1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
36 #include "coretypes.h"
39 #include "hard-reg-set.h"
43 #include "insn-config.h"
51 #include "cfglayout.h"
53 #include "tree-pass.h"
57 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
59 /* Set to true when we are running first pass of try_optimize_cfg loop. */
60 static bool first_pass
;
61 static bool try_crossjump_to_edge (int, edge
, edge
);
62 static bool try_crossjump_bb (int, basic_block
);
63 static bool outgoing_edges_match (int, basic_block
, basic_block
);
64 static int flow_find_cross_jump (int, basic_block
, basic_block
, rtx
*, rtx
*);
65 static bool old_insns_match_p (int, rtx
, rtx
);
67 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
68 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
69 static bool try_optimize_cfg (int);
70 static bool try_simplify_condjump (basic_block
);
71 static bool try_forward_edges (int, basic_block
);
72 static edge
thread_jump (int, edge
, basic_block
);
73 static bool mark_effect (rtx
, bitmap
);
74 static void notice_new_block (basic_block
);
75 static void update_forwarder_flag (basic_block
);
76 static int mentions_nonequal_regs (rtx
*, void *);
77 static void merge_memattrs (rtx
, rtx
);
79 /* Set flags for newly created block. */
82 notice_new_block (basic_block bb
)
87 if (forwarder_block_p (bb
))
88 bb
->flags
|= BB_FORWARDER_BLOCK
;
91 /* Recompute forwarder flag after block has been modified. */
94 update_forwarder_flag (basic_block bb
)
96 if (forwarder_block_p (bb
))
97 bb
->flags
|= BB_FORWARDER_BLOCK
;
99 bb
->flags
&= ~BB_FORWARDER_BLOCK
;
102 /* Simplify a conditional jump around an unconditional jump.
103 Return true if something changed. */
106 try_simplify_condjump (basic_block cbranch_block
)
108 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
109 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
112 /* Verify that there are exactly two successors. */
113 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
116 /* Verify that we've got a normal conditional branch at the end
118 cbranch_insn
= BB_END (cbranch_block
);
119 if (!any_condjump_p (cbranch_insn
))
122 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
123 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
125 /* The next block must not have multiple predecessors, must not
126 be the last block in the function, and must contain just the
127 unconditional jump. */
128 jump_block
= cbranch_fallthru_edge
->dest
;
129 if (!single_pred_p (jump_block
)
130 || jump_block
->next_bb
== EXIT_BLOCK_PTR
131 || !FORWARDER_BLOCK_P (jump_block
))
133 jump_dest_block
= single_succ (jump_block
);
135 /* If we are partitioning hot/cold basic blocks, we don't want to
136 mess up unconditional or indirect jumps that cross between hot
139 Basic block partitioning may result in some jumps that appear to
140 be optimizable (or blocks that appear to be mergeable), but which really
141 must be left untouched (they are required to make it safely across
142 partition boundaries). See the comments at the top of
143 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
145 if (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
146 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
))
149 /* The conditional branch must target the block after the
150 unconditional branch. */
151 cbranch_dest_block
= cbranch_jump_edge
->dest
;
153 if (cbranch_dest_block
== EXIT_BLOCK_PTR
154 || !can_fallthru (jump_block
, cbranch_dest_block
))
157 /* Invert the conditional branch. */
158 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
162 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
163 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
165 /* Success. Update the CFG to match. Note that after this point
166 the edge variable names appear backwards; the redirection is done
167 this way to preserve edge profile data. */
168 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
170 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
172 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
173 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
174 update_br_prob_note (cbranch_block
);
176 /* Delete the block with the unconditional jump, and clean up the mess. */
177 delete_basic_block (jump_block
);
178 tidy_fallthru_edge (cbranch_jump_edge
);
179 update_forwarder_flag (cbranch_block
);
184 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
185 on register. Used by jump threading. */
188 mark_effect (rtx exp
, regset nonequal
)
192 switch (GET_CODE (exp
))
194 /* In case we do clobber the register, mark it as equal, as we know the
195 value is dead so it don't have to match. */
197 if (REG_P (XEXP (exp
, 0)))
199 dest
= XEXP (exp
, 0);
200 regno
= REGNO (dest
);
201 CLEAR_REGNO_REG_SET (nonequal
, regno
);
202 if (regno
< FIRST_PSEUDO_REGISTER
)
204 int n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
206 CLEAR_REGNO_REG_SET (nonequal
, regno
+ n
);
212 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
214 dest
= SET_DEST (exp
);
219 regno
= REGNO (dest
);
220 SET_REGNO_REG_SET (nonequal
, regno
);
221 if (regno
< FIRST_PSEUDO_REGISTER
)
223 int n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
225 SET_REGNO_REG_SET (nonequal
, regno
+ n
);
234 /* Return nonzero if X is a register set in regset DATA.
235 Called via for_each_rtx. */
237 mentions_nonequal_regs (rtx
*x
, void *data
)
239 regset nonequal
= (regset
) data
;
245 if (REGNO_REG_SET_P (nonequal
, regno
))
247 if (regno
< FIRST_PSEUDO_REGISTER
)
249 int n
= hard_regno_nregs
[regno
][GET_MODE (*x
)];
251 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
257 /* Attempt to prove that the basic block B will have no side effects and
258 always continues in the same edge if reached via E. Return the edge
259 if exist, NULL otherwise. */
262 thread_jump (int mode
, edge e
, basic_block b
)
264 rtx set1
, set2
, cond1
, cond2
, insn
;
265 enum rtx_code code1
, code2
, reversed_code2
;
266 bool reverse1
= false;
270 reg_set_iterator rsi
;
272 if (b
->flags
& BB_NONTHREADABLE_BLOCK
)
275 /* At the moment, we do handle only conditional jumps, but later we may
276 want to extend this code to tablejumps and others. */
277 if (EDGE_COUNT (e
->src
->succs
) != 2)
279 if (EDGE_COUNT (b
->succs
) != 2)
281 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
285 /* Second branch must end with onlyjump, as we will eliminate the jump. */
286 if (!any_condjump_p (BB_END (e
->src
)))
289 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
291 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
295 set1
= pc_set (BB_END (e
->src
));
296 set2
= pc_set (BB_END (b
));
297 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
298 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
301 cond1
= XEXP (SET_SRC (set1
), 0);
302 cond2
= XEXP (SET_SRC (set2
), 0);
304 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
306 code1
= GET_CODE (cond1
);
308 code2
= GET_CODE (cond2
);
309 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
311 if (!comparison_dominates_p (code1
, code2
)
312 && !comparison_dominates_p (code1
, reversed_code2
))
315 /* Ensure that the comparison operators are equivalent.
316 ??? This is far too pessimistic. We should allow swapped operands,
317 different CCmodes, or for example comparisons for interval, that
318 dominate even when operands are not equivalent. */
319 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
320 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
323 /* Short circuit cases where block B contains some side effects, as we can't
325 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
326 insn
= NEXT_INSN (insn
))
327 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
329 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
335 /* First process all values computed in the source basic block. */
336 for (insn
= NEXT_INSN (BB_HEAD (e
->src
));
337 insn
!= NEXT_INSN (BB_END (e
->src
));
338 insn
= NEXT_INSN (insn
))
340 cselib_process_insn (insn
);
342 nonequal
= BITMAP_ALLOC (NULL
);
343 CLEAR_REG_SET (nonequal
);
345 /* Now assume that we've continued by the edge E to B and continue
346 processing as if it were same basic block.
