Merged revisions 207156,207159,207161-207172,207180-207182,207193-207200,207204-20720...
[official-gcc.git] / main / gcc / ada / sem_ch3.adb
blob817ccb58fbad48a526bcd98ddc4e67a879a3b917
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Pakd; use Exp_Pakd;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed aspects chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The aspects to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraint
364 -- Constraints for Typ and a component of Typ, with type Compon_Type,
365 -- create and return the type corresponding to Compon_type where all
366 -- discriminant references are replaced with the corresponding constraint.
367 -- If no discriminant references occur in Compon_Typ then return it as is.
368 -- Constrained_Typ is the final constrained subtype to which the
369 -- constrained Compon_Type belongs. Related_Node is the node where we will
370 -- attach all the itypes created.
372 -- Above description is confused, what is Compon_Type???
374 procedure Constrain_Access
375 (Def_Id : in out Entity_Id;
376 S : Node_Id;
377 Related_Nod : Node_Id);
378 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
379 -- an anonymous type created for a subtype indication. In that case it is
380 -- created in the procedure and attached to Related_Nod.
382 procedure Constrain_Array
383 (Def_Id : in out Entity_Id;
384 SI : Node_Id;
385 Related_Nod : Node_Id;
386 Related_Id : Entity_Id;
387 Suffix : Character);
388 -- Apply a list of index constraints to an unconstrained array type. The
389 -- first parameter is the entity for the resulting subtype. A value of
390 -- Empty for Def_Id indicates that an implicit type must be created, but
391 -- creation is delayed (and must be done by this procedure) because other
392 -- subsidiary implicit types must be created first (which is why Def_Id
393 -- is an in/out parameter). The second parameter is a subtype indication
394 -- node for the constrained array to be created (e.g. something of the
395 -- form string (1 .. 10)). Related_Nod gives the place where this type
396 -- has to be inserted in the tree. The Related_Id and Suffix parameters
397 -- are used to build the associated Implicit type name.
399 procedure Constrain_Concurrent
400 (Def_Id : in out Entity_Id;
401 SI : Node_Id;
402 Related_Nod : Node_Id;
403 Related_Id : Entity_Id;
404 Suffix : Character);
405 -- Apply list of discriminant constraints to an unconstrained concurrent
406 -- type.
408 -- SI is the N_Subtype_Indication node containing the constraint and
409 -- the unconstrained type to constrain.
411 -- Def_Id is the entity for the resulting constrained subtype. A value
412 -- of Empty for Def_Id indicates that an implicit type must be created,
413 -- but creation is delayed (and must be done by this procedure) because
414 -- other subsidiary implicit types must be created first (which is why
415 -- Def_Id is an in/out parameter).
417 -- Related_Nod gives the place where this type has to be inserted
418 -- in the tree
420 -- The last two arguments are used to create its external name if needed.
422 function Constrain_Corresponding_Record
423 (Prot_Subt : Entity_Id;
424 Corr_Rec : Entity_Id;
425 Related_Nod : Node_Id;
426 Related_Id : Entity_Id) return Entity_Id;
427 -- When constraining a protected type or task type with discriminants,
428 -- constrain the corresponding record with the same discriminant values.
430 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
431 -- Constrain a decimal fixed point type with a digits constraint and/or a
432 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
434 procedure Constrain_Discriminated_Type
435 (Def_Id : Entity_Id;
436 S : Node_Id;
437 Related_Nod : Node_Id;
438 For_Access : Boolean := False);
439 -- Process discriminant constraints of composite type. Verify that values
440 -- have been provided for all discriminants, that the original type is
441 -- unconstrained, and that the types of the supplied expressions match
442 -- the discriminant types. The first three parameters are like in routine
443 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
444 -- of For_Access.
446 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain an enumeration type with a range constraint. This is identical
448 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
450 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
451 -- Constrain a floating point type with either a digits constraint
452 -- and/or a range constraint, building a E_Floating_Point_Subtype.
454 procedure Constrain_Index
455 (Index : Node_Id;
456 S : Node_Id;
457 Related_Nod : Node_Id;
458 Related_Id : Entity_Id;
459 Suffix : Character;
460 Suffix_Index : Nat);
461 -- Process an index constraint S in a constrained array declaration. The
462 -- constraint can be a subtype name, or a range with or without an explicit
463 -- subtype mark. The index is the corresponding index of the unconstrained
464 -- array. The Related_Id and Suffix parameters are used to build the
465 -- associated Implicit type name.
467 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
468 -- Build subtype of a signed or modular integer type
470 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
471 -- Constrain an ordinary fixed point type with a range constraint, and
472 -- build an E_Ordinary_Fixed_Point_Subtype entity.
474 procedure Copy_And_Swap (Priv, Full : Entity_Id);
475 -- Copy the Priv entity into the entity of its full declaration then swap
476 -- the two entities in such a manner that the former private type is now
477 -- seen as a full type.
479 procedure Decimal_Fixed_Point_Type_Declaration
480 (T : Entity_Id;
481 Def : Node_Id);
482 -- Create a new decimal fixed point type, and apply the constraint to
483 -- obtain a subtype of this new type.
485 procedure Complete_Private_Subtype
486 (Priv : Entity_Id;
487 Full : Entity_Id;
488 Full_Base : Entity_Id;
489 Related_Nod : Node_Id);
490 -- Complete the implicit full view of a private subtype by setting the
491 -- appropriate semantic fields. If the full view of the parent is a record
492 -- type, build constrained components of subtype.
494 procedure Derive_Progenitor_Subprograms
495 (Parent_Type : Entity_Id;
496 Tagged_Type : Entity_Id);
497 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
498 -- operations of progenitors of Tagged_Type, and replace the subsidiary
499 -- subtypes with Tagged_Type, to build the specs of the inherited interface
500 -- primitives. The derived primitives are aliased to those of the
501 -- interface. This routine takes care also of transferring to the full view
502 -- subprograms associated with the partial view of Tagged_Type that cover
503 -- interface primitives.
505 procedure Derived_Standard_Character
506 (N : Node_Id;
507 Parent_Type : Entity_Id;
508 Derived_Type : Entity_Id);
509 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
510 -- derivations from types Standard.Character and Standard.Wide_Character.
512 procedure Derived_Type_Declaration
513 (T : Entity_Id;
514 N : Node_Id;
515 Is_Completion : Boolean);
516 -- Process a derived type declaration. Build_Derived_Type is invoked
517 -- to process the actual derived type definition. Parameters N and
518 -- Is_Completion have the same meaning as in Build_Derived_Type.
519 -- T is the N_Defining_Identifier for the entity defined in the
520 -- N_Full_Type_Declaration node N, that is T is the derived type.
522 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
523 -- Insert each literal in symbol table, as an overloadable identifier. Each
524 -- enumeration type is mapped into a sequence of integers, and each literal
525 -- is defined as a constant with integer value. If any of the literals are
526 -- character literals, the type is a character type, which means that
527 -- strings are legal aggregates for arrays of components of the type.
529 function Expand_To_Stored_Constraint
530 (Typ : Entity_Id;
531 Constraint : Elist_Id) return Elist_Id;
532 -- Given a constraint (i.e. a list of expressions) on the discriminants of
533 -- Typ, expand it into a constraint on the stored discriminants and return
534 -- the new list of expressions constraining the stored discriminants.
536 function Find_Type_Of_Object
537 (Obj_Def : Node_Id;
538 Related_Nod : Node_Id) return Entity_Id;
539 -- Get type entity for object referenced by Obj_Def, attaching the
540 -- implicit types generated to Related_Nod
542 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
543 -- Create a new float and apply the constraint to obtain subtype of it
545 function Has_Range_Constraint (N : Node_Id) return Boolean;
546 -- Given an N_Subtype_Indication node N, return True if a range constraint
547 -- is present, either directly, or as part of a digits or delta constraint.
548 -- In addition, a digits constraint in the decimal case returns True, since
549 -- it establishes a default range if no explicit range is present.
551 function Inherit_Components
552 (N : Node_Id;
553 Parent_Base : Entity_Id;
554 Derived_Base : Entity_Id;
555 Is_Tagged : Boolean;
556 Inherit_Discr : Boolean;
557 Discs : Elist_Id) return Elist_Id;
558 -- Called from Build_Derived_Record_Type to inherit the components of
559 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
560 -- For more information on derived types and component inheritance please
561 -- consult the comment above the body of Build_Derived_Record_Type.
563 -- N is the original derived type declaration
565 -- Is_Tagged is set if we are dealing with tagged types
567 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
568 -- Parent_Base, otherwise no discriminants are inherited.
570 -- Discs gives the list of constraints that apply to Parent_Base in the
571 -- derived type declaration. If Discs is set to No_Elist, then we have
572 -- the following situation:
574 -- type Parent (D1..Dn : ..) is [tagged] record ...;
575 -- type Derived is new Parent [with ...];
577 -- which gets treated as
579 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
581 -- For untagged types the returned value is an association list. The list
582 -- starts from the association (Parent_Base => Derived_Base), and then it
583 -- contains a sequence of the associations of the form
585 -- (Old_Component => New_Component),
587 -- where Old_Component is the Entity_Id of a component in Parent_Base and
588 -- New_Component is the Entity_Id of the corresponding component in
589 -- Derived_Base. For untagged records, this association list is needed when
590 -- copying the record declaration for the derived base. In the tagged case
591 -- the value returned is irrelevant.
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
634 -- Full_T is N's defining identifier.
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
701 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
702 -- Create a new signed integer entity, and apply the constraint to obtain
703 -- the required first named subtype of this type.
705 procedure Set_Stored_Constraint_From_Discriminant_Constraint
706 (E : Entity_Id);
707 -- E is some record type. This routine computes E's Stored_Constraint
708 -- from its Discriminant_Constraint.
710 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
711 -- Check that an entity in a list of progenitors is an interface,
712 -- emit error otherwise.
714 -----------------------
715 -- Access_Definition --
716 -----------------------
718 function Access_Definition
719 (Related_Nod : Node_Id;
720 N : Node_Id) return Entity_Id
722 Anon_Type : Entity_Id;
723 Anon_Scope : Entity_Id;
724 Desig_Type : Entity_Id;
725 Enclosing_Prot_Type : Entity_Id := Empty;
727 begin
728 Check_SPARK_Restriction ("access type is not allowed", N);
730 if Is_Entry (Current_Scope)
731 and then Is_Task_Type (Etype (Scope (Current_Scope)))
732 then
733 Error_Msg_N ("task entries cannot have access parameters", N);
734 return Empty;
735 end if;
737 -- Ada 2005: For an object declaration the corresponding anonymous
738 -- type is declared in the current scope.
740 -- If the access definition is the return type of another access to
741 -- function, scope is the current one, because it is the one of the
742 -- current type declaration, except for the pathological case below.
744 if Nkind_In (Related_Nod, N_Object_Declaration,
745 N_Access_Function_Definition)
746 then
747 Anon_Scope := Current_Scope;
749 -- A pathological case: function returning access functions that
750 -- return access functions, etc. Each anonymous access type created
751 -- is in the enclosing scope of the outermost function.
753 declare
754 Par : Node_Id;
756 begin
757 Par := Related_Nod;
758 while Nkind_In (Par, N_Access_Function_Definition,
759 N_Access_Definition)
760 loop
761 Par := Parent (Par);
762 end loop;
764 if Nkind (Par) = N_Function_Specification then
765 Anon_Scope := Scope (Defining_Entity (Par));
766 end if;
767 end;
769 -- For the anonymous function result case, retrieve the scope of the
770 -- function specification's associated entity rather than using the
771 -- current scope. The current scope will be the function itself if the
772 -- formal part is currently being analyzed, but will be the parent scope
773 -- in the case of a parameterless function, and we always want to use
774 -- the function's parent scope. Finally, if the function is a child
775 -- unit, we must traverse the tree to retrieve the proper entity.
777 elsif Nkind (Related_Nod) = N_Function_Specification
778 and then Nkind (Parent (N)) /= N_Parameter_Specification
779 then
780 -- If the current scope is a protected type, the anonymous access
781 -- is associated with one of the protected operations, and must
782 -- be available in the scope that encloses the protected declaration.
783 -- Otherwise the type is in the scope enclosing the subprogram.
785 -- If the function has formals, The return type of a subprogram
786 -- declaration is analyzed in the scope of the subprogram (see
787 -- Process_Formals) and thus the protected type, if present, is
788 -- the scope of the current function scope.
790 if Ekind (Current_Scope) = E_Protected_Type then
791 Enclosing_Prot_Type := Current_Scope;
793 elsif Ekind (Current_Scope) = E_Function
794 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
795 then
796 Enclosing_Prot_Type := Scope (Current_Scope);
797 end if;
799 if Present (Enclosing_Prot_Type) then
800 Anon_Scope := Scope (Enclosing_Prot_Type);
802 else
803 Anon_Scope := Scope (Defining_Entity (Related_Nod));
804 end if;
806 -- For an access type definition, if the current scope is a child
807 -- unit it is the scope of the type.
809 elsif Is_Compilation_Unit (Current_Scope) then
810 Anon_Scope := Current_Scope;
812 -- For access formals, access components, and access discriminants, the
813 -- scope is that of the enclosing declaration,
815 else
816 Anon_Scope := Scope (Current_Scope);
817 end if;
819 Anon_Type :=
820 Create_Itype
821 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
823 if All_Present (N)
824 and then Ada_Version >= Ada_2005
825 then
826 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
827 end if;
829 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
830 -- the corresponding semantic routine
832 if Present (Access_To_Subprogram_Definition (N)) then
834 -- Compiler runtime units are compiled in Ada 2005 mode when building
835 -- the runtime library but must also be compilable in Ada 95 mode
836 -- (when bootstrapping the compiler).
838 Check_Compiler_Unit (N);
840 Access_Subprogram_Declaration
841 (T_Name => Anon_Type,
842 T_Def => Access_To_Subprogram_Definition (N));
844 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
845 Set_Ekind
846 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
847 else
848 Set_Ekind
849 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
850 end if;
852 Set_Can_Use_Internal_Rep
853 (Anon_Type, not Always_Compatible_Rep_On_Target);
855 -- If the anonymous access is associated with a protected operation,
856 -- create a reference to it after the enclosing protected definition
857 -- because the itype will be used in the subsequent bodies.
859 if Ekind (Current_Scope) = E_Protected_Type then
860 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
861 end if;
863 return Anon_Type;
864 end if;
866 Find_Type (Subtype_Mark (N));
867 Desig_Type := Entity (Subtype_Mark (N));
869 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
870 Set_Etype (Anon_Type, Anon_Type);
872 -- Make sure the anonymous access type has size and alignment fields
873 -- set, as required by gigi. This is necessary in the case of the
874 -- Task_Body_Procedure.
876 if not Has_Private_Component (Desig_Type) then
877 Layout_Type (Anon_Type);
878 end if;
880 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
881 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
882 -- the null value is allowed. In Ada 95 the null value is never allowed.
884 if Ada_Version >= Ada_2005 then
885 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
886 else
887 Set_Can_Never_Be_Null (Anon_Type, True);
888 end if;
890 -- The anonymous access type is as public as the discriminated type or
891 -- subprogram that defines it. It is imported (for back-end purposes)
892 -- if the designated type is.
894 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
896 -- Ada 2005 (AI-231): Propagate the access-constant attribute
898 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
900 -- The context is either a subprogram declaration, object declaration,
901 -- or an access discriminant, in a private or a full type declaration.
902 -- In the case of a subprogram, if the designated type is incomplete,
903 -- the operation will be a primitive operation of the full type, to be
904 -- updated subsequently. If the type is imported through a limited_with
905 -- clause, the subprogram is not a primitive operation of the type
906 -- (which is declared elsewhere in some other scope).
908 if Ekind (Desig_Type) = E_Incomplete_Type
909 and then not From_Limited_With (Desig_Type)
910 and then Is_Overloadable (Current_Scope)
911 then
912 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
913 Set_Has_Delayed_Freeze (Current_Scope);
914 end if;
916 -- Ada 2005: If the designated type is an interface that may contain
917 -- tasks, create a Master entity for the declaration. This must be done
918 -- before expansion of the full declaration, because the declaration may
919 -- include an expression that is an allocator, whose expansion needs the
920 -- proper Master for the created tasks.
922 if Nkind (Related_Nod) = N_Object_Declaration
923 and then Expander_Active
924 then
925 if Is_Interface (Desig_Type)
926 and then Is_Limited_Record (Desig_Type)
927 then
928 Build_Class_Wide_Master (Anon_Type);
930 -- Similarly, if the type is an anonymous access that designates
931 -- tasks, create a master entity for it in the current context.
933 elsif Has_Task (Desig_Type)
934 and then Comes_From_Source (Related_Nod)
935 then
936 Build_Master_Entity (Defining_Identifier (Related_Nod));
937 Build_Master_Renaming (Anon_Type);
938 end if;
939 end if;
941 -- For a private component of a protected type, it is imperative that
942 -- the back-end elaborate the type immediately after the protected
943 -- declaration, because this type will be used in the declarations
944 -- created for the component within each protected body, so we must
945 -- create an itype reference for it now.
947 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
948 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
950 -- Similarly, if the access definition is the return result of a
951 -- function, create an itype reference for it because it will be used
952 -- within the function body. For a regular function that is not a
953 -- compilation unit, insert reference after the declaration. For a
954 -- protected operation, insert it after the enclosing protected type
955 -- declaration. In either case, do not create a reference for a type
956 -- obtained through a limited_with clause, because this would introduce
957 -- semantic dependencies.
959 -- Similarly, do not create a reference if the designated type is a
960 -- generic formal, because no use of it will reach the backend.
962 elsif Nkind (Related_Nod) = N_Function_Specification
963 and then not From_Limited_With (Desig_Type)
964 and then not Is_Generic_Type (Desig_Type)
965 then
966 if Present (Enclosing_Prot_Type) then
967 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
969 elsif Is_List_Member (Parent (Related_Nod))
970 and then Nkind (Parent (N)) /= N_Parameter_Specification
971 then
972 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
973 end if;
975 -- Finally, create an itype reference for an object declaration of an
976 -- anonymous access type. This is strictly necessary only for deferred
977 -- constants, but in any case will avoid out-of-scope problems in the
978 -- back-end.
980 elsif Nkind (Related_Nod) = N_Object_Declaration then
981 Build_Itype_Reference (Anon_Type, Related_Nod);
982 end if;
984 return Anon_Type;
985 end Access_Definition;
987 -----------------------------------
988 -- Access_Subprogram_Declaration --
989 -----------------------------------
991 procedure Access_Subprogram_Declaration
992 (T_Name : Entity_Id;
993 T_Def : Node_Id)
995 procedure Check_For_Premature_Usage (Def : Node_Id);
996 -- Check that type T_Name is not used, directly or recursively, as a
997 -- parameter or a return type in Def. Def is either a subtype, an
998 -- access_definition, or an access_to_subprogram_definition.
1000 -------------------------------
1001 -- Check_For_Premature_Usage --
1002 -------------------------------
1004 procedure Check_For_Premature_Usage (Def : Node_Id) is
1005 Param : Node_Id;
1007 begin
1008 -- Check for a subtype mark
1010 if Nkind (Def) in N_Has_Etype then
1011 if Etype (Def) = T_Name then
1012 Error_Msg_N
1013 ("type& cannot be used before end of its declaration", Def);
1014 end if;
1016 -- If this is not a subtype, then this is an access_definition
1018 elsif Nkind (Def) = N_Access_Definition then
1019 if Present (Access_To_Subprogram_Definition (Def)) then
1020 Check_For_Premature_Usage
1021 (Access_To_Subprogram_Definition (Def));
1022 else
1023 Check_For_Premature_Usage (Subtype_Mark (Def));
1024 end if;
1026 -- The only cases left are N_Access_Function_Definition and
1027 -- N_Access_Procedure_Definition.
1029 else
1030 if Present (Parameter_Specifications (Def)) then
1031 Param := First (Parameter_Specifications (Def));
1032 while Present (Param) loop
1033 Check_For_Premature_Usage (Parameter_Type (Param));
1034 Param := Next (Param);
1035 end loop;
1036 end if;
1038 if Nkind (Def) = N_Access_Function_Definition then
1039 Check_For_Premature_Usage (Result_Definition (Def));
1040 end if;
1041 end if;
1042 end Check_For_Premature_Usage;
1044 -- Local variables
1046 Formals : constant List_Id := Parameter_Specifications (T_Def);
1047 Formal : Entity_Id;
1048 D_Ityp : Node_Id;
1049 Desig_Type : constant Entity_Id :=
1050 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1052 -- Start of processing for Access_Subprogram_Declaration
1054 begin
1055 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1057 -- Associate the Itype node with the inner full-type declaration or
1058 -- subprogram spec or entry body. This is required to handle nested
1059 -- anonymous declarations. For example:
1061 -- procedure P
1062 -- (X : access procedure
1063 -- (Y : access procedure
1064 -- (Z : access T)))
1066 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1067 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1068 N_Private_Type_Declaration,
1069 N_Private_Extension_Declaration,
1070 N_Procedure_Specification,
1071 N_Function_Specification,
1072 N_Entry_Body)
1074 or else
1075 Nkind_In (D_Ityp, N_Object_Declaration,
1076 N_Object_Renaming_Declaration,
1077 N_Formal_Object_Declaration,
1078 N_Formal_Type_Declaration,
1079 N_Task_Type_Declaration,
1080 N_Protected_Type_Declaration))
1081 loop
1082 D_Ityp := Parent (D_Ityp);
1083 pragma Assert (D_Ityp /= Empty);
1084 end loop;
1086 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1088 if Nkind_In (D_Ityp, N_Procedure_Specification,
1089 N_Function_Specification)
1090 then
1091 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1093 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1094 N_Object_Declaration,
1095 N_Object_Renaming_Declaration,
1096 N_Formal_Type_Declaration)
1097 then
1098 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1099 end if;
1101 if Nkind (T_Def) = N_Access_Function_Definition then
1102 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1103 declare
1104 Acc : constant Node_Id := Result_Definition (T_Def);
1106 begin
1107 if Present (Access_To_Subprogram_Definition (Acc))
1108 and then
1109 Protected_Present (Access_To_Subprogram_Definition (Acc))
1110 then
1111 Set_Etype
1112 (Desig_Type,
1113 Replace_Anonymous_Access_To_Protected_Subprogram
1114 (T_Def));
1116 else
1117 Set_Etype
1118 (Desig_Type,
1119 Access_Definition (T_Def, Result_Definition (T_Def)));
1120 end if;
1121 end;
1123 else
1124 Analyze (Result_Definition (T_Def));
1126 declare
1127 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1129 begin
1130 -- If a null exclusion is imposed on the result type, then
1131 -- create a null-excluding itype (an access subtype) and use
1132 -- it as the function's Etype.
1134 if Is_Access_Type (Typ)
1135 and then Null_Exclusion_In_Return_Present (T_Def)
1136 then
1137 Set_Etype (Desig_Type,
1138 Create_Null_Excluding_Itype
1139 (T => Typ,
1140 Related_Nod => T_Def,
1141 Scope_Id => Current_Scope));
1143 else
1144 if From_Limited_With (Typ) then
1146 -- AI05-151: Incomplete types are allowed in all basic
1147 -- declarations, including access to subprograms.
1149 if Ada_Version >= Ada_2012 then
1150 null;
1152 else
1153 Error_Msg_NE
1154 ("illegal use of incomplete type&",
1155 Result_Definition (T_Def), Typ);
1156 end if;
1158 elsif Ekind (Current_Scope) = E_Package
1159 and then In_Private_Part (Current_Scope)
1160 then
1161 if Ekind (Typ) = E_Incomplete_Type then
1162 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1164 elsif Is_Class_Wide_Type (Typ)
1165 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1166 then
1167 Append_Elmt
1168 (Desig_Type, Private_Dependents (Etype (Typ)));
1169 end if;
1170 end if;
1172 Set_Etype (Desig_Type, Typ);
1173 end if;
1174 end;
1175 end if;
1177 if not (Is_Type (Etype (Desig_Type))) then
1178 Error_Msg_N
1179 ("expect type in function specification",
1180 Result_Definition (T_Def));
1181 end if;
1183 else
1184 Set_Etype (Desig_Type, Standard_Void_Type);
1185 end if;
1187 if Present (Formals) then
1188 Push_Scope (Desig_Type);
1190 -- A bit of a kludge here. These kludges will be removed when Itypes
1191 -- have proper parent pointers to their declarations???
1193 -- Kludge 1) Link defining_identifier of formals. Required by
1194 -- First_Formal to provide its functionality.
1196 declare
1197 F : Node_Id;
1199 begin
1200 F := First (Formals);
1202 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1203 -- when it is part of an unconstrained type and subtype expansion
1204 -- is disabled. To avoid back-end problems with shared profiles,
1205 -- use previous subprogram type as the designated type, and then
1206 -- remove scope added above.
1208 if ASIS_Mode
1209 and then Present (Scope (Defining_Identifier (F)))
1210 then
1211 Set_Etype (T_Name, T_Name);
1212 Init_Size_Align (T_Name);
1213 Set_Directly_Designated_Type (T_Name,
1214 Scope (Defining_Identifier (F)));
1215 End_Scope;
1216 return;
1217 end if;
1219 while Present (F) loop
1220 if No (Parent (Defining_Identifier (F))) then
1221 Set_Parent (Defining_Identifier (F), F);
1222 end if;
1224 Next (F);
1225 end loop;
1226 end;
1228 Process_Formals (Formals, Parent (T_Def));
1230 -- Kludge 2) End_Scope requires that the parent pointer be set to
1231 -- something reasonable, but Itypes don't have parent pointers. So
1232 -- we set it and then unset it ???
1234 Set_Parent (Desig_Type, T_Name);
1235 End_Scope;
1236 Set_Parent (Desig_Type, Empty);
1237 end if;
1239 -- Check for premature usage of the type being defined
1241 Check_For_Premature_Usage (T_Def);
1243 -- The return type and/or any parameter type may be incomplete. Mark the
1244 -- subprogram_type as depending on the incomplete type, so that it can
1245 -- be updated when the full type declaration is seen. This only applies
1246 -- to incomplete types declared in some enclosing scope, not to limited
1247 -- views from other packages.
1248 -- Prior to Ada 2012, access to functions can only have in_parameters.
1250 if Present (Formals) then
1251 Formal := First_Formal (Desig_Type);
1252 while Present (Formal) loop
1253 if Ekind (Formal) /= E_In_Parameter
1254 and then Nkind (T_Def) = N_Access_Function_Definition
1255 and then Ada_Version < Ada_2012
1256 then
1257 Error_Msg_N ("functions can only have IN parameters", Formal);
1258 end if;
1260 if Ekind (Etype (Formal)) = E_Incomplete_Type
1261 and then In_Open_Scopes (Scope (Etype (Formal)))
1262 then
1263 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1264 Set_Has_Delayed_Freeze (Desig_Type);
1265 end if;
1267 Next_Formal (Formal);
1268 end loop;
1269 end if;
1271 -- Check whether an indirect call without actuals may be possible. This
1272 -- is used when resolving calls whose result is then indexed.
1274 May_Need_Actuals (Desig_Type);
1276 -- If the return type is incomplete, this is legal as long as the type
1277 -- is declared in the current scope and will be completed in it (rather
1278 -- than being part of limited view).
1280 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1281 and then not Has_Delayed_Freeze (Desig_Type)
1282 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1283 then
1284 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1285 Set_Has_Delayed_Freeze (Desig_Type);
1286 end if;
1288 Check_Delayed_Subprogram (Desig_Type);
1290 if Protected_Present (T_Def) then
1291 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1292 Set_Convention (Desig_Type, Convention_Protected);
1293 else
1294 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1295 end if;
1297 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1299 Set_Etype (T_Name, T_Name);
1300 Init_Size_Align (T_Name);
1301 Set_Directly_Designated_Type (T_Name, Desig_Type);
1303 Generate_Reference_To_Formals (T_Name);
1305 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1307 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1309 Check_Restriction (No_Access_Subprograms, T_Def);
1310 end Access_Subprogram_Declaration;
1312 ----------------------------
1313 -- Access_Type_Declaration --
1314 ----------------------------
1316 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1317 P : constant Node_Id := Parent (Def);
1318 S : constant Node_Id := Subtype_Indication (Def);
1320 Full_Desig : Entity_Id;
1322 begin
1323 Check_SPARK_Restriction ("access type is not allowed", Def);
1325 -- Check for permissible use of incomplete type
1327 if Nkind (S) /= N_Subtype_Indication then
1328 Analyze (S);
1330 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1331 Set_Directly_Designated_Type (T, Entity (S));
1332 else
1333 Set_Directly_Designated_Type (T,
1334 Process_Subtype (S, P, T, 'P'));
1335 end if;
1337 else
1338 Set_Directly_Designated_Type (T,
1339 Process_Subtype (S, P, T, 'P'));
1340 end if;
1342 if All_Present (Def) or Constant_Present (Def) then
1343 Set_Ekind (T, E_General_Access_Type);
1344 else
1345 Set_Ekind (T, E_Access_Type);
1346 end if;
1348 Full_Desig := Designated_Type (T);
1350 if Base_Type (Full_Desig) = T then
1351 Error_Msg_N ("access type cannot designate itself", S);
1353 -- In Ada 2005, the type may have a limited view through some unit in
1354 -- its own context, allowing the following circularity that cannot be
1355 -- detected earlier
1357 elsif Is_Class_Wide_Type (Full_Desig)
1358 and then Etype (Full_Desig) = T
1359 then
1360 Error_Msg_N
1361 ("access type cannot designate its own classwide type", S);
1363 -- Clean up indication of tagged status to prevent cascaded errors
1365 Set_Is_Tagged_Type (T, False);
1366 end if;
1368 Set_Etype (T, T);
1370 -- If the type has appeared already in a with_type clause, it is frozen
1371 -- and the pointer size is already set. Else, initialize.
1373 if not From_Limited_With (T) then
1374 Init_Size_Align (T);
1375 end if;
1377 -- Note that Has_Task is always false, since the access type itself
1378 -- is not a task type. See Einfo for more description on this point.
1379 -- Exactly the same consideration applies to Has_Controlled_Component.
1381 Set_Has_Task (T, False);
1382 Set_Has_Controlled_Component (T, False);
1384 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1385 -- problems where an incomplete view of this entity has been previously
1386 -- established by a limited with and an overlaid version of this field
1387 -- (Stored_Constraint) was initialized for the incomplete view.
1389 -- This reset is performed in most cases except where the access type
1390 -- has been created for the purposes of allocating or deallocating a
1391 -- build-in-place object. Such access types have explicitly set pools
1392 -- and finalization masters.
1394 if No (Associated_Storage_Pool (T)) then
1395 Set_Finalization_Master (T, Empty);
1396 end if;
1398 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1399 -- attributes
1401 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1402 Set_Is_Access_Constant (T, Constant_Present (Def));
1403 end Access_Type_Declaration;
1405 ----------------------------------
1406 -- Add_Interface_Tag_Components --
1407 ----------------------------------
1409 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1410 Loc : constant Source_Ptr := Sloc (N);
1411 L : List_Id;
1412 Last_Tag : Node_Id;
1414 procedure Add_Tag (Iface : Entity_Id);
1415 -- Add tag for one of the progenitor interfaces
1417 -------------
1418 -- Add_Tag --
1419 -------------
1421 procedure Add_Tag (Iface : Entity_Id) is
1422 Decl : Node_Id;
1423 Def : Node_Id;
1424 Tag : Entity_Id;
1425 Offset : Entity_Id;
1427 begin
1428 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1430 -- This is a reasonable place to propagate predicates
1432 if Has_Predicates (Iface) then
1433 Set_Has_Predicates (Typ);
1434 end if;
1436 Def :=
1437 Make_Component_Definition (Loc,
1438 Aliased_Present => True,
1439 Subtype_Indication =>
1440 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1442 Tag := Make_Temporary (Loc, 'V');
1444 Decl :=
1445 Make_Component_Declaration (Loc,
1446 Defining_Identifier => Tag,
1447 Component_Definition => Def);
1449 Analyze_Component_Declaration (Decl);
1451 Set_Analyzed (Decl);
1452 Set_Ekind (Tag, E_Component);
1453 Set_Is_Tag (Tag);
1454 Set_Is_Aliased (Tag);
1455 Set_Related_Type (Tag, Iface);
1456 Init_Component_Location (Tag);
1458 pragma Assert (Is_Frozen (Iface));
1460 Set_DT_Entry_Count (Tag,
1461 DT_Entry_Count (First_Entity (Iface)));
1463 if No (Last_Tag) then
1464 Prepend (Decl, L);
1465 else
1466 Insert_After (Last_Tag, Decl);
1467 end if;
1469 Last_Tag := Decl;
1471 -- If the ancestor has discriminants we need to give special support
1472 -- to store the offset_to_top value of the secondary dispatch tables.
1473 -- For this purpose we add a supplementary component just after the
1474 -- field that contains the tag associated with each secondary DT.
