Release SSA definitions if we are in SSA. Note that we
1874 may be called when not in SSA. For example,
1875 final_cleanup calls this function via
1876 cleanup_tree_cfg. */
1877 if (gimple_in_ssa_p (cfun))
1878 release_defs (stmt);
1880 gsi_remove (&i, true);
1883 if (gsi_end_p (i))
1884 i = gsi_last_bb (bb);
1885 else
1886 gsi_prev (&i);
1890 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1891 bb->il.gimple.seq = NULL;
1892 bb->il.gimple.phi_nodes = NULL;
1896 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1897 predicate VAL, return the edge that will be taken out of the block.
1898 If VAL does not match a unique edge, NULL is returned. */
1900 edge
1901 find_taken_edge (basic_block bb, tree val)
1903 gimple stmt;
1905 stmt = last_stmt (bb);
1907 gcc_assert (stmt);
1908 gcc_assert (is_ctrl_stmt (stmt));
1910 if (val == NULL)
1911 return NULL;
1913 if (!is_gimple_min_invariant (val))
1914 return NULL;
1916 if (gimple_code (stmt) == GIMPLE_COND)
1917 return find_taken_edge_cond_expr (bb, val);
1919 if (gimple_code (stmt) == GIMPLE_SWITCH)
1920 return find_taken_edge_switch_expr (bb, val);
1922 if (computed_goto_p (stmt))
1924 /* Only optimize if the argument is a label, if the argument is
1925 not a label then we can not construct a proper CFG.
1927 It may be the case that we only need to allow the LABEL_REF to
1928 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1929 appear inside a LABEL_EXPR just to be safe. */
1930 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1931 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1932 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1933 return NULL;
1936 gcc_unreachable ();
1939 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1940 statement, determine which of the outgoing edges will be taken out of the
1941 block. Return NULL if either edge may be taken. */
1943 static edge
1944 find_taken_edge_computed_goto (basic_block bb, tree val)
1946 basic_block dest;
1947 edge e = NULL;
1949 dest = label_to_block (val);
1950 if (dest)
1952 e = find_edge (bb, dest);
1953 gcc_assert (e != NULL);
1956 return e;
1959 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1960 statement, determine which of the two edges will be taken out of the
1961 block. Return NULL if either edge may be taken. */
1963 static edge
1964 find_taken_edge_cond_expr (basic_block bb, tree val)
1966 edge true_edge, false_edge;
1968 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1970 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1971 return (integer_zerop (val) ? false_edge : true_edge);
1974 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1975 statement, determine which edge will be taken out of the block. Return
1976 NULL if any edge may be taken. */
1978 static edge
1979 find_taken_edge_switch_expr (basic_block bb, tree val)
1981 basic_block dest_bb;
1982 edge e;
1983 gimple switch_stmt;
1984 tree taken_case;
1986 switch_stmt = last_stmt (bb);
1987 taken_case = find_case_label_for_value (switch_stmt, val);
1988 dest_bb = label_to_block (CASE_LABEL (taken_case));
1990 e = find_edge (bb, dest_bb);
1991 gcc_assert (e);
1992 return e;
1996 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1997 We can make optimal use here of the fact that the case labels are
1998 sorted: We can do a binary search for a case matching VAL. */
2000 static tree
2001 find_case_label_for_value (gimple switch_stmt, tree val)
2003 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2004 tree default_case = gimple_switch_default_label (switch_stmt);
2006 for (low = 0, high = n; high - low > 1; )
2008 size_t i = (high + low) / 2;
2009 tree t = gimple_switch_label (switch_stmt, i);
2010 int cmp;
2012 /* Cache the result of comparing CASE_LOW and val. */
2013 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2015 if (cmp > 0)
2016 high = i;
2017 else
2018 low = i;
2020 if (CASE_HIGH (t) == NULL)
2022 /* A singe-valued case label. */
2023 if (cmp == 0)
2024 return t;
2026 else
2028 /* A case range. We can only handle integer ranges. */
2029 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2030 return t;
2034 return default_case;
2038 /* Dump a basic block on stderr. */
2040 void
2041 gimple_debug_bb (basic_block bb)
2043 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2047 /* Dump basic block with index N on stderr. */
2049 basic_block
2050 gimple_debug_bb_n (int n)
2052 gimple_debug_bb (BASIC_BLOCK (n));
2053 return BASIC_BLOCK (n);
2057 /* Dump the CFG on stderr.
2059 FLAGS are the same used by the tree dumping functions
2060 (see TDF_* in dumpfile.h). */
2062 void
2063 gimple_debug_cfg (int flags)
2065 gimple_dump_cfg (stderr, flags);
2069 /* Dump the program showing basic block boundaries on the given FILE.
2071 FLAGS are the same used by the tree dumping functions (see TDF_* in
2072 tree.h). */
2074 void
2075 gimple_dump_cfg (FILE *file, int flags)
2077 if (flags & TDF_DETAILS)
2079 dump_function_header (file, current_function_decl, flags);
2080 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2081 n_basic_blocks, n_edges, last_basic_block);
2083 brief_dump_cfg (file, flags | TDF_COMMENT);
2084 fprintf (file, "\n");
2087 if (flags & TDF_STATS)
2088 dump_cfg_stats (file);
2090 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2094 /* Dump CFG statistics on FILE. */
2096 void
2097 dump_cfg_stats (FILE *file)
2099 static long max_num_merged_labels = 0;
2100 unsigned long size, total = 0;
2101 long num_edges;
2102 basic_block bb;
2103 const char * const fmt_str = "%-30s%-13s%12s\n";
2104 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2105 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2106 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2107 const char *funcname = current_function_name ();
2109 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2111 fprintf (file, "---------------------------------------------------------\n");
2112 fprintf (file, fmt_str, "", " Number of ", "Memory");
2113 fprintf (file, fmt_str, "", " instances ", "used ");
2114 fprintf (file, "---------------------------------------------------------\n");
2116 size = n_basic_blocks * sizeof (struct basic_block_def);
2117 total += size;
2118 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2119 SCALE (size), LABEL (size));
2121 num_edges = 0;
2122 FOR_EACH_BB (bb)
2123 num_edges += EDGE_COUNT (bb->succs);
2124 size = num_edges * sizeof (struct edge_def);
2125 total += size;
2126 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2128 fprintf (file, "---------------------------------------------------------\n");
2129 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2130 LABEL (total));
2131 fprintf (file, "---------------------------------------------------------\n");
2132 fprintf (file, "\n");
2134 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2135 max_num_merged_labels = cfg_stats.num_merged_labels;
2137 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2138 cfg_stats.num_merged_labels, max_num_merged_labels);
2140 fprintf (file, "\n");
2144 /* Dump CFG statistics on stderr. Keep extern so that it's always
2145 linked in the final executable. */
2147 DEBUG_FUNCTION void
2148 debug_cfg_stats (void)
2150 dump_cfg_stats (stderr);
2154 /* Dump the flowgraph to a .vcg FILE. */
2156 static void
2157 gimple_cfg2vcg (FILE *file)
2159 edge e;
2160 edge_iterator ei;
2161 basic_block bb;
2162 const char *funcname = current_function_name ();
2164 /* Write the file header. */
2165 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2166 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2167 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2169 /* Write blocks and edges. */
2170 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2172 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2173 e->dest->index);
2175 if (e->flags & EDGE_FAKE)
2176 fprintf (file, " linestyle: dotted priority: 10");
2177 else
2178 fprintf (file, " linestyle: solid priority: 100");
2180 fprintf (file, " }\n");
2182 fputc ('\n', file);
2184 FOR_EACH_BB (bb)
2186 enum gimple_code head_code, end_code;
2187 const char *head_name, *end_name;
2188 int head_line = 0;
2189 int end_line = 0;
2190 gimple first = first_stmt (bb);
2191 gimple last = last_stmt (bb);
2193 if (first)
2195 head_code = gimple_code (first);
2196 head_name = gimple_code_name[head_code];
2197 head_line = get_lineno (first);
2199 else
2200 head_name = "no-statement";
2202 if (last)
2204 end_code = gimple_code (last);
2205 end_name = gimple_code_name[end_code];
2206 end_line = get_lineno (last);
2208 else
2209 end_name = "no-statement";
2211 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2212 bb->index, bb->index, head_name, head_line, end_name,
2213 end_line);
2215 FOR_EACH_EDGE (e, ei, bb->succs)
2217 if (e->dest == EXIT_BLOCK_PTR)
2218 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2219 else
2220 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2222 if (e->flags & EDGE_FAKE)
2223 fprintf (file, " priority: 10 linestyle: dotted");
2224 else
2225 fprintf (file, " priority: 100 linestyle: solid");
2227 fprintf (file, " }\n");
2230 if (bb->next_bb != EXIT_BLOCK_PTR)
2231 fputc ('\n', file);
2234 fputs ("}\n\n", file);
2239 /*---------------------------------------------------------------------------
2240 Miscellaneous helpers
2241 ---------------------------------------------------------------------------*/
2243 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2244 flow. Transfers of control flow associated with EH are excluded. */
2246 static bool
2247 call_can_make_abnormal_goto (gimple t)
2249 /* If the function has no non-local labels, then a call cannot make an
2250 abnormal transfer of control. */
2251 if (!cfun->has_nonlocal_label)
2252 return false;
2254 /* Likewise if the call has no side effects. */
2255 if (!gimple_has_side_effects (t))
2256 return false;
2258 /* Likewise if the called function is leaf. */
2259 if (gimple_call_flags (t) & ECF_LEAF)
2260 return false;
2262 return true;
2266 /* Return true if T can make an abnormal transfer of control flow.
2267 Transfers of control flow associated with EH are excluded. */
2269 bool
2270 stmt_can_make_abnormal_goto (gimple t)
2272 if (computed_goto_p (t))
2273 return true;
2274 if (is_gimple_call (t))
2275 return call_can_make_abnormal_goto (t);
2276 return false;
2280 /* Return true if T represents a stmt that always transfers control. */
2282 bool
2283 is_ctrl_stmt (gimple t)
2285 switch (gimple_code (t))
2287 case GIMPLE_COND:
2288 case GIMPLE_SWITCH:
2289 case GIMPLE_GOTO:
2290 case GIMPLE_RETURN:
2291 case GIMPLE_RESX:
2292 return true;
2293 default:
2294 return false;
2299 /* Return true if T is a statement that may alter the flow of control
2300 (e.g., a call to a non-returning function). */
2302 bool
2303 is_ctrl_altering_stmt (gimple t)
2305 gcc_assert (t);
2307 switch (gimple_code (t))
2309 case GIMPLE_CALL:
2311 int flags = gimple_call_flags (t);
2313 /* A call alters control flow if it can make an abnormal goto. */
2314 if (call_can_make_abnormal_goto (t))
2315 return true;
2317 /* A call also alters control flow if it does not return. */
2318 if (flags & ECF_NORETURN)
2319 return true;
2321 /* TM ending statements have backedges out of the transaction.
2322 Return true so we split the basic block containing them.
2323 Note that the TM_BUILTIN test is merely an optimization. */
2324 if ((flags & ECF_TM_BUILTIN)
2325 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2326 return true;
2328 /* BUILT_IN_RETURN call is same as return statement. */
2329 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2330 return true;
2332 break;
2334 case GIMPLE_EH_DISPATCH:
2335 /* EH_DISPATCH branches to the individual catch handlers at
2336 this level of a try or allowed-exceptions region. It can
2337 fallthru to the next statement as well. */
2338 return true;
2340 case GIMPLE_ASM:
2341 if (gimple_asm_nlabels (t) > 0)
2342 return true;
2343 break;
2345 CASE_GIMPLE_OMP:
2346 /* OpenMP directives alter control flow. */
2347 return true;
2349 case GIMPLE_TRANSACTION:
2350 /* A transaction start alters control flow. */
2351 return true;
2353 default:
2354 break;
2357 /* If a statement can throw, it alters control flow. */
2358 return stmt_can_throw_internal (t);
2362 /* Return true if T is a simple local goto. */
2364 bool
2365 simple_goto_p (gimple t)
2367 return (gimple_code (t) == GIMPLE_GOTO
2368 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2372 /* Return true if STMT should start a new basic block. PREV_STMT is
2373 the statement preceding STMT. It is used when STMT is a label or a
2374 case label. Labels should only start a new basic block if their
2375 previous statement wasn't a label. Otherwise, sequence of labels
2376 would generate unnecessary basic blocks that only contain a single
2377 label. */
2379 static inline bool
2380 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2382 if (stmt == NULL)
2383 return false;
2385 /* Labels start a new basic block only if the preceding statement
2386 wasn't a label of the same type. This prevents the creation of
2387 consecutive blocks that have nothing but a single label. */
2388 if (gimple_code (stmt) == GIMPLE_LABEL)
2390 /* Nonlocal and computed GOTO targets always start a new block. */
2391 if (DECL_NONLOCAL (gimple_label_label (stmt))
2392 || FORCED_LABEL (gimple_label_label (stmt)))
2393 return true;
2395 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2397 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2398 return true;
2400 cfg_stats.num_merged_labels++;
2401 return false;
2403 else
2404 return true;
2407 return false;
2411 /* Return true if T should end a basic block. */
2413 bool
2414 stmt_ends_bb_p (gimple t)
2416 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2419 /* Remove block annotations and other data structures. */
2421 void
2422 delete_tree_cfg_annotations (void)
2424 vec_free (label_to_block_map);
2428 /* Return the first statement in basic block BB. */
2430 gimple
2431 first_stmt (basic_block bb)
2433 gimple_stmt_iterator i = gsi_start_bb (bb);
2434 gimple stmt = NULL;
2436 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2438 gsi_next (&i);
2439 stmt = NULL;
2441 return stmt;
2444 /* Return the first non-label statement in basic block BB. */
2446 static gimple
2447 first_non_label_stmt (basic_block bb)
2449 gimple_stmt_iterator i = gsi_start_bb (bb);
2450 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2451 gsi_next (&i);
2452 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2455 /* Return the last statement in basic block BB. */
2457 gimple
2458 last_stmt (basic_block bb)
2460 gimple_stmt_iterator i = gsi_last_bb (bb);
2461 gimple stmt = NULL;
2463 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2465 gsi_prev (&i);
2466 stmt = NULL;
2468 return stmt;
2471 /* Return the last statement of an otherwise empty block. Return NULL
2472 if the block is totally empty, or if it contains more than one
2473 statement. */
2475 gimple
2476 last_and_only_stmt (basic_block bb)
2478 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2479 gimple last, prev;
2481 if (gsi_end_p (i))
2482 return NULL;
2484 last = gsi_stmt (i);
2485 gsi_prev_nondebug (&i);
2486 if (gsi_end_p (i))
2487 return last;
2489 /* Empty statements should no longer appear in the instruction stream.
2490 Everything that might have appeared before should be deleted by
2491 remove_useless_stmts, and the optimizers should just gsi_remove
2492 instead of smashing with build_empty_stmt.
