* config/arm/neon-gen.ml: Include vxWorks.h rather than stdint.h
[official-gcc.git] / gcc / final.c
blob2f68ee8431e940cfc1c3349cef9714117d1b97b9
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
75 #include "timevar.h"
76 #include "cgraph.h"
77 #include "coverage.h"
78 #include "df.h"
79 #include "vecprim.h"
80 #include "ggc.h"
81 #include "cfgloop.h"
82 #include "params.h"
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
87 #endif
89 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
90 #include "dwarf2out.h"
91 #endif
93 #ifdef DBX_DEBUGGING_INFO
94 #include "dbxout.h"
95 #endif
97 #ifdef SDB_DEBUGGING_INFO
98 #include "sdbout.h"
99 #endif
101 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
102 null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
105 #endif
107 /* How to start an assembler comment. */
108 #ifndef ASM_COMMENT_START
109 #define ASM_COMMENT_START ";#"
110 #endif
112 /* Is the given character a logical line separator for the assembler? */
113 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
114 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
115 #endif
117 #ifndef JUMP_TABLES_IN_TEXT_SECTION
118 #define JUMP_TABLES_IN_TEXT_SECTION 0
119 #endif
121 /* Bitflags used by final_scan_insn. */
122 #define SEEN_BB 1
123 #define SEEN_NOTE 2
124 #define SEEN_EMITTED 4
126 /* Last insn processed by final_scan_insn. */
127 static rtx debug_insn;
128 rtx current_output_insn;
130 /* Line number of last NOTE. */
131 static int last_linenum;
133 /* Highest line number in current block. */
134 static int high_block_linenum;
136 /* Likewise for function. */
137 static int high_function_linenum;
139 /* Filename of last NOTE. */
140 static const char *last_filename;
142 /* Override filename and line number. */
143 static const char *override_filename;
144 static int override_linenum;
146 /* Whether to force emission of a line note before the next insn. */
147 static bool force_source_line = false;
149 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't die.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 rtx this_is_asm_operands;
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands;
159 /* Compare optimization flag. */
161 static rtx last_ignored_compare = 0;
163 /* Assign a unique number to each insn that is output.
164 This can be used to generate unique local labels. */
166 static int insn_counter = 0;
168 #ifdef HAVE_cc0
169 /* This variable contains machine-dependent flags (defined in tm.h)
170 set and examined by output routines
171 that describe how to interpret the condition codes properly. */
173 CC_STATUS cc_status;
175 /* During output of an insn, this contains a copy of cc_status
176 from before the insn. */
178 CC_STATUS cc_prev_status;
179 #endif
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
183 static int block_depth;
185 /* Nonzero if have enabled APP processing of our assembler output. */
187 static int app_on;
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
190 Zero otherwise. */
192 rtx final_sequence;
194 #ifdef ASSEMBLER_DIALECT
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number;
198 #endif
200 #ifdef HAVE_conditional_execution
201 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
202 rtx current_insn_predicate;
203 #endif
205 #ifdef HAVE_ATTR_length
206 static int asm_insn_count (rtx);
207 #endif
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx);
211 static rtx walk_alter_subreg (rtx *, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx);
214 static tree get_mem_expr_from_op (rtx, int *);
215 static void output_asm_operand_names (rtx *, int *, int);
216 static void output_operand (rtx, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx);
219 #endif
220 #ifdef HAVE_cc0
221 static int alter_cond (rtx);
222 #endif
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx);
225 #endif
226 #ifdef HAVE_ATTR_length
227 static int align_fuzz (rtx, rtx, int, unsigned);
228 #endif
230 /* Initialize data in final at the beginning of a compilation. */
232 void
233 init_final (const char *filename ATTRIBUTE_UNUSED)
235 app_on = 0;
236 final_sequence = 0;
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number = ASSEMBLER_DIALECT;
240 #endif
243 /* Default target function prologue and epilogue assembler output.
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
247 void
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
262 void
263 app_enable (void)
265 if (! app_on)
267 fputs (ASM_APP_ON, asm_out_file);
268 app_on = 1;
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
275 void
276 app_disable (void)
278 if (app_on)
280 fputs (ASM_APP_OFF, asm_out_file);
281 app_on = 0;
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
289 #ifdef DELAY_SLOTS
291 dbr_sequence_length (void)
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
295 else
296 return 0;
298 #endif
300 /* The next two pages contain routines used to compute the length of an insn
301 and to shorten branches. */
303 /* Arrays for insn lengths, and addresses. The latter is referenced by
304 `insn_current_length'. */
306 static int *insn_lengths;
308 VEC(int,heap) *insn_addresses_;
310 /* Max uid for which the above arrays are valid. */
311 static int insn_lengths_max_uid;
313 /* Address of insn being processed. Used by `insn_current_length'. */
314 int insn_current_address;
316 /* Address of insn being processed in previous iteration. */
317 int insn_last_address;
319 /* known invariant alignment of insn being processed. */
320 int insn_current_align;
322 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
323 gives the next following alignment insn that increases the known
324 alignment, or NULL_RTX if there is no such insn.
325 For any alignment obtained this way, we can again index uid_align with
326 its uid to obtain the next following align that in turn increases the
327 alignment, till we reach NULL_RTX; the sequence obtained this way
328 for each insn we'll call the alignment chain of this insn in the following
329 comments. */
331 struct label_alignment
333 short alignment;
334 short max_skip;
337 static rtx *uid_align;
338 static int *uid_shuid;
339 static struct label_alignment *label_align;
341 /* Indicate that branch shortening hasn't yet been done. */
343 void
344 init_insn_lengths (void)
346 if (uid_shuid)
348 free (uid_shuid);
349 uid_shuid = 0;
351 if (insn_lengths)
353 free (insn_lengths);
354 insn_lengths = 0;
355 insn_lengths_max_uid = 0;
357 #ifdef HAVE_ATTR_length
358 INSN_ADDRESSES_FREE ();
359 #endif
360 if (uid_align)
362 free (uid_align);
363 uid_align = 0;
367 /* Obtain the current length of an insn. If branch shortening has been done,
368 get its actual length. Otherwise, use FALLBACK_FN to calculate the
369 length. */
370 static inline int
371 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
372 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
374 #ifdef HAVE_ATTR_length
375 rtx body;
376 int i;
377 int length = 0;
379 if (insn_lengths_max_uid > INSN_UID (insn))
380 return insn_lengths[INSN_UID (insn)];
381 else
382 switch (GET_CODE (insn))
384 case NOTE:
385 case BARRIER:
386 case CODE_LABEL:
387 return 0;
389 case CALL_INSN:
390 length = fallback_fn (insn);
391 break;
393 case JUMP_INSN:
394 body = PATTERN (insn);
395 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
397 /* Alignment is machine-dependent and should be handled by
398 ADDR_VEC_ALIGN. */
400 else
401 length = fallback_fn (insn);
402 break;
404 case INSN:
405 body = PATTERN (insn);
406 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
407 return 0;
409 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
410 length = asm_insn_count (body) * fallback_fn (insn);
411 else if (GET_CODE (body) == SEQUENCE)
412 for (i = 0; i < XVECLEN (body, 0); i++)
413 length += get_attr_length_1 (XVECEXP (body, 0, i), fallback_fn);
414 else
415 length = fallback_fn (insn);
416 break;
418 default:
419 break;
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn, length);
424 #endif
425 return length;
426 #else /* not HAVE_ATTR_length */
427 return 0;
428 #define insn_default_length 0
429 #define insn_min_length 0
430 #endif /* not HAVE_ATTR_length */
433 /* Obtain the current length of an insn. If branch shortening has been done,
434 get its actual length. Otherwise, get its maximum length. */
436 get_attr_length (rtx insn)
438 return get_attr_length_1 (insn, insn_default_length);
441 /* Obtain the current length of an insn. If branch shortening has been done,
442 get its actual length. Otherwise, get its minimum length. */
444 get_attr_min_length (rtx insn)
446 return get_attr_length_1 (insn, insn_min_length);
449 /* Code to handle alignment inside shorten_branches. */
451 /* Here is an explanation how the algorithm in align_fuzz can give
452 proper results:
454 Call a sequence of instructions beginning with alignment point X
455 and continuing until the next alignment point `block X'. When `X'
456 is used in an expression, it means the alignment value of the
457 alignment point.
459 Call the distance between the start of the first insn of block X, and
460 the end of the last insn of block X `IX', for the `inner size of X'.
461 This is clearly the sum of the instruction lengths.
463 Likewise with the next alignment-delimited block following X, which we
464 shall call block Y.
466 Call the distance between the start of the first insn of block X, and
467 the start of the first insn of block Y `OX', for the `outer size of X'.
469 The estimated padding is then OX - IX.
471 OX can be safely estimated as
473 if (X >= Y)
474 OX = round_up(IX, Y)
475 else
476 OX = round_up(IX, X) + Y - X
478 Clearly est(IX) >= real(IX), because that only depends on the
479 instruction lengths, and those being overestimated is a given.
481 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
482 we needn't worry about that when thinking about OX.
484 When X >= Y, the alignment provided by Y adds no uncertainty factor
485 for branch ranges starting before X, so we can just round what we have.
486 But when X < Y, we don't know anything about the, so to speak,
487 `middle bits', so we have to assume the worst when aligning up from an
488 address mod X to one mod Y, which is Y - X. */
490 #ifndef LABEL_ALIGN
491 #define LABEL_ALIGN(LABEL) align_labels_log
492 #endif
494 #ifndef LABEL_ALIGN_MAX_SKIP
495 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
496 #endif
498 #ifndef LOOP_ALIGN
499 #define LOOP_ALIGN(LABEL) align_loops_log
500 #endif
502 #ifndef LOOP_ALIGN_MAX_SKIP
503 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
504 #endif
506 #ifndef LABEL_ALIGN_AFTER_BARRIER
507 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
508 #endif
510 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
511 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
512 #endif
514 #ifndef JUMP_ALIGN
515 #define JUMP_ALIGN(LABEL) align_jumps_log
516 #endif
518 #ifndef JUMP_ALIGN_MAX_SKIP
519 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
520 #endif
522 #ifndef ADDR_VEC_ALIGN
523 static int
524 final_addr_vec_align (rtx addr_vec)
526 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
528 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
529 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
530 return exact_log2 (align);
534 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
535 #endif
537 #ifndef INSN_LENGTH_ALIGNMENT
538 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
539 #endif
541 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
543 static int min_labelno, max_labelno;
545 #define LABEL_TO_ALIGNMENT(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
548 #define LABEL_TO_MAX_SKIP(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
551 /* For the benefit of port specific code do this also as a function. */
554 label_to_alignment (rtx label)
556 if (CODE_LABEL_NUMBER (label) <= max_labelno)
557 return LABEL_TO_ALIGNMENT (label);
558 return 0;
562 label_to_max_skip (rtx label)
564 if (CODE_LABEL_NUMBER (label) <= max_labelno)
565 return LABEL_TO_MAX_SKIP (label);
566 return 0;
569 #ifdef HAVE_ATTR_length
570 /* The differences in addresses
571 between a branch and its target might grow or shrink depending on
572 the alignment the start insn of the range (the branch for a forward
573 branch or the label for a backward branch) starts out on; if these
574 differences are used naively, they can even oscillate infinitely.
575 We therefore want to compute a 'worst case' address difference that
576 is independent of the alignment the start insn of the range end
577 up on, and that is at least as large as the actual difference.
578 The function align_fuzz calculates the amount we have to add to the
579 naively computed difference, by traversing the part of the alignment
580 chain of the start insn of the range that is in front of the end insn
581 of the range, and considering for each alignment the maximum amount
582 that it might contribute to a size increase.
584 For casesi tables, we also want to know worst case minimum amounts of
585 address difference, in case a machine description wants to introduce
586 some common offset that is added to all offsets in a table.
587 For this purpose, align_fuzz with a growth argument of 0 computes the
588 appropriate adjustment. */
590 /* Compute the maximum delta by which the difference of the addresses of
591 START and END might grow / shrink due to a different address for start
592 which changes the size of alignment insns between START and END.
593 KNOWN_ALIGN_LOG is the alignment known for START.
594 GROWTH should be ~0 if the objective is to compute potential code size
595 increase, and 0 if the objective is to compute potential shrink.
596 The return value is undefined for any other value of GROWTH. */
598 static int
599 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
601 int uid = INSN_UID (start);
602 rtx align_label;
603 int known_align = 1 << known_align_log;
604 int end_shuid = INSN_SHUID (end);
605 int fuzz = 0;
607 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
609 int align_addr, new_align;
611 uid = INSN_UID (align_label);
612 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
613 if (uid_shuid[uid] > end_shuid)
614 break;
615 known_align_log = LABEL_TO_ALIGNMENT (align_label);
616 new_align = 1 << known_align_log;
617 if (new_align < known_align)
618 continue;
619 fuzz += (-align_addr ^ growth) & (new_align - known_align);
620 known_align = new_align;
622 return fuzz;
625 /* Compute a worst-case reference address of a branch so that it
626 can be safely used in the presence of aligned labels. Since the
627 size of the branch itself is unknown, the size of the branch is
628 not included in the range. I.e. for a forward branch, the reference
629 address is the end address of the branch as known from the previous
630 branch shortening pass, minus a value to account for possible size
631 increase due to alignment. For a backward branch, it is the start
632 address of the branch as known from the current pass, plus a value
633 to account for possible size increase due to alignment.
634 NB.: Therefore, the maximum offset allowed for backward branches needs
635 to exclude the branch size. */
638 insn_current_reference_address (rtx branch)
640 rtx dest, seq;
641 int seq_uid;
643 if (! INSN_ADDRESSES_SET_P ())
644 return 0;
646 seq = NEXT_INSN (PREV_INSN (branch));
647 seq_uid = INSN_UID (seq);
648 if (!JUMP_P (branch))
649 /* This can happen for example on the PA; the objective is to know the
650 offset to address something in front of the start of the function.
651 Thus, we can treat it like a backward branch.
652 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
653 any alignment we'd encounter, so we skip the call to align_fuzz. */
654 return insn_current_address;
655 dest = JUMP_LABEL (branch);
657 /* BRANCH has no proper alignment chain set, so use SEQ.