1476 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1477 Def :=
1478 Make_Component_Definition (Loc,
1479 Subtype_Indication =>
1480 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1482 Offset := Make_Temporary (Loc, 'V');
1484 Decl :=
1485 Make_Component_Declaration (Loc,
1486 Defining_Identifier => Offset,
1487 Component_Definition => Def);
1489 Analyze_Component_Declaration (Decl);
1491 Set_Analyzed (Decl);
1492 Set_Ekind (Offset, E_Component);
1493 Set_Is_Aliased (Offset);
1494 Set_Related_Type (Offset, Iface);
1495 Init_Component_Location (Offset);
1496 Insert_After (Last_Tag, Decl);
1497 Last_Tag := Decl;
1498 end if;
1499 end Add_Tag;
1501 -- Local variables
1503 Elmt : Elmt_Id;
1504 Ext : Node_Id;
1505 Comp : Node_Id;
1507 -- Start of processing for Add_Interface_Tag_Components
1509 begin
1510 if not RTE_Available (RE_Interface_Tag) then
1511 Error_Msg
1512 ("(Ada 2005) interface types not supported by this run-time!",
1513 Sloc (N));
1514 return;
1515 end if;
1517 if Ekind (Typ) /= E_Record_Type
1518 or else (Is_Concurrent_Record_Type (Typ)
1519 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1520 or else (not Is_Concurrent_Record_Type (Typ)
1521 and then No (Interfaces (Typ))
1522 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1523 then
1524 return;
1525 end if;
1527 -- Find the current last tag
1529 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1530 Ext := Record_Extension_Part (Type_Definition (N));
1531 else
1532 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1533 Ext := Type_Definition (N);
1534 end if;
1536 Last_Tag := Empty;
1538 if not (Present (Component_List (Ext))) then
1539 Set_Null_Present (Ext, False);
1540 L := New_List;
1541 Set_Component_List (Ext,
1542 Make_Component_List (Loc,
1543 Component_Items => L,
1544 Null_Present => False));
1545 else
1546 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1547 L := Component_Items
1548 (Component_List
1549 (Record_Extension_Part
1550 (Type_Definition (N))));
1551 else
1552 L := Component_Items
1553 (Component_List
1554 (Type_Definition (N)));
1555 end if;
1557 -- Find the last tag component
1559 Comp := First (L);
1560 while Present (Comp) loop
1561 if Nkind (Comp) = N_Component_Declaration
1562 and then Is_Tag (Defining_Identifier (Comp))
1563 then
1564 Last_Tag := Comp;
1565 end if;
1567 Next (Comp);
1568 end loop;
1569 end if;
1571 -- At this point L references the list of components and Last_Tag
1572 -- references the current last tag (if any). Now we add the tag
1573 -- corresponding with all the interfaces that are not implemented
1574 -- by the parent.
1576 if Present (Interfaces (Typ)) then
1577 Elmt := First_Elmt (Interfaces (Typ));
1578 while Present (Elmt) loop
1579 Add_Tag (Node (Elmt));
1580 Next_Elmt (Elmt);
1581 end loop;
1582 end if;
1583 end Add_Interface_Tag_Components;
1585 -------------------------------------
1586 -- Add_Internal_Interface_Entities --
1587 -------------------------------------
1589 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1590 Elmt : Elmt_Id;
1591 Iface : Entity_Id;
1592 Iface_Elmt : Elmt_Id;
1593 Iface_Prim : Entity_Id;
1594 Ifaces_List : Elist_Id;
1595 New_Subp : Entity_Id := Empty;
1596 Prim : Entity_Id;
1597 Restore_Scope : Boolean := False;
1599 begin
1600 pragma Assert (Ada_Version >= Ada_2005
1601 and then Is_Record_Type (Tagged_Type)
1602 and then Is_Tagged_Type (Tagged_Type)
1603 and then Has_Interfaces (Tagged_Type)
1604 and then not Is_Interface (Tagged_Type));
1606 -- Ensure that the internal entities are added to the scope of the type
1608 if Scope (Tagged_Type) /= Current_Scope then
1609 Push_Scope (Scope (Tagged_Type));
1610 Restore_Scope := True;
1611 end if;
1613 Collect_Interfaces (Tagged_Type, Ifaces_List);
1615 Iface_Elmt := First_Elmt (Ifaces_List);
1616 while Present (Iface_Elmt) loop
1617 Iface := Node (Iface_Elmt);
1619 -- Originally we excluded here from this processing interfaces that
1620 -- are parents of Tagged_Type because their primitives are located
1621 -- in the primary dispatch table (and hence no auxiliary internal
1622 -- entities are required to handle secondary dispatch tables in such
1623 -- case). However, these auxiliary entities are also required to
1624 -- handle derivations of interfaces in formals of generics (see
1625 -- Derive_Subprograms).
1627 Elmt := First_Elmt (Primitive_Operations (Iface));
1628 while Present (Elmt) loop
1629 Iface_Prim := Node (Elmt);
1631 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1632 Prim :=
1633 Find_Primitive_Covering_Interface
1634 (Tagged_Type => Tagged_Type,
1635 Iface_Prim => Iface_Prim);
1637 if No (Prim) and then Serious_Errors_Detected > 0 then
1638 goto Continue;
1639 end if;
1641 pragma Assert (Present (Prim));
1643 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1644 -- differs from the name of the interface primitive then it is
1645 -- a private primitive inherited from a parent type. In such
1646 -- case, given that Tagged_Type covers the interface, the
1647 -- inherited private primitive becomes visible. For such
1648 -- purpose we add a new entity that renames the inherited
1649 -- private primitive.
1651 if Chars (Prim) /= Chars (Iface_Prim) then
1652 pragma Assert (Has_Suffix (Prim, 'P'));
1653 Derive_Subprogram
1654 (New_Subp => New_Subp,
1655 Parent_Subp => Iface_Prim,
1656 Derived_Type => Tagged_Type,
1657 Parent_Type => Iface);
1658 Set_Alias (New_Subp, Prim);
1659 Set_Is_Abstract_Subprogram
1660 (New_Subp, Is_Abstract_Subprogram (Prim));
1661 end if;
1663 Derive_Subprogram
1664 (New_Subp => New_Subp,
1665 Parent_Subp => Iface_Prim,
1666 Derived_Type => Tagged_Type,
1667 Parent_Type => Iface);
1669 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1670 -- associated with interface types. These entities are
1671 -- only registered in the list of primitives of its
1672 -- corresponding tagged type because they are only used
1673 -- to fill the contents of the secondary dispatch tables.
1674 -- Therefore they are removed from the homonym chains.
1676 Set_Is_Hidden (New_Subp);
1677 Set_Is_Internal (New_Subp);
1678 Set_Alias (New_Subp, Prim);
1679 Set_Is_Abstract_Subprogram
1680 (New_Subp, Is_Abstract_Subprogram (Prim));
1681 Set_Interface_Alias (New_Subp, Iface_Prim);
1683 -- If the returned type is an interface then propagate it to
1684 -- the returned type. Needed by the thunk to generate the code
1685 -- which displaces "this" to reference the corresponding
1686 -- secondary dispatch table in the returned object.
1688 if Is_Interface (Etype (Iface_Prim)) then
1689 Set_Etype (New_Subp, Etype (Iface_Prim));
1690 end if;
1692 -- Internal entities associated with interface types are
1693 -- only registered in the list of primitives of the tagged
1694 -- type. They are only used to fill the contents of the
1695 -- secondary dispatch tables. Therefore they are not needed
1696 -- in the homonym chains.
1698 Remove_Homonym (New_Subp);
1700 -- Hidden entities associated with interfaces must have set
1701 -- the Has_Delay_Freeze attribute to ensure that, in case of
1702 -- locally defined tagged types (or compiling with static
1703 -- dispatch tables generation disabled) the corresponding
1704 -- entry of the secondary dispatch table is filled when
1705 -- such an entity is frozen.
1707 Set_Has_Delayed_Freeze (New_Subp);
1708 end if;
1710 <<Continue>>
1711 Next_Elmt (Elmt);
1712 end loop;
1714 Next_Elmt (Iface_Elmt);
1715 end loop;
1717 if Restore_Scope then
1718 Pop_Scope;
1719 end if;
1720 end Add_Internal_Interface_Entities;
1722 -----------------------------------
1723 -- Analyze_Component_Declaration --
1724 -----------------------------------
1726 procedure Analyze_Component_Declaration (N : Node_Id) is
1727 Id : constant Entity_Id := Defining_Identifier (N);
1728 E : constant Node_Id := Expression (N);
1729 Typ : constant Node_Id :=
1730 Subtype_Indication (Component_Definition (N));
1731 T : Entity_Id;
1732 P : Entity_Id;
1734 function Contains_POC (Constr : Node_Id) return Boolean;
1735 -- Determines whether a constraint uses the discriminant of a record
1736 -- type thus becoming a per-object constraint (POC).
1738 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1739 -- Typ is the type of the current component, check whether this type is
1740 -- a limited type. Used to validate declaration against that of
1741 -- enclosing record.
1743 ------------------
1744 -- Contains_POC --
1745 ------------------
1747 function Contains_POC (Constr : Node_Id) return Boolean is
1748 begin
1749 -- Prevent cascaded errors
1751 if Error_Posted (Constr) then
1752 return False;
1753 end if;
1755 case Nkind (Constr) is
1756 when N_Attribute_Reference =>
1757 return
1758 Attribute_Name (Constr) = Name_Access
1759 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1761 when N_Discriminant_Association =>
1762 return Denotes_Discriminant (Expression (Constr));
1764 when N_Identifier =>
1765 return Denotes_Discriminant (Constr);
1767 when N_Index_Or_Discriminant_Constraint =>
1768 declare
1769 IDC : Node_Id;
1771 begin
1772 IDC := First (Constraints (Constr));
1773 while Present (IDC) loop
1775 -- One per-object constraint is sufficient
1777 if Contains_POC (IDC) then
1778 return True;
1779 end if;
1781 Next (IDC);
1782 end loop;
1784 return False;
1785 end;
1787 when N_Range =>
1788 return Denotes_Discriminant (Low_Bound (Constr))
1789 or else
1790 Denotes_Discriminant (High_Bound (Constr));
1792 when N_Range_Constraint =>
1793 return Denotes_Discriminant (Range_Expression (Constr));
1795 when others =>
1796 return False;
1798 end case;
1799 end Contains_POC;
1801 ----------------------
1802 -- Is_Known_Limited --
1803 ----------------------
1805 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1806 P : constant Entity_Id := Etype (Typ);
1807 R : constant Entity_Id := Root_Type (Typ);
1809 begin
1810 if Is_Limited_Record (Typ) then
1811 return True;
1813 -- If the root type is limited (and not a limited interface)
1814 -- so is the current type
1816 elsif Is_Limited_Record (R)
1817 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1818 then
1819 return True;
1821 -- Else the type may have a limited interface progenitor, but a
1822 -- limited record parent.
1824 elsif R /= P and then Is_Limited_Record (P) then
1825 return True;
1827 else
1828 return False;
1829 end if;
1830 end Is_Known_Limited;
1832 -- Start of processing for Analyze_Component_Declaration
1834 begin
1835 Generate_Definition (Id);
1836 Enter_Name (Id);
1838 if Present (Typ) then
1839 T := Find_Type_Of_Object
1840 (Subtype_Indication (Component_Definition (N)), N);
1842 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1843 Check_SPARK_Restriction ("subtype mark required", Typ);
1844 end if;
1846 -- Ada 2005 (AI-230): Access Definition case
1848 else
1849 pragma Assert (Present
1850 (Access_Definition (Component_Definition (N))));
1852 T := Access_Definition
1853 (Related_Nod => N,
1854 N => Access_Definition (Component_Definition (N)));
1855 Set_Is_Local_Anonymous_Access (T);
1857 -- Ada 2005 (AI-254)
1859 if Present (Access_To_Subprogram_Definition
1860 (Access_Definition (Component_Definition (N))))
1861 and then Protected_Present (Access_To_Subprogram_Definition
1862 (Access_Definition
1863 (Component_Definition (N))))
1864 then
1865 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1866 end if;
1867 end if;
1869 -- If the subtype is a constrained subtype of the enclosing record,
1870 -- (which must have a partial view) the back-end does not properly
1871 -- handle the recursion. Rewrite the component declaration with an
1872 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1873 -- the tree directly because side effects have already been removed from
1874 -- discriminant constraints.
1876 if Ekind (T) = E_Access_Subtype
1877 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1878 and then Comes_From_Source (T)
1879 and then Nkind (Parent (T)) = N_Subtype_Declaration
1880 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1881 then
1882 Rewrite
1883 (Subtype_Indication (Component_Definition (N)),
1884 New_Copy_Tree (Subtype_Indication (Parent (T))));
1885 T := Find_Type_Of_Object
1886 (Subtype_Indication (Component_Definition (N)), N);
1887 end if;
1889 -- If the component declaration includes a default expression, then we
1890 -- check that the component is not of a limited type (RM 3.7(5)),
1891 -- and do the special preanalysis of the expression (see section on
1892 -- "Handling of Default and Per-Object Expressions" in the spec of
1893 -- package Sem).
1895 if Present (E) then
1896 Check_SPARK_Restriction ("default expression is not allowed", E);
1897 Preanalyze_Spec_Expression (E, T);
1898 Check_Initialization (T, E);
1900 if Ada_Version >= Ada_2005
1901 and then Ekind (T) = E_Anonymous_Access_Type
1902 and then Etype (E) /= Any_Type
1903 then
1904 -- Check RM 3.9.2(9): "if the expected type for an expression is
1905 -- an anonymous access-to-specific tagged type, then the object
1906 -- designated by the expression shall not be dynamically tagged
1907 -- unless it is a controlling operand in a call on a dispatching
1908 -- operation"
1910 if Is_Tagged_Type (Directly_Designated_Type (T))
1911 and then
1912 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1913 and then
1914 Ekind (Directly_Designated_Type (Etype (E))) =
1915 E_Class_Wide_Type
1916 then
1917 Error_Msg_N
1918 ("access to specific tagged type required (RM 3.9.2(9))", E);
1919 end if;
1921 -- (Ada 2005: AI-230): Accessibility check for anonymous
1922 -- components
1924 if Type_Access_Level (Etype (E)) >
1925 Deepest_Type_Access_Level (T)
1926 then
1927 Error_Msg_N
1928 ("expression has deeper access level than component " &
1929 "(RM 3.10.2 (12.2))", E);
1930 end if;
1932 -- The initialization expression is a reference to an access
1933 -- discriminant. The type of the discriminant is always deeper
1934 -- than any access type.
1936 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1937 and then Is_Entity_Name (E)
1938 and then Ekind (Entity (E)) = E_In_Parameter
1939 and then Present (Discriminal_Link (Entity (E)))
1940 then
1941 Error_Msg_N
1942 ("discriminant has deeper accessibility level than target",
1944 end if;
1945 end if;
1946 end if;
1948 -- The parent type may be a private view with unknown discriminants,
1949 -- and thus unconstrained. Regular components must be constrained.
1951 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1952 if Is_Class_Wide_Type (T) then
1953 Error_Msg_N
1954 ("class-wide subtype with unknown discriminants" &
1955 " in component declaration",
1956 Subtype_Indication (Component_Definition (N)));
1957 else
1958 Error_Msg_N
1959 ("unconstrained subtype in component declaration",
1960 Subtype_Indication (Component_Definition (N)));
1961 end if;
1963 -- Components cannot be abstract, except for the special case of
1964 -- the _Parent field (case of extending an abstract tagged type)
1966 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1967 Error_Msg_N ("type of a component cannot be abstract", N);
1968 end if;
1970 Set_Etype (Id, T);
1971 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1973 -- The component declaration may have a per-object constraint, set
1974 -- the appropriate flag in the defining identifier of the subtype.
1976 if Present (Subtype_Indication (Component_Definition (N))) then
1977 declare
1978 Sindic : constant Node_Id :=
1979 Subtype_Indication (Component_Definition (N));
1980 begin
1981 if Nkind (Sindic) = N_Subtype_Indication
1982 and then Present (Constraint (Sindic))
1983 and then Contains_POC (Constraint (Sindic))
1984 then
1985 Set_Has_Per_Object_Constraint (Id);
1986 end if;
1987 end;
1988 end if;
1990 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1991 -- out some static checks.
1993 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
1994 Null_Exclusion_Static_Checks (N);
1995 end if;
1997 -- If this component is private (or depends on a private type), flag the
1998 -- record type to indicate that some operations are not available.
2000 P := Private_Component (T);
2002 if Present (P) then
2004 -- Check for circular definitions
2006 if P = Any_Type then
2007 Set_Etype (Id, Any_Type);
2009 -- There is a gap in the visibility of operations only if the
2010 -- component type is not defined in the scope of the record type.
2012 elsif Scope (P) = Scope (Current_Scope) then
2013 null;
2015 elsif Is_Limited_Type (P) then
2016 Set_Is_Limited_Composite (Current_Scope);
2018 else
2019 Set_Is_Private_Composite (Current_Scope);
2020 end if;
2021 end if;
2023 if P /= Any_Type
2024 and then Is_Limited_Type (T)
2025 and then Chars (Id) /= Name_uParent
2026 and then Is_Tagged_Type (Current_Scope)
2027 then
2028 if Is_Derived_Type (Current_Scope)
2029 and then not Is_Known_Limited (Current_Scope)
2030 then
2031 Error_Msg_N
2032 ("extension of nonlimited type cannot have limited components",
2035 if Is_Interface (Root_Type (Current_Scope)) then
2036 Error_Msg_N
2037 ("\limitedness is not inherited from limited interface", N);
2038 Error_Msg_N ("\add LIMITED to type indication", N);
2039 end if;
2041 Explain_Limited_Type (T, N);
2042 Set_Etype (Id, Any_Type);
2043 Set_Is_Limited_Composite (Current_Scope, False);
2045 elsif not Is_Derived_Type (Current_Scope)
2046 and then not Is_Limited_Record (Current_Scope)
2047 and then not Is_Concurrent_Type (Current_Scope)
2048 then
2049 Error_Msg_N
2050 ("nonlimited tagged type cannot have limited components", N);
2051 Explain_Limited_Type (T, N);
2052 Set_Etype (Id, Any_Type);
2053 Set_Is_Limited_Composite (Current_Scope, False);
2054 end if;
2055 end if;
2057 Set_Original_Record_Component (Id, Id);
2059 if Has_Aspects (N) then
2060 Analyze_Aspect_Specifications (N, Id);
2061 end if;
2063 Analyze_Dimension (N);
2064 end Analyze_Component_Declaration;
2066 --------------------------
2067 -- Analyze_Declarations --
2068 --------------------------
2070 procedure Analyze_Declarations (L : List_Id) is
2071 Decl : Node_Id;
2073 procedure Adjust_Decl;
2074 -- Adjust Decl not to include implicit label declarations, since these
2075 -- have strange Sloc values that result in elaboration check problems.
2076 -- (They have the sloc of the label as found in the source, and that
2077 -- is ahead of the current declarative part).
2079 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2080 -- Determine whether Body_Decl denotes the body of a late controlled
2081 -- primitive (either Initialize, Adjust or Finalize). If this is the
2082 -- case, add a proper spec if the body lacks one. The spec is inserted
2083 -- before Body_Decl and immedately analyzed.
2085 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2086 -- Spec_Id is the entity of a package that may define abstract states.
2087 -- If the states have visible refinement, remove the visibility of each
2088 -- constituent at the end of the package body declarations.
2090 -----------------
2091 -- Adjust_Decl --
2092 -----------------
2094 procedure Adjust_Decl is
2095 begin
2096 while Present (Prev (Decl))
2097 and then Nkind (Decl) = N_Implicit_Label_Declaration
2098 loop
2099 Prev (Decl);
2100 end loop;
2101 end Adjust_Decl;
2103 --------------------------------------
2104 -- Handle_Late_Controlled_Primitive --
2105 --------------------------------------
2107 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2108 Body_Spec : constant Node_Id := Specification (Body_Decl);
2109 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2110 Loc : constant Source_Ptr := Sloc (Body_Id);
2111 Params : constant List_Id :=
2112 Parameter_Specifications (Body_Spec);
2113 Spec : Node_Id;
2114 Spec_Id : Entity_Id;
2116 Dummy : Entity_Id;
2117 pragma Unreferenced (Dummy);
2118 -- A dummy variable used to capture the unused result of subprogram
2119 -- spec analysis.
2121 begin
2122 -- Consider only procedure bodies whose name matches one of type
2123 -- [Limited_]Controlled's primitives.
2125 if Nkind (Body_Spec) /= N_Procedure_Specification
2126 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2127 Name_Finalize,
2128 Name_Initialize)
2129 then
2130 return;
2132 -- A controlled primitive must have exactly one formal whose type
2133 -- derives from [Limited_]Controlled.
2135 elsif List_Length (Params) /= 1 then
2136 return;
2137 end if;
2139 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2141 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2142 return;
2143 end if;
2145 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2147 -- The body has a matching spec, therefore it cannot be a late
2148 -- primitive.
2150 if Present (Spec_Id) then
2151 return;
2152 end if;
2154 -- At this point the body is known to be a late controlled primitive.
2155 -- Generate a matching spec and insert it before the body.
2157 Spec := New_Copy_Tree (Body_Spec);
2159 Set_Defining_Unit_Name
2160 (Spec, Make_Defining_Identifier (Loc, Chars (Body_Id)));
2162 Insert_Before_And_Analyze (Body_Decl,
2163 Make_Subprogram_Declaration (Loc,
2164 Specification => Spec));
2165 end Handle_Late_Controlled_Primitive;
2167 --------------------------------
2168 -- Remove_Visible_Refinements --
2169 --------------------------------
2171 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2172 State_Elmt : Elmt_Id;
2173 begin
2174 if Present (Abstract_States (Spec_Id)) then
2175 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2176 while Present (State_Elmt) loop
2177 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2178 Next_Elmt (State_Elmt);
2179 end loop;
2180 end if;
2181 end Remove_Visible_Refinements;
2183 -- Local variables
2185 Context : Node_Id;
2186 Freeze_From : Entity_Id := Empty;
2187 Next_Decl : Node_Id;
2188 Spec_Id : Entity_Id;
2190 Body_Seen : Boolean := False;
2191 -- Flag set when the first body [stub] is encountered
2193 In_Package_Body : Boolean := False;
2194 -- Flag set when the current declaration list belongs to a package body
2196 -- Start of processing for Analyze_Declarations
2198 begin
2199 if Restriction_Check_Required (SPARK_05) then
2200 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2201 end if;
2203 Decl := First (L);
2204 while Present (Decl) loop
2206 -- Package spec cannot contain a package declaration in SPARK
2208 if Nkind (Decl) = N_Package_Declaration
2209 and then Nkind (Parent (L)) = N_Package_Specification
2210 then
2211 Check_SPARK_Restriction
2212 ("package specification cannot contain a package declaration",
2213 Decl);
2214 end if;
2216 -- Complete analysis of declaration
2218 Analyze (Decl);
2219 Next_Decl := Next (Decl);
2221 if No (Freeze_From) then
2222 Freeze_From := First_Entity (Current_Scope);
2223 end if;
2225 -- At the end of a declarative part, freeze remaining entities
2226 -- declared in it. The end of the visible declarations of package
2227 -- specification is not the end of a declarative part if private
2228 -- declarations are present. The end of a package declaration is a
2229 -- freezing point only if it a library package. A task definition or
2230 -- protected type definition is not a freeze point either. Finally,
2231 -- we do not freeze entities in generic scopes, because there is no
2232 -- code generated for them and freeze nodes will be generated for
2233 -- the instance.
2235 -- The end of a package instantiation is not a freeze point, but
2236 -- for now we make it one, because the generic body is inserted
2237 -- (currently) immediately after. Generic instantiations will not
2238 -- be a freeze point once delayed freezing of bodies is implemented.
2239 -- (This is needed in any case for early instantiations ???).
2241 if No (Next_Decl) then
2242 if Nkind_In (Parent (L), N_Component_List,
2243 N_Task_Definition,
2244 N_Protected_Definition)
2245 then
2246 null;
2248 elsif Nkind (Parent (L)) /= N_Package_Specification then
2249 if Nkind (Parent (L)) = N_Package_Body then
2250 Freeze_From := First_Entity (Current_Scope);
2251 end if;
2253 -- There may have been several freezing points previously,
2254 -- for example object declarations or subprogram bodies, but
2255 -- at the end of a declarative part we check freezing from
2256 -- the beginning, even though entities may already be frozen,
2257 -- in order to perform visibility checks on delayed aspects.
2259 Adjust_Decl;
2260 Freeze_All (First_Entity (Current_Scope), Decl);
2261 Freeze_From := Last_Entity (Current_Scope);
2263 elsif Scope (Current_Scope) /= Standard_Standard
2264 and then not Is_Child_Unit (Current_Scope)
2265 and then No (Generic_Parent (Parent (L)))
2266 then
2267 null;
2269 elsif L /= Visible_Declarations (Parent (L))
2270 or else No (Private_Declarations (Parent (L)))
2271 or else Is_Empty_List (Private_Declarations (Parent (L)))
2272 then
2273 Adjust_Decl;
2274 Freeze_All (First_Entity (Current_Scope), Decl);
2275 Freeze_From := Last_Entity (Current_Scope);
2276 end if;
2278 -- If next node is a body then freeze all types before the body.
2279 -- An exception occurs for some expander-generated bodies. If these
2280 -- are generated at places where in general language rules would not
2281 -- allow a freeze point, then we assume that the expander has
2282 -- explicitly checked that all required types are properly frozen,
2283 -- and we do not cause general freezing here. This special circuit
2284 -- is used when the encountered body is marked as having already
2285 -- been analyzed.
2287 -- In all other cases (bodies that come from source, and expander
2288 -- generated bodies that have not been analyzed yet), freeze all
2289 -- types now. Note that in the latter case, the expander must take
2290 -- care to attach the bodies at a proper place in the tree so as to
2291 -- not cause unwanted freezing at that point.
2293 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2295 -- When a controlled type is frozen, the expander generates stream
2296 -- and controlled type support routines. If the freeze is caused
2297 -- by the stand alone body of Initialize, Adjust and Finalize, the
2298 -- expander will end up using the wrong version of these routines
2299 -- as the body has not been processed yet. To remedy this, detect
2300 -- a late controlled primitive and create a proper spec for it.
2301 -- This ensures that the primitive will override its inherited
2302 -- counterpart before the freeze takes place.
2304 -- If the declaration we just processed is a body, do not attempt
2305 -- to examine Next_Decl as the late primitive idiom can only apply
2306 -- to the first encountered body.
2308 -- The spec of the late primitive is not generated in ASIS mode to
2309 -- ensure a consistent list of primitives that indicates the true
2310 -- semantic structure of the program (which is not relevant when
2311 -- generating executable code.
2313 -- ??? a cleaner approach may be possible and/or this solution
2314 -- could be extended to general-purpose late primitives, TBD.
2316 if not ASIS_Mode
2317 and then not Body_Seen
2318 and then not Is_Body (Decl)
2319 then
2320 Body_Seen := True;
2322 if Nkind (Next_Decl) = N_Subprogram_Body then
2323 Handle_Late_Controlled_Primitive (Next_Decl);
2324 end if;
2325 end if;
2327 Adjust_Decl;
2328 Freeze_All (Freeze_From, Decl);
2329 Freeze_From := Last_Entity (Current_Scope);
2330 end if;
2332 Decl := Next_Decl;
2333 end loop;
2335 -- Analyze the contracts of packages and their bodies
2337 if Present (L) then
2338 Context := Parent (L);
2340 if Nkind (Context) = N_Package_Specification
2341 and then L = Visible_Declarations (Context)
2342 then
2343 Analyze_Package_Contract (Defining_Entity (Context));
2345 elsif Nkind (Context) = N_Package_Body then
2346 In_Package_Body := True;
2347 Spec_Id := Corresponding_Spec (Context);
2349 Analyze_Package_Body_Contract (Defining_Entity (Context));
2350 end if;
2351 end if;
2353 -- Analyze the contracts of subprogram declarations, subprogram bodies
2354 -- and variables now due to the delayed visibility requirements of their
2355 -- aspects.
2357 Decl := First (L);
2358 while Present (Decl) loop
2359 if Nkind (Decl) = N_Object_Declaration then
2360 Analyze_Object_Contract (Defining_Entity (Decl));
2362 elsif Nkind (Decl) = N_Subprogram_Body then
2363 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2365 elsif Nkind (Decl) = N_Subprogram_Declaration then
2366 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2367 end if;
2369 Next (Decl);
2370 end loop;
2372 -- State refinements are visible upto the end the of the package body
2373 -- declarations. Hide the refinements from visibility to restore the
2374 -- original state conditions.
2376 if In_Package_Body then
2377 Remove_Visible_Refinements (Spec_Id);
2378 end if;
2379 end Analyze_Declarations;
2381 -----------------------------------
2382 -- Analyze_Full_Type_Declaration --
2383 -----------------------------------
2385 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2386 Def : constant Node_Id := Type_Definition (N);
2387 Def_Id : constant Entity_Id := Defining_Identifier (N);
2388 T : Entity_Id;
2389 Prev : Entity_Id;
2391 Is_Remote : constant Boolean :=
2392 (Is_Remote_Types (Current_Scope)
2393 or else Is_Remote_Call_Interface (Current_Scope))
2394 and then not (In_Private_Part (Current_Scope)
2395 or else In_Package_Body (Current_Scope));
2397 procedure Check_Ops_From_Incomplete_Type;
2398 -- If there is a tagged incomplete partial view of the type, traverse
2399 -- the primitives of the incomplete view and change the type of any
2400 -- controlling formals and result to indicate the full view. The
2401 -- primitives will be added to the full type's primitive operations
2402 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2403 -- is called from Process_Incomplete_Dependents).
2405 ------------------------------------
2406 -- Check_Ops_From_Incomplete_Type --
2407 ------------------------------------
2409 procedure Check_Ops_From_Incomplete_Type is
2410 Elmt : Elmt_Id;
2411 Formal : Entity_Id;
2412 Op : Entity_Id;
2414 begin
2415 if Prev /= T
2416 and then Ekind (Prev) = E_Incomplete_Type
2417 and then Is_Tagged_Type (Prev)
2418 and then Is_Tagged_Type (T)
2419 then
2420 Elmt := First_Elmt (Primitive_Operations (Prev));
2421 while Present (Elmt) loop
2422 Op := Node (Elmt);
2424 Formal := First_Formal (Op);
2425 while Present (Formal) loop
2426 if Etype (Formal) = Prev then
2427 Set_Etype (Formal, T);
2428 end if;
2430 Next_Formal (Formal);
2431 end loop;
2433 if Etype (Op) = Prev then
2434 Set_Etype (Op, T);
2435 end if;
2437 Next_Elmt (Elmt);
2438 end loop;
2439 end if;
2440 end Check_Ops_From_Incomplete_Type;
2442 -- Start of processing for Analyze_Full_Type_Declaration
2444 begin
2445 Prev := Find_Type_Name (N);
2447 -- The full view, if present, now points to the current type
2449 -- Ada 2005 (AI-50217): If the type was previously decorated when
2450 -- imported through a LIMITED WITH clause, it appears as incomplete
2451 -- but has no full view.
2453 if Ekind (Prev) = E_Incomplete_Type
2454 and then Present (Full_View (Prev))
2455 then
2456 T := Full_View (Prev);
2457 else
2458 T := Prev;
2459 end if;
2461 Set_Is_Pure (T, Is_Pure (Current_Scope));
2463 -- We set the flag Is_First_Subtype here. It is needed to set the
2464 -- corresponding flag for the Implicit class-wide-type created
2465 -- during tagged types processing.
2467 Set_Is_First_Subtype (T, True);
2469 -- Only composite types other than array types are allowed to have
2470 -- discriminants.
2472 case Nkind (Def) is
2474 -- For derived types, the rule will be checked once we've figured
2475 -- out the parent type.
2477 when N_Derived_Type_Definition =>
2478 null;
2480 -- For record types, discriminants are allowed, unless we are in
2481 -- SPARK.
2483 when N_Record_Definition =>
2484 if Present (Discriminant_Specifications (N)) then
2485 Check_SPARK_Restriction
2486 ("discriminant type is not allowed",
2487 Defining_Identifier
2488 (First (Discriminant_Specifications (N))));
2489 end if;
2491 when others =>
2492 if Present (Discriminant_Specifications (N)) then
2493 Error_Msg_N
2494 ("elementary or array type cannot have discriminants",
2495 Defining_Identifier
2496 (First (Discriminant_Specifications (N))));
2497 end if;
2498 end case;
2500 -- Elaborate the type definition according to kind, and generate
2501 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2502 -- already done (this happens during the reanalysis that follows a call
2503 -- to the high level optimizer).
2505 if not Analyzed (T) then
2506 Set_Analyzed (T);
2508 case Nkind (Def) is
2510 when N_Access_To_Subprogram_Definition =>
2511 Access_Subprogram_Declaration (T, Def);
2513 -- If this is a remote access to subprogram, we must create the
2514 -- equivalent fat pointer type, and related subprograms.
2516 if Is_Remote then
2517 Process_Remote_AST_Declaration (N);
2518 end if;
2520 -- Validate categorization rule against access type declaration
2521 -- usually a violation in Pure unit, Shared_Passive unit.
2523 Validate_Access_Type_Declaration (T, N);
2525 when N_Access_To_Object_Definition =>
2526 Access_Type_Declaration (T, Def);
2528 -- Validate categorization rule against access type declaration
2529 -- usually a violation in Pure unit, Shared_Passive unit.
