Repair botch in application of patch.
[official-gcc.git] / gcc / combine.c
blob1a77ca398518d69b31ca4399db272ec7064007a3
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 88, 92, 93, 94, 1995 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* This module is essentially the "combiner" phase of the U. of Arizona
22 Portable Optimizer, but redone to work on our list-structured
23 representation for RTL instead of their string representation.
25 The LOG_LINKS of each insn identify the most recent assignment
26 to each REG used in the insn. It is a list of previous insns,
27 each of which contains a SET for a REG that is used in this insn
28 and not used or set in between. LOG_LINKs never cross basic blocks.
29 They were set up by the preceding pass (lifetime analysis).
31 We try to combine each pair of insns joined by a logical link.
32 We also try to combine triples of insns A, B and C when
33 C has a link back to B and B has a link back to A.
35 LOG_LINKS does not have links for use of the CC0. They don't
36 need to, because the insn that sets the CC0 is always immediately
37 before the insn that tests it. So we always regard a branch
38 insn as having a logical link to the preceding insn. The same is true
39 for an insn explicitly using CC0.
41 We check (with use_crosses_set_p) to avoid combining in such a way
42 as to move a computation to a place where its value would be different.
44 Combination is done by mathematically substituting the previous
45 insn(s) values for the regs they set into the expressions in
46 the later insns that refer to these regs. If the result is a valid insn
47 for our target machine, according to the machine description,
48 we install it, delete the earlier insns, and update the data flow
49 information (LOG_LINKS and REG_NOTES) for what we did.
51 There are a few exceptions where the dataflow information created by
52 flow.c aren't completely updated:
54 - reg_live_length is not updated
55 - reg_n_refs is not adjusted in the rare case when a register is
56 no longer required in a computation
57 - there are extremely rare cases (see distribute_regnotes) when a
58 REG_DEAD note is lost
59 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
60 removed because there is no way to know which register it was
61 linking
63 To simplify substitution, we combine only when the earlier insn(s)
64 consist of only a single assignment. To simplify updating afterward,
65 we never combine when a subroutine call appears in the middle.
67 Since we do not represent assignments to CC0 explicitly except when that
68 is all an insn does, there is no LOG_LINKS entry in an insn that uses
69 the condition code for the insn that set the condition code.
70 Fortunately, these two insns must be consecutive.
71 Therefore, every JUMP_INSN is taken to have an implicit logical link
72 to the preceding insn. This is not quite right, since non-jumps can
73 also use the condition code; but in practice such insns would not
74 combine anyway. */
76 #include "config.h"
77 #ifdef __STDC__
78 #include <stdarg.h>
79 #else
80 #include <varargs.h>
81 #endif
83 /* Must precede rtl.h for FFS. */
84 #include <stdio.h>
86 #include "rtl.h"
87 #include "flags.h"
88 #include "regs.h"
89 #include "hard-reg-set.h"
90 #include "expr.h"
91 #include "basic-block.h"
92 #include "insn-config.h"
93 #include "insn-flags.h"
94 #include "insn-codes.h"
95 #include "insn-attr.h"
96 #include "recog.h"
97 #include "real.h"
99 /* It is not safe to use ordinary gen_lowpart in combine.
100 Use gen_lowpart_for_combine instead. See comments there. */
101 #define gen_lowpart dont_use_gen_lowpart_you_dummy
103 /* Number of attempts to combine instructions in this function. */
105 static int combine_attempts;
107 /* Number of attempts that got as far as substitution in this function. */
109 static int combine_merges;
111 /* Number of instructions combined with added SETs in this function. */
113 static int combine_extras;
115 /* Number of instructions combined in this function. */
117 static int combine_successes;
119 /* Totals over entire compilation. */
121 static int total_attempts, total_merges, total_extras, total_successes;
123 /* Define a defulat value for REVERSIBLE_CC_MODE.
124 We can never assume that a condition code mode is safe to reverse unless
125 the md tells us so. */
126 #ifndef REVERSIBLE_CC_MODE
127 #define REVERSIBLE_CC_MODE(MODE) 0
128 #endif
130 /* Vector mapping INSN_UIDs to cuids.
131 The cuids are like uids but increase monotonically always.
132 Combine always uses cuids so that it can compare them.
133 But actually renumbering the uids, which we used to do,
134 proves to be a bad idea because it makes it hard to compare
135 the dumps produced by earlier passes with those from later passes. */
137 static int *uid_cuid;
139 /* Get the cuid of an insn. */
141 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
143 /* Maximum register number, which is the size of the tables below. */
145 static int combine_max_regno;
147 /* Record last point of death of (hard or pseudo) register n. */
149 static rtx *reg_last_death;
151 /* Record last point of modification of (hard or pseudo) register n. */
153 static rtx *reg_last_set;
155 /* Record the cuid of the last insn that invalidated memory
156 (anything that writes memory, and subroutine calls, but not pushes). */
158 static int mem_last_set;
160 /* Record the cuid of the last CALL_INSN
161 so we can tell whether a potential combination crosses any calls. */
163 static int last_call_cuid;
165 /* When `subst' is called, this is the insn that is being modified
166 (by combining in a previous insn). The PATTERN of this insn
167 is still the old pattern partially modified and it should not be
168 looked at, but this may be used to examine the successors of the insn
169 to judge whether a simplification is valid. */
171 static rtx subst_insn;
173 /* This is the lowest CUID that `subst' is currently dealing with.
174 get_last_value will not return a value if the register was set at or
175 after this CUID. If not for this mechanism, we could get confused if
176 I2 or I1 in try_combine were an insn that used the old value of a register
177 to obtain a new value. In that case, we might erroneously get the
178 new value of the register when we wanted the old one. */
180 static int subst_low_cuid;
182 /* This contains any hard registers that are used in newpat; reg_dead_at_p
183 must consider all these registers to be always live. */
185 static HARD_REG_SET newpat_used_regs;
187 /* This is an insn to which a LOG_LINKS entry has been added. If this
188 insn is the earlier than I2 or I3, combine should rescan starting at
189 that location. */
191 static rtx added_links_insn;
193 /* This is the value of undobuf.num_undo when we started processing this
194 substitution. This will prevent gen_rtx_combine from re-used a piece
195 from the previous expression. Doing so can produce circular rtl
196 structures. */
198 static int previous_num_undos;
200 /* Basic block number of the block in which we are performing combines. */
201 static int this_basic_block;
203 /* The next group of arrays allows the recording of the last value assigned
204 to (hard or pseudo) register n. We use this information to see if a
205 operation being processed is redundant given a prior operation performed
206 on the register. For example, an `and' with a constant is redundant if
207 all the zero bits are already known to be turned off.
209 We use an approach similar to that used by cse, but change it in the
210 following ways:
212 (1) We do not want to reinitialize at each label.
213 (2) It is useful, but not critical, to know the actual value assigned
214 to a register. Often just its form is helpful.
216 Therefore, we maintain the following arrays:
218 reg_last_set_value the last value assigned
219 reg_last_set_label records the value of label_tick when the
220 register was assigned
221 reg_last_set_table_tick records the value of label_tick when a
222 value using the register is assigned
223 reg_last_set_invalid set to non-zero when it is not valid
224 to use the value of this register in some
225 register's value
227 To understand the usage of these tables, it is important to understand
228 the distinction between the value in reg_last_set_value being valid
229 and the register being validly contained in some other expression in the
230 table.
232 Entry I in reg_last_set_value is valid if it is non-zero, and either
233 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
235 Register I may validly appear in any expression returned for the value
236 of another register if reg_n_sets[i] is 1. It may also appear in the
237 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
238 reg_last_set_invalid[j] is zero.
240 If an expression is found in the table containing a register which may
241 not validly appear in an expression, the register is replaced by
242 something that won't match, (clobber (const_int 0)).
244 reg_last_set_invalid[i] is set non-zero when register I is being assigned
245 to and reg_last_set_table_tick[i] == label_tick. */
247 /* Record last value assigned to (hard or pseudo) register n. */
249 static rtx *reg_last_set_value;
251 /* Record the value of label_tick when the value for register n is placed in
252 reg_last_set_value[n]. */
254 static int *reg_last_set_label;
256 /* Record the value of label_tick when an expression involving register n
257 is placed in reg_last_set_value. */
259 static int *reg_last_set_table_tick;
261 /* Set non-zero if references to register n in expressions should not be
262 used. */
264 static char *reg_last_set_invalid;
266 /* Incremented for each label. */
268 static int label_tick;
270 /* Some registers that are set more than once and used in more than one
271 basic block are nevertheless always set in similar ways. For example,
272 a QImode register may be loaded from memory in two places on a machine
273 where byte loads zero extend.
275 We record in the following array what we know about the nonzero
276 bits of a register, specifically which bits are known to be zero.
278 If an entry is zero, it means that we don't know anything special. */
280 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
282 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
283 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
285 static enum machine_mode nonzero_bits_mode;
287 /* Nonzero if we know that a register has some leading bits that are always
288 equal to the sign bit. */
290 static char *reg_sign_bit_copies;
292 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
293 It is zero while computing them and after combine has completed. This
294 former test prevents propagating values based on previously set values,
295 which can be incorrect if a variable is modified in a loop. */
297 static int nonzero_sign_valid;
299 /* These arrays are maintained in parallel with reg_last_set_value
300 and are used to store the mode in which the register was last set,
301 the bits that were known to be zero when it was last set, and the
302 number of sign bits copies it was known to have when it was last set. */
304 static enum machine_mode *reg_last_set_mode;
305 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
306 static char *reg_last_set_sign_bit_copies;
308 /* Record one modification to rtl structure
309 to be undone by storing old_contents into *where.
310 is_int is 1 if the contents are an int. */
312 struct undo
314 int is_int;
315 union {rtx r; int i;} old_contents;
316 union {rtx *r; int *i;} where;
319 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
320 num_undo says how many are currently recorded.
322 storage is nonzero if we must undo the allocation of new storage.
323 The value of storage is what to pass to obfree.
325 other_insn is nonzero if we have modified some other insn in the process
326 of working on subst_insn. It must be verified too. */
328 #define MAX_UNDO 50
330 struct undobuf
332 int num_undo;
333 char *storage;
334 struct undo undo[MAX_UNDO];
335 rtx other_insn;
338 static struct undobuf undobuf;
340 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
341 insn. The substitution can be undone by undo_all. If INTO is already
342 set to NEWVAL, do not record this change. Because computing NEWVAL might
343 also call SUBST, we have to compute it before we put anything into
344 the undo table. */
346 #define SUBST(INTO, NEWVAL) \
347 do { rtx _new = (NEWVAL); \
348 if (undobuf.num_undo < MAX_UNDO) \
350 undobuf.undo[undobuf.num_undo].is_int = 0; \
351 undobuf.undo[undobuf.num_undo].where.r = &INTO; \
352 undobuf.undo[undobuf.num_undo].old_contents.r = INTO; \
353 INTO = _new; \
354 if (undobuf.undo[undobuf.num_undo].old_contents.r != INTO) \
355 undobuf.num_undo++; \
357 } while (0)
359 /* Similar to SUBST, but NEWVAL is an int. INTO will normally be an XINT
360 expression.
361 Note that substitution for the value of a CONST_INT is not safe. */
363 #define SUBST_INT(INTO, NEWVAL) \
364 do { if (undobuf.num_undo < MAX_UNDO) \
366 undobuf.undo[undobuf.num_undo].is_int = 1; \
367 undobuf.undo[undobuf.num_undo].where.i = (int *) &INTO; \
368 undobuf.undo[undobuf.num_undo].old_contents.i = INTO; \
369 INTO = NEWVAL; \
370 if (undobuf.undo[undobuf.num_undo].old_contents.i != INTO) \
371 undobuf.num_undo++; \
373 } while (0)
375 /* Number of times the pseudo being substituted for
376 was found and replaced. */
378 static int n_occurrences;
380 static void init_reg_last_arrays PROTO(());
381 static void setup_incoming_promotions PROTO(());
382 static void set_nonzero_bits_and_sign_copies PROTO((rtx, rtx));
383 static int can_combine_p PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *));
384 static int combinable_i3pat PROTO((rtx, rtx *, rtx, rtx, int, rtx *));
385 static rtx try_combine PROTO((rtx, rtx, rtx));
386 static void undo_all PROTO((void));
387 static rtx *find_split_point PROTO((rtx *, rtx));
388 static rtx subst PROTO((rtx, rtx, rtx, int, int));
389 static rtx simplify_rtx PROTO((rtx, enum machine_mode, int, int));
390 static rtx simplify_if_then_else PROTO((rtx));
391 static rtx simplify_set PROTO((rtx));
392 static rtx simplify_logical PROTO((rtx, int));
393 static rtx expand_compound_operation PROTO((rtx));
394 static rtx expand_field_assignment PROTO((rtx));
395 static rtx make_extraction PROTO((enum machine_mode, rtx, int, rtx, int,
396 int, int, int));
397 static rtx extract_left_shift PROTO((rtx, int));
398 static rtx make_compound_operation PROTO((rtx, enum rtx_code));
399 static int get_pos_from_mask PROTO((unsigned HOST_WIDE_INT, int *));
400 static rtx force_to_mode PROTO((rtx, enum machine_mode,
401 unsigned HOST_WIDE_INT, rtx, int));
402 static rtx if_then_else_cond PROTO((rtx, rtx *, rtx *));
403 static rtx known_cond PROTO((rtx, enum rtx_code, rtx, rtx));
404 static rtx make_field_assignment PROTO((rtx));
405 static rtx apply_distributive_law PROTO((rtx));
406 static rtx simplify_and_const_int PROTO((rtx, enum machine_mode, rtx,
407 unsigned HOST_WIDE_INT));
408 static unsigned HOST_WIDE_INT nonzero_bits PROTO((rtx, enum machine_mode));
409 static int num_sign_bit_copies PROTO((rtx, enum machine_mode));
410 static int merge_outer_ops PROTO((enum rtx_code *, HOST_WIDE_INT *,
411 enum rtx_code, HOST_WIDE_INT,
412 enum machine_mode, int *));
413 static rtx simplify_shift_const PROTO((rtx, enum rtx_code, enum machine_mode,
414 rtx, int));
415 static int recog_for_combine PROTO((rtx *, rtx, rtx *));
416 static rtx gen_lowpart_for_combine PROTO((enum machine_mode, rtx));
417 static rtx gen_rtx_combine PVPROTO((enum rtx_code code, enum machine_mode mode,
418 ...));
419 static rtx gen_binary PROTO((enum rtx_code, enum machine_mode,
420 rtx, rtx));
421 static rtx gen_unary PROTO((enum rtx_code, enum machine_mode,
422 enum machine_mode, rtx));
423 static enum rtx_code simplify_comparison PROTO((enum rtx_code, rtx *, rtx *));
424 static int reversible_comparison_p PROTO((rtx));
425 static void update_table_tick PROTO((rtx));
426 static void record_value_for_reg PROTO((rtx, rtx, rtx));
427 static void record_dead_and_set_regs_1 PROTO((rtx, rtx));
428 static void record_dead_and_set_regs PROTO((rtx));
429 static int get_last_value_validate PROTO((rtx *, int, int));
430 static rtx get_last_value PROTO((rtx));
431 static int use_crosses_set_p PROTO((rtx, int));
432 static void reg_dead_at_p_1 PROTO((rtx, rtx));
433 static int reg_dead_at_p PROTO((rtx, rtx));
434 static void move_deaths PROTO((rtx, int, rtx, rtx *));
435 static int reg_bitfield_target_p PROTO((rtx, rtx));
436 static void distribute_notes PROTO((rtx, rtx, rtx, rtx, rtx, rtx));
437 static void distribute_links PROTO((rtx));
438 static void mark_used_regs_combine PROTO((rtx));
440 /* Main entry point for combiner. F is the first insn of the function.
441 NREGS is the first unused pseudo-reg number. */
443 void
444 combine_instructions (f, nregs)
445 rtx f;
446 int nregs;
448 register rtx insn, next, prev;
449 register int i;
450 register rtx links, nextlinks;
452 combine_attempts = 0;
453 combine_merges = 0;
454 combine_extras = 0;
455 combine_successes = 0;
456 undobuf.num_undo = previous_num_undos = 0;
458 combine_max_regno = nregs;
460 reg_nonzero_bits
461 = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
462 reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
464 bzero ((char *) reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
465 bzero (reg_sign_bit_copies, nregs * sizeof (char));
467 reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
468 reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
469 reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
470 reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int));
471 reg_last_set_label = (int *) alloca (nregs * sizeof (int));
472 reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
473 reg_last_set_mode
474 = (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode));
475 reg_last_set_nonzero_bits
476 = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
477 reg_last_set_sign_bit_copies
478 = (char *) alloca (nregs * sizeof (char));
480 init_reg_last_arrays ();
482 init_recog_no_volatile ();
484 /* Compute maximum uid value so uid_cuid can be allocated. */
486 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
487 if (INSN_UID (insn) > i)
488 i = INSN_UID (insn);
490 uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
492 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
494 /* Don't use reg_nonzero_bits when computing it. This can cause problems
495 when, for example, we have j <<= 1 in a loop. */
497 nonzero_sign_valid = 0;
499 /* Compute the mapping from uids to cuids.
500 Cuids are numbers assigned to insns, like uids,
501 except that cuids increase monotonically through the code.
503 Scan all SETs and see if we can deduce anything about what
504 bits are known to be zero for some registers and how many copies
505 of the sign bit are known to exist for those registers.
507 Also set any known values so that we can use it while searching
508 for what bits are known to be set. */
510 label_tick = 1;
512 setup_incoming_promotions ();
514 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
516 INSN_CUID (insn) = ++i;
517 subst_low_cuid = i;
518 subst_insn = insn;
520 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
522 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies);
523 record_dead_and_set_regs (insn);
526 if (GET_CODE (insn) == CODE_LABEL)
527 label_tick++;
530 nonzero_sign_valid = 1;
532 /* Now scan all the insns in forward order. */
534 this_basic_block = -1;
535 label_tick = 1;
536 last_call_cuid = 0;
537 mem_last_set = 0;
538 init_reg_last_arrays ();
539 setup_incoming_promotions ();
541 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
543 next = 0;
545 /* If INSN starts a new basic block, update our basic block number. */
546 if (this_basic_block + 1 < n_basic_blocks
547 && basic_block_head[this_basic_block + 1] == insn)
548 this_basic_block++;
550 if (GET_CODE (insn) == CODE_LABEL)
551 label_tick++;
553 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
555 /* Try this insn with each insn it links back to. */
557 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
558 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
559 goto retry;
561 /* Try each sequence of three linked insns ending with this one. */
563 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
564 for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
565 nextlinks = XEXP (nextlinks, 1))
566 if ((next = try_combine (insn, XEXP (links, 0),
567 XEXP (nextlinks, 0))) != 0)
568 goto retry;
570 #ifdef HAVE_cc0
571 /* Try to combine a jump insn that uses CC0
572 with a preceding insn that sets CC0, and maybe with its
573 logical predecessor as well.
574 This is how we make decrement-and-branch insns.
575 We need this special code because data flow connections
576 via CC0 do not get entered in LOG_LINKS. */
578 if (GET_CODE (insn) == JUMP_INSN
579 && (prev = prev_nonnote_insn (insn)) != 0
580 && GET_CODE (prev) == INSN
581 && sets_cc0_p (PATTERN (prev)))
583 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
584 goto retry;
586 for (nextlinks = LOG_LINKS (prev); nextlinks;
587 nextlinks = XEXP (nextlinks, 1))
588 if ((next = try_combine (insn, prev,
589 XEXP (nextlinks, 0))) != 0)
590 goto retry;
593 /* Do the same for an insn that explicitly references CC0. */
594 if (GET_CODE (insn) == INSN
595 && (prev = prev_nonnote_insn (insn)) != 0
596 && GET_CODE (prev) == INSN
597 && sets_cc0_p (PATTERN (prev))
598 && GET_CODE (PATTERN (insn)) == SET
599 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
601 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
602 goto retry;
604 for (nextlinks = LOG_LINKS (prev); nextlinks;
605 nextlinks = XEXP (nextlinks, 1))
606 if ((next = try_combine (insn, prev,
607 XEXP (nextlinks, 0))) != 0)
608 goto retry;
611 /* Finally, see if any of the insns that this insn links to
612 explicitly references CC0. If so, try this insn, that insn,
613 and its predecessor if it sets CC0. */
614 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
615 if (GET_CODE (XEXP (links, 0)) == INSN
616 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
617 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
618 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
619 && GET_CODE (prev) == INSN
620 && sets_cc0_p (PATTERN (prev))
621 && (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
622 goto retry;
623 #endif
625 /* Try combining an insn with two different insns whose results it
626 uses. */
627 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
628 for (nextlinks = XEXP (links, 1); nextlinks;
629 nextlinks = XEXP (nextlinks, 1))
630 if ((next = try_combine (insn, XEXP (links, 0),
631 XEXP (nextlinks, 0))) != 0)
632 goto retry;
634 if (GET_CODE (insn) != NOTE)
635 record_dead_and_set_regs (insn);
637 retry:
642 total_attempts += combine_attempts;
643 total_merges += combine_merges;
644 total_extras += combine_extras;
645 total_successes += combine_successes;
647 nonzero_sign_valid = 0;
650 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
652 static void
653 init_reg_last_arrays ()
655 int nregs = combine_max_regno;
657 bzero ((char *) reg_last_death, nregs * sizeof (rtx));
658 bzero ((char *) reg_last_set, nregs * sizeof (rtx));
659 bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
660 bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
661 bzero ((char *) reg_last_set_label, nregs * sizeof (int));
662 bzero (reg_last_set_invalid, nregs * sizeof (char));
663 bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
664 bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
665 bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
668 /* Set up any promoted values for incoming argument registers. */
670 static void
671 setup_incoming_promotions ()
673 #ifdef PROMOTE_FUNCTION_ARGS
674 int regno;
675 rtx reg;
676 enum machine_mode mode;
677 int unsignedp;
678 rtx first = get_insns ();
680 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
681 if (FUNCTION_ARG_REGNO_P (regno)
682 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
683 record_value_for_reg (reg, first,
684 gen_rtx (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
685 GET_MODE (reg),
686 gen_rtx (CLOBBER, mode, const0_rtx)));
687 #endif
690 /* Called via note_stores. If X is a pseudo that is used in more than
691 one basic block, is narrower that HOST_BITS_PER_WIDE_INT, and is being
692 set, record what bits are known zero. If we are clobbering X,
693 ignore this "set" because the clobbered value won't be used.
695 If we are setting only a portion of X and we can't figure out what
696 portion, assume all bits will be used since we don't know what will
697 be happening.
699 Similarly, set how many bits of X are known to be copies of the sign bit
700 at all locations in the function. This is the smallest number implied
701 by any set of X. */
703 static void
704 set_nonzero_bits_and_sign_copies (x, set)
705 rtx x;
706 rtx set;
708 int num;
710 if (GET_CODE (x) == REG
711 && REGNO (x) >= FIRST_PSEUDO_REGISTER
712 && reg_n_sets[REGNO (x)] > 1
713 && reg_basic_block[REGNO (x)] < 0
714 /* If this register is undefined at the start of the file, we can't
715 say what its contents were. */
716 && ! (basic_block_live_at_start[0][REGNO (x) / REGSET_ELT_BITS]
717 & ((REGSET_ELT_TYPE) 1 << (REGNO (x) % REGSET_ELT_BITS)))
718 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
720 if (GET_CODE (set) == CLOBBER)
722 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
723 reg_sign_bit_copies[REGNO (x)] = 0;
724 return;
727 /* If this is a complex assignment, see if we can convert it into a
728 simple assignment. */
729 set = expand_field_assignment (set);
731 /* If this is a simple assignment, or we have a paradoxical SUBREG,
732 set what we know about X. */
734 if (SET_DEST (set) == x
735 || (GET_CODE (SET_DEST (set)) == SUBREG
736 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
737 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
738 && SUBREG_REG (SET_DEST (set)) == x))
740 rtx src = SET_SRC (set);
742 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
743 /* If X is narrower than a word and SRC is a non-negative
744 constant that would appear negative in the mode of X,
745 sign-extend it for use in reg_nonzero_bits because some
746 machines (maybe most) will actually do the sign-extension
747 and this is the conservative approach.
749 ??? For 2.5, try to tighten up the MD files in this regard
750 instead of this kludge. */
752 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
753 && GET_CODE (src) == CONST_INT
754 && INTVAL (src) > 0
755 && 0 != (INTVAL (src)
756 & ((HOST_WIDE_INT) 1
757 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
758 src = GEN_INT (INTVAL (src)
759 | ((HOST_WIDE_INT) (-1)
760 << GET_MODE_BITSIZE (GET_MODE (x))));
761 #endif
763 reg_nonzero_bits[REGNO (x)]
764 |= nonzero_bits (src, nonzero_bits_mode);
765 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
766 if (reg_sign_bit_copies[REGNO (x)] == 0
767 || reg_sign_bit_copies[REGNO (x)] > num)
768 reg_sign_bit_copies[REGNO (x)] = num;
770 else
772 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
773 reg_sign_bit_copies[REGNO (x)] = 0;
778 /* See if INSN can be combined into I3. PRED and SUCC are optionally
779 insns that were previously combined into I3 or that will be combined
780 into the merger of INSN and I3.
782 Return 0 if the combination is not allowed for any reason.
784 If the combination is allowed, *PDEST will be set to the single
785 destination of INSN and *PSRC to the single source, and this function
786 will return 1. */
788 static int
789 can_combine_p (insn, i3, pred, succ, pdest, psrc)
790 rtx insn;
791 rtx i3;
792 rtx pred, succ;
793 rtx *pdest, *psrc;
795 int i;
796 rtx set = 0, src, dest;
797 rtx p, link;
798 int all_adjacent = (succ ? (next_active_insn (insn) == succ
799 && next_active_insn (succ) == i3)
800 : next_active_insn (insn) == i3);
802 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
803 or a PARALLEL consisting of such a SET and CLOBBERs.
805 If INSN has CLOBBER parallel parts, ignore them for our processing.
806 By definition, these happen during the execution of the insn. When it
807 is merged with another insn, all bets are off. If they are, in fact,
808 needed and aren't also supplied in I3, they may be added by
809 recog_for_combine. Otherwise, it won't match.
811 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
812 note.
814 Get the source and destination of INSN. If more than one, can't
815 combine. */
817 if (GET_CODE (PATTERN (insn)) == SET)
818 set = PATTERN (insn);
819 else if (GET_CODE (PATTERN (insn)) == PARALLEL
820 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
822 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
824 rtx elt = XVECEXP (PATTERN (insn), 0, i);
826 switch (GET_CODE (elt))
828 /* We can ignore CLOBBERs. */
829 case CLOBBER:
830 break;
832 case SET:
833 /* Ignore SETs whose result isn't used but not those that
834 have side-effects. */
835 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
836 && ! side_effects_p (elt))
837 break;
839 /* If we have already found a SET, this is a second one and
840 so we cannot combine with this insn. */
841 if (set)
842 return 0;
844 set = elt;
845 break;
847 default:
848 /* Anything else means we can't combine. */
849 return 0;
853 if (set == 0
854 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
855 so don't do anything with it. */
856 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
857 return 0;
859 else
860 return 0;
862 if (set == 0)
863 return 0;
865 set = expand_field_assignment (set);
866 src = SET_SRC (set), dest = SET_DEST (set);
868 /* Don't eliminate a store in the stack pointer. */
869 if (dest == stack_pointer_rtx
870 /* If we couldn't eliminate a field assignment, we can't combine. */
871 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
872 /* Don't combine with an insn that sets a register to itself if it has
873 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
874 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
875 /* Can't merge a function call. */
876 || GET_CODE (src) == CALL
877 /* Don't eliminate a function call argument. */
878 || (GET_CODE (i3) == CALL_INSN
879 && (find_reg_fusage (i3, USE, dest)
880 || (GET_CODE (dest) == REG
881 && REGNO (dest) < FIRST_PSEUDO_REGISTER
882 && global_regs[REGNO (dest)])))
883 /* Don't substitute into an incremented register. */
884 || FIND_REG_INC_NOTE (i3, dest)
885 || (succ && FIND_REG_INC_NOTE (succ, dest))
886 /* Don't combine the end of a libcall into anything. */
887 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
888 /* Make sure that DEST is not used after SUCC but before I3. */
889 || (succ && ! all_adjacent
890 && reg_used_between_p (dest, succ, i3))
891 /* Make sure that the value that is to be substituted for the register
892 does not use any registers whose values alter in between. However,
893 If the insns are adjacent, a use can't cross a set even though we
894 think it might (this can happen for a sequence of insns each setting
895 the same destination; reg_last_set of that register might point to
896 a NOTE). If INSN has a REG_EQUIV note, the register is always
897 equivalent to the memory so the substitution is valid even if there
898 are intervening stores. Also, don't move a volatile asm or
899 UNSPEC_VOLATILE across any other insns. */
900 || (! all_adjacent
901 && (((GET_CODE (src) != MEM
902 || ! find_reg_note (insn, REG_EQUIV, src))
903 && use_crosses_set_p (src, INSN_CUID (insn)))
904 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
905 || GET_CODE (src) == UNSPEC_VOLATILE))
906 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
907 better register allocation by not doing the combine. */
908 || find_reg_note (i3, REG_NO_CONFLICT, dest)
909 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
910 /* Don't combine across a CALL_INSN, because that would possibly
911 change whether the life span of some REGs crosses calls or not,
912 and it is a pain to update that information.
913 Exception: if source is a constant, moving it later can't hurt.
914 Accept that special case, because it helps -fforce-addr a lot. */
915 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
916 return 0;
918 /* DEST must either be a REG or CC0. */
919 if (GET_CODE (dest) == REG)
921 /* If register alignment is being enforced for multi-word items in all
922 cases except for parameters, it is possible to have a register copy
923 insn referencing a hard register that is not allowed to contain the
924 mode being copied and which would not be valid as an operand of most
925 insns. Eliminate this problem by not combining with such an insn.
927 Also, on some machines we don't want to extend the life of a hard
928 register. */
930 if (GET_CODE (src) == REG
931 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
932 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
933 /* Don't extend the life of a hard register unless it is
934 user variable (if we have few registers) or it can't
935 fit into the desired register (meaning something special
936 is going on). */
937 || (REGNO (src) < FIRST_PSEUDO_REGISTER
938 && (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
939 #ifdef SMALL_REGISTER_CLASSES
940 || ! REG_USERVAR_P (src)
941 #endif
942 ))))
943 return 0;
945 else if (GET_CODE (dest) != CC0)
946 return 0;
948 /* Don't substitute for a register intended as a clobberable operand.
949 Similarly, don't substitute an expression containing a register that
950 will be clobbered in I3. */
951 if (GET_CODE (PATTERN (i3)) == PARALLEL)
952 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
953 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
954 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
955 src)
956 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
957 return 0;
959 /* If INSN contains anything volatile, or is an `asm' (whether volatile
960 or not), reject, unless nothing volatile comes between it and I3,
961 with the exception of SUCC. */
963 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
964 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
965 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
966 && p != succ && volatile_refs_p (PATTERN (p)))
967 return 0;
969 /* If there are any volatile insns between INSN and I3, reject, because
970 they might affect machine state. */
972 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
973 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
974 && p != succ && volatile_insn_p (PATTERN (p)))
975 return 0;
977 /* If INSN or I2 contains an autoincrement or autodecrement,
978 make sure that register is not used between there and I3,
979 and not already used in I3 either.
980 Also insist that I3 not be a jump; if it were one
981 and the incremented register were spilled, we would lose. */
983 #ifdef AUTO_INC_DEC
984 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
985 if (REG_NOTE_KIND (link) == REG_INC
986 && (GET_CODE (i3) == JUMP_INSN
987 || reg_used_between_p (XEXP (link, 0), insn, i3)
988 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
989 return 0;
990 #endif
992 #ifdef HAVE_cc0
993 /* Don't combine an insn that follows a CC0-setting insn.
994 An insn that uses CC0 must not be separated from the one that sets it.
995 We do, however, allow I2 to follow a CC0-setting insn if that insn
996 is passed as I1; in that case it will be deleted also.
997 We also allow combining in this case if all the insns are adjacent
998 because that would leave the two CC0 insns adjacent as well.
999 It would be more logical to test whether CC0 occurs inside I1 or I2,
1000 but that would be much slower, and this ought to be equivalent. */
1002 p = prev_nonnote_insn (insn);
1003 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1004 && ! all_adjacent)
1005 return 0;
1006 #endif
1008 /* If we get here, we have passed all the tests and the combination is
1009 to be allowed. */
1011 *pdest = dest;
1012 *psrc = src;
1014 return 1;
1017 /* LOC is the location within I3 that contains its pattern or the component
1018 of a PARALLEL of the pattern. We validate that it is valid for combining.
1020 One problem is if I3 modifies its output, as opposed to replacing it
1021 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1022 so would produce an insn that is not equivalent to the original insns.
1024 Consider:
1026 (set (reg:DI 101) (reg:DI 100))
1027 (set (subreg:SI (reg:DI 101) 0) <foo>)
1029 This is NOT equivalent to:
1031 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1032 (set (reg:DI 101) (reg:DI 100))])
1034 Not only does this modify 100 (in which case it might still be valid
1035 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1037 We can also run into a problem if I2 sets a register that I1
1038 uses and I1 gets directly substituted into I3 (not via I2). In that
1039 case, we would be getting the wrong value of I2DEST into I3, so we
1040 must reject the combination. This case occurs when I2 and I1 both
1041 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1042 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1043 of a SET must prevent combination from occurring.
1045 On machines where SMALL_REGISTER_CLASSES is defined, we don't combine
1046 if the destination of a SET is a hard register that isn't a user
1047 variable.
1049 Before doing the above check, we first try to expand a field assignment
1050 into a set of logical operations.
1052 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1053 we place a register that is both set and used within I3. If more than one
1054 such register is detected, we fail.
1056 Return 1 if the combination is valid, zero otherwise. */
1058 static int
1059 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1060 rtx i3;
1061 rtx *loc;
1062 rtx i2dest;
1063 rtx i1dest;
1064 int i1_not_in_src;
1065 rtx *pi3dest_killed;
1067 rtx x = *loc;
1069 if (GET_CODE (x) == SET)
1071 rtx set = expand_field_assignment (x);
1072 rtx dest = SET_DEST (set);
1073 rtx src = SET_SRC (set);
1074 rtx inner_dest = dest, inner_src = src;
1076 SUBST (*loc, set);
1078 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1079 || GET_CODE (inner_dest) == SUBREG
1080 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1081 inner_dest = XEXP (inner_dest, 0);
1083 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1084 was added. */
1085 #if 0
1086 while (GET_CODE (inner_src) == STRICT_LOW_PART
1087 || GET_CODE (inner_src) == SUBREG
1088 || GET_CODE (inner_src) == ZERO_EXTRACT)
1089 inner_src = XEXP (inner_src, 0);
1091 /* If it is better that two different modes keep two different pseudos,
1092 avoid combining them. This avoids producing the following pattern
1093 on a 386:
1094 (set (subreg:SI (reg/v:QI 21) 0)
1095 (lshiftrt:SI (reg/v:SI 20)
1096 (const_int 24)))
1097 If that were made, reload could not handle the pair of
1098 reg 20/21, since it would try to get any GENERAL_REGS
1099 but some of them don't handle QImode. */
1101 if (rtx_equal_p (inner_src, i2dest)
1102 && GET_CODE (inner_dest) == REG
1103 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1104 return 0;
1105 #endif
1107 /* Check for the case where I3 modifies its output, as
1108 discussed above. */
1109 if ((inner_dest != dest
1110 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1111 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1112 /* This is the same test done in can_combine_p except that we
1113 allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
1114 CALL operation. */
1115 || (GET_CODE (inner_dest) == REG
1116 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1117 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1118 GET_MODE (inner_dest))
1119 #ifdef SMALL_REGISTER_CLASSES
1120 || (GET_CODE (src) != CALL && ! REG_USERVAR_P (inner_dest))
1121 #endif
1123 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1124 return 0;
1126 /* If DEST is used in I3, it is being killed in this insn,
1127 so record that for later.
1128 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1129 STACK_POINTER_REGNUM, since these are always considered to be
1130 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1131 if (pi3dest_killed && GET_CODE (dest) == REG
1132 && reg_referenced_p (dest, PATTERN (i3))
1133 && REGNO (dest) != FRAME_POINTER_REGNUM
1134 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1135 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1136 #endif
1137 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1138 && (REGNO (dest) != ARG_POINTER_REGNUM
1139 || ! fixed_regs [REGNO (dest)])
1140 #endif
1141 && REGNO (dest) != STACK_POINTER_REGNUM)
1143 if (*pi3dest_killed)
1144 return 0;
1146 *pi3dest_killed = dest;
1150 else if (GET_CODE (x) == PARALLEL)
1152 int i;
1154 for (i = 0; i < XVECLEN (x, 0); i++)
1155 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1156 i1_not_in_src, pi3dest_killed))
1157 return 0;
1160 return 1;
1163 /* Try to combine the insns I1 and I2 into I3.
1164 Here I1 and I2 appear earlier than I3.
1165 I1 can be zero; then we combine just I2 into I3.
1167 It we are combining three insns and the resulting insn is not recognized,
1168 try splitting it into two insns. If that happens, I2 and I3 are retained
1169 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1170 are pseudo-deleted.
1172 Return 0 if the combination does not work. Then nothing is changed.
1173 If we did the combination, return the insn at which combine should
1174 resume scanning. */
1176 static rtx
1177 try_combine (i3, i2, i1)
1178 register rtx i3, i2, i1;
1180 /* New patterns for I3 and I3, respectively. */
1181 rtx newpat, newi2pat = 0;
1182 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1183 int added_sets_1, added_sets_2;
1184 /* Total number of SETs to put into I3. */
1185 int total_sets;
1186 /* Nonzero is I2's body now appears in I3. */
1187 int i2_is_used;
1188 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1189 int insn_code_number, i2_code_number, other_code_number;
1190 /* Contains I3 if the destination of I3 is used in its source, which means
1191 that the old life of I3 is being killed. If that usage is placed into
1192 I2 and not in I3, a REG_DEAD note must be made. */
1193 rtx i3dest_killed = 0;
1194 /* SET_DEST and SET_SRC of I2 and I1. */
1195 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1196 /* PATTERN (I2), or a copy of it in certain cases. */
1197 rtx i2pat;
1198 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1199 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1200 int i1_feeds_i3 = 0;
1201 /* Notes that must be added to REG_NOTES in I3 and I2. */
1202 rtx new_i3_notes, new_i2_notes;
1203 /* Notes that we substituted I3 into I2 instead of the normal case. */
1204 int i3_subst_into_i2 = 0;
1205 /* Notes that I1, I2 or I3 is a MULT operation. */
1206 int have_mult = 0;
1208 int maxreg;
1209 rtx temp;
1210 register rtx link;
1211 int i;
1213 /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
1214 This can occur when flow deletes an insn that it has merged into an
1215 auto-increment address. We also can't do anything if I3 has a
1216 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1217 libcall. */
1219 if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
1220 || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
1221 || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
1222 || find_reg_note (i3, REG_LIBCALL, NULL_RTX))
1223 return 0;
1225 combine_attempts++;
1227 undobuf.num_undo = previous_num_undos = 0;
1228 undobuf.other_insn = 0;
1230 /* Save the current high-water-mark so we can free storage if we didn't
1231 accept this combination. */
1232 undobuf.storage = (char *) oballoc (0);
1234 /* Reset the hard register usage information. */
1235 CLEAR_HARD_REG_SET (newpat_used_regs);
1237 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1238 code below, set I1 to be the earlier of the two insns. */
1239 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1240 temp = i1, i1 = i2, i2 = temp;
1242 added_links_insn = 0;
1244 /* First check for one important special-case that the code below will
1245 not handle. Namely, the case where I1 is zero, I2 has multiple sets,
1246 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1247 we may be able to replace that destination with the destination of I3.
1248 This occurs in the common code where we compute both a quotient and
1249 remainder into a structure, in which case we want to do the computation
1250 directly into the structure to avoid register-register copies.
1252 We make very conservative checks below and only try to handle the
1253 most common cases of this. For example, we only handle the case
1254 where I2 and I3 are adjacent to avoid making difficult register
1255 usage tests. */
1257 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1258 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1259 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1260 #ifdef SMALL_REGISTER_CLASSES
1261 && (GET_CODE (SET_DEST (PATTERN (i3))) != REG
1262 || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1263 || REG_USERVAR_P (SET_DEST (PATTERN (i3))))
1264 #endif
1265 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1266 && GET_CODE (PATTERN (i2)) == PARALLEL
1267 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1268 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1269 below would need to check what is inside (and reg_overlap_mentioned_p
1270 doesn't support those codes anyway). Don't allow those destinations;
1271 the resulting insn isn't likely to be recognized anyway. */
1272 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1273 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1274 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1275 SET_DEST (PATTERN (i3)))
1276 && next_real_insn (i2) == i3)
1278 rtx p2 = PATTERN (i2);
1280 /* Make sure that the destination of I3,
1281 which we are going to substitute into one output of I2,
1282 is not used within another output of I2. We must avoid making this:
1283 (parallel [(set (mem (reg 69)) ...)
