1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "hard-reg-set.h"
31 #include "basic-block.h"
33 #include "addresses.h"
34 #include "insn-config.h"
37 #include "diagnostic-core.h"
42 /* The flags is set up every time when we calculate pseudo register
43 classes through function ira_set_pseudo_classes. */
44 static bool pseudo_classes_defined_p
= false;
46 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
47 static bool allocno_p
;
49 /* Number of elements in array `costs'. */
50 static int cost_elements_num
;
52 /* The `costs' struct records the cost of using hard registers of each
53 class considered for the calculation and of using memory for each
58 /* Costs for register classes start here. We process only some
63 #define max_struct_costs_size \
64 (this_target_ira_int->x_max_struct_costs_size)
66 (this_target_ira_int->x_init_cost)
68 (this_target_ira_int->x_temp_costs)
70 (this_target_ira_int->x_op_costs)
71 #define this_op_costs \
72 (this_target_ira_int->x_this_op_costs)
74 /* Costs of each class for each allocno or pseudo. */
75 static struct costs
*costs
;
77 /* Accumulated costs of each class for each allocno. */
78 static struct costs
*total_allocno_costs
;
80 /* It is the current size of struct costs. */
81 static int struct_costs_size
;
83 /* Return pointer to structure containing costs of allocno or pseudo
84 with given NUM in array ARR. */
85 #define COSTS(arr, num) \
86 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
88 /* Return index in COSTS when processing reg with REGNO. */
89 #define COST_INDEX(regno) (allocno_p \
90 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
93 /* Record register class preferences of each allocno or pseudo. Null
94 value means no preferences. It happens on the 1st iteration of the
96 static enum reg_class
*pref
;
98 /* Allocated buffers for pref. */
99 static enum reg_class
*pref_buffer
;
101 /* Record allocno class of each allocno with the same regno. */
102 static enum reg_class
*regno_aclass
;
104 /* Record cost gains for not allocating a register with an invariant
106 static int *regno_equiv_gains
;
108 /* Execution frequency of the current insn. */
109 static int frequency
;
113 /* Info about reg classes whose costs are calculated for a pseudo. */
116 /* Number of the cost classes in the subsequent array. */
118 /* Container of the cost classes. */
119 enum reg_class classes
[N_REG_CLASSES
];
120 /* Map reg class -> index of the reg class in the previous array.
121 -1 if it is not a cost classe. */
122 int index
[N_REG_CLASSES
];
123 /* Map hard regno index of first class in array CLASSES containing
124 the hard regno, -1 otherwise. */
125 int hard_regno_index
[FIRST_PSEUDO_REGISTER
];
128 /* Types of pointers to the structure above. */
129 typedef struct cost_classes
*cost_classes_t
;
130 typedef const struct cost_classes
*const_cost_classes_t
;
132 /* Info about cost classes for each pseudo. */
133 static cost_classes_t
*regno_cost_classes
;
135 /* Returns hash value for cost classes info V. */
137 cost_classes_hash (const void *v
)
139 const_cost_classes_t hv
= (const_cost_classes_t
) v
;
141 return iterative_hash (&hv
->classes
, sizeof (enum reg_class
) * hv
->num
, 0);
144 /* Compares cost classes info V1 and V2. */
146 cost_classes_eq (const void *v1
, const void *v2
)
148 const_cost_classes_t hv1
= (const_cost_classes_t
) v1
;
149 const_cost_classes_t hv2
= (const_cost_classes_t
) v2
;
151 return hv1
->num
== hv2
->num
&& memcmp (hv1
->classes
, hv2
->classes
,
152 sizeof (enum reg_class
) * hv1
->num
);
155 /* Delete cost classes info V from the hash table. */
157 cost_classes_del (void *v
)
162 /* Hash table of unique cost classes. */
163 static htab_t cost_classes_htab
;
165 /* Map allocno class -> cost classes for pseudo of given allocno
167 static cost_classes_t cost_classes_aclass_cache
[N_REG_CLASSES
];
169 /* Map mode -> cost classes for pseudo of give mode. */
170 static cost_classes_t cost_classes_mode_cache
[MAX_MACHINE_MODE
];
172 /* Initialize info about the cost classes for each pseudo. */
174 initiate_regno_cost_classes (void)
176 int size
= sizeof (cost_classes_t
) * max_reg_num ();
178 regno_cost_classes
= (cost_classes_t
*) ira_allocate (size
);
179 memset (regno_cost_classes
, 0, size
);
180 memset (cost_classes_aclass_cache
, 0,
181 sizeof (cost_classes_t
) * N_REG_CLASSES
);
182 memset (cost_classes_mode_cache
, 0,
183 sizeof (cost_classes_t
) * MAX_MACHINE_MODE
);
185 = htab_create (200, cost_classes_hash
, cost_classes_eq
, cost_classes_del
);
188 /* Create new cost classes from cost classes FROM and set up members
189 index and hard_regno_index. Return the new classes. The function
190 implements some common code of two functions
191 setup_regno_cost_classes_by_aclass and
192 setup_regno_cost_classes_by_mode. */
193 static cost_classes_t
194 setup_cost_classes (cost_classes_t from
)
196 cost_classes_t classes_ptr
;
198 int i
, j
, hard_regno
;
200 classes_ptr
= (cost_classes_t
) ira_allocate (sizeof (struct cost_classes
));
201 classes_ptr
->num
= from
->num
;
202 for (i
= 0; i
< N_REG_CLASSES
; i
++)
203 classes_ptr
->index
[i
] = -1;
204 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
205 classes_ptr
->hard_regno_index
[i
] = -1;
206 for (i
= 0; i
< from
->num
; i
++)
208 cl
= classes_ptr
->classes
[i
] = from
->classes
[i
];
209 classes_ptr
->index
[cl
] = i
;
210 for (j
= ira_class_hard_regs_num
[cl
] - 1; j
>= 0; j
--)
212 hard_regno
= ira_class_hard_regs
[cl
][j
];
213 if (classes_ptr
->hard_regno_index
[hard_regno
] < 0)
214 classes_ptr
->hard_regno_index
[hard_regno
] = i
;
220 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
221 This function is used when we know an initial approximation of
222 allocno class of the pseudo already, e.g. on the second iteration
223 of class cost calculation or after class cost calculation in
224 register-pressure sensitive insn scheduling or register-pressure
225 sensitive loop-invariant motion. */
227 setup_regno_cost_classes_by_aclass (int regno
, enum reg_class aclass
)
229 static struct cost_classes classes
;
230 cost_classes_t classes_ptr
;
234 HARD_REG_SET temp
, temp2
;
237 if ((classes_ptr
= cost_classes_aclass_cache
[aclass
]) == NULL
)
239 COPY_HARD_REG_SET (temp
, reg_class_contents
[aclass
]);
240 AND_COMPL_HARD_REG_SET (temp
, ira_no_alloc_regs
);
241 /* We exclude classes from consideration which are subsets of
242 ACLASS only if ACLASS is a pressure class or subset of a
243 pressure class. It means by the definition of pressure classes
244 that cost of moving between susbets of ACLASS is cheaper than
246 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
248 cl
= ira_pressure_classes
[i
];
251 COPY_HARD_REG_SET (temp2
, reg_class_contents
[cl
]);
252 AND_COMPL_HARD_REG_SET (temp2
, ira_no_alloc_regs
);
253 if (hard_reg_set_subset_p (temp
, temp2
))
256 exclude_p
= i
< ira_pressure_classes_num
;
258 for (i
= 0; i
< ira_important_classes_num
; i
++)
260 cl
= ira_important_classes
[i
];
263 /* Exclude no-pressure classes which are subsets of
265 COPY_HARD_REG_SET (temp2
, reg_class_contents
[cl
]);
266 AND_COMPL_HARD_REG_SET (temp2
, ira_no_alloc_regs
);
267 if (! ira_reg_pressure_class_p