347 Our goal is to prove that whole block is an NOOP. */
349 for (insn
= NEXT_INSN (BB_HEAD (b
));
350 insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
351 insn
= NEXT_INSN (insn
))
355 rtx pat
= PATTERN (insn
);
357 if (GET_CODE (pat
) == PARALLEL
)
359 for (i
= 0; i
< (unsigned)XVECLEN (pat
, 0); i
++)
360 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
363 failed
|= mark_effect (pat
, nonequal
);
366 cselib_process_insn (insn
);
369 /* Later we should clear nonequal of dead registers. So far we don't
370 have life information in cfg_cleanup. */
373 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
377 /* cond2 must not mention any register that is not equal to the
379 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
382 /* In case liveness information is available, we need to prove equivalence
383 only of the live values. */
384 if (mode
& CLEANUP_UPDATE_LIFE
)
385 AND_REG_SET (nonequal
, b
->il
.rtl
->global_live_at_end
);
387 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
390 BITMAP_FREE (nonequal
);
392 if ((comparison_dominates_p (code1
, code2
) != 0)
393 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
394 return BRANCH_EDGE (b
);
396 return FALLTHRU_EDGE (b
);
399 BITMAP_FREE (nonequal
);
404 /* Attempt to forward edges leaving basic block B.
405 Return true if successful. */
408 try_forward_edges (int mode
, basic_block b
)
410 bool changed
= false;
412 edge e
, *threaded_edges
= NULL
;
414 /* If we are partitioning hot/cold basic blocks, we don't want to
415 mess up unconditional or indirect jumps that cross between hot
418 Basic block partitioning may result in some jumps that appear to
419 be optimizable (or blocks that appear to be mergeable), but which really m
420 ust be left untouched (they are required to make it safely across
421 partition boundaries). See the comments at the top of
422 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
424 if (find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
))
427 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
429 basic_block target
, first
;
431 bool threaded
= false;
432 int nthreaded_edges
= 0;
433 bool may_thread
= first_pass
| (b
->flags
& BB_DIRTY
);
435 /* Skip complex edges because we don't know how to update them.
437 Still handle fallthru edges, as we can succeed to forward fallthru
438 edge to the same place as the branch edge of conditional branch
439 and turn conditional branch to an unconditional branch. */
440 if (e
->flags
& EDGE_COMPLEX
)
446 target
= first
= e
->dest
;
447 counter
= NUM_FIXED_BLOCKS
;
449 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
450 up jumps that cross between hot/cold sections.
452 Basic block partitioning may result in some jumps that appear
453 to be optimizable (or blocks that appear to be mergeable), but which
454 really must be left untouched (they are required to make it safely
455 across partition boundaries). See the comments at the top of
456 bb-reorder.c:partition_hot_cold_basic_blocks for complete
459 if (first
!= EXIT_BLOCK_PTR
460 && find_reg_note (BB_END (first
), REG_CROSSING_JUMP
, NULL_RTX
))
463 while (counter
< n_basic_blocks
)
465 basic_block new_target
= NULL
;
466 bool new_target_threaded
= false;
467 may_thread
|= target
->flags
& BB_DIRTY
;
469 if (FORWARDER_BLOCK_P (target
)
470 && !(single_succ_edge (target
)->flags
& EDGE_CROSSING
)
471 && single_succ (target
) != EXIT_BLOCK_PTR
)
473 /* Bypass trivial infinite loops. */
474 new_target
= single_succ (target
);
475 if (target
== new_target
)
476 counter
= n_basic_blocks
;
479 /* Allow to thread only over one edge at time to simplify updating
481 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
483 edge t
= thread_jump (mode
, e
, target
);
487 threaded_edges
= XNEWVEC (edge
, n_basic_blocks
);
492 /* Detect an infinite loop across blocks not
493 including the start block. */
494 for (i
= 0; i
< nthreaded_edges
; ++i
)
495 if (threaded_edges
[i
] == t
)
497 if (i
< nthreaded_edges
)
499 counter
= n_basic_blocks
;
504 /* Detect an infinite loop across the start block. */
508 gcc_assert (nthreaded_edges
< n_basic_blocks
- NUM_FIXED_BLOCKS
);
509 threaded_edges
[nthreaded_edges
++] = t
;
511 new_target
= t
->dest
;
512 new_target_threaded
= true;
521 threaded
|= new_target_threaded
;
524 if (counter
>= n_basic_blocks
)
527 fprintf (dump_file
, "Infinite loop in BB %i.\n",
530 else if (target
== first
)
531 ; /* We didn't do anything. */
534 /* Save the values now, as the edge may get removed. */
535 gcov_type edge_count
= e
->count
;
536 int edge_probability
= e
->probability
;
540 /* Don't force if target is exit block. */
541 if (threaded
&& target
!= EXIT_BLOCK_PTR
)
543 notice_new_block (redirect_edge_and_branch_force (e
, target
));
545 fprintf (dump_file
, "Conditionals threaded.\n");
547 else if (!redirect_edge_and_branch (e
, target
))
551 "Forwarding edge %i->%i to %i failed.\n",
552 b
->index
, e
->dest
->index
, target
->index
);
557 /* We successfully forwarded the edge. Now update profile
558 data: for each edge we traversed in the chain, remove
559 the original edge's execution count. */
560 edge_frequency
= ((edge_probability
* b
->frequency
561 + REG_BR_PROB_BASE
/ 2)
564 if (!FORWARDER_BLOCK_P (b
) && forwarder_block_p (b
))
565 b
->flags
|= BB_FORWARDER_BLOCK
;
571 if (!single_succ_p (first
))
573 gcc_assert (n
< nthreaded_edges
);
574 t
= threaded_edges
[n
++];
575 gcc_assert (t
->src
== first
);
576 update_bb_profile_for_threading (first
, edge_frequency
,
578 update_br_prob_note (first
);
582 first
->count
-= edge_count
;
583 if (first
->count
< 0)
585 first
->frequency
-= edge_frequency
;
586 if (first
->frequency
< 0)
587 first
->frequency
= 0;
588 /* It is possible that as the result of
589 threading we've removed edge as it is
590 threaded to the fallthru edge. Avoid
591 getting out of sync. */
592 if (n
< nthreaded_edges
593 && first
== threaded_edges
[n
]->src
)
595 t
= single_succ_edge (first
);
598 t
->count
-= edge_count
;
603 while (first
!= target
);
612 free (threaded_edges
);
617 /* Blocks A and B are to be merged into a single block. A has no incoming
618 fallthru edge, so it can be moved before B without adding or modifying
619 any jumps (aside from the jump from A to B). */
622 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
627 /* If we are partitioning hot/cold basic blocks, we don't want to
628 mess up unconditional or indirect jumps that cross between hot
631 Basic block partitioning may result in some jumps that appear to
632 be optimizable (or blocks that appear to be mergeable), but which really
633 must be left untouched (they are required to make it safely across
634 partition boundaries). See the comments at the top of
635 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
637 if (BB_PARTITION (a
) != BB_PARTITION (b
))
640 barrier
= next_nonnote_insn (BB_END (a
));
641 gcc_assert (BARRIER_P (barrier
));
642 delete_insn (barrier
);
644 /* Move block and loop notes out of the chain so that we do not
647 ??? A better solution would be to squeeze out all the non-nested notes
648 and adjust the block trees appropriately. Even better would be to have
649 a tighter connection between block trees and rtl so that this is not
651 only_notes
= squeeze_notes (&BB_HEAD (a
), &BB_END (a
));
652 gcc_assert (!only_notes
);
654 /* Scramble the insn chain. */
655 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
656 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
657 a
->flags
|= BB_DIRTY
;
660 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