1284 (set (reg 69) ...)])
1285 which is not well-defined as to order of actions.
1286 (Besides, reload can't handle output reloads for this.)
1288 The problem can also happen if the dest of I3 is a memory ref,
1289 if another dest in I2 is an indirect memory ref. */
1290 for (i = 0; i < XVECLEN (p2, 0); i++)
1291 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
1292 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1293 SET_DEST (XVECEXP (p2, 0, i))))
1294 break;
1296 if (i == XVECLEN (p2, 0))
1297 for (i = 0; i < XVECLEN (p2, 0); i++)
1298 if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1300 combine_merges++;
1302 subst_insn = i3;
1303 subst_low_cuid = INSN_CUID (i2);
1305 added_sets_2 = added_sets_1 = 0;
1306 i2dest = SET_SRC (PATTERN (i3));
1308 /* Replace the dest in I2 with our dest and make the resulting
1309 insn the new pattern for I3. Then skip to where we
1310 validate the pattern. Everything was set up above. */
1311 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1312 SET_DEST (PATTERN (i3)));
1314 newpat = p2;
1315 i3_subst_into_i2 = 1;
1316 goto validate_replacement;
1320 #ifndef HAVE_cc0
1321 /* If we have no I1 and I2 looks like:
1322 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1323 (set Y OP)])
1324 make up a dummy I1 that is
1325 (set Y OP)
1326 and change I2 to be
1327 (set (reg:CC X) (compare:CC Y (const_int 0)))
1329 (We can ignore any trailing CLOBBERs.)
1331 This undoes a previous combination and allows us to match a branch-and-
1332 decrement insn. */
1334 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1335 && XVECLEN (PATTERN (i2), 0) >= 2
1336 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1337 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1338 == MODE_CC)
1339 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1340 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1341 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1342 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1343 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1344 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1346 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1347 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1348 break;
1350 if (i == 1)
1352 /* We make I1 with the same INSN_UID as I2. This gives it
1353 the same INSN_CUID for value tracking. Our fake I1 will
1354 never appear in the insn stream so giving it the same INSN_UID
1355 as I2 will not cause a problem. */
1357 i1 = gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2,
1358 XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0);
1360 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1361 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1362 SET_DEST (PATTERN (i1)));
1365 #endif
1367 /* Verify that I2 and I1 are valid for combining. */
1368 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1369 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1371 undo_all ();
1372 return 0;
1375 /* Record whether I2DEST is used in I2SRC and similarly for the other
1376 cases. Knowing this will help in register status updating below. */
1377 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1378 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1379 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1381 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1382 in I2SRC. */
1383 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1385 /* Ensure that I3's pattern can be the destination of combines. */
1386 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1387 i1 && i2dest_in_i1src && i1_feeds_i3,
1388 &i3dest_killed))
1390 undo_all ();
1391 return 0;
1394 /* See if any of the insns is a MULT operation. Unless one is, we will
1395 reject a combination that is, since it must be slower. Be conservative
1396 here. */
1397 if (GET_CODE (i2src) == MULT
1398 || (i1 != 0 && GET_CODE (i1src) == MULT)
1399 || (GET_CODE (PATTERN (i3)) == SET
1400 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1401 have_mult = 1;
1403 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1404 We used to do this EXCEPT in one case: I3 has a post-inc in an
1405 output operand. However, that exception can give rise to insns like
1406 mov r3,(r3)+
1407 which is a famous insn on the PDP-11 where the value of r3 used as the
1408 source was model-dependent. Avoid this sort of thing. */
1410 #if 0
1411 if (!(GET_CODE (PATTERN (i3)) == SET
1412 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1413 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1414 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1415 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1416 /* It's not the exception. */
1417 #endif
1418 #ifdef AUTO_INC_DEC
1419 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1420 if (REG_NOTE_KIND (link) == REG_INC
1421 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1422 || (i1 != 0
1423 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1425 undo_all ();
1426 return 0;
1428 #endif
1430 /* See if the SETs in I1 or I2 need to be kept around in the merged
1431 instruction: whenever the value set there is still needed past I3.
1432 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1434 For the SET in I1, we have two cases: If I1 and I2 independently
1435 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1436 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1437 in I1 needs to be kept around unless I1DEST dies or is set in either
1438 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1439 I1DEST. If so, we know I1 feeds into I2. */
1441 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1443 added_sets_1
1444 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1445 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1447 /* If the set in I2 needs to be kept around, we must make a copy of
1448 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1449 PATTERN (I2), we are only substituting for the original I1DEST, not into
1450 an already-substituted copy. This also prevents making self-referential
1451 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1452 I2DEST. */
1454 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1455 ? gen_rtx (SET, VOIDmode, i2dest, i2src)
1456 : PATTERN (i2));
1458 if (added_sets_2)
1459 i2pat = copy_rtx (i2pat);
1461 combine_merges++;
1463 /* Substitute in the latest insn for the regs set by the earlier ones. */
1465 maxreg = max_reg_num ();
1467 subst_insn = i3;
1469 /* It is possible that the source of I2 or I1 may be performing an
1470 unneeded operation, such as a ZERO_EXTEND of something that is known
1471 to have the high part zero. Handle that case by letting subst look at
1472 the innermost one of them.
1474 Another way to do this would be to have a function that tries to
1475 simplify a single insn instead of merging two or more insns. We don't
1476 do this because of the potential of infinite loops and because
1477 of the potential extra memory required. However, doing it the way
1478 we are is a bit of a kludge and doesn't catch all cases.
1480 But only do this if -fexpensive-optimizations since it slows things down
1481 and doesn't usually win. */
1483 if (flag_expensive_optimizations)
1485 /* Pass pc_rtx so no substitutions are done, just simplifications.
1486 The cases that we are interested in here do not involve the few
1487 cases were is_replaced is checked. */
1488 if (i1)
1490 subst_low_cuid = INSN_CUID (i1);
1491 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1493 else
1495 subst_low_cuid = INSN_CUID (i2);
1496 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1499 previous_num_undos = undobuf.num_undo;
1502 #ifndef HAVE_cc0
1503 /* Many machines that don't use CC0 have insns that can both perform an
1504 arithmetic operation and set the condition code. These operations will
1505 be represented as a PARALLEL with the first element of the vector
1506 being a COMPARE of an arithmetic operation with the constant zero.
1507 The second element of the vector will set some pseudo to the result
1508 of the same arithmetic operation. If we simplify the COMPARE, we won't
1509 match such a pattern and so will generate an extra insn. Here we test
1510 for this case, where both the comparison and the operation result are
1511 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1512 I2SRC. Later we will make the PARALLEL that contains I2. */
1514 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1515 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1516 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1517 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1519 rtx *cc_use;
1520 enum machine_mode compare_mode;
1522 newpat = PATTERN (i3);
1523 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1525 i2_is_used = 1;
1527 #ifdef EXTRA_CC_MODES
1528 /* See if a COMPARE with the operand we substituted in should be done
1529 with the mode that is currently being used. If not, do the same
1530 processing we do in `subst' for a SET; namely, if the destination
1531 is used only once, try to replace it with a register of the proper
1532 mode and also replace the COMPARE. */
1533 if (undobuf.other_insn == 0
1534 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1535 &undobuf.other_insn))
1536 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1537 i2src, const0_rtx))
1538 != GET_MODE (SET_DEST (newpat))))
1540 int regno = REGNO (SET_DEST (newpat));
1541 rtx new_dest = gen_rtx (REG, compare_mode, regno);
1543 if (regno < FIRST_PSEUDO_REGISTER
1544 || (reg_n_sets[regno] == 1 && ! added_sets_2
1545 && ! REG_USERVAR_P (SET_DEST (newpat))))
1547 if (regno >= FIRST_PSEUDO_REGISTER)
1548 SUBST (regno_reg_rtx[regno], new_dest);
1550 SUBST (SET_DEST (newpat), new_dest);
1551 SUBST (XEXP (*cc_use, 0), new_dest);
1552 SUBST (SET_SRC (newpat),
1553 gen_rtx_combine (COMPARE, compare_mode,
1554 i2src, const0_rtx));
1556 else
1557 undobuf.other_insn = 0;
1559 #endif
1561 else
1562 #endif
1564 n_occurrences = 0; /* `subst' counts here */
1566 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1567 need to make a unique copy of I2SRC each time we substitute it
1568 to avoid self-referential rtl. */
1570 subst_low_cuid = INSN_CUID (i2);
1571 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1572 ! i1_feeds_i3 && i1dest_in_i1src);
1573 previous_num_undos = undobuf.num_undo;
1575 /* Record whether i2's body now appears within i3's body. */
1576 i2_is_used = n_occurrences;
1579 /* If we already got a failure, don't try to do more. Otherwise,
1580 try to substitute in I1 if we have it. */
1582 if (i1 && GET_CODE (newpat) != CLOBBER)
1584 /* Before we can do this substitution, we must redo the test done
1585 above (see detailed comments there) that ensures that I1DEST
1586 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1588 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1589 0, NULL_PTR))
1591 undo_all ();
1592 return 0;
1595 n_occurrences = 0;
1596 subst_low_cuid = INSN_CUID (i1);
1597 newpat = subst (newpat, i1dest, i1src, 0, 0);
1598 previous_num_undos = undobuf.num_undo;
1601 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1602 to count all the ways that I2SRC and I1SRC can be used. */
1603 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1604 && i2_is_used + added_sets_2 > 1)
1605 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1606 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1607 > 1))
1608 /* Fail if we tried to make a new register (we used to abort, but there's
1609 really no reason to). */
1610 || max_reg_num () != maxreg
1611 /* Fail if we couldn't do something and have a CLOBBER. */
1612 || GET_CODE (newpat) == CLOBBER
1613 /* Fail if this new pattern is a MULT and we didn't have one before
1614 at the outer level. */
1615 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1616 && ! have_mult))
1618 undo_all ();
1619 return 0;
1622 /* If the actions of the earlier insns must be kept
1623 in addition to substituting them into the latest one,
1624 we must make a new PARALLEL for the latest insn
1625 to hold additional the SETs. */
1627 if (added_sets_1 || added_sets_2)
1629 combine_extras++;
1631 if (GET_CODE (newpat) == PARALLEL)
1633 rtvec old = XVEC (newpat, 0);
1634 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1635 newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
1636 bcopy ((char *) &old->elem[0], (char *) &XVECEXP (newpat, 0, 0),
1637 sizeof (old->elem[0]) * old->num_elem);
1639 else
1641 rtx old = newpat;
1642 total_sets = 1 + added_sets_1 + added_sets_2;
1643 newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
1644 XVECEXP (newpat, 0, 0) = old;
1647 if (added_sets_1)
1648 XVECEXP (newpat, 0, --total_sets)
1649 = (GET_CODE (PATTERN (i1)) == PARALLEL
1650 ? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1));
1652 if (added_sets_2)
1654 /* If there is no I1, use I2's body as is. We used to also not do
1655 the subst call below if I2 was substituted into I3,
1656 but that could lose a simplification. */
1657 if (i1 == 0)
1658 XVECEXP (newpat, 0, --total_sets) = i2pat;
1659 else
1660 /* See comment where i2pat is assigned. */
1661 XVECEXP (newpat, 0, --total_sets)
1662 = subst (i2pat, i1dest, i1src, 0, 0);
1666 /* We come here when we are replacing a destination in I2 with the
1667 destination of I3. */
1668 validate_replacement:
1670 /* Note which hard regs this insn has as inputs. */
1671 mark_used_regs_combine (newpat);
1673 /* Is the result of combination a valid instruction? */
1674 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1676 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
1677 the second SET's destination is a register that is unused. In that case,
1678 we just need the first SET. This can occur when simplifying a divmod
1679 insn. We *must* test for this case here because the code below that
1680 splits two independent SETs doesn't handle this case correctly when it
1681 updates the register status. Also check the case where the first
1682 SET's destination is unused. That would not cause incorrect code, but
1683 does cause an unneeded insn to remain. */
1685 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1686 && XVECLEN (newpat, 0) == 2
1687 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1688 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1689 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
1690 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
1691 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
1692 && asm_noperands (newpat) < 0)
1694 newpat = XVECEXP (newpat, 0, 0);
1695 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1698 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1699 && XVECLEN (newpat, 0) == 2
1700 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1701 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1702 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
1703 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
1704 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
1705 && asm_noperands (newpat) < 0)
1707 newpat = XVECEXP (newpat, 0, 1);
1708 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1711 /* If we were combining three insns and the result is a simple SET
1712 with no ASM_OPERANDS that wasn't recognized, try to split it into two
1713 insns. There are two ways to do this. It can be split using a
1714 machine-specific method (like when you have an addition of a large
1715 constant) or by combine in the function find_split_point. */
1717 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
1718 && asm_noperands (newpat) < 0)
1720 rtx m_split, *split;
1721 rtx ni2dest = i2dest;
1723 /* See if the MD file can split NEWPAT. If it can't, see if letting it
1724 use I2DEST as a scratch register will help. In the latter case,
1725 convert I2DEST to the mode of the source of NEWPAT if we can. */
1727 m_split = split_insns (newpat, i3);
1729 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
1730 inputs of NEWPAT. */
1732 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
1733 possible to try that as a scratch reg. This would require adding
1734 more code to make it work though. */
1736 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
1738 /* If I2DEST is a hard register or the only use of a pseudo,
1739 we can change its mode. */
1740 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
1741 && GET_MODE (SET_DEST (newpat)) != VOIDmode
1742 && GET_CODE (i2dest) == REG
1743 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1744 || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
1745 && ! REG_USERVAR_P (i2dest))))
1746 ni2dest = gen_rtx (REG, GET_MODE (SET_DEST (newpat)),
1747 REGNO (i2dest));
1749 m_split = split_insns (gen_rtx (PARALLEL, VOIDmode,
1750 gen_rtvec (2, newpat,
1751 gen_rtx (CLOBBER,
1752 VOIDmode,
1753 ni2dest))),
1754 i3);
1757 if (m_split && GET_CODE (m_split) == SEQUENCE
1758 && XVECLEN (m_split, 0) == 2
1759 && (next_real_insn (i2) == i3
1760 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
1761 INSN_CUID (i2))))
1763 rtx i2set, i3set;
1764 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
1765 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
1767 i3set = single_set (XVECEXP (m_split, 0, 1));
1768 i2set = single_set (XVECEXP (m_split, 0, 0));
1770 /* In case we changed the mode of I2DEST, replace it in the
1771 pseudo-register table here. We can't do it above in case this
1772 code doesn't get executed and we do a split the other way. */
1774 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1775 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
1777 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1779 /* If I2 or I3 has multiple SETs, we won't know how to track
1780 register status, so don't use these insns. */
1782 if (i2_code_number >= 0 && i2set && i3set)
1783 insn_code_number = recog_for_combine (&newi3pat, i3,
1784 &new_i3_notes);
1786 if (insn_code_number >= 0)
1787 newpat = newi3pat;
1789 /* It is possible that both insns now set the destination of I3.
1790 If so, we must show an extra use of it. */
1792 if (insn_code_number >= 0 && GET_CODE (SET_DEST (i3set)) == REG
1793 && GET_CODE (SET_DEST (i2set)) == REG
1794 && REGNO (SET_DEST (i3set)) == REGNO (SET_DEST (i2set)))
1795 reg_n_sets[REGNO (SET_DEST (i2set))]++;
1798 /* If we can split it and use I2DEST, go ahead and see if that
1799 helps things be recognized. Verify that none of the registers
1800 are set between I2 and I3. */
1801 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
1802 #ifdef HAVE_cc0
1803 && GET_CODE (i2dest) == REG
1804 #endif
1805 /* We need I2DEST in the proper mode. If it is a hard register
1806 or the only use of a pseudo, we can change its mode. */
1807 && (GET_MODE (*split) == GET_MODE (i2dest)
1808 || GET_MODE (*split) == VOIDmode
1809 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1810 || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
1811 && ! REG_USERVAR_P (i2dest)))
1812 && (next_real_insn (i2) == i3
1813 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
1814 /* We can't overwrite I2DEST if its value is still used by
1815 NEWPAT. */
1816 && ! reg_referenced_p (i2dest, newpat))
1818 rtx newdest = i2dest;
1819 enum rtx_code split_code = GET_CODE (*split);
1820 enum machine_mode split_mode = GET_MODE (*split);
1822 /* Get NEWDEST as a register in the proper mode. We have already
1823 validated that we can do this. */
1824 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
1826 newdest = gen_rtx (REG, split_mode, REGNO (i2dest));
1828 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1829 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
1832 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
1833 an ASHIFT. This can occur if it was inside a PLUS and hence
1834 appeared to be a memory address. This is a kludge. */
1835 if (split_code == MULT
1836 && GET_CODE (XEXP (*split, 1)) == CONST_INT
1837 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
1839 SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
1840 XEXP (*split, 0), GEN_INT (i)));
1841 /* Update split_code because we may not have a multiply
1842 anymore. */
1843 split_code = GET_CODE (*split);
1846 #ifdef INSN_SCHEDULING
1847 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
1848 be written as a ZERO_EXTEND. */
1849 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
1850 SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
1851 XEXP (*split, 0)));
1852 #endif
1854 newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
1855 SUBST (*split, newdest);
1856 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1858 /* If the split point was a MULT and we didn't have one before,
1859 don't use one now. */
1860 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
1861 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1865 /* Check for a case where we loaded from memory in a narrow mode and
1866 then sign extended it, but we need both registers. In that case,
1867 we have a PARALLEL with both loads from the same memory location.
1868 We can split this into a load from memory followed by a register-register
1869 copy. This saves at least one insn, more if register allocation can
1870 eliminate the copy.
1872 We cannot do this if the destination of the second assignment is
1873 a register that we have already assumed is zero-extended. Similarly
1874 for a SUBREG of such a register. */
1876 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
1877 && GET_CODE (newpat) == PARALLEL
1878 && XVECLEN (newpat, 0) == 2
1879 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1880 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
1881 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1882 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1883 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
1884 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1885 INSN_CUID (i2))
1886 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
1887 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
1888 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
1889 (GET_CODE (temp) == REG
1890 && reg_nonzero_bits[REGNO (temp)] != 0
1891 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
1892 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
1893 && (reg_nonzero_bits[REGNO (temp)]
1894 != GET_MODE_MASK (word_mode))))
1895 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
1896 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
1897 (GET_CODE (temp) == REG
1898 && reg_nonzero_bits[REGNO (temp)] != 0
1899 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
1900 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
1901 && (reg_nonzero_bits[REGNO (temp)]
1902 != GET_MODE_MASK (word_mode)))))
1903 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
1904 SET_SRC (XVECEXP (newpat, 0, 1)))
1905 && ! find_reg_note (i3, REG_UNUSED,
1906 SET_DEST (XVECEXP (newpat, 0, 0))))
1908 rtx ni2dest;
1910 newi2pat = XVECEXP (newpat, 0, 0);
1911 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
1912 newpat = XVECEXP (newpat, 0, 1);
1913 SUBST (SET_SRC (newpat),
1914 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
1915 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1916 if (i2_code_number >= 0)
1917 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1919 if (insn_code_number >= 0)
1921 rtx insn;
1922 rtx link;
1924 /* If we will be able to accept this, we have made a change to the
1925 destination of I3. This can invalidate a LOG_LINKS pointing
1926 to I3. No other part of combine.c makes such a transformation.
1928 The new I3 will have a destination that was previously the
1929 destination of I1 or I2 and which was used in i2 or I3. Call
1930 distribute_links to make a LOG_LINK from the next use of
1931 that destination. */
1933 PATTERN (i3) = newpat;
1934 distribute_links (gen_rtx (INSN_LIST, VOIDmode, i3, NULL_RTX));
1936 /* I3 now uses what used to be its destination and which is
1937 now I2's destination. That means we need a LOG_LINK from
1938 I3 to I2. But we used to have one, so we still will.
1940 However, some later insn might be using I2's dest and have
1941 a LOG_LINK pointing at I3. We must remove this link.
1942 The simplest way to remove the link is to point it at I1,
1943 which we know will be a NOTE. */
1945 for (insn = NEXT_INSN (i3);
1946 insn && (this_basic_block == n_basic_blocks - 1
1947 || insn != basic_block_head[this_basic_block + 1]);
1948 insn = NEXT_INSN (insn))
1950 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1951 && reg_referenced_p (ni2dest, PATTERN (insn)))
1953 for (link = LOG_LINKS (insn); link;
1954 link = XEXP (link, 1))
1955 if (XEXP (link, 0) == i3)
1956 XEXP (link, 0) = i1;
1958 break;
1964 /* Similarly, check for a case where we have a PARALLEL of two independent
1965 SETs but we started with three insns. In this case, we can do the sets
1966 as two separate insns. This case occurs when some SET allows two
1967 other insns to combine, but the destination of that SET is still live. */
1969 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
1970 && GET_CODE (newpat) == PARALLEL
1971 && XVECLEN (newpat, 0) == 2
1972 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1973 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
1974 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
1975 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1976 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
1977 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
1978 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1979 INSN_CUID (i2))
1980 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
1981 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
1982 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
1983 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
1984 XVECEXP (newpat, 0, 0))
1985 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
1986 XVECEXP (newpat, 0, 1)))
1988 newi2pat = XVECEXP (newpat, 0, 1);
1989 newpat = XVECEXP (newpat, 0, 0);
1991 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1992 if (i2_code_number >= 0)
1993 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1996 /* If it still isn't recognized, fail and change things back the way they
1997 were. */
1998 if ((insn_code_number < 0
1999 /* Is the result a reasonable ASM_OPERANDS? */
2000 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2002 undo_all ();
2003 return 0;
2006 /* If we had to change another insn, make sure it is valid also. */
2007 if (undobuf.other_insn)
2009 rtx other_pat = PATTERN (undobuf.other_insn);
2010 rtx new_other_notes;
2011 rtx note, next;
2013 CLEAR_HARD_REG_SET (newpat_used_regs);
2015 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2016 &new_other_notes);
2018 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2020 undo_all ();
2021 return 0;
2024 PATTERN (undobuf.other_insn) = other_pat;
2026 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2027 are still valid. Then add any non-duplicate notes added by
2028 recog_for_combine. */
2029 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2031 next = XEXP (note, 1);
2033 if (REG_NOTE_KIND (note) == REG_UNUSED
2034 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2036 if (GET_CODE (XEXP (note, 0)) == REG)
2037 reg_n_deaths[REGNO (XEXP (note, 0))]--;
2039 remove_note (undobuf.other_insn, note);
2043 for (note = new_other_notes; note; note = XEXP (note, 1))
2044 if (GET_CODE (XEXP (note, 0)) == REG)
2045 reg_n_deaths[REGNO (XEXP (note, 0))]++;
2047 distribute_notes (new_other_notes, undobuf.other_insn,
2048 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2051 /* We now know that we can do this combination. Merge the insns and
2052 update the status of registers and LOG_LINKS. */
2055 rtx i3notes, i2notes, i1notes = 0;
2056 rtx i3links, i2links, i1links = 0;
2057 rtx midnotes = 0;
2058 register int regno;
2059 /* Compute which registers we expect to eliminate. */
2060 rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src
2061 ? 0 : i2dest);
2062 rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest;
2064 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2065 clear them. */
2066 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2067 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2068 if (i1)
2069 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2071 /* Ensure that we do not have something that should not be shared but
2072 occurs multiple times in the new insns. Check this by first
2073 resetting all the `used' flags and then copying anything is shared. */
2075 reset_used_flags (i3notes);
2076 reset_used_flags (i2notes);
2077 reset_used_flags (i1notes);
2078 reset_used_flags (newpat);
2079 reset_used_flags (newi2pat);
2080 if (undobuf.other_insn)
2081 reset_used_flags (PATTERN (undobuf.other_insn));
2083 i3notes = copy_rtx_if_shared (i3notes);
2084 i2notes = copy_rtx_if_shared (i2notes);
2085 i1notes = copy_rtx_if_shared (i1notes);
2086 newpat = copy_rtx_if_shared (newpat);
2087 newi2pat = copy_rtx_if_shared (newi2pat);
2088 if (undobuf.other_insn)
2089 reset_used_flags (PATTERN (undobuf.other_insn));
2091 INSN_CODE (i3) = insn_code_number;
2092 PATTERN (i3) = newpat;
2093 if (undobuf.other_insn)
2094 INSN_CODE (undobuf.other_insn) = other_code_number;
2096 /* We had one special case above where I2 had more than one set and
2097 we replaced a destination of one of those sets with the destination
2098 of I3. In that case, we have to update LOG_LINKS of insns later
2099 in this basic block. Note that this (expensive) case is rare.
2101 Also, in this case, we must pretend that all REG_NOTEs for I2
2102 actually came from I3, so that REG_UNUSED notes from I2 will be
2103 properly handled. */
2105 if (i3_subst_into_i2)
2107 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2108 if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2109 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2110 && ! find_reg_note (i2, REG_UNUSED,
2111 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2112 for (temp = NEXT_INSN (i2);
2113 temp && (this_basic_block == n_basic_blocks - 1
2114 || basic_block_head[this_basic_block] != temp);
2115 temp = NEXT_INSN (temp))
2116 if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
2117 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2118 if (XEXP (link, 0) == i2)
2119 XEXP (link, 0) = i3;
2121 if (i3notes)
2123 rtx link = i3notes;
2124 while (XEXP (link, 1))
2125 link = XEXP (link, 1);
2126 XEXP (link, 1) = i2notes;
2128 else
2129 i3notes = i2notes;
2130 i2notes = 0;
2133 LOG_LINKS (i3) = 0;
2134 REG_NOTES (i3) = 0;
2135 LOG_LINKS (i2) = 0;
2136 REG_NOTES (i2) = 0;
2138 if (newi2pat)
2140 INSN_CODE (i2) = i2_code_number;
2141 PATTERN (i2) = newi2pat;
2143 else
2145 PUT_CODE (i2, NOTE);
2146 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2147 NOTE_SOURCE_FILE (i2) = 0;
2150 if (i1)
2152 LOG_LINKS (i1) = 0;
2153 REG_NOTES (i1) = 0;
2154 PUT_CODE (i1, NOTE);
2155 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2156 NOTE_SOURCE_FILE (i1) = 0;
2159 /* Get death notes for everything that is now used in either I3 or
2160 I2 and used to die in a previous insn. */
2162 move_deaths (newpat, i1 ? INSN_CUID (i1) : INSN_CUID (i2), i3, &midnotes);
2163 if (newi2pat)
2164 move_deaths (newi2pat, INSN_CUID (i1), i2, &midnotes);
2166 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2167 if (i3notes)
2168 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2169 elim_i2, elim_i1);
2170 if (i2notes)
2171 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2172 elim_i2, elim_i1);
2173 if (i1notes)
2174 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2175 elim_i2, elim_i1);
2176 if (midnotes)
2177 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2178 elim_i2, elim_i1);
2180 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2181 know these are REG_UNUSED and want them to go to the desired insn,
2182 so we always pass it as i3. We have not counted the notes in
2183 reg_n_deaths yet, so we need to do so now. */
2185 if (newi2pat && new_i2_notes)
2187 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2188 if (GET_CODE (XEXP (temp, 0)) == REG)
2189 reg_n_deaths[REGNO (XEXP (temp, 0))]++;
2191 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2194 if (new_i3_notes)
2196 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2197 if (GET_CODE (XEXP (temp, 0)) == REG)
2198 reg_n_deaths[REGNO (XEXP (temp, 0))]++;
2200 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2203 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2204 put a REG_DEAD note for it somewhere. Similarly for I2 and I1.
2205 Show an additional death due to the REG_DEAD note we make here. If
2206 we discard it in distribute_notes, we will decrement it again. */
2208 if (i3dest_killed)
2210 if (GET_CODE (i3dest_killed) == REG)
2211 reg_n_deaths[REGNO (i3dest_killed)]++;
2213 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
2214 NULL_RTX),
2215 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2216 NULL_RTX, NULL_RTX);
2219 /* For I2 and I1, we have to be careful. If NEWI2PAT exists and sets
2220 I2DEST or I1DEST, the death must be somewhere before I2, not I3. If
2221 we passed I3 in that case, it might delete I2. */
2223 if (i2dest_in_i2src)
2225 if (GET_CODE (i2dest) == REG)
2226 reg_n_deaths[REGNO (i2dest)]++;
2228 if (newi2pat && reg_set_p (i2dest, newi2pat))
2229 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
2230 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2231 else
2232 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
2233 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2234 NULL_RTX, NULL_RTX);
2237 if (i1dest_in_i1src)
2239 if (GET_CODE (i1dest) == REG)
2240 reg_n_deaths[REGNO (i1dest)]++;
2242 if (newi2pat && reg_set_p (i1dest, newi2pat))
2243 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
2244 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2245 else
2246 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
2247 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2248 NULL_RTX, NULL_RTX);
2251 distribute_links (i3links);
2252 distribute_links (i2links);
2253 distribute_links (i1links);
2255 if (GET_CODE (i2dest) == REG)
2257 rtx link;
2258 rtx i2_insn = 0, i2_val = 0, set;
2260 /* The insn that used to set this register doesn't exist, and
2261 this life of the register may not exist either. See if one of
2262 I3's links points to an insn that sets I2DEST. If it does,
2263 that is now the last known value for I2DEST. If we don't update
2264 this and I2 set the register to a value that depended on its old
2265 contents, we will get confused. If this insn is used, thing
2266 will be set correctly in combine_instructions. */
2268 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2269 if ((set = single_set (XEXP (link, 0))) != 0
2270 && rtx_equal_p (i2dest, SET_DEST (set)))
2271 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2273 record_value_for_reg (i2dest, i2_insn, i2_val);
2275 /* If the reg formerly set in I2 died only once and that was in I3,
2276 zero its use count so it won't make `reload' do any work. */
2277 if (! added_sets_2 && newi2pat == 0 && ! i2dest_in_i2src)
2279 regno = REGNO (i2dest);
2280 reg_n_sets[regno]--;
2281 if (reg_n_sets[regno] == 0
2282 && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
2283 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
2284 reg_n_refs[regno] = 0;
2288 if (i1 && GET_CODE (i1dest) == REG)
2290 rtx link;
2291 rtx i1_insn = 0, i1_val = 0, set;
2293 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2294 if ((set = single_set (XEXP (link, 0))) != 0
2295 && rtx_equal_p (i1dest, SET_DEST (set)))
2296 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2298 record_value_for_reg (i1dest, i1_insn, i1_val);
2300 regno = REGNO (i1dest);
2301 if (! added_sets_1 && ! i1dest_in_i1src)
2303 reg_n_sets[regno]--;
2304 if (reg_n_sets[regno] == 0
2305 && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
2306 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
2307 reg_n_refs[regno] = 0;
2311 /* Update reg_nonzero_bits et al for any changes that may have been made
2312 to this insn. */
2314 note_stores (newpat, set_nonzero_bits_and_sign_copies);
2315 if (newi2pat)
2316 note_stores (newi2pat, set_nonzero_bits_and_sign_copies);
2318 /* If I3 is now an unconditional jump, ensure that it has a
2319 BARRIER following it since it may have initially been a
2320 conditional jump. It may also be the last nonnote insn. */
2322 if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
2323 && ((temp = next_nonnote_insn (i3)) == NULL_RTX
2324 || GET_CODE (temp) != BARRIER))
2325 emit_barrier_after (i3);
2328 combine_successes++;
2330 if (added_links_insn
2331 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2332 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2333 return added_links_insn;
2334 else
2335 return newi2pat ? i2 : i3;
2338 /* Undo all the modifications recorded in undobuf. */
2340 static void
2341 undo_all ()
2343 register int i;
2344 if (undobuf.num_undo > MAX_UNDO)
2345 undobuf.num_undo = MAX_UNDO;
2346 for (i = undobuf.num_undo - 1; i >= 0; i--)
2348 if (undobuf.undo[i].is_int)
2349 *undobuf.undo[i].where.i = undobuf.undo[i].old_contents.i;
2350 else
2351 *undobuf.undo[i].where.r = undobuf.undo[i].old_contents.r;
2355 obfree (undobuf.storage);
2356 undobuf.num_undo = 0;
2359 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2360 where we have an arithmetic expression and return that point. LOC will
2361 be inside INSN.
2363 try_combine will call this function to see if an insn can be split into
2364 two insns. */
2366 static rtx *
2367 find_split_point (loc, insn)
2368 rtx *loc;
2369 rtx insn;
2371 rtx x = *loc;
2372 enum rtx_code code = GET_CODE (x);
2373 rtx *split;
2374 int len = 0, pos, unsignedp;
2375 rtx inner;
2377 /* First special-case some codes. */
2378 switch (code)
2380 case SUBREG:
2381 #ifdef INSN_SCHEDULING
2382 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2383 point. */
2384 if (GET_CODE (SUBREG_REG (x)) == MEM)
2385 return loc;
2386 #endif
2387 return find_split_point (&SUBREG_REG (x), insn);
2389 case MEM:
2390 #ifdef HAVE_lo_sum
2391 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2392 using LO_SUM and HIGH. */
2393 if (GET_CODE (XEXP (x, 0)) == CONST
2394 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2396 SUBST (XEXP (x, 0),
2397 gen_rtx_combine (LO_SUM, Pmode,
2398 gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
2399 XEXP (x, 0)));
2400 return &XEXP (XEXP (x, 0), 0);
2402 #endif
2404 /* If we have a PLUS whose second operand is a constant and the
2405 address is not valid, perhaps will can split it up using
2406 the machine-specific way to split large constants. We use
2407 the first psuedo-reg (one of the virtual regs) as a placeholder;
2408 it will not remain in the result. */
2409 if (GET_CODE (XEXP (x, 0)) == PLUS
2410 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2411 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2413 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2414 rtx seq = split_insns (gen_rtx (SET, VOIDmode, reg, XEXP (x, 0)),
2415 subst_insn);
2417 /* This should have produced two insns, each of which sets our
2418 placeholder. If the source of the second is a valid address,
2419 we can make put both sources together and make a split point
2420 in the middle. */
2422 if (seq && XVECLEN (seq, 0) == 2
2423 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2424 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2425 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2426 && ! reg_mentioned_p (reg,
2427 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2428 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2429 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2430 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2431 && memory_address_p (GET_MODE (x),
2432 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2434 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2435 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2437 /* Replace the placeholder in SRC2 with SRC1. If we can
2438 find where in SRC2 it was placed, that can become our
2439 split point and we can replace this address with SRC2.
2440 Just try two obvious places. */
2442 src2 = replace_rtx (src2, reg, src1);
2443 split = 0;
2444 if (XEXP (src2, 0) == src1)
2445 split = &XEXP (src2, 0);
2446 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2447 && XEXP (XEXP (src2, 0), 0) == src1)
2448 split = &XEXP (XEXP (src2, 0), 0);
2450 if (split)
2452 SUBST (XEXP (x, 0), src2);
2453 return split;
2457 /* If that didn't work, perhaps the first operand is complex and
2458 needs to be computed separately, so make a split point there.
2459 This will occur on machines that just support REG + CONST
2460 and have a constant moved through some previous computation. */
2462 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2463 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2464 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2465 == 'o')))
2466 return &XEXP (XEXP (x, 0), 0);
2468 break;
2470 case SET:
2471 #ifdef HAVE_cc0
2472 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2473 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2474 we need to put the operand into a register. So split at that
2475 point. */
2477 if (SET_DEST (x) == cc0_rtx
2478 && GET_CODE (SET_SRC (x)) != COMPARE
2479 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2480 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2481 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2482 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2483 return &SET_SRC (x);
2484 #endif
2486 /* See if we can split SET_SRC as it stands. */
2487 split = find_split_point (&SET_SRC (x), insn);
2488 if (split && split != &SET_SRC (x))
2489 return split;
2491 /* See if this is a bitfield assignment with everything constant. If
2492 so, this is an IOR of an AND, so split it into that. */
2493 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2494 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2495 <= HOST_BITS_PER_WIDE_INT)
2496 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2497 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2498 && GET_CODE (SET_SRC (x)) == CONST_INT
2499 && ((INTVAL (XEXP (SET_DEST (x), 1))
2500 + INTVAL (XEXP (SET_DEST (x), 2)))
2501 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2502 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2504 int pos = INTVAL (XEXP (SET_DEST (x), 2));
2505 int len = INTVAL (XEXP (SET_DEST (x), 1));
2506 int src = INTVAL (SET_SRC (x));
2507 rtx dest = XEXP (SET_DEST (x), 0);
2508 enum machine_mode mode = GET_MODE (dest);
2509 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2511 if (BITS_BIG_ENDIAN)
2512 pos = GET_MODE_BITSIZE (mode) - len - pos;
2514 if (src == mask)
2515 SUBST (SET_SRC (x),
2516 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
2517 else
2518 SUBST (SET_SRC (x),
2519 gen_binary (IOR, mode,
2520 gen_binary (AND, mode, dest,
2521 GEN_INT (~ (mask << pos)
2522 & GET_MODE_MASK (mode))),
2523 GEN_INT (src << pos)));
2525 SUBST (SET_DEST (x), dest);
2527 split = find_split_point (&SET_SRC (x), insn);
2528 if (split && split != &SET_SRC (x))
2529 return split;
2532 /* Otherwise, see if this is an operation that we can split into two.
2533 If so, try to split that. */
2534 code = GET_CODE (SET_SRC (x));
2536 switch (code)
2538 case AND:
2539 /* If we are AND'ing with a large constant that is only a single
2540 bit and the result is only being used in a context where we
2541 need to know if it is zero or non-zero, replace it with a bit
2542 extraction. This will avoid the large constant, which might
2543 have taken more than one insn to make. If the constant were
2544 not a valid argument to the AND but took only one insn to make,
2545 this is no worse, but if it took more than one insn, it will
2546 be better. */
2548 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2549 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2550 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
2551 && GET_CODE (SET_DEST (x)) == REG
2552 && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
2553 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
2554 && XEXP (*split, 0) == SET_DEST (x)
2555 && XEXP (*split, 1) == const0_rtx)
2557 SUBST (SET_SRC (x),
2558 make_extraction (GET_MODE (SET_DEST (x)),
2559 XEXP (SET_SRC (x), 0),
2560 pos, NULL_RTX, 1, 1, 0, 0));
2561 return find_split_point (loc, insn);
2563 break;
2565 case SIGN_EXTEND:
2566 inner = XEXP (SET_SRC (x), 0);
2567 pos = 0;
2568 len = GET_MODE_BITSIZE (GET_MODE (inner));
2569 unsignedp = 0;
2570 break;
2572 case SIGN_EXTRACT:
2573 case ZERO_EXTRACT:
2574 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2575 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
2577 inner = XEXP (SET_SRC (x), 0);
2578 len = INTVAL (XEXP (SET_SRC (x), 1));
2579 pos = INTVAL (XEXP (SET_SRC (x), 2));
2581 if (BITS_BIG_ENDIAN)
2582 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
2583 unsignedp = (code == ZERO_EXTRACT);
2585 break;
2588 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
2590 enum machine_mode mode = GET_MODE (SET_SRC (x));
2592 /* For unsigned, we have a choice of a shift followed by an
2593 AND or two shifts. Use two shifts for field sizes where the
2594 constant might be too large. We assume here that we can
2595 always at least get 8-bit constants in an AND insn, which is
2596 true for every current RISC. */
2598 if (unsignedp && len <= 8)
2600 SUBST (SET_SRC (x),
2601 gen_rtx_combine
2602 (AND, mode,
2603 gen_rtx_combine (LSHIFTRT, mode,
2604 gen_lowpart_for_combine (mode, inner),
2605 GEN_INT (pos)),
2606 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
2608 split = find_split_point (&SET_SRC (x), insn);
2609 if (split && split != &SET_SRC (x))
2610 return split;
2612 else
2614 SUBST (SET_SRC (x),
2615 gen_rtx_combine
2616 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
2617 gen_rtx_combine (ASHIFT, mode,
2618 gen_lowpart_for_combine (mode, inner),
2619 GEN_INT (GET_MODE_BITSIZE (mode)
2620 - len - pos)),
2621 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
2623 split = find_split_point (&SET_SRC (x), insn);
2624 if (split && split != &SET_SRC (x))
2625 return split;
2629 /* See if this is a simple operation with a constant as the second
2630 operand. It might be that this constant is out of range and hence
2631 could be used as a split point. */
2632 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2633 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2634 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
2635 && CONSTANT_P (XEXP (SET_SRC (x), 1))
2636 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
2637 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
2638 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
2639 == 'o'))))
2640 return &XEXP (SET_SRC (x), 1);
2642 /* Finally, see if this is a simple operation with its first operand
2643 not in a register. The operation might require this operand in a
2644 register, so return it as a split point. We can always do this
2645 because if the first operand were another operation, we would have
2646 already found it as a split point. */
2647 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2648 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2649 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
2650 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
2651 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
2652 return &XEXP (SET_SRC (x), 0);
2654 return 0;
2656 case AND:
2657 case IOR:
2658 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
2659 it is better to write this as (not (ior A B)) so we can split it.
