1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calulates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloringh we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
254 * After allono assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is impelemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initilized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
368 #include "coretypes.h"
378 #include "hard-reg-set.h"
379 #include "basic-block.h"
384 #include "tree-pass.h"
388 #include "diagnostic-core.h"
389 #include "function.h"
396 struct target_ira default_target_ira
;
397 struct target_ira_int default_target_ira_int
;
398 #if SWITCHABLE_TARGET
399 struct target_ira
*this_target_ira
= &default_target_ira
;
400 struct target_ira_int
*this_target_ira_int
= &default_target_ira_int
;
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose
;
406 /* Dump file of the allocator if it is not NULL. */
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num
;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 struct ira_spilled_reg_stack_slot
*ira_spilled_reg_stack_slots
;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
421 int ira_overall_cost
, overall_cost_before
;
422 int ira_reg_cost
, ira_mem_cost
;
423 int ira_load_cost
, ira_store_cost
, ira_shuffle_cost
;
424 int ira_move_loops_num
, ira_additional_jumps_num
;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset
;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
433 static int max_regno_before_ira
;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset
;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
444 setup_reg_mode_hard_regset (void)
446 int i
, m
, hard_regno
;
448 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
449 for (hard_regno
= 0; hard_regno
< FIRST_PSEUDO_REGISTER
; hard_regno
++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset
[hard_regno
][m
]);
452 for (i
= hard_regno_nregs
[hard_regno
][m
] - 1; i
>= 0; i
--)
453 if (hard_regno
+ i
< FIRST_PSEUDO_REGISTER
)
454 SET_HARD_REG_BIT (ira_reg_mode_hard_regset
[hard_regno
][m
],
460 #define no_unit_alloc_regs \
461 (this_target_ira_int->x_no_unit_alloc_regs)
463 /* The function sets up the three arrays declared above. */
465 setup_class_hard_regs (void)
467 int cl
, i
, hard_regno
, n
;
468 HARD_REG_SET processed_hard_reg_set
;
470 ira_assert (SHRT_MAX
>= FIRST_PSEUDO_REGISTER
);
471 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
473 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
474 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
475 CLEAR_HARD_REG_SET (processed_hard_reg_set
);
476 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
478 ira_non_ordered_class_hard_regs
[cl
][i
] = -1;
479 ira_class_hard_reg_index
[cl
][i
] = -1;
481 for (n
= 0, i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
483 #ifdef REG_ALLOC_ORDER
484 hard_regno
= reg_alloc_order
[i
];
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set
, hard_regno
))
490 SET_HARD_REG_BIT (processed_hard_reg_set
, hard_regno
);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset
, hard_regno
))
492 ira_class_hard_reg_index
[cl
][hard_regno
] = -1;
495 ira_class_hard_reg_index
[cl
][hard_regno
] = n
;
496 ira_class_hard_regs
[cl
][n
++] = hard_regno
;
499 ira_class_hard_regs_num
[cl
] = n
;
500 for (n
= 0, i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset
, i
))
502 ira_non_ordered_class_hard_regs
[cl
][n
++] = i
;
503 ira_assert (ira_class_hard_regs_num
[cl
] == n
);
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
511 setup_alloc_regs (bool use_hard_frame_p
)
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER
;
516 COPY_HARD_REG_SET (no_unit_alloc_regs
, fixed_reg_set
);
517 if (! use_hard_frame_p
)
518 SET_HARD_REG_BIT (no_unit_alloc_regs
, HARD_FRAME_POINTER_REGNUM
);
519 setup_class_hard_regs ();
524 #define alloc_reg_class_subclasses \
525 (this_target_ira_int->x_alloc_reg_class_subclasses)
527 /* Initialize the table of subclasses of each reg class. */
529 setup_reg_subclasses (void)
532 HARD_REG_SET temp_hard_regset2
;
534 for (i
= 0; i
< N_REG_CLASSES
; i
++)
535 for (j
= 0; j
< N_REG_CLASSES
; j
++)
536 alloc_reg_class_subclasses
[i
][j
] = LIM_REG_CLASSES
;
538 for (i
= 0; i
< N_REG_CLASSES
; i
++)
540 if (i
== (int) NO_REGS
)
543 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[i
]);
544 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
545 if (hard_reg_set_empty_p (temp_hard_regset
))
547 for (j
= 0; j
< N_REG_CLASSES
; j
++)
552 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[j
]);
553 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
554 if (! hard_reg_set_subset_p (temp_hard_regset
,
557 p
= &alloc_reg_class_subclasses
[j
][0];
558 while (*p
!= LIM_REG_CLASSES
) p
++;
559 *p
= (enum reg_class
) i
;
566 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
568 setup_class_subset_and_memory_move_costs (void)
570 int cl
, cl2
, mode
, cost
;
571 HARD_REG_SET temp_hard_regset2
;
573 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
574 ira_memory_move_cost
[mode
][NO_REGS
][0]
575 = ira_memory_move_cost
[mode
][NO_REGS
][1] = SHRT_MAX
;
576 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
578 if (cl
!= (int) NO_REGS
)
579 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
581 ira_max_memory_move_cost
[mode
][cl
][0]
582 = ira_memory_move_cost
[mode
][cl
][0]
583 = memory_move_cost ((enum machine_mode
) mode
,
584 (reg_class_t
) cl
, false);
585 ira_max_memory_move_cost
[mode
][cl
][1]
586 = ira_memory_move_cost
[mode
][cl
][1]
587 = memory_move_cost ((enum machine_mode
) mode
,
588 (reg_class_t
) cl
, true);
589 /* Costs for NO_REGS are used in cost calculation on the
590 1st pass when the preferred register classes are not
591 known yet. In this case we take the best scenario. */
592 if (ira_memory_move_cost
[mode
][NO_REGS
][0]
593 > ira_memory_move_cost
[mode
][cl
][0])
594 ira_max_memory_move_cost
[mode
][NO_REGS
][0]
595 = ira_memory_move_cost
[mode
][NO_REGS
][0]
596 = ira_memory_move_cost
[mode
][cl
][0];
597 if (ira_memory_move_cost
[mode
][NO_REGS
][1]
598 > ira_memory_move_cost
[mode
][cl
][1])
599 ira_max_memory_move_cost
[mode
][NO_REGS
][1]
600 = ira_memory_move_cost
[mode
][NO_REGS
][1]
601 = ira_memory_move_cost
[mode
][cl
][1];
604 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
605 for (cl2
= (int) N_REG_CLASSES
- 1; cl2
>= 0; cl2
--)
607 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
608 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
609 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl2
]);
610 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
611 ira_class_subset_p
[cl
][cl2
]
612 = hard_reg_set_subset_p (temp_hard_regset
, temp_hard_regset2
);
613 if (! hard_reg_set_empty_p (temp_hard_regset2
)
614 && hard_reg_set_subset_p (reg_class_contents
[cl2
],
615 reg_class_contents
[cl
]))
616 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
618 cost
= ira_memory_move_cost
[mode
][cl2
][0];
619 if (cost
> ira_max_memory_move_cost
[mode
][cl
][0])
620 ira_max_memory_move_cost
[mode
][cl
][0] = cost
;
621 cost
= ira_memory_move_cost
[mode
][cl2
][1];
622 if (cost
> ira_max_memory_move_cost
[mode
][cl
][1])
623 ira_max_memory_move_cost
[mode
][cl
][1] = cost
;
626 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
627 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
629 ira_memory_move_cost
[mode
][cl
][0]
630 = ira_max_memory_move_cost
[mode
][cl
][0];
631 ira_memory_move_cost
[mode
][cl
][1]
632 = ira_max_memory_move_cost
[mode
][cl
][1];
634 setup_reg_subclasses ();
639 /* Define the following macro if allocation through malloc if
641 #define IRA_NO_OBSTACK
643 #ifndef IRA_NO_OBSTACK
644 /* Obstack used for storing all dynamic data (except bitmaps) of the
646 static struct obstack ira_obstack
;
649 /* Obstack used for storing all bitmaps of the IRA. */
650 static struct bitmap_obstack ira_bitmap_obstack
;
652 /* Allocate memory of size LEN for IRA data. */
654 ira_allocate (size_t len
)
658 #ifndef IRA_NO_OBSTACK
659 res
= obstack_alloc (&ira_obstack
, len
);
666 /* Free memory ADDR allocated for IRA data. */
668 ira_free (void *addr ATTRIBUTE_UNUSED
)
670 #ifndef IRA_NO_OBSTACK
678 /* Allocate and returns bitmap for IRA. */
680 ira_allocate_bitmap (void)
682 return BITMAP_ALLOC (&ira_bitmap_obstack
);
685 /* Free bitmap B allocated for IRA. */
687 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED
)
694 /* Output information about allocation of all allocnos (except for
695 caps) into file F. */
697 ira_print_disposition (FILE *f
)
703 fprintf (f
, "Disposition:");
704 max_regno
= max_reg_num ();
705 for (n
= 0, i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
706 for (a
= ira_regno_allocno_map
[i
];
708 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
713 fprintf (f
, " %4d:r%-4d", ALLOCNO_NUM (a
), ALLOCNO_REGNO (a
));
714 if ((bb
= ALLOCNO_LOOP_TREE_NODE (a
)->bb
) != NULL
)
715 fprintf (f
, "b%-3d", bb
->index
);
717 fprintf (f
, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a
)->loop_num
);
718 if (ALLOCNO_HARD_REGNO (a
) >= 0)
719 fprintf (f
, " %3d", ALLOCNO_HARD_REGNO (a
));
726 /* Outputs information about allocation of all allocnos into
729 ira_debug_disposition (void)
731 ira_print_disposition (stderr
);
736 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
737 register class containing stack registers or NO_REGS if there are
738 no stack registers. To find this class, we iterate through all
739 register pressure classes and choose the first register pressure
740 class containing all the stack registers and having the biggest
743 setup_stack_reg_pressure_class (void)
745 ira_stack_reg_pressure_class
= NO_REGS
;
750 HARD_REG_SET temp_hard_regset2
;
752 CLEAR_HARD_REG_SET (temp_hard_regset
);
753 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
754 SET_HARD_REG_BIT (temp_hard_regset
, i
);
756 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
758 cl
= ira_pressure_classes
[i
];
759 COPY_HARD_REG_SET (temp_hard_regset2
, temp_hard_regset
);
760 AND_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
761 size
= hard_reg_set_size (temp_hard_regset2
);
765 ira_stack_reg_pressure_class
= cl
;
772 /* Find pressure classes which are register classes for which we
773 calculate register pressure in IRA, register pressure sensitive
774 insn scheduling, and register pressure sensitive loop invariant
777 To make register pressure calculation easy, we always use
778 non-intersected register pressure classes. A move of hard
779 registers from one register pressure class is not more expensive
780 than load and store of the hard registers. Most likely an allocno
781 class will be a subset of a register pressure class and in many
782 cases a register pressure class. That makes usage of register
783 pressure classes a good approximation to find a high register
786 setup_pressure_classes (void)
788 int cost
, i
, n
, curr
;
790 enum reg_class pressure_classes
[N_REG_CLASSES
];
792 HARD_REG_SET temp_hard_regset2
;
796 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
798 if (ira_class_hard_regs_num
[cl
] == 0)
800 if (ira_class_hard_regs_num
[cl
] != 1
801 /* A register class without subclasses may contain a few
802 hard registers and movement between them is costly
803 (e.g. SPARC FPCC registers). We still should consider it
804 as a candidate for a pressure class. */
805 && alloc_reg_class_subclasses
[cl
][0] < cl
)
807 /* Check that the moves between any hard registers of the
808 current class are not more expensive for a legal mode
809 than load/store of the hard registers of the current
810 class. Such class is a potential candidate to be a
811 register pressure class. */
812 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
814 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
816 AND_COMPL_HARD_REG_SET (temp_hard_regset
,
817 ira_prohibited_class_mode_regs
[cl
][m
]);
818 if (hard_reg_set_empty_p (temp_hard_regset
))
820 ira_init_register_move_cost_if_necessary ((enum machine_mode
) m
);
821 cost
= ira_register_move_cost
[m
][cl
][cl
];
822 if (cost
<= ira_max_memory_move_cost
[m
][cl
][1]
823 || cost
<= ira_max_memory_move_cost
[m
][cl
][0])
826 if (m
>= NUM_MACHINE_MODES
)
831 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
833 /* Remove so far added pressure classes which are subset of the
834 current candidate class. Prefer GENERAL_REGS as a pressure
835 register class to another class containing the same
836 allocatable hard registers. We do this because machine
837 dependent cost hooks might give wrong costs for the latter
838 class but always give the right cost for the former class
840 for (i
= 0; i
< n
; i
++)
842 cl2
= pressure_classes
[i
];
843 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl2
]);
844 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
845 if (hard_reg_set_subset_p (temp_hard_regset
, temp_hard_regset2
)
846 && (! hard_reg_set_equal_p (temp_hard_regset
, temp_hard_regset2
)
847 || cl2
== (int) GENERAL_REGS
))
849 pressure_classes
[curr
++] = (enum reg_class
) cl2
;
853 if (hard_reg_set_subset_p (temp_hard_regset2
, temp_hard_regset
)
854 && (! hard_reg_set_equal_p (temp_hard_regset2
, temp_hard_regset
)
855 || cl
== (int) GENERAL_REGS
))
857 if (hard_reg_set_equal_p (temp_hard_regset2
, temp_hard_regset
))
859 pressure_classes
[curr
++] = (enum reg_class
) cl2
;
861 /* If the current candidate is a subset of a so far added
862 pressure class, don't add it to the list of the pressure
865 pressure_classes
[curr
++] = (enum reg_class
) cl
;
868 #ifdef ENABLE_IRA_CHECKING
870 HARD_REG_SET ignore_hard_regs
;
872 /* Check pressure classes correctness: here we check that hard
873 registers from all register pressure classes contains all hard
874 registers available for the allocation. */
875 CLEAR_HARD_REG_SET (temp_hard_regset
);
876 CLEAR_HARD_REG_SET (temp_hard_regset2
);
877 COPY_HARD_REG_SET (ignore_hard_regs
, no_unit_alloc_regs
);
878 for (cl
= 0; cl
< LIM_REG_CLASSES
; cl
++)
880 /* For some targets (like MIPS with MD_REGS), there are some
881 classes with hard registers available for allocation but
882 not able to hold value of any mode. */
883 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
884 if (contains_reg_of_mode
[cl
][m
])
886 if (m
>= NUM_MACHINE_MODES
)
888 IOR_HARD_REG_SET (ignore_hard_regs
, reg_class_contents
[cl
]);
891 for (i
= 0; i
< n
; i
++)
892 if ((int) pressure_classes
[i
] == cl
)
894 IOR_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
896 IOR_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
898 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
899 /* Some targets (like SPARC with ICC reg) have alocatable regs
900 for which no reg class is defined. */
901 if (REGNO_REG_CLASS (i
) == NO_REGS
)
902 SET_HARD_REG_BIT (ignore_hard_regs
, i
);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset
, ignore_hard_regs
);
904 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, ignore_hard_regs
);
905 ira_assert (hard_reg_set_subset_p (temp_hard_regset2
, temp_hard_regset
));
908 ira_pressure_classes_num
= 0;
909 for (i
= 0; i
< n
; i
++)
911 cl
= (int) pressure_classes
[i
];
912 ira_reg_pressure_class_p
[cl
] = true;
913 ira_pressure_classes
[ira_pressure_classes_num
++] = (enum reg_class
) cl
;
915 setup_stack_reg_pressure_class ();
918 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
919 whose register move cost between any registers of the class is the
920 same as for all its subclasses. We use the data to speed up the
921 2nd pass of calculations of allocno costs. */
923 setup_uniform_class_p (void)
927 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
929 ira_uniform_class_p
[cl
] = false;
930 if (ira_class_hard_regs_num
[cl
] == 0)
932 /* We can not use alloc_reg_class_subclasses here because move
933 cost hooks does not take into account that some registers are
934 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
935 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 because SSE regs are unavailable. */
937 for (i
= 0; (cl2
= reg_class_subclasses
[cl
][i
]) != LIM_REG_CLASSES
; i
++)
939 if (ira_class_hard_regs_num
[cl2
] == 0)
941 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
942 if (contains_reg_of_mode
[cl
][m
] && contains_reg_of_mode
[cl2
][m
])
944 ira_init_register_move_cost_if_necessary ((enum machine_mode
) m
);
945 if (ira_register_move_cost
[m
][cl
][cl
]
946 != ira_register_move_cost
[m
][cl2
][cl2
])
949 if (m
< NUM_MACHINE_MODES
)
952 if (cl2
== LIM_REG_CLASSES
)
953 ira_uniform_class_p
[cl
] = true;
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
960 Target may have many subtargets and not all target hard regiters can
961 be used for allocation, e.g. x86 port in 32-bit mode can not use
962 hard registers introduced in x86-64 like r8-r15). Some classes
963 might have the same allocatable hard registers, e.g. INDEX_REGS
964 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
965 calculations efforts we introduce allocno classes which contain
966 unique non-empty sets of allocatable hard-registers.