658 BRANCH also has no INSN_SHUID. */
659 if (INSN_SHUID (seq) < INSN_SHUID (dest))
661 /* Forward branch. */
662 return (insn_last_address + insn_lengths[seq_uid]
663 - align_fuzz (seq, dest, length_unit_log, ~0));
665 else
667 /* Backward branch. */
668 return (insn_current_address
669 + align_fuzz (dest, seq, length_unit_log, ~0));
672 #endif /* HAVE_ATTR_length */
674 /* Compute branch alignments based on frequency information in the
675 CFG. */
677 unsigned int
678 compute_alignments (void)
680 int log, max_skip, max_log;
681 basic_block bb;
682 int freq_max = 0;
683 int freq_threshold = 0;
685 if (label_align)
687 free (label_align);
688 label_align = 0;
691 max_labelno = max_label_num ();
692 min_labelno = get_first_label_num ();
693 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
695 /* If not optimizing or optimizing for size, don't assign any alignments. */
696 if (! optimize || optimize_function_for_size_p (cfun))
697 return 0;
699 if (dump_file)
701 dump_flow_info (dump_file, TDF_DETAILS);
702 flow_loops_dump (dump_file, NULL, 1);
703 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
705 FOR_EACH_BB (bb)
706 if (bb->frequency > freq_max)
707 freq_max = bb->frequency;
708 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
710 if (dump_file)
711 fprintf(dump_file, "freq_max: %i\n",freq_max);
712 FOR_EACH_BB (bb)
714 rtx label = BB_HEAD (bb);
715 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
716 edge e;
717 edge_iterator ei;
719 if (!LABEL_P (label)
720 || optimize_bb_for_size_p (bb))
722 if (dump_file)
723 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
724 bb->index, bb->frequency, bb->loop_father->num, bb->loop_depth);
725 continue;
727 max_log = LABEL_ALIGN (label);
728 max_skip = LABEL_ALIGN_MAX_SKIP;
730 FOR_EACH_EDGE (e, ei, bb->preds)
732 if (e->flags & EDGE_FALLTHRU)
733 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
734 else
735 branch_frequency += EDGE_FREQUENCY (e);
737 if (dump_file)
739 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
740 bb->index, bb->frequency, bb->loop_father->num,
741 bb->loop_depth,
742 fallthru_frequency, branch_frequency);
743 if (!bb->loop_father->inner && bb->loop_father->num)
744 fprintf (dump_file, " inner_loop");
745 if (bb->loop_father->header == bb)
746 fprintf (dump_file, " loop_header");
747 fprintf (dump_file, "\n");
750 /* There are two purposes to align block with no fallthru incoming edge:
751 1) to avoid fetch stalls when branch destination is near cache boundary
752 2) to improve cache efficiency in case the previous block is not executed
753 (so it does not need to be in the cache).
755 We to catch first case, we align frequently executed blocks.
756 To catch the second, we align blocks that are executed more frequently
757 than the predecessor and the predecessor is likely to not be executed
758 when function is called. */
760 if (!has_fallthru
761 && (branch_frequency > freq_threshold
762 || (bb->frequency > bb->prev_bb->frequency * 10
763 && (bb->prev_bb->frequency
764 <= ENTRY_BLOCK_PTR->frequency / 2))))
766 log = JUMP_ALIGN (label);
767 if (dump_file)
768 fprintf(dump_file, " jump alignment added.\n");
769 if (max_log < log)
771 max_log = log;
772 max_skip = JUMP_ALIGN_MAX_SKIP;
775 /* In case block is frequent and reached mostly by non-fallthru edge,
776 align it. It is most likely a first block of loop. */
777 if (has_fallthru
778 && optimize_bb_for_speed_p (bb)
779 && branch_frequency + fallthru_frequency > freq_threshold
780 && (branch_frequency
781 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
783 log = LOOP_ALIGN (label);
784 if (dump_file)
785 fprintf(dump_file, " internal loop alignment added.\n");
786 if (max_log < log)
788 max_log = log;
789 max_skip = LOOP_ALIGN_MAX_SKIP;
792 LABEL_TO_ALIGNMENT (label) = max_log;
793 LABEL_TO_MAX_SKIP (label) = max_skip;
796 if (dump_file)
798 loop_optimizer_finalize ();
799 free_dominance_info (CDI_DOMINATORS);
801 return 0;
804 struct rtl_opt_pass pass_compute_alignments =
807 RTL_PASS,
808 "alignments", /* name */
809 NULL, /* gate */
810 compute_alignments, /* execute */
811 NULL, /* sub */
812 NULL, /* next */
813 0, /* static_pass_number */
814 TV_NONE, /* tv_id */
815 0, /* properties_required */
816 0, /* properties_provided */
817 0, /* properties_destroyed */
818 0, /* todo_flags_start */
819 TODO_dump_func | TODO_verify_rtl_sharing
820 | TODO_ggc_collect /* todo_flags_finish */
825 /* Make a pass over all insns and compute their actual lengths by shortening
826 any branches of variable length if possible. */
828 /* shorten_branches might be called multiple times: for example, the SH
829 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
830 In order to do this, it needs proper length information, which it obtains
831 by calling shorten_branches. This cannot be collapsed with
832 shorten_branches itself into a single pass unless we also want to integrate
833 reorg.c, since the branch splitting exposes new instructions with delay
834 slots. */
836 void
837 shorten_branches (rtx first ATTRIBUTE_UNUSED)
839 rtx insn;
840 int max_uid;
841 int i;
842 int max_log;
843 int max_skip;
844 #ifdef HAVE_ATTR_length
845 #define MAX_CODE_ALIGN 16
846 rtx seq;
847 int something_changed = 1;
848 char *varying_length;
849 rtx body;
850 int uid;
851 rtx align_tab[MAX_CODE_ALIGN];
853 #endif
855 /* Compute maximum UID and allocate label_align / uid_shuid. */
856 max_uid = get_max_uid ();
858 /* Free uid_shuid before reallocating it. */
859 free (uid_shuid);
861 uid_shuid = XNEWVEC (int, max_uid);
863 if (max_labelno != max_label_num ())
865 int old = max_labelno;
866 int n_labels;
867 int n_old_labels;
869 max_labelno = max_label_num ();
871 n_labels = max_labelno - min_labelno + 1;
872 n_old_labels = old - min_labelno + 1;
874 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
876 /* Range of labels grows monotonically in the function. Failing here
877 means that the initialization of array got lost. */
878 gcc_assert (n_old_labels <= n_labels);
880 memset (label_align + n_old_labels, 0,
881 (n_labels - n_old_labels) * sizeof (struct label_alignment));
884 /* Initialize label_align and set up uid_shuid to be strictly
885 monotonically rising with insn order. */
886 /* We use max_log here to keep track of the maximum alignment we want to
887 impose on the next CODE_LABEL (or the current one if we are processing
888 the CODE_LABEL itself). */
890 max_log = 0;
891 max_skip = 0;
893 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
895 int log;
897 INSN_SHUID (insn) = i++;
898 if (INSN_P (insn))
899 continue;
901 if (LABEL_P (insn))
903 rtx next;
904 bool next_is_jumptable;
906 /* Merge in alignments computed by compute_alignments. */
907 log = LABEL_TO_ALIGNMENT (insn);
908 if (max_log < log)
910 max_log = log;
911 max_skip = LABEL_TO_MAX_SKIP (insn);
914 next = next_nonnote_insn (insn);
915 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
916 if (!next_is_jumptable)
918 log = LABEL_ALIGN (insn);
919 if (max_log < log)
921 max_log = log;
922 max_skip = LABEL_ALIGN_MAX_SKIP;
925 /* ADDR_VECs only take room if read-only data goes into the text
926 section. */
927 if ((JUMP_TABLES_IN_TEXT_SECTION
928 || readonly_data_section == text_section)
929 && next_is_jumptable)
931 log = ADDR_VEC_ALIGN (next);
932 if (max_log < log)
934 max_log = log;
935 max_skip = LABEL_ALIGN_MAX_SKIP;
938 LABEL_TO_ALIGNMENT (insn) = max_log;
939 LABEL_TO_MAX_SKIP (insn) = max_skip;
940 max_log = 0;
941 max_skip = 0;
943 else if (BARRIER_P (insn))
945 rtx label;
947 for (label = insn; label && ! INSN_P (label);
948 label = NEXT_INSN (label))
949 if (LABEL_P (label))
951 log = LABEL_ALIGN_AFTER_BARRIER (insn);
952 if (max_log < log)
954 max_log = log;
955 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
957 break;
961 #ifdef HAVE_ATTR_length
963 /* Allocate the rest of the arrays. */
964 insn_lengths = XNEWVEC (int, max_uid);
965 insn_lengths_max_uid = max_uid;
966 /* Syntax errors can lead to labels being outside of the main insn stream.
967 Initialize insn_addresses, so that we get reproducible results. */
968 INSN_ADDRESSES_ALLOC (max_uid);
970 varying_length = XCNEWVEC (char, max_uid);
972 /* Initialize uid_align. We scan instructions
973 from end to start, and keep in align_tab[n] the last seen insn
974 that does an alignment of at least n+1, i.e. the successor
975 in the alignment chain for an insn that does / has a known
976 alignment of n. */
977 uid_align = XCNEWVEC (rtx, max_uid);
979 for (i = MAX_CODE_ALIGN; --i >= 0;)
980 align_tab[i] = NULL_RTX;
981 seq = get_last_insn ();
982 for (; seq; seq = PREV_INSN (seq))
984 int uid = INSN_UID (seq);
985 int log;
986 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
987 uid_align[uid] = align_tab[0];
988 if (log)
990 /* Found an alignment label. */
991 uid_align[uid] = align_tab[log];
992 for (i = log - 1; i >= 0; i--)
993 align_tab[i] = seq;
996 #ifdef CASE_VECTOR_SHORTEN_MODE
997 if (optimize)
999 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1000 label fields. */
1002 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1003 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1004 int rel;
1006 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1008 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1009 int len, i, min, max, insn_shuid;
1010 int min_align;
1011 addr_diff_vec_flags flags;
1013 if (!JUMP_P (insn)
1014 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1015 continue;
1016 pat = PATTERN (insn);
1017 len = XVECLEN (pat, 1);
1018 gcc_assert (len > 0);
1019 min_align = MAX_CODE_ALIGN;
1020 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1022 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1023 int shuid = INSN_SHUID (lab);
1024 if (shuid < min)
1026 min = shuid;
1027 min_lab = lab;
1029 if (shuid > max)
1031 max = shuid;
1032 max_lab = lab;
1034 if (min_align > LABEL_TO_ALIGNMENT (lab))
1035 min_align = LABEL_TO_ALIGNMENT (lab);
1037 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1038 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1039 insn_shuid = INSN_SHUID (insn);
1040 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1041 memset (&flags, 0, sizeof (flags));
1042 flags.min_align = min_align;
1043 flags.base_after_vec = rel > insn_shuid;
1044 flags.min_after_vec = min > insn_shuid;
1045 flags.max_after_vec = max > insn_shuid;
1046 flags.min_after_base = min > rel;
1047 flags.max_after_base = max > rel;
1048 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1051 #endif /* CASE_VECTOR_SHORTEN_MODE */
1053 /* Compute initial lengths, addresses, and varying flags for each insn. */
1054 for (insn_current_address = 0, insn = first;
1055 insn != 0;
1056 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1058 uid = INSN_UID (insn);
1060 insn_lengths[uid] = 0;
1062 if (LABEL_P (insn))
1064 int log = LABEL_TO_ALIGNMENT (insn);
1065 if (log)
1067 int align = 1 << log;
1068 int new_address = (insn_current_address + align - 1) & -align;
1069 insn_lengths[uid] = new_address - insn_current_address;
1073 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1075 if (NOTE_P (insn) || BARRIER_P (insn)
1076 || LABEL_P (insn))
1077 continue;
1078 if (INSN_DELETED_P (insn))
1079 continue;
1081 body = PATTERN (insn);
1082 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1084 /* This only takes room if read-only data goes into the text
1085 section. */
1086 if (JUMP_TABLES_IN_TEXT_SECTION
1087 || readonly_data_section == text_section)
1088 insn_lengths[uid] = (XVECLEN (body,
1089 GET_CODE (body) == ADDR_DIFF_VEC)
1090 * GET_MODE_SIZE (GET_MODE (body)));
1091 /* Alignment is handled by ADDR_VEC_ALIGN. */
1093 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1094 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1095 else if (GET_CODE (body) == SEQUENCE)
1097 int i;
1098 int const_delay_slots;
1099 #ifdef DELAY_SLOTS
1100 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1101 #else
1102 const_delay_slots = 0;
1103 #endif
1104 /* Inside a delay slot sequence, we do not do any branch shortening
1105 if the shortening could change the number of delay slots
1106 of the branch. */
1107 for (i = 0; i < XVECLEN (body, 0); i++)
1109 rtx inner_insn = XVECEXP (body, 0, i);
1110 int inner_uid = INSN_UID (inner_insn);
1111 int inner_length;
1113 if (GET_CODE (body) == ASM_INPUT
1114 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1115 inner_length = (asm_insn_count (PATTERN (inner_insn))
1116 * insn_default_length (inner_insn));
1117 else
1118 inner_length = insn_default_length (inner_insn);
1120 insn_lengths[inner_uid] = inner_length;
1121 if (const_delay_slots)
1123 if ((varying_length[inner_uid]
1124 = insn_variable_length_p (inner_insn)) != 0)
1125 varying_length[uid] = 1;
1126 INSN_ADDRESSES (inner_uid) = (insn_current_address
1127 + insn_lengths[uid]);
1129 else
1130 varying_length[inner_uid] = 0;
1131 insn_lengths[uid] += inner_length;
1134 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1136 insn_lengths[uid] = insn_default_length (insn);
1137 varying_length[uid] = insn_variable_length_p (insn);
1140 /* If needed, do any adjustment. */
1141 #ifdef ADJUST_INSN_LENGTH
1142 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1143 if (insn_lengths[uid] < 0)
1144 fatal_insn ("negative insn length", insn);
1145 #endif
1148 /* Now loop over all the insns finding varying length insns. For each,
1149 get the current insn length. If it has changed, reflect the change.