2494 Thus the only thing that should appear here in a block containing
2495 one executable statement is a label. */
2496 prev = gsi_stmt (i);
2497 if (gimple_code (prev) == GIMPLE_LABEL)
2498 return last;
2499 else
2500 return NULL;
2503 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2505 static void
2506 reinstall_phi_args (edge new_edge, edge old_edge)
2508 edge_var_map_vector *v;
2509 edge_var_map *vm;
2510 int i;
2511 gimple_stmt_iterator phis;
2513 v = redirect_edge_var_map_vector (old_edge);
2514 if (!v)
2515 return;
2517 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2518 v->iterate (i, &vm) && !gsi_end_p (phis);
2519 i++, gsi_next (&phis))
2521 gimple phi = gsi_stmt (phis);
2522 tree result = redirect_edge_var_map_result (vm);
2523 tree arg = redirect_edge_var_map_def (vm);
2525 gcc_assert (result == gimple_phi_result (phi));
2527 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2530 redirect_edge_var_map_clear (old_edge);
2533 /* Returns the basic block after which the new basic block created
2534 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2535 near its "logical" location. This is of most help to humans looking
2536 at debugging dumps. */
2538 static basic_block
2539 split_edge_bb_loc (edge edge_in)
2541 basic_block dest = edge_in->dest;
2542 basic_block dest_prev = dest->prev_bb;
2544 if (dest_prev)
2546 edge e = find_edge (dest_prev, dest);
2547 if (e && !(e->flags & EDGE_COMPLEX))
2548 return edge_in->src;
2550 return dest_prev;
2553 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2554 Abort on abnormal edges. */
2556 static basic_block
2557 gimple_split_edge (edge edge_in)
2559 basic_block new_bb, after_bb, dest;
2560 edge new_edge, e;
2562 /* Abnormal edges cannot be split. */
2563 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2565 dest = edge_in->dest;
2567 after_bb = split_edge_bb_loc (edge_in);
2569 new_bb = create_empty_bb (after_bb);
2570 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2571 new_bb->count = edge_in->count;
2572 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2573 new_edge->probability = REG_BR_PROB_BASE;
2574 new_edge->count = edge_in->count;
2576 e = redirect_edge_and_branch (edge_in, new_bb);
2577 gcc_assert (e == edge_in);
2578 reinstall_phi_args (new_edge, e);
2580 return new_bb;
2584 /* Verify properties of the address expression T with base object BASE. */
2586 static tree
2587 verify_address (tree t, tree base)
2589 bool old_constant;
2590 bool old_side_effects;
2591 bool new_constant;
2592 bool new_side_effects;
2594 old_constant = TREE_CONSTANT (t);
2595 old_side_effects = TREE_SIDE_EFFECTS (t);
2597 recompute_tree_invariant_for_addr_expr (t);
2598 new_side_effects = TREE_SIDE_EFFECTS (t);
2599 new_constant = TREE_CONSTANT (t);
2601 if (old_constant != new_constant)
2603 error ("constant not recomputed when ADDR_EXPR changed");
2604 return t;
2606 if (old_side_effects != new_side_effects)
2608 error ("side effects not recomputed when ADDR_EXPR changed");
2609 return t;
2612 if (!(TREE_CODE (base) == VAR_DECL
2613 || TREE_CODE (base) == PARM_DECL
2614 || TREE_CODE (base) == RESULT_DECL))
2615 return NULL_TREE;
2617 if (DECL_GIMPLE_REG_P (base))
2619 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2620 return base;
2623 return NULL_TREE;
2626 /* Callback for walk_tree, check that all elements with address taken are
2627 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2628 inside a PHI node. */
2630 static tree
2631 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2633 tree t = *tp, x;
2635 if (TYPE_P (t))
2636 *walk_subtrees = 0;
2638 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2639 #define CHECK_OP(N, MSG) \
2640 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2641 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2643 switch (TREE_CODE (t))
2645 case SSA_NAME:
2646 if (SSA_NAME_IN_FREE_LIST (t))
2648 error ("SSA name in freelist but still referenced");
2649 return *tp;
2651 break;
2653 case INDIRECT_REF:
2654 error ("INDIRECT_REF in gimple IL");
2655 return t;
2657 case MEM_REF:
2658 x = TREE_OPERAND (t, 0);
2659 if (!POINTER_TYPE_P (TREE_TYPE (x))
2660 || !is_gimple_mem_ref_addr (x))
2662 error ("invalid first operand of MEM_REF");
2663 return x;
2665 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2666 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2668 error ("invalid offset operand of MEM_REF");
2669 return TREE_OPERAND (t, 1);
2671 if (TREE_CODE (x) == ADDR_EXPR
2672 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2673 return x;
2674 *walk_subtrees = 0;
2675 break;
2677 case ASSERT_EXPR:
2678 x = fold (ASSERT_EXPR_COND (t));
2679 if (x == boolean_false_node)
2681 error ("ASSERT_EXPR with an always-false condition");
2682 return *tp;
2684 break;
2686 case MODIFY_EXPR:
2687 error ("MODIFY_EXPR not expected while having tuples");
2688 return *tp;
2690 case ADDR_EXPR:
2692 tree tem;
2694 gcc_assert (is_gimple_address (t));
2696 /* Skip any references (they will be checked when we recurse down the
2697 tree) and ensure that any variable used as a prefix is marked
2698 addressable. */
2699 for (x = TREE_OPERAND (t, 0);
2700 handled_component_p (x);
2701 x = TREE_OPERAND (x, 0))
2704 if ((tem = verify_address (t, x)))
2705 return tem;
2707 if (!(TREE_CODE (x) == VAR_DECL
2708 || TREE_CODE (x) == PARM_DECL
2709 || TREE_CODE (x) == RESULT_DECL))
2710 return NULL;
2712 if (!TREE_ADDRESSABLE (x))
2714 error ("address taken, but ADDRESSABLE bit not set");
2715 return x;
2718 break;
2721 case COND_EXPR:
2722 x = COND_EXPR_COND (t);
2723 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2725 error ("non-integral used in condition");
2726 return x;
2728 if (!is_gimple_condexpr (x))
2730 error ("invalid conditional operand");
2731 return x;
2733 break;
2735 case NON_LVALUE_EXPR:
2736 case TRUTH_NOT_EXPR:
2737 gcc_unreachable ();
2739 CASE_CONVERT:
2740 case FIX_TRUNC_EXPR:
2741 case FLOAT_EXPR:
2742 case NEGATE_EXPR:
2743 case ABS_EXPR:
2744 case BIT_NOT_EXPR:
2745 CHECK_OP (0, "invalid operand to unary operator");
2746 break;
2748 case REALPART_EXPR:
2749 case IMAGPART_EXPR:
2750 case COMPONENT_REF:
2751 case ARRAY_REF:
2752 case ARRAY_RANGE_REF:
2753 case BIT_FIELD_REF:
2754 case VIEW_CONVERT_EXPR:
2755 /* We have a nest of references. Verify that each of the operands
2756 that determine where to reference is either a constant or a variable,
2757 verify that the base is valid, and then show we've already checked
2758 the subtrees. */
2759 while (handled_component_p (t))
2761 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2762 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2763 else if (TREE_CODE (t) == ARRAY_REF
2764 || TREE_CODE (t) == ARRAY_RANGE_REF)
2766 CHECK_OP (1, "invalid array index");
2767 if (TREE_OPERAND (t, 2))
2768 CHECK_OP (2, "invalid array lower bound");
2769 if (TREE_OPERAND (t, 3))
2770 CHECK_OP (3, "invalid array stride");
2772 else if (TREE_CODE (t) == BIT_FIELD_REF)
2774 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2775 || !host_integerp (TREE_OPERAND (t, 2), 1))
2777 error ("invalid position or size operand to BIT_FIELD_REF");
2778 return t;
2780 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2781 && (TYPE_PRECISION (TREE_TYPE (t))
2782 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2784 error ("integral result type precision does not match "
2785 "field size of BIT_FIELD_REF");
2786 return t;
2788 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2789 && !AGGREGATE_TYPE_P (TREE_TYPE (t))
2790 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2791 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2792 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2794 error ("mode precision of non-integral result does not "
2795 "match field size of BIT_FIELD_REF");
2796 return t;
2800 t = TREE_OPERAND (t, 0);
2803 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2805 error ("invalid reference prefix");
2806 return t;
2808 *walk_subtrees = 0;
2809 break;
2810 case PLUS_EXPR:
2811 case MINUS_EXPR:
2812 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2813 POINTER_PLUS_EXPR. */
2814 if (POINTER_TYPE_P (TREE_TYPE (t)))
2816 error ("invalid operand to plus/minus, type is a pointer");
2817 return t;
2819 CHECK_OP (0, "invalid operand to binary operator");
2820 CHECK_OP (1, "invalid operand to binary operator");
2821 break;
2823 case POINTER_PLUS_EXPR:
2824 /* Check to make sure the first operand is a pointer or reference type. */
2825 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2827 error ("invalid operand to pointer plus, first operand is not a pointer");
2828 return t;
2830 /* Check to make sure the second operand is a ptrofftype. */
2831 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2833 error ("invalid operand to pointer plus, second operand is not an "
2834 "integer type of appropriate width");
2835 return t;
2837 /* FALLTHROUGH */
2838 case LT_EXPR:
2839 case LE_EXPR:
2840 case GT_EXPR:
2841 case GE_EXPR:
2842 case EQ_EXPR:
2843 case NE_EXPR:
2844 case UNORDERED_EXPR:
2845 case ORDERED_EXPR:
2846 case UNLT_EXPR:
2847 case UNLE_EXPR:
2848 case UNGT_EXPR:
2849 case UNGE_EXPR:
2850 case UNEQ_EXPR:
2851 case LTGT_EXPR:
2852 case MULT_EXPR:
2853 case TRUNC_DIV_EXPR:
2854 case CEIL_DIV_EXPR:
2855 case FLOOR_DIV_EXPR:
2856 case ROUND_DIV_EXPR:
2857 case TRUNC_MOD_EXPR:
2858 case CEIL_MOD_EXPR:
2859 case FLOOR_MOD_EXPR:
2860 case ROUND_MOD_EXPR:
2861 case RDIV_EXPR:
2862 case EXACT_DIV_EXPR:
2863 case MIN_EXPR:
2864 case MAX_EXPR:
2865 case LSHIFT_EXPR:
2866 case RSHIFT_EXPR:
2867 case LROTATE_EXPR:
2868 case RROTATE_EXPR:
2869 case BIT_IOR_EXPR:
2870 case BIT_XOR_EXPR:
2871 case BIT_AND_EXPR:
2872 CHECK_OP (0, "invalid operand to binary operator");
2873 CHECK_OP (1, "invalid operand to binary operator");
2874 break;
2876 case CONSTRUCTOR:
2877 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2878 *walk_subtrees = 0;
2879 break;
2881 case CASE_LABEL_EXPR:
2882 if (CASE_CHAIN (t))
2884 error ("invalid CASE_CHAIN");
2885 return t;
2887 break;
2889 default:
2890 break;
2892 return NULL;
2894 #undef CHECK_OP
2898 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2899 Returns true if there is an error, otherwise false. */
2901 static bool
2902 verify_types_in_gimple_min_lval (tree expr)
2904 tree op;
2906 if (is_gimple_id (expr))
2907 return false;
2909 if (TREE_CODE (expr) != TARGET_MEM_REF
2910 && TREE_CODE (expr) != MEM_REF)
2912 error ("invalid expression for min lvalue");
2913 return true;
2916 /* TARGET_MEM_REFs are strange beasts. */
2917 if (TREE_CODE (expr) == TARGET_MEM_REF)
2918 return false;
2920 op = TREE_OPERAND (expr, 0);
2921 if (!is_gimple_val (op))
2923 error ("invalid operand in indirect reference");
2924 debug_generic_stmt (op);
2925 return true;
2927 /* Memory references now generally can involve a value conversion. */
2929 return false;
2932 /* Verify if EXPR is a valid GIMPLE reference expression. If
2933 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2934 if there is an error, otherwise false. */
2936 static bool
2937 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2939 while (handled_component_p (expr))
2941 tree op = TREE_OPERAND (expr, 0);
2943 if (TREE_CODE (expr) == ARRAY_REF
2944 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2946 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2947 || (TREE_OPERAND (expr, 2)
2948 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2949 || (TREE_OPERAND (expr, 3)
2950 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2952 error ("invalid operands to array reference");
2953 debug_generic_stmt (expr);
2954 return true;
2958 /* Verify if the reference array element types are compatible. */
2959 if (TREE_CODE (expr) == ARRAY_REF
2960 && !useless_type_conversion_p (TREE_TYPE (expr),
2961 TREE_TYPE (TREE_TYPE (op))))
2963 error ("type mismatch in array reference");
2964 debug_generic_stmt (TREE_TYPE (expr));
2965 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2966 return true;
2968 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2969 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2970 TREE_TYPE (TREE_TYPE (op))))
2972 error ("type mismatch in array range reference");
2973 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2974 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2975 return true;
2978 if ((TREE_CODE (expr) == REALPART_EXPR
2979 || TREE_CODE (expr) == IMAGPART_EXPR)
2980 && !useless_type_conversion_p (TREE_TYPE (expr),
2981 TREE_TYPE (TREE_TYPE (op))))
2983 error ("type mismatch in real/imagpart reference");
2984 debug_generic_stmt (TREE_TYPE (expr));
2985 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2986 return true;
2989 if (TREE_CODE (expr) == COMPONENT_REF
2990 && !useless_type_conversion_p (TREE_TYPE (expr),
2991 TREE_TYPE (TREE_OPERAND (expr, 1))))
2993 error ("type mismatch in component reference");
2994 debug_generic_stmt (TREE_TYPE (expr));
2995 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2996 return true;
2999 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3001 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3002 that their operand is not an SSA name or an invariant when
3003 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3004 bug). Otherwise there is nothing to verify, gross mismatches at
3005 most invoke undefined behavior. */
3006 if (require_lvalue
3007 && (TREE_CODE (op) == SSA_NAME
3008 || is_gimple_min_invariant (op)))
3010 error ("conversion of an SSA_NAME on the left hand side");
3011 debug_generic_stmt (expr);
3012 return true;
3014 else if (TREE_CODE (op) == SSA_NAME
3015 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3017 error ("conversion of register to a different size");
3018 debug_generic_stmt (expr);
3019 return true;
3021 else if (!handled_component_p (op))
3022 return false;
3025 expr = op;
3028 if (TREE_CODE (expr) == MEM_REF)
3030 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3032 error ("invalid address operand in MEM_REF");
3033 debug_generic_stmt (expr);
3034 return true;
3036 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3037 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3039 error ("invalid offset operand in MEM_REF");
3040 debug_generic_stmt (expr);
3041 return true;
3044 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3046 if (!TMR_BASE (expr)
3047 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3049 error ("invalid address operand in TARGET_MEM_REF");
3050 return true;
3052 if (!TMR_OFFSET (expr)
3053 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3054 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3056 error ("invalid offset operand in TARGET_MEM_REF");
3057 debug_generic_stmt (expr);
3058 return true;
3062 return ((require_lvalue || !is_gimple_min_invariant (expr))
3063 && verify_types_in_gimple_min_lval (expr));
3066 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3067 list of pointer-to types that is trivially convertible to DEST. */
3069 static bool
3070 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3072 tree src;
3074 if (!TYPE_POINTER_TO (src_obj))
3075 return true;
3077 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3078 if (useless_type_conversion_p (dest, src))
3079 return true;
3081 return false;
3084 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3085 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3087 static bool
3088 valid_fixed_convert_types_p (tree type1, tree type2)
3090 return (FIXED_POINT_TYPE_P (type1)
3091 && (INTEGRAL_TYPE_P (type2)
3092 || SCALAR_FLOAT_TYPE_P (type2)
3093 || FIXED_POINT_TYPE_P (type2)));
3096 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3097 is a problem, otherwise false. */
3099 static bool
3100 verify_gimple_call (gimple stmt)
3102 tree fn = gimple_call_fn (stmt);
3103 tree fntype, fndecl;
3104 unsigned i;
3106 if (gimple_call_internal_p (stmt))
3108 if (fn)
3110 error ("gimple call has two targets");
3111 debug_generic_stmt (fn);
3112 return true;
3115 else
3117 if (!fn)
3119 error ("gimple call has no target");
3120 return true;
3124 if (fn && !is_gimple_call_addr (fn))
3126 error ("invalid function in gimple call");
3127 debug_generic_stmt (fn);
3128 return true;
3131 if (fn
3132 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3133 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3134 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3136 error ("non-function in gimple call");
3137 return true;
3140 fndecl = gimple_call_fndecl (stmt);
3141 if (fndecl
3142 && TREE_CODE (fndecl) == FUNCTION_DECL
3143 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3144 && !DECL_PURE_P (fndecl)
3145 && !TREE_READONLY (fndecl))
3147 error ("invalid pure const state for function");
3148 return true;
3151 if (gimple_call_lhs (stmt)
3152 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3153 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3155 error ("invalid LHS in gimple call");
3156 return true;
3159 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3161 error ("LHS in noreturn call");
3162 return true;
3165 fntype = gimple_call_fntype (stmt);
3166 if (fntype
3167 && gimple_call_lhs (stmt)
3168 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3169 TREE_TYPE (fntype))
3170 /* ??? At least C++ misses conversions at assignments from
3171 void * call results.
3172 ??? Java is completely off. Especially with functions
3173 returning java.lang.Object.
3174 For now simply allow arbitrary pointer type conversions. */
3175 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3176 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3178 error ("invalid conversion in gimple call");
3179 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3180 debug_generic_stmt (TREE_TYPE (fntype));
3181 return true;
3184 if (gimple_call_chain (stmt)
3185 && !is_gimple_val (gimple_call_chain (stmt)))
3187 error ("invalid static chain in gimple call");
3188 debug_generic_stmt (gimple_call_chain (stmt));
3189 return true;
3192 /* If there is a static chain argument, this should not be an indirect
3193 call, and the decl should have DECL_STATIC_CHAIN set. */
3194 if (gimple_call_chain (stmt))
3196 if (!gimple_call_fndecl (stmt))
3198 error ("static chain in indirect gimple call");
3199 return true;
3201 fn = TREE_OPERAND (fn, 0);
3203 if (!DECL_STATIC_CHAIN (fn))
3205 error ("static chain with function that doesn%'t use one");
3206 return true;
3210 /* ??? The C frontend passes unpromoted arguments in case it
3211 didn't see a function declaration before the call. So for now
3212 leave the call arguments mostly unverified. Once we gimplify
3213 unit-at-a-time we have a chance to fix this. */
3215 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3217 tree arg = gimple_call_arg (stmt, i);
3218 if ((is_gimple_reg_type (TREE_TYPE (arg))
3219 && !is_gimple_val (arg))
3220 || (!is_gimple_reg_type (TREE_TYPE (arg))
3221 && !is_gimple_lvalue (arg)))
3223 error ("invalid argument to gimple call");
3224 debug_generic_expr (arg);
3225 return true;
3229 return false;
3232 /* Verifies the gimple comparison with the result type TYPE and
3233 the operands OP0 and OP1. */
3235 static bool
3236 verify_gimple_comparison (tree type, tree op0, tree op1)
3238 tree op0_type = TREE_TYPE (op0);
3239 tree op1_type = TREE_TYPE (op1);
3241 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3243 error ("invalid operands in gimple comparison");
3244 return true;
3247 /* For comparisons we do not have the operations type as the
3248 effective type the comparison is carried out in. Instead
3249 we require that either the first operand is trivially
3250 convertible into the second, or the other way around.
3251 Because we special-case pointers to void we allow
3252 comparisons of pointers with the same mode as well. */
3253 if (!useless_type_conversion_p (op0_type, op1_type)
3254 && !useless_type_conversion_p (op1_type, op0_type)
3255 && (!POINTER_TYPE_P (op0_type)
3256 || !POINTER_TYPE_P (op1_type)
3257 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3259 error ("mismatching comparison operand types");
3260 debug_generic_expr (op0_type);
3261 debug_generic_expr (op1_type);
3262 return true;
3265 /* The resulting type of a comparison may be an effective boolean type. */
3266 if (INTEGRAL_TYPE_P (type)
3267 && (TREE_CODE (type) == BOOLEAN_TYPE
3268 || TYPE_PRECISION (type) == 1))
3270 if (TREE_CODE (op0_type) == VECTOR_TYPE
3271 || TREE_CODE (op1_type) == VECTOR_TYPE)
3273 error ("vector comparison returning a boolean");
3274 debug_generic_expr (op0_type);
3275 debug_generic_expr (op1_type);
3276 return true;
3279 /* Or an integer vector type with the same size and element count
3280 as the comparison operand types. */
3281 else if (TREE_CODE (type) == VECTOR_TYPE
3282 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3284 if (TREE_CODE (op0_type) != VECTOR_TYPE
3285 || TREE_CODE (op1_type) != VECTOR_TYPE)
3287 error ("non-vector operands in vector comparison");
3288 debug_generic_expr (op0_type);
3289 debug_generic_expr (op1_type);
3290 return true;
3293 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3294 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3295 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3297 error ("invalid vector comparison resulting type");
3298 debug_generic_expr (type);
3299 return true;
3302 else
3304 error ("bogus comparison result type");
3305 debug_generic_expr (type);
3306 return true;
3309 return false;
3312 /* Verify a gimple assignment statement STMT with an unary rhs.
3313 Returns true if anything is wrong. */
3315 static bool
3316 verify_gimple_assign_unary (gimple stmt)
3318 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3319 tree lhs = gimple_assign_lhs (stmt);
3320 tree lhs_type = TREE_TYPE (lhs);
3321 tree rhs1 = gimple_assign_rhs1 (stmt);
3322 tree rhs1_type = TREE_TYPE (rhs1);
3324 if (!is_gimple_reg (lhs))
3326 error ("non-register as LHS of unary operation");
3327 return true;
3330 if (!is_gimple_val (rhs1))
3332 error ("invalid operand in unary operation");
3333 return true;
3336 /* First handle conversions. */
3337 switch (rhs_code)
3339 CASE_CONVERT:
3341 /* Allow conversions from pointer type to integral type only if
3342 there is no sign or zero extension involved.
3343 For targets were the precision of ptrofftype doesn't match that
3344 of pointers we need to allow arbitrary conversions to ptrofftype. */
3345 if ((POINTER_TYPE_P (lhs_type)
3346 && INTEGRAL_TYPE_P (rhs1_type))
3347 || (POINTER_TYPE_P (rhs1_type)
3348 && INTEGRAL_TYPE_P (lhs_type)
3349 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3350 || ptrofftype_p (sizetype))))
3351 return false;
3353 /* Allow conversion from integral to offset type and vice versa. */
3354 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3355 && INTEGRAL_TYPE_P (rhs1_type))
3356 || (INTEGRAL_TYPE_P (lhs_type)
3357 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3358 return false;
3360 /* Otherwise assert we are converting between types of the
3361 same kind. */
3362 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3364 error ("invalid types in nop conversion");
3365 debug_generic_expr (lhs_type);
3366 debug_generic_expr (rhs1_type);
3367 return true;
3370 return false;
3373 case ADDR_SPACE_CONVERT_EXPR:
3375 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3376 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3377 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3379 error ("invalid types in address space conversion");
3380 debug_generic_expr (lhs_type);
3381 debug_generic_expr (rhs1_type);
3382 return true;
3385 return false;
3388 case FIXED_CONVERT_EXPR:
3390 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3391 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3393 error ("invalid types in fixed-point conversion");
3394 debug_generic_expr (lhs_type);
3395 debug_generic_expr (rhs1_type);
3396 return true;
3399 return false;
3402 case FLOAT_EXPR:
3404 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3405 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3406 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3408 error ("invalid types in conversion to floating point");
3409 debug_generic_expr (lhs_type);
3410 debug_generic_expr (rhs1_type);
3411 return true;
3414 return false;
3417 case FIX_TRUNC_EXPR:
3419 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3420 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3421 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3423 error ("invalid types in conversion to integer");
3424 debug_generic_expr (lhs_type);
3425 debug_generic_expr (rhs1_type);
3426 return true;
3429 return false;
3432 case VEC_UNPACK_HI_EXPR:
3433 case VEC_UNPACK_LO_EXPR:
3434 case REDUC_MAX_EXPR:
3435 case REDUC_MIN_EXPR:
3436 case REDUC_PLUS_EXPR:
3437 case VEC_UNPACK_FLOAT_HI_EXPR:
3438 case VEC_UNPACK_FLOAT_LO_EXPR:
3439 /* FIXME. */
3440 return false;
3442 case NEGATE_EXPR:
3443 case ABS_EXPR:
3444 case BIT_NOT_EXPR:
3445 case PAREN_EXPR:
3446 case NON_LVALUE_EXPR:
3447 case CONJ_EXPR:
3448 break;
3450 default:
3451 gcc_unreachable ();
3454 /* For the remaining codes assert there is no conversion involved. */
3455 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3457 error ("non-trivial conversion in unary operation");
3458 debug_generic_expr (lhs_type);
3459 debug_generic_expr (rhs1_type);
3460 return true;
3463 return false;
3466 /* Verify a gimple assignment statement STMT with a binary rhs.