968 Pseudo class cost calculation in ira-costs.c is very expensive.
969 Therefore we are trying to decrease number of classes involved in
970 such calculation. Register classes used in the cost calculation
971 are called important classes. They are allocno classes and other
972 non-empty classes whose allocatable hard register sets are inside
973 of an allocno class hard register set. From the first sight, it
974 looks like that they are just allocno classes. It is not true. In
975 example of x86-port in 32-bit mode, allocno classes will contain
976 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977 registers are the same for the both classes). The important
978 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
979 because a machine description insn constraint may refers for
980 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
981 of the insn constraints. */
983 setup_allocno_and_important_classes (void)
987 HARD_REG_SET temp_hard_regset2
;
988 static enum reg_class classes
[LIM_REG_CLASSES
+ 1];
991 /* Collect classes which contain unique sets of allocatable hard
992 registers. Prefer GENERAL_REGS to other classes containing the
993 same set of hard registers. */
994 for (i
= 0; i
< LIM_REG_CLASSES
; i
++)
996 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[i
]);
997 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
998 for (j
= 0; j
< n
; j
++)
1001 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
1002 AND_COMPL_HARD_REG_SET (temp_hard_regset2
,
1003 no_unit_alloc_regs
);
1004 if (hard_reg_set_equal_p (temp_hard_regset
,
1009 classes
[n
++] = (enum reg_class
) i
;
1010 else if (i
== GENERAL_REGS
)
1011 /* Prefer general regs. For i386 example, it means that
1012 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1013 (all of them consists of the same available hard
1015 classes
[j
] = (enum reg_class
) i
;
1017 classes
[n
] = LIM_REG_CLASSES
;
1019 /* Set up classes which can be used for allocnos as classes
1020 conatining non-empty unique sets of allocatable hard
1022 ira_allocno_classes_num
= 0;
1023 for (i
= 0; (cl
= classes
[i
]) != LIM_REG_CLASSES
; i
++)
1024 if (ira_class_hard_regs_num
[cl
] > 0)
1025 ira_allocno_classes
[ira_allocno_classes_num
++] = (enum reg_class
) cl
;
1026 ira_important_classes_num
= 0;
1027 /* Add non-allocno classes containing to non-empty set of
1028 allocatable hard regs. */
1029 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1030 if (ira_class_hard_regs_num
[cl
] > 0)
1032 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1033 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1035 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1037 COPY_HARD_REG_SET (temp_hard_regset2
,
1038 reg_class_contents
[ira_allocno_classes
[j
]]);
1039 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
1040 if ((enum reg_class
) cl
== ira_allocno_classes
[j
])
1042 else if (hard_reg_set_subset_p (temp_hard_regset
,
1046 if (set_p
&& j
>= ira_allocno_classes_num
)
1047 ira_important_classes
[ira_important_classes_num
++]
1048 = (enum reg_class
) cl
;
1050 /* Now add allocno classes to the important classes. */
1051 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1052 ira_important_classes
[ira_important_classes_num
++]
1053 = ira_allocno_classes
[j
];
1054 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1056 ira_reg_allocno_class_p
[cl
] = false;
1057 ira_reg_pressure_class_p
[cl
] = false;
1059 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1060 ira_reg_allocno_class_p
[ira_allocno_classes
[j
]] = true;
1061 setup_pressure_classes ();
1062 setup_uniform_class_p ();
1065 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1066 given by array CLASSES of length CLASSES_NUM. The function is used
1067 make translation any reg class to an allocno class or to an
1068 pressure class. This translation is necessary for some
1069 calculations when we can use only allocno or pressure classes and
1070 such translation represents an approximate representation of all
1073 The translation in case when allocatable hard register set of a
1074 given class is subset of allocatable hard register set of a class
1075 in CLASSES is pretty simple. We use smallest classes from CLASSES
1076 containing a given class. If allocatable hard register set of a
1077 given class is not a subset of any corresponding set of a class
1078 from CLASSES, we use the cheapest (with load/store point of view)
1079 class from CLASSES whose set intersects with given class set */
1081 setup_class_translate_array (enum reg_class
*class_translate
,
1082 int classes_num
, enum reg_class
*classes
)
1085 enum reg_class aclass
, best_class
, *cl_ptr
;
1086 int i
, cost
, min_cost
, best_cost
;
1088 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1089 class_translate
[cl
] = NO_REGS
;
1091 for (i
= 0; i
< classes_num
; i
++)
1093 aclass
= classes
[i
];
1094 for (cl_ptr
= &alloc_reg_class_subclasses
[aclass
][0];
1095 (cl
= *cl_ptr
) != LIM_REG_CLASSES
;
1097 if (class_translate
[cl
] == NO_REGS
)
1098 class_translate
[cl
] = aclass
;
1099 class_translate
[aclass
] = aclass
;
1101 /* For classes which are not fully covered by one of given classes
1102 (in other words covered by more one given class), use the
1104 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1106 if (cl
== NO_REGS
|| class_translate
[cl
] != NO_REGS
)
1108 best_class
= NO_REGS
;
1109 best_cost
= INT_MAX
;
1110 for (i
= 0; i
< classes_num
; i
++)
1112 aclass
= classes
[i
];
1113 COPY_HARD_REG_SET (temp_hard_regset
,
1114 reg_class_contents
[aclass
]);
1115 AND_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1116 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1117 if (! hard_reg_set_empty_p (temp_hard_regset
))
1120 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
1122 cost
= (ira_memory_move_cost
[mode
][aclass
][0]
1123 + ira_memory_move_cost
[mode
][aclass
][1]);
1124 if (min_cost
> cost
)
1127 if (best_class
== NO_REGS
|| best_cost
> min_cost
)
1129 best_class
= aclass
;
1130 best_cost
= min_cost
;
1134 class_translate
[cl
] = best_class
;
1138 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1139 IRA_PRESSURE_CLASS_TRANSLATE. */
1141 setup_class_translate (void)
1143 setup_class_translate_array (ira_allocno_class_translate
,
1144 ira_allocno_classes_num
, ira_allocno_classes
);
1145 setup_class_translate_array (ira_pressure_class_translate
,
1146 ira_pressure_classes_num
, ira_pressure_classes
);
1149 /* Order numbers of allocno classes in original target allocno class
1150 array, -1 for non-allocno classes. */
1151 static int allocno_class_order
[N_REG_CLASSES
];
1153 /* The function used to sort the important classes. */
1155 comp_reg_classes_func (const void *v1p
, const void *v2p
)
1157 enum reg_class cl1
= *(const enum reg_class
*) v1p
;
1158 enum reg_class cl2
= *(const enum reg_class
*) v2p
;
1159 enum reg_class tcl1
, tcl2
;
1162 tcl1
= ira_allocno_class_translate
[cl1
];
1163 tcl2
= ira_allocno_class_translate
[cl2
];
1164 if (tcl1
!= NO_REGS
&& tcl2
!= NO_REGS
1165 && (diff
= allocno_class_order
[tcl1
] - allocno_class_order
[tcl2
]) != 0)
1167 return (int) cl1
- (int) cl2
;
1170 /* For correct work of function setup_reg_class_relation we need to
1171 reorder important classes according to the order of their allocno
1172 classes. It places important classes containing the same
1173 allocatable hard register set adjacent to each other and allocno
1174 class with the allocatable hard register set right after the other
1175 important classes with the same set.
1177 In example from comments of function
1178 setup_allocno_and_important_classes, it places LEGACY_REGS and
1179 GENERAL_REGS close to each other and GENERAL_REGS is after
1182 reorder_important_classes (void)
1186 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1187 allocno_class_order
[i
] = -1;
1188 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
1189 allocno_class_order
[ira_allocno_classes
[i
]] = i
;
1190 qsort (ira_important_classes
, ira_important_classes_num
,
1191 sizeof (enum reg_class
), comp_reg_classes_func
);
1192 for (i
= 0; i
< ira_important_classes_num
; i
++)
1193 ira_important_class_nums
[ira_important_classes
[i
]] = i
;
1196 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1197 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1198 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1199 please see corresponding comments in ira-int.h. */
1201 setup_reg_class_relations (void)
1203 int i
, cl1
, cl2
, cl3
;
1204 HARD_REG_SET intersection_set
, union_set
, temp_set2
;
1205 bool important_class_p
[N_REG_CLASSES
];
1207 memset (important_class_p
, 0, sizeof (important_class_p
));
1208 for (i
= 0; i
< ira_important_classes_num
; i
++)
1209 important_class_p
[ira_important_classes
[i
]] = true;
1210 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1212 ira_reg_class_super_classes
[cl1
][0] = LIM_REG_CLASSES
;
1213 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1215 ira_reg_classes_intersect_p
[cl1
][cl2
] = false;
1216 ira_reg_class_intersect
[cl1
][cl2
] = NO_REGS
;
1217 ira_reg_class_subset
[cl1
][cl2
] = NO_REGS
;
1218 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl1
]);
1219 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1220 COPY_HARD_REG_SET (temp_set2
, reg_class_contents
[cl2
]);
1221 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1222 if (hard_reg_set_empty_p (temp_hard_regset
)
1223 && hard_reg_set_empty_p (temp_set2
))
1225 /* The both classes have no allocatable hard registers
1226 -- take all class hard registers into account and use
1227 reg_class_subunion and reg_class_superunion. */
1230 cl3
= reg_class_subclasses
[cl1
][i
];
1231 if (cl3
== LIM_REG_CLASSES
)
1233 if (reg_class_subset_p (ira_reg_class_intersect
[cl1
][cl2
],
1234 (enum reg_class
) cl3
))
1235 ira_reg_class_intersect
[cl1
][cl2
] = (enum reg_class
) cl3
;
1237 ira_reg_class_subunion
[cl1
][cl2
] = reg_class_subunion
[cl1
][cl2
];
1238 ira_reg_class_superunion
[cl1
][cl2
] = reg_class_superunion
[cl1
][cl2
];
1241 ira_reg_classes_intersect_p
[cl1
][cl2
]
1242 = hard_reg_set_intersect_p (temp_hard_regset
, temp_set2
);
1243 if (important_class_p
[cl1
] && important_class_p
[cl2
]
1244 && hard_reg_set_subset_p (temp_hard_regset
, temp_set2
))
1246 /* CL1 and CL2 are important classes and CL1 allocatable
1247 hard register set is inside of CL2 allocatable hard
1248 registers -- make CL1 a superset of CL2. */
1251 p
= &ira_reg_class_super_classes
[cl1
][0];
1252 while (*p
!= LIM_REG_CLASSES
)
1254 *p
++ = (enum reg_class
) cl2
;
1255 *p
= LIM_REG_CLASSES
;
1257 ira_reg_class_subunion
[cl1
][cl2
] = NO_REGS
;
1258 ira_reg_class_superunion
[cl1
][cl2
] = NO_REGS
;
1259 COPY_HARD_REG_SET (intersection_set
, reg_class_contents
[cl1
]);
1260 AND_HARD_REG_SET (intersection_set
, reg_class_contents
[cl2
]);
1261 AND_COMPL_HARD_REG_SET (intersection_set
, no_unit_alloc_regs
);
1262 COPY_HARD_REG_SET (union_set
, reg_class_contents
[cl1
]);
1263 IOR_HARD_REG_SET (union_set
, reg_class_contents
[cl2
]);
1264 AND_COMPL_HARD_REG_SET (union_set
, no_unit_alloc_regs
);
1265 for (cl3
= 0; cl3
< N_REG_CLASSES
; cl3
++)
1267 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl3
]);
1268 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1269 if (hard_reg_set_subset_p (temp_hard_regset
, intersection_set
))
1271 /* CL3 allocatable hard register set is inside of
1272 intersection of allocatable hard register sets
1274 if (important_class_p
[cl3
])
1279 [(int) ira_reg_class_intersect
[cl1
][cl2
]]);
1280 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1281 if (! hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1282 /* If the allocatable hard register sets are
1283 the same, prefer GENERAL_REGS or the
1284 smallest class for debugging
1286 || (hard_reg_set_equal_p (temp_hard_regset
, temp_set2
)
1287 && (cl3
== GENERAL_REGS
1288 || ((ira_reg_class_intersect
[cl1
][cl2
]
1290 && hard_reg_set_subset_p
1291 (reg_class_contents
[cl3
],
1294 ira_reg_class_intersect
[cl1
][cl2
]])))))
1295 ira_reg_class_intersect
[cl1
][cl2
] = (enum reg_class
) cl3
;
1299 reg_class_contents
[(int) ira_reg_class_subset
[cl1
][cl2
]]);
1300 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1301 if (! hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1302 /* Ignore unavailable hard registers and prefer
1303 smallest class for debugging purposes. */
1304 || (hard_reg_set_equal_p (temp_hard_regset
, temp_set2
)
1305 && hard_reg_set_subset_p
1306 (reg_class_contents
[cl3
],
1308 [(int) ira_reg_class_subset
[cl1
][cl2
]])))
1309 ira_reg_class_subset
[cl1
][cl2
] = (enum reg_class
) cl3
;
1311 if (important_class_p
[cl3
]
1312 && hard_reg_set_subset_p (temp_hard_regset
, union_set
))
1314 /* CL3 allocatbale hard register set is inside of
1315 union of allocatable hard register sets of CL1
1319 reg_class_contents
[(int) ira_reg_class_subunion
[cl1
][cl2
]]);
1320 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1321 if (ira_reg_class_subunion
[cl1
][cl2
] == NO_REGS
1322 || (hard_reg_set_subset_p (temp_set2
, temp_hard_regset
)
1324 && (! hard_reg_set_equal_p (temp_set2
,
1326 || cl3
== GENERAL_REGS
1327 /* If the allocatable hard register sets are the
1328 same, prefer GENERAL_REGS or the smallest
1329 class for debugging purposes. */
1330 || (ira_reg_class_subunion
[cl1
][cl2
] != GENERAL_REGS
1331 && hard_reg_set_subset_p
1332 (reg_class_contents
[cl3
],
1334 [(int) ira_reg_class_subunion
[cl1
][cl2
]])))))
1335 ira_reg_class_subunion
[cl1
][cl2
] = (enum reg_class
) cl3
;
1337 if (hard_reg_set_subset_p (union_set
, temp_hard_regset
))
1339 /* CL3 allocatable hard register set contains union
1340 of allocatable hard register sets of CL1 and
1344 reg_class_contents
[(int) ira_reg_class_superunion
[cl1
][cl2
]]);
1345 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1346 if (ira_reg_class_superunion
[cl1
][cl2
] == NO_REGS
1347 || (hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1349 && (! hard_reg_set_equal_p (temp_set2
,
1351 || cl3
== GENERAL_REGS
1352 /* If the allocatable hard register sets are the
1353 same, prefer GENERAL_REGS or the smallest
1354 class for debugging purposes. */
1355 || (ira_reg_class_superunion
[cl1
][cl2
] != GENERAL_REGS
1356 && hard_reg_set_subset_p
1357 (reg_class_contents
[cl3
],
1359 [(int) ira_reg_class_superunion
[cl1
][cl2
]])))))
1360 ira_reg_class_superunion
[cl1
][cl2
] = (enum reg_class
) cl3
;
1367 /* Output all unifrom and important classes into file F. */
1369 print_unform_and_important_classes (FILE *f
)
1371 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
1374 fprintf (f
, "Uniform classes:\n");
1375 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1376 if (ira_uniform_class_p
[cl
])
1377 fprintf (f
, " %s", reg_class_names
[cl
]);
1378 fprintf (f
, "\nImportant classes:\n");
1379 for (i
= 0; i
< ira_important_classes_num
; i
++)
1380 fprintf (f
, " %s", reg_class_names
[ira_important_classes
[i
]]);
1384 /* Output all possible allocno or pressure classes and their
1385 translation map into file F. */
1387 print_translated_classes (FILE *f
, bool pressure_p
)
1389 int classes_num
= (pressure_p
1390 ? ira_pressure_classes_num
: ira_allocno_classes_num
);
1391 enum reg_class
*classes
= (pressure_p
1392 ? ira_pressure_classes
: ira_allocno_classes
);
1393 enum reg_class
*class_translate
= (pressure_p
1394 ? ira_pressure_class_translate
1395 : ira_allocno_class_translate
);
1396 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
1399 fprintf (f
, "%s classes:\n", pressure_p
? "Pressure" : "Allocno");
1400 for (i
= 0; i
< classes_num
; i
++)
1401 fprintf (f
, " %s", reg_class_names
[classes
[i
]]);
1402 fprintf (f
, "\nClass translation:\n");
1403 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1404 fprintf (f
, " %s -> %s\n", reg_class_names
[i
],
1405 reg_class_names
[class_translate
[i
]]);
1408 /* Output all possible allocno and translation classes and the
1409 translation maps into stderr. */
1411 ira_debug_allocno_classes (void)
1413 print_unform_and_important_classes (stderr
);
1414 print_translated_classes (stderr
, false);
1415 print_translated_classes (stderr
, true);
1418 /* Set up different arrays concerning class subsets, allocno and
1419 important classes. */
1421 find_reg_classes (void)
1423 setup_allocno_and_important_classes ();
1424 setup_class_translate ();
1425 reorder_important_classes ();
1426 setup_reg_class_relations ();
1431 /* Set up the array above. */
1433 setup_hard_regno_aclass (void)
1437 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1440 ira_hard_regno_allocno_class
[i
]
1441 = (TEST_HARD_REG_BIT (no_unit_alloc_regs
, i
)
1443 : ira_allocno_class_translate
[REGNO_REG_CLASS (i
)]);
1447 ira_hard_regno_allocno_class
[i
] = NO_REGS
;
1448 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1450 cl
= ira_allocno_classes
[j
];
1451 if (ira_class_hard_reg_index
[cl
][i
] >= 0)
1453 ira_hard_regno_allocno_class
[i
] = cl
;
1463 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1465 setup_reg_class_nregs (void)
1469 for (m
= 0; m
< MAX_MACHINE_MODE
; m
++)
1471 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1472 ira_reg_class_max_nregs
[cl
][m
]
1473 = ira_reg_class_min_nregs
[cl
][m
]
1474 = targetm
.class_max_nregs ((reg_class_t
) cl
, (enum machine_mode
) m
);
1475 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1477 (cl2
= alloc_reg_class_subclasses
[cl
][i
]) != LIM_REG_CLASSES
;
1479 if (ira_reg_class_min_nregs
[cl2
][m
]
1480 < ira_reg_class_min_nregs
[cl
][m
])
1481 ira_reg_class_min_nregs
[cl
][m
] = ira_reg_class_min_nregs
[cl2
][m
];
1487 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1488 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1490 setup_prohibited_class_mode_regs (void)
1492 int j
, k
, hard_regno
, cl
, last_hard_regno
, count
;
1494 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
1496 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1497 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1498 for (j
= 0; j
< NUM_MACHINE_MODES
; j
++)
1501 last_hard_regno
= -1;
1502 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs
[cl
][j
]);
1503 for (k
= ira_class_hard_regs_num
[cl
] - 1; k
>= 0; k
--)
1505 hard_regno
= ira_class_hard_regs
[cl
][k
];
1506 if (! HARD_REGNO_MODE_OK (hard_regno
, (enum machine_mode
) j
))
1507 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1509 else if (in_hard_reg_set_p (temp_hard_regset
,
1510 (enum machine_mode
) j
, hard_regno
))
1512 last_hard_regno
= hard_regno
;
1516 ira_class_singleton
[cl
][j
] = (count
== 1 ? last_hard_regno
: -1);
1521 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1522 spanning from one register pressure class to another one. It is
1523 called after defining the pressure classes. */
1525 clarify_prohibited_class_mode_regs (void)
1527 int j
, k
, hard_regno
, cl
, pclass
, nregs
;
1529 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
1530 for (j
= 0; j
< NUM_MACHINE_MODES
; j
++)
1532 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs
[cl
][j
]);
1533 for (k
= ira_class_hard_regs_num
[cl
] - 1; k
>= 0; k
--)
1535 hard_regno
= ira_class_hard_regs
[cl
][k
];
1536 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
], hard_regno
))
1538 nregs
= hard_regno_nregs
[hard_regno
][j
];
1539 if (hard_regno
+ nregs
> FIRST_PSEUDO_REGISTER
)
1541 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1545 pclass
= ira_pressure_class_translate
[REGNO_REG_CLASS (hard_regno
)];
1546 for (nregs
-- ;nregs
>= 0; nregs
--)
1547 if (((enum reg_class
) pclass
1548 != ira_pressure_class_translate
[REGNO_REG_CLASS
1549 (hard_regno
+ nregs
)]))
1551 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1555 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1557 add_to_hard_reg_set (&ira_useful_class_mode_regs
[cl
][j
],
1558 (enum machine_mode
) j
, hard_regno
);
1563 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1564 and IRA_MAY_MOVE_OUT_COST for MODE. */
1566 ira_init_register_move_cost (enum machine_mode mode
)
1568 static unsigned short last_move_cost
[N_REG_CLASSES
][N_REG_CLASSES
];
1569 bool all_match
= true;
1570 unsigned int cl1
, cl2
;
1572 ira_assert (ira_register_move_cost
[mode
] == NULL
1573 && ira_may_move_in_cost
[mode
] == NULL
1574 && ira_may_move_out_cost
[mode
] == NULL
);
1575 ira_assert (have_regs_of_mode
[mode
]);
1576 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1577 if (contains_reg_of_mode
[cl1
][mode
])
1578 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1581 if (!contains_reg_of_mode
[cl2
][mode
])
1585 cost
= register_move_cost (mode
, (enum reg_class
) cl1
,
1586 (enum reg_class
) cl2
);
1587 ira_assert (cost
< 65535);
1589 all_match
&= (last_move_cost
[cl1
][cl2
] == cost
);
1590 last_move_cost
[cl1
][cl2
] = cost
;
1592 if (all_match
&& last_mode_for_init_move_cost