2531 Validate_Access_Type_Declaration (T, N);
2533 -- If we are in a Remote_Call_Interface package and define a
2534 -- RACW, then calling stubs and specific stream attributes
2535 -- must be added.
2537 if Is_Remote
2538 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2539 then
2540 Add_RACW_Features (Def_Id);
2541 end if;
2543 -- Set no strict aliasing flag if config pragma seen
2545 if Opt.No_Strict_Aliasing then
2546 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2547 end if;
2549 when N_Array_Type_Definition =>
2550 Array_Type_Declaration (T, Def);
2552 when N_Derived_Type_Definition =>
2553 Derived_Type_Declaration (T, N, T /= Def_Id);
2555 when N_Enumeration_Type_Definition =>
2556 Enumeration_Type_Declaration (T, Def);
2558 when N_Floating_Point_Definition =>
2559 Floating_Point_Type_Declaration (T, Def);
2561 when N_Decimal_Fixed_Point_Definition =>
2562 Decimal_Fixed_Point_Type_Declaration (T, Def);
2564 when N_Ordinary_Fixed_Point_Definition =>
2565 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2567 when N_Signed_Integer_Type_Definition =>
2568 Signed_Integer_Type_Declaration (T, Def);
2570 when N_Modular_Type_Definition =>
2571 Modular_Type_Declaration (T, Def);
2573 when N_Record_Definition =>
2574 Record_Type_Declaration (T, N, Prev);
2576 -- If declaration has a parse error, nothing to elaborate.
2578 when N_Error =>
2579 null;
2581 when others =>
2582 raise Program_Error;
2584 end case;
2585 end if;
2587 if Etype (T) = Any_Type then
2588 return;
2589 end if;
2591 -- Controlled type is not allowed in SPARK
2593 if Is_Visibly_Controlled (T) then
2594 Check_SPARK_Restriction ("controlled type is not allowed", N);
2595 end if;
2597 -- Some common processing for all types
2599 Set_Depends_On_Private (T, Has_Private_Component (T));
2600 Check_Ops_From_Incomplete_Type;
2602 -- Both the declared entity, and its anonymous base type if one
2603 -- was created, need freeze nodes allocated.
2605 declare
2606 B : constant Entity_Id := Base_Type (T);
2608 begin
2609 -- In the case where the base type differs from the first subtype, we
2610 -- pre-allocate a freeze node, and set the proper link to the first
2611 -- subtype. Freeze_Entity will use this preallocated freeze node when
2612 -- it freezes the entity.
2614 -- This does not apply if the base type is a generic type, whose
2615 -- declaration is independent of the current derived definition.
2617 if B /= T and then not Is_Generic_Type (B) then
2618 Ensure_Freeze_Node (B);
2619 Set_First_Subtype_Link (Freeze_Node (B), T);
2620 end if;
2622 -- A type that is imported through a limited_with clause cannot
2623 -- generate any code, and thus need not be frozen. However, an access
2624 -- type with an imported designated type needs a finalization list,
2625 -- which may be referenced in some other package that has non-limited
2626 -- visibility on the designated type. Thus we must create the
2627 -- finalization list at the point the access type is frozen, to
2628 -- prevent unsatisfied references at link time.
2630 if not From_Limited_With (T) or else Is_Access_Type (T) then
2631 Set_Has_Delayed_Freeze (T);
2632 end if;
2633 end;
2635 -- Case where T is the full declaration of some private type which has
2636 -- been swapped in Defining_Identifier (N).
2638 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2639 Process_Full_View (N, T, Def_Id);
2641 -- Record the reference. The form of this is a little strange, since
2642 -- the full declaration has been swapped in. So the first parameter
2643 -- here represents the entity to which a reference is made which is
2644 -- the "real" entity, i.e. the one swapped in, and the second
2645 -- parameter provides the reference location.
2647 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2648 -- since we don't want a complaint about the full type being an
2649 -- unwanted reference to the private type
2651 declare
2652 B : constant Boolean := Has_Pragma_Unreferenced (T);
2653 begin
2654 Set_Has_Pragma_Unreferenced (T, False);
2655 Generate_Reference (T, T, 'c');
2656 Set_Has_Pragma_Unreferenced (T, B);
2657 end;
2659 Set_Completion_Referenced (Def_Id);
2661 -- For completion of incomplete type, process incomplete dependents
2662 -- and always mark the full type as referenced (it is the incomplete
2663 -- type that we get for any real reference).
2665 elsif Ekind (Prev) = E_Incomplete_Type then
2666 Process_Incomplete_Dependents (N, T, Prev);
2667 Generate_Reference (Prev, Def_Id, 'c');
2668 Set_Completion_Referenced (Def_Id);
2670 -- If not private type or incomplete type completion, this is a real
2671 -- definition of a new entity, so record it.
2673 else
2674 Generate_Definition (Def_Id);
2675 end if;
2677 if Chars (Scope (Def_Id)) = Name_System
2678 and then Chars (Def_Id) = Name_Address
2679 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2680 then
2681 Set_Is_Descendent_Of_Address (Def_Id);
2682 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2683 Set_Is_Descendent_Of_Address (Prev);
2684 end if;
2686 Set_Optimize_Alignment_Flags (Def_Id);
2687 Check_Eliminated (Def_Id);
2689 -- If the declaration is a completion and aspects are present, apply
2690 -- them to the entity for the type which is currently the partial
2691 -- view, but which is the one that will be frozen.
2693 if Has_Aspects (N) then
2694 if Prev /= Def_Id then
2695 Analyze_Aspect_Specifications (N, Prev);
2696 else
2697 Analyze_Aspect_Specifications (N, Def_Id);
2698 end if;
2699 end if;
2700 end Analyze_Full_Type_Declaration;
2702 ----------------------------------
2703 -- Analyze_Incomplete_Type_Decl --
2704 ----------------------------------
2706 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2707 F : constant Boolean := Is_Pure (Current_Scope);
2708 T : Entity_Id;
2710 begin
2711 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2713 Generate_Definition (Defining_Identifier (N));
2715 -- Process an incomplete declaration. The identifier must not have been
2716 -- declared already in the scope. However, an incomplete declaration may
2717 -- appear in the private part of a package, for a private type that has
2718 -- already been declared.
2720 -- In this case, the discriminants (if any) must match
2722 T := Find_Type_Name (N);
2724 Set_Ekind (T, E_Incomplete_Type);
2725 Init_Size_Align (T);
2726 Set_Is_First_Subtype (T, True);
2727 Set_Etype (T, T);
2729 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2730 -- incomplete types.
2732 if Tagged_Present (N) then
2733 Set_Is_Tagged_Type (T);
2734 Make_Class_Wide_Type (T);
2735 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2736 end if;
2738 Push_Scope (T);
2740 Set_Stored_Constraint (T, No_Elist);
2742 if Present (Discriminant_Specifications (N)) then
2743 Process_Discriminants (N);
2744 end if;
2746 End_Scope;
2748 -- If the type has discriminants, non-trivial subtypes may be
2749 -- declared before the full view of the type. The full views of those
2750 -- subtypes will be built after the full view of the type.
2752 Set_Private_Dependents (T, New_Elmt_List);
2753 Set_Is_Pure (T, F);
2754 end Analyze_Incomplete_Type_Decl;
2756 -----------------------------------
2757 -- Analyze_Interface_Declaration --
2758 -----------------------------------
2760 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2761 CW : constant Entity_Id := Class_Wide_Type (T);
2763 begin
2764 Set_Is_Tagged_Type (T);
2766 Set_Is_Limited_Record (T, Limited_Present (Def)
2767 or else Task_Present (Def)
2768 or else Protected_Present (Def)
2769 or else Synchronized_Present (Def));
2771 -- Type is abstract if full declaration carries keyword, or if previous
2772 -- partial view did.
2774 Set_Is_Abstract_Type (T);
2775 Set_Is_Interface (T);
2777 -- Type is a limited interface if it includes the keyword limited, task,
2778 -- protected, or synchronized.
2780 Set_Is_Limited_Interface
2781 (T, Limited_Present (Def)
2782 or else Protected_Present (Def)
2783 or else Synchronized_Present (Def)
2784 or else Task_Present (Def));
2786 Set_Interfaces (T, New_Elmt_List);
2787 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2789 -- Complete the decoration of the class-wide entity if it was already
2790 -- built (i.e. during the creation of the limited view)
2792 if Present (CW) then
2793 Set_Is_Interface (CW);
2794 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2795 end if;
2797 -- Check runtime support for synchronized interfaces
2799 if VM_Target = No_VM
2800 and then (Is_Task_Interface (T)
2801 or else Is_Protected_Interface (T)
2802 or else Is_Synchronized_Interface (T))
2803 and then not RTE_Available (RE_Select_Specific_Data)
2804 then
2805 Error_Msg_CRT ("synchronized interfaces", T);
2806 end if;
2807 end Analyze_Interface_Declaration;
2809 -----------------------------
2810 -- Analyze_Itype_Reference --
2811 -----------------------------
2813 -- Nothing to do. This node is placed in the tree only for the benefit of
2814 -- back end processing, and has no effect on the semantic processing.
2816 procedure Analyze_Itype_Reference (N : Node_Id) is
2817 begin
2818 pragma Assert (Is_Itype (Itype (N)));
2819 null;
2820 end Analyze_Itype_Reference;
2822 --------------------------------
2823 -- Analyze_Number_Declaration --
2824 --------------------------------
2826 procedure Analyze_Number_Declaration (N : Node_Id) is
2827 Id : constant Entity_Id := Defining_Identifier (N);
2828 E : constant Node_Id := Expression (N);
2829 T : Entity_Id;
2830 Index : Interp_Index;
2831 It : Interp;
2833 begin
2834 Generate_Definition (Id);
2835 Enter_Name (Id);
2837 -- This is an optimization of a common case of an integer literal
2839 if Nkind (E) = N_Integer_Literal then
2840 Set_Is_Static_Expression (E, True);
2841 Set_Etype (E, Universal_Integer);
2843 Set_Etype (Id, Universal_Integer);
2844 Set_Ekind (Id, E_Named_Integer);
2845 Set_Is_Frozen (Id, True);
2846 return;
2847 end if;
2849 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2851 -- Process expression, replacing error by integer zero, to avoid
2852 -- cascaded errors or aborts further along in the processing
2854 -- Replace Error by integer zero, which seems least likely to cause
2855 -- cascaded errors.
2857 if E = Error then
2858 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2859 Set_Error_Posted (E);
2860 end if;
2862 Analyze (E);
2864 -- Verify that the expression is static and numeric. If
2865 -- the expression is overloaded, we apply the preference
2866 -- rule that favors root numeric types.
2868 if not Is_Overloaded (E) then
2869 T := Etype (E);
2871 else
2872 T := Any_Type;
2874 Get_First_Interp (E, Index, It);
2875 while Present (It.Typ) loop
2876 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2877 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2878 then
2879 if T = Any_Type then
2880 T := It.Typ;
2882 elsif It.Typ = Universal_Real
2883 or else It.Typ = Universal_Integer
2884 then
2885 -- Choose universal interpretation over any other
2887 T := It.Typ;
2888 exit;
2889 end if;
2890 end if;
2892 Get_Next_Interp (Index, It);
2893 end loop;
2894 end if;
2896 if Is_Integer_Type (T) then
2897 Resolve (E, T);
2898 Set_Etype (Id, Universal_Integer);
2899 Set_Ekind (Id, E_Named_Integer);
2901 elsif Is_Real_Type (T) then
2903 -- Because the real value is converted to universal_real, this is a
2904 -- legal context for a universal fixed expression.
2906 if T = Universal_Fixed then
2907 declare
2908 Loc : constant Source_Ptr := Sloc (N);
2909 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2910 Subtype_Mark =>
2911 New_Occurrence_Of (Universal_Real, Loc),
2912 Expression => Relocate_Node (E));
2914 begin
2915 Rewrite (E, Conv);
2916 Analyze (E);
2917 end;
2919 elsif T = Any_Fixed then
2920 Error_Msg_N ("illegal context for mixed mode operation", E);
2922 -- Expression is of the form : universal_fixed * integer. Try to
2923 -- resolve as universal_real.
2925 T := Universal_Real;
2926 Set_Etype (E, T);
2927 end if;
2929 Resolve (E, T);
2930 Set_Etype (Id, Universal_Real);
2931 Set_Ekind (Id, E_Named_Real);
2933 else
2934 Wrong_Type (E, Any_Numeric);
2935 Resolve (E, T);
2937 Set_Etype (Id, T);
2938 Set_Ekind (Id, E_Constant);
2939 Set_Never_Set_In_Source (Id, True);
2940 Set_Is_True_Constant (Id, True);
2941 return;
2942 end if;
2944 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2945 Set_Etype (E, Etype (Id));
2946 end if;
2948 if not Is_OK_Static_Expression (E) then
2949 Flag_Non_Static_Expr
2950 ("non-static expression used in number declaration!", E);
2951 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2952 Set_Etype (E, Any_Type);
2953 end if;
2954 end Analyze_Number_Declaration;
2956 -----------------------------
2957 -- Analyze_Object_Contract --
2958 -----------------------------
2960 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
2961 AR_Val : Boolean := False;
2962 AW_Val : Boolean := False;
2963 ER_Val : Boolean := False;
2964 EW_Val : Boolean := False;
2965 Prag : Node_Id;
2966 Seen : Boolean := False;
2968 begin
2969 if Ekind (Obj_Id) = E_Constant then
2971 -- A constant cannot be volatile. This check is only relevant when
2972 -- SPARK_Mode is on as it is not standard Ada legality rule. Do not
2973 -- flag internally-generated constants that map generic formals to
2974 -- actuals in instantiations.
2976 if SPARK_Mode = On
2977 and then Is_SPARK_Volatile_Object (Obj_Id)
2978 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
2979 then
2980 Error_Msg_N
2981 ("constant cannot be volatile (SPARK RM 7.1.3(4))", Obj_Id);
2982 end if;
2984 else pragma Assert (Ekind (Obj_Id) = E_Variable);
2986 -- The following checks are only relevant when SPARK_Mode is on as
2987 -- they are not standard Ada legality rules.
2989 if SPARK_Mode = On then
2991 -- A non-volatile object cannot have volatile components
2993 if not Is_SPARK_Volatile_Object (Obj_Id)
2994 and then Has_Volatile_Component (Etype (Obj_Id))
2995 then
2996 Error_Msg_N
2997 ("non-volatile variable & cannot have volatile components "
2998 & "(SPARK RM 7.1.3(6))", Obj_Id);
3000 -- The declaration of a volatile object must appear at the library
3001 -- level.
3003 elsif Is_SPARK_Volatile_Object (Obj_Id)
3004 and then not Is_Library_Level_Entity (Obj_Id)
3005 then
3006 Error_Msg_N
3007 ("volatile variable & must be declared at library level "
3008 & "(SPARK RM 7.1.3(5))", Obj_Id);
3009 end if;
3010 end if;
3012 -- Analyze all external properties
3014 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3016 if Present (Prag) then
3017 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3018 Seen := True;
3019 end if;
3021 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3023 if Present (Prag) then
3024 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3025 Seen := True;
3026 end if;
3028 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3030 if Present (Prag) then
3031 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3032 Seen := True;
3033 end if;
3035 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3037 if Present (Prag) then
3038 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3039 Seen := True;
3040 end if;
3042 -- Verify the mutual interaction of the various external properties
3044 if Seen then
3045 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3046 end if;
3048 -- Check whether the lack of indicator Part_Of agrees with the
3049 -- placement of the variable with respect to the state space.
3051 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3053 if No (Prag) then
3054 Check_Missing_Part_Of (Obj_Id);
3055 end if;
3056 end if;
3057 end Analyze_Object_Contract;
3059 --------------------------------
3060 -- Analyze_Object_Declaration --
3061 --------------------------------
3063 procedure Analyze_Object_Declaration (N : Node_Id) is
3064 Loc : constant Source_Ptr := Sloc (N);
3065 Id : constant Entity_Id := Defining_Identifier (N);
3066 T : Entity_Id;
3067 Act_T : Entity_Id;
3069 E : Node_Id := Expression (N);
3070 -- E is set to Expression (N) throughout this routine. When
3071 -- Expression (N) is modified, E is changed accordingly.
3073 Prev_Entity : Entity_Id := Empty;
3075 function Count_Tasks (T : Entity_Id) return Uint;
3076 -- This function is called when a non-generic library level object of a
3077 -- task type is declared. Its function is to count the static number of
3078 -- tasks declared within the type (it is only called if Has_Tasks is set
3079 -- for T). As a side effect, if an array of tasks with non-static bounds
3080 -- or a variant record type is encountered, Check_Restrictions is called
3081 -- indicating the count is unknown.
3083 -----------------
3084 -- Count_Tasks --
3085 -----------------
3087 function Count_Tasks (T : Entity_Id) return Uint is
3088 C : Entity_Id;
3089 X : Node_Id;
3090 V : Uint;
3092 begin
3093 if Is_Task_Type (T) then
3094 return Uint_1;
3096 elsif Is_Record_Type (T) then
3097 if Has_Discriminants (T) then
3098 Check_Restriction (Max_Tasks, N);
3099 return Uint_0;
3101 else
3102 V := Uint_0;
3103 C := First_Component (T);
3104 while Present (C) loop
3105 V := V + Count_Tasks (Etype (C));
3106 Next_Component (C);
3107 end loop;
3109 return V;
3110 end if;
3112 elsif Is_Array_Type (T) then
3113 X := First_Index (T);
3114 V := Count_Tasks (Component_Type (T));
3115 while Present (X) loop
3116 C := Etype (X);
3118 if not Is_Static_Subtype (C) then
3119 Check_Restriction (Max_Tasks, N);
3120 return Uint_0;
3121 else
3122 V := V * (UI_Max (Uint_0,
3123 Expr_Value (Type_High_Bound (C)) -
3124 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3125 end if;
3127 Next_Index (X);
3128 end loop;
3130 return V;
3132 else
3133 return Uint_0;
3134 end if;
3135 end Count_Tasks;
3137 -- Start of processing for Analyze_Object_Declaration
3139 begin
3140 -- There are three kinds of implicit types generated by an
3141 -- object declaration:
3143 -- 1. Those generated by the original Object Definition
3145 -- 2. Those generated by the Expression
3147 -- 3. Those used to constrain the Object Definition with the
3148 -- expression constraints when the definition is unconstrained.
3150 -- They must be generated in this order to avoid order of elaboration
3151 -- issues. Thus the first step (after entering the name) is to analyze
3152 -- the object definition.
3154 if Constant_Present (N) then
3155 Prev_Entity := Current_Entity_In_Scope (Id);
3157 if Present (Prev_Entity)
3158 and then
3160 -- If the homograph is an implicit subprogram, it is overridden
3161 -- by the current declaration.
3163 ((Is_Overloadable (Prev_Entity)
3164 and then Is_Inherited_Operation (Prev_Entity))
3166 -- The current object is a discriminal generated for an entry
3167 -- family index. Even though the index is a constant, in this
3168 -- particular context there is no true constant redeclaration.
3169 -- Enter_Name will handle the visibility.
3171 or else
3172 (Is_Discriminal (Id)
3173 and then Ekind (Discriminal_Link (Id)) =
3174 E_Entry_Index_Parameter)
3176 -- The current object is the renaming for a generic declared
3177 -- within the instance.
3179 or else
3180 (Ekind (Prev_Entity) = E_Package
3181 and then Nkind (Parent (Prev_Entity)) =
3182 N_Package_Renaming_Declaration
3183 and then not Comes_From_Source (Prev_Entity)
3184 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3185 then
3186 Prev_Entity := Empty;
3187 end if;
3188 end if;
3190 if Present (Prev_Entity) then
3191 Constant_Redeclaration (Id, N, T);
3193 Generate_Reference (Prev_Entity, Id, 'c');
3194 Set_Completion_Referenced (Id);
3196 if Error_Posted (N) then
3198 -- Type mismatch or illegal redeclaration, Do not analyze
3199 -- expression to avoid cascaded errors.
3201 T := Find_Type_Of_Object (Object_Definition (N), N);
3202 Set_Etype (Id, T);
3203 Set_Ekind (Id, E_Variable);
3204 goto Leave;
3205 end if;
3207 -- In the normal case, enter identifier at the start to catch premature
3208 -- usage in the initialization expression.
3210 else
3211 Generate_Definition (Id);
3212 Enter_Name (Id);
3214 Mark_Coextensions (N, Object_Definition (N));
3216 T := Find_Type_Of_Object (Object_Definition (N), N);
3218 if Nkind (Object_Definition (N)) = N_Access_Definition
3219 and then Present
3220 (Access_To_Subprogram_Definition (Object_Definition (N)))
3221 and then Protected_Present
3222 (Access_To_Subprogram_Definition (Object_Definition (N)))
3223 then
3224 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3225 end if;
3227 if Error_Posted (Id) then
3228 Set_Etype (Id, T);
3229 Set_Ekind (Id, E_Variable);
3230 goto Leave;
3231 end if;
3232 end if;
3234 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3235 -- out some static checks
3237 if Ada_Version >= Ada_2005
3238 and then Can_Never_Be_Null (T)
3239 then
3240 -- In case of aggregates we must also take care of the correct
3241 -- initialization of nested aggregates bug this is done at the
3242 -- point of the analysis of the aggregate (see sem_aggr.adb)
3244 if Present (Expression (N))
3245 and then Nkind (Expression (N)) = N_Aggregate
3246 then
3247 null;
3249 else
3250 declare
3251 Save_Typ : constant Entity_Id := Etype (Id);
3252 begin
3253 Set_Etype (Id, T); -- Temp. decoration for static checks
3254 Null_Exclusion_Static_Checks (N);
3255 Set_Etype (Id, Save_Typ);
3256 end;
3257 end if;
3258 end if;
3260 -- Object is marked pure if it is in a pure scope
3262 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3264 -- If deferred constant, make sure context is appropriate. We detect
3265 -- a deferred constant as a constant declaration with no expression.
3266 -- A deferred constant can appear in a package body if its completion
3267 -- is by means of an interface pragma.
3269 if Constant_Present (N) and then No (E) then
3271 -- A deferred constant may appear in the declarative part of the
3272 -- following constructs:
3274 -- blocks
3275 -- entry bodies
3276 -- extended return statements
3277 -- package specs
3278 -- package bodies
3279 -- subprogram bodies
3280 -- task bodies
3282 -- When declared inside a package spec, a deferred constant must be
3283 -- completed by a full constant declaration or pragma Import. In all
3284 -- other cases, the only proper completion is pragma Import. Extended
3285 -- return statements are flagged as invalid contexts because they do
3286 -- not have a declarative part and so cannot accommodate the pragma.
3288 if Ekind (Current_Scope) = E_Return_Statement then
3289 Error_Msg_N
3290 ("invalid context for deferred constant declaration (RM 7.4)",
3292 Error_Msg_N
3293 ("\declaration requires an initialization expression",
3295 Set_Constant_Present (N, False);
3297 -- In Ada 83, deferred constant must be of private type
3299 elsif not Is_Private_Type (T) then
3300 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3301 Error_Msg_N
3302 ("(Ada 83) deferred constant must be private type", N);
3303 end if;
3304 end if;
3306 -- If not a deferred constant, then object declaration freezes its type
3308 else
3309 Check_Fully_Declared (T, N);
3310 Freeze_Before (N, T);
3311 end if;
3313 -- If the object was created by a constrained array definition, then
3314 -- set the link in both the anonymous base type and anonymous subtype
3315 -- that are built to represent the array type to point to the object.
3317 if Nkind (Object_Definition (Declaration_Node (Id))) =
3318 N_Constrained_Array_Definition
3319 then
3320 Set_Related_Array_Object (T, Id);
3321 Set_Related_Array_Object (Base_Type (T), Id);
3322 end if;
3324 -- Special checks for protected objects not at library level
3326 if Is_Protected_Type (T)
3327 and then not Is_Library_Level_Entity (Id)
3328 then
3329 Check_Restriction (No_Local_Protected_Objects, Id);
3331 -- Protected objects with interrupt handlers must be at library level
3333 -- Ada 2005: This test is not needed (and the corresponding clause
3334 -- in the RM is removed) because accessibility checks are sufficient
3335 -- to make handlers not at the library level illegal.
3337 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3338 -- applies to the '95 version of the language as well.
3340 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3341 Error_Msg_N
3342 ("interrupt object can only be declared at library level", Id);
3343 end if;
3344 end if;
3346 -- The actual subtype of the object is the nominal subtype, unless
3347 -- the nominal one is unconstrained and obtained from the expression.
3349 Act_T := T;
3351 -- These checks should be performed before the initialization expression
3352 -- is considered, so that the Object_Definition node is still the same
3353 -- as in source code.
3355 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3356 -- shall not be unconstrained. (The only exception to this is the
3357 -- admission of declarations of constants of type String.)
3359 if not
3360 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3361 then
3362 Check_SPARK_Restriction
3363 ("subtype mark required", Object_Definition (N));
3365 elsif Is_Array_Type (T)
3366 and then not Is_Constrained (T)
3367 and then T /= Standard_String
3368 then
3369 Check_SPARK_Restriction
3370 ("subtype mark of constrained type expected",
3371 Object_Definition (N));
3372 end if;
3374 -- There are no aliased objects in SPARK
3376 if Aliased_Present (N) then
3377 Check_SPARK_Restriction ("aliased object is not allowed", N);
3378 end if;
3380 -- Process initialization expression if present and not in error
3382 if Present (E) and then E /= Error then
3384 -- Generate an error in case of CPP class-wide object initialization.
3385 -- Required because otherwise the expansion of the class-wide
3386 -- assignment would try to use 'size to initialize the object
3387 -- (primitive that is not available in CPP tagged types).
3389 if Is_Class_Wide_Type (Act_T)
3390 and then
3391 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3392 or else
3393 (Present (Full_View (Root_Type (Etype (Act_T))))
3394 and then
3395 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3396 then
3397 Error_Msg_N
3398 ("predefined assignment not available for 'C'P'P tagged types",
3400 end if;
3402 Mark_Coextensions (N, E);
3403 Analyze (E);
3405 -- In case of errors detected in the analysis of the expression,
3406 -- decorate it with the expected type to avoid cascaded errors
3408 if No (Etype (E)) then
3409 Set_Etype (E, T);
3410 end if;
3412 -- If an initialization expression is present, then we set the
3413 -- Is_True_Constant flag. It will be reset if this is a variable
3414 -- and it is indeed modified.
3416 Set_Is_True_Constant (Id, True);
3418 -- If we are analyzing a constant declaration, set its completion
3419 -- flag after analyzing and resolving the expression.
3421 if Constant_Present (N) then
3422 Set_Has_Completion (Id);
3423 end if;
3425 -- Set type and resolve (type may be overridden later on). Note:
3426 -- Ekind (Id) must still be E_Void at this point so that incorrect
3427 -- early usage within E is properly diagnosed.
3429 Set_Etype (Id, T);
3430 Resolve (E, T);
3432 -- No further action needed if E is a call to an inlined function
3433 -- which returns an unconstrained type and it has been expanded into
3434 -- a procedure call. In that case N has been replaced by an object
3435 -- declaration without initializing expression and it has been
3436 -- analyzed (see Expand_Inlined_Call).
3438 if Debug_Flag_Dot_K
3439 and then Expander_Active
3440 and then Nkind (E) = N_Function_Call
3441 and then Nkind (Name (E)) in N_Has_Entity
3442 and then Is_Inlined (Entity (Name (E)))
3443 and then not Is_Constrained (Etype (E))
3444 and then Analyzed (N)
3445 and then No (Expression (N))
3446 then
3447 return;
3448 end if;
3450 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3451 -- node (which was marked already-analyzed), we need to set the type
3452 -- to something other than Any_Access in order to keep gigi happy.
3454 if Etype (E) = Any_Access then
3455 Set_Etype (E, T);
3456 end if;
3458 -- If the object is an access to variable, the initialization
3459 -- expression cannot be an access to constant.
3461 if Is_Access_Type (T)
3462 and then not Is_Access_Constant (T)
3463 and then Is_Access_Type (Etype (E))
3464 and then Is_Access_Constant (Etype (E))
3465 then
3466 Error_Msg_N
3467 ("access to variable cannot be initialized "
3468 & "with an access-to-constant expression", E);
3469 end if;
3471 if not Assignment_OK (N) then
3472 Check_Initialization (T, E);
3473 end if;
3475 Check_Unset_Reference (E);
3477 -- If this is a variable, then set current value. If this is a
3478 -- declared constant of a scalar type with a static expression,
3479 -- indicate that it is always valid.
3481 if not Constant_Present (N) then
3482 if Compile_Time_Known_Value (E) then
3483 Set_Current_Value (Id, E);
3484 end if;
3486 elsif Is_Scalar_Type (T)
3487 and then Is_OK_Static_Expression (E)
3488 then
3489 Set_Is_Known_Valid (Id);
3490 end if;
3492 -- Deal with setting of null flags
3494 if Is_Access_Type (T) then
3495 if Known_Non_Null (E) then
3496 Set_Is_Known_Non_Null (Id, True);
3497 elsif Known_Null (E)
3498 and then not Can_Never_Be_Null (Id)
3499 then
3500 Set_Is_Known_Null (Id, True);
3501 end if;
3502 end if;
3504 -- Check incorrect use of dynamically tagged expressions
3506 if Is_Tagged_Type (T) then
3507 Check_Dynamically_Tagged_Expression
3508 (Expr => E,
3509 Typ => T,
3510 Related_Nod => N);
3511 end if;
3513 Apply_Scalar_Range_Check (E, T);
3514 Apply_Static_Length_Check (E, T);
3516 if Nkind (Original_Node (N)) = N_Object_Declaration
3517 and then Comes_From_Source (Original_Node (N))
3519 -- Only call test if needed
3521 and then Restriction_Check_Required (SPARK_05)
3522 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3523 then
3524 Check_SPARK_Restriction
3525 ("initialization expression is not appropriate", E);
3526 end if;
3527 end if;
3529 -- If the No_Streams restriction is set, check that the type of the
3530 -- object is not, and does not contain, any subtype derived from
3531 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3532 -- Has_Stream just for efficiency reasons. There is no point in
3533 -- spending time on a Has_Stream check if the restriction is not set.
3535 if Restriction_Check_Required (No_Streams) then
3536 if Has_Stream (T) then
3537 Check_Restriction (No_Streams, N);
3538 end if;
3539 end if;
3541 -- Deal with predicate check before we start to do major rewriting. It
3542 -- is OK to initialize and then check the initialized value, since the
3543 -- object goes out of scope if we get a predicate failure. Note that we
3544 -- do this in the analyzer and not the expander because the analyzer
3545 -- does some substantial rewriting in some cases.
3547 -- We need a predicate check if the type has predicates, and if either
3548 -- there is an initializing expression, or for default initialization
3549 -- when we have at least one case of an explicit default initial value.
3551 if not Suppress_Assignment_Checks (N)
3552 and then Present (Predicate_Function (T))
3553 and then
3554 (Present (E)
3555 or else
3556 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3557 then
3558 -- If the type has a static predicate and the expression is known at
3559 -- compile time, see if the expression satisfies the predicate.
3561 if Present (E) then
3562 Check_Expression_Against_Static_Predicate (E, T);
3563 end if;
3565 Insert_After (N,
3566 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3567 end if;
3569 -- Case of unconstrained type
3571 if Is_Indefinite_Subtype (T) then
3573 -- In SPARK, a declaration of unconstrained type is allowed
3574 -- only for constants of type string.
3576 if Is_String_Type (T) and then not Constant_Present (N) then
3577 Check_SPARK_Restriction
3578 ("declaration of object of unconstrained type not allowed", N);
3579 end if;
3581 -- Nothing to do in deferred constant case
3583 if Constant_Present (N) and then No (E) then
3584 null;
3586 -- Case of no initialization present
3588 elsif No (E) then
3589 if No_Initialization (N) then
3590 null;
3592 elsif Is_Class_Wide_Type (T) then
3593 Error_Msg_N
3594 ("initialization required in class-wide declaration ", N);
3596 else
3597 Error_Msg_N
3598 ("unconstrained subtype not allowed (need initialization)",
3599 Object_Definition (N));
3601 if Is_Record_Type (T) and then Has_Discriminants (T) then
3602 Error_Msg_N
3603 ("\provide initial value or explicit discriminant values",
3604 Object_Definition (N));
3606 Error_Msg_NE
3607 ("\or give default discriminant values for type&",
3608 Object_Definition (N), T);
3610 elsif Is_Array_Type (T) then
3611 Error_Msg_N
3612 ("\provide initial value or explicit array bounds",
3613 Object_Definition (N));
3614 end if;
3615 end if;
3617 -- Case of initialization present but in error. Set initial
3618 -- expression as absent (but do not make above complaints)
3620 elsif E = Error then
3621 Set_Expression (N, Empty);
3622 E := Empty;
3624 -- Case of initialization present
3626 else
3627 -- Check restrictions in Ada 83
3629 if not Constant_Present (N) then
3631 -- Unconstrained variables not allowed in Ada 83 mode
3633 if Ada_Version = Ada_83
3634 and then Comes_From_Source (Object_Definition (N))
3635 then
3636 Error_Msg_N
3637 ("(Ada 83) unconstrained variable not allowed",
3638 Object_Definition (N));
3639 end if;
3640 end if;
3642 -- Now we constrain the variable from the initializing expression
3644 -- If the expression is an aggregate, it has been expanded into
3645 -- individual assignments. Retrieve the actual type from the
3646 -- expanded construct.