2660 Similarly for IOR. */
2661 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
2663 SUBST (*loc,
2664 gen_rtx_combine (NOT, GET_MODE (x),
2665 gen_rtx_combine (code == IOR ? AND : IOR,
2666 GET_MODE (x),
2667 XEXP (XEXP (x, 0), 0),
2668 XEXP (XEXP (x, 1), 0))));
2669 return find_split_point (loc, insn);
2672 /* Many RISC machines have a large set of logical insns. If the
2673 second operand is a NOT, put it first so we will try to split the
2674 other operand first. */
2675 if (GET_CODE (XEXP (x, 1)) == NOT)
2677 rtx tem = XEXP (x, 0);
2678 SUBST (XEXP (x, 0), XEXP (x, 1));
2679 SUBST (XEXP (x, 1), tem);
2681 break;
2684 /* Otherwise, select our actions depending on our rtx class. */
2685 switch (GET_RTX_CLASS (code))
2687 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
2688 case '3':
2689 split = find_split_point (&XEXP (x, 2), insn);
2690 if (split)
2691 return split;
2692 /* ... fall through ... */
2693 case '2':
2694 case 'c':
2695 case '<':
2696 split = find_split_point (&XEXP (x, 1), insn);
2697 if (split)
2698 return split;
2699 /* ... fall through ... */
2700 case '1':
2701 /* Some machines have (and (shift ...) ...) insns. If X is not
2702 an AND, but XEXP (X, 0) is, use it as our split point. */
2703 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
2704 return &XEXP (x, 0);
2706 split = find_split_point (&XEXP (x, 0), insn);
2707 if (split)
2708 return split;
2709 return loc;
2712 /* Otherwise, we don't have a split point. */
2713 return 0;
2716 /* Throughout X, replace FROM with TO, and return the result.
2717 The result is TO if X is FROM;
2718 otherwise the result is X, but its contents may have been modified.
2719 If they were modified, a record was made in undobuf so that
2720 undo_all will (among other things) return X to its original state.
2722 If the number of changes necessary is too much to record to undo,
2723 the excess changes are not made, so the result is invalid.
2724 The changes already made can still be undone.
2725 undobuf.num_undo is incremented for such changes, so by testing that
2726 the caller can tell whether the result is valid.
2728 `n_occurrences' is incremented each time FROM is replaced.
2730 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
2732 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
2733 by copying if `n_occurrences' is non-zero. */
2735 static rtx
2736 subst (x, from, to, in_dest, unique_copy)
2737 register rtx x, from, to;
2738 int in_dest;
2739 int unique_copy;
2741 register enum rtx_code code = GET_CODE (x);
2742 enum machine_mode op0_mode = VOIDmode;
2743 register char *fmt;
2744 register int len, i;
2745 rtx new;
2747 /* Two expressions are equal if they are identical copies of a shared
2748 RTX or if they are both registers with the same register number
2749 and mode. */
2751 #define COMBINE_RTX_EQUAL_P(X,Y) \
2752 ((X) == (Y) \
2753 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
2754 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
2756 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
2758 n_occurrences++;
2759 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
2762 /* If X and FROM are the same register but different modes, they will
2763 not have been seen as equal above. However, flow.c will make a
2764 LOG_LINKS entry for that case. If we do nothing, we will try to
2765 rerecognize our original insn and, when it succeeds, we will
2766 delete the feeding insn, which is incorrect.
2768 So force this insn not to match in this (rare) case. */
2769 if (! in_dest && code == REG && GET_CODE (from) == REG
2770 && REGNO (x) == REGNO (from))
2771 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
2773 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
2774 of which may contain things that can be combined. */
2775 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
2776 return x;
2778 /* It is possible to have a subexpression appear twice in the insn.
2779 Suppose that FROM is a register that appears within TO.
2780 Then, after that subexpression has been scanned once by `subst',
2781 the second time it is scanned, TO may be found. If we were
2782 to scan TO here, we would find FROM within it and create a
2783 self-referent rtl structure which is completely wrong. */
2784 if (COMBINE_RTX_EQUAL_P (x, to))
2785 return to;
2787 len = GET_RTX_LENGTH (code);
2788 fmt = GET_RTX_FORMAT (code);
2790 /* We don't need to process a SET_DEST that is a register, CC0, or PC, so
2791 set up to skip this common case. All other cases where we want to
2792 suppress replacing something inside a SET_SRC are handled via the
2793 IN_DEST operand. */
2794 if (code == SET
2795 && (GET_CODE (SET_DEST (x)) == REG
2796 || GET_CODE (SET_DEST (x)) == CC0
2797 || GET_CODE (SET_DEST (x)) == PC))
2798 fmt = "ie";
2800 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a constant. */
2801 if (fmt[0] == 'e')
2802 op0_mode = GET_MODE (XEXP (x, 0));
2804 for (i = 0; i < len; i++)
2806 if (fmt[i] == 'E')
2808 register int j;
2809 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2811 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
2813 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
2814 n_occurrences++;
2816 else
2818 new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy);
2820 /* If this substitution failed, this whole thing fails. */
2821 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
2822 return new;
2825 SUBST (XVECEXP (x, i, j), new);
2828 else if (fmt[i] == 'e')
2830 if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
2832 /* In general, don't install a subreg involving two modes not
2833 tieable. It can worsen register allocation, and can even
2834 make invalid reload insns, since the reg inside may need to
2835 be copied from in the outside mode, and that may be invalid
2836 if it is an fp reg copied in integer mode.
2838 We allow two exceptions to this: It is valid if it is inside
2839 another SUBREG and the mode of that SUBREG and the mode of
2840 the inside of TO is tieable and it is valid if X is a SET
2841 that copies FROM to CC0. */
2842 if (GET_CODE (to) == SUBREG
2843 && ! MODES_TIEABLE_P (GET_MODE (to),
2844 GET_MODE (SUBREG_REG (to)))
2845 && ! (code == SUBREG
2846 && MODES_TIEABLE_P (GET_MODE (x),
2847 GET_MODE (SUBREG_REG (to))))
2848 #ifdef HAVE_cc0
2849 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
2850 #endif
2852 return gen_rtx (CLOBBER, VOIDmode, const0_rtx);
2854 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
2855 n_occurrences++;
2857 else
2858 /* If we are in a SET_DEST, suppress most cases unless we
2859 have gone inside a MEM, in which case we want to
2860 simplify the address. We assume here that things that
2861 are actually part of the destination have their inner
2862 parts in the first expression. This is true for SUBREG,
2863 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
2864 things aside from REG and MEM that should appear in a
2865 SET_DEST. */
2866 new = subst (XEXP (x, i), from, to,
2867 (((in_dest
2868 && (code == SUBREG || code == STRICT_LOW_PART
2869 || code == ZERO_EXTRACT))
2870 || code == SET)
2871 && i == 0), unique_copy);
2873 /* If we found that we will have to reject this combination,
2874 indicate that by returning the CLOBBER ourselves, rather than
2875 an expression containing it. This will speed things up as
2876 well as prevent accidents where two CLOBBERs are considered
2877 to be equal, thus producing an incorrect simplification. */
2879 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
2880 return new;
2882 SUBST (XEXP (x, i), new);
2886 /* Try to simplify X. If the simplification changed the code, it is likely
2887 that further simplification will help, so loop, but limit the number
2888 of repetitions that will be performed. */
2890 for (i = 0; i < 4; i++)
2892 /* If X is sufficiently simple, don't bother trying to do anything
2893 with it. */
2894 if (code != CONST_INT && code != REG && code != CLOBBER)
2895 x = simplify_rtx (x, op0_mode, i == 3, in_dest);
2897 if (GET_CODE (x) == code)
2898 break;
2900 code = GET_CODE (x);
2902 /* We no longer know the original mode of operand 0 since we
2903 have changed the form of X) */
2904 op0_mode = VOIDmode;
2907 return x;
2910 /* Simplify X, a piece of RTL. We just operate on the expression at the
2911 outer level; call `subst' to simplify recursively. Return the new
2912 expression.
2914 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
2915 will be the iteration even if an expression with a code different from
2916 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
2918 static rtx
2919 simplify_rtx (x, op0_mode, last, in_dest)
2920 rtx x;
2921 enum machine_mode op0_mode;
2922 int last;
2923 int in_dest;
2925 enum rtx_code code = GET_CODE (x);
2926 enum machine_mode mode = GET_MODE (x);
2927 rtx temp;
2928 int i;
2930 /* If this is a commutative operation, put a constant last and a complex
2931 expression first. We don't need to do this for comparisons here. */
2932 if (GET_RTX_CLASS (code) == 'c'
2933 && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
2934 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
2935 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
2936 || (GET_CODE (XEXP (x, 0)) == SUBREG
2937 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
2938 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
2940 temp = XEXP (x, 0);
2941 SUBST (XEXP (x, 0), XEXP (x, 1));
2942 SUBST (XEXP (x, 1), temp);
2945 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
2946 sign extension of a PLUS with a constant, reverse the order of the sign
2947 extension and the addition. Note that this not the same as the original
2948 code, but overflow is undefined for signed values. Also note that the
2949 PLUS will have been partially moved "inside" the sign-extension, so that
2950 the first operand of X will really look like:
2951 (ashiftrt (plus (ashift A C4) C5) C4).
2952 We convert this to
2953 (plus (ashiftrt (ashift A C4) C2) C4)
2954 and replace the first operand of X with that expression. Later parts
2955 of this function may simplify the expression further.
2957 For example, if we start with (mult (sign_extend (plus A C1)) C2),
2958 we swap the SIGN_EXTEND and PLUS. Later code will apply the
2959 distributive law to produce (plus (mult (sign_extend X) C1) C3).
2961 We do this to simplify address expressions. */
2963 if ((code == PLUS || code == MINUS || code == MULT)
2964 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
2965 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
2966 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
2967 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
2968 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2969 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
2970 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
2971 && (temp = simplify_binary_operation (ASHIFTRT, mode,
2972 XEXP (XEXP (XEXP (x, 0), 0), 1),
2973 XEXP (XEXP (x, 0), 1))) != 0)
2975 rtx new
2976 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
2977 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
2978 INTVAL (XEXP (XEXP (x, 0), 1)));
2980 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
2981 INTVAL (XEXP (XEXP (x, 0), 1)));
2983 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
2986 /* If this is a simple operation applied to an IF_THEN_ELSE, try
2987 applying it to the arms of the IF_THEN_ELSE. This often simplifies
2988 things. Check for cases where both arms are testing the same
2989 condition.
2991 Don't do anything if all operands are very simple. */
2993 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
2994 || GET_RTX_CLASS (code) == '<')
2995 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
2996 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
2997 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
2998 == 'o')))
2999 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3000 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3001 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3002 == 'o')))))
3003 || (GET_RTX_CLASS (code) == '1'
3004 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3005 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3006 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3007 == 'o'))))))
3009 rtx cond, true, false;
3011 cond = if_then_else_cond (x, &true, &false);
3012 if (cond != 0)
3014 rtx cop1 = const0_rtx;
3015 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3017 /* Simplify the alternative arms; this may collapse the true and
3018 false arms to store-flag values. */
3019 true = subst (true, pc_rtx, pc_rtx, 0, 0);
3020 false = subst (false, pc_rtx, pc_rtx, 0, 0);
3022 /* Restarting if we generate a store-flag expression will cause
3023 us to loop. Just drop through in this case. */
3025 /* If the result values are STORE_FLAG_VALUE and zero, we can
3026 just make the comparison operation. */
3027 if (true == const_true_rtx && false == const0_rtx)
3028 x = gen_binary (cond_code, mode, cond, cop1);
3029 else if (true == const0_rtx && false == const_true_rtx)
3030 x = gen_binary (reverse_condition (cond_code), mode, cond, cop1);
3032 /* Likewise, we can make the negate of a comparison operation
3033 if the result values are - STORE_FLAG_VALUE and zero. */
3034 else if (GET_CODE (true) == CONST_INT
3035 && INTVAL (true) == - STORE_FLAG_VALUE
3036 && false == const0_rtx)
3037 x = gen_unary (NEG, mode, mode,
3038 gen_binary (cond_code, mode, cond, cop1));
3039 else if (GET_CODE (false) == CONST_INT
3040 && INTVAL (false) == - STORE_FLAG_VALUE
3041 && true == const0_rtx)
3042 x = gen_unary (NEG, mode, mode,
3043 gen_binary (reverse_condition (cond_code),
3044 mode, cond, cop1));
3045 else
3046 return gen_rtx (IF_THEN_ELSE, mode,
3047 gen_binary (cond_code, VOIDmode, cond, cop1),
3048 true, false);
3050 code = GET_CODE (x);
3051 op0_mode = VOIDmode;
3055 /* Try to fold this expression in case we have constants that weren't
3056 present before. */
3057 temp = 0;
3058 switch (GET_RTX_CLASS (code))
3060 case '1':
3061 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3062 break;
3063 case '<':
3064 temp = simplify_relational_operation (code, op0_mode,
3065 XEXP (x, 0), XEXP (x, 1));
3066 #ifdef FLOAT_STORE_FLAG_VALUE
3067 if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
3068 temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
3069 : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
3070 #endif
3071 break;
3072 case 'c':
3073 case '2':
3074 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3075 break;
3076 case 'b':
3077 case '3':
3078 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3079 XEXP (x, 1), XEXP (x, 2));
3080 break;
3083 if (temp)
3084 x = temp, code = GET_CODE (temp);
3086 /* First see if we can apply the inverse distributive law. */
3087 if (code == PLUS || code == MINUS
3088 || code == AND || code == IOR || code == XOR)
3090 x = apply_distributive_law (x);
3091 code = GET_CODE (x);
3094 /* If CODE is an associative operation not otherwise handled, see if we
3095 can associate some operands. This can win if they are constants or
3096 if they are logically related (i.e. (a & b) & a. */
3097 if ((code == PLUS || code == MINUS
3098 || code == MULT || code == AND || code == IOR || code == XOR
3099 || code == DIV || code == UDIV
3100 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3101 && INTEGRAL_MODE_P (mode))
3103 if (GET_CODE (XEXP (x, 0)) == code)
3105 rtx other = XEXP (XEXP (x, 0), 0);
3106 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3107 rtx inner_op1 = XEXP (x, 1);
3108 rtx inner;
3110 /* Make sure we pass the constant operand if any as the second
3111 one if this is a commutative operation. */
3112 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3114 rtx tem = inner_op0;
3115 inner_op0 = inner_op1;
3116 inner_op1 = tem;
3118 inner = simplify_binary_operation (code == MINUS ? PLUS
3119 : code == DIV ? MULT
3120 : code == UDIV ? MULT
3121 : code,
3122 mode, inner_op0, inner_op1);
3124 /* For commutative operations, try the other pair if that one
3125 didn't simplify. */
3126 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3128 other = XEXP (XEXP (x, 0), 1);
3129 inner = simplify_binary_operation (code, mode,
3130 XEXP (XEXP (x, 0), 0),
3131 XEXP (x, 1));
3134 if (inner)
3135 return gen_binary (code, mode, other, inner);
3139 /* A little bit of algebraic simplification here. */
3140 switch (code)
3142 case MEM:
3143 /* Ensure that our address has any ASHIFTs converted to MULT in case
3144 address-recognizing predicates are called later. */
3145 temp = make_compound_operation (XEXP (x, 0), MEM);
3146 SUBST (XEXP (x, 0), temp);
3147 break;
3149 case SUBREG:
3150 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3151 is paradoxical. If we can't do that safely, then it becomes
3152 something nonsensical so that this combination won't take place. */
3154 if (GET_CODE (SUBREG_REG (x)) == MEM
3155 && (GET_MODE_SIZE (mode)
3156 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
3158 rtx inner = SUBREG_REG (x);
3159 int endian_offset = 0;
3160 /* Don't change the mode of the MEM
3161 if that would change the meaning of the address. */
3162 if (MEM_VOLATILE_P (SUBREG_REG (x))
3163 || mode_dependent_address_p (XEXP (inner, 0)))
3164 return gen_rtx (CLOBBER, mode, const0_rtx);
3166 if (BYTES_BIG_ENDIAN)
3168 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3169 endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
3170 if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
3171 endian_offset -= (UNITS_PER_WORD
3172 - GET_MODE_SIZE (GET_MODE (inner)));
3174 /* Note if the plus_constant doesn't make a valid address
3175 then this combination won't be accepted. */
3176 x = gen_rtx (MEM, mode,
3177 plus_constant (XEXP (inner, 0),
3178 (SUBREG_WORD (x) * UNITS_PER_WORD
3179 + endian_offset)));
3180 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
3181 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
3182 MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
3183 return x;
3186 /* If we are in a SET_DEST, these other cases can't apply. */
3187 if (in_dest)
3188 return x;
3190 /* Changing mode twice with SUBREG => just change it once,
3191 or not at all if changing back to starting mode. */
3192 if (GET_CODE (SUBREG_REG (x)) == SUBREG)
3194 if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
3195 && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
3196 return SUBREG_REG (SUBREG_REG (x));
3198 SUBST_INT (SUBREG_WORD (x),
3199 SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
3200 SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
3203 /* SUBREG of a hard register => just change the register number
3204 and/or mode. If the hard register is not valid in that mode,
3205 suppress this combination. If the hard register is the stack,
3206 frame, or argument pointer, leave this as a SUBREG. */
3208 if (GET_CODE (SUBREG_REG (x)) == REG
3209 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
3210 && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
3211 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3212 && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
3213 #endif
3214 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3215 && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
3216 #endif
3217 && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
3219 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
3220 mode))
3221 return gen_rtx (REG, mode,
3222 REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
3223 else
3224 return gen_rtx (CLOBBER, mode, const0_rtx);
3227 /* For a constant, try to pick up the part we want. Handle a full
3228 word and low-order part. Only do this if we are narrowing
3229 the constant; if it is being widened, we have no idea what
3230 the extra bits will have been set to. */
3232 if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
3233 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3234 && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD
3235 && GET_MODE_CLASS (mode) == MODE_INT)
3237 temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
3238 0, op0_mode);
3239 if (temp)
3240 return temp;
3243 /* If we want a subreg of a constant, at offset 0,
3244 take the low bits. On a little-endian machine, that's
3245 always valid. On a big-endian machine, it's valid
3246 only if the constant's mode fits in one word. */
3247 if (CONSTANT_P (SUBREG_REG (x)) && subreg_lowpart_p (x)
3248 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (op0_mode)
3249 && (! WORDS_BIG_ENDIAN
3250 || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
3251 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3253 /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3254 since we are saying that the high bits don't matter. */
3255 if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
3256 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
3257 return SUBREG_REG (x);
3259 /* Note that we cannot do any narrowing for non-constants since
3260 we might have been counting on using the fact that some bits were
3261 zero. We now do this in the SET. */
3263 break;
3265 case NOT:
3266 /* (not (plus X -1)) can become (neg X). */
3267 if (GET_CODE (XEXP (x, 0)) == PLUS
3268 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3269 return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
3271 /* Similarly, (not (neg X)) is (plus X -1). */
3272 if (GET_CODE (XEXP (x, 0)) == NEG)
3273 return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
3274 constm1_rtx);
3276 /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
3277 if (GET_CODE (XEXP (x, 0)) == XOR
3278 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3279 && (temp = simplify_unary_operation (NOT, mode,
3280 XEXP (XEXP (x, 0), 1),
3281 mode)) != 0)
3282 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3284 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3285 other than 1, but that is not valid. We could do a similar
3286 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3287 but this doesn't seem common enough to bother with. */
3288 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3289 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3290 return gen_rtx (ROTATE, mode, gen_unary (NOT, mode, mode, const1_rtx),
3291 XEXP (XEXP (x, 0), 1));
3293 if (GET_CODE (XEXP (x, 0)) == SUBREG
3294 && subreg_lowpart_p (XEXP (x, 0))
3295 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3296 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3297 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3298 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3300 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3302 x = gen_rtx (ROTATE, inner_mode,
3303 gen_unary (NOT, inner_mode, inner_mode, const1_rtx),
3304 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3305 return gen_lowpart_for_combine (mode, x);
3308 #if STORE_FLAG_VALUE == -1
3309 /* (not (comparison foo bar)) can be done by reversing the comparison
3310 code if valid. */
3311 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3312 && reversible_comparison_p (XEXP (x, 0)))
3313 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3314 mode, XEXP (XEXP (x, 0), 0),
3315 XEXP (XEXP (x, 0), 1));
3317 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3318 is (lt foo (const_int 0)), so we can perform the above
3319 simplification. */
3321 if (XEXP (x, 1) == const1_rtx
3322 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3323 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3324 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3325 return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3326 #endif
3328 /* Apply De Morgan's laws to reduce number of patterns for machines
3329 with negating logical insns (and-not, nand, etc.). If result has
3330 only one NOT, put it first, since that is how the patterns are
3331 coded. */
3333 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3335 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3337 if (GET_CODE (in1) == NOT)
3338 in1 = XEXP (in1, 0);
3339 else
3340 in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
3342 if (GET_CODE (in2) == NOT)
3343 in2 = XEXP (in2, 0);
3344 else if (GET_CODE (in2) == CONST_INT
3345 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3346 in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
3347 else
3348 in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
3350 if (GET_CODE (in2) == NOT)
3352 rtx tem = in2;
3353 in2 = in1; in1 = tem;
3356 return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3357 mode, in1, in2);
3359 break;
3361 case NEG:
3362 /* (neg (plus X 1)) can become (not X). */
3363 if (GET_CODE (XEXP (x, 0)) == PLUS
3364 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3365 return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
3367 /* Similarly, (neg (not X)) is (plus X 1). */
3368 if (GET_CODE (XEXP (x, 0)) == NOT)
3369 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3371 /* (neg (minus X Y)) can become (minus Y X). */
3372 if (GET_CODE (XEXP (x, 0)) == MINUS
3373 && (! FLOAT_MODE_P (mode)
3374 /* x-y != -(y-x) with IEEE floating point. */
3375 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3376 || flag_fast_math))
3377 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3378 XEXP (XEXP (x, 0), 0));
3380 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3381 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3382 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3383 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3385 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3386 if we can then eliminate the NEG (e.g.,
3387 if the operand is a constant). */
3389 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3391 temp = simplify_unary_operation (NEG, mode,
3392 XEXP (XEXP (x, 0), 0), mode);
3393 if (temp)
3395 SUBST (XEXP (XEXP (x, 0), 0), temp);
3396 return XEXP (x, 0);
3400 temp = expand_compound_operation (XEXP (x, 0));
3402 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3403 replaced by (lshiftrt X C). This will convert
3404 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3406 if (GET_CODE (temp) == ASHIFTRT
3407 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3408 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3409 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3410 INTVAL (XEXP (temp, 1)));
3412 /* If X has only a single bit that might be nonzero, say, bit I, convert
3413 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3414 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3415 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3416 or a SUBREG of one since we'd be making the expression more
3417 complex if it was just a register. */
3419 if (GET_CODE (temp) != REG
3420 && ! (GET_CODE (temp) == SUBREG
3421 && GET_CODE (SUBREG_REG (temp)) == REG)
3422 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3424 rtx temp1 = simplify_shift_const
3425 (NULL_RTX, ASHIFTRT, mode,
3426 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3427 GET_MODE_BITSIZE (mode) - 1 - i),
3428 GET_MODE_BITSIZE (mode) - 1 - i);
3430 /* If all we did was surround TEMP with the two shifts, we
3431 haven't improved anything, so don't use it. Otherwise,
3432 we are better off with TEMP1. */
3433 if (GET_CODE (temp1) != ASHIFTRT
3434 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3435 || XEXP (XEXP (temp1, 0), 0) != temp)
3436 return temp1;
3438 break;
3440 case FLOAT_TRUNCATE:
3441 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
3442 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
3443 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3444 return XEXP (XEXP (x, 0), 0);
3446 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
3447 (OP:SF foo:SF) if OP is NEG or ABS. */
3448 if ((GET_CODE (XEXP (x, 0)) == ABS
3449 || GET_CODE (XEXP (x, 0)) == NEG)
3450 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
3451 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3452 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
3453 XEXP (XEXP (XEXP (x, 0), 0), 0));
3455 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
3456 is (float_truncate:SF x). */
3457 if (GET_CODE (XEXP (x, 0)) == SUBREG
3458 && subreg_lowpart_p (XEXP (x, 0))
3459 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
3460 return SUBREG_REG (XEXP (x, 0));
3461 break;
3463 #ifdef HAVE_cc0
3464 case COMPARE:
3465 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3466 using cc0, in which case we want to leave it as a COMPARE
3467 so we can distinguish it from a register-register-copy. */
3468 if (XEXP (x, 1) == const0_rtx)
3469 return XEXP (x, 0);
3471 /* In IEEE floating point, x-0 is not the same as x. */
3472 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3473 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
3474 || flag_fast_math)
3475 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
3476 return XEXP (x, 0);
3477 break;
3478 #endif
3480 case CONST:
3481 /* (const (const X)) can become (const X). Do it this way rather than
3482 returning the inner CONST since CONST can be shared with a
3483 REG_EQUAL note. */
3484 if (GET_CODE (XEXP (x, 0)) == CONST)
3485 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3486 break;
3488 #ifdef HAVE_lo_sum
3489 case LO_SUM:
3490 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
3491 can add in an offset. find_split_point will split this address up
3492 again if it doesn't match. */
3493 if (GET_CODE (XEXP (x, 0)) == HIGH
3494 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
3495 return XEXP (x, 1);
3496 break;
3497 #endif
3499 case PLUS:
3500 /* If we have (plus (plus (A const) B)), associate it so that CONST is
3501 outermost. That's because that's the way indexed addresses are
3502 supposed to appear. This code used to check many more cases, but
3503 they are now checked elsewhere. */
3504 if (GET_CODE (XEXP (x, 0)) == PLUS
3505 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
3506 return gen_binary (PLUS, mode,
3507 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
3508 XEXP (x, 1)),
3509 XEXP (XEXP (x, 0), 1));
3511 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
3512 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
3513 bit-field and can be replaced by either a sign_extend or a
3514 sign_extract. The `and' may be a zero_extend. */
3515 if (GET_CODE (XEXP (x, 0)) == XOR
3516 && GET_CODE (XEXP (x, 1)) == CONST_INT
3517 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3518 && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
3519 && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
3520 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3521 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
3522 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3523 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
3524 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
3525 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
3526 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
3527 == i + 1))))
3528 return simplify_shift_const
3529 (NULL_RTX, ASHIFTRT, mode,
3530 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3531 XEXP (XEXP (XEXP (x, 0), 0), 0),
3532 GET_MODE_BITSIZE (mode) - (i + 1)),
3533 GET_MODE_BITSIZE (mode) - (i + 1));
3535 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
3536 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
3537 is 1. This produces better code than the alternative immediately
3538 below. */
3539 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3540 && reversible_comparison_p (XEXP (x, 0))
3541 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
3542 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
3543 return
3544 gen_unary (NEG, mode, mode,
3545 gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
3546 mode, XEXP (XEXP (x, 0), 0),
3547 XEXP (XEXP (x, 0), 1)));
3549 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
3550 can become (ashiftrt (ashift (xor x 1) C) C) where C is
3551 the bitsize of the mode - 1. This allows simplification of
3552 "a = (b & 8) == 0;" */
3553 if (XEXP (x, 1) == constm1_rtx
3554 && GET_CODE (XEXP (x, 0)) != REG
3555 && ! (GET_CODE (XEXP (x,0)) == SUBREG
3556 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
3557 && nonzero_bits (XEXP (x, 0), mode) == 1)
3558 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
3559 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3560 gen_rtx_combine (XOR, mode,
3561 XEXP (x, 0), const1_rtx),
3562 GET_MODE_BITSIZE (mode) - 1),
3563 GET_MODE_BITSIZE (mode) - 1);
3565 /* If we are adding two things that have no bits in common, convert
3566 the addition into an IOR. This will often be further simplified,
3567 for example in cases like ((a & 1) + (a & 2)), which can
3568 become a & 3. */
3570 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3571 && (nonzero_bits (XEXP (x, 0), mode)
3572 & nonzero_bits (XEXP (x, 1), mode)) == 0)
3573 return gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
3574 break;
3576 case MINUS:
3577 #if STORE_FLAG_VALUE == 1
3578 /* (minus 1 (comparison foo bar)) can be done by reversing the comparison
3579 code if valid. */
3580 if (XEXP (x, 0) == const1_rtx
3581 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
3582 && reversible_comparison_p (XEXP (x, 1)))
3583 return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
3584 mode, XEXP (XEXP (x, 1), 0),
3585 XEXP (XEXP (x, 1), 1));
3586 #endif
3588 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
3589 (and <foo> (const_int pow2-1)) */
3590 if (GET_CODE (XEXP (x, 1)) == AND
3591 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
3592 && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
3593 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
3594 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
3595 - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
3597 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
3598 integers. */
3599 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
3600 return gen_binary (MINUS, mode,
3601 gen_binary (MINUS, mode, XEXP (x, 0),
3602 XEXP (XEXP (x, 1), 0)),
3603 XEXP (XEXP (x, 1), 1));
3604 break;
3606 case MULT:
3607 /* If we have (mult (plus A B) C), apply the distributive law and then
3608 the inverse distributive law to see if things simplify. This
3609 occurs mostly in addresses, often when unrolling loops. */
3611 if (GET_CODE (XEXP (x, 0)) == PLUS)
3613 x = apply_distributive_law
3614 (gen_binary (PLUS, mode,
3615 gen_binary (MULT, mode,
3616 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
3617 gen_binary (MULT, mode,
3618 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
3620 if (GET_CODE (x) != MULT)
3621 return x;
3623 break;
3625 case UDIV:
3626 /* If this is a divide by a power of two, treat it as a shift if
3627 its first operand is a shift. */
3628 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3629 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
3630 && (GET_CODE (XEXP (x, 0)) == ASHIFT
3631 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
3632 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
3633 || GET_CODE (XEXP (x, 0)) == ROTATE
3634 || GET_CODE (XEXP (x, 0)) == ROTATERT))
3635 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
3636 break;
3638 case EQ: case NE:
3639 case GT: case GTU: case GE: case GEU:
3640 case LT: case LTU: case LE: case LEU:
3641 /* If the first operand is a condition code, we can't do anything
3642 with it. */
3643 if (GET_CODE (XEXP (x, 0)) == COMPARE
3644 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
3645 #ifdef HAVE_cc0
3646 && XEXP (x, 0) != cc0_rtx
3647 #endif
3650 rtx op0 = XEXP (x, 0);
3651 rtx op1 = XEXP (x, 1);
3652 enum rtx_code new_code;
3654 if (GET_CODE (op0) == COMPARE)
3655 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
3657 /* Simplify our comparison, if possible. */
3658 new_code = simplify_comparison (code, &op0, &op1);
3660 #if STORE_FLAG_VALUE == 1
3661 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
3662 if only the low-order bit is possibly nonzero in X (such as when
3663 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
3664 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
3665 known to be either 0 or -1, NE becomes a NEG and EQ becomes
3666 (plus X 1).
3668 Remove any ZERO_EXTRACT we made when thinking this was a
3669 comparison. It may now be simpler to use, e.g., an AND. If a
3670 ZERO_EXTRACT is indeed appropriate, it will be placed back by
3671 the call to make_compound_operation in the SET case. */
3673 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3674 && op1 == const0_rtx
3675 && nonzero_bits (op0, mode) == 1)
3676 return gen_lowpart_for_combine (mode,
3677 expand_compound_operation (op0));
3679 else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3680 && op1 == const0_rtx
3681 && (num_sign_bit_copies (op0, mode)
3682 == GET_MODE_BITSIZE (mode)))
3684 op0 = expand_compound_operation (op0);
3685 return gen_unary (NEG, mode, mode,
3686 gen_lowpart_for_combine (mode, op0));
3689 else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3690 && op1 == const0_rtx
3691 && nonzero_bits (op0, mode) == 1)
3693 op0 = expand_compound_operation (op0);
3694 return gen_binary (XOR, mode,
3695 gen_lowpart_for_combine (mode, op0),
3696 const1_rtx);
3699 else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3700 && op1 == const0_rtx
3701 && (num_sign_bit_copies (op0, mode)
3702 == GET_MODE_BITSIZE (mode)))
3704 op0 = expand_compound_operation (op0);
3705 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
3707 #endif
3709 #if STORE_FLAG_VALUE == -1
3710 /* If STORE_FLAG_VALUE is -1, we have cases similar to
3711 those above. */
3712 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3713 && op1 == const0_rtx
3714 && (num_sign_bit_copies (op0, mode)
3715 == GET_MODE_BITSIZE (mode)))
3716 return gen_lowpart_for_combine (mode,
3717 expand_compound_operation (op0));
3719 else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3720 && op1 == const0_rtx
3721 && nonzero_bits (op0, mode) == 1)
3723 op0 = expand_compound_operation (op0);
3724 return gen_unary (NEG, mode, mode,
3725 gen_lowpart_for_combine (mode, op0));
3728 else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3729 && op1 == const0_rtx
3730 && (num_sign_bit_copies (op0, mode)
3731 == GET_MODE_BITSIZE (mode)))
3733 op0 = expand_compound_operation (op0);
3734 return gen_unary (NOT, mode, mode,
3735 gen_lowpart_for_combine (mode, op0));
3738 /* If X is 0/1, (eq X 0) is X-1. */
3739 else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3740 && op1 == const0_rtx
3741 && nonzero_bits (op0, mode) == 1)
3743 op0 = expand_compound_operation (op0);
3744 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
3746 #endif
3748 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
3749 one bit that might be nonzero, we can convert (ne x 0) to
3750 (ashift x c) where C puts the bit in the sign bit. Remove any
3751 AND with STORE_FLAG_VALUE when we are done, since we are only
3752 going to test the sign bit. */
3753 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3754 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3755 && (STORE_FLAG_VALUE
3756 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
3757 && op1 == const0_rtx
3758 && mode == GET_MODE (op0)
3759 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
3761 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3762 expand_compound_operation (op0),
3763 GET_MODE_BITSIZE (mode) - 1 - i);
3764 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
3765 return XEXP (x, 0);
3766 else
3767 return x;
3770 /* If the code changed, return a whole new comparison. */
3771 if (new_code != code)
3772 return gen_rtx_combine (new_code, mode, op0, op1);
3774 /* Otherwise, keep this operation, but maybe change its operands.