663 /* Swap the records for the two blocks around. */
666 link_block (a
, b
->prev_bb
);
668 /* Now blocks A and B are contiguous. Merge them. */
672 /* Blocks A and B are to be merged into a single block. B has no outgoing
673 fallthru edge, so it can be moved after A without adding or modifying
674 any jumps (aside from the jump from A to B). */
677 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
679 rtx barrier
, real_b_end
;
683 /* If we are partitioning hot/cold basic blocks, we don't want to
684 mess up unconditional or indirect jumps that cross between hot
687 Basic block partitioning may result in some jumps that appear to
688 be optimizable (or blocks that appear to be mergeable), but which really
689 must be left untouched (they are required to make it safely across
690 partition boundaries). See the comments at the top of
691 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
693 if (BB_PARTITION (a
) != BB_PARTITION (b
))
696 real_b_end
= BB_END (b
);
698 /* If there is a jump table following block B temporarily add the jump table
699 to block B so that it will also be moved to the correct location. */
700 if (tablejump_p (BB_END (b
), &label
, &table
)
701 && prev_active_insn (label
) == BB_END (b
))
706 /* There had better have been a barrier there. Delete it. */
707 barrier
= NEXT_INSN (BB_END (b
));
708 if (barrier
&& BARRIER_P (barrier
))
709 delete_insn (barrier
);
711 /* Move block and loop notes out of the chain so that we do not
714 ??? A better solution would be to squeeze out all the non-nested notes
715 and adjust the block trees appropriately. Even better would be to have
716 a tighter connection between block trees and rtl so that this is not
718 only_notes
= squeeze_notes (&BB_HEAD (b
), &BB_END (b
));
719 gcc_assert (!only_notes
);
722 /* Scramble the insn chain. */
723 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
725 /* Restore the real end of b. */
726 BB_END (b
) = real_b_end
;
729 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
732 /* Now blocks A and B are contiguous. Merge them. */
736 /* Attempt to merge basic blocks that are potentially non-adjacent.
737 Return NULL iff the attempt failed, otherwise return basic block
738 where cleanup_cfg should continue. Because the merging commonly
739 moves basic block away or introduces another optimization
740 possibility, return basic block just before B so cleanup_cfg don't
743 It may be good idea to return basic block before C in the case
744 C has been moved after B and originally appeared earlier in the
745 insn sequence, but we have no information available about the
746 relative ordering of these two. Hopefully it is not too common. */
749 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
753 /* If we are partitioning hot/cold basic blocks, we don't want to
754 mess up unconditional or indirect jumps that cross between hot
757 Basic block partitioning may result in some jumps that appear to
758 be optimizable (or blocks that appear to be mergeable), but which really
759 must be left untouched (they are required to make it safely across
760 partition boundaries). See the comments at the top of
761 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
763 if (BB_PARTITION (b
) != BB_PARTITION (c
))
766 /* If B has a fallthru edge to C, no need to move anything. */
767 if (e
->flags
& EDGE_FALLTHRU
)
769 int b_index
= b
->index
, c_index
= c
->index
;
771 update_forwarder_flag (b
);
774 fprintf (dump_file
, "Merged %d and %d without moving.\n",
777 return b
->prev_bb
== ENTRY_BLOCK_PTR
? b
: b
->prev_bb
;
780 /* Otherwise we will need to move code around. Do that only if expensive
781 transformations are allowed. */
782 else if (mode
& CLEANUP_EXPENSIVE
)
784 edge tmp_edge
, b_fallthru_edge
;
785 bool c_has_outgoing_fallthru
;
786 bool b_has_incoming_fallthru
;
789 /* Avoid overactive code motion, as the forwarder blocks should be
790 eliminated by edge redirection instead. One exception might have
791 been if B is a forwarder block and C has no fallthru edge, but
792 that should be cleaned up by bb-reorder instead. */
793 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
796 /* We must make sure to not munge nesting of lexical blocks,
797 and loop notes. This is done by squeezing out all the notes
798 and leaving them there to lie. Not ideal, but functional. */
800 FOR_EACH_EDGE (tmp_edge
, ei
, c
->succs
)
801 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
804 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
806 FOR_EACH_EDGE (tmp_edge
, ei
, b
->preds
)
807 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
810 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
811 b_fallthru_edge
= tmp_edge
;
814 next
= next
->prev_bb
;
816 /* Otherwise, we're going to try to move C after B. If C does
817 not have an outgoing fallthru, then it can be moved
818 immediately after B without introducing or modifying jumps. */
819 if (! c_has_outgoing_fallthru
)
821 merge_blocks_move_successor_nojumps (b
, c
);
822 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
825 /* If B does not have an incoming fallthru, then it can be moved
826 immediately before C without introducing or modifying jumps.
827 C cannot be the first block, so we do not have to worry about
828 accessing a non-existent block. */
830 if (b_has_incoming_fallthru
)
834 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR
)
836 bb
= force_nonfallthru (b_fallthru_edge
);
838 notice_new_block (bb
);
841 merge_blocks_move_predecessor_nojumps (b
, c
);
842 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
849 /* Removes the memory attributes of MEM expression
850 if they are not equal. */
853 merge_memattrs (rtx x
, rtx y
)
862 if (x
== 0 || y
== 0)
867 if (code
!= GET_CODE (y
))
870 if (GET_MODE (x
) != GET_MODE (y
))
873 if (code
== MEM
&& MEM_ATTRS (x
) != MEM_ATTRS (y
))
877 else if (! MEM_ATTRS (y
))
883 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
885 set_mem_alias_set (x
, 0);
886 set_mem_alias_set (y
, 0);
889 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
893 set_mem_offset (x
, 0);
894 set_mem_offset (y
, 0);
896 else if (MEM_OFFSET (x
) != MEM_OFFSET (y
))
898 set_mem_offset (x
, 0);
899 set_mem_offset (y
, 0);
904 else if (!MEM_SIZE (y
))
907 mem_size
= GEN_INT (MAX (INTVAL (MEM_SIZE (x
)),
908 INTVAL (MEM_SIZE (y
))));
909 set_mem_size (x
, mem_size
);
910 set_mem_size (y
, mem_size
);
912 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
913 set_mem_align (y
, MEM_ALIGN (x
));
917 fmt
= GET_RTX_FORMAT (code
);
918 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
923 /* Two vectors must have the same length. */
924 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
927 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
928 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
933 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
940 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
943 old_insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx i1
, rtx i2
)
947 /* Verify that I1 and I2 are equivalent. */
948 if (GET_CODE (i1
) != GET_CODE (i2
))
954 if (GET_CODE (p1
) != GET_CODE (p2
))
957 /* If this is a CALL_INSN, compare register usage information.
958 If we don't check this on stack register machines, the two
959 CALL_INSNs might be merged leaving reg-stack.c with mismatching
960 numbers of stack registers in the same basic block.
961 If we don't check this on machines with delay slots, a delay slot may
962 be filled that clobbers a parameter expected by the subroutine.