3467 Returns true if anything is wrong. */
3469 static bool
3470 verify_gimple_assign_binary (gimple stmt)
3472 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3473 tree lhs = gimple_assign_lhs (stmt);
3474 tree lhs_type = TREE_TYPE (lhs);
3475 tree rhs1 = gimple_assign_rhs1 (stmt);
3476 tree rhs1_type = TREE_TYPE (rhs1);
3477 tree rhs2 = gimple_assign_rhs2 (stmt);
3478 tree rhs2_type = TREE_TYPE (rhs2);
3480 if (!is_gimple_reg (lhs))
3482 error ("non-register as LHS of binary operation");
3483 return true;
3486 if (!is_gimple_val (rhs1)
3487 || !is_gimple_val (rhs2))
3489 error ("invalid operands in binary operation");
3490 return true;
3493 /* First handle operations that involve different types. */
3494 switch (rhs_code)
3496 case COMPLEX_EXPR:
3498 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3499 || !(INTEGRAL_TYPE_P (rhs1_type)
3500 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3501 || !(INTEGRAL_TYPE_P (rhs2_type)
3502 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3504 error ("type mismatch in complex expression");
3505 debug_generic_expr (lhs_type);
3506 debug_generic_expr (rhs1_type);
3507 debug_generic_expr (rhs2_type);
3508 return true;
3511 return false;
3514 case LSHIFT_EXPR:
3515 case RSHIFT_EXPR:
3516 case LROTATE_EXPR:
3517 case RROTATE_EXPR:
3519 /* Shifts and rotates are ok on integral types, fixed point
3520 types and integer vector types. */
3521 if ((!INTEGRAL_TYPE_P (rhs1_type)
3522 && !FIXED_POINT_TYPE_P (rhs1_type)
3523 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3524 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3525 || (!INTEGRAL_TYPE_P (rhs2_type)
3526 /* Vector shifts of vectors are also ok. */
3527 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3528 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3529 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3530 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3531 || !useless_type_conversion_p (lhs_type, rhs1_type))
3533 error ("type mismatch in shift expression");
3534 debug_generic_expr (lhs_type);
3535 debug_generic_expr (rhs1_type);
3536 debug_generic_expr (rhs2_type);
3537 return true;
3540 return false;
3543 case VEC_LSHIFT_EXPR:
3544 case VEC_RSHIFT_EXPR:
3546 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3547 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3548 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3549 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3550 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3551 || (!INTEGRAL_TYPE_P (rhs2_type)
3552 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3553 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3554 || !useless_type_conversion_p (lhs_type, rhs1_type))
3556 error ("type mismatch in vector shift expression");
3557 debug_generic_expr (lhs_type);
3558 debug_generic_expr (rhs1_type);
3559 debug_generic_expr (rhs2_type);
3560 return true;
3562 /* For shifting a vector of non-integral components we
3563 only allow shifting by a constant multiple of the element size. */
3564 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3565 && (TREE_CODE (rhs2) != INTEGER_CST
3566 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3567 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3569 error ("non-element sized vector shift of floating point vector");
3570 return true;
3573 return false;
3576 case WIDEN_LSHIFT_EXPR:
3578 if (!INTEGRAL_TYPE_P (lhs_type)
3579 || !INTEGRAL_TYPE_P (rhs1_type)
3580 || TREE_CODE (rhs2) != INTEGER_CST
3581 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3583 error ("type mismatch in widening vector shift expression");
3584 debug_generic_expr (lhs_type);
3585 debug_generic_expr (rhs1_type);
3586 debug_generic_expr (rhs2_type);
3587 return true;
3590 return false;
3593 case VEC_WIDEN_LSHIFT_HI_EXPR:
3594 case VEC_WIDEN_LSHIFT_LO_EXPR:
3596 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3597 || TREE_CODE (lhs_type) != VECTOR_TYPE
3598 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3599 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3600 || TREE_CODE (rhs2) != INTEGER_CST
3601 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3602 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3604 error ("type mismatch in widening vector shift expression");
3605 debug_generic_expr (lhs_type);
3606 debug_generic_expr (rhs1_type);
3607 debug_generic_expr (rhs2_type);
3608 return true;
3611 return false;
3614 case PLUS_EXPR:
3615 case MINUS_EXPR:
3617 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3618 ??? This just makes the checker happy and may not be what is
3619 intended. */
3620 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3621 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3623 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3624 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3626 error ("invalid non-vector operands to vector valued plus");
3627 return true;
3629 lhs_type = TREE_TYPE (lhs_type);
3630 rhs1_type = TREE_TYPE (rhs1_type);
3631 rhs2_type = TREE_TYPE (rhs2_type);
3632 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3633 the pointer to 2nd place. */
3634 if (POINTER_TYPE_P (rhs2_type))
3636 tree tem = rhs1_type;
3637 rhs1_type = rhs2_type;
3638 rhs2_type = tem;
3640 goto do_pointer_plus_expr_check;
3642 if (POINTER_TYPE_P (lhs_type)
3643 || POINTER_TYPE_P (rhs1_type)
3644 || POINTER_TYPE_P (rhs2_type))
3646 error ("invalid (pointer) operands to plus/minus");
3647 return true;
3650 /* Continue with generic binary expression handling. */
3651 break;
3654 case POINTER_PLUS_EXPR:
3656 do_pointer_plus_expr_check:
3657 if (!POINTER_TYPE_P (rhs1_type)
3658 || !useless_type_conversion_p (lhs_type, rhs1_type)
3659 || !ptrofftype_p (rhs2_type))
3661 error ("type mismatch in pointer plus expression");
3662 debug_generic_stmt (lhs_type);
3663 debug_generic_stmt (rhs1_type);
3664 debug_generic_stmt (rhs2_type);
3665 return true;
3668 return false;
3671 case TRUTH_ANDIF_EXPR:
3672 case TRUTH_ORIF_EXPR:
3673 case TRUTH_AND_EXPR:
3674 case TRUTH_OR_EXPR:
3675 case TRUTH_XOR_EXPR:
3677 gcc_unreachable ();
3679 case LT_EXPR:
3680 case LE_EXPR:
3681 case GT_EXPR:
3682 case GE_EXPR:
3683 case EQ_EXPR:
3684 case NE_EXPR:
3685 case UNORDERED_EXPR:
3686 case ORDERED_EXPR:
3687 case UNLT_EXPR:
3688 case UNLE_EXPR:
3689 case UNGT_EXPR:
3690 case UNGE_EXPR:
3691 case UNEQ_EXPR:
3692 case LTGT_EXPR:
3693 /* Comparisons are also binary, but the result type is not
3694 connected to the operand types. */
3695 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3697 case WIDEN_MULT_EXPR:
3698 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3699 return true;
3700 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3701 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3703 case WIDEN_SUM_EXPR:
3704 case VEC_WIDEN_MULT_HI_EXPR:
3705 case VEC_WIDEN_MULT_LO_EXPR:
3706 case VEC_WIDEN_MULT_EVEN_EXPR:
3707 case VEC_WIDEN_MULT_ODD_EXPR:
3708 case VEC_PACK_TRUNC_EXPR:
3709 case VEC_PACK_SAT_EXPR:
3710 case VEC_PACK_FIX_TRUNC_EXPR:
3711 /* FIXME. */
3712 return false;
3714 case MULT_EXPR:
3715 case MULT_HIGHPART_EXPR:
3716 case TRUNC_DIV_EXPR:
3717 case CEIL_DIV_EXPR:
3718 case FLOOR_DIV_EXPR:
3719 case ROUND_DIV_EXPR:
3720 case TRUNC_MOD_EXPR:
3721 case CEIL_MOD_EXPR:
3722 case FLOOR_MOD_EXPR:
3723 case ROUND_MOD_EXPR:
3724 case RDIV_EXPR:
3725 case EXACT_DIV_EXPR:
3726 case MIN_EXPR:
3727 case MAX_EXPR:
3728 case BIT_IOR_EXPR:
3729 case BIT_XOR_EXPR:
3730 case BIT_AND_EXPR:
3731 /* Continue with generic binary expression handling. */
3732 break;
3734 default:
3735 gcc_unreachable ();
3738 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3739 || !useless_type_conversion_p (lhs_type, rhs2_type))
3741 error ("type mismatch in binary expression");
3742 debug_generic_stmt (lhs_type);
3743 debug_generic_stmt (rhs1_type);
3744 debug_generic_stmt (rhs2_type);
3745 return true;
3748 return false;
3751 /* Verify a gimple assignment statement STMT with a ternary rhs.
3752 Returns true if anything is wrong. */
3754 static bool
3755 verify_gimple_assign_ternary (gimple stmt)
3757 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3758 tree lhs = gimple_assign_lhs (stmt);
3759 tree lhs_type = TREE_TYPE (lhs);
3760 tree rhs1 = gimple_assign_rhs1 (stmt);
3761 tree rhs1_type = TREE_TYPE (rhs1);
3762 tree rhs2 = gimple_assign_rhs2 (stmt);
3763 tree rhs2_type = TREE_TYPE (rhs2);
3764 tree rhs3 = gimple_assign_rhs3 (stmt);
3765 tree rhs3_type = TREE_TYPE (rhs3);
3767 if (!is_gimple_reg (lhs))
3769 error ("non-register as LHS of ternary operation");
3770 return true;
3773 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3774 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3775 || !is_gimple_val (rhs2)
3776 || !is_gimple_val (rhs3))
3778 error ("invalid operands in ternary operation");
3779 return true;
3782 /* First handle operations that involve different types. */
3783 switch (rhs_code)
3785 case WIDEN_MULT_PLUS_EXPR:
3786 case WIDEN_MULT_MINUS_EXPR:
3787 if ((!INTEGRAL_TYPE_P (rhs1_type)
3788 && !FIXED_POINT_TYPE_P (rhs1_type))
3789 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3790 || !useless_type_conversion_p (lhs_type, rhs3_type)
3791 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3792 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3794 error ("type mismatch in widening multiply-accumulate expression");
3795 debug_generic_expr (lhs_type);
3796 debug_generic_expr (rhs1_type);
3797 debug_generic_expr (rhs2_type);
3798 debug_generic_expr (rhs3_type);
3799 return true;
3801 break;
3803 case FMA_EXPR:
3804 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3805 || !useless_type_conversion_p (lhs_type, rhs2_type)
3806 || !useless_type_conversion_p (lhs_type, rhs3_type))
3808 error ("type mismatch in fused multiply-add expression");
3809 debug_generic_expr (lhs_type);
3810 debug_generic_expr (rhs1_type);
3811 debug_generic_expr (rhs2_type);
3812 debug_generic_expr (rhs3_type);
3813 return true;
3815 break;
3817 case COND_EXPR:
3818 case VEC_COND_EXPR:
3819 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3820 || !useless_type_conversion_p (lhs_type, rhs3_type))
3822 error ("type mismatch in conditional expression");
3823 debug_generic_expr (lhs_type);
3824 debug_generic_expr (rhs2_type);
3825 debug_generic_expr (rhs3_type);
3826 return true;
3828 break;
3830 case VEC_PERM_EXPR:
3831 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3832 || !useless_type_conversion_p (lhs_type, rhs2_type))
3834 error ("type mismatch in vector permute expression");
3835 debug_generic_expr (lhs_type);
3836 debug_generic_expr (rhs1_type);
3837 debug_generic_expr (rhs2_type);
3838 debug_generic_expr (rhs3_type);
3839 return true;
3842 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3843 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3844 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3846 error ("vector types expected in vector permute expression");
3847 debug_generic_expr (lhs_type);
3848 debug_generic_expr (rhs1_type);
3849 debug_generic_expr (rhs2_type);
3850 debug_generic_expr (rhs3_type);
3851 return true;
3854 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3855 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3856 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3857 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3858 != TYPE_VECTOR_SUBPARTS (lhs_type))
3860 error ("vectors with different element number found "
3861 "in vector permute expression");
3862 debug_generic_expr (lhs_type);
3863 debug_generic_expr (rhs1_type);
3864 debug_generic_expr (rhs2_type);
3865 debug_generic_expr (rhs3_type);
3866 return true;
3869 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3870 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3871 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3873 error ("invalid mask type in vector permute expression");
3874 debug_generic_expr (lhs_type);
3875 debug_generic_expr (rhs1_type);
3876 debug_generic_expr (rhs2_type);
3877 debug_generic_expr (rhs3_type);
3878 return true;
3881 return false;
3883 case DOT_PROD_EXPR:
3884 case REALIGN_LOAD_EXPR:
3885 /* FIXME. */
3886 return false;
3888 default:
3889 gcc_unreachable ();
3891 return false;
3894 /* Verify a gimple assignment statement STMT with a single rhs.
3895 Returns true if anything is wrong. */
3897 static bool
3898 verify_gimple_assign_single (gimple stmt)
3900 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3901 tree lhs = gimple_assign_lhs (stmt);
3902 tree lhs_type = TREE_TYPE (lhs);
3903 tree rhs1 = gimple_assign_rhs1 (stmt);
3904 tree rhs1_type = TREE_TYPE (rhs1);
3905 bool res = false;
3907 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3909 error ("non-trivial conversion at assignment");
3910 debug_generic_expr (lhs_type);
3911 debug_generic_expr (rhs1_type);
3912 return true;
3915 if (gimple_clobber_p (stmt)
3916 && !DECL_P (lhs))
3918 error ("non-decl LHS in clobber statement");
3919 debug_generic_expr (lhs);
3920 return true;
3923 if (handled_component_p (lhs))
3924 res |= verify_types_in_gimple_reference (lhs, true);
3926 /* Special codes we cannot handle via their class. */
3927 switch (rhs_code)
3929 case ADDR_EXPR:
3931 tree op = TREE_OPERAND (rhs1, 0);
3932 if (!is_gimple_addressable (op))
3934 error ("invalid operand in unary expression");
3935 return true;
3938 /* Technically there is no longer a need for matching types, but
3939 gimple hygiene asks for this check. In LTO we can end up
3940 combining incompatible units and thus end up with addresses
3941 of globals that change their type to a common one. */
3942 if (!in_lto_p
3943 && !types_compatible_p (TREE_TYPE (op),
3944 TREE_TYPE (TREE_TYPE (rhs1)))
3945 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3946 TREE_TYPE (op)))
3948 error ("type mismatch in address expression");
3949 debug_generic_stmt (TREE_TYPE (rhs1));
3950 debug_generic_stmt (TREE_TYPE (op));
3951 return true;
3954 return verify_types_in_gimple_reference (op, true);
3957 /* tcc_reference */
3958 case INDIRECT_REF:
3959 error ("INDIRECT_REF in gimple IL");
3960 return true;
3962 case COMPONENT_REF:
3963 case BIT_FIELD_REF:
3964 case ARRAY_REF:
3965 case ARRAY_RANGE_REF:
3966 case VIEW_CONVERT_EXPR:
3967 case REALPART_EXPR:
3968 case IMAGPART_EXPR:
3969 case TARGET_MEM_REF:
3970 case MEM_REF:
3971 if (!is_gimple_reg (lhs)
3972 && is_gimple_reg_type (TREE_TYPE (lhs)))
3974 error ("invalid rhs for gimple memory store");
3975 debug_generic_stmt (lhs);
3976 debug_generic_stmt (rhs1);
3977 return true;
3979 return res || verify_types_in_gimple_reference (rhs1, false);
3981 /* tcc_constant */
3982 case SSA_NAME:
3983 case INTEGER_CST:
3984 case REAL_CST:
3985 case FIXED_CST:
3986 case COMPLEX_CST:
3987 case VECTOR_CST:
3988 case STRING_CST:
3989 return res;
3991 /* tcc_declaration */
3992 case CONST_DECL:
3993 return res;
3994 case VAR_DECL:
3995 case PARM_DECL:
3996 if (!is_gimple_reg (lhs)
3997 && !is_gimple_reg (rhs1)
3998 && is_gimple_reg_type (TREE_TYPE (lhs)))
4000 error ("invalid rhs for gimple memory store");
4001 debug_generic_stmt (lhs);
4002 debug_generic_stmt (rhs1);
4003 return true;
4005 return res;
4007 case CONSTRUCTOR:
4008 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4010 unsigned int i;
4011 tree elt_i, elt_v, elt_t = NULL_TREE;
4013 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4014 return res;
4015 /* For vector CONSTRUCTORs we require that either it is empty
4016 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4017 (then the element count must be correct to cover the whole
4018 outer vector and index must be NULL on all elements, or it is
4019 a CONSTRUCTOR of scalar elements, where we as an exception allow
4020 smaller number of elements (assuming zero filling) and
4021 consecutive indexes as compared to NULL indexes (such
4022 CONSTRUCTORs can appear in the IL from FEs). */
4023 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4025 if (elt_t == NULL_TREE)
4027 elt_t = TREE_TYPE (elt_v);
4028 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4030 tree elt_t = TREE_TYPE (elt_v);
4031 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4032 TREE_TYPE (elt_t)))
4034 error ("incorrect type of vector CONSTRUCTOR"
4035 " elements");
4036 debug_generic_stmt (rhs1);
4037 return true;
4039 else if (CONSTRUCTOR_NELTS (rhs1)
4040 * TYPE_VECTOR_SUBPARTS (elt_t)
4041 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4043 error ("incorrect number of vector CONSTRUCTOR"
4044 " elements");
4045 debug_generic_stmt (rhs1);
4046 return true;
4049 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4050 elt_t))
4052 error ("incorrect type of vector CONSTRUCTOR elements");
4053 debug_generic_stmt (rhs1);
4054 return true;
4056 else if (CONSTRUCTOR_NELTS (rhs1)
4057 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4059 error ("incorrect number of vector CONSTRUCTOR elements");
4060 debug_generic_stmt (rhs1);
4061 return true;
4064 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4066 error ("incorrect type of vector CONSTRUCTOR elements");
4067 debug_generic_stmt (rhs1);
4068 return true;
4070 if (elt_i != NULL_TREE
4071 && (TREE_CODE (elt_t) == VECTOR_TYPE
4072 || TREE_CODE (elt_i) != INTEGER_CST
4073 || compare_tree_int (elt_i, i) != 0))
4075 error ("vector CONSTRUCTOR with non-NULL element index");
4076 debug_generic_stmt (rhs1);
4077 return true;
4081 return res;
4082 case OBJ_TYPE_REF:
4083 case ASSERT_EXPR:
4084 case WITH_SIZE_EXPR:
4085 /* FIXME. */
4086 return res;
4088 default:;
4091 return res;
4094 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4095 is a problem, otherwise false. */
4097 static bool
4098 verify_gimple_assign (gimple stmt)
4100 switch (gimple_assign_rhs_class (stmt))
4102 case GIMPLE_SINGLE_RHS:
4103 return verify_gimple_assign_single (stmt);
4105 case GIMPLE_UNARY_RHS:
4106 return verify_gimple_assign_unary (stmt);
4108 case GIMPLE_BINARY_RHS:
4109 return verify_gimple_assign_binary (stmt);
4111 case GIMPLE_TERNARY_RHS:
4112 return verify_gimple_assign_ternary (stmt);
4114 default:
4115 gcc_unreachable ();
4119 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4120 is a problem, otherwise false. */
4122 static bool
4123 verify_gimple_return (gimple stmt)
4125 tree op = gimple_return_retval (stmt);
4126 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4128 /* We cannot test for present return values as we do not fix up missing
4129 return values from the original source. */
4130 if (op == NULL)
4131 return false;
4133 if (!is_gimple_val (op)
4134 && TREE_CODE (op) != RESULT_DECL)
4136 error ("invalid operand in return statement");
4137 debug_generic_stmt (op);
4138 return true;
4141 if ((TREE_CODE (op) == RESULT_DECL
4142 && DECL_BY_REFERENCE (op))
4143 || (TREE_CODE (op) == SSA_NAME
4144 && SSA_NAME_VAR (op)
4145 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4146 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4147 op = TREE_TYPE (op);
4149 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4151 error ("invalid conversion in return statement");
4152 debug_generic_stmt (restype);
4153 debug_generic_stmt (TREE_TYPE (op));
4154 return true;
4157 return false;
4161 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4162 is a problem, otherwise false. */
4164 static bool
4165 verify_gimple_goto (gimple stmt)
4167 tree dest = gimple_goto_dest (stmt);
4169 /* ??? We have two canonical forms of direct goto destinations, a
4170 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4171 if (TREE_CODE (dest) != LABEL_DECL
4172 && (!is_gimple_val (dest)
4173 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4175 error ("goto destination is neither a label nor a pointer");
4176 return true;
4179 return false;
4182 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4183 is a problem, otherwise false. */
4185 static bool
4186 verify_gimple_switch (gimple stmt)
4188 unsigned int i, n;
4189 tree elt, prev_upper_bound = NULL_TREE;
4190 tree index_type, elt_type = NULL_TREE;
4192 if (!is_gimple_val (gimple_switch_index (stmt)))
4194 error ("invalid operand to switch statement");
4195 debug_generic_stmt (gimple_switch_index (stmt));
4196 return true;
4199 index_type = TREE_TYPE (gimple_switch_index (stmt));
4200 if (! INTEGRAL_TYPE_P (index_type))
4202 error ("non-integral type switch statement");
4203 debug_generic_expr (index_type);
4204 return true;
4207 elt = gimple_switch_label (stmt, 0);
4208 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4210 error ("invalid default case label in switch statement");
4211 debug_generic_expr (elt);
4212 return true;
4215 n = gimple_switch_num_labels (stmt);
4216 for (i = 1; i < n; i++)
4218 elt = gimple_switch_label (stmt, i);
4220 if (! CASE_LOW (elt))
4222 error ("invalid case label in switch statement");
4223 debug_generic_expr (elt);
4224 return true;
4226 if (CASE_HIGH (elt)
4227 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4229 error ("invalid case range in switch statement");
4230 debug_generic_expr (elt);
4231 return true;
4234 if (elt_type)
4236 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4237 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4239 error ("type mismatch for case label in switch statement");
4240 debug_generic_expr (elt);
4241 return true;
4244 else
4246 elt_type = TREE_TYPE (CASE_LOW (elt));
4247 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4249 error ("type precision mismatch in switch statement");
4250 return true;
4254 if (prev_upper_bound)
4256 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4258 error ("case labels not sorted in switch statement");
4259 return true;
4263 prev_upper_bound = CASE_HIGH (elt);
4264 if (! prev_upper_bound)
4265 prev_upper_bound = CASE_LOW (elt);
4268 return false;
4271 /* Verify a gimple debug statement STMT.