1150 When nothing changes for a full pass, we are done. */
1152 while (something_changed)
1154 something_changed = 0;
1155 insn_current_align = MAX_CODE_ALIGN - 1;
1156 for (insn_current_address = 0, insn = first;
1157 insn != 0;
1158 insn = NEXT_INSN (insn))
1160 int new_length;
1161 #ifdef ADJUST_INSN_LENGTH
1162 int tmp_length;
1163 #endif
1164 int length_align;
1166 uid = INSN_UID (insn);
1168 if (LABEL_P (insn))
1170 int log = LABEL_TO_ALIGNMENT (insn);
1171 if (log > insn_current_align)
1173 int align = 1 << log;
1174 int new_address= (insn_current_address + align - 1) & -align;
1175 insn_lengths[uid] = new_address - insn_current_address;
1176 insn_current_align = log;
1177 insn_current_address = new_address;
1179 else
1180 insn_lengths[uid] = 0;
1181 INSN_ADDRESSES (uid) = insn_current_address;
1182 continue;
1185 length_align = INSN_LENGTH_ALIGNMENT (insn);
1186 if (length_align < insn_current_align)
1187 insn_current_align = length_align;
1189 insn_last_address = INSN_ADDRESSES (uid);
1190 INSN_ADDRESSES (uid) = insn_current_address;
1192 #ifdef CASE_VECTOR_SHORTEN_MODE
1193 if (optimize && JUMP_P (insn)
1194 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1196 rtx body = PATTERN (insn);
1197 int old_length = insn_lengths[uid];
1198 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1199 rtx min_lab = XEXP (XEXP (body, 2), 0);
1200 rtx max_lab = XEXP (XEXP (body, 3), 0);
1201 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1202 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1203 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1204 rtx prev;
1205 int rel_align = 0;
1206 addr_diff_vec_flags flags;
1208 /* Avoid automatic aggregate initialization. */
1209 flags = ADDR_DIFF_VEC_FLAGS (body);
1211 /* Try to find a known alignment for rel_lab. */
1212 for (prev = rel_lab;
1213 prev
1214 && ! insn_lengths[INSN_UID (prev)]
1215 && ! (varying_length[INSN_UID (prev)] & 1);
1216 prev = PREV_INSN (prev))
1217 if (varying_length[INSN_UID (prev)] & 2)
1219 rel_align = LABEL_TO_ALIGNMENT (prev);
1220 break;
1223 /* See the comment on addr_diff_vec_flags in rtl.h for the
1224 meaning of the flags values. base: REL_LAB vec: INSN */
1225 /* Anything after INSN has still addresses from the last
1226 pass; adjust these so that they reflect our current
1227 estimate for this pass. */
1228 if (flags.base_after_vec)
1229 rel_addr += insn_current_address - insn_last_address;
1230 if (flags.min_after_vec)
1231 min_addr += insn_current_address - insn_last_address;
1232 if (flags.max_after_vec)
1233 max_addr += insn_current_address - insn_last_address;
1234 /* We want to know the worst case, i.e. lowest possible value
1235 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1236 its offset is positive, and we have to be wary of code shrink;
1237 otherwise, it is negative, and we have to be vary of code
1238 size increase. */
1239 if (flags.min_after_base)
1241 /* If INSN is between REL_LAB and MIN_LAB, the size
1242 changes we are about to make can change the alignment
1243 within the observed offset, therefore we have to break
1244 it up into two parts that are independent. */
1245 if (! flags.base_after_vec && flags.min_after_vec)
1247 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1248 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1250 else
1251 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1253 else
1255 if (flags.base_after_vec && ! flags.min_after_vec)
1257 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1258 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1260 else
1261 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1263 /* Likewise, determine the highest lowest possible value
1264 for the offset of MAX_LAB. */
1265 if (flags.max_after_base)
1267 if (! flags.base_after_vec && flags.max_after_vec)
1269 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1270 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1272 else
1273 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1275 else
1277 if (flags.base_after_vec && ! flags.max_after_vec)
1279 max_addr += align_fuzz (max_lab, insn, 0, 0);
1280 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1282 else
1283 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1285 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1286 max_addr - rel_addr,
1287 body));
1288 if (JUMP_TABLES_IN_TEXT_SECTION
1289 || readonly_data_section == text_section)
1291 insn_lengths[uid]
1292 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1293 insn_current_address += insn_lengths[uid];
1294 if (insn_lengths[uid] != old_length)
1295 something_changed = 1;
1298 continue;
1300 #endif /* CASE_VECTOR_SHORTEN_MODE */
1302 if (! (varying_length[uid]))
1304 if (NONJUMP_INSN_P (insn)
1305 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1307 int i;
1309 body = PATTERN (insn);
1310 for (i = 0; i < XVECLEN (body, 0); i++)
1312 rtx inner_insn = XVECEXP (body, 0, i);
1313 int inner_uid = INSN_UID (inner_insn);
1315 INSN_ADDRESSES (inner_uid) = insn_current_address;
1317 insn_current_address += insn_lengths[inner_uid];
1320 else
1321 insn_current_address += insn_lengths[uid];
1323 continue;
1326 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1328 int i;
1330 body = PATTERN (insn);
1331 new_length = 0;
1332 for (i = 0; i < XVECLEN (body, 0); i++)
1334 rtx inner_insn = XVECEXP (body, 0, i);
1335 int inner_uid = INSN_UID (inner_insn);
1336 int inner_length;
1338 INSN_ADDRESSES (inner_uid) = insn_current_address;
1340 /* insn_current_length returns 0 for insns with a
1341 non-varying length. */
1342 if (! varying_length[inner_uid])
1343 inner_length = insn_lengths[inner_uid];
1344 else
1345 inner_length = insn_current_length (inner_insn);
1347 if (inner_length != insn_lengths[inner_uid])
1349 insn_lengths[inner_uid] = inner_length;
1350 something_changed = 1;
1352 insn_current_address += insn_lengths[inner_uid];
1353 new_length += inner_length;
1356 else
1358 new_length = insn_current_length (insn);
1359 insn_current_address += new_length;
1362 #ifdef ADJUST_INSN_LENGTH
1363 /* If needed, do any adjustment. */
1364 tmp_length = new_length;
1365 ADJUST_INSN_LENGTH (insn, new_length);
1366 insn_current_address += (new_length - tmp_length);
1367 #endif
1369 if (new_length != insn_lengths[uid])
1371 insn_lengths[uid] = new_length;
1372 something_changed = 1;
1375 /* For a non-optimizing compile, do only a single pass. */
1376 if (!optimize)
1377 break;
1380 free (varying_length);
1382 #endif /* HAVE_ATTR_length */
1385 #ifdef HAVE_ATTR_length
1386 /* Given the body of an INSN known to be generated by an ASM statement, return
1387 the number of machine instructions likely to be generated for this insn.
1388 This is used to compute its length. */
1390 static int
1391 asm_insn_count (rtx body)
1393 const char *templ;
1394 int count = 1;
1396 if (GET_CODE (body) == ASM_INPUT)
1397 templ = XSTR (body, 0);
1398 else
1399 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1401 if (!*templ)
1402 return 0;
1404 for (; *templ; templ++)
1405 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1406 || *templ == '\n')
1407 count++;
1409 return count;
1411 #endif
1413 /* ??? This is probably the wrong place for these. */
1414 /* Structure recording the mapping from source file and directory
1415 names at compile time to those to be embedded in debug
1416 information. */
1417 typedef struct debug_prefix_map
1419 const char *old_prefix;
1420 const char *new_prefix;
1421 size_t old_len;
1422 size_t new_len;
1423 struct debug_prefix_map *next;
1424 } debug_prefix_map;
1426 /* Linked list of such structures. */
1427 debug_prefix_map *debug_prefix_maps;
1430 /* Record a debug file prefix mapping. ARG is the argument to
1431 -fdebug-prefix-map and must be of the form OLD=NEW. */
1433 void
1434 add_debug_prefix_map (const char *arg)
1436 debug_prefix_map *map;
1437 const char *p;
1439 p = strchr (arg, '=');
1440 if (!p)
1442 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1443 return;
1445 map = XNEW (debug_prefix_map);
1446 map->old_prefix = ggc_alloc_string (arg, p - arg);
1447 map->old_len = p - arg;
1448 p++;
1449 map->new_prefix = ggc_strdup (p);
1450 map->new_len = strlen (p);
1451 map->next = debug_prefix_maps;
1452 debug_prefix_maps = map;
1455 /* Perform user-specified mapping of debug filename prefixes. Return
1456 the new name corresponding to FILENAME. */
1458 const char *
1459 remap_debug_filename (const char *filename)
1461 debug_prefix_map *map;
1462 char *s;
1463 const char *name;
1464 size_t name_len;
1466 for (map = debug_prefix_maps; map; map = map->next)
1467 if (strncmp (filename, map->old_prefix, map->old_len) == 0)
1468 break;
1469 if (!map)
1470 return filename;
1471 name = filename + map->old_len;
1472 name_len = strlen (name) + 1;
1473 s = (char *) alloca (name_len + map->new_len);
1474 memcpy (s, map->new_prefix, map->new_len);
1475 memcpy (s + map->new_len, name, name_len);
1476 return ggc_strdup (s);
1479 /* Output assembler code for the start of a function,
1480 and initialize some of the variables in this file
1481 for the new function. The label for the function and associated
1482 assembler pseudo-ops have already been output in `assemble_start_function'.
1484 FIRST is the first insn of the rtl for the function being compiled.
1485 FILE is the file to write assembler code to.
1486 OPTIMIZE is nonzero if we should eliminate redundant
1487 test and compare insns. */
1489 void
1490 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1491 int optimize ATTRIBUTE_UNUSED)
1493 block_depth = 0;
1495 this_is_asm_operands = 0;
1497 last_filename = locator_file (prologue_locator);
1498 last_linenum = locator_line (prologue_locator);
1500 high_block_linenum = high_function_linenum = last_linenum;
1502 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1504 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1505 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1506 dwarf2out_begin_prologue (0, NULL);
1507 #endif
1509 #ifdef LEAF_REG_REMAP
1510 if (current_function_uses_only_leaf_regs)
1511 leaf_renumber_regs (first);
1512 #endif
1514 /* The Sun386i and perhaps other machines don't work right
1515 if the profiling code comes after the prologue. */
1516 #ifdef PROFILE_BEFORE_PROLOGUE
1517 if (crtl->profile)
1518 profile_function (file);
1519 #endif /* PROFILE_BEFORE_PROLOGUE */
1521 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1522 if (dwarf2out_do_frame ())
1523 dwarf2out_frame_debug (NULL_RTX, false);
1524 #endif
1526 /* If debugging, assign block numbers to all of the blocks in this
1527 function. */
1528 if (write_symbols)
1530 reemit_insn_block_notes ();
1531 number_blocks (current_function_decl);
1532 /* We never actually put out begin/end notes for the top-level
1533 block in the function. But, conceptually, that block is
1534 always needed. */
1535 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1538 if (warn_frame_larger_than
1539 && get_frame_size () > frame_larger_than_size)
1541 /* Issue a warning */
1542 warning (OPT_Wframe_larger_than_,
1543 "the frame size of %wd bytes is larger than %wd bytes",
1544 get_frame_size (), frame_larger_than_size);
1547 /* First output the function prologue: code to set up the stack frame. */
1548 targetm.asm_out.function_prologue (file, get_frame_size ());
1550 /* If the machine represents the prologue as RTL, the profiling code must
1551 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1552 #ifdef HAVE_prologue
1553 if (! HAVE_prologue)
1554 #endif
1555 profile_after_prologue (file);
1558 static void
1559 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1561 #ifndef PROFILE_BEFORE_PROLOGUE
1562 if (crtl->profile)
1563 profile_function (file);
1564 #endif /* not PROFILE_BEFORE_PROLOGUE */
1567 static void
1568 profile_function (FILE *file ATTRIBUTE_UNUSED)
1570 #ifndef NO_PROFILE_COUNTERS
1571 # define NO_PROFILE_COUNTERS 0
1572 #endif
1573 #if defined(ASM_OUTPUT_REG_PUSH)
1574 int sval = cfun->returns_struct;
1575 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1576 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1577 int cxt = cfun->static_chain_decl != NULL;
1578 #endif
1579 #endif /* ASM_OUTPUT_REG_PUSH */
1581 if (! NO_PROFILE_COUNTERS)
1583 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1584 switch_to_section (data_section);
1585 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1586 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1587 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1590 switch_to_section (current_function_section ());
1592 #if defined(ASM_OUTPUT_REG_PUSH)
1593 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1595 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1597 #endif
1599 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1600 if (cxt)
1601 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1602 #else
1603 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1604 if (cxt)
1606 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1608 #endif
1609 #endif
1611 FUNCTION_PROFILER (file, current_function_funcdef_no);
1613 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1614 if (cxt)
1615 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1616 #else
1617 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1618 if (cxt)
1620 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1622 #endif
1623 #endif
1625 #if defined(ASM_OUTPUT_REG_PUSH)
1626 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1628 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1630 #endif
1633 /* Output assembler code for the end of a function.
1634 For clarity, args are same as those of `final_start_function'
1635 even though not all of them are needed. */
1637 void
1638 final_end_function (void)
1640 app_disable ();
1642 (*debug_hooks->end_function) (high_function_linenum);
1644 /* Finally, output the function epilogue:
1645 code to restore the stack frame and return to the caller. */
1646 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1648 /* And debug output. */
1649 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1651 #if defined (DWARF2_UNWIND_INFO)
1652 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1653 && dwarf2out_do_frame ())
1654 dwarf2out_end_epilogue (last_linenum, last_filename);
1655 #endif
1658 /* Output assembler code for some insns: all or part of a function.