964 ??? We take the simple route for now and assume that if they're
965 equal, they were constructed identically. */
968 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
969 CALL_INSN_FUNCTION_USAGE (i2
))
970 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
)))
974 /* If cross_jump_death_matters is not 0, the insn's mode
975 indicates whether or not the insn contains any stack-like
978 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
980 /* If register stack conversion has already been done, then
981 death notes must also be compared before it is certain that
982 the two instruction streams match. */
985 HARD_REG_SET i1_regset
, i2_regset
;
987 CLEAR_HARD_REG_SET (i1_regset
);
988 CLEAR_HARD_REG_SET (i2_regset
);
990 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
991 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
992 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
994 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
995 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
996 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
998 GO_IF_HARD_REG_EQUAL (i1_regset
, i2_regset
, done
);
1007 if (reload_completed
1008 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1011 /* Do not do EQUIV substitution after reload. First, we're undoing the
1012 work of reload_cse. Second, we may be undoing the work of the post-
1013 reload splitting pass. */
1014 /* ??? Possibly add a new phase switch variable that can be used by
1015 targets to disallow the troublesome insns after splitting. */
1016 if (!reload_completed
)
1018 /* The following code helps take care of G++ cleanups. */
1019 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1020 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1022 if (equiv1
&& equiv2
1023 /* If the equivalences are not to a constant, they may
1024 reference pseudos that no longer exist, so we can't
1026 && (! reload_completed
1027 || (CONSTANT_P (XEXP (equiv1
, 0))
1028 && rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))))
1030 rtx s1
= single_set (i1
);
1031 rtx s2
= single_set (i2
);
1032 if (s1
!= 0 && s2
!= 0
1033 && rtx_renumbered_equal_p (SET_DEST (s1
), SET_DEST (s2
)))
1035 validate_change (i1
, &SET_SRC (s1
), XEXP (equiv1
, 0), 1);
1036 validate_change (i2
, &SET_SRC (s2
), XEXP (equiv2
, 0), 1);
1037 if (! rtx_renumbered_equal_p (p1
, p2
))
1039 else if (apply_change_group ())
1048 /* Look through the insns at the end of BB1 and BB2 and find the longest
1049 sequence that are equivalent. Store the first insns for that sequence
1050 in *F1 and *F2 and return the sequence length.
1052 To simplify callers of this function, if the blocks match exactly,
1053 store the head of the blocks in *F1 and *F2. */
1056 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED
, basic_block bb1
,
1057 basic_block bb2
, rtx
*f1
, rtx
*f2
)
1059 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1062 /* Skip simple jumps at the end of the blocks. Complex jumps still
1063 need to be compared for equivalence, which we'll do below. */
1066 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1068 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1071 i1
= PREV_INSN (i1
);
1076 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1079 /* Count everything except for unconditional jump as insn. */
1080 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
)
1082 i2
= PREV_INSN (i2
);
1088 while (!INSN_P (i1
) && i1
!= BB_HEAD (bb1
))
1089 i1
= PREV_INSN (i1
);
1091 while (!INSN_P (i2
) && i2
!= BB_HEAD (bb2
))
1092 i2
= PREV_INSN (i2
);
1094 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1097 if (!old_insns_match_p (mode
, i1
, i2
))
1100 merge_memattrs (i1
, i2
);
1102 /* Don't begin a cross-jump with a NOTE insn. */
1105 /* If the merged insns have different REG_EQUAL notes, then
1107 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1108 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1110 if (equiv1
&& !equiv2
)
1111 remove_note (i1
, equiv1
);
1112 else if (!equiv1
&& equiv2
)
1113 remove_note (i2
, equiv2
);
1114 else if (equiv1
&& equiv2
1115 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1117 remove_note (i1
, equiv1
);
1118 remove_note (i2
, equiv2
);
1121 afterlast1
= last1
, afterlast2
= last2
;
1122 last1
= i1
, last2
= i2
;
1126 i1
= PREV_INSN (i1
);
1127 i2
= PREV_INSN (i2
);
1131 /* Don't allow the insn after a compare to be shared by
1132 cross-jumping unless the compare is also shared. */
1133 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1134 last1
= afterlast1
, last2
= afterlast2
, ninsns
--;
1137 /* Include preceding notes and labels in the cross-jump. One,
1138 this may bring us to the head of the blocks as requested above.
1139 Two, it keeps line number notes as matched as may be. */
1142 while (last1
!= BB_HEAD (bb1
) && !INSN_P (PREV_INSN (last1
)))
1143 last1
= PREV_INSN (last1
);
1145 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1146 last1
= PREV_INSN (last1
);
1148 while (last2
!= BB_HEAD (bb2
) && !INSN_P (PREV_INSN (last2
)))
1149 last2
= PREV_INSN (last2
);
1151 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1152 last2
= PREV_INSN (last2
);
1161 /* Return true iff the condbranches at the end of BB1 and BB2 match. */
1163 condjump_equiv_p (struct equiv_info
*info
, bool call_init
)
1165 basic_block bb1
= info
->x_block
;
1166 basic_block bb2
= info
->y_block
;
1167 edge b1
= BRANCH_EDGE (bb1
);
1168 edge b2
= BRANCH_EDGE (bb2
);
1169 edge f1
= FALLTHRU_EDGE (bb1
);
1170 edge f2
= FALLTHRU_EDGE (bb2
);
1171 bool reverse
, match
;
1172 rtx set1
, set2
, cond1
, cond2
;
1174 enum rtx_code code1
, code2
;
1176 /* Get around possible forwarders on fallthru edges. Other cases
1177 should be optimized out already. */
1178 if (FORWARDER_BLOCK_P (f1
->dest
))
1179 f1
= single_succ_edge (f1
->dest
);
1181 if (FORWARDER_BLOCK_P (f2
->dest
))
1182 f2
= single_succ_edge (f2
->dest
);
1184 /* To simplify use of this function, return false if there are
1185 unneeded forwarder blocks. These will get eliminated later
1186 during cleanup_cfg. */
1187 if (FORWARDER_BLOCK_P (f1
->dest
)
1188 || FORWARDER_BLOCK_P (f2
->dest
)
1189 || FORWARDER_BLOCK_P (b1
->dest
)
1190 || FORWARDER_BLOCK_P (b2
->dest
))
1193 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1195 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1200 set1
= pc_set (BB_END (bb1
));
1201 set2
= pc_set (BB_END (bb2
));
1202 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1203 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1206 src1
= SET_SRC (set1
);
1207 src2
= SET_SRC (set2
);
1208 cond1
= XEXP (src1
, 0);
1209 cond2
= XEXP (src2
, 0);
1210 code1
= GET_CODE (cond1
);
1212 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1214 code2
= GET_CODE (cond2
);
1216 if (code2
== UNKNOWN
)
1219 if (call_init
&& !struct_equiv_init (STRUCT_EQUIV_START
| info
->mode
, info
))
1221 /* Make the sources of the pc sets unreadable so that when we call
1222 insns_match_p it won't process them.