[cl
]
268 && hard_reg_set_subset_p (temp2
, temp
) && cl
!= aclass
)
271 classes
.classes
[classes
.num
++] = cl
;
273 slot
= htab_find_slot (cost_classes_htab
, &classes
, INSERT
);
276 classes_ptr
= setup_cost_classes (&classes
);
279 classes_ptr
= cost_classes_aclass_cache
[aclass
] = (cost_classes_t
) *slot
;
281 regno_cost_classes
[regno
] = classes_ptr
;
284 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
285 decrease number of cost classes for the pseudo, if hard registers
286 of some important classes can not hold a value of MODE. So the
287 pseudo can not get hard register of some important classes and cost
288 calculation for such important classes is only waisting CPU
291 setup_regno_cost_classes_by_mode (int regno
, enum machine_mode mode
)
293 static struct cost_classes classes
;
294 cost_classes_t classes_ptr
;
300 if ((classes_ptr
= cost_classes_mode_cache
[mode
]) == NULL
)
303 for (i
= 0; i
< ira_important_classes_num
; i
++)
305 cl
= ira_important_classes
[i
];
306 COPY_HARD_REG_SET (temp
, ira_prohibited_class_mode_regs
[cl
][mode
]);
307 IOR_HARD_REG_SET (temp
, ira_no_alloc_regs
);
308 if (hard_reg_set_subset_p (reg_class_contents
[cl
], temp
))
310 classes
.classes
[classes
.num
++] = cl
;
312 slot
= htab_find_slot (cost_classes_htab
, &classes
, INSERT
);
315 classes_ptr
= setup_cost_classes (&classes
);
319 classes_ptr
= (cost_classes_t
) *slot
;
320 cost_classes_mode_cache
[mode
] = (cost_classes_t
) *slot
;
322 regno_cost_classes
[regno
] = classes_ptr
;
325 /* Finilize info about the cost classes for each pseudo. */
327 finish_regno_cost_classes (void)
329 ira_free (regno_cost_classes
);
330 htab_delete (cost_classes_htab
);
335 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
336 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
337 be a pseudo register. */
339 copy_cost (rtx x
, enum machine_mode mode
, reg_class_t rclass
, bool to_p
,
340 secondary_reload_info
*prev_sri
)
342 secondary_reload_info sri
;
343 reg_class_t secondary_class
= NO_REGS
;
345 /* If X is a SCRATCH, there is actually nothing to move since we are
346 assuming optimal allocation. */
347 if (GET_CODE (x
) == SCRATCH
)
350 /* Get the class we will actually use for a reload. */
351 rclass
= targetm
.preferred_reload_class (x
, rclass
);
353 /* If we need a secondary reload for an intermediate, the cost is
354 that to load the input into the intermediate register, then to
356 sri
.prev_sri
= prev_sri
;
358 secondary_class
= targetm
.secondary_reload (to_p
, x
, rclass
, mode
, &sri
);
360 if (secondary_class
!= NO_REGS
)
362 if (!move_cost
[mode
])
363 init_move_cost (mode
);
364 return (move_cost
[mode
][(int) secondary_class
][(int) rclass
]
366 + copy_cost (x
, mode
, secondary_class
, to_p
, &sri
));
369 /* For memory, use the memory move cost, for (hard) registers, use
370 the cost to move between the register classes, and use 2 for
371 everything else (constants). */
372 if (MEM_P (x
) || rclass
== NO_REGS
)
373 return sri
.extra_cost
374 + ira_memory_move_cost
[mode
][(int) rclass
][to_p
!= 0];
377 if (!move_cost
[mode
])
378 init_move_cost (mode
);
379 return (sri
.extra_cost
380 + move_cost
[mode
][REGNO_REG_CLASS (REGNO (x
))][(int) rclass
]);
383 /* If this is a constant, we may eventually want to call rtx_cost
385 return sri
.extra_cost
+ COSTS_N_INSNS (1);
390 /* Record the cost of using memory or hard registers of various
391 classes for the operands in INSN.
393 N_ALTS is the number of alternatives.
394 N_OPS is the number of operands.
395 OPS is an array of the operands.
396 MODES are the modes of the operands, in case any are VOIDmode.
397 CONSTRAINTS are the constraints to use for the operands. This array
398 is modified by this procedure.
400 This procedure works alternative by alternative. For each
401 alternative we assume that we will be able to allocate all allocnos
402 to their ideal register class and calculate the cost of using that
403 alternative. Then we compute, for each operand that is a
404 pseudo-register, the cost of having the allocno allocated to each
405 register class and using it in that alternative. To this cost is
406 added the cost of the alternative.
408 The cost of each class for this insn is its lowest cost among all
411 record_reg_classes (int n_alts
, int n_ops
, rtx
*ops
,
412 enum machine_mode
*modes
, const char **constraints
,
413 rtx insn
, enum reg_class
*pref
)
418 int insn_allows_mem
[MAX_RECOG_OPERANDS
];
420 for (i
= 0; i
< n_ops
; i
++)
421 insn_allows_mem
[i
] = 0;
423 /* Process each alternative, each time minimizing an operand's cost
424 with the cost for each operand in that alternative. */
425 for (alt
= 0; alt
< n_alts
; alt
++)
427 enum reg_class classes
[MAX_RECOG_OPERANDS
];
428 int allows_mem
[MAX_RECOG_OPERANDS
];
429 enum reg_class rclass
;
431 int alt_cost
= 0, op_cost_add
;
433 if (!recog_data
.alternative_enabled_p
[alt
])
435 for (i
= 0; i
< recog_data
.n_operands
; i
++)
436 constraints
[i
] = skip_alternative (constraints
[i
]);
441 for (i
= 0; i
< n_ops
; i
++)
444 const char *p
= constraints
[i
];
446 enum machine_mode mode
= modes
[i
];
450 /* Initially show we know nothing about the register class. */
451 classes
[i
] = NO_REGS
;
454 /* If this operand has no constraints at all, we can
455 conclude nothing about it since anything is valid. */
458 if (REG_P (op
) && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
459 memset (this_op_costs
[i
], 0, struct_costs_size
);
463 /* If this alternative is only relevant when this operand
464 matches a previous operand, we do different things
465 depending on whether this operand is a allocno-reg or not.
466 We must process any modifiers for the operand before we
467 can make this test. */
468 while (*p
== '%' || *p
== '=' || *p
== '+' || *p
== '&')
471 if (p
[0] >= '0' && p
[0] <= '0' + i
&& (p
[1] == ',' || p
[1] == 0))
473 /* Copy class and whether memory is allowed from the
474 matching alternative. Then perform any needed cost
475 computations and/or adjustments. */
477 classes
[i
] = classes
[j
];
478 allows_mem
[i
] = allows_mem
[j
];
480 insn_allows_mem
[i
] = 1;
482 if (! REG_P (op
) || REGNO (op
) < FIRST_PSEUDO_REGISTER
)
484 /* If this matches the other operand, we have no
485 added cost and we win. */
486 if (rtx_equal_p (ops
[j
], op
))
488 /* If we can put the other operand into a register,
489 add to the cost of this alternative the cost to
490 copy this operand to the register used for the
492 else if (classes
[j
] != NO_REGS
)
494 alt_cost
+= copy_cost (op
, mode
, classes
[j
], 1, NULL
);
498 else if (! REG_P (ops
[j
])
499 || REGNO (ops
[j
]) < FIRST_PSEUDO_REGISTER
)
501 /* This op is an allocno but the one it matches is
504 /* If we can't put the other operand into a
505 register, this alternative can't be used. */
507 if (classes
[j
] == NO_REGS
)
509 /* Otherwise, add to the cost of this alternative
510 the cost to copy the other operand to the hard
511 register used for this operand. */
513 alt_cost
+= copy_cost (ops
[j
], mode
, classes
[j
], 1, NULL
);
517 /* The costs of this operand are not the same as the
518 other operand since move costs are not symmetric.
