RISC-V: Add support for riscv-*-*.
[official-gcc.git] / gcc / doc / gimple.texi
blob1f9449f133bd65796a8ef0f25210ea30f2bd5b65
1 @c Copyright (C) 2008-2018 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
6 @node GIMPLE
7 @chapter GIMPLE
8 @cindex GIMPLE
10 GIMPLE is a three-address representation derived from GENERIC by
11 breaking down GENERIC expressions into tuples of no more than 3
12 operands (with some exceptions like function calls).  GIMPLE was
13 heavily influenced by the SIMPLE IL used by the McCAT compiler
14 project at McGill University, though we have made some different
15 choices.  For one thing, SIMPLE doesn't support @code{goto}.
17 Temporaries are introduced to hold intermediate values needed to
18 compute complex expressions. Additionally, all the control
19 structures used in GENERIC are lowered into conditional jumps,
20 lexical scopes are removed and exception regions are converted
21 into an on the side exception region tree.
23 The compiler pass which converts GENERIC into GIMPLE is referred to as
24 the @samp{gimplifier}.  The gimplifier works recursively, generating
25 GIMPLE tuples out of the original GENERIC expressions.
27 One of the early implementation strategies used for the GIMPLE
28 representation was to use the same internal data structures used
29 by front ends to represent parse trees. This simplified
30 implementation because we could leverage existing functionality
31 and interfaces. However, GIMPLE is a much more restrictive
32 representation than abstract syntax trees (AST), therefore it
33 does not require the full structural complexity provided by the
34 main tree data structure.
36 The GENERIC representation of a function is stored in the
37 @code{DECL_SAVED_TREE} field of the associated @code{FUNCTION_DECL}
38 tree node.  It is converted to GIMPLE by a call to
39 @code{gimplify_function_tree}.
41 If a front end wants to include language-specific tree codes in the tree
42 representation which it provides to the back end, it must provide a
43 definition of @code{LANG_HOOKS_GIMPLIFY_EXPR} which knows how to
44 convert the front end trees to GIMPLE@.  Usually such a hook will involve
45 much of the same code for expanding front end trees to RTL@.  This function
46 can return fully lowered GIMPLE, or it can return GENERIC trees and let the
47 main gimplifier lower them the rest of the way; this is often simpler.
48 GIMPLE that is not fully lowered is known as ``High GIMPLE'' and
49 consists of the IL before the pass @code{pass_lower_cf}.  High GIMPLE
50 contains some container statements like lexical scopes
51 (represented by @code{GIMPLE_BIND}) and nested expressions (e.g.,
52 @code{GIMPLE_TRY}), while ``Low GIMPLE'' exposes all of the
53 implicit jumps for control and exception expressions directly in
54 the IL and EH region trees.
56 The C and C++ front ends currently convert directly from front end
57 trees to GIMPLE, and hand that off to the back end rather than first
58 converting to GENERIC@.  Their gimplifier hooks know about all the
59 @code{_STMT} nodes and how to convert them to GENERIC forms.  There
60 was some work done on a genericization pass which would run first, but
61 the existence of @code{STMT_EXPR} meant that in order to convert all
62 of the C statements into GENERIC equivalents would involve walking the
63 entire tree anyway, so it was simpler to lower all the way.  This
64 might change in the future if someone writes an optimization pass
65 which would work better with higher-level trees, but currently the
66 optimizers all expect GIMPLE@.
68 You can request to dump a C-like representation of the GIMPLE form
69 with the flag @option{-fdump-tree-gimple}.
71 @menu
72 * Tuple representation::
73 * Class hierarchy of GIMPLE statements::
74 * GIMPLE instruction set::
75 * GIMPLE Exception Handling::
76 * Temporaries::
77 * Operands::
78 * Manipulating GIMPLE statements::
79 * Tuple specific accessors::
80 * GIMPLE sequences::
81 * Sequence iterators::
82 * Adding a new GIMPLE statement code::
83 * Statement and operand traversals::
84 @end menu
86 @node Tuple representation
87 @section Tuple representation
88 @cindex tuples
90 GIMPLE instructions are tuples of variable size divided in two
91 groups: a header describing the instruction and its locations,
92 and a variable length body with all the operands. Tuples are
93 organized into a hierarchy with 3 main classes of tuples.
95 @subsection @code{gimple} (gsbase)
96 @cindex gimple
98 This is the root of the hierarchy, it holds basic information
99 needed by most GIMPLE statements. There are some fields that
100 may not be relevant to every GIMPLE statement, but those were
101 moved into the base structure to take advantage of holes left by
102 other fields (thus making the structure more compact).  The
103 structure takes 4 words (32 bytes) on 64 bit hosts:
105 @multitable {@code{references_memory_p}} {Size (bits)}
106 @item Field                             @tab Size (bits)
107 @item @code{code}                       @tab 8
108 @item @code{subcode}                    @tab 16
109 @item @code{no_warning}                 @tab 1
110 @item @code{visited}                    @tab 1
111 @item @code{nontemporal_move}           @tab 1
112 @item @code{plf}                        @tab 2
113 @item @code{modified}                   @tab 1
114 @item @code{has_volatile_ops}           @tab 1
115 @item @code{references_memory_p}        @tab 1
116 @item @code{uid}                        @tab 32
117 @item @code{location}                   @tab 32
118 @item @code{num_ops}                    @tab 32
119 @item @code{bb}                         @tab 64
120 @item @code{block}                      @tab 63
121 @item Total size                        @tab 32 bytes   
122 @end multitable
124 @itemize @bullet
125 @item @code{code}
126 Main identifier for a GIMPLE instruction.
128 @item @code{subcode}
129 Used to distinguish different variants of the same basic
130 instruction or provide flags applicable to a given code. The
131 @code{subcode} flags field has different uses depending on the code of
132 the instruction, but mostly it distinguishes instructions of the
133 same family. The most prominent use of this field is in
134 assignments, where subcode indicates the operation done on the
135 RHS of the assignment. For example, a = b + c is encoded as
136 @code{GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>}.
138 @item @code{no_warning}
139 Bitflag to indicate whether a warning has already been issued on
140 this statement.
142 @item @code{visited}
143 General purpose ``visited'' marker. Set and cleared by each pass
144 when needed.
146 @item @code{nontemporal_move}
147 Bitflag used in assignments that represent non-temporal moves.
148 Although this bitflag is only used in assignments, it was moved
149 into the base to take advantage of the bit holes left by the
150 previous fields.
152 @item @code{plf}
153 Pass Local Flags. This 2-bit mask can be used as general purpose
154 markers by any pass. Passes are responsible for clearing and
155 setting these two flags accordingly.
157 @item @code{modified}
158 Bitflag to indicate whether the statement has been modified.
159 Used mainly by the operand scanner to determine when to re-scan a
160 statement for operands.
162 @item @code{has_volatile_ops}
163 Bitflag to indicate whether this statement contains operands that
164 have been marked volatile.
166 @item @code{references_memory_p}
167 Bitflag to indicate whether this statement contains memory
168 references (i.e., its operands are either global variables, or
169 pointer dereferences or anything that must reside in memory).
171 @item @code{uid}
172 This is an unsigned integer used by passes that want to assign
173 IDs to every statement. These IDs must be assigned and used by
174 each pass.
176 @item @code{location}
177 This is a @code{location_t} identifier to specify source code
178 location for this statement. It is inherited from the front
179 end.
181 @item @code{num_ops}
182 Number of operands that this statement has. This specifies the
183 size of the operand vector embedded in the tuple. Only used in
184 some tuples, but it is declared in the base tuple to take
185 advantage of the 32-bit hole left by the previous fields.
187 @item @code{bb}
188 Basic block holding the instruction.
190 @item @code{block}
191 Lexical block holding this statement.  Also used for debug
192 information generation.
193 @end itemize
195 @subsection @code{gimple_statement_with_ops}
196 @cindex gimple_statement_with_ops
198 This tuple is actually split in two:
199 @code{gimple_statement_with_ops_base} and
200 @code{gimple_statement_with_ops}. This is needed to accommodate the
201 way the operand vector is allocated. The operand vector is
202 defined to be an array of 1 element. So, to allocate a dynamic
203 number of operands, the memory allocator (@code{gimple_alloc}) simply
204 allocates enough memory to hold the structure itself plus @code{N
205 - 1} operands which run ``off the end'' of the structure. For
206 example, to allocate space for a tuple with 3 operands,
207 @code{gimple_alloc} reserves @code{sizeof (struct
208 gimple_statement_with_ops) + 2 * sizeof (tree)} bytes.
210 On the other hand, several fields in this tuple need to be shared
211 with the @code{gimple_statement_with_memory_ops} tuple. So, these
212 common fields are placed in @code{gimple_statement_with_ops_base} which
213 is then inherited from the other two tuples.
216 @multitable {@code{def_ops}}    {48 + 8 * @code{num_ops} bytes}
217 @item   @code{gsbase}           @tab 256        
218 @item   @code{def_ops}          @tab 64 
219 @item   @code{use_ops}          @tab 64 
220 @item   @code{op}               @tab @code{num_ops} * 64        
221 @item   Total size              @tab 48 + 8 * @code{num_ops} bytes
222 @end multitable
224 @itemize @bullet
225 @item @code{gsbase}
226 Inherited from @code{struct gimple}.
228 @item @code{def_ops}
229 Array of pointers into the operand array indicating all the slots that
230 contain a variable written-to by the statement. This array is
231 also used for immediate use chaining. Note that it would be
232 possible to not rely on this array, but the changes required to
233 implement this are pretty invasive.
235 @item @code{use_ops}
236 Similar to @code{def_ops} but for variables read by the statement.
238 @item @code{op}
239 Array of trees with @code{num_ops} slots.
240 @end itemize
242 @subsection @code{gimple_statement_with_memory_ops}
244 This tuple is essentially identical to @code{gimple_statement_with_ops},
245 except that it contains 4 additional fields to hold vectors
246 related memory stores and loads.  Similar to the previous case,
247 the structure is split in two to accommodate for the operand
248 vector (@code{gimple_statement_with_memory_ops_base} and
249 @code{gimple_statement_with_memory_ops}).
252 @multitable {@code{vdef_ops}}   {80 + 8 * @code{num_ops} bytes}
253 @item Field                     @tab Size (bits)
254 @item @code{gsbase}             @tab 256
255 @item @code{def_ops}            @tab 64
256 @item @code{use_ops}            @tab 64
257 @item @code{vdef_ops}           @tab 64
258 @item @code{vuse_ops}           @tab 64
259 @item @code{stores}             @tab 64 
260 @item @code{loads}              @tab 64 
261 @item @code{op}                 @tab @code{num_ops} * 64        
262 @item Total size                @tab 80 + 8 * @code{num_ops} bytes
263 @end multitable
265 @itemize @bullet
266 @item @code{vdef_ops}
267 Similar to @code{def_ops} but for @code{VDEF} operators. There is
268 one entry per memory symbol written by this statement. This is
269 used to maintain the memory SSA use-def and def-def chains.
271 @item @code{vuse_ops}
272 Similar to @code{use_ops} but for @code{VUSE} operators. There is
273 one entry per memory symbol loaded by this statement. This is
274 used to maintain the memory SSA use-def chains.
276 @item @code{stores}
277 Bitset with all the UIDs for the symbols written-to by the
278 statement.  This is different than @code{vdef_ops} in that all the
279 affected symbols are mentioned in this set.  If memory
280 partitioning is enabled, the @code{vdef_ops} vector will refer to memory
281 partitions. Furthermore, no SSA information is stored in this
282 set.
284 @item @code{loads}
285 Similar to @code{stores}, but for memory loads. (Note that there
286 is some amount of redundancy here, it should be possible to
287 reduce memory utilization further by removing these sets).
288 @end itemize
290 All the other tuples are defined in terms of these three basic
291 ones. Each tuple will add some fields.
294 @node Class hierarchy of GIMPLE statements
295 @section Class hierarchy of GIMPLE statements
296 @cindex GIMPLE class hierarchy
298 The following diagram shows the C++ inheritance hierarchy of statement
299 kinds, along with their relationships to @code{GSS_} values (layouts) and
300 @code{GIMPLE_} values (codes):
302 @smallexample
303    gimple
304      |    layout: GSS_BASE
305      |    used for 4 codes: GIMPLE_ERROR_MARK
306      |                      GIMPLE_NOP
307      |                      GIMPLE_OMP_SECTIONS_SWITCH
308      |                      GIMPLE_PREDICT
309      |
310      + gimple_statement_with_ops_base
311      |   |    (no GSS layout)