1223 The death_notes_match_p from insns_match_p won't see the local registers
1224 used for the pc set, but that could only cause missed optimizations when
1225 there are actually condjumps that use stack registers. */
1226 SET_SRC (set1
) = pc_rtx
;
1227 SET_SRC (set2
) = pc_rtx
;
1228 /* Verify codes and operands match. */
1231 match
= (insns_match_p (BB_END (bb1
), BB_END (bb2
), info
)
1232 && rtx_equiv_p (&XEXP (cond1
, 0), XEXP (cond2
, 0), 1, info
)
1233 && rtx_equiv_p (&XEXP (cond1
, 1), XEXP (cond2
, 1), 1, info
));
1236 else if (code1
== swap_condition (code2
))
1238 match
= (insns_match_p (BB_END (bb1
), BB_END (bb2
), info
)
1239 && rtx_equiv_p (&XEXP (cond1
, 1), XEXP (cond2
, 0), 1, info
)
1240 && rtx_equiv_p (&XEXP (cond1
, 0), XEXP (cond2
, 1), 1, info
));
1245 SET_SRC (set1
) = src1
;
1246 SET_SRC (set2
) = src2
;
1247 match
&= verify_changes (0);
1249 /* If we return true, we will join the blocks. Which means that
1250 we will only have one branch prediction bit to work with. Thus
1251 we require the existing branches to have probabilities that are
1255 && maybe_hot_bb_p (bb1
)
1256 && maybe_hot_bb_p (bb2
))
1260 if (b1
->dest
== b2
->dest
)
1261 prob2
= b2
->probability
;
1263 /* Do not use f2 probability as f2 may be forwarded. */
1264 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1266 /* Fail if the difference in probabilities is greater than 50%.
1267 This rules out two well-predicted branches with opposite
1269 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1273 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1274 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1280 if (dump_file
&& match
)
1281 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1282 bb1
->index
, bb2
->index
);
1289 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1290 the branch instruction. This means that if we commonize the control
1291 flow before end of the basic block, the semantic remains unchanged.
1293 We may assume that there exists one edge with a common destination. */
1296 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1298 int nehedges1
= 0, nehedges2
= 0;
1299 edge fallthru1
= 0, fallthru2
= 0;
1303 /* If BB1 has only one successor, we may be looking at either an
1304 unconditional jump, or a fake edge to exit. */
1305 if (single_succ_p (bb1
)
1306 && (single_succ_edge (bb1
)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1307 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1308 return (single_succ_p (bb2
)
1309 && (single_succ_edge (bb2
)->flags
1310 & (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1311 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1313 /* Match conditional jumps - this may get tricky when fallthru and branch
1314 edges are crossed. */
1315 if (EDGE_COUNT (bb1
->succs
) == 2
1316 && any_condjump_p (BB_END (bb1
))
1317 && onlyjump_p (BB_END (bb1
)))
1319 edge b1
, f1
, b2
, f2
;
1320 bool reverse
, match
;
1321 rtx set1
, set2
, cond1
, cond2
;
1322 enum rtx_code code1
, code2
;
1324 if (EDGE_COUNT (bb2
->succs
) != 2
1325 || !any_condjump_p (BB_END (bb2
))
1326 || !onlyjump_p (BB_END (bb2
)))
1329 b1
= BRANCH_EDGE (bb1
);
1330 b2
= BRANCH_EDGE (bb2
);
1331 f1
= FALLTHRU_EDGE (bb1
);
1332 f2
= FALLTHRU_EDGE (bb2
);
1334 /* Get around possible forwarders on fallthru edges. Other cases
1335 should be optimized out already. */
1336 if (FORWARDER_BLOCK_P (f1
->dest
))
1337 f1
= single_succ_edge (f1
->dest
);
1339 if (FORWARDER_BLOCK_P (f2
->dest
))
1340 f2
= single_succ_edge (f2
->dest
);
1342 /* To simplify use of this function, return false if there are
1343 unneeded forwarder blocks. These will get eliminated later
1344 during cleanup_cfg. */
1345 if (FORWARDER_BLOCK_P (f1
->dest
)
1346 || FORWARDER_BLOCK_P (f2
->dest
)
1347 || FORWARDER_BLOCK_P (b1
->dest
)
1348 || FORWARDER_BLOCK_P (b2
->dest
))
1351 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1353 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1358 set1
= pc_set (BB_END (bb1
));
1359 set2
= pc_set (BB_END (bb2
));
1360 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1361 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1364 cond1
= XEXP (SET_SRC (set1
), 0);
1365 cond2
= XEXP (SET_SRC (set2
), 0);
1366 code1
= GET_CODE (cond1
);
1368 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1370 code2
= GET_CODE (cond2
);
1372 if (code2
== UNKNOWN
)
1375 /* Verify codes and operands match. */
1376 match
= ((code1
== code2
1377 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1378 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1379 || (code1
== swap_condition (code2
)
1380 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1382 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1385 /* If we return true, we will join the blocks. Which means that
1386 we will only have one branch prediction bit to work with. Thus
1387 we require the existing branches to have probabilities that are
1391 && maybe_hot_bb_p (bb1
)
1392 && maybe_hot_bb_p (bb2
))
1396 if (b1
->dest
== b2
->dest
)
1397 prob2
= b2
->probability
;
1399 /* Do not use f2 probability as f2 may be forwarded. */
1400 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1402 /* Fail if the difference in probabilities is greater than 50%.
1403 This rules out two well-predicted branches with opposite
1405 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1409 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1410 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1416 if (dump_file
&& match
)
1417 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1418 bb1
->index
, bb2
->index
);
1423 /* Generic case - we are seeing a computed jump, table jump or trapping
1426 /* Check whether there are tablejumps in the end of BB1 and BB2.
1427 Return true if they are identical. */
1432 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1433 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1434 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1436 /* The labels should never be the same rtx. If they really are same
1437 the jump tables are same too. So disable crossjumping of blocks BB1
1438 and BB2 because when deleting the common insns in the end of BB1
1439 by delete_basic_block () the jump table would be deleted too. */
1440 /* If LABEL2 is referenced in BB1->END do not do anything
1441 because we would loose information when replacing
1442 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1443 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1445 /* Set IDENTICAL to true when the tables are identical. */
1446 bool identical
= false;
1449 p1
= PATTERN (table1
);
1450 p2
= PATTERN (table2
);
1451 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1455 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1456 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1457 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1458 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1463 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1464 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1470 replace_label_data rr
;
1473 /* Temporarily replace references to LABEL1 with LABEL2
1474 in BB1->END so that we could compare the instructions. */
1477 rr
.update_label_nuses
= false;
1478 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1480 match
= old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
));
1481 if (dump_file
&& match
)
1483 "Tablejumps in bb %i and %i match.\n",
1484 bb1
->index
, bb2
->index
);
1486 /* Set the original label in BB1->END because when deleting
1487 a block whose end is a tablejump, the tablejump referenced
1488 from the instruction is deleted too. */
1491 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1500 /* First ensure that the instructions match. There may be many outgoing
1501 edges so this test is generally cheaper. */
1502 if (!old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
)))
1505 /* Search the outgoing edges, ensure that the counts do match, find possible
1506 fallthru and exception handling edges since these needs more
1508 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1511 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1513 e2
= EDGE_SUCC (bb2
, ei
.index
);
1515 if (e1
->flags
& EDGE_EH
)
1518 if (e2
->flags
& EDGE_EH
)
1521 if (e1
->flags
& EDGE_FALLTHRU
)
1523 if (e2
->flags
& EDGE_FALLTHRU
)
1527 /* If number of edges of various types does not match, fail. */
1528 if (nehedges1
!= nehedges2
1529 || (fallthru1
!= 0) != (fallthru2
!= 0))
1532 /* fallthru edges must be forwarded to the same destination. */
1535 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1536 ? single_succ (fallthru1
->dest
): fallthru1
->dest
);
1537 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1538 ? single_succ (fallthru2
->dest
): fallthru2
->dest
);
1544 /* Ensure the same EH region. */
1546 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1547 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1552 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1556 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1557 version of sequence abstraction. */
1558 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1562 basic_block d1
= e1
->dest
;
1564 if (FORWARDER_BLOCK_P (d1
))
1565 d1
= EDGE_SUCC (d1
, 0)->dest
;
1567 FOR_EACH_EDGE (e2
, ei
, bb1
->succs
)
1569 basic_block d2
= e2
->dest
;
1570 if (FORWARDER_BLOCK_P (d2
))
1571 d2
= EDGE_SUCC (d2
, 0)->dest
;
1583 /* Returns true if BB basic block has a preserve label. */
1586 block_has_preserve_label (basic_block bb
)
1590 && LABEL_PRESERVE_P (block_label (bb
)));
1593 /* E1 and E2 are edges with the same destination block. Search their
1594 predecessors for common code. If found, redirect control flow from
1595 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1598 try_crossjump_to_edge (int mode
, edge e1
, edge e2
)
1601 basic_block src1
= e1
->src
, src2
= e2
->src
;
1602 basic_block redirect_to
, redirect_from
, to_remove
;
1603 rtx newpos1
, newpos2
;
1607 newpos1
= newpos2
= NULL_RTX
;
1609 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1610 to try this optimization.