519 Moreover, if we cannot tie them, this alternative
520 needs to do a copy, which is one insn. */
521 struct costs
*pp
= this_op_costs
[i
];
522 int *pp_costs
= pp
->cost
;
523 cost_classes_t cost_classes_ptr
524 = regno_cost_classes
[REGNO (op
)];
525 enum reg_class
*cost_classes
= cost_classes_ptr
->classes
;
526 bool in_p
= recog_data
.operand_type
[i
] != OP_OUT
;
527 bool out_p
= recog_data
.operand_type
[i
] != OP_IN
;
528 enum reg_class op_class
= classes
[i
];
529 move_table
*move_in_cost
, *move_out_cost
;
531 ira_init_register_move_cost_if_necessary (mode
);
535 move_out_cost
= ira_may_move_out_cost
[mode
];
536 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
538 rclass
= cost_classes
[k
];
540 = move_out_cost
[op_class
][rclass
] * frequency
;
546 move_in_cost
= ira_may_move_in_cost
[mode
];
547 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
549 rclass
= cost_classes
[k
];
551 = move_in_cost
[rclass
][op_class
] * frequency
;
556 move_in_cost
= ira_may_move_in_cost
[mode
];
557 move_out_cost
= ira_may_move_out_cost
[mode
];
558 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
560 rclass
= cost_classes
[k
];
561 pp_costs
[k
] = ((move_in_cost
[rclass
][op_class
]
562 + move_out_cost
[op_class
][rclass
])
567 /* If the alternative actually allows memory, make
568 things a bit cheaper since we won't need an extra
571 = ((out_p
? ira_memory_move_cost
[mode
][op_class
][0] : 0)
572 + (in_p
? ira_memory_move_cost
[mode
][op_class
][1] : 0)
573 - allows_mem
[i
]) * frequency
;
575 /* If we have assigned a class to this allocno in
576 our first pass, add a cost to this alternative
577 corresponding to what we would add if this
578 allocno were not in the appropriate class. */
581 enum reg_class pref_class
= pref
[COST_INDEX (REGNO (op
))];
583 if (pref_class
== NO_REGS
)
586 ? ira_memory_move_cost
[mode
][op_class
][0] : 0)
588 ? ira_memory_move_cost
[mode
][op_class
][1]
590 else if (ira_reg_class_intersect
591 [pref_class
][op_class
] == NO_REGS
)
593 += ira_register_move_cost
[mode
][pref_class
][op_class
];
595 if (REGNO (ops
[i
]) != REGNO (ops
[j
])
596 && ! find_reg_note (insn
, REG_DEAD
, op
))
599 /* This is in place of ordinary cost computation for
600 this operand, so skip to the end of the
601 alternative (should be just one character). */
602 while (*p
&& *p
++ != ',')
610 /* Scan all the constraint letters. See if the operand
611 matches any of the constraints. Collect the valid
612 register classes and see if this operand accepts
621 /* Ignore the next letter for this pass. */
627 case '!': case '#': case '&':
628 case '0': case '1': case '2': case '3': case '4':
629 case '5': case '6': case '7': case '8': case '9':
634 win
= address_operand (op
, GET_MODE (op
));
635 /* We know this operand is an address, so we want it
636 to be allocated to a register that can be the
637 base of an address, i.e. BASE_REG_CLASS. */
639 = ira_reg_class_subunion
[classes
[i
]]
640 [base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
644 case 'm': case 'o': case 'V':
645 /* It doesn't seem worth distinguishing between
646 offsettable and non-offsettable addresses
648 insn_allows_mem
[i
] = allows_mem
[i
] = 1;
655 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
656 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
662 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
663 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
669 if (GET_CODE (op
) == CONST_DOUBLE
670 || (GET_CODE (op
) == CONST_VECTOR
671 && (GET_MODE_CLASS (GET_MODE (op
))
672 == MODE_VECTOR_FLOAT
)))
678 if (GET_CODE (op
) == CONST_DOUBLE
679 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
685 || (GET_CODE (op
) == CONST_DOUBLE
686 && GET_MODE (op
) == VOIDmode
))
691 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
)))
697 || (GET_CODE (op
) == CONST_DOUBLE
698 && GET_MODE (op
) == VOIDmode
))
711 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
722 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))))
724 insn_allows_mem
[i
] = allows_mem
[i
] = 1;
726 classes
[i
] = ira_reg_class_subunion
[classes
[i
]][GENERAL_REGS
];
730 if (REG_CLASS_FROM_CONSTRAINT (c
, p
) != NO_REGS
)
731 classes
[i
] = ira_reg_class_subunion
[classes
[i
]]
732 [REG_CLASS_FROM_CONSTRAINT (c
, p
)];
733 #ifdef EXTRA_CONSTRAINT_STR
734 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
737 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
739 /* Every MEM can be reloaded to fit. */
740 insn_allows_mem
[i
] = allows_mem
[i
] = 1;
744 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
746 /* Every address can be reloaded to fit. */
748 if (address_operand (op
, GET_MODE (op
)))
750 /* We know this operand is an address, so we
751 want it to be allocated to a hard register
752 that can be the base of an address,
753 i.e. BASE_REG_CLASS. */
755 = ira_reg_class_subunion
[classes
[i
]]
756 [base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
762 p
+= CONSTRAINT_LEN (c
, p
);
769 /* How we account for this operand now depends on whether it
770 is a pseudo register or not. If it is, we first check if
771 any register classes are valid. If not, we ignore this
772 alternative, since we want to assume that all allocnos get
773 allocated for register preferencing. If some register
774 class is valid, compute the costs of moving the allocno
776 if (REG_P (op
) && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
778 if (classes
[i
] == NO_REGS
)
780 /* We must always fail if the operand is a REG, but
781 we did not find a suitable class.
783 Otherwise we may perform an uninitialized read
784 from this_op_costs after the `continue' statement
790 unsigned int regno
= REGNO (op
);
791 struct costs
*pp
= this_op_costs
[i
];
792 int *pp_costs
= pp
->cost
;
793 cost_classes_t cost_classes_ptr
= regno_cost_classes
[regno
];
794 enum reg_class
*cost_classes
= cost_classes_ptr
->classes
;
795 bool in_p
= recog_data
.operand_type
[i
] != OP_OUT
;
796 bool out_p
= recog_data
.operand_type
[i
] != OP_IN
;
797 enum reg_class op_class
= classes
[i
];
798 move_table
*move_in_cost
, *move_out_cost
;
800 ira_init_register_move_cost_if_necessary (mode
);
804 move_out_cost
= ira_may_move_out_cost
[mode
];
805 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
807 rclass
= cost_classes
[k
];
809 = move_out_cost
[op_class
][rclass
] * frequency
;
815 move_in_cost
= ira_may_move_in_cost
[mode
];
816 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
818 rclass
= cost_classes
[k
];
820 = move_in_cost
[rclass
][op_class
] * frequency
;
825 move_in_cost
= ira_may_move_in_cost
[mode
];
826 move_out_cost
= ira_may_move_out_cost
[mode
];
827 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
829 rclass
= cost_classes
[k
];
830 pp_costs
[k
] = ((move_in_cost
[rclass
][op_class
]
831 + move_out_cost
[op_class
][rclass
])
836 /* If the alternative actually allows memory, make
837 things a bit cheaper since we won't need an extra
840 = ((out_p
? ira_memory_move_cost
[mode
][op_class
][0] : 0)
841 + (in_p
? ira_memory_move_cost
[mode
][op_class
][1] : 0)
842 - allows_mem
[i
]) * frequency
;
843 /* If we have assigned a class to this allocno in
844 our first pass, add a cost to this alternative
845 corresponding to what we would add if this
846 allocno were not in the appropriate class. */
849 enum reg_class pref_class
= pref
[COST_INDEX (REGNO (op
))];
851 if (pref_class
== NO_REGS
)
854 ? ira_memory_move_cost
[mode
][op_class
][0] : 0)
856 ? ira_memory_move_cost
[mode
][op_class
][1]
858 else if (ira_reg_class_intersect
[pref_class
][op_class
]
860 alt_cost
+= ira_register_move_cost
[mode
][pref_class
][op_class
];
865 /* Otherwise, if this alternative wins, either because we
866 have already determined that or if we have a hard
867 register of the proper class, there is no cost for this
869 else if (win
|| (REG_P (op
)
870 && reg_fits_class_p (op
, classes
[i
],
874 /* If registers are valid, the cost of this alternative
875 includes copying the object to and/or from a
877 else if (classes
[i
] != NO_REGS
)
879 if (recog_data
.operand_type
[i
] != OP_OUT
)
880 alt_cost
+= copy_cost (op
, mode
, classes
[i
], 1, NULL
);
882 if (recog_data
.operand_type
[i
] != OP_IN
)
883 alt_cost
+= copy_cost (op
, mode
, classes
[i
], 0, NULL
);
885 /* The only other way this alternative can be used is if
886 this is a constant that could be placed into memory. */
887 else if (CONSTANT_P (op
) && (allows_addr
|| allows_mem
[i
]))
888 alt_cost
+= ira_memory_move_cost
[mode
][classes
[i
]][1];
896 op_cost_add
= alt_cost
* frequency
;
897 /* Finally, update the costs with the information we've
898 calculated about this alternative. */
899 for (i
= 0; i
< n_ops
; i
++)
900 if (REG_P (ops
[i
]) && REGNO (ops
[i
]) >= FIRST_PSEUDO_REGISTER
)
902 struct costs
*pp
= op_costs
[i
], *qq
= this_op_costs
[i
];
903 int *pp_costs
= pp
->cost
, *qq_costs
= qq
->cost
;
904 int scale
= 1 + (recog_data
.operand_type
[i
] == OP_INOUT
);
905 cost_classes_t cost_classes_ptr
906 = regno_cost_classes
[REGNO (ops
[i
])];
908 pp
->mem_cost
= MIN (pp
->mem_cost
,
909 (qq
->mem_cost
+ op_cost_add
) * scale
);
911 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
913 = MIN (pp_costs
[k
], (qq_costs
[k
] + op_cost_add
) * scale
);
918 for (i
= 0; i
< n_ops
; i
++)
923 if (! REG_P (op
) || REGNO (op
) < FIRST_PSEUDO_REGISTER
)
925 a
= ira_curr_regno_allocno_map
[REGNO (op
)];
926 if (! ALLOCNO_BAD_SPILL_P (a
) && insn_allows_mem
[i
] == 0)
927 ALLOCNO_BAD_SPILL_P (a
) = true;
930 /* If this insn is a single set copying operand 1 to operand 0 and
931 one operand is an allocno with the other a hard reg or an allocno
932 that prefers a hard register that is in its own register class
933 then we may want to adjust the cost of that register class to -1.
935 Avoid the adjustment if the source does not die to avoid
936 stressing of register allocator by preferrencing two colliding
937 registers into single class.