!= -1)
1594 ira_register_move_cost
[mode
]
1595 = ira_register_move_cost
[last_mode_for_init_move_cost
];
1596 ira_may_move_in_cost
[mode
]
1597 = ira_may_move_in_cost
[last_mode_for_init_move_cost
];
1598 ira_may_move_out_cost
[mode
]
1599 = ira_may_move_out_cost
[last_mode_for_init_move_cost
];
1602 last_mode_for_init_move_cost
= mode
;
1603 ira_register_move_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1604 ira_may_move_in_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1605 ira_may_move_out_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1606 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1607 if (contains_reg_of_mode
[cl1
][mode
])
1608 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1611 enum reg_class
*p1
, *p2
;
1613 if (last_move_cost
[cl1
][cl2
] == 65535)
1615 ira_register_move_cost
[mode
][cl1
][cl2
] = 65535;
1616 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 65535;
1617 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 65535;
1621 cost
= last_move_cost
[cl1
][cl2
];
1623 for (p2
= ®_class_subclasses
[cl2
][0];
1624 *p2
!= LIM_REG_CLASSES
; p2
++)
1625 if (ira_class_hard_regs_num
[*p2
] > 0
1626 && (ira_reg_class_max_nregs
[*p2
][mode
]
1627 <= ira_class_hard_regs_num
[*p2
]))
1628 cost
= MAX (cost
, ira_register_move_cost
[mode
][cl1
][*p2
]);
1630 for (p1
= ®_class_subclasses
[cl1
][0];
1631 *p1
!= LIM_REG_CLASSES
; p1
++)
1632 if (ira_class_hard_regs_num
[*p1
] > 0
1633 && (ira_reg_class_max_nregs
[*p1
][mode
]
1634 <= ira_class_hard_regs_num
[*p1
]))
1635 cost
= MAX (cost
, ira_register_move_cost
[mode
][*p1
][cl2
]);
1637 ira_assert (cost
<= 65535);
1638 ira_register_move_cost
[mode
][cl1
][cl2
] = cost
;
1640 if (ira_class_subset_p
[cl1
][cl2
])
1641 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 0;
1643 ira_may_move_in_cost
[mode
][cl1
][cl2
] = cost
;
1645 if (ira_class_subset_p
[cl2
][cl1
])
1646 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 0;
1648 ira_may_move_out_cost
[mode
][cl1
][cl2
] = cost
;
1652 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1654 ira_register_move_cost
[mode
][cl1
][cl2
] = 65535;
1655 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 65535;
1656 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 65535;
1661 /* This is called once during compiler work. It sets up
1662 different arrays whose values don't depend on the compiled
1665 ira_init_once (void)
1667 ira_init_costs_once ();
1671 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1672 ira_may_move_out_cost for each mode. */
1674 free_register_move_costs (void)
1678 /* Reset move_cost and friends, making sure we only free shared
1679 table entries once. */
1680 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
1681 if (ira_register_move_cost
[mode
])
1684 i
< mode
&& (ira_register_move_cost
[i
]
1685 != ira_register_move_cost
[mode
]);
1690 free (ira_register_move_cost
[mode
]);
1691 free (ira_may_move_in_cost
[mode
]);
1692 free (ira_may_move_out_cost
[mode
]);
1695 memset (ira_register_move_cost
, 0, sizeof ira_register_move_cost
);
1696 memset (ira_may_move_in_cost
, 0, sizeof ira_may_move_in_cost
);
1697 memset (ira_may_move_out_cost
, 0, sizeof ira_may_move_out_cost
);
1698 last_mode_for_init_move_cost
= -1;
1701 /* This is called every time when register related information is
1706 free_register_move_costs ();
1707 setup_reg_mode_hard_regset ();
1708 setup_alloc_regs (flag_omit_frame_pointer
!= 0);
1709 setup_class_subset_and_memory_move_costs ();
1710 setup_reg_class_nregs ();
1711 setup_prohibited_class_mode_regs ();
1712 find_reg_classes ();
1713 clarify_prohibited_class_mode_regs ();
1714 setup_hard_regno_aclass ();
1719 /* Function called once at the end of compiler work. */
1721 ira_finish_once (void)
1723 ira_finish_costs_once ();
1724 free_register_move_costs ();
1729 #define ira_prohibited_mode_move_regs_initialized_p \
1730 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1732 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1734 setup_prohibited_mode_move_regs (void)
1737 rtx test_reg1
, test_reg2
, move_pat
, move_insn
;
1739 if (ira_prohibited_mode_move_regs_initialized_p
)
1741 ira_prohibited_mode_move_regs_initialized_p
= true;
1742 test_reg1
= gen_rtx_REG (VOIDmode
, 0);
1743 test_reg2
= gen_rtx_REG (VOIDmode
, 0);
1744 move_pat
= gen_rtx_SET (VOIDmode
, test_reg1
, test_reg2
);
1745 move_insn
= gen_rtx_INSN (VOIDmode
, 0, 0, 0, 0, move_pat
, 0, -1, 0);
1746 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
1748 SET_HARD_REG_SET (ira_prohibited_mode_move_regs
[i
]);
1749 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
1751 if (! HARD_REGNO_MODE_OK (j
, (enum machine_mode
) i
))
1753 SET_REGNO_RAW (test_reg1
, j
);
1754 PUT_MODE (test_reg1
, (enum machine_mode
) i
);
1755 SET_REGNO_RAW (test_reg2
, j
);
1756 PUT_MODE (test_reg2
, (enum machine_mode
) i
);
1757 INSN_CODE (move_insn
) = -1;
1758 recog_memoized (move_insn
);
1759 if (INSN_CODE (move_insn
) < 0)
1761 extract_insn (move_insn
);
1762 if (! constrain_operands (1))
1764 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs
[i
], j
);
1771 /* Return TRUE if the operand constraint STR is commutative. */
1773 commutative_constraint_p (const char *str
)
1778 for (ignore_p
= false, curr_alt
= 0;;)
1783 str
+= CONSTRAINT_LEN (c
, str
);
1784 if (c
== '#' || !recog_data
.alternative_enabled_p
[curr_alt
])
1791 else if (! ignore_p
)
1793 /* Usually `%' is the first constraint character but the
1794 documentation does not require this. */
1802 /* Setup possible alternatives in ALTS for INSN. */
1804 ira_setup_alts (rtx insn
, HARD_REG_SET
&alts
)
1806 /* MAP nalt * nop -> start of constraints for given operand and
1808 static vec
<const char *> insn_constraints
;
1813 int commutative
= -1;
1815 extract_insn (insn
);
1816 CLEAR_HARD_REG_SET (alts
);
1817 insn_constraints
.release ();
1818 insn_constraints
.safe_grow_cleared (recog_data
.n_operands
1819 * recog_data
.n_alternatives
+ 1);
1820 /* Check that the hard reg set is enough for holding all
1821 alternatives. It is hard to imagine the situation when the
1822 assertion is wrong. */
1823 ira_assert (recog_data
.n_alternatives
1824 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE
) * CHAR_BIT
,
1825 FIRST_PSEUDO_REGISTER
));
1826 for (curr_swapped
= false;; curr_swapped
= true)
1828 /* Calculate some data common for all alternatives to speed up the
1830 for (nop
= 0; nop
< recog_data
.n_operands
; nop
++)
1832 for (nalt
= 0, p
= recog_data
.constraints
[nop
];
1833 nalt
< recog_data
.n_alternatives
;
1836 insn_constraints
[nop
* recog_data
.n_alternatives
+ nalt
] = p
;
1837 while (*p
&& *p
!= ',')
1843 for (nalt
= 0; nalt
< recog_data
.n_alternatives
; nalt
++)
1845 if (! recog_data
.alternative_enabled_p
[nalt
] || TEST_HARD_REG_BIT (alts
, nalt
))
1848 for (nop
= 0; nop
< recog_data
.n_operands
; nop
++)
1852 op
= recog_data
.operand
[nop
];
1853 p
= insn_constraints
[nop
* recog_data
.n_alternatives
+ nalt
];
1854 if (*p
== 0 || *p
== ',')
1858 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
1867 case '?': case '!': case '*': case '=': case '+':
1871 /* We only support one commutative marker, the
1872 first one. We already set commutative
1874 if (commutative
< 0)
1881 case '0': case '1': case '2': case '3': case '4':
1882 case '5': case '6': case '7': case '8': case '9':
1889 case TARGET_MEM_CONSTRAINT
:
1895 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
1896 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1902 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
1903 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1909 if (CONST_DOUBLE_AS_FLOAT_P (op
)
1910 || (GET_CODE (op
) == CONST_VECTOR
1911 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1917 if (CONST_DOUBLE_AS_FLOAT_P (op
)
1918 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
1923 if (CONST_SCALAR_INT_P (op
))
1926 if (CONSTANT_P (op
))
1931 if (CONST_SCALAR_INT_P (op
))
1943 if (CONST_INT_P (op
)
1944 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
1949 if (MEM_P (op
) && ! offsettable_memref_p (op
))
1961 cl
= (c
== 'r' ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
1964 #ifdef EXTRA_CONSTRAINT_STR
1965 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
1967 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
1969 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
1975 while (p
+= len
, c
);
1980 if (nop
>= recog_data
.n_operands
)
1981 SET_HARD_REG_BIT (alts
, nalt
);
1983 if (commutative
< 0)
1987 op
= recog_data
.operand
[commutative
];
1988 recog_data
.operand
[commutative
] = recog_data
.operand
[commutative
+ 1];
1989 recog_data
.operand
[commutative
+ 1] = op
;
1994 /* Return the number of the output non-early clobber operand which
1995 should be the same in any case as operand with number OP_NUM (or
1996 negative value if there is no such operand). The function takes
1997 only really possible alternatives into consideration. */
1999 ira_get_dup_out_num (int op_num
, HARD_REG_SET
&alts
)
2001 int curr_alt
, c
, original
, dup
;
2002 bool ignore_p
, use_commut_op_p
;
2004 #ifdef EXTRA_CONSTRAINT_STR
2008 if (op_num
< 0 || recog_data
.n_alternatives
== 0)
2010 use_commut_op_p
= false;
2011 str
= recog_data
.constraints
[op_num
];
2014 #ifdef EXTRA_CONSTRAINT_STR
2015 op
= recog_data
.operand
[op_num
];
2018 for (ignore_p
= false, original
= -1, curr_alt
= 0;;)
2023 if (c
== '#' || !TEST_HARD_REG_BIT (alts
, curr_alt
))
2030 else if (! ignore_p
)
2033 /* We should find duplications only for input operands. */
2042 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
2043 case 'h': case 'j': case 'k': case 'l':
2044 case 'q': case 't': case 'u':
2045 case 'v': case 'w': case 'x': case 'y': case 'z':
2046 case 'A': case 'B': case 'C': case 'D':
2047 case 'Q': case 'R': case 'S': case 'T': case 'U':
2048 case 'W': case 'Y': case 'Z':
2053 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, str
));
2056 if (! targetm
.class_likely_spilled_p (cl
))
2059 #ifdef EXTRA_CONSTRAINT_STR
2060 else if (EXTRA_CONSTRAINT_STR (op
, c
, str
))
2066 case '0': case '1': case '2': case '3': case '4':
2067 case '5': case '6': case '7': case '8': case '9':
2068 if (original
!= -1 && original
!= c
)
2073 str
+= CONSTRAINT_LEN (c
, str
);
2078 for (ignore_p
= false, str
= recog_data
.constraints
[original
- '0'];
2086 else if (*str
== '#')
2088 else if (! ignore_p
)
2091 dup
= original
- '0';
2092 /* It is better ignore an alternative with early clobber. */
2093 else if (*str
== '&')
2099 if (use_commut_op_p
)
2101 use_commut_op_p
= true;
2102 if (commutative_constraint_p (recog_data
.constraints
[op_num
]))
2103 str
= recog_data
.constraints
[op_num
+ 1];
2104 else if (op_num
> 0 && commutative_constraint_p (recog_data
.constraints
2106 str
= recog_data
.constraints
[op_num
- 1];
2115 /* Search forward to see if the source register of a copy insn dies
2116 before either it or the destination register is modified, but don't
2117 scan past the end of the basic block. If so, we can replace the
2118 source with the destination and let the source die in the copy
2121 This will reduce the number of registers live in that range and may
2122 enable the destination and the source coalescing, thus often saving
2123 one register in addition to a register-register copy. */
2126 decrease_live_ranges_number (void)
2129 rtx insn
, set
, src
, dest
, dest_death
, p
, q
, note
;
2132 if (! flag_expensive_optimizations
)
2136 fprintf (ira_dump_file
, "Starting decreasing number of live ranges...\n");
2138 FOR_EACH_BB_FN (bb
, cfun
)
2139 FOR_BB_INSNS (bb
, insn
)
2141 set
= single_set (insn
);
2144 src
= SET_SRC (set
);
2145 dest
= SET_DEST (set
);
2146 if (! REG_P (src
) || ! REG_P (dest
)
2147 || find_reg_note (insn
, REG_DEAD
, src
))
2149 sregno
= REGNO (src
);
2150 dregno
= REGNO (dest
);
2152 /* We don't want to mess with hard regs if register classes
2154 if (sregno
== dregno
2155 || (targetm
.small_register_classes_for_mode_p (GET_MODE (src
))
2156 && (sregno
< FIRST_PSEUDO_REGISTER
2157 || dregno
< FIRST_PSEUDO_REGISTER
))
2158 /* We don't see all updates to SP if they are in an
2159 auto-inc memory reference, so we must disallow this
2160 optimization on them. */
2161 || sregno
== STACK_POINTER_REGNUM
2162 || dregno
== STACK_POINTER_REGNUM
)
2165 dest_death
= NULL_RTX
;
2167 for (p
= NEXT_INSN (insn
); p
; p
= NEXT_INSN (p
))
2171 if (BLOCK_FOR_INSN (p
) != bb
)
2174 if (reg_set_p (src
, p
) || reg_set_p (dest
, p
)
2175 /* If SRC is an asm-declared register, it must not be
2176 replaced in any asm. Unfortunately, the REG_EXPR
2177 tree for the asm variable may be absent in the SRC
2178 rtx, so we can't check the actual register
2179 declaration easily (the asm operand will have it,
2180 though). To avoid complicating the test for a rare
2181 case, we just don't perform register replacement
2182 for a hard reg mentioned in an asm. */
2183 || (sregno
< FIRST_PSEUDO_REGISTER
2184 && asm_noperands (PATTERN (p
)) >= 0
2185 && reg_overlap_mentioned_p (src
, PATTERN (p
)))
2186 /* Don't change hard registers used by a call. */
2187 || (CALL_P (p
) && sregno
< FIRST_PSEUDO_REGISTER
2188 && find_reg_fusage (p
, USE
, src
))
2189 /* Don't change a USE of a register. */
2190 || (GET_CODE (PATTERN (p
)) == USE
2191 && reg_overlap_mentioned_p (src
, XEXP (PATTERN (p
), 0))))
2194 /* See if all of SRC dies in P. This test is slightly
2195 more conservative than it needs to be. */
2196 if ((note
= find_regno_note (p
, REG_DEAD
, sregno
))
2197 && GET_MODE (XEXP (note
, 0)) == GET_MODE (src
))
2201 /* We can do the optimization. Scan forward from INSN
2202 again, replacing regs as we go. Set FAILED if a
2203 replacement can't be done. In that case, we can't
2204 move the death note for SRC. This should be
2207 /* Set to stop at next insn. */
2208 for (q
= next_real_insn (insn
);
2209 q
!= next_real_insn (p
);
2210 q
= next_real_insn (q
))
2212 if (reg_overlap_mentioned_p (src
, PATTERN (q
)))
2214 /* If SRC is a hard register, we might miss
2215 some overlapping registers with
2216 validate_replace_rtx, so we would have to
2217 undo it. We can't if DEST is present in
2218 the insn, so fail in that combination of
2220 if (sregno
< FIRST_PSEUDO_REGISTER
2221 && reg_mentioned_p (dest
, PATTERN (q
)))
2224 /* Attempt to replace all uses. */
2225 else if (!validate_replace_rtx (src
, dest
, q
))
2228 /* If this succeeded, but some part of the
2229 register is still present, undo the
2231 else if (sregno
< FIRST_PSEUDO_REGISTER
2232 && reg_overlap_mentioned_p (src
, PATTERN (q
)))
2234 validate_replace_rtx (dest
, src
, q
);
2239 /* If DEST dies here, remove the death note and
2240 save it for later. Make sure ALL of DEST dies
2241 here; again, this is overly conservative. */
2243 && (dest_death
= find_regno_note (q
, REG_DEAD
, dregno
)))
2245 if (GET_MODE (XEXP (dest_death
, 0)) == GET_MODE (dest
))
2246 remove_note (q
, dest_death
);
2257 /* Move death note of SRC from P to INSN. */
2258 remove_note (p
, note
);
2259 XEXP (note
, 1) = REG_NOTES (insn
);
2260 REG_NOTES (insn
) = note
;
2263 /* DEST is also dead if INSN has a REG_UNUSED note for
2267 = find_regno_note (insn
, REG_UNUSED
, dregno
)))
2269 PUT_REG_NOTE_KIND (dest_death
, REG_DEAD
);
2270 remove_note (insn
, dest_death
);
2273 /* Put death note of DEST on P if we saw it die. */
2276 XEXP (dest_death
, 1) = REG_NOTES (p
);
2277 REG_NOTES (p
) = dest_death
;
2282 /* If SRC is a hard register which is set or killed in
2283 some other way, we can't do this optimization. */
2284 else if (sregno
< FIRST_PSEUDO_REGISTER
&& dead_or_set_p (p
, src
))
2292 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2294 ira_bad_reload_regno_1 (int regno
, rtx x
)
2298 enum reg_class pref
;
2300 /* We only deal with pseudo regs. */
2301 if (! x
|| GET_CODE (x
) != REG
)
2304 x_regno
= REGNO (x
);
2305 if (x_regno
< FIRST_PSEUDO_REGISTER
)
2308 /* If the pseudo prefers REGNO explicitly, then do not consider
2309 REGNO a bad spill choice. */
2310 pref
= reg_preferred_class (x_regno
);
2311 if (reg_class_size
[pref
] == 1)
2312 return !TEST_HARD_REG_BIT (reg_class_contents
[pref
], regno
);
2314 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2315 poor choice for a reload regno. */
2316 a
= ira_regno_allocno_map
[x_regno
];
2317 n
= ALLOCNO_NUM_OBJECTS (a
);
2318 for (i
= 0; i
< n
; i
++)
2320 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
2321 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
), regno
))
2327 /* Return nonzero if REGNO is a particularly bad choice for reloading
2330 ira_bad_reload_regno (int regno
, rtx in
, rtx out
)
2332 return (ira_bad_reload_regno_1 (regno
, in
)
2333 || ira_bad_reload_regno_1 (regno
, out
));
2336 /* Return TRUE if *LOC contains an asm. */
2338 insn_contains_asm_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2342 if (GET_CODE (*loc
) == ASM_OPERANDS
)
2348 /* Return TRUE if INSN contains an ASM. */
2350 insn_contains_asm (rtx insn
)
2352 return for_each_rtx (&insn
, insn_contains_asm_1
, NULL
);
2355 /* Add register clobbers from asm statements. */
2357 compute_regs_asm_clobbered (void)
2361 FOR_EACH_BB_FN (bb
, cfun
)
2364 FOR_BB_INSNS_REVERSE (bb
, insn
)
2368 if (insn_contains_asm (insn
))
2369 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
2371 df_ref def
= *def_rec
;
2372 unsigned int dregno
= DF_REF_REGNO (def
);
2373 if (HARD_REGISTER_NUM_P (dregno
))
2374 add_to_hard_reg_set (&crtl
->asm_clobbers
,
2375 GET_MODE (DF_REF_REAL_REG (def
)),
2383 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2386 ira_setup_eliminable_regset (void)
2388 #ifdef ELIMINABLE_REGS
2390 static const struct {const int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
2392 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2393 sp for alloca. So we can't eliminate the frame pointer in that
2394 case. At some point, we should improve this by emitting the
2395 sp-adjusting insns for this case. */
2396 frame_pointer_needed
2397 = (! flag_omit_frame_pointer
2398 || (cfun
->calls_alloca
&& EXIT_IGNORE_STACK
)
2399 /* We need the frame pointer to catch stack overflow exceptions
2400 if the stack pointer is moving. */
2401 || (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
2402 || crtl
->accesses_prior_frames
2403 || (SUPPORTS_STACK_ALIGNMENT
&& crtl
->stack_realign_needed
)
2404 /* We need a frame pointer for all Cilk Plus functions that use
2406 || (flag_enable_cilkplus
&& cfun
->is_cilk_function
)
2407 || targetm
.frame_pointer_required ());
2409 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2410 RTL is very small. So if we use frame pointer for RA and RTL
2411 actually prevents this, we will spill pseudos assigned to the
2412 frame pointer in LRA. */
2414 if (frame_pointer_needed
)
2415 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM
, true);
2417 COPY_HARD_REG_SET (ira_no_alloc_regs
, no_unit_alloc_regs
);
2418 CLEAR_HARD_REG_SET (eliminable_regset
);
2420 compute_regs_asm_clobbered ();
2422 /* Build the regset of all eliminable registers and show we can't
2423 use those that we already know won't be eliminated. */
2424 #ifdef ELIMINABLE_REGS
2425 for (i
= 0; i
< (int) ARRAY_SIZE (eliminables
); i
++)
2428 = (! targetm
.can_eliminate (eliminables
[i
].from
, eliminables
[i
].to
)
2429 || (eliminables
[i
].to
== STACK_POINTER_REGNUM
&& frame_pointer_needed
));
2431 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, eliminables
[i
].from
))
2433 SET_HARD_REG_BIT (eliminable_regset
, eliminables
[i
].from
);
2436 SET_HARD_REG_BIT (ira_no_alloc_regs
, eliminables
[i
].from
);
2438 else if (cannot_elim
)
2439 error ("%s cannot be used in asm here",
2440 reg_names
[eliminables
[i
].from
]);
2442 df_set_regs_ever_live (eliminables
[i
].from
, true);
2444 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2445 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, HARD_FRAME_POINTER_REGNUM
))
2447 SET_HARD_REG_BIT (eliminable_regset
, HARD_FRAME_POINTER_REGNUM
);
2448 if (frame_pointer_needed
)
2449 SET_HARD_REG_BIT (ira_no_alloc_regs
, HARD_FRAME_POINTER_REGNUM
);
2451 else if (frame_pointer_needed
)
2452 error ("%s cannot be used in asm here",
2453 reg_names
[HARD_FRAME_POINTER_REGNUM
]);
2455 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM
, true);
2459 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, HARD_FRAME_POINTER_REGNUM
))
2461 SET_HARD_REG_BIT (eliminable_regset
, FRAME_POINTER_REGNUM
);
2462 if (frame_pointer_needed
)
2463 SET_HARD_REG_BIT (ira_no_alloc_regs
, FRAME_POINTER_REGNUM
);
2465 else if (frame_pointer_needed
)
2466 error ("%s cannot be used in asm here", reg_names
[FRAME_POINTER_REGNUM
]);
2468 df_set_regs_ever_live (FRAME_POINTER_REGNUM
, true);
2474 /* Vector of substitutions of register numbers,
2475 used to map pseudo regs into hardware regs.