1612 Basic block partitioning may result in some jumps that appear to
1613 be optimizable (or blocks that appear to be mergeable), but which really
1614 must be left untouched (they are required to make it safely across
1615 partition boundaries). See the comments at the top of
1616 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1618 if (flag_reorder_blocks_and_partition
&& no_new_pseudos
)
1621 /* Search backward through forwarder blocks. We don't need to worry
1622 about multiple entry or chained forwarders, as they will be optimized
1623 away. We do this to look past the unconditional jump following a
1624 conditional jump that is required due to the current CFG shape. */
1625 if (single_pred_p (src1
)
1626 && FORWARDER_BLOCK_P (src1
))
1627 e1
= single_pred_edge (src1
), src1
= e1
->src
;
1629 if (single_pred_p (src2
)
1630 && FORWARDER_BLOCK_P (src2
))
1631 e2
= single_pred_edge (src2
), src2
= e2
->src
;
1633 /* Nothing to do if we reach ENTRY, or a common source block. */
1634 if (src1
== ENTRY_BLOCK_PTR
|| src2
== ENTRY_BLOCK_PTR
)
1639 /* Seeing more than 1 forwarder blocks would confuse us later... */
1640 if (FORWARDER_BLOCK_P (e1
->dest
)
1641 && FORWARDER_BLOCK_P (single_succ (e1
->dest
)))
1644 if (FORWARDER_BLOCK_P (e2
->dest
)
1645 && FORWARDER_BLOCK_P (single_succ (e2
->dest
)))
1648 /* Likewise with dead code (possibly newly created by the other optimizations
1650 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
1653 /* Look for the common insn sequence, part the first ... */
1654 if (!outgoing_edges_match (mode
, src1
, src2
))
1657 /* ... and part the second. */
1658 nmatch
= flow_find_cross_jump (mode
, src1
, src2
, &newpos1
, &newpos2
);
1660 /* Don't proceed with the crossjump unless we found a sufficient number
1661 of matching instructions or the 'from' block was totally matched
1662 (such that its predecessors will hopefully be redirected and the
1664 if ((nmatch
< PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS
))
1665 && (newpos1
!= BB_HEAD (src1
)))
1668 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1669 if (block_has_preserve_label (e1
->dest
)
1670 && (e1
->flags
& EDGE_ABNORMAL
))
1673 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1675 If we have tablejumps in the end of SRC1 and SRC2
1676 they have been already compared for equivalence in outgoing_edges_match ()
1677 so replace the references to TABLE1 by references to TABLE2. */
1682 if (tablejump_p (BB_END (src1
), &label1
, &table1
)
1683 && tablejump_p (BB_END (src2
), &label2
, &table2
)
1684 && label1
!= label2
)
1686 replace_label_data rr
;
1689 /* Replace references to LABEL1 with LABEL2. */
1692 rr
.update_label_nuses
= true;
1693 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1695 /* Do not replace the label in SRC1->END because when deleting
1696 a block whose end is a tablejump, the tablejump referenced
1697 from the instruction is deleted too. */
1698 if (insn
!= BB_END (src1
))
1699 for_each_rtx (&insn
, replace_label
, &rr
);
1704 /* Avoid splitting if possible. We must always split when SRC2 has
1705 EH predecessor edges, or we may end up with basic blocks with both
1706 normal and EH predecessor edges. */
1707 if (newpos2
== BB_HEAD (src2
)
1708 && !(EDGE_PRED (src2
, 0)->flags
& EDGE_EH
))
1712 if (newpos2
== BB_HEAD (src2
))
1714 /* Skip possible basic block header. */
1715 if (LABEL_P (newpos2
))
1716 newpos2
= NEXT_INSN (newpos2
);
1717 if (NOTE_P (newpos2
))
1718 newpos2
= NEXT_INSN (newpos2
);
1722 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
1723 src2
->index
, nmatch
);
1724 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
1729 "Cross jumping from bb %i to bb %i; %i common insns\n",
1730 src1
->index
, src2
->index
, nmatch
);
1732 redirect_to
->count
+= src1
->count
;
1733 redirect_to
->frequency
+= src1
->frequency
;
1734 /* We may have some registers visible through the block. */
1735 redirect_to
->flags
|= BB_DIRTY
;
1737 /* Recompute the frequencies and counts of outgoing edges. */
1738 FOR_EACH_EDGE (s
, ei
, redirect_to
->succs
)
1742 basic_block d
= s
->dest
;
1744 if (FORWARDER_BLOCK_P (d
))
1745 d
= single_succ (d
);
1747 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
1749 basic_block d2
= s2
->dest
;
1750 if (FORWARDER_BLOCK_P (d2
))
1751 d2
= single_succ (d2
);
1756 s
->count
+= s2
->count
;
1758 /* Take care to update possible forwarder blocks. We verified
1759 that there is no more than one in the chain, so we can't run
1760 into infinite loop. */
1761 if (FORWARDER_BLOCK_P (s
->dest
))
1763 single_succ_edge (s
->dest
)->count
+= s2
->count
;
1764 s
->dest
->count
+= s2
->count
;
1765 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
1768 if (FORWARDER_BLOCK_P (s2
->dest
))
1770 single_succ_edge (s2
->dest
)->count
-= s2
->count
;
1771 if (single_succ_edge (s2
->dest
)->count
< 0)
1772 single_succ_edge (s2
->dest
)->count
= 0;
1773 s2
->dest
->count
-= s2
->count
;
1774 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
1775 if (s2
->dest
->frequency
< 0)
1776 s2
->dest
->frequency
= 0;
1777 if (s2
->dest
->count
< 0)
1778 s2
->dest
->count
= 0;
1781 if (!redirect_to
->frequency
&& !src1
->frequency
)
1782 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
1785 = ((s
->probability
* redirect_to
->frequency
+
1786 s2
->probability
* src1
->frequency
)
1787 / (redirect_to
->frequency
+ src1
->frequency
));
1790 update_br_prob_note (redirect_to
);
1792 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1794 /* Skip possible basic block header. */
1795 if (LABEL_P (newpos1
))
1796 newpos1
= NEXT_INSN (newpos1
);
1798 if (NOTE_P (newpos1
))
1799 newpos1
= NEXT_INSN (newpos1
);
1801 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
1802 to_remove
= single_succ (redirect_from
);
1804 redirect_edge_and_branch_force (single_succ_edge (redirect_from
), redirect_to
);
1805 delete_basic_block (to_remove
);
1807 update_forwarder_flag (redirect_from
);
1808 if (redirect_to
!= src2
)
1809 update_forwarder_flag (src2
);
1814 /* Search the predecessors of BB for common insn sequences. When found,
1815 share code between them by redirecting control flow. Return true if
1816 any changes made. */
1819 try_crossjump_bb (int mode
, basic_block bb
)
1821 edge e
, e2
, fallthru
;
1823 unsigned max
, ix
, ix2
;
1824 basic_block ev
, ev2
;
1827 /* Nothing to do if there is not at least two incoming edges. */
1828 if (EDGE_COUNT (bb
->preds
) < 2)
1831 /* Don't crossjump if this block ends in a computed jump,
1832 unless we are optimizing for size. */
1834 && bb
!= EXIT_BLOCK_PTR
1835 && computed_jump_p (BB_END (bb
)))
1838 /* If we are partitioning hot/cold basic blocks, we don't want to
1839 mess up unconditional or indirect jumps that cross between hot
1842 Basic block partitioning may result in some jumps that appear to
1843 be optimizable (or blocks that appear to be mergeable), but which really
1844 must be left untouched (they are required to make it safely across
1845 partition boundaries). See the comments at the top of
1846 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1848 if (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) !=
1849 BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
1850 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
))
1853 /* It is always cheapest to redirect a block that ends in a branch to
1854 a block that falls through into BB, as that adds no branches to the
1855 program. We'll try that combination first. */
1857 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
1859 if (EDGE_COUNT (bb
->preds
) > max
)
1862 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1864 if (e
->flags
& EDGE_FALLTHRU
)
1869 for (ix
= 0, ev
= bb
; ix
< EDGE_COUNT (ev
->preds
); )
1871 e
= EDGE_PRED (ev
, ix
);
1874 /* As noted above, first try with the fallthru predecessor. */
1877 /* Don't combine the fallthru edge into anything else.