939 Also avoid the adjustment if a copy between hard registers of the
940 class is expensive (ten times the cost of a default copy is
941 considered arbitrarily expensive). This avoids losing when the
942 preferred class is very expensive as the source of a copy
944 if ((set
= single_set (insn
)) != 0
945 && ops
[0] == SET_DEST (set
) && ops
[1] == SET_SRC (set
)
946 && REG_P (ops
[0]) && REG_P (ops
[1])
947 && find_regno_note (insn
, REG_DEAD
, REGNO (ops
[1])))
948 for (i
= 0; i
<= 1; i
++)
949 if (REGNO (ops
[i
]) >= FIRST_PSEUDO_REGISTER
950 && REGNO (ops
[!i
]) < FIRST_PSEUDO_REGISTER
)
952 unsigned int regno
= REGNO (ops
[i
]);
953 unsigned int other_regno
= REGNO (ops
[!i
]);
954 enum machine_mode mode
= GET_MODE (ops
[!i
]);
955 cost_classes_t cost_classes_ptr
= regno_cost_classes
[regno
];
956 enum reg_class
*cost_classes
= cost_classes_ptr
->classes
;
960 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
962 rclass
= cost_classes
[k
];
963 if (TEST_HARD_REG_BIT (reg_class_contents
[rclass
], other_regno
)
964 && (reg_class_size
[(int) rclass
]
965 == ira_reg_class_max_nregs
[(int) rclass
][(int) mode
]))
967 if (reg_class_size
[rclass
] == 1)
968 op_costs
[i
]->cost
[k
] = -frequency
;
972 nr
< hard_regno_nregs
[other_regno
][mode
];
974 if (! TEST_HARD_REG_BIT (reg_class_contents
[rclass
],
978 if (nr
== hard_regno_nregs
[other_regno
][mode
])
979 op_costs
[i
]->cost
[k
] = -frequency
;
988 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
990 ok_for_index_p_nonstrict (rtx reg
)
992 unsigned regno
= REGNO (reg
);
994 return regno
>= FIRST_PSEUDO_REGISTER
|| REGNO_OK_FOR_INDEX_P (regno
);
997 /* A version of regno_ok_for_base_p for use here, when all
998 pseudo-registers should count as OK. Arguments as for
999 regno_ok_for_base_p. */
1001 ok_for_base_p_nonstrict (rtx reg
, enum machine_mode mode
, addr_space_t as
,
1002 enum rtx_code outer_code
, enum rtx_code index_code
)
1004 unsigned regno
= REGNO (reg
);
1006 if (regno
>= FIRST_PSEUDO_REGISTER
)
1008 return ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
1011 /* Record the pseudo registers we must reload into hard registers in a
1012 subexpression of a memory address, X.
1014 If CONTEXT is 0, we are looking at the base part of an address,
1015 otherwise we are looking at the index part.
1017 MODE and AS are the mode and address space of the memory reference;
1018 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1019 These four arguments are passed down to base_reg_class.
1021 SCALE is twice the amount to multiply the cost by (it is twice so
1022 we can represent half-cost adjustments). */
1024 record_address_regs (enum machine_mode mode
, addr_space_t as
, rtx x
,
1025 int context
, enum rtx_code outer_code
,
1026 enum rtx_code index_code
, int scale
)
1028 enum rtx_code code
= GET_CODE (x
);
1029 enum reg_class rclass
;
1032 rclass
= INDEX_REG_CLASS
;
1034 rclass
= base_reg_class (mode
, as
, outer_code
, index_code
);
1047 /* When we have an address that is a sum, we must determine
1048 whether registers are "base" or "index" regs. If there is a
1049 sum of two registers, we must choose one to be the "base".
1050 Luckily, we can use the REG_POINTER to make a good choice
1051 most of the time. We only need to do this on machines that
1052 can have two registers in an address and where the base and
1053 index register classes are different.
1055 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1056 but that seems bogus since it should only be set when we are
1057 sure the register is being used as a pointer. */
1059 rtx arg0
= XEXP (x
, 0);
1060 rtx arg1
= XEXP (x
, 1);
1061 enum rtx_code code0
= GET_CODE (arg0
);
1062 enum rtx_code code1
= GET_CODE (arg1
);
1064 /* Look inside subregs. */
1065 if (code0
== SUBREG
)
1066 arg0
= SUBREG_REG (arg0
), code0
= GET_CODE (arg0
);
1067 if (code1
== SUBREG
)
1068 arg1
= SUBREG_REG (arg1
), code1
= GET_CODE (arg1
);
1070 /* If this machine only allows one register per address, it
1071 must be in the first operand. */
1072 if (MAX_REGS_PER_ADDRESS
== 1)
1073 record_address_regs (mode
, as
, arg0
, 0, PLUS
, code1
, scale
);
1075 /* If index and base registers are the same on this machine,
1076 just record registers in any non-constant operands. We
1077 assume here, as well as in the tests below, that all
1078 addresses are in canonical form. */
1079 else if (INDEX_REG_CLASS
1080 == base_reg_class (VOIDmode
, as
, PLUS
, SCRATCH
))
1082 record_address_regs (mode
, as
, arg0
, context
, PLUS
, code1
, scale
);
1083 if (! CONSTANT_P (arg1
))
1084 record_address_regs (mode
, as
, arg1
, context
, PLUS
, code0
, scale
);
1087 /* If the second operand is a constant integer, it doesn't
1088 change what class the first operand must be. */
1089 else if (code1
== CONST_INT
|| code1
== CONST_DOUBLE
)
1090 record_address_regs (mode
, as
, arg0
, context
, PLUS
, code1
, scale
);
1091 /* If the second operand is a symbolic constant, the first
1092 operand must be an index register. */
1093 else if (code1
== SYMBOL_REF
|| code1
== CONST
|| code1
== LABEL_REF
)
1094 record_address_regs (mode
, as
, arg0
, 1, PLUS
, code1
, scale
);
1095 /* If both operands are registers but one is already a hard
1096 register of index or reg-base class, give the other the
1097 class that the hard register is not. */
1098 else if (code0
== REG
&& code1
== REG
1099 && REGNO (arg0
) < FIRST_PSEUDO_REGISTER
1100 && (ok_for_base_p_nonstrict (arg0
, mode
, as
, PLUS
, REG
)
1101 || ok_for_index_p_nonstrict (arg0
)))
1102 record_address_regs (mode
, as
, arg1
,
1103 ok_for_base_p_nonstrict (arg0
, mode
, as
,
1106 else if (code0
== REG
&& code1
== REG
1107 && REGNO (arg1
) < FIRST_PSEUDO_REGISTER
1108 && (ok_for_base_p_nonstrict (arg1
, mode
, as
, PLUS
, REG
)
1109 || ok_for_index_p_nonstrict (arg1
)))
1110 record_address_regs (mode
, as
, arg0
,
1111 ok_for_base_p_nonstrict (arg1
, mode
, as
,
1114 /* If one operand is known to be a pointer, it must be the
1115 base with the other operand the index. Likewise if the
1116 other operand is a MULT. */
1117 else if ((code0
== REG
&& REG_POINTER (arg0
)) || code1
== MULT
)
1119 record_address_regs (mode
, as
, arg0
, 0, PLUS
, code1
, scale
);
1120 record_address_regs (mode
, as
, arg1
, 1, PLUS
, code0
, scale
);
1122 else if ((code1
== REG
&& REG_POINTER (arg1
)) || code0
== MULT
)
1124 record_address_regs (mode
, as
, arg0
, 1, PLUS
, code1
, scale
);
1125 record_address_regs (mode
, as
, arg1
, 0, PLUS
, code0
, scale
);
1127 /* Otherwise, count equal chances that each might be a base or
1128 index register. This case should be rare. */
1131 record_address_regs (mode
, as
, arg0
, 0, PLUS
, code1
, scale
/ 2);
1132 record_address_regs (mode
, as
, arg0
, 1, PLUS
, code1
, scale
/ 2);
1133 record_address_regs (mode
, as
, arg1
, 0, PLUS
, code0
, scale
/ 2);
1134 record_address_regs (mode
, as
, arg1
, 1, PLUS
, code0
, scale
/ 2);
1139 /* Double the importance of an allocno that is incremented or
1140 decremented, since it would take two extra insns if it ends