1659 For description of args, see `final_start_function', above. */
1661 void
1662 final (rtx first, FILE *file, int optimize)
1664 rtx insn;
1665 int max_uid = 0;
1666 int seen = 0;
1668 last_ignored_compare = 0;
1670 for (insn = first; insn; insn = NEXT_INSN (insn))
1672 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1673 max_uid = INSN_UID (insn);
1674 #ifdef HAVE_cc0
1675 /* If CC tracking across branches is enabled, record the insn which
1676 jumps to each branch only reached from one place. */
1677 if (optimize && JUMP_P (insn))
1679 rtx lab = JUMP_LABEL (insn);
1680 if (lab && LABEL_NUSES (lab) == 1)
1682 LABEL_REFS (lab) = insn;
1685 #endif
1688 init_recog ();
1690 CC_STATUS_INIT;
1692 /* Output the insns. */
1693 for (insn = first; insn;)
1695 #ifdef HAVE_ATTR_length
1696 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1698 /* This can be triggered by bugs elsewhere in the compiler if
1699 new insns are created after init_insn_lengths is called. */
1700 gcc_assert (NOTE_P (insn));
1701 insn_current_address = -1;
1703 else
1704 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1705 #endif /* HAVE_ATTR_length */
1707 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1711 const char *
1712 get_insn_template (int code, rtx insn)
1714 switch (insn_data[code].output_format)
1716 case INSN_OUTPUT_FORMAT_SINGLE:
1717 return insn_data[code].output.single;
1718 case INSN_OUTPUT_FORMAT_MULTI:
1719 return insn_data[code].output.multi[which_alternative];
1720 case INSN_OUTPUT_FORMAT_FUNCTION:
1721 gcc_assert (insn);
1722 return (*insn_data[code].output.function) (recog_data.operand, insn);
1724 default:
1725 gcc_unreachable ();
1729 /* Emit the appropriate declaration for an alternate-entry-point
1730 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1731 LABEL_KIND != LABEL_NORMAL.
1733 The case fall-through in this function is intentional. */
1734 static void
1735 output_alternate_entry_point (FILE *file, rtx insn)
1737 const char *name = LABEL_NAME (insn);
1739 switch (LABEL_KIND (insn))
1741 case LABEL_WEAK_ENTRY:
1742 #ifdef ASM_WEAKEN_LABEL
1743 ASM_WEAKEN_LABEL (file, name);
1744 #endif
1745 case LABEL_GLOBAL_ENTRY:
1746 targetm.asm_out.globalize_label (file, name);
1747 case LABEL_STATIC_ENTRY:
1748 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1749 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1750 #endif
1751 ASM_OUTPUT_LABEL (file, name);
1752 break;
1754 case LABEL_NORMAL:
1755 default:
1756 gcc_unreachable ();
1760 /* Given a CALL_INSN, find and return the nested CALL. */
1761 static rtx
1762 call_from_call_insn (rtx insn)
1764 rtx x;
1765 gcc_assert (CALL_P (insn));
1766 x = PATTERN (insn);
1768 while (GET_CODE (x) != CALL)
1770 switch (GET_CODE (x))
1772 default:
1773 gcc_unreachable ();
1774 case COND_EXEC:
1775 x = COND_EXEC_CODE (x);
1776 break;
1777 case PARALLEL:
1778 x = XVECEXP (x, 0, 0);
1779 break;
1780 case SET:
1781 x = XEXP (x, 1);
1782 break;
1785 return x;
1788 /* The final scan for one insn, INSN.
1789 Args are same as in `final', except that INSN
1790 is the insn being scanned.
1791 Value returned is the next insn to be scanned.
1793 NOPEEPHOLES is the flag to disallow peephole processing (currently
1794 used for within delayed branch sequence output).
1796 SEEN is used to track the end of the prologue, for emitting
1797 debug information. We force the emission of a line note after
1798 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1799 at the beginning of the second basic block, whichever comes
1800 first. */
1803 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1804 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1806 #ifdef HAVE_cc0
1807 rtx set;
1808 #endif
1809 rtx next;
1811 insn_counter++;
1813 /* Ignore deleted insns. These can occur when we split insns (due to a
1814 template of "#") while not optimizing. */
1815 if (INSN_DELETED_P (insn))
1816 return NEXT_INSN (insn);
1818 switch (GET_CODE (insn))
1820 case NOTE:
1821 switch (NOTE_KIND (insn))
1823 case NOTE_INSN_DELETED:
1824 break;
1826 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1827 in_cold_section_p = !in_cold_section_p;
1828 #ifdef DWARF2_UNWIND_INFO
1829 if (dwarf2out_do_frame ())
1830 dwarf2out_switch_text_section ();
1831 else
1832 #endif
1833 (*debug_hooks->switch_text_section) ();
1835 switch_to_section (current_function_section ());
1836 break;
1838 case NOTE_INSN_BASIC_BLOCK:
1839 #ifdef TARGET_UNWIND_INFO
1840 targetm.asm_out.unwind_emit (asm_out_file, insn);
1841 #endif
1843 if (flag_debug_asm)
1844 fprintf (asm_out_file, "\t%s basic block %d\n",
1845 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1847 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1849 *seen |= SEEN_EMITTED;
1850 force_source_line = true;
1852 else
1853 *seen |= SEEN_BB;
1855 break;
1857 case NOTE_INSN_EH_REGION_BEG:
1858 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1859 NOTE_EH_HANDLER (insn));
1860 break;
1862 case NOTE_INSN_EH_REGION_END:
1863 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1864 NOTE_EH_HANDLER (insn));
1865 break;
1867 case NOTE_INSN_PROLOGUE_END:
1868 targetm.asm_out.function_end_prologue (file);
1869 profile_after_prologue (file);
1871 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1873 *seen |= SEEN_EMITTED;
1874 force_source_line = true;
1876 else
1877 *seen |= SEEN_NOTE;
1879 break;
1881 case NOTE_INSN_EPILOGUE_BEG:
1882 targetm.asm_out.function_begin_epilogue (file);
1883 break;
1885 case NOTE_INSN_FUNCTION_BEG:
1886 app_disable ();
1887 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1889 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1891 *seen |= SEEN_EMITTED;
1892 force_source_line = true;
1894 else
1895 *seen |= SEEN_NOTE;
1897 break;
1899 case NOTE_INSN_BLOCK_BEG:
1900 if (debug_info_level == DINFO_LEVEL_NORMAL
1901 || debug_info_level == DINFO_LEVEL_VERBOSE
1902 || write_symbols == DWARF2_DEBUG
1903 || write_symbols == VMS_AND_DWARF2_DEBUG
1904 || write_symbols == VMS_DEBUG)
1906 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1908 app_disable ();
1909 ++block_depth;
1910 high_block_linenum = last_linenum;
1912 /* Output debugging info about the symbol-block beginning. */
1913 (*debug_hooks->begin_block) (last_linenum, n);
1915 /* Mark this block as output. */
1916 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1918 if (write_symbols == DBX_DEBUG
1919 || write_symbols == SDB_DEBUG)
1921 location_t *locus_ptr
1922 = block_nonartificial_location (NOTE_BLOCK (insn));
1924 if (locus_ptr != NULL)
1926 override_filename = LOCATION_FILE (*locus_ptr);
1927 override_linenum = LOCATION_LINE (*locus_ptr);
1930 break;
1932 case NOTE_INSN_BLOCK_END:
1933 if (debug_info_level == DINFO_LEVEL_NORMAL
1934 || debug_info_level == DINFO_LEVEL_VERBOSE
1935 || write_symbols == DWARF2_DEBUG
1936 || write_symbols == VMS_AND_DWARF2_DEBUG
1937 || write_symbols == VMS_DEBUG)
1939 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1941 app_disable ();
1943 /* End of a symbol-block. */
1944 --block_depth;
1945 gcc_assert (block_depth >= 0);
1947 (*debug_hooks->end_block) (high_block_linenum, n);
1949 if (write_symbols == DBX_DEBUG
1950 || write_symbols == SDB_DEBUG)
1952 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
1953 location_t *locus_ptr
1954 = block_nonartificial_location (outer_block);
1956 if (locus_ptr != NULL)
1958 override_filename = LOCATION_FILE (*locus_ptr);
1959 override_linenum = LOCATION_LINE (*locus_ptr);
1961 else
1963 override_filename = NULL;
1964 override_linenum = 0;
1967 break;
1969 case NOTE_INSN_DELETED_LABEL:
1970 /* Emit the label. We may have deleted the CODE_LABEL because
1971 the label could be proved to be unreachable, though still
1972 referenced (in the form of having its address taken. */
1973 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1974 break;
1976 case NOTE_INSN_VAR_LOCATION:
1977 (*debug_hooks->var_location) (insn);
1978 break;
1980 default:
1981 gcc_unreachable ();
1982 break;
1984 break;
1986 case BARRIER:
1987 #if defined (DWARF2_UNWIND_INFO)
1988 if (dwarf2out_do_frame ())
1989 dwarf2out_frame_debug (insn, false);
1990 #endif
1991 break;
1993 case CODE_LABEL:
1994 /* The target port might emit labels in the output function for
1995 some insn, e.g. sh.c output_branchy_insn. */
1996 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1998 int align = LABEL_TO_ALIGNMENT (insn);
1999 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2000 int max_skip = LABEL_TO_MAX_SKIP (insn);
2001 #endif
2003 if (align && NEXT_INSN (insn))
2005 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2006 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2007 #else
2008 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2009 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2010 #else
2011 ASM_OUTPUT_ALIGN (file, align);
2012 #endif
2013 #endif
2016 #ifdef HAVE_cc0
2017 CC_STATUS_INIT;
2018 #endif
2020 if (LABEL_NAME (insn))
2021 (*debug_hooks->label) (insn);
2023 app_disable ();
2025 next = next_nonnote_insn (insn);
2026 /* If this label is followed by a jump-table, make sure we put
2027 the label in the read-only section. Also possibly write the
2028 label and jump table together. */
2029 if (next != 0 && JUMP_TABLE_DATA_P (next))
2031 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2032 /* In this case, the case vector is being moved by the
2033 target, so don't output the label at all. Leave that
2034 to the back end macros. */
2035 #else
2036 if (! JUMP_TABLES_IN_TEXT_SECTION)
2038 int log_align;
2040 switch_to_section (targetm.asm_out.function_rodata_section
2041 (current_function_decl));
2043 #ifdef ADDR_VEC_ALIGN
2044 log_align = ADDR_VEC_ALIGN (next);
2045 #else
2046 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2047 #endif
2048 ASM_OUTPUT_ALIGN (file, log_align);
2050 else
2051 switch_to_section (current_function_section ());
2053 #ifdef ASM_OUTPUT_CASE_LABEL
2054 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2055 next);
2056 #else
2057 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2058 #endif
2059 #endif
2060 break;
2062 if (LABEL_ALT_ENTRY_P (insn))
2063 output_alternate_entry_point (file, insn);
2064 else
2065 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2066 break;
2068 default:
2070 rtx body = PATTERN (insn);
2071 int insn_code_number;
2072 const char *templ;
2074 #ifdef HAVE_conditional_execution
2075 /* Reset this early so it is correct for ASM statements. */
2076 current_insn_predicate = NULL_RTX;
2077 #endif
2078 /* An INSN, JUMP_INSN or CALL_INSN.
2079 First check for special kinds that recog doesn't recognize. */
2081 if (GET_CODE (body) == USE /* These are just declarations. */
2082 || GET_CODE (body) == CLOBBER)
2083 break;
2085 #ifdef HAVE_cc0
2087 /* If there is a REG_CC_SETTER note on this insn, it means that
2088 the setting of the condition code was done in the delay slot
2089 of the insn that branched here. So recover the cc status
2090 from the insn that set it. */
2092 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2093 if (note)
2095 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2096 cc_prev_status = cc_status;
2099 #endif
2101 /* Detect insns that are really jump-tables
2102 and output them as such. */
2104 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2106 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2107 int vlen, idx;
2108 #endif
2110 if (! JUMP_TABLES_IN_TEXT_SECTION)
2111 switch_to_section (targetm.asm_out.function_rodata_section
2112 (current_function_decl));
2113 else
2114 switch_to_section (current_function_section ());
2116 app_disable ();
2118 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2119 if (GET_CODE (body) == ADDR_VEC)
2121 #ifdef ASM_OUTPUT_ADDR_VEC
2122 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2123 #else
2124 gcc_unreachable ();
2125 #endif
2127 else
2129 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2130 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2131 #else
2132 gcc_unreachable ();
2133 #endif
2135 #else
2136 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2137 for (idx = 0; idx < vlen; idx++)
2139 if (GET_CODE (body) == ADDR_VEC)
2141 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2142 ASM_OUTPUT_ADDR_VEC_ELT
2143 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2144 #else
2145 gcc_unreachable ();
2146 #endif
2148 else
2150 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2151 ASM_OUTPUT_ADDR_DIFF_ELT
2152 (file,
2153 body,
2154 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2155 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2156 #else
2157 gcc_unreachable ();
2158 #endif
2161 #ifdef ASM_OUTPUT_CASE_END
2162 ASM_OUTPUT_CASE_END (file,
2163 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2164 insn);
2165 #endif
2166 #endif
2168 switch_to_section (current_function_section ());
2170 break;
2172 /* Output this line note if it is the first or the last line
2173 note in a row. */
2174 if (notice_source_line (insn))
2176 (*debug_hooks->source_line) (last_linenum, last_filename);
2179 if (GET_CODE (body) == ASM_INPUT)
2181 const char *string = XSTR (body, 0);
2183 /* There's no telling what that did to the condition codes. */
2184 CC_STATUS_INIT;
2186 if (string[0])
2188 expanded_location loc;
2190 app_enable ();
2191 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2192 if (*loc.file && loc.line)
2193 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2194 ASM_COMMENT_START, loc.line, loc.file);
2195 fprintf (asm_out_file, "\t%s\n", string);
2196 #if HAVE_AS_LINE_ZERO
2197 if (*loc.file && loc.line)
2198 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2199 #endif
2201 break;
2204 /* Detect `asm' construct with operands. */
2205 if (asm_noperands (body) >= 0)
2207 unsigned int noperands = asm_noperands (body);
2208 rtx *ops = XALLOCAVEC (rtx, noperands);
2209 const char *string;
2210 location_t loc;
2211 expanded_location expanded;
2213 /* There's no telling what that did to the condition codes. */
2214 CC_STATUS_INIT;
2216 /* Get out the operand values. */
2217 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2218 /* Inhibit dying on what would otherwise be compiler bugs. */
2219 insn_noperands = noperands;
2220 this_is_asm_operands = insn;
2221 expanded = expand_location (loc);
2223 #ifdef FINAL_PRESCAN_INSN
2224 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2225 #endif
2227 /* Output the insn using them. */
2228 if (string[0])
2230 app_enable ();
2231 if (expanded.file && expanded.line)
2232 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2233 ASM_COMMENT_START, expanded.line, expanded.file);
2234 output_asm_insn (string, ops);
2235 #if HAVE_AS_LINE_ZERO
2236 if (expanded.file && expanded.line)
2237 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2238 #endif
2241 if (targetm.asm_out.final_postscan_insn)
2242 targetm.asm_out.final_postscan_insn (file, insn, ops,
2243 insn_noperands);
2245 this_is_asm_operands = 0;
2246 break;
2249 app_disable ();
2251 if (GET_CODE (body) == SEQUENCE)
2253 /* A delayed-branch sequence */
2254 int i;
2256 final_sequence = body;
2258 /* Record the delay slots' frame information before the branch.