2476 This is set up as a result of register allocation.
2477 Element N is the hard reg assigned to pseudo reg N,
2478 or is -1 if no hard reg was assigned.
2479 If N is a hard reg number, element N is N. */
2480 short *reg_renumber
;
2482 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2483 the allocation found by IRA. */
2485 setup_reg_renumber (void)
2487 int regno
, hard_regno
;
2489 ira_allocno_iterator ai
;
2491 caller_save_needed
= 0;
2492 FOR_EACH_ALLOCNO (a
, ai
)
2494 if (ira_use_lra_p
&& ALLOCNO_CAP_MEMBER (a
) != NULL
)
2496 /* There are no caps at this point. */
2497 ira_assert (ALLOCNO_CAP_MEMBER (a
) == NULL
);
2498 if (! ALLOCNO_ASSIGNED_P (a
))
2499 /* It can happen if A is not referenced but partially anticipated
2500 somewhere in a region. */
2501 ALLOCNO_ASSIGNED_P (a
) = true;
2502 ira_free_allocno_updated_costs (a
);
2503 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2504 regno
= ALLOCNO_REGNO (a
);
2505 reg_renumber
[regno
] = (hard_regno
< 0 ? -1 : hard_regno
);
2506 if (hard_regno
>= 0)
2509 enum reg_class pclass
;
2512 pclass
= ira_pressure_class_translate
[REGNO_REG_CLASS (hard_regno
)];
2513 nwords
= ALLOCNO_NUM_OBJECTS (a
);
2514 for (i
= 0; i
< nwords
; i
++)
2516 obj
= ALLOCNO_OBJECT (a
, i
);
2517 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
2518 reg_class_contents
[pclass
]);
2520 if (ALLOCNO_CALLS_CROSSED_NUM (a
) != 0
2521 && ira_hard_reg_set_intersection_p (hard_regno
, ALLOCNO_MODE (a
),
2524 ira_assert (!optimize
|| flag_caller_saves
2525 || (ALLOCNO_CALLS_CROSSED_NUM (a
)
2526 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
))
2527 || regno
>= ira_reg_equiv_len
2528 || ira_equiv_no_lvalue_p (regno
));
2529 caller_save_needed
= 1;
2535 /* Set up allocno assignment flags for further allocation
2538 setup_allocno_assignment_flags (void)
2542 ira_allocno_iterator ai
;
2544 FOR_EACH_ALLOCNO (a
, ai
)
2546 if (! ALLOCNO_ASSIGNED_P (a
))
2547 /* It can happen if A is not referenced but partially anticipated
2548 somewhere in a region. */
2549 ira_free_allocno_updated_costs (a
);
2550 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2551 /* Don't assign hard registers to allocnos which are destination
2552 of removed store at the end of loop. It has no sense to keep
2553 the same value in different hard registers. It is also
2554 impossible to assign hard registers correctly to such
2555 allocnos because the cost info and info about intersected
2556 calls are incorrect for them. */
2557 ALLOCNO_ASSIGNED_P (a
) = (hard_regno
>= 0
2558 || ALLOCNO_EMIT_DATA (a
)->mem_optimized_dest_p
2559 || (ALLOCNO_MEMORY_COST (a
)
2560 - ALLOCNO_CLASS_COST (a
)) < 0);
2563 || ira_hard_reg_in_set_p (hard_regno
, ALLOCNO_MODE (a
),
2564 reg_class_contents
[ALLOCNO_CLASS (a
)]));
2568 /* Evaluate overall allocation cost and the costs for using hard
2569 registers and memory for allocnos. */
2571 calculate_allocation_cost (void)
2573 int hard_regno
, cost
;
2575 ira_allocno_iterator ai
;
2577 ira_overall_cost
= ira_reg_cost
= ira_mem_cost
= 0;
2578 FOR_EACH_ALLOCNO (a
, ai
)
2580 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2581 ira_assert (hard_regno
< 0
2582 || (ira_hard_reg_in_set_p
2583 (hard_regno
, ALLOCNO_MODE (a
),
2584 reg_class_contents
[ALLOCNO_CLASS (a
)])));
2587 cost
= ALLOCNO_MEMORY_COST (a
);
2588 ira_mem_cost
+= cost
;
2590 else if (ALLOCNO_HARD_REG_COSTS (a
) != NULL
)
2592 cost
= (ALLOCNO_HARD_REG_COSTS (a
)
2593 [ira_class_hard_reg_index
2594 [ALLOCNO_CLASS (a
)][hard_regno
]]);
2595 ira_reg_cost
+= cost
;
2599 cost
= ALLOCNO_CLASS_COST (a
);
2600 ira_reg_cost
+= cost
;
2602 ira_overall_cost
+= cost
;
2605 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
2607 fprintf (ira_dump_file
,
2608 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2609 ira_overall_cost
, ira_reg_cost
, ira_mem_cost
,
2610 ira_load_cost
, ira_store_cost
, ira_shuffle_cost
);
2611 fprintf (ira_dump_file
, "+++ move loops %d, new jumps %d\n",
2612 ira_move_loops_num
, ira_additional_jumps_num
);
2617 #ifdef ENABLE_IRA_CHECKING
2618 /* Check the correctness of the allocation. We do need this because
2619 of complicated code to transform more one region internal
2620 representation into one region representation. */
2622 check_allocation (void)
2625 int hard_regno
, nregs
, conflict_nregs
;
2626 ira_allocno_iterator ai
;
2628 FOR_EACH_ALLOCNO (a
, ai
)
2630 int n
= ALLOCNO_NUM_OBJECTS (a
);
2633 if (ALLOCNO_CAP_MEMBER (a
) != NULL
2634 || (hard_regno
= ALLOCNO_HARD_REGNO (a
)) < 0)
2636 nregs
= hard_regno_nregs
[hard_regno
][ALLOCNO_MODE (a
)];
2638 /* We allocated a single hard register. */
2641 /* We allocated multiple hard registers, and we will test
2642 conflicts in a granularity of single hard regs. */
2645 for (i
= 0; i
< n
; i
++)
2647 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
2648 ira_object_t conflict_obj
;
2649 ira_object_conflict_iterator oci
;
2650 int this_regno
= hard_regno
;
2653 if (REG_WORDS_BIG_ENDIAN
)
2654 this_regno
+= n
- i
- 1;
2658 FOR_EACH_OBJECT_CONFLICT (obj
, conflict_obj
, oci
)
2660 ira_allocno_t conflict_a
= OBJECT_ALLOCNO (conflict_obj
);
2661 int conflict_hard_regno
= ALLOCNO_HARD_REGNO (conflict_a
);
2662 if (conflict_hard_regno
< 0)
2667 [conflict_hard_regno
][ALLOCNO_MODE (conflict_a
)]);
2669 if (ALLOCNO_NUM_OBJECTS (conflict_a
) > 1
2670 && conflict_nregs
== ALLOCNO_NUM_OBJECTS (conflict_a
))
2672 if (REG_WORDS_BIG_ENDIAN
)
2673 conflict_hard_regno
+= (ALLOCNO_NUM_OBJECTS (conflict_a
)
2674 - OBJECT_SUBWORD (conflict_obj
) - 1);
2676 conflict_hard_regno
+= OBJECT_SUBWORD (conflict_obj
);
2680 if ((conflict_hard_regno
<= this_regno
2681 && this_regno
< conflict_hard_regno
+ conflict_nregs
)
2682 || (this_regno
<= conflict_hard_regno
2683 && conflict_hard_regno
< this_regno
+ nregs
))
2685 fprintf (stderr
, "bad allocation for %d and %d\n",
2686 ALLOCNO_REGNO (a
), ALLOCNO_REGNO (conflict_a
));
2695 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2696 be already calculated. */
2698 setup_reg_equiv_init (void)
2701 int max_regno
= max_reg_num ();
2703 for (i
= 0; i
< max_regno
; i
++)
2704 reg_equiv_init (i
) = ira_reg_equiv
[i
].init_insns
;
2707 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2708 are insns which were generated for such movement. It is assumed
2709 that FROM_REGNO and TO_REGNO always have the same value at the
2710 point of any move containing such registers. This function is used
2711 to update equiv info for register shuffles on the region borders
2712 and for caller save/restore insns. */
2714 ira_update_equiv_info_by_shuffle_insn (int to_regno
, int from_regno
, rtx insns
)
2718 if (! ira_reg_equiv
[from_regno
].defined_p
2719 && (! ira_reg_equiv
[to_regno
].defined_p
2720 || ((x
= ira_reg_equiv
[to_regno
].memory
) != NULL_RTX
2721 && ! MEM_READONLY_P (x
))))
2724 if (NEXT_INSN (insn
) != NULL_RTX
)
2726 if (! ira_reg_equiv
[to_regno
].defined_p
)
2728 ira_assert (ira_reg_equiv
[to_regno
].init_insns
== NULL_RTX
);
2731 ira_reg_equiv
[to_regno
].defined_p
= false;
2732 ira_reg_equiv
[to_regno
].memory
2733 = ira_reg_equiv
[to_regno
].constant
2734 = ira_reg_equiv
[to_regno
].invariant
2735 = ira_reg_equiv
[to_regno
].init_insns
= NULL_RTX
;
2736 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2737 fprintf (ira_dump_file
,
2738 " Invalidating equiv info for reg %d\n", to_regno
);
2741 /* It is possible that FROM_REGNO still has no equivalence because
2742 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2743 insn was not processed yet. */
2744 if (ira_reg_equiv
[from_regno
].defined_p
)
2746 ira_reg_equiv
[to_regno
].defined_p
= true;
2747 if ((x
= ira_reg_equiv
[from_regno
].memory
) != NULL_RTX
)
2749 ira_assert (ira_reg_equiv
[from_regno
].invariant
== NULL_RTX
2750 && ira_reg_equiv
[from_regno
].constant
== NULL_RTX
);
2751 ira_assert (ira_reg_equiv
[to_regno
].memory
== NULL_RTX
2752 || rtx_equal_p (ira_reg_equiv
[to_regno
].memory
, x
));
2753 ira_reg_equiv
[to_regno
].memory
= x
;
2754 if (! MEM_READONLY_P (x
))
2755 /* We don't add the insn to insn init list because memory
2756 equivalence is just to say what memory is better to use
2757 when the pseudo is spilled. */
2760 else if ((x
= ira_reg_equiv
[from_regno
].constant
) != NULL_RTX
)
2762 ira_assert (ira_reg_equiv
[from_regno
].invariant
== NULL_RTX
);
2763 ira_assert (ira_reg_equiv
[to_regno
].constant
== NULL_RTX
2764 || rtx_equal_p (ira_reg_equiv
[to_regno
].constant
, x
));
2765 ira_reg_equiv
[to_regno
].constant
= x
;
2769 x
= ira_reg_equiv
[from_regno
].invariant
;
2770 ira_assert (x
!= NULL_RTX
);
2771 ira_assert (ira_reg_equiv
[to_regno
].invariant
== NULL_RTX
2772 || rtx_equal_p (ira_reg_equiv
[to_regno
].invariant
, x
));
2773 ira_reg_equiv
[to_regno
].invariant
= x
;
2775 if (find_reg_note (insn
, REG_EQUIV
, x
) == NULL_RTX
)
2777 note
= set_unique_reg_note (insn
, REG_EQUIV
, x
);
2778 gcc_assert (note
!= NULL_RTX
);
2779 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2781 fprintf (ira_dump_file
,
2782 " Adding equiv note to insn %u for reg %d ",
2783 INSN_UID (insn
), to_regno
);
2784 dump_value_slim (ira_dump_file
, x
, 1);
2785 fprintf (ira_dump_file
, "\n");
2789 ira_reg_equiv
[to_regno
].init_insns
2790 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
2791 ira_reg_equiv
[to_regno
].init_insns
);
2792 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2793 fprintf (ira_dump_file
,
2794 " Adding equiv init move insn %u to reg %d\n",
2795 INSN_UID (insn
), to_regno
);
2798 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2801 fix_reg_equiv_init (void)
2803 int max_regno
= max_reg_num ();
2804 int i
, new_regno
, max
;
2805 rtx x
, prev
, next
, insn
, set
;
2807 if (max_regno_before_ira
< max_regno
)
2809 max
= vec_safe_length (reg_equivs
);
2811 for (i
= FIRST_PSEUDO_REGISTER
; i
< max
; i
++)
2812 for (prev
= NULL_RTX
, x
= reg_equiv_init (i
);
2818 set
= single_set (insn
);
2819 ira_assert (set
!= NULL_RTX
2820 && (REG_P (SET_DEST (set
)) || REG_P (SET_SRC (set
))));
2821 if (REG_P (SET_DEST (set
))
2822 && ((int) REGNO (SET_DEST (set
)) == i
2823 || (int) ORIGINAL_REGNO (SET_DEST (set
)) == i
))
2824 new_regno
= REGNO (SET_DEST (set
));
2825 else if (REG_P (SET_SRC (set
))
2826 && ((int) REGNO (SET_SRC (set
)) == i
2827 || (int) ORIGINAL_REGNO (SET_SRC (set
)) == i
))
2828 new_regno
= REGNO (SET_SRC (set
));
2835 /* Remove the wrong list element. */
2836 if (prev
== NULL_RTX
)
2837 reg_equiv_init (i
) = next
;
2839 XEXP (prev
, 1) = next
;
2840 XEXP (x
, 1) = reg_equiv_init (new_regno
);
2841 reg_equiv_init (new_regno
) = x
;
2847 #ifdef ENABLE_IRA_CHECKING
2848 /* Print redundant memory-memory copies. */
2850 print_redundant_copies (void)
2854 ira_copy_t cp
, next_cp
;
2855 ira_allocno_iterator ai
;
2857 FOR_EACH_ALLOCNO (a
, ai
)
2859 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
2862 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2863 if (hard_regno
>= 0)
2865 for (cp
= ALLOCNO_COPIES (a
); cp
!= NULL
; cp
= next_cp
)
2867 next_cp
= cp
->next_first_allocno_copy
;
2870 next_cp
= cp
->next_second_allocno_copy
;
2871 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
2872 && cp
->insn
!= NULL_RTX
2873 && ALLOCNO_HARD_REGNO (cp
->first
) == hard_regno
)
2874 fprintf (ira_dump_file
,
2875 " Redundant move from %d(freq %d):%d\n",
2876 INSN_UID (cp
->insn
), cp
->freq
, hard_regno
);
2882 /* Setup preferred and alternative classes for new pseudo-registers
2883 created by IRA starting with START. */
2885 setup_preferred_alternate_classes_for_new_pseudos (int start
)
2888 int max_regno
= max_reg_num ();
2890 for (i
= start
; i
< max_regno
; i
++)
2892 old_regno
= ORIGINAL_REGNO (regno_reg_rtx
[i
]);
2893 ira_assert (i
!= old_regno
);
2894 setup_reg_classes (i
, reg_preferred_class (old_regno
),
2895 reg_alternate_class (old_regno
),
2896 reg_allocno_class (old_regno
));
2897 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
2898 fprintf (ira_dump_file
,
2899 " New r%d: setting preferred %s, alternative %s\n",
2900 i
, reg_class_names
[reg_preferred_class (old_regno
)],
2901 reg_class_names
[reg_alternate_class (old_regno
)]);
2906 /* The number of entries allocated in teg_info. */
2907 static int allocated_reg_info_size
;
2909 /* Regional allocation can create new pseudo-registers. This function
2910 expands some arrays for pseudo-registers. */
2912 expand_reg_info (void)
2915 int size
= max_reg_num ();
2918 for (i
= allocated_reg_info_size
; i
< size
; i
++)
2919 setup_reg_classes (i
, GENERAL_REGS
, ALL_REGS
, GENERAL_REGS
);
2920 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size
);
2921 allocated_reg_info_size
= size
;
2924 /* Return TRUE if there is too high register pressure in the function.