3775 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
3776 SUBST (XEXP (x, 0), op0);
3777 SUBST (XEXP (x, 1), op1);
3779 break;
3781 case IF_THEN_ELSE:
3782 return simplify_if_then_else (x);
3784 case ZERO_EXTRACT:
3785 case SIGN_EXTRACT:
3786 case ZERO_EXTEND:
3787 case SIGN_EXTEND:
3788 /* If we are processing SET_DEST, we are done. */
3789 if (in_dest)
3790 return x;
3792 return expand_compound_operation (x);
3794 case SET:
3795 return simplify_set (x);
3797 case AND:
3798 case IOR:
3799 case XOR:
3800 return simplify_logical (x, last);
3802 case ABS:
3803 /* (abs (neg <foo>)) -> (abs <foo>) */
3804 if (GET_CODE (XEXP (x, 0)) == NEG)
3805 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3807 /* If operand is something known to be positive, ignore the ABS. */
3808 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
3809 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
3810 <= HOST_BITS_PER_WIDE_INT)
3811 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3812 & ((HOST_WIDE_INT) 1
3813 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
3814 == 0)))
3815 return XEXP (x, 0);
3818 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
3819 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
3820 return gen_rtx_combine (NEG, mode, XEXP (x, 0));
3822 break;
3824 case FFS:
3825 /* (ffs (*_extend <X>)) = (ffs <X>) */
3826 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3827 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3828 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3829 break;
3831 case FLOAT:
3832 /* (float (sign_extend <X>)) = (float <X>). */
3833 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
3834 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3835 break;
3837 case ASHIFT:
3838 case LSHIFTRT:
3839 case ASHIFTRT:
3840 case ROTATE:
3841 case ROTATERT:
3842 /* If this is a shift by a constant amount, simplify it. */
3843 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
3844 return simplify_shift_const (x, code, mode, XEXP (x, 0),
3845 INTVAL (XEXP (x, 1)));
3847 #ifdef SHIFT_COUNT_TRUNCATED
3848 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
3849 SUBST (XEXP (x, 1),
3850 force_to_mode (XEXP (x, 1), GET_MODE (x),
3851 ((HOST_WIDE_INT) 1
3852 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
3853 - 1,
3854 NULL_RTX, 0));
3855 #endif
3857 break;
3860 return x;
3863 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
3865 static rtx
3866 simplify_if_then_else (x)
3867 rtx x;
3869 enum machine_mode mode = GET_MODE (x);
3870 rtx cond = XEXP (x, 0);
3871 rtx true = XEXP (x, 1);
3872 rtx false = XEXP (x, 2);
3873 enum rtx_code true_code = GET_CODE (cond);
3874 int comparison_p = GET_RTX_CLASS (true_code) == '<';
3875 rtx temp;
3876 int i;
3878 /* Simplify storing of the truth value. */
3879 if (comparison_p && true == const_true_rtx && false == const0_rtx)
3880 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
3882 /* Also when the truth value has to be reversed. */
3883 if (comparison_p && reversible_comparison_p (cond)
3884 && true == const0_rtx && false == const_true_rtx)
3885 return gen_binary (reverse_condition (true_code),
3886 mode, XEXP (cond, 0), XEXP (cond, 1));
3888 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
3889 in it is being compared against certain values. Get the true and false
3890 comparisons and see if that says anything about the value of each arm. */
3892 if (comparison_p && reversible_comparison_p (cond)
3893 && GET_CODE (XEXP (cond, 0)) == REG)
3895 HOST_WIDE_INT nzb;
3896 rtx from = XEXP (cond, 0);
3897 enum rtx_code false_code = reverse_condition (true_code);
3898 rtx true_val = XEXP (cond, 1);
3899 rtx false_val = true_val;
3900 int swapped = 0;
3902 /* If FALSE_CODE is EQ, swap the codes and arms. */
3904 if (false_code == EQ)
3906 swapped = 1, true_code = EQ, false_code = NE;
3907 temp = true, true = false, false = temp;
3910 /* If we are comparing against zero and the expression being tested has
3911 only a single bit that might be nonzero, that is its value when it is
3912 not equal to zero. Similarly if it is known to be -1 or 0. */
3914 if (true_code == EQ && true_val == const0_rtx
3915 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
3916 false_code = EQ, false_val = GEN_INT (nzb);
3917 else if (true_code == EQ && true_val == const0_rtx
3918 && (num_sign_bit_copies (from, GET_MODE (from))
3919 == GET_MODE_BITSIZE (GET_MODE (from))))
3920 false_code = EQ, false_val = constm1_rtx;
3922 /* Now simplify an arm if we know the value of the register in the
3923 branch and it is used in the arm. Be careful due to the potential
3924 of locally-shared RTL. */
3926 if (reg_mentioned_p (from, true))
3927 true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
3928 pc_rtx, pc_rtx, 0, 0);
3929 if (reg_mentioned_p (from, false))
3930 false = subst (known_cond (copy_rtx (false), false_code,
3931 from, false_val),
3932 pc_rtx, pc_rtx, 0, 0);
3934 SUBST (XEXP (x, 1), swapped ? false : true);
3935 SUBST (XEXP (x, 2), swapped ? true : false);
3937 true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
3940 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
3941 reversed, do so to avoid needing two sets of patterns for
3942 subtract-and-branch insns. Similarly if we have a constant in the true
3943 arm, the false arm is the same as the first operand of the comparison, or
3944 the false arm is more complicated than the true arm. */
3946 if (comparison_p && reversible_comparison_p (cond)
3947 && (true == pc_rtx
3948 || (CONSTANT_P (true)
3949 && GET_CODE (false) != CONST_INT && false != pc_rtx)
3950 || true == const0_rtx
3951 || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
3952 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
3953 || (GET_CODE (true) == SUBREG
3954 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
3955 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
3956 || reg_mentioned_p (true, false)
3957 || rtx_equal_p (false, XEXP (cond, 0))))
3959 true_code = reverse_condition (true_code);
3960 SUBST (XEXP (x, 0),
3961 gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
3962 XEXP (cond, 1)));
3964 SUBST (XEXP (x, 1), false);
3965 SUBST (XEXP (x, 2), true);
3967 temp = true, true = false, false = temp, cond = XEXP (x, 0);
3970 /* If the two arms are identical, we don't need the comparison. */
3972 if (rtx_equal_p (true, false) && ! side_effects_p (cond))
3973 return true;
3975 /* Look for cases where we have (abs x) or (neg (abs X)). */
3977 if (GET_MODE_CLASS (mode) == MODE_INT
3978 && GET_CODE (false) == NEG
3979 && rtx_equal_p (true, XEXP (false, 0))
3980 && comparison_p
3981 && rtx_equal_p (true, XEXP (cond, 0))
3982 && ! side_effects_p (true))
3983 switch (true_code)
3985 case GT:
3986 case GE:
3987 return gen_unary (ABS, mode, mode, true);
3988 case LT:
3989 case LE:
3990 return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
3993 /* Look for MIN or MAX. */
3995 if ((! FLOAT_MODE_P (mode) || flag_fast_math)
3996 && comparison_p
3997 && rtx_equal_p (XEXP (cond, 0), true)
3998 && rtx_equal_p (XEXP (cond, 1), false)
3999 && ! side_effects_p (cond))
4000 switch (true_code)
4002 case GE:
4003 case GT:
4004 return gen_binary (SMAX, mode, true, false);
4005 case LE:
4006 case LT:
4007 return gen_binary (SMIN, mode, true, false);
4008 case GEU:
4009 case GTU:
4010 return gen_binary (UMAX, mode, true, false);
4011 case LEU:
4012 case LTU:
4013 return gen_binary (UMIN, mode, true, false);
4016 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
4018 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4019 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4020 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4021 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4022 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4023 neither of the above, but it isn't worth checking for. */
4025 if (comparison_p && mode != VOIDmode && ! side_effects_p (x))
4027 rtx t = make_compound_operation (true, SET);
4028 rtx f = make_compound_operation (false, SET);
4029 rtx cond_op0 = XEXP (cond, 0);
4030 rtx cond_op1 = XEXP (cond, 1);
4031 enum rtx_code op, extend_op = NIL;
4032 enum machine_mode m = mode;
4033 rtx z = 0, c1;
4035 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4036 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4037 || GET_CODE (t) == ASHIFT
4038 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4039 && rtx_equal_p (XEXP (t, 0), f))
4040 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4042 /* If an identity-zero op is commutative, check whether there
4043 would be a match if we swapped the operands. */
4044 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4045 || GET_CODE (t) == XOR)
4046 && rtx_equal_p (XEXP (t, 1), f))
4047 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4048 else if (GET_CODE (t) == SIGN_EXTEND
4049 && (GET_CODE (XEXP (t, 0)) == PLUS
4050 || GET_CODE (XEXP (t, 0)) == MINUS
4051 || GET_CODE (XEXP (t, 0)) == IOR
4052 || GET_CODE (XEXP (t, 0)) == XOR
4053 || GET_CODE (XEXP (t, 0)) == ASHIFT
4054 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4055 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4056 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4057 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4058 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4059 && (num_sign_bit_copies (f, GET_MODE (f))
4060 > (GET_MODE_BITSIZE (mode)
4061 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4063 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4064 extend_op = SIGN_EXTEND;
4065 m = GET_MODE (XEXP (t, 0));
4067 else if (GET_CODE (t) == SIGN_EXTEND
4068 && (GET_CODE (XEXP (t, 0)) == PLUS
4069 || GET_CODE (XEXP (t, 0)) == IOR
4070 || GET_CODE (XEXP (t, 0)) == XOR)
4071 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4072 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4073 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4074 && (num_sign_bit_copies (f, GET_MODE (f))
4075 > (GET_MODE_BITSIZE (mode)
4076 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4078 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4079 extend_op = SIGN_EXTEND;
4080 m = GET_MODE (XEXP (t, 0));
4082 else if (GET_CODE (t) == ZERO_EXTEND
4083 && (GET_CODE (XEXP (t, 0)) == PLUS
4084 || GET_CODE (XEXP (t, 0)) == MINUS
4085 || GET_CODE (XEXP (t, 0)) == IOR
4086 || GET_CODE (XEXP (t, 0)) == XOR
4087 || GET_CODE (XEXP (t, 0)) == ASHIFT
4088 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4089 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4090 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4091 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4092 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4093 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4094 && ((nonzero_bits (f, GET_MODE (f))
4095 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4096 == 0))
4098 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4099 extend_op = ZERO_EXTEND;
4100 m = GET_MODE (XEXP (t, 0));
4102 else if (GET_CODE (t) == ZERO_EXTEND
4103 && (GET_CODE (XEXP (t, 0)) == PLUS
4104 || GET_CODE (XEXP (t, 0)) == IOR
4105 || GET_CODE (XEXP (t, 0)) == XOR)
4106 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4107 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4108 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4109 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4110 && ((nonzero_bits (f, GET_MODE (f))
4111 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4112 == 0))
4114 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4115 extend_op = ZERO_EXTEND;
4116 m = GET_MODE (XEXP (t, 0));
4119 if (z)
4121 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4122 pc_rtx, pc_rtx, 0, 0);
4123 temp = gen_binary (MULT, m, temp,
4124 gen_binary (MULT, m, c1, const_true_rtx));
4125 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4126 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4128 if (extend_op != NIL)
4129 temp = gen_unary (extend_op, mode, m, temp);
4131 return temp;
4134 #endif
4136 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4137 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4138 negation of a single bit, we can convert this operation to a shift. We
4139 can actually do this more generally, but it doesn't seem worth it. */
4141 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4142 && false == const0_rtx && GET_CODE (true) == CONST_INT
4143 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4144 && (i = exact_log2 (INTVAL (true))) >= 0)
4145 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4146 == GET_MODE_BITSIZE (mode))
4147 && (i = exact_log2 (- INTVAL (true))) >= 0)))
4148 return
4149 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4150 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4152 return x;
4155 /* Simplify X, a SET expression. Return the new expression. */
4157 static rtx
4158 simplify_set (x)
4159 rtx x;
4161 rtx src = SET_SRC (x);
4162 rtx dest = SET_DEST (x);
4163 enum machine_mode mode
4164 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4165 rtx other_insn;
4166 rtx *cc_use;
4168 /* (set (pc) (return)) gets written as (return). */
4169 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4170 return src;
4172 /* Now that we know for sure which bits of SRC we are using, see if we can
4173 simplify the expression for the object knowing that we only need the
4174 low-order bits. */
4176 if (GET_MODE_CLASS (mode) == MODE_INT)
4177 src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
4179 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4180 the comparison result and try to simplify it unless we already have used
4181 undobuf.other_insn. */
4182 if ((GET_CODE (src) == COMPARE
4183 #ifdef HAVE_cc0
4184 || dest == cc0_rtx
4185 #endif
4187 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4188 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4189 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4190 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4192 enum rtx_code old_code = GET_CODE (*cc_use);
4193 enum rtx_code new_code;
4194 rtx op0, op1;
4195 int other_changed = 0;
4196 enum machine_mode compare_mode = GET_MODE (dest);
4198 if (GET_CODE (src) == COMPARE)
4199 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4200 else
4201 op0 = src, op1 = const0_rtx;
4203 /* Simplify our comparison, if possible. */
4204 new_code = simplify_comparison (old_code, &op0, &op1);
4206 #ifdef EXTRA_CC_MODES
4207 /* If this machine has CC modes other than CCmode, check to see if we
4208 need to use a different CC mode here. */
4209 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4210 #endif /* EXTRA_CC_MODES */
4212 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4213 /* If the mode changed, we have to change SET_DEST, the mode in the
4214 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4215 a hard register, just build new versions with the proper mode. If it
4216 is a pseudo, we lose unless it is only time we set the pseudo, in
4217 which case we can safely change its mode. */
4218 if (compare_mode != GET_MODE (dest))
4220 int regno = REGNO (dest);
4221 rtx new_dest = gen_rtx (REG, compare_mode, regno);
4223 if (regno < FIRST_PSEUDO_REGISTER
4224 || (reg_n_sets[regno] == 1 && ! REG_USERVAR_P (dest)))
4226 if (regno >= FIRST_PSEUDO_REGISTER)
4227 SUBST (regno_reg_rtx[regno], new_dest);
4229 SUBST (SET_DEST (x), new_dest);
4230 SUBST (XEXP (*cc_use, 0), new_dest);
4231 other_changed = 1;
4233 dest = new_dest;
4236 #endif
4238 /* If the code changed, we have to build a new comparison in
4239 undobuf.other_insn. */
4240 if (new_code != old_code)
4242 unsigned HOST_WIDE_INT mask;
4244 SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
4245 dest, const0_rtx));
4247 /* If the only change we made was to change an EQ into an NE or
4248 vice versa, OP0 has only one bit that might be nonzero, and OP1
4249 is zero, check if changing the user of the condition code will
4250 produce a valid insn. If it won't, we can keep the original code
4251 in that insn by surrounding our operation with an XOR. */
4253 if (((old_code == NE && new_code == EQ)
4254 || (old_code == EQ && new_code == NE))
4255 && ! other_changed && op1 == const0_rtx
4256 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4257 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4259 rtx pat = PATTERN (other_insn), note = 0;
4261 if ((recog_for_combine (&pat, other_insn, &note) < 0
4262 && ! check_asm_operands (pat)))
4264 PUT_CODE (*cc_use, old_code);
4265 other_insn = 0;
4267 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4271 other_changed = 1;
4274 if (other_changed)
4275 undobuf.other_insn = other_insn;
4277 #ifdef HAVE_cc0
4278 /* If we are now comparing against zero, change our source if
4279 needed. If we do not use cc0, we always have a COMPARE. */
4280 if (op1 == const0_rtx && dest == cc0_rtx)
4282 SUBST (SET_SRC (x), op0);
4283 src = op0;
4285 else
4286 #endif
4288 /* Otherwise, if we didn't previously have a COMPARE in the
4289 correct mode, we need one. */
4290 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
4292 SUBST (SET_SRC (x),
4293 gen_rtx_combine (COMPARE, compare_mode, op0, op1));
4294 src = SET_SRC (x);
4296 else
4298 /* Otherwise, update the COMPARE if needed. */
4299 SUBST (XEXP (src, 0), op0);
4300 SUBST (XEXP (src, 1), op1);
4303 else
4305 /* Get SET_SRC in a form where we have placed back any
4306 compound expressions. Then do the checks below. */
4307 src = make_compound_operation (src, SET);
4308 SUBST (SET_SRC (x), src);
4311 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
4312 and X being a REG or (subreg (reg)), we may be able to convert this to
4313 (set (subreg:m2 x) (op)).
4315 We can always do this if M1 is narrower than M2 because that means that
4316 we only care about the low bits of the result.
4318 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
4319 perform a narrower operation that requested since the high-order bits will
4320 be undefined. On machine where it is defined, this transformation is safe
4321 as long as M1 and M2 have the same number of words. */
4323 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4324 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
4325 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
4326 / UNITS_PER_WORD)
4327 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4328 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
4329 #ifndef WORD_REGISTER_OPERATIONS
4330 && (GET_MODE_SIZE (GET_MODE (src))
4331 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4332 #endif
4333 && (GET_CODE (dest) == REG
4334 || (GET_CODE (dest) == SUBREG
4335 && GET_CODE (SUBREG_REG (dest)) == REG)))
4337 SUBST (SET_DEST (x),
4338 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
4339 dest));
4340 SUBST (SET_SRC (x), SUBREG_REG (src));
4342 src = SET_SRC (x), dest = SET_DEST (x);
4345 #ifdef LOAD_EXTEND_OP
4346 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
4347 would require a paradoxical subreg. Replace the subreg with a
4348 zero_extend to avoid the reload that would otherwise be required. */
4350 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4351 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
4352 && SUBREG_WORD (src) == 0
4353 && (GET_MODE_SIZE (GET_MODE (src))
4354 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4355 && GET_CODE (SUBREG_REG (src)) == MEM)
4357 SUBST (SET_SRC (x),
4358 gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
4359 GET_MODE (src), XEXP (src, 0)));
4361 src = SET_SRC (x);
4363 #endif
4365 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
4366 are comparing an item known to be 0 or -1 against 0, use a logical
4367 operation instead. Check for one of the arms being an IOR of the other
4368 arm with some value. We compute three terms to be IOR'ed together. In
4369 practice, at most two will be nonzero. Then we do the IOR's. */
4371 if (GET_CODE (dest) != PC
4372 && GET_CODE (src) == IF_THEN_ELSE
4373 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
4374 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
4375 && XEXP (XEXP (src, 0), 1) == const0_rtx
4376 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
4377 #ifdef HAVE_conditional_move
4378 && ! can_conditionally_move_p (GET_MODE (src))
4379 #endif
4380 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
4381 GET_MODE (XEXP (XEXP (src, 0), 0)))
4382 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
4383 && ! side_effects_p (src))
4385 rtx true = (GET_CODE (XEXP (src, 0)) == NE
4386 ? XEXP (src, 1) : XEXP (src, 2));
4387 rtx false = (GET_CODE (XEXP (src, 0)) == NE
4388 ? XEXP (src, 2) : XEXP (src, 1));
4389 rtx term1 = const0_rtx, term2, term3;
4391 if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
4392 term1 = false, true = XEXP (true, 1), false = const0_rtx;
4393 else if (GET_CODE (true) == IOR
4394 && rtx_equal_p (XEXP (true, 1), false))
4395 term1 = false, true = XEXP (true, 0), false = const0_rtx;
4396 else if (GET_CODE (false) == IOR
4397 && rtx_equal_p (XEXP (false, 0), true))
4398 term1 = true, false = XEXP (false, 1), true = const0_rtx;
4399 else if (GET_CODE (false) == IOR
4400 && rtx_equal_p (XEXP (false, 1), true))
4401 term1 = true, false = XEXP (false, 0), true = const0_rtx;
4403 term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
4404 term3 = gen_binary (AND, GET_MODE (src),
4405 gen_unary (NOT, GET_MODE (src), GET_MODE (src),
4406 XEXP (XEXP (src, 0), 0)),
4407 false);
4409 SUBST (SET_SRC (x),
4410 gen_binary (IOR, GET_MODE (src),
4411 gen_binary (IOR, GET_MODE (src), term1, term2),
4412 term3));
4414 src = SET_SRC (x);
4417 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
4418 whole thing fail. */
4419 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
4420 return src;
4421 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
4422 return dest;
4423 else
4424 /* Convert this into a field assignment operation, if possible. */
4425 return make_field_assignment (x);
4428 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
4429 result. LAST is nonzero if this is the last retry. */
4431 static rtx
4432 simplify_logical (x, last)
4433 rtx x;
4434 int last;
4436 enum machine_mode mode = GET_MODE (x);
4437 rtx op0 = XEXP (x, 0);
4438 rtx op1 = XEXP (x, 1);
4440 switch (GET_CODE (x))
4442 case AND:
4443 /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
4444 insn (and may simplify more). */
4445 if (GET_CODE (op0) == XOR
4446 && rtx_equal_p (XEXP (op0, 0), op1)
4447 && ! side_effects_p (op1))
4448 x = gen_binary (AND, mode,
4449 gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
4451 if (GET_CODE (op0) == XOR
4452 && rtx_equal_p (XEXP (op0, 1), op1)
4453 && ! side_effects_p (op1))
4454 x = gen_binary (AND, mode,
4455 gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
4457 /* Similarly for (~ (A ^ B)) & A. */
4458 if (GET_CODE (op0) == NOT
4459 && GET_CODE (XEXP (op0, 0)) == XOR
4460 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
4461 && ! side_effects_p (op1))
4462 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
4464 if (GET_CODE (op0) == NOT
4465 && GET_CODE (XEXP (op0, 0)) == XOR
4466 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
4467 && ! side_effects_p (op1))
4468 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
4470 if (GET_CODE (op1) == CONST_INT)
4472 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
4474 /* If we have (ior (and (X C1) C2)) and the next restart would be
4475 the last, simplify this by making C1 as small as possible
4476 and then exit. */
4477 if (last
4478 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
4479 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4480 && GET_CODE (op1) == CONST_INT)
4481 return gen_binary (IOR, mode,
4482 gen_binary (AND, mode, XEXP (op0, 0),
4483 GEN_INT (INTVAL (XEXP (op0, 1))
4484 & ~ INTVAL (op1))), op1);
4486 if (GET_CODE (x) != AND)
4487 return x;
4490 /* Convert (A | B) & A to A. */
4491 if (GET_CODE (op0) == IOR
4492 && (rtx_equal_p (XEXP (op0, 0), op1)
4493 || rtx_equal_p (XEXP (op0, 1), op1))
4494 && ! side_effects_p (XEXP (op0, 0))
4495 && ! side_effects_p (XEXP (op0, 1)))
4496 return op1;
4498 /* In the following group of tests (and those in case IOR below),
4499 we start with some combination of logical operations and apply
4500 the distributive law followed by the inverse distributive law.
4501 Most of the time, this results in no change. However, if some of
4502 the operands are the same or inverses of each other, simplifications
4503 will result.
4505 For example, (and (ior A B) (not B)) can occur as the result of
4506 expanding a bit field assignment. When we apply the distributive
4507 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
4508 which then simplifies to (and (A (not B))).
4510 If we have (and (ior A B) C), apply the distributive law and then
4511 the inverse distributive law to see if things simplify. */
4513 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
4515 x = apply_distributive_law
4516 (gen_binary (GET_CODE (op0), mode,
4517 gen_binary (AND, mode, XEXP (op0, 0), op1),
4518 gen_binary (AND, mode, XEXP (op0, 1), op1)));
4519 if (GET_CODE (x) != AND)
4520 return x;
4523 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
4524 return apply_distributive_law
4525 (gen_binary (GET_CODE (op1), mode,
4526 gen_binary (AND, mode, XEXP (op1, 0), op0),
4527 gen_binary (AND, mode, XEXP (op1, 1), op0)));
4529 /* Similarly, taking advantage of the fact that
4530 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
4532 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
4533 return apply_distributive_law
4534 (gen_binary (XOR, mode,
4535 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
4536 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 1))));
4538 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
4539 return apply_distributive_law
4540 (gen_binary (XOR, mode,
4541 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
4542 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 1))));
4543 break;
4545 case IOR:
4546 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
4547 if (GET_CODE (op1) == CONST_INT
4548 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4549 && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
4550 return op1;
4552 /* Convert (A & B) | A to A. */
4553 if (GET_CODE (op0) == AND
4554 && (rtx_equal_p (XEXP (op0, 0), op1)
4555 || rtx_equal_p (XEXP (op0, 1), op1))
4556 && ! side_effects_p (XEXP (op0, 0))
4557 && ! side_effects_p (XEXP (op0, 1)))
4558 return op1;
4560 /* If we have (ior (and A B) C), apply the distributive law and then
4561 the inverse distributive law to see if things simplify. */
4563 if (GET_CODE (op0) == AND)
4565 x = apply_distributive_law
4566 (gen_binary (AND, mode,
4567 gen_binary (IOR, mode, XEXP (op0, 0), op1),
4568 gen_binary (IOR, mode, XEXP (op0, 1), op1)));
4570 if (GET_CODE (x) != IOR)
4571 return x;
4574 if (GET_CODE (op1) == AND)
4576 x = apply_distributive_law
4577 (gen_binary (AND, mode,
4578 gen_binary (IOR, mode, XEXP (op1, 0), op0),
4579 gen_binary (IOR, mode, XEXP (op1, 1), op0)));
4581 if (GET_CODE (x) != IOR)
4582 return x;
4585 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
4586 mode size to (rotate A CX). */
4588 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
4589 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
4590 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
4591 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4592 && GET_CODE (XEXP (op1, 1)) == CONST_INT
4593 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
4594 == GET_MODE_BITSIZE (mode)))
4595 return gen_rtx (ROTATE, mode, XEXP (op0, 0),
4596 (GET_CODE (op0) == ASHIFT
4597 ? XEXP (op0, 1) : XEXP (op1, 1)));
4599 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
4600 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
4601 does not affect any of the bits in OP1, it can really be done
4602 as a PLUS and we can associate. We do this by seeing if OP1
4603 can be safely shifted left C bits. */
4604 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
4605 && GET_CODE (XEXP (op0, 0)) == PLUS
4606 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
4607 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4608 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
4610 int count = INTVAL (XEXP (op0, 1));
4611 HOST_WIDE_INT mask = INTVAL (op1) << count;
4613 if (mask >> count == INTVAL (op1)
4614 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
4616 SUBST (XEXP (XEXP (op0, 0), 1),
4617 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
4618 return op0;
4621 break;
4623 case XOR:
4624 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
4625 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
4626 (NOT y). */
4628 int num_negated = 0;
4630 if (GET_CODE (op0) == NOT)
4631 num_negated++, op0 = XEXP (op0, 0);
4632 if (GET_CODE (op1) == NOT)
4633 num_negated++, op1 = XEXP (op1, 0);
4635 if (num_negated == 2)
4637 SUBST (XEXP (x, 0), op0);
4638 SUBST (XEXP (x, 1), op1);
4640 else if (num_negated == 1)
4641 return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
4644 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
4645 correspond to a machine insn or result in further simplifications
4646 if B is a constant. */
4648 if (GET_CODE (op0) == AND
4649 && rtx_equal_p (XEXP (op0, 1), op1)
4650 && ! side_effects_p (op1))
4651 return gen_binary (AND, mode,
4652 gen_unary (NOT, mode, mode, XEXP (op0, 0)),
4653 op1);
4655 else if (GET_CODE (op0) == AND
4656 && rtx_equal_p (XEXP (op0, 0), op1)
4657 && ! side_effects_p (op1))
4658 return gen_binary (AND, mode,
4659 gen_unary (NOT, mode, mode, XEXP (op0, 1)),
4660 op1);
4662 #if STORE_FLAG_VALUE == 1
4663 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
4664 comparison. */
4665 if (op1 == const1_rtx
4666 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
4667 && reversible_comparison_p (op0))
4668 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
4669 mode, XEXP (op0, 0), XEXP (op0, 1));
4671 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
4672 is (lt foo (const_int 0)), so we can perform the above
4673 simplification. */
4675 if (op1 == const1_rtx
4676 && GET_CODE (op0) == LSHIFTRT
4677 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4678 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
4679 return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
4680 #endif
4682 /* (xor (comparison foo bar) (const_int sign-bit))
4683 when STORE_FLAG_VALUE is the sign bit. */
4684 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4685 && (STORE_FLAG_VALUE
4686 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4687 && op1 == const_true_rtx
4688 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
4689 && reversible_comparison_p (op0))
4690 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
4691 mode, XEXP (op0, 0), XEXP (op0, 1));
4692 break;
4695 return x;
4698 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
4699 operations" because they can be replaced with two more basic operations.
4700 ZERO_EXTEND is also considered "compound" because it can be replaced with
4701 an AND operation, which is simpler, though only one operation.
4703 The function expand_compound_operation is called with an rtx expression
4704 and will convert it to the appropriate shifts and AND operations,
4705 simplifying at each stage.
4707 The function make_compound_operation is called to convert an expression
4708 consisting of shifts and ANDs into the equivalent compound expression.
4709 It is the inverse of this function, loosely speaking. */
4711 static rtx
4712 expand_compound_operation (x)
4713 rtx x;
4715 int pos = 0, len;
4716 int unsignedp = 0;
4717 int modewidth;
4718 rtx tem;
4720 switch (GET_CODE (x))
4722 case ZERO_EXTEND:
4723 unsignedp = 1;
4724 case SIGN_EXTEND:
4725 /* We can't necessarily use a const_int for a multiword mode;
4726 it depends on implicitly extending the value.
4727 Since we don't know the right way to extend it,
4728 we can't tell whether the implicit way is right.
4730 Even for a mode that is no wider than a const_int,
4731 we can't win, because we need to sign extend one of its bits through
4732 the rest of it, and we don't know which bit. */
4733 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
4734 return x;
4736 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
4737 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
4738 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
4739 reloaded. If not for that, MEM's would very rarely be safe.
4741 Reject MODEs bigger than a word, because we might not be able
4742 to reference a two-register group starting with an arbitrary register
4743 (and currently gen_lowpart might crash for a SUBREG). */
4745 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
4746 return x;
4748 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
4749 /* If the inner object has VOIDmode (the only way this can happen
4750 is if it is a ASM_OPERANDS), we can't do anything since we don't
4751 know how much masking to do. */
4752 if (len == 0)
4753 return x;
4755 break;
4757 case ZERO_EXTRACT:
4758 unsignedp = 1;
4759 case SIGN_EXTRACT:
4760 /* If the operand is a CLOBBER, just return it. */
4761 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
4762 return XEXP (x, 0);
4764 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4765 || GET_CODE (XEXP (x, 2)) != CONST_INT
4766 || GET_MODE (XEXP (x, 0)) == VOIDmode)
4767 return x;
4769 len = INTVAL (XEXP (x, 1));
4770 pos = INTVAL (XEXP (x, 2));
4772 /* If this goes outside the object being extracted, replace the object
4773 with a (use (mem ...)) construct that only combine understands
4774 and is used only for this purpose. */
4775 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4776 SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0)));
4778 if (BITS_BIG_ENDIAN)
4779 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
4781 break;
4783 default:
4784 return x;
4787 /* If we reach here, we want to return a pair of shifts. The inner
4788 shift is a left shift of BITSIZE - POS - LEN bits. The outer
4789 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
4790 logical depending on the value of UNSIGNEDP.
4792 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
4793 converted into an AND of a shift.
4795 We must check for the case where the left shift would have a negative
4796 count. This can happen in a case like (x >> 31) & 255 on machines
4797 that can't shift by a constant. On those machines, we would first
4798 combine the shift with the AND to produce a variable-position
4799 extraction. Then the constant of 31 would be substituted in to produce
4800 a such a position. */
4802 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
4803 if (modewidth >= pos - len)
4804 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
4805 GET_MODE (x),
4806 simplify_shift_const (NULL_RTX, ASHIFT,
4807 GET_MODE (x),
4808 XEXP (x, 0),
4809 modewidth - pos - len),
4810 modewidth - len);
4812 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
4813 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
4814 simplify_shift_const (NULL_RTX, LSHIFTRT,
4815 GET_MODE (x),
4816 XEXP (x, 0), pos),
4817 ((HOST_WIDE_INT) 1 << len) - 1);
4818 else
4819 /* Any other cases we can't handle. */
4820 return x;
4823 /* If we couldn't do this for some reason, return the original
4824 expression. */
4825 if (GET_CODE (tem) == CLOBBER)
4826 return x;
4828 return tem;
4831 /* X is a SET which contains an assignment of one object into
4832 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
4833 or certain SUBREGS). If possible, convert it into a series of
4834 logical operations.
4836 We half-heartedly support variable positions, but do not at all
4837 support variable lengths. */
4839 static rtx
4840 expand_field_assignment (x)
4841 rtx x;
4843 rtx inner;
4844 rtx pos; /* Always counts from low bit. */
4845 int len;
4846 rtx mask;
4847 enum machine_mode compute_mode;
4849 /* Loop until we find something we can't simplify. */
4850 while (1)
4852 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
4853 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
4855 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
4856 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
4857 pos = const0_rtx;
4859 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4860 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
4862 inner = XEXP (SET_DEST (x), 0);
4863 len = INTVAL (XEXP (SET_DEST (x), 1));
4864 pos = XEXP (SET_DEST (x), 2);
4866 /* If the position is constant and spans the width of INNER,
4867 surround INNER with a USE to indicate this. */
4868 if (GET_CODE (pos) == CONST_INT
4869 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
4870 inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner);
4872 if (BITS_BIG_ENDIAN)
4874 if (GET_CODE (pos) == CONST_INT)
4875 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
4876 - INTVAL (pos));
4877 else if (GET_CODE (pos) == MINUS
4878 && GET_CODE (XEXP (pos, 1)) == CONST_INT
4879 && (INTVAL (XEXP (pos, 1))
4880 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
4881 /* If position is ADJUST - X, new position is X. */
4882 pos = XEXP (pos, 0);
4883 else
4884 pos = gen_binary (MINUS, GET_MODE (pos),
4885 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
4886 - len),
4887 pos);
4891 /* A SUBREG between two modes that occupy the same numbers of words
4892 can be done by moving the SUBREG to the source. */
4893 else if (GET_CODE (SET_DEST (x)) == SUBREG
4894 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
4895 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
4896 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
4897 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
4899 x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)),
4900 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
4901 SET_SRC (x)));
4902 continue;
4904 else
4905 break;
4907 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
4908 inner = SUBREG_REG (inner);
4910 compute_mode = GET_MODE (inner);
4912 /* Compute a mask of LEN bits, if we can do this on the host machine. */
4913 if (len < HOST_BITS_PER_WIDE_INT)
4914 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
4915 else
4916 break;
4918 /* Now compute the equivalent expression. Make a copy of INNER
4919 for the SET_DEST in case it is a MEM into which we will substitute;
4920 we don't want shared RTL in that case. */
4921 x = gen_rtx (SET, VOIDmode, copy_rtx (inner),
4922 gen_binary (IOR, compute_mode,
4923 gen_binary (AND, compute_mode,
4924 gen_unary (NOT, compute_mode,
4925 compute_mode,
4926 gen_binary (ASHIFT,
4927 compute_mode,
4928 mask, pos)),
4929 inner),
4930 gen_binary (ASHIFT, compute_mode,
4931 gen_binary (AND, compute_mode,
4932 gen_lowpart_for_combine
4933 (compute_mode,
4934 SET_SRC (x)),
4935 mask),
4936 pos)));
4939 return x;
4942 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
4943 it is an RTX that represents a variable starting position; otherwise,
4944 POS is the (constant) starting bit position (counted from the LSB).
4946 INNER may be a USE. This will occur when we started with a bitfield
4947 that went outside the boundary of the object in memory, which is
4948 allowed on most machines. To isolate this case, we produce a USE
4949 whose mode is wide enough and surround the MEM with it. The only
4950 code that understands the USE is this routine. If it is not removed,
4951 it will cause the resulting insn not to match.
4953 UNSIGNEDP is non-zero for an unsigned reference and zero for a
4954 signed reference.
4956 IN_DEST is non-zero if this is a reference in the destination of a
4957 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
4958 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
4959 be used.
4961 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
4962 ZERO_EXTRACT should be built even for bits starting at bit 0.
4964 MODE is the desired mode of the result (if IN_DEST == 0). */
4966 static rtx
4967 make_extraction (mode, inner, pos, pos_rtx, len,
4968 unsignedp, in_dest, in_compare)
4969 enum machine_mode mode;
4970 rtx inner;
4971 int pos;
4972 rtx pos_rtx;
4973 int len;
4974 int unsignedp;
4975 int in_dest, in_compare;
4977 /* This mode describes the size of the storage area
4978 to fetch the overall value from. Within that, we
4979 ignore the POS lowest bits, etc. */
4980 enum machine_mode is_mode = GET_MODE (inner);
4981 enum machine_mode inner_mode;
4982 enum machine_mode wanted_mem_mode = byte_mode;
4983 enum machine_mode pos_mode = word_mode;
4984 enum machine_mode extraction_mode = word_mode;
4985 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
4986 int spans_byte = 0;
4987 rtx new = 0;
4988 rtx orig_pos_rtx = pos_rtx;
4989 int orig_pos;
4991 /* Get some information about INNER and get the innermost object. */
4992 if (GET_CODE (inner) == USE)
4993 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
4994 /* We don't need to adjust the position because we set up the USE
4995 to pretend that it was a full-word object. */
4996 spans_byte = 1, inner = XEXP (inner, 0);
4997 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
4999 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5000 consider just the QI as the memory to extract from.
5001 The subreg adds or removes high bits; its mode is
5002 irrelevant to the meaning of this extraction,
5003 since POS and LEN count from the lsb. */
5004 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5005 is_mode = GET_MODE (SUBREG_REG (inner));
5006 inner = SUBREG_REG (inner);
5009 inner_mode = GET_MODE (inner);
5011 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5012 pos = INTVAL (pos_rtx), pos_rtx = 0;
5014 /* See if this can be done without an extraction. We never can if the
5015 width of the field is not the same as that of some integer mode. For
5016 registers, we can only avoid the extraction if the position is at the
5017 low-order bit and this is either not in the destination or we have the
5018 appropriate STRICT_LOW_PART operation available.
5020 For MEM, we can avoid an extract if the field starts on an appropriate
5021 boundary and we can change the mode of the memory reference. However,
5022 we cannot directly access the MEM if we have a USE and the underlying
5023 MEM is not TMODE. This combination means that MEM was being used in a
5024 context where bits outside its mode were being referenced; that is only
5025 valid in bit-field insns. */
5027 if (tmode != BLKmode
5028 && ! (spans_byte && inner_mode != tmode)
5029 && ((pos_rtx == 0 && pos == 0 && GET_CODE (inner) != MEM
5030 && (! in_dest
5031 || (GET_CODE (inner) == REG
5032 && (movstrict_optab->handlers[(int) tmode].insn_code
5033 != CODE_FOR_nothing))))
5034 || (GET_CODE (inner) == MEM && pos_rtx == 0
5035 && (pos
5036 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5037 : BITS_PER_UNIT)) == 0
5038 /* We can't do this if we are widening INNER_MODE (it
5039 may not be aligned, for one thing). */
5040 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5041 && (inner_mode == tmode
5042 || (! mode_dependent_address_p (XEXP (inner, 0))
5043 && ! MEM_VOLATILE_P (inner))))))
5045 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5046 field. If the original and current mode are the same, we need not
5047 adjust the offset. Otherwise, we do if bytes big endian.
5049 If INNER is not a MEM, get a piece consisting of the just the field
5050 of interest (in this case POS must be 0). */
5052 if (GET_CODE (inner) == MEM)
5054 int offset;
5055 /* POS counts from lsb, but make OFFSET count in memory order. */
5056 if (BYTES_BIG_ENDIAN)
5057 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5058 else
5059 offset = pos / BITS_PER_UNIT;
5061 new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset));
5062 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
5063 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
5064 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
5066 else if (GET_CODE (inner) == REG)
5068 /* We can't call gen_lowpart_for_combine here since we always want
5069 a SUBREG and it would sometimes return a new hard register. */
5070 if (tmode != inner_mode)
5071 new = gen_rtx (SUBREG, tmode, inner,
5072 (WORDS_BIG_ENDIAN
5073 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD
5074 ? ((GET_MODE_SIZE (inner_mode)
5075 - GET_MODE_SIZE (tmode))
5076 / UNITS_PER_WORD)
5077 : 0));
5078 else
5079 new = inner;
5081 else
5082 new = force_to_mode (inner, tmode,
5083 len >= HOST_BITS_PER_WIDE_INT
5084 ? GET_MODE_MASK (tmode)
5085 : ((HOST_WIDE_INT) 1 << len) - 1,
5086 NULL_RTX, 0);
5088 /* If this extraction is going into the destination of a SET,
5089 make a STRICT_LOW_PART unless we made a MEM. */
5091 if (in_dest)
5092 return (GET_CODE (new) == MEM ? new
5093 : (GET_CODE (new) != SUBREG
5094 ? gen_rtx (CLOBBER, tmode, const0_rtx)
5095 : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
5097 /* Otherwise, sign- or zero-extend unless we already are in the
5098 proper mode. */
5100 return (mode == tmode ? new
5101 : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5102 mode, new));
5105 /* Unless this is a COMPARE or we have a funny memory reference,
5106 don't do anything with zero-extending field extracts starting at
5107 the low-order bit since they are simple AND operations. */
5108 if (pos_rtx == 0 && pos == 0 && ! in_dest
5109 && ! in_compare && ! spans_byte && unsignedp)
5110 return 0;
5112 /* Unless we are allowed to span bytes, reject this if we would be
5113 spanning bytes or if the position is not a constant and the length
5114 is not 1. In all other cases, we would only be going outside
5115 out object in cases when an original shift would have been
5116 undefined. */
5117 if (! spans_byte
5118 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
5119 || (pos_rtx != 0 && len != 1)))
5120 return 0;
5122 /* Get the mode to use should INNER be a MEM, the mode for the position,
5123 and the mode for the result. */
5124 #ifdef HAVE_insv
5125 if (in_dest)
5127 wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
5128 pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
5129 extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
5131 #endif
5133 #ifdef HAVE_extzv
5134 if (! in_dest && unsignedp)
5136 wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
5137 pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
5138 extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
5140 #endif
5142 #ifdef HAVE_extv
5143 if (! in_dest && ! unsignedp)
5145 wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
5146 pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
5147 extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
5149 #endif
5151 /* Never narrow an object, since that might not be safe. */
5153 if (mode != VOIDmode
5154 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
5155 extraction_mode = mode;
5157 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
5158 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5159 pos_mode = GET_MODE (pos_rtx);
5161 /* If this is not from memory or we have to change the mode of memory and
5162 cannot, the desired mode is EXTRACTION_MODE. */
5163 if (GET_CODE (inner) != MEM
5164 || (inner_mode != wanted_mem_mode
5165 && (mode_dependent_address_p (XEXP (inner, 0))
5166 || MEM_VOLATILE_P (inner))))
5167 wanted_mem_mode = extraction_mode;
5169 orig_pos = pos;
5171 if (BITS_BIG_ENDIAN)
5173 /* If position is constant, compute new position. Otherwise,
5174 build subtraction. */
5175 if (pos_rtx == 0)
5176 pos = (MAX (GET_MODE_BITSIZE (is_mode),
5177 GET_MODE_BITSIZE (wanted_mem_mode))
5178 - len - pos);
5179 else
5180 pos_rtx
5181 = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
5182 GEN_INT (MAX (GET_MODE_BITSIZE (is_mode),
5183 GET_MODE_BITSIZE (wanted_mem_mode))
5184 - len),
5185 pos_rtx);
5188 /* If INNER has a wider mode, make it smaller. If this is a constant
5189 extract, try to adjust the byte to point to the byte containing
5190 the value. */
5191 if (wanted_mem_mode != VOIDmode
5192 && GET_MODE_SIZE (wanted_mem_mode) < GET_MODE_SIZE (is_mode)
5193 && ((GET_CODE (inner) == MEM
5194 && (inner_mode == wanted_mem_mode
5195 || (! mode_dependent_address_p (XEXP (inner, 0))
5196 && ! MEM_VOLATILE_P (inner))))))
5198 int offset = 0;
5200 /* The computations below will be correct if the machine is big
5201 endian in both bits and bytes or little endian in bits and bytes.
5202 If it is mixed, we must adjust. */
5204 /* If bytes are big endian and we had a paradoxical SUBREG, we must
5205 adjust OFFSET to compensate. */
5206 if (BYTES_BIG_ENDIAN
5207 && ! spans_byte
5208 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
5209 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
5211 /* If this is a constant position, we can move to the desired byte. */
5212 if (pos_rtx == 0)
5214 offset += pos / BITS_PER_UNIT;
5215 pos %= GET_MODE_BITSIZE (wanted_mem_mode);
5218 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
5219 && ! spans_byte
5220 && is_mode != wanted_mem_mode)
5221 offset = (GET_MODE_SIZE (is_mode)
5222 - GET_MODE_SIZE (wanted_mem_mode) - offset);
5224 if (offset != 0 || inner_mode != wanted_mem_mode)
5226 rtx newmem = gen_rtx (MEM, wanted_mem_mode,
5227 plus_constant (XEXP (inner, 0), offset));
5228 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
5229 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
5230 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
5231 inner = newmem;
5235 /* If INNER is not memory, we can always get it into the proper mode. */
5236 else if (GET_CODE (inner) != MEM)
5237 inner = force_to_mode (inner, extraction_mode,
5238 pos_rtx || len + orig_pos >= HOST_BITS_PER_WIDE_INT
5239 ? GET_MODE_MASK (extraction_mode)
5240 : (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos,
5241 NULL_RTX, 0);
5243 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
5244 have to zero extend. Otherwise, we can just use a SUBREG. */
5245 if (pos_rtx != 0
5246 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
5247 pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
5248 else if (pos_rtx != 0
5249 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5250 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
5252 /* Make POS_RTX unless we already have it and it is correct. If we don't
5253 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
5254 be a CONST_INT. */
5255 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
5256 pos_rtx = orig_pos_rtx;
5258 else if (pos_rtx == 0)
5259 pos_rtx = GEN_INT (pos);
5261 /* Make the required operation. See if we can use existing rtx. */
5262 new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
5263 extraction_mode, inner, GEN_INT (len), pos_rtx);
5264 if (! in_dest)
5265 new = gen_lowpart_for_combine (mode, new);
5267 return new;
5270 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
5271 with any other operations in X. Return X without that shift if so. */
5273 static rtx
5274 extract_left_shift (x, count)
5275 rtx x;
5276 int count;
5278 enum rtx_code code = GET_CODE (x);
5279 enum machine_mode mode = GET_MODE (x);
5280 rtx tem;
5282 switch (code)
5284 case ASHIFT:
5285 /* This is the shift itself. If it is wide enough, we will return
5286 either the value being shifted if the shift count is equal to
5287 COUNT or a shift for the difference. */
5288 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5289 && INTVAL (XEXP (x, 1)) >= count)
5290 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
5291 INTVAL (XEXP (x, 1)) - count);
5292 break;
5294 case NEG: case NOT:
5295 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5296 return gen_unary (code, mode, mode, tem);
5298 break;
5300 case PLUS: case IOR: case XOR: case AND:
5301 /* If we can safely shift this constant and we find the inner shift,
5302 make a new operation. */
5303 if (GET_CODE (XEXP (x,1)) == CONST_INT
5304 && (INTVAL (XEXP (x, 1)) & (((HOST_WIDE_INT) 1 << count)) - 1) == 0
5305 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5306 return gen_binary (code, mode, tem,
5307 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
5309 break;
5312 return 0;
5315 /* Look at the expression rooted at X. Look for expressions
5316 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
5317 Form these expressions.
5319 Return the new rtx, usually just X.
5321 Also, for machines like the Vax that don't have logical shift insns,
5322 try to convert logical to arithmetic shift operations in cases where
5323 they are equivalent. This undoes the canonicalizations to logical
5324 shifts done elsewhere.