312      |   |
313      |   + gimple_statement_with_ops
314      |   |   |    layout: GSS_WITH_OPS
315      |   |   |
316      |   |   + gcond
317      |   |   |     code: GIMPLE_COND
318      |   |   |
319      |   |   + gdebug
320      |   |   |     code: GIMPLE_DEBUG
321      |   |   |
322      |   |   + ggoto
323      |   |   |     code: GIMPLE_GOTO
324      |   |   |
325      |   |   + glabel
326      |   |   |     code: GIMPLE_LABEL
327      |   |   |
328      |   |   + gswitch
329      |   |         code: GIMPLE_SWITCH
330      |   |
331      |   + gimple_statement_with_memory_ops_base
332      |       |    layout: GSS_WITH_MEM_OPS_BASE
333      |       |
334      |       + gimple_statement_with_memory_ops
335      |       |   |    layout: GSS_WITH_MEM_OPS
336      |       |   |
337      |       |   + gassign
338      |       |   |    code GIMPLE_ASSIGN
339      |       |   |
340      |       |   + greturn
341      |       |        code GIMPLE_RETURN
342      |       |
343      |       + gcall
344      |       |        layout: GSS_CALL, code: GIMPLE_CALL
345      |       |
346      |       + gasm
347      |       |        layout: GSS_ASM, code: GIMPLE_ASM
348      |       |
349      |       + gtransaction
350      |                layout: GSS_TRANSACTION, code: GIMPLE_TRANSACTION
351      |
352      + gimple_statement_omp
353      |   |    layout: GSS_OMP.  Used for code GIMPLE_OMP_SECTION
354      |   |
355      |   + gomp_critical
356      |   |        layout: GSS_OMP_CRITICAL, code: GIMPLE_OMP_CRITICAL
357      |   |
358      |   + gomp_for
359      |   |        layout: GSS_OMP_FOR, code: GIMPLE_OMP_FOR
360      |   |
361      |   + gomp_parallel_layout
362      |   |   |    layout: GSS_OMP_PARALLEL_LAYOUT
363      |   |   |
364      |   |   + gimple_statement_omp_taskreg
365      |   |   |   |
366      |   |   |   + gomp_parallel
367      |   |   |   |        code: GIMPLE_OMP_PARALLEL
368      |   |   |   |
369      |   |   |   + gomp_task
370      |   |   |            code: GIMPLE_OMP_TASK
371      |   |   |
372      |   |   + gimple_statement_omp_target
373      |   |            code: GIMPLE_OMP_TARGET
374      |   |
375      |   + gomp_sections
376      |   |        layout: GSS_OMP_SECTIONS, code: GIMPLE_OMP_SECTIONS
377      |   |
378      |   + gimple_statement_omp_single_layout
379      |       |    layout: GSS_OMP_SINGLE_LAYOUT
380      |       |
381      |       + gomp_single
382      |       |        code: GIMPLE_OMP_SINGLE
383      |       |
384      |       + gomp_teams
385      |                code: GIMPLE_OMP_TEAMS
386      |
387      + gbind
388      |        layout: GSS_BIND, code: GIMPLE_BIND
389      |
390      + gcatch
391      |        layout: GSS_CATCH, code: GIMPLE_CATCH
392      |
393      + geh_filter
394      |        layout: GSS_EH_FILTER, code: GIMPLE_EH_FILTER
395      |
396      + geh_else
397      |        layout: GSS_EH_ELSE, code: GIMPLE_EH_ELSE
398      |
399      + geh_mnt
400      |        layout: GSS_EH_MNT, code: GIMPLE_EH_MUST_NOT_THROW
401      |
402      + gphi
403      |        layout: GSS_PHI, code: GIMPLE_PHI
404      |
405      + gimple_statement_eh_ctrl
406      |   |    layout: GSS_EH_CTRL
407      |   |
408      |   + gresx
409      |   |        code: GIMPLE_RESX
410      |   |
411      |   + geh_dispatch
412      |            code: GIMPLE_EH_DISPATCH
413      |
414      + gtry
415      |        layout: GSS_TRY, code: GIMPLE_TRY
416      |
417      + gimple_statement_wce
418      |        layout: GSS_WCE, code: GIMPLE_WITH_CLEANUP_EXPR
419      |
420      + gomp_continue
421      |        layout: GSS_OMP_CONTINUE, code: GIMPLE_OMP_CONTINUE
422      |
423      + gomp_atomic_load
424      |        layout: GSS_OMP_ATOMIC_LOAD, code: GIMPLE_OMP_ATOMIC_LOAD
425      |
426      + gimple_statement_omp_atomic_store_layout
427          |    layout: GSS_OMP_ATOMIC_STORE_LAYOUT,
428          |    code: GIMPLE_OMP_ATOMIC_STORE
429          |
430          + gomp_atomic_store
431          |        code: GIMPLE_OMP_ATOMIC_STORE
432          |
433          + gomp_return
434                   code: GIMPLE_OMP_RETURN
435 @end smallexample
438 @node GIMPLE instruction set
439 @section GIMPLE instruction set
440 @cindex GIMPLE instruction set
442 The following table briefly describes the GIMPLE instruction set.
444 @multitable {@code{GIMPLE_OMP_SECTIONS_SWITCH}} {High GIMPLE} {Low GIMPLE}
445 @item Instruction                       @tab High GIMPLE        @tab Low GIMPLE
446 @item @code{GIMPLE_ASM}                 @tab x                  @tab x
447 @item @code{GIMPLE_ASSIGN}              @tab x                  @tab x
448 @item @code{GIMPLE_BIND}                @tab x                  @tab
449 @item @code{GIMPLE_CALL}                @tab x                  @tab x
450 @item @code{GIMPLE_CATCH}               @tab x                  @tab
451 @item @code{GIMPLE_COND}                @tab x                  @tab x
452 @item @code{GIMPLE_DEBUG}               @tab x                  @tab x
453 @item @code{GIMPLE_EH_FILTER}           @tab x                  @tab
454 @item @code{GIMPLE_GOTO}                @tab x                  @tab x
455 @item @code{GIMPLE_LABEL}               @tab x                  @tab x
456 @item @code{GIMPLE_NOP}                 @tab x                  @tab x
457 @item @code{GIMPLE_OMP_ATOMIC_LOAD}     @tab x                  @tab x
458 @item @code{GIMPLE_OMP_ATOMIC_STORE}    @tab x                  @tab x
459 @item @code{GIMPLE_OMP_CONTINUE}        @tab x                  @tab x
460 @item @code{GIMPLE_OMP_CRITICAL}        @tab x                  @tab x
461 @item @code{GIMPLE_OMP_FOR}             @tab x                  @tab x
462 @item @code{GIMPLE_OMP_MASTER}          @tab x                  @tab x
463 @item @code{GIMPLE_OMP_ORDERED}         @tab x                  @tab x
464 @item @code{GIMPLE_OMP_PARALLEL}        @tab x                  @tab x
465 @item @code{GIMPLE_OMP_RETURN}          @tab x                  @tab x
466 @item @code{GIMPLE_OMP_SECTION}         @tab x                  @tab x
467 @item @code{GIMPLE_OMP_SECTIONS}        @tab x                  @tab x
468 @item @code{GIMPLE_OMP_SECTIONS_SWITCH} @tab x                  @tab x
469 @item @code{GIMPLE_OMP_SINGLE}          @tab x                  @tab x
470 @item @code{GIMPLE_PHI}                 @tab                    @tab x
471 @item @code{GIMPLE_RESX}                @tab                    @tab x
472 @item @code{GIMPLE_RETURN}              @tab x                  @tab x
473 @item @code{GIMPLE_SWITCH}              @tab x                  @tab x
474 @item @code{GIMPLE_TRY}                 @tab x                  @tab
475 @end multitable
477 @node GIMPLE Exception Handling
478 @section Exception Handling
479 @cindex GIMPLE Exception Handling
481 Other exception handling constructs are represented using
482 @code{GIMPLE_TRY_CATCH}.  @code{GIMPLE_TRY_CATCH} has two operands.  The
483 first operand is a sequence of statements to execute.  If executing
484 these statements does not throw an exception, then the second operand
485 is ignored.  Otherwise, if an exception is thrown, then the second
486 operand of the @code{GIMPLE_TRY_CATCH} is checked.  The second
487 operand may have the following forms:
489 @enumerate
491 @item A sequence of statements to execute.  When an exception occurs,
492 these statements are executed, and then the exception is rethrown.
494 @item A sequence of @code{GIMPLE_CATCH} statements.  Each
495 @code{GIMPLE_CATCH} has a list of applicable exception types and
496 handler code.  If the thrown exception matches one of the caught
497 types, the associated handler code is executed.  If the handler
498 code falls off the bottom, execution continues after the original
499 @code{GIMPLE_TRY_CATCH}.
501 @item A @code{GIMPLE_EH_FILTER} statement.  This has a list of
502 permitted exception types, and code to handle a match failure.  If the
503 thrown exception does not match one of the allowed types, the
504 associated match failure code is executed.  If the thrown exception
505 does match, it continues unwinding the stack looking for the next
506 handler.
508 @end enumerate
510 Currently throwing an exception is not directly represented in
511 GIMPLE, since it is implemented by calling a function.  At some
512 point in the future we will want to add some way to express that
513 the call will throw an exception of a known type.
515 Just before running the optimizers, the compiler lowers the
516 high-level EH constructs above into a set of @samp{goto}s, magic
517 labels, and EH regions.  Continuing to unwind at the end of a
518 cleanup is represented with a @code{GIMPLE_RESX}.
521 @node Temporaries
522 @section Temporaries
523 @cindex Temporaries
525 When gimplification encounters a subexpression that is too
526 complex, it creates a new temporary variable to hold the value of
527 the subexpression, and adds a new statement to initialize it
528 before the current statement. These special temporaries are known
529 as @samp{expression temporaries}, and are allocated using
530 @code{get_formal_tmp_var}.  The compiler tries to always evaluate
531 identical expressions into the same temporary, to simplify
532 elimination of redundant calculations.
534 We can only use expression temporaries when we know that it will
535 not be reevaluated before its value is used, and that it will not
536 be otherwise modified@footnote{These restrictions are derived
537 from those in Morgan 4.8.}. Other temporaries can be allocated
538 using @code{get_initialized_tmp_var} or @code{create_tmp_var}.
540 Currently, an expression like @code{a = b + 5} is not reduced any
541 further.  We tried converting it to something like
542 @smallexample
543 T1 = b + 5;
544 a = T1;
545 @end smallexample
546 but this bloated the representation for minimal benefit.  However, a
547 variable which must live in memory cannot appear in an expression; its
548 value is explicitly loaded into a temporary first.  Similarly, storing
549 the value of an expression to a memory variable goes through a
550 temporary.
552 @node Operands
553 @section Operands
554 @cindex Operands
556 In general, expressions in GIMPLE consist of an operation and the
557 appropriate number of simple operands; these operands must either be a
558 GIMPLE rvalue (@code{is_gimple_val}), i.e.@: a constant or a register
559 variable.  More complex operands are factored out into temporaries, so
560 that
561 @smallexample
562 a = b + c + d
563 @end smallexample
564 becomes
565 @smallexample
566 T1 = b + c;
567 a = T1 + d;
568 @end smallexample
570 The same rule holds for arguments to a @code{GIMPLE_CALL}.
572 The target of an assignment is usually a variable, but can also be a
573 @code{MEM_REF} or a compound lvalue as described below.
575 @menu
576 * Compound Expressions::
577 * Compound Lvalues::
578 * Conditional Expressions::
579 * Logical Operators::
580 @end menu
582 @node Compound Expressions
583 @subsection Compound Expressions
584 @cindex Compound Expressions
586 The left-hand side of a C comma expression is simply moved into a separate
587 statement.
589 @node Compound Lvalues
590 @subsection Compound Lvalues
591 @cindex Compound Lvalues
593 Currently compound lvalues involving array and structure field references
594 are not broken down; an expression like @code{a.b[2] = 42} is not reduced
595 any further (though complex array subscripts are).  This restriction is a
596 workaround for limitations in later optimizers; if we were to convert this
599 @smallexample
600 T1 = &a.b;
601 T1[2] = 42;
602 @end smallexample
604 alias analysis would not remember that the reference to @code{T1[2]} came
605 by way of @code{a.b}, so it would think that the assignment could alias
606 another member of @code{a}; this broke @code{struct-alias-1.c}.  Future
607 optimizer improvements may make this limitation unnecessary.
609 @node Conditional Expressions
610 @subsection Conditional Expressions
611 @cindex Conditional Expressions
613 A C @code{?:} expression is converted into an @code{if} statement with
614 each branch assigning to the same temporary.  So,
616 @smallexample
617 a = b ? c : d;
618 @end smallexample
619 becomes
620 @smallexample
621 if (b == 1)
622   T1 = c;
623 else
624   T1 = d;
625 a = T1;
626 @end smallexample
628 The GIMPLE level if-conversion pass re-introduces @code{?:}
629 expression, if appropriate. It is used to vectorize loops with
630 conditions using vector conditional operations.
632 Note that in GIMPLE, @code{if} statements are represented using
633 @code{GIMPLE_COND}, as described below.
635 @node Logical Operators
636 @subsection Logical Operators
637 @cindex Logical Operators
639 Except when they appear in the condition operand of a
640 @code{GIMPLE_COND}, logical `and' and `or' operators are simplified
641 as follows: @code{a = b && c} becomes
643 @smallexample
644 T1 = (bool)b;
645 if (T1 == true)
646   T1 = (bool)c;
647 a = T1;
648 @end smallexample
650 Note that @code{T1} in this example cannot be an expression temporary,
651 because it has two different assignments.
653 @subsection Manipulating operands
655 All gimple operands are of type @code{tree}.  But only certain
656 types of trees are allowed to be used as operand tuples.  Basic
657 validation is controlled by the function
658 @code{get_gimple_rhs_class}, which given a tree code, returns an
659 @code{enum} with the following values of type @code{enum
660 gimple_rhs_class}
662 @itemize @bullet
663 @item @code{GIMPLE_INVALID_RHS}
664 The tree cannot be used as a GIMPLE operand.
666 @item @code{GIMPLE_TERNARY_RHS}
667 The tree is a valid GIMPLE ternary operation.
669 @item @code{GIMPLE_BINARY_RHS}
670 The tree is a valid GIMPLE binary operation.
672 @item @code{GIMPLE_UNARY_RHS}
673 The tree is a valid GIMPLE unary operation.
675 @item @code{GIMPLE_SINGLE_RHS}
676 The tree is a single object, that cannot be split into simpler
677 operands (for instance, @code{SSA_NAME}, @code{VAR_DECL}, @code{COMPONENT_REF}, etc).
679 This operand class also acts as an escape hatch for tree nodes
680 that may be flattened out into the operand vector, but would need
681 more than two slots on the RHS.  For instance, a @code{COND_EXPR}
682 expression of the form @code{(a op b) ? x : y} could be flattened
683 out on the operand vector using 4 slots, but it would also
684 require additional processing to distinguish @code{c = a op b}
685 from @code{c = a op b ? x : y}.  Something similar occurs with
686 @code{ASSERT_EXPR}.   In time, these special case tree
687 expressions should be flattened into the operand vector.
688 @end itemize
690 For tree nodes in the categories @code{GIMPLE_TERNARY_RHS},
691 @code{GIMPLE_BINARY_RHS} and @code{GIMPLE_UNARY_RHS}, they cannot be
692 stored inside tuples directly.  They first need to be flattened and
693 separated into individual components.  For instance, given the GENERIC
694 expression
696 @smallexample
697 a = b + c
698 @end smallexample
700 its tree representation is:
702 @smallexample
703 MODIFY_EXPR <VAR_DECL  <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
704 @end smallexample
706 In this case, the GIMPLE form for this statement is logically
707 identical to its GENERIC form but in GIMPLE, the @code{PLUS_EXPR}
708 on the RHS of the assignment is not represented as a tree,
709 instead the two operands are taken out of the @code{PLUS_EXPR} sub-tree
710 and flattened into the GIMPLE tuple as follows:
712 @smallexample
713 GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
714 @end smallexample
716 @subsection Operand vector allocation
718 The operand vector is stored at the bottom of the three tuple
719 structures that accept operands. This means, that depending on
720 the code of a given statement, its operand vector will be at
721 different offsets from the base of the structure.  To access
722 tuple operands use the following accessors
724 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
725 Returns the number of operands in statement G.
726 @end deftypefn
728 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
729 Returns operand @code{I} from statement @code{G}.
730 @end deftypefn
732 @deftypefn {GIMPLE function} {tree *} gimple_ops (gimple g)
733 Returns a pointer into the operand vector for statement @code{G}.  This
734 is computed using an internal table called @code{gimple_ops_offset_}[].
735 This table is indexed by the gimple code of @code{G}.
737 When the compiler is built, this table is filled-in using the
738 sizes of the structures used by each statement code defined in
739 gimple.def.  Since the operand vector is at the bottom of the
740 structure, for a gimple code @code{C} the offset is computed as sizeof
741 (struct-of @code{C}) - sizeof (tree).
743 This mechanism adds one memory indirection to every access when
744 using @code{gimple_op}(), if this becomes a bottleneck, a pass can
745 choose to memoize the result from @code{gimple_ops}() and use that to
746 access the operands.
747 @end deftypefn
749 @subsection Operand validation
751 When adding a new operand to a gimple statement, the operand will
752 be validated according to what each tuple accepts in its operand
753 vector.  These predicates are called by the
754 @code{gimple_@var{name}_set_...()}.  Each tuple will use one of the
755 following predicates (Note, this list is not exhaustive):
757 @deftypefn {GIMPLE function} bool is_gimple_val (tree t)
758 Returns true if t is a "GIMPLE value", which are all the
759 non-addressable stack variables (variables for which
760 @code{is_gimple_reg} returns true) and constants (expressions for which
761 @code{is_gimple_min_invariant} returns true).
762 @end deftypefn
764 @deftypefn {GIMPLE function} bool is_gimple_addressable (tree t)
765 Returns true if t is a symbol or memory reference whose address
766 can be taken.
767 @end deftypefn
769 @deftypefn {GIMPLE function} bool is_gimple_asm_val (tree t)
770 Similar to @code{is_gimple_val} but it also accepts hard registers.
771 @end deftypefn
773 @deftypefn {GIMPLE function} bool is_gimple_call_addr (tree t)
774 Return true if t is a valid expression to use as the function
775 called by a @code{GIMPLE_CALL}.
776 @end deftypefn
778 @deftypefn {GIMPLE function} bool is_gimple_mem_ref_addr (tree t)
779 Return true if t is a valid expression to use as first operand
780 of a @code{MEM_REF} expression.