2259 This is needed for delayed calls: see execute_cfa_program(). */
2260 #if defined (DWARF2_UNWIND_INFO)
2261 if (dwarf2out_do_frame ())
2262 for (i = 1; i < XVECLEN (body, 0); i++)
2263 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2264 #endif
2266 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2267 force the restoration of a comparison that was previously
2268 thought unnecessary. If that happens, cancel this sequence
2269 and cause that insn to be restored. */
2271 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2272 if (next != XVECEXP (body, 0, 1))
2274 final_sequence = 0;
2275 return next;
2278 for (i = 1; i < XVECLEN (body, 0); i++)
2280 rtx insn = XVECEXP (body, 0, i);
2281 rtx next = NEXT_INSN (insn);
2282 /* We loop in case any instruction in a delay slot gets
2283 split. */
2285 insn = final_scan_insn (insn, file, 0, 1, seen);
2286 while (insn != next);
2288 #ifdef DBR_OUTPUT_SEQEND
2289 DBR_OUTPUT_SEQEND (file);
2290 #endif
2291 final_sequence = 0;
2293 /* If the insn requiring the delay slot was a CALL_INSN, the
2294 insns in the delay slot are actually executed before the
2295 called function. Hence we don't preserve any CC-setting
2296 actions in these insns and the CC must be marked as being
2297 clobbered by the function. */
2298 if (CALL_P (XVECEXP (body, 0, 0)))
2300 CC_STATUS_INIT;
2302 break;
2305 /* We have a real machine instruction as rtl. */
2307 body = PATTERN (insn);
2309 #ifdef HAVE_cc0
2310 set = single_set (insn);
2312 /* Check for redundant test and compare instructions
2313 (when the condition codes are already set up as desired).
2314 This is done only when optimizing; if not optimizing,
2315 it should be possible for the user to alter a variable
2316 with the debugger in between statements
2317 and the next statement should reexamine the variable
2318 to compute the condition codes. */
2320 if (optimize)
2322 if (set
2323 && GET_CODE (SET_DEST (set)) == CC0
2324 && insn != last_ignored_compare)
2326 rtx src1, src2;
2327 if (GET_CODE (SET_SRC (set)) == SUBREG)
2328 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2330 src1 = SET_SRC (set);
2331 src2 = NULL_RTX;
2332 if (GET_CODE (SET_SRC (set)) == COMPARE)
2334 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2335 XEXP (SET_SRC (set), 0)
2336 = alter_subreg (&XEXP (SET_SRC (set), 0));
2337 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2338 XEXP (SET_SRC (set), 1)
2339 = alter_subreg (&XEXP (SET_SRC (set), 1));
2340 if (XEXP (SET_SRC (set), 1)
2341 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2342 src2 = XEXP (SET_SRC (set), 0);
2344 if ((cc_status.value1 != 0
2345 && rtx_equal_p (src1, cc_status.value1))
2346 || (cc_status.value2 != 0
2347 && rtx_equal_p (src1, cc_status.value2))
2348 || (src2 != 0 && cc_status.value1 != 0
2349 && rtx_equal_p (src2, cc_status.value1))
2350 || (src2 != 0 && cc_status.value2 != 0
2351 && rtx_equal_p (src2, cc_status.value2)))
2353 /* Don't delete insn if it has an addressing side-effect. */
2354 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2355 /* or if anything in it is volatile. */
2356 && ! volatile_refs_p (PATTERN (insn)))
2358 /* We don't really delete the insn; just ignore it. */
2359 last_ignored_compare = insn;
2360 break;
2366 /* If this is a conditional branch, maybe modify it
2367 if the cc's are in a nonstandard state
2368 so that it accomplishes the same thing that it would
2369 do straightforwardly if the cc's were set up normally. */
2371 if (cc_status.flags != 0
2372 && JUMP_P (insn)
2373 && GET_CODE (body) == SET
2374 && SET_DEST (body) == pc_rtx
2375 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2376 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2377 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2379 /* This function may alter the contents of its argument
2380 and clear some of the cc_status.flags bits.
2381 It may also return 1 meaning condition now always true
2382 or -1 meaning condition now always false
2383 or 2 meaning condition nontrivial but altered. */
2384 int result = alter_cond (XEXP (SET_SRC (body), 0));
2385 /* If condition now has fixed value, replace the IF_THEN_ELSE
2386 with its then-operand or its else-operand. */
2387 if (result == 1)
2388 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2389 if (result == -1)
2390 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2392 /* The jump is now either unconditional or a no-op.
2393 If it has become a no-op, don't try to output it.
2394 (It would not be recognized.) */
2395 if (SET_SRC (body) == pc_rtx)
2397 delete_insn (insn);
2398 break;
2400 else if (GET_CODE (SET_SRC (body)) == RETURN)
2401 /* Replace (set (pc) (return)) with (return). */
2402 PATTERN (insn) = body = SET_SRC (body);
2404 /* Rerecognize the instruction if it has changed. */
2405 if (result != 0)
2406 INSN_CODE (insn) = -1;
2409 /* If this is a conditional trap, maybe modify it if the cc's
2410 are in a nonstandard state so that it accomplishes the same
2411 thing that it would do straightforwardly if the cc's were
2412 set up normally. */
2413 if (cc_status.flags != 0
2414 && NONJUMP_INSN_P (insn)
2415 && GET_CODE (body) == TRAP_IF
2416 && COMPARISON_P (TRAP_CONDITION (body))
2417 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2419 /* This function may alter the contents of its argument
2420 and clear some of the cc_status.flags bits.
2421 It may also return 1 meaning condition now always true
2422 or -1 meaning condition now always false
2423 or 2 meaning condition nontrivial but altered. */
2424 int result = alter_cond (TRAP_CONDITION (body));
2426 /* If TRAP_CONDITION has become always false, delete the
2427 instruction. */
2428 if (result == -1)
2430 delete_insn (insn);
2431 break;
2434 /* If TRAP_CONDITION has become always true, replace
2435 TRAP_CONDITION with const_true_rtx. */
2436 if (result == 1)
2437 TRAP_CONDITION (body) = const_true_rtx;
2439 /* Rerecognize the instruction if it has changed. */
2440 if (result != 0)
2441 INSN_CODE (insn) = -1;
2444 /* Make same adjustments to instructions that examine the
2445 condition codes without jumping and instructions that
2446 handle conditional moves (if this machine has either one). */
2448 if (cc_status.flags != 0
2449 && set != 0)
2451 rtx cond_rtx, then_rtx, else_rtx;
2453 if (!JUMP_P (insn)
2454 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2456 cond_rtx = XEXP (SET_SRC (set), 0);
2457 then_rtx = XEXP (SET_SRC (set), 1);
2458 else_rtx = XEXP (SET_SRC (set), 2);
2460 else
2462 cond_rtx = SET_SRC (set);
2463 then_rtx = const_true_rtx;
2464 else_rtx = const0_rtx;
2467 switch (GET_CODE (cond_rtx))
2469 case GTU:
2470 case GT:
2471 case LTU:
2472 case LT:
2473 case GEU:
2474 case GE:
2475 case LEU:
2476 case LE:
2477 case EQ:
2478 case NE:
2480 int result;
2481 if (XEXP (cond_rtx, 0) != cc0_rtx)
2482 break;
2483 result = alter_cond (cond_rtx);
2484 if (result == 1)
2485 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2486 else if (result == -1)
2487 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2488 else if (result == 2)
2489 INSN_CODE (insn) = -1;
2490 if (SET_DEST (set) == SET_SRC (set))
2491 delete_insn (insn);
2493 break;
2495 default:
2496 break;
2500 #endif
2502 #ifdef HAVE_peephole
2503 /* Do machine-specific peephole optimizations if desired. */
2505 if (optimize && !flag_no_peephole && !nopeepholes)
2507 rtx next = peephole (insn);
2508 /* When peepholing, if there were notes within the peephole,
2509 emit them before the peephole. */
2510 if (next != 0 && next != NEXT_INSN (insn))
2512 rtx note, prev = PREV_INSN (insn);
2514 for (note = NEXT_INSN (insn); note != next;
2515 note = NEXT_INSN (note))
2516 final_scan_insn (note, file, optimize, nopeepholes, seen);
2518 /* Put the notes in the proper position for a later
2519 rescan. For example, the SH target can do this
2520 when generating a far jump in a delayed branch
2521 sequence. */
2522 note = NEXT_INSN (insn);
2523 PREV_INSN (note) = prev;
2524 NEXT_INSN (prev) = note;
2525 NEXT_INSN (PREV_INSN (next)) = insn;
2526 PREV_INSN (insn) = PREV_INSN (next);
2527 NEXT_INSN (insn) = next;
2528 PREV_INSN (next) = insn;
2531 /* PEEPHOLE might have changed this. */
2532 body = PATTERN (insn);
2534 #endif
2536 /* Try to recognize the instruction.
2537 If successful, verify that the operands satisfy the
2538 constraints for the instruction. Crash if they don't,
2539 since `reload' should have changed them so that they do. */
2541 insn_code_number = recog_memoized (insn);
2542 cleanup_subreg_operands (insn);
2544 /* Dump the insn in the assembly for debugging. */
2545 if (flag_dump_rtl_in_asm)
2547 print_rtx_head = ASM_COMMENT_START;
2548 print_rtl_single (asm_out_file, insn);
2549 print_rtx_head = "";
2552 if (! constrain_operands_cached (1))
2553 fatal_insn_not_found (insn);
2555 /* Some target machines need to prescan each insn before
2556 it is output. */
2558 #ifdef FINAL_PRESCAN_INSN
2559 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2560 #endif
2562 #ifdef HAVE_conditional_execution
2563 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2564 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2565 #endif
2567 #ifdef HAVE_cc0
2568 cc_prev_status = cc_status;
2570 /* Update `cc_status' for this instruction.
2571 The instruction's output routine may change it further.
2572 If the output routine for a jump insn needs to depend
2573 on the cc status, it should look at cc_prev_status. */
2575 NOTICE_UPDATE_CC (body, insn);
2576 #endif
2578 current_output_insn = debug_insn = insn;
2580 #if defined (DWARF2_UNWIND_INFO)
2581 if (CALL_P (insn) && dwarf2out_do_frame ())
2582 dwarf2out_frame_debug (insn, false);
2583 #endif
2585 /* Find the proper template for this insn. */
2586 templ = get_insn_template (insn_code_number, insn);
2588 /* If the C code returns 0, it means that it is a jump insn
2589 which follows a deleted test insn, and that test insn
2590 needs to be reinserted. */
2591 if (templ == 0)
2593 rtx prev;
2595 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2597 /* We have already processed the notes between the setter and
2598 the user. Make sure we don't process them again, this is
2599 particularly important if one of the notes is a block
2600 scope note or an EH note. */
2601 for (prev = insn;
2602 prev != last_ignored_compare;
2603 prev = PREV_INSN (prev))
2605 if (NOTE_P (prev))
2606 delete_insn (prev); /* Use delete_note. */
2609 return prev;
2612 /* If the template is the string "#", it means that this insn must
2613 be split. */
2614 if (templ[0] == '#' && templ[1] == '\0')
2616 rtx new_rtx = try_split (body, insn, 0);
2618 /* If we didn't split the insn, go away. */
2619 if (new_rtx == insn && PATTERN (new_rtx) == body)
2620 fatal_insn ("could not split insn", insn);
2622 #ifdef HAVE_ATTR_length
2623 /* This instruction should have been split in shorten_branches,
2624 to ensure that we would have valid length info for the
2625 splitees. */
2626 gcc_unreachable ();
2627 #endif
2629 return new_rtx;
2632 #ifdef TARGET_UNWIND_INFO
2633 /* ??? This will put the directives in the wrong place if
2634 get_insn_template outputs assembly directly. However calling it
2635 before get_insn_template breaks if the insns is split. */
2636 targetm.asm_out.unwind_emit (asm_out_file, insn);
2637 #endif
2639 if (CALL_P (insn))
2641 rtx x = call_from_call_insn (insn);
2642 x = XEXP (x, 0);
2643 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2645 tree t;
2646 x = XEXP (x, 0);
2647 t = SYMBOL_REF_DECL (x);
2648 if (t)
2649 assemble_external (t);
2653 /* Output assembler code from the template. */
2654 output_asm_insn (templ, recog_data.operand);
2656 /* Some target machines need to postscan each insn after
2657 it is output. */
2658 if (targetm.asm_out.final_postscan_insn)
2659 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
2660 recog_data.n_operands);
2662 /* If necessary, report the effect that the instruction has on
2663 the unwind info. We've already done this for delay slots
2664 and call instructions. */
2665 #if defined (DWARF2_UNWIND_INFO)
2666 if (final_sequence == 0
2667 #if !defined (HAVE_prologue)
2668 && !ACCUMULATE_OUTGOING_ARGS
2669 #endif
2670 && dwarf2out_do_frame ())
2671 dwarf2out_frame_debug (insn, true);
2672 #endif
2674 current_output_insn = debug_insn = 0;
2677 return NEXT_INSN (insn);
2680 /* Return whether a source line note needs to be emitted before INSN. */
2682 static bool
2683 notice_source_line (rtx insn)
2685 const char *filename;
2686 int linenum;
2688 if (override_filename)
2690 filename = override_filename;
2691 linenum = override_linenum;
2693 else
2695 filename = insn_file (insn);
2696 linenum = insn_line (insn);
2699 if (filename
2700 && (force_source_line
2701 || filename != last_filename
2702 || last_linenum != linenum))
2704 force_source_line = false;
2705 last_filename = filename;
2706 last_linenum = linenum;
2707 high_block_linenum = MAX (last_linenum, high_block_linenum);
2708 high_function_linenum = MAX (last_linenum, high_function_linenum);
2709 return true;
2711 return false;
2714 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2715 directly to the desired hard register. */
2717 void
2718 cleanup_subreg_operands (rtx insn)
2720 int i;
2721 bool changed = false;
2722 extract_insn_cached (insn);
2723 for (i = 0; i < recog_data.n_operands; i++)
2725 /* The following test cannot use recog_data.operand when testing
2726 for a SUBREG: the underlying object might have been changed
2727 already if we are inside a match_operator expression that
2728 matches the else clause. Instead we test the underlying
2729 expression directly. */
2730 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2732 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2733 changed = true;
2735 else if (GET_CODE (recog_data.operand[i]) == PLUS
2736 || GET_CODE (recog_data.operand[i]) == MULT
2737 || MEM_P (recog_data.operand[i]))
2738 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
2741 for (i = 0; i < recog_data.n_dups; i++)
2743 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2745 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2746 changed = true;
2748 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2749 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2750 || MEM_P (*recog_data.dup_loc[i]))
2751 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
2753 if (changed)
2754 df_insn_rescan (insn);
2757 /* If X is a SUBREG, replace it with a REG or a MEM,
2758 based on the thing it is a subreg of. */
2761 alter_subreg (rtx *xp)
2763 rtx x = *xp;
2764 rtx y = SUBREG_REG (x);
2766 /* simplify_subreg does not remove subreg from volatile references.