2925 It is used to decide when stack slot sharing is worth to do. */
2927 too_high_register_pressure_p (void)
2930 enum reg_class pclass
;
2932 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
2934 pclass
= ira_pressure_classes
[i
];
2935 if (ira_loop_tree_root
->reg_pressure
[pclass
] > 10000)
2943 /* Indicate that hard register number FROM was eliminated and replaced with
2944 an offset from hard register number TO. The status of hard registers live
2945 at the start of a basic block is updated by replacing a use of FROM with
2949 mark_elimination (int from
, int to
)
2954 FOR_EACH_BB_FN (bb
, cfun
)
2957 if (bitmap_bit_p (r
, from
))
2959 bitmap_clear_bit (r
, from
);
2960 bitmap_set_bit (r
, to
);
2964 r
= DF_LIVE_IN (bb
);
2965 if (bitmap_bit_p (r
, from
))
2967 bitmap_clear_bit (r
, from
);
2968 bitmap_set_bit (r
, to
);
2975 /* The length of the following array. */
2976 int ira_reg_equiv_len
;
2978 /* Info about equiv. info for each register. */
2979 struct ira_reg_equiv
*ira_reg_equiv
;
2981 /* Expand ira_reg_equiv if necessary. */
2983 ira_expand_reg_equiv (void)
2985 int old
= ira_reg_equiv_len
;
2987 if (ira_reg_equiv_len
> max_reg_num ())
2989 ira_reg_equiv_len
= max_reg_num () * 3 / 2 + 1;
2991 = (struct ira_reg_equiv
*) xrealloc (ira_reg_equiv
,
2993 * sizeof (struct ira_reg_equiv
));
2994 gcc_assert (old
< ira_reg_equiv_len
);
2995 memset (ira_reg_equiv
+ old
, 0,
2996 sizeof (struct ira_reg_equiv
) * (ira_reg_equiv_len
- old
));
3000 init_reg_equiv (void)
3002 ira_reg_equiv_len
= 0;
3003 ira_reg_equiv
= NULL
;
3004 ira_expand_reg_equiv ();
3008 finish_reg_equiv (void)
3010 free (ira_reg_equiv
);
3017 /* Set when a REG_EQUIV note is found or created. Use to
3018 keep track of what memory accesses might be created later,
3022 /* The list of each instruction which initializes this register. */
3024 /* Loop depth is used to recognize equivalences which appear
3025 to be present within the same loop (or in an inner loop). */
3027 /* Nonzero if this had a preexisting REG_EQUIV note. */
3028 int is_arg_equivalence
;
3029 /* Set when an attempt should be made to replace a register
3030 with the associated src_p entry. */
3034 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
3035 structure for that register. */
3036 static struct equivalence
*reg_equiv
;
3038 /* Used for communication between the following two functions: contains
3039 a MEM that we wish to ensure remains unchanged. */
3040 static rtx equiv_mem
;
3042 /* Set nonzero if EQUIV_MEM is modified. */
3043 static int equiv_mem_modified
;
3045 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
3046 Called via note_stores. */
3048 validate_equiv_mem_from_store (rtx dest
, const_rtx set ATTRIBUTE_UNUSED
,
3049 void *data ATTRIBUTE_UNUSED
)
3052 && reg_overlap_mentioned_p (dest
, equiv_mem
))
3054 && anti_dependence (equiv_mem
, dest
)))
3055 equiv_mem_modified
= 1;
3058 /* Verify that no store between START and the death of REG invalidates
3059 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
3060 by storing into an overlapping memory location, or with a non-const
3063 Return 1 if MEMREF remains valid. */
3065 validate_equiv_mem (rtx start
, rtx reg
, rtx memref
)
3071 equiv_mem_modified
= 0;
3073 /* If the memory reference has side effects or is volatile, it isn't a
3074 valid equivalence. */
3075 if (side_effects_p (memref
))
3078 for (insn
= start
; insn
&& ! equiv_mem_modified
; insn
= NEXT_INSN (insn
))
3080 if (! INSN_P (insn
))
3083 if (find_reg_note (insn
, REG_DEAD
, reg
))
3086 /* This used to ignore readonly memory and const/pure calls. The problem
3087 is the equivalent form may reference a pseudo which gets assigned a
3088 call clobbered hard reg. When we later replace REG with its
3089 equivalent form, the value in the call-clobbered reg has been
3090 changed and all hell breaks loose. */
3094 note_stores (PATTERN (insn
), validate_equiv_mem_from_store
, NULL
);
3096 /* If a register mentioned in MEMREF is modified via an
3097 auto-increment, we lose the equivalence. Do the same if one
3098 dies; although we could extend the life, it doesn't seem worth
3101 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
3102 if ((REG_NOTE_KIND (note
) == REG_INC
3103 || REG_NOTE_KIND (note
) == REG_DEAD
)
3104 && REG_P (XEXP (note
, 0))
3105 && reg_overlap_mentioned_p (XEXP (note
, 0), memref
))
3112 /* Returns zero if X is known to be invariant. */
3114 equiv_init_varies_p (rtx x
)
3116 RTX_CODE code
= GET_CODE (x
);
3123 return !MEM_READONLY_P (x
) || equiv_init_varies_p (XEXP (x
, 0));
3132 return reg_equiv
[REGNO (x
)].replace
== 0 && rtx_varies_p (x
, 0);
3135 if (MEM_VOLATILE_P (x
))
3144 fmt
= GET_RTX_FORMAT (code
);
3145 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3148 if (equiv_init_varies_p (XEXP (x
, i
)))
3151 else if (fmt
[i
] == 'E')
3154 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3155 if (equiv_init_varies_p (XVECEXP (x
, i
, j
)))
3162 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3163 X is only movable if the registers it uses have equivalent initializations
3164 which appear to be within the same loop (or in an inner loop) and movable
3165 or if they are not candidates for local_alloc and don't vary. */
3167 equiv_init_movable_p (rtx x
, int regno
)
3171 enum rtx_code code
= GET_CODE (x
);
3176 return equiv_init_movable_p (SET_SRC (x
), regno
);
3191 return ((reg_equiv
[REGNO (x
)].loop_depth
>= reg_equiv
[regno
].loop_depth
3192 && reg_equiv
[REGNO (x
)].replace
)
3193 || (REG_BASIC_BLOCK (REGNO (x
)) < NUM_FIXED_BLOCKS
3194 && ! rtx_varies_p (x
, 0)));
3196 case UNSPEC_VOLATILE
:
3200 if (MEM_VOLATILE_P (x
))
3209 fmt
= GET_RTX_FORMAT (code
);
3210 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3214 if (! equiv_init_movable_p (XEXP (x
, i
), regno
))
3218 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3219 if (! equiv_init_movable_p (XVECEXP (x
, i
, j
), regno
))
3227 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3230 contains_replace_regs (rtx x
)
3234 enum rtx_code code
= GET_CODE (x
);
3248 return reg_equiv
[REGNO (x
)].replace
;
3254 fmt
= GET_RTX_FORMAT (code
);
3255 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3259 if (contains_replace_regs (XEXP (x
, i
)))
3263 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3264 if (contains_replace_regs (XVECEXP (x
, i
, j
)))
3272 /* TRUE if X references a memory location that would be affected by a store
3275 memref_referenced_p (rtx memref
, rtx x
)
3279 enum rtx_code code
= GET_CODE (x
);
3294 return (reg_equiv
[REGNO (x
)].replacement
3295 && memref_referenced_p (memref
,
3296 reg_equiv
[REGNO (x
)].replacement
));
3299 if (true_dependence (memref
, VOIDmode
, x
))
3304 /* If we are setting a MEM, it doesn't count (its address does), but any
3305 other SET_DEST that has a MEM in it is referencing the MEM. */
3306 if (MEM_P (SET_DEST (x
)))
3308 if (memref_referenced_p (memref
, XEXP (SET_DEST (x
), 0)))
3311 else if (memref_referenced_p (memref
, SET_DEST (x
)))
3314 return memref_referenced_p (memref
, SET_SRC (x
));
3320 fmt
= GET_RTX_FORMAT (code
);
3321 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3325 if (memref_referenced_p (memref
, XEXP (x
, i
)))
3329 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3330 if (memref_referenced_p (memref
, XVECEXP (x
, i
, j
)))
3338 /* TRUE if some insn in the range (START, END] references a memory location
3339 that would be affected by a store to MEMREF. */
3341 memref_used_between_p (rtx memref
, rtx start
, rtx end
)
3345 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
3346 insn
= NEXT_INSN (insn
))
3348 if (!NONDEBUG_INSN_P (insn
))
3351 if (memref_referenced_p (memref
, PATTERN (insn
)))
3354 /* Nonconst functions may access memory. */
3355 if (CALL_P (insn
) && (! RTL_CONST_CALL_P (insn
)))
3362 /* Mark REG as having no known equivalence.
3363 Some instructions might have been processed before and furnished
3364 with REG_EQUIV notes for this register; these notes will have to be
3366 STORE is the piece of RTL that does the non-constant / conflicting
3367 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3368 but needs to be there because this function is called from note_stores. */
3370 no_equiv (rtx reg
, const_rtx store ATTRIBUTE_UNUSED
,
3371 void *data ATTRIBUTE_UNUSED
)
3378 regno
= REGNO (reg
);
3379 list
= reg_equiv
[regno
].init_insns
;
3380 if (list
== const0_rtx
)
3382 reg_equiv
[regno
].init_insns
= const0_rtx
;
3383 reg_equiv
[regno
].replacement
= NULL_RTX
;
3384 /* This doesn't matter for equivalences made for argument registers, we
3385 should keep their initialization insns. */
3386 if (reg_equiv
[regno
].is_arg_equivalence
)
3388 ira_reg_equiv
[regno
].defined_p
= false;
3389 ira_reg_equiv
[regno
].init_insns
= NULL_RTX
;
3390 for (; list
; list
= XEXP (list
, 1))
3392 rtx insn
= XEXP (list
, 0);
3393 remove_note (insn
, find_reg_note (insn
, REG_EQUIV
, NULL_RTX
));
3397 /* Check whether the SUBREG is a paradoxical subreg and set the result
3401 set_paradoxical_subreg (rtx
*subreg
, void *pdx_subregs
)
3405 if ((*subreg
) == NULL_RTX
)
3407 if (GET_CODE (*subreg
) != SUBREG
)
3409 reg
= SUBREG_REG (*subreg
);
3413 if (paradoxical_subreg_p (*subreg
))
3414 ((bool *)pdx_subregs
)[REGNO (reg
)] = true;
3419 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3420 equivalent replacement. */
3423 adjust_cleared_regs (rtx loc
, const_rtx old_rtx ATTRIBUTE_UNUSED
, void *data
)
3427 bitmap cleared_regs
= (bitmap
) data
;
3428 if (bitmap_bit_p (cleared_regs
, REGNO (loc
)))
3429 return simplify_replace_fn_rtx (*reg_equiv
[REGNO (loc
)].src_p
,
3430 NULL_RTX
, adjust_cleared_regs
, data
);
3435 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3436 static int recorded_label_ref
;
3438 /* Find registers that are equivalent to a single value throughout the
3439 compilation (either because they can be referenced in memory or are
3440 set once from a single constant). Lower their priority for a
3443 If such a register is only referenced once, try substituting its
3444 value into the using insn. If it succeeds, we can eliminate the
3445 register completely.
3447 Initialize init_insns in ira_reg_equiv array.
3449 Return non-zero if jump label rebuilding should be done. */
3451 update_equiv_regs (void)
3456 bitmap cleared_regs
;
3459 /* We need to keep track of whether or not we recorded a LABEL_REF so
3460 that we know if the jump optimizer needs to be rerun. */
3461 recorded_label_ref
= 0;
3463 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3465 pdx_subregs
= XCNEWVEC (bool, max_regno
);
3467 reg_equiv
= XCNEWVEC (struct equivalence
, max_regno
);
3470 init_alias_analysis ();
3472 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3473 paradoxical subreg. Don't set such reg sequivalent to a mem,
3474 because lra will not substitute such equiv memory in order to
3475 prevent access beyond allocated memory for paradoxical memory subreg. */
3476 FOR_EACH_BB_FN (bb
, cfun
)
3477 FOR_BB_INSNS (bb
, insn
)
3478 if (NONDEBUG_INSN_P (insn
))
3479 for_each_rtx (&insn
, set_paradoxical_subreg
, (void *) pdx_subregs
);
3481 /* Scan the insns and find which registers have equivalences. Do this
3482 in a separate scan of the insns because (due to -fcse-follow-jumps)
3483 a register can be set below its use. */
3484 FOR_EACH_BB_FN (bb
, cfun
)
3486 loop_depth
= bb_loop_depth (bb
);
3488 for (insn
= BB_HEAD (bb
);
3489 insn
!= NEXT_INSN (BB_END (bb
));
3490 insn
= NEXT_INSN (insn
))
3497 if (! INSN_P (insn
))
3500 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
3501 if (REG_NOTE_KIND (note
) == REG_INC
)
3502 no_equiv (XEXP (note
, 0), note
, NULL
);
3504 set
= single_set (insn
);
3506 /* If this insn contains more (or less) than a single SET,
3507 only mark all destinations as having no known equivalence. */
3510 note_stores (PATTERN (insn
), no_equiv
, NULL
);
3513 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
3517 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
3519 rtx part
= XVECEXP (PATTERN (insn
), 0, i
);
3521 note_stores (part
, no_equiv
, NULL
);
3525 dest
= SET_DEST (set
);
3526 src
= SET_SRC (set
);
3528 /* See if this is setting up the equivalence between an argument
3529 register and its stack slot. */
3530 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
3533 gcc_assert (REG_P (dest
));
3534 regno
= REGNO (dest
);
3536 /* Note that we don't want to clear init_insns in
3537 ira_reg_equiv even if there are multiple sets of this
3539 reg_equiv
[regno
].is_arg_equivalence
= 1;
3541 /* The insn result can have equivalence memory although
3542 the equivalence is not set up by the insn. We add
3543 this insn to init insns as it is a flag for now that
3544 regno has an equivalence. We will remove the insn
3545 from init insn list later. */
3546 if (rtx_equal_p (src
, XEXP (note
, 0)) || MEM_P (XEXP (note
, 0)))
3547 ira_reg_equiv
[regno
].init_insns
3548 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
3549 ira_reg_equiv
[regno
].init_insns
);
3551 /* Continue normally in case this is a candidate for
3558 /* We only handle the case of a pseudo register being set
3559 once, or always to the same value. */
3560 /* ??? The mn10200 port breaks if we add equivalences for
3561 values that need an ADDRESS_REGS register and set them equivalent
3562 to a MEM of a pseudo. The actual problem is in the over-conservative
3563 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3564 calculate_needs, but we traditionally work around this problem
3565 here by rejecting equivalences when the destination is in a register
3566 that's likely spilled. This is fragile, of course, since the
3567 preferred class of a pseudo depends on all instructions that set
3571 || (regno
= REGNO (dest
)) < FIRST_PSEUDO_REGISTER
3572 || reg_equiv
[regno
].init_insns
== const0_rtx
3573 || (targetm
.class_likely_spilled_p (reg_preferred_class (regno
))
3574 && MEM_P (src
) && ! reg_equiv
[regno
].is_arg_equivalence
))
3576 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3577 also set somewhere else to a constant. */
3578 note_stores (set
, no_equiv
, NULL
);
3582 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3583 if (MEM_P (src
) && pdx_subregs
[regno
])
3585 note_stores (set
, no_equiv
, NULL
);
3589 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
3591 /* cse sometimes generates function invariants, but doesn't put a
3592 REG_EQUAL note on the insn. Since this note would be redundant,
3593 there's no point creating it earlier than here. */
3594 if (! note
&& ! rtx_varies_p (src
, 0))
3595 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
3597 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3598 since it represents a function call */
3599 if (note
&& GET_CODE (XEXP (note
, 0)) == EXPR_LIST
)
3602 if (DF_REG_DEF_COUNT (regno
) != 1
3604 || rtx_varies_p (XEXP (note
, 0), 0)
3605 || (reg_equiv
[regno
].replacement
3606 && ! rtx_equal_p (XEXP (note
, 0),
3607 reg_equiv
[regno
].replacement
))))
3609 no_equiv (dest
, set
, NULL
);
3612 /* Record this insn as initializing this register. */
3613 reg_equiv
[regno
].init_insns
3614 = gen_rtx_INSN_LIST (VOIDmode
, insn
, reg_equiv
[regno
].init_insns
);
3616 /* If this register is known to be equal to a constant, record that
3617 it is always equivalent to the constant. */
3618 if (DF_REG_DEF_COUNT (regno
) == 1
3619 && note
&& ! rtx_varies_p (XEXP (note
, 0), 0))
3621 rtx note_value
= XEXP (note
, 0);
3622 remove_note (insn
, note
);
3623 set_unique_reg_note (insn
, REG_EQUIV
, note_value
);
3626 /* If this insn introduces a "constant" register, decrease the priority
3627 of that register. Record this insn if the register is only used once
3628 more and the equivalence value is the same as our source.
3630 The latter condition is checked for two reasons: First, it is an
3631 indication that it may be more efficient to actually emit the insn
3632 as written (if no registers are available, reload will substitute
3633 the equivalence). Secondly, it avoids problems with any registers
3634 dying in this insn whose death notes would be missed.
3636 If we don't have a REG_EQUIV note, see if this insn is loading
3637 a register used only in one basic block from a MEM. If so, and the
3638 MEM remains unchanged for the life of the register, add a REG_EQUIV
3641 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
3643 if (note
== 0 && REG_BASIC_BLOCK (regno
) >= NUM_FIXED_BLOCKS
3644 && MEM_P (SET_SRC (set
))
3645 && validate_equiv_mem (insn
, dest
, SET_SRC (set
)))
3646 note
= set_unique_reg_note (insn
, REG_EQUIV
, copy_rtx (SET_SRC (set
)));
3650 int regno
= REGNO (dest
);
3651 rtx x
= XEXP (note
, 0);
3653 /* If we haven't done so, record for reload that this is an
3654 equivalencing insn. */
3655 if (!reg_equiv
[regno
].is_arg_equivalence
)
3656 ira_reg_equiv
[regno
].init_insns
3657 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
3658 ira_reg_equiv
[regno
].init_insns
);
3660 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3661 We might end up substituting the LABEL_REF for uses of the
3662 pseudo here or later. That kind of transformation may turn an
3663 indirect jump into a direct jump, in which case we must rerun the
3664 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3665 if (GET_CODE (x
) == LABEL_REF
3666 || (GET_CODE (x
) == CONST
3667 && GET_CODE (XEXP (x
, 0)) == PLUS
3668 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == LABEL_REF
)))
3669 recorded_label_ref
= 1;
3671 reg_equiv
[regno
].replacement
= x
;
3672 reg_equiv
[regno
].src_p
= &SET_SRC (set
);
3673 reg_equiv
[regno
].loop_depth
= loop_depth
;
3675 /* Don't mess with things live during setjmp. */
3676 if (REG_LIVE_LENGTH (regno
) >= 0 && optimize
)
3678 /* Note that the statement below does not affect the priority
3680 REG_LIVE_LENGTH (regno
) *= 2;
3682 /* If the register is referenced exactly twice, meaning it is
3683 set once and used once, indicate that the reference may be
3684 replaced by the equivalence we computed above. Do this
3685 even if the register is only used in one block so that
3686 dependencies can be handled where the last register is
3687 used in a different block (i.e. HIGH / LO_SUM sequences)
3688 and to reduce the number of registers alive across
3691 if (REG_N_REFS (regno
) == 2
3692 && (rtx_equal_p (x
, src
)
3693 || ! equiv_init_varies_p (src
))
3694 && NONJUMP_INSN_P (insn
)
3695 && equiv_init_movable_p (PATTERN (insn
), regno
))
3696 reg_equiv
[regno
].replace
= 1;
3705 /* A second pass, to gather additional equivalences with memory. This needs
3706 to be done after we know which registers we are going to replace. */
3708 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3713 if (! INSN_P (insn
))
3716 set
= single_set (insn
);
3720 dest
= SET_DEST (set
);
3721 src
= SET_SRC (set
);