1878 If there is a match, we'll do it the other way around. */
1881 /* If nothing changed since the last attempt, there is nothing
1884 && (!(e
->src
->flags
& BB_DIRTY
)
1885 && !(fallthru
->src
->flags
& BB_DIRTY
)))
1888 if (try_crossjump_to_edge (mode
, e
, fallthru
))
1897 /* Non-obvious work limiting check: Recognize that we're going
1898 to call try_crossjump_bb on every basic block. So if we have
1899 two blocks with lots of outgoing edges (a switch) and they
1900 share lots of common destinations, then we would do the
1901 cross-jump check once for each common destination.
1903 Now, if the blocks actually are cross-jump candidates, then
1904 all of their destinations will be shared. Which means that
1905 we only need check them for cross-jump candidacy once. We
1906 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1907 choosing to do the check from the block for which the edge
1908 in question is the first successor of A. */
1909 if (EDGE_SUCC (e
->src
, 0) != e
)
1912 for (ix2
= 0, ev2
= bb
; ix2
< EDGE_COUNT (ev2
->preds
); )
1914 e2
= EDGE_PRED (ev2
, ix2
);
1920 /* We've already checked the fallthru edge above. */
1924 /* The "first successor" check above only prevents multiple
1925 checks of crossjump(A,B). In order to prevent redundant
1926 checks of crossjump(B,A), require that A be the block
1927 with the lowest index. */
1928 if (e
->src
->index
> e2
->src
->index
)
1931 /* If nothing changed since the last attempt, there is nothing
1934 && (!(e
->src
->flags
& BB_DIRTY
)
1935 && !(e2
->src
->flags
& BB_DIRTY
)))
1938 if (try_crossjump_to_edge (mode
, e
, e2
))
1951 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1952 instructions etc. Return nonzero if changes were made. */
1955 try_optimize_cfg (int mode
)
1957 bool changed_overall
= false;
1960 basic_block bb
, b
, next
;
1962 if (mode
& CLEANUP_CROSSJUMP
)
1963 add_noreturn_fake_exit_edges ();
1965 if (mode
& (CLEANUP_UPDATE_LIFE
| CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
1969 update_forwarder_flag (bb
);
1971 if (! targetm
.cannot_modify_jumps_p ())
1974 /* Attempt to merge blocks as made possible by edge removal. If
1975 a block has only one successor, and the successor has only
1976 one predecessor, they may be combined. */
1984 "\n\ntry_optimize_cfg iteration %i\n\n",
1987 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
;)
1991 bool changed_here
= false;
1993 /* Delete trivially dead basic blocks. */
1994 while (EDGE_COUNT (b
->preds
) == 0)
1998 fprintf (dump_file
, "Deleting block %i.\n",
2001 delete_basic_block (b
);
2002 if (!(mode
& CLEANUP_CFGLAYOUT
))
2007 /* Remove code labels no longer used. */
2008 if (single_pred_p (b
)
2009 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2010 && !(single_pred_edge (b
)->flags
& EDGE_COMPLEX
)
2011 && LABEL_P (BB_HEAD (b
))
2012 /* If the previous block ends with a branch to this
2013 block, we can't delete the label. Normally this
2014 is a condjump that is yet to be simplified, but
2015 if CASE_DROPS_THRU, this can be a tablejump with
2016 some element going to the same place as the
2017 default (fallthru). */
2018 && (single_pred (b
) == ENTRY_BLOCK_PTR
2019 || !JUMP_P (BB_END (single_pred (b
)))
2020 || ! label_is_jump_target_p (BB_HEAD (b
),
2021 BB_END (single_pred (b
)))))
2023 rtx label
= BB_HEAD (b
);
2025 delete_insn_chain (label
, label
);
2026 /* In the case label is undeletable, move it after the
2027 BASIC_BLOCK note. */
2028 if (NOTE_LINE_NUMBER (BB_HEAD (b
)) == NOTE_INSN_DELETED_LABEL
)
2030 rtx bb_note
= NEXT_INSN (BB_HEAD (b
));
2032 reorder_insns_nobb (label
, label
, bb_note
);
2033 BB_HEAD (b
) = bb_note
;
2036 fprintf (dump_file
, "Deleted label in block %i.\n",
2040 /* If we fall through an empty block, we can remove it. */
2041 if (!(mode
& CLEANUP_CFGLAYOUT
)
2042 && single_pred_p (b
)
2043 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2044 && !LABEL_P (BB_HEAD (b
))
2045 && FORWARDER_BLOCK_P (b
)
2046 /* Note that forwarder_block_p true ensures that
2047 there is a successor for this block. */
2048 && (single_succ_edge (b
)->flags
& EDGE_FALLTHRU
)
2049 && n_basic_blocks
> NUM_FIXED_BLOCKS
+ 1)
2053 "Deleting fallthru block %i.\n",
2056 c
= b
->prev_bb
== ENTRY_BLOCK_PTR
? b
->next_bb
: b
->prev_bb
;
2057 redirect_edge_succ_nodup (single_pred_edge (b
),
2059 delete_basic_block (b
);
2064 if (single_succ_p (b
)
2065 && (s
= single_succ_edge (b
))
2066 && !(s
->flags
& EDGE_COMPLEX
)
2067 && (c
= s
->dest
) != EXIT_BLOCK_PTR
2068 && single_pred_p (c
)
2071 /* When not in cfg_layout mode use code aware of reordering
2072 INSN. This code possibly creates new basic blocks so it
2073 does not fit merge_blocks interface and is kept here in
2074 hope that it will become useless once more of compiler
2075 is transformed to use cfg_layout mode. */
2077 if ((mode
& CLEANUP_CFGLAYOUT
)
2078 && can_merge_blocks_p (b
, c
))
2080 merge_blocks (b
, c
);
2081 update_forwarder_flag (b
);
2082 changed_here
= true;
2084 else if (!(mode
& CLEANUP_CFGLAYOUT
)
2085 /* If the jump insn has side effects,
2086 we can't kill the edge. */
2087 && (!JUMP_P (BB_END (b
))
2088 || (reload_completed
2089 ? simplejump_p (BB_END (b
))
2090 : (onlyjump_p (BB_END (b
))
2091 && !tablejump_p (BB_END (b
),