3648 if Is_Array_Type (T)
3649 and then No_Initialization (N)
3650 and then Nkind (Original_Node (E)) = N_Aggregate
3651 then
3652 Act_T := Etype (E);
3654 -- In case of class-wide interface object declarations we delay
3655 -- the generation of the equivalent record type declarations until
3656 -- its expansion because there are cases in they are not required.
3658 elsif Is_Interface (T) then
3659 null;
3661 else
3662 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3663 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3664 end if;
3666 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3668 if Aliased_Present (N) then
3669 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3670 end if;
3672 Freeze_Before (N, Act_T);
3673 Freeze_Before (N, T);
3674 end if;
3676 elsif Is_Array_Type (T)
3677 and then No_Initialization (N)
3678 and then Nkind (Original_Node (E)) = N_Aggregate
3679 then
3680 if not Is_Entity_Name (Object_Definition (N)) then
3681 Act_T := Etype (E);
3682 Check_Compile_Time_Size (Act_T);
3684 if Aliased_Present (N) then
3685 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3686 end if;
3687 end if;
3689 -- When the given object definition and the aggregate are specified
3690 -- independently, and their lengths might differ do a length check.
3691 -- This cannot happen if the aggregate is of the form (others =>...)
3693 if not Is_Constrained (T) then
3694 null;
3696 elsif Nkind (E) = N_Raise_Constraint_Error then
3698 -- Aggregate is statically illegal. Place back in declaration
3700 Set_Expression (N, E);
3701 Set_No_Initialization (N, False);
3703 elsif T = Etype (E) then
3704 null;
3706 elsif Nkind (E) = N_Aggregate
3707 and then Present (Component_Associations (E))
3708 and then Present (Choices (First (Component_Associations (E))))
3709 and then Nkind (First
3710 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3711 then
3712 null;
3714 else
3715 Apply_Length_Check (E, T);
3716 end if;
3718 -- If the type is limited unconstrained with defaulted discriminants and
3719 -- there is no expression, then the object is constrained by the
3720 -- defaults, so it is worthwhile building the corresponding subtype.
3722 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3723 and then not Is_Constrained (T)
3724 and then Has_Discriminants (T)
3725 then
3726 if No (E) then
3727 Act_T := Build_Default_Subtype (T, N);
3728 else
3729 -- Ada 2005: A limited object may be initialized by means of an
3730 -- aggregate. If the type has default discriminants it has an
3731 -- unconstrained nominal type, Its actual subtype will be obtained
3732 -- from the aggregate, and not from the default discriminants.
3734 Act_T := Etype (E);
3735 end if;
3737 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3739 elsif Nkind (E) = N_Function_Call
3740 and then Constant_Present (N)
3741 and then Has_Unconstrained_Elements (Etype (E))
3742 then
3743 -- The back-end has problems with constants of a discriminated type
3744 -- with defaults, if the initial value is a function call. We
3745 -- generate an intermediate temporary that will receive a reference
3746 -- to the result of the call. The initialization expression then
3747 -- becomes a dereference of that temporary.
3749 Remove_Side_Effects (E);
3751 -- If this is a constant declaration of an unconstrained type and
3752 -- the initialization is an aggregate, we can use the subtype of the
3753 -- aggregate for the declared entity because it is immutable.
3755 elsif not Is_Constrained (T)
3756 and then Has_Discriminants (T)
3757 and then Constant_Present (N)
3758 and then not Has_Unchecked_Union (T)
3759 and then Nkind (E) = N_Aggregate
3760 then
3761 Act_T := Etype (E);
3762 end if;
3764 -- Check No_Wide_Characters restriction
3766 Check_Wide_Character_Restriction (T, Object_Definition (N));
3768 -- Indicate this is not set in source. Certainly true for constants, and
3769 -- true for variables so far (will be reset for a variable if and when
3770 -- we encounter a modification in the source).
3772 Set_Never_Set_In_Source (Id, True);
3774 -- Now establish the proper kind and type of the object
3776 if Constant_Present (N) then
3777 Set_Ekind (Id, E_Constant);
3778 Set_Is_True_Constant (Id);
3780 else
3781 Set_Ekind (Id, E_Variable);
3783 -- A variable is set as shared passive if it appears in a shared
3784 -- passive package, and is at the outer level. This is not done for
3785 -- entities generated during expansion, because those are always
3786 -- manipulated locally.
3788 if Is_Shared_Passive (Current_Scope)
3789 and then Is_Library_Level_Entity (Id)
3790 and then Comes_From_Source (Id)
3791 then
3792 Set_Is_Shared_Passive (Id);
3793 Check_Shared_Var (Id, T, N);
3794 end if;
3796 -- Set Has_Initial_Value if initializing expression present. Note
3797 -- that if there is no initializing expression, we leave the state
3798 -- of this flag unchanged (usually it will be False, but notably in
3799 -- the case of exception choice variables, it will already be true).
3801 if Present (E) then
3802 Set_Has_Initial_Value (Id, True);
3803 end if;
3805 Set_Contract (Id, Make_Contract (Sloc (Id)));
3806 end if;
3808 -- Initialize alignment and size and capture alignment setting
3810 Init_Alignment (Id);
3811 Init_Esize (Id);
3812 Set_Optimize_Alignment_Flags (Id);
3814 -- Deal with aliased case
3816 if Aliased_Present (N) then
3817 Set_Is_Aliased (Id);
3819 -- If the object is aliased and the type is unconstrained with
3820 -- defaulted discriminants and there is no expression, then the
3821 -- object is constrained by the defaults, so it is worthwhile
3822 -- building the corresponding subtype.
3824 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3825 -- unconstrained, then only establish an actual subtype if the
3826 -- nominal subtype is indefinite. In definite cases the object is
3827 -- unconstrained in Ada 2005.
3829 if No (E)
3830 and then Is_Record_Type (T)
3831 and then not Is_Constrained (T)
3832 and then Has_Discriminants (T)
3833 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3834 then
3835 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3836 end if;
3837 end if;
3839 -- Now we can set the type of the object
3841 Set_Etype (Id, Act_T);
3843 -- Object is marked to be treated as volatile if type is volatile and
3844 -- we clear the Current_Value setting that may have been set above.
3846 if Treat_As_Volatile (Etype (Id)) then
3847 Set_Treat_As_Volatile (Id);
3848 Set_Current_Value (Id, Empty);
3849 end if;
3851 -- Deal with controlled types
3853 if Has_Controlled_Component (Etype (Id))
3854 or else Is_Controlled (Etype (Id))
3855 then
3856 if not Is_Library_Level_Entity (Id) then
3857 Check_Restriction (No_Nested_Finalization, N);
3858 else
3859 Validate_Controlled_Object (Id);
3860 end if;
3861 end if;
3863 if Has_Task (Etype (Id)) then
3864 Check_Restriction (No_Tasking, N);
3866 -- Deal with counting max tasks
3868 -- Nothing to do if inside a generic
3870 if Inside_A_Generic then
3871 null;
3873 -- If library level entity, then count tasks
3875 elsif Is_Library_Level_Entity (Id) then
3876 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3878 -- If not library level entity, then indicate we don't know max
3879 -- tasks and also check task hierarchy restriction and blocking
3880 -- operation (since starting a task is definitely blocking).
3882 else
3883 Check_Restriction (Max_Tasks, N);
3884 Check_Restriction (No_Task_Hierarchy, N);
3885 Check_Potentially_Blocking_Operation (N);
3886 end if;
3888 -- A rather specialized test. If we see two tasks being declared
3889 -- of the same type in the same object declaration, and the task
3890 -- has an entry with an address clause, we know that program error
3891 -- will be raised at run time since we can't have two tasks with
3892 -- entries at the same address.
3894 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3895 declare
3896 E : Entity_Id;
3898 begin
3899 E := First_Entity (Etype (Id));
3900 while Present (E) loop
3901 if Ekind (E) = E_Entry
3902 and then Present (Get_Attribute_Definition_Clause
3903 (E, Attribute_Address))
3904 then
3905 Error_Msg_Warn := SPARK_Mode /= On;
3906 Error_Msg_N
3907 ("more than one task with same entry address<<", N);
3908 Error_Msg_N ("\Program_Error [<<", N);
3909 Insert_Action (N,
3910 Make_Raise_Program_Error (Loc,
3911 Reason => PE_Duplicated_Entry_Address));
3912 exit;
3913 end if;
3915 Next_Entity (E);
3916 end loop;
3917 end;
3918 end if;
3919 end if;
3921 -- Some simple constant-propagation: if the expression is a constant
3922 -- string initialized with a literal, share the literal. This avoids
3923 -- a run-time copy.
3925 if Present (E)
3926 and then Is_Entity_Name (E)
3927 and then Ekind (Entity (E)) = E_Constant
3928 and then Base_Type (Etype (E)) = Standard_String
3929 then
3930 declare
3931 Val : constant Node_Id := Constant_Value (Entity (E));
3932 begin
3933 if Present (Val)
3934 and then Nkind (Val) = N_String_Literal
3935 then
3936 Rewrite (E, New_Copy (Val));
3937 end if;
3938 end;
3939 end if;
3941 -- Another optimization: if the nominal subtype is unconstrained and
3942 -- the expression is a function call that returns an unconstrained
3943 -- type, rewrite the declaration as a renaming of the result of the
3944 -- call. The exceptions below are cases where the copy is expected,
3945 -- either by the back end (Aliased case) or by the semantics, as for
3946 -- initializing controlled types or copying tags for classwide types.
3948 if Present (E)
3949 and then Nkind (E) = N_Explicit_Dereference
3950 and then Nkind (Original_Node (E)) = N_Function_Call
3951 and then not Is_Library_Level_Entity (Id)
3952 and then not Is_Constrained (Underlying_Type (T))
3953 and then not Is_Aliased (Id)
3954 and then not Is_Class_Wide_Type (T)
3955 and then not Is_Controlled (T)
3956 and then not Has_Controlled_Component (Base_Type (T))
3957 and then Expander_Active
3958 then
3959 Rewrite (N,
3960 Make_Object_Renaming_Declaration (Loc,
3961 Defining_Identifier => Id,
3962 Access_Definition => Empty,
3963 Subtype_Mark => New_Occurrence_Of
3964 (Base_Type (Etype (Id)), Loc),
3965 Name => E));
3967 Set_Renamed_Object (Id, E);
3969 -- Force generation of debugging information for the constant and for
3970 -- the renamed function call.
3972 Set_Debug_Info_Needed (Id);
3973 Set_Debug_Info_Needed (Entity (Prefix (E)));
3974 end if;
3976 if Present (Prev_Entity)
3977 and then Is_Frozen (Prev_Entity)
3978 and then not Error_Posted (Id)
3979 then
3980 Error_Msg_N ("full constant declaration appears too late", N);
3981 end if;
3983 Check_Eliminated (Id);
3985 -- Deal with setting In_Private_Part flag if in private part
3987 if Ekind (Scope (Id)) = E_Package
3988 and then In_Private_Part (Scope (Id))
3989 then
3990 Set_In_Private_Part (Id);
3991 end if;
3993 -- Check for violation of No_Local_Timing_Events
3995 if Restriction_Check_Required (No_Local_Timing_Events)
3996 and then not Is_Library_Level_Entity (Id)
3997 and then Is_RTE (Etype (Id), RE_Timing_Event)
3998 then
3999 Check_Restriction (No_Local_Timing_Events, N);
4000 end if;
4002 <<Leave>>
4003 -- Initialize the refined state of a variable here because this is a
4004 -- common destination for legal and illegal object declarations.
4006 if Ekind (Id) = E_Variable then
4007 Set_Encapsulating_State (Id, Empty);
4008 end if;
4010 if Has_Aspects (N) then
4011 Analyze_Aspect_Specifications (N, Id);
4012 end if;
4014 Analyze_Dimension (N);
4016 -- Verify whether the object declaration introduces an illegal hidden
4017 -- state within a package subject to a null abstract state.
4019 if Ekind (Id) = E_Variable then
4020 Check_No_Hidden_State (Id);
4021 end if;
4022 end Analyze_Object_Declaration;
4024 ---------------------------
4025 -- Analyze_Others_Choice --
4026 ---------------------------
4028 -- Nothing to do for the others choice node itself, the semantic analysis
4029 -- of the others choice will occur as part of the processing of the parent
4031 procedure Analyze_Others_Choice (N : Node_Id) is
4032 pragma Warnings (Off, N);
4033 begin
4034 null;
4035 end Analyze_Others_Choice;
4037 -------------------------------------------
4038 -- Analyze_Private_Extension_Declaration --
4039 -------------------------------------------
4041 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4042 T : constant Entity_Id := Defining_Identifier (N);
4043 Indic : constant Node_Id := Subtype_Indication (N);
4044 Parent_Type : Entity_Id;
4045 Parent_Base : Entity_Id;
4047 begin
4048 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4050 if Is_Non_Empty_List (Interface_List (N)) then
4051 declare
4052 Intf : Node_Id;
4053 T : Entity_Id;
4055 begin
4056 Intf := First (Interface_List (N));
4057 while Present (Intf) loop
4058 T := Find_Type_Of_Subtype_Indic (Intf);
4060 Diagnose_Interface (Intf, T);
4061 Next (Intf);
4062 end loop;
4063 end;
4064 end if;
4066 Generate_Definition (T);
4068 -- For other than Ada 2012, just enter the name in the current scope
4070 if Ada_Version < Ada_2012 then
4071 Enter_Name (T);
4073 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4074 -- case of private type that completes an incomplete type.
4076 else
4077 declare
4078 Prev : Entity_Id;
4080 begin
4081 Prev := Find_Type_Name (N);
4083 pragma Assert (Prev = T
4084 or else (Ekind (Prev) = E_Incomplete_Type
4085 and then Present (Full_View (Prev))
4086 and then Full_View (Prev) = T));
4087 end;
4088 end if;
4090 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4091 Parent_Base := Base_Type (Parent_Type);
4093 if Parent_Type = Any_Type
4094 or else Etype (Parent_Type) = Any_Type
4095 then
4096 Set_Ekind (T, Ekind (Parent_Type));
4097 Set_Etype (T, Any_Type);
4098 goto Leave;
4100 elsif not Is_Tagged_Type (Parent_Type) then
4101 Error_Msg_N
4102 ("parent of type extension must be a tagged type ", Indic);
4103 goto Leave;
4105 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4106 Error_Msg_N ("premature derivation of incomplete type", Indic);
4107 goto Leave;
4109 elsif Is_Concurrent_Type (Parent_Type) then
4110 Error_Msg_N
4111 ("parent type of a private extension cannot be "
4112 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4114 Set_Etype (T, Any_Type);
4115 Set_Ekind (T, E_Limited_Private_Type);
4116 Set_Private_Dependents (T, New_Elmt_List);
4117 Set_Error_Posted (T);
4118 goto Leave;
4119 end if;
4121 -- Perhaps the parent type should be changed to the class-wide type's
4122 -- specific type in this case to prevent cascading errors ???
4124 if Is_Class_Wide_Type (Parent_Type) then
4125 Error_Msg_N
4126 ("parent of type extension must not be a class-wide type", Indic);
4127 goto Leave;
4128 end if;
4130 if (not Is_Package_Or_Generic_Package (Current_Scope)
4131 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4132 or else In_Private_Part (Current_Scope)
4134 then
4135 Error_Msg_N ("invalid context for private extension", N);
4136 end if;
4138 -- Set common attributes
4140 Set_Is_Pure (T, Is_Pure (Current_Scope));
4141 Set_Scope (T, Current_Scope);
4142 Set_Ekind (T, E_Record_Type_With_Private);
4143 Init_Size_Align (T);
4145 Set_Etype (T, Parent_Base);
4146 Set_Has_Task (T, Has_Task (Parent_Base));
4148 Set_Convention (T, Convention (Parent_Type));
4149 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4150 Set_Is_First_Subtype (T);
4151 Make_Class_Wide_Type (T);
4153 if Unknown_Discriminants_Present (N) then
4154 Set_Discriminant_Constraint (T, No_Elist);
4155 end if;
4157 Build_Derived_Record_Type (N, Parent_Type, T);
4159 -- Propagate inherited invariant information. The new type has
4160 -- invariants, if the parent type has inheritable invariants,
4161 -- and these invariants can in turn be inherited.
4163 if Has_Inheritable_Invariants (Parent_Type) then
4164 Set_Has_Inheritable_Invariants (T);
4165 Set_Has_Invariants (T);
4166 end if;
4168 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4169 -- synchronized formal derived type.
4171 if Ada_Version >= Ada_2005
4172 and then Synchronized_Present (N)
4173 then
4174 Set_Is_Limited_Record (T);
4176 -- Formal derived type case
4178 if Is_Generic_Type (T) then
4180 -- The parent must be a tagged limited type or a synchronized
4181 -- interface.
4183 if (not Is_Tagged_Type (Parent_Type)
4184 or else not Is_Limited_Type (Parent_Type))
4185 and then
4186 (not Is_Interface (Parent_Type)
4187 or else not Is_Synchronized_Interface (Parent_Type))
4188 then
4189 Error_Msg_NE ("parent type of & must be tagged limited " &
4190 "or synchronized", N, T);
4191 end if;
4193 -- The progenitors (if any) must be limited or synchronized
4194 -- interfaces.
4196 if Present (Interfaces (T)) then
4197 declare
4198 Iface : Entity_Id;
4199 Iface_Elmt : Elmt_Id;
4201 begin
4202 Iface_Elmt := First_Elmt (Interfaces (T));
4203 while Present (Iface_Elmt) loop
4204 Iface := Node (Iface_Elmt);
4206 if not Is_Limited_Interface (Iface)
4207 and then not Is_Synchronized_Interface (Iface)
4208 then
4209 Error_Msg_NE ("progenitor & must be limited " &
4210 "or synchronized", N, Iface);
4211 end if;
4213 Next_Elmt (Iface_Elmt);
4214 end loop;
4215 end;
4216 end if;
4218 -- Regular derived extension, the parent must be a limited or
4219 -- synchronized interface.
4221 else
4222 if not Is_Interface (Parent_Type)
4223 or else (not Is_Limited_Interface (Parent_Type)
4224 and then
4225 not Is_Synchronized_Interface (Parent_Type))
4226 then
4227 Error_Msg_NE
4228 ("parent type of & must be limited interface", N, T);
4229 end if;
4230 end if;
4232 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4233 -- extension with a synchronized parent must be explicitly declared
4234 -- synchronized, because the full view will be a synchronized type.
4235 -- This must be checked before the check for limited types below,
4236 -- to ensure that types declared limited are not allowed to extend
4237 -- synchronized interfaces.
4239 elsif Is_Interface (Parent_Type)
4240 and then Is_Synchronized_Interface (Parent_Type)
4241 and then not Synchronized_Present (N)
4242 then
4243 Error_Msg_NE
4244 ("private extension of& must be explicitly synchronized",
4245 N, Parent_Type);
4247 elsif Limited_Present (N) then
4248 Set_Is_Limited_Record (T);
4250 if not Is_Limited_Type (Parent_Type)
4251 and then
4252 (not Is_Interface (Parent_Type)
4253 or else not Is_Limited_Interface (Parent_Type))
4254 then
4255 Error_Msg_NE ("parent type& of limited extension must be limited",
4256 N, Parent_Type);
4257 end if;
4258 end if;
4260 <<Leave>>
4261 if Has_Aspects (N) then
4262 Analyze_Aspect_Specifications (N, T);
4263 end if;
4264 end Analyze_Private_Extension_Declaration;
4266 ---------------------------------
4267 -- Analyze_Subtype_Declaration --
4268 ---------------------------------
4270 procedure Analyze_Subtype_Declaration
4271 (N : Node_Id;
4272 Skip : Boolean := False)
4274 Id : constant Entity_Id := Defining_Identifier (N);
4275 T : Entity_Id;
4276 R_Checks : Check_Result;
4278 begin
4279 Generate_Definition (Id);
4280 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4281 Init_Size_Align (Id);
4283 -- The following guard condition on Enter_Name is to handle cases where
4284 -- the defining identifier has already been entered into the scope but
4285 -- the declaration as a whole needs to be analyzed.
4287 -- This case in particular happens for derived enumeration types. The
4288 -- derived enumeration type is processed as an inserted enumeration type
4289 -- declaration followed by a rewritten subtype declaration. The defining
4290 -- identifier, however, is entered into the name scope very early in the
4291 -- processing of the original type declaration and therefore needs to be
4292 -- avoided here, when the created subtype declaration is analyzed. (See
4293 -- Build_Derived_Types)
4295 -- This also happens when the full view of a private type is derived
4296 -- type with constraints. In this case the entity has been introduced
4297 -- in the private declaration.
4299 -- Finally this happens in some complex cases when validity checks are
4300 -- enabled, where the same subtype declaration may be analyzed twice.
4301 -- This can happen if the subtype is created by the pre-analysis of
4302 -- an attribute tht gives the range of a loop statement, and the loop
4303 -- itself appears within an if_statement that will be rewritten during
4304 -- expansion.
4306 if Skip
4307 or else (Present (Etype (Id))
4308 and then (Is_Private_Type (Etype (Id))
4309 or else Is_Task_Type (Etype (Id))
4310 or else Is_Rewrite_Substitution (N)))
4311 then
4312 null;
4314 elsif Current_Entity (Id) = Id then
4315 null;
4317 else
4318 Enter_Name (Id);
4319 end if;
4321 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4323 -- Class-wide equivalent types of records with unknown discriminants
4324 -- involve the generation of an itype which serves as the private view
4325 -- of a constrained record subtype. In such cases the base type of the
4326 -- current subtype we are processing is the private itype. Use the full
4327 -- of the private itype when decorating various attributes.
4329 if Is_Itype (T)
4330 and then Is_Private_Type (T)
4331 and then Present (Full_View (T))
4332 then
4333 T := Full_View (T);
4334 end if;
4336 -- Inherit common attributes
4338 Set_Is_Volatile (Id, Is_Volatile (T));
4339 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4340 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4341 Set_Convention (Id, Convention (T));
4343 -- If ancestor has predicates then so does the subtype, and in addition
4344 -- we must delay the freeze to properly arrange predicate inheritance.
4346 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4347 -- which T = ID, so the above tests and assignments do nothing???
4349 if Has_Predicates (T)
4350 or else (Present (Ancestor_Subtype (T))
4351 and then Has_Predicates (Ancestor_Subtype (T)))
4352 then
4353 Set_Has_Predicates (Id);
4354 Set_Has_Delayed_Freeze (Id);
4355 end if;
4357 -- Subtype of Boolean cannot have a constraint in SPARK
4359 if Is_Boolean_Type (T)
4360 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4361 then
4362 Check_SPARK_Restriction
4363 ("subtype of Boolean cannot have constraint", N);
4364 end if;
4366 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4367 declare
4368 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4369 One_Cstr : Node_Id;
4370 Low : Node_Id;
4371 High : Node_Id;
4373 begin
4374 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4375 One_Cstr := First (Constraints (Cstr));
4376 while Present (One_Cstr) loop
4378 -- Index or discriminant constraint in SPARK must be a
4379 -- subtype mark.
4381 if not
4382 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4383 then
4384 Check_SPARK_Restriction
4385 ("subtype mark required", One_Cstr);
4387 -- String subtype must have a lower bound of 1 in SPARK.
4388 -- Note that we do not need to test for the non-static case
4389 -- here, since that was already taken care of in
4390 -- Process_Range_Expr_In_Decl.
4392 elsif Base_Type (T) = Standard_String then
4393 Get_Index_Bounds (One_Cstr, Low, High);
4395 if Is_OK_Static_Expression (Low)
4396 and then Expr_Value (Low) /= 1
4397 then
4398 Check_SPARK_Restriction
4399 ("String subtype must have lower bound of 1", N);
4400 end if;
4401 end if;
4403 Next (One_Cstr);
4404 end loop;
4405 end if;
4406 end;
4407 end if;
4409 -- In the case where there is no constraint given in the subtype
4410 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4411 -- semantic attributes must be established here.
4413 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4414 Set_Etype (Id, Base_Type (T));
4416 -- Subtype of unconstrained array without constraint is not allowed
4417 -- in SPARK.
4419 if Is_Array_Type (T)
4420 and then not Is_Constrained (T)
4421 then
4422 Check_SPARK_Restriction
4423 ("subtype of unconstrained array must have constraint", N);
4424 end if;
4426 case Ekind (T) is
4427 when Array_Kind =>
4428 Set_Ekind (Id, E_Array_Subtype);
4429 Copy_Array_Subtype_Attributes (Id, T);
4431 when Decimal_Fixed_Point_Kind =>
4432 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4433 Set_Digits_Value (Id, Digits_Value (T));
4434 Set_Delta_Value (Id, Delta_Value (T));
4435 Set_Scale_Value (Id, Scale_Value (T));
4436 Set_Small_Value (Id, Small_Value (T));
4437 Set_Scalar_Range (Id, Scalar_Range (T));
4438 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4439 Set_Is_Constrained (Id, Is_Constrained (T));
4440 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4441 Set_RM_Size (Id, RM_Size (T));
4443 when Enumeration_Kind =>
4444 Set_Ekind (Id, E_Enumeration_Subtype);
4445 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4446 Set_Scalar_Range (Id, Scalar_Range (T));
4447 Set_Is_Character_Type (Id, Is_Character_Type (T));
4448 Set_Is_Constrained (Id, Is_Constrained (T));
4449 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4450 Set_RM_Size (Id, RM_Size (T));
4452 when Ordinary_Fixed_Point_Kind =>
4453 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4454 Set_Scalar_Range (Id, Scalar_Range (T));
4455 Set_Small_Value (Id, Small_Value (T));
4456 Set_Delta_Value (Id, Delta_Value (T));
4457 Set_Is_Constrained (Id, Is_Constrained (T));
4458 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4459 Set_RM_Size (Id, RM_Size (T));
4461 when Float_Kind =>
4462 Set_Ekind (Id, E_Floating_Point_Subtype);
4463 Set_Scalar_Range (Id, Scalar_Range (T));
4464 Set_Digits_Value (Id, Digits_Value (T));
4465 Set_Is_Constrained (Id, Is_Constrained (T));
4467 when Signed_Integer_Kind =>
4468 Set_Ekind (Id, E_Signed_Integer_Subtype);
4469 Set_Scalar_Range (Id, Scalar_Range (T));
4470 Set_Is_Constrained (Id, Is_Constrained (T));
4471 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4472 Set_RM_Size (Id, RM_Size (T));
4474 when Modular_Integer_Kind =>
4475 Set_Ekind (Id, E_Modular_Integer_Subtype);
4476 Set_Scalar_Range (Id, Scalar_Range (T));
4477 Set_Is_Constrained (Id, Is_Constrained (T));
4478 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4479 Set_RM_Size (Id, RM_Size (T));
4481 when Class_Wide_Kind =>
4482 Set_Ekind (Id, E_Class_Wide_Subtype);
4483 Set_First_Entity (Id, First_Entity (T));
4484 Set_Last_Entity (Id, Last_Entity (T));
4485 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4486 Set_Cloned_Subtype (Id, T);
4487 Set_Is_Tagged_Type (Id, True);
4488 Set_Has_Unknown_Discriminants
4489 (Id, True);
4491 if Ekind (T) = E_Class_Wide_Subtype then
4492 Set_Equivalent_Type (Id, Equivalent_Type (T));
4493 end if;
4495 when E_Record_Type | E_Record_Subtype =>
4496 Set_Ekind (Id, E_Record_Subtype);
4498 if Ekind (T) = E_Record_Subtype
4499 and then Present (Cloned_Subtype (T))
4500 then
4501 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4502 else
4503 Set_Cloned_Subtype (Id, T);
4504 end if;
4506 Set_First_Entity (Id, First_Entity (T));
4507 Set_Last_Entity (Id, Last_Entity (T));
4508 Set_Has_Discriminants (Id, Has_Discriminants (T));
4509 Set_Is_Constrained (Id, Is_Constrained (T));
4510 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4511 Set_Has_Implicit_Dereference
4512 (Id, Has_Implicit_Dereference (T));
4513 Set_Has_Unknown_Discriminants
4514 (Id, Has_Unknown_Discriminants (T));
4516 if Has_Discriminants (T) then
4517 Set_Discriminant_Constraint
4518 (Id, Discriminant_Constraint (T));
4519 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4521 elsif Has_Unknown_Discriminants (Id) then
4522 Set_Discriminant_Constraint (Id, No_Elist);
4523 end if;
4525 if Is_Tagged_Type (T) then
4526 Set_Is_Tagged_Type (Id);
4527 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4528 Set_Direct_Primitive_Operations
4529 (Id, Direct_Primitive_Operations (T));
4530 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4532 if Is_Interface (T) then
4533 Set_Is_Interface (Id);
4534 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4535 end if;
4536 end if;
4538 when Private_Kind =>
4539 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4540 Set_Has_Discriminants (Id, Has_Discriminants (T));
4541 Set_Is_Constrained (Id, Is_Constrained (T));
4542 Set_First_Entity (Id, First_Entity (T));
4543 Set_Last_Entity (Id, Last_Entity (T));
4544 Set_Private_Dependents (Id, New_Elmt_List);
4545 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4546 Set_Has_Implicit_Dereference
4547 (Id, Has_Implicit_Dereference (T));
4548 Set_Has_Unknown_Discriminants
4549 (Id, Has_Unknown_Discriminants (T));
4550 Set_Known_To_Have_Preelab_Init
4551 (Id, Known_To_Have_Preelab_Init (T));
4553 if Is_Tagged_Type (T) then
4554 Set_Is_Tagged_Type (Id);
4555 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4556 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4557 Set_Direct_Primitive_Operations (Id,
4558 Direct_Primitive_Operations (T));
4559 end if;
4561 -- In general the attributes of the subtype of a private type
4562 -- are the attributes of the partial view of parent. However,
4563 -- the full view may be a discriminated type, and the subtype
4564 -- must share the discriminant constraint to generate correct
4565 -- calls to initialization procedures.
4567 if Has_Discriminants (T) then
4568 Set_Discriminant_Constraint
4569 (Id, Discriminant_Constraint (T));
4570 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4572 elsif Present (Full_View (T))
4573 and then Has_Discriminants (Full_View (T))
4574 then
4575 Set_Discriminant_Constraint
4576 (Id, Discriminant_Constraint (Full_View (T)));
4577 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4579 -- This would seem semantically correct, but apparently
4580 -- generates spurious errors about missing components ???
4582 -- Set_Has_Discriminants (Id);
4583 end if;
4585 Prepare_Private_Subtype_Completion (Id, N);
4587 -- If this is the subtype of a constrained private type with
4588 -- discriminants that has got a full view and we also have
4589 -- built a completion just above, show that the completion
4590 -- is a clone of the full view to the back-end.
4592 if Has_Discriminants (T)
4593 and then not Has_Unknown_Discriminants (T)
4594 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4595 and then Present (Full_View (T))
4596 and then Present (Full_View (Id))
4597 then
4598 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4599 end if;
4601 when Access_Kind =>
4602 Set_Ekind (Id, E_Access_Subtype);
4603 Set_Is_Constrained (Id, Is_Constrained (T));
4604 Set_Is_Access_Constant
4605 (Id, Is_Access_Constant (T));
4606 Set_Directly_Designated_Type
4607 (Id, Designated_Type (T));
4608 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4610 -- A Pure library_item must not contain the declaration of a
4611 -- named access type, except within a subprogram, generic
4612 -- subprogram, task unit, or protected unit, or if it has
4613 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4615 if Comes_From_Source (Id)
4616 and then In_Pure_Unit
4617 and then not In_Subprogram_Task_Protected_Unit
4618 and then not No_Pool_Assigned (Id)
4619 then
4620 Error_Msg_N
4621 ("named access types not allowed in pure unit", N);
4622 end if;
4624 when Concurrent_Kind =>
4625 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4626 Set_Corresponding_Record_Type (Id,
4627 Corresponding_Record_Type (T));
4628 Set_First_Entity (Id, First_Entity (T));
4629 Set_First_Private_Entity (Id, First_Private_Entity (T));
4630 Set_Has_Discriminants (Id, Has_Discriminants (T));
4631 Set_Is_Constrained (Id, Is_Constrained (T));
4632 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4633 Set_Last_Entity (Id, Last_Entity (T));
4635 if Has_Discriminants (T) then
4636 Set_Discriminant_Constraint (Id,
4637 Discriminant_Constraint (T));
4638 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4639 end if;
4641 when E_Incomplete_Type =>
4642 if Ada_Version >= Ada_2005 then
4644 -- In Ada 2005 an incomplete type can be explicitly tagged:
4645 -- propagate indication.
4647 Set_Ekind (Id, E_Incomplete_Subtype);
4648 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4649 Set_Private_Dependents (Id, New_Elmt_List);
4651 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4652 -- incomplete type visible through a limited with clause.
4654 if From_Limited_With (T)
4655 and then Present (Non_Limited_View (T))
4656 then
4657 Set_From_Limited_With (Id);
4658 Set_Non_Limited_View (Id, Non_Limited_View (T));
4660 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4661 -- to the private dependents of the original incomplete
4662 -- type for future transformation.