3723 /* If this sets a MEM to the contents of a REG that is only used
3724 in a single basic block, see if the register is always equivalent
3725 to that memory location and if moving the store from INSN to the
3726 insn that set REG is safe. If so, put a REG_EQUIV note on the
3729 Don't add a REG_EQUIV note if the insn already has one. The existing
3730 REG_EQUIV is likely more useful than the one we are adding.
3732 If one of the regs in the address has reg_equiv[REGNO].replace set,
3733 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3734 optimization may move the set of this register immediately before
3735 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3736 the mention in the REG_EQUIV note would be to an uninitialized
3739 if (MEM_P (dest
) && REG_P (src
)
3740 && (regno
= REGNO (src
)) >= FIRST_PSEUDO_REGISTER
3741 && REG_BASIC_BLOCK (regno
) >= NUM_FIXED_BLOCKS
3742 && DF_REG_DEF_COUNT (regno
) == 1
3743 && reg_equiv
[regno
].init_insns
!= 0
3744 && reg_equiv
[regno
].init_insns
!= const0_rtx
3745 && ! find_reg_note (XEXP (reg_equiv
[regno
].init_insns
, 0),
3746 REG_EQUIV
, NULL_RTX
)
3747 && ! contains_replace_regs (XEXP (dest
, 0))
3748 && ! pdx_subregs
[regno
])
3750 rtx init_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
3751 if (validate_equiv_mem (init_insn
, src
, dest
)
3752 && ! memref_used_between_p (dest
, init_insn
, insn
)
3753 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3755 && set_unique_reg_note (init_insn
, REG_EQUIV
, copy_rtx (dest
)))
3757 /* This insn makes the equivalence, not the one initializing
3759 ira_reg_equiv
[regno
].init_insns
3760 = gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
3761 df_notes_rescan (init_insn
);
3766 cleared_regs
= BITMAP_ALLOC (NULL
);
3767 /* Now scan all regs killed in an insn to see if any of them are
3768 registers only used that once. If so, see if we can replace the
3769 reference with the equivalent form. If we can, delete the
3770 initializing reference and this register will go away. If we
3771 can't replace the reference, and the initializing reference is
3772 within the same loop (or in an inner loop), then move the register
3773 initialization just before the use, so that they are in the same
3775 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
3777 loop_depth
= bb_loop_depth (bb
);
3778 for (insn
= BB_END (bb
);
3779 insn
!= PREV_INSN (BB_HEAD (bb
));
3780 insn
= PREV_INSN (insn
))
3784 if (! INSN_P (insn
))
3787 /* Don't substitute into a non-local goto, this confuses CFG. */
3789 && find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
3792 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
3794 if (REG_NOTE_KIND (link
) == REG_DEAD
3795 /* Make sure this insn still refers to the register. */
3796 && reg_mentioned_p (XEXP (link
, 0), PATTERN (insn
)))
3798 int regno
= REGNO (XEXP (link
, 0));
3801 if (! reg_equiv
[regno
].replace
3802 || reg_equiv
[regno
].loop_depth
< loop_depth
3803 /* There is no sense to move insns if live range
3804 shrinkage or register pressure-sensitive
3805 scheduling were done because it will not
3806 improve allocation but worsen insn schedule
3807 with a big probability. */
3808 || flag_live_range_shrinkage
3809 || (flag_sched_pressure
&& flag_schedule_insns
))
3812 /* reg_equiv[REGNO].replace gets set only when
3813 REG_N_REFS[REGNO] is 2, i.e. the register is set
3814 once and used once. (If it were only set, but
3815 not used, flow would have deleted the setting
3816 insns.) Hence there can only be one insn in
3817 reg_equiv[REGNO].init_insns. */
3818 gcc_assert (reg_equiv
[regno
].init_insns
3819 && !XEXP (reg_equiv
[regno
].init_insns
, 1));
3820 equiv_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
3822 /* We may not move instructions that can throw, since
3823 that changes basic block boundaries and we are not
3824 prepared to adjust the CFG to match. */
3825 if (can_throw_internal (equiv_insn
))
3828 if (asm_noperands (PATTERN (equiv_insn
)) < 0
3829 && validate_replace_rtx (regno_reg_rtx
[regno
],
3830 *(reg_equiv
[regno
].src_p
), insn
))
3836 /* Find the last note. */
3837 for (last_link
= link
; XEXP (last_link
, 1);
3838 last_link
= XEXP (last_link
, 1))
3841 /* Append the REG_DEAD notes from equiv_insn. */
3842 equiv_link
= REG_NOTES (equiv_insn
);
3846 equiv_link
= XEXP (equiv_link
, 1);
3847 if (REG_NOTE_KIND (note
) == REG_DEAD
)
3849 remove_note (equiv_insn
, note
);
3850 XEXP (last_link
, 1) = note
;
3851 XEXP (note
, 1) = NULL_RTX
;
3856 remove_death (regno
, insn
);
3857 SET_REG_N_REFS (regno
, 0);
3858 REG_FREQ (regno
) = 0;
3859 delete_insn (equiv_insn
);
3861 reg_equiv
[regno
].init_insns
3862 = XEXP (reg_equiv
[regno
].init_insns
, 1);
3864 ira_reg_equiv
[regno
].init_insns
= NULL_RTX
;
3865 bitmap_set_bit (cleared_regs
, regno
);
3867 /* Move the initialization of the register to just before
3868 INSN. Update the flow information. */
3869 else if (prev_nondebug_insn (insn
) != equiv_insn
)
3873 new_insn
= emit_insn_before (PATTERN (equiv_insn
), insn
);
3874 REG_NOTES (new_insn
) = REG_NOTES (equiv_insn
);
3875 REG_NOTES (equiv_insn
) = 0;
3876 /* Rescan it to process the notes. */
3877 df_insn_rescan (new_insn
);
3879 /* Make sure this insn is recognized before
3880 reload begins, otherwise
3881 eliminate_regs_in_insn will die. */
3882 INSN_CODE (new_insn
) = INSN_CODE (equiv_insn
);
3884 delete_insn (equiv_insn
);
3886 XEXP (reg_equiv
[regno
].init_insns
, 0) = new_insn
;
3888 REG_BASIC_BLOCK (regno
) = bb
->index
;
3889 REG_N_CALLS_CROSSED (regno
) = 0;
3890 REG_FREQ_CALLS_CROSSED (regno
) = 0;
3891 REG_N_THROWING_CALLS_CROSSED (regno
) = 0;
3892 REG_LIVE_LENGTH (regno
) = 2;
3894 if (insn
== BB_HEAD (bb
))
3895 BB_HEAD (bb
) = PREV_INSN (insn
);
3897 ira_reg_equiv
[regno
].init_insns
3898 = gen_rtx_INSN_LIST (VOIDmode
, new_insn
, NULL_RTX
);
3899 bitmap_set_bit (cleared_regs
, regno
);
3906 if (!bitmap_empty_p (cleared_regs
))
3908 FOR_EACH_BB_FN (bb
, cfun
)
3910 bitmap_and_compl_into (DF_LR_IN (bb
), cleared_regs
);
3911 bitmap_and_compl_into (DF_LR_OUT (bb
), cleared_regs
);
3914 bitmap_and_compl_into (DF_LIVE_IN (bb
), cleared_regs
);
3915 bitmap_and_compl_into (DF_LIVE_OUT (bb
), cleared_regs
);
3918 /* Last pass - adjust debug insns referencing cleared regs. */
3919 if (MAY_HAVE_DEBUG_INSNS
)
3920 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3921 if (DEBUG_INSN_P (insn
))
3923 rtx old_loc
= INSN_VAR_LOCATION_LOC (insn
);
3924 INSN_VAR_LOCATION_LOC (insn
)
3925 = simplify_replace_fn_rtx (old_loc
, NULL_RTX
,
3926 adjust_cleared_regs
,
3927 (void *) cleared_regs
);
3928 if (old_loc
!= INSN_VAR_LOCATION_LOC (insn
))
3929 df_insn_rescan (insn
);
3933 BITMAP_FREE (cleared_regs
);
3938 end_alias_analysis ();
3941 return recorded_label_ref
;
3946 /* Set up fields memory, constant, and invariant from init_insns in
3947 the structures of array ira_reg_equiv. */
3949 setup_reg_equiv (void)
3952 rtx elem
, prev_elem
, next_elem
, insn
, set
, x
;
3954 for (i
= FIRST_PSEUDO_REGISTER
; i
< ira_reg_equiv_len
; i
++)
3955 for (prev_elem
= NULL
, elem
= ira_reg_equiv
[i
].init_insns
;
3957 prev_elem
= elem
, elem
= next_elem
)
3959 next_elem
= XEXP (elem
, 1);
3960 insn
= XEXP (elem
, 0);
3961 set
= single_set (insn
);
3963 /* Init insns can set up equivalence when the reg is a destination or
3964 a source (in this case the destination is memory). */
3965 if (set
!= 0 && (REG_P (SET_DEST (set
)) || REG_P (SET_SRC (set
))))
3967 if ((x
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != NULL
)
3970 if (REG_P (SET_DEST (set
))
3971 && REGNO (SET_DEST (set
)) == (unsigned int) i
3972 && ! rtx_equal_p (SET_SRC (set
), x
) && MEM_P (x
))
3974 /* This insn reporting the equivalence but
3975 actually not setting it. Remove it from the
3977 if (prev_elem
== NULL
)
3978 ira_reg_equiv
[i
].init_insns
= next_elem
;
3980 XEXP (prev_elem
, 1) = next_elem
;
3984 else if (REG_P (SET_DEST (set
))
3985 && REGNO (SET_DEST (set
)) == (unsigned int) i
)
3989 gcc_assert (REG_P (SET_SRC (set
))
3990 && REGNO (SET_SRC (set
)) == (unsigned int) i
);
3993 if (! function_invariant_p (x
)
3995 /* A function invariant is often CONSTANT_P but may
3996 include a register. We promise to only pass
3997 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3998 || (CONSTANT_P (x
) && LEGITIMATE_PIC_OPERAND_P (x
)))
4000 /* It can happen that a REG_EQUIV note contains a MEM
4001 that is not a legitimate memory operand. As later
4002 stages of reload assume that all addresses found in
4003 the lra_regno_equiv_* arrays were originally
4004 legitimate, we ignore such REG_EQUIV notes. */
4005 if (memory_operand (x
, VOIDmode
))
4007 ira_reg_equiv
[i
].defined_p
= true;
4008 ira_reg_equiv
[i
].memory
= x
;
4011 else if (function_invariant_p (x
))
4013 enum machine_mode mode
;
4015 mode
= GET_MODE (SET_DEST (set
));
4016 if (GET_CODE (x
) == PLUS
4017 || x
== frame_pointer_rtx
|| x
== arg_pointer_rtx
)
4018 /* This is PLUS of frame pointer and a constant,
4020 ira_reg_equiv
[i
].invariant
= x
;
4021 else if (targetm
.legitimate_constant_p (mode
, x
))
4022 ira_reg_equiv
[i
].constant
= x
;
4025 ira_reg_equiv
[i
].memory
= force_const_mem (mode
, x
);
4026 if (ira_reg_equiv
[i
].memory
== NULL_RTX
)
4028 ira_reg_equiv
[i
].defined_p
= false;
4029 ira_reg_equiv
[i
].init_insns
= NULL_RTX
;
4033 ira_reg_equiv
[i
].defined_p
= true;
4038 ira_reg_equiv
[i
].defined_p
= false;
4039 ira_reg_equiv
[i
].init_insns
= NULL_RTX
;
4046 /* Print chain C to FILE. */
4048 print_insn_chain (FILE *file
, struct insn_chain
*c
)
4050 fprintf (file
, "insn=%d, ", INSN_UID (c
->insn
));
4051 bitmap_print (file
, &c
->live_throughout
, "live_throughout: ", ", ");
4052 bitmap_print (file
, &c
->dead_or_set
, "dead_or_set: ", "\n");
4056 /* Print all reload_insn_chains to FILE. */
4058 print_insn_chains (FILE *file
)
4060 struct insn_chain
*c
;
4061 for (c
= reload_insn_chain
; c
; c
= c
->next
)
4062 print_insn_chain (file
, c
);
4065 /* Return true if pseudo REGNO should be added to set live_throughout
4066 or dead_or_set of the insn chains for reload consideration. */
4068 pseudo_for_reload_consideration_p (int regno
)
4070 /* Consider spilled pseudos too for IRA because they still have a
4071 chance to get hard-registers in the reload when IRA is used. */
4072 return (reg_renumber
[regno
] >= 0 || ira_conflicts_p
);
4075 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4076 REG to the number of nregs, and INIT_VALUE to get the
4077 initialization. ALLOCNUM need not be the regno of REG. */
4079 init_live_subregs (bool init_value
, sbitmap
*live_subregs
,
4080 bitmap live_subregs_used
, int allocnum
, rtx reg
)
4082 unsigned int regno
= REGNO (SUBREG_REG (reg
));
4083 int size
= GET_MODE_SIZE (GET_MODE (regno_reg_rtx
[regno
]));
4085 gcc_assert (size
> 0);
4087 /* Been there, done that. */
4088 if (bitmap_bit_p (live_subregs_used
, allocnum
))
4091 /* Create a new one. */
4092 if (live_subregs
[allocnum
] == NULL
)
4093 live_subregs
[allocnum
] = sbitmap_alloc (size
);
4095 /* If the entire reg was live before blasting into subregs, we need
4096 to init all of the subregs to ones else init to 0. */
4098 bitmap_ones (live_subregs
[allocnum
]);
4100 bitmap_clear (live_subregs
[allocnum
]);
4102 bitmap_set_bit (live_subregs_used
, allocnum
);
4105 /* Walk the insns of the current function and build reload_insn_chain,
4106 and record register life information. */
4108 build_insn_chain (void)
4111 struct insn_chain
**p
= &reload_insn_chain
;
4113 struct insn_chain
*c
= NULL
;
4114 struct insn_chain
*next
= NULL
;
4115 bitmap live_relevant_regs
= BITMAP_ALLOC (NULL
);
4116 bitmap elim_regset
= BITMAP_ALLOC (NULL
);
4117 /* live_subregs is a vector used to keep accurate information about
4118 which hardregs are live in multiword pseudos. live_subregs and
4119 live_subregs_used are indexed by pseudo number. The live_subreg
4120 entry for a particular pseudo is only used if the corresponding
4121 element is non zero in live_subregs_used. The sbitmap size of
4122 live_subreg[allocno] is number of bytes that the pseudo can
4124 sbitmap
*live_subregs
= XCNEWVEC (sbitmap
, max_regno
);
4125 bitmap live_subregs_used
= BITMAP_ALLOC (NULL
);
4127 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4128 if (TEST_HARD_REG_BIT (eliminable_regset
, i
))
4129 bitmap_set_bit (elim_regset
, i
);
4130 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
4135 CLEAR_REG_SET (live_relevant_regs
);
4136 bitmap_clear (live_subregs_used
);
4138 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb
), 0, i
, bi
)
4140 if (i
>= FIRST_PSEUDO_REGISTER
)
4142 bitmap_set_bit (live_relevant_regs
, i
);
4145 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb
),
4146 FIRST_PSEUDO_REGISTER
, i
, bi
)
4148 if (pseudo_for_reload_consideration_p (i
))
4149 bitmap_set_bit (live_relevant_regs
, i
);
4152 FOR_BB_INSNS_REVERSE (bb
, insn
)
4154 if (!NOTE_P (insn
) && !BARRIER_P (insn
))
4156 unsigned int uid
= INSN_UID (insn
);
4160 c
= new_insn_chain ();
4167 c
->block
= bb
->index
;
4169 if (NONDEBUG_INSN_P (insn
))
4170 for (def_rec
= DF_INSN_UID_DEFS (uid
); *def_rec
; def_rec
++)
4172 df_ref def
= *def_rec
;
4173 unsigned int regno
= DF_REF_REGNO (def
);
4175 /* Ignore may clobbers because these are generated
4176 from calls. However, every other kind of def is
4177 added to dead_or_set. */
4178 if (!DF_REF_FLAGS_IS_SET (def
, DF_REF_MAY_CLOBBER
))
4180 if (regno
< FIRST_PSEUDO_REGISTER
)
4182 if (!fixed_regs
[regno
])
4183 bitmap_set_bit (&c
->dead_or_set
, regno
);
4185 else if (pseudo_for_reload_consideration_p (regno
))
4186 bitmap_set_bit (&c
->dead_or_set
, regno
);
4189 if ((regno
< FIRST_PSEUDO_REGISTER
4190 || reg_renumber
[regno
] >= 0
4192 && (!DF_REF_FLAGS_IS_SET (def
, DF_REF_CONDITIONAL
)))
4194 rtx reg
= DF_REF_REG (def
);
4196 /* We can model subregs, but not if they are
4197 wrapped in ZERO_EXTRACTS. */
4198 if (GET_CODE (reg
) == SUBREG
4199 && !DF_REF_FLAGS_IS_SET (def
, DF_REF_ZERO_EXTRACT
))
4201 unsigned int start
= SUBREG_BYTE (reg
);
4202 unsigned int last
= start
4203 + GET_MODE_SIZE (GET_MODE (reg
));
4206 (bitmap_bit_p (live_relevant_regs
, regno
),
4207 live_subregs
, live_subregs_used
, regno
, reg
);
4209 if (!DF_REF_FLAGS_IS_SET
4210 (def
, DF_REF_STRICT_LOW_PART
))
4212 /* Expand the range to cover entire words.