1141 up in the wrong place. */
1144 record_address_regs (mode
, as
, XEXP (x
, 0), 0, code
,
1145 GET_CODE (XEXP (XEXP (x
, 1), 1)), 2 * scale
);
1146 if (REG_P (XEXP (XEXP (x
, 1), 1)))
1147 record_address_regs (mode
, as
, XEXP (XEXP (x
, 1), 1), 1, code
, REG
,
1155 /* Double the importance of an allocno that is incremented or
1156 decremented, since it would take two extra insns if it ends
1157 up in the wrong place. */
1158 record_address_regs (mode
, as
, XEXP (x
, 0), 0, code
, SCRATCH
, 2 * scale
);
1166 int k
, regno
, add_cost
;
1167 cost_classes_t cost_classes_ptr
;
1168 enum reg_class
*cost_classes
;
1169 move_table
*move_in_cost
;
1171 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1176 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map
[regno
]) = true;
1177 pp
= COSTS (costs
, COST_INDEX (regno
));
1178 add_cost
= (ira_memory_move_cost
[Pmode
][rclass
][1] * scale
) / 2;
1179 if (INT_MAX
- add_cost
< pp
->mem_cost
)
1180 pp
->mem_cost
= INT_MAX
;
1182 pp
->mem_cost
+= add_cost
;
1183 cost_classes_ptr
= regno_cost_classes
[regno
];
1184 cost_classes
= cost_classes_ptr
->classes
;
1185 pp_costs
= pp
->cost
;
1186 ira_init_register_move_cost_if_necessary (Pmode
);
1187 move_in_cost
= ira_may_move_in_cost
[Pmode
];
1188 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1190 i
= cost_classes
[k
];
1191 add_cost
= (move_in_cost
[i
][rclass
] * scale
) / 2;
1192 if (INT_MAX
- add_cost
< pp_costs
[k
])
1193 pp_costs
[k
] = INT_MAX
;
1195 pp_costs
[k
] += add_cost
;
1202 const char *fmt
= GET_RTX_FORMAT (code
);
1204 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1206 record_address_regs (mode
, as
, XEXP (x
, i
), context
, code
, SCRATCH
,
1214 /* Calculate the costs of insn operands. */
1216 record_operand_costs (rtx insn
, enum reg_class
*pref
)
1218 const char *constraints
[MAX_RECOG_OPERANDS
];
1219 enum machine_mode modes
[MAX_RECOG_OPERANDS
];
1222 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1224 constraints
[i
] = recog_data
.constraints
[i
];
1225 modes
[i
] = recog_data
.operand_mode
[i
];
1228 /* If we get here, we are set up to record the costs of all the
1229 operands for this insn. Start by initializing the costs. Then
1230 handle any address registers. Finally record the desired classes
1231 for any allocnos, doing it twice if some pair of operands are
1233 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1235 memcpy (op_costs
[i
], init_cost
, struct_costs_size
);
1237 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
)
1238 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
1240 if (MEM_P (recog_data
.operand
[i
]))
1241 record_address_regs (GET_MODE (recog_data
.operand
[i
]),
1242 MEM_ADDR_SPACE (recog_data
.operand
[i
]),
1243 XEXP (recog_data
.operand
[i
], 0),
1244 0, MEM
, SCRATCH
, frequency
* 2);
1245 else if (constraints
[i
][0] == 'p'
1246 || EXTRA_ADDRESS_CONSTRAINT (constraints
[i
][0],
1248 record_address_regs (VOIDmode
, ADDR_SPACE_GENERIC
,
1249 recog_data
.operand
[i
], 0, ADDRESS
, SCRATCH
,
1253 /* Check for commutative in a separate loop so everything will have
1254 been initialized. We must do this even if one operand is a
1255 constant--see addsi3 in m68k.md. */
1256 for (i
= 0; i
< (int) recog_data
.n_operands
- 1; i
++)
1257 if (constraints
[i
][0] == '%')
1259 const char *xconstraints
[MAX_RECOG_OPERANDS
];
1262 /* Handle commutative operands by swapping the constraints.
1263 We assume the modes are the same. */
1264 for (j
= 0; j
< recog_data
.n_operands
; j
++)
1265 xconstraints
[j
] = constraints
[j
];
1267 xconstraints
[i
] = constraints
[i
+1];
1268 xconstraints
[i
+1] = constraints
[i
];
1269 record_reg_classes (recog_data
.n_alternatives
, recog_data
.n_operands
,
1270 recog_data
.operand
, modes
,
1271 xconstraints
, insn
, pref
);
1273 record_reg_classes (recog_data
.n_alternatives
, recog_data
.n_operands
,
1274 recog_data
.operand
, modes
,
1275 constraints
, insn
, pref
);
1280 /* Process one insn INSN. Scan it and record each time it would save
1281 code to put a certain allocnos in a certain class. Return the last
1282 insn processed, so that the scan can be continued from there. */
1284 scan_one_insn (rtx insn
)
1286 enum rtx_code pat_code
;
1291 if (!NONDEBUG_INSN_P (insn
))
1294 pat_code
= GET_CODE (PATTERN (insn
));
1295 if (pat_code
== USE
|| pat_code
== CLOBBER
|| pat_code
== ASM_INPUT
1296 || pat_code
== ADDR_VEC
|| pat_code
== ADDR_DIFF_VEC
)
1299 counted_mem
= false;
1300 set
= single_set (insn
);
1301 extract_insn (insn
);
1303 /* If this insn loads a parameter from its stack slot, then it
1304 represents a savings, rather than a cost, if the parameter is
1305 stored in memory. Record this fact.
1307 Similarly if we're loading other constants from memory (constant
1308 pool, TOC references, small data areas, etc) and this is the only
1309 assignment to the destination pseudo.
1311 Don't do this if SET_SRC (set) isn't a general operand, if it is
1312 a memory requiring special instructions to load it, decreasing
1313 mem_cost might result in it being loaded using the specialized
1314 instruction into a register, then stored into stack and loaded
1315 again from the stack. See PR52208. */
1316 if (set
!= 0 && REG_P (SET_DEST (set
)) && MEM_P (SET_SRC (set
))
1317 && (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != NULL_RTX
1318 && ((MEM_P (XEXP (note
, 0)))
1319 || (CONSTANT_P (XEXP (note
, 0))
1320 && targetm
.legitimate_constant_p (GET_MODE (SET_DEST (set
)),
1322 && REG_N_SETS (REGNO (SET_DEST (set
))) == 1))
1323 && general_operand (SET_SRC (set
), GET_MODE (SET_SRC (set
))))
1325 enum reg_class cl
= GENERAL_REGS
;
1326 rtx reg
= SET_DEST (set
);
1327 int num
= COST_INDEX (REGNO (reg
));
1329 COSTS (costs
, num
)->mem_cost
1330 -= ira_memory_move_cost
[GET_MODE (reg
)][cl
][1] * frequency
;
1331 record_address_regs (GET_MODE (SET_SRC (set
)),
1332 MEM_ADDR_SPACE (SET_SRC (set
)),
1333 XEXP (SET_SRC (set
), 0), 0, MEM
, SCRATCH
,
1338 record_operand_costs (insn
, pref
);
1340 /* Now add the cost for each operand to the total costs for its
1342 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1343 if (REG_P (recog_data
.operand
[i
])
1344 && REGNO (recog_data
.operand
[i
]) >= FIRST_PSEUDO_REGISTER
)
1346 int regno
= REGNO (recog_data
.operand
[i
]);
1347 struct costs
*p
= COSTS (costs
, COST_INDEX (regno
));
1348 struct costs
*q
= op_costs
[i
];
1349 int *p_costs
= p
->cost
, *q_costs
= q
->cost
;
1350 cost_classes_t cost_classes_ptr
= regno_cost_classes
[regno
];
1353 /* If the already accounted for the memory "cost" above, don't
1357 add_cost
= q
->mem_cost
;
1358 if (add_cost
> 0 && INT_MAX
- add_cost
< p
->mem_cost
)
1359 p
->mem_cost
= INT_MAX
;
1361 p
->mem_cost
+= add_cost
;
1363 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1365 add_cost
= q_costs
[k
];
1366 if (add_cost
> 0 && INT_MAX
- add_cost
< p_costs
[k
])
1367 p_costs
[k
] = INT_MAX
;
1369 p_costs
[k
] += add_cost
;
1378 /* Print allocnos costs to file F. */
1380 print_allocno_costs (FILE *f
)
1384 ira_allocno_iterator ai