4664 else
4665 Append_Elmt (Id, Private_Dependents (T));
4666 end if;
4668 -- If the subtype name denotes an incomplete type an error
4669 -- was already reported by Process_Subtype.
4671 else
4672 Set_Etype (Id, Any_Type);
4673 end if;
4675 when others =>
4676 raise Program_Error;
4677 end case;
4678 end if;
4680 if Etype (Id) = Any_Type then
4681 goto Leave;
4682 end if;
4684 -- Some common processing on all types
4686 Set_Size_Info (Id, T);
4687 Set_First_Rep_Item (Id, First_Rep_Item (T));
4689 -- If the parent type is a generic actual, so is the subtype. This may
4690 -- happen in a nested instance. Why Comes_From_Source test???
4692 if not Comes_From_Source (N) then
4693 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4694 end if;
4696 T := Etype (Id);
4698 Set_Is_Immediately_Visible (Id, True);
4699 Set_Depends_On_Private (Id, Has_Private_Component (T));
4700 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4702 if Is_Interface (T) then
4703 Set_Is_Interface (Id);
4704 end if;
4706 if Present (Generic_Parent_Type (N))
4707 and then
4708 (Nkind
4709 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
4710 or else Nkind
4711 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
4712 /= N_Formal_Private_Type_Definition)
4713 then
4714 if Is_Tagged_Type (Id) then
4716 -- If this is a generic actual subtype for a synchronized type,
4717 -- the primitive operations are those of the corresponding record
4718 -- for which there is a separate subtype declaration.
4720 if Is_Concurrent_Type (Id) then
4721 null;
4722 elsif Is_Class_Wide_Type (Id) then
4723 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4724 else
4725 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4726 end if;
4728 elsif Scope (Etype (Id)) /= Standard_Standard then
4729 Derive_Subprograms (Generic_Parent_Type (N), Id);
4730 end if;
4731 end if;
4733 if Is_Private_Type (T)
4734 and then Present (Full_View (T))
4735 then
4736 Conditional_Delay (Id, Full_View (T));
4738 -- The subtypes of components or subcomponents of protected types
4739 -- do not need freeze nodes, which would otherwise appear in the
4740 -- wrong scope (before the freeze node for the protected type). The
4741 -- proper subtypes are those of the subcomponents of the corresponding
4742 -- record.
4744 elsif Ekind (Scope (Id)) /= E_Protected_Type
4745 and then Present (Scope (Scope (Id))) -- error defense
4746 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4747 then
4748 Conditional_Delay (Id, T);
4749 end if;
4751 -- Check that Constraint_Error is raised for a scalar subtype indication
4752 -- when the lower or upper bound of a non-null range lies outside the
4753 -- range of the type mark.
4755 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4756 if Is_Scalar_Type (Etype (Id))
4757 and then Scalar_Range (Id) /=
4758 Scalar_Range (Etype (Subtype_Mark
4759 (Subtype_Indication (N))))
4760 then
4761 Apply_Range_Check
4762 (Scalar_Range (Id),
4763 Etype (Subtype_Mark (Subtype_Indication (N))));
4765 -- In the array case, check compatibility for each index
4767 elsif Is_Array_Type (Etype (Id))
4768 and then Present (First_Index (Id))
4769 then
4770 -- This really should be a subprogram that finds the indications
4771 -- to check???
4773 declare
4774 Subt_Index : Node_Id := First_Index (Id);
4775 Target_Index : Node_Id :=
4776 First_Index (Etype
4777 (Subtype_Mark (Subtype_Indication (N))));
4778 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4780 begin
4781 while Present (Subt_Index) loop
4782 if ((Nkind (Subt_Index) = N_Identifier
4783 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4784 or else Nkind (Subt_Index) = N_Subtype_Indication)
4785 and then
4786 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4787 then
4788 declare
4789 Target_Typ : constant Entity_Id :=
4790 Etype (Target_Index);
4791 begin
4792 R_Checks :=
4793 Get_Range_Checks
4794 (Scalar_Range (Etype (Subt_Index)),
4795 Target_Typ,
4796 Etype (Subt_Index),
4797 Defining_Identifier (N));
4799 -- Reset Has_Dynamic_Range_Check on the subtype to
4800 -- prevent elision of the index check due to a dynamic
4801 -- check generated for a preceding index (needed since
4802 -- Insert_Range_Checks tries to avoid generating
4803 -- redundant checks on a given declaration).
4805 Set_Has_Dynamic_Range_Check (N, False);
4807 Insert_Range_Checks
4808 (R_Checks,
4810 Target_Typ,
4811 Sloc (Defining_Identifier (N)));
4813 -- Record whether this index involved a dynamic check
4815 Has_Dyn_Chk :=
4816 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4817 end;
4818 end if;
4820 Next_Index (Subt_Index);
4821 Next_Index (Target_Index);
4822 end loop;
4824 -- Finally, mark whether the subtype involves dynamic checks
4826 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4827 end;
4828 end if;
4829 end if;
4831 -- Make sure that generic actual types are properly frozen. The subtype
4832 -- is marked as a generic actual type when the enclosing instance is
4833 -- analyzed, so here we identify the subtype from the tree structure.
4835 if Expander_Active
4836 and then Is_Generic_Actual_Type (Id)
4837 and then In_Instance
4838 and then not Comes_From_Source (N)
4839 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4840 and then Is_Frozen (T)
4841 then
4842 Freeze_Before (N, Id);
4843 end if;
4845 Set_Optimize_Alignment_Flags (Id);
4846 Check_Eliminated (Id);
4848 <<Leave>>
4849 if Has_Aspects (N) then
4850 Analyze_Aspect_Specifications (N, Id);
4851 end if;
4853 Analyze_Dimension (N);
4854 end Analyze_Subtype_Declaration;
4856 --------------------------------
4857 -- Analyze_Subtype_Indication --
4858 --------------------------------
4860 procedure Analyze_Subtype_Indication (N : Node_Id) is
4861 T : constant Entity_Id := Subtype_Mark (N);
4862 R : constant Node_Id := Range_Expression (Constraint (N));
4864 begin
4865 Analyze (T);
4867 if R /= Error then
4868 Analyze (R);
4869 Set_Etype (N, Etype (R));
4870 Resolve (R, Entity (T));
4871 else
4872 Set_Error_Posted (R);
4873 Set_Error_Posted (T);
4874 end if;
4875 end Analyze_Subtype_Indication;
4877 --------------------------
4878 -- Analyze_Variant_Part --
4879 --------------------------
4881 procedure Analyze_Variant_Part (N : Node_Id) is
4882 Discr_Name : Node_Id;
4883 Discr_Type : Entity_Id;
4885 procedure Process_Variant (A : Node_Id);
4886 -- Analyze declarations for a single variant
4888 package Analyze_Variant_Choices is
4889 new Generic_Analyze_Choices (Process_Variant);
4890 use Analyze_Variant_Choices;
4892 ---------------------
4893 -- Process_Variant --
4894 ---------------------
4896 procedure Process_Variant (A : Node_Id) is
4897 CL : constant Node_Id := Component_List (A);
4898 begin
4899 if not Null_Present (CL) then
4900 Analyze_Declarations (Component_Items (CL));
4902 if Present (Variant_Part (CL)) then
4903 Analyze (Variant_Part (CL));
4904 end if;
4905 end if;
4906 end Process_Variant;
4908 -- Start of processing for Analyze_Variant_Part
4910 begin
4911 Discr_Name := Name (N);
4912 Analyze (Discr_Name);
4914 -- If Discr_Name bad, get out (prevent cascaded errors)
4916 if Etype (Discr_Name) = Any_Type then
4917 return;
4918 end if;
4920 -- Check invalid discriminant in variant part
4922 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4923 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4924 end if;
4926 Discr_Type := Etype (Entity (Discr_Name));
4928 if not Is_Discrete_Type (Discr_Type) then
4929 Error_Msg_N
4930 ("discriminant in a variant part must be of a discrete type",
4931 Name (N));
4932 return;
4933 end if;
4935 -- Now analyze the choices, which also analyzes the declarations that
4936 -- are associated with each choice.
4938 Analyze_Choices (Variants (N), Discr_Type);
4940 -- Note: we used to instantiate and call Check_Choices here to check
4941 -- that the choices covered the discriminant, but it's too early to do
4942 -- that because of statically predicated subtypes, whose analysis may
4943 -- be deferred to their freeze point which may be as late as the freeze
4944 -- point of the containing record. So this call is now to be found in
4945 -- Freeze_Record_Declaration.
4947 end Analyze_Variant_Part;
4949 ----------------------------
4950 -- Array_Type_Declaration --
4951 ----------------------------
4953 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
4954 Component_Def : constant Node_Id := Component_Definition (Def);
4955 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
4956 Element_Type : Entity_Id;
4957 Implicit_Base : Entity_Id;
4958 Index : Node_Id;
4959 Related_Id : Entity_Id := Empty;
4960 Nb_Index : Nat;
4961 P : constant Node_Id := Parent (Def);
4962 Priv : Entity_Id;
4964 begin
4965 if Nkind (Def) = N_Constrained_Array_Definition then
4966 Index := First (Discrete_Subtype_Definitions (Def));
4967 else
4968 Index := First (Subtype_Marks (Def));
4969 end if;
4971 -- Find proper names for the implicit types which may be public. In case
4972 -- of anonymous arrays we use the name of the first object of that type
4973 -- as prefix.
4975 if No (T) then
4976 Related_Id := Defining_Identifier (P);
4977 else
4978 Related_Id := T;
4979 end if;
4981 Nb_Index := 1;
4982 while Present (Index) loop
4983 Analyze (Index);
4985 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
4986 Check_SPARK_Restriction ("subtype mark required", Index);
4987 end if;
4989 -- Add a subtype declaration for each index of private array type
4990 -- declaration whose etype is also private. For example:
4992 -- package Pkg is
4993 -- type Index is private;
4994 -- private
4995 -- type Table is array (Index) of ...
4996 -- end;
4998 -- This is currently required by the expander for the internally
4999 -- generated equality subprogram of records with variant parts in
5000 -- which the etype of some component is such private type.
5002 if Ekind (Current_Scope) = E_Package
5003 and then In_Private_Part (Current_Scope)
5004 and then Has_Private_Declaration (Etype (Index))
5005 then
5006 declare
5007 Loc : constant Source_Ptr := Sloc (Def);
5008 New_E : Entity_Id;
5009 Decl : Entity_Id;
5011 begin
5012 New_E := Make_Temporary (Loc, 'T');
5013 Set_Is_Internal (New_E);
5015 Decl :=
5016 Make_Subtype_Declaration (Loc,
5017 Defining_Identifier => New_E,
5018 Subtype_Indication =>
5019 New_Occurrence_Of (Etype (Index), Loc));
5021 Insert_Before (Parent (Def), Decl);
5022 Analyze (Decl);
5023 Set_Etype (Index, New_E);
5025 -- If the index is a range the Entity attribute is not
5026 -- available. Example:
5028 -- package Pkg is
5029 -- type T is private;
5030 -- private
5031 -- type T is new Natural;
5032 -- Table : array (T(1) .. T(10)) of Boolean;
5033 -- end Pkg;
5035 if Nkind (Index) /= N_Range then
5036 Set_Entity (Index, New_E);
5037 end if;
5038 end;
5039 end if;
5041 Make_Index (Index, P, Related_Id, Nb_Index);
5043 -- Check error of subtype with predicate for index type
5045 Bad_Predicated_Subtype_Use
5046 ("subtype& has predicate, not allowed as index subtype",
5047 Index, Etype (Index));
5049 -- Move to next index
5051 Next_Index (Index);
5052 Nb_Index := Nb_Index + 1;
5053 end loop;
5055 -- Process subtype indication if one is present
5057 if Present (Component_Typ) then
5058 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5060 Set_Etype (Component_Typ, Element_Type);
5062 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5063 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
5064 end if;
5066 -- Ada 2005 (AI-230): Access Definition case
5068 else pragma Assert (Present (Access_Definition (Component_Def)));
5070 -- Indicate that the anonymous access type is created by the
5071 -- array type declaration.
5073 Element_Type := Access_Definition
5074 (Related_Nod => P,
5075 N => Access_Definition (Component_Def));
5076 Set_Is_Local_Anonymous_Access (Element_Type);
5078 -- Propagate the parent. This field is needed if we have to generate
5079 -- the master_id associated with an anonymous access to task type
5080 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5082 Set_Parent (Element_Type, Parent (T));
5084 -- Ada 2005 (AI-230): In case of components that are anonymous access
5085 -- types the level of accessibility depends on the enclosing type
5086 -- declaration
5088 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5090 -- Ada 2005 (AI-254)
5092 declare
5093 CD : constant Node_Id :=
5094 Access_To_Subprogram_Definition
5095 (Access_Definition (Component_Def));
5096 begin
5097 if Present (CD) and then Protected_Present (CD) then
5098 Element_Type :=
5099 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5100 end if;
5101 end;
5102 end if;
5104 -- Constrained array case
5106 if No (T) then
5107 T := Create_Itype (E_Void, P, Related_Id, 'T');
5108 end if;
5110 if Nkind (Def) = N_Constrained_Array_Definition then
5112 -- Establish Implicit_Base as unconstrained base type
5114 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5116 Set_Etype (Implicit_Base, Implicit_Base);
5117 Set_Scope (Implicit_Base, Current_Scope);
5118 Set_Has_Delayed_Freeze (Implicit_Base);
5120 -- The constrained array type is a subtype of the unconstrained one
5122 Set_Ekind (T, E_Array_Subtype);
5123 Init_Size_Align (T);
5124 Set_Etype (T, Implicit_Base);
5125 Set_Scope (T, Current_Scope);
5126 Set_Is_Constrained (T, True);
5127 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5128 Set_Has_Delayed_Freeze (T);
5130 -- Complete setup of implicit base type
5132 Set_First_Index (Implicit_Base, First_Index (T));
5133 Set_Component_Type (Implicit_Base, Element_Type);
5134 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5135 Set_Component_Size (Implicit_Base, Uint_0);
5136 Set_Packed_Array_Type (Implicit_Base, Empty);
5137 Set_Has_Controlled_Component
5138 (Implicit_Base, Has_Controlled_Component
5139 (Element_Type)
5140 or else Is_Controlled
5141 (Element_Type));
5142 Set_Finalize_Storage_Only
5143 (Implicit_Base, Finalize_Storage_Only
5144 (Element_Type));
5146 -- Unconstrained array case
5148 else
5149 Set_Ekind (T, E_Array_Type);
5150 Init_Size_Align (T);
5151 Set_Etype (T, T);
5152 Set_Scope (T, Current_Scope);
5153 Set_Component_Size (T, Uint_0);
5154 Set_Is_Constrained (T, False);
5155 Set_First_Index (T, First (Subtype_Marks (Def)));
5156 Set_Has_Delayed_Freeze (T, True);
5157 Set_Has_Task (T, Has_Task (Element_Type));
5158 Set_Has_Controlled_Component (T, Has_Controlled_Component
5159 (Element_Type)
5160 or else
5161 Is_Controlled (Element_Type));
5162 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5163 (Element_Type));
5164 end if;
5166 -- Common attributes for both cases
5168 Set_Component_Type (Base_Type (T), Element_Type);
5169 Set_Packed_Array_Type (T, Empty);
5171 if Aliased_Present (Component_Definition (Def)) then
5172 Check_SPARK_Restriction
5173 ("aliased is not allowed", Component_Definition (Def));
5174 Set_Has_Aliased_Components (Etype (T));
5175 end if;
5177 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5178 -- array type to ensure that objects of this type are initialized.
5180 if Ada_Version >= Ada_2005
5181 and then Can_Never_Be_Null (Element_Type)
5182 then
5183 Set_Can_Never_Be_Null (T);
5185 if Null_Exclusion_Present (Component_Definition (Def))
5187 -- No need to check itypes because in their case this check was
5188 -- done at their point of creation
5190 and then not Is_Itype (Element_Type)
5191 then
5192 Error_Msg_N
5193 ("`NOT NULL` not allowed (null already excluded)",
5194 Subtype_Indication (Component_Definition (Def)));
5195 end if;
5196 end if;
5198 Priv := Private_Component (Element_Type);
5200 if Present (Priv) then
5202 -- Check for circular definitions
5204 if Priv = Any_Type then
5205 Set_Component_Type (Etype (T), Any_Type);
5207 -- There is a gap in the visibility of operations on the composite
5208 -- type only if the component type is defined in a different scope.
5210 elsif Scope (Priv) = Current_Scope then
5211 null;
5213 elsif Is_Limited_Type (Priv) then
5214 Set_Is_Limited_Composite (Etype (T));
5215 Set_Is_Limited_Composite (T);
5216 else
5217 Set_Is_Private_Composite (Etype (T));
5218 Set_Is_Private_Composite (T);
5219 end if;
5220 end if;
5222 -- A syntax error in the declaration itself may lead to an empty index
5223 -- list, in which case do a minimal patch.
5225 if No (First_Index (T)) then
5226 Error_Msg_N ("missing index definition in array type declaration", T);
5228 declare
5229 Indexes : constant List_Id :=
5230 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5231 begin
5232 Set_Discrete_Subtype_Definitions (Def, Indexes);
5233 Set_First_Index (T, First (Indexes));
5234 return;
5235 end;
5236 end if;
5238 -- Create a concatenation operator for the new type. Internal array
5239 -- types created for packed entities do not need such, they are
5240 -- compatible with the user-defined type.
5242 if Number_Dimensions (T) = 1
5243 and then not Is_Packed_Array_Type (T)
5244 then
5245 New_Concatenation_Op (T);
5246 end if;
5248 -- In the case of an unconstrained array the parser has already verified
5249 -- that all the indexes are unconstrained but we still need to make sure
5250 -- that the element type is constrained.
5252 if Is_Indefinite_Subtype (Element_Type) then
5253 Error_Msg_N
5254 ("unconstrained element type in array declaration",
5255 Subtype_Indication (Component_Def));
5257 elsif Is_Abstract_Type (Element_Type) then
5258 Error_Msg_N
5259 ("the type of a component cannot be abstract",
5260 Subtype_Indication (Component_Def));
5261 end if;
5263 -- There may be an invariant declared for the component type, but
5264 -- the construction of the component invariant checking procedure
5265 -- takes place during expansion.
5266 end Array_Type_Declaration;
5268 ------------------------------------------------------
5269 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5270 ------------------------------------------------------
5272 function Replace_Anonymous_Access_To_Protected_Subprogram
5273 (N : Node_Id) return Entity_Id
5275 Loc : constant Source_Ptr := Sloc (N);
5277 Curr_Scope : constant Scope_Stack_Entry :=
5278 Scope_Stack.Table (Scope_Stack.Last);
5280 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5282 Acc : Node_Id;
5283 -- Access definition in declaration
5285 Comp : Node_Id;
5286 -- Object definition or formal definition with an access definition
5288 Decl : Node_Id;
5289 -- Declaration of anonymous access to subprogram type
5291 Spec : Node_Id;
5292 -- Original specification in access to subprogram
5294 P : Node_Id;
5296 begin
5297 Set_Is_Internal (Anon);
5299 case Nkind (N) is
5300 when N_Component_Declaration |
5301 N_Unconstrained_Array_Definition |
5302 N_Constrained_Array_Definition =>
5303 Comp := Component_Definition (N);
5304 Acc := Access_Definition (Comp);
5306 when N_Discriminant_Specification =>
5307 Comp := Discriminant_Type (N);
5308 Acc := Comp;
5310 when N_Parameter_Specification =>
5311 Comp := Parameter_Type (N);
5312 Acc := Comp;
5314 when N_Access_Function_Definition =>
5315 Comp := Result_Definition (N);
5316 Acc := Comp;
5318 when N_Object_Declaration =>
5319 Comp := Object_Definition (N);
5320 Acc := Comp;
5322 when N_Function_Specification =>
5323 Comp := Result_Definition (N);
5324 Acc := Comp;
5326 when others =>
5327 raise Program_Error;
5328 end case;
5330 Spec := Access_To_Subprogram_Definition (Acc);
5332 Decl :=
5333 Make_Full_Type_Declaration (Loc,
5334 Defining_Identifier => Anon,
5335 Type_Definition => Copy_Separate_Tree (Spec));
5337 Mark_Rewrite_Insertion (Decl);
5339 -- In ASIS mode, analyze the profile on the original node, because
5340 -- the separate copy does not provide enough links to recover the
5341 -- original tree. Analysis is limited to type annotations, within
5342 -- a temporary scope that serves as an anonymous subprogram to collect
5343 -- otherwise useless temporaries and itypes.
5345 if ASIS_Mode then
5346 declare
5347 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5349 begin
5350 if Nkind (Spec) = N_Access_Function_Definition then
5351 Set_Ekind (Typ, E_Function);
5352 else
5353 Set_Ekind (Typ, E_Procedure);
5354 end if;
5356 Set_Parent (Typ, N);
5357 Set_Scope (Typ, Current_Scope);
5358 Push_Scope (Typ);
5360 Process_Formals (Parameter_Specifications (Spec), Spec);
5362 if Nkind (Spec) = N_Access_Function_Definition then
5363 declare
5364 Def : constant Node_Id := Result_Definition (Spec);
5366 begin
5367 -- The result might itself be an anonymous access type, so
5368 -- have to recurse.
5370 if Nkind (Def) = N_Access_Definition then
5371 if Present (Access_To_Subprogram_Definition (Def)) then
5372 Set_Etype
5373 (Def,
5374 Replace_Anonymous_Access_To_Protected_Subprogram
5375 (Spec));
5376 else
5377 Find_Type (Subtype_Mark (Def));
5378 end if;
5380 else
5381 Find_Type (Def);
5382 end if;
5383 end;
5384 end if;
5386 End_Scope;
5387 end;
5388 end if;
5390 -- Insert the new declaration in the nearest enclosing scope. If the
5391 -- node is a body and N is its return type, the declaration belongs in
5392 -- the enclosing scope.
5394 P := Parent (N);
5396 if Nkind (P) = N_Subprogram_Body
5397 and then Nkind (N) = N_Function_Specification
5398 then
5399 P := Parent (P);
5400 end if;
5402 while Present (P) and then not Has_Declarations (P) loop
5403 P := Parent (P);
5404 end loop;
5406 pragma Assert (Present (P));
5408 if Nkind (P) = N_Package_Specification then
5409 Prepend (Decl, Visible_Declarations (P));
5410 else
5411 Prepend (Decl, Declarations (P));
5412 end if;
5414 -- Replace the anonymous type with an occurrence of the new declaration.
5415 -- In all cases the rewritten node does not have the null-exclusion
5416 -- attribute because (if present) it was already inherited by the
5417 -- anonymous entity (Anon). Thus, in case of components we do not
5418 -- inherit this attribute.
5420 if Nkind (N) = N_Parameter_Specification then
5421 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5422 Set_Etype (Defining_Identifier (N), Anon);
5423 Set_Null_Exclusion_Present (N, False);
5425 elsif Nkind (N) = N_Object_Declaration then
5426 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5427 Set_Etype (Defining_Identifier (N), Anon);
5429 elsif Nkind (N) = N_Access_Function_Definition then
5430 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5432 elsif Nkind (N) = N_Function_Specification then
5433 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5434 Set_Etype (Defining_Unit_Name (N), Anon);
5436 else
5437 Rewrite (Comp,
5438 Make_Component_Definition (Loc,
5439 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5440 end if;
5442 Mark_Rewrite_Insertion (Comp);
5444 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5445 Analyze (Decl);
5447 else
5448 -- Temporarily remove the current scope (record or subprogram) from
5449 -- the stack to add the new declarations to the enclosing scope.
5451 Scope_Stack.Decrement_Last;
5452 Analyze (Decl);
5453 Set_Is_Itype (Anon);
5454 Scope_Stack.Append (Curr_Scope);
5455 end if;
5457 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5458 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5459 return Anon;
5460 end Replace_Anonymous_Access_To_Protected_Subprogram;
5462 -------------------------------
5463 -- Build_Derived_Access_Type --
5464 -------------------------------
5466 procedure Build_Derived_Access_Type
5467 (N : Node_Id;
5468 Parent_Type : Entity_Id;
5469 Derived_Type : Entity_Id)
5471 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5473 Desig_Type : Entity_Id;
5474 Discr : Entity_Id;
5475 Discr_Con_Elist : Elist_Id;
5476 Discr_Con_El : Elmt_Id;
5477 Subt : Entity_Id;
5479 begin
5480 -- Set the designated type so it is available in case this is an access
5481 -- to a self-referential type, e.g. a standard list type with a next
5482 -- pointer. Will be reset after subtype is built.
5484 Set_Directly_Designated_Type
5485 (Derived_Type, Designated_Type (Parent_Type));
5487 Subt := Process_Subtype (S, N);
5489 if Nkind (S) /= N_Subtype_Indication
5490 and then Subt /= Base_Type (Subt)
5491 then
5492 Set_Ekind (Derived_Type, E_Access_Subtype);
5493 end if;
5495 if Ekind (Derived_Type) = E_Access_Subtype then
5496 declare
5497 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5498 Ibase : constant Entity_Id :=
5499 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5500 Svg_Chars : constant Name_Id := Chars (Ibase);
5501 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5503 begin
5504 Copy_Node (Pbase, Ibase);
5506 Set_Chars (Ibase, Svg_Chars);
5507 Set_Next_Entity (Ibase, Svg_Next_E);
5508 Set_Sloc (Ibase, Sloc (Derived_Type));
5509 Set_Scope (Ibase, Scope (Derived_Type));
5510 Set_Freeze_Node (Ibase, Empty);
5511 Set_Is_Frozen (Ibase, False);
5512 Set_Comes_From_Source (Ibase, False);
5513 Set_Is_First_Subtype (Ibase, False);
5515 Set_Etype (Ibase, Pbase);
5516 Set_Etype (Derived_Type, Ibase);
5517 end;
5518 end if;
5520 Set_Directly_Designated_Type
5521 (Derived_Type, Designated_Type (Subt));
5523 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5524 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5525 Set_Size_Info (Derived_Type, Parent_Type);
5526 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5527 Set_Depends_On_Private (Derived_Type,
5528 Has_Private_Component (Derived_Type));
5529 Conditional_Delay (Derived_Type, Subt);
5531 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5532 -- that it is not redundant.
5534 if Null_Exclusion_Present (Type_Definition (N)) then
5535 Set_Can_Never_Be_Null (Derived_Type);
5537 if Can_Never_Be_Null (Parent_Type)
5538 and then False
5539 then
5540 Error_Msg_NE
5541 ("`NOT NULL` not allowed (& already excludes null)",
5542 N, Parent_Type);
5543 end if;
5545 elsif Can_Never_Be_Null (Parent_Type) then
5546 Set_Can_Never_Be_Null (Derived_Type);
5547 end if;
5549 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5550 -- the root type for this information.
5552 -- Apply range checks to discriminants for derived record case
5553 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5555 Desig_Type := Designated_Type (Derived_Type);
5556 if Is_Composite_Type (Desig_Type)
5557 and then (not Is_Array_Type (Desig_Type))
5558 and then Has_Discriminants (Desig_Type)
5559 and then Base_Type (Desig_Type) /= Desig_Type
5560 then
5561 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5562 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5564 Discr := First_Discriminant (Base_Type (Desig_Type));
5565 while Present (Discr_Con_El) loop
5566 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5567 Next_Elmt (Discr_Con_El);
5568 Next_Discriminant (Discr);
5569 end loop;
5570 end if;
5571 end Build_Derived_Access_Type;
5573 ------------------------------
5574 -- Build_Derived_Array_Type --
5575 ------------------------------
5577 procedure Build_Derived_Array_Type
5578 (N : Node_Id;
5579 Parent_Type : Entity_Id;
5580 Derived_Type : Entity_Id)
5582 Loc : constant Source_Ptr := Sloc (N);
5583 Tdef : constant Node_Id := Type_Definition (N);
5584 Indic : constant Node_Id := Subtype_Indication (Tdef);
5585 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5586 Implicit_Base : Entity_Id;
5587 New_Indic : Node_Id;
5589 procedure Make_Implicit_Base;
5590 -- If the parent subtype is constrained, the derived type is a subtype
5591 -- of an implicit base type derived from the parent base.
5593 ------------------------
5594 -- Make_Implicit_Base --
5595 ------------------------
5597 procedure Make_Implicit_Base is
5598 begin
5599 Implicit_Base :=
5600 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5602 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5603 Set_Etype (Implicit_Base, Parent_Base);
5605 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5606 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5608 Set_Has_Delayed_Freeze (Implicit_Base, True);
5609 end Make_Implicit_Base;
5611 -- Start of processing for Build_Derived_Array_Type
5613 begin
5614 if not Is_Constrained (Parent_Type) then
5615 if Nkind (Indic) /= N_Subtype_Indication then
5616 Set_Ekind (Derived_Type, E_Array_Type);
5618 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5619 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5621 Set_Has_Delayed_Freeze (Derived_Type, True);
5623 else
5624 Make_Implicit_Base;
5625 Set_Etype (Derived_Type, Implicit_Base);
5627 New_Indic :=
5628 Make_Subtype_Declaration (Loc,
5629 Defining_Identifier => Derived_Type,
5630 Subtype_Indication =>
5631 Make_Subtype_Indication (Loc,
5632 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
5633 Constraint => Constraint (Indic)));
5635 Rewrite (N, New_Indic);
5636 Analyze (N);
5637 end if;
5639 else
5640 if Nkind (Indic) /= N_Subtype_Indication then
5641 Make_Implicit_Base;
5643 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5644 Set_Etype (Derived_Type, Implicit_Base);
5645 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5647 else
5648 Error_Msg_N ("illegal constraint on constrained type", Indic);
5649 end if;
5650 end if;
5652 -- If parent type is not a derived type itself, and is declared in
5653 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5654 -- the new type's concatenation operator since Derive_Subprograms
5655 -- will not inherit the parent's operator. If the parent type is
5656 -- unconstrained, the operator is of the unconstrained base type.
5658 if Number_Dimensions (Parent_Type) = 1
5659 and then not Is_Limited_Type (Parent_Type)
5660 and then not Is_Derived_Type (Parent_Type)
5661 and then not Is_Package_Or_Generic_Package
5662 (Scope (Base_Type (Parent_Type)))
5663 then
5664 if not Is_Constrained (Parent_Type)
5665 and then Is_Constrained (Derived_Type)
5666 then
5667 New_Concatenation_Op (Implicit_Base);
5668 else
5669 New_Concatenation_Op (Derived_Type);
5670 end if;
5671 end if;
5672 end Build_Derived_Array_Type;
5674 -----------------------------------
5675 -- Build_Derived_Concurrent_Type --
5676 -----------------------------------
5678 procedure Build_Derived_Concurrent_Type
5679 (N : Node_Id;
5680 Parent_Type : Entity_Id;
5681 Derived_Type : Entity_Id)
5683 Loc : constant Source_Ptr := Sloc (N);
5685 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5686 Corr_Decl : Node_Id;
5687 Corr_Decl_Needed : Boolean;
5688 -- If the derived type has fewer discriminants than its parent, the
5689 -- corresponding record is also a derived type, in order to account for
5690 -- the bound discriminants. We create a full type declaration for it in
5691 -- this case.
5693 Constraint_Present : constant Boolean :=
5694 Nkind (Subtype_Indication (Type_Definition (N))) =
5695 N_Subtype_Indication;
5697 D_Constraint : Node_Id;
5698 New_Constraint : Elist_Id;
5699 Old_Disc : Entity_Id;
5700 New_Disc : Entity_Id;
5701 New_N : Node_Id;
5703 begin
5704 Set_Stored_Constraint (Derived_Type, No_Elist);
5705 Corr_Decl_Needed := False;
5706 Old_Disc := Empty;
5708 if Present (Discriminant_Specifications (N))
5709 and then Constraint_Present
5710 then
5711 Old_Disc := First_Discriminant (Parent_Type);
5712 New_Disc := First (Discriminant_Specifications (N));
5713 while Present (New_Disc) and then Present (Old_Disc) loop
5714 Next_Discriminant (Old_Disc);
5715 Next (New_Disc);
5716 end loop;
5717 end if;
5719 if Present (Old_Disc) and then Expander_Active then
5721 -- The new type has fewer discriminants, so we need to create a new
5722 -- corresponding record, which is derived from the corresponding
5723 -- record of the parent, and has a stored constraint that captures
5724 -- the values of the discriminant constraints. The corresponding
5725 -- record is needed only if expander is active and code generation is
5726 -- enabled.
5728 -- The type declaration for the derived corresponding record has the
5729 -- same discriminant part and constraints as the current declaration.
5730 -- Copy the unanalyzed tree to build declaration.