4213 Bytes added here are "don't care". */
4215 = start
/ UNITS_PER_WORD
* UNITS_PER_WORD
;
4216 last
= ((last
+ UNITS_PER_WORD
- 1)
4217 / UNITS_PER_WORD
* UNITS_PER_WORD
);
4220 /* Ignore the paradoxical bits. */
4221 if (last
> SBITMAP_SIZE (live_subregs
[regno
]))
4222 last
= SBITMAP_SIZE (live_subregs
[regno
]);
4224 while (start
< last
)
4226 bitmap_clear_bit (live_subregs
[regno
], start
);
4230 if (bitmap_empty_p (live_subregs
[regno
]))
4232 bitmap_clear_bit (live_subregs_used
, regno
);
4233 bitmap_clear_bit (live_relevant_regs
, regno
);
4236 /* Set live_relevant_regs here because
4237 that bit has to be true to get us to
4238 look at the live_subregs fields. */
4239 bitmap_set_bit (live_relevant_regs
, regno
);
4243 /* DF_REF_PARTIAL is generated for
4244 subregs, STRICT_LOW_PART, and
4245 ZERO_EXTRACT. We handle the subreg
4246 case above so here we have to keep from
4247 modeling the def as a killing def. */
4248 if (!DF_REF_FLAGS_IS_SET (def
, DF_REF_PARTIAL
))
4250 bitmap_clear_bit (live_subregs_used
, regno
);
4251 bitmap_clear_bit (live_relevant_regs
, regno
);
4257 bitmap_and_compl_into (live_relevant_regs
, elim_regset
);
4258 bitmap_copy (&c
->live_throughout
, live_relevant_regs
);
4260 if (NONDEBUG_INSN_P (insn
))
4261 for (use_rec
= DF_INSN_UID_USES (uid
); *use_rec
; use_rec
++)
4263 df_ref use
= *use_rec
;
4264 unsigned int regno
= DF_REF_REGNO (use
);
4265 rtx reg
= DF_REF_REG (use
);
4267 /* DF_REF_READ_WRITE on a use means that this use
4268 is fabricated from a def that is a partial set
4269 to a multiword reg. Here, we only model the
4270 subreg case that is not wrapped in ZERO_EXTRACT
4271 precisely so we do not need to look at the
4273 if (DF_REF_FLAGS_IS_SET (use
, DF_REF_READ_WRITE
)
4274 && !DF_REF_FLAGS_IS_SET (use
, DF_REF_ZERO_EXTRACT
)
4275 && DF_REF_FLAGS_IS_SET (use
, DF_REF_SUBREG
))
4278 /* Add the last use of each var to dead_or_set. */
4279 if (!bitmap_bit_p (live_relevant_regs
, regno
))
4281 if (regno
< FIRST_PSEUDO_REGISTER
)
4283 if (!fixed_regs
[regno
])
4284 bitmap_set_bit (&c
->dead_or_set
, regno
);
4286 else if (pseudo_for_reload_consideration_p (regno
))
4287 bitmap_set_bit (&c
->dead_or_set
, regno
);
4290 if (regno
< FIRST_PSEUDO_REGISTER
4291 || pseudo_for_reload_consideration_p (regno
))
4293 if (GET_CODE (reg
) == SUBREG
4294 && !DF_REF_FLAGS_IS_SET (use
,
4296 | DF_REF_ZERO_EXTRACT
))
4298 unsigned int start
= SUBREG_BYTE (reg
);
4299 unsigned int last
= start
4300 + GET_MODE_SIZE (GET_MODE (reg
));
4303 (bitmap_bit_p (live_relevant_regs
, regno
),
4304 live_subregs
, live_subregs_used
, regno
, reg
);
4306 /* Ignore the paradoxical bits. */
4307 if (last
> SBITMAP_SIZE (live_subregs
[regno
]))
4308 last
= SBITMAP_SIZE (live_subregs
[regno
]);
4310 while (start
< last
)
4312 bitmap_set_bit (live_subregs
[regno
], start
);
4317 /* Resetting the live_subregs_used is
4318 effectively saying do not use the subregs
4319 because we are reading the whole
4321 bitmap_clear_bit (live_subregs_used
, regno
);
4322 bitmap_set_bit (live_relevant_regs
, regno
);
4328 /* FIXME!! The following code is a disaster. Reload needs to see the
4329 labels and jump tables that are just hanging out in between
4330 the basic blocks. See pr33676. */
4331 insn
= BB_HEAD (bb
);
4333 /* Skip over the barriers and cruft. */
4334 while (insn
&& (BARRIER_P (insn
) || NOTE_P (insn
)
4335 || BLOCK_FOR_INSN (insn
) == bb
))
4336 insn
= PREV_INSN (insn
);
4338 /* While we add anything except barriers and notes, the focus is
4339 to get the labels and jump tables into the
4340 reload_insn_chain. */
4343 if (!NOTE_P (insn
) && !BARRIER_P (insn
))
4345 if (BLOCK_FOR_INSN (insn
))
4348 c
= new_insn_chain ();
4354 /* The block makes no sense here, but it is what the old
4356 c
->block
= bb
->index
;
4358 bitmap_copy (&c
->live_throughout
, live_relevant_regs
);
4360 insn
= PREV_INSN (insn
);
4364 reload_insn_chain
= c
;
4367 for (i
= 0; i
< (unsigned int) max_regno
; i
++)
4368 if (live_subregs
[i
] != NULL
)
4369 sbitmap_free (live_subregs
[i
]);
4370 free (live_subregs
);
4371 BITMAP_FREE (live_subregs_used
);
4372 BITMAP_FREE (live_relevant_regs
);
4373 BITMAP_FREE (elim_regset
);
4376 print_insn_chains (dump_file
);
4379 /* Examine the rtx found in *LOC, which is read or written to as determined
4380 by TYPE. Return false if we find a reason why an insn containing this
4381 rtx should not be moved (such as accesses to non-constant memory), true
4384 rtx_moveable_p (rtx
*loc
, enum op_type type
)
4388 enum rtx_code code
= GET_CODE (x
);
4391 code
= GET_CODE (x
);
4401 return type
== OP_IN
;
4407 if (x
== frame_pointer_rtx
)
4409 if (HARD_REGISTER_P (x
))
4415 if (type
== OP_IN
&& MEM_READONLY_P (x
))
4416 return rtx_moveable_p (&XEXP (x
, 0), OP_IN
);
4420 return (rtx_moveable_p (&SET_SRC (x
), OP_IN
)
4421 && rtx_moveable_p (&SET_DEST (x
), OP_OUT
));
4423 case STRICT_LOW_PART
:
4424 return rtx_moveable_p (&XEXP (x
, 0), OP_OUT
);
4428 return (rtx_moveable_p (&XEXP (x
, 0), type
)
4429 && rtx_moveable_p (&XEXP (x
, 1), OP_IN
)
4430 && rtx_moveable_p (&XEXP (x
, 2), OP_IN
));
4433 return rtx_moveable_p (&SET_DEST (x
), OP_OUT
);
4439 fmt
= GET_RTX_FORMAT (code
);
4440 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4444 if (!rtx_moveable_p (&XEXP (x
, i
), type
))
4447 else if (fmt
[i
] == 'E')
4448 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4450 if (!rtx_moveable_p (&XVECEXP (x
, i
, j
), type
))
4457 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4458 to give dominance relationships between two insns I1 and I2. */
4460 insn_dominated_by_p (rtx i1
, rtx i2
, int *uid_luid
)
4462 basic_block bb1
= BLOCK_FOR_INSN (i1
);
4463 basic_block bb2
= BLOCK_FOR_INSN (i2
);
4466 return uid_luid
[INSN_UID (i2
)] < uid_luid
[INSN_UID (i1
)];
4467 return dominated_by_p (CDI_DOMINATORS
, bb1
, bb2
);
4470 /* Record the range of register numbers added by find_moveable_pseudos. */
4471 int first_moveable_pseudo
, last_moveable_pseudo
;
4473 /* These two vectors hold data for every register added by
4474 find_movable_pseudos, with index 0 holding data for the
4475 first_moveable_pseudo. */
4476 /* The original home register. */
4477 static vec
<rtx
> pseudo_replaced_reg
;
4479 /* Look for instances where we have an instruction that is known to increase
4480 register pressure, and whose result is not used immediately. If it is
4481 possible to move the instruction downwards to just before its first use,
4482 split its lifetime into two ranges. We create a new pseudo to compute the
4483 value, and emit a move instruction just before the first use. If, after
4484 register allocation, the new pseudo remains unallocated, the function
4485 move_unallocated_pseudos then deletes the move instruction and places
4486 the computation just before the first use.
4488 Such a move is safe and profitable if all the input registers remain live
4489 and unchanged between the original computation and its first use. In such
4490 a situation, the computation is known to increase register pressure, and
4491 moving it is known to at least not worsen it.
4493 We restrict moves to only those cases where a register remains unallocated,
4494 in order to avoid interfering too much with the instruction schedule. As
4495 an exception, we may move insns which only modify their input register
4496 (typically induction variables), as this increases the freedom for our
4497 intended transformation, and does not limit the second instruction
4501 find_moveable_pseudos (void)
4504 int max_regs
= max_reg_num ();
4505 int max_uid
= get_max_uid ();
4507 int *uid_luid
= XNEWVEC (int, max_uid
);
4508 rtx
*closest_uses
= XNEWVEC (rtx
, max_regs
);
4509 /* A set of registers which are live but not modified throughout a block. */
4510 bitmap_head
*bb_transp_live
= XNEWVEC (bitmap_head
,
4511 last_basic_block_for_fn (cfun
));
4512 /* A set of registers which only exist in a given basic block. */
4513 bitmap_head
*bb_local
= XNEWVEC (bitmap_head
,
4514 last_basic_block_for_fn (cfun
));
4515 /* A set of registers which are set once, in an instruction that can be
4516 moved freely downwards, but are otherwise transparent to a block. */
4517 bitmap_head
*bb_moveable_reg_sets
= XNEWVEC (bitmap_head
,
4518 last_basic_block_for_fn (cfun
));
4519 bitmap_head live
, used
, set
, interesting
, unusable_as_input
;
4521 bitmap_initialize (&interesting
, 0);
4523 first_moveable_pseudo
= max_regs
;
4524 pseudo_replaced_reg
.release ();
4525 pseudo_replaced_reg
.safe_grow_cleared (max_regs
);
4528 calculate_dominance_info (CDI_DOMINATORS
);
4531 bitmap_initialize (&live
, 0);
4532 bitmap_initialize (&used
, 0);
4533 bitmap_initialize (&set
, 0);
4534 bitmap_initialize (&unusable_as_input
, 0);
4535 FOR_EACH_BB_FN (bb
, cfun
)
4538 bitmap transp
= bb_transp_live
+ bb
->index
;
4539 bitmap moveable
= bb_moveable_reg_sets
+ bb
->index
;
4540 bitmap local
= bb_local
+ bb
->index
;
4542 bitmap_initialize (local
, 0);
4543 bitmap_initialize (transp
, 0);
4544 bitmap_initialize (moveable
, 0);
4545 bitmap_copy (&live
, df_get_live_out (bb
));
4546 bitmap_and_into (&live
, df_get_live_in (bb
));
4547 bitmap_copy (transp
, &live
);
4548 bitmap_clear (moveable
);
4549 bitmap_clear (&live
);
4550 bitmap_clear (&used
);
4551 bitmap_clear (&set
);
4552 FOR_BB_INSNS (bb
, insn
)
4553 if (NONDEBUG_INSN_P (insn
))
4555 df_ref
*u_rec
, *d_rec
;
4557 uid_luid
[INSN_UID (insn
)] = i
++;
4559 u_rec
= DF_INSN_USES (insn
);
4560 d_rec
= DF_INSN_DEFS (insn
);
4561 if (d_rec
[0] != NULL
&& d_rec
[1] == NULL
4562 && u_rec
[0] != NULL
&& u_rec
[1] == NULL
4563 && DF_REF_REGNO (*u_rec
) == DF_REF_REGNO (*d_rec
)
4564 && !bitmap_bit_p (&set
, DF_REF_REGNO (*u_rec
))
4565 && rtx_moveable_p (&PATTERN (insn
), OP_IN
))
4567 unsigned regno
= DF_REF_REGNO (*u_rec
);
4568 bitmap_set_bit (moveable
, regno
);
4569 bitmap_set_bit (&set
, regno
);
4570 bitmap_set_bit (&used
, regno
);
4571 bitmap_clear_bit (transp
, regno
);
4576 unsigned regno
= DF_REF_REGNO (*u_rec
);
4577 bitmap_set_bit (&used
, regno
);
4578 if (bitmap_clear_bit (moveable
, regno
))
4579 bitmap_clear_bit (transp
, regno
);
4585 unsigned regno
= DF_REF_REGNO (*d_rec
);
4586 bitmap_set_bit (&set
, regno
);
4587 bitmap_clear_bit (transp
, regno
);
4588 bitmap_clear_bit (moveable
, regno
);
4594 bitmap_clear (&live
);
4595 bitmap_clear (&used
);
4596 bitmap_clear (&set
);
4598 FOR_EACH_BB_FN (bb
, cfun
)
4600 bitmap local
= bb_local
+ bb
->index
;
4603 FOR_BB_INSNS (bb
, insn
)
4604 if (NONDEBUG_INSN_P (insn
))
4606 rtx def_insn
, closest_use
, note
;
4607 df_ref
*def_rec
, def
, use
;
4609 bool all_dominated
, all_local
;
4610 enum machine_mode mode
;
4612 def_rec
= DF_INSN_DEFS (insn
);
4613 /* There must be exactly one def in this insn. */
4615 if (!def
|| def_rec
[1] || !single_set (insn
))
4617 /* This must be the only definition of the reg. We also limit
4618 which modes we deal with so that we can assume we can generate
4619 move instructions. */
4620 regno
= DF_REF_REGNO (def
);
4621 mode
= GET_MODE (DF_REF_REG (def
));
4622 if (DF_REG_DEF_COUNT (regno
) != 1
4623 || !DF_REF_INSN_INFO (def
)
4624 || HARD_REGISTER_NUM_P (regno
)
4625 || DF_REG_EQ_USE_COUNT (regno
) > 0
4626 || (!INTEGRAL_MODE_P (mode
) && !FLOAT_MODE_P (mode
)))
4628 def_insn
= DF_REF_INSN (def
);
4630 for (note
= REG_NOTES (def_insn
); note
; note
= XEXP (note
, 1))
4631 if (REG_NOTE_KIND (note
) == REG_EQUIV
&& MEM_P (XEXP (note
, 0)))
4637 fprintf (dump_file
, "Ignoring reg %d, has equiv memory\n",
4639 bitmap_set_bit (&unusable_as_input
, regno
);
4643 use
= DF_REG_USE_CHAIN (regno
);
4644 all_dominated
= true;
4646 closest_use
= NULL_RTX
;
4647 for (; use
; use
= DF_REF_NEXT_REG (use
))
4650 if (!DF_REF_INSN_INFO (use
))
4652 all_dominated
= false;
4656 insn
= DF_REF_INSN (use
);
4657 if (DEBUG_INSN_P (insn
))
4659 if (BLOCK_FOR_INSN (insn
) != BLOCK_FOR_INSN (def_insn
))
4661 if (!insn_dominated_by_p (insn
, def_insn
, uid_luid
))
4662 all_dominated
= false;
4663 if (closest_use
!= insn
&& closest_use
!= const0_rtx
)
4665 if (closest_use
== NULL_RTX
)
4667 else if (insn_dominated_by_p (closest_use
, insn
, uid_luid
))
4669 else if (!insn_dominated_by_p (insn
, closest_use
, uid_luid
))
4670 closest_use
= const0_rtx
;
4676 fprintf (dump_file
, "Reg %d not all uses dominated by set\n",
4681 bitmap_set_bit (local
, regno
);
4682 if (closest_use
== const0_rtx
|| closest_use
== NULL
4683 || next_nonnote_nondebug_insn (def_insn
) == closest_use
)
4686 fprintf (dump_file
, "Reg %d uninteresting%s\n", regno
,
4687 closest_use
== const0_rtx
|| closest_use
== NULL
4688 ? " (no unique first use)" : "");
4692 if (reg_referenced_p (cc0_rtx
, PATTERN (closest_use
)))
4695 fprintf (dump_file
, "Reg %d: closest user uses cc0\n",
4700 bitmap_set_bit (&interesting
, regno
);
4701 closest_uses
[regno
] = closest_use
;
4703 if (dump_file
&& (all_local
|| all_dominated
))
4705 fprintf (dump_file
, "Reg %u:", regno
);
4707 fprintf (dump_file
, " local to bb %d", bb
->index
);
4709 fprintf (dump_file
, " def dominates all uses");
4710 if (closest_use
!= const0_rtx
)
4711 fprintf (dump_file
, " has unique first use");
4712 fputs ("\n", dump_file
);
4717 EXECUTE_IF_SET_IN_BITMAP (&interesting
, 0, i
, bi
)
4719 df_ref def
= DF_REG_DEF_CHAIN (i
);
4720 rtx def_insn
= DF_REF_INSN (def
);
4721 basic_block def_block
= BLOCK_FOR_INSN (def_insn
);
4722 bitmap def_bb_local
= bb_local
+ def_block
->index
;
4723 bitmap def_bb_moveable
= bb_moveable_reg_sets
+ def_block
->index
;
4724 bitmap def_bb_transp
= bb_transp_live
+ def_block
->index
;
4725 bool local_to_bb_p
= bitmap_bit_p (def_bb_local
, i
);
4726 rtx use_insn
= closest_uses
[i
];
4727 df_ref
*def_insn_use_rec
= DF_INSN_USES (def_insn
);
4729 bool all_transp
= true;
4731 if (!REG_P (DF_REF_REG (def
)))
4737 fprintf (dump_file
, "Reg %u not local to one basic block\n",
4741 if (reg_equiv_init (i
) != NULL_RTX
)
4744 fprintf (dump_file
, "Ignoring reg %u with equiv init insn\n",
4748 if (!rtx_moveable_p (&PATTERN (def_insn
), OP_IN
))
4751 fprintf (dump_file
, "Found def insn %d for %d to be not moveable\n",
4752 INSN_UID (def_insn
), i
);
4756 fprintf (dump_file
, "Examining insn %d, def for %d\n",
4757 INSN_UID (def_insn
), i
);
4758 while (*def_insn_use_rec
!= NULL
)
4760 df_ref use
= *def_insn_use_rec
;
4761 unsigned regno
= DF_REF_REGNO (use
);
4762 if (bitmap_bit_p (&unusable_as_input
, regno
))
4766 fprintf (dump_file
, " found unusable input reg %u.\n", regno
);
4769 if (!bitmap_bit_p (def_bb_transp
, regno
))
4771 if (bitmap_bit_p (def_bb_moveable
, regno
)
4772 && !control_flow_insn_p (use_insn
)
4774 && !sets_cc0_p (use_insn
)
4778 if (modified_between_p (DF_REF_REG (use
), def_insn
, use_insn
))
4780 rtx x
= NEXT_INSN (def_insn
);
4781 while (!modified_in_p (DF_REF_REG (use
), x
))
4783 gcc_assert (x
!= use_insn
);
4787 fprintf (dump_file
, " input reg %u modified but insn %d moveable\n",
4788 regno
, INSN_UID (x
));
4789 emit_insn_after (PATTERN (x
), use_insn
);
4790 set_insn_deleted (x
);
4795 fprintf (dump_file
, " input reg %u modified between def and use\n",
4808 if (!dbg_cnt (ira_move
))
4811 fprintf (dump_file
, " all ok%s\n", all_transp
? " and transp" : "");
4815 rtx def_reg
= DF_REF_REG (def
);
4816 rtx newreg
= ira_create_new_reg (def_reg
);
4817 if (validate_change (def_insn
, DF_REF_REAL_LOC (def
), newreg
, 0))
4819 unsigned nregno
= REGNO (newreg
);
4820 emit_insn_before (gen_move_insn (def_reg
, newreg
), use_insn
);
4822 pseudo_replaced_reg
[nregno
] = def_reg
;
4827 FOR_EACH_BB_FN (bb
, cfun
)
4829 bitmap_clear (bb_local
+ bb
->index
);
4830 bitmap_clear (bb_transp_live
+ bb
->index
);
4831 bitmap_clear (bb_moveable_reg_sets
+ bb
->index
);
4833 bitmap_clear (&interesting
);
4834 bitmap_clear (&unusable_as_input
);
4836 free (closest_uses
);
4838 free (bb_transp_live
);
4839 free (bb_moveable_reg_sets
);
4841 last_moveable_pseudo
= max_reg_num ();
4843 fix_reg_equiv_init ();
4845 regstat_free_n_sets_and_refs ();
4847 regstat_init_n_sets_and_refs ();
4848 regstat_compute_ri ();
4849 free_dominance_info (CDI_DOMINATORS
);
4852 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4853 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4854 the destination. Otherwise return NULL. */
4857 interesting_dest_for_shprep_1 (rtx set
, basic_block call_dom
)
4859 rtx src
= SET_SRC (set
);
4860 rtx dest
= SET_DEST (set
);
4861 if (!REG_P (src
) || !HARD_REGISTER_P (src
)
4862 || !REG_P (dest
) || HARD_REGISTER_P (dest
)
4863 || (call_dom
&& !bitmap_bit_p (df_get_live_in (call_dom
), REGNO (dest
))))
4868 /* If insn is interesting for parameter range-splitting shring-wrapping
4869 preparation, i.e. it is a single set from a hard register to a pseudo, which
4870 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4871 parallel statement with only one such statement, return the destination.