;
1386 ira_assert (allocno_p
);
1388 FOR_EACH_ALLOCNO (a
, ai
)
1392 int regno
= ALLOCNO_REGNO (a
);
1393 cost_classes_t cost_classes_ptr
= regno_cost_classes
[regno
];
1394 enum reg_class
*cost_classes
= cost_classes_ptr
->classes
;
1396 i
= ALLOCNO_NUM (a
);
1397 fprintf (f
, " a%d(r%d,", i
, regno
);
1398 if ((bb
= ALLOCNO_LOOP_TREE_NODE (a
)->bb
) != NULL
)
1399 fprintf (f
, "b%d", bb
->index
);
1401 fprintf (f
, "l%d", ALLOCNO_LOOP_TREE_NODE (a
)->loop_num
);
1402 fprintf (f
, ") costs:");
1403 for (k
= 0; k
< cost_classes_ptr
->num
; k
++)
1405 rclass
= cost_classes
[k
];
1406 if (contains_reg_of_mode
[rclass
][PSEUDO_REGNO_MODE (regno
)]
1407 #ifdef CANNOT_CHANGE_MODE_CLASS
1408 && ! invalid_mode_change_p (regno
, (enum reg_class
) rclass
)
1412 fprintf (f
, " %s:%d", reg_class_names
[rclass
],
1413 COSTS (costs
, i
)->cost
[k
]);
1414 if (flag_ira_region
== IRA_REGION_ALL
1415 || flag_ira_region
== IRA_REGION_MIXED
)
1416 fprintf (f
, ",%d", COSTS (total_allocno_costs
, i
)->cost
[k
]);
1419 fprintf (f
, " MEM:%i", COSTS (costs
, i
)->mem_cost
);
1420 if (flag_ira_region
== IRA_REGION_ALL
1421 || flag_ira_region
== IRA_REGION_MIXED
)
1422 fprintf (f
, ",%d", COSTS (total_allocno_costs
, i
)->mem_cost
);
1427 /* Print pseudo costs to file F. */
1429 print_pseudo_costs (FILE *f
)
1433 cost_classes_t cost_classes_ptr
;
1434 enum reg_class
*cost_classes
;
1436 ira_assert (! allocno_p
);
1438 for (regno
= max_reg_num () - 1; regno
>= FIRST_PSEUDO_REGISTER
; regno
--)
1440 if (REG_N_REFS (regno
) <= 0)
1442 cost_classes_ptr
= regno_cost_classes
[regno
];
1443 cost_classes
= cost_classes_ptr
->classes
;
1444 fprintf (f
, " r%d costs:", regno
);
1445 for (k
= 0; k
< cost_classes_ptr
->num
; k
++)
1447 rclass
= cost_classes
[k
];
1448 if (contains_reg_of_mode
[rclass
][PSEUDO_REGNO_MODE (regno
)]
1449 #ifdef CANNOT_CHANGE_MODE_CLASS
1450 && ! invalid_mode_change_p (regno
, (enum reg_class
) rclass
)
1453 fprintf (f
, " %s:%d", reg_class_names
[rclass
],
1454 COSTS (costs
, regno
)->cost
[k
]);
1456 fprintf (f
, " MEM:%i\n", COSTS (costs
, regno
)->mem_cost
);
1460 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1463 process_bb_for_costs (basic_block bb
)
1467 frequency
= REG_FREQ_FROM_BB (bb
);
1470 FOR_BB_INSNS (bb
, insn
)
1471 insn
= scan_one_insn (insn
);
1474 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1477 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node
)
1481 bb
= loop_tree_node
->bb
;
1483 process_bb_for_costs (bb
);
1486 /* Find costs of register classes and memory for allocnos or pseudos
1487 and their best costs. Set up preferred, alternative and allocno
1488 classes for pseudos. */
1490 find_costs_and_classes (FILE *dump_file
)
1492 int i
, k
, start
, max_cost_classes_num
;
1495 enum reg_class
*regno_best_class
;
1499 = (enum reg_class
*) ira_allocate (max_reg_num ()
1500 * sizeof (enum reg_class
));
1501 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
1502 regno_best_class
[i
] = NO_REGS
;
1503 if (!resize_reg_info () && allocno_p
1504 && pseudo_classes_defined_p
&& flag_expensive_optimizations
)
1507 ira_allocno_iterator ai
;
1510 max_cost_classes_num
= 1;
1511 FOR_EACH_ALLOCNO (a
, ai
)
1513 pref
[ALLOCNO_NUM (a
)] = reg_preferred_class (ALLOCNO_REGNO (a
));
1514 setup_regno_cost_classes_by_aclass
1515 (ALLOCNO_REGNO (a
), pref
[ALLOCNO_NUM (a
)]);
1516 max_cost_classes_num
1517 = MAX (max_cost_classes_num
,
1518 regno_cost_classes
[ALLOCNO_REGNO (a
)]->num
);
1525 max_cost_classes_num
= ira_important_classes_num
;
1526 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
1527 if (regno_reg_rtx
[i
] != NULL_RTX
)
1528 setup_regno_cost_classes_by_mode (i
, PSEUDO_REGNO_MODE (i
));
1530 setup_regno_cost_classes_by_aclass (i
, ALL_REGS
);
1534 /* Clear the flag for the next compiled function. */
1535 pseudo_classes_defined_p
= false;
1536 /* Normally we scan the insns once and determine the best class to
1537 use for each allocno. However, if -fexpensive-optimizations are
1538 on, we do so twice, the second time using the tentative best
1539 classes to guide the selection. */
1540 for (pass
= start
; pass
<= flag_expensive_optimizations
; pass
++)
1542 if ((!allocno_p
|| internal_flag_ira_verbose
> 0) && dump_file
)
1544 "\nPass %i for finding pseudo/allocno costs\n\n", pass
);
1548 max_cost_classes_num
= 1;
1549 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
1551 setup_regno_cost_classes_by_aclass (i
, regno_best_class
[i
]);
1552 max_cost_classes_num
1553 = MAX (max_cost_classes_num
, regno_cost_classes
[i
]->num
);
1558 = sizeof (struct costs
) + sizeof (int) * (max_cost_classes_num
- 1);
1559 /* Zero out our accumulation of the cost of each class for each
1561 memset (costs
, 0, cost_elements_num
* struct_costs_size
);
1565 /* Scan the instructions and record each time it would save code
1566 to put a certain allocno in a certain class. */
1567 ira_traverse_loop_tree (true, ira_loop_tree_root
,
1568 process_bb_node_for_costs
, NULL
);
1570 memcpy (total_allocno_costs
, costs
,
1571 max_struct_costs_size
* ira_allocnos_num
);
1578 process_bb_for_costs (bb
);
1584 /* Now for each allocno look at how desirable each class is and
1585 find which class is preferred. */
1586 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
1588 ira_allocno_t a
, parent_a
;
1589 int rclass
, a_num
, parent_a_num
, add_cost
;
1590 ira_loop_tree_node_t parent
;
1591 int best_cost
, allocno_cost
;
1592 enum reg_class best
, alt_class
;
1593 cost_classes_t cost_classes_ptr
= regno_cost_classes
[i
];
1594 enum reg_class
*cost_classes
= cost_classes_ptr
->classes
;
1595 int *i_costs
= temp_costs
->cost
;
1597 int equiv_savings
= regno_equiv_gains
[i
];
1601 if (regno_reg_rtx
[i
] == NULL_RTX
)
1603 memcpy (temp_costs
, COSTS (costs
, i
), struct_costs_size
);
1604 i_mem_cost
= temp_costs
->mem_cost
;
1608 if (ira_regno_allocno_map
[i
] == NULL
)
1610 memset (temp_costs
, 0, struct_costs_size
);
1612 /* Find cost of all allocnos with the same regno. */
1613 for (a
= ira_regno_allocno_map
[i
];
1615 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
1617 int *a_costs
, *p_costs
;
1619 a_num
= ALLOCNO_NUM (a
);
1620 if ((flag_ira_region
== IRA_REGION_ALL
1621 || flag_ira_region
== IRA_REGION_MIXED
)
1622 && (parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
) != NULL
1623 && (parent_a
= parent
->regno_allocno_map
[i
]) != NULL
1624 /* There are no caps yet. */
1625 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1626 (a
)->border_allocnos
,
1629 /* Propagate costs to upper levels in the region
1631 parent_a_num
= ALLOCNO_NUM (parent_a
);
1632 a_costs
= COSTS (total_allocno_costs
, a_num
)->cost
;
1633 p_costs
= COSTS (total_allocno_costs
, parent_a_num
)->cost
;
1634 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1636 add_cost
= a_costs
[k
];
1637 if (add_cost
> 0 && INT_MAX
- add_cost
< p_costs
[k
])
1638 p_costs
[k
] = INT_MAX
;
1640 p_costs
[k
] += add_cost
;
1642 add_cost
= COSTS (total_allocno_costs
, a_num
)->mem_cost
;
1644 && (INT_MAX
- add_cost