4272 Returns true if anything is wrong. */
4274 static bool
4275 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4277 /* There isn't much that could be wrong in a gimple debug stmt. A
4278 gimple debug bind stmt, for example, maps a tree, that's usually
4279 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4280 component or member of an aggregate type, to another tree, that
4281 can be an arbitrary expression. These stmts expand into debug
4282 insns, and are converted to debug notes by var-tracking.c. */
4283 return false;
4286 /* Verify a gimple label statement STMT.
4287 Returns true if anything is wrong. */
4289 static bool
4290 verify_gimple_label (gimple stmt)
4292 tree decl = gimple_label_label (stmt);
4293 int uid;
4294 bool err = false;
4296 if (TREE_CODE (decl) != LABEL_DECL)
4297 return true;
4299 uid = LABEL_DECL_UID (decl);
4300 if (cfun->cfg
4301 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4303 error ("incorrect entry in label_to_block_map");
4304 err |= true;
4307 uid = EH_LANDING_PAD_NR (decl);
4308 if (uid)
4310 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4311 if (decl != lp->post_landing_pad)
4313 error ("incorrect setting of landing pad number");
4314 err |= true;
4318 return err;
4321 /* Verify the GIMPLE statement STMT. Returns true if there is an
4322 error, otherwise false. */
4324 static bool
4325 verify_gimple_stmt (gimple stmt)
4327 switch (gimple_code (stmt))
4329 case GIMPLE_ASSIGN:
4330 return verify_gimple_assign (stmt);
4332 case GIMPLE_LABEL:
4333 return verify_gimple_label (stmt);
4335 case GIMPLE_CALL:
4336 return verify_gimple_call (stmt);
4338 case GIMPLE_COND:
4339 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4341 error ("invalid comparison code in gimple cond");
4342 return true;
4344 if (!(!gimple_cond_true_label (stmt)
4345 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4346 || !(!gimple_cond_false_label (stmt)
4347 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4349 error ("invalid labels in gimple cond");
4350 return true;
4353 return verify_gimple_comparison (boolean_type_node,
4354 gimple_cond_lhs (stmt),
4355 gimple_cond_rhs (stmt));
4357 case GIMPLE_GOTO:
4358 return verify_gimple_goto (stmt);
4360 case GIMPLE_SWITCH:
4361 return verify_gimple_switch (stmt);
4363 case GIMPLE_RETURN:
4364 return verify_gimple_return (stmt);
4366 case GIMPLE_ASM:
4367 return false;
4369 case GIMPLE_TRANSACTION:
4370 return verify_gimple_transaction (stmt);
4372 /* Tuples that do not have tree operands. */
4373 case GIMPLE_NOP:
4374 case GIMPLE_PREDICT:
4375 case GIMPLE_RESX:
4376 case GIMPLE_EH_DISPATCH:
4377 case GIMPLE_EH_MUST_NOT_THROW:
4378 return false;
4380 CASE_GIMPLE_OMP:
4381 /* OpenMP directives are validated by the FE and never operated
4382 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4383 non-gimple expressions when the main index variable has had
4384 its address taken. This does not affect the loop itself
4385 because the header of an GIMPLE_OMP_FOR is merely used to determine
4386 how to setup the parallel iteration. */
4387 return false;
4389 case GIMPLE_DEBUG:
4390 return verify_gimple_debug (stmt);
4392 default:
4393 gcc_unreachable ();
4397 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4398 and false otherwise. */
4400 static bool
4401 verify_gimple_phi (gimple phi)
4403 bool err = false;
4404 unsigned i;
4405 tree phi_result = gimple_phi_result (phi);
4406 bool virtual_p;
4408 if (!phi_result)
4410 error ("invalid PHI result");
4411 return true;
4414 virtual_p = virtual_operand_p (phi_result);
4415 if (TREE_CODE (phi_result) != SSA_NAME
4416 || (virtual_p
4417 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4419 error ("invalid PHI result");
4420 err = true;
4423 for (i = 0; i < gimple_phi_num_args (phi); i++)
4425 tree t = gimple_phi_arg_def (phi, i);
4427 if (!t)
4429 error ("missing PHI def");
4430 err |= true;
4431 continue;
4433 /* Addressable variables do have SSA_NAMEs but they
4434 are not considered gimple values. */
4435 else if ((TREE_CODE (t) == SSA_NAME
4436 && virtual_p != virtual_operand_p (t))
4437 || (virtual_p
4438 && (TREE_CODE (t) != SSA_NAME
4439 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4440 || (!virtual_p
4441 && !is_gimple_val (t)))
4443 error ("invalid PHI argument");
4444 debug_generic_expr (t);
4445 err |= true;
4447 #ifdef ENABLE_TYPES_CHECKING
4448 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4450 error ("incompatible types in PHI argument %u", i);
4451 debug_generic_stmt (TREE_TYPE (phi_result));
4452 debug_generic_stmt (TREE_TYPE (t));
4453 err |= true;
4455 #endif
4458 return err;
4461 /* Verify the GIMPLE statements inside the sequence STMTS. */
4463 static bool
4464 verify_gimple_in_seq_2 (gimple_seq stmts)
4466 gimple_stmt_iterator ittr;
4467 bool err = false;
4469 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4471 gimple stmt = gsi_stmt (ittr);
4473 switch (gimple_code (stmt))
4475 case GIMPLE_BIND:
4476 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4477 break;
4479 case GIMPLE_TRY:
4480 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4481 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4482 break;
4484 case GIMPLE_EH_FILTER:
4485 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4486 break;
4488 case GIMPLE_EH_ELSE:
4489 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4490 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4491 break;
4493 case GIMPLE_CATCH:
4494 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4495 break;
4497 case GIMPLE_TRANSACTION:
4498 err |= verify_gimple_transaction (stmt);
4499 break;
4501 default:
4503 bool err2 = verify_gimple_stmt (stmt);
4504 if (err2)
4505 debug_gimple_stmt (stmt);
4506 err |= err2;
4511 return err;
4514 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4515 is a problem, otherwise false. */
4517 static bool
4518 verify_gimple_transaction (gimple stmt)
4520 tree lab = gimple_transaction_label (stmt);
4521 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4522 return true;
4523 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4527 /* Verify the GIMPLE statements inside the statement list STMTS. */
4529 DEBUG_FUNCTION void
4530 verify_gimple_in_seq (gimple_seq stmts)
4532 timevar_push (TV_TREE_STMT_VERIFY);
4533 if (verify_gimple_in_seq_2 (stmts))
4534 internal_error ("verify_gimple failed");
4535 timevar_pop (TV_TREE_STMT_VERIFY);
4538 /* Return true when the T can be shared. */
4540 bool
4541 tree_node_can_be_shared (tree t)
4543 if (IS_TYPE_OR_DECL_P (t)
4544 || is_gimple_min_invariant (t)
4545 || TREE_CODE (t) == SSA_NAME
4546 || t == error_mark_node
4547 || TREE_CODE (t) == IDENTIFIER_NODE)
4548 return true;
4550 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4551 return true;
4553 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4554 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4555 || TREE_CODE (t) == COMPONENT_REF
4556 || TREE_CODE (t) == REALPART_EXPR
4557 || TREE_CODE (t) == IMAGPART_EXPR)
4558 t = TREE_OPERAND (t, 0);
4560 if (DECL_P (t))
4561 return true;
4563 return false;
4566 /* Called via walk_gimple_stmt. Verify tree sharing. */
4568 static tree
4569 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4571 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4572 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4574 if (tree_node_can_be_shared (*tp))
4576 *walk_subtrees = false;
4577 return NULL;
4580 if (pointer_set_insert (visited, *tp))
4581 return *tp;
4583 return NULL;
4586 static bool eh_error_found;
4587 static int
4588 verify_eh_throw_stmt_node (void **slot, void *data)
4590 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4591 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4593 if (!pointer_set_contains (visited, node->stmt))
4595 error ("dead STMT in EH table");
4596 debug_gimple_stmt (node->stmt);
4597 eh_error_found = true;
4599 return 1;
4602 /* Verify the GIMPLE statements in the CFG of FN. */
4604 DEBUG_FUNCTION void
4605 verify_gimple_in_cfg (struct function *fn)
4607 basic_block bb;
4608 bool err = false;
4609 struct pointer_set_t *visited, *visited_stmts;
4611 timevar_push (TV_TREE_STMT_VERIFY);
4612 visited = pointer_set_create ();
4613 visited_stmts = pointer_set_create ();
4615 FOR_EACH_BB_FN (bb, fn)
4617 gimple_stmt_iterator gsi;
4619 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4621 gimple phi = gsi_stmt (gsi);
4622 bool err2 = false;
4623 unsigned i;
4625 pointer_set_insert (visited_stmts, phi);
4627 if (gimple_bb (phi) != bb)
4629 error ("gimple_bb (phi) is set to a wrong basic block");
4630 err2 = true;
4633 err2 |= verify_gimple_phi (phi);
4635 for (i = 0; i < gimple_phi_num_args (phi); i++)
4637 tree arg = gimple_phi_arg_def (phi, i);
4638 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4639 if (addr)
4641 error ("incorrect sharing of tree nodes");
4642 debug_generic_expr (addr);
4643 err2 |= true;
4647 if (err2)
4648 debug_gimple_stmt (phi);
4649 err |= err2;
4652 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4654 gimple stmt = gsi_stmt (gsi);
4655 bool err2 = false;
4656 struct walk_stmt_info wi;
4657 tree addr;
4658 int lp_nr;
4660 pointer_set_insert (visited_stmts, stmt);
4662 if (gimple_bb (stmt) != bb)
4664 error ("gimple_bb (stmt) is set to a wrong basic block");
4665 err2 = true;
4668 err2 |= verify_gimple_stmt (stmt);
4670 memset (&wi, 0, sizeof (wi));
4671 wi.info = (void *) visited;
4672 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4673 if (addr)
4675 error ("incorrect sharing of tree nodes");
4676 debug_generic_expr (addr);
4677 err2 |= true;
4680 /* ??? Instead of not checking these stmts at all the walker
4681 should know its context via wi. */
4682 if (!is_gimple_debug (stmt)
4683 && !is_gimple_omp (stmt))
4685 memset (&wi, 0, sizeof (wi));
4686 addr = walk_gimple_op (stmt, verify_expr, &wi);
4687 if (addr)
4689 debug_generic_expr (addr);
4690 inform (gimple_location (stmt), "in statement");
4691 err2 |= true;
4695 /* If the statement is marked as part of an EH region, then it is
4696 expected that the statement could throw. Verify that when we
4697 have optimizations that simplify statements such that we prove
4698 that they cannot throw, that we update other data structures
4699 to match. */
4700 lp_nr = lookup_stmt_eh_lp (stmt);
4701 if (lp_nr != 0)
4703 if (!stmt_could_throw_p (stmt))
4705 error ("statement marked for throw, but doesn%'t");
4706 err2 |= true;
4708 else if (lp_nr > 0
4709 && !gsi_one_before_end_p (gsi)
4710 && stmt_can_throw_internal (stmt))
4712 error ("statement marked for throw in middle of block");
4713 err2 |= true;
4717 if (err2)
4718 debug_gimple_stmt (stmt);
4719 err |= err2;
4723 eh_error_found = false;
4724 if (get_eh_throw_stmt_table (cfun))
4725 htab_traverse (get_eh_throw_stmt_table (cfun),
4726 verify_eh_throw_stmt_node,
4727 visited_stmts);
4729 if (err || eh_error_found)
4730 internal_error ("verify_gimple failed");
4732 pointer_set_destroy (visited);
4733 pointer_set_destroy (visited_stmts);
4734 verify_histograms ();
4735 timevar_pop (TV_TREE_STMT_VERIFY);
4739 /* Verifies that the flow information is OK. */
4741 static int
4742 gimple_verify_flow_info (void)
4744 int err = 0;
4745 basic_block bb;
4746 gimple_stmt_iterator gsi;
4747 gimple stmt;
4748 edge e;
4749 edge_iterator ei;
4751 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4753 error ("ENTRY_BLOCK has IL associated with it");
4754 err = 1;
4757 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4759 error ("EXIT_BLOCK has IL associated with it");
4760 err = 1;
4763 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4764 if (e->flags & EDGE_FALLTHRU)
4766 error ("fallthru to exit from bb %d", e->src->index);
4767 err = 1;
4770 FOR_EACH_BB (bb)
4772 bool found_ctrl_stmt = false;
4774 stmt = NULL;
4776 /* Skip labels on the start of basic block. */
4777 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4779 tree label;
4780 gimple prev_stmt = stmt;
4782 stmt = gsi_stmt (gsi);
4784 if (gimple_code (stmt) != GIMPLE_LABEL)
4785 break;
4787 label = gimple_label_label (stmt);
4788 if (prev_stmt && DECL_NONLOCAL (label))
4790 error ("nonlocal label ");
4791 print_generic_expr (stderr, label, 0);
4792 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4793 bb->index);
4794 err = 1;
4797 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4799 error ("EH landing pad label ");
4800 print_generic_expr (stderr, label, 0);
4801 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4802 bb->index);
4803 err = 1;
4806 if (label_to_block (label) != bb)
4808 error ("label ");
4809 print_generic_expr (stderr, label, 0);
4810 fprintf (stderr, " to block does not match in bb %d",
4811 bb->index);
4812 err = 1;
4815 if (decl_function_context (label) != current_function_decl)
4817 error ("label ");
4818 print_generic_expr (stderr, label, 0);
4819 fprintf (stderr, " has incorrect context in bb %d",
4820 bb->index);
4821 err = 1;
4825 /* Verify that body of basic block BB is free of control flow. */
4826 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4828 gimple stmt = gsi_stmt (gsi);
4830 if (found_ctrl_stmt)
4832 error ("control flow in the middle of basic block %d",
4833 bb->index);
4834 err = 1;
4837 if (stmt_ends_bb_p (stmt))
4838 found_ctrl_stmt = true;
4840 if (gimple_code (stmt) == GIMPLE_LABEL)
4842 error ("label ");
4843 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4844 fprintf (stderr, " in the middle of basic block %d", bb->index);
4845 err = 1;
4849 gsi = gsi_last_bb (bb);
4850 if (gsi_end_p (gsi))
4851 continue;
4853 stmt = gsi_stmt (gsi);
4855 if (gimple_code (stmt) == GIMPLE_LABEL)
4856 continue;
4858 err |= verify_eh_edges (stmt);
4860 if (is_ctrl_stmt (stmt))
4862 FOR_EACH_EDGE (e, ei, bb->succs)
4863 if (e->flags & EDGE_FALLTHRU)
4865 error ("fallthru edge after a control statement in bb %d",
4866 bb->index);
4867 err = 1;
4871 if (gimple_code (stmt) != GIMPLE_COND)
4873 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4874 after anything else but if statement. */
4875 FOR_EACH_EDGE (e, ei, bb->succs)
4876 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4878 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4879 bb->index);
4880 err = 1;
4884 switch (gimple_code (stmt))
4886 case GIMPLE_COND:
4888 edge true_edge;
4889 edge false_edge;
4891 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4893 if (!true_edge
4894 || !false_edge
4895 || !(true_edge->flags & EDGE_TRUE_VALUE)
4896 || !(false_edge->flags & EDGE_FALSE_VALUE)
4897 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4898 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4899 || EDGE_COUNT (bb->succs) >= 3)
4901 error ("wrong outgoing edge flags at end of bb %d",
4902 bb->index);
4903 err = 1;
4906 break;
4908 case GIMPLE_GOTO:
4909 if (simple_goto_p (stmt))
4911 error ("explicit goto at end of bb %d", bb->index);
4912 err = 1;
4914 else
4916 /* FIXME. We should double check that the labels in the
4917 destination blocks have their address taken. */
4918 FOR_EACH_EDGE (e, ei, bb->succs)
4919 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4920 | EDGE_FALSE_VALUE))
4921 || !(e->flags & EDGE_ABNORMAL))
4923 error ("wrong outgoing edge flags at end of bb %d",
4924 bb->index);
4925 err = 1;
4928 break;
4930 case GIMPLE_CALL:
4931 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4932 break;
4933 /* ... fallthru ... */
4934 case GIMPLE_RETURN:
4935 if (!single_succ_p (bb)
4936 || (single_succ_edge (bb)->flags
4937 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4938 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4940 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4941 err = 1;
4943 if (single_succ (bb) != EXIT_BLOCK_PTR)
4945 error ("return edge does not point to exit in bb %d",
4946 bb->index);
4947 err = 1;
4949 break;
4951 case GIMPLE_SWITCH:
4953 tree prev;
4954 edge e;
4955 size_t i, n;
4957 n = gimple_switch_num_labels (stmt);
4959 /* Mark all the destination basic blocks. */
4960 for (i = 0; i < n; ++i)
4962 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4963 basic_block label_bb = label_to_block (lab);
4964 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4965 label_bb->aux = (void *)1;
4968 /* Verify that the case labels are sorted. */
4969 prev = gimple_switch_label (stmt, 0);
4970 for (i = 1; i < n; ++i)
4972 tree c = gimple_switch_label (stmt, i);
4973 if (!CASE_LOW (c))
4975 error ("found default case not at the start of "
4976 "case vector");
4977 err = 1;
4978 continue;
4980 if (CASE_LOW (prev)
4981 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4983 error ("case labels not sorted: ");
4984 print_generic_expr (stderr, prev, 0);
4985 fprintf (stderr," is greater than ");
4986 print_generic_expr (stderr, c, 0);
4987 fprintf (stderr," but comes before it.\n");
4988 err = 1;
4990 prev = c;
4992 /* VRP will remove the default case if it can prove it will
4993 never be executed. So do not verify there always exists
4994 a default case here. */
4996 FOR_EACH_EDGE (e, ei, bb->succs)
4998 if (!e->dest->aux)
5000 error ("extra outgoing edge %d->%d",
5001 bb->index, e->dest->index);
5002 err = 1;
5005 e->dest->aux = (void *)2;
5006 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5007 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5009 error ("wrong outgoing edge flags at end of bb %d",
5010 bb->index);
5011 err = 1;
5015 /* Check that we have all of them. */
5016 for (i = 0; i < n; ++i)
5018 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5019 basic_block label_bb = label_to_block (lab);
5021 if (label_bb->aux != (void *)2)
5023 error ("missing edge %i->%i", bb->index, label_bb->index);
5024 err = 1;
5028 FOR_EACH_EDGE (e, ei, bb->succs)
5029 e->dest->aux = (void *)0;
5031 break;
5033 case GIMPLE_EH_DISPATCH:
5034 err |= verify_eh_dispatch_edge (stmt);
5035 break;
5037 default:
5038 break;
5042 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5043 verify_dominators (CDI_DOMINATORS);
5045 return err;
5049 /* Updates phi nodes after creating a forwarder block joined
5050 by edge FALLTHRU. */
5052 static void
5053 gimple_make_forwarder_block (edge fallthru)
5055 edge e;
5056 edge_iterator ei;
5057 basic_block dummy, bb;
5058 tree var;
5059 gimple_stmt_iterator gsi;
5061 dummy = fallthru->src;
5062 bb = fallthru->dest;
5064 if (single_pred_p (bb))
5065 return;
5067 /* If we redirected a branch we must create new PHI nodes at the
5068 start of BB. */
5069 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5071 gimple phi, new_phi;
5073 phi = gsi_stmt (gsi);
5074 var = gimple_phi_result (phi);
5075 new_phi = create_phi_node (var, bb);
5076 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5077 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5078 UNKNOWN_LOCATION);
5081 /* Add the arguments we have stored on edges. */
5082 FOR_EACH_EDGE (e, ei, bb->preds)
5084 if (e == fallthru)
5085 continue;
5087 flush_pending_stmts (e);
5092 /* Return a non-special label in the head of basic block BLOCK.