2767 We are required to. */
2768 if (MEM_P (y))
2770 int offset = SUBREG_BYTE (x);
2772 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2773 contains 0 instead of the proper offset. See simplify_subreg. */
2774 if (offset == 0
2775 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2777 int difference = GET_MODE_SIZE (GET_MODE (y))
2778 - GET_MODE_SIZE (GET_MODE (x));
2779 if (WORDS_BIG_ENDIAN)
2780 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2781 if (BYTES_BIG_ENDIAN)
2782 offset += difference % UNITS_PER_WORD;
2785 *xp = adjust_address (y, GET_MODE (x), offset);
2787 else
2789 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2790 SUBREG_BYTE (x));
2792 if (new_rtx != 0)
2793 *xp = new_rtx;
2794 else if (REG_P (y))
2796 /* Simplify_subreg can't handle some REG cases, but we have to. */
2797 unsigned int regno;
2798 HOST_WIDE_INT offset;
2800 regno = subreg_regno (x);
2801 if (subreg_lowpart_p (x))
2802 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
2803 else
2804 offset = SUBREG_BYTE (x);
2805 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
2809 return *xp;
2812 /* Do alter_subreg on all the SUBREGs contained in X. */
2814 static rtx
2815 walk_alter_subreg (rtx *xp, bool *changed)
2817 rtx x = *xp;
2818 switch (GET_CODE (x))
2820 case PLUS:
2821 case MULT:
2822 case AND:
2823 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2824 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
2825 break;
2827 case MEM:
2828 case ZERO_EXTEND:
2829 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2830 break;
2832 case SUBREG:
2833 *changed = true;
2834 return alter_subreg (xp);
2836 default:
2837 break;
2840 return *xp;
2843 #ifdef HAVE_cc0
2845 /* Given BODY, the body of a jump instruction, alter the jump condition
2846 as required by the bits that are set in cc_status.flags.
2847 Not all of the bits there can be handled at this level in all cases.
2849 The value is normally 0.
2850 1 means that the condition has become always true.
2851 -1 means that the condition has become always false.
2852 2 means that COND has been altered. */
2854 static int
2855 alter_cond (rtx cond)
2857 int value = 0;
2859 if (cc_status.flags & CC_REVERSED)
2861 value = 2;
2862 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2865 if (cc_status.flags & CC_INVERTED)
2867 value = 2;
2868 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2871 if (cc_status.flags & CC_NOT_POSITIVE)
2872 switch (GET_CODE (cond))
2874 case LE:
2875 case LEU:
2876 case GEU:
2877 /* Jump becomes unconditional. */
2878 return 1;
2880 case GT:
2881 case GTU:
2882 case LTU:
2883 /* Jump becomes no-op. */
2884 return -1;
2886 case GE:
2887 PUT_CODE (cond, EQ);
2888 value = 2;
2889 break;
2891 case LT:
2892 PUT_CODE (cond, NE);
2893 value = 2;
2894 break;
2896 default:
2897 break;
2900 if (cc_status.flags & CC_NOT_NEGATIVE)
2901 switch (GET_CODE (cond))
2903 case GE:
2904 case GEU:
2905 /* Jump becomes unconditional. */
2906 return 1;
2908 case LT:
2909 case LTU:
2910 /* Jump becomes no-op. */
2911 return -1;
2913 case LE:
2914 case LEU:
2915 PUT_CODE (cond, EQ);
2916 value = 2;
2917 break;
2919 case GT:
2920 case GTU:
2921 PUT_CODE (cond, NE);
2922 value = 2;
2923 break;
2925 default:
2926 break;
2929 if (cc_status.flags & CC_NO_OVERFLOW)
2930 switch (GET_CODE (cond))
2932 case GEU:
2933 /* Jump becomes unconditional. */
2934 return 1;
2936 case LEU:
2937 PUT_CODE (cond, EQ);
2938 value = 2;
2939 break;
2941 case GTU:
2942 PUT_CODE (cond, NE);
2943 value = 2;
2944 break;
2946 case LTU:
2947 /* Jump becomes no-op. */
2948 return -1;
2950 default:
2951 break;
2954 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2955 switch (GET_CODE (cond))
2957 default:
2958 gcc_unreachable ();
2960 case NE:
2961 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2962 value = 2;
2963 break;
2965 case EQ:
2966 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2967 value = 2;
2968 break;
2971 if (cc_status.flags & CC_NOT_SIGNED)
2972 /* The flags are valid if signed condition operators are converted
2973 to unsigned. */
2974 switch (GET_CODE (cond))
2976 case LE:
2977 PUT_CODE (cond, LEU);
2978 value = 2;
2979 break;
2981 case LT:
2982 PUT_CODE (cond, LTU);
2983 value = 2;
2984 break;
2986 case GT:
2987 PUT_CODE (cond, GTU);
2988 value = 2;
2989 break;
2991 case GE:
2992 PUT_CODE (cond, GEU);
2993 value = 2;
2994 break;
2996 default:
2997 break;
3000 return value;
3002 #endif
3004 /* Report inconsistency between the assembler template and the operands.
3005 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3007 void
3008 output_operand_lossage (const char *cmsgid, ...)
3010 char *fmt_string;
3011 char *new_message;
3012 const char *pfx_str;
3013 va_list ap;
3015 va_start (ap, cmsgid);
3017 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3018 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3019 vasprintf (&new_message, fmt_string, ap);
3021 if (this_is_asm_operands)
3022 error_for_asm (this_is_asm_operands, "%s", new_message);
3023 else
3024 internal_error ("%s", new_message);
3026 free (fmt_string);
3027 free (new_message);
3028 va_end (ap);
3031 /* Output of assembler code from a template, and its subroutines. */
3033 /* Annotate the assembly with a comment describing the pattern and
3034 alternative used. */
3036 static void
3037 output_asm_name (void)
3039 if (debug_insn)
3041 int num = INSN_CODE (debug_insn);
3042 fprintf (asm_out_file, "\t%s %d\t%s",
3043 ASM_COMMENT_START, INSN_UID (debug_insn),
3044 insn_data[num].name);
3045 if (insn_data[num].n_alternatives > 1)
3046 fprintf (asm_out_file, "/%d", which_alternative + 1);
3047 #ifdef HAVE_ATTR_length
3048 fprintf (asm_out_file, "\t[length = %d]",
3049 get_attr_length (debug_insn));
3050 #endif
3051 /* Clear this so only the first assembler insn
3052 of any rtl insn will get the special comment for -dp. */
3053 debug_insn = 0;
3057 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3058 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3059 corresponds to the address of the object and 0 if to the object. */
3061 static tree
3062 get_mem_expr_from_op (rtx op, int *paddressp)
3064 tree expr;
3065 int inner_addressp;
3067 *paddressp = 0;
3069 if (REG_P (op))
3070 return REG_EXPR (op);
3071 else if (!MEM_P (op))
3072 return 0;
3074 if (MEM_EXPR (op) != 0)
3075 return MEM_EXPR (op);
3077 /* Otherwise we have an address, so indicate it and look at the address. */
3078 *paddressp = 1;
3079 op = XEXP (op, 0);
3081 /* First check if we have a decl for the address, then look at the right side
3082 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3083 But don't allow the address to itself be indirect. */
3084 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3085 return expr;
3086 else if (GET_CODE (op) == PLUS
3087 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3088 return expr;
3090 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
3091 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3092 op = XEXP (op, 0);
3094 expr = get_mem_expr_from_op (op, &inner_addressp);
3095 return inner_addressp ? 0 : expr;
3098 /* Output operand names for assembler instructions. OPERANDS is the
3099 operand vector, OPORDER is the order to write the operands, and NOPS
3100 is the number of operands to write. */
3102 static void
3103 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3105 int wrote = 0;
3106 int i;
3108 for (i = 0; i < nops; i++)
3110 int addressp;
3111 rtx op = operands[oporder[i]];
3112 tree expr = get_mem_expr_from_op (op, &addressp);
3114 fprintf (asm_out_file, "%c%s",
3115 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3116 wrote = 1;
3117 if (expr)
3119 fprintf (asm_out_file, "%s",
3120 addressp ? "*" : "");
3121 print_mem_expr (asm_out_file, expr);
3122 wrote = 1;
3124 else if (REG_P (op) && ORIGINAL_REGNO (op)
3125 && ORIGINAL_REGNO (op) != REGNO (op))
3126 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3130 /* Output text from TEMPLATE to the assembler output file,
3131 obeying %-directions to substitute operands taken from
3132 the vector OPERANDS.
3134 %N (for N a digit) means print operand N in usual manner.
3135 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3136 and print the label name with no punctuation.
3137 %cN means require operand N to be a constant
3138 and print the constant expression with no punctuation.
3139 %aN means expect operand N to be a memory address
3140 (not a memory reference!) and print a reference
3141 to that address.
3142 %nN means expect operand N to be a constant
3143 and print a constant expression for minus the value
3144 of the operand, with no other punctuation. */
3146 void
3147 output_asm_insn (const char *templ, rtx *operands)
3149 const char *p;
3150 int c;
3151 #ifdef ASSEMBLER_DIALECT
3152 int dialect = 0;
3153 #endif
3154 int oporder[MAX_RECOG_OPERANDS];
3155 char opoutput[MAX_RECOG_OPERANDS];
3156 int ops = 0;
3158 /* An insn may return a null string template
3159 in a case where no assembler code is needed. */
3160 if (*templ == 0)
3161 return;
3163 memset (opoutput, 0, sizeof opoutput);
3164 p = templ;
3165 putc ('\t', asm_out_file);
3167 #ifdef ASM_OUTPUT_OPCODE
3168 ASM_OUTPUT_OPCODE (asm_out_file, p);
3169 #endif
3171 while ((c = *p++))
3172 switch (c)
3174 case '\n':
3175 if (flag_verbose_asm)
3176 output_asm_operand_names (operands, oporder, ops);
3177 if (flag_print_asm_name)
3178 output_asm_name ();
3180 ops = 0;
3181 memset (opoutput, 0, sizeof opoutput);
3183 putc (c, asm_out_file);
3184 #ifdef ASM_OUTPUT_OPCODE
3185 while ((c = *p) == '\t')
3187 putc (c, asm_out_file);
3188 p++;
3190 ASM_OUTPUT_OPCODE (asm_out_file, p);
3191 #endif
3192 break;
3194 #ifdef ASSEMBLER_DIALECT
3195 case '{':
3197 int i;
3199 if (dialect)
3200 output_operand_lossage ("nested assembly dialect alternatives");
3201 else
3202 dialect = 1;
3204 /* If we want the first dialect, do nothing. Otherwise, skip
3205 DIALECT_NUMBER of strings ending with '|'. */
3206 for (i = 0; i < dialect_number; i++)
3208 while (*p && *p != '}' && *p++ != '|')
3210 if (*p == '}')
3211 break;
3212 if (*p == '|')
3213 p++;
3216 if (*p == '\0')
3217 output_operand_lossage ("unterminated assembly dialect alternative");
3219 break;
3221 case '|':
3222 if (dialect)
3224 /* Skip to close brace. */
3227 if (*p == '\0')
3229 output_operand_lossage ("unterminated assembly dialect alternative");
3230 break;
3233 while (*p++ != '}');
3234 dialect = 0;
3236 else
3237 putc (c, asm_out_file);
3238 break;
3240 case '}':
3241 if (! dialect)
3242 putc (c, asm_out_file);
3243 dialect = 0;
3244 break;
3245 #endif
3247 case '%':
3248 /* %% outputs a single %. */
3249 if (*p == '%')
3251 p++;
3252 putc (c, asm_out_file);
3254 /* %= outputs a number which is unique to each insn in the entire
3255 compilation. This is useful for making local labels that are
3256 referred to more than once in a given insn. */
3257 else if (*p == '=')
3259 p++;
3260 fprintf (asm_out_file, "%d", insn_counter);
3262 /* % followed by a letter and some digits
3263 outputs an operand in a special way depending on the letter.
3264 Letters `acln' are implemented directly.
3265 Other letters are passed to `output_operand' so that
3266 the PRINT_OPERAND macro can define them. */
3267 else if (ISALPHA (*p))
3269 int letter = *p++;
3270 unsigned long opnum;
3271 char *endptr;
3273 opnum = strtoul (p, &endptr, 10);
3275 if (endptr == p)
3276 output_operand_lossage ("operand number missing "
3277 "after %%-letter");
3278 else if (this_is_asm_operands && opnum >= insn_noperands)
3279 output_operand_lossage ("operand number out of range");
3280 else if (letter == 'l')
3281 output_asm_label (operands[opnum]);
3282 else if (letter == 'a')
3283 output_address (operands[opnum]);
3284 else if (letter == 'c')
3286 if (CONSTANT_ADDRESS_P (operands[opnum]))
3287 output_addr_const (asm_out_file, operands[opnum]);
3288 else
3289 output_operand (operands[opnum], 'c');
3291 else if (letter == 'n')
3293 if (GET_CODE (operands[opnum]) == CONST_INT)
3294 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3295 - INTVAL (operands[opnum]));
3296 else
3298 putc ('-', asm_out_file);
3299 output_addr_const (asm_out_file, operands[opnum]);
3302 else
3303 output_operand (operands[opnum], letter);
3305 if (!opoutput[opnum])
3306 oporder[ops++] = opnum;
3307 opoutput[opnum] = 1;
3309 p = endptr;
3310 c = *p;
3312 /* % followed by a digit outputs an operand the default way. */
3313 else if (ISDIGIT (*p))
3315 unsigned long opnum;
3316 char *endptr;
3318 opnum = strtoul (p, &endptr, 10);
3319 if (this_is_asm_operands && opnum >= insn_noperands)
3320 output_operand_lossage ("operand number out of range");
3321 else
3322 output_operand (operands[opnum], 0);
3324 if (!opoutput[opnum])
3325 oporder[ops++] = opnum;
3326 opoutput[opnum] = 1;
3328 p = endptr;
3329 c = *p;
3331 /* % followed by punctuation: output something for that
3332 punctuation character alone, with no operand.