781 @end deftypefn
783 @deftypefn {GIMPLE function} bool is_gimple_constant (tree t)
784 Return true if t is a valid gimple constant.
785 @end deftypefn
787 @deftypefn {GIMPLE function} bool is_gimple_min_invariant (tree t)
788 Return true if t is a valid minimal invariant.  This is different
789 from constants, in that the specific value of t may not be known
790 at compile time, but it is known that it doesn't change (e.g.,
791 the address of a function local variable).
792 @end deftypefn
794 @deftypefn {GIMPLE function} bool is_gimple_ip_invariant (tree t)
795 Return true if t is an interprocedural invariant.  This means that t
796 is a valid invariant in all functions (e.g. it can be an address of a
797 global variable but not of a local one).
798 @end deftypefn
800 @deftypefn {GIMPLE function} bool is_gimple_ip_invariant_address (tree t)
801 Return true if t is an @code{ADDR_EXPR} that does not change once the
802 program is running (and which is valid in all functions).
803 @end deftypefn
806 @subsection Statement validation
808 @deftypefn {GIMPLE function} bool is_gimple_assign (gimple g)
809 Return true if the code of g is @code{GIMPLE_ASSIGN}.
810 @end deftypefn
812 @deftypefn {GIMPLE function} bool is_gimple_call (gimple g)
813 Return true if the code of g is @code{GIMPLE_CALL}.
814 @end deftypefn
816 @deftypefn {GIMPLE function} bool is_gimple_debug (gimple g)
817 Return true if the code of g is @code{GIMPLE_DEBUG}.
818 @end deftypefn
820 @deftypefn {GIMPLE function} bool gimple_assign_cast_p (const_gimple g)
821 Return true if g is a @code{GIMPLE_ASSIGN} that performs a type cast
822 operation.
823 @end deftypefn
825 @deftypefn {GIMPLE function} bool gimple_debug_bind_p (gimple g)
826 Return true if g is a @code{GIMPLE_DEBUG} that binds the value of an
827 expression to a variable.
828 @end deftypefn
830 @deftypefn {GIMPLE function} bool is_gimple_omp (gimple g)
831 Return true if g is any of the OpenMP codes.
832 @end deftypefn
834 @deftypefn {GIMPLE function} gimple_debug_begin_stmt_p (gimple g)
835 Return true if g is a @code{GIMPLE_DEBUG} that marks the beginning of
836 a source statement.
837 @end deftypefn
839 @deftypefn {GIMPLE function} gimple_debug_inline_entry_p (gimple g)
840 Return true if g is a @code{GIMPLE_DEBUG} that marks the entry
841 point of an inlined function.
842 @end deftypefn
844 @deftypefn {GIMPLE function} gimple_debug_nonbind_marker_p (gimple g)
845 Return true if g is a @code{GIMPLE_DEBUG} that marks a program location,
846 without any variable binding.
847 @end deftypefn
849 @node Manipulating GIMPLE statements
850 @section Manipulating GIMPLE statements
851 @cindex Manipulating GIMPLE statements
853 This section documents all the functions available to handle each
854 of the GIMPLE instructions.
856 @subsection Common accessors
857 The following are common accessors for gimple statements.
859 @deftypefn {GIMPLE function} {enum gimple_code} gimple_code (gimple g)
860 Return the code for statement @code{G}.
861 @end deftypefn
863 @deftypefn {GIMPLE function} basic_block gimple_bb (gimple g)
864 Return the basic block to which statement @code{G} belongs to.
865 @end deftypefn
867 @deftypefn {GIMPLE function} tree gimple_block (gimple g)
868 Return the lexical scope block holding statement @code{G}.
869 @end deftypefn
871 @deftypefn {GIMPLE function} tree gimple_expr_type (gimple stmt)
872 Return the type of the main expression computed by @code{STMT}. Return
873 @code{void_type_node} if @code{STMT} computes nothing. This will only return
874 something meaningful for @code{GIMPLE_ASSIGN}, @code{GIMPLE_COND} and
875 @code{GIMPLE_CALL}.  For all other tuple codes, it will return
876 @code{void_type_node}.
877 @end deftypefn
879 @deftypefn {GIMPLE function} {enum tree_code} gimple_expr_code (gimple stmt)
880 Return the tree code for the expression computed by @code{STMT}.  This
881 is only meaningful for @code{GIMPLE_CALL}, @code{GIMPLE_ASSIGN} and
882 @code{GIMPLE_COND}.  If @code{STMT} is @code{GIMPLE_CALL}, it will return @code{CALL_EXPR}.
883 For @code{GIMPLE_COND}, it returns the code of the comparison predicate.
884 For @code{GIMPLE_ASSIGN} it returns the code of the operation performed
885 by the @code{RHS} of the assignment.
886 @end deftypefn
888 @deftypefn {GIMPLE function} void gimple_set_block (gimple g, tree block)
889 Set the lexical scope block of @code{G} to @code{BLOCK}.
890 @end deftypefn
892 @deftypefn {GIMPLE function} location_t gimple_locus (gimple g)
893 Return locus information for statement @code{G}.
894 @end deftypefn
896 @deftypefn {GIMPLE function} void gimple_set_locus (gimple g, location_t locus)
897 Set locus information for statement @code{G}.
898 @end deftypefn
900 @deftypefn {GIMPLE function} bool gimple_locus_empty_p (gimple g)
901 Return true if @code{G} does not have locus information.
902 @end deftypefn
904 @deftypefn {GIMPLE function} bool gimple_no_warning_p (gimple stmt)
905 Return true if no warnings should be emitted for statement @code{STMT}.
906 @end deftypefn
908 @deftypefn {GIMPLE function} void gimple_set_visited (gimple stmt, bool visited_p)
909 Set the visited status on statement @code{STMT} to @code{VISITED_P}.
910 @end deftypefn
912 @deftypefn {GIMPLE function} bool gimple_visited_p (gimple stmt)
913 Return the visited status on statement @code{STMT}.
914 @end deftypefn
916 @deftypefn {GIMPLE function} void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p)
917 Set pass local flag @code{PLF} on statement @code{STMT} to @code{VAL_P}.
918 @end deftypefn
920 @deftypefn {GIMPLE function} {unsigned int} gimple_plf (gimple stmt, enum plf_mask plf)
921 Return the value of pass local flag @code{PLF} on statement @code{STMT}.
922 @end deftypefn
924 @deftypefn {GIMPLE function} bool gimple_has_ops (gimple g)
925 Return true if statement @code{G} has register or memory operands.
926 @end deftypefn
928 @deftypefn {GIMPLE function} bool gimple_has_mem_ops (gimple g)
929 Return true if statement @code{G} has memory operands.
930 @end deftypefn
932 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
933 Return the number of operands for statement @code{G}.
934 @end deftypefn
936 @deftypefn {GIMPLE function} {tree *} gimple_ops (gimple g)
937 Return the array of operands for statement @code{G}.
938 @end deftypefn
940 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
941 Return operand @code{I} for statement @code{G}.
942 @end deftypefn
944 @deftypefn {GIMPLE function} {tree *} gimple_op_ptr (gimple g, unsigned i)
945 Return a pointer to operand @code{I} for statement @code{G}.
946 @end deftypefn
948 @deftypefn {GIMPLE function} void gimple_set_op (gimple g, unsigned i, tree op)
949 Set operand @code{I} of statement @code{G} to @code{OP}.
950 @end deftypefn
952 @deftypefn {GIMPLE function} bitmap gimple_addresses_taken (gimple stmt)
953 Return the set of symbols that have had their address taken by
954 @code{STMT}.
955 @end deftypefn
957 @deftypefn {GIMPLE function} {struct def_optype_d *} gimple_def_ops (gimple g)
958 Return the set of @code{DEF} operands for statement @code{G}.
959 @end deftypefn
961 @deftypefn {GIMPLE function} void gimple_set_def_ops (gimple g, struct def_optype_d *def)
962 Set @code{DEF} to be the set of @code{DEF} operands for statement @code{G}.
963 @end deftypefn
965 @deftypefn {GIMPLE function} {struct use_optype_d *} gimple_use_ops (gimple g)
966 Return the set of @code{USE} operands for statement @code{G}.
967 @end deftypefn
969 @deftypefn {GIMPLE function} void gimple_set_use_ops (gimple g, struct use_optype_d *use)
970 Set @code{USE} to be the set of @code{USE} operands for statement @code{G}.
971 @end deftypefn
973 @deftypefn {GIMPLE function} {struct voptype_d *} gimple_vuse_ops (gimple g)
974 Return the set of @code{VUSE} operands for statement @code{G}.
975 @end deftypefn
977 @deftypefn {GIMPLE function} void gimple_set_vuse_ops (gimple g, struct voptype_d *ops)
978 Set @code{OPS} to be the set of @code{VUSE} operands for statement @code{G}.
979 @end deftypefn
981 @deftypefn {GIMPLE function} {struct voptype_d *} gimple_vdef_ops (gimple g)
982 Return the set of @code{VDEF} operands for statement @code{G}.
983 @end deftypefn
985 @deftypefn {GIMPLE function} void gimple_set_vdef_ops (gimple g, struct voptype_d *ops)
986 Set @code{OPS} to be the set of @code{VDEF} operands for statement @code{G}.
987 @end deftypefn
989 @deftypefn {GIMPLE function} bitmap gimple_loaded_syms (gimple g)
990 Return the set of symbols loaded by statement @code{G}.  Each element of
991 the set is the @code{DECL_UID} of the corresponding symbol.
992 @end deftypefn
994 @deftypefn {GIMPLE function} bitmap gimple_stored_syms (gimple g)
995 Return the set of symbols stored by statement @code{G}.  Each element of
996 the set is the @code{DECL_UID} of the corresponding symbol.
997 @end deftypefn
999 @deftypefn {GIMPLE function} bool gimple_modified_p (gimple g)
1000 Return true if statement @code{G} has operands and the modified field
1001 has been set.
1002 @end deftypefn
1004 @deftypefn {GIMPLE function} bool gimple_has_volatile_ops (gimple stmt)
1005 Return true if statement @code{STMT} contains volatile operands.
1006 @end deftypefn
1008 @deftypefn {GIMPLE function} void gimple_set_has_volatile_ops (gimple stmt, bool volatilep)
1009 Return true if statement @code{STMT} contains volatile operands.
1010 @end deftypefn
1012 @deftypefn {GIMPLE function} void update_stmt (gimple s)
1013 Mark statement @code{S} as modified, and update it.
1014 @end deftypefn
1016 @deftypefn {GIMPLE function} void update_stmt_if_modified (gimple s)
1017 Update statement @code{S} if it has been marked modified.
1018 @end deftypefn
1020 @deftypefn {GIMPLE function} gimple gimple_copy (gimple stmt)
1021 Return a deep copy of statement @code{STMT}.
1022 @end deftypefn
1024 @node Tuple specific accessors
1025 @section Tuple specific accessors
1026 @cindex Tuple specific accessors
1028 @menu
1029 * @code{GIMPLE_ASM}::
1030 * @code{GIMPLE_ASSIGN}::
1031 * @code{GIMPLE_BIND}::
1032 * @code{GIMPLE_CALL}::
1033 * @code{GIMPLE_CATCH}::
1034 * @code{GIMPLE_COND}::
1035 * @code{GIMPLE_DEBUG}::
1036 * @code{GIMPLE_EH_FILTER}::
1037 * @code{GIMPLE_LABEL}::
1038 * @code{GIMPLE_GOTO}::
1039 * @code{GIMPLE_NOP}::
1040 * @code{GIMPLE_OMP_ATOMIC_LOAD}::
1041 * @code{GIMPLE_OMP_ATOMIC_STORE}::
1042 * @code{GIMPLE_OMP_CONTINUE}::
1043 * @code{GIMPLE_OMP_CRITICAL}::
1044 * @code{GIMPLE_OMP_FOR}::
1045 * @code{GIMPLE_OMP_MASTER}::
1046 * @code{GIMPLE_OMP_ORDERED}::
1047 * @code{GIMPLE_OMP_PARALLEL}::
1048 * @code{GIMPLE_OMP_RETURN}::
1049 * @code{GIMPLE_OMP_SECTION}::
1050 * @code{GIMPLE_OMP_SECTIONS}::
1051 * @code{GIMPLE_OMP_SINGLE}::
1052 * @code{GIMPLE_PHI}::
1053 * @code{GIMPLE_RESX}::
1054 * @code{GIMPLE_RETURN}::
1055 * @code{GIMPLE_SWITCH}::
1056 * @code{GIMPLE_TRY}::
1057 * @code{GIMPLE_WITH_CLEANUP_EXPR}::
1058 @end menu
1061 @node @code{GIMPLE_ASM}
1062 @subsection @code{GIMPLE_ASM}
1063 @cindex @code{GIMPLE_ASM}
1065 @deftypefn {GIMPLE function} gasm *gimple_build_asm_vec ( @
1066 const char *string, vec<tree, va_gc> *inputs, @
1067 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers, @
1068 vec<tree, va_gc> *labels)
1069 Build a @code{GIMPLE_ASM} statement.  This statement is used for
1070 building in-line assembly constructs.  @code{STRING} is the assembly
1071 code.  @code{INPUTS}, @code{OUTPUTS}, @code{CLOBBERS}  and @code{LABELS}
1072 are the inputs, outputs, clobbered registers and labels.
1073 @end deftypefn
1075 @deftypefn {GIMPLE function} unsigned gimple_asm_ninputs (const gasm *g)
1076 Return the number of input operands for @code{GIMPLE_ASM} @code{G}.
1077 @end deftypefn
1079 @deftypefn {GIMPLE function} unsigned gimple_asm_noutputs (const gasm *g)
1080 Return the number of output operands for @code{GIMPLE_ASM} @code{G}.
1081 @end deftypefn
1083 @deftypefn {GIMPLE function} unsigned gimple_asm_nclobbers (const gasm *g)
1084 Return the number of clobber operands for @code{GIMPLE_ASM} @code{G}.
1085 @end deftypefn
1087 @deftypefn {GIMPLE function} tree gimple_asm_input_op (const gasm *g, @
1088 unsigned index)
1089 Return input operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
1090 @end deftypefn
1092 @deftypefn {GIMPLE function} void gimple_asm_set_input_op (gasm *g, @
1093 unsigned index, tree in_op)
1094 Set @code{IN_OP} to be input operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
1095 @end deftypefn
1097 @deftypefn {GIMPLE function} tree gimple_asm_output_op (const gasm *g, @
1098 unsigned index)
1099 Return output operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
1100 @end deftypefn
1102 @deftypefn {GIMPLE function} void gimple_asm_set_output_op (gasm *g, @
1103 unsigned index, tree out_op)
1104 Set @code{OUT_OP} to be output operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
1105 @end deftypefn
1107 @deftypefn {GIMPLE function} tree gimple_asm_clobber_op (const gasm *g, @
1108 unsigned index)
1109 Return clobber operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
1110 @end deftypefn
1112 @deftypefn {GIMPLE function} void gimple_asm_set_clobber_op (gasm *g, @
1113 unsigned index, tree clobber_op)
1114 Set @code{CLOBBER_OP} to be clobber operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
1115 @end deftypefn
1117 @deftypefn {GIMPLE function} {const char *} gimple_asm_string (const gasm *g)
1118 Return the string representing the assembly instruction in
1119 @code{GIMPLE_ASM} @code{G}.