5093 Create one if it doesn't exist. */
5095 tree
5096 gimple_block_label (basic_block bb)
5098 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5099 bool first = true;
5100 tree label;
5101 gimple stmt;
5103 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5105 stmt = gsi_stmt (i);
5106 if (gimple_code (stmt) != GIMPLE_LABEL)
5107 break;
5108 label = gimple_label_label (stmt);
5109 if (!DECL_NONLOCAL (label))
5111 if (!first)
5112 gsi_move_before (&i, &s);
5113 return label;
5117 label = create_artificial_label (UNKNOWN_LOCATION);
5118 stmt = gimple_build_label (label);
5119 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5120 return label;
5124 /* Attempt to perform edge redirection by replacing a possibly complex
5125 jump instruction by a goto or by removing the jump completely.
5126 This can apply only if all edges now point to the same block. The
5127 parameters and return values are equivalent to
5128 redirect_edge_and_branch. */
5130 static edge
5131 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5133 basic_block src = e->src;
5134 gimple_stmt_iterator i;
5135 gimple stmt;
5137 /* We can replace or remove a complex jump only when we have exactly
5138 two edges. */
5139 if (EDGE_COUNT (src->succs) != 2
5140 /* Verify that all targets will be TARGET. Specifically, the
5141 edge that is not E must also go to TARGET. */
5142 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5143 return NULL;
5145 i = gsi_last_bb (src);
5146 if (gsi_end_p (i))
5147 return NULL;
5149 stmt = gsi_stmt (i);
5151 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5153 gsi_remove (&i, true);
5154 e = ssa_redirect_edge (e, target);
5155 e->flags = EDGE_FALLTHRU;
5156 return e;
5159 return NULL;
5163 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5164 edge representing the redirected branch. */
5166 static edge
5167 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5169 basic_block bb = e->src;
5170 gimple_stmt_iterator gsi;
5171 edge ret;
5172 gimple stmt;
5174 if (e->flags & EDGE_ABNORMAL)
5175 return NULL;
5177 if (e->dest == dest)
5178 return NULL;
5180 if (e->flags & EDGE_EH)
5181 return redirect_eh_edge (e, dest);
5183 if (e->src != ENTRY_BLOCK_PTR)
5185 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5186 if (ret)
5187 return ret;
5190 gsi = gsi_last_bb (bb);
5191 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5193 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5195 case GIMPLE_COND:
5196 /* For COND_EXPR, we only need to redirect the edge. */
5197 break;
5199 case GIMPLE_GOTO:
5200 /* No non-abnormal edges should lead from a non-simple goto, and
5201 simple ones should be represented implicitly. */
5202 gcc_unreachable ();
5204 case GIMPLE_SWITCH:
5206 tree label = gimple_block_label (dest);
5207 tree cases = get_cases_for_edge (e, stmt);
5209 /* If we have a list of cases associated with E, then use it
5210 as it's a lot faster than walking the entire case vector. */
5211 if (cases)
5213 edge e2 = find_edge (e->src, dest);
5214 tree last, first;
5216 first = cases;
5217 while (cases)
5219 last = cases;
5220 CASE_LABEL (cases) = label;
5221 cases = CASE_CHAIN (cases);
5224 /* If there was already an edge in the CFG, then we need
5225 to move all the cases associated with E to E2. */
5226 if (e2)
5228 tree cases2 = get_cases_for_edge (e2, stmt);
5230 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5231 CASE_CHAIN (cases2) = first;
5233 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5235 else
5237 size_t i, n = gimple_switch_num_labels (stmt);
5239 for (i = 0; i < n; i++)
5241 tree elt = gimple_switch_label (stmt, i);
5242 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5243 CASE_LABEL (elt) = label;
5247 break;
5249 case GIMPLE_ASM:
5251 int i, n = gimple_asm_nlabels (stmt);
5252 tree label = NULL;
5254 for (i = 0; i < n; ++i)
5256 tree cons = gimple_asm_label_op (stmt, i);
5257 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5259 if (!label)
5260 label = gimple_block_label (dest);
5261 TREE_VALUE (cons) = label;
5265 /* If we didn't find any label matching the former edge in the
5266 asm labels, we must be redirecting the fallthrough
5267 edge. */
5268 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5270 break;
5272 case GIMPLE_RETURN:
5273 gsi_remove (&gsi, true);
5274 e->flags |= EDGE_FALLTHRU;
5275 break;
5277 case GIMPLE_OMP_RETURN:
5278 case GIMPLE_OMP_CONTINUE:
5279 case GIMPLE_OMP_SECTIONS_SWITCH:
5280 case GIMPLE_OMP_FOR:
5281 /* The edges from OMP constructs can be simply redirected. */
5282 break;
5284 case GIMPLE_EH_DISPATCH:
5285 if (!(e->flags & EDGE_FALLTHRU))
5286 redirect_eh_dispatch_edge (stmt, e, dest);
5287 break;
5289 case GIMPLE_TRANSACTION:
5290 /* The ABORT edge has a stored label associated with it, otherwise
5291 the edges are simply redirectable. */
5292 if (e->flags == 0)
5293 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5294 break;
5296 default:
5297 /* Otherwise it must be a fallthru edge, and we don't need to
5298 do anything besides redirecting it. */
5299 gcc_assert (e->flags & EDGE_FALLTHRU);
5300 break;
5303 /* Update/insert PHI nodes as necessary. */
5305 /* Now update the edges in the CFG. */
5306 e = ssa_redirect_edge (e, dest);
5308 return e;
5311 /* Returns true if it is possible to remove edge E by redirecting
5312 it to the destination of the other edge from E->src. */
5314 static bool
5315 gimple_can_remove_branch_p (const_edge e)
5317 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5318 return false;
5320 return true;
5323 /* Simple wrapper, as we can always redirect fallthru edges. */
5325 static basic_block
5326 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5328 e = gimple_redirect_edge_and_branch (e, dest);
5329 gcc_assert (e);
5331 return NULL;
5335 /* Splits basic block BB after statement STMT (but at least after the
5336 labels). If STMT is NULL, BB is split just after the labels. */
5338 static basic_block
5339 gimple_split_block (basic_block bb, void *stmt)
5341 gimple_stmt_iterator gsi;
5342 gimple_stmt_iterator gsi_tgt;
5343 gimple act;
5344 gimple_seq list;
5345 basic_block new_bb;
5346 edge e;
5347 edge_iterator ei;
5349 new_bb = create_empty_bb (bb);
5351 /* Redirect the outgoing edges. */
5352 new_bb->succs = bb->succs;
5353 bb->succs = NULL;
5354 FOR_EACH_EDGE (e, ei, new_bb->succs)
5355 e->src = new_bb;
5357 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5358 stmt = NULL;
5360 /* Move everything from GSI to the new basic block. */
5361 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5363 act = gsi_stmt (gsi);
5364 if (gimple_code (act) == GIMPLE_LABEL)
5365 continue;
5367 if (!stmt)
5368 break;
5370 if (stmt == act)
5372 gsi_next (&gsi);
5373 break;
5377 if (gsi_end_p (gsi))
5378 return new_bb;
5380 /* Split the statement list - avoid re-creating new containers as this
5381 brings ugly quadratic memory consumption in the inliner.
5382 (We are still quadratic since we need to update stmt BB pointers,
5383 sadly.) */
5384 gsi_split_seq_before (&gsi, &list);
5385 set_bb_seq (new_bb, list);
5386 for (gsi_tgt = gsi_start (list);
5387 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5388 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5390 return new_bb;
5394 /* Moves basic block BB after block AFTER. */
5396 static bool
5397 gimple_move_block_after (basic_block bb, basic_block after)
5399 if (bb->prev_bb == after)
5400 return true;
5402 unlink_block (bb);
5403 link_block (bb, after);
5405 return true;
5409 /* Return TRUE if block BB has no executable statements, otherwise return
5410 FALSE. */
5412 bool
5413 gimple_empty_block_p (basic_block bb)
5415 /* BB must have no executable statements. */
5416 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5417 if (phi_nodes (bb))
5418 return false;
5419 if (gsi_end_p (gsi))
5420 return true;
5421 if (is_gimple_debug (gsi_stmt (gsi)))
5422 gsi_next_nondebug (&gsi);
5423 return gsi_end_p (gsi);
5427 /* Split a basic block if it ends with a conditional branch and if the
5428 other part of the block is not empty. */
5430 static basic_block
5431 gimple_split_block_before_cond_jump (basic_block bb)
5433 gimple last, split_point;
5434 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5435 if (gsi_end_p (gsi))
5436 return NULL;
5437 last = gsi_stmt (gsi);
5438 if (gimple_code (last) != GIMPLE_COND
5439 && gimple_code (last) != GIMPLE_SWITCH)
5440 return NULL;
5441 gsi_prev_nondebug (&gsi);
5442 split_point = gsi_stmt (gsi);
5443 return split_block (bb, split_point)->dest;
5447 /* Return true if basic_block can be duplicated. */
5449 static bool
5450 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5452 return true;
5455 /* Create a duplicate of the basic block BB. NOTE: This does not
5456 preserve SSA form. */
5458 static basic_block
5459 gimple_duplicate_bb (basic_block bb)
5461 basic_block new_bb;
5462 gimple_stmt_iterator gsi, gsi_tgt;
5463 gimple_seq phis = phi_nodes (bb);
5464 gimple phi, stmt, copy;
5466 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5468 /* Copy the PHI nodes. We ignore PHI node arguments here because
5469 the incoming edges have not been setup yet. */
5470 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5472 phi = gsi_stmt (gsi);
5473 copy = create_phi_node (NULL_TREE, new_bb);
5474 create_new_def_for (gimple_phi_result (phi), copy,
5475 gimple_phi_result_ptr (copy));
5478 gsi_tgt = gsi_start_bb (new_bb);
5479 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5481 def_operand_p def_p;
5482 ssa_op_iter op_iter;
5483 tree lhs;
5485 stmt = gsi_stmt (gsi);
5486 if (gimple_code (stmt) == GIMPLE_LABEL)
5487 continue;
5489 /* Don't duplicate label debug stmts. */
5490 if (gimple_debug_bind_p (stmt)
5491 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5492 == LABEL_DECL)
5493 continue;
5495 /* Create a new copy of STMT and duplicate STMT's virtual
5496 operands. */
5497 copy = gimple_copy (stmt);
5498 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5500 maybe_duplicate_eh_stmt (copy, stmt);
5501 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5503 /* When copying around a stmt writing into a local non-user
5504 aggregate, make sure it won't share stack slot with other
5505 vars. */
5506 lhs = gimple_get_lhs (stmt);
5507 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5509 tree base = get_base_address (lhs);
5510 if (base
5511 && (TREE_CODE (base) == VAR_DECL
5512 || TREE_CODE (base) == RESULT_DECL)
5513 && DECL_IGNORED_P (base)
5514 && !TREE_STATIC (base)
5515 && !DECL_EXTERNAL (base)
5516 && (TREE_CODE (base) != VAR_DECL
5517 || !DECL_HAS_VALUE_EXPR_P (base)))
5518 DECL_NONSHAREABLE (base) = 1;
5521 /* Create new names for all the definitions created by COPY and
5522 add replacement mappings for each new name. */
5523 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5524 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5527 return new_bb;
5530 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5532 static void
5533 add_phi_args_after_copy_edge (edge e_copy)
5535 basic_block bb, bb_copy = e_copy->src, dest;
5536 edge e;
5537 edge_iterator ei;
5538 gimple phi, phi_copy;
5539 tree def;
5540 gimple_stmt_iterator psi, psi_copy;
5542 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5543 return;
5545 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5547 if (e_copy->dest->flags & BB_DUPLICATED)
5548 dest = get_bb_original (e_copy->dest);
5549 else
5550 dest = e_copy->dest;
5552 e = find_edge (bb, dest);
5553 if (!e)
5555 /* During loop unrolling the target of the latch edge is copied.
5556 In this case we are not looking for edge to dest, but to
5557 duplicated block whose original was dest. */
5558 FOR_EACH_EDGE (e, ei, bb->succs)
5560 if ((e->dest->flags & BB_DUPLICATED)
5561 && get_bb_original (e->dest) == dest)
5562 break;
5565 gcc_assert (e != NULL);
5568 for (psi = gsi_start_phis (e->dest),
5569 psi_copy = gsi_start_phis (e_copy->dest);
5570 !gsi_end_p (psi);
5571 gsi_next (&psi), gsi_next (&psi_copy))
5573 phi = gsi_stmt (psi);
5574 phi_copy = gsi_stmt (psi_copy);
5575 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5576 add_phi_arg (phi_copy, def, e_copy,
5577 gimple_phi_arg_location_from_edge (phi, e));
5582 /* Basic block BB_COPY was created by code duplication. Add phi node
5583 arguments for edges going out of BB_COPY. The blocks that were
5584 duplicated have BB_DUPLICATED set. */
5586 void
5587 add_phi_args_after_copy_bb (basic_block bb_copy)
5589 edge e_copy;
5590 edge_iterator ei;
5592 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5594 add_phi_args_after_copy_edge (e_copy);
5598 /* Blocks in REGION_COPY array of length N_REGION were created by
5599 duplication of basic blocks. Add phi node arguments for edges
5600 going from these blocks. If E_COPY is not NULL, also add
5601 phi node arguments for its destination.*/
5603 void
5604 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5605 edge e_copy)
5607 unsigned i;
5609 for (i = 0; i < n_region; i++)
5610 region_copy[i]->flags |= BB_DUPLICATED;
5612 for (i = 0; i < n_region; i++)
5613 add_phi_args_after_copy_bb (region_copy[i]);
5614 if (e_copy)
5615 add_phi_args_after_copy_edge (e_copy);
5617 for (i = 0; i < n_region; i++)
5618 region_copy[i]->flags &= ~BB_DUPLICATED;
5621 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5622 important exit edge EXIT. By important we mean that no SSA name defined
5623 inside region is live over the other exit edges of the region. All entry
5624 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5625 to the duplicate of the region. Dominance and loop information is
5626 updated, but not the SSA web. The new basic blocks are stored to
5627 REGION_COPY in the same order as they had in REGION, provided that
5628 REGION_COPY is not NULL.
5629 The function returns false if it is unable to copy the region,
5630 true otherwise. */
5632 bool
5633 gimple_duplicate_sese_region (edge entry, edge exit,
5634 basic_block *region, unsigned n_region,
5635 basic_block *region_copy)
5637 unsigned i;
5638 bool free_region_copy = false, copying_header = false;
5639 struct loop *loop = entry->dest->loop_father;
5640 edge exit_copy;
5641 vec<basic_block> doms;
5642 edge redirected;
5643 int total_freq = 0, entry_freq = 0;
5644 gcov_type total_count = 0, entry_count = 0;
5646 if (!can_copy_bbs_p (region, n_region))
5647 return false;
5649 /* Some sanity checking. Note that we do not check for all possible
5650 missuses of the functions. I.e. if you ask to copy something weird,
5651 it will work, but the state of structures probably will not be
5652 correct. */
5653 for (i = 0; i < n_region; i++)
5655 /* We do not handle subloops, i.e. all the blocks must belong to the
5656 same loop. */
5657 if (region[i]->loop_father != loop)
5658 return false;
5660 if (region[i] != entry->dest
5661 && region[i] == loop->header)
5662 return false;
5665 set_loop_copy (loop, loop);
5667 /* In case the function is used for loop header copying (which is the primary
5668 use), ensure that EXIT and its copy will be new latch and entry edges. */
5669 if (loop->header == entry->dest)
5671 copying_header = true;
5672 set_loop_copy (loop, loop_outer (loop));
5674 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5675 return false;
5677 for (i = 0; i < n_region; i++)
5678 if (region[i] != exit->src
5679 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5680 return false;
5683 if (!region_copy)
5685 region_copy = XNEWVEC (basic_block, n_region);
5686 free_region_copy = true;
5689 /* Record blocks outside the region that are dominated by something
5690 inside. */
5691 doms.create (0);
5692 initialize_original_copy_tables ();
5694 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5696 if (entry->dest->count)
5698 total_count = entry->dest->count;
5699 entry_count = entry->count;
5700 /* Fix up corner cases, to avoid division by zero or creation of negative
5701 frequencies. */
5702 if (entry_count > total_count)
5703 entry_count = total_count;
5705 else
5707 total_freq = entry->dest->frequency;
5708 entry_freq = EDGE_FREQUENCY (entry);
5709 /* Fix up corner cases, to avoid division by zero or creation of negative
5710 frequencies. */
5711 if (total_freq == 0)
5712 total_freq = 1;
5713 else if (entry_freq > total_freq)
5714 entry_freq = total_freq;
5717 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5718 split_edge_bb_loc (entry));
5719 if (total_count)
5721 scale_bbs_frequencies_gcov_type (region, n_region,
5722 total_count - entry_count,
5723 total_count);
5724 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5725 total_count);
5727 else
5729 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5730 total_freq);
5731 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5734 if (copying_header)
5736 loop->header = exit->dest;
5737 loop->latch = exit->src;
5740 /* Redirect the entry and add the phi node arguments. */
5741 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5742 gcc_assert (redirected != NULL);
5743 flush_pending_stmts (entry);
5745 /* Concerning updating of dominators: We must recount dominators
5746 for entry block and its copy. Anything that is outside of the
5747 region, but was dominated by something inside needs recounting as
5748 well. */
5749 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5750 doms.safe_push (get_bb_original (entry->dest));
5751 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5752 doms.release ();
5754 /* Add the other PHI node arguments. */
5755 add_phi_args_after_copy (region_copy, n_region, NULL);
5757 if (free_region_copy)
5758 free (region_copy);
5760 free_original_copy_tables ();
5761 return true;
5764 /* Checks if BB is part of the region defined by N_REGION BBS. */
5765 static bool
5766 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5768 unsigned int n;
5770 for (n = 0; n < n_region; n++)
5772 if (bb == bbs[n])
5773 return true;
5775 return false;
5778 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5779 are stored to REGION_COPY in the same order in that they appear
5780 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5781 the region, EXIT an exit from it. The condition guarding EXIT
5782 is moved to ENTRY. Returns true if duplication succeeds, false
5783 otherwise.