3333 The PRINT_OPERAND macro decides what is actually done. */
3334 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3335 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3336 output_operand (NULL_RTX, *p++);
3337 #endif
3338 else
3339 output_operand_lossage ("invalid %%-code");
3340 break;
3342 default:
3343 putc (c, asm_out_file);
3346 /* Write out the variable names for operands, if we know them. */
3347 if (flag_verbose_asm)
3348 output_asm_operand_names (operands, oporder, ops);
3349 if (flag_print_asm_name)
3350 output_asm_name ();
3352 putc ('\n', asm_out_file);
3355 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3357 void
3358 output_asm_label (rtx x)
3360 char buf[256];
3362 if (GET_CODE (x) == LABEL_REF)
3363 x = XEXP (x, 0);
3364 if (LABEL_P (x)
3365 || (NOTE_P (x)
3366 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3367 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3368 else
3369 output_operand_lossage ("'%%l' operand isn't a label");
3371 assemble_name (asm_out_file, buf);
3374 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3375 output_operand. Marks SYMBOL_REFs as referenced through use of
3376 assemble_external. */
3378 static int
3379 mark_symbol_ref_as_used (rtx *xp, void *dummy ATTRIBUTE_UNUSED)
3381 rtx x = *xp;
3383 /* If we have a used symbol, we may have to emit assembly
3384 annotations corresponding to whether the symbol is external, weak
3385 or has non-default visibility. */
3386 if (GET_CODE (x) == SYMBOL_REF)
3388 tree t;
3390 t = SYMBOL_REF_DECL (x);
3391 if (t)
3392 assemble_external (t);
3394 return -1;
3397 return 0;
3400 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3402 void
3403 mark_symbol_refs_as_used (rtx x)
3405 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3408 /* Print operand X using machine-dependent assembler syntax.
3409 The macro PRINT_OPERAND is defined just to control this function.
3410 CODE is a non-digit that preceded the operand-number in the % spec,
3411 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3412 between the % and the digits.
3413 When CODE is a non-letter, X is 0.
3415 The meanings of the letters are machine-dependent and controlled
3416 by PRINT_OPERAND. */
3418 static void
3419 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3421 if (x && GET_CODE (x) == SUBREG)
3422 x = alter_subreg (&x);
3424 /* X must not be a pseudo reg. */
3425 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3427 PRINT_OPERAND (asm_out_file, x, code);
3429 if (x == NULL_RTX)
3430 return;
3432 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3435 /* Print a memory reference operand for address X
3436 using machine-dependent assembler syntax.
3437 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3439 void
3440 output_address (rtx x)
3442 bool changed = false;
3443 walk_alter_subreg (&x, &changed);
3444 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3447 /* Print an integer constant expression in assembler syntax.
3448 Addition and subtraction are the only arithmetic
3449 that may appear in these expressions. */
3451 void
3452 output_addr_const (FILE *file, rtx x)
3454 char buf[256];
3456 restart:
3457 switch (GET_CODE (x))
3459 case PC:
3460 putc ('.', file);
3461 break;
3463 case SYMBOL_REF:
3464 if (SYMBOL_REF_DECL (x))
3466 mark_decl_referenced (SYMBOL_REF_DECL (x));
3467 assemble_external (SYMBOL_REF_DECL (x));
3469 #ifdef ASM_OUTPUT_SYMBOL_REF
3470 ASM_OUTPUT_SYMBOL_REF (file, x);
3471 #else
3472 assemble_name (file, XSTR (x, 0));
3473 #endif
3474 break;
3476 case LABEL_REF:
3477 x = XEXP (x, 0);
3478 /* Fall through. */
3479 case CODE_LABEL:
3480 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3481 #ifdef ASM_OUTPUT_LABEL_REF
3482 ASM_OUTPUT_LABEL_REF (file, buf);
3483 #else
3484 assemble_name (file, buf);
3485 #endif
3486 break;
3488 case CONST_INT:
3489 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3490 break;
3492 case CONST:
3493 /* This used to output parentheses around the expression,
3494 but that does not work on the 386 (either ATT or BSD assembler). */
3495 output_addr_const (file, XEXP (x, 0));
3496 break;
3498 case CONST_DOUBLE:
3499 if (GET_MODE (x) == VOIDmode)
3501 /* We can use %d if the number is one word and positive. */
3502 if (CONST_DOUBLE_HIGH (x))
3503 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3504 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3505 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3506 else if (CONST_DOUBLE_LOW (x) < 0)
3507 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3508 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3509 else
3510 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3512 else
3513 /* We can't handle floating point constants;
3514 PRINT_OPERAND must handle them. */
3515 output_operand_lossage ("floating constant misused");
3516 break;
3518 case CONST_FIXED:
3519 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3520 (unsigned HOST_WIDE_INT) CONST_FIXED_VALUE_LOW (x));
3521 break;
3523 case PLUS:
3524 /* Some assemblers need integer constants to appear last (eg masm). */
3525 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3527 output_addr_const (file, XEXP (x, 1));
3528 if (INTVAL (XEXP (x, 0)) >= 0)
3529 fprintf (file, "+");
3530 output_addr_const (file, XEXP (x, 0));
3532 else
3534 output_addr_const (file, XEXP (x, 0));
3535 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3536 || INTVAL (XEXP (x, 1)) >= 0)
3537 fprintf (file, "+");
3538 output_addr_const (file, XEXP (x, 1));
3540 break;
3542 case MINUS:
3543 /* Avoid outputting things like x-x or x+5-x,
3544 since some assemblers can't handle that. */
3545 x = simplify_subtraction (x);
3546 if (GET_CODE (x) != MINUS)
3547 goto restart;
3549 output_addr_const (file, XEXP (x, 0));
3550 fprintf (file, "-");
3551 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3552 || GET_CODE (XEXP (x, 1)) == PC
3553 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3554 output_addr_const (file, XEXP (x, 1));
3555 else
3557 fputs (targetm.asm_out.open_paren, file);
3558 output_addr_const (file, XEXP (x, 1));
3559 fputs (targetm.asm_out.close_paren, file);
3561 break;
3563 case ZERO_EXTEND:
3564 case SIGN_EXTEND:
3565 case SUBREG:
3566 case TRUNCATE:
3567 output_addr_const (file, XEXP (x, 0));
3568 break;
3570 default:
3571 #ifdef OUTPUT_ADDR_CONST_EXTRA
3572 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3573 break;
3575 fail:
3576 #endif
3577 output_operand_lossage ("invalid expression as operand");
3581 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3582 %R prints the value of REGISTER_PREFIX.
3583 %L prints the value of LOCAL_LABEL_PREFIX.
3584 %U prints the value of USER_LABEL_PREFIX.
3585 %I prints the value of IMMEDIATE_PREFIX.
3586 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3587 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3589 We handle alternate assembler dialects here, just like output_asm_insn. */
3591 void
3592 asm_fprintf (FILE *file, const char *p, ...)
3594 char buf[10];
3595 char *q, c;
3596 va_list argptr;
3598 va_start (argptr, p);
3600 buf[0] = '%';
3602 while ((c = *p++))
3603 switch (c)
3605 #ifdef ASSEMBLER_DIALECT
3606 case '{':
3608 int i;
3610 /* If we want the first dialect, do nothing. Otherwise, skip
3611 DIALECT_NUMBER of strings ending with '|'. */
3612 for (i = 0; i < dialect_number; i++)
3614 while (*p && *p++ != '|')
3617 if (*p == '|')
3618 p++;
3621 break;
3623 case '|':
3624 /* Skip to close brace. */
3625 while (*p && *p++ != '}')
3627 break;
3629 case '}':
3630 break;
3631 #endif
3633 case '%':
3634 c = *p++;
3635 q = &buf[1];
3636 while (strchr ("-+ #0", c))
3638 *q++ = c;
3639 c = *p++;
3641 while (ISDIGIT (c) || c == '.')
3643 *q++ = c;
3644 c = *p++;
3646 switch (c)
3648 case '%':
3649 putc ('%', file);
3650 break;
3652 case 'd': case 'i': case 'u':
3653 case 'x': case 'X': case 'o':
3654 case 'c':
3655 *q++ = c;
3656 *q = 0;
3657 fprintf (file, buf, va_arg (argptr, int));
3658 break;
3660 case 'w':
3661 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3662 'o' cases, but we do not check for those cases. It
3663 means that the value is a HOST_WIDE_INT, which may be
3664 either `long' or `long long'. */
3665 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3666 q += strlen (HOST_WIDE_INT_PRINT);
3667 *q++ = *p++;
3668 *q = 0;
3669 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3670 break;
3672 case 'l':
3673 *q++ = c;
3674 #ifdef HAVE_LONG_LONG
3675 if (*p == 'l')
3677 *q++ = *p++;
3678 *q++ = *p++;
3679 *q = 0;
3680 fprintf (file, buf, va_arg (argptr, long long));
3682 else
3683 #endif
3685 *q++ = *p++;
3686 *q = 0;
3687 fprintf (file, buf, va_arg (argptr, long));
3690 break;
3692 case 's':
3693 *q++ = c;
3694 *q = 0;
3695 fprintf (file, buf, va_arg (argptr, char *));
3696 break;
3698 case 'O':
3699 #ifdef ASM_OUTPUT_OPCODE
3700 ASM_OUTPUT_OPCODE (asm_out_file, p);
3701 #endif
3702 break;
3704 case 'R':
3705 #ifdef REGISTER_PREFIX
3706 fprintf (file, "%s", REGISTER_PREFIX);
3707 #endif
3708 break;
3710 case 'I':
3711 #ifdef IMMEDIATE_PREFIX
3712 fprintf (file, "%s", IMMEDIATE_PREFIX);
3713 #endif
3714 break;
3716 case 'L':
3717 #ifdef LOCAL_LABEL_PREFIX
3718 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3719 #endif
3720 break;
3722 case 'U':
3723 fputs (user_label_prefix, file);
3724 break;
3726 #ifdef ASM_FPRINTF_EXTENSIONS
3727 /* Uppercase letters are reserved for general use by asm_fprintf
3728 and so are not available to target specific code. In order to
3729 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3730 they are defined here. As they get turned into real extensions
3731 to asm_fprintf they should be removed from this list. */
3732 case 'A': case 'B': case 'C': case 'D': case 'E':
3733 case 'F': case 'G': case 'H': case 'J': case 'K':
3734 case 'M': case 'N': case 'P': case 'Q': case 'S':
3735 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3736 break;
3738 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3739 #endif
3740 default:
3741 gcc_unreachable ();
3743 break;
3745 default:
3746 putc (c, file);
3748 va_end (argptr);
3751 /* Split up a CONST_DOUBLE or integer constant rtx
3752 into two rtx's for single words,
3753 storing in *FIRST the word that comes first in memory in the target
3754 and in *SECOND the other. */
3756 void
3757 split_double (rtx value, rtx *first, rtx *second)
3759 if (GET_CODE (value) == CONST_INT)
3761 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3763 /* In this case the CONST_INT holds both target words.
3764 Extract the bits from it into two word-sized pieces.
3765 Sign extend each half to HOST_WIDE_INT. */
3766 unsigned HOST_WIDE_INT low, high;
3767 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3769 /* Set sign_bit to the most significant bit of a word. */
3770 sign_bit = 1;
3771 sign_bit <<= BITS_PER_WORD - 1;
3773 /* Set mask so that all bits of the word are set. We could
3774 have used 1 << BITS_PER_WORD instead of basing the
3775 calculation on sign_bit. However, on machines where
3776 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3777 compiler warning, even though the code would never be
3778 executed. */
3779 mask = sign_bit << 1;
3780 mask--;
3782 /* Set sign_extend as any remaining bits. */
3783 sign_extend = ~mask;
3785 /* Pick the lower word and sign-extend it. */
3786 low = INTVAL (value);
3787 low &= mask;
3788 if (low & sign_bit)
3789 low |= sign_extend;
3791 /* Pick the higher word, shifted to the least significant
3792 bits, and sign-extend it. */
3793 high = INTVAL (value);
3794 high >>= BITS_PER_WORD - 1;
3795 high >>= 1;
3796 high &= mask;
3797 if (high & sign_bit)
3798 high |= sign_extend;
3800 /* Store the words in the target machine order. */
3801 if (WORDS_BIG_ENDIAN)
3803 *first = GEN_INT (high);
3804 *second = GEN_INT (low);
3806 else
3808 *first = GEN_INT (low);
3809 *second = GEN_INT (high);
3812 else
3814 /* The rule for using CONST_INT for a wider mode
3815 is that we regard the value as signed.
3816 So sign-extend it. */
3817 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3818 if (WORDS_BIG_ENDIAN)
3820 *first = high;
3821 *second = value;
3823 else
3825 *first = value;
3826 *second = high;
3830 else if (GET_CODE (value) != CONST_DOUBLE)
3832 if (WORDS_BIG_ENDIAN)
3834 *first = const0_rtx;
3835 *second = value;
3837 else
3839 *first = value;
3840 *second = const0_rtx;
3843 else if (GET_MODE (value) == VOIDmode
3844 /* This is the old way we did CONST_DOUBLE integers. */
3845 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3847 /* In an integer, the words are defined as most and least significant.