5732 Corr_Decl_Needed := True;
5733 New_N := Copy_Separate_Tree (N);
5735 Corr_Decl :=
5736 Make_Full_Type_Declaration (Loc,
5737 Defining_Identifier => Corr_Record,
5738 Discriminant_Specifications =>
5739 Discriminant_Specifications (New_N),
5740 Type_Definition =>
5741 Make_Derived_Type_Definition (Loc,
5742 Subtype_Indication =>
5743 Make_Subtype_Indication (Loc,
5744 Subtype_Mark =>
5745 New_Occurrence_Of
5746 (Corresponding_Record_Type (Parent_Type), Loc),
5747 Constraint =>
5748 Constraint
5749 (Subtype_Indication (Type_Definition (New_N))))));
5750 end if;
5752 -- Copy Storage_Size and Relative_Deadline variables if task case
5754 if Is_Task_Type (Parent_Type) then
5755 Set_Storage_Size_Variable (Derived_Type,
5756 Storage_Size_Variable (Parent_Type));
5757 Set_Relative_Deadline_Variable (Derived_Type,
5758 Relative_Deadline_Variable (Parent_Type));
5759 end if;
5761 if Present (Discriminant_Specifications (N)) then
5762 Push_Scope (Derived_Type);
5763 Check_Or_Process_Discriminants (N, Derived_Type);
5765 if Constraint_Present then
5766 New_Constraint :=
5767 Expand_To_Stored_Constraint
5768 (Parent_Type,
5769 Build_Discriminant_Constraints
5770 (Parent_Type,
5771 Subtype_Indication (Type_Definition (N)), True));
5772 end if;
5774 End_Scope;
5776 elsif Constraint_Present then
5778 -- Build constrained subtype, copying the constraint, and derive
5779 -- from it to create a derived constrained type.
5781 declare
5782 Loc : constant Source_Ptr := Sloc (N);
5783 Anon : constant Entity_Id :=
5784 Make_Defining_Identifier (Loc,
5785 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5786 Decl : Node_Id;
5788 begin
5789 Decl :=
5790 Make_Subtype_Declaration (Loc,
5791 Defining_Identifier => Anon,
5792 Subtype_Indication =>
5793 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5794 Insert_Before (N, Decl);
5795 Analyze (Decl);
5797 Rewrite (Subtype_Indication (Type_Definition (N)),
5798 New_Occurrence_Of (Anon, Loc));
5799 Set_Analyzed (Derived_Type, False);
5800 Analyze (N);
5801 return;
5802 end;
5803 end if;
5805 -- By default, operations and private data are inherited from parent.
5806 -- However, in the presence of bound discriminants, a new corresponding
5807 -- record will be created, see below.
5809 Set_Has_Discriminants
5810 (Derived_Type, Has_Discriminants (Parent_Type));
5811 Set_Corresponding_Record_Type
5812 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5814 -- Is_Constrained is set according the parent subtype, but is set to
5815 -- False if the derived type is declared with new discriminants.
5817 Set_Is_Constrained
5818 (Derived_Type,
5819 (Is_Constrained (Parent_Type) or else Constraint_Present)
5820 and then not Present (Discriminant_Specifications (N)));
5822 if Constraint_Present then
5823 if not Has_Discriminants (Parent_Type) then
5824 Error_Msg_N ("untagged parent must have discriminants", N);
5826 elsif Present (Discriminant_Specifications (N)) then
5828 -- Verify that new discriminants are used to constrain old ones
5830 D_Constraint :=
5831 First
5832 (Constraints
5833 (Constraint (Subtype_Indication (Type_Definition (N)))));
5835 Old_Disc := First_Discriminant (Parent_Type);
5837 while Present (D_Constraint) loop
5838 if Nkind (D_Constraint) /= N_Discriminant_Association then
5840 -- Positional constraint. If it is a reference to a new
5841 -- discriminant, it constrains the corresponding old one.
5843 if Nkind (D_Constraint) = N_Identifier then
5844 New_Disc := First_Discriminant (Derived_Type);
5845 while Present (New_Disc) loop
5846 exit when Chars (New_Disc) = Chars (D_Constraint);
5847 Next_Discriminant (New_Disc);
5848 end loop;
5850 if Present (New_Disc) then
5851 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5852 end if;
5853 end if;
5855 Next_Discriminant (Old_Disc);
5857 -- if this is a named constraint, search by name for the old
5858 -- discriminants constrained by the new one.
5860 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5862 -- Find new discriminant with that name
5864 New_Disc := First_Discriminant (Derived_Type);
5865 while Present (New_Disc) loop
5866 exit when
5867 Chars (New_Disc) = Chars (Expression (D_Constraint));
5868 Next_Discriminant (New_Disc);
5869 end loop;
5871 if Present (New_Disc) then
5873 -- Verify that new discriminant renames some discriminant
5874 -- of the parent type, and associate the new discriminant
5875 -- with one or more old ones that it renames.
5877 declare
5878 Selector : Node_Id;
5880 begin
5881 Selector := First (Selector_Names (D_Constraint));
5882 while Present (Selector) loop
5883 Old_Disc := First_Discriminant (Parent_Type);
5884 while Present (Old_Disc) loop
5885 exit when Chars (Old_Disc) = Chars (Selector);
5886 Next_Discriminant (Old_Disc);
5887 end loop;
5889 if Present (Old_Disc) then
5890 Set_Corresponding_Discriminant
5891 (New_Disc, Old_Disc);
5892 end if;
5894 Next (Selector);
5895 end loop;
5896 end;
5897 end if;
5898 end if;
5900 Next (D_Constraint);
5901 end loop;
5903 New_Disc := First_Discriminant (Derived_Type);
5904 while Present (New_Disc) loop
5905 if No (Corresponding_Discriminant (New_Disc)) then
5906 Error_Msg_NE
5907 ("new discriminant& must constrain old one", N, New_Disc);
5909 elsif not
5910 Subtypes_Statically_Compatible
5911 (Etype (New_Disc),
5912 Etype (Corresponding_Discriminant (New_Disc)))
5913 then
5914 Error_Msg_NE
5915 ("& not statically compatible with parent discriminant",
5916 N, New_Disc);
5917 end if;
5919 Next_Discriminant (New_Disc);
5920 end loop;
5921 end if;
5923 elsif Present (Discriminant_Specifications (N)) then
5924 Error_Msg_N
5925 ("missing discriminant constraint in untagged derivation", N);
5926 end if;
5928 -- The entity chain of the derived type includes the new discriminants
5929 -- but shares operations with the parent.
5931 if Present (Discriminant_Specifications (N)) then
5932 Old_Disc := First_Discriminant (Parent_Type);
5933 while Present (Old_Disc) loop
5934 if No (Next_Entity (Old_Disc))
5935 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
5936 then
5937 Set_Next_Entity
5938 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
5939 exit;
5940 end if;
5942 Next_Discriminant (Old_Disc);
5943 end loop;
5945 else
5946 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
5947 if Has_Discriminants (Parent_Type) then
5948 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5949 Set_Discriminant_Constraint (
5950 Derived_Type, Discriminant_Constraint (Parent_Type));
5951 end if;
5952 end if;
5954 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
5956 Set_Has_Completion (Derived_Type);
5958 if Corr_Decl_Needed then
5959 Set_Stored_Constraint (Derived_Type, New_Constraint);
5960 Insert_After (N, Corr_Decl);
5961 Analyze (Corr_Decl);
5962 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
5963 end if;
5964 end Build_Derived_Concurrent_Type;
5966 ------------------------------------
5967 -- Build_Derived_Enumeration_Type --
5968 ------------------------------------
5970 procedure Build_Derived_Enumeration_Type
5971 (N : Node_Id;
5972 Parent_Type : Entity_Id;
5973 Derived_Type : Entity_Id)
5975 Loc : constant Source_Ptr := Sloc (N);
5976 Def : constant Node_Id := Type_Definition (N);
5977 Indic : constant Node_Id := Subtype_Indication (Def);
5978 Implicit_Base : Entity_Id;
5979 Literal : Entity_Id;
5980 New_Lit : Entity_Id;
5981 Literals_List : List_Id;
5982 Type_Decl : Node_Id;
5983 Hi, Lo : Node_Id;
5984 Rang_Expr : Node_Id;
5986 begin
5987 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5988 -- not have explicit literals lists we need to process types derived
5989 -- from them specially. This is handled by Derived_Standard_Character.
5990 -- If the parent type is a generic type, there are no literals either,
5991 -- and we construct the same skeletal representation as for the generic
5992 -- parent type.
5994 if Is_Standard_Character_Type (Parent_Type) then
5995 Derived_Standard_Character (N, Parent_Type, Derived_Type);
5997 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
5998 declare
5999 Lo : Node_Id;
6000 Hi : Node_Id;
6002 begin
6003 if Nkind (Indic) /= N_Subtype_Indication then
6004 Lo :=
6005 Make_Attribute_Reference (Loc,
6006 Attribute_Name => Name_First,
6007 Prefix => New_Reference_To (Derived_Type, Loc));
6008 Set_Etype (Lo, Derived_Type);
6010 Hi :=
6011 Make_Attribute_Reference (Loc,
6012 Attribute_Name => Name_Last,
6013 Prefix => New_Reference_To (Derived_Type, Loc));
6014 Set_Etype (Hi, Derived_Type);
6016 Set_Scalar_Range (Derived_Type,
6017 Make_Range (Loc,
6018 Low_Bound => Lo,
6019 High_Bound => Hi));
6020 else
6022 -- Analyze subtype indication and verify compatibility
6023 -- with parent type.
6025 if Base_Type (Process_Subtype (Indic, N)) /=
6026 Base_Type (Parent_Type)
6027 then
6028 Error_Msg_N
6029 ("illegal constraint for formal discrete type", N);
6030 end if;
6031 end if;
6032 end;
6034 else
6035 -- If a constraint is present, analyze the bounds to catch
6036 -- premature usage of the derived literals.
6038 if Nkind (Indic) = N_Subtype_Indication
6039 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6040 then
6041 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6042 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6043 end if;
6045 -- Introduce an implicit base type for the derived type even if there
6046 -- is no constraint attached to it, since this seems closer to the
6047 -- Ada semantics. Build a full type declaration tree for the derived
6048 -- type using the implicit base type as the defining identifier. The
6049 -- build a subtype declaration tree which applies the constraint (if
6050 -- any) have it replace the derived type declaration.
6052 Literal := First_Literal (Parent_Type);
6053 Literals_List := New_List;
6054 while Present (Literal)
6055 and then Ekind (Literal) = E_Enumeration_Literal
6056 loop
6057 -- Literals of the derived type have the same representation as
6058 -- those of the parent type, but this representation can be
6059 -- overridden by an explicit representation clause. Indicate
6060 -- that there is no explicit representation given yet. These
6061 -- derived literals are implicit operations of the new type,
6062 -- and can be overridden by explicit ones.
6064 if Nkind (Literal) = N_Defining_Character_Literal then
6065 New_Lit :=
6066 Make_Defining_Character_Literal (Loc, Chars (Literal));
6067 else
6068 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6069 end if;
6071 Set_Ekind (New_Lit, E_Enumeration_Literal);
6072 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6073 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6074 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6075 Set_Alias (New_Lit, Literal);
6076 Set_Is_Known_Valid (New_Lit, True);
6078 Append (New_Lit, Literals_List);
6079 Next_Literal (Literal);
6080 end loop;
6082 Implicit_Base :=
6083 Make_Defining_Identifier (Sloc (Derived_Type),
6084 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6086 -- Indicate the proper nature of the derived type. This must be done
6087 -- before analysis of the literals, to recognize cases when a literal
6088 -- may be hidden by a previous explicit function definition (cf.
6089 -- c83031a).
6091 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6092 Set_Etype (Derived_Type, Implicit_Base);
6094 Type_Decl :=
6095 Make_Full_Type_Declaration (Loc,
6096 Defining_Identifier => Implicit_Base,
6097 Discriminant_Specifications => No_List,
6098 Type_Definition =>
6099 Make_Enumeration_Type_Definition (Loc, Literals_List));
6101 Mark_Rewrite_Insertion (Type_Decl);
6102 Insert_Before (N, Type_Decl);
6103 Analyze (Type_Decl);
6105 -- After the implicit base is analyzed its Etype needs to be changed
6106 -- to reflect the fact that it is derived from the parent type which
6107 -- was ignored during analysis. We also set the size at this point.
6109 Set_Etype (Implicit_Base, Parent_Type);
6111 Set_Size_Info (Implicit_Base, Parent_Type);
6112 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6113 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6115 -- Copy other flags from parent type
6117 Set_Has_Non_Standard_Rep
6118 (Implicit_Base, Has_Non_Standard_Rep
6119 (Parent_Type));
6120 Set_Has_Pragma_Ordered
6121 (Implicit_Base, Has_Pragma_Ordered
6122 (Parent_Type));
6123 Set_Has_Delayed_Freeze (Implicit_Base);
6125 -- Process the subtype indication including a validation check on the
6126 -- constraint, if any. If a constraint is given, its bounds must be
6127 -- implicitly converted to the new type.
6129 if Nkind (Indic) = N_Subtype_Indication then
6130 declare
6131 R : constant Node_Id :=
6132 Range_Expression (Constraint (Indic));
6134 begin
6135 if Nkind (R) = N_Range then
6136 Hi := Build_Scalar_Bound
6137 (High_Bound (R), Parent_Type, Implicit_Base);
6138 Lo := Build_Scalar_Bound
6139 (Low_Bound (R), Parent_Type, Implicit_Base);
6141 else
6142 -- Constraint is a Range attribute. Replace with explicit
6143 -- mention of the bounds of the prefix, which must be a
6144 -- subtype.
6146 Analyze (Prefix (R));
6147 Hi :=
6148 Convert_To (Implicit_Base,
6149 Make_Attribute_Reference (Loc,
6150 Attribute_Name => Name_Last,
6151 Prefix =>
6152 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6154 Lo :=
6155 Convert_To (Implicit_Base,
6156 Make_Attribute_Reference (Loc,
6157 Attribute_Name => Name_First,
6158 Prefix =>
6159 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6160 end if;
6161 end;
6163 else
6164 Hi :=
6165 Build_Scalar_Bound
6166 (Type_High_Bound (Parent_Type),
6167 Parent_Type, Implicit_Base);
6168 Lo :=
6169 Build_Scalar_Bound
6170 (Type_Low_Bound (Parent_Type),
6171 Parent_Type, Implicit_Base);
6172 end if;
6174 Rang_Expr :=
6175 Make_Range (Loc,
6176 Low_Bound => Lo,
6177 High_Bound => Hi);
6179 -- If we constructed a default range for the case where no range
6180 -- was given, then the expressions in the range must not freeze
6181 -- since they do not correspond to expressions in the source.
6183 if Nkind (Indic) /= N_Subtype_Indication then
6184 Set_Must_Not_Freeze (Lo);
6185 Set_Must_Not_Freeze (Hi);
6186 Set_Must_Not_Freeze (Rang_Expr);
6187 end if;
6189 Rewrite (N,
6190 Make_Subtype_Declaration (Loc,
6191 Defining_Identifier => Derived_Type,
6192 Subtype_Indication =>
6193 Make_Subtype_Indication (Loc,
6194 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6195 Constraint =>
6196 Make_Range_Constraint (Loc,
6197 Range_Expression => Rang_Expr))));
6199 Analyze (N);
6201 -- Apply a range check. Since this range expression doesn't have an
6202 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6203 -- this right???
6205 if Nkind (Indic) = N_Subtype_Indication then
6206 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6207 Parent_Type,
6208 Source_Typ => Entity (Subtype_Mark (Indic)));
6209 end if;
6210 end if;
6211 end Build_Derived_Enumeration_Type;
6213 --------------------------------
6214 -- Build_Derived_Numeric_Type --
6215 --------------------------------
6217 procedure Build_Derived_Numeric_Type
6218 (N : Node_Id;
6219 Parent_Type : Entity_Id;
6220 Derived_Type : Entity_Id)
6222 Loc : constant Source_Ptr := Sloc (N);
6223 Tdef : constant Node_Id := Type_Definition (N);
6224 Indic : constant Node_Id := Subtype_Indication (Tdef);
6225 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6226 No_Constraint : constant Boolean := Nkind (Indic) /=
6227 N_Subtype_Indication;
6228 Implicit_Base : Entity_Id;
6230 Lo : Node_Id;
6231 Hi : Node_Id;
6233 begin
6234 -- Process the subtype indication including a validation check on
6235 -- the constraint if any.
6237 Discard_Node (Process_Subtype (Indic, N));
6239 -- Introduce an implicit base type for the derived type even if there
6240 -- is no constraint attached to it, since this seems closer to the Ada
6241 -- semantics.
6243 Implicit_Base :=
6244 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6246 Set_Etype (Implicit_Base, Parent_Base);
6247 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6248 Set_Size_Info (Implicit_Base, Parent_Base);
6249 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6250 Set_Parent (Implicit_Base, Parent (Derived_Type));
6251 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6253 -- Set RM Size for discrete type or decimal fixed-point type
6254 -- Ordinary fixed-point is excluded, why???
6256 if Is_Discrete_Type (Parent_Base)
6257 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6258 then
6259 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6260 end if;
6262 Set_Has_Delayed_Freeze (Implicit_Base);
6264 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6265 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6267 Set_Scalar_Range (Implicit_Base,
6268 Make_Range (Loc,
6269 Low_Bound => Lo,
6270 High_Bound => Hi));
6272 if Has_Infinities (Parent_Base) then
6273 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6274 end if;
6276 -- The Derived_Type, which is the entity of the declaration, is a
6277 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6278 -- absence of an explicit constraint.
6280 Set_Etype (Derived_Type, Implicit_Base);
6282 -- If we did not have a constraint, then the Ekind is set from the
6283 -- parent type (otherwise Process_Subtype has set the bounds)
6285 if No_Constraint then
6286 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6287 end if;
6289 -- If we did not have a range constraint, then set the range from the
6290 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6292 if No_Constraint
6293 or else not Has_Range_Constraint (Indic)
6294 then
6295 Set_Scalar_Range (Derived_Type,
6296 Make_Range (Loc,
6297 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6298 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6299 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6301 if Has_Infinities (Parent_Type) then
6302 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6303 end if;
6305 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6306 end if;
6308 Set_Is_Descendent_Of_Address (Derived_Type,
6309 Is_Descendent_Of_Address (Parent_Type));
6310 Set_Is_Descendent_Of_Address (Implicit_Base,
6311 Is_Descendent_Of_Address (Parent_Type));
6313 -- Set remaining type-specific fields, depending on numeric type
6315 if Is_Modular_Integer_Type (Parent_Type) then
6316 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6318 Set_Non_Binary_Modulus
6319 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6321 Set_Is_Known_Valid
6322 (Implicit_Base, Is_Known_Valid (Parent_Base));
6324 elsif Is_Floating_Point_Type (Parent_Type) then
6326 -- Digits of base type is always copied from the digits value of
6327 -- the parent base type, but the digits of the derived type will
6328 -- already have been set if there was a constraint present.
6330 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6331 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6333 if No_Constraint then
6334 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6335 end if;
6337 elsif Is_Fixed_Point_Type (Parent_Type) then
6339 -- Small of base type and derived type are always copied from the
6340 -- parent base type, since smalls never change. The delta of the
6341 -- base type is also copied from the parent base type. However the
6342 -- delta of the derived type will have been set already if a
6343 -- constraint was present.
6345 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6346 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6347 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6349 if No_Constraint then
6350 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6351 end if;
6353 -- The scale and machine radix in the decimal case are always
6354 -- copied from the parent base type.
6356 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6357 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6358 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6360 Set_Machine_Radix_10
6361 (Derived_Type, Machine_Radix_10 (Parent_Base));
6362 Set_Machine_Radix_10
6363 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6365 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6367 if No_Constraint then
6368 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6370 else
6371 -- the analysis of the subtype_indication sets the
6372 -- digits value of the derived type.
6374 null;
6375 end if;
6376 end if;
6377 end if;
6379 -- The type of the bounds is that of the parent type, and they
6380 -- must be converted to the derived type.
6382 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6384 -- The implicit_base should be frozen when the derived type is frozen,
6385 -- but note that it is used in the conversions of the bounds. For fixed
6386 -- types we delay the determination of the bounds until the proper
6387 -- freezing point. For other numeric types this is rejected by GCC, for
6388 -- reasons that are currently unclear (???), so we choose to freeze the
6389 -- implicit base now. In the case of integers and floating point types
6390 -- this is harmless because subsequent representation clauses cannot
6391 -- affect anything, but it is still baffling that we cannot use the
6392 -- same mechanism for all derived numeric types.
6394 -- There is a further complication: actually some representation
6395 -- clauses can affect the implicit base type. For example, attribute
6396 -- definition clauses for stream-oriented attributes need to set the
6397 -- corresponding TSS entries on the base type, and this normally
6398 -- cannot be done after the base type is frozen, so the circuitry in
6399 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6400 -- and not use Set_TSS in this case.
6402 -- There are also consequences for the case of delayed representation
6403 -- aspects for some cases. For example, a Size aspect is delayed and
6404 -- should not be evaluated to the freeze point. This early freezing
6405 -- means that the size attribute evaluation happens too early???
6407 if Is_Fixed_Point_Type (Parent_Type) then
6408 Conditional_Delay (Implicit_Base, Parent_Type);
6409 else
6410 Freeze_Before (N, Implicit_Base);
6411 end if;
6412 end Build_Derived_Numeric_Type;
6414 --------------------------------
6415 -- Build_Derived_Private_Type --
6416 --------------------------------
6418 procedure Build_Derived_Private_Type
6419 (N : Node_Id;
6420 Parent_Type : Entity_Id;
6421 Derived_Type : Entity_Id;
6422 Is_Completion : Boolean;
6423 Derive_Subps : Boolean := True)
6425 Loc : constant Source_Ptr := Sloc (N);
6426 Der_Base : Entity_Id;
6427 Discr : Entity_Id;
6428 Full_Decl : Node_Id := Empty;
6429 Full_Der : Entity_Id;
6430 Full_P : Entity_Id;
6431 Last_Discr : Entity_Id;
6432 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6433 Swapped : Boolean := False;
6435 procedure Copy_And_Build;
6436 -- Copy derived type declaration, replace parent with its full view,
6437 -- and analyze new declaration.
6439 --------------------
6440 -- Copy_And_Build --
6441 --------------------
6443 procedure Copy_And_Build is
6444 Full_N : Node_Id;
6446 begin
6447 if Ekind (Parent_Type) in Record_Kind
6448 or else
6449 (Ekind (Parent_Type) in Enumeration_Kind
6450 and then not Is_Standard_Character_Type (Parent_Type)
6451 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6452 then
6453 Full_N := New_Copy_Tree (N);
6454 Insert_After (N, Full_N);
6455 Build_Derived_Type (
6456 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6458 else
6459 Build_Derived_Type (
6460 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6461 end if;
6462 end Copy_And_Build;
6464 -- Start of processing for Build_Derived_Private_Type
6466 begin
6467 if Is_Tagged_Type (Parent_Type) then
6468 Full_P := Full_View (Parent_Type);
6470 -- A type extension of a type with unknown discriminants is an
6471 -- indefinite type that the back-end cannot handle directly.
6472 -- We treat it as a private type, and build a completion that is
6473 -- derived from the full view of the parent, and hopefully has
6474 -- known discriminants.
6476 -- If the full view of the parent type has an underlying record view,
6477 -- use it to generate the underlying record view of this derived type
6478 -- (required for chains of derivations with unknown discriminants).
6480 -- Minor optimization: we avoid the generation of useless underlying
6481 -- record view entities if the private type declaration has unknown
6482 -- discriminants but its corresponding full view has no
6483 -- discriminants.
6485 if Has_Unknown_Discriminants (Parent_Type)
6486 and then Present (Full_P)
6487 and then (Has_Discriminants (Full_P)
6488 or else Present (Underlying_Record_View (Full_P)))
6489 and then not In_Open_Scopes (Par_Scope)
6490 and then Expander_Active
6491 then
6492 declare
6493 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6494 New_Ext : constant Node_Id :=
6495 Copy_Separate_Tree
6496 (Record_Extension_Part (Type_Definition (N)));
6497 Decl : Node_Id;
6499 begin
6500 Build_Derived_Record_Type
6501 (N, Parent_Type, Derived_Type, Derive_Subps);
6503 -- Build anonymous completion, as a derivation from the full
6504 -- view of the parent. This is not a completion in the usual
6505 -- sense, because the current type is not private.
6507 Decl :=
6508 Make_Full_Type_Declaration (Loc,
6509 Defining_Identifier => Full_Der,
6510 Type_Definition =>
6511 Make_Derived_Type_Definition (Loc,
6512 Subtype_Indication =>
6513 New_Copy_Tree
6514 (Subtype_Indication (Type_Definition (N))),
6515 Record_Extension_Part => New_Ext));
6517 -- If the parent type has an underlying record view, use it
6518 -- here to build the new underlying record view.
6520 if Present (Underlying_Record_View (Full_P)) then
6521 pragma Assert
6522 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6523 = N_Identifier);
6524 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6525 Underlying_Record_View (Full_P));
6526 end if;
6528 Install_Private_Declarations (Par_Scope);
6529 Install_Visible_Declarations (Par_Scope);
6530 Insert_Before (N, Decl);
6532 -- Mark entity as an underlying record view before analysis,
6533 -- to avoid generating the list of its primitive operations
6534 -- (which is not really required for this entity) and thus
6535 -- prevent spurious errors associated with missing overriding
6536 -- of abstract primitives (overridden only for Derived_Type).
6538 Set_Ekind (Full_Der, E_Record_Type);
6539 Set_Is_Underlying_Record_View (Full_Der);
6541 Analyze (Decl);
6543 pragma Assert (Has_Discriminants (Full_Der)
6544 and then not Has_Unknown_Discriminants (Full_Der));
6546 Uninstall_Declarations (Par_Scope);
6548 -- Freeze the underlying record view, to prevent generation of
6549 -- useless dispatching information, which is simply shared with
6550 -- the real derived type.
6552 Set_Is_Frozen (Full_Der);
6554 -- Set up links between real entity and underlying record view
6556 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6557 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6558 end;
6560 -- If discriminants are known, build derived record
6562 else
6563 Build_Derived_Record_Type
6564 (N, Parent_Type, Derived_Type, Derive_Subps);
6565 end if;
6567 return;
6569 elsif Has_Discriminants (Parent_Type) then
6570 if Present (Full_View (Parent_Type)) then
6571 if not Is_Completion then
6573 -- Copy declaration for subsequent analysis, to provide a
6574 -- completion for what is a private declaration. Indicate that
6575 -- the full type is internally generated.
6577 Full_Decl := New_Copy_Tree (N);
6578 Full_Der := New_Copy (Derived_Type);
6579 Set_Comes_From_Source (Full_Decl, False);
6580 Set_Comes_From_Source (Full_Der, False);
6581 Set_Parent (Full_Der, Full_Decl);
6583 Insert_After (N, Full_Decl);
6585 else
6586 -- If this is a completion, the full view being built is itself
6587 -- private. We build a subtype of the parent with the same
6588 -- constraints as this full view, to convey to the back end the
6589 -- constrained components and the size of this subtype. If the
6590 -- parent is constrained, its full view can serve as the
6591 -- underlying full view of the derived type.
6593 if No (Discriminant_Specifications (N)) then
6594 if Nkind (Subtype_Indication (Type_Definition (N))) =
6595 N_Subtype_Indication
6596 then
6597 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6599 elsif Is_Constrained (Full_View (Parent_Type)) then
6600 Set_Underlying_Full_View
6601 (Derived_Type, Full_View (Parent_Type));
6602 end if;
6604 else
6605 -- If there are new discriminants, the parent subtype is
6606 -- constrained by them, but it is not clear how to build
6607 -- the Underlying_Full_View in this case???
6609 null;
6610 end if;
6611 end if;
6612 end if;
6614 -- Build partial view of derived type from partial view of parent
6616 Build_Derived_Record_Type
6617 (N, Parent_Type, Derived_Type, Derive_Subps);
6619 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6620 if not In_Open_Scopes (Par_Scope)
6621 or else not In_Same_Source_Unit (N, Parent_Type)
6622 then
6623 -- Swap partial and full views temporarily
6625 Install_Private_Declarations (Par_Scope);
6626 Install_Visible_Declarations (Par_Scope);
6627 Swapped := True;
6628 end if;
6630 -- Build full view of derived type from full view of parent which
6631 -- is now installed. Subprograms have been derived on the partial
6632 -- view, the completion does not derive them anew.
6634 if not Is_Tagged_Type (Parent_Type) then
6636 -- If the parent is itself derived from another private type,
6637 -- installing the private declarations has not affected its
6638 -- privacy status, so use its own full view explicitly.
6640 if Is_Private_Type (Parent_Type) then
6641 Build_Derived_Record_Type
6642 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6643 else
6644 Build_Derived_Record_Type
6645 (Full_Decl, Parent_Type, Full_Der, False);
6646 end if;
6648 else
6649 -- If full view of parent is tagged, the completion inherits
6650 -- the proper primitive operations.
6652 Set_Defining_Identifier (Full_Decl, Full_Der);
6653 Build_Derived_Record_Type
6654 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6655 end if;
6657 -- The full declaration has been introduced into the tree and
6658 -- processed in the step above. It should not be analyzed again
6659 -- (when encountered later in the current list of declarations)
6660 -- to prevent spurious name conflicts. The full entity remains
6661 -- invisible.
6663 Set_Analyzed (Full_Decl);
6665 if Swapped then
6666 Uninstall_Declarations (Par_Scope);
6668 if In_Open_Scopes (Par_Scope) then
6669 Install_Visible_Declarations (Par_Scope);
6670 end if;
6671 end if;
6673 Der_Base := Base_Type (Derived_Type);
6674 Set_Full_View (Derived_Type, Full_Der);
6675 Set_Full_View (Der_Base, Base_Type (Full_Der));
6677 -- Copy the discriminant list from full view to the partial views
6678 -- (base type and its subtype). Gigi requires that the partial and
6679 -- full views have the same discriminants.
6681 -- Note that since the partial view is pointing to discriminants
6682 -- in the full view, their scope will be that of the full view.
6683 -- This might cause some front end problems and need adjustment???
6685 Discr := First_Discriminant (Base_Type (Full_Der));
6686 Set_First_Entity (Der_Base, Discr);
6688 loop
6689 Last_Discr := Discr;
6690 Next_Discriminant (Discr);
6691 exit when No (Discr);
6692 end loop;
6694 Set_Last_Entity (Der_Base, Last_Discr);
6696 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6697 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6698 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6700 else
6701 -- If this is a completion, the derived type stays private and
6702 -- there is no need to create a further full view, except in the
6703 -- unusual case when the derivation is nested within a child unit,
6704 -- see below.
6706 null;
6707 end if;
6709 elsif Present (Full_View (Parent_Type))
6710 and then Has_Discriminants (Full_View (Parent_Type))
6711 then
6712 if Has_Unknown_Discriminants (Parent_Type)
6713 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6714 N_Subtype_Indication
6715 then
6716 Error_Msg_N
6717 ("cannot constrain type with unknown discriminants",
6718 Subtype_Indication (Type_Definition (N)));
6719 return;
6720 end if;
6722 -- If full view of parent is a record type, build full view as a
6723 -- derivation from the parent's full view. Partial view remains
6724 -- private. For code generation and linking, the full view must have
6725 -- the same public status as the partial one. This full view is only
6726 -- needed if the parent type is in an enclosing scope, so that the
6727 -- full view may actually become visible, e.g. in a child unit. This
6728 -- is both more efficient, and avoids order of freezing problems with
6729 -- the added entities.
6731 if not Is_Private_Type (Full_View (Parent_Type))
6732 and then (In_Open_Scopes (Scope (Parent_Type)))
6733 then
6734 Full_Der :=
6735 Make_Defining_Identifier (Sloc (Derived_Type),
6736 Chars => Chars (Derived_Type));
6738 Set_Is_Itype (Full_Der);
6739 Set_Has_Private_Declaration (Full_Der);
6740 Set_Has_Private_Declaration (Derived_Type);
6741 Set_Associated_Node_For_Itype (Full_Der, N);
6742 Set_Parent (Full_Der, Parent (Derived_Type));
6743 Set_Full_View (Derived_Type, Full_Der);
6744 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6745 Full_P := Full_View (Parent_Type);
6746 Exchange_Declarations (Parent_Type);
6747 Copy_And_Build;
6748 Exchange_Declarations (Full_P);
6750 else
6751 Build_Derived_Record_Type
6752 (N, Full_View (Parent_Type), Derived_Type,
6753 Derive_Subps => False);
6755 -- Except in the context of the full view of the parent, there
6756 -- are no non-extension aggregates for the derived type.
6758 Set_Has_Private_Ancestor (Derived_Type);
6759 end if;
6761 -- In any case, the primitive operations are inherited from the
6762 -- parent type, not from the internal full view.
6764 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6766 if Derive_Subps then
6767 Derive_Subprograms (Parent_Type, Derived_Type);
6768 end if;
6770 else
6771 -- Untagged type, No discriminants on either view
6773 if Nkind (Subtype_Indication (Type_Definition (N))) =
6774 N_Subtype_Indication
6775 then
6776 Error_Msg_N
6777 ("illegal constraint on type without discriminants", N);
6778 end if;
6780 if Present (Discriminant_Specifications (N))
6781 and then Present (Full_View (Parent_Type))
6782 and then not Is_Tagged_Type (Full_View (Parent_Type))
6783 then
6784 Error_Msg_N ("cannot add discriminants to untagged type", N);
6785 end if;
6787 Set_Stored_Constraint (Derived_Type, No_Elist);
6788 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6789 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6790 Set_Has_Controlled_Component
6791 (Derived_Type, Has_Controlled_Component
6792 (Parent_Type));
6794 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6796 if not Is_Controlled (Parent_Type) then
6797 Set_Finalize_Storage_Only
6798 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6799 end if;
6801 -- Construct the implicit full view by deriving from full view of the
6802 -- parent type. In order to get proper visibility, we install the
6803 -- parent scope and its declarations.