5326 We try, as much as possible, to re-use rtl expressions to save memory.
5328 IN_CODE says what kind of expression we are processing. Normally, it is
5329 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
5330 being kludges), it is MEM. When processing the arguments of a comparison
5331 or a COMPARE against zero, it is COMPARE. */
5333 static rtx
5334 make_compound_operation (x, in_code)
5335 rtx x;
5336 enum rtx_code in_code;
5338 enum rtx_code code = GET_CODE (x);
5339 enum machine_mode mode = GET_MODE (x);
5340 int mode_width = GET_MODE_BITSIZE (mode);
5341 rtx rhs, lhs;
5342 enum rtx_code next_code;
5343 int i;
5344 rtx new = 0;
5345 rtx tem;
5346 char *fmt;
5348 /* Select the code to be used in recursive calls. Once we are inside an
5349 address, we stay there. If we have a comparison, set to COMPARE,
5350 but once inside, go back to our default of SET. */
5352 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
5353 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
5354 && XEXP (x, 1) == const0_rtx) ? COMPARE
5355 : in_code == COMPARE ? SET : in_code);
5357 /* Process depending on the code of this operation. If NEW is set
5358 non-zero, it will be returned. */
5360 switch (code)
5362 case ASHIFT:
5363 /* Convert shifts by constants into multiplications if inside
5364 an address. */
5365 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
5366 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5367 && INTVAL (XEXP (x, 1)) >= 0)
5369 new = make_compound_operation (XEXP (x, 0), next_code);
5370 new = gen_rtx_combine (MULT, mode, new,
5371 GEN_INT ((HOST_WIDE_INT) 1
5372 << INTVAL (XEXP (x, 1))));
5374 break;
5376 case AND:
5377 /* If the second operand is not a constant, we can't do anything
5378 with it. */
5379 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5380 break;
5382 /* If the constant is a power of two minus one and the first operand
5383 is a logical right shift, make an extraction. */
5384 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
5385 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5387 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
5388 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
5389 0, in_code == COMPARE);
5392 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
5393 else if (GET_CODE (XEXP (x, 0)) == SUBREG
5394 && subreg_lowpart_p (XEXP (x, 0))
5395 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
5396 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5398 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
5399 next_code);
5400 new = make_extraction (mode, new, 0,
5401 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
5402 0, in_code == COMPARE);
5404 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
5405 else if ((GET_CODE (XEXP (x, 0)) == XOR
5406 || GET_CODE (XEXP (x, 0)) == IOR)
5407 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
5408 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
5409 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5411 /* Apply the distributive law, and then try to make extractions. */
5412 new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
5413 gen_rtx (AND, mode, XEXP (XEXP (x, 0), 0),
5414 XEXP (x, 1)),
5415 gen_rtx (AND, mode, XEXP (XEXP (x, 0), 1),
5416 XEXP (x, 1)));
5417 new = make_compound_operation (new, in_code);
5420 /* If we are have (and (rotate X C) M) and C is larger than the number
5421 of bits in M, this is an extraction. */
5423 else if (GET_CODE (XEXP (x, 0)) == ROTATE
5424 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5425 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
5426 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
5428 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
5429 new = make_extraction (mode, new,
5430 (GET_MODE_BITSIZE (mode)
5431 - INTVAL (XEXP (XEXP (x, 0), 1))),
5432 NULL_RTX, i, 1, 0, in_code == COMPARE);
5435 /* On machines without logical shifts, if the operand of the AND is
5436 a logical shift and our mask turns off all the propagated sign
5437 bits, we can replace the logical shift with an arithmetic shift. */
5438 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
5439 && (lshr_optab->handlers[(int) mode].insn_code
5440 == CODE_FOR_nothing)
5441 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
5442 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5443 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
5444 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
5445 && mode_width <= HOST_BITS_PER_WIDE_INT)
5447 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
5449 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
5450 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
5451 SUBST (XEXP (x, 0),
5452 gen_rtx_combine (ASHIFTRT, mode,
5453 make_compound_operation (XEXP (XEXP (x, 0), 0),
5454 next_code),
5455 XEXP (XEXP (x, 0), 1)));
5458 /* If the constant is one less than a power of two, this might be
5459 representable by an extraction even if no shift is present.
5460 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
5461 we are in a COMPARE. */
5462 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5463 new = make_extraction (mode,
5464 make_compound_operation (XEXP (x, 0),
5465 next_code),
5466 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
5468 /* If we are in a comparison and this is an AND with a power of two,
5469 convert this into the appropriate bit extract. */
5470 else if (in_code == COMPARE
5471 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5472 new = make_extraction (mode,
5473 make_compound_operation (XEXP (x, 0),
5474 next_code),
5475 i, NULL_RTX, 1, 1, 0, 1);
5477 break;
5479 case LSHIFTRT:
5480 /* If the sign bit is known to be zero, replace this with an
5481 arithmetic shift. */
5482 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
5483 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
5484 && mode_width <= HOST_BITS_PER_WIDE_INT
5485 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
5487 new = gen_rtx_combine (ASHIFTRT, mode,
5488 make_compound_operation (XEXP (x, 0),
5489 next_code),
5490 XEXP (x, 1));
5491 break;
5494 /* ... fall through ... */
5496 case ASHIFTRT:
5497 lhs = XEXP (x, 0);
5498 rhs = XEXP (x, 1);
5500 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
5501 this is a SIGN_EXTRACT. */
5502 if (GET_CODE (rhs) == CONST_INT
5503 && GET_CODE (lhs) == ASHIFT
5504 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
5505 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
5507 new = make_compound_operation (XEXP (lhs, 0), next_code);
5508 new = make_extraction (mode, new,
5509 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
5510 NULL_RTX, mode_width - INTVAL (rhs),
5511 code == LSHIFTRT, 0, in_code == COMPARE);
5514 /* See if we have operations between an ASHIFTRT and an ASHIFT.
5515 If so, try to merge the shifts into a SIGN_EXTEND. We could
5516 also do this for some cases of SIGN_EXTRACT, but it doesn't
5517 seem worth the effort; the case checked for occurs on Alpha. */
5519 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
5520 && ! (GET_CODE (lhs) == SUBREG
5521 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
5522 && GET_CODE (rhs) == CONST_INT
5523 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
5524 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
5525 new = make_extraction (mode, make_compound_operation (new, next_code),
5526 0, NULL_RTX, mode_width - INTVAL (rhs),
5527 code == LSHIFTRT, 0, in_code == COMPARE);
5529 break;
5531 case SUBREG:
5532 /* Call ourselves recursively on the inner expression. If we are
5533 narrowing the object and it has a different RTL code from
5534 what it originally did, do this SUBREG as a force_to_mode. */
5536 tem = make_compound_operation (SUBREG_REG (x), in_code);
5537 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
5538 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
5539 && subreg_lowpart_p (x))
5541 rtx newer = force_to_mode (tem, mode,
5542 GET_MODE_MASK (mode), NULL_RTX, 0);
5544 /* If we have something other than a SUBREG, we might have
5545 done an expansion, so rerun outselves. */
5546 if (GET_CODE (newer) != SUBREG)
5547 newer = make_compound_operation (newer, in_code);
5549 return newer;
5553 if (new)
5555 x = gen_lowpart_for_combine (mode, new);
5556 code = GET_CODE (x);
5559 /* Now recursively process each operand of this operation. */
5560 fmt = GET_RTX_FORMAT (code);
5561 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5562 if (fmt[i] == 'e')
5564 new = make_compound_operation (XEXP (x, i), next_code);
5565 SUBST (XEXP (x, i), new);
5568 return x;
5571 /* Given M see if it is a value that would select a field of bits
5572 within an item, but not the entire word. Return -1 if not.
5573 Otherwise, return the starting position of the field, where 0 is the
5574 low-order bit.
5576 *PLEN is set to the length of the field. */
5578 static int
5579 get_pos_from_mask (m, plen)
5580 unsigned HOST_WIDE_INT m;
5581 int *plen;
5583 /* Get the bit number of the first 1 bit from the right, -1 if none. */
5584 int pos = exact_log2 (m & - m);
5586 if (pos < 0)
5587 return -1;
5589 /* Now shift off the low-order zero bits and see if we have a power of
5590 two minus 1. */
5591 *plen = exact_log2 ((m >> pos) + 1);
5593 if (*plen <= 0)
5594 return -1;
5596 return pos;
5599 /* See if X can be simplified knowing that we will only refer to it in
5600 MODE and will only refer to those bits that are nonzero in MASK.
5601 If other bits are being computed or if masking operations are done
5602 that select a superset of the bits in MASK, they can sometimes be
5603 ignored.
5605 Return a possibly simplified expression, but always convert X to
5606 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
5608 Also, if REG is non-zero and X is a register equal in value to REG,
5609 replace X with REG.
5611 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
5612 are all off in X. This is used when X will be complemented, by either
5613 NOT, NEG, or XOR. */
5615 static rtx
5616 force_to_mode (x, mode, mask, reg, just_select)
5617 rtx x;
5618 enum machine_mode mode;
5619 unsigned HOST_WIDE_INT mask;
5620 rtx reg;
5621 int just_select;
5623 enum rtx_code code = GET_CODE (x);
5624 int next_select = just_select || code == XOR || code == NOT || code == NEG;
5625 enum machine_mode op_mode;
5626 unsigned HOST_WIDE_INT fuller_mask, nonzero;
5627 rtx op0, op1, temp;
5629 /* If this is a CALL, don't do anything. Some of the code below
5630 will do the wrong thing since the mode of a CALL is VOIDmode. */
5631 if (code == CALL)
5632 return x;
5634 /* We want to perform the operation is its present mode unless we know
5635 that the operation is valid in MODE, in which case we do the operation
5636 in MODE. */
5637 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
5638 && code_to_optab[(int) code] != 0
5639 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
5640 != CODE_FOR_nothing))
5641 ? mode : GET_MODE (x));
5643 /* It is not valid to do a right-shift in a narrower mode
5644 than the one it came in with. */
5645 if ((code == LSHIFTRT || code == ASHIFTRT)
5646 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
5647 op_mode = GET_MODE (x);
5649 /* Truncate MASK to fit OP_MODE. */
5650 if (op_mode)
5651 mask &= GET_MODE_MASK (op_mode);
5653 /* When we have an arithmetic operation, or a shift whose count we
5654 do not know, we need to assume that all bit the up to the highest-order
5655 bit in MASK will be needed. This is how we form such a mask. */
5656 if (op_mode)
5657 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
5658 ? GET_MODE_MASK (op_mode)
5659 : ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1);
5660 else
5661 fuller_mask = ~ (HOST_WIDE_INT) 0;
5663 /* Determine what bits of X are guaranteed to be (non)zero. */
5664 nonzero = nonzero_bits (x, mode);
5666 /* If none of the bits in X are needed, return a zero. */
5667 if (! just_select && (nonzero & mask) == 0)
5668 return const0_rtx;
5670 /* If X is a CONST_INT, return a new one. Do this here since the
5671 test below will fail. */
5672 if (GET_CODE (x) == CONST_INT)
5674 HOST_WIDE_INT cval = INTVAL (x) & mask;
5675 int width = GET_MODE_BITSIZE (mode);
5677 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
5678 number, sign extend it. */
5679 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
5680 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
5681 cval |= (HOST_WIDE_INT) -1 << width;
5683 return GEN_INT (cval);
5686 /* If X is narrower than MODE and we want all the bits in X's mode, just
5687 get X in the proper mode. */
5688 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
5689 && (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0)
5690 return gen_lowpart_for_combine (mode, x);
5692 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
5693 MASK are already known to be zero in X, we need not do anything. */
5694 if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0)
5695 return x;
5697 switch (code)
5699 case CLOBBER:
5700 /* If X is a (clobber (const_int)), return it since we know we are
5701 generating something that won't match. */
5702 return x;
5704 case USE:
5705 /* X is a (use (mem ..)) that was made from a bit-field extraction that
5706 spanned the boundary of the MEM. If we are now masking so it is
5707 within that boundary, we don't need the USE any more. */
5708 if (! BITS_BIG_ENDIAN
5709 && (mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5710 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
5711 break;
5713 case SIGN_EXTEND:
5714 case ZERO_EXTEND:
5715 case ZERO_EXTRACT:
5716 case SIGN_EXTRACT:
5717 x = expand_compound_operation (x);
5718 if (GET_CODE (x) != code)
5719 return force_to_mode (x, mode, mask, reg, next_select);
5720 break;
5722 case REG:
5723 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
5724 || rtx_equal_p (reg, get_last_value (x))))
5725 x = reg;
5726 break;
5728 case SUBREG:
5729 if (subreg_lowpart_p (x)
5730 /* We can ignore the effect of this SUBREG if it narrows the mode or
5731 if the constant masks to zero all the bits the mode doesn't
5732 have. */
5733 && ((GET_MODE_SIZE (GET_MODE (x))
5734 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
5735 || (0 == (mask
5736 & GET_MODE_MASK (GET_MODE (x))
5737 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
5738 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
5739 break;
5741 case AND:
5742 /* If this is an AND with a constant, convert it into an AND
5743 whose constant is the AND of that constant with MASK. If it
5744 remains an AND of MASK, delete it since it is redundant. */
5746 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5747 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
5749 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
5750 mask & INTVAL (XEXP (x, 1)));
5752 /* If X is still an AND, see if it is an AND with a mask that
5753 is just some low-order bits. If so, and it is MASK, we don't
5754 need it. */
5756 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
5757 && INTVAL (XEXP (x, 1)) == mask)
5758 x = XEXP (x, 0);
5760 /* If it remains an AND, try making another AND with the bits
5761 in the mode mask that aren't in MASK turned on. If the
5762 constant in the AND is wide enough, this might make a
5763 cheaper constant. */
5765 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
5766 && GET_MODE_MASK (GET_MODE (x)) != mask)
5768 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
5769 | (GET_MODE_MASK (GET_MODE (x)) & ~ mask));
5770 int width = GET_MODE_BITSIZE (GET_MODE (x));
5771 rtx y;
5773 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
5774 number, sign extend it. */
5775 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
5776 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
5777 cval |= (HOST_WIDE_INT) -1 << width;
5779 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
5780 if (rtx_cost (y, SET) < rtx_cost (x, SET))
5781 x = y;
5784 break;
5787 goto binop;
5789 case PLUS:
5790 /* In (and (plus FOO C1) M), if M is a mask that just turns off
5791 low-order bits (as in an alignment operation) and FOO is already
5792 aligned to that boundary, mask C1 to that boundary as well.
5793 This may eliminate that PLUS and, later, the AND. */
5794 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5795 && exact_log2 (- mask) >= 0
5796 && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0
5797 && (INTVAL (XEXP (x, 1)) & ~ mask) != 0)
5798 return force_to_mode (plus_constant (XEXP (x, 0),
5799 INTVAL (XEXP (x, 1)) & mask),
5800 mode, mask, reg, next_select);
5802 /* ... fall through ... */
5804 case MINUS:
5805 case MULT:
5806 /* For PLUS, MINUS and MULT, we need any bits less significant than the
5807 most significant bit in MASK since carries from those bits will
5808 affect the bits we are interested in. */
5809 mask = fuller_mask;
5810 goto binop;
5812 case IOR:
5813 case XOR:
5814 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
5815 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
5816 operation which may be a bitfield extraction. Ensure that the
5817 constant we form is not wider than the mode of X. */
5819 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
5820 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5821 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
5822 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
5823 && GET_CODE (XEXP (x, 1)) == CONST_INT
5824 && ((INTVAL (XEXP (XEXP (x, 0), 1))
5825 + floor_log2 (INTVAL (XEXP (x, 1))))
5826 < GET_MODE_BITSIZE (GET_MODE (x)))
5827 && (INTVAL (XEXP (x, 1))
5828 & ~ nonzero_bits (XEXP (x, 0), GET_MODE (x)) == 0))
5830 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
5831 << INTVAL (XEXP (XEXP (x, 0), 1)));
5832 temp = gen_binary (GET_CODE (x), GET_MODE (x),
5833 XEXP (XEXP (x, 0), 0), temp);
5834 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (x, 1));
5835 return force_to_mode (x, mode, mask, reg, next_select);
5838 binop:
5839 /* For most binary operations, just propagate into the operation and
5840 change the mode if we have an operation of that mode. */
5842 op0 = gen_lowpart_for_combine (op_mode,
5843 force_to_mode (XEXP (x, 0), mode, mask,
5844 reg, next_select));
5845 op1 = gen_lowpart_for_combine (op_mode,
5846 force_to_mode (XEXP (x, 1), mode, mask,
5847 reg, next_select));
5849 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
5850 MASK since OP1 might have been sign-extended but we never want
5851 to turn on extra bits, since combine might have previously relied
5852 on them being off. */
5853 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
5854 && (INTVAL (op1) & mask) != 0)
5855 op1 = GEN_INT (INTVAL (op1) & mask);
5857 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
5858 x = gen_binary (code, op_mode, op0, op1);
5859 break;
5861 case ASHIFT:
5862 /* For left shifts, do the same, but just for the first operand.
5863 However, we cannot do anything with shifts where we cannot
5864 guarantee that the counts are smaller than the size of the mode
5865 because such a count will have a different meaning in a
5866 wider mode. */
5868 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
5869 && INTVAL (XEXP (x, 1)) >= 0
5870 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
5871 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
5872 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
5873 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
5874 break;
5876 /* If the shift count is a constant and we can do arithmetic in
5877 the mode of the shift, refine which bits we need. Otherwise, use the
5878 conservative form of the mask. */
5879 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5880 && INTVAL (XEXP (x, 1)) >= 0
5881 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
5882 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
5883 mask >>= INTVAL (XEXP (x, 1));
5884 else
5885 mask = fuller_mask;
5887 op0 = gen_lowpart_for_combine (op_mode,
5888 force_to_mode (XEXP (x, 0), op_mode,
5889 mask, reg, next_select));
5891 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
5892 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
5893 break;
5895 case LSHIFTRT:
5896 /* Here we can only do something if the shift count is a constant,
5897 this shift constant is valid for the host, and we can do arithmetic
5898 in OP_MODE. */
5900 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5901 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5902 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
5904 rtx inner = XEXP (x, 0);
5906 /* Select the mask of the bits we need for the shift operand. */
5907 mask <<= INTVAL (XEXP (x, 1));
5909 /* We can only change the mode of the shift if we can do arithmetic
5910 in the mode of the shift and MASK is no wider than the width of
5911 OP_MODE. */
5912 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
5913 || (mask & ~ GET_MODE_MASK (op_mode)) != 0)
5914 op_mode = GET_MODE (x);
5916 inner = force_to_mode (inner, op_mode, mask, reg, next_select);
5918 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
5919 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
5922 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
5923 shift and AND produces only copies of the sign bit (C2 is one less
5924 than a power of two), we can do this with just a shift. */
5926 if (GET_CODE (x) == LSHIFTRT
5927 && GET_CODE (XEXP (x, 1)) == CONST_INT
5928 && ((INTVAL (XEXP (x, 1))
5929 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
5930 >= GET_MODE_BITSIZE (GET_MODE (x)))
5931 && exact_log2 (mask + 1) >= 0
5932 && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5933 >= exact_log2 (mask + 1)))
5934 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
5935 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
5936 - exact_log2 (mask + 1)));
5937 break;
5939 case ASHIFTRT:
5940 /* If we are just looking for the sign bit, we don't need this shift at
5941 all, even if it has a variable count. */
5942 if (mask == ((HOST_WIDE_INT) 1
5943 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1)))
5944 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
5946 /* If this is a shift by a constant, get a mask that contains those bits
5947 that are not copies of the sign bit. We then have two cases: If
5948 MASK only includes those bits, this can be a logical shift, which may
5949 allow simplifications. If MASK is a single-bit field not within
5950 those bits, we are requesting a copy of the sign bit and hence can
5951 shift the sign bit to the appropriate location. */
5953 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
5954 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
5956 int i = -1;
5958 nonzero = GET_MODE_MASK (GET_MODE (x));
5959 nonzero >>= INTVAL (XEXP (x, 1));
5961 if ((mask & ~ nonzero) == 0
5962 || (i = exact_log2 (mask)) >= 0)
5964 x = simplify_shift_const
5965 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
5966 i < 0 ? INTVAL (XEXP (x, 1))
5967 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
5969 if (GET_CODE (x) != ASHIFTRT)
5970 return force_to_mode (x, mode, mask, reg, next_select);
5974 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
5975 even if the shift count isn't a constant. */
5976 if (mask == 1)
5977 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
5979 /* If this is a sign-extension operation that just affects bits
5980 we don't care about, remove it. Be sure the call above returned
5981 something that is still a shift. */
5983 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
5984 && GET_CODE (XEXP (x, 1)) == CONST_INT
5985 && INTVAL (XEXP (x, 1)) >= 0
5986 && (INTVAL (XEXP (x, 1))
5987 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
5988 && GET_CODE (XEXP (x, 0)) == ASHIFT
5989 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5990 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
5991 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
5992 reg, next_select);
5994 break;
5996 case ROTATE:
5997 case ROTATERT:
5998 /* If the shift count is constant and we can do computations
5999 in the mode of X, compute where the bits we care about are.
6000 Otherwise, we can't do anything. Don't change the mode of
6001 the shift or propagate MODE into the shift, though. */
6002 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6003 && INTVAL (XEXP (x, 1)) >= 0)
6005 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
6006 GET_MODE (x), GEN_INT (mask),
6007 XEXP (x, 1));
6008 if (temp && GET_CODE(temp) == CONST_INT)
6009 SUBST (XEXP (x, 0),
6010 force_to_mode (XEXP (x, 0), GET_MODE (x),
6011 INTVAL (temp), reg, next_select));
6013 break;
6015 case NEG:
6016 /* If we just want the low-order bit, the NEG isn't needed since it
6017 won't change the low-order bit. */
6018 if (mask == 1)
6019 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
6021 /* We need any bits less significant than the most significant bit in
6022 MASK since carries from those bits will affect the bits we are
6023 interested in. */
6024 mask = fuller_mask;
6025 goto unop;
6027 case NOT:
6028 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
6029 same as the XOR case above. Ensure that the constant we form is not
6030 wider than the mode of X. */
6032 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6033 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6034 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6035 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
6036 < GET_MODE_BITSIZE (GET_MODE (x)))
6037 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
6039 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
6040 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
6041 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
6043 return force_to_mode (x, mode, mask, reg, next_select);
6046 unop:
6047 op0 = gen_lowpart_for_combine (op_mode,
6048 force_to_mode (XEXP (x, 0), mode, mask,
6049 reg, next_select));
6050 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6051 x = gen_unary (code, op_mode, op_mode, op0);
6052 break;
6054 case NE:
6055 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
6056 in STORE_FLAG_VALUE and FOO has no bits that might be nonzero not
6057 in CONST. */
6058 if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 0) == const0_rtx
6059 && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0)
6060 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6062 break;
6064 case IF_THEN_ELSE:
6065 /* We have no way of knowing if the IF_THEN_ELSE can itself be
6066 written in a narrower mode. We play it safe and do not do so. */
6068 SUBST (XEXP (x, 1),
6069 gen_lowpart_for_combine (GET_MODE (x),
6070 force_to_mode (XEXP (x, 1), mode,
6071 mask, reg, next_select)));
6072 SUBST (XEXP (x, 2),
6073 gen_lowpart_for_combine (GET_MODE (x),
6074 force_to_mode (XEXP (x, 2), mode,
6075 mask, reg,next_select)));
6076 break;
6079 /* Ensure we return a value of the proper mode. */
6080 return gen_lowpart_for_combine (mode, x);
6083 /* Return nonzero if X is an expression that has one of two values depending on
6084 whether some other value is zero or nonzero. In that case, we return the
6085 value that is being tested, *PTRUE is set to the value if the rtx being
6086 returned has a nonzero value, and *PFALSE is set to the other alternative.
6088 If we return zero, we set *PTRUE and *PFALSE to X. */
6090 static rtx
6091 if_then_else_cond (x, ptrue, pfalse)
6092 rtx x;
6093 rtx *ptrue, *pfalse;
6095 enum machine_mode mode = GET_MODE (x);
6096 enum rtx_code code = GET_CODE (x);
6097 int size = GET_MODE_BITSIZE (mode);
6098 rtx cond0, cond1, true0, true1, false0, false1;
6099 unsigned HOST_WIDE_INT nz;
6101 /* If this is a unary operation whose operand has one of two values, apply
6102 our opcode to compute those values. */
6103 if (GET_RTX_CLASS (code) == '1'
6104 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
6106 *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
6107 *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
6108 return cond0;
6111 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
6112 make can't possibly match and would supress other optimizations. */
6113 else if (code == COMPARE)
6116 /* If this is a binary operation, see if either side has only one of two
6117 values. If either one does or if both do and they are conditional on
6118 the same value, compute the new true and false values. */
6119 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
6120 || GET_RTX_CLASS (code) == '<')
6122 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
6123 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
6125 if ((cond0 != 0 || cond1 != 0)
6126 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
6128 *ptrue = gen_binary (code, mode, true0, true1);
6129 *pfalse = gen_binary (code, mode, false0, false1);
6130 return cond0 ? cond0 : cond1;
6133 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
6135 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
6136 operands is zero when the other is non-zero, and vice-versa. */
6138 if ((code == PLUS || code == IOR || code == XOR || code == MINUS
6139 || code == UMAX)
6140 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6142 rtx op0 = XEXP (XEXP (x, 0), 1);
6143 rtx op1 = XEXP (XEXP (x, 1), 1);
6145 cond0 = XEXP (XEXP (x, 0), 0);
6146 cond1 = XEXP (XEXP (x, 1), 0);
6148 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6149 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6150 && reversible_comparison_p (cond1)
6151 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6152 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6153 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6154 || ((swap_condition (GET_CODE (cond0))
6155 == reverse_condition (GET_CODE (cond1)))
6156 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6157 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6158 && ! side_effects_p (x))
6160 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
6161 *pfalse = gen_binary (MULT, mode,
6162 (code == MINUS
6163 ? gen_unary (NEG, mode, mode, op1) : op1),
6164 const_true_rtx);
6165 return cond0;
6169 /* Similarly for MULT, AND and UMIN, execpt that for these the result
6170 is always zero. */
6171 if ((code == MULT || code == AND || code == UMIN)
6172 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6174 cond0 = XEXP (XEXP (x, 0), 0);
6175 cond1 = XEXP (XEXP (x, 1), 0);
6177 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6178 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6179 && reversible_comparison_p (cond1)
6180 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6181 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6182 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6183 || ((swap_condition (GET_CODE (cond0))
6184 == reverse_condition (GET_CODE (cond1)))
6185 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6186 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6187 && ! side_effects_p (x))
6189 *ptrue = *pfalse = const0_rtx;
6190 return cond0;
6193 #endif
6196 else if (code == IF_THEN_ELSE)
6198 /* If we have IF_THEN_ELSE already, extract the condition and
6199 canonicalize it if it is NE or EQ. */
6200 cond0 = XEXP (x, 0);
6201 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
6202 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
6203 return XEXP (cond0, 0);
6204 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
6206 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
6207 return XEXP (cond0, 0);
6209 else
6210 return cond0;
6213 /* If X is a normal SUBREG with both inner and outer modes integral,
6214 we can narrow both the true and false values of the inner expression,
6215 if there is a condition. */
6216 else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
6217 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
6218 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
6219 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
6220 &true0, &false0)))
6222 *ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6223 *pfalse
6224 = force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6226 return cond0;
6229 /* If X is a constant, this isn't special and will cause confusions
6230 if we treat it as such. Likewise if it is equivalent to a constant. */
6231 else if (CONSTANT_P (x)
6232 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
6235 /* If X is known to be either 0 or -1, those are the true and
6236 false values when testing X. */
6237 else if (num_sign_bit_copies (x, mode) == size)
6239 *ptrue = constm1_rtx, *pfalse = const0_rtx;
6240 return x;
6243 /* Likewise for 0 or a single bit. */
6244 else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
6246 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
6247 return x;
6250 /* Otherwise fail; show no condition with true and false values the same. */
6251 *ptrue = *pfalse = x;
6252 return 0;
6255 /* Return the value of expression X given the fact that condition COND
6256 is known to be true when applied to REG as its first operand and VAL
6257 as its second. X is known to not be shared and so can be modified in
6258 place.
6260 We only handle the simplest cases, and specifically those cases that
6261 arise with IF_THEN_ELSE expressions. */
6263 static rtx
6264 known_cond (x, cond, reg, val)
6265 rtx x;
6266 enum rtx_code cond;
6267 rtx reg, val;
6269 enum rtx_code code = GET_CODE (x);
6270 rtx temp;
6271 char *fmt;
6272 int i, j;
6274 if (side_effects_p (x))
6275 return x;
6277 if (cond == EQ && rtx_equal_p (x, reg))
6278 return val;
6280 /* If X is (abs REG) and we know something about REG's relationship
6281 with zero, we may be able to simplify this. */
6283 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
6284 switch (cond)
6286 case GE: case GT: case EQ:
6287 return XEXP (x, 0);
6288 case LT: case LE:
6289 return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
6290 XEXP (x, 0));
6293 /* The only other cases we handle are MIN, MAX, and comparisons if the
6294 operands are the same as REG and VAL. */
6296 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
6298 if (rtx_equal_p (XEXP (x, 0), val))
6299 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
6301 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
6303 if (GET_RTX_CLASS (code) == '<')
6304 return (comparison_dominates_p (cond, code) ? const_true_rtx
6305 : (comparison_dominates_p (cond,
6306 reverse_condition (code))
6307 ? const0_rtx : x));
6309 else if (code == SMAX || code == SMIN
6310 || code == UMIN || code == UMAX)
6312 int unsignedp = (code == UMIN || code == UMAX);
6314 if (code == SMAX || code == UMAX)
6315 cond = reverse_condition (cond);
6317 switch (cond)
6319 case GE: case GT:
6320 return unsignedp ? x : XEXP (x, 1);
6321 case LE: case LT:
6322 return unsignedp ? x : XEXP (x, 0);
6323 case GEU: case GTU:
6324 return unsignedp ? XEXP (x, 1) : x;
6325 case LEU: case LTU:
6326 return unsignedp ? XEXP (x, 0) : x;
6332 fmt = GET_RTX_FORMAT (code);
6333 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6335 if (fmt[i] == 'e')
6336 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
6337 else if (fmt[i] == 'E')
6338 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6339 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
6340 cond, reg, val));
6343 return x;
6346 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
6347 Return that assignment if so.
6349 We only handle the most common cases. */
6351 static rtx
6352 make_field_assignment (x)
6353 rtx x;
6355 rtx dest = SET_DEST (x);
6356 rtx src = SET_SRC (x);
6357 rtx assign;
6358 HOST_WIDE_INT c1;
6359 int pos, len;
6360 rtx other;
6361 enum machine_mode mode;
6363 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
6364 a clear of a one-bit field. We will have changed it to
6365 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
6366 for a SUBREG. */
6368 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
6369 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
6370 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
6371 && (rtx_equal_p (dest, XEXP (src, 1))
6372 || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
6373 || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
6375 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
6376 1, 1, 1, 0);
6377 return gen_rtx (SET, VOIDmode, assign, const0_rtx);
6380 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
6381 && subreg_lowpart_p (XEXP (src, 0))
6382 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
6383 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
6384 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
6385 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
6386 && (rtx_equal_p (dest, XEXP (src, 1))
6387 || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
6388 || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
6390 assign = make_extraction (VOIDmode, dest, 0,
6391 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
6392 1, 1, 1, 0);
6393 return gen_rtx (SET, VOIDmode, assign, const0_rtx);
6396 /* If SRC is (ior (ashift (const_int 1) POS DEST)), this is a set of a
6397 one-bit field. */
6398 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
6399 && XEXP (XEXP (src, 0), 0) == const1_rtx
6400 && (rtx_equal_p (dest, XEXP (src, 1))
6401 || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
6402 || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
6404 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
6405 1, 1, 1, 0);
6406 return gen_rtx (SET, VOIDmode, assign, const1_rtx);
6409 /* The other case we handle is assignments into a constant-position
6410 field. They look like (ior (and DEST C1) OTHER). If C1 represents
6411 a mask that has all one bits except for a group of zero bits and
6412 OTHER is known to have zeros where C1 has ones, this is such an
6413 assignment. Compute the position and length from C1. Shift OTHER
6414 to the appropriate position, force it to the required mode, and
6415 make the extraction. Check for the AND in both operands. */
6417 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == AND
6418 && GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT
6419 && (rtx_equal_p (XEXP (XEXP (src, 0), 0), dest)
6420 || rtx_equal_p (XEXP (XEXP (src, 0), 0), get_last_value (dest))
6421 || rtx_equal_p (get_last_value (XEXP (XEXP (src, 0), 1)), dest)))
6422 c1 = INTVAL (XEXP (XEXP (src, 0), 1)), other = XEXP (src, 1);
6423 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 1)) == AND
6424 && GET_CODE (XEXP (XEXP (src, 1), 1)) == CONST_INT
6425 && (rtx_equal_p (XEXP (XEXP (src, 1), 0), dest)
6426 || rtx_equal_p (XEXP (XEXP (src, 1), 0), get_last_value (dest))
6427 || rtx_equal_p (get_last_value (XEXP (XEXP (src, 1), 0)),
6428 dest)))
6429 c1 = INTVAL (XEXP (XEXP (src, 1), 1)), other = XEXP (src, 0);
6430 else
6431 return x;
6433 pos = get_pos_from_mask (c1 ^ GET_MODE_MASK (GET_MODE (dest)), &len);
6434 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
6435 || (GET_MODE_BITSIZE (GET_MODE (other)) <= HOST_BITS_PER_WIDE_INT
6436 && (c1 & nonzero_bits (other, GET_MODE (other))) != 0))
6437 return x;
6439 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
6441 /* The mode to use for the source is the mode of the assignment, or of
6442 what is inside a possible STRICT_LOW_PART. */
6443 mode = (GET_CODE (assign) == STRICT_LOW_PART
6444 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
6446 /* Shift OTHER right POS places and make it the source, restricting it
6447 to the proper length and mode. */
6449 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
6450 GET_MODE (src), other, pos),
6451 mode,
6452 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
6453 ? GET_MODE_MASK (mode)
6454 : ((HOST_WIDE_INT) 1 << len) - 1,
6455 dest, 0);
6457 return gen_rtx_combine (SET, VOIDmode, assign, src);
6460 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
6461 if so. */
6463 static rtx
6464 apply_distributive_law (x)
6465 rtx x;
6467 enum rtx_code code = GET_CODE (x);
6468 rtx lhs, rhs, other;
6469 rtx tem;
6470 enum rtx_code inner_code;
6472 /* Distributivity is not true for floating point.
6473 It can change the value. So don't do it.
6474 -- rms and moshier@world.std.com. */
6475 if (FLOAT_MODE_P (GET_MODE (x)))
6476 return x;
6478 /* The outer operation can only be one of the following: */
6479 if (code != IOR && code != AND && code != XOR
6480 && code != PLUS && code != MINUS)
6481 return x;
6483 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
6485 /* If either operand is a primitive we can't do anything, so get out fast. */
6486 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
6487 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
6488 return x;
6490 lhs = expand_compound_operation (lhs);
6491 rhs = expand_compound_operation (rhs);
6492 inner_code = GET_CODE (lhs);
6493 if (inner_code != GET_CODE (rhs))
6494 return x;
6496 /* See if the inner and outer operations distribute. */
6497 switch (inner_code)
6499 case LSHIFTRT:
6500 case ASHIFTRT:
6501 case AND:
6502 case IOR:
6503 /* These all distribute except over PLUS. */
6504 if (code == PLUS || code == MINUS)
6505 return x;
6506 break;
6508 case MULT:
6509 if (code != PLUS && code != MINUS)
6510 return x;
6511 break;
6513 case ASHIFT:
6514 /* This is also a multiply, so it distributes over everything. */
6515 break;
6517 case SUBREG:
6518 /* Non-paradoxical SUBREGs distributes over all operations, provided
6519 the inner modes and word numbers are the same, this is an extraction
6520 of a low-order part, we don't convert an fp operation to int or
6521 vice versa, and we would not be converting a single-word
6522 operation into a multi-word operation. The latter test is not
6523 required, but it prevents generating unneeded multi-word operations.
6524 Some of the previous tests are redundant given the latter test, but
6525 are retained because they are required for correctness.
6527 We produce the result slightly differently in this case. */
6529 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
6530 || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
6531 || ! subreg_lowpart_p (lhs)
6532 || (GET_MODE_CLASS (GET_MODE (lhs))
6533 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
6534 || (GET_MODE_SIZE (GET_MODE (lhs))
6535 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
6536 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
6537 return x;
6539 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
6540 SUBREG_REG (lhs), SUBREG_REG (rhs));
6541 return gen_lowpart_for_combine (GET_MODE (x), tem);
6543 default:
6544 return x;
6547 /* Set LHS and RHS to the inner operands (A and B in the example
6548 above) and set OTHER to the common operand (C in the example).
6549 These is only one way to do this unless the inner operation is
6550 commutative. */
6551 if (GET_RTX_CLASS (inner_code) == 'c'
6552 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
6553 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
6554 else if (GET_RTX_CLASS (inner_code) == 'c'
6555 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
6556 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
6557 else if (GET_RTX_CLASS (inner_code) == 'c'
6558 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
6559 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
6560 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
6561 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
6562 else
6563 return x;
6565 /* Form the new inner operation, seeing if it simplifies first. */
6566 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
6568 /* There is one exception to the general way of distributing:
6569 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
6570 if (code == XOR && inner_code == IOR)
6572 inner_code = AND;
6573 other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
6576 /* We may be able to continuing distributing the result, so call
6577 ourselves recursively on the inner operation before forming the
6578 outer operation, which we return. */
6579 return gen_binary (inner_code, GET_MODE (x),
6580 apply_distributive_law (tem), other);
6583 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
6584 in MODE.
6586 Return an equivalent form, if different from X. Otherwise, return X. If
6587 X is zero, we are to always construct the equivalent form. */
6589 static rtx
6590 simplify_and_const_int (x, mode, varop, constop)
6591 rtx x;
6592 enum machine_mode mode;
6593 rtx varop;
6594 unsigned HOST_WIDE_INT constop;
6596 unsigned HOST_WIDE_INT nonzero;
6597 int i;
6599 /* Simplify VAROP knowing that we will be only looking at some of the
6600 bits in it. */
6601 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
6603 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
6604 CONST_INT, we are done. */
6605 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
6606 return varop;
6608 /* See what bits may be nonzero in VAROP. Unlike the general case of
6609 a call to nonzero_bits, here we don't care about bits outside
6610 MODE. */
6612 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
6614 /* Turn off all bits in the constant that are known to already be zero.
6615 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
6616 which is tested below. */
6618 constop &= nonzero;
6620 /* If we don't have any bits left, return zero. */
6621 if (constop == 0)
6622 return const0_rtx;
6624 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
6625 a power of two, we can replace this with a ASHIFT. */
6626 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
6627 && (i = exact_log2 (constop)) >= 0)
6628 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
6630 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
6631 or XOR, then try to apply the distributive law. This may eliminate
6632 operations if either branch can be simplified because of the AND.