3848 So order them by the target's convention. */
3849 if (WORDS_BIG_ENDIAN)
3851 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3852 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3854 else
3856 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3857 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3860 else
3862 REAL_VALUE_TYPE r;
3863 long l[2];
3864 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3866 /* Note, this converts the REAL_VALUE_TYPE to the target's
3867 format, splits up the floating point double and outputs
3868 exactly 32 bits of it into each of l[0] and l[1] --
3869 not necessarily BITS_PER_WORD bits. */
3870 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3872 /* If 32 bits is an entire word for the target, but not for the host,
3873 then sign-extend on the host so that the number will look the same
3874 way on the host that it would on the target. See for instance
3875 simplify_unary_operation. The #if is needed to avoid compiler
3876 warnings. */
3878 #if HOST_BITS_PER_LONG > 32
3879 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3881 if (l[0] & ((long) 1 << 31))
3882 l[0] |= ((long) (-1) << 32);
3883 if (l[1] & ((long) 1 << 31))
3884 l[1] |= ((long) (-1) << 32);
3886 #endif
3888 *first = GEN_INT (l[0]);
3889 *second = GEN_INT (l[1]);
3893 /* Return nonzero if this function has no function calls. */
3896 leaf_function_p (void)
3898 rtx insn;
3899 rtx link;
3901 if (crtl->profile || profile_arc_flag)
3902 return 0;
3904 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3906 if (CALL_P (insn)
3907 && ! SIBLING_CALL_P (insn))
3908 return 0;
3909 if (NONJUMP_INSN_P (insn)
3910 && GET_CODE (PATTERN (insn)) == SEQUENCE
3911 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3912 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3913 return 0;
3915 for (link = crtl->epilogue_delay_list;
3916 link;
3917 link = XEXP (link, 1))
3919 insn = XEXP (link, 0);
3921 if (CALL_P (insn)
3922 && ! SIBLING_CALL_P (insn))
3923 return 0;
3924 if (NONJUMP_INSN_P (insn)
3925 && GET_CODE (PATTERN (insn)) == SEQUENCE
3926 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3927 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3928 return 0;
3931 return 1;
3934 /* Return 1 if branch is a forward branch.
3935 Uses insn_shuid array, so it works only in the final pass. May be used by
3936 output templates to customary add branch prediction hints.
3939 final_forward_branch_p (rtx insn)
3941 int insn_id, label_id;
3943 gcc_assert (uid_shuid);
3944 insn_id = INSN_SHUID (insn);
3945 label_id = INSN_SHUID (JUMP_LABEL (insn));
3946 /* We've hit some insns that does not have id information available. */
3947 gcc_assert (insn_id && label_id);
3948 return insn_id < label_id;
3951 /* On some machines, a function with no call insns
3952 can run faster if it doesn't create its own register window.
3953 When output, the leaf function should use only the "output"
3954 registers. Ordinarily, the function would be compiled to use
3955 the "input" registers to find its arguments; it is a candidate
3956 for leaf treatment if it uses only the "input" registers.
3957 Leaf function treatment means renumbering so the function
3958 uses the "output" registers instead. */
3960 #ifdef LEAF_REGISTERS
3962 /* Return 1 if this function uses only the registers that can be
3963 safely renumbered. */
3966 only_leaf_regs_used (void)
3968 int i;
3969 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3971 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3972 if ((df_regs_ever_live_p (i) || global_regs[i])
3973 && ! permitted_reg_in_leaf_functions[i])
3974 return 0;
3976 if (crtl->uses_pic_offset_table
3977 && pic_offset_table_rtx != 0
3978 && REG_P (pic_offset_table_rtx)
3979 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3980 return 0;
3982 return 1;
3985 /* Scan all instructions and renumber all registers into those
3986 available in leaf functions. */
3988 static void
3989 leaf_renumber_regs (rtx first)
3991 rtx insn;
3993 /* Renumber only the actual patterns.
3994 The reg-notes can contain frame pointer refs,
3995 and renumbering them could crash, and should not be needed. */
3996 for (insn = first; insn; insn = NEXT_INSN (insn))
3997 if (INSN_P (insn))
3998 leaf_renumber_regs_insn (PATTERN (insn));
3999 for (insn = crtl->epilogue_delay_list;
4000 insn;
4001 insn = XEXP (insn, 1))
4002 if (INSN_P (XEXP (insn, 0)))
4003 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4006 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4007 available in leaf functions. */
4009 void
4010 leaf_renumber_regs_insn (rtx in_rtx)
4012 int i, j;
4013 const char *format_ptr;
4015 if (in_rtx == 0)
4016 return;
4018 /* Renumber all input-registers into output-registers.
4019 renumbered_regs would be 1 for an output-register;
4020 they */
4022 if (REG_P (in_rtx))
4024 int newreg;
4026 /* Don't renumber the same reg twice. */
4027 if (in_rtx->used)
4028 return;
4030 newreg = REGNO (in_rtx);
4031 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4032 to reach here as part of a REG_NOTE. */
4033 if (newreg >= FIRST_PSEUDO_REGISTER)
4035 in_rtx->used = 1;
4036 return;
4038 newreg = LEAF_REG_REMAP (newreg);
4039 gcc_assert (newreg >= 0);
4040 df_set_regs_ever_live (REGNO (in_rtx), false);
4041 df_set_regs_ever_live (newreg, true);
4042 SET_REGNO (in_rtx, newreg);
4043 in_rtx->used = 1;
4046 if (INSN_P (in_rtx))
4048 /* Inside a SEQUENCE, we find insns.
4049 Renumber just the patterns of these insns,
4050 just as we do for the top-level insns. */
4051 leaf_renumber_regs_insn (PATTERN (in_rtx));
4052 return;
4055 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4057 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4058 switch (*format_ptr++)
4060 case 'e':
4061 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4062 break;
4064 case 'E':
4065 if (NULL != XVEC (in_rtx, i))
4067 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4068 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4070 break;
4072 case 'S':
4073 case 's':
4074 case '0':
4075 case 'i':
4076 case 'w':
4077 case 'n':
4078 case 'u':
4079 break;
4081 default:
4082 gcc_unreachable ();
4085 #endif
4088 /* When -gused is used, emit debug info for only used symbols. But in
4089 addition to the standard intercepted debug_hooks there are some direct
4090 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
4091 Those routines may also be called from a higher level intercepted routine. So
4092 to prevent recording data for an inner call to one of these for an intercept,
4093 we maintain an intercept nesting counter (debug_nesting). We only save the
4094 intercepted arguments if the nesting is 1. */
4095 int debug_nesting = 0;
4097 static tree *symbol_queue;
4098 int symbol_queue_index = 0;
4099 static int symbol_queue_size = 0;
4101 /* Generate the symbols for any queued up type symbols we encountered
4102 while generating the type info for some originally used symbol.
4103 This might generate additional entries in the queue. Only when
4104 the nesting depth goes to 0 is this routine called. */
4106 void
4107 debug_flush_symbol_queue (void)
4109 int i;
4111 /* Make sure that additionally queued items are not flushed
4112 prematurely. */
4114 ++debug_nesting;
4116 for (i = 0; i < symbol_queue_index; ++i)
4118 /* If we pushed queued symbols then such symbols must be
4119 output no matter what anyone else says. Specifically,
4120 we need to make sure dbxout_symbol() thinks the symbol was
4121 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
4122 which may be set for outside reasons. */
4123 int saved_tree_used = TREE_USED (symbol_queue[i]);
4124 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
4125 TREE_USED (symbol_queue[i]) = 1;
4126 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
4128 #ifdef DBX_DEBUGGING_INFO
4129 dbxout_symbol (symbol_queue[i], 0);
4130 #endif
4132 TREE_USED (symbol_queue[i]) = saved_tree_used;
4133 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
4136 symbol_queue_index = 0;
4137 --debug_nesting;
4140 /* Queue a type symbol needed as part of the definition of a decl
4141 symbol. These symbols are generated when debug_flush_symbol_queue()
4142 is called. */
4144 void
4145 debug_queue_symbol (tree decl)
4147 if (symbol_queue_index >= symbol_queue_size)
4149 symbol_queue_size += 10;
4150 symbol_queue = XRESIZEVEC (tree, symbol_queue, symbol_queue_size);
4153 symbol_queue[symbol_queue_index++] = decl;
4156 /* Free symbol queue. */
4157 void
4158 debug_free_queue (void)
4160 if (symbol_queue)
4162 free (symbol_queue);
4163 symbol_queue = NULL;
4164 symbol_queue_size = 0;
4168 /* Turn the RTL into assembly. */
4169 static unsigned int
4170 rest_of_handle_final (void)
4172 rtx x;
4173 const char *fnname;
4175 /* Get the function's name, as described by its RTL. This may be
4176 different from the DECL_NAME name used in the source file. */
4178 x = DECL_RTL (current_function_decl);
4179 gcc_assert (MEM_P (x));
4180 x = XEXP (x, 0);
4181 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4182 fnname = XSTR (x, 0);
4184 assemble_start_function (current_function_decl, fnname);
4185 final_start_function (get_insns (), asm_out_file, optimize);
4186 final (get_insns (), asm_out_file, optimize);
4187 final_end_function ();
4189 #ifdef TARGET_UNWIND_INFO
4190 /* ??? The IA-64 ".handlerdata" directive must be issued before
4191 the ".endp" directive that closes the procedure descriptor. */
4192 output_function_exception_table (fnname);
4193 #endif
4195 assemble_end_function (current_function_decl, fnname);
4197 #ifndef TARGET_UNWIND_INFO
4198 /* Otherwise, it feels unclean to switch sections in the middle. */
4199 output_function_exception_table (fnname);
4200 #endif
4202 user_defined_section_attribute = false;
4204 /* Free up reg info memory. */
4205 free_reg_info ();
4207 if (! quiet_flag)
4208 fflush (asm_out_file);
4210 /* Write DBX symbols if requested. */
4212 /* Note that for those inline functions where we don't initially
4213 know for certain that we will be generating an out-of-line copy,
4214 the first invocation of this routine (rest_of_compilation) will
4215 skip over this code by doing a `goto exit_rest_of_compilation;'.
4216 Later on, wrapup_global_declarations will (indirectly) call
4217 rest_of_compilation again for those inline functions that need
4218 to have out-of-line copies generated. During that call, we
4219 *will* be routed past here. */
4221 timevar_push (TV_SYMOUT);
4222 (*debug_hooks->function_decl) (current_function_decl);
4223 timevar_pop (TV_SYMOUT);
4225 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4226 DECL_INITIAL (current_function_decl) = error_mark_node;
4228 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4229 && targetm.have_ctors_dtors)
4230 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4231 decl_init_priority_lookup
4232 (current_function_decl));
4233 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4234 && targetm.have_ctors_dtors)
4235 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4236 decl_fini_priority_lookup
4237 (current_function_decl));
4238 return 0;
4241 struct rtl_opt_pass pass_final =
4244 RTL_PASS,
4245 NULL, /* name */
4246 NULL, /* gate */
4247 rest_of_handle_final, /* execute */
4248 NULL, /* sub */
4249 NULL, /* next */
4250 0, /* static_pass_number */
4251 TV_FINAL, /* tv_id */
4252 0, /* properties_required */
4253 0, /* properties_provided */
4254 0, /* properties_destroyed */
4255 0, /* todo_flags_start */
4256 TODO_ggc_collect /* todo_flags_finish */
4261 static unsigned int
4262 rest_of_handle_shorten_branches (void)
4264 /* Shorten branches. */
4265 shorten_branches (get_insns ());
4266 return 0;
4269 struct rtl_opt_pass pass_shorten_branches =
4272 RTL_PASS,
4273 "shorten", /* name */
4274 NULL, /* gate */
4275 rest_of_handle_shorten_branches, /* execute */
4276 NULL, /* sub */
4277 NULL, /* next */
4278 0, /* static_pass_number */
4279 TV_FINAL, /* tv_id */
4280 0, /* properties_required */
4281 0, /* properties_provided */
4282 0, /* properties_destroyed */
4283 0, /* todo_flags_start */
4284 TODO_dump_func /* todo_flags_finish */
4289 static unsigned int
4290 rest_of_clean_state (void)
4292 rtx insn, next;
4294 /* It is very important to decompose the RTL instruction chain here:
4295 debug information keeps pointing into CODE_LABEL insns inside the function
4296 body. If these remain pointing to the other insns, we end up preserving
4297 whole RTL chain and attached detailed debug info in memory. */
4298 for (insn = get_insns (); insn; insn = next)
4300 next = NEXT_INSN (insn);
4301 NEXT_INSN (insn) = NULL;
4302 PREV_INSN (insn) = NULL;
4305 /* In case the function was not output,
4306 don't leave any temporary anonymous types
4307 queued up for sdb output. */
4308 #ifdef SDB_DEBUGGING_INFO
4309 if (write_symbols == SDB_DEBUG)
4310 sdbout_types (NULL_TREE);
4311 #endif
4313 flag_rerun_cse_after_global_opts = 0;
4314 reload_completed = 0;
4315 epilogue_completed = 0;
4316 #ifdef STACK_REGS
4317 regstack_completed = 0;
4318 #endif
4320 /* Clear out the insn_length contents now that they are no
4321 longer valid. */
4322 init_insn_lengths ();
4324 /* Show no temporary slots allocated. */
4325 init_temp_slots ();
4327 free_bb_for_insn ();
4329 if (targetm.binds_local_p (current_function_decl))
4331 unsigned int pref = crtl->preferred_stack_boundary;
4332 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4333 pref = crtl->stack_alignment_needed;
4334 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4335 = pref;
4338 /* Make sure volatile mem refs aren't considered valid operands for
4339 arithmetic insns. We must call this here if this is a nested inline
4340 function, since the above code leaves us in the init_recog state,
4341 and the function context push/pop code does not save/restore volatile_ok.
4343 ??? Maybe it isn't necessary for expand_start_function to call this
4344 anymore if we do it here? */
4346 init_recog_no_volatile ();
4348 /* We're done with this function. Free up memory if we can. */
4349 free_after_parsing (cfun);
4350 free_after_compilation (cfun);
4351 return 0;
4354 struct rtl_opt_pass pass_clean_state =
4357 RTL_PASS,
4358 NULL, /* name */
4359 NULL, /* gate */
4360 rest_of_clean_state, /* execute */
4361 NULL, /* sub */
4362 NULL, /* next */
4363 0, /* static_pass_number */
4364 TV_FINAL, /* tv_id */
4365 0, /* properties_required */
4366 0, /* properties_provided */
4367 PROP_rtl, /* properties_destroyed */
4368 0, /* todo_flags_start */
4369 0 /* todo_flags_finish */