6805 -- ??? If the parent is untagged private and its completion is
6806 -- tagged, this mechanism will not work because we cannot derive from
6807 -- the tagged full view unless we have an extension.
6809 if Present (Full_View (Parent_Type))
6810 and then not Is_Tagged_Type (Full_View (Parent_Type))
6811 and then not Is_Completion
6812 then
6813 Full_Der :=
6814 Make_Defining_Identifier
6815 (Sloc (Derived_Type), Chars (Derived_Type));
6816 Set_Is_Itype (Full_Der);
6817 Set_Has_Private_Declaration (Full_Der);
6818 Set_Has_Private_Declaration (Derived_Type);
6819 Set_Associated_Node_For_Itype (Full_Der, N);
6820 Set_Parent (Full_Der, Parent (Derived_Type));
6821 Set_Full_View (Derived_Type, Full_Der);
6823 if not In_Open_Scopes (Par_Scope) then
6824 Install_Private_Declarations (Par_Scope);
6825 Install_Visible_Declarations (Par_Scope);
6826 Copy_And_Build;
6827 Uninstall_Declarations (Par_Scope);
6829 -- If parent scope is open and in another unit, and parent has a
6830 -- completion, then the derivation is taking place in the visible
6831 -- part of a child unit. In that case retrieve the full view of
6832 -- the parent momentarily.
6834 elsif not In_Same_Source_Unit (N, Parent_Type) then
6835 Full_P := Full_View (Parent_Type);
6836 Exchange_Declarations (Parent_Type);
6837 Copy_And_Build;
6838 Exchange_Declarations (Full_P);
6840 -- Otherwise it is a local derivation
6842 else
6843 Copy_And_Build;
6844 end if;
6846 Set_Scope (Full_Der, Current_Scope);
6847 Set_Is_First_Subtype (Full_Der,
6848 Is_First_Subtype (Derived_Type));
6849 Set_Has_Size_Clause (Full_Der, False);
6850 Set_Has_Alignment_Clause (Full_Der, False);
6851 Set_Next_Entity (Full_Der, Empty);
6852 Set_Has_Delayed_Freeze (Full_Der);
6853 Set_Is_Frozen (Full_Der, False);
6854 Set_Freeze_Node (Full_Der, Empty);
6855 Set_Depends_On_Private (Full_Der,
6856 Has_Private_Component (Full_Der));
6857 Set_Public_Status (Full_Der);
6858 end if;
6859 end if;
6861 Set_Has_Unknown_Discriminants (Derived_Type,
6862 Has_Unknown_Discriminants (Parent_Type));
6864 if Is_Private_Type (Derived_Type) then
6865 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6866 end if;
6868 if Is_Private_Type (Parent_Type)
6869 and then Base_Type (Parent_Type) = Parent_Type
6870 and then In_Open_Scopes (Scope (Parent_Type))
6871 then
6872 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6874 -- Check for unusual case where a type completed by a private
6875 -- derivation occurs within a package nested in a child unit, and
6876 -- the parent is declared in an ancestor.
6878 if Is_Child_Unit (Scope (Current_Scope))
6879 and then Is_Completion
6880 and then In_Private_Part (Current_Scope)
6881 and then Scope (Parent_Type) /= Current_Scope
6883 -- Note that if the parent has a completion in the private part,
6884 -- (which is itself a derivation from some other private type)
6885 -- it is that completion that is visible, there is no full view
6886 -- available, and no special processing is needed.
6888 and then Present (Full_View (Parent_Type))
6889 then
6890 -- In this case, the full view of the parent type will become
6891 -- visible in the body of the enclosing child, and only then will
6892 -- the current type be possibly non-private. We build an
6893 -- underlying full view that will be installed when the enclosing
6894 -- child body is compiled.
6896 Full_Der :=
6897 Make_Defining_Identifier
6898 (Sloc (Derived_Type), Chars (Derived_Type));
6899 Set_Is_Itype (Full_Der);
6900 Build_Itype_Reference (Full_Der, N);
6902 -- The full view will be used to swap entities on entry/exit to
6903 -- the body, and must appear in the entity list for the package.
6905 Append_Entity (Full_Der, Scope (Derived_Type));
6906 Set_Has_Private_Declaration (Full_Der);
6907 Set_Has_Private_Declaration (Derived_Type);
6908 Set_Associated_Node_For_Itype (Full_Der, N);
6909 Set_Parent (Full_Der, Parent (Derived_Type));
6910 Full_P := Full_View (Parent_Type);
6911 Exchange_Declarations (Parent_Type);
6912 Copy_And_Build;
6913 Exchange_Declarations (Full_P);
6914 Set_Underlying_Full_View (Derived_Type, Full_Der);
6915 end if;
6916 end if;
6917 end Build_Derived_Private_Type;
6919 -------------------------------
6920 -- Build_Derived_Record_Type --
6921 -------------------------------
6923 -- 1. INTRODUCTION
6925 -- Ideally we would like to use the same model of type derivation for
6926 -- tagged and untagged record types. Unfortunately this is not quite
6927 -- possible because the semantics of representation clauses is different
6928 -- for tagged and untagged records under inheritance. Consider the
6929 -- following:
6931 -- type R (...) is [tagged] record ... end record;
6932 -- type T (...) is new R (...) [with ...];
6934 -- The representation clauses for T can specify a completely different
6935 -- record layout from R's. Hence the same component can be placed in two
6936 -- very different positions in objects of type T and R. If R and T are
6937 -- tagged types, representation clauses for T can only specify the layout
6938 -- of non inherited components, thus components that are common in R and T
6939 -- have the same position in objects of type R and T.
6941 -- This has two implications. The first is that the entire tree for R's
6942 -- declaration needs to be copied for T in the untagged case, so that T
6943 -- can be viewed as a record type of its own with its own representation
6944 -- clauses. The second implication is the way we handle discriminants.
6945 -- Specifically, in the untagged case we need a way to communicate to Gigi
6946 -- what are the real discriminants in the record, while for the semantics
6947 -- we need to consider those introduced by the user to rename the
6948 -- discriminants in the parent type. This is handled by introducing the
6949 -- notion of stored discriminants. See below for more.
6951 -- Fortunately the way regular components are inherited can be handled in
6952 -- the same way in tagged and untagged types.
6954 -- To complicate things a bit more the private view of a private extension
6955 -- cannot be handled in the same way as the full view (for one thing the
6956 -- semantic rules are somewhat different). We will explain what differs
6957 -- below.
6959 -- 2. DISCRIMINANTS UNDER INHERITANCE
6961 -- The semantic rules governing the discriminants of derived types are
6962 -- quite subtle.
6964 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6965 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6967 -- If parent type has discriminants, then the discriminants that are
6968 -- declared in the derived type are [3.4 (11)]:
6970 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6971 -- there is one;
6973 -- o Otherwise, each discriminant of the parent type (implicitly declared
6974 -- in the same order with the same specifications). In this case, the
6975 -- discriminants are said to be "inherited", or if unknown in the parent
6976 -- are also unknown in the derived type.
6978 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6980 -- o The parent subtype shall be constrained;
6982 -- o If the parent type is not a tagged type, then each discriminant of
6983 -- the derived type shall be used in the constraint defining a parent
6984 -- subtype. [Implementation note: This ensures that the new discriminant
6985 -- can share storage with an existing discriminant.]
6987 -- For the derived type each discriminant of the parent type is either
6988 -- inherited, constrained to equal some new discriminant of the derived
6989 -- type, or constrained to the value of an expression.
6991 -- When inherited or constrained to equal some new discriminant, the
6992 -- parent discriminant and the discriminant of the derived type are said
6993 -- to "correspond".
6995 -- If a discriminant of the parent type is constrained to a specific value
6996 -- in the derived type definition, then the discriminant is said to be
6997 -- "specified" by that derived type definition.
6999 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7001 -- We have spoken about stored discriminants in point 1 (introduction)
7002 -- above. There are two sort of stored discriminants: implicit and
7003 -- explicit. As long as the derived type inherits the same discriminants as
7004 -- the root record type, stored discriminants are the same as regular
7005 -- discriminants, and are said to be implicit. However, if any discriminant
7006 -- in the root type was renamed in the derived type, then the derived
7007 -- type will contain explicit stored discriminants. Explicit stored
7008 -- discriminants are discriminants in addition to the semantically visible
7009 -- discriminants defined for the derived type. Stored discriminants are
7010 -- used by Gigi to figure out what are the physical discriminants in
7011 -- objects of the derived type (see precise definition in einfo.ads).
7012 -- As an example, consider the following:
7014 -- type R (D1, D2, D3 : Int) is record ... end record;
7015 -- type T1 is new R;
7016 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7017 -- type T3 is new T2;
7018 -- type T4 (Y : Int) is new T3 (Y, 99);
7020 -- The following table summarizes the discriminants and stored
7021 -- discriminants in R and T1 through T4.
7023 -- Type Discrim Stored Discrim Comment
7024 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7025 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7026 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7027 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7028 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7030 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7031 -- find the corresponding discriminant in the parent type, while
7032 -- Original_Record_Component (abbreviated ORC below), the actual physical
7033 -- component that is renamed. Finally the field Is_Completely_Hidden
7034 -- (abbreviated ICH below) is set for all explicit stored discriminants
7035 -- (see einfo.ads for more info). For the above example this gives:
7037 -- Discrim CD ORC ICH
7038 -- ^^^^^^^ ^^ ^^^ ^^^
7039 -- D1 in R empty itself no
7040 -- D2 in R empty itself no
7041 -- D3 in R empty itself no
7043 -- D1 in T1 D1 in R itself no
7044 -- D2 in T1 D2 in R itself no
7045 -- D3 in T1 D3 in R itself no
7047 -- X1 in T2 D3 in T1 D3 in T2 no
7048 -- X2 in T2 D1 in T1 D1 in T2 no
7049 -- D1 in T2 empty itself yes
7050 -- D2 in T2 empty itself yes
7051 -- D3 in T2 empty itself yes
7053 -- X1 in T3 X1 in T2 D3 in T3 no
7054 -- X2 in T3 X2 in T2 D1 in T3 no
7055 -- D1 in T3 empty itself yes
7056 -- D2 in T3 empty itself yes
7057 -- D3 in T3 empty itself yes
7059 -- Y in T4 X1 in T3 D3 in T3 no
7060 -- D1 in T3 empty itself yes
7061 -- D2 in T3 empty itself yes
7062 -- D3 in T3 empty itself yes
7064 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7066 -- Type derivation for tagged types is fairly straightforward. If no
7067 -- discriminants are specified by the derived type, these are inherited
7068 -- from the parent. No explicit stored discriminants are ever necessary.
7069 -- The only manipulation that is done to the tree is that of adding a
7070 -- _parent field with parent type and constrained to the same constraint
7071 -- specified for the parent in the derived type definition. For instance:
7073 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7074 -- type T1 is new R with null record;
7075 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7077 -- are changed into:
7079 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7080 -- _parent : R (D1, D2, D3);
7081 -- end record;
7083 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7084 -- _parent : T1 (X2, 88, X1);
7085 -- end record;
7087 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7088 -- ORC and ICH fields are:
7090 -- Discrim CD ORC ICH
7091 -- ^^^^^^^ ^^ ^^^ ^^^
7092 -- D1 in R empty itself no
7093 -- D2 in R empty itself no
7094 -- D3 in R empty itself no
7096 -- D1 in T1 D1 in R D1 in R no
7097 -- D2 in T1 D2 in R D2 in R no
7098 -- D3 in T1 D3 in R D3 in R no
7100 -- X1 in T2 D3 in T1 D3 in R no
7101 -- X2 in T2 D1 in T1 D1 in R no
7103 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7105 -- Regardless of whether we dealing with a tagged or untagged type
7106 -- we will transform all derived type declarations of the form
7108 -- type T is new R (...) [with ...];
7109 -- or
7110 -- subtype S is R (...);
7111 -- type T is new S [with ...];
7112 -- into
7113 -- type BT is new R [with ...];
7114 -- subtype T is BT (...);
7116 -- That is, the base derived type is constrained only if it has no
7117 -- discriminants. The reason for doing this is that GNAT's semantic model
7118 -- assumes that a base type with discriminants is unconstrained.
7120 -- Note that, strictly speaking, the above transformation is not always
7121 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7123 -- procedure B34011A is
7124 -- type REC (D : integer := 0) is record
7125 -- I : Integer;
7126 -- end record;
7128 -- package P is
7129 -- type T6 is new Rec;
7130 -- function F return T6;
7131 -- end P;
7133 -- use P;
7134 -- package Q6 is
7135 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7136 -- end Q6;
7138 -- The definition of Q6.U is illegal. However transforming Q6.U into
7140 -- type BaseU is new T6;
7141 -- subtype U is BaseU (Q6.F.I)
7143 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7144 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7145 -- the transformation described above.
7147 -- There is another instance where the above transformation is incorrect.
7148 -- Consider:
7150 -- package Pack is
7151 -- type Base (D : Integer) is tagged null record;
7152 -- procedure P (X : Base);
7154 -- type Der is new Base (2) with null record;
7155 -- procedure P (X : Der);
7156 -- end Pack;
7158 -- Then the above transformation turns this into
7160 -- type Der_Base is new Base with null record;
7161 -- -- procedure P (X : Base) is implicitly inherited here
7162 -- -- as procedure P (X : Der_Base).
7164 -- subtype Der is Der_Base (2);
7165 -- procedure P (X : Der);
7166 -- -- The overriding of P (X : Der_Base) is illegal since we
7167 -- -- have a parameter conformance problem.
7169 -- To get around this problem, after having semantically processed Der_Base
7170 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7171 -- Discriminant_Constraint from Der so that when parameter conformance is
7172 -- checked when P is overridden, no semantic errors are flagged.
7174 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7176 -- Regardless of whether we are dealing with a tagged or untagged type
7177 -- we will transform all derived type declarations of the form
7179 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7180 -- type T is new R [with ...];
7181 -- into
7182 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7184 -- The reason for such transformation is that it allows us to implement a
7185 -- very clean form of component inheritance as explained below.
7187 -- Note that this transformation is not achieved by direct tree rewriting
7188 -- and manipulation, but rather by redoing the semantic actions that the
7189 -- above transformation will entail. This is done directly in routine
7190 -- Inherit_Components.
7192 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7194 -- In both tagged and untagged derived types, regular non discriminant
7195 -- components are inherited in the derived type from the parent type. In
7196 -- the absence of discriminants component, inheritance is straightforward
7197 -- as components can simply be copied from the parent.
7199 -- If the parent has discriminants, inheriting components constrained with
7200 -- these discriminants requires caution. Consider the following example:
7202 -- type R (D1, D2 : Positive) is [tagged] record
7203 -- S : String (D1 .. D2);
7204 -- end record;
7206 -- type T1 is new R [with null record];
7207 -- type T2 (X : positive) is new R (1, X) [with null record];
7209 -- As explained in 6. above, T1 is rewritten as
7210 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7211 -- which makes the treatment for T1 and T2 identical.
7213 -- What we want when inheriting S, is that references to D1 and D2 in R are
7214 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7215 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7216 -- with either discriminant references in the derived type or expressions.
7217 -- This replacement is achieved as follows: before inheriting R's
7218 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7219 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7220 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7221 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7222 -- by String (1 .. X).
7224 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7226 -- We explain here the rules governing private type extensions relevant to
7227 -- type derivation. These rules are explained on the following example:
7229 -- type D [(...)] is new A [(...)] with private; <-- partial view
7230 -- type D [(...)] is new P [(...)] with null record; <-- full view
7232 -- Type A is called the ancestor subtype of the private extension.
7233 -- Type P is the parent type of the full view of the private extension. It
7234 -- must be A or a type derived from A.
7236 -- The rules concerning the discriminants of private type extensions are
7237 -- [7.3(10-13)]:
7239 -- o If a private extension inherits known discriminants from the ancestor
7240 -- subtype, then the full view shall also inherit its discriminants from
7241 -- the ancestor subtype and the parent subtype of the full view shall be
7242 -- constrained if and only if the ancestor subtype is constrained.
7244 -- o If a partial view has unknown discriminants, then the full view may
7245 -- define a definite or an indefinite subtype, with or without
7246 -- discriminants.
7248 -- o If a partial view has neither known nor unknown discriminants, then
7249 -- the full view shall define a definite subtype.
7251 -- o If the ancestor subtype of a private extension has constrained
7252 -- discriminants, then the parent subtype of the full view shall impose a
7253 -- statically matching constraint on those discriminants.
7255 -- This means that only the following forms of private extensions are
7256 -- allowed:
7258 -- type D is new A with private; <-- partial view
7259 -- type D is new P with null record; <-- full view
7261 -- If A has no discriminants than P has no discriminants, otherwise P must
7262 -- inherit A's discriminants.
7264 -- type D is new A (...) with private; <-- partial view
7265 -- type D is new P (:::) with null record; <-- full view
7267 -- P must inherit A's discriminants and (...) and (:::) must statically
7268 -- match.
7270 -- subtype A is R (...);
7271 -- type D is new A with private; <-- partial view
7272 -- type D is new P with null record; <-- full view
7274 -- P must have inherited R's discriminants and must be derived from A or
7275 -- any of its subtypes.
7277 -- type D (..) is new A with private; <-- partial view
7278 -- type D (..) is new P [(:::)] with null record; <-- full view
7280 -- No specific constraints on P's discriminants or constraint (:::).
7281 -- Note that A can be unconstrained, but the parent subtype P must either
7282 -- be constrained or (:::) must be present.
7284 -- type D (..) is new A [(...)] with private; <-- partial view
7285 -- type D (..) is new P [(:::)] with null record; <-- full view
7287 -- P's constraints on A's discriminants must statically match those
7288 -- imposed by (...).
7290 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7292 -- The full view of a private extension is handled exactly as described
7293 -- above. The model chose for the private view of a private extension is
7294 -- the same for what concerns discriminants (i.e. they receive the same
7295 -- treatment as in the tagged case). However, the private view of the
7296 -- private extension always inherits the components of the parent base,
7297 -- without replacing any discriminant reference. Strictly speaking this is
7298 -- incorrect. However, Gigi never uses this view to generate code so this
7299 -- is a purely semantic issue. In theory, a set of transformations similar
7300 -- to those given in 5. and 6. above could be applied to private views of
7301 -- private extensions to have the same model of component inheritance as
7302 -- for non private extensions. However, this is not done because it would
7303 -- further complicate private type processing. Semantically speaking, this
7304 -- leaves us in an uncomfortable situation. As an example consider:
7306 -- package Pack is
7307 -- type R (D : integer) is tagged record
7308 -- S : String (1 .. D);
7309 -- end record;
7310 -- procedure P (X : R);
7311 -- type T is new R (1) with private;
7312 -- private
7313 -- type T is new R (1) with null record;
7314 -- end;
7316 -- This is transformed into:
7318 -- package Pack is
7319 -- type R (D : integer) is tagged record
7320 -- S : String (1 .. D);
7321 -- end record;
7322 -- procedure P (X : R);
7323 -- type T is new R (1) with private;
7324 -- private
7325 -- type BaseT is new R with null record;
7326 -- subtype T is BaseT (1);
7327 -- end;
7329 -- (strictly speaking the above is incorrect Ada)
7331 -- From the semantic standpoint the private view of private extension T
7332 -- should be flagged as constrained since one can clearly have
7334 -- Obj : T;
7336 -- in a unit withing Pack. However, when deriving subprograms for the
7337 -- private view of private extension T, T must be seen as unconstrained
7338 -- since T has discriminants (this is a constraint of the current
7339 -- subprogram derivation model). Thus, when processing the private view of
7340 -- a private extension such as T, we first mark T as unconstrained, we
7341 -- process it, we perform program derivation and just before returning from
7342 -- Build_Derived_Record_Type we mark T as constrained.
7344 -- ??? Are there are other uncomfortable cases that we will have to
7345 -- deal with.
7347 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7349 -- Types that are derived from a visible record type and have a private
7350 -- extension present other peculiarities. They behave mostly like private
7351 -- types, but if they have primitive operations defined, these will not
7352 -- have the proper signatures for further inheritance, because other
7353 -- primitive operations will use the implicit base that we define for
7354 -- private derivations below. This affect subprogram inheritance (see
7355 -- Derive_Subprograms for details). We also derive the implicit base from
7356 -- the base type of the full view, so that the implicit base is a record
7357 -- type and not another private type, This avoids infinite loops.
7359 procedure Build_Derived_Record_Type
7360 (N : Node_Id;
7361 Parent_Type : Entity_Id;
7362 Derived_Type : Entity_Id;
7363 Derive_Subps : Boolean := True)
7365 Discriminant_Specs : constant Boolean :=
7366 Present (Discriminant_Specifications (N));
7367 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7368 Loc : constant Source_Ptr := Sloc (N);
7369 Private_Extension : constant Boolean :=
7370 Nkind (N) = N_Private_Extension_Declaration;
7371 Assoc_List : Elist_Id;
7372 Constraint_Present : Boolean;
7373 Constrs : Elist_Id;
7374 Discrim : Entity_Id;
7375 Indic : Node_Id;
7376 Inherit_Discrims : Boolean := False;
7377 Last_Discrim : Entity_Id;
7378 New_Base : Entity_Id;
7379 New_Decl : Node_Id;
7380 New_Discrs : Elist_Id;
7381 New_Indic : Node_Id;
7382 Parent_Base : Entity_Id;
7383 Save_Etype : Entity_Id;
7384 Save_Discr_Constr : Elist_Id;
7385 Save_Next_Entity : Entity_Id;
7386 Type_Def : Node_Id;
7388 Discs : Elist_Id := New_Elmt_List;
7389 -- An empty Discs list means that there were no constraints in the
7390 -- subtype indication or that there was an error processing it.
7392 begin
7393 if Ekind (Parent_Type) = E_Record_Type_With_Private
7394 and then Present (Full_View (Parent_Type))
7395 and then Has_Discriminants (Parent_Type)
7396 then
7397 Parent_Base := Base_Type (Full_View (Parent_Type));
7398 else
7399 Parent_Base := Base_Type (Parent_Type);
7400 end if;
7402 -- AI05-0115 : if this is a derivation from a private type in some
7403 -- other scope that may lead to invisible components for the derived
7404 -- type, mark it accordingly.
7406 if Is_Private_Type (Parent_Type) then
7407 if Scope (Parent_Type) = Scope (Derived_Type) then
7408 null;
7410 elsif In_Open_Scopes (Scope (Parent_Type))
7411 and then In_Private_Part (Scope (Parent_Type))
7412 then
7413 null;
7415 else
7416 Set_Has_Private_Ancestor (Derived_Type);
7417 end if;
7419 else
7420 Set_Has_Private_Ancestor
7421 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7422 end if;
7424 -- Before we start the previously documented transformations, here is
7425 -- little fix for size and alignment of tagged types. Normally when we
7426 -- derive type D from type P, we copy the size and alignment of P as the
7427 -- default for D, and in the absence of explicit representation clauses
7428 -- for D, the size and alignment are indeed the same as the parent.
7430 -- But this is wrong for tagged types, since fields may be added, and
7431 -- the default size may need to be larger, and the default alignment may
7432 -- need to be larger.
7434 -- We therefore reset the size and alignment fields in the tagged case.
7435 -- Note that the size and alignment will in any case be at least as
7436 -- large as the parent type (since the derived type has a copy of the
7437 -- parent type in the _parent field)
7439 -- The type is also marked as being tagged here, which is needed when
7440 -- processing components with a self-referential anonymous access type
7441 -- in the call to Check_Anonymous_Access_Components below. Note that
7442 -- this flag is also set later on for completeness.
7444 if Is_Tagged then
7445 Set_Is_Tagged_Type (Derived_Type);
7446 Init_Size_Align (Derived_Type);
7447 end if;
7449 -- STEP 0a: figure out what kind of derived type declaration we have
7451 if Private_Extension then
7452 Type_Def := N;
7453 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7455 else
7456 Type_Def := Type_Definition (N);
7458 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7459 -- Parent_Base can be a private type or private extension. However,
7460 -- for tagged types with an extension the newly added fields are
7461 -- visible and hence the Derived_Type is always an E_Record_Type.
7462 -- (except that the parent may have its own private fields).
7463 -- For untagged types we preserve the Ekind of the Parent_Base.
7465 if Present (Record_Extension_Part (Type_Def)) then
7466 Set_Ekind (Derived_Type, E_Record_Type);
7468 -- Create internal access types for components with anonymous
7469 -- access types.
7471 if Ada_Version >= Ada_2005 then
7472 Check_Anonymous_Access_Components
7473 (N, Derived_Type, Derived_Type,
7474 Component_List (Record_Extension_Part (Type_Def)));
7475 end if;
7477 else
7478 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7479 end if;
7480 end if;
7482 -- Indic can either be an N_Identifier if the subtype indication
7483 -- contains no constraint or an N_Subtype_Indication if the subtype
7484 -- indication has a constraint.
7486 Indic := Subtype_Indication (Type_Def);
7487 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7489 -- Check that the type has visible discriminants. The type may be
7490 -- a private type with unknown discriminants whose full view has
7491 -- discriminants which are invisible.
7493 if Constraint_Present then
7494 if not Has_Discriminants (Parent_Base)
7495 or else
7496 (Has_Unknown_Discriminants (Parent_Base)
7497 and then Is_Private_Type (Parent_Base))
7498 then
7499 Error_Msg_N
7500 ("invalid constraint: type has no discriminant",
7501 Constraint (Indic));
7503 Constraint_Present := False;
7504 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7506 elsif Is_Constrained (Parent_Type) then
7507 Error_Msg_N
7508 ("invalid constraint: parent type is already constrained",
7509 Constraint (Indic));
7511 Constraint_Present := False;
7512 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7513 end if;
7514 end if;
7516 -- STEP 0b: If needed, apply transformation given in point 5. above
7518 if not Private_Extension
7519 and then Has_Discriminants (Parent_Type)
7520 and then not Discriminant_Specs
7521 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7522 then
7523 -- First, we must analyze the constraint (see comment in point 5.)
7524 -- The constraint may come from the subtype indication of the full
7525 -- declaration.
7527 if Constraint_Present then
7528 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7530 -- If there is no explicit constraint, there might be one that is
7531 -- inherited from a constrained parent type. In that case verify that
7532 -- it conforms to the constraint in the partial view. In perverse
7533 -- cases the parent subtypes of the partial and full view can have
7534 -- different constraints.
7536 elsif Present (Stored_Constraint (Parent_Type)) then
7537 New_Discrs := Stored_Constraint (Parent_Type);
7539 else
7540 New_Discrs := No_Elist;
7541 end if;
7543 if Has_Discriminants (Derived_Type)
7544 and then Has_Private_Declaration (Derived_Type)
7545 and then Present (Discriminant_Constraint (Derived_Type))
7546 and then Present (New_Discrs)
7547 then
7548 -- Verify that constraints of the full view statically match
7549 -- those given in the partial view.
7551 declare
7552 C1, C2 : Elmt_Id;
7554 begin
7555 C1 := First_Elmt (New_Discrs);
7556 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7557 while Present (C1) and then Present (C2) loop
7558 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7559 or else
7560 (Is_OK_Static_Expression (Node (C1))
7561 and then Is_OK_Static_Expression (Node (C2))
7562 and then
7563 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7564 then
7565 null;
7567 else
7568 if Constraint_Present then
7569 Error_Msg_N
7570 ("constraint not conformant to previous declaration",
7571 Node (C1));
7572 else
7573 Error_Msg_N
7574 ("constraint of full view is incompatible "
7575 & "with partial view", N);
7576 end if;
7577 end if;
7579 Next_Elmt (C1);
7580 Next_Elmt (C2);
7581 end loop;
7582 end;
7583 end if;
7585 -- Insert and analyze the declaration for the unconstrained base type
7587 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7589 New_Decl :=
7590 Make_Full_Type_Declaration (Loc,
7591 Defining_Identifier => New_Base,
7592 Type_Definition =>
7593 Make_Derived_Type_Definition (Loc,
7594 Abstract_Present => Abstract_Present (Type_Def),
7595 Limited_Present => Limited_Present (Type_Def),
7596 Subtype_Indication =>
7597 New_Occurrence_Of (Parent_Base, Loc),
7598 Record_Extension_Part =>
7599 Relocate_Node (Record_Extension_Part (Type_Def)),
7600 Interface_List => Interface_List (Type_Def)));
7602 Set_Parent (New_Decl, Parent (N));
7603 Mark_Rewrite_Insertion (New_Decl);
7604 Insert_Before (N, New_Decl);
7606 -- In the extension case, make sure ancestor is frozen appropriately
7607 -- (see also non-discriminated case below).
7609 if Present (Record_Extension_Part (Type_Def))
7610 or else Is_Interface (Parent_Base)
7611 then
7612 Freeze_Before (New_Decl, Parent_Type);
7613 end if;
7615 -- Note that this call passes False for the Derive_Subps parameter
7616 -- because subprogram derivation is deferred until after creating
7617 -- the subtype (see below).
7619 Build_Derived_Type
7620 (New_Decl, Parent_Base, New_Base,
7621 Is_Completion => True, Derive_Subps => False);
7623 -- ??? This needs re-examination to determine whether the
7624 -- above call can simply be replaced by a call to Analyze.
7626 Set_Analyzed (New_Decl);
7628 -- Insert and analyze the declaration for the constrained subtype
7630 if Constraint_Present then
7631 New_Indic :=
7632 Make_Subtype_Indication (Loc,
7633 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7634 Constraint => Relocate_Node (Constraint (Indic)));
7636 else
7637 declare
7638 Constr_List : constant List_Id := New_List;
7639 C : Elmt_Id;
7640 Expr : Node_Id;
7642 begin
7643 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7644 while Present (C) loop
7645 Expr := Node (C);
7647 -- It is safe here to call New_Copy_Tree since
7648 -- Force_Evaluation was called on each constraint in
7649 -- Build_Discriminant_Constraints.
7651 Append (New_Copy_Tree (Expr), To => Constr_List);
7653 Next_Elmt (C);
7654 end loop;
7656 New_Indic :=
7657 Make_Subtype_Indication (Loc,
7658 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7659 Constraint =>
7660 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7661 end;
7662 end if;
7664 Rewrite (N,
7665 Make_Subtype_Declaration (Loc,
7666 Defining_Identifier => Derived_Type,
7667 Subtype_Indication => New_Indic));
7669 Analyze (N);
7671 -- Derivation of subprograms must be delayed until the full subtype
7672 -- has been established, to ensure proper overriding of subprograms
7673 -- inherited by full types. If the derivations occurred as part of
7674 -- the call to Build_Derived_Type above, then the check for type
7675 -- conformance would fail because earlier primitive subprograms
7676 -- could still refer to the full type prior the change to the new
7677 -- subtype and hence would not match the new base type created here.
7678 -- Subprograms are not derived, however, when Derive_Subps is False
7679 -- (since otherwise there could be redundant derivations).
7681 if Derive_Subps then
7682 Derive_Subprograms (Parent_Type, Derived_Type);
7683 end if;
7685 -- For tagged types the Discriminant_Constraint of the new base itype
7686 -- is inherited from the first subtype so that no subtype conformance
7687 -- problem arise when the first subtype overrides primitive
7688 -- operations inherited by the implicit base type.
7690 if Is_Tagged then
7691 Set_Discriminant_Constraint
7692 (New_Base, Discriminant_Constraint (Derived_Type));
7693 end if;
7695 return;
7696 end if;
7698 -- If we get here Derived_Type will have no discriminants or it will be
7699 -- a discriminated unconstrained base type.
7701 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7703 if Is_Tagged then
7705 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7706 -- The declaration of a specific descendant of an interface type
7707 -- freezes the interface type (RM 13.14).
7709 if not Private_Extension or else Is_Interface (Parent_Base) then
7710 Freeze_Before (N, Parent_Type);
7711 end if;
7713 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7714 -- cannot be declared at a deeper level than its parent type is
7715 -- removed. The check on derivation within a generic body is also
7716 -- relaxed, but there's a restriction that a derived tagged type
7717 -- cannot be declared in a generic body if it's derived directly
7718 -- or indirectly from a formal type of that generic.
7720 if Ada_Version >= Ada_2005 then
7721 if Present (Enclosing_Generic_Body (Derived_Type)) then
7722 declare
7723 Ancestor_Type : Entity_Id;
7725 begin
7726 -- Check to see if any ancestor of the derived type is a
7727 -- formal type.
7729 Ancestor_Type := Parent_Type;
7730 while not Is_Generic_Type (Ancestor_Type)
7731 and then Etype (Ancestor_Type) /= Ancestor_Type
7732 loop
7733 Ancestor_Type := Etype (Ancestor_Type);
7734 end loop;
7736 -- If the derived type does have a formal type as an
7737 -- ancestor, then it's an error if the derived type is
7738 -- declared within the body of the generic unit that
7739 -- declares the formal type in its generic formal part. It's
7740 -- sufficient to check whether the ancestor type is declared
7741 -- inside the same generic body as the derived type (such as
7742 -- within a nested generic spec), in which case the
7743 -- derivation is legal. If the formal type is declared
7744 -- outside of that generic body, then it's guaranteed that
7745 -- the derived type is declared within the generic body of
7746 -- the generic unit declaring the formal type.