1120 @end deftypefn
1122 @deftypefn {GIMPLE function} bool gimple_asm_volatile_p (const gasm *g)
1123 Return true if @code{G} is an asm statement marked volatile.
1124 @end deftypefn
1126 @deftypefn {GIMPLE function} void gimple_asm_set_volatile (gasm *g, @
1127 bool volatile_p)
1128 Mark asm statement @code{G} as volatile or non-volatile based on
1129 @code{VOLATILE_P}.
1130 @end deftypefn
1132 @node @code{GIMPLE_ASSIGN}
1133 @subsection @code{GIMPLE_ASSIGN}
1134 @cindex @code{GIMPLE_ASSIGN}
1136 @deftypefn {GIMPLE function} gassign *gimple_build_assign (tree lhs, tree rhs)
1137 Build a @code{GIMPLE_ASSIGN} statement.  The left-hand side is an lvalue
1138 passed in lhs.  The right-hand side can be either a unary or
1139 binary tree expression.  The expression tree rhs will be
1140 flattened and its operands assigned to the corresponding operand
1141 slots in the new statement.  This function is useful when you
1142 already have a tree expression that you want to convert into a
1143 tuple.  However, try to avoid building expression trees for the
1144 sole purpose of calling this function.  If you already have the
1145 operands in separate trees, it is better to use
1146 @code{gimple_build_assign} with @code{enum tree_code} argument and separate
1147 arguments for each operand.
1148 @end deftypefn
1150 @deftypefn {GIMPLE function} gassign *gimple_build_assign @
1151 (tree lhs, enum tree_code subcode, tree op1, tree op2, tree op3)
1152 This function is similar to two operand @code{gimple_build_assign},
1153 but is used to build a @code{GIMPLE_ASSIGN} statement when the operands of the
1154 right-hand side of the assignment are already split into
1155 different operands.
1157 The left-hand side is an lvalue passed in lhs.  Subcode is the
1158 @code{tree_code} for the right-hand side of the assignment.  Op1, op2 and op3
1159 are the operands.
1160 @end deftypefn
1162 @deftypefn {GIMPLE function} gassign *gimple_build_assign @
1163 (tree lhs, enum tree_code subcode, tree op1, tree op2)
1164 Like the above 5 operand @code{gimple_build_assign}, but with the last
1165 argument @code{NULL} - this overload should not be used for
1166 @code{GIMPLE_TERNARY_RHS} assignments.
1167 @end deftypefn
1169 @deftypefn {GIMPLE function} gassign *gimple_build_assign @
1170 (tree lhs, enum tree_code subcode, tree op1)
1171 Like the above 4 operand @code{gimple_build_assign}, but with the last
1172 argument @code{NULL} - this overload should be used only for
1173 @code{GIMPLE_UNARY_RHS} and @code{GIMPLE_SINGLE_RHS} assignments.
1174 @end deftypefn
1176 @deftypefn {GIMPLE function} gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
1177 Build a new @code{GIMPLE_ASSIGN} tuple and append it to the end of
1178 @code{*SEQ_P}.
1179 @end deftypefn
1181 @code{DST}/@code{SRC} are the destination and source respectively.  You can
1182 pass ungimplified trees in @code{DST} or @code{SRC}, in which
1183 case they will be converted to a gimple operand if necessary.
1185 This function returns the newly created @code{GIMPLE_ASSIGN} tuple.
1187 @deftypefn {GIMPLE function} {enum tree_code} gimple_assign_rhs_code (gimple g)
1188 Return the code of the expression computed on the @code{RHS} of
1189 assignment statement @code{G}.
1190 @end deftypefn
1193 @deftypefn {GIMPLE function} {enum gimple_rhs_class} gimple_assign_rhs_class (gimple g)
1194 Return the gimple rhs class of the code for the expression
1195 computed on the rhs of assignment statement @code{G}.  This will never
1196 return @code{GIMPLE_INVALID_RHS}.
1197 @end deftypefn
1199 @deftypefn {GIMPLE function} tree gimple_assign_lhs (gimple g)
1200 Return the @code{LHS} of assignment statement @code{G}.
1201 @end deftypefn
1203 @deftypefn {GIMPLE function} {tree *} gimple_assign_lhs_ptr (gimple g)
1204 Return a pointer to the @code{LHS} of assignment statement @code{G}.
1205 @end deftypefn
1207 @deftypefn {GIMPLE function} tree gimple_assign_rhs1 (gimple g)
1208 Return the first operand on the @code{RHS} of assignment statement @code{G}.
1209 @end deftypefn
1211 @deftypefn {GIMPLE function} {tree *} gimple_assign_rhs1_ptr (gimple g)
1212 Return the address of the first operand on the @code{RHS} of assignment
1213 statement @code{G}.
1214 @end deftypefn
1216 @deftypefn {GIMPLE function} tree gimple_assign_rhs2 (gimple g)
1217 Return the second operand on the @code{RHS} of assignment statement @code{G}.
1218 @end deftypefn
1220 @deftypefn {GIMPLE function} {tree *} gimple_assign_rhs2_ptr (gimple g)
1221 Return the address of the second operand on the @code{RHS} of assignment
1222 statement @code{G}.
1223 @end deftypefn
1225 @deftypefn {GIMPLE function} tree gimple_assign_rhs3 (gimple g)
1226 Return the third operand on the @code{RHS} of assignment statement @code{G}.
1227 @end deftypefn
1229 @deftypefn {GIMPLE function} {tree *} gimple_assign_rhs3_ptr (gimple g)
1230 Return the address of the third operand on the @code{RHS} of assignment
1231 statement @code{G}.
1232 @end deftypefn
1234 @deftypefn {GIMPLE function} void gimple_assign_set_lhs (gimple g, tree lhs)
1235 Set @code{LHS} to be the @code{LHS} operand of assignment statement @code{G}.
1236 @end deftypefn
1238 @deftypefn {GIMPLE function} void gimple_assign_set_rhs1 (gimple g, tree rhs)
1239 Set @code{RHS} to be the first operand on the @code{RHS} of assignment
1240 statement @code{G}.
1241 @end deftypefn
1243 @deftypefn {GIMPLE function} void gimple_assign_set_rhs2 (gimple g, tree rhs)
1244 Set @code{RHS} to be the second operand on the @code{RHS} of assignment
1245 statement @code{G}.
1246 @end deftypefn
1248 @deftypefn {GIMPLE function} void gimple_assign_set_rhs3 (gimple g, tree rhs)
1249 Set @code{RHS} to be the third operand on the @code{RHS} of assignment
1250 statement @code{G}.
1251 @end deftypefn
1253 @deftypefn {GIMPLE function} bool gimple_assign_cast_p (const_gimple s)
1254 Return true if @code{S} is a type-cast assignment.
1255 @end deftypefn
1258 @node @code{GIMPLE_BIND}
1259 @subsection @code{GIMPLE_BIND}
1260 @cindex @code{GIMPLE_BIND}
1262 @deftypefn {GIMPLE function} gbind *gimple_build_bind (tree vars, @
1263 gimple_seq body)
1264 Build a @code{GIMPLE_BIND} statement with a list of variables in @code{VARS}
1265 and a body of statements in sequence @code{BODY}.
1266 @end deftypefn
1268 @deftypefn {GIMPLE function} tree gimple_bind_vars (const gbind *g)
1269 Return the variables declared in the @code{GIMPLE_BIND} statement @code{G}.
1270 @end deftypefn
1272 @deftypefn {GIMPLE function} void gimple_bind_set_vars (gbind *g, tree vars)
1273 Set @code{VARS} to be the set of variables declared in the @code{GIMPLE_BIND}
1274 statement @code{G}.
1275 @end deftypefn
1277 @deftypefn {GIMPLE function} void gimple_bind_append_vars (gbind *g, tree vars)
1278 Append @code{VARS} to the set of variables declared in the @code{GIMPLE_BIND}
1279 statement @code{G}.
1280 @end deftypefn
1282 @deftypefn {GIMPLE function} gimple_seq gimple_bind_body (gbind *g)
1283 Return the GIMPLE sequence contained in the @code{GIMPLE_BIND} statement
1284 @code{G}.
1285 @end deftypefn
1287 @deftypefn {GIMPLE function} void gimple_bind_set_body (gbind *g, @
1288 gimple_seq seq)
1289 Set @code{SEQ} to be sequence contained in the @code{GIMPLE_BIND} statement @code{G}.
1290 @end deftypefn
1292 @deftypefn {GIMPLE function} void gimple_bind_add_stmt (gbind *gs, gimple stmt)
1293 Append a statement to the end of a @code{GIMPLE_BIND}'s body.
1294 @end deftypefn
1296 @deftypefn {GIMPLE function} void gimple_bind_add_seq (gbind *gs, @
1297 gimple_seq seq)
1298 Append a sequence of statements to the end of a @code{GIMPLE_BIND}'s
1299 body.
1300 @end deftypefn
1302 @deftypefn {GIMPLE function} tree gimple_bind_block (const gbind *g)
1303 Return the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND} statement
1304 @code{G}. This is analogous to the @code{BIND_EXPR_BLOCK} field in trees.
1305 @end deftypefn
1307 @deftypefn {GIMPLE function} void gimple_bind_set_block (gbind *g, tree block)
1308 Set @code{BLOCK} to be the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND}
1309 statement @code{G}.
1310 @end deftypefn
1313 @node @code{GIMPLE_CALL}
1314 @subsection @code{GIMPLE_CALL}
1315 @cindex @code{GIMPLE_CALL}
1317 @deftypefn {GIMPLE function} gcall *gimple_build_call (tree fn, @
1318 unsigned nargs, ...)
1319 Build a @code{GIMPLE_CALL} statement to function @code{FN}.  The argument @code{FN}
1320 must be either a @code{FUNCTION_DECL} or a gimple call address as
1321 determined by @code{is_gimple_call_addr}.  @code{NARGS} are the number of
1322 arguments.  The rest of the arguments follow the argument @code{NARGS},
1323 and must be trees that are valid as rvalues in gimple (i.e., each
1324 operand is validated with @code{is_gimple_operand}).
1325 @end deftypefn
1328 @deftypefn {GIMPLE function} gcall *gimple_build_call_from_tree (tree call_expr, @
1329 tree fnptrtype)
1330 Build a @code{GIMPLE_CALL} from a @code{CALL_EXPR} node.  The arguments
1331 and the function are taken from the expression directly.  The type of the
1332 @code{GIMPLE_CALL} is set from the second parameter passed by a caller.
1333 This routine assumes that @code{call_expr} is already in GIMPLE form.
1334 That is, its operands are GIMPLE values and the function call needs no further
1335 simplification.  All the call flags in @code{call_expr} are copied over
1336 to the new @code{GIMPLE_CALL}.
1337 @end deftypefn
1339 @deftypefn {GIMPLE function} gcall *gimple_build_call_vec (tree fn, @
1340 @code{vec<tree>} args)
1341 Identical to @code{gimple_build_call} but the arguments are stored in a
1342 @code{vec<tree>}.
1343 @end deftypefn
1345 @deftypefn {GIMPLE function} tree gimple_call_lhs (gimple g)
1346 Return the @code{LHS} of call statement @code{G}.
1347 @end deftypefn
1349 @deftypefn {GIMPLE function} {tree *} gimple_call_lhs_ptr (gimple g)
1350 Return a pointer to the @code{LHS} of call statement @code{G}.
1351 @end deftypefn
1353 @deftypefn {GIMPLE function} void gimple_call_set_lhs (gimple g, tree lhs)
1354 Set @code{LHS} to be the @code{LHS} operand of call statement @code{G}.
1355 @end deftypefn
1357 @deftypefn {GIMPLE function} tree gimple_call_fn (gimple g)
1358 Return the tree node representing the function called by call
1359 statement @code{G}.
1360 @end deftypefn
1362 @deftypefn {GIMPLE function} void gimple_call_set_fn (gcall *g, tree fn)
1363 Set @code{FN} to be the function called by call statement @code{G}.  This has
1364 to be a gimple value specifying the address of the called
1365 function.
1366 @end deftypefn
1368 @deftypefn {GIMPLE function} tree gimple_call_fndecl (gimple g)
1369 If a given @code{GIMPLE_CALL}'s callee is a @code{FUNCTION_DECL}, return it.
1370 Otherwise return @code{NULL}.  This function is analogous to
1371 @code{get_callee_fndecl} in @code{GENERIC}.
1372 @end deftypefn
1374 @deftypefn {GIMPLE function} tree gimple_call_set_fndecl (gimple g, tree fndecl)
1375 Set the called function to @code{FNDECL}.
1376 @end deftypefn
1378 @deftypefn {GIMPLE function} tree gimple_call_return_type (const gcall *g)
1379 Return the type returned by call statement @code{G}.
1380 @end deftypefn
1382 @deftypefn {GIMPLE function} tree gimple_call_chain (gimple g)
1383 Return the static chain for call statement @code{G}.
1384 @end deftypefn
1386 @deftypefn {GIMPLE function} void gimple_call_set_chain (gcall *g, tree chain)
1387 Set @code{CHAIN} to be the static chain for call statement @code{G}.
1388 @end deftypefn
1390 @deftypefn {GIMPLE function} unsigned gimple_call_num_args (gimple g)
1391 Return the number of arguments used by call statement @code{G}.
1392 @end deftypefn
1394 @deftypefn {GIMPLE function} tree gimple_call_arg (gimple g, unsigned index)
1395 Return the argument at position @code{INDEX} for call statement @code{G}.  The
1396 first argument is 0.
1397 @end deftypefn
1399 @deftypefn {GIMPLE function} {tree *} gimple_call_arg_ptr (gimple g, unsigned index)
1400 Return a pointer to the argument at position @code{INDEX} for call
1401 statement @code{G}.
1402 @end deftypefn
1404 @deftypefn {GIMPLE function} void gimple_call_set_arg (gimple g, unsigned index, tree arg)
1405 Set @code{ARG} to be the argument at position @code{INDEX} for call statement
1406 @code{G}.
1407 @end deftypefn
1409 @deftypefn {GIMPLE function} void gimple_call_set_tail (gcall *s)
1410 Mark call statement @code{S} as being a tail call (i.e., a call just
1411 before the exit of a function). These calls are candidate for
1412 tail call optimization.
1413 @end deftypefn
1415 @deftypefn {GIMPLE function} bool gimple_call_tail_p (gcall *s)
1416 Return true if @code{GIMPLE_CALL} @code{S} is marked as a tail call.
1417 @end deftypefn
1419 @deftypefn {GIMPLE function} bool gimple_call_noreturn_p (gimple s)
1420 Return true if @code{S} is a noreturn call.
1421 @end deftypefn
1423 @deftypefn {GIMPLE function} gimple gimple_call_copy_skip_args (gcall *stmt, @
1424 bitmap args_to_skip)
1425 Build a @code{GIMPLE_CALL} identical to @code{STMT} but skipping the arguments
1426 in the positions marked by the set @code{ARGS_TO_SKIP}.
1427 @end deftypefn
1430 @node @code{GIMPLE_CATCH}
1431 @subsection @code{GIMPLE_CATCH}
1432 @cindex @code{GIMPLE_CATCH}
1434 @deftypefn {GIMPLE function} gcatch *gimple_build_catch (tree types, @
1435 gimple_seq handler)
1436 Build a @code{GIMPLE_CATCH} statement.  @code{TYPES} are the tree types this
1437 catch handles.  @code{HANDLER} is a sequence of statements with the code
1438 for the handler.
1439 @end deftypefn
1441 @deftypefn {GIMPLE function} tree gimple_catch_types (const gcatch *g)
1442 Return the types handled by @code{GIMPLE_CATCH} statement @code{G}.
1443 @end deftypefn
1445 @deftypefn {GIMPLE function} {tree *} gimple_catch_types_ptr (gcatch *g)
1446 Return a pointer to the types handled by @code{GIMPLE_CATCH} statement
1447 @code{G}.