6633 It may also make some cases more complex, but those cases probably
6634 won't match a pattern either with or without this. */
6636 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
6637 return
6638 gen_lowpart_for_combine
6639 (mode,
6640 apply_distributive_law
6641 (gen_binary (GET_CODE (varop), GET_MODE (varop),
6642 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
6643 XEXP (varop, 0), constop),
6644 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
6645 XEXP (varop, 1), constop))));
6647 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
6648 if we already had one (just check for the simplest cases). */
6649 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
6650 && GET_MODE (XEXP (x, 0)) == mode
6651 && SUBREG_REG (XEXP (x, 0)) == varop)
6652 varop = XEXP (x, 0);
6653 else
6654 varop = gen_lowpart_for_combine (mode, varop);
6656 /* If we can't make the SUBREG, try to return what we were given. */
6657 if (GET_CODE (varop) == CLOBBER)
6658 return x ? x : varop;
6660 /* If we are only masking insignificant bits, return VAROP. */
6661 if (constop == nonzero)
6662 x = varop;
6664 /* Otherwise, return an AND. See how much, if any, of X we can use. */
6665 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
6666 x = gen_binary (AND, mode, varop, GEN_INT (constop));
6668 else
6670 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6671 || INTVAL (XEXP (x, 1)) != constop)
6672 SUBST (XEXP (x, 1), GEN_INT (constop));
6674 SUBST (XEXP (x, 0), varop);
6677 return x;
6680 /* Given an expression, X, compute which bits in X can be non-zero.
6681 We don't care about bits outside of those defined in MODE.
6683 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
6684 a shift, AND, or zero_extract, we can do better. */
6686 static unsigned HOST_WIDE_INT
6687 nonzero_bits (x, mode)
6688 rtx x;
6689 enum machine_mode mode;
6691 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
6692 unsigned HOST_WIDE_INT inner_nz;
6693 enum rtx_code code;
6694 int mode_width = GET_MODE_BITSIZE (mode);
6695 rtx tem;
6697 /* For floating-point values, assume all bits are needed. */
6698 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
6699 return nonzero;
6701 /* If X is wider than MODE, use its mode instead. */
6702 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
6704 mode = GET_MODE (x);
6705 nonzero = GET_MODE_MASK (mode);
6706 mode_width = GET_MODE_BITSIZE (mode);
6709 if (mode_width > HOST_BITS_PER_WIDE_INT)
6710 /* Our only callers in this case look for single bit values. So
6711 just return the mode mask. Those tests will then be false. */
6712 return nonzero;
6714 #ifndef WORD_REGISTER_OPERATIONS
6715 /* If MODE is wider than X, but both are a single word for both the host
6716 and target machines, we can compute this from which bits of the
6717 object might be nonzero in its own mode, taking into account the fact
6718 that on many CISC machines, accessing an object in a wider mode
6719 causes the high-order bits to become undefined. So they are
6720 not known to be zero. */
6722 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
6723 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
6724 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6725 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
6727 nonzero &= nonzero_bits (x, GET_MODE (x));
6728 nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
6729 return nonzero;
6731 #endif
6733 code = GET_CODE (x);
6734 switch (code)
6736 case REG:
6737 #ifdef STACK_BOUNDARY
6738 /* If this is the stack pointer, we may know something about its
6739 alignment. If PUSH_ROUNDING is defined, it is possible for the
6740 stack to be momentarily aligned only to that amount, so we pick
6741 the least alignment. */
6743 if (x == stack_pointer_rtx)
6745 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6747 #ifdef PUSH_ROUNDING
6748 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
6749 #endif
6751 return nonzero & ~ (sp_alignment - 1);
6753 #endif
6755 /* If X is a register whose nonzero bits value is current, use it.
6756 Otherwise, if X is a register whose value we can find, use that
6757 value. Otherwise, use the previously-computed global nonzero bits
6758 for this register. */
6760 if (reg_last_set_value[REGNO (x)] != 0
6761 && reg_last_set_mode[REGNO (x)] == mode
6762 && (reg_n_sets[REGNO (x)] == 1
6763 || reg_last_set_label[REGNO (x)] == label_tick)
6764 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
6765 return reg_last_set_nonzero_bits[REGNO (x)];
6767 tem = get_last_value (x);
6769 if (tem)
6771 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
6772 /* If X is narrower than MODE and TEM is a non-negative
6773 constant that would appear negative in the mode of X,
6774 sign-extend it for use in reg_nonzero_bits because some
6775 machines (maybe most) will actually do the sign-extension
6776 and this is the conservative approach.
6778 ??? For 2.5, try to tighten up the MD files in this regard
6779 instead of this kludge. */
6781 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
6782 && GET_CODE (tem) == CONST_INT
6783 && INTVAL (tem) > 0
6784 && 0 != (INTVAL (tem)
6785 & ((HOST_WIDE_INT) 1
6786 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6787 tem = GEN_INT (INTVAL (tem)
6788 | ((HOST_WIDE_INT) (-1)
6789 << GET_MODE_BITSIZE (GET_MODE (x))));
6790 #endif
6791 return nonzero_bits (tem, mode);
6793 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
6794 return reg_nonzero_bits[REGNO (x)] & nonzero;
6795 else
6796 return nonzero;
6798 case CONST_INT:
6799 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
6800 /* If X is negative in MODE, sign-extend the value. */
6801 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
6802 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
6803 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
6804 #endif
6806 return INTVAL (x);
6808 case MEM:
6809 #ifdef LOAD_EXTEND_OP
6810 /* In many, if not most, RISC machines, reading a byte from memory
6811 zeros the rest of the register. Noticing that fact saves a lot
6812 of extra zero-extends. */
6813 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
6814 nonzero &= GET_MODE_MASK (GET_MODE (x));
6815 #endif
6816 break;
6818 case EQ: case NE:
6819 case GT: case GTU:
6820 case LT: case LTU:
6821 case GE: case GEU:
6822 case LE: case LEU:
6824 /* If this produces an integer result, we know which bits are set.
6825 Code here used to clear bits outside the mode of X, but that is
6826 now done above. */
6828 if (GET_MODE_CLASS (mode) == MODE_INT
6829 && mode_width <= HOST_BITS_PER_WIDE_INT)
6830 nonzero = STORE_FLAG_VALUE;
6831 break;
6833 case NEG:
6834 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
6835 == GET_MODE_BITSIZE (GET_MODE (x)))
6836 nonzero = 1;
6838 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
6839 nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
6840 break;
6842 case ABS:
6843 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
6844 == GET_MODE_BITSIZE (GET_MODE (x)))
6845 nonzero = 1;
6846 break;
6848 case TRUNCATE:
6849 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
6850 break;
6852 case ZERO_EXTEND:
6853 nonzero &= nonzero_bits (XEXP (x, 0), mode);
6854 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
6855 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
6856 break;
6858 case SIGN_EXTEND:
6859 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
6860 Otherwise, show all the bits in the outer mode but not the inner
6861 may be non-zero. */
6862 inner_nz = nonzero_bits (XEXP (x, 0), mode);
6863 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
6865 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
6866 if (inner_nz &
6867 (((HOST_WIDE_INT) 1
6868 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
6869 inner_nz |= (GET_MODE_MASK (mode)
6870 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
6873 nonzero &= inner_nz;
6874 break;
6876 case AND:
6877 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
6878 & nonzero_bits (XEXP (x, 1), mode));
6879 break;
6881 case XOR: case IOR:
6882 case UMIN: case UMAX: case SMIN: case SMAX:
6883 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
6884 | nonzero_bits (XEXP (x, 1), mode));
6885 break;
6887 case PLUS: case MINUS:
6888 case MULT:
6889 case DIV: case UDIV:
6890 case MOD: case UMOD:
6891 /* We can apply the rules of arithmetic to compute the number of
6892 high- and low-order zero bits of these operations. We start by
6893 computing the width (position of the highest-order non-zero bit)
6894 and the number of low-order zero bits for each value. */
6896 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
6897 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
6898 int width0 = floor_log2 (nz0) + 1;
6899 int width1 = floor_log2 (nz1) + 1;
6900 int low0 = floor_log2 (nz0 & -nz0);
6901 int low1 = floor_log2 (nz1 & -nz1);
6902 HOST_WIDE_INT op0_maybe_minusp
6903 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
6904 HOST_WIDE_INT op1_maybe_minusp
6905 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
6906 int result_width = mode_width;
6907 int result_low = 0;
6909 switch (code)
6911 case PLUS:
6912 result_width = MAX (width0, width1) + 1;
6913 result_low = MIN (low0, low1);
6914 break;
6915 case MINUS:
6916 result_low = MIN (low0, low1);
6917 break;
6918 case MULT:
6919 result_width = width0 + width1;
6920 result_low = low0 + low1;
6921 break;
6922 case DIV:
6923 if (! op0_maybe_minusp && ! op1_maybe_minusp)
6924 result_width = width0;
6925 break;
6926 case UDIV:
6927 result_width = width0;
6928 break;
6929 case MOD:
6930 if (! op0_maybe_minusp && ! op1_maybe_minusp)
6931 result_width = MIN (width0, width1);
6932 result_low = MIN (low0, low1);
6933 break;
6934 case UMOD:
6935 result_width = MIN (width0, width1);
6936 result_low = MIN (low0, low1);
6937 break;
6940 if (result_width < mode_width)
6941 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
6943 if (result_low > 0)
6944 nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
6946 break;
6948 case ZERO_EXTRACT:
6949 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6950 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6951 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
6952 break;
6954 case SUBREG:
6955 /* If this is a SUBREG formed for a promoted variable that has
6956 been zero-extended, we know that at least the high-order bits
6957 are zero, though others might be too. */
6959 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
6960 nonzero = (GET_MODE_MASK (GET_MODE (x))
6961 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
6963 /* If the inner mode is a single word for both the host and target
6964 machines, we can compute this from which bits of the inner
6965 object might be nonzero. */
6966 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
6967 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
6968 <= HOST_BITS_PER_WIDE_INT))
6970 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
6972 #ifndef WORD_REGISTER_OPERATIONS
6973 /* On many CISC machines, accessing an object in a wider mode
6974 causes the high-order bits to become undefined. So they are
6975 not known to be zero. */
6976 if (GET_MODE_SIZE (GET_MODE (x))
6977 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6978 nonzero |= (GET_MODE_MASK (GET_MODE (x))
6979 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
6980 #endif
6982 break;
6984 case ASHIFTRT:
6985 case LSHIFTRT:
6986 case ASHIFT:
6987 case ROTATE:
6988 /* The nonzero bits are in two classes: any bits within MODE
6989 that aren't in GET_MODE (x) are always significant. The rest of the
6990 nonzero bits are those that are significant in the operand of
6991 the shift when shifted the appropriate number of bits. This
6992 shows that high-order bits are cleared by the right shift and
6993 low-order bits by left shifts. */
6994 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6995 && INTVAL (XEXP (x, 1)) >= 0
6996 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6998 enum machine_mode inner_mode = GET_MODE (x);
6999 int width = GET_MODE_BITSIZE (inner_mode);
7000 int count = INTVAL (XEXP (x, 1));
7001 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
7002 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
7003 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
7004 unsigned HOST_WIDE_INT outer = 0;
7006 if (mode_width > width)
7007 outer = (op_nonzero & nonzero & ~ mode_mask);
7009 if (code == LSHIFTRT)
7010 inner >>= count;
7011 else if (code == ASHIFTRT)
7013 inner >>= count;
7015 /* If the sign bit may have been nonzero before the shift, we
7016 need to mark all the places it could have been copied to
7017 by the shift as possibly nonzero. */
7018 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
7019 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
7021 else if (code == ASHIFT)
7022 inner <<= count;
7023 else
7024 inner = ((inner << (count % width)
7025 | (inner >> (width - (count % width)))) & mode_mask);
7027 nonzero &= (outer | inner);
7029 break;
7031 case FFS:
7032 /* This is at most the number of bits in the mode. */
7033 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
7034 break;
7036 case IF_THEN_ELSE:
7037 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
7038 | nonzero_bits (XEXP (x, 2), mode));
7039 break;
7042 return nonzero;
7045 /* Return the number of bits at the high-order end of X that are known to
7046 be equal to the sign bit. X will be used in mode MODE; if MODE is
7047 VOIDmode, X will be used in its own mode. The returned value will always
7048 be between 1 and the number of bits in MODE. */
7050 static int
7051 num_sign_bit_copies (x, mode)
7052 rtx x;
7053 enum machine_mode mode;
7055 enum rtx_code code = GET_CODE (x);
7056 int bitwidth;
7057 int num0, num1, result;
7058 unsigned HOST_WIDE_INT nonzero;
7059 rtx tem;
7061 /* If we weren't given a mode, use the mode of X. If the mode is still
7062 VOIDmode, we don't know anything. Likewise if one of the modes is
7063 floating-point. */
7065 if (mode == VOIDmode)
7066 mode = GET_MODE (x);
7068 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
7069 return 1;
7071 bitwidth = GET_MODE_BITSIZE (mode);
7073 /* For a smaller object, just ignore the high bits. */
7074 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
7075 return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
7076 - (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
7078 #ifndef WORD_REGISTER_OPERATIONS
7079 /* If this machine does not do all register operations on the entire
7080 register and MODE is wider than the mode of X, we can say nothing
7081 at all about the high-order bits. */
7082 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
7083 return 1;
7084 #endif
7086 switch (code)
7088 case REG:
7090 if (reg_last_set_value[REGNO (x)] != 0
7091 && reg_last_set_mode[REGNO (x)] == mode
7092 && (reg_n_sets[REGNO (x)] == 1
7093 || reg_last_set_label[REGNO (x)] == label_tick)
7094 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7095 return reg_last_set_sign_bit_copies[REGNO (x)];
7097 tem = get_last_value (x);
7098 if (tem != 0)
7099 return num_sign_bit_copies (tem, mode);
7101 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
7102 return reg_sign_bit_copies[REGNO (x)];
7103 break;
7105 case MEM:
7106 #ifdef LOAD_EXTEND_OP
7107 /* Some RISC machines sign-extend all loads of smaller than a word. */
7108 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
7109 return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
7110 #endif
7111 break;
7113 case CONST_INT:
7114 /* If the constant is negative, take its 1's complement and remask.
7115 Then see how many zero bits we have. */
7116 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
7117 if (bitwidth <= HOST_BITS_PER_WIDE_INT
7118 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7119 nonzero = (~ nonzero) & GET_MODE_MASK (mode);
7121 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
7123 case SUBREG:
7124 /* If this is a SUBREG for a promoted object that is sign-extended
7125 and we are looking at it in a wider mode, we know that at least the
7126 high-order bits are known to be sign bit copies. */
7128 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
7129 return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1,
7130 num_sign_bit_copies (SUBREG_REG (x), mode));
7132 /* For a smaller object, just ignore the high bits. */
7133 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
7135 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
7136 return MAX (1, (num0
7137 - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7138 - bitwidth)));
7141 #ifdef WORD_REGISTER_OPERATIONS
7142 #ifdef LOAD_EXTEND_OP
7143 /* For paradoxical SUBREGs on machines where all register operations
7144 affect the entire register, just look inside. Note that we are
7145 passing MODE to the recursive call, so the number of sign bit copies
7146 will remain relative to that mode, not the inner mode. */
7148 /* This works only if loads sign extend. Otherwise, if we get a
7149 reload for the inner part, it may be loaded from the stack, and
7150 then we lose all sign bit copies that existed before the store
7151 to the stack. */
7153 if ((GET_MODE_SIZE (GET_MODE (x))
7154 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7155 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
7156 return num_sign_bit_copies (SUBREG_REG (x), mode);
7157 #endif
7158 #endif
7159 break;
7161 case SIGN_EXTRACT:
7162 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7163 return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
7164 break;
7166 case SIGN_EXTEND:
7167 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
7168 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
7170 case TRUNCATE:
7171 /* For a smaller object, just ignore the high bits. */
7172 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
7173 return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
7174 - bitwidth)));
7176 case NOT:
7177 return num_sign_bit_copies (XEXP (x, 0), mode);
7179 case ROTATE: case ROTATERT:
7180 /* If we are rotating left by a number of bits less than the number
7181 of sign bit copies, we can just subtract that amount from the
7182 number. */
7183 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7184 && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
7186 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7187 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
7188 : bitwidth - INTVAL (XEXP (x, 1))));
7190 break;
7192 case NEG:
7193 /* In general, this subtracts one sign bit copy. But if the value
7194 is known to be positive, the number of sign bit copies is the
7195 same as that of the input. Finally, if the input has just one bit
7196 that might be nonzero, all the bits are copies of the sign bit. */
7197 nonzero = nonzero_bits (XEXP (x, 0), mode);
7198 if (nonzero == 1)
7199 return bitwidth;
7201 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7202 if (num0 > 1
7203 && bitwidth <= HOST_BITS_PER_WIDE_INT
7204 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
7205 num0--;
7207 return num0;
7209 case IOR: case AND: case XOR:
7210 case SMIN: case SMAX: case UMIN: case UMAX:
7211 /* Logical operations will preserve the number of sign-bit copies.
7212 MIN and MAX operations always return one of the operands. */
7213 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7214 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7215 return MIN (num0, num1);
7217 case PLUS: case MINUS:
7218 /* For addition and subtraction, we can have a 1-bit carry. However,
7219 if we are subtracting 1 from a positive number, there will not
7220 be such a carry. Furthermore, if the positive number is known to
7221 be 0 or 1, we know the result is either -1 or 0. */
7223 if (code == PLUS && XEXP (x, 1) == constm1_rtx
7224 && bitwidth <= HOST_BITS_PER_WIDE_INT)
7226 nonzero = nonzero_bits (XEXP (x, 0), mode);
7227 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
7228 return (nonzero == 1 || nonzero == 0 ? bitwidth
7229 : bitwidth - floor_log2 (nonzero) - 1);
7232 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7233 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7234 return MAX (1, MIN (num0, num1) - 1);
7236 case MULT:
7237 /* The number of bits of the product is the sum of the number of
7238 bits of both terms. However, unless one of the terms if known
7239 to be positive, we must allow for an additional bit since negating
7240 a negative number can remove one sign bit copy. */
7242 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7243 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7245 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
7246 if (result > 0
7247 && bitwidth <= HOST_BITS_PER_WIDE_INT
7248 && ((nonzero_bits (XEXP (x, 0), mode)
7249 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7250 && (nonzero_bits (XEXP (x, 1), mode)
7251 & ((HOST_WIDE_INT) 1 << (bitwidth - 1)) != 0))
7252 result--;
7254 return MAX (1, result);
7256 case UDIV:
7257 /* The result must be <= the first operand. */
7258 return num_sign_bit_copies (XEXP (x, 0), mode);
7260 case UMOD:
7261 /* The result must be <= the scond operand. */
7262 return num_sign_bit_copies (XEXP (x, 1), mode);
7264 case DIV:
7265 /* Similar to unsigned division, except that we have to worry about
7266 the case where the divisor is negative, in which case we have
7267 to add 1. */
7268 result = num_sign_bit_copies (XEXP (x, 0), mode);
7269 if (result > 1
7270 && bitwidth <= HOST_BITS_PER_WIDE_INT
7271 && (nonzero_bits (XEXP (x, 1), mode)
7272 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7273 result --;
7275 return result;
7277 case MOD:
7278 result = num_sign_bit_copies (XEXP (x, 1), mode);
7279 if (result > 1
7280 && bitwidth <= HOST_BITS_PER_WIDE_INT
7281 && (nonzero_bits (XEXP (x, 1), mode)
7282 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7283 result --;
7285 return result;
7287 case ASHIFTRT:
7288 /* Shifts by a constant add to the number of bits equal to the
7289 sign bit. */
7290 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7291 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7292 && INTVAL (XEXP (x, 1)) > 0)
7293 num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
7295 return num0;
7297 case ASHIFT:
7298 /* Left shifts destroy copies. */
7299 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7300 || INTVAL (XEXP (x, 1)) < 0
7301 || INTVAL (XEXP (x, 1)) >= bitwidth)
7302 return 1;
7304 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7305 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
7307 case IF_THEN_ELSE:
7308 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
7309 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
7310 return MIN (num0, num1);
7312 #if STORE_FLAG_VALUE == -1
7313 case EQ: case NE: case GE: case GT: case LE: case LT:
7314 case GEU: case GTU: case LEU: case LTU:
7315 return bitwidth;
7316 #endif
7319 /* If we haven't been able to figure it out by one of the above rules,
7320 see if some of the high-order bits are known to be zero. If so,
7321 count those bits and return one less than that amount. If we can't
7322 safely compute the mask for this mode, always return BITWIDTH. */
7324 if (bitwidth > HOST_BITS_PER_WIDE_INT)
7325 return 1;
7327 nonzero = nonzero_bits (x, mode);
7328 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
7329 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
7332 /* Return the number of "extended" bits there are in X, when interpreted
7333 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
7334 unsigned quantities, this is the number of high-order zero bits.
7335 For signed quantities, this is the number of copies of the sign bit
7336 minus 1. In both case, this function returns the number of "spare"
7337 bits. For example, if two quantities for which this function returns
7338 at least 1 are added, the addition is known not to overflow.
7340 This function will always return 0 unless called during combine, which
7341 implies that it must be called from a define_split. */
7344 extended_count (x, mode, unsignedp)
7345 rtx x;
7346 enum machine_mode mode;
7347 int unsignedp;
7349 if (nonzero_sign_valid == 0)
7350 return 0;
7352 return (unsignedp
7353 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7354 && (GET_MODE_BITSIZE (mode) - 1
7355 - floor_log2 (nonzero_bits (x, mode))))
7356 : num_sign_bit_copies (x, mode) - 1);
7359 /* This function is called from `simplify_shift_const' to merge two
7360 outer operations. Specifically, we have already found that we need
7361 to perform operation *POP0 with constant *PCONST0 at the outermost
7362 position. We would now like to also perform OP1 with constant CONST1
7363 (with *POP0 being done last).
7365 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
7366 the resulting operation. *PCOMP_P is set to 1 if we would need to
7367 complement the innermost operand, otherwise it is unchanged.
7369 MODE is the mode in which the operation will be done. No bits outside
7370 the width of this mode matter. It is assumed that the width of this mode
7371 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
7373 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
7374 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
7375 result is simply *PCONST0.
7377 If the resulting operation cannot be expressed as one operation, we
7378 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
7380 static int
7381 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
7382 enum rtx_code *pop0;
7383 HOST_WIDE_INT *pconst0;
7384 enum rtx_code op1;
7385 HOST_WIDE_INT const1;
7386 enum machine_mode mode;
7387 int *pcomp_p;
7389 enum rtx_code op0 = *pop0;
7390 HOST_WIDE_INT const0 = *pconst0;
7392 const0 &= GET_MODE_MASK (mode);
7393 const1 &= GET_MODE_MASK (mode);
7395 /* If OP0 is an AND, clear unimportant bits in CONST1. */
7396 if (op0 == AND)
7397 const1 &= const0;
7399 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
7400 if OP0 is SET. */
7402 if (op1 == NIL || op0 == SET)
7403 return 1;
7405 else if (op0 == NIL)
7406 op0 = op1, const0 = const1;
7408 else if (op0 == op1)
7410 switch (op0)
7412 case AND:
7413 const0 &= const1;
7414 break;
7415 case IOR:
7416 const0 |= const1;
7417 break;
7418 case XOR:
7419 const0 ^= const1;
7420 break;
7421 case PLUS:
7422 const0 += const1;
7423 break;
7424 case NEG:
7425 op0 = NIL;
7426 break;
7430 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
7431 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
7432 return 0;
7434 /* If the two constants aren't the same, we can't do anything. The
7435 remaining six cases can all be done. */
7436 else if (const0 != const1)
7437 return 0;
7439 else
7440 switch (op0)
7442 case IOR:
7443 if (op1 == AND)
7444 /* (a & b) | b == b */
7445 op0 = SET;
7446 else /* op1 == XOR */
7447 /* (a ^ b) | b == a | b */
7449 break;
7451 case XOR:
7452 if (op1 == AND)
7453 /* (a & b) ^ b == (~a) & b */
7454 op0 = AND, *pcomp_p = 1;
7455 else /* op1 == IOR */
7456 /* (a | b) ^ b == a & ~b */
7457 op0 = AND, *pconst0 = ~ const0;
7458 break;
7460 case AND:
7461 if (op1 == IOR)
7462 /* (a | b) & b == b */
7463 op0 = SET;
7464 else /* op1 == XOR */
7465 /* (a ^ b) & b) == (~a) & b */
7466 *pcomp_p = 1;
7467 break;
7470 /* Check for NO-OP cases. */
7471 const0 &= GET_MODE_MASK (mode);
7472 if (const0 == 0
7473 && (op0 == IOR || op0 == XOR || op0 == PLUS))
7474 op0 = NIL;
7475 else if (const0 == 0 && op0 == AND)
7476 op0 = SET;
7477 else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
7478 op0 = NIL;
7480 *pop0 = op0;
7481 *pconst0 = const0;
7483 return 1;
7486 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
7487 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
7488 that we started with.
7490 The shift is normally computed in the widest mode we find in VAROP, as
7491 long as it isn't a different number of words than RESULT_MODE. Exceptions
7492 are ASHIFTRT and ROTATE, which are always done in their original mode, */
7494 static rtx
7495 simplify_shift_const (x, code, result_mode, varop, count)
7496 rtx x;
7497 enum rtx_code code;
7498 enum machine_mode result_mode;
7499 rtx varop;
7500 int count;
7502 enum rtx_code orig_code = code;
7503 int orig_count = count;
7504 enum machine_mode mode = result_mode;
7505 enum machine_mode shift_mode, tmode;
7506 int mode_words
7507 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
7508 /* We form (outer_op (code varop count) (outer_const)). */
7509 enum rtx_code outer_op = NIL;
7510 HOST_WIDE_INT outer_const = 0;
7511 rtx const_rtx;
7512 int complement_p = 0;
7513 rtx new;
7515 /* If we were given an invalid count, don't do anything except exactly
7516 what was requested. */
7518 if (count < 0 || count > GET_MODE_BITSIZE (mode))
7520 if (x)
7521 return x;
7523 return gen_rtx (code, mode, varop, GEN_INT (count));
7526 /* Unless one of the branches of the `if' in this loop does a `continue',
7527 we will `break' the loop after the `if'. */
7529 while (count != 0)
7531 /* If we have an operand of (clobber (const_int 0)), just return that
7532 value. */
7533 if (GET_CODE (varop) == CLOBBER)
7534 return varop;
7536 /* If we discovered we had to complement VAROP, leave. Making a NOT
7537 here would cause an infinite loop. */
7538 if (complement_p)
7539 break;
7541 /* Convert ROTATETRT to ROTATE. */
7542 if (code == ROTATERT)
7543 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
7545 /* We need to determine what mode we will do the shift in. If the
7546 shift is a ASHIFTRT or ROTATE, we must always do it in the mode it
7547 was originally done in. Otherwise, we can do it in MODE, the widest
7548 mode encountered. */
7549 shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
7551 /* Handle cases where the count is greater than the size of the mode
7552 minus 1. For ASHIFT, use the size minus one as the count (this can
7553 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
7554 take the count modulo the size. For other shifts, the result is
7555 zero.
7557 Since these shifts are being produced by the compiler by combining
7558 multiple operations, each of which are defined, we know what the
7559 result is supposed to be. */
7561 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
7563 if (code == ASHIFTRT)
7564 count = GET_MODE_BITSIZE (shift_mode) - 1;
7565 else if (code == ROTATE || code == ROTATERT)
7566 count %= GET_MODE_BITSIZE (shift_mode);
7567 else
7569 /* We can't simply return zero because there may be an
7570 outer op. */
7571 varop = const0_rtx;
7572 count = 0;
7573 break;
7577 /* Negative counts are invalid and should not have been made (a
7578 programmer-specified negative count should have been handled
7579 above). */
7580 else if (count < 0)
7581 abort ();
7583 /* An arithmetic right shift of a quantity known to be -1 or 0
7584 is a no-op. */
7585 if (code == ASHIFTRT
7586 && (num_sign_bit_copies (varop, shift_mode)
7587 == GET_MODE_BITSIZE (shift_mode)))
7589 count = 0;
7590 break;
7593 /* If we are doing an arithmetic right shift and discarding all but
7594 the sign bit copies, this is equivalent to doing a shift by the
7595 bitsize minus one. Convert it into that shift because it will often
7596 allow other simplifications. */
7598 if (code == ASHIFTRT
7599 && (count + num_sign_bit_copies (varop, shift_mode)
7600 >= GET_MODE_BITSIZE (shift_mode)))
7601 count = GET_MODE_BITSIZE (shift_mode) - 1;
7603 /* We simplify the tests below and elsewhere by converting
7604 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
7605 `make_compound_operation' will convert it to a ASHIFTRT for
7606 those machines (such as Vax) that don't have a LSHIFTRT. */
7607 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
7608 && code == ASHIFTRT
7609 && ((nonzero_bits (varop, shift_mode)
7610 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
7611 == 0))
7612 code = LSHIFTRT;
7614 switch (GET_CODE (varop))
7616 case SIGN_EXTEND:
7617 case ZERO_EXTEND:
7618 case SIGN_EXTRACT:
7619 case ZERO_EXTRACT:
7620 new = expand_compound_operation (varop);
7621 if (new != varop)
7623 varop = new;
7624 continue;
7626 break;
7628 case MEM:
7629 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
7630 minus the width of a smaller mode, we can do this with a
7631 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
7632 if ((code == ASHIFTRT || code == LSHIFTRT)
7633 && ! mode_dependent_address_p (XEXP (varop, 0))
7634 && ! MEM_VOLATILE_P (varop)
7635 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
7636 MODE_INT, 1)) != BLKmode)
7638 if (BYTES_BIG_ENDIAN)
7639 new = gen_rtx (MEM, tmode, XEXP (varop, 0));
7640 else
7641 new = gen_rtx (MEM, tmode,
7642 plus_constant (XEXP (varop, 0),
7643 count / BITS_PER_UNIT));
7644 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
7645 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
7646 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
7647 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
7648 : ZERO_EXTEND, mode, new);
7649 count = 0;
7650 continue;
7652 break;
7654 case USE:
7655 /* Similar to the case above, except that we can only do this if
7656 the resulting mode is the same as that of the underlying
7657 MEM and adjust the address depending on the *bits* endianness
7658 because of the way that bit-field extract insns are defined. */
7659 if ((code == ASHIFTRT || code == LSHIFTRT)
7660 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
7661 MODE_INT, 1)) != BLKmode
7662 && tmode == GET_MODE (XEXP (varop, 0)))
7664 if (BITS_BIG_ENDIAN)
7665 new = XEXP (varop, 0);
7666 else
7668 new = copy_rtx (XEXP (varop, 0));
7669 SUBST (XEXP (new, 0),
7670 plus_constant (XEXP (new, 0),
7671 count / BITS_PER_UNIT));
7674 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
7675 : ZERO_EXTEND, mode, new);
7676 count = 0;
7677 continue;
7679 break;
7681 case SUBREG:
7682 /* If VAROP is a SUBREG, strip it as long as the inner operand has
7683 the same number of words as what we've seen so far. Then store
7684 the widest mode in MODE. */
7685 if (subreg_lowpart_p (varop)
7686 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
7687 > GET_MODE_SIZE (GET_MODE (varop)))
7688 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
7689 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7690 == mode_words))
7692 varop = SUBREG_REG (varop);
7693 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
7694 mode = GET_MODE (varop);
7695 continue;
7697 break;
7699 case MULT:
7700 /* Some machines use MULT instead of ASHIFT because MULT
7701 is cheaper. But it is still better on those machines to
7702 merge two shifts into one. */
7703 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
7704 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
7706 varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
7707 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
7708 continue;
7710 break;
7712 case UDIV:
7713 /* Similar, for when divides are cheaper. */
7714 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
7715 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
7717 varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
7718 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
7719 continue;
7721 break;
7723 case ASHIFTRT:
7724 /* If we are extracting just the sign bit of an arithmetic right
7725 shift, that shift is not needed. */
7726 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
7728 varop = XEXP (varop, 0);
7729 continue;
7732 /* ... fall through ... */
7734 case LSHIFTRT:
7735 case ASHIFT:
7736 case ROTATE:
7737 /* Here we have two nested shifts. The result is usually the
7738 AND of a new shift with a mask. We compute the result below. */
7739 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
7740 && INTVAL (XEXP (varop, 1)) >= 0
7741 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
7742 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
7743 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
7745 enum rtx_code first_code = GET_CODE (varop);
7746 int first_count = INTVAL (XEXP (varop, 1));
7747 unsigned HOST_WIDE_INT mask;
7748 rtx mask_rtx;
7750 /* We have one common special case. We can't do any merging if
7751 the inner code is an ASHIFTRT of a smaller mode. However, if
7752 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
7753 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
7754 we can convert it to
7755 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
7756 This simplifies certain SIGN_EXTEND operations. */
7757 if (code == ASHIFT && first_code == ASHIFTRT
7758 && (GET_MODE_BITSIZE (result_mode)
7759 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
7761 /* C3 has the low-order C1 bits zero. */
7763 mask = (GET_MODE_MASK (mode)
7764 & ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
7766 varop = simplify_and_const_int (NULL_RTX, result_mode,
7767 XEXP (varop, 0), mask);
7768 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
7769 varop, count);
7770 count = first_count;
7771 code = ASHIFTRT;
7772 continue;
7775 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
7776 than C1 high-order bits equal to the sign bit, we can convert
7777 this to either an ASHIFT or a ASHIFTRT depending on the
7778 two counts.
7780 We cannot do this if VAROP's mode is not SHIFT_MODE. */
7782 if (code == ASHIFTRT && first_code == ASHIFT
7783 && GET_MODE (varop) == shift_mode
7784 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
7785 > first_count))
7787 count -= first_count;
7788 if (count < 0)
7789 count = - count, code = ASHIFT;
7790 varop = XEXP (varop, 0);
7791 continue;
7794 /* There are some cases we can't do. If CODE is ASHIFTRT,
7795 we can only do this if FIRST_CODE is also ASHIFTRT.
7797 We can't do the case when CODE is ROTATE and FIRST_CODE is
7798 ASHIFTRT.
7800 If the mode of this shift is not the mode of the outer shift,
7801 we can't do this if either shift is ASHIFTRT or ROTATE.
7803 Finally, we can't do any of these if the mode is too wide
7804 unless the codes are the same.
7806 Handle the case where the shift codes are the same
7807 first. */
7809 if (code == first_code)
7811 if (GET_MODE (varop) != result_mode
7812 && (code == ASHIFTRT || code == ROTATE))
7813 break;
7815 count += first_count;
7816 varop = XEXP (varop, 0);
7817 continue;
7820 if (code == ASHIFTRT
7821 || (code == ROTATE && first_code == ASHIFTRT)
7822 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
7823 || (GET_MODE (varop) != result_mode
7824 && (first_code == ASHIFTRT || first_code == ROTATE
7825 || code == ROTATE)))
7826 break;
7828 /* To compute the mask to apply after the shift, shift the
7829 nonzero bits of the inner shift the same way the
7830 outer shift will. */
7832 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
7834 mask_rtx
7835 = simplify_binary_operation (code, result_mode, mask_rtx,
7836 GEN_INT (count));
7838 /* Give up if we can't compute an outer operation to use. */
7839 if (mask_rtx == 0
7840 || GET_CODE (mask_rtx) != CONST_INT
7841 || ! merge_outer_ops (&outer_op, &outer_const, AND,
7842 INTVAL (mask_rtx),
7843 result_mode, &complement_p))
7844 break;
7846 /* If the shifts are in the same direction, we add the
7847 counts. Otherwise, we subtract them. */
7848 if ((code == ASHIFTRT || code == LSHIFTRT)
7849 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
7850 count += first_count;
7851 else
7852 count -= first_count;
7854 /* If COUNT is positive, the new shift is usually CODE,
7855 except for the two exceptions below, in which case it is
7856 FIRST_CODE. If the count is negative, FIRST_CODE should
7857 always be used */
7858 if (count > 0
7859 && ((first_code == ROTATE && code == ASHIFT)
7860 || (first_code == ASHIFTRT && code == LSHIFTRT)))
7861 code = first_code;
7862 else if (count < 0)
7863 code = first_code, count = - count;
7865 varop = XEXP (varop, 0);
7866 continue;
7869 /* If we have (A << B << C) for any shift, we can convert this to
7870 (A << C << B). This wins if A is a constant. Only try this if
7871 B is not a constant. */
7873 else if (GET_CODE (varop) == code
7874 && GET_CODE (XEXP (varop, 1)) != CONST_INT
7875 && 0 != (new
7876 = simplify_binary_operation (code, mode,
7877 XEXP (varop, 0),
7878 GEN_INT (count))))
7880 varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
7881 count = 0;
7882 continue;
7884 break;
7886 case NOT:
7887 /* Make this fit the case below. */
7888 varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
7889 GEN_INT (GET_MODE_MASK (mode)));
7890 continue;
7892 case IOR:
7893 case AND:
7894 case XOR:
7895 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
7896 with C the size of VAROP - 1 and the shift is logical if
7897 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
7898 we have an (le X 0) operation. If we have an arithmetic shift
7899 and STORE_FLAG_VALUE is 1 or we have a logical shift with
7900 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
7902 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
7903 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
7904 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7905 && (code == LSHIFTRT || code == ASHIFTRT)
7906 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
7907 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
7909 count = 0;
7910 varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
7911 const0_rtx);
7913 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
7914 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
7916 continue;
7919 /* If we have (shift (logical)), move the logical to the outside
7920 to allow it to possibly combine with another logical and the
7921 shift to combine with another shift. This also canonicalizes to
7922 what a ZERO_EXTRACT looks like. Also, some machines have
7923 (and (shift)) insns. */
7925 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
7926 && (new = simplify_binary_operation (code, result_mode,
7927 XEXP (varop, 1),
7928 GEN_INT (count))) != 0
7929 && GET_CODE(new) == CONST_INT
7930 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
7931 INTVAL (new), result_mode, &complement_p))
7933 varop = XEXP (varop, 0);
7934 continue;
7937 /* If we can't do that, try to simplify the shift in each arm of the
7938 logical expression, make a new logical expression, and apply
7939 the inverse distributive law. */
7941 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
7942 XEXP (varop, 0), count);
7943 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
7944 XEXP (varop, 1), count);
7946 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
7947 varop = apply_distributive_law (varop);
7949 count = 0;
7951 break;
7953 case EQ:
7954 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
7955 says that the sign bit can be tested, FOO has mode MODE, C is
7956 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
7957 that may be nonzero. */
7958 if (code == LSHIFTRT
7959 && XEXP (varop, 1) == const0_rtx
7960 && GET_MODE (XEXP (varop, 0)) == result_mode
7961 && count == GET_MODE_BITSIZE (result_mode) - 1
7962 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
7963 && ((STORE_FLAG_VALUE
7964 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
7965 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
7966 && merge_outer_ops (&outer_op, &outer_const, XOR,
7967 (HOST_WIDE_INT) 1, result_mode,
7968 &complement_p))
7970 varop = XEXP (varop, 0);
7971 count = 0;
7972 continue;
7974 break;
7976 case NEG:
7977 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
7978 than the number of bits in the mode is equivalent to A. */
7979 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
7980 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
7982 varop = XEXP (varop, 0);
7983 count = 0;
7984 continue;
7987 /* NEG commutes with ASHIFT since it is multiplication. Move the
7988 NEG outside to allow shifts to combine. */
7989 if (code == ASHIFT
7990 && merge_outer_ops (&outer_op, &outer_const, NEG,
7991 (HOST_WIDE_INT) 0, result_mode,
7992 &complement_p))
7994 varop = XEXP (varop, 0);
7995 continue;
7997 break;
7999 case PLUS:
8000 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8001 is one less than the number of bits in the mode is
8002 equivalent to (xor A 1). */
8003 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8004 && XEXP (varop, 1) == constm1_rtx
8005 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8006 && merge_outer_ops (&outer_op, &outer_const, XOR,
8007 (HOST_WIDE_INT) 1, result_mode,
8008 &complement_p))
8010 count = 0;
8011 varop = XEXP (varop, 0);
8012 continue;
8015 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8016 that might be nonzero in BAR are those being shifted out and those
8017 bits are known zero in FOO, we can replace the PLUS with FOO.