5785 For example,
5787 some_code;
5788 if (cond)
5790 else
5793 is transformed to
5795 if (cond)
5797 some_code;
5800 else
5802 some_code;
5807 bool
5808 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5809 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5810 basic_block *region_copy ATTRIBUTE_UNUSED)
5812 unsigned i;
5813 bool free_region_copy = false;
5814 struct loop *loop = exit->dest->loop_father;
5815 struct loop *orig_loop = entry->dest->loop_father;
5816 basic_block switch_bb, entry_bb, nentry_bb;
5817 vec<basic_block> doms;
5818 int total_freq = 0, exit_freq = 0;
5819 gcov_type total_count = 0, exit_count = 0;
5820 edge exits[2], nexits[2], e;
5821 gimple_stmt_iterator gsi;
5822 gimple cond_stmt;
5823 edge sorig, snew;
5824 basic_block exit_bb;
5825 gimple_stmt_iterator psi;
5826 gimple phi;
5827 tree def;
5828 struct loop *target, *aloop, *cloop;
5830 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5831 exits[0] = exit;
5832 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5834 if (!can_copy_bbs_p (region, n_region))
5835 return false;
5837 initialize_original_copy_tables ();
5838 set_loop_copy (orig_loop, loop);
5840 target= loop;
5841 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5843 if (bb_part_of_region_p (aloop->header, region, n_region))
5845 cloop = duplicate_loop (aloop, target);
5846 duplicate_subloops (aloop, cloop);
5850 if (!region_copy)
5852 region_copy = XNEWVEC (basic_block, n_region);
5853 free_region_copy = true;
5856 gcc_assert (!need_ssa_update_p (cfun));
5858 /* Record blocks outside the region that are dominated by something
5859 inside. */
5860 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5862 if (exit->src->count)
5864 total_count = exit->src->count;
5865 exit_count = exit->count;
5866 /* Fix up corner cases, to avoid division by zero or creation of negative
5867 frequencies. */
5868 if (exit_count > total_count)
5869 exit_count = total_count;
5871 else
5873 total_freq = exit->src->frequency;
5874 exit_freq = EDGE_FREQUENCY (exit);
5875 /* Fix up corner cases, to avoid division by zero or creation of negative
5876 frequencies. */
5877 if (total_freq == 0)
5878 total_freq = 1;
5879 if (exit_freq > total_freq)
5880 exit_freq = total_freq;
5883 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5884 split_edge_bb_loc (exit));
5885 if (total_count)
5887 scale_bbs_frequencies_gcov_type (region, n_region,
5888 total_count - exit_count,
5889 total_count);
5890 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5891 total_count);
5893 else
5895 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5896 total_freq);
5897 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5900 /* Create the switch block, and put the exit condition to it. */
5901 entry_bb = entry->dest;
5902 nentry_bb = get_bb_copy (entry_bb);
5903 if (!last_stmt (entry->src)
5904 || !stmt_ends_bb_p (last_stmt (entry->src)))
5905 switch_bb = entry->src;
5906 else
5907 switch_bb = split_edge (entry);
5908 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5910 gsi = gsi_last_bb (switch_bb);
5911 cond_stmt = last_stmt (exit->src);
5912 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5913 cond_stmt = gimple_copy (cond_stmt);
5915 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5917 sorig = single_succ_edge (switch_bb);
5918 sorig->flags = exits[1]->flags;
5919 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5921 /* Register the new edge from SWITCH_BB in loop exit lists. */
5922 rescan_loop_exit (snew, true, false);
5924 /* Add the PHI node arguments. */
5925 add_phi_args_after_copy (region_copy, n_region, snew);
5927 /* Get rid of now superfluous conditions and associated edges (and phi node
5928 arguments). */
5929 exit_bb = exit->dest;
5931 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5932 PENDING_STMT (e) = NULL;
5934 /* The latch of ORIG_LOOP was copied, and so was the backedge
5935 to the original header. We redirect this backedge to EXIT_BB. */
5936 for (i = 0; i < n_region; i++)
5937 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5939 gcc_assert (single_succ_edge (region_copy[i]));
5940 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5941 PENDING_STMT (e) = NULL;
5942 for (psi = gsi_start_phis (exit_bb);
5943 !gsi_end_p (psi);
5944 gsi_next (&psi))
5946 phi = gsi_stmt (psi);
5947 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5948 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5951 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
5952 PENDING_STMT (e) = NULL;
5954 /* Anything that is outside of the region, but was dominated by something
5955 inside needs to update dominance info. */
5956 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5957 doms.release ();
5958 /* Update the SSA web. */
5959 update_ssa (TODO_update_ssa);
5961 if (free_region_copy)
5962 free (region_copy);
5964 free_original_copy_tables ();
5965 return true;
5968 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5969 adding blocks when the dominator traversal reaches EXIT. This
5970 function silently assumes that ENTRY strictly dominates EXIT. */
5972 void
5973 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5974 vec<basic_block> *bbs_p)
5976 basic_block son;
5978 for (son = first_dom_son (CDI_DOMINATORS, entry);
5979 son;
5980 son = next_dom_son (CDI_DOMINATORS, son))
5982 bbs_p->safe_push (son);
5983 if (son != exit)
5984 gather_blocks_in_sese_region (son, exit, bbs_p);
5988 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5989 The duplicates are recorded in VARS_MAP. */
5991 static void
5992 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5993 tree to_context)
5995 tree t = *tp, new_t;
5996 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5997 void **loc;
5999 if (DECL_CONTEXT (t) == to_context)
6000 return;
6002 loc = pointer_map_contains (vars_map, t);
6004 if (!loc)
6006 loc = pointer_map_insert (vars_map, t);
6008 if (SSA_VAR_P (t))
6010 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6011 add_local_decl (f, new_t);
6013 else
6015 gcc_assert (TREE_CODE (t) == CONST_DECL);
6016 new_t = copy_node (t);
6018 DECL_CONTEXT (new_t) = to_context;
6020 *loc = new_t;
6022 else
6023 new_t = (tree) *loc;
6025 *tp = new_t;
6029 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6030 VARS_MAP maps old ssa names and var_decls to the new ones. */
6032 static tree
6033 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6034 tree to_context)
6036 void **loc;
6037 tree new_name;
6039 gcc_assert (!virtual_operand_p (name));
6041 loc = pointer_map_contains (vars_map, name);
6043 if (!loc)
6045 tree decl = SSA_NAME_VAR (name);
6046 if (decl)
6048 replace_by_duplicate_decl (&decl, vars_map, to_context);
6049 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6050 decl, SSA_NAME_DEF_STMT (name));
6051 if (SSA_NAME_IS_DEFAULT_DEF (name))
6052 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6053 decl, new_name);
6055 else
6056 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6057 name, SSA_NAME_DEF_STMT (name));
6059 loc = pointer_map_insert (vars_map, name);
6060 *loc = new_name;
6062 else
6063 new_name = (tree) *loc;
6065 return new_name;
6068 struct move_stmt_d
6070 tree orig_block;
6071 tree new_block;
6072 tree from_context;
6073 tree to_context;
6074 struct pointer_map_t *vars_map;
6075 htab_t new_label_map;
6076 struct pointer_map_t *eh_map;
6077 bool remap_decls_p;
6080 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6081 contained in *TP if it has been ORIG_BLOCK previously and change the
6082 DECL_CONTEXT of every local variable referenced in *TP. */
6084 static tree
6085 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6087 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6088 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6089 tree t = *tp;
6091 if (EXPR_P (t))
6093 if (TREE_BLOCK (t) == p->orig_block
6094 || (p->orig_block == NULL_TREE
6095 && TREE_BLOCK (t) == NULL_TREE))
6096 TREE_SET_BLOCK (t, p->new_block);
6098 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6100 if (TREE_CODE (t) == SSA_NAME)
6101 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6102 else if (TREE_CODE (t) == LABEL_DECL)
6104 if (p->new_label_map)
6106 struct tree_map in, *out;
6107 in.base.from = t;
6108 out = (struct tree_map *)
6109 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6110 if (out)
6111 *tp = t = out->to;
6114 DECL_CONTEXT (t) = p->to_context;
6116 else if (p->remap_decls_p)
6118 /* Replace T with its duplicate. T should no longer appear in the
6119 parent function, so this looks wasteful; however, it may appear
6120 in referenced_vars, and more importantly, as virtual operands of
6121 statements, and in alias lists of other variables. It would be
6122 quite difficult to expunge it from all those places. ??? It might
6123 suffice to do this for addressable variables. */
6124 if ((TREE_CODE (t) == VAR_DECL
6125 && !is_global_var (t))
6126 || TREE_CODE (t) == CONST_DECL)
6127 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6129 *walk_subtrees = 0;
6131 else if (TYPE_P (t))
6132 *walk_subtrees = 0;
6134 return NULL_TREE;
6137 /* Helper for move_stmt_r. Given an EH region number for the source
6138 function, map that to the duplicate EH regio number in the dest. */
6140 static int
6141 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6143 eh_region old_r, new_r;
6144 void **slot;
6146 old_r = get_eh_region_from_number (old_nr);
6147 slot = pointer_map_contains (p->eh_map, old_r);
6148 new_r = (eh_region) *slot;
6150 return new_r->index;
6153 /* Similar, but operate on INTEGER_CSTs. */
6155 static tree
6156 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6158 int old_nr, new_nr;
6160 old_nr = tree_low_cst (old_t_nr, 0);
6161 new_nr = move_stmt_eh_region_nr (old_nr, p);
6163 return build_int_cst (integer_type_node, new_nr);
6166 /* Like move_stmt_op, but for gimple statements.
6168 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6169 contained in the current statement in *GSI_P and change the
6170 DECL_CONTEXT of every local variable referenced in the current
6171 statement. */
6173 static tree
6174 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6175 struct walk_stmt_info *wi)
6177 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6178 gimple stmt = gsi_stmt (*gsi_p);
6179 tree block = gimple_block (stmt);
6181 if (p->orig_block == NULL_TREE
6182 || block == p->orig_block
6183 || block == NULL_TREE)
6184 gimple_set_block (stmt, p->new_block);
6185 #ifdef ENABLE_CHECKING
6186 else if (block != p->new_block)
6188 while (block && block != p->orig_block)
6189 block = BLOCK_SUPERCONTEXT (block);
6190 gcc_assert (block);
6192 #endif
6194 switch (gimple_code (stmt))
6196 case GIMPLE_CALL:
6197 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6199 tree r, fndecl = gimple_call_fndecl (stmt);
6200 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6201 switch (DECL_FUNCTION_CODE (fndecl))
6203 case BUILT_IN_EH_COPY_VALUES:
6204 r = gimple_call_arg (stmt, 1);
6205 r = move_stmt_eh_region_tree_nr (r, p);
6206 gimple_call_set_arg (stmt, 1, r);
6207 /* FALLTHRU */
6209 case BUILT_IN_EH_POINTER:
6210 case BUILT_IN_EH_FILTER:
6211 r = gimple_call_arg (stmt, 0);
6212 r = move_stmt_eh_region_tree_nr (r, p);
6213 gimple_call_set_arg (stmt, 0, r);
6214 break;
6216 default:
6217 break;
6220 break;
6222 case GIMPLE_RESX:
6224 int r = gimple_resx_region (stmt);
6225 r = move_stmt_eh_region_nr (r, p);
6226 gimple_resx_set_region (stmt, r);
6228 break;
6230 case GIMPLE_EH_DISPATCH:
6232 int r = gimple_eh_dispatch_region (stmt);
6233 r = move_stmt_eh_region_nr (r, p);
6234 gimple_eh_dispatch_set_region (stmt, r);
6236 break;
6238 case GIMPLE_OMP_RETURN:
6239 case GIMPLE_OMP_CONTINUE:
6240 break;
6241 default:
6242 if (is_gimple_omp (stmt))
6244 /* Do not remap variables inside OMP directives. Variables
6245 referenced in clauses and directive header belong to the
6246 parent function and should not be moved into the child
6247 function. */
6248 bool save_remap_decls_p = p->remap_decls_p;
6249 p->remap_decls_p = false;
6250 *handled_ops_p = true;
6252 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6253 move_stmt_op, wi);
6255 p->remap_decls_p = save_remap_decls_p;
6257 break;
6260 return NULL_TREE;
6263 /* Move basic block BB from function CFUN to function DEST_FN. The
6264 block is moved out of the original linked list and placed after
6265 block AFTER in the new list. Also, the block is removed from the
6266 original array of blocks and placed in DEST_FN's array of blocks.
6267 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6268 updated to reflect the moved edges.
6270 The local variables are remapped to new instances, VARS_MAP is used
6271 to record the mapping. */
6273 static void
6274 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6275 basic_block after, bool update_edge_count_p,
6276 struct move_stmt_d *d)
6278 struct control_flow_graph *cfg;
6279 edge_iterator ei;
6280 edge e;
6281 gimple_stmt_iterator si;
6282 unsigned old_len, new_len;
6284 /* Remove BB from dominance structures. */
6285 delete_from_dominance_info (CDI_DOMINATORS, bb);
6286 if (current_loops)
6287 remove_bb_from_loops (bb);
6289 /* Link BB to the new linked list. */
6290 move_block_after (bb, after);
6292 /* Update the edge count in the corresponding flowgraphs. */
6293 if (update_edge_count_p)
6294 FOR_EACH_EDGE (e, ei, bb->succs)
6296 cfun->cfg->x_n_edges--;
6297 dest_cfun->cfg->x_n_edges++;
6300 /* Remove BB from the original basic block array. */
6301 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6302 cfun->cfg->x_n_basic_blocks--;
6304 /* Grow DEST_CFUN's basic block array if needed. */
6305 cfg = dest_cfun->cfg;
6306 cfg->x_n_basic_blocks++;
6307 if (bb->index >= cfg->x_last_basic_block)
6308 cfg->x_last_basic_block = bb->index + 1;
6310 old_len = vec_safe_length (cfg->x_basic_block_info);
6311 if ((unsigned) cfg->x_last_basic_block >= old_len)
6313 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6314 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6317 (*cfg->x_basic_block_info)[bb->index] = bb;
6319 /* Remap the variables in phi nodes. */
6320 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6322 gimple phi = gsi_stmt (si);
6323 use_operand_p use;
6324 tree op = PHI_RESULT (phi);
6325 ssa_op_iter oi;
6326 unsigned i;
6328 if (virtual_operand_p (op))
6330 /* Remove the phi nodes for virtual operands (alias analysis will be
6331 run for the new function, anyway). */
6332 remove_phi_node (&si, true);
6333 continue;
6336 SET_PHI_RESULT (phi,
6337 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6338 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6340 op = USE_FROM_PTR (use);
6341 if (TREE_CODE (op) == SSA_NAME)
6342 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6345 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6347 location_t locus = gimple_phi_arg_location (phi, i);
6348 tree block = LOCATION_BLOCK (locus);
6350 if (locus == UNKNOWN_LOCATION)
6351 continue;
6352 if (d->orig_block == NULL_TREE || block == d->orig_block)
6354 if (d->new_block == NULL_TREE)
6355 locus = LOCATION_LOCUS (locus);
6356 else
6357 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6358 gimple_phi_arg_set_location (phi, i, locus);
6362 gsi_next (&si);
6365 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6367 gimple stmt = gsi_stmt (si);
6368 struct walk_stmt_info wi;
6370 memset (&wi, 0, sizeof (wi));
6371 wi.info = d;
6372 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6374 if (gimple_code (stmt) == GIMPLE_LABEL)
6376 tree label = gimple_label_label (stmt);
6377 int uid = LABEL_DECL_UID (label);
6379 gcc_assert (uid > -1);
6381 old_len = vec_safe_length (cfg->x_label_to_block_map);
6382 if (old_len <= (unsigned) uid)
6384 new_len = 3 * uid / 2 + 1;
6385 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6388 (*cfg->x_label_to_block_map)[uid] = bb;
6389 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6391 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6393 if (uid >= dest_cfun->cfg->last_label_uid)
6394 dest_cfun->cfg->last_label_uid = uid + 1;
6397 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6398 remove_stmt_from_eh_lp_fn (cfun, stmt);
6400 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6401 gimple_remove_stmt_histograms (cfun, stmt);
6403 /* We cannot leave any operands allocated from the operand caches of
6404 the current function. */
6405 free_stmt_operands (stmt);
6406 push_cfun (dest_cfun);
6407 update_stmt (stmt);
6408 pop_cfun ();
6411 FOR_EACH_EDGE (e, ei, bb->succs)
6412 if (e->goto_locus != UNKNOWN_LOCATION)
6414 tree block = LOCATION_BLOCK (e->goto_locus);
6415 if (d->orig_block == NULL_TREE
6416 || block == d->orig_block)
6417 e->goto_locus = d->new_block ?
6418 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6419 LOCATION_LOCUS (e->goto_locus);
6420 #ifdef ENABLE_CHECKING
6421 else if (block != d->new_block)
6423 while (block && block != d->orig_block)
6424 block = BLOCK_SUPERCONTEXT (block);
6425 gcc_assert (block);
6427 #endif
6431 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6432 the outermost EH region. Use REGION as the incoming base EH region. */
6434 static eh_region
6435 find_outermost_region_in_block (struct function *src_cfun,
6436 basic_block bb, eh_region region)
6438 gimple_stmt_iterator si;
6440 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6442 gimple stmt = gsi_stmt (si);
6443 eh_region stmt_region;
6444 int lp_nr;
6446 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6447 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6448 if (stmt_region)
6450 if (region == NULL)
6451 region = stmt_region;
6452 else if (stmt_region != region)
6454 region = eh_region_outermost (src_cfun, stmt_region, region);
6455 gcc_assert (region != NULL);
6460 return region;
6463 static tree
6464 new_label_mapper (tree decl, void *data)
6466 htab_t hash = (htab_t) data;
6467 struct tree_map *m;
6468 void **slot;
6470 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6472 m = XNEW (struct tree_map);
6473 m->hash = DECL_UID (decl);
6474 m->base.from = decl;
6475 m->to = create_artificial_label (UNKNOWN_LOCATION);
6476 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6477 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6478 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6480 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6481 gcc_assert (*slot == NULL);
6483 *slot = m;
6485 return m->to;
6488 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6489 subblocks. */
6491 static void
6492 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6493 tree to_context)
6495 tree *tp, t;
6497 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6499 t = *tp;
6500 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6501 continue;
6502 replace_by_duplicate_decl (&t, vars_map, to_context);
6503 if (t != *tp)
6505 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6507 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6508 DECL_HAS_VALUE_EXPR_P (t) = 1;
6510 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6511 *tp = t;
6515 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6516 replace_block_vars_by_duplicates (block, vars_map, to_context);
6519 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6520 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6521 single basic block in the original CFG and the new basic block is
6522 returned. DEST_CFUN must not have a CFG yet.
6524 Note that the region need not be a pure SESE region. Blocks inside
6525 the region may contain calls to abort/exit. The only restriction
6526 is that ENTRY_BB should be the only entry point and it must
6527 dominate EXIT_BB.
6529 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6530 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6531 to the new function.