2093 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
2096 changed_here
= true;
2100 /* Simplify branch over branch. */
2101 if ((mode
& CLEANUP_EXPENSIVE
)
2102 && !(mode
& CLEANUP_CFGLAYOUT
)
2103 && try_simplify_condjump (b
))
2104 changed_here
= true;
2106 /* If B has a single outgoing edge, but uses a
2107 non-trivial jump instruction without side-effects, we
2108 can either delete the jump entirely, or replace it
2109 with a simple unconditional jump. */
2110 if (single_succ_p (b
)
2111 && single_succ (b
) != EXIT_BLOCK_PTR
2112 && onlyjump_p (BB_END (b
))
2113 && !find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
)
2114 && try_redirect_by_replacing_jump (single_succ_edge (b
),
2116 (mode
& CLEANUP_CFGLAYOUT
) != 0))
2118 update_forwarder_flag (b
);
2119 changed_here
= true;
2122 /* Simplify branch to branch. */
2123 if (try_forward_edges (mode
, b
))
2124 changed_here
= true;
2126 /* Look for shared code between blocks. */
2127 if ((mode
& CLEANUP_CROSSJUMP
)
2128 && try_crossjump_bb (mode
, b
))
2129 changed_here
= true;
2131 /* Don't get confused by the index shift caused by
2139 if ((mode
& CLEANUP_CROSSJUMP
)
2140 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR
))
2143 #ifdef ENABLE_CHECKING
2145 verify_flow_info ();
2148 changed_overall
|= changed
;
2154 if (mode
& CLEANUP_CROSSJUMP
)
2155 remove_fake_exit_edges ();
2158 b
->flags
&= ~(BB_FORWARDER_BLOCK
| BB_NONTHREADABLE_BLOCK
);
2160 return changed_overall
;
2163 /* Delete all unreachable basic blocks. */
2166 delete_unreachable_blocks (void)
2168 bool changed
= false;
2169 basic_block b
, next_bb
;
2171 find_unreachable_blocks ();
2173 /* Delete all unreachable basic blocks. */
2175 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
2177 next_bb
= b
->next_bb
;
2179 if (!(b
->flags
& BB_REACHABLE
))
2181 delete_basic_block (b
);
2187 tidy_fallthru_edges ();
2191 /* Merges sequential blocks if possible. */
2194 merge_seq_blocks (void)
2197 bool changed
= false;
2199 for (bb
= ENTRY_BLOCK_PTR
->next_bb
; bb
!= EXIT_BLOCK_PTR
; )
2201 if (single_succ_p (bb
)
2202 && can_merge_blocks_p (bb
, single_succ (bb
)))
2204 /* Merge the blocks and retry. */
2205 merge_blocks (bb
, single_succ (bb
));
2216 /* Tidy the CFG by deleting unreachable code and whatnot. */
2219 cleanup_cfg (int mode
)
2221 bool changed
= false;
2223 timevar_push (TV_CLEANUP_CFG
);
2224 if (delete_unreachable_blocks ())
2227 /* We've possibly created trivially dead code. Cleanup it right
2228 now to introduce more opportunities for try_optimize_cfg. */
2229 if (!(mode
& (CLEANUP_NO_INSN_DEL
| CLEANUP_UPDATE_LIFE
))
2230 && !reload_completed
)
2231 delete_trivially_dead_insns (get_insns(), max_reg_num ());
2236 while (try_optimize_cfg (mode
))
2238 delete_unreachable_blocks (), changed
= true;
2239 if (mode
& CLEANUP_UPDATE_LIFE
)
2241 /* Cleaning up CFG introduces more opportunities for dead code
2242 removal that in turn may introduce more opportunities for
2243 cleaning up the CFG. */
2244 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
2246 | PROP_SCAN_DEAD_CODE
2247 | PROP_KILL_DEAD_CODE
2248 | ((mode
& CLEANUP_LOG_LINKS
)
2249 ? PROP_LOG_LINKS
: 0)))
2252 else if (!(mode
& CLEANUP_NO_INSN_DEL
)
2253 && (mode
& CLEANUP_EXPENSIVE
)
2254 && !reload_completed
)
2256 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
2262 /* Don't call delete_dead_jumptables in cfglayout mode, because
2263 that function assumes that jump tables are in the insns stream.
2264 But we also don't _have_ to delete dead jumptables in cfglayout
2265 mode because we shouldn't even be looking at things that are
2266 not in a basic block. Dead jumptables are cleaned up when
2267 going out of cfglayout mode. */
2268 if (!(mode
& CLEANUP_CFGLAYOUT
))
2269 delete_dead_jumptables ();
2272 timevar_pop (TV_CLEANUP_CFG
);
2278 rest_of_handle_jump (void)
2280 delete_unreachable_blocks ();
2282 if (cfun
->tail_call_emit
)
2283 fixup_tail_calls ();
2287 struct tree_opt_pass pass_jump
=
2289 "sibling", /* name */
2291 rest_of_handle_jump
, /* execute */
2294 0, /* static_pass_number */
2295 TV_JUMP
, /* tv_id */
2296 0, /* properties_required */
2297 0, /* properties_provided */
2298 0, /* properties_destroyed */
2299 TODO_ggc_collect
, /* todo_flags_start */
2301 TODO_verify_flow
, /* todo_flags_finish */
2307 rest_of_handle_jump2 (void)
2309 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2310 reg_scan (get_insns (), max_reg_num ());
2312 dump_flow_info (dump_file
, dump_flags
);
2313 cleanup_cfg ((optimize
? CLEANUP_EXPENSIVE
: 0)
2314 | (flag_thread_jumps
? CLEANUP_THREADING
: 0));
2317 cleanup_cfg (CLEANUP_EXPENSIVE
);
2319 /* Jump optimization, and the removal of NULL pointer checks, may
2320 have reduced the number of instructions substantially. CSE, and
2321 future passes, allocate arrays whose dimensions involve the
2322 maximum instruction UID, so if we can reduce the maximum UID
2323 we'll save big on memory. */
2329 struct tree_opt_pass pass_jump2
=
2333 rest_of_handle_jump2
, /* execute */
2336 0, /* static_pass_number */
2337 TV_JUMP
, /* tv_id */
2338 0, /* properties_required */
2339 0, /* properties_provided */
2340 0, /* properties_destroyed */
2341 TODO_ggc_collect
, /* todo_flags_start */
2342 TODO_dump_func
, /* todo_flags_finish */