1448 @end deftypefn
1450 @deftypefn {GIMPLE function} gimple_seq gimple_catch_handler (gcatch *g)
1451 Return the GIMPLE sequence representing the body of the handler
1452 of @code{GIMPLE_CATCH} statement @code{G}.
1453 @end deftypefn
1455 @deftypefn {GIMPLE function} void gimple_catch_set_types (gcatch *g, tree t)
1456 Set @code{T} to be the set of types handled by @code{GIMPLE_CATCH} @code{G}.
1457 @end deftypefn
1459 @deftypefn {GIMPLE function} void gimple_catch_set_handler (gcatch *g, @
1460 gimple_seq handler)
1461 Set @code{HANDLER} to be the body of @code{GIMPLE_CATCH} @code{G}.
1462 @end deftypefn
1465 @node @code{GIMPLE_COND}
1466 @subsection @code{GIMPLE_COND}
1467 @cindex @code{GIMPLE_COND}
1469 @deftypefn {GIMPLE function} gcond *gimple_build_cond ( @
1470 enum tree_code pred_code, tree lhs, tree rhs, tree t_label, tree f_label)
1471 Build a @code{GIMPLE_COND} statement.  @code{A} @code{GIMPLE_COND} statement compares
1472 @code{LHS} and @code{RHS} and if the condition in @code{PRED_CODE} is true, jump to
1473 the label in @code{t_label}, otherwise jump to the label in @code{f_label}.
1474 @code{PRED_CODE} are relational operator tree codes like @code{EQ_EXPR},
1475 @code{LT_EXPR}, @code{LE_EXPR}, @code{NE_EXPR}, etc.
1476 @end deftypefn
1479 @deftypefn {GIMPLE function} gcond *gimple_build_cond_from_tree (tree cond, @
1480 tree t_label, tree f_label)
1481 Build a @code{GIMPLE_COND} statement from the conditional expression
1482 tree @code{COND}.  @code{T_LABEL} and @code{F_LABEL} are as in @code{gimple_build_cond}.
1483 @end deftypefn
1485 @deftypefn {GIMPLE function} {enum tree_code} gimple_cond_code (gimple g)
1486 Return the code of the predicate computed by conditional
1487 statement @code{G}.
1488 @end deftypefn
1490 @deftypefn {GIMPLE function} void gimple_cond_set_code (gcond *g, @
1491 enum tree_code code)
1492 Set @code{CODE} to be the predicate code for the conditional statement
1493 @code{G}.
1494 @end deftypefn
1496 @deftypefn {GIMPLE function} tree gimple_cond_lhs (gimple g)
1497 Return the @code{LHS} of the predicate computed by conditional statement
1498 @code{G}.
1499 @end deftypefn
1501 @deftypefn {GIMPLE function} void gimple_cond_set_lhs (gcond *g, tree lhs)
1502 Set @code{LHS} to be the @code{LHS} operand of the predicate computed by
1503 conditional statement @code{G}.
1504 @end deftypefn
1506 @deftypefn {GIMPLE function} tree gimple_cond_rhs (gimple g)
1507 Return the @code{RHS} operand of the predicate computed by conditional
1508 @code{G}.
1509 @end deftypefn
1511 @deftypefn {GIMPLE function} void gimple_cond_set_rhs (gcond *g, tree rhs)
1512 Set @code{RHS} to be the @code{RHS} operand of the predicate computed by
1513 conditional statement @code{G}.
1514 @end deftypefn
1516 @deftypefn {GIMPLE function} tree gimple_cond_true_label (const gcond *g)
1517 Return the label used by conditional statement @code{G} when its
1518 predicate evaluates to true.
1519 @end deftypefn
1521 @deftypefn {GIMPLE function} void gimple_cond_set_true_label (gcond *g, tree label)
1522 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1523 its predicate evaluates to true.
1524 @end deftypefn
1526 @deftypefn {GIMPLE function} void gimple_cond_set_false_label (gcond *g, tree label)
1527 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1528 its predicate evaluates to false.
1529 @end deftypefn
1531 @deftypefn {GIMPLE function} tree gimple_cond_false_label (const gcond *g)
1532 Return the label used by conditional statement @code{G} when its
1533 predicate evaluates to false.
1534 @end deftypefn
1536 @deftypefn {GIMPLE function} void gimple_cond_make_false (gcond *g)
1537 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 0)'.
1538 @end deftypefn
1540 @deftypefn {GIMPLE function} void gimple_cond_make_true (gcond *g)
1541 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 1)'.
1542 @end deftypefn
1544 @node @code{GIMPLE_DEBUG}
1545 @subsection @code{GIMPLE_DEBUG}
1546 @cindex @code{GIMPLE_DEBUG}
1547 @cindex @code{GIMPLE_DEBUG_BIND}
1548 @cindex @code{GIMPLE_DEBUG_BEGIN_STMT}
1549 @cindex @code{GIMPLE_DEBUG_INLINE_ENTRY}
1551 @deftypefn {GIMPLE function} gdebug *gimple_build_debug_bind (tree var, @
1552 tree value, gimple stmt)
1553 Build a @code{GIMPLE_DEBUG} statement with @code{GIMPLE_DEBUG_BIND}
1554 @code{subcode}.  The effect of this statement is to tell debug
1555 information generation machinery that the value of user variable
1556 @code{var} is given by @code{value} at that point, and to remain with
1557 that value until @code{var} runs out of scope, a
1558 dynamically-subsequent debug bind statement overrides the binding, or
1559 conflicting values reach a control flow merge point.  Even if
1560 components of the @code{value} expression change afterwards, the
1561 variable is supposed to retain the same value, though not necessarily
1562 the same location.
1564 It is expected that @code{var} be most often a tree for automatic user
1565 variables (@code{VAR_DECL} or @code{PARM_DECL}) that satisfy the
1566 requirements for gimple registers, but it may also be a tree for a
1567 scalarized component of a user variable (@code{ARRAY_REF},
1568 @code{COMPONENT_REF}), or a debug temporary (@code{DEBUG_EXPR_DECL}).
1570 As for @code{value}, it can be an arbitrary tree expression, but it is
1571 recommended that it be in a suitable form for a gimple assignment
1572 @code{RHS}.  It is not expected that user variables that could appear
1573 as @code{var} ever appear in @code{value}, because in the latter we'd
1574 have their @code{SSA_NAME}s instead, but even if they were not in SSA
1575 form, user variables appearing in @code{value} are to be regarded as
1576 part of the executable code space, whereas those in @code{var} are to
1577 be regarded as part of the source code space.  There is no way to
1578 refer to the value bound to a user variable within a @code{value}
1579 expression.
1581 If @code{value} is @code{GIMPLE_DEBUG_BIND_NOVALUE}, debug information
1582 generation machinery is informed that the variable @code{var} is
1583 unbound, i.e., that its value is indeterminate, which sometimes means
1584 it is really unavailable, and other times that the compiler could not
1585 keep track of it.
1587 Block and location information for the newly-created stmt are
1588 taken from @code{stmt}, if given.
1589 @end deftypefn
1591 @deftypefn {GIMPLE function} tree gimple_debug_bind_get_var (gimple stmt)
1592 Return the user variable @var{var} that is bound at @code{stmt}.
1593 @end deftypefn
1595 @deftypefn {GIMPLE function} tree gimple_debug_bind_get_value (gimple stmt)
1596 Return the value expression that is bound to a user variable at
1597 @code{stmt}.
1598 @end deftypefn
1600 @deftypefn {GIMPLE function} {tree *} gimple_debug_bind_get_value_ptr (gimple stmt)
1601 Return a pointer to the value expression that is bound to a user
1602 variable at @code{stmt}.
1603 @end deftypefn
1605 @deftypefn {GIMPLE function} void gimple_debug_bind_set_var (gimple stmt, tree var)
1606 Modify the user variable bound at @code{stmt} to @var{var}.
1607 @end deftypefn
1609 @deftypefn {GIMPLE function} void gimple_debug_bind_set_value (gimple stmt, tree var)
1610 Modify the value bound to the user variable bound at @code{stmt} to
1611 @var{value}.
1612 @end deftypefn
1614 @deftypefn {GIMPLE function} void gimple_debug_bind_reset_value (gimple stmt)
1615 Modify the value bound to the user variable bound at @code{stmt} so
1616 that the variable becomes unbound.
1617 @end deftypefn
1619 @deftypefn {GIMPLE function} bool gimple_debug_bind_has_value_p (gimple stmt)
1620 Return @code{TRUE} if @code{stmt} binds a user variable to a value,
1621 and @code{FALSE} if it unbinds the variable.
1622 @end deftypefn
1624 @deftypefn {GIMPLE function} gimple gimple_build_debug_begin_stmt (tree block, location_t location)
1625 Build a @code{GIMPLE_DEBUG} statement with
1626 @code{GIMPLE_DEBUG_BEGIN_STMT} @code{subcode}.  The effect of this
1627 statement is to tell debug information generation machinery that the
1628 user statement at the given @code{location} and @code{block} starts at
1629 the point at which the statement is inserted.  The intent is that side
1630 effects (e.g. variable bindings) of all prior user statements are
1631 observable, and that none of the side effects of subsequent user
1632 statements are.
1633 @end deftypefn
1635 @deftypefn {GIMPLE function} gimple gimple_build_debug_inline_entry (tree block, location_t location)
1636 Build a @code{GIMPLE_DEBUG} statement with
1637 @code{GIMPLE_DEBUG_INLINE_ENTRY} @code{subcode}.  The effect of this
1638 statement is to tell debug information generation machinery that a
1639 function call at @code{location} underwent inline substitution, that
1640 @code{block} is the enclosing lexical block created for the
1641 substitution, and that at the point of the program in which the stmt is
1642 inserted, all parameters for the inlined function are bound to the
1643 respective arguments, and none of the side effects of its stmts are
1644 observable.
1645 @end deftypefn
1647 @node @code{GIMPLE_EH_FILTER}
1648 @subsection @code{GIMPLE_EH_FILTER}
1649 @cindex @code{GIMPLE_EH_FILTER}
1651 @deftypefn {GIMPLE function} geh_filter *gimple_build_eh_filter (tree types, @
1652 gimple_seq failure)
1653 Build a @code{GIMPLE_EH_FILTER} statement.  @code{TYPES} are the filter's
1654 types.  @code{FAILURE} is a sequence with the filter's failure action.
1655 @end deftypefn
1657 @deftypefn {GIMPLE function} tree gimple_eh_filter_types (gimple g)
1658 Return the types handled by @code{GIMPLE_EH_FILTER} statement @code{G}.
1659 @end deftypefn
1661 @deftypefn {GIMPLE function} {tree *} gimple_eh_filter_types_ptr (gimple g)
1662 Return a pointer to the types handled by @code{GIMPLE_EH_FILTER}
1663 statement @code{G}.
1664 @end deftypefn
1666 @deftypefn {GIMPLE function} gimple_seq gimple_eh_filter_failure (gimple g)
1667 Return the sequence of statement to execute when @code{GIMPLE_EH_FILTER}
1668 statement fails.
1669 @end deftypefn
1671 @deftypefn {GIMPLE function} void gimple_eh_filter_set_types (geh_filter *g, @
1672 tree types)
1673 Set @code{TYPES} to be the set of types handled by @code{GIMPLE_EH_FILTER} @code{G}.
1674 @end deftypefn
1676 @deftypefn {GIMPLE function} void gimple_eh_filter_set_failure (geh_filter *g, @
1677 gimple_seq failure)
1678 Set @code{FAILURE} to be the sequence of statements to execute on
1679 failure for @code{GIMPLE_EH_FILTER} @code{G}.
1680 @end deftypefn
1682 @deftypefn {GIMPLE function} tree gimple_eh_must_not_throw_fndecl ( @
1683 geh_mnt *eh_mnt_stmt)
1684 Get the function decl to be called by the MUST_NOT_THROW region.
1685 @end deftypefn
1687 @deftypefn {GIMPLE function} void gimple_eh_must_not_throw_set_fndecl ( @
1688 geh_mnt *eh_mnt_stmt, tree decl)
1689 Set the function decl to be called by GS to DECL.
1690 @end deftypefn
1693 @node @code{GIMPLE_LABEL}
1694 @subsection @code{GIMPLE_LABEL}
1695 @cindex @code{GIMPLE_LABEL}
1697 @deftypefn {GIMPLE function} glabel *gimple_build_label (tree label)
1698 Build a @code{GIMPLE_LABEL} statement with corresponding to the tree
1699 label, @code{LABEL}.
1700 @end deftypefn
1702 @deftypefn {GIMPLE function} tree gimple_label_label (const glabel *g)
1703 Return the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL} statement @code{G}.
1704 @end deftypefn
1706 @deftypefn {GIMPLE function} void gimple_label_set_label (glabel *g, tree label)
1707 Set @code{LABEL} to be the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL}
1708 statement @code{G}.
1709 @end deftypefn
1711 @node @code{GIMPLE_GOTO}
1712 @subsection @code{GIMPLE_GOTO}
1713 @cindex @code{GIMPLE_GOTO}
1715 @deftypefn {GIMPLE function} ggoto *gimple_build_goto (tree dest)
1716 Build a @code{GIMPLE_GOTO} statement to label @code{DEST}.
1717 @end deftypefn
1719 @deftypefn {GIMPLE function} tree gimple_goto_dest (gimple g)
1720 Return the destination of the unconditional jump @code{G}.
1721 @end deftypefn
1723 @deftypefn {GIMPLE function} void gimple_goto_set_dest (ggoto *g, tree dest)
1724 Set @code{DEST} to be the destination of the unconditional jump @code{G}.
1725 @end deftypefn
1728 @node @code{GIMPLE_NOP}
1729 @subsection @code{GIMPLE_NOP}
1730 @cindex @code{GIMPLE_NOP}
1732 @deftypefn {GIMPLE function} gimple gimple_build_nop (void)
1733 Build a @code{GIMPLE_NOP} statement.
1734 @end deftypefn
1736 @deftypefn {GIMPLE function} bool gimple_nop_p (gimple g)
1737 Returns @code{TRUE} if statement @code{G} is a @code{GIMPLE_NOP}.
1738 @end deftypefn
1740 @node @code{GIMPLE_OMP_ATOMIC_LOAD}
1741 @subsection @code{GIMPLE_OMP_ATOMIC_LOAD}
1742 @cindex @code{GIMPLE_OMP_ATOMIC_LOAD}
1744 @deftypefn {GIMPLE function} gomp_atomic_load *gimple_build_omp_atomic_load ( @
1745 tree lhs, tree rhs)
1746 Build a @code{GIMPLE_OMP_ATOMIC_LOAD} statement.  @code{LHS} is the left-hand
1747 side of the assignment.  @code{RHS} is the right-hand side of the
1748 assignment.
1749 @end deftypefn
1751 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_lhs ( @
1752 gomp_atomic_load *g, tree lhs)
1753 Set the @code{LHS} of an atomic load.
1754 @end deftypefn
1756 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_lhs ( @
1757 const gomp_atomic_load *g)
1758 Get the @code{LHS} of an atomic load.
1759 @end deftypefn
1761 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_rhs ( @
1762 gomp_atomic_load *g, tree rhs)
1763 Set the @code{RHS} of an atomic set.
1764 @end deftypefn
1766 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_rhs ( @
1767 const gomp_atomic_load *g)
1768 Get the @code{RHS} of an atomic set.
1769 @end deftypefn
1772 @node @code{GIMPLE_OMP_ATOMIC_STORE}
1773 @subsection @code{GIMPLE_OMP_ATOMIC_STORE}
1774 @cindex @code{GIMPLE_OMP_ATOMIC_STORE}
1776 @deftypefn {GIMPLE function} gomp_atomic_store *gimple_build_omp_atomic_store ( @
1777 tree val)
1778 Build a @code{GIMPLE_OMP_ATOMIC_STORE} statement. @code{VAL} is the value to be
1779 stored.