1645 < COSTS (total_allocno_costs
,
1646 parent_a_num
)->mem_cost
))
1647 COSTS (total_allocno_costs
, parent_a_num
)->mem_cost
1650 COSTS (total_allocno_costs
, parent_a_num
)->mem_cost
1654 a_costs
= COSTS (costs
, a_num
)->cost
;
1655 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1657 add_cost
= a_costs
[k
];
1658 if (add_cost
> 0 && INT_MAX
- add_cost
< i_costs
[k
])
1659 i_costs
[k
] = INT_MAX
;
1661 i_costs
[k
] += add_cost
;
1663 add_cost
= COSTS (costs
, a_num
)->mem_cost
;
1664 if (add_cost
> 0 && INT_MAX
- add_cost
< i_mem_cost
)
1665 i_mem_cost
= INT_MAX
;
1667 i_mem_cost
+= add_cost
;
1670 if (equiv_savings
< 0)
1671 i_mem_cost
= -equiv_savings
;
1672 else if (equiv_savings
> 0)
1675 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1676 i_costs
[k
] += equiv_savings
;
1679 best_cost
= (1 << (HOST_BITS_PER_INT
- 2)) - 1;
1681 alt_class
= NO_REGS
;
1682 /* Find best common class for all allocnos with the same
1684 for (k
= 0; k
< cost_classes_ptr
->num
; k
++)
1686 rclass
= cost_classes
[k
];
1687 /* Ignore classes that are too small or invalid for this
1689 if (! contains_reg_of_mode
[rclass
][PSEUDO_REGNO_MODE (i
)]
1690 #ifdef CANNOT_CHANGE_MODE_CLASS
1691 || invalid_mode_change_p (i
, (enum reg_class
) rclass
)
1695 if (i_costs
[k
] < best_cost
)
1697 best_cost
= i_costs
[k
];
1698 best
= (enum reg_class
) rclass
;
1700 else if (i_costs
[k
] == best_cost
)
1701 best
= ira_reg_class_subunion
[best
][rclass
];
1702 if (pass
== flag_expensive_optimizations
1703 /* We still prefer registers to memory even at this
1704 stage if their costs are the same. We will make
1705 a final decision during assigning hard registers
1706 when we have all info including more accurate
1707 costs which might be affected by assigning hard
1708 registers to other pseudos because the pseudos
1709 involved in moves can be coalesced. */
1710 && i_costs
[k
] <= i_mem_cost
1711 && (reg_class_size
[reg_class_subunion
[alt_class
][rclass
]]
1712 > reg_class_size
[alt_class
]))
1713 alt_class
= reg_class_subunion
[alt_class
][rclass
];
1715 alt_class
= ira_allocno_class_translate
[alt_class
];
1716 if (best_cost
> i_mem_cost
)
1717 regno_aclass
[i
] = NO_REGS
;
1720 /* Make the common class the biggest class of best and
1723 = ira_reg_class_superunion
[best
][alt_class
];
1724 ira_assert (regno_aclass
[i
] != NO_REGS
1725 && ira_reg_allocno_class_p
[regno_aclass
[i
]]);
1727 if (pass
== flag_expensive_optimizations
)
1729 if (best_cost
> i_mem_cost
)
1730 best
= alt_class
= NO_REGS
;
1731 else if (best
== alt_class
)
1732 alt_class
= NO_REGS
;
1733 setup_reg_classes (i
, best
, alt_class
, regno_aclass
[i
]);
1734 if ((!allocno_p
|| internal_flag_ira_verbose
> 2)
1735 && dump_file
!= NULL
)
1737 " r%d: preferred %s, alternative %s, allocno %s\n",
1738 i
, reg_class_names
[best
], reg_class_names
[alt_class
],
1739 reg_class_names
[regno_aclass
[i
]]);
1741 regno_best_class
[i
] = best
;
1744 pref
[i
] = best_cost
> i_mem_cost
? NO_REGS
: best
;
1747 for (a
= ira_regno_allocno_map
[i
];
1749 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
1751 a_num
= ALLOCNO_NUM (a
);
1752 if (regno_aclass
[i
] == NO_REGS
)
1756 int *total_a_costs
= COSTS (total_allocno_costs
, a_num
)->cost
;
1757 int *a_costs
= COSTS (costs
, a_num
)->cost
;
1759 /* Finding best class which is subset of the common
1761 best_cost
= (1 << (HOST_BITS_PER_INT
- 2)) - 1;
1762 allocno_cost
= best_cost
;
1764 for (k
= 0; k
< cost_classes_ptr
->num
; k
++)
1766 rclass
= cost_classes
[k
];
1767 if (! ira_class_subset_p
[rclass
][regno_aclass
[i
]])
1769 /* Ignore classes that are too small or invalid
1770 for this operand. */
1771 if (! contains_reg_of_mode
[rclass
][PSEUDO_REGNO_MODE (i
)]
1772 #ifdef CANNOT_CHANGE_MODE_CLASS
1773 || invalid_mode_change_p (i
, (enum reg_class
) rclass
)
1777 else if (total_a_costs
[k
] < best_cost
)
1779 best_cost
= total_a_costs
[k
];
1780 allocno_cost
= a_costs
[k
];
1781 best
= (enum reg_class
) rclass
;
1783 else if (total_a_costs
[k
] == best_cost
)
1785 best
= ira_reg_class_subunion
[best
][rclass
];
1786 allocno_cost
= MAX (allocno_cost
, a_costs
[k
]);
1789 ALLOCNO_CLASS_COST (a
) = allocno_cost
;
1791 if (internal_flag_ira_verbose
> 2 && dump_file
!= NULL
1792 && (pass
== 0 || pref
[a_num
] != best
))
1794 fprintf (dump_file
, " a%d (r%d,", a_num
, i
);
1795 if ((bb
= ALLOCNO_LOOP_TREE_NODE (a
)->bb
) != NULL
)
1796 fprintf (dump_file
, "b%d", bb
->index
);
1798 fprintf (dump_file
, "l%d",
1799 ALLOCNO_LOOP_TREE_NODE (a
)->loop_num
);
1800 fprintf (dump_file
, ") best %s, allocno %s\n",
1801 reg_class_names
[best
],
1802 reg_class_names
[regno_aclass
[i
]]);
1808 if (internal_flag_ira_verbose
> 4 && dump_file
)
1811 print_allocno_costs (dump_file
);
1813 print_pseudo_costs (dump_file
);
1814 fprintf (dump_file
,"\n");
1817 ira_free (regno_best_class
);
1822 /* Process moves involving hard regs to modify allocno hard register
1823 costs. We can do this only after determining allocno class. If a
1824 hard register forms a register class, than moves with the hard
1825 register are already taken into account in class costs for the
1828 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node
)
1830 int i
, freq
, cost
, src_regno
, dst_regno
, hard_regno
;
1833 enum reg_class rclass
, hard_reg_class
;
1834 enum machine_mode mode
;
1836 rtx insn
, set
, src
, dst
;
1838 bb
= loop_tree_node
->bb
;
1841 freq
= REG_FREQ_FROM_BB (bb
);
1844 FOR_BB_INSNS (bb
, insn
)
1846 if (!NONDEBUG_INSN_P (insn
))
1848 set
= single_set (insn
);
1849 if (set
== NULL_RTX
)
1851 dst
= SET_DEST (set
);
1852 src
= SET_SRC (set
);
1853 if (! REG_P (dst
) || ! REG_P (src
))
1855 dst_regno
= REGNO (dst
);
1856 src_regno
= REGNO (src
);
1857 if (dst_regno
>= FIRST_PSEUDO_REGISTER
1858 && src_regno
< FIRST_PSEUDO_REGISTER
)
1860 hard_regno
= src_regno
;
1862 a
= ira_curr_regno_allocno_map
[dst_regno
];
1864 else if (src_regno
>= FIRST_PSEUDO_REGISTER
1865 && dst_regno
< FIRST_PSEUDO_REGISTER
)
1867 hard_regno
= dst_regno
;
1869 a
= ira_curr_regno_allocno_map
[src_regno
];
1873 rclass
= ALLOCNO_CLASS (a
);
1874 if (! TEST_HARD_REG_BIT (reg_class_contents
[rclass
], hard_regno
))
1876 i
= ira_class_hard_reg_index
[rclass
][hard_regno
];
1879 mode
= ALLOCNO_MODE (a
);
1880 hard_reg_class
= REGNO_REG_CLASS (hard_regno
);
1881 ira_init_register_move_cost_if_necessary (mode
);
1883 = (to_p
? ira_register_move_cost
[mode
][hard_reg_class
][rclass
]
1884 : ira_register_move_cost
[mode
][rclass
][hard_reg_class
]) * freq
;
1885 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a
), rclass
,
1886 ALLOCNO_CLASS_COST (a
));
1887 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a
),
1889 ALLOCNO_HARD_REG_COSTS (a
)[i
] -= cost
;
1890 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
)[i
] -= cost
;
1891 ALLOCNO_CLASS_COST (a
) = MIN (ALLOCNO_CLASS_COST (a
),
1892 ALLOCNO_HARD_REG_COSTS (a
)[i
]);
1896 /* After we find hard register and memory costs for allocnos, define
1897 its class and modify hard register cost because insns moving