7748 if Is_Generic_Type (Ancestor_Type)
7749 and then Enclosing_Generic_Body (Ancestor_Type) /=
7750 Enclosing_Generic_Body (Derived_Type)
7751 then
7752 Error_Msg_NE
7753 ("parent type of& must not be descendant of formal type"
7754 & " of an enclosing generic body",
7755 Indic, Derived_Type);
7756 end if;
7757 end;
7758 end if;
7760 elsif Type_Access_Level (Derived_Type) /=
7761 Type_Access_Level (Parent_Type)
7762 and then not Is_Generic_Type (Derived_Type)
7763 then
7764 if Is_Controlled (Parent_Type) then
7765 Error_Msg_N
7766 ("controlled type must be declared at the library level",
7767 Indic);
7768 else
7769 Error_Msg_N
7770 ("type extension at deeper accessibility level than parent",
7771 Indic);
7772 end if;
7774 else
7775 declare
7776 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7778 begin
7779 if Present (GB)
7780 and then GB /= Enclosing_Generic_Body (Parent_Base)
7781 then
7782 Error_Msg_NE
7783 ("parent type of& must not be outside generic body"
7784 & " (RM 3.9.1(4))",
7785 Indic, Derived_Type);
7786 end if;
7787 end;
7788 end if;
7789 end if;
7791 -- Ada 2005 (AI-251)
7793 if Ada_Version >= Ada_2005 and then Is_Tagged then
7795 -- "The declaration of a specific descendant of an interface type
7796 -- freezes the interface type" (RM 13.14).
7798 declare
7799 Iface : Node_Id;
7800 begin
7801 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7802 Iface := First (Interface_List (Type_Def));
7803 while Present (Iface) loop
7804 Freeze_Before (N, Etype (Iface));
7805 Next (Iface);
7806 end loop;
7807 end if;
7808 end;
7809 end if;
7811 -- STEP 1b : preliminary cleanup of the full view of private types
7813 -- If the type is already marked as having discriminants, then it's the
7814 -- completion of a private type or private extension and we need to
7815 -- retain the discriminants from the partial view if the current
7816 -- declaration has Discriminant_Specifications so that we can verify
7817 -- conformance. However, we must remove any existing components that
7818 -- were inherited from the parent (and attached in Copy_And_Swap)
7819 -- because the full type inherits all appropriate components anyway, and
7820 -- we do not want the partial view's components interfering.
7822 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7823 Discrim := First_Discriminant (Derived_Type);
7824 loop
7825 Last_Discrim := Discrim;
7826 Next_Discriminant (Discrim);
7827 exit when No (Discrim);
7828 end loop;
7830 Set_Last_Entity (Derived_Type, Last_Discrim);
7832 -- In all other cases wipe out the list of inherited components (even
7833 -- inherited discriminants), it will be properly rebuilt here.
7835 else
7836 Set_First_Entity (Derived_Type, Empty);
7837 Set_Last_Entity (Derived_Type, Empty);
7838 end if;
7840 -- STEP 1c: Initialize some flags for the Derived_Type
7842 -- The following flags must be initialized here so that
7843 -- Process_Discriminants can check that discriminants of tagged types do
7844 -- not have a default initial value and that access discriminants are
7845 -- only specified for limited records. For completeness, these flags are
7846 -- also initialized along with all the other flags below.
7848 -- AI-419: Limitedness is not inherited from an interface parent, so to
7849 -- be limited in that case the type must be explicitly declared as
7850 -- limited. However, task and protected interfaces are always limited.
7852 if Limited_Present (Type_Def) then
7853 Set_Is_Limited_Record (Derived_Type);
7855 elsif Is_Limited_Record (Parent_Type)
7856 or else (Present (Full_View (Parent_Type))
7857 and then Is_Limited_Record (Full_View (Parent_Type)))
7858 then
7859 if not Is_Interface (Parent_Type)
7860 or else Is_Synchronized_Interface (Parent_Type)
7861 or else Is_Protected_Interface (Parent_Type)
7862 or else Is_Task_Interface (Parent_Type)
7863 then
7864 Set_Is_Limited_Record (Derived_Type);
7865 end if;
7866 end if;
7868 -- STEP 2a: process discriminants of derived type if any
7870 Push_Scope (Derived_Type);
7872 if Discriminant_Specs then
7873 Set_Has_Unknown_Discriminants (Derived_Type, False);
7875 -- The following call initializes fields Has_Discriminants and
7876 -- Discriminant_Constraint, unless we are processing the completion
7877 -- of a private type declaration.
7879 Check_Or_Process_Discriminants (N, Derived_Type);
7881 -- For untagged types, the constraint on the Parent_Type must be
7882 -- present and is used to rename the discriminants.
7884 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7885 Error_Msg_N ("untagged parent must have discriminants", Indic);
7887 elsif not Is_Tagged and then not Constraint_Present then
7888 Error_Msg_N
7889 ("discriminant constraint needed for derived untagged records",
7890 Indic);
7892 -- Otherwise the parent subtype must be constrained unless we have a
7893 -- private extension.
7895 elsif not Constraint_Present
7896 and then not Private_Extension
7897 and then not Is_Constrained (Parent_Type)
7898 then
7899 Error_Msg_N
7900 ("unconstrained type not allowed in this context", Indic);
7902 elsif Constraint_Present then
7903 -- The following call sets the field Corresponding_Discriminant
7904 -- for the discriminants in the Derived_Type.
7906 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7908 -- For untagged types all new discriminants must rename
7909 -- discriminants in the parent. For private extensions new
7910 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7912 Discrim := First_Discriminant (Derived_Type);
7913 while Present (Discrim) loop
7914 if not Is_Tagged
7915 and then No (Corresponding_Discriminant (Discrim))
7916 then
7917 Error_Msg_N
7918 ("new discriminants must constrain old ones", Discrim);
7920 elsif Private_Extension
7921 and then Present (Corresponding_Discriminant (Discrim))
7922 then
7923 Error_Msg_N
7924 ("only static constraints allowed for parent"
7925 & " discriminants in the partial view", Indic);
7926 exit;
7927 end if;
7929 -- If a new discriminant is used in the constraint, then its
7930 -- subtype must be statically compatible with the parent
7931 -- discriminant's subtype (3.7(15)).
7933 -- However, if the record contains an array constrained by
7934 -- the discriminant but with some different bound, the compiler
7935 -- attemps to create a smaller range for the discriminant type.
7936 -- (See exp_ch3.Adjust_Discriminants). In this case, where
7937 -- the discriminant type is a scalar type, the check must use
7938 -- the original discriminant type in the parent declaration.
7940 declare
7941 Corr_Disc : constant Entity_Id :=
7942 Corresponding_Discriminant (Discrim);
7943 Disc_Type : constant Entity_Id := Etype (Discrim);
7944 Corr_Type : Entity_Id;
7946 begin
7947 if Present (Corr_Disc) then
7948 if Is_Scalar_Type (Disc_Type) then
7949 Corr_Type :=
7950 Entity (Discriminant_Type (Parent (Corr_Disc)));
7951 else
7952 Corr_Type := Etype (Corr_Disc);
7953 end if;
7955 if not
7956 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
7957 then
7958 Error_Msg_N
7959 ("subtype must be compatible "
7960 & "with parent discriminant",
7961 Discrim);
7962 end if;
7963 end if;
7964 end;
7966 Next_Discriminant (Discrim);
7967 end loop;
7969 -- Check whether the constraints of the full view statically
7970 -- match those imposed by the parent subtype [7.3(13)].
7972 if Present (Stored_Constraint (Derived_Type)) then
7973 declare
7974 C1, C2 : Elmt_Id;
7976 begin
7977 C1 := First_Elmt (Discs);
7978 C2 := First_Elmt (Stored_Constraint (Derived_Type));
7979 while Present (C1) and then Present (C2) loop
7980 if not
7981 Fully_Conformant_Expressions (Node (C1), Node (C2))
7982 then
7983 Error_Msg_N
7984 ("not conformant with previous declaration",
7985 Node (C1));
7986 end if;
7988 Next_Elmt (C1);
7989 Next_Elmt (C2);
7990 end loop;
7991 end;
7992 end if;
7993 end if;
7995 -- STEP 2b: No new discriminants, inherit discriminants if any
7997 else
7998 if Private_Extension then
7999 Set_Has_Unknown_Discriminants
8000 (Derived_Type,
8001 Has_Unknown_Discriminants (Parent_Type)
8002 or else Unknown_Discriminants_Present (N));
8004 -- The partial view of the parent may have unknown discriminants,
8005 -- but if the full view has discriminants and the parent type is
8006 -- in scope they must be inherited.
8008 elsif Has_Unknown_Discriminants (Parent_Type)
8009 and then
8010 (not Has_Discriminants (Parent_Type)
8011 or else not In_Open_Scopes (Scope (Parent_Type)))
8012 then
8013 Set_Has_Unknown_Discriminants (Derived_Type);
8014 end if;
8016 if not Has_Unknown_Discriminants (Derived_Type)
8017 and then not Has_Unknown_Discriminants (Parent_Base)
8018 and then Has_Discriminants (Parent_Type)
8019 then
8020 Inherit_Discrims := True;
8021 Set_Has_Discriminants
8022 (Derived_Type, True);
8023 Set_Discriminant_Constraint
8024 (Derived_Type, Discriminant_Constraint (Parent_Base));
8025 end if;
8027 -- The following test is true for private types (remember
8028 -- transformation 5. is not applied to those) and in an error
8029 -- situation.
8031 if Constraint_Present then
8032 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8033 end if;
8035 -- For now mark a new derived type as constrained only if it has no
8036 -- discriminants. At the end of Build_Derived_Record_Type we properly
8037 -- set this flag in the case of private extensions. See comments in
8038 -- point 9. just before body of Build_Derived_Record_Type.
8040 Set_Is_Constrained
8041 (Derived_Type,
8042 not (Inherit_Discrims
8043 or else Has_Unknown_Discriminants (Derived_Type)));
8044 end if;
8046 -- STEP 3: initialize fields of derived type
8048 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8049 Set_Stored_Constraint (Derived_Type, No_Elist);
8051 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8052 -- but cannot be interfaces
8054 if not Private_Extension
8055 and then Ekind (Derived_Type) /= E_Private_Type
8056 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8057 then
8058 if Interface_Present (Type_Def) then
8059 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8060 end if;
8062 Set_Interfaces (Derived_Type, No_Elist);
8063 end if;
8065 -- Fields inherited from the Parent_Type
8067 Set_Has_Specified_Layout
8068 (Derived_Type, Has_Specified_Layout (Parent_Type));
8069 Set_Is_Limited_Composite
8070 (Derived_Type, Is_Limited_Composite (Parent_Type));
8071 Set_Is_Private_Composite
8072 (Derived_Type, Is_Private_Composite (Parent_Type));
8074 -- Fields inherited from the Parent_Base
8076 Set_Has_Controlled_Component
8077 (Derived_Type, Has_Controlled_Component (Parent_Base));
8078 Set_Has_Non_Standard_Rep
8079 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8080 Set_Has_Primitive_Operations
8081 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8083 -- Fields inherited from the Parent_Base in the non-private case
8085 if Ekind (Derived_Type) = E_Record_Type then
8086 Set_Has_Complex_Representation
8087 (Derived_Type, Has_Complex_Representation (Parent_Base));
8088 end if;
8090 -- Fields inherited from the Parent_Base for record types
8092 if Is_Record_Type (Derived_Type) then
8094 declare
8095 Parent_Full : Entity_Id;
8097 begin
8098 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8099 -- Parent_Base can be a private type or private extension. Go
8100 -- to the full view here to get the E_Record_Type specific flags.
8102 if Present (Full_View (Parent_Base)) then
8103 Parent_Full := Full_View (Parent_Base);
8104 else
8105 Parent_Full := Parent_Base;
8106 end if;
8108 Set_OK_To_Reorder_Components
8109 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8110 end;
8111 end if;
8113 -- Set fields for private derived types
8115 if Is_Private_Type (Derived_Type) then
8116 Set_Depends_On_Private (Derived_Type, True);
8117 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8119 -- Inherit fields from non private record types. If this is the
8120 -- completion of a derivation from a private type, the parent itself
8121 -- is private, and the attributes come from its full view, which must
8122 -- be present.
8124 else
8125 if Is_Private_Type (Parent_Base)
8126 and then not Is_Record_Type (Parent_Base)
8127 then
8128 Set_Component_Alignment
8129 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8130 Set_C_Pass_By_Copy
8131 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8132 else
8133 Set_Component_Alignment
8134 (Derived_Type, Component_Alignment (Parent_Base));
8135 Set_C_Pass_By_Copy
8136 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8137 end if;
8138 end if;
8140 -- Set fields for tagged types
8142 if Is_Tagged then
8143 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8145 -- All tagged types defined in Ada.Finalization are controlled
8147 if Chars (Scope (Derived_Type)) = Name_Finalization
8148 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8149 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8150 then
8151 Set_Is_Controlled (Derived_Type);
8152 else
8153 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8154 end if;
8156 -- Minor optimization: there is no need to generate the class-wide
8157 -- entity associated with an underlying record view.
8159 if not Is_Underlying_Record_View (Derived_Type) then
8160 Make_Class_Wide_Type (Derived_Type);
8161 end if;
8163 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8165 if Has_Discriminants (Derived_Type)
8166 and then Constraint_Present
8167 then
8168 Set_Stored_Constraint
8169 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8170 end if;
8172 if Ada_Version >= Ada_2005 then
8173 declare
8174 Ifaces_List : Elist_Id;
8176 begin
8177 -- Checks rules 3.9.4 (13/2 and 14/2)
8179 if Comes_From_Source (Derived_Type)
8180 and then not Is_Private_Type (Derived_Type)
8181 and then Is_Interface (Parent_Type)
8182 and then not Is_Interface (Derived_Type)
8183 then
8184 if Is_Task_Interface (Parent_Type) then
8185 Error_Msg_N
8186 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8187 Derived_Type);
8189 elsif Is_Protected_Interface (Parent_Type) then
8190 Error_Msg_N
8191 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8192 Derived_Type);
8193 end if;
8194 end if;
8196 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8198 Check_Interfaces (N, Type_Def);
8200 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8201 -- not already in the parents.
8203 Collect_Interfaces
8204 (T => Derived_Type,
8205 Ifaces_List => Ifaces_List,
8206 Exclude_Parents => True);
8208 Set_Interfaces (Derived_Type, Ifaces_List);
8210 -- If the derived type is the anonymous type created for
8211 -- a declaration whose parent has a constraint, propagate
8212 -- the interface list to the source type. This must be done
8213 -- prior to the completion of the analysis of the source type
8214 -- because the components in the extension may contain current
8215 -- instances whose legality depends on some ancestor.
8217 if Is_Itype (Derived_Type) then
8218 declare
8219 Def : constant Node_Id :=
8220 Associated_Node_For_Itype (Derived_Type);
8221 begin
8222 if Present (Def)
8223 and then Nkind (Def) = N_Full_Type_Declaration
8224 then
8225 Set_Interfaces
8226 (Defining_Identifier (Def), Ifaces_List);
8227 end if;
8228 end;
8229 end if;
8230 end;
8231 end if;
8233 else
8234 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8235 Set_Has_Non_Standard_Rep
8236 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8237 end if;
8239 -- STEP 4: Inherit components from the parent base and constrain them.
8240 -- Apply the second transformation described in point 6. above.
8242 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8243 or else not Has_Discriminants (Parent_Type)
8244 or else not Is_Constrained (Parent_Type)
8245 then
8246 Constrs := Discs;
8247 else
8248 Constrs := Discriminant_Constraint (Parent_Type);
8249 end if;
8251 Assoc_List :=
8252 Inherit_Components
8253 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8255 -- STEP 5a: Copy the parent record declaration for untagged types
8257 if not Is_Tagged then
8259 -- Discriminant_Constraint (Derived_Type) has been properly
8260 -- constructed. Save it and temporarily set it to Empty because we
8261 -- do not want the call to New_Copy_Tree below to mess this list.
8263 if Has_Discriminants (Derived_Type) then
8264 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8265 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8266 else
8267 Save_Discr_Constr := No_Elist;
8268 end if;
8270 -- Save the Etype field of Derived_Type. It is correctly set now,
8271 -- but the call to New_Copy tree may remap it to point to itself,
8272 -- which is not what we want. Ditto for the Next_Entity field.
8274 Save_Etype := Etype (Derived_Type);
8275 Save_Next_Entity := Next_Entity (Derived_Type);
8277 -- Assoc_List maps all stored discriminants in the Parent_Base to
8278 -- stored discriminants in the Derived_Type. It is fundamental that
8279 -- no types or itypes with discriminants other than the stored
8280 -- discriminants appear in the entities declared inside
8281 -- Derived_Type, since the back end cannot deal with it.
8283 New_Decl :=
8284 New_Copy_Tree
8285 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8287 -- Restore the fields saved prior to the New_Copy_Tree call
8288 -- and compute the stored constraint.
8290 Set_Etype (Derived_Type, Save_Etype);
8291 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8293 if Has_Discriminants (Derived_Type) then
8294 Set_Discriminant_Constraint
8295 (Derived_Type, Save_Discr_Constr);
8296 Set_Stored_Constraint
8297 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8298 Replace_Components (Derived_Type, New_Decl);
8299 Set_Has_Implicit_Dereference
8300 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8301 end if;
8303 -- Insert the new derived type declaration
8305 Rewrite (N, New_Decl);
8307 -- STEP 5b: Complete the processing for record extensions in generics
8309 -- There is no completion for record extensions declared in the
8310 -- parameter part of a generic, so we need to complete processing for
8311 -- these generic record extensions here. The Record_Type_Definition call
8312 -- will change the Ekind of the components from E_Void to E_Component.
8314 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8315 Record_Type_Definition (Empty, Derived_Type);
8317 -- STEP 5c: Process the record extension for non private tagged types
8319 elsif not Private_Extension then
8321 -- Add the _parent field in the derived type
8323 Expand_Record_Extension (Derived_Type, Type_Def);
8325 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8326 -- implemented interfaces if we are in expansion mode
8328 if Expander_Active
8329 and then Has_Interfaces (Derived_Type)
8330 then
8331 Add_Interface_Tag_Components (N, Derived_Type);
8332 end if;
8334 -- Analyze the record extension
8336 Record_Type_Definition
8337 (Record_Extension_Part (Type_Def), Derived_Type);
8338 end if;
8340 End_Scope;
8342 -- Nothing else to do if there is an error in the derivation.
8343 -- An unusual case: the full view may be derived from a type in an
8344 -- instance, when the partial view was used illegally as an actual
8345 -- in that instance, leading to a circular definition.
8347 if Etype (Derived_Type) = Any_Type
8348 or else Etype (Parent_Type) = Derived_Type
8349 then
8350 return;
8351 end if;
8353 -- Set delayed freeze and then derive subprograms, we need to do
8354 -- this in this order so that derived subprograms inherit the
8355 -- derived freeze if necessary.
8357 Set_Has_Delayed_Freeze (Derived_Type);
8359 if Derive_Subps then
8360 Derive_Subprograms (Parent_Type, Derived_Type);
8361 end if;
8363 -- If we have a private extension which defines a constrained derived
8364 -- type mark as constrained here after we have derived subprograms. See
8365 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8367 if Private_Extension and then Inherit_Discrims then
8368 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8369 Set_Is_Constrained (Derived_Type, True);
8370 Set_Discriminant_Constraint (Derived_Type, Discs);
8372 elsif Is_Constrained (Parent_Type) then
8373 Set_Is_Constrained
8374 (Derived_Type, True);
8375 Set_Discriminant_Constraint
8376 (Derived_Type, Discriminant_Constraint (Parent_Type));
8377 end if;
8378 end if;
8380 -- Update the class-wide type, which shares the now-completed entity
8381 -- list with its specific type. In case of underlying record views,
8382 -- we do not generate the corresponding class wide entity.
8384 if Is_Tagged
8385 and then not Is_Underlying_Record_View (Derived_Type)
8386 then
8387 Set_First_Entity
8388 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8389 Set_Last_Entity
8390 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8391 end if;
8393 Check_Function_Writable_Actuals (N);
8394 end Build_Derived_Record_Type;
8396 ------------------------
8397 -- Build_Derived_Type --
8398 ------------------------
8400 procedure Build_Derived_Type
8401 (N : Node_Id;
8402 Parent_Type : Entity_Id;
8403 Derived_Type : Entity_Id;
8404 Is_Completion : Boolean;
8405 Derive_Subps : Boolean := True)
8407 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8409 begin
8410 -- Set common attributes
8412 Set_Scope (Derived_Type, Current_Scope);
8414 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8415 Set_Etype (Derived_Type, Parent_Base);
8416 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8418 Set_Size_Info (Derived_Type, Parent_Type);
8419 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8420 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8421 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8423 -- If the parent type is a private subtype, the convention on the base
8424 -- type may be set in the private part, and not propagated to the
8425 -- subtype until later, so we obtain the convention from the base type.
8427 Set_Convention (Derived_Type, Convention (Parent_Base));
8429 -- Propagate invariant information. The new type has invariants if
8430 -- they are inherited from the parent type, and these invariants can
8431 -- be further inherited, so both flags are set.
8433 -- We similarly inherit predicates
8435 if Has_Predicates (Parent_Type) then
8436 Set_Has_Predicates (Derived_Type);
8437 end if;
8439 -- The derived type inherits the representation clauses of the parent.
8440 -- However, for a private type that is completed by a derivation, there
8441 -- may be operation attributes that have been specified already (stream
8442 -- attributes and External_Tag) and those must be provided. Finally,
8443 -- if the partial view is a private extension, the representation items
8444 -- of the parent have been inherited already, and should not be chained
8445 -- twice to the derived type.
8447 if Is_Tagged_Type (Parent_Type)
8448 and then Present (First_Rep_Item (Derived_Type))
8449 then
8450 -- The existing items are either operational items or items inherited
8451 -- from a private extension declaration.
8453 declare
8454 Rep : Node_Id;
8455 -- Used to iterate over representation items of the derived type
8457 Last_Rep : Node_Id;
8458 -- Last representation item of the (non-empty) representation
8459 -- item list of the derived type.
8461 Found : Boolean := False;
8463 begin
8464 Rep := First_Rep_Item (Derived_Type);
8465 Last_Rep := Rep;
8466 while Present (Rep) loop
8467 if Rep = First_Rep_Item (Parent_Type) then
8468 Found := True;
8469 exit;
8471 else
8472 Rep := Next_Rep_Item (Rep);
8474 if Present (Rep) then
8475 Last_Rep := Rep;
8476 end if;
8477 end if;
8478 end loop;
8480 -- Here if we either encountered the parent type's first rep
8481 -- item on the derived type's rep item list (in which case
8482 -- Found is True, and we have nothing else to do), or if we
8483 -- reached the last rep item of the derived type, which is
8484 -- Last_Rep, in which case we further chain the parent type's
8485 -- rep items to those of the derived type.
8487 if not Found then
8488 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8489 end if;
8490 end;
8492 else
8493 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8494 end if;
8496 -- If the parent type has delayed rep aspects, then mark the derived
8497 -- type as possibly inheriting a delayed rep aspect.
8499 if Has_Delayed_Rep_Aspects (Parent_Type) then
8500 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8501 end if;
8503 -- Type dependent processing
8505 case Ekind (Parent_Type) is
8506 when Numeric_Kind =>
8507 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8509 when Array_Kind =>
8510 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8512 when E_Record_Type
8513 | E_Record_Subtype
8514 | Class_Wide_Kind =>
8515 Build_Derived_Record_Type
8516 (N, Parent_Type, Derived_Type, Derive_Subps);
8517 return;
8519 when Enumeration_Kind =>
8520 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8522 when Access_Kind =>
8523 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8525 when Incomplete_Or_Private_Kind =>
8526 Build_Derived_Private_Type
8527 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8529 -- For discriminated types, the derivation includes deriving
8530 -- primitive operations. For others it is done below.
8532 if Is_Tagged_Type (Parent_Type)
8533 or else Has_Discriminants (Parent_Type)
8534 or else (Present (Full_View (Parent_Type))
8535 and then Has_Discriminants (Full_View (Parent_Type)))
8536 then
8537 return;
8538 end if;
8540 when Concurrent_Kind =>
8541 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8543 when others =>
8544 raise Program_Error;
8545 end case;
8547 -- Nothing more to do if some error occurred
8549 if Etype (Derived_Type) = Any_Type then
8550 return;
8551 end if;
8553 -- Set delayed freeze and then derive subprograms, we need to do this
8554 -- in this order so that derived subprograms inherit the derived freeze
8555 -- if necessary.
8557 Set_Has_Delayed_Freeze (Derived_Type);
8559 if Derive_Subps then
8560 Derive_Subprograms (Parent_Type, Derived_Type);
8561 end if;
8563 Set_Has_Primitive_Operations
8564 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8565 end Build_Derived_Type;
8567 -----------------------
8568 -- Build_Discriminal --
8569 -----------------------
8571 procedure Build_Discriminal (Discrim : Entity_Id) is
8572 D_Minal : Entity_Id;
8573 CR_Disc : Entity_Id;
8575 begin
8576 -- A discriminal has the same name as the discriminant
8578 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8580 Set_Ekind (D_Minal, E_In_Parameter);
8581 Set_Mechanism (D_Minal, Default_Mechanism);
8582 Set_Etype (D_Minal, Etype (Discrim));
8583 Set_Scope (D_Minal, Current_Scope);
8585 Set_Discriminal (Discrim, D_Minal);
8586 Set_Discriminal_Link (D_Minal, Discrim);
8588 -- For task types, build at once the discriminants of the corresponding
8589 -- record, which are needed if discriminants are used in entry defaults
8590 -- and in family bounds.
8592 if Is_Concurrent_Type (Current_Scope)
8593 or else Is_Limited_Type (Current_Scope)
8594 then
8595 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8597 Set_Ekind (CR_Disc, E_In_Parameter);
8598 Set_Mechanism (CR_Disc, Default_Mechanism);
8599 Set_Etype (CR_Disc, Etype (Discrim));
8600 Set_Scope (CR_Disc, Current_Scope);
8601 Set_Discriminal_Link (CR_Disc, Discrim);
8602 Set_CR_Discriminant (Discrim, CR_Disc);
8603 end if;
8604 end Build_Discriminal;
8606 ------------------------------------
8607 -- Build_Discriminant_Constraints --
8608 ------------------------------------
8610 function Build_Discriminant_Constraints
8611 (T : Entity_Id;
8612 Def : Node_Id;
8613 Derived_Def : Boolean := False) return Elist_Id
8615 C : constant Node_Id := Constraint (Def);
8616 Nb_Discr : constant Nat := Number_Discriminants (T);
8618 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8619 -- Saves the expression corresponding to a given discriminant in T
8621 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8622 -- Return the Position number within array Discr_Expr of a discriminant
8623 -- D within the discriminant list of the discriminated type T.
8625 procedure Process_Discriminant_Expression
8626 (Expr : Node_Id;
8627 D : Entity_Id);
8628 -- If this is a discriminant constraint on a partial view, do not
8629 -- generate an overflow check on the discriminant expression. The check
8630 -- will be generated when constraining the full view. Otherwise the
8631 -- backend creates duplicate symbols for the temporaries corresponding
8632 -- to the expressions to be checked, causing spurious assembler errors.
8634 ------------------
8635 -- Pos_Of_Discr --
8636 ------------------
8638 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8639 Disc : Entity_Id;
8641 begin
8642 Disc := First_Discriminant (T);
8643 for J in Discr_Expr'Range loop
8644 if Disc = D then
8645 return J;
8646 end if;
8648 Next_Discriminant (Disc);
8649 end loop;
8651 -- Note: Since this function is called on discriminants that are
8652 -- known to belong to the discriminated type, falling through the
8653 -- loop with no match signals an internal compiler error.
8655 raise Program_Error;
8656 end Pos_Of_Discr;
8658 -------------------------------------
8659 -- Process_Discriminant_Expression --
8660 -------------------------------------
8662 procedure Process_Discriminant_Expression
8663 (Expr : Node_Id;
8664 D : Entity_Id)
8666 BDT : constant Entity_Id := Base_Type (Etype (D));
8668 begin
8669 -- If this is a discriminant constraint on a partial view, do
8670 -- not generate an overflow on the discriminant expression. The
8671 -- check will be generated when constraining the full view.
8673 if Is_Private_Type (T)
8674 and then Present (Full_View (T))
8675 then
8676 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8677 else
8678 Analyze_And_Resolve (Expr, BDT);
8679 end if;
8680 end Process_Discriminant_Expression;
8682 -- Declarations local to Build_Discriminant_Constraints
8684 Discr : Entity_Id;
8685 E : Entity_Id;
8686 Elist : constant Elist_Id := New_Elmt_List;
8688 Constr : Node_Id;
8689 Expr : Node_Id;
8690 Id : Node_Id;
8691 Position : Nat;
8692 Found : Boolean;
8694 Discrim_Present : Boolean := False;
8696 -- Start of processing for Build_Discriminant_Constraints
8698 begin
8699 -- The following loop will process positional associations only.
8700 -- For a positional association, the (single) discriminant is
8701 -- implicitly specified by position, in textual order (RM 3.7.2).
8703 Discr := First_Discriminant (T);
8704 Constr := First (Constraints (C));
8705 for D in Discr_Expr'Range loop
8706 exit when Nkind (Constr) = N_Discriminant_Association;
8708 if No (Constr) then
8709 Error_Msg_N ("too few discriminants given in constraint", C);
8710 return New_Elmt_List;
8712 elsif Nkind (Constr) = N_Range
8713 or else (Nkind (Constr) = N_Attribute_Reference
8714 and then
8715 Attribute_Name (Constr) = Name_Range)
8716 then
8717 Error_Msg_N
8718 ("a range is not a valid discriminant constraint", Constr);
8719 Discr_Expr (D) := Error;
8721 else
8722 Process_Discriminant_Expression (Constr, Discr);
8723 Discr_Expr (D) := Constr;
8724 end if;
8726 Next_Discriminant (Discr);
8727 Next (Constr);
8728 end loop;
8730 if No (Discr) and then Present (Constr) then
8731 Error_Msg_N ("too many discriminants given in constraint", Constr);
8732 return New_Elmt_List;
8733 end if;
8735 -- Named associations can be given in any order, but if both positional
8736 -- and named associations are used in the same discriminant constraint,
8737 -- then positional associations must occur first, at their normal
8738 -- position. Hence once a named association is used, the rest of the
8739 -- discriminant constraint must use only named associations.
8741 while Present (Constr) loop
8743 -- Positional association forbidden after a named association
8745 if Nkind (Constr) /= N_Discriminant_Association then
8746 Error_Msg_N ("positional association follows named one", Constr);
8747 return New_Elmt_List;
8749 -- Otherwise it is a named association
8751 else
8752 -- E records the type of the discriminants in the named
8753 -- association. All the discriminants specified in the same name
8754 -- association must have the same type.
8756 E := Empty;
8758 -- Search the list of discriminants in T to see if the simple name
8759 -- given in the constraint matches any of them.
8761 Id := First (Selector_Names (Constr));
8762 while Present (Id) loop
8763 Found := False;
8765 -- If Original_Discriminant is present, we are processing a
8766 -- generic instantiation and this is an instance node. We need
8767 -- to find the name of the corresponding discriminant in the
8768 -- actual record type T and not the name of the discriminant in
8769 -- the generic formal. Example:
8771 -- generic
8772 -- type G (D : int) is private;
8773 -- package P is
8774 -- subtype W is G (D => 1);
8775 -- end package;
8776 -- type Rec (X : int) is record ... end record;
8777 -- package Q is new P (G => Rec);
8779 -- At the point of the instantiation, formal type G is Rec
8780 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8781 -- which really looks like "subtype W is Rec (D => 1);" at
8782 -- the point of instantiation, we want to find the discriminant
8783 -- that corresponds to D in Rec, i.e. X.
8785 if Present (Original_Discriminant (Id))
8786 and then In_Instance
8787 then
8788 Discr := Find_Corresponding_Discriminant (Id, T);
8789 Found := True;
8791 else
8792 Discr := First_Discriminant (T);
8793 while Present (Discr) loop
8794 if Chars (Discr) = Chars (Id) then
8795 Found := True;
8796 exit;
8797 end if;
8799 Next_Discriminant (Discr);
8800 end loop;
8802 if not Found then
8803 Error_Msg_N ("& does not match any discriminant", Id);
8804 return New_Elmt_List;
8806 -- If the parent type is a generic formal, preserve the
8807 -- name of the discriminant for subsequent instances.
8808 -- see comment at the beginning of this if statement.
8810 elsif Is_Generic_Type (Root_Type (T)) then
8811 Set_Original_Discriminant (Id, Discr);
8812 end if;
8813 end if;
8815 Position := Pos_Of_Discr (T, Discr);
8817 if Present (Discr_Expr (Position)) then
8818 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8820 else
8821 -- Each discriminant specified