1780 @end deftypefn
1782 @deftypefn {GIMPLE function} void gimple_omp_atomic_store_set_val ( @
1783 gomp_atomic_store *g, tree val)
1784 Set the value being stored in an atomic store.
1785 @end deftypefn
1787 @deftypefn {GIMPLE function} tree gimple_omp_atomic_store_val ( @
1788 const gomp_atomic_store *g)
1789 Return the value being stored in an atomic store.
1790 @end deftypefn
1792 @node @code{GIMPLE_OMP_CONTINUE}
1793 @subsection @code{GIMPLE_OMP_CONTINUE}
1794 @cindex @code{GIMPLE_OMP_CONTINUE}
1796 @deftypefn {GIMPLE function} gomp_continue *gimple_build_omp_continue ( @
1797 tree control_def, tree control_use)
1798 Build a @code{GIMPLE_OMP_CONTINUE} statement.  @code{CONTROL_DEF} is the
1799 definition of the control variable.  @code{CONTROL_USE} is the use of
1800 the control variable.
1801 @end deftypefn
1803 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def ( @
1804 const gomp_continue *s)
1805 Return the definition of the control variable on a
1806 @code{GIMPLE_OMP_CONTINUE} in @code{S}.
1807 @end deftypefn
1809 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def_ptr ( @
1810 gomp_continue *s)
1811 Same as above, but return the pointer.
1812 @end deftypefn
1814 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_def ( @
1815 gomp_continue *s)
1816 Set the control variable definition for a @code{GIMPLE_OMP_CONTINUE}
1817 statement in @code{S}.
1818 @end deftypefn
1820 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use ( @
1821 const gomp_continue *s)
1822 Return the use of the control variable on a @code{GIMPLE_OMP_CONTINUE}
1823 in @code{S}.
1824 @end deftypefn
1826 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use_ptr ( @
1827 gomp_continue *s)
1828 Same as above, but return the pointer.
1829 @end deftypefn
1831 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_use ( @
1832 gomp_continue *s)
1833 Set the control variable use for a @code{GIMPLE_OMP_CONTINUE} statement
1834 in @code{S}.
1835 @end deftypefn
1838 @node @code{GIMPLE_OMP_CRITICAL}
1839 @subsection @code{GIMPLE_OMP_CRITICAL}
1840 @cindex @code{GIMPLE_OMP_CRITICAL}
1842 @deftypefn {GIMPLE function} gomp_critical *gimple_build_omp_critical ( @
1843 gimple_seq body, tree name)
1844 Build a @code{GIMPLE_OMP_CRITICAL} statement. @code{BODY} is the sequence of
1845 statements for which only one thread can execute.  @code{NAME} is an
1846 optional identifier for this critical block.
1847 @end deftypefn
1849 @deftypefn {GIMPLE function} tree gimple_omp_critical_name ( @
1850 const gomp_critical *g)
1851 Return the name associated with @code{OMP_CRITICAL} statement @code{G}.
1852 @end deftypefn
1854 @deftypefn {GIMPLE function} {tree *} gimple_omp_critical_name_ptr ( @
1855 gomp_critical *g)
1856 Return a pointer to the name associated with @code{OMP} critical
1857 statement @code{G}.
1858 @end deftypefn
1860 @deftypefn {GIMPLE function} void gimple_omp_critical_set_name ( @
1861 gomp_critical *g, tree name)
1862 Set @code{NAME} to be the name associated with @code{OMP} critical statement @code{G}.
1863 @end deftypefn
1865 @node @code{GIMPLE_OMP_FOR}
1866 @subsection @code{GIMPLE_OMP_FOR}
1867 @cindex @code{GIMPLE_OMP_FOR}
1869 @deftypefn {GIMPLE function} gomp_for *gimple_build_omp_for (gimple_seq body, @
1870 tree clauses, tree index, tree initial, tree final, tree incr, @
1871 gimple_seq pre_body, enum tree_code omp_for_cond)
1872 Build a @code{GIMPLE_OMP_FOR} statement. @code{BODY} is sequence of statements
1873 inside the for loop.  @code{CLAUSES}, are any of the loop
1874 construct's clauses.  @code{PRE_BODY} is the
1875 sequence of statements that are loop invariant.  @code{INDEX} is the
1876 index variable.  @code{INITIAL} is the initial value of @code{INDEX}.  @code{FINAL} is
1877 final value of @code{INDEX}.  OMP_FOR_COND is the predicate used to
1878 compare @code{INDEX} and @code{FINAL}.  @code{INCR} is the increment expression.
1879 @end deftypefn
1881 @deftypefn {GIMPLE function} tree gimple_omp_for_clauses (gimple g)
1882 Return the clauses associated with @code{OMP_FOR} @code{G}.
1883 @end deftypefn
1885 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_clauses_ptr (gimple g)
1886 Return a pointer to the @code{OMP_FOR} @code{G}.
1887 @end deftypefn
1889 @deftypefn {GIMPLE function} void gimple_omp_for_set_clauses (gimple g, tree clauses)
1890 Set @code{CLAUSES} to be the list of clauses associated with @code{OMP_FOR} @code{G}.
1891 @end deftypefn
1893 @deftypefn {GIMPLE function} tree gimple_omp_for_index (gimple g)
1894 Return the index variable for @code{OMP_FOR} @code{G}.
1895 @end deftypefn
1897 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_index_ptr (gimple g)
1898 Return a pointer to the index variable for @code{OMP_FOR} @code{G}.
1899 @end deftypefn
1901 @deftypefn {GIMPLE function} void gimple_omp_for_set_index (gimple g, tree index)
1902 Set @code{INDEX} to be the index variable for @code{OMP_FOR} @code{G}.
1903 @end deftypefn
1905 @deftypefn {GIMPLE function} tree gimple_omp_for_initial (gimple g)
1906 Return the initial value for @code{OMP_FOR} @code{G}.
1907 @end deftypefn
1909 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_initial_ptr (gimple g)
1910 Return a pointer to the initial value for @code{OMP_FOR} @code{G}.
1911 @end deftypefn
1913 @deftypefn {GIMPLE function} void gimple_omp_for_set_initial (gimple g, tree initial)
1914 Set @code{INITIAL} to be the initial value for @code{OMP_FOR} @code{G}.
1915 @end deftypefn
1917 @deftypefn {GIMPLE function} tree gimple_omp_for_final (gimple g)
1918 Return the final value for @code{OMP_FOR} @code{G}.
1919 @end deftypefn
1921 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_final_ptr (gimple g)
1922 turn a pointer to the final value for @code{OMP_FOR} @code{G}.
1923 @end deftypefn
1925 @deftypefn {GIMPLE function} void gimple_omp_for_set_final (gimple g, tree final)
1926 Set @code{FINAL} to be the final value for @code{OMP_FOR} @code{G}.
1927 @end deftypefn
1929 @deftypefn {GIMPLE function} tree gimple_omp_for_incr (gimple g)
1930 Return the increment value for @code{OMP_FOR} @code{G}.
1931 @end deftypefn
1933 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_incr_ptr (gimple g)
1934 Return a pointer to the increment value for @code{OMP_FOR} @code{G}.
1935 @end deftypefn
1937 @deftypefn {GIMPLE function} void gimple_omp_for_set_incr (gimple g, tree incr)
1938 Set @code{INCR} to be the increment value for @code{OMP_FOR} @code{G}.
1939 @end deftypefn
1941 @deftypefn {GIMPLE function} gimple_seq gimple_omp_for_pre_body (gimple g)
1942 Return the sequence of statements to execute before the @code{OMP_FOR}
1943 statement @code{G} starts.
1944 @end deftypefn
1946 @deftypefn {GIMPLE function} void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body)
1947 Set @code{PRE_BODY} to be the sequence of statements to execute before
1948 the @code{OMP_FOR} statement @code{G} starts.
1949 @end deftypefn
1951 @deftypefn {GIMPLE function} void gimple_omp_for_set_cond (gimple g, enum tree_code cond)
1952 Set @code{COND} to be the condition code for @code{OMP_FOR} @code{G}.
1953 @end deftypefn
1955 @deftypefn {GIMPLE function} {enum tree_code} gimple_omp_for_cond (gimple g)
1956 Return the condition code associated with @code{OMP_FOR} @code{G}.
1957 @end deftypefn
1960 @node @code{GIMPLE_OMP_MASTER}
1961 @subsection @code{GIMPLE_OMP_MASTER}
1962 @cindex @code{GIMPLE_OMP_MASTER}
1964 @deftypefn {GIMPLE function} gimple gimple_build_omp_master (gimple_seq body)
1965 Build a @code{GIMPLE_OMP_MASTER} statement. @code{BODY} is the sequence of
1966 statements to be executed by just the master.
1967 @end deftypefn
1970 @node @code{GIMPLE_OMP_ORDERED}
1971 @subsection @code{GIMPLE_OMP_ORDERED}
1972 @cindex @code{GIMPLE_OMP_ORDERED}
1974 @deftypefn {GIMPLE function} gimple gimple_build_omp_ordered (gimple_seq body)
1975 Build a @code{GIMPLE_OMP_ORDERED} statement.
1976 @end deftypefn
1978 @code{BODY} is the sequence of statements inside a loop that will
1979 executed in sequence.
1982 @node @code{GIMPLE_OMP_PARALLEL}
1983 @subsection @code{GIMPLE_OMP_PARALLEL}
1984 @cindex @code{GIMPLE_OMP_PARALLEL}
1986 @deftypefn {GIMPLE function} gomp_parallel *gimple_build_omp_parallel (@
1987 gimple_seq body, tree clauses, tree child_fn, tree data_arg)
1988 Build a @code{GIMPLE_OMP_PARALLEL} statement.
1989 @end deftypefn
1991 @code{BODY} is sequence of statements which are executed in parallel.
1992 @code{CLAUSES}, are the @code{OMP} parallel construct's clauses.  @code{CHILD_FN} is
1993 the function created for the parallel threads to execute.
1994 @code{DATA_ARG} are the shared data argument(s).
1996 @deftypefn {GIMPLE function} bool gimple_omp_parallel_combined_p (gimple g)
1997 Return true if @code{OMP} parallel statement @code{G} has the
1998 @code{GF_OMP_PARALLEL_COMBINED} flag set.
1999 @end deftypefn
2001 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_combined_p (gimple g)
2002 Set the @code{GF_OMP_PARALLEL_COMBINED} field in @code{OMP} parallel statement
2003 @code{G}.
2004 @end deftypefn
2006 @deftypefn {GIMPLE function} gimple_seq gimple_omp_body (gimple g)
2007 Return the body for the @code{OMP} statement @code{G}.
2008 @end deftypefn
2010 @deftypefn {GIMPLE function} void gimple_omp_set_body (gimple g, gimple_seq body)
2011 Set @code{BODY} to be the body for the @code{OMP} statement @code{G}.
2012 @end deftypefn
2014 @deftypefn {GIMPLE function} tree gimple_omp_parallel_clauses (gimple g)
2015 Return the clauses associated with @code{OMP_PARALLEL} @code{G}.
2016 @end deftypefn
2018 @deftypefn {GIMPLE function} {tree *} gimple_omp_parallel_clauses_ptr ( @
2019 gomp_parallel *g)
2020 Return a pointer to the clauses associated with @code{OMP_PARALLEL} @code{G}.
2021 @end deftypefn
2023 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_clauses ( @
2024 gomp_parallel *g, tree clauses)
2025 Set @code{CLAUSES} to be the list of clauses associated with
2026 @code{OMP_PARALLEL} @code{G}.
2027 @end deftypefn
2029 @deftypefn {GIMPLE function} tree gimple_omp_parallel_child_fn ( @
2030 const gomp_parallel *g)
2031 Return the child function used to hold the body of @code{OMP_PARALLEL}
2032 @code{G}.
2033 @end deftypefn
2035 @deftypefn {GIMPLE function} {tree *} gimple_omp_parallel_child_fn_ptr ( @
2036 gomp_parallel *g)
2037 Return a pointer to the child function used to hold the body of
2038 @code{OMP_PARALLEL} @code{G}.
2039 @end deftypefn
2041 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_child_fn ( @
2042 gomp_parallel *g, tree child_fn)
2043 Set @code{CHILD_FN} to be the child function for @code{OMP_PARALLEL} @code{G}.
2044 @end deftypefn
2046 @deftypefn {GIMPLE function} tree gimple_omp_parallel_data_arg ( @
2047 const gomp_parallel *g)
2048 Return the artificial argument used to send variables and values
2049 from the parent to the children threads in @code{OMP_PARALLEL} @code{G}.
2050 @end deftypefn
2052 @deftypefn {GIMPLE function} {tree *} gimple_omp_parallel_data_arg_ptr ( @
2053 gomp_parallel *g)
2054 Return a pointer to the data argument for @code{OMP_PARALLEL} @code{G}.
2055 @end deftypefn
2057 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_data_arg ( @
2058 gomp_parallel *g, tree data_arg)
2059 Set @code{DATA_ARG} to be the data argument for @code{OMP_PARALLEL} @code{G}.
2060 @end deftypefn
2063 @node @code{GIMPLE_OMP_RETURN}
2064 @subsection @code{GIMPLE_OMP_RETURN}
2065 @cindex @code{GIMPLE_OMP_RETURN}
2067 @deftypefn {GIMPLE function} gimple gimple_build_omp_return (bool wait_p)
2068 Build a @code{GIMPLE_OMP_RETURN} statement. @code{WAIT_P} is true if this is a
2069 non-waiting return.
2070 @end deftypefn
2072 @deftypefn {GIMPLE function} void gimple_omp_return_set_nowait (gimple s)
2073 Set the nowait flag on @code{GIMPLE_OMP_RETURN} statement @code{S}.
2074 @end deftypefn
2077 @deftypefn {GIMPLE function} bool gimple_omp_return_nowait_p (gimple g)
2078 Return true if @code{OMP} return statement @code{G} has the
2079 @code{GF_OMP_RETURN_NOWAIT} flag set.
2080 @end deftypefn
2082 @node @code{GIMPLE_OMP_SECTION}
2083 @subsection @code{GIMPLE_OMP_SECTION}
2084 @cindex @code{GIMPLE_OMP_SECTION}
2086 @deftypefn {GIMPLE function} gimple gimple_build_omp_section (gimple_seq body)
2087 Build a @code{GIMPLE_OMP_SECTION} statement for a sections statement.
2088 @end deftypefn
2090 @code{BODY} is the sequence of statements in the section.
2092 @deftypefn {GIMPLE function} bool gimple_omp_section_last_p (gimple g)
2093 Return true if @code{OMP} section statement @code{G} has the
2094 @code{GF_OMP_SECTION_LAST} flag set.
2095 @end deftypefn
2097 @deftypefn {GIMPLE function} void gimple_omp_section_set_last (gimple g)
2098 Set the @code{GF_OMP_SECTION_LAST} flag on @code{G}.
2099 @end deftypefn
2101 @node @code{GIMPLE_OMP_SECTIONS}
2102 @subsection @code{GIMPLE_OMP_SECTIONS}
2103 @cindex @code{GIMPLE_OMP_SECTIONS}
2105 @deftypefn {GIMPLE function} gomp_sections *gimple_build_omp_sections ( @
2106 gimple_seq body, tree clauses)
2107 Build a @code{GIMPLE_OMP_SECTIONS} statement. @code{BODY} is a sequence of
2108 section statements.  @code{CLAUSES} are any of the @code{OMP} sections
2109 construct's clauses: private, firstprivate, lastprivate,
2110 reduction, and nowait.