6533 All local variables referenced in the region are assumed to be in
6534 the corresponding BLOCK_VARS and unexpanded variable lists
6535 associated with DEST_CFUN. */
6537 basic_block
6538 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6539 basic_block exit_bb, tree orig_block)
6541 vec<basic_block> bbs, dom_bbs;
6542 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6543 basic_block after, bb, *entry_pred, *exit_succ, abb;
6544 struct function *saved_cfun = cfun;
6545 int *entry_flag, *exit_flag;
6546 unsigned *entry_prob, *exit_prob;
6547 unsigned i, num_entry_edges, num_exit_edges;
6548 edge e;
6549 edge_iterator ei;
6550 htab_t new_label_map;
6551 struct pointer_map_t *vars_map, *eh_map;
6552 struct loop *loop = entry_bb->loop_father;
6553 struct move_stmt_d d;
6555 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6556 region. */
6557 gcc_assert (entry_bb != exit_bb
6558 && (!exit_bb
6559 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6561 /* Collect all the blocks in the region. Manually add ENTRY_BB
6562 because it won't be added by dfs_enumerate_from. */
6563 bbs.create (0);
6564 bbs.safe_push (entry_bb);
6565 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6567 /* The blocks that used to be dominated by something in BBS will now be
6568 dominated by the new block. */
6569 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6570 bbs.address (),
6571 bbs.length ());
6573 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6574 the predecessor edges to ENTRY_BB and the successor edges to
6575 EXIT_BB so that we can re-attach them to the new basic block that
6576 will replace the region. */
6577 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6578 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6579 entry_flag = XNEWVEC (int, num_entry_edges);
6580 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6581 i = 0;
6582 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6584 entry_prob[i] = e->probability;
6585 entry_flag[i] = e->flags;
6586 entry_pred[i++] = e->src;
6587 remove_edge (e);
6590 if (exit_bb)
6592 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6593 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6594 exit_flag = XNEWVEC (int, num_exit_edges);
6595 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6596 i = 0;
6597 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6599 exit_prob[i] = e->probability;
6600 exit_flag[i] = e->flags;
6601 exit_succ[i++] = e->dest;
6602 remove_edge (e);
6605 else
6607 num_exit_edges = 0;
6608 exit_succ = NULL;
6609 exit_flag = NULL;
6610 exit_prob = NULL;
6613 /* Switch context to the child function to initialize DEST_FN's CFG. */
6614 gcc_assert (dest_cfun->cfg == NULL);
6615 push_cfun (dest_cfun);
6617 init_empty_tree_cfg ();
6619 /* Initialize EH information for the new function. */
6620 eh_map = NULL;
6621 new_label_map = NULL;
6622 if (saved_cfun->eh)
6624 eh_region region = NULL;
6626 FOR_EACH_VEC_ELT (bbs, i, bb)
6627 region = find_outermost_region_in_block (saved_cfun, bb, region);
6629 init_eh_for_function ();
6630 if (region != NULL)
6632 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6633 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6634 new_label_mapper, new_label_map);
6638 pop_cfun ();
6640 /* Move blocks from BBS into DEST_CFUN. */
6641 gcc_assert (bbs.length () >= 2);
6642 after = dest_cfun->cfg->x_entry_block_ptr;
6643 vars_map = pointer_map_create ();
6645 memset (&d, 0, sizeof (d));
6646 d.orig_block = orig_block;
6647 d.new_block = DECL_INITIAL (dest_cfun->decl);
6648 d.from_context = cfun->decl;
6649 d.to_context = dest_cfun->decl;
6650 d.vars_map = vars_map;
6651 d.new_label_map = new_label_map;
6652 d.eh_map = eh_map;
6653 d.remap_decls_p = true;
6655 FOR_EACH_VEC_ELT (bbs, i, bb)
6657 /* No need to update edge counts on the last block. It has
6658 already been updated earlier when we detached the region from
6659 the original CFG. */
6660 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6661 after = bb;
6664 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6665 if (orig_block)
6667 tree block;
6668 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6669 == NULL_TREE);
6670 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6671 = BLOCK_SUBBLOCKS (orig_block);
6672 for (block = BLOCK_SUBBLOCKS (orig_block);
6673 block; block = BLOCK_CHAIN (block))
6674 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6675 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6678 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6679 vars_map, dest_cfun->decl);
6681 if (new_label_map)
6682 htab_delete (new_label_map);
6683 if (eh_map)
6684 pointer_map_destroy (eh_map);
6685 pointer_map_destroy (vars_map);
6687 /* Rewire the entry and exit blocks. The successor to the entry
6688 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6689 the child function. Similarly, the predecessor of DEST_FN's
6690 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6691 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6692 various CFG manipulation function get to the right CFG.
6694 FIXME, this is silly. The CFG ought to become a parameter to
6695 these helpers. */
6696 push_cfun (dest_cfun);
6697 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6698 if (exit_bb)
6699 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6700 pop_cfun ();
6702 /* Back in the original function, the SESE region has disappeared,
6703 create a new basic block in its place. */
6704 bb = create_empty_bb (entry_pred[0]);
6705 if (current_loops)
6706 add_bb_to_loop (bb, loop);
6707 for (i = 0; i < num_entry_edges; i++)
6709 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6710 e->probability = entry_prob[i];
6713 for (i = 0; i < num_exit_edges; i++)
6715 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6716 e->probability = exit_prob[i];
6719 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6720 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6721 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6722 dom_bbs.release ();
6724 if (exit_bb)
6726 free (exit_prob);
6727 free (exit_flag);
6728 free (exit_succ);
6730 free (entry_prob);
6731 free (entry_flag);
6732 free (entry_pred);
6733 bbs.release ();
6735 return bb;
6739 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6742 void
6743 dump_function_to_file (tree fndecl, FILE *file, int flags)
6745 tree arg, var, old_current_fndecl = current_function_decl;
6746 struct function *dsf;
6747 bool ignore_topmost_bind = false, any_var = false;
6748 basic_block bb;
6749 tree chain;
6750 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6751 && decl_is_tm_clone (fndecl));
6752 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6754 current_function_decl = fndecl;
6755 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6757 arg = DECL_ARGUMENTS (fndecl);
6758 while (arg)
6760 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6761 fprintf (file, " ");
6762 print_generic_expr (file, arg, dump_flags);
6763 if (flags & TDF_VERBOSE)
6764 print_node (file, "", arg, 4);
6765 if (DECL_CHAIN (arg))
6766 fprintf (file, ", ");
6767 arg = DECL_CHAIN (arg);
6769 fprintf (file, ")\n");
6771 if (flags & TDF_VERBOSE)
6772 print_node (file, "", fndecl, 2);
6774 dsf = DECL_STRUCT_FUNCTION (fndecl);
6775 if (dsf && (flags & TDF_EH))
6776 dump_eh_tree (file, dsf);
6778 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6780 dump_node (fndecl, TDF_SLIM | flags, file);
6781 current_function_decl = old_current_fndecl;
6782 return;
6785 /* When GIMPLE is lowered, the variables are no longer available in
6786 BIND_EXPRs, so display them separately. */
6787 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6789 unsigned ix;
6790 ignore_topmost_bind = true;
6792 fprintf (file, "{\n");
6793 if (!vec_safe_is_empty (fun->local_decls))
6794 FOR_EACH_LOCAL_DECL (fun, ix, var)
6796 print_generic_decl (file, var, flags);
6797 if (flags & TDF_VERBOSE)
6798 print_node (file, "", var, 4);
6799 fprintf (file, "\n");
6801 any_var = true;
6803 if (gimple_in_ssa_p (cfun))
6804 for (ix = 1; ix < num_ssa_names; ++ix)
6806 tree name = ssa_name (ix);
6807 if (name && !SSA_NAME_VAR (name))
6809 fprintf (file, " ");
6810 print_generic_expr (file, TREE_TYPE (name), flags);
6811 fprintf (file, " ");
6812 print_generic_expr (file, name, flags);
6813 fprintf (file, ";\n");
6815 any_var = true;
6820 if (fun && fun->decl == fndecl
6821 && fun->cfg
6822 && basic_block_info_for_function (fun))
6824 /* If the CFG has been built, emit a CFG-based dump. */
6825 if (!ignore_topmost_bind)
6826 fprintf (file, "{\n");
6828 if (any_var && n_basic_blocks_for_function (fun))
6829 fprintf (file, "\n");
6831 FOR_EACH_BB_FN (bb, fun)
6832 dump_bb (file, bb, 2, flags | TDF_COMMENT);
6834 fprintf (file, "}\n");
6836 else if (DECL_SAVED_TREE (fndecl) == NULL)
6838 /* The function is now in GIMPLE form but the CFG has not been
6839 built yet. Emit the single sequence of GIMPLE statements
6840 that make up its body. */
6841 gimple_seq body = gimple_body (fndecl);
6843 if (gimple_seq_first_stmt (body)
6844 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6845 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6846 print_gimple_seq (file, body, 0, flags);
6847 else
6849 if (!ignore_topmost_bind)
6850 fprintf (file, "{\n");
6852 if (any_var)
6853 fprintf (file, "\n");
6855 print_gimple_seq (file, body, 2, flags);
6856 fprintf (file, "}\n");
6859 else
6861 int indent;
6863 /* Make a tree based dump. */
6864 chain = DECL_SAVED_TREE (fndecl);
6865 if (chain && TREE_CODE (chain) == BIND_EXPR)
6867 if (ignore_topmost_bind)
6869 chain = BIND_EXPR_BODY (chain);
6870 indent = 2;
6872 else
6873 indent = 0;
6875 else
6877 if (!ignore_topmost_bind)
6878 fprintf (file, "{\n");
6879 indent = 2;
6882 if (any_var)
6883 fprintf (file, "\n");
6885 print_generic_stmt_indented (file, chain, flags, indent);
6886 if (ignore_topmost_bind)
6887 fprintf (file, "}\n");
6890 if (flags & TDF_ENUMERATE_LOCALS)
6891 dump_enumerated_decls (file, flags);
6892 fprintf (file, "\n\n");
6894 current_function_decl = old_current_fndecl;
6897 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6899 DEBUG_FUNCTION void
6900 debug_function (tree fn, int flags)
6902 dump_function_to_file (fn, stderr, flags);
6906 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6908 static void
6909 print_pred_bbs (FILE *file, basic_block bb)
6911 edge e;
6912 edge_iterator ei;
6914 FOR_EACH_EDGE (e, ei, bb->preds)
6915 fprintf (file, "bb_%d ", e->src->index);
6919 /* Print on FILE the indexes for the successors of basic_block BB. */
6921 static void
6922 print_succ_bbs (FILE *file, basic_block bb)
6924 edge e;
6925 edge_iterator ei;
6927 FOR_EACH_EDGE (e, ei, bb->succs)
6928 fprintf (file, "bb_%d ", e->dest->index);
6931 /* Print to FILE the basic block BB following the VERBOSITY level. */
6933 void
6934 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6936 char *s_indent = (char *) alloca ((size_t) indent + 1);
6937 memset ((void *) s_indent, ' ', (size_t) indent);
6938 s_indent[indent] = '\0';
6940 /* Print basic_block's header. */
6941 if (verbosity >= 2)
6943 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6944 print_pred_bbs (file, bb);
6945 fprintf (file, "}, succs = {");
6946 print_succ_bbs (file, bb);
6947 fprintf (file, "})\n");
6950 /* Print basic_block's body. */
6951 if (verbosity >= 3)
6953 fprintf (file, "%s {\n", s_indent);
6954 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6955 fprintf (file, "%s }\n", s_indent);
6959 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6961 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6962 VERBOSITY level this outputs the contents of the loop, or just its
6963 structure. */
6965 static void
6966 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6968 char *s_indent;
6969 basic_block bb;
6971 if (loop == NULL)
6972 return;
6974 s_indent = (char *) alloca ((size_t) indent + 1);
6975 memset ((void *) s_indent, ' ', (size_t) indent);
6976 s_indent[indent] = '\0';
6978 /* Print loop's header. */
6979 fprintf (file, "%sloop_%d (", s_indent, loop->num);
6980 if (loop->header)
6981 fprintf (file, "header = %d", loop->header->index);
6982 else
6984 fprintf (file, "deleted)\n");
6985 return;
6987 if (loop->latch)
6988 fprintf (file, ", latch = %d", loop->latch->index);
6989 else
6990 fprintf (file, ", multiple latches");
6991 fprintf (file, ", niter = ");
6992 print_generic_expr (file, loop->nb_iterations, 0);
6994 if (loop->any_upper_bound)
6996 fprintf (file, ", upper_bound = ");
6997 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7000 if (loop->any_estimate)
7002 fprintf (file, ", estimate = ");
7003 dump_double_int (file, loop->nb_iterations_estimate, true);
7005 fprintf (file, ")\n");
7007 /* Print loop's body. */
7008 if (verbosity >= 1)
7010 fprintf (file, "%s{\n", s_indent);
7011 FOR_EACH_BB (bb)
7012 if (bb->loop_father == loop)
7013 print_loops_bb (file, bb, indent, verbosity);
7015 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7016 fprintf (file, "%s}\n", s_indent);
7020 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7021 spaces. Following VERBOSITY level this outputs the contents of the
7022 loop, or just its structure. */
7024 static void
7025 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
7027 if (loop == NULL)
7028 return;
7030 print_loop (file, loop, indent, verbosity);
7031 print_loop_and_siblings (file, loop->next, indent, verbosity);
7034 /* Follow a CFG edge from the entry point of the program, and on entry
7035 of a loop, pretty print the loop structure on FILE. */
7037 void
7038 print_loops (FILE *file, int verbosity)
7040 basic_block bb;
7042 bb = ENTRY_BLOCK_PTR;
7043 if (bb && bb->loop_father)
7044 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7048 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7050 DEBUG_FUNCTION void
7051 debug_loops (int verbosity)
7053 print_loops (stderr, verbosity);
7056 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7058 DEBUG_FUNCTION void
7059 debug_loop (struct loop *loop, int verbosity)
7061 print_loop (stderr, loop, 0, verbosity);
7064 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7065 level. */
7067 DEBUG_FUNCTION void
7068 debug_loop_num (unsigned num, int verbosity)
7070 debug_loop (get_loop (num), verbosity);
7073 /* Return true if BB ends with a call, possibly followed by some
7074 instructions that must stay with the call. Return false,
7075 otherwise. */
7077 static bool
7078 gimple_block_ends_with_call_p (basic_block bb)
7080 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7081 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7085 /* Return true if BB ends with a conditional branch. Return false,
7086 otherwise. */
7088 static bool
7089 gimple_block_ends_with_condjump_p (const_basic_block bb)
7091 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7092 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7096 /* Return true if we need to add fake edge to exit at statement T.
7097 Helper function for gimple_flow_call_edges_add. */
7099 static bool
7100 need_fake_edge_p (gimple t)
7102 tree fndecl = NULL_TREE;
7103 int call_flags = 0;
7105 /* NORETURN and LONGJMP calls already have an edge to exit.
7106 CONST and PURE calls do not need one.
7107 We don't currently check for CONST and PURE here, although
7108 it would be a good idea, because those attributes are
7109 figured out from the RTL in mark_constant_function, and
7110 the counter incrementation code from -fprofile-arcs
7111 leads to different results from -fbranch-probabilities. */
7112 if (is_gimple_call (t))
7114 fndecl = gimple_call_fndecl (t);
7115 call_flags = gimple_call_flags (t);
7118 if (is_gimple_call (t)
7119 && fndecl
7120 && DECL_BUILT_IN (fndecl)
7121 && (call_flags & ECF_NOTHROW)
7122 && !(call_flags & ECF_RETURNS_TWICE)
7123 /* fork() doesn't really return twice, but the effect of
7124 wrapping it in __gcov_fork() which calls __gcov_flush()
7125 and clears the counters before forking has the same
7126 effect as returning twice. Force a fake edge. */
7127 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7128 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7129 return false;
7131 if (is_gimple_call (t))
7133 edge_iterator ei;
7134 edge e;
7135 basic_block bb;
7137 if (!(call_flags & ECF_NORETURN))
7138 return true;
7140 bb = gimple_bb (t);
7141 FOR_EACH_EDGE (e, ei, bb->succs)
7142 if ((e->flags & EDGE_FAKE) == 0)
7143 return true;
7146 if (gimple_code (t) == GIMPLE_ASM
7147 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7148 return true;
7150 return false;
7154 /* Add fake edges to the function exit for any non constant and non
7155 noreturn calls (or noreturn calls with EH/abnormal edges),
7156 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7157 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7158 that were split.
7160 The goal is to expose cases in which entering a basic block does
7161 not imply that all subsequent instructions must be executed. */
7163 static int
7164 gimple_flow_call_edges_add (sbitmap blocks)
7166 int i;
7167 int blocks_split = 0;
7168 int last_bb = last_basic_block;
7169 bool check_last_block = false;
7171 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7172 return 0;
7174 if (! blocks)
7175 check_last_block = true;
7176 else
7177 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7179 /* In the last basic block, before epilogue generation, there will be
7180 a fallthru edge to EXIT. Special care is required if the last insn
7181 of the last basic block is a call because make_edge folds duplicate
7182 edges, which would result in the fallthru edge also being marked
7183 fake, which would result in the fallthru edge being removed by
7184 remove_fake_edges, which would result in an invalid CFG.
7186 Moreover, we can't elide the outgoing fake edge, since the block
7187 profiler needs to take this into account in order to solve the minimal
7188 spanning tree in the case that the call doesn't return.
7190 Handle this by adding a dummy instruction in a new last basic block. */
7191 if (check_last_block)
7193 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7194 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7195 gimple t = NULL;
7197 if (!gsi_end_p (gsi))
7198 t = gsi_stmt (gsi);
7200 if (t && need_fake_edge_p (t))
7202 edge e;
7204 e = find_edge (bb, EXIT_BLOCK_PTR);
7205 if (e)
7207 gsi_insert_on_edge (e, gimple_build_nop ());
7208 gsi_commit_edge_inserts ();
7213 /* Now add fake edges to the function exit for any non constant
7214 calls since there is no way that we can determine if they will
7215 return or not... */
7216 for (i = 0; i < last_bb; i++)
7218 basic_block bb = BASIC_BLOCK (i);
7219 gimple_stmt_iterator gsi;
7220 gimple stmt, last_stmt;
7222 if (!bb)
7223 continue;
7225 if (blocks && !bitmap_bit_p (blocks, i))
7226 continue;
7228 gsi = gsi_last_nondebug_bb (bb);
7229 if (!gsi_end_p (gsi))
7231 last_stmt = gsi_stmt (gsi);
7234 stmt = gsi_stmt (gsi);
7235 if (need_fake_edge_p (stmt))
7237 edge e;
7239 /* The handling above of the final block before the
7240 epilogue should be enough to verify that there is
7241 no edge to the exit block in CFG already.
7242 Calling make_edge in such case would cause us to
7243 mark that edge as fake and remove it later. */
7244 #ifdef ENABLE_CHECKING
7245 if (stmt == last_stmt)
7247 e = find_edge (bb, EXIT_BLOCK_PTR);
7248 gcc_assert (e == NULL);
7250 #endif
7252 /* Note that the following may create a new basic block
7253 and renumber the existing basic blocks. */
7254 if (stmt != last_stmt)
7256 e = split_block (bb, stmt);
7257 if (e)
7258 blocks_split++;
7260 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7262 gsi_prev (&gsi);
7264 while (!gsi_end_p (gsi));
7268 if (blocks_split)
7269 verify_flow_info ();
7271 return blocks_split;
7274 /* Removes edge E and all the blocks dominated by it, and updates dominance
7275 information. The IL in E->src needs to be updated separately.
7276 If dominance info is not available, only the edge E is removed.*/
7278 void
7279 remove_edge_and_dominated_blocks (edge e)
7281 vec<basic_block> bbs_to_remove = vNULL;
7282 vec<basic_block> bbs_to_fix_dom = vNULL;
7283 bitmap df, df_idom;
7284 edge f;
7285 edge_iterator ei;
7286 bool none_removed = false;
7287 unsigned i;
7288 basic_block bb, dbb;
7289 bitmap_iterator bi;
7291 if (!dom_info_available_p (CDI_DOMINATORS))
7293 remove_edge (e);
7294 return;
7297 /* No updating is needed for edges to exit. */
7298 if (e->dest == EXIT_BLOCK_PTR)
7300 if (cfgcleanup_altered_bbs)
7301 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7302 remove_edge (e);
7303 return;
7306 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7307 that is not dominated by E->dest, then this set is empty. Otherwise,
7308 all the basic blocks dominated by E->dest are removed.