1898 allocno to/from hard registers. */
1900 setup_allocno_class_and_costs (void)
1902 int i
, j
, n
, regno
, hard_regno
, num
;
1904 enum reg_class aclass
, rclass
;
1906 ira_allocno_iterator ai
;
1907 cost_classes_t cost_classes_ptr
;
1909 ira_assert (allocno_p
);
1910 FOR_EACH_ALLOCNO (a
, ai
)
1912 i
= ALLOCNO_NUM (a
);
1913 regno
= ALLOCNO_REGNO (a
);
1914 aclass
= regno_aclass
[regno
];
1915 cost_classes_ptr
= regno_cost_classes
[regno
];
1916 ira_assert (pref
[i
] == NO_REGS
|| aclass
!= NO_REGS
);
1917 ALLOCNO_MEMORY_COST (a
) = COSTS (costs
, i
)->mem_cost
;
1918 ira_set_allocno_class (a
, aclass
);
1919 if (aclass
== NO_REGS
)
1921 if (optimize
&& ALLOCNO_CLASS (a
) != pref
[i
])
1923 n
= ira_class_hard_regs_num
[aclass
];
1924 ALLOCNO_HARD_REG_COSTS (a
)
1925 = reg_costs
= ira_allocate_cost_vector (aclass
);
1926 for (j
= n
- 1; j
>= 0; j
--)
1928 hard_regno
= ira_class_hard_regs
[aclass
][j
];
1929 if (TEST_HARD_REG_BIT (reg_class_contents
[pref
[i
]], hard_regno
))
1930 reg_costs
[j
] = ALLOCNO_CLASS_COST (a
);
1933 rclass
= REGNO_REG_CLASS (hard_regno
);
1934 num
= cost_classes_ptr
->index
[rclass
];
1937 num
= cost_classes_ptr
->hard_regno_index
[hard_regno
];
1938 ira_assert (num
>= 0);
1940 reg_costs
[j
] = COSTS (costs
, i
)->cost
[num
];
1946 ira_traverse_loop_tree (true, ira_loop_tree_root
,
1947 process_bb_node_for_hard_reg_moves
, NULL
);
1952 /* Function called once during compiler work. */
1954 ira_init_costs_once (void)
1959 for (i
= 0; i
< MAX_RECOG_OPERANDS
; i
++)
1962 this_op_costs
[i
] = NULL
;
1967 /* Free allocated temporary cost vectors. */
1969 free_ira_costs (void)
1975 for (i
= 0; i
< MAX_RECOG_OPERANDS
; i
++)
1978 free (this_op_costs
[i
]);
1979 op_costs
[i
] = this_op_costs
[i
] = NULL
;
1985 /* This is called each time register related information is
1988 ira_init_costs (void)
1993 max_struct_costs_size
1994 = sizeof (struct costs
) + sizeof (int) * (ira_important_classes_num
- 1);
1995 /* Don't use ira_allocate because vectors live through several IRA
1997 init_cost
= (struct costs
*) xmalloc (max_struct_costs_size
);
1998 init_cost
->mem_cost
= 1000000;
1999 for (i
= 0; i
< ira_important_classes_num
; i
++)
2000 init_cost
->cost
[i
] = 1000000;
2001 for (i
= 0; i
< MAX_RECOG_OPERANDS
; i
++)
2003 op_costs
[i
] = (struct costs
*) xmalloc (max_struct_costs_size
);
2004 this_op_costs
[i
] = (struct costs
*) xmalloc (max_struct_costs_size
);
2006 temp_costs
= (struct costs
*) xmalloc (max_struct_costs_size
);
2009 /* Function called once at the end of compiler work. */
2011 ira_finish_costs_once (void)
2018 /* Common initialization function for ira_costs and
2019 ira_set_pseudo_classes. */
2023 init_subregs_of_mode ();
2024 costs
= (struct costs
*) ira_allocate (max_struct_costs_size
2025 * cost_elements_num
);
2026 pref_buffer
= (enum reg_class
*) ira_allocate (sizeof (enum reg_class
)
2027 * cost_elements_num
);
2028 regno_aclass
= (enum reg_class
*) ira_allocate (sizeof (enum reg_class
)
2030 regno_equiv_gains
= (int *) ira_allocate (sizeof (int) * max_reg_num ());
2031 memset (regno_equiv_gains
, 0, sizeof (int) * max_reg_num ());
2034 /* Common finalization function for ira_costs and
2035 ira_set_pseudo_classes. */
2039 finish_subregs_of_mode ();
2040 ira_free (regno_equiv_gains
);
2041 ira_free (regno_aclass
);
2042 ira_free (pref_buffer
);
2046 /* Entry function which defines register class, memory and hard
2047 register costs for each allocno. */
2052 cost_elements_num
= ira_allocnos_num
;
2054 total_allocno_costs
= (struct costs
*) ira_allocate (max_struct_costs_size
2055 * ira_allocnos_num
);
2056 initiate_regno_cost_classes ();
2057 calculate_elim_costs_all_insns ();
2058 find_costs_and_classes (ira_dump_file
);
2059 setup_allocno_class_and_costs ();
2060 finish_regno_cost_classes ();
2062 ira_free (total_allocno_costs
);
2065 /* Entry function which defines classes for pseudos. */
2067 ira_set_pseudo_classes (FILE *dump_file
)
2070 internal_flag_ira_verbose
= flag_ira_verbose
;
2071 cost_elements_num
= max_reg_num ();
2073 initiate_regno_cost_classes ();
2074 find_costs_and_classes (dump_file
);
2075 finish_regno_cost_classes ();
2076 pseudo_classes_defined_p
= true;
2082 /* Change hard register costs for allocnos which lives through
2083 function calls. This is called only when we found all intersected
2084 calls during building allocno live ranges. */
2086 ira_tune_allocno_costs (void)
2089 int cost
, min_cost
, *reg_costs
;
2090 enum reg_class aclass
, rclass
;
2091 enum machine_mode mode
;
2093 ira_allocno_iterator ai
;
2094 ira_allocno_object_iterator oi
;
2098 FOR_EACH_ALLOCNO (a
, ai
)
2100 aclass
= ALLOCNO_CLASS (a
);
2101 if (aclass
== NO_REGS
)
2103 mode
= ALLOCNO_MODE (a
);
2104 n
= ira_class_hard_regs_num
[aclass
];
2106 if (ALLOCNO_CALLS_CROSSED_NUM (a
) != 0)
2108 ira_allocate_and_set_costs
2109 (&ALLOCNO_HARD_REG_COSTS (a
), aclass
,
2110 ALLOCNO_CLASS_COST (a
));
2111 reg_costs
= ALLOCNO_HARD_REG_COSTS (a
);
2112 for (j
= n
- 1; j
>= 0; j
--)
2114 regno
= ira_class_hard_regs
[aclass
][j
];
2116 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
2118 if (ira_hard_reg_set_intersection_p (regno
, mode
,
2119 OBJECT_CONFLICT_HARD_REGS
2128 rclass
= REGNO_REG_CLASS (regno
);
2130 if (ira_hard_reg_set_intersection_p (regno
, mode
, call_used_reg_set
)
2131 || HARD_REGNO_CALL_PART_CLOBBERED (regno
, mode
))
2132 cost
+= (ALLOCNO_CALL_FREQ (a
)
2133 * (ira_memory_move_cost
[mode
][rclass
][0]
2134 + ira_memory_move_cost
[mode
][rclass
][1]));
2135 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2136 cost
+= ((ira_memory_move_cost
[mode
][rclass
][0]
2137 + ira_memory_move_cost
[mode
][rclass
][1])
2139 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno
) / 2);
2141 if (INT_MAX
- cost
< reg_costs
[j
])
2142 reg_costs
[j
] = INT_MAX
;
2144 reg_costs
[j
] += cost
;
2145 if (min_cost
> reg_costs
[j
])
2146 min_cost
= reg_costs
[j
];
2149 if (min_cost
!= INT_MAX
)
2150 ALLOCNO_CLASS_COST (a
) = min_cost
;
2152 /* Some targets allow pseudos to be allocated to unaligned sequences
2153 of hard registers. However, selecting an unaligned sequence can
2154 unnecessarily restrict later allocations. So increase the cost of
2155 unaligned hard regs to encourage the use of aligned hard regs. */
2157 const int nregs
= ira_reg_class_max_nregs
[aclass
][ALLOCNO_MODE (a
)];
2161 ira_allocate_and_set_costs
2162 (&ALLOCNO_HARD_REG_COSTS (a
), aclass
, ALLOCNO_CLASS_COST (a
));
2163 reg_costs
= ALLOCNO_HARD_REG_COSTS (a
);
2164 for (j
= n
- 1; j
>= 0; j
--)
2166 regno
= ira_non_ordered_class_hard_regs
[aclass
][j
];
2167 if ((regno
% nregs
) != 0)
2169 int index
= ira_class_hard_reg_index
[aclass
][regno
];
2170 ira_assert (index
!= -1);
2171 reg_costs
[index
] += ALLOCNO_FREQ (a
);
2179 /* Add COST to the estimated gain for eliminating REGNO with its
2180 equivalence. If COST is zero, record that no such elimination is
2184 ira_adjust_equiv_reg_cost (unsigned regno
, int cost
)
2187 regno_equiv_gains
[regno
] = 0;
2189 regno_equiv_gains
[regno
] += cost
;