2111 @end deftypefn
2114 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections_switch (void)
2115 Build a @code{GIMPLE_OMP_SECTIONS_SWITCH} statement.
2116 @end deftypefn
2118 @deftypefn {GIMPLE function} tree gimple_omp_sections_control (gimple g)
2119 Return the control variable associated with the
2120 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
2121 @end deftypefn
2123 @deftypefn {GIMPLE function} {tree *} gimple_omp_sections_control_ptr (gimple g)
2124 Return a pointer to the clauses associated with the
2125 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
2126 @end deftypefn
2128 @deftypefn {GIMPLE function} void gimple_omp_sections_set_control (gimple g, tree control)
2129 Set @code{CONTROL} to be the set of clauses associated with the
2130 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
2131 @end deftypefn
2133 @deftypefn {GIMPLE function} tree gimple_omp_sections_clauses (gimple g)
2134 Return the clauses associated with @code{OMP_SECTIONS} @code{G}.
2135 @end deftypefn
2137 @deftypefn {GIMPLE function} {tree *} gimple_omp_sections_clauses_ptr (gimple g)
2138 Return a pointer to the clauses associated with @code{OMP_SECTIONS} @code{G}.
2139 @end deftypefn
2141 @deftypefn {GIMPLE function} void gimple_omp_sections_set_clauses (gimple g, tree clauses)
2142 Set @code{CLAUSES} to be the set of clauses associated with @code{OMP_SECTIONS}
2143 @code{G}.
2144 @end deftypefn
2147 @node @code{GIMPLE_OMP_SINGLE}
2148 @subsection @code{GIMPLE_OMP_SINGLE}
2149 @cindex @code{GIMPLE_OMP_SINGLE}
2151 @deftypefn {GIMPLE function} gomp_single *gimple_build_omp_single ( @
2152 gimple_seq body, tree clauses)
2153 Build a @code{GIMPLE_OMP_SINGLE} statement. @code{BODY} is the sequence of
2154 statements that will be executed once.  @code{CLAUSES} are any of the
2155 @code{OMP} single construct's clauses: private, firstprivate,
2156 copyprivate, nowait.
2157 @end deftypefn
2159 @deftypefn {GIMPLE function} tree gimple_omp_single_clauses (gimple g)
2160 Return the clauses associated with @code{OMP_SINGLE} @code{G}.
2161 @end deftypefn
2163 @deftypefn {GIMPLE function} {tree *} gimple_omp_single_clauses_ptr (gimple g)
2164 Return a pointer to the clauses associated with @code{OMP_SINGLE} @code{G}.
2165 @end deftypefn
2167 @deftypefn {GIMPLE function} void gimple_omp_single_set_clauses ( @
2168 gomp_single *g, tree clauses)
2169 Set @code{CLAUSES} to be the clauses associated with @code{OMP_SINGLE} @code{G}.
2170 @end deftypefn
2173 @node @code{GIMPLE_PHI}
2174 @subsection @code{GIMPLE_PHI}
2175 @cindex @code{GIMPLE_PHI}
2177 @deftypefn {GIMPLE function} unsigned gimple_phi_capacity (gimple g)
2178 Return the maximum number of arguments supported by @code{GIMPLE_PHI} @code{G}.
2179 @end deftypefn
2181 @deftypefn {GIMPLE function} unsigned gimple_phi_num_args (gimple g)
2182 Return the number of arguments in @code{GIMPLE_PHI} @code{G}. This must always
2183 be exactly the number of incoming edges for the basic block
2184 holding @code{G}.
2185 @end deftypefn
2187 @deftypefn {GIMPLE function} tree gimple_phi_result (gimple g)
2188 Return the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
2189 @end deftypefn
2191 @deftypefn {GIMPLE function} {tree *} gimple_phi_result_ptr (gimple g)
2192 Return a pointer to the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
2193 @end deftypefn
2195 @deftypefn {GIMPLE function} void gimple_phi_set_result (gphi *g, tree result)
2196 Set @code{RESULT} to be the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
2197 @end deftypefn
2199 @deftypefn {GIMPLE function} {struct phi_arg_d *} gimple_phi_arg (gimple g, index)
2200 Return the @code{PHI} argument corresponding to incoming edge @code{INDEX} for
2201 @code{GIMPLE_PHI} @code{G}.
2202 @end deftypefn
2204 @deftypefn {GIMPLE function} void gimple_phi_set_arg (gphi *g, index, @
2205 struct phi_arg_d * phiarg)
2206 Set @code{PHIARG} to be the argument corresponding to incoming edge
2207 @code{INDEX} for @code{GIMPLE_PHI} @code{G}.
2208 @end deftypefn
2210 @node @code{GIMPLE_RESX}
2211 @subsection @code{GIMPLE_RESX}
2212 @cindex @code{GIMPLE_RESX}
2214 @deftypefn {GIMPLE function} gresx *gimple_build_resx (int region)
2215 Build a @code{GIMPLE_RESX} statement which is a statement.  This
2216 statement is a placeholder for _Unwind_Resume before we know if a
2217 function call or a branch is needed.  @code{REGION} is the exception
2218 region from which control is flowing.
2219 @end deftypefn
2221 @deftypefn {GIMPLE function} int gimple_resx_region (const gresx *g)
2222 Return the region number for @code{GIMPLE_RESX} @code{G}.
2223 @end deftypefn
2225 @deftypefn {GIMPLE function} void gimple_resx_set_region (gresx *g, int region)
2226 Set @code{REGION} to be the region number for @code{GIMPLE_RESX} @code{G}.
2227 @end deftypefn
2229 @node @code{GIMPLE_RETURN}
2230 @subsection @code{GIMPLE_RETURN}
2231 @cindex @code{GIMPLE_RETURN}
2233 @deftypefn {GIMPLE function} greturn *gimple_build_return (tree retval)
2234 Build a @code{GIMPLE_RETURN} statement whose return value is retval.
2235 @end deftypefn
2237 @deftypefn {GIMPLE function} tree gimple_return_retval (const greturn *g)
2238 Return the return value for @code{GIMPLE_RETURN} @code{G}.
2239 @end deftypefn
2241 @deftypefn {GIMPLE function} void gimple_return_set_retval (greturn *g, @
2242 tree retval)
2243 Set @code{RETVAL} to be the return value for @code{GIMPLE_RETURN} @code{G}.
2244 @end deftypefn
2246 @node @code{GIMPLE_SWITCH}
2247 @subsection @code{GIMPLE_SWITCH}
2248 @cindex @code{GIMPLE_SWITCH}
2250 @deftypefn {GIMPLE function} gswitch *gimple_build_switch (tree index, @
2251 tree default_label, @code{vec}<tree> *args)
2252 Build a @code{GIMPLE_SWITCH} statement.  @code{INDEX} is the index variable
2253 to switch on, and @code{DEFAULT_LABEL} represents the default label.
2254 @code{ARGS} is a vector of @code{CASE_LABEL_EXPR} trees that contain the
2255 non-default case labels.  Each label is a tree of code @code{CASE_LABEL_EXPR}.
2256 @end deftypefn
2258 @deftypefn {GIMPLE function} unsigned gimple_switch_num_labels ( @
2259 const gswitch *g)
2260 Return the number of labels associated with the switch statement
2261 @code{G}.
2262 @end deftypefn
2264 @deftypefn {GIMPLE function} void gimple_switch_set_num_labels (gswitch *g, @
2265 unsigned nlabels)
2266 Set @code{NLABELS} to be the number of labels for the switch statement
2267 @code{G}.
2268 @end deftypefn
2270 @deftypefn {GIMPLE function} tree gimple_switch_index (const gswitch *g)
2271 Return the index variable used by the switch statement @code{G}.
2272 @end deftypefn
2274 @deftypefn {GIMPLE function} void gimple_switch_set_index (gswitch *g, @
2275 tree index)
2276 Set @code{INDEX} to be the index variable for switch statement @code{G}.
2277 @end deftypefn
2279 @deftypefn {GIMPLE function} tree gimple_switch_label (const gswitch *g, @
2280 unsigned index)
2281 Return the label numbered @code{INDEX}. The default label is 0, followed
2282 by any labels in a switch statement.
2283 @end deftypefn
2285 @deftypefn {GIMPLE function} void gimple_switch_set_label (gswitch *g, @
2286 unsigned index, tree label)
2287 Set the label number @code{INDEX} to @code{LABEL}. 0 is always the default
2288 label.
2289 @end deftypefn
2291 @deftypefn {GIMPLE function} tree gimple_switch_default_label ( @
2292 const gswitch *g)
2293 Return the default label for a switch statement.
2294 @end deftypefn
2296 @deftypefn {GIMPLE function} void gimple_switch_set_default_label (gswitch *g, @
2297 tree label)
2298 Set the default label for a switch statement.
2299 @end deftypefn
2302 @node @code{GIMPLE_TRY}
2303 @subsection @code{GIMPLE_TRY}
2304 @cindex @code{GIMPLE_TRY}
2306 @deftypefn {GIMPLE function} gtry *gimple_build_try (gimple_seq eval, @
2307 gimple_seq cleanup, unsigned int kind)
2308 Build a @code{GIMPLE_TRY} statement.  @code{EVAL} is a sequence with the
2309 expression to evaluate.  @code{CLEANUP} is a sequence of statements to
2310 run at clean-up time.  @code{KIND} is the enumeration value
2311 @code{GIMPLE_TRY_CATCH} if this statement denotes a try/catch construct
2312 or @code{GIMPLE_TRY_FINALLY} if this statement denotes a try/finally
2313 construct.
2314 @end deftypefn
2316 @deftypefn {GIMPLE function} {enum gimple_try_flags} gimple_try_kind (gimple g)
2317 Return the kind of try block represented by @code{GIMPLE_TRY} @code{G}. This is
2318 either @code{GIMPLE_TRY_CATCH} or @code{GIMPLE_TRY_FINALLY}.
2319 @end deftypefn
2321 @deftypefn {GIMPLE function} bool gimple_try_catch_is_cleanup (gimple g)
2322 Return the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag.
2323 @end deftypefn
2325 @deftypefn {GIMPLE function} gimple_seq gimple_try_eval (gimple g)
2326 Return the sequence of statements used as the body for @code{GIMPLE_TRY}
2327 @code{G}.
2328 @end deftypefn
2330 @deftypefn {GIMPLE function} gimple_seq gimple_try_cleanup (gimple g)
2331 Return the sequence of statements used as the cleanup body for
2332 @code{GIMPLE_TRY} @code{G}.
2333 @end deftypefn
2335 @deftypefn {GIMPLE function} void gimple_try_set_catch_is_cleanup (gimple g, @
2336 bool catch_is_cleanup)
2337 Set the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag.
2338 @end deftypefn
2340 @deftypefn {GIMPLE function} void gimple_try_set_eval (gtry *g, gimple_seq eval)
2341 Set @code{EVAL} to be the sequence of statements to use as the body for
2342 @code{GIMPLE_TRY} @code{G}.
2343 @end deftypefn
2345 @deftypefn {GIMPLE function} void gimple_try_set_cleanup (gtry *g, @
2346 gimple_seq cleanup)
2347 Set @code{CLEANUP} to be the sequence of statements to use as the
2348 cleanup body for @code{GIMPLE_TRY} @code{G}.
2349 @end deftypefn
2351 @node @code{GIMPLE_WITH_CLEANUP_EXPR}
2352 @subsection @code{GIMPLE_WITH_CLEANUP_EXPR}
2353 @cindex @code{GIMPLE_WITH_CLEANUP_EXPR}
2355 @deftypefn {GIMPLE function} gimple gimple_build_wce (gimple_seq cleanup)
2356 Build a @code{GIMPLE_WITH_CLEANUP_EXPR} statement.  @code{CLEANUP} is the
2357 clean-up expression.
2358 @end deftypefn
2360 @deftypefn {GIMPLE function} gimple_seq gimple_wce_cleanup (gimple g)
2361 Return the cleanup sequence for cleanup statement @code{G}.
2362 @end deftypefn
2364 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup)
2365 Set @code{CLEANUP} to be the cleanup sequence for @code{G}.
2366 @end deftypefn
2368 @deftypefn {GIMPLE function} bool gimple_wce_cleanup_eh_only (gimple g)
2369 Return the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple.
2370 @end deftypefn
2372 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup_eh_only (gimple g, bool eh_only_p)
2373 Set the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple.
2374 @end deftypefn
2377 @node GIMPLE sequences
2378 @section GIMPLE sequences
2379 @cindex GIMPLE sequences
2381 GIMPLE sequences are the tuple equivalent of @code{STATEMENT_LIST}'s
2382 used in @code{GENERIC}.  They are used to chain statements together, and
2383 when used in conjunction with sequence iterators, provide a
2384 framework for iterating through statements.
2386 GIMPLE sequences are of type struct @code{gimple_sequence}, but are more
2387 commonly passed by reference to functions dealing with sequences.
2388 The type for a sequence pointer is @code{gimple_seq} which is the same
2389 as struct @code{gimple_sequence} *.  When declaring a local sequence,
2390 you can define a local variable of type struct @code{gimple_sequence}.
2391 When declaring a sequence allocated on the garbage collected
2392 heap, use the function @code{gimple_seq_alloc} documented below.
2394 There are convenience functions for iterating through sequences
2395 in the section entitled Sequence Iterators.
2397 Below is a list of functions to manipulate and query sequences.
2399 @deftypefn {GIMPLE function} void gimple_seq_add_stmt (gimple_seq *seq, gimple g)
2400 Link a gimple statement to the end of the sequence *@code{SEQ} if @code{G} is
2401 not @code{NULL}.  If *@code{SEQ} is @code{NULL}, allocate a sequence before linking.
2402 @end deftypefn
2404 @deftypefn {GIMPLE function} void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src)
2405 Append sequence @code{SRC} to the end of sequence *@code{DEST} if @code{SRC} is not
2406 @code{NULL}.  If *@code{DEST} is @code{NULL}, allocate a new sequence before
2407 appending.
2408 @end deftypefn
2410 @deftypefn {GIMPLE function} gimple_seq gimple_seq_deep_copy (gimple_seq src)
2411 Perform a deep copy of sequence @code{SRC} and return the result.
2412 @end deftypefn
2414 @deftypefn {GIMPLE function} gimple_seq gimple_seq_reverse (gimple_seq seq)
2415 Reverse the order of the statements in the sequence @code{SEQ}.  Return
2416 @code{SEQ}.