8018 Similarly in the other operand order. This code occurs when
8019 we are computing the size of a variable-size array. */
8021 if ((code == ASHIFTRT || code == LSHIFTRT)
8022 && count < HOST_BITS_PER_WIDE_INT
8023 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8024 && (nonzero_bits (XEXP (varop, 1), result_mode)
8025 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8027 varop = XEXP (varop, 0);
8028 continue;
8030 else if ((code == ASHIFTRT || code == LSHIFTRT)
8031 && count < HOST_BITS_PER_WIDE_INT
8032 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8033 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8034 >> count)
8035 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8036 & nonzero_bits (XEXP (varop, 1),
8037 result_mode)))
8039 varop = XEXP (varop, 1);
8040 continue;
8043 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
8044 if (code == ASHIFT
8045 && GET_CODE (XEXP (varop, 1)) == CONST_INT
8046 && (new = simplify_binary_operation (ASHIFT, result_mode,
8047 XEXP (varop, 1),
8048 GEN_INT (count))) != 0
8049 && GET_CODE(new) == CONST_INT
8050 && merge_outer_ops (&outer_op, &outer_const, PLUS,
8051 INTVAL (new), result_mode, &complement_p))
8053 varop = XEXP (varop, 0);
8054 continue;
8056 break;
8058 case MINUS:
8059 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
8060 with C the size of VAROP - 1 and the shift is logical if
8061 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8062 we have a (gt X 0) operation. If the shift is arithmetic with
8063 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
8064 we have a (neg (gt X 0)) operation. */
8066 if (GET_CODE (XEXP (varop, 0)) == ASHIFTRT
8067 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8068 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8069 && (code == LSHIFTRT || code == ASHIFTRT)
8070 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8071 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
8072 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8074 count = 0;
8075 varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
8076 const0_rtx);
8078 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8079 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8081 continue;
8083 break;
8086 break;
8089 /* We need to determine what mode to do the shift in. If the shift is
8090 a ASHIFTRT or ROTATE, we must always do it in the mode it was originally
8091 done in. Otherwise, we can do it in MODE, the widest mode encountered.
8092 The code we care about is that of the shift that will actually be done,
8093 not the shift that was originally requested. */
8094 shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
8096 /* We have now finished analyzing the shift. The result should be
8097 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
8098 OUTER_OP is non-NIL, it is an operation that needs to be applied
8099 to the result of the shift. OUTER_CONST is the relevant constant,
8100 but we must turn off all bits turned off in the shift.
8102 If we were passed a value for X, see if we can use any pieces of
8103 it. If not, make new rtx. */
8105 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
8106 && GET_CODE (XEXP (x, 1)) == CONST_INT
8107 && INTVAL (XEXP (x, 1)) == count)
8108 const_rtx = XEXP (x, 1);
8109 else
8110 const_rtx = GEN_INT (count);
8112 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8113 && GET_MODE (XEXP (x, 0)) == shift_mode
8114 && SUBREG_REG (XEXP (x, 0)) == varop)
8115 varop = XEXP (x, 0);
8116 else if (GET_MODE (varop) != shift_mode)
8117 varop = gen_lowpart_for_combine (shift_mode, varop);
8119 /* If we can't make the SUBREG, try to return what we were given. */
8120 if (GET_CODE (varop) == CLOBBER)
8121 return x ? x : varop;
8123 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
8124 if (new != 0)
8125 x = new;
8126 else
8128 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
8129 x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
8131 SUBST (XEXP (x, 0), varop);
8132 SUBST (XEXP (x, 1), const_rtx);
8135 /* If we have an outer operation and we just made a shift, it is
8136 possible that we could have simplified the shift were it not
8137 for the outer operation. So try to do the simplification
8138 recursively. */
8140 if (outer_op != NIL && GET_CODE (x) == code
8141 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8142 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
8143 INTVAL (XEXP (x, 1)));
8145 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
8146 turn off all the bits that the shift would have turned off. */
8147 if (orig_code == LSHIFTRT && result_mode != shift_mode)
8148 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
8149 GET_MODE_MASK (result_mode) >> orig_count);
8151 /* Do the remainder of the processing in RESULT_MODE. */
8152 x = gen_lowpart_for_combine (result_mode, x);
8154 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
8155 operation. */
8156 if (complement_p)
8157 x = gen_unary (NOT, result_mode, result_mode, x);
8159 if (outer_op != NIL)
8161 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
8162 outer_const &= GET_MODE_MASK (result_mode);
8164 if (outer_op == AND)
8165 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
8166 else if (outer_op == SET)
8167 /* This means that we have determined that the result is
8168 equivalent to a constant. This should be rare. */
8169 x = GEN_INT (outer_const);
8170 else if (GET_RTX_CLASS (outer_op) == '1')
8171 x = gen_unary (outer_op, result_mode, result_mode, x);
8172 else
8173 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
8176 return x;
8179 /* Like recog, but we receive the address of a pointer to a new pattern.
8180 We try to match the rtx that the pointer points to.
8181 If that fails, we may try to modify or replace the pattern,
8182 storing the replacement into the same pointer object.
8184 Modifications include deletion or addition of CLOBBERs.
8186 PNOTES is a pointer to a location where any REG_UNUSED notes added for
8187 the CLOBBERs are placed.
8189 The value is the final insn code from the pattern ultimately matched,
8190 or -1. */
8192 static int
8193 recog_for_combine (pnewpat, insn, pnotes)
8194 rtx *pnewpat;
8195 rtx insn;
8196 rtx *pnotes;
8198 register rtx pat = *pnewpat;
8199 int insn_code_number;
8200 int num_clobbers_to_add = 0;
8201 int i;
8202 rtx notes = 0;
8204 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
8205 we use to indicate that something didn't match. If we find such a
8206 thing, force rejection. */
8207 if (GET_CODE (pat) == PARALLEL)
8208 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
8209 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
8210 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
8211 return -1;
8213 /* Is the result of combination a valid instruction? */
8214 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
8216 /* If it isn't, there is the possibility that we previously had an insn
8217 that clobbered some register as a side effect, but the combined
8218 insn doesn't need to do that. So try once more without the clobbers
8219 unless this represents an ASM insn. */
8221 if (insn_code_number < 0 && ! check_asm_operands (pat)
8222 && GET_CODE (pat) == PARALLEL)
8224 int pos;
8226 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
8227 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
8229 if (i != pos)
8230 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
8231 pos++;
8234 SUBST_INT (XVECLEN (pat, 0), pos);
8236 if (pos == 1)
8237 pat = XVECEXP (pat, 0, 0);
8239 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
8242 /* If we had any clobbers to add, make a new pattern than contains
8243 them. Then check to make sure that all of them are dead. */
8244 if (num_clobbers_to_add)
8246 rtx newpat = gen_rtx (PARALLEL, VOIDmode,
8247 gen_rtvec (GET_CODE (pat) == PARALLEL
8248 ? XVECLEN (pat, 0) + num_clobbers_to_add
8249 : num_clobbers_to_add + 1));
8251 if (GET_CODE (pat) == PARALLEL)
8252 for (i = 0; i < XVECLEN (pat, 0); i++)
8253 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
8254 else
8255 XVECEXP (newpat, 0, 0) = pat;
8257 add_clobbers (newpat, insn_code_number);
8259 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
8260 i < XVECLEN (newpat, 0); i++)
8262 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
8263 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
8264 return -1;
8265 notes = gen_rtx (EXPR_LIST, REG_UNUSED,
8266 XEXP (XVECEXP (newpat, 0, i), 0), notes);
8268 pat = newpat;
8271 *pnewpat = pat;
8272 *pnotes = notes;
8274 return insn_code_number;
8277 /* Like gen_lowpart but for use by combine. In combine it is not possible
8278 to create any new pseudoregs. However, it is safe to create
8279 invalid memory addresses, because combine will try to recognize
8280 them and all they will do is make the combine attempt fail.
8282 If for some reason this cannot do its job, an rtx
8283 (clobber (const_int 0)) is returned.
8284 An insn containing that will not be recognized. */
8286 #undef gen_lowpart
8288 static rtx
8289 gen_lowpart_for_combine (mode, x)
8290 enum machine_mode mode;
8291 register rtx x;
8293 rtx result;
8295 if (GET_MODE (x) == mode)
8296 return x;
8298 /* We can only support MODE being wider than a word if X is a
8299 constant integer or has a mode the same size. */
8301 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
8302 && ! ((GET_MODE (x) == VOIDmode
8303 && (GET_CODE (x) == CONST_INT
8304 || GET_CODE (x) == CONST_DOUBLE))
8305 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
8306 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
8308 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
8309 won't know what to do. So we will strip off the SUBREG here and
8310 process normally. */
8311 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
8313 x = SUBREG_REG (x);
8314 if (GET_MODE (x) == mode)
8315 return x;
8318 result = gen_lowpart_common (mode, x);
8319 if (result)
8320 return result;
8322 if (GET_CODE (x) == MEM)
8324 register int offset = 0;
8325 rtx new;
8327 /* Refuse to work on a volatile memory ref or one with a mode-dependent
8328 address. */
8329 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
8330 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
8332 /* If we want to refer to something bigger than the original memref,
8333 generate a perverse subreg instead. That will force a reload
8334 of the original memref X. */
8335 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
8336 return gen_rtx (SUBREG, mode, x, 0);
8338 if (WORDS_BIG_ENDIAN)
8339 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
8340 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
8341 if (BYTES_BIG_ENDIAN)
8343 /* Adjust the address so that the address-after-the-data is
8344 unchanged. */
8345 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
8346 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
8348 new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
8349 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
8350 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
8351 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
8352 return new;
8355 /* If X is a comparison operator, rewrite it in a new mode. This
8356 probably won't match, but may allow further simplifications. */
8357 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
8358 return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
8360 /* If we couldn't simplify X any other way, just enclose it in a
8361 SUBREG. Normally, this SUBREG won't match, but some patterns may
8362 include an explicit SUBREG or we may simplify it further in combine. */
8363 else
8365 int word = 0;
8367 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
8368 word = ((GET_MODE_SIZE (GET_MODE (x))
8369 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
8370 / UNITS_PER_WORD);
8371 return gen_rtx (SUBREG, mode, x, word);
8375 /* Make an rtx expression. This is a subset of gen_rtx and only supports
8376 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
8378 If the identical expression was previously in the insn (in the undobuf),
8379 it will be returned. Only if it is not found will a new expression
8380 be made. */
8382 /*VARARGS2*/
8383 static rtx
8384 gen_rtx_combine VPROTO((enum rtx_code code, enum machine_mode mode, ...))
8386 #ifndef __STDC__
8387 enum rtx_code code;
8388 enum machine_mode mode;
8389 #endif
8390 va_list p;
8391 int n_args;
8392 rtx args[3];
8393 int i, j;
8394 char *fmt;
8395 rtx rt;
8397 VA_START (p, mode);
8399 #ifndef __STDC__
8400 code = va_arg (p, enum rtx_code);
8401 mode = va_arg (p, enum machine_mode);
8402 #endif
8404 n_args = GET_RTX_LENGTH (code);
8405 fmt = GET_RTX_FORMAT (code);
8407 if (n_args == 0 || n_args > 3)
8408 abort ();
8410 /* Get each arg and verify that it is supposed to be an expression. */
8411 for (j = 0; j < n_args; j++)
8413 if (*fmt++ != 'e')
8414 abort ();
8416 args[j] = va_arg (p, rtx);
8419 /* See if this is in undobuf. Be sure we don't use objects that came
8420 from another insn; this could produce circular rtl structures. */
8422 for (i = previous_num_undos; i < undobuf.num_undo; i++)
8423 if (!undobuf.undo[i].is_int
8424 && GET_CODE (undobuf.undo[i].old_contents.r) == code
8425 && GET_MODE (undobuf.undo[i].old_contents.r) == mode)
8427 for (j = 0; j < n_args; j++)
8428 if (XEXP (undobuf.undo[i].old_contents.r, j) != args[j])
8429 break;
8431 if (j == n_args)
8432 return undobuf.undo[i].old_contents.r;
8435 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
8436 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
8437 rt = rtx_alloc (code);
8438 PUT_MODE (rt, mode);
8439 XEXP (rt, 0) = args[0];
8440 if (n_args > 1)
8442 XEXP (rt, 1) = args[1];
8443 if (n_args > 2)
8444 XEXP (rt, 2) = args[2];
8446 return rt;
8449 /* These routines make binary and unary operations by first seeing if they
8450 fold; if not, a new expression is allocated. */
8452 static rtx
8453 gen_binary (code, mode, op0, op1)
8454 enum rtx_code code;
8455 enum machine_mode mode;
8456 rtx op0, op1;
8458 rtx result;
8459 rtx tem;
8461 if (GET_RTX_CLASS (code) == 'c'
8462 && (GET_CODE (op0) == CONST_INT
8463 || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
8464 tem = op0, op0 = op1, op1 = tem;
8466 if (GET_RTX_CLASS (code) == '<')
8468 enum machine_mode op_mode = GET_MODE (op0);
8470 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
8471 just (REL_OP X Y). */
8472 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
8474 op1 = XEXP (op0, 1);
8475 op0 = XEXP (op0, 0);
8476 op_mode = GET_MODE (op0);
8479 if (op_mode == VOIDmode)
8480 op_mode = GET_MODE (op1);
8481 result = simplify_relational_operation (code, op_mode, op0, op1);
8483 else
8484 result = simplify_binary_operation (code, mode, op0, op1);
8486 if (result)
8487 return result;
8489 /* Put complex operands first and constants second. */
8490 if (GET_RTX_CLASS (code) == 'c'
8491 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
8492 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
8493 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
8494 || (GET_CODE (op0) == SUBREG
8495 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
8496 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
8497 return gen_rtx_combine (code, mode, op1, op0);
8499 return gen_rtx_combine (code, mode, op0, op1);
8502 static rtx
8503 gen_unary (code, mode, op0_mode, op0)
8504 enum rtx_code code;
8505 enum machine_mode mode, op0_mode;
8506 rtx op0;
8508 rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
8510 if (result)
8511 return result;
8513 return gen_rtx_combine (code, mode, op0);
8516 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
8517 comparison code that will be tested.
8519 The result is a possibly different comparison code to use. *POP0 and
8520 *POP1 may be updated.
8522 It is possible that we might detect that a comparison is either always
8523 true or always false. However, we do not perform general constant
8524 folding in combine, so this knowledge isn't useful. Such tautologies
8525 should have been detected earlier. Hence we ignore all such cases. */
8527 static enum rtx_code
8528 simplify_comparison (code, pop0, pop1)
8529 enum rtx_code code;
8530 rtx *pop0;
8531 rtx *pop1;
8533 rtx op0 = *pop0;
8534 rtx op1 = *pop1;
8535 rtx tem, tem1;
8536 int i;
8537 enum machine_mode mode, tmode;
8539 /* Try a few ways of applying the same transformation to both operands. */
8540 while (1)
8542 #ifndef WORD_REGISTER_OPERATIONS
8543 /* The test below this one won't handle SIGN_EXTENDs on these machines,
8544 so check specially. */
8545 if (code != GTU && code != GEU && code != LTU && code != LEU
8546 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
8547 && GET_CODE (XEXP (op0, 0)) == ASHIFT
8548 && GET_CODE (XEXP (op1, 0)) == ASHIFT
8549 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
8550 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
8551 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
8552 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
8553 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8554 && GET_CODE (XEXP (op1, 1)) == CONST_INT
8555 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
8556 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
8557 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
8558 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
8559 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
8560 && (INTVAL (XEXP (op0, 1))
8561 == (GET_MODE_BITSIZE (GET_MODE (op0))
8562 - (GET_MODE_BITSIZE
8563 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
8565 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
8566 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
8568 #endif
8570 /* If both operands are the same constant shift, see if we can ignore the
8571 shift. We can if the shift is a rotate or if the bits shifted out of
8572 this shift are known to be zero for both inputs and if the type of
8573 comparison is compatible with the shift. */
8574 if (GET_CODE (op0) == GET_CODE (op1)
8575 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
8576 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
8577 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
8578 && (code != GT && code != LT && code != GE && code != LE))
8579 || (GET_CODE (op0) == ASHIFTRT
8580 && (code != GTU && code != LTU
8581 && code != GEU && code != GEU)))
8582 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8583 && INTVAL (XEXP (op0, 1)) >= 0
8584 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
8585 && XEXP (op0, 1) == XEXP (op1, 1))
8587 enum machine_mode mode = GET_MODE (op0);
8588 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8589 int shift_count = INTVAL (XEXP (op0, 1));
8591 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
8592 mask &= (mask >> shift_count) << shift_count;
8593 else if (GET_CODE (op0) == ASHIFT)
8594 mask = (mask & (mask << shift_count)) >> shift_count;
8596 if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
8597 && (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
8598 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
8599 else
8600 break;
8603 /* If both operands are AND's of a paradoxical SUBREG by constant, the
8604 SUBREGs are of the same mode, and, in both cases, the AND would
8605 be redundant if the comparison was done in the narrower mode,
8606 do the comparison in the narrower mode (e.g., we are AND'ing with 1
8607 and the operand's possibly nonzero bits are 0xffffff01; in that case
8608 if we only care about QImode, we don't need the AND). This case
8609 occurs if the output mode of an scc insn is not SImode and
8610 STORE_FLAG_VALUE == 1 (e.g., the 386).
8612 Similarly, check for a case where the AND's are ZERO_EXTEND
8613 operations from some narrower mode even though a SUBREG is not
8614 present. */
8616 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
8617 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8618 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
8620 rtx inner_op0 = XEXP (op0, 0);
8621 rtx inner_op1 = XEXP (op1, 0);
8622 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
8623 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
8624 int changed = 0;
8626 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
8627 && (GET_MODE_SIZE (GET_MODE (inner_op0))
8628 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
8629 && (GET_MODE (SUBREG_REG (inner_op0))
8630 == GET_MODE (SUBREG_REG (inner_op1)))
8631 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
8632 <= HOST_BITS_PER_WIDE_INT)
8633 && (0 == (~c0) & nonzero_bits (SUBREG_REG (inner_op0),
8634 GET_MODE (SUBREG_REG (op0))))
8635 && (0 == (~c1) & nonzero_bits (SUBREG_REG (inner_op1),
8636 GET_MODE (SUBREG_REG (inner_op1)))))
8638 op0 = SUBREG_REG (inner_op0);
8639 op1 = SUBREG_REG (inner_op1);
8641 /* The resulting comparison is always unsigned since we masked
8642 off the original sign bit. */
8643 code = unsigned_condition (code);
8645 changed = 1;
8648 else if (c0 == c1)
8649 for (tmode = GET_CLASS_NARROWEST_MODE
8650 (GET_MODE_CLASS (GET_MODE (op0)));
8651 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
8652 if (c0 == GET_MODE_MASK (tmode))
8654 op0 = gen_lowpart_for_combine (tmode, inner_op0);
8655 op1 = gen_lowpart_for_combine (tmode, inner_op1);
8656 code = unsigned_condition (code);
8657 changed = 1;
8658 break;
8661 if (! changed)
8662 break;
8665 /* If both operands are NOT, we can strip off the outer operation
8666 and adjust the comparison code for swapped operands; similarly for
8667 NEG, except that this must be an equality comparison. */
8668 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
8669 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
8670 && (code == EQ || code == NE)))
8671 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
8673 else
8674 break;
8677 /* If the first operand is a constant, swap the operands and adjust the
8678 comparison code appropriately. */
8679 if (CONSTANT_P (op0))
8681 tem = op0, op0 = op1, op1 = tem;
8682 code = swap_condition (code);
8685 /* We now enter a loop during which we will try to simplify the comparison.
8686 For the most part, we only are concerned with comparisons with zero,
8687 but some things may really be comparisons with zero but not start
8688 out looking that way. */
8690 while (GET_CODE (op1) == CONST_INT)
8692 enum machine_mode mode = GET_MODE (op0);
8693 int mode_width = GET_MODE_BITSIZE (mode);
8694 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8695 int equality_comparison_p;
8696 int sign_bit_comparison_p;
8697 int unsigned_comparison_p;
8698 HOST_WIDE_INT const_op;
8700 /* We only want to handle integral modes. This catches VOIDmode,
8701 CCmode, and the floating-point modes. An exception is that we
8702 can handle VOIDmode if OP0 is a COMPARE or a comparison
8703 operation. */
8705 if (GET_MODE_CLASS (mode) != MODE_INT
8706 && ! (mode == VOIDmode
8707 && (GET_CODE (op0) == COMPARE
8708 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
8709 break;
8711 /* Get the constant we are comparing against and turn off all bits
8712 not on in our mode. */
8713 const_op = INTVAL (op1);
8714 if (mode_width <= HOST_BITS_PER_WIDE_INT)
8715 const_op &= mask;
8717 /* If we are comparing against a constant power of two and the value
8718 being compared can only have that single bit nonzero (e.g., it was
8719 `and'ed with that bit), we can replace this with a comparison
8720 with zero. */
8721 if (const_op
8722 && (code == EQ || code == NE || code == GE || code == GEU
8723 || code == LT || code == LTU)
8724 && mode_width <= HOST_BITS_PER_WIDE_INT
8725 && exact_log2 (const_op) >= 0
8726 && nonzero_bits (op0, mode) == const_op)
8728 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
8729 op1 = const0_rtx, const_op = 0;
8732 /* Similarly, if we are comparing a value known to be either -1 or
8733 0 with -1, change it to the opposite comparison against zero. */
8735 if (const_op == -1
8736 && (code == EQ || code == NE || code == GT || code == LE
8737 || code == GEU || code == LTU)
8738 && num_sign_bit_copies (op0, mode) == mode_width)
8740 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
8741 op1 = const0_rtx, const_op = 0;
8744 /* Do some canonicalizations based on the comparison code. We prefer
8745 comparisons against zero and then prefer equality comparisons.
8746 If we can reduce the size of a constant, we will do that too. */
8748 switch (code)
8750 case LT:
8751 /* < C is equivalent to <= (C - 1) */
8752 if (const_op > 0)
8754 const_op -= 1;
8755 op1 = GEN_INT (const_op);
8756 code = LE;
8757 /* ... fall through to LE case below. */
8759 else
8760 break;
8762 case LE:
8763 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
8764 if (const_op < 0)
8766 const_op += 1;
8767 op1 = GEN_INT (const_op);
8768 code = LT;
8771 /* If we are doing a <= 0 comparison on a value known to have
8772 a zero sign bit, we can replace this with == 0. */
8773 else if (const_op == 0
8774 && mode_width <= HOST_BITS_PER_WIDE_INT
8775 && (nonzero_bits (op0, mode)
8776 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
8777 code = EQ;
8778 break;
8780 case GE:
8781 /* >= C is equivalent to > (C - 1). */
8782 if (const_op > 0)
8784 const_op -= 1;
8785 op1 = GEN_INT (const_op);
8786 code = GT;
8787 /* ... fall through to GT below. */
8789 else
8790 break;
8792 case GT:
8793 /* > C is equivalent to >= (C + 1); we do this for C < 0*/
8794 if (const_op < 0)
8796 const_op += 1;
8797 op1 = GEN_INT (const_op);
8798 code = GE;
8801 /* If we are doing a > 0 comparison on a value known to have
8802 a zero sign bit, we can replace this with != 0. */
8803 else if (const_op == 0
8804 && mode_width <= HOST_BITS_PER_WIDE_INT
8805 && (nonzero_bits (op0, mode)
8806 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
8807 code = NE;
8808 break;
8810 case LTU:
8811 /* < C is equivalent to <= (C - 1). */
8812 if (const_op > 0)
8814 const_op -= 1;
8815 op1 = GEN_INT (const_op);
8816 code = LEU;
8817 /* ... fall through ... */
8820 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
8821 else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
8823 const_op = 0, op1 = const0_rtx;
8824 code = GE;
8825 break;
8827 else
8828 break;
8830 case LEU:
8831 /* unsigned <= 0 is equivalent to == 0 */
8832 if (const_op == 0)
8833 code = EQ;
8835 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
8836 else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
8838 const_op = 0, op1 = const0_rtx;
8839 code = GE;
8841 break;
8843 case GEU:
8844 /* >= C is equivalent to < (C - 1). */
8845 if (const_op > 1)
8847 const_op -= 1;
8848 op1 = GEN_INT (const_op);
8849 code = GTU;
8850 /* ... fall through ... */
8853 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
8854 else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
8856 const_op = 0, op1 = const0_rtx;
8857 code = LT;
8858 break;
8860 else
8861 break;
8863 case GTU:
8864 /* unsigned > 0 is equivalent to != 0 */
8865 if (const_op == 0)
8866 code = NE;
8868 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
8869 else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
8871 const_op = 0, op1 = const0_rtx;
8872 code = LT;
8874 break;
8877 /* Compute some predicates to simplify code below. */
8879 equality_comparison_p = (code == EQ || code == NE);
8880 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
8881 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
8882 || code == LEU);
8884 /* If this is a sign bit comparison and we can do arithmetic in
8885 MODE, say that we will only be needing the sign bit of OP0. */
8886 if (sign_bit_comparison_p
8887 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8888 op0 = force_to_mode (op0, mode,
8889 ((HOST_WIDE_INT) 1
8890 << (GET_MODE_BITSIZE (mode) - 1)),
8891 NULL_RTX, 0);
8893 /* Now try cases based on the opcode of OP0. If none of the cases
8894 does a "continue", we exit this loop immediately after the
8895 switch. */
8897 switch (GET_CODE (op0))
8899 case ZERO_EXTRACT:
8900 /* If we are extracting a single bit from a variable position in
8901 a constant that has only a single bit set and are comparing it
8902 with zero, we can convert this into an equality comparison
8903 between the position and the location of the single bit. We can't
8904 do this if bit endian and we don't have an extzv since we then
8905 can't know what mode to use for the endianness adjustment. */
8907 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
8908 && XEXP (op0, 1) == const1_rtx
8909 && equality_comparison_p && const_op == 0
8910 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0
8911 && (! BITS_BIG_ENDIAN
8912 #ifdef HAVE_extzv
8913 || HAVE_extzv
8914 #endif
8917 #ifdef HAVE_extzv
8918 if (BITS_BIG_ENDIAN)
8919 i = (GET_MODE_BITSIZE
8920 (insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
8921 #endif
8923 op0 = XEXP (op0, 2);
8924 op1 = GEN_INT (i);
8925 const_op = i;
8927 /* Result is nonzero iff shift count is equal to I. */
8928 code = reverse_condition (code);
8929 continue;
8932 /* ... fall through ... */
8934 case SIGN_EXTRACT:
8935 tem = expand_compound_operation (op0);
8936 if (tem != op0)
8938 op0 = tem;
8939 continue;
8941 break;
8943 case NOT:
8944 /* If testing for equality, we can take the NOT of the constant. */
8945 if (equality_comparison_p
8946 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
8948 op0 = XEXP (op0, 0);
8949 op1 = tem;
8950 continue;
8953 /* If just looking at the sign bit, reverse the sense of the
8954 comparison. */
8955 if (sign_bit_comparison_p)
8957 op0 = XEXP (op0, 0);
8958 code = (code == GE ? LT : GE);
8959 continue;
8961 break;
8963 case NEG:
8964 /* If testing for equality, we can take the NEG of the constant. */
8965 if (equality_comparison_p
8966 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
8968 op0 = XEXP (op0, 0);
8969 op1 = tem;
8970 continue;
8973 /* The remaining cases only apply to comparisons with zero. */
8974 if (const_op != 0)
8975 break;
8977 /* When X is ABS or is known positive,
8978 (neg X) is < 0 if and only if X != 0. */
8980 if (sign_bit_comparison_p
8981 && (GET_CODE (XEXP (op0, 0)) == ABS
8982 || (mode_width <= HOST_BITS_PER_WIDE_INT
8983 && (nonzero_bits (XEXP (op0, 0), mode)
8984 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
8986 op0 = XEXP (op0, 0);
8987 code = (code == LT ? NE : EQ);
8988 continue;
8991 /* If we have NEG of something whose two high-order bits are the
8992 same, we know that "(-a) < 0" is equivalent to "a > 0". */
8993 if (num_sign_bit_copies (op0, mode) >= 2)
8995 op0 = XEXP (op0, 0);
8996 code = swap_condition (code);
8997 continue;
8999 break;
9001 case ROTATE:
9002 /* If we are testing equality and our count is a constant, we
9003 can perform the inverse operation on our RHS. */
9004 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9005 && (tem = simplify_binary_operation (ROTATERT, mode,
9006 op1, XEXP (op0, 1))) != 0)
9008 op0 = XEXP (op0, 0);
9009 op1 = tem;
9010 continue;
9013 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9014 a particular bit. Convert it to an AND of a constant of that
9015 bit. This will be converted into a ZERO_EXTRACT. */
9016 if (const_op == 0 && sign_bit_comparison_p
9017 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9018 && mode_width <= HOST_BITS_PER_WIDE_INT)
9020 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9021 ((HOST_WIDE_INT) 1
9022 << (mode_width - 1
9023 - INTVAL (XEXP (op0, 1)))));
9024 code = (code == LT ? NE : EQ);
9025 continue;
9028 /* ... fall through ... */
9030 case ABS:
9031 /* ABS is ignorable inside an equality comparison with zero. */
9032 if (const_op == 0 && equality_comparison_p)
9034 op0 = XEXP (op0, 0);
9035 continue;
9037 break;
9040 case SIGN_EXTEND:
9041 /* Can simplify (compare (zero/sign_extend FOO) CONST)
9042 to (compare FOO CONST) if CONST fits in FOO's mode and we
9043 are either testing inequality or have an unsigned comparison
9044 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
9045 if (! unsigned_comparison_p
9046 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9047 <= HOST_BITS_PER_WIDE_INT)
9048 && ((unsigned HOST_WIDE_INT) const_op
9049 < (((HOST_WIDE_INT) 1
9050 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
9052 op0 = XEXP (op0, 0);
9053 continue;
9055 break;
9057 case SUBREG:
9058 /* Check for the case where we are comparing A - C1 with C2,
9059 both constants are smaller than 1/2 the maxium positive
9060 value in MODE, and the comparison is equality or unsigned.
9061 In that case, if A is either zero-extended to MODE or has
9062 sufficient sign bits so that the high-order bit in MODE
9063 is a copy of the sign in the inner mode, we can prove that it is
9064 safe to do the operation in the wider mode. This simplifies
9065 many range checks. */
9067 if (mode_width <= HOST_BITS_PER_WIDE_INT
9068 && subreg_lowpart_p (op0)
9069 && GET_CODE (SUBREG_REG (op0)) == PLUS
9070 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
9071 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
9072 && (- INTVAL (XEXP (SUBREG_REG (op0), 1))
9073 < GET_MODE_MASK (mode) / 2)
9074 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
9075 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
9076 GET_MODE (SUBREG_REG (op0)))
9077 & ~ GET_MODE_MASK (mode))
9078 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
9079 GET_MODE (SUBREG_REG (op0)))
9080 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
9081 - GET_MODE_BITSIZE (mode)))))
9083 op0 = SUBREG_REG (op0);
9084 continue;
9087 /* If the inner mode is narrower and we are extracting the low part,
9088 we can treat the SUBREG as if it were a ZERO_EXTEND. */
9089 if (subreg_lowpart_p (op0)
9090 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
9091 /* Fall through */ ;
9092 else
9093 break;
9095 /* ... fall through ... */
9097 case ZERO_EXTEND:
9098 if ((unsigned_comparison_p || equality_comparison_p)
9099 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9100 <= HOST_BITS_PER_WIDE_INT)
9101 && ((unsigned HOST_WIDE_INT) const_op
9102 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
9104 op0 = XEXP (op0, 0);
9105 continue;
9107 break;
9109 case PLUS:
9110 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
9111 this for equality comparisons due to pathological cases involving
9112 overflows. */
9113 if (equality_comparison_p
9114 && 0 != (tem = simplify_binary_operation (MINUS, mode,
9115 op1, XEXP (op0, 1))))
9117 op0 = XEXP (op0, 0);
9118 op1 = tem;
9119 continue;
9122 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
9123 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
9124 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
9126 op0 = XEXP (XEXP (op0, 0), 0);
9127 code = (code == LT ? EQ : NE);
9128 continue;
9130 break;
9132 case MINUS:
9133 /* (eq (minus A B) C) -> (eq A (plus B C)) or
9134 (eq B (minus A C)), whichever simplifies. We can only do
9135 this for equality comparisons due to pathological cases involving
9136 overflows. */
9137 if (equality_comparison_p
9138 && 0 != (tem = simplify_binary_operation (PLUS, mode,
9139 XEXP (op0, 1), op1)))
9141 op0 = XEXP (op0, 0);
9142 op1 = tem;
9143 continue;
9146 if (equality_comparison_p
9147 && 0 != (tem = simplify_binary_operation (MINUS, mode,
9148 XEXP (op0, 0), op1)))
9150 op0 = XEXP (op0, 1);
9151 op1 = tem;
9152 continue;
9155 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
9156 of bits in X minus 1, is one iff X > 0. */
9157 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
9158 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9159 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
9160 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
9162 op0 = XEXP (op0, 1);
9163 code = (code == GE ? LE : GT);
9164 continue;
9166 break;
9168 case XOR:
9169 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
9170 if C is zero or B is a constant. */
9171 if (equality_comparison_p
9172 && 0 != (tem = simplify_binary_operation (XOR, mode,
9173 XEXP (op0, 1), op1)))
9175 op0 = XEXP (op0, 0);
9176 op1 = tem;
9177 continue;
9179 break;
9181 case EQ: case NE:
9182 case LT: case LTU: case LE: case LEU:
9183 case GT: case GTU: case GE: case GEU:
9184 /* We can't do anything if OP0 is a condition code value, rather
9185 than an actual data value. */
9186 if (const_op != 0
9187 #ifdef HAVE_cc0
9188 || XEXP (op0, 0) == cc0_rtx
9189 #endif
9190 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
9191 break;
9193 /* Get the two operands being compared. */
9194 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
9195 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
9196 else
9197 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
9199 /* Check for the cases where we simply want the result of the
9200 earlier test or the opposite of that result. */
9201 if (code == NE
9202 || (code == EQ && reversible_comparison_p (op0))
9203 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9204 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9205 && (STORE_FLAG_VALUE
9206 & (((HOST_WIDE_INT) 1
9207 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9208 && (code == LT
9209 || (code == GE && reversible_comparison_p (op0)))))
9211 code = (code == LT || code == NE
9212 ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
9213 op0 = tem, op1 = tem1;
9214 continue;
9216 break;
9218 case IOR:
9219 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
9220 iff X <= 0. */
9221 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
9222 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
9223 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
9225 op0 = XEXP (op0, 1);
9226 code = (code == GE ? GT : LE);
9227 continue;
9229 break;
9231 case AND:
9232 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
9233 will be converted to a ZERO_EXTRACT later. */
9234 if (const_op == 0 && equality_comparison_p
9235 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9236 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
9238 op0 = simplify_and_const_int
9239 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
9240 XEXP (op0, 1),
9241 XEXP (XEXP (op0, 0), 1)),
9242 (HOST_WIDE_INT) 1);
9243 continue;
9246 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
9247 zero and X is a comparison and C1 and C2 describe only bits set
9248 in STORE_FLAG_VALUE, we can compare with X. */
9249 if (const_op == 0 && equality_comparison_p
9250 && mode_width <= HOST_BITS_PER_WIDE_INT
9251 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9252 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
9253 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9254 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
9255 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9257 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
9258 << INTVAL (XEXP (XEXP (op0, 0), 1)));
9259 if ((~ STORE_FLAG_VALUE & mask) == 0
9260 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
9261 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
9262 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
9264 op0 = XEXP (XEXP (op0, 0), 0);
9265 continue;
9269 /* If we are doing an equality comparison of an AND of a bit equal
9270 to the sign bit, replace this with a LT or GE comparison of
9271 the underlying value. */
9272 if (equality_comparison_p
9273 && const_op == 0
9274 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9275 && mode_width <= HOST_BITS_PER_WIDE_INT
9276 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
9277 == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9279 op0 = XEXP (op0, 0);
9280 code = (code == EQ ? GE : LT);
9281 continue;
9284 /* If this AND operation is really a ZERO_EXTEND from a narrower
9285 mode, the constant fits within that mode, and this is either an
9286 equality or unsigned comparison, try to do this comparison in
9287 the narrower mode. */
9288 if ((equality_comparison_p || unsigned_comparison_p)
9289 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9290 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
9291 & GET_MODE_MASK (mode))
9292 + 1)) >= 0
9293 && const_op >> i == 0
9294 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
9296 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
9297 continue;
9299 break;
9301 case ASHIFT:
9302 /* If we have (compare (ashift FOO N) (const_int C)) and
9303 the high order N bits of FOO (N+1 if an inequality comparison)
9304 are known to be zero, we can do this by comparing FOO with C
9305 shifted right N bits so long as the low-order N bits of C are
9306 zero. */
9307 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
9308 && INTVAL (XEXP (op0, 1)) >= 0
9309 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
9310 < HOST_BITS_PER_WIDE_INT)
9311 && ((const_op
9312 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
9313 && mode_width <= HOST_BITS_PER_WIDE_INT
9314 && (nonzero_bits (XEXP (op0, 0), mode)
9315 & ~ (mask >> (INTVAL (XEXP (op0, 1))
9316 + ! equality_comparison_p))) == 0)
9318 const_op >>= INTVAL (XEXP (op0, 1));
9319 op1 = GEN_INT (const_op);
9320 op0 = XEXP (op0, 0);
9321 continue;
9324 /* If we are doing a sign bit comparison, it means we are testing
9325 a particular bit. Convert it to the appropriate AND. */
9326 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9327 && mode_width <= HOST_BITS_PER_WIDE_INT)
9329 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9330 ((HOST_WIDE_INT) 1
9331 << (mode_width - 1
9332 - INTVAL (XEXP (op0, 1)))));
9333 code = (code == LT ? NE : EQ);
9334 continue;
9337 /* If this an equality comparison with zero and we are shifting
9338 the low bit to the sign bit, we can convert this to an AND of the
9339 low-order bit. */
9340 if (const_op == 0 && equality_comparison_p
9341 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9342 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
9344 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9345 (HOST_WIDE_INT) 1);
9346 continue;
9348 break;
9350 case ASHIFTRT:
9351 /* If this is an equality comparison with zero, we can do this
9352 as a logical shift, which might be much simpler. */
9353 if (equality_comparison_p && const_op == 0
9354 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
9356 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
9357 XEXP (op0, 0),
9358 INTVAL (XEXP (op0, 1)));
9359 continue;
9362 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
9363 do the comparison in a narrower mode. */
9364 if (! unsigned_comparison_p
9365 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9366 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9367 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9368 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
9369 MODE_INT, 1)) != BLKmode
9370 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
9371 || ((unsigned HOST_WIDE_INT) - const_op
9372 <= GET_MODE_MASK (tmode))))
9374 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
9375 continue;
9378 /* ... fall through ... */
9379 case LSHIFTRT:
9380 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
9381 the low order N bits of FOO are known to be zero, we can do this
9382 by comparing FOO with C shifted left N bits so long as no
9383 overflow occurs. */
9384 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
9385 && INTVAL (XEXP (op0, 1)) >= 0
9386 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9387 && mode_width <= HOST_BITS_PER_WIDE_INT
9388 && (nonzero_bits (XEXP (op0, 0), mode)
9389 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
9390 && (const_op == 0
9391 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
9392 < mode_width)))
9394 const_op <<= INTVAL (XEXP (op0, 1));
9395 op1 = GEN_INT (const_op);
9396 op0 = XEXP (op0, 0);
9397 continue;
9400 /* If we are using this shift to extract just the sign bit, we
9401 can replace this with an LT or GE comparison. */
9402 if (const_op == 0
9403 && (equality_comparison_p || sign_bit_comparison_p)
9404 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9405 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
9407 op0 = XEXP (op0, 0);
9408 code = (code == NE || code == GT ? LT : GE);
9409 continue;
9411 break;
9414 break;
9417 /* Now make any compound operations involved in this comparison. Then,
9418 check for an outmost SUBREG on OP0 that isn't doing anything or is
9419 paradoxical. The latter case can only occur when it is known that the
9420 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
9421 We can never remove a SUBREG for a non-equality comparison because the
9422 sign bit is in a different place in the underlying object. */
9424 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
9425 op1 = make_compound_operation (op1, SET);
9427 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
9428 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9429 && (code == NE || code == EQ)
9430 && ((GET_MODE_SIZE (GET_MODE (op0))
9431 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
9433 op0 = SUBREG_REG (op0);
9434 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
9437 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
9438 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9439 && (code == NE || code == EQ)
9440 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
9441 <= HOST_BITS_PER_WIDE_INT)
9442 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
9443 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
9444 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
9445 op1),
9446 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
9447 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
9448 op0 = SUBREG_REG (op0), op1 = tem;
9450 /* We now do the opposite procedure: Some machines don't have compare
9451 insns in all modes. If OP0's mode is an integer mode smaller than a
9452 word and we can't do a compare in that mode, see if there is a larger
9453 mode for which we can do the compare. There are a number of cases in
9454 which we can use the wider mode. */
9456 mode = GET_MODE (op0);
9457 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
9458 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
9459 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
9460 for (tmode = GET_MODE_WIDER_MODE (mode);
9461 (tmode != VOIDmode
9462 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
9463 tmode = GET_MODE_WIDER_MODE (tmode))
9464 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
9466 /* If the only nonzero bits in OP0 and OP1 are those in the
9467 narrower mode and this is an equality or unsigned comparison,
9468 we can use the wider mode. Similarly for sign-extended
9469 values, in which case it is true for all comparisons. */
9470 if (((code == EQ || code == NE
9471 || code == GEU || code == GTU || code == LEU || code == LTU)
9472 && (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
9473 && (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
9474 || ((num_sign_bit_copies (op0, tmode)
9475 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
9476 && (num_sign_bit_copies (op1, tmode)
9477 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
9479 op0 = gen_lowpart_for_combine (tmode, op0);
9480 op1 = gen_lowpart_for_combine (tmode, op1);
9481 break;
9484 /* If this is a test for negative, we can make an explicit
9485 test of the sign bit. */
9487 if (op1 == const0_rtx && (code == LT || code == GE)
9488 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9490 op0 = gen_binary (AND, tmode,
9491 gen_lowpart_for_combine (tmode, op0),
9492 GEN_INT ((HOST_WIDE_INT) 1
9493 << (GET_MODE_BITSIZE (mode) - 1)));
9494 code = (code == LT) ? NE : EQ;
9495 break;
9499 #ifdef CANONICALIZE_COMPARISON
9500 /* If this machine only supports a subset of valid comparisons, see if we
9501 can convert an unsupported one into a supported one. */
9502 CANONICALIZE_COMPARISON (code, op0, op1);
9503 #endif
9505 *pop0 = op0;
9506 *pop1 = op1;
9508 return code;
9511 /* Return 1 if we know that X, a comparison operation, is not operating
9512 on a floating-point value or is EQ or NE, meaning that we can safely
9513 reverse it. */
9515 static int
9516 reversible_comparison_p (x)
9517 rtx x;
9519 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
9520 || flag_fast_math
9521 || GET_CODE (x) == NE || GET_CODE (x) == EQ)
9522 return 1;
9524 switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
9526 case MODE_INT:
9527 case MODE_PARTIAL_INT:
9528 case MODE_COMPLEX_INT:
9529 return 1;
9531 case MODE_CC:
9532 /* If the mode of the condition codes tells us that this is safe,
9533 we need look no further. */
9534 if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
9535 return 1;
9537 /* Otherwise try and find where the condition codes were last set and
9538 use that. */
9539 x = get_last_value (XEXP (x, 0));
9540 return (x && GET_CODE (x) == COMPARE
9541 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
9544 return 0;
9547 /* Utility function for following routine. Called when X is part of a value
9548 being stored into reg_last_set_value. Sets reg_last_set_table_tick
9549 for each register mentioned. Similar to mention_regs in cse.c */
9551 static void
9552 update_table_tick (x)
9553 rtx x;
9555 register enum rtx_code code = GET_CODE (x);
9556 register char *fmt = GET_RTX_FORMAT (code);
9557 register int i;
9559 if (code == REG)
9561 int regno = REGNO (x);
9562 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
9563 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
9565 for (i = regno; i < endregno; i++)
9566 reg_last_set_table_tick[i] = label_tick;
9568 return;
9571 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9572 /* Note that we can't have an "E" in values stored; see
9573 get_last_value_validate. */
9574 if (fmt[i] == 'e')
9575 update_table_tick (XEXP (x, i));
9578 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
9579 are saying that the register is clobbered and we no longer know its
9580 value. If INSN is zero, don't update reg_last_set; this is only permitted
9581 with VALUE also zero and is used to invalidate the register. */
9583 static void
9584 record_value_for_reg (reg, insn, value)
9585 rtx reg;
9586 rtx insn;
9587 rtx value;
9589 int regno = REGNO (reg);
9590 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
9591 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
9592 int i;
9594 /* If VALUE contains REG and we have a previous value for REG, substitute
9595 the previous value. */
9596 if (value && insn && reg_overlap_mentioned_p (reg, value))
9598 rtx tem;
9600 /* Set things up so get_last_value is allowed to see anything set up to
9601 our insn. */
9602 subst_low_cuid = INSN_CUID (insn);
9603 tem = get_last_value (reg);
9605 if (tem)
9606 value = replace_rtx (copy_rtx (value), reg, tem);
9609 /* For each register modified, show we don't know its value, that
9610 we don't know about its bitwise content, that its value has been
9611 updated, and that we don't know the location of the death of the
9612 register. */
9613 for (i = regno; i < endregno; i ++)
9615 if (insn)
9616 reg_last_set[i] = insn;
9617 reg_last_set_value[i] = 0;
9618 reg_last_set_mode[i] = 0;
9619 reg_last_set_nonzero_bits[i] = 0;
9620 reg_last_set_sign_bit_copies[i] = 0;
9621 reg_last_death[i] = 0;
9624 /* Mark registers that are being referenced in this value. */
9625 if (value)
9626 update_table_tick (value);
9628 /* Now update the status of each register being set.
9629 If someone is using this register in this block, set this register
9630 to invalid since we will get confused between the two lives in this
9631 basic block. This makes using this register always invalid. In cse, we
9632 scan the table to invalidate all entries using this register, but this
9633 is too much work for us. */
9635 for (i = regno; i < endregno; i++)
9637 reg_last_set_label[i] = label_tick;
9638 if (value && reg_last_set_table_tick[i] == label_tick)
9639 reg_last_set_invalid[i] = 1;
9640 else
9641 reg_last_set_invalid[i] = 0;
9644 /* The value being assigned might refer to X (like in "x++;"). In that
9645 case, we must replace it with (clobber (const_int 0)) to prevent
9646 infinite loops. */
9647 if (value && ! get_last_value_validate (&value,
9648 reg_last_set_label[regno], 0))
9650 value = copy_rtx (value);
9651 if (! get_last_value_validate (&value, reg_last_set_label[regno], 1))
9652 value = 0;
9655 /* For the main register being modified, update the value, the mode, the
9656 nonzero bits, and the number of sign bit copies. */
9658 reg_last_set_value[regno] = value;
9660 if (value)
9662 subst_low_cuid = INSN_CUID (insn);
9663 reg_last_set_mode[regno] = GET_MODE (reg);
9664 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
9665 reg_last_set_sign_bit_copies[regno]
9666 = num_sign_bit_copies (value, GET_MODE (reg));
9670 /* Used for communication between the following two routines. */
9671 static rtx record_dead_insn;
9673 /* Called via note_stores from record_dead_and_set_regs to handle one
9674 SET or CLOBBER in an insn. */
9676 static void
9677 record_dead_and_set_regs_1 (dest, setter)
9678 rtx dest, setter;
9680 if (GET_CODE (dest) == SUBREG)
9681 dest = SUBREG_REG (dest);
9683 if (GET_CODE (dest) == REG)
9685 /* If we are setting the whole register, we know its value. Otherwise
9686 show that we don't know the value. We can handle SUBREG in
9687 some cases. */
9688 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
9689 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
9690 else if (GET_CODE (setter) == SET
9691 && GET_CODE (SET_DEST (setter)) == SUBREG
9692 && SUBREG_REG (SET_DEST (setter)) == dest
9693 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
9694 && subreg_lowpart_p (SET_DEST (setter)))
9695 record_value_for_reg (dest, record_dead_insn,
9696 gen_lowpart_for_combine (GET_MODE (dest),
9697 SET_SRC (setter)));
9698 else
9699 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
9701 else if (GET_CODE (dest) == MEM
9702 /* Ignore pushes, they clobber nothing. */
9703 && ! push_operand (dest, GET_MODE (dest)))
9704 mem_last_set = INSN_CUID (record_dead_insn);
9707 /* Update the records of when each REG was most recently set or killed
9708 for the things done by INSN. This is the last thing done in processing
9709 INSN in the combiner loop.
9711 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
9712 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
9713 and also the similar information mem_last_set (which insn most recently
9714 modified memory) and last_call_cuid (which insn was the most recent
9715 subroutine call). */
9717 static void
9718 record_dead_and_set_regs (insn)
9719 rtx insn;
9721 register rtx link;
9722 int i;
9724 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
9726 if (REG_NOTE_KIND (link) == REG_DEAD
9727 && GET_CODE (XEXP (link, 0)) == REG)
9729 int regno = REGNO (XEXP (link, 0));
9730 int endregno
9731 = regno + (regno < FIRST_PSEUDO_REGISTER
9732 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
9733 : 1);
9735 for (i = regno; i < endregno; i++)
9736 reg_last_death[i] = insn;
9738 else if (REG_NOTE_KIND (link) == REG_INC)
9739 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
9742 if (GET_CODE (insn) == CALL_INSN)
9744 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9745 if (call_used_regs[i])
9747 reg_last_set_value[i] = 0;
9748 reg_last_set_mode[i] = 0;
9749 reg_last_set_nonzero_bits[i] = 0;
9750 reg_last_set_sign_bit_copies[i] = 0;
9751 reg_last_death[i] = 0;
9754 last_call_cuid = mem_last_set = INSN_CUID (insn);
9757 record_dead_insn = insn;
9758 note_stores (PATTERN (insn), record_dead_and_set_regs_1);
9761 /* Utility routine for the following function. Verify that all the registers
9762 mentioned in *LOC are valid when *LOC was part of a value set when
9763 label_tick == TICK. Return 0 if some are not.
9765 If REPLACE is non-zero, replace the invalid reference with
9766 (clobber (const_int 0)) and return 1. This replacement is useful because
9767 we often can get useful information about the form of a value (e.g., if
9768 it was produced by a shift that always produces -1 or 0) even though
9769 we don't know exactly what registers it was produced from. */
9771 static int
9772 get_last_value_validate (loc, tick, replace)
9773 rtx *loc;
9774 int tick;
9775 int replace;
9777 rtx x = *loc;
9778 char *fmt = GET_RTX_FORMAT (GET_CODE (x));
9779 int len = GET_RTX_LENGTH (GET_CODE (x));
9780 int i;
9782 if (GET_CODE (x) == REG)
9784 int regno = REGNO (x);
9785 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
9786 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
9787 int j;
9789 for (j = regno; j < endregno; j++)
9790 if (reg_last_set_invalid[j]
9791 /* If this is a pseudo-register that was only set once, it is
9792 always valid. */
9793 || (! (regno >= FIRST_PSEUDO_REGISTER && reg_n_sets[regno] == 1)
9794 && reg_last_set_label[j] > tick))
9796 if (replace)
9797 *loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
9798 return replace;
9801 return 1;
9804 for (i = 0; i < len; i++)
9805 if ((fmt[i] == 'e'
9806 && get_last_value_validate (&XEXP (x, i), tick, replace) == 0)
9807 /* Don't bother with these. They shouldn't occur anyway. */
9808 || fmt[i] == 'E')
9809 return 0;
9811 /* If we haven't found a reason for it to be invalid, it is valid. */
9812 return 1;
9815 /* Get the last value assigned to X, if known. Some registers
9816 in the value may be replaced with (clobber (const_int 0)) if their value
9817 is known longer known reliably. */
9819 static rtx
9820 get_last_value (x)
9821 rtx x;
9823 int regno;
9824 rtx value;
9826 /* If this is a non-paradoxical SUBREG, get the value of its operand and
9827 then convert it to the desired mode. If this is a paradoxical SUBREG,
9828 we cannot predict what values the "extra" bits might have. */
9829 if (GET_CODE (x) == SUBREG
9830 && subreg_lowpart_p (x)
9831 && (GET_MODE_SIZE (GET_MODE (x))
9832 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
9833 && (value = get_last_value (SUBREG_REG (x))) != 0)
9834 return gen_lowpart_for_combine (GET_MODE (x), value);
9836 if (GET_CODE (x) != REG)
9837 return 0;
9839 regno = REGNO (x);
9840 value = reg_last_set_value[regno];
9842 /* If we don't have a value or if it isn't for this basic block, return 0. */
9844 if (value == 0
9845 || (reg_n_sets[regno] != 1
9846 && reg_last_set_label[regno] != label_tick))
9847 return 0;
9849 /* If the value was set in a later insn that the ones we are processing,
9850 we can't use it even if the register was only set once, but make a quick
9851 check to see if the previous insn set it to something. This is commonly
9852 the case when the same pseudo is used by repeated insns. */
9854 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
9856 rtx insn, set;
9858 for (insn = prev_nonnote_insn (subst_insn);
9859 insn && INSN_CUID (insn) >= subst_low_cuid;
9860 insn = prev_nonnote_insn (insn))
9863 if (insn
9864 && (set = single_set (insn)) != 0
9865 && rtx_equal_p (SET_DEST (set), x))
9867 value = SET_SRC (set);
9869 /* Make sure that VALUE doesn't reference X. Replace any
9870 expliit references with a CLOBBER. If there are any remaining
9871 references (rare), don't use the value. */
9873 if (reg_mentioned_p (x, value))
9874 value = replace_rtx (copy_rtx (value), x,
9875 gen_rtx (CLOBBER, GET_MODE (x), const0_rtx));
9877 if (reg_overlap_mentioned_p (x, value))
9878 return 0;
9880 else
9881 return 0;
9884 /* If the value has all its registers valid, return it. */
9885 if (get_last_value_validate (&value, reg_last_set_label[regno], 0))
9886 return value;
9888 /* Otherwise, make a copy and replace any invalid register with
9889 (clobber (const_int 0)). If that fails for some reason, return 0. */
9891 value = copy_rtx (value);
9892 if (get_last_value_validate (&value, reg_last_set_label[regno], 1))
9893 return value;
9895 return 0;
9898 /* Return nonzero if expression X refers to a REG or to memory
9899 that is set in an instruction more recent than FROM_CUID. */
9901 static int
9902 use_crosses_set_p (x, from_cuid)
9903 register rtx x;
9904 int from_cuid;
9906 register char *fmt;
9907 register int i;
9908 register enum rtx_code code = GET_CODE (x);
9910 if (code == REG)
9912 register int regno = REGNO (x);
9913 int endreg = regno + (regno < FIRST_PSEUDO_REGISTER
9914 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
9916 #ifdef PUSH_ROUNDING
9917 /* Don't allow uses of the stack pointer to be moved,
9918 because we don't know whether the move crosses a push insn. */
9919 if (regno == STACK_POINTER_REGNUM)
9920 return 1;
9921 #endif
9922 for (;regno < endreg; regno++)
9923 if (reg_last_set[regno]
9924 && INSN_CUID (reg_last_set[regno]) > from_cuid)
9925 return 1;
9926 return 0;
9929 if (code == MEM && mem_last_set > from_cuid)
9930 return 1;
9932 fmt = GET_RTX_FORMAT (code);
9934 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9936 if (fmt[i] == 'E')
9938 register int j;
9939 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9940 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
9941 return 1;
9943 else if (fmt[i] == 'e'
9944 && use_crosses_set_p (XEXP (x, i), from_cuid))
9945 return 1;
9947 return 0;
9950 /* Define three variables used for communication between the following
9951 routines. */
9953 static int reg_dead_regno, reg_dead_endregno;
9954 static int reg_dead_flag;
9956 /* Function called via note_stores from reg_dead_at_p.
9958 If DEST is within [reg_dead_rengno, reg_dead_endregno), set
9959 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
9961 static void
9962 reg_dead_at_p_1 (dest, x)
9963 rtx dest;
9964 rtx x;
9966 int regno, endregno;
9968 if (GET_CODE (dest) != REG)
9969 return;
9971 regno = REGNO (dest);
9972 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
9973 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
9975 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
9976 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
9979 /* Return non-zero if REG is known to be dead at INSN.
9981 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
9982 referencing REG, it is dead. If we hit a SET referencing REG, it is
9983 live. Otherwise, see if it is live or dead at the start of the basic
9984 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
9985 must be assumed to be always live. */
9987 static int
9988 reg_dead_at_p (reg, insn)
9989 rtx reg;
9990 rtx insn;
9992 int block, i;
9994 /* Set variables for reg_dead_at_p_1. */
9995 reg_dead_regno = REGNO (reg);
9996 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
9997 ? HARD_REGNO_NREGS (reg_dead_regno,
9998 GET_MODE (reg))
9999 : 1);
10001 reg_dead_flag = 0;
10003 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
10004 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
10006 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
10007 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
10008 return 0;
10011 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
10012 beginning of function. */
10013 for (; insn && GET_CODE (insn) != CODE_LABEL;
10014 insn = prev_nonnote_insn (insn))
10016 note_stores (PATTERN (insn), reg_dead_at_p_1);
10017 if (reg_dead_flag)
10018 return reg_dead_flag == 1 ? 1 : 0;
10020 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
10021 return 1;
10024 /* Get the basic block number that we were in. */
10025 if (insn == 0)
10026 block = 0;
10027 else
10029 for (block = 0; block < n_basic_blocks; block++)
10030 if (insn == basic_block_head[block])
10031 break;
10033 if (block == n_basic_blocks)
10034 return 0;
10037 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
10038 if (basic_block_live_at_start[block][i / REGSET_ELT_BITS]
10039 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
10040 return 0;
10042 return 1;
10045 /* Note hard registers in X that are used. This code is similar to
10046 that in flow.c, but much simpler since we don't care about pseudos. */
10048 static void
10049 mark_used_regs_combine (x)
10050 rtx x;
10052 register RTX_CODE code = GET_CODE (x);
10053 register int regno;
10054 int i;
10056 switch (code)
10058 case LABEL_REF:
10059 case SYMBOL_REF:
10060 case CONST_INT:
10061 case CONST:
10062 case CONST_DOUBLE:
10063 case PC:
10064 case ADDR_VEC:
10065 case ADDR_DIFF_VEC:
10066 case ASM_INPUT:
10067 #ifdef HAVE_cc0
10068 /* CC0 must die in the insn after it is set, so we don't need to take
10069 special note of it here. */
10070 case CC0:
10071 #endif
10072 return;
10074 case CLOBBER:
10075 /* If we are clobbering a MEM, mark any hard registers inside the
10076 address as used. */
10077 if (GET_CODE (XEXP (x, 0)) == MEM)
10078 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
10079 return;
10081 case REG:
10082 regno = REGNO (x);
10083 /* A hard reg in a wide mode may really be multiple registers.
10084 If so, mark all of them just like the first. */
10085 if (regno < FIRST_PSEUDO_REGISTER)
10087 /* None of this applies to the stack, frame or arg pointers */
10088 if (regno == STACK_POINTER_REGNUM
10089 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10090 || regno == HARD_FRAME_POINTER_REGNUM
10091 #endif
10092 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
10093 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
10094 #endif
10095 || regno == FRAME_POINTER_REGNUM)
10096 return;
10098 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
10099 while (i-- > 0)
10100 SET_HARD_REG_BIT (newpat_used_regs, regno + i);
10102 return;
10104 case SET:
10106 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
10107 the address. */
10108 register rtx testreg = SET_DEST (x);
10110 while (GET_CODE (testreg) == SUBREG
10111 || GET_CODE (testreg) == ZERO_EXTRACT
10112 || GET_CODE (testreg) == SIGN_EXTRACT
10113 || GET_CODE (testreg) == STRICT_LOW_PART)
10114 testreg = XEXP (testreg, 0);
10116 if (GET_CODE (testreg) == MEM)
10117 mark_used_regs_combine (XEXP (testreg, 0));
10119 mark_used_regs_combine (SET_SRC (x));
10120 return;
10124 /* Recursively scan the operands of this expression. */
10127 register char *fmt = GET_RTX_FORMAT (code);
10129 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10131 if (fmt[i] == 'e')
10132 mark_used_regs_combine (XEXP (x, i));
10133 else if (fmt[i] == 'E')
10135 register int j;
10137 for (j = 0; j < XVECLEN (x, i); j++)
10138 mark_used_regs_combine (XVECEXP (x, i, j));
10145 /* Remove register number REGNO from the dead registers list of INSN.
10147 Return the note used to record the death, if there was one. */
10150 remove_death (regno, insn)
10151 int regno;
10152 rtx insn;
10154 register rtx note = find_regno_note (insn, REG_DEAD, regno);
10156 if (note)
10158 reg_n_deaths[regno]--;
10159 remove_note (insn, note);
10162 return note;
10165 /* For each register (hardware or pseudo) used within expression X, if its
10166 death is in an instruction with cuid between FROM_CUID (inclusive) and
10167 TO_INSN (exclusive), put a REG_DEAD note for that register in the
10168 list headed by PNOTES.
10170 This is done when X is being merged by combination into TO_INSN. These
10171 notes will then be distributed as needed. */
10173 static void
10174 move_deaths (x, from_cuid, to_insn, pnotes)
10175 rtx x;
10176 int from_cuid;
10177 rtx to_insn;
10178 rtx *pnotes;
10180 register char *fmt;
10181 register int len, i;
10182 register enum rtx_code code = GET_CODE (x);
10184 if (code == REG)
10186 register int regno = REGNO (x);
10187 register rtx where_dead = reg_last_death[regno];
10189 if (where_dead && INSN_CUID (where_dead) >= from_cuid
10190 && INSN_CUID (where_dead) < INSN_CUID (to_insn))
10192 rtx note = remove_death (regno, where_dead);
10194 /* It is possible for the call above to return 0. This can occur
10195 when reg_last_death points to I2 or I1 that we combined with.
10196 In that case make a new note.
10198 We must also check for the case where X is a hard register
10199 and NOTE is a death note for a range of hard registers
10200 including X. In that case, we must put REG_DEAD notes for
10201 the remaining registers in place of NOTE. */
10203 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
10204 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
10205 != GET_MODE_SIZE (GET_MODE (x))))
10207 int deadregno = REGNO (XEXP (note, 0));
10208 int deadend
10209 = (deadregno + HARD_REGNO_NREGS (deadregno,
10210 GET_MODE (XEXP (note, 0))));
10211 int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
10212 int i;
10214 for (i = deadregno; i < deadend; i++)
10215 if (i < regno || i >= ourend)
10216 REG_NOTES (where_dead)
10217 = gen_rtx (EXPR_LIST, REG_DEAD,
10218 gen_rtx (REG, reg_raw_mode[i], i),
10219 REG_NOTES (where_dead));
10222 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
10224 XEXP (note, 1) = *pnotes;
10225 *pnotes = note;
10227 else
10228 *pnotes = gen_rtx (EXPR_LIST, REG_DEAD, x, *pnotes);
10230 reg_n_deaths[regno]++;
10233 return;
10236 else if (GET_CODE (x) == SET)
10238 rtx dest = SET_DEST (x);
10240 move_deaths (SET_SRC (x), from_cuid, to_insn, pnotes);
10242 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
10243 that accesses one word of a multi-word item, some
10244 piece of everything register in the expression is used by
10245 this insn, so remove any old death. */
10247 if (GET_CODE (dest) == ZERO_EXTRACT
10248 || GET_CODE (dest) == STRICT_LOW_PART
10249 || (GET_CODE (dest) == SUBREG
10250 && (((GET_MODE_SIZE (GET_MODE (dest))
10251 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
10252 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
10253 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
10255 move_deaths (dest, from_cuid, to_insn, pnotes);
10256 return;
10259 /* If this is some other SUBREG, we know it replaces the entire
10260 value, so use that as the destination. */
10261 if (GET_CODE (dest) == SUBREG)
10262 dest = SUBREG_REG (dest);
10264 /* If this is a MEM, adjust deaths of anything used in the address.
10265 For a REG (the only other possibility), the entire value is
10266 being replaced so the old value is not used in this insn. */
10268 if (GET_CODE (dest) == MEM)
10269 move_deaths (XEXP (dest, 0), from_cuid, to_insn, pnotes);
10270 return;
10273 else if (GET_CODE (x) == CLOBBER)
10274 return;
10276 len = GET_RTX_LENGTH (code);
10277 fmt = GET_RTX_FORMAT (code);
10279 for (i = 0; i < len; i++)
10281 if (fmt[i] == 'E')
10283 register int j;
10284 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10285 move_deaths (XVECEXP (x, i, j), from_cuid, to_insn, pnotes);
10287 else if (fmt[i] == 'e')
10288 move_deaths (XEXP (x, i), from_cuid, to_insn, pnotes);
10292 /* Return 1 if X is the target of a bit-field assignment in BODY, the
10293 pattern of an insn. X must be a REG. */
10295 static int
10296 reg_bitfield_target_p (x, body)
10297 rtx x;
10298 rtx body;
10300 int i;
10302 if (GET_CODE (body) == SET)
10304 rtx dest = SET_DEST (body);
10305 rtx target;
10306 int regno, tregno, endregno, endtregno;
10308 if (GET_CODE (dest) == ZERO_EXTRACT)
10309 target = XEXP (dest, 0);
10310 else if (GET_CODE (dest) == STRICT_LOW_PART)
10311 target = SUBREG_REG (XEXP (dest, 0));
10312 else
10313 return 0;
10315 if (GET_CODE (target) == SUBREG)
10316 target = SUBREG_REG (target);
10318 if (GET_CODE (target) != REG)
10319 return 0;
10321 tregno = REGNO (target), regno = REGNO (x);
10322 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
10323 return target == x;
10325 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
10326 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
10328 return endregno > tregno && regno < endtregno;
10331 else if (GET_CODE (body) == PARALLEL)
10332 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
10333 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
10334 return 1;
10336 return 0;
10339 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
10340 as appropriate. I3 and I2 are the insns resulting from the combination
10341 insns including FROM (I2 may be zero).
10343 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
10344 not need REG_DEAD notes because they are being substituted for. This
10345 saves searching in the most common cases.
10347 Each note in the list is either ignored or placed on some insns, depending
10348 on the type of note. */
10350 static void
10351 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
10352 rtx notes;
10353 rtx from_insn;
10354 rtx i3, i2;
10355 rtx elim_i2, elim_i1;
10357 rtx note, next_note;
10358 rtx tem;
10360 for (note = notes; note; note = next_note)
10362 rtx place = 0, place2 = 0;
10364 /* If this NOTE references a pseudo register, ensure it references
10365 the latest copy of that register. */
10366 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
10367 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
10368 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
10370 next_note = XEXP (note, 1);
10371 switch (REG_NOTE_KIND (note))
10373 case REG_UNUSED:
10374 /* Any clobbers for i3 may still exist, and so we must process
10375 REG_UNUSED notes from that insn.
10377 Any clobbers from i2 or i1 can only exist if they were added by
10378 recog_for_combine. In that case, recog_for_combine created the
10379 necessary REG_UNUSED notes. Trying to keep any original
10380 REG_UNUSED notes from these insns can cause incorrect output
10381 if it is for the same register as the original i3 dest.
10382 In that case, we will notice that the register is set in i3,
10383 and then add a REG_UNUSED note for the destination of i3, which
10384 is wrong. However, it is possible to have REG_UNUSED notes from
10385 i2 or i1 for register which were both used and clobbered, so
10386 we keep notes from i2 or i1 if they will turn into REG_DEAD
10387 notes. */
10389 /* If this register is set or clobbered in I3, put the note there
10390 unless there is one already. */
10391 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
10393 if (from_insn != i3)
10394 break;
10396 if (! (GET_CODE (XEXP (note, 0)) == REG
10397 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
10398 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
10399 place = i3;
10401 /* Otherwise, if this register is used by I3, then this register
10402 now dies here, so we must put a REG_DEAD note here unless there
10403 is one already. */
10404 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
10405 && ! (GET_CODE (XEXP (note, 0)) == REG
10406 ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
10407 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
10409 PUT_REG_NOTE_KIND (note, REG_DEAD);
10410 place = i3;
10412 break;
10414 case REG_EQUAL:
10415 case REG_EQUIV:
10416 case REG_NONNEG:
10417 /* These notes say something about results of an insn. We can
10418 only support them if they used to be on I3 in which case they
10419 remain on I3. Otherwise they are ignored.
10421 If the note refers to an expression that is not a constant, we
10422 must also ignore the note since we cannot tell whether the
10423 equivalence is still true. It might be possible to do
10424 slightly better than this (we only have a problem if I2DEST
10425 or I1DEST is present in the expression), but it doesn't
10426 seem worth the trouble. */
10428 if (from_insn == i3
10429 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
10430 place = i3;
10431 break;
10433 case REG_INC:
10434 case REG_NO_CONFLICT:
10435 case REG_LABEL:
10436 /* These notes say something about how a register is used. They must
10437 be present on any use of the register in I2 or I3. */
10438 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
10439 place = i3;
10441 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
10443 if (place)
10444 place2 = i2;
10445 else
10446 place = i2;
10448 break;
10450 case REG_WAS_0:
10451 /* It is too much trouble to try to see if this note is still
10452 correct in all situations. It is better to simply delete it. */
10453 break;
10455 case REG_RETVAL:
10456 /* If the insn previously containing this note still exists,
10457 put it back where it was. Otherwise move it to the previous
10458 insn. Adjust the corresponding REG_LIBCALL note. */
10459 if (GET_CODE (from_insn) != NOTE)
10460 place = from_insn;
10461 else
10463 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
10464 place = prev_real_insn (from_insn);
10465 if (tem && place)
10466 XEXP (tem, 0) = place;
10468 break;
10470 case REG_LIBCALL:
10471 /* This is handled similarly to REG_RETVAL. */
10472 if (GET_CODE (from_insn) != NOTE)
10473 place = from_insn;
10474 else
10476 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
10477 place = next_real_insn (from_insn);
10478 if (tem && place)
10479 XEXP (tem, 0) = place;
10481 break;
10483 case REG_DEAD:
10484 /* If the register is used as an input in I3, it dies there.
10485 Similarly for I2, if it is non-zero and adjacent to I3.
10487 If the register is not used as an input in either I3 or I2
10488 and it is not one of the registers we were supposed to eliminate,
10489 there are two possibilities. We might have a non-adjacent I2
10490 or we might have somehow eliminated an additional register
10491 from a computation. For example, we might have had A & B where
10492 we discover that B will always be zero. In this case we will
10493 eliminate the reference to A.
10495 In both cases, we must search to see if we can find a previous
10496 use of A and put the death note there. */
10498 if (from_insn
10499 && GET_CODE (from_insn) == CALL_INSN
10500 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
10501 place = from_insn;
10502 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
10503 place = i3;
10504 else if (i2 != 0 && next_nonnote_insn (i2) == i3
10505 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
10506 place = i2;
10508 if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
10509 break;
10511 /* If the register is used in both I2 and I3 and it dies in I3,
10512 we might have added another reference to it. If reg_n_refs
10513 was 2, bump it to 3. This has to be correct since the
10514 register must have been set somewhere. The reason this is
10515 done is because local-alloc.c treats 2 references as a
10516 special case. */
10518 if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
10519 && reg_n_refs[REGNO (XEXP (note, 0))]== 2
10520 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
10521 reg_n_refs[REGNO (XEXP (note, 0))] = 3;
10523 if (place == 0)
10525 for (tem = prev_nonnote_insn (i3);
10526 place == 0 && tem
10527 && (GET_CODE (tem) == INSN || GET_CODE (tem) == CALL_INSN);
10528 tem = prev_nonnote_insn (tem))
10530 /* If the register is being set at TEM, see if that is all
10531 TEM is doing. If so, delete TEM. Otherwise, make this
10532 into a REG_UNUSED note instead. */
10533 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
10535 rtx set = single_set (tem);
10537 /* Verify that it was the set, and not a clobber that
10538 modified the register. */
10540 if (set != 0 && ! side_effects_p (SET_SRC (set))
10541 && rtx_equal_p (XEXP (note, 0), SET_DEST (set)))
10543 /* Move the notes and links of TEM elsewhere.
10544 This might delete other dead insns recursively.
10545 First set the pattern to something that won't use
10546 any register. */
10548 PATTERN (tem) = pc_rtx;
10550 distribute_notes (REG_NOTES (tem), tem, tem,
10551 NULL_RTX, NULL_RTX, NULL_RTX);
10552 distribute_links (LOG_LINKS (tem));
10554 PUT_CODE (tem, NOTE);
10555 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
10556 NOTE_SOURCE_FILE (tem) = 0;
10558 else
10560 PUT_REG_NOTE_KIND (note, REG_UNUSED);
10562 /* If there isn't already a REG_UNUSED note, put one
10563 here. */
10564 if (! find_regno_note (tem, REG_UNUSED,
10565 REGNO (XEXP (note, 0))))
10566 place = tem;
10567 break;
10570 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
10571 || (GET_CODE (tem) == CALL_INSN
10572 && find_reg_fusage (tem, USE, XEXP (note, 0))))
10574 place = tem;
10575 break;
10579 /* If we haven't found an insn for the death note and it
10580 is still a REG_DEAD note, but we have hit a CODE_LABEL,
10581 insert a USE insn for the register at that label and
10582 put the death node there. This prevents problems with
10583 call-state tracking in caller-save.c. */
10584 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0 && tem != 0)
10586 place
10587 = emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (note, 0)),
10588 tem);
10590 /* If this insn was emitted between blocks, then update
10591 basic_block_head of the current block to include it. */
10592 if (basic_block_end[this_basic_block - 1] == tem)
10593 basic_block_head[this_basic_block] = place;
10597 /* If the register is set or already dead at PLACE, we needn't do
10598 anything with this note if it is still a REG_DEAD note.
10600 Note that we cannot use just `dead_or_set_p' here since we can
10601 convert an assignment to a register into a bit-field assignment.
10602 Therefore, we must also omit the note if the register is the
10603 target of a bitfield assignment. */
10605 if (place && REG_NOTE_KIND (note) == REG_DEAD)
10607 int regno = REGNO (XEXP (note, 0));
10609 if (dead_or_set_p (place, XEXP (note, 0))
10610 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
10612 /* Unless the register previously died in PLACE, clear
10613 reg_last_death. [I no longer understand why this is
10614 being done.] */
10615 if (reg_last_death[regno] != place)
10616 reg_last_death[regno] = 0;
10617 place = 0;
10619 else
10620 reg_last_death[regno] = place;
10622 /* If this is a death note for a hard reg that is occupying
10623 multiple registers, ensure that we are still using all
10624 parts of the object. If we find a piece of the object
10625 that is unused, we must add a USE for that piece before
10626 PLACE and put the appropriate REG_DEAD note on it.
10628 An alternative would be to put a REG_UNUSED for the pieces
10629 on the insn that set the register, but that can't be done if
10630 it is not in the same block. It is simpler, though less
10631 efficient, to add the USE insns. */
10633 if (place && regno < FIRST_PSEUDO_REGISTER
10634 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
10636 int endregno
10637 = regno + HARD_REGNO_NREGS (regno,
10638 GET_MODE (XEXP (note, 0)));
10639 int all_used = 1;
10640 int i;
10642 for (i = regno; i < endregno; i++)
10643 if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
10644 && ! find_regno_fusage (place, USE, i))
10646 rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
10647 rtx p;
10649 /* See if we already placed a USE note for this
10650 register in front of PLACE. */
10651 for (p = place;
10652 GET_CODE (PREV_INSN (p)) == INSN
10653 && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
10654 p = PREV_INSN (p))
10655 if (rtx_equal_p (piece,
10656 XEXP (PATTERN (PREV_INSN (p)), 0)))
10658 p = 0;
10659 break;
10662 if (p)
10664 rtx use_insn
10665 = emit_insn_before (gen_rtx (USE, VOIDmode,
10666 piece),
10668 REG_NOTES (use_insn)
10669 = gen_rtx (EXPR_LIST, REG_DEAD, piece,
10670 REG_NOTES (use_insn));
10673 all_used = 0;
10676 /* Check for the case where the register dying partially
10677 overlaps the register set by this insn. */
10678 if (all_used)
10679 for (i = regno; i < endregno; i++)
10680 if (dead_or_set_regno_p (place, i))
10682 all_used = 0;
10683 break;
10686 if (! all_used)
10688 /* Put only REG_DEAD notes for pieces that are
10689 still used and that are not already dead or set. */
10691 for (i = regno; i < endregno; i++)
10693 rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
10695 if ((reg_referenced_p (piece, PATTERN (place))
10696 || (GET_CODE (place) == CALL_INSN
10697 && find_reg_fusage (place, USE, piece)))
10698 && ! dead_or_set_p (place, piece)
10699 && ! reg_bitfield_target_p (piece,
10700 PATTERN (place)))
10701 REG_NOTES (place) = gen_rtx (EXPR_LIST, REG_DEAD,
10702 piece,
10703 REG_NOTES (place));
10706 place = 0;
10710 break;
10712 default:
10713 /* Any other notes should not be present at this point in the
10714 compilation. */
10715 abort ();
10718 if (place)
10720 XEXP (note, 1) = REG_NOTES (place);
10721 REG_NOTES (place) = note;
10723 else if ((REG_NOTE_KIND (note) == REG_DEAD
10724 || REG_NOTE_KIND (note) == REG_UNUSED)
10725 && GET_CODE (XEXP (note, 0)) == REG)
10726 reg_n_deaths[REGNO (XEXP (note, 0))]--;
10728 if (place2)
10730 if ((REG_NOTE_KIND (note) == REG_DEAD
10731 || REG_NOTE_KIND (note) == REG_UNUSED)
10732 && GET_CODE (XEXP (note, 0)) == REG)
10733 reg_n_deaths[REGNO (XEXP (note, 0))]++;
10735 REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note),
10736 XEXP (note, 0), REG_NOTES (place2));
10741 /* Similarly to above, distribute the LOG_LINKS that used to be present on
10742 I3, I2, and I1 to new locations. This is also called in one case to
10743 add a link pointing at I3 when I3's destination is changed. */
10745 static void
10746 distribute_links (links)
10747 rtx links;
10749 rtx link, next_link;
10751 for (link = links; link; link = next_link)
10753 rtx place = 0;
10754 rtx insn;
10755 rtx set, reg;
10757 next_link = XEXP (link, 1);
10759 /* If the insn that this link points to is a NOTE or isn't a single
10760 set, ignore it. In the latter case, it isn't clear what we
10761 can do other than ignore the link, since we can't tell which
10762 register it was for. Such links wouldn't be used by combine
10763 anyway.
10765 It is not possible for the destination of the target of the link to
10766 have been changed by combine. The only potential of this is if we
10767 replace I3, I2, and I1 by I3 and I2. But in that case the
10768 destination of I2 also remains unchanged. */
10770 if (GET_CODE (XEXP (link, 0)) == NOTE
10771 || (set = single_set (XEXP (link, 0))) == 0)
10772 continue;
10774 reg = SET_DEST (set);
10775 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
10776 || GET_CODE (reg) == SIGN_EXTRACT
10777 || GET_CODE (reg) == STRICT_LOW_PART)
10778 reg = XEXP (reg, 0);
10780 /* A LOG_LINK is defined as being placed on the first insn that uses
10781 a register and points to the insn that sets the register. Start
10782 searching at the next insn after the target of the link and stop
10783 when we reach a set of the register or the end of the basic block.
10785 Note that this correctly handles the link that used to point from
10786 I3 to I2. Also note that not much searching is typically done here
10787 since most links don't point very far away. */
10789 for (insn = NEXT_INSN (XEXP (link, 0));
10790 (insn && (this_basic_block == n_basic_blocks - 1
10791 || basic_block_head[this_basic_block + 1] != insn));
10792 insn = NEXT_INSN (insn))
10793 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
10794 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
10796 if (reg_referenced_p (reg, PATTERN (insn)))
10797 place = insn;
10798 break;
10800 else if (GET_CODE (insn) == CALL_INSN
10801 && find_reg_fusage (insn, USE, reg))
10803 place = insn;
10804 break;
10807 /* If we found a place to put the link, place it there unless there
10808 is already a link to the same insn as LINK at that point. */
10810 if (place)
10812 rtx link2;
10814 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
10815 if (XEXP (link2, 0) == XEXP (link, 0))
10816 break;
10818 if (link2 == 0)
10820 XEXP (link, 1) = LOG_LINKS (place);
10821 LOG_LINKS (place) = link;
10823 /* Set added_links_insn to the earliest insn we added a
10824 link to. */
10825 if (added_links_insn == 0
10826 || INSN_CUID (added_links_insn) > INSN_CUID (place))
10827 added_links_insn = place;
10833 void
10834 dump_combine_stats (file)
10835 FILE *file;
10837 fprintf
10838 (file,
10839 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
10840 combine_attempts, combine_merges, combine_extras, combine_successes);
10843 void
10844 dump_combine_total_stats (file)
10845 FILE *file;
10847 fprintf
10848 (file,
10849 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
10850 total_attempts, total_merges, total_extras, total_successes);