7310 Also, to DF_IDOM we store the immediate dominators of the blocks in
7311 the dominance frontier of E (i.e., of the successors of the
7312 removed blocks, if there are any, and of E->dest otherwise). */
7313 FOR_EACH_EDGE (f, ei, e->dest->preds)
7315 if (f == e)
7316 continue;
7318 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7320 none_removed = true;
7321 break;
7325 df = BITMAP_ALLOC (NULL);
7326 df_idom = BITMAP_ALLOC (NULL);
7328 if (none_removed)
7329 bitmap_set_bit (df_idom,
7330 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7331 else
7333 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7334 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7336 FOR_EACH_EDGE (f, ei, bb->succs)
7338 if (f->dest != EXIT_BLOCK_PTR)
7339 bitmap_set_bit (df, f->dest->index);
7342 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7343 bitmap_clear_bit (df, bb->index);
7345 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7347 bb = BASIC_BLOCK (i);
7348 bitmap_set_bit (df_idom,
7349 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7353 if (cfgcleanup_altered_bbs)
7355 /* Record the set of the altered basic blocks. */
7356 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7357 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7360 /* Remove E and the cancelled blocks. */
7361 if (none_removed)
7362 remove_edge (e);
7363 else
7365 /* Walk backwards so as to get a chance to substitute all
7366 released DEFs into debug stmts. See
7367 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7368 details. */
7369 for (i = bbs_to_remove.length (); i-- > 0; )
7370 delete_basic_block (bbs_to_remove[i]);
7373 /* Update the dominance information. The immediate dominator may change only
7374 for blocks whose immediate dominator belongs to DF_IDOM:
7376 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7377 removal. Let Z the arbitrary block such that idom(Z) = Y and
7378 Z dominates X after the removal. Before removal, there exists a path P
7379 from Y to X that avoids Z. Let F be the last edge on P that is
7380 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7381 dominates W, and because of P, Z does not dominate W), and W belongs to
7382 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7383 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7385 bb = BASIC_BLOCK (i);
7386 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7387 dbb;
7388 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7389 bbs_to_fix_dom.safe_push (dbb);
7392 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7394 BITMAP_FREE (df);
7395 BITMAP_FREE (df_idom);
7396 bbs_to_remove.release ();
7397 bbs_to_fix_dom.release ();
7400 /* Purge dead EH edges from basic block BB. */
7402 bool
7403 gimple_purge_dead_eh_edges (basic_block bb)
7405 bool changed = false;
7406 edge e;
7407 edge_iterator ei;
7408 gimple stmt = last_stmt (bb);
7410 if (stmt && stmt_can_throw_internal (stmt))
7411 return false;
7413 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7415 if (e->flags & EDGE_EH)
7417 remove_edge_and_dominated_blocks (e);
7418 changed = true;
7420 else
7421 ei_next (&ei);
7424 return changed;
7427 /* Purge dead EH edges from basic block listed in BLOCKS. */
7429 bool
7430 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7432 bool changed = false;
7433 unsigned i;
7434 bitmap_iterator bi;
7436 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7438 basic_block bb = BASIC_BLOCK (i);
7440 /* Earlier gimple_purge_dead_eh_edges could have removed
7441 this basic block already. */
7442 gcc_assert (bb || changed);
7443 if (bb != NULL)
7444 changed |= gimple_purge_dead_eh_edges (bb);
7447 return changed;
7450 /* Purge dead abnormal call edges from basic block BB. */
7452 bool
7453 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7455 bool changed = false;
7456 edge e;
7457 edge_iterator ei;
7458 gimple stmt = last_stmt (bb);
7460 if (!cfun->has_nonlocal_label)
7461 return false;
7463 if (stmt && stmt_can_make_abnormal_goto (stmt))
7464 return false;
7466 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7468 if (e->flags & EDGE_ABNORMAL)
7470 remove_edge_and_dominated_blocks (e);
7471 changed = true;
7473 else
7474 ei_next (&ei);
7477 return changed;
7480 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7482 bool
7483 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7485 bool changed = false;
7486 unsigned i;
7487 bitmap_iterator bi;
7489 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7491 basic_block bb = BASIC_BLOCK (i);
7493 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7494 this basic block already. */
7495 gcc_assert (bb || changed);
7496 if (bb != NULL)
7497 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7500 return changed;
7503 /* This function is called whenever a new edge is created or
7504 redirected. */
7506 static void
7507 gimple_execute_on_growing_pred (edge e)
7509 basic_block bb = e->dest;
7511 if (!gimple_seq_empty_p (phi_nodes (bb)))
7512 reserve_phi_args_for_new_edge (bb);
7515 /* This function is called immediately before edge E is removed from
7516 the edge vector E->dest->preds. */
7518 static void
7519 gimple_execute_on_shrinking_pred (edge e)
7521 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7522 remove_phi_args (e);
7525 /*---------------------------------------------------------------------------
7526 Helper functions for Loop versioning
7527 ---------------------------------------------------------------------------*/
7529 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7530 of 'first'. Both of them are dominated by 'new_head' basic block. When
7531 'new_head' was created by 'second's incoming edge it received phi arguments
7532 on the edge by split_edge(). Later, additional edge 'e' was created to
7533 connect 'new_head' and 'first'. Now this routine adds phi args on this
7534 additional edge 'e' that new_head to second edge received as part of edge
7535 splitting. */
7537 static void
7538 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7539 basic_block new_head, edge e)
7541 gimple phi1, phi2;
7542 gimple_stmt_iterator psi1, psi2;
7543 tree def;
7544 edge e2 = find_edge (new_head, second);
7546 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7547 edge, we should always have an edge from NEW_HEAD to SECOND. */
7548 gcc_assert (e2 != NULL);
7550 /* Browse all 'second' basic block phi nodes and add phi args to
7551 edge 'e' for 'first' head. PHI args are always in correct order. */
7553 for (psi2 = gsi_start_phis (second),
7554 psi1 = gsi_start_phis (first);
7555 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7556 gsi_next (&psi2), gsi_next (&psi1))
7558 phi1 = gsi_stmt (psi1);
7559 phi2 = gsi_stmt (psi2);
7560 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7561 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7566 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7567 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7568 the destination of the ELSE part. */
7570 static void
7571 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7572 basic_block second_head ATTRIBUTE_UNUSED,
7573 basic_block cond_bb, void *cond_e)
7575 gimple_stmt_iterator gsi;
7576 gimple new_cond_expr;
7577 tree cond_expr = (tree) cond_e;
7578 edge e0;
7580 /* Build new conditional expr */
7581 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7582 NULL_TREE, NULL_TREE);
7584 /* Add new cond in cond_bb. */
7585 gsi = gsi_last_bb (cond_bb);
7586 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7588 /* Adjust edges appropriately to connect new head with first head
7589 as well as second head. */
7590 e0 = single_succ_edge (cond_bb);
7591 e0->flags &= ~EDGE_FALLTHRU;
7592 e0->flags |= EDGE_FALSE_VALUE;
7596 /* Do book-keeping of basic block BB for the profile consistency checker.
7597 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7598 then do post-pass accounting. Store the counting in RECORD. */
7599 static void
7600 gimple_account_profile_record (basic_block bb, int after_pass,
7601 struct profile_record *record)
7603 gimple_stmt_iterator i;
7604 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7606 record->size[after_pass]
7607 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7608 if (profile_status == PROFILE_READ)
7609 record->time[after_pass]
7610 += estimate_num_insns (gsi_stmt (i),
7611 &eni_time_weights) * bb->count;
7612 else if (profile_status == PROFILE_GUESSED)
7613 record->time[after_pass]
7614 += estimate_num_insns (gsi_stmt (i),
7615 &eni_time_weights) * bb->frequency;
7619 struct cfg_hooks gimple_cfg_hooks = {
7620 "gimple",
7621 gimple_verify_flow_info,
7622 gimple_dump_bb, /* dump_bb */
7623 create_bb, /* create_basic_block */
7624 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7625 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7626 gimple_can_remove_branch_p, /* can_remove_branch_p */
7627 remove_bb, /* delete_basic_block */
7628 gimple_split_block, /* split_block */
7629 gimple_move_block_after, /* move_block_after */
7630 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7631 gimple_merge_blocks, /* merge_blocks */
7632 gimple_predict_edge, /* predict_edge */
7633 gimple_predicted_by_p, /* predicted_by_p */
7634 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7635 gimple_duplicate_bb, /* duplicate_block */
7636 gimple_split_edge, /* split_edge */
7637 gimple_make_forwarder_block, /* make_forward_block */
7638 NULL, /* tidy_fallthru_edge */
7639 NULL, /* force_nonfallthru */
7640 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7641 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7642 gimple_flow_call_edges_add, /* flow_call_edges_add */
7643 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7644 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7645 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7646 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7647 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7648 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7649 flush_pending_stmts, /* flush_pending_stmts */
7650 gimple_empty_block_p, /* block_empty_p */
7651 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7652 gimple_account_profile_record,
7656 /* Split all critical edges. */
7658 static unsigned int
7659 split_critical_edges (void)
7661 basic_block bb;
7662 edge e;
7663 edge_iterator ei;
7665 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7666 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7667 mappings around the calls to split_edge. */
7668 start_recording_case_labels ();
7669 FOR_ALL_BB (bb)
7671 FOR_EACH_EDGE (e, ei, bb->succs)
7673 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7674 split_edge (e);
7675 /* PRE inserts statements to edges and expects that
7676 since split_critical_edges was done beforehand, committing edge
7677 insertions will not split more edges. In addition to critical
7678 edges we must split edges that have multiple successors and
7679 end by control flow statements, such as RESX.
7680 Go ahead and split them too. This matches the logic in
7681 gimple_find_edge_insert_loc. */
7682 else if ((!single_pred_p (e->dest)
7683 || !gimple_seq_empty_p (phi_nodes (e->dest))
7684 || e->dest == EXIT_BLOCK_PTR)
7685 && e->src != ENTRY_BLOCK_PTR
7686 && !(e->flags & EDGE_ABNORMAL))
7688 gimple_stmt_iterator gsi;
7690 gsi = gsi_last_bb (e->src);
7691 if (!gsi_end_p (gsi)
7692 && stmt_ends_bb_p (gsi_stmt (gsi))
7693 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7694 && !gimple_call_builtin_p (gsi_stmt (gsi),
7695 BUILT_IN_RETURN)))
7696 split_edge (e);
7700 end_recording_case_labels ();
7701 return 0;
7704 struct gimple_opt_pass pass_split_crit_edges =
7707 GIMPLE_PASS,
7708 "crited", /* name */
7709 OPTGROUP_NONE, /* optinfo_flags */
7710 NULL, /* gate */
7711 split_critical_edges, /* execute */
7712 NULL, /* sub */
7713 NULL, /* next */
7714 0, /* static_pass_number */
7715 TV_TREE_SPLIT_EDGES, /* tv_id */
7716 PROP_cfg, /* properties required */
7717 PROP_no_crit_edges, /* properties_provided */
7718 0, /* properties_destroyed */
7719 0, /* todo_flags_start */
7720 TODO_verify_flow /* todo_flags_finish */
7725 /* Build a ternary operation and gimplify it. Emit code before GSI.
7726 Return the gimple_val holding the result. */
7728 tree
7729 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7730 tree type, tree a, tree b, tree c)
7732 tree ret;
7733 location_t loc = gimple_location (gsi_stmt (*gsi));
7735 ret = fold_build3_loc (loc, code, type, a, b, c);
7736 STRIP_NOPS (ret);
7738 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7739 GSI_SAME_STMT);
7742 /* Build a binary operation and gimplify it. Emit code before GSI.
7743 Return the gimple_val holding the result. */
7745 tree
7746 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7747 tree type, tree a, tree b)
7749 tree ret;
7751 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7752 STRIP_NOPS (ret);
7754 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7755 GSI_SAME_STMT);
7758 /* Build a unary operation and gimplify it. Emit code before GSI.
7759 Return the gimple_val holding the result. */
7761 tree
7762 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7763 tree a)
7765 tree ret;
7767 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7768 STRIP_NOPS (ret);
7770 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7771 GSI_SAME_STMT);
7776 /* Emit return warnings. */
7778 static unsigned int
7779 execute_warn_function_return (void)
7781 source_location location;
7782 gimple last;
7783 edge e;
7784 edge_iterator ei;
7786 if (!targetm.warn_func_return (cfun->decl))
7787 return 0;
7789 /* If we have a path to EXIT, then we do return. */
7790 if (TREE_THIS_VOLATILE (cfun->decl)
7791 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7793 location = UNKNOWN_LOCATION;
7794 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7796 last = last_stmt (e->src);
7797 if ((gimple_code (last) == GIMPLE_RETURN
7798 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7799 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7800 break;
7802 if (location == UNKNOWN_LOCATION)
7803 location = cfun->function_end_locus;
7804 warning_at (location, 0, "%<noreturn%> function does return");
7807 /* If we see "return;" in some basic block, then we do reach the end
7808 without returning a value. */
7809 else if (warn_return_type
7810 && !TREE_NO_WARNING (cfun->decl)
7811 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7812 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7814 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7816 gimple last = last_stmt (e->src);
7817 if (gimple_code (last) == GIMPLE_RETURN
7818 && gimple_return_retval (last) == NULL
7819 && !gimple_no_warning_p (last))
7821 location = gimple_location (last);
7822 if (location == UNKNOWN_LOCATION)
7823 location = cfun->function_end_locus;
7824 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7825 TREE_NO_WARNING (cfun->decl) = 1;
7826 break;
7830 return 0;
7834 /* Given a basic block B which ends with a conditional and has
7835 precisely two successors, determine which of the edges is taken if
7836 the conditional is true and which is taken if the conditional is
7837 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7839 void
7840 extract_true_false_edges_from_block (basic_block b,
7841 edge *true_edge,
7842 edge *false_edge)
7844 edge e = EDGE_SUCC (b, 0);
7846 if (e->flags & EDGE_TRUE_VALUE)
7848 *true_edge = e;
7849 *false_edge = EDGE_SUCC (b, 1);
7851 else
7853 *false_edge = e;
7854 *true_edge = EDGE_SUCC (b, 1);
7858 struct gimple_opt_pass pass_warn_function_return =
7861 GIMPLE_PASS,
7862 "*warn_function_return", /* name */
7863 OPTGROUP_NONE, /* optinfo_flags */
7864 NULL, /* gate */
7865 execute_warn_function_return, /* execute */
7866 NULL, /* sub */
7867 NULL, /* next */
7868 0, /* static_pass_number */
7869 TV_NONE, /* tv_id */
7870 PROP_cfg, /* properties_required */
7871 0, /* properties_provided */
7872 0, /* properties_destroyed */
7873 0, /* todo_flags_start */
7874 0 /* todo_flags_finish */
7878 /* Emit noreturn warnings. */
7880 static unsigned int
7881 execute_warn_function_noreturn (void)
7883 if (!TREE_THIS_VOLATILE (current_function_decl)
7884 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7885 warn_function_noreturn (current_function_decl);
7886 return 0;
7889 static bool
7890 gate_warn_function_noreturn (void)
7892 return warn_suggest_attribute_noreturn;
7895 struct gimple_opt_pass pass_warn_function_noreturn =
7898 GIMPLE_PASS,
7899 "*warn_function_noreturn", /* name */
7900 OPTGROUP_NONE, /* optinfo_flags */
7901 gate_warn_function_noreturn, /* gate */
7902 execute_warn_function_noreturn, /* execute */
7903 NULL, /* sub */
7904 NULL, /* next */
7905 0, /* static_pass_number */
7906 TV_NONE, /* tv_id */
7907 PROP_cfg, /* properties_required */
7908 0, /* properties_provided */
7909 0, /* properties_destroyed */
7910 0, /* todo_flags_start */
7911 0 /* todo_flags_finish */
7916 /* Walk a gimplified function and warn for functions whose return value is
7917 ignored and attribute((warn_unused_result)) is set. This is done before
7918 inlining, so we don't have to worry about that. */
7920 static void
7921 do_warn_unused_result (gimple_seq seq)
7923 tree fdecl, ftype;
7924 gimple_stmt_iterator i;
7926 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7928 gimple g = gsi_stmt (i);
7930 switch (gimple_code (g))
7932 case GIMPLE_BIND:
7933 do_warn_unused_result (gimple_bind_body (g));
7934 break;
7935 case GIMPLE_TRY:
7936 do_warn_unused_result (gimple_try_eval (g));
7937 do_warn_unused_result (gimple_try_cleanup (g));
7938 break;
7939 case GIMPLE_CATCH:
7940 do_warn_unused_result (gimple_catch_handler (g));
7941 break;
7942 case GIMPLE_EH_FILTER:
7943 do_warn_unused_result (gimple_eh_filter_failure (g));
7944 break;
7946 case GIMPLE_CALL:
7947 if (gimple_call_lhs (g))
7948 break;
7949 if (gimple_call_internal_p (g))
7950 break;
7952 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7953 LHS. All calls whose value is ignored should be
7954 represented like this. Look for the attribute. */
7955 fdecl = gimple_call_fndecl (g);
7956 ftype = gimple_call_fntype (g);
7958 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7960 location_t loc = gimple_location (g);
7962 if (fdecl)
7963 warning_at (loc, OPT_Wunused_result,
7964 "ignoring return value of %qD, "
7965 "declared with attribute warn_unused_result",
7966 fdecl);
7967 else
7968 warning_at (loc, OPT_Wunused_result,
7969 "ignoring return value of function "
7970 "declared with attribute warn_unused_result");
7972 break;
7974 default:
7975 /* Not a container, not a call, or a call whose value is used. */
7976 break;
7981 static unsigned int
7982 run_warn_unused_result (void)
7984 do_warn_unused_result (gimple_body (current_function_decl));
7985 return 0;
7988 static bool
7989 gate_warn_unused_result (void)
7991 return flag_warn_unused_result;
7994 struct gimple_opt_pass pass_warn_unused_result =
7997 GIMPLE_PASS,
7998 "*warn_unused_result", /* name */
7999 OPTGROUP_NONE, /* optinfo_flags */
8000 gate_warn_unused_result, /* gate */
8001 run_warn_unused_result, /* execute */
8002 NULL, /* sub */
8003 NULL, /* next */
8004 0, /* static_pass_number */
8005 TV_NONE, /* tv_id */
8006 PROP_gimple_any, /* properties_required */
8007 0, /* properties_provided */
8008 0, /* properties_destroyed */
8009 0, /* todo_flags_start */
8010 0, /* todo_flags_finish */
8015 /* Garbage collection support for edge_def. */
8017 extern void gt_ggc_mx (tree&);
8018 extern void gt_ggc_mx (gimple&);
8019 extern void gt_ggc_mx (rtx&);
8020 extern void gt_ggc_mx (basic_block&);
8022 void
8023 gt_ggc_mx (edge_def *e)
8025 tree block = LOCATION_BLOCK (e->goto_locus);
8026 gt_ggc_mx (e->src);
8027 gt_ggc_mx (e->dest);
8028 if (current_ir_type () == IR_GIMPLE)
8029 gt_ggc_mx (e->insns.g);
8030 else
8031 gt_ggc_mx (e->insns.r);
8032 gt_ggc_mx (block);
8035 /* PCH support for edge_def. */
8037 extern void gt_pch_nx (tree&);
8038 extern void gt_pch_nx (gimple&);
8039 extern void gt_pch_nx (rtx&);
8040 extern void gt_pch_nx (basic_block&);
8042 void
8043 gt_pch_nx (edge_def *e)
8045 tree block = LOCATION_BLOCK (e->goto_locus);
8046 gt_pch_nx (e->src);
8047 gt_pch_nx (e->dest);
8048 if (current_ir_type () == IR_GIMPLE)
8049 gt_pch_nx (e->insns.g);
8050 else
8051 gt_pch_nx (e->insns.r);
8052 gt_pch_nx (block);
8055 void
8056 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8058 tree block = LOCATION_BLOCK (e->goto_locus);
8059 op (&(e->src), cookie);
8060 op (&(e->dest), cookie);
8061 if (current_ir_type () == IR_GIMPLE)
8062 op (&(e->insns.g), cookie);
8063 else
8064 op (&(e->insns.r), cookie);
8065 op (&(block), cookie);