2417 @end deftypefn
2419 @deftypefn {GIMPLE function} gimple gimple_seq_first (gimple_seq s)
2420 Return the first statement in sequence @code{S}.
2421 @end deftypefn
2423 @deftypefn {GIMPLE function} gimple gimple_seq_last (gimple_seq s)
2424 Return the last statement in sequence @code{S}.
2425 @end deftypefn
2427 @deftypefn {GIMPLE function} void gimple_seq_set_last (gimple_seq s, gimple last)
2428 Set the last statement in sequence @code{S} to the statement in @code{LAST}.
2429 @end deftypefn
2431 @deftypefn {GIMPLE function} void gimple_seq_set_first (gimple_seq s, gimple first)
2432 Set the first statement in sequence @code{S} to the statement in @code{FIRST}.
2433 @end deftypefn
2435 @deftypefn {GIMPLE function} void gimple_seq_init (gimple_seq s)
2436 Initialize sequence @code{S} to an empty sequence.
2437 @end deftypefn
2439 @deftypefn {GIMPLE function} gimple_seq gimple_seq_alloc (void)
2440 Allocate a new sequence in the garbage collected store and return
2442 @end deftypefn
2444 @deftypefn {GIMPLE function} void gimple_seq_copy (gimple_seq dest, gimple_seq src)
2445 Copy the sequence @code{SRC} into the sequence @code{DEST}.
2446 @end deftypefn
2448 @deftypefn {GIMPLE function} bool gimple_seq_empty_p (gimple_seq s)
2449 Return true if the sequence @code{S} is empty.
2450 @end deftypefn
2452 @deftypefn {GIMPLE function} gimple_seq bb_seq (basic_block bb)
2453 Returns the sequence of statements in @code{BB}.
2454 @end deftypefn
2456 @deftypefn {GIMPLE function} void set_bb_seq (basic_block bb, gimple_seq seq)
2457 Sets the sequence of statements in @code{BB} to @code{SEQ}.
2458 @end deftypefn
2460 @deftypefn {GIMPLE function} bool gimple_seq_singleton_p (gimple_seq seq)
2461 Determine whether @code{SEQ} contains exactly one statement.
2462 @end deftypefn
2464 @node Sequence iterators
2465 @section Sequence iterators
2466 @cindex Sequence iterators
2468 Sequence iterators are convenience constructs for iterating
2469 through statements in a sequence.  Given a sequence @code{SEQ}, here is
2470 a typical use of gimple sequence iterators:
2472 @smallexample
2473 gimple_stmt_iterator gsi;
2475 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2476   @{
2477     gimple g = gsi_stmt (gsi);
2478     /* Do something with gimple statement @code{G}.  */
2479   @}
2480 @end smallexample
2482 Backward iterations are possible:
2484 @smallexample
2485         for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
2486 @end smallexample
2488 Forward and backward iterations on basic blocks are possible with
2489 @code{gsi_start_bb} and @code{gsi_last_bb}.
2491 In the documentation below we sometimes refer to enum
2492 @code{gsi_iterator_update}.  The valid options for this enumeration are:
2494 @itemize @bullet
2495 @item @code{GSI_NEW_STMT}
2496 Only valid when a single statement is added.  Move the iterator to it.
2498 @item @code{GSI_SAME_STMT}
2499 Leave the iterator at the same statement.
2501 @item @code{GSI_CONTINUE_LINKING}
2502 Move iterator to whatever position is suitable for linking other
2503 statements in the same direction.
2504 @end itemize
2506 Below is a list of the functions used to manipulate and use
2507 statement iterators.
2509 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start (gimple_seq seq)
2510 Return a new iterator pointing to the sequence @code{SEQ}'s first
2511 statement.  If @code{SEQ} is empty, the iterator's basic block is @code{NULL}.
2512 Use @code{gsi_start_bb} instead when the iterator needs to always have
2513 the correct basic block set.
2514 @end deftypefn
2516 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start_bb (basic_block bb)
2517 Return a new iterator pointing to the first statement in basic
2518 block @code{BB}.
2519 @end deftypefn
2521 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last (gimple_seq seq)
2522 Return a new iterator initially pointing to the last statement of
2523 sequence @code{SEQ}.  If @code{SEQ} is empty, the iterator's basic block is
2524 @code{NULL}.  Use @code{gsi_last_bb} instead when the iterator needs to always
2525 have the correct basic block set.
2526 @end deftypefn
2528 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last_bb (basic_block bb)
2529 Return a new iterator pointing to the last statement in basic
2530 block @code{BB}.
2531 @end deftypefn
2533 @deftypefn {GIMPLE function} bool gsi_end_p (gimple_stmt_iterator i)
2534 Return @code{TRUE} if at the end of @code{I}.
2535 @end deftypefn
2537 @deftypefn {GIMPLE function} bool gsi_one_before_end_p (gimple_stmt_iterator i)
2538 Return @code{TRUE} if we're one statement before the end of @code{I}.
2539 @end deftypefn
2541 @deftypefn {GIMPLE function} void gsi_next (gimple_stmt_iterator *i)
2542 Advance the iterator to the next gimple statement.
2543 @end deftypefn
2545 @deftypefn {GIMPLE function} void gsi_prev (gimple_stmt_iterator *i)
2546 Advance the iterator to the previous gimple statement.
2547 @end deftypefn
2549 @deftypefn {GIMPLE function} gimple gsi_stmt (gimple_stmt_iterator i)
2550 Return the current stmt.
2551 @end deftypefn
2553 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_after_labels (basic_block bb)
2554 Return a block statement iterator that points to the first
2555 non-label statement in block @code{BB}.
2556 @end deftypefn
2558 @deftypefn {GIMPLE function} {gimple *} gsi_stmt_ptr (gimple_stmt_iterator *i)
2559 Return a pointer to the current stmt.
2560 @end deftypefn
2562 @deftypefn {GIMPLE function} basic_block gsi_bb (gimple_stmt_iterator i)
2563 Return the basic block associated with this iterator.
2564 @end deftypefn
2566 @deftypefn {GIMPLE function} gimple_seq gsi_seq (gimple_stmt_iterator i)
2567 Return the sequence associated with this iterator.
2568 @end deftypefn
2570 @deftypefn {GIMPLE function} void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info)
2571 Remove the current stmt from the sequence.  The iterator is
2572 updated to point to the next statement.  When @code{REMOVE_EH_INFO} is
2573 true we remove the statement pointed to by iterator @code{I} from the @code{EH}
2574 tables.  Otherwise we do not modify the @code{EH} tables.  Generally,
2575 @code{REMOVE_EH_INFO} should be true when the statement is going to be
2576 removed from the @code{IL} and not reinserted elsewhere.
2577 @end deftypefn
2579 @deftypefn {GIMPLE function} void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2580 Links the sequence of statements @code{SEQ} before the statement pointed
2581 by iterator @code{I}.  @code{MODE} indicates what to do with the iterator
2582 after insertion (see @code{enum gsi_iterator_update} above).
2583 @end deftypefn
2585 @deftypefn {GIMPLE function} void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2586 Links statement @code{G} before the statement pointed-to by iterator @code{I}.
2587 Updates iterator @code{I} according to @code{MODE}.
2588 @end deftypefn
2590 @deftypefn {GIMPLE function} void gsi_link_seq_after (gimple_stmt_iterator *i, @
2591 gimple_seq seq, enum gsi_iterator_update mode)
2592 Links sequence @code{SEQ} after the statement pointed-to by iterator @code{I}.
2593 @code{MODE} is as in @code{gsi_insert_after}.
2594 @end deftypefn
2596 @deftypefn {GIMPLE function} void gsi_link_after (gimple_stmt_iterator *i, @
2597 gimple g, enum gsi_iterator_update mode)
2598 Links statement @code{G} after the statement pointed-to by iterator @code{I}.
2599 @code{MODE} is as in @code{gsi_insert_after}.
2600 @end deftypefn
2602 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_after (gimple_stmt_iterator i)
2603 Move all statements in the sequence after @code{I} to a new sequence.
2604 Return this new sequence.
2605 @end deftypefn
2607 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i)
2608 Move all statements in the sequence before @code{I} to a new sequence.
2609 Return this new sequence.
2610 @end deftypefn
2612 @deftypefn {GIMPLE function} void gsi_replace (gimple_stmt_iterator *i, @
2613 gimple stmt, bool update_eh_info)
2614 Replace the statement pointed-to by @code{I} to @code{STMT}.  If @code{UPDATE_EH_INFO}
2615 is true, the exception handling information of the original
2616 statement is moved to the new statement.
2617 @end deftypefn
2619 @deftypefn {GIMPLE function} void gsi_insert_before (gimple_stmt_iterator *i, @
2620 gimple stmt, enum gsi_iterator_update mode)
2621 Insert statement @code{STMT} before the statement pointed-to by iterator
2622 @code{I}, update @code{STMT}'s basic block and scan it for new operands.  @code{MODE}
2623 specifies how to update iterator @code{I} after insertion (see enum
2624 @code{gsi_iterator_update}).
2625 @end deftypefn
2627 @deftypefn {GIMPLE function} void gsi_insert_seq_before (gimple_stmt_iterator *i, @
2628 gimple_seq seq, enum gsi_iterator_update mode)
2629 Like @code{gsi_insert_before}, but for all the statements in @code{SEQ}.
2630 @end deftypefn
2632 @deftypefn {GIMPLE function} void gsi_insert_after (gimple_stmt_iterator *i, @
2633 gimple stmt, enum gsi_iterator_update mode)
2634 Insert statement @code{STMT} after the statement pointed-to by iterator
2635 @code{I}, update @code{STMT}'s basic block and scan it for new operands.  @code{MODE}
2636 specifies how to update iterator @code{I} after insertion (see enum
2637 @code{gsi_iterator_update}).
2638 @end deftypefn
2640 @deftypefn {GIMPLE function} void gsi_insert_seq_after (gimple_stmt_iterator *i, @
2641 gimple_seq seq, enum gsi_iterator_update mode)
2642 Like @code{gsi_insert_after}, but for all the statements in @code{SEQ}.
2643 @end deftypefn
2645 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_for_stmt (gimple stmt)
2646 Finds iterator for @code{STMT}.
2647 @end deftypefn
2649 @deftypefn {GIMPLE function} void gsi_move_after (gimple_stmt_iterator *from, @
2650 gimple_stmt_iterator *to)
2651 Move the statement at @code{FROM} so it comes right after the statement
2652 at @code{TO}.
2653 @end deftypefn
2655 @deftypefn {GIMPLE function} void gsi_move_before (gimple_stmt_iterator *from, @
2656 gimple_stmt_iterator *to)
2657 Move the statement at @code{FROM} so it comes right before the statement
2658 at @code{TO}.
2659 @end deftypefn
2661 @deftypefn {GIMPLE function} void gsi_move_to_bb_end (gimple_stmt_iterator *from, @
2662 basic_block bb)
2663 Move the statement at @code{FROM} to the end of basic block @code{BB}.
2664 @end deftypefn
2666 @deftypefn {GIMPLE function} void gsi_insert_on_edge (edge e, gimple stmt)
2667 Add @code{STMT} to the pending list of edge @code{E}.  No actual insertion is
2668 made until a call to @code{gsi_commit_edge_inserts}() is made.
2669 @end deftypefn
2671 @deftypefn {GIMPLE function} void gsi_insert_seq_on_edge (edge e, gimple_seq seq)
2672 Add the sequence of statements in @code{SEQ} to the pending list of edge
2673 @code{E}.  No actual insertion is made until a call to
2674 @code{gsi_commit_edge_inserts}() is made.
2675 @end deftypefn
2677 @deftypefn {GIMPLE function} basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt)
2678 Similar to @code{gsi_insert_on_edge}+@code{gsi_commit_edge_inserts}.  If a new
2679 block has to be created, it is returned.
2680 @end deftypefn
2682 @deftypefn {GIMPLE function} void gsi_commit_one_edge_insert (edge e, basic_block *new_bb)
2683 Commit insertions pending at edge @code{E}.  If a new block is created,
2684 set @code{NEW_BB} to this block, otherwise set it to @code{NULL}.
2685 @end deftypefn
2687 @deftypefn {GIMPLE function} void gsi_commit_edge_inserts (void)
2688 This routine will commit all pending edge insertions, creating
2689 any new basic blocks which are necessary.
2690 @end deftypefn
2693 @node Adding a new GIMPLE statement code
2694 @section Adding a new GIMPLE statement code
2695 @cindex Adding a new GIMPLE statement code
2697 The first step in adding a new GIMPLE statement code, is
2698 modifying the file @code{gimple.def}, which contains all the GIMPLE
2699 codes.  Then you must add a corresponding gimple subclass
2700 located in @code{gimple.h}.  This in turn, will require you to add a
2701 corresponding @code{GTY} tag in @code{gsstruct.def}, and code to handle
2702 this tag in @code{gss_for_code} which is located in @code{gimple.c}.
2704 In order for the garbage collector to know the size of the
2705 structure you created in @code{gimple.h}, you need to add a case to
2706 handle your new GIMPLE statement in @code{gimple_size} which is located
2707 in @code{gimple.c}.
2709 You will probably want to create a function to build the new
2710 gimple statement in @code{gimple.c}.  The function should be called
2711 @code{gimple_build_@var{new-tuple-name}}, and should return the new tuple
2712 as a pointer to the appropriate gimple subclass.
2714 If your new statement requires accessors for any members or
2715 operands it may have, put simple inline accessors in
2716 @code{gimple.h} and any non-trivial accessors in @code{gimple.c} with a
2717 corresponding prototype in @code{gimple.h}.
2719 You should add the new statement subclass to the class hierarchy diagram
2720 in @code{gimple.texi}.
2723 @node Statement and operand traversals
2724 @section Statement and operand traversals
2725 @cindex Statement and operand traversals
2727 There are two functions available for walking statements and
2728 sequences: @code{walk_gimple_stmt} and @code{walk_gimple_seq},
2729 accordingly, and a third function for walking the operands in a
2730 statement: @code{walk_gimple_op}.
2732 @deftypefn {GIMPLE function} tree walk_gimple_stmt (gimple_stmt_iterator *gsi, @
2733   walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2734 This function is used to walk the current statement in @code{GSI},
2735 optionally using traversal state stored in @code{WI}.  If @code{WI} is @code{NULL}, no
2736 state is kept during the traversal.
2738 The callback @code{CALLBACK_STMT} is called.  If @code{CALLBACK_STMT} returns
2739 true, it means that the callback function has handled all the
2740 operands of the statement and it is not necessary to walk its
2741 operands.
2743 If @code{CALLBACK_STMT} is @code{NULL} or it returns false, @code{CALLBACK_OP} is
2744 called on each operand of the statement via @code{walk_gimple_op}.  If
2745 @code{walk_gimple_op} returns non-@code{NULL} for any operand, the remaining
2746 operands are not scanned.
2748 The return value is that returned by the last call to
2749 @code{walk_gimple_op}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is specified.
2750 @end deftypefn
2753 @deftypefn {GIMPLE function} tree walk_gimple_op (gimple stmt, @
2754   walk_tree_fn callback_op, struct walk_stmt_info *wi)
2755 Use this function to walk the operands of statement @code{STMT}.  Every
2756 operand is walked via @code{walk_tree} with optional state information
2757 in @code{WI}.
2759 @code{CALLBACK_OP} is called on each operand of @code{STMT} via @code{walk_tree}.
2760 Additional parameters to @code{walk_tree} must be stored in @code{WI}.  For
2761 each operand @code{OP}, @code{walk_tree} is called as:
2763 @smallexample
2764 walk_tree (&@code{OP}, @code{CALLBACK_OP}, @code{WI}, @code{PSET})
2765 @end smallexample
2767 If @code{CALLBACK_OP} returns non-@code{NULL} for an operand, the remaining
2768 operands are not scanned.  The return value is that returned by
2769 the last call to @code{walk_tree}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is
2770 specified.
2771 @end deftypefn
2774 @deftypefn {GIMPLE function} tree walk_gimple_seq (gimple_seq seq, @
2775   walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2776 This function walks all the statements in the sequence @code{SEQ}
2777 calling @code{walk_gimple_stmt} on each one.  @code{WI} is as in
2778 @code{walk_gimple_stmt}.  If @code{walk_gimple_stmt} returns non-@code{NULL}, the walk
2779 is stopped and the value returned.  Otherwise, all the statements
2780 are walked and @code{NULL_TREE} returned.
2781 @end deftypefn