4872 Otherwise return NULL. */
4875 interesting_dest_for_shprep (rtx insn
, basic_block call_dom
)
4879 rtx pat
= PATTERN (insn
);
4880 if (GET_CODE (pat
) == SET
)
4881 return interesting_dest_for_shprep_1 (pat
, call_dom
);
4883 if (GET_CODE (pat
) != PARALLEL
)
4886 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
4888 rtx sub
= XVECEXP (pat
, 0, i
);
4889 if (GET_CODE (sub
) == USE
|| GET_CODE (sub
) == CLOBBER
)
4891 if (GET_CODE (sub
) != SET
4892 || side_effects_p (sub
))
4894 rtx dest
= interesting_dest_for_shprep_1 (sub
, call_dom
);
4903 /* Split live ranges of pseudos that are loaded from hard registers in the
4904 first BB in a BB that dominates all non-sibling call if such a BB can be
4905 found and is not in a loop. Return true if the function has made any
4909 split_live_ranges_for_shrink_wrap (void)
4911 basic_block bb
, call_dom
= NULL
;
4912 basic_block first
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
4913 rtx insn
, last_interesting_insn
= NULL
;
4914 bitmap_head need_new
, reachable
;
4915 vec
<basic_block
> queue
;
4917 if (!flag_shrink_wrap
)
4920 bitmap_initialize (&need_new
, 0);
4921 bitmap_initialize (&reachable
, 0);
4922 queue
.create (n_basic_blocks_for_fn (cfun
));
4924 FOR_EACH_BB_FN (bb
, cfun
)
4925 FOR_BB_INSNS (bb
, insn
)
4926 if (CALL_P (insn
) && !SIBLING_CALL_P (insn
))
4930 bitmap_clear (&need_new
);
4931 bitmap_clear (&reachable
);
4936 bitmap_set_bit (&need_new
, bb
->index
);
4937 bitmap_set_bit (&reachable
, bb
->index
);
4938 queue
.quick_push (bb
);
4942 if (queue
.is_empty ())
4944 bitmap_clear (&need_new
);
4945 bitmap_clear (&reachable
);
4950 while (!queue
.is_empty ())
4956 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4957 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
4958 && bitmap_set_bit (&reachable
, e
->dest
->index
))
4959 queue
.quick_push (e
->dest
);
4963 FOR_BB_INSNS (first
, insn
)
4965 rtx dest
= interesting_dest_for_shprep (insn
, NULL
);
4969 if (DF_REG_DEF_COUNT (REGNO (dest
)) > 1)
4971 bitmap_clear (&need_new
);
4972 bitmap_clear (&reachable
);
4976 for (df_ref use
= DF_REG_USE_CHAIN (REGNO(dest
));
4978 use
= DF_REF_NEXT_REG (use
))
4980 if (NONDEBUG_INSN_P (DF_REF_INSN (use
))
4981 && GET_CODE (DF_REF_REG (use
)) == SUBREG
)
4983 /* This is necessary to avoid hitting an assert at
4984 postreload.c:2294 in libstc++ testcases on x86_64-linux. I'm
4985 not really sure what the probblem actually is there. */
4986 bitmap_clear (&need_new
);
4987 bitmap_clear (&reachable
);
4991 int ubbi
= DF_REF_BB (use
)->index
;
4992 if (bitmap_bit_p (&reachable
, ubbi
))
4993 bitmap_set_bit (&need_new
, ubbi
);
4995 last_interesting_insn
= insn
;
4998 bitmap_clear (&reachable
);
4999 if (!last_interesting_insn
)
5001 bitmap_clear (&need_new
);
5005 call_dom
= nearest_common_dominator_for_set (CDI_DOMINATORS
, &need_new
);
5006 bitmap_clear (&need_new
);
5007 if (call_dom
== first
)
5010 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
5011 while (bb_loop_depth (call_dom
) > 0)
5012 call_dom
= get_immediate_dominator (CDI_DOMINATORS
, call_dom
);
5013 loop_optimizer_finalize ();
5015 if (call_dom
== first
)
5018 calculate_dominance_info (CDI_POST_DOMINATORS
);
5019 if (dominated_by_p (CDI_POST_DOMINATORS
, first
, call_dom
))
5021 free_dominance_info (CDI_POST_DOMINATORS
);
5024 free_dominance_info (CDI_POST_DOMINATORS
);
5027 fprintf (dump_file
, "Will split live ranges of parameters at BB %i\n",
5031 FOR_BB_INSNS (first
, insn
)
5033 rtx dest
= interesting_dest_for_shprep (insn
, call_dom
);
5037 rtx newreg
= NULL_RTX
;
5039 for (use
= DF_REG_USE_CHAIN (REGNO (dest
)); use
; use
= next
)
5041 rtx uin
= DF_REF_INSN (use
);
5042 next
= DF_REF_NEXT_REG (use
);
5044 basic_block ubb
= BLOCK_FOR_INSN (uin
);
5046 || dominated_by_p (CDI_DOMINATORS
, ubb
, call_dom
))
5049 newreg
= ira_create_new_reg (dest
);
5050 validate_change (uin
, DF_REF_REAL_LOC (use
), newreg
, true);
5056 rtx new_move
= gen_move_insn (newreg
, dest
);
5057 emit_insn_after (new_move
, bb_note (call_dom
));
5060 fprintf (dump_file
, "Split live-range of register ");
5061 print_rtl_single (dump_file
, dest
);
5066 if (insn
== last_interesting_insn
)
5069 apply_change_group ();
5073 /* Perform the second half of the transformation started in
5074 find_moveable_pseudos. We look for instances where the newly introduced
5075 pseudo remains unallocated, and remove it by moving the definition to
5076 just before its use, replacing the move instruction generated by
5077 find_moveable_pseudos. */
5079 move_unallocated_pseudos (void)
5082 for (i
= first_moveable_pseudo
; i
< last_moveable_pseudo
; i
++)
5083 if (reg_renumber
[i
] < 0)
5085 int idx
= i
- first_moveable_pseudo
;
5086 rtx other_reg
= pseudo_replaced_reg
[idx
];
5087 rtx def_insn
= DF_REF_INSN (DF_REG_DEF_CHAIN (i
));
5088 /* The use must follow all definitions of OTHER_REG, so we can
5089 insert the new definition immediately after any of them. */
5090 df_ref other_def
= DF_REG_DEF_CHAIN (REGNO (other_reg
));
5091 rtx move_insn
= DF_REF_INSN (other_def
);
5092 rtx newinsn
= emit_insn_after (PATTERN (def_insn
), move_insn
);
5097 fprintf (dump_file
, "moving def of %d (insn %d now) ",
5098 REGNO (other_reg
), INSN_UID (def_insn
));
5100 delete_insn (move_insn
);
5101 while ((other_def
= DF_REG_DEF_CHAIN (REGNO (other_reg
))))
5102 delete_insn (DF_REF_INSN (other_def
));
5103 delete_insn (def_insn
);
5105 set
= single_set (newinsn
);
5106 success
= validate_change (newinsn
, &SET_DEST (set
), other_reg
, 0);
5107 gcc_assert (success
);
5109 fprintf (dump_file
, " %d) rather than keep unallocated replacement %d\n",
5110 INSN_UID (newinsn
), i
);
5111 SET_REG_N_REFS (i
, 0);
5115 /* If the backend knows where to allocate pseudos for hard
5116 register initial values, register these allocations now. */
5118 allocate_initial_values (void)
5120 if (targetm
.allocate_initial_value
)
5125 for (i
= 0; HARD_REGISTER_NUM_P (i
); i
++)
5127 if (! initial_value_entry (i
, &hreg
, &preg
))
5130 x
= targetm
.allocate_initial_value (hreg
);
5131 regno
= REGNO (preg
);
5132 if (x
&& REG_N_SETS (regno
) <= 1)
5135 reg_equiv_memory_loc (regno
) = x
;
5141 gcc_assert (REG_P (x
));
5142 new_regno
= REGNO (x
);
5143 reg_renumber
[regno
] = new_regno
;
5144 /* Poke the regno right into regno_reg_rtx so that even
5145 fixed regs are accepted. */
5146 SET_REGNO (preg
, new_regno
);
5147 /* Update global register liveness information. */
5148 FOR_EACH_BB_FN (bb
, cfun
)
5150 if (REGNO_REG_SET_P (df_get_live_in (bb
), regno
))
5151 SET_REGNO_REG_SET (df_get_live_in (bb
), new_regno
);
5152 if (REGNO_REG_SET_P (df_get_live_out (bb
), regno
))
5153 SET_REGNO_REG_SET (df_get_live_out (bb
), new_regno
);
5159 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER
,
5165 /* True when we use LRA instead of reload pass for the current
5169 /* True if we have allocno conflicts. It is false for non-optimized
5170 mode or when the conflict table is too big. */
5171 bool ira_conflicts_p
;
5173 /* Saved between IRA and reload. */
5174 static int saved_flag_ira_share_spill_slots
;
5176 /* This is the main entry of IRA. */
5181 int ira_max_point_before_emit
;
5183 bool saved_flag_caller_saves
= flag_caller_saves
;
5184 enum ira_region saved_flag_ira_region
= flag_ira_region
;
5186 ira_conflicts_p
= optimize
> 0;
5188 ira_use_lra_p
= targetm
.lra_p ();
5189 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5190 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5191 use simplified and faster algorithms in LRA. */
5194 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun
));
5197 /* It permits to skip live range splitting in LRA. */
5198 flag_caller_saves
= false;
5199 /* There is no sense to do regional allocation when we use
5201 flag_ira_region
= IRA_REGION_ONE
;
5202 ira_conflicts_p
= false;
5205 #ifndef IRA_NO_OBSTACK
5206 gcc_obstack_init (&ira_obstack
);
5208 bitmap_obstack_initialize (&ira_bitmap_obstack
);
5210 if (flag_caller_saves
)
5211 init_caller_save ();
5213 if (flag_ira_verbose
< 10)
5215 internal_flag_ira_verbose
= flag_ira_verbose
;
5220 internal_flag_ira_verbose
= flag_ira_verbose
- 10;
5221 ira_dump_file
= stderr
;
5224 setup_prohibited_mode_move_regs ();
5225 decrease_live_ranges_number ();
5226 df_note_add_problem ();
5228 /* DF_LIVE can't be used in the register allocator, too many other
5229 parts of the compiler depend on using the "classic" liveness
5230 interpretation of the DF_LR problem. See PR38711.
5231 Remove the problem, so that we don't spend time updating it in
5232 any of the df_analyze() calls during IRA/LRA. */
5234 df_remove_problem (df_live
);
5235 gcc_checking_assert (df_live
== NULL
);
5237 #ifdef ENABLE_CHECKING
5238 df
->changeable_flags
|= DF_VERIFY_SCHEDULED
;
5243 if (ira_conflicts_p
)
5245 calculate_dominance_info (CDI_DOMINATORS
);
5247 if (split_live_ranges_for_shrink_wrap ())
5250 free_dominance_info (CDI_DOMINATORS
);
5253 df_clear_flags (DF_NO_INSN_RESCAN
);
5255 regstat_init_n_sets_and_refs ();
5256 regstat_compute_ri ();
5258 /* If we are not optimizing, then this is the only place before
5259 register allocation where dataflow is done. And that is needed
5260 to generate these warnings. */
5262 generate_setjmp_warnings ();
5264 /* Determine if the current function is a leaf before running IRA
5265 since this can impact optimizations done by the prologue and
5266 epilogue thus changing register elimination offsets. */
5267 crtl
->is_leaf
= leaf_function_p ();
5269 if (resize_reg_info () && flag_ira_loop_pressure
)
5270 ira_set_pseudo_classes (true, ira_dump_file
);
5272 rebuild_p
= update_equiv_regs ();
5274 setup_reg_equiv_init ();
5276 if (optimize
&& rebuild_p
)
5278 timevar_push (TV_JUMP
);
5279 rebuild_jump_labels (get_insns ());
5280 if (purge_all_dead_edges ())
5281 delete_unreachable_blocks ();
5282 timevar_pop (TV_JUMP
);
5285 allocated_reg_info_size
= max_reg_num ();
5287 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5290 /* It is not worth to do such improvement when we use a simple
5291 allocation because of -O0 usage or because the function is too
5293 if (ira_conflicts_p
)
5294 find_moveable_pseudos ();
5296 max_regno_before_ira
= max_reg_num ();
5297 ira_setup_eliminable_regset ();
5299 ira_overall_cost
= ira_reg_cost
= ira_mem_cost
= 0;
5300 ira_load_cost
= ira_store_cost
= ira_shuffle_cost
= 0;
5301 ira_move_loops_num
= ira_additional_jumps_num
= 0;
5303 ira_assert (current_loops
== NULL
);
5304 if (flag_ira_region
== IRA_REGION_ALL
|| flag_ira_region
== IRA_REGION_MIXED
)
5305 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
| LOOPS_HAVE_RECORDED_EXITS
);
5307 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
5308 fprintf (ira_dump_file
, "Building IRA IR\n");
5309 loops_p
= ira_build ();
5311 ira_assert (ira_conflicts_p
|| !loops_p
);
5313 saved_flag_ira_share_spill_slots
= flag_ira_share_spill_slots
;
5314 if (too_high_register_pressure_p () || cfun
->calls_setjmp
)
5315 /* It is just wasting compiler's time to pack spilled pseudos into
5316 stack slots in this case -- prohibit it. We also do this if
5317 there is setjmp call because a variable not modified between
5318 setjmp and longjmp the compiler is required to preserve its
5319 value and sharing slots does not guarantee it. */
5320 flag_ira_share_spill_slots
= FALSE
;
5324 ira_max_point_before_emit
= ira_max_point
;
5326 ira_initiate_emit_data ();
5330 max_regno
= max_reg_num ();
5331 if (ira_conflicts_p
)
5335 if (! ira_use_lra_p
)
5336 ira_initiate_assign ();
5345 ira_allocno_iterator ai
;
5347 FOR_EACH_ALLOCNO (a
, ai
)
5348 ALLOCNO_REGNO (a
) = REGNO (ALLOCNO_EMIT_DATA (a
)->reg
);
5352 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
5353 fprintf (ira_dump_file
, "Flattening IR\n");
5354 ira_flattening (max_regno_before_ira
, ira_max_point_before_emit
);
5356 /* New insns were generated: add notes and recalculate live
5360 /* ??? Rebuild the loop tree, but why? Does the loop tree
5361 change if new insns were generated? Can that be handled
5362 by updating the loop tree incrementally? */
5363 loop_optimizer_finalize ();
5364 free_dominance_info (CDI_DOMINATORS
);
5365 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5366 | LOOPS_HAVE_RECORDED_EXITS
);
5368 if (! ira_use_lra_p
)
5370 setup_allocno_assignment_flags ();
5371 ira_initiate_assign ();
5372 ira_reassign_conflict_allocnos (max_regno
);
5377 ira_finish_emit_data ();
5379 setup_reg_renumber ();
5381 calculate_allocation_cost ();
5383 #ifdef ENABLE_IRA_CHECKING
5384 if (ira_conflicts_p
)
5385 check_allocation ();
5388 if (max_regno
!= max_regno_before_ira
)
5390 regstat_free_n_sets_and_refs ();
5392 regstat_init_n_sets_and_refs ();
5393 regstat_compute_ri ();
5396 overall_cost_before
= ira_overall_cost
;
5397 if (! ira_conflicts_p
)
5401 fix_reg_equiv_init ();
5403 #ifdef ENABLE_IRA_CHECKING
5404 print_redundant_copies ();
5407 ira_spilled_reg_stack_slots_num
= 0;
5408 ira_spilled_reg_stack_slots
5409 = ((struct ira_spilled_reg_stack_slot
*)
5410 ira_allocate (max_regno
5411 * sizeof (struct ira_spilled_reg_stack_slot
)));
5412 memset (ira_spilled_reg_stack_slots
, 0,
5413 max_regno
* sizeof (struct ira_spilled_reg_stack_slot
));
5415 allocate_initial_values ();
5417 /* See comment for find_moveable_pseudos call. */
5418 if (ira_conflicts_p
)
5419 move_unallocated_pseudos ();
5421 /* Restore original values. */
5424 flag_caller_saves
= saved_flag_caller_saves
;
5425 flag_ira_region
= saved_flag_ira_region
;
5435 if (flag_ira_verbose
< 10)
5436 ira_dump_file
= dump_file
;
5438 timevar_push (TV_RELOAD
);
5441 if (current_loops
!= NULL
)
5443 loop_optimizer_finalize ();
5444 free_dominance_info (CDI_DOMINATORS
);
5446 FOR_ALL_BB_FN (bb
, cfun
)
5447 bb
->loop_father
= NULL
;
5448 current_loops
= NULL
;
5450 if (ira_conflicts_p
)
5451 ira_free (ira_spilled_reg_stack_slots
);
5455 lra (ira_dump_file
);
5456 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5458 vec_free (reg_equivs
);
5464 df_set_flags (DF_NO_INSN_RESCAN
);
5465 build_insn_chain ();
5467 need_dce
= reload (get_insns (), ira_conflicts_p
);
5471 timevar_pop (TV_RELOAD
);
5473 timevar_push (TV_IRA
);
5475 if (ira_conflicts_p
&& ! ira_use_lra_p
)
5477 ira_free (ira_spilled_reg_stack_slots
);
5478 ira_finish_assign ();
5481 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
5482 && overall_cost_before
!= ira_overall_cost
)
5483 fprintf (ira_dump_file
, "+++Overall after reload %d\n", ira_overall_cost
);
5485 flag_ira_share_spill_slots
= saved_flag_ira_share_spill_slots
;
5487 if (! ira_use_lra_p
)
5490 if (current_loops
!= NULL
)
5492 loop_optimizer_finalize ();
5493 free_dominance_info (CDI_DOMINATORS
);
5495 FOR_ALL_BB_FN (bb
, cfun
)
5496 bb
->loop_father
= NULL
;
5497 current_loops
= NULL
;
5500 regstat_free_n_sets_and_refs ();
5504 cleanup_cfg (CLEANUP_EXPENSIVE
);
5506 finish_reg_equiv ();
5508 bitmap_obstack_release (&ira_bitmap_obstack
);
5509 #ifndef IRA_NO_OBSTACK
5510 obstack_free (&ira_obstack
, NULL
);
5513 /* The code after the reload has changed so much that at this point
5514 we might as well just rescan everything. Note that
5515 df_rescan_all_insns is not going to help here because it does not
5516 touch the artificial uses and defs. */
5517 df_finish_pass (true);
5518 df_scan_alloc (NULL
);
5523 df_live_add_problem ();
5524 df_live_set_all_dirty ();
5530 if (need_dce
&& optimize
)
5533 timevar_pop (TV_IRA
);
5536 /* Run the integrated register allocator. */
5538 rest_of_handle_ira (void)
5546 const pass_data pass_data_ira
=
5548 RTL_PASS
, /* type */
5550 OPTGROUP_NONE
, /* optinfo_flags */
5551 false, /* has_gate */
5552 true, /* has_execute */
5554 0, /* properties_required */
5555 0, /* properties_provided */
5556 0, /* properties_destroyed */
5557 0, /* todo_flags_start */
5558 TODO_do_not_ggc_collect
, /* todo_flags_finish */
5561 class pass_ira
: public rtl_opt_pass
5564 pass_ira (gcc::context
*ctxt
)
5565 : rtl_opt_pass (pass_data_ira
, ctxt
)
5568 /* opt_pass methods: */
5569 unsigned int execute () { return rest_of_handle_ira (); }
5571 }; // class pass_ira
5576 make_pass_ira (gcc::context
*ctxt
)
5578 return new pass_ira (ctxt
);
5582 rest_of_handle_reload (void)
5590 const pass_data pass_data_reload
=
5592 RTL_PASS
, /* type */
5593 "reload", /* name */
5594 OPTGROUP_NONE
, /* optinfo_flags */
5595 false, /* has_gate */
5596 true, /* has_execute */
5597 TV_RELOAD
, /* tv_id */
5598 0, /* properties_required */
5599 0, /* properties_provided */
5600 0, /* properties_destroyed */
5601 0, /* todo_flags_start */
5602 0, /* todo_flags_finish */
5605 class pass_reload
: public rtl_opt_pass
5608 pass_reload (gcc::context
*ctxt
)
5609 : rtl_opt_pass (pass_data_reload
, ctxt
)
5612 /* opt_pass methods: */
5613 unsigned int execute () { return rest_of_handle_reload (); }
5615 }; // class pass_reload
5620 make_pass_reload (gcc::context
*ctxt
)
5622 return new pass_reload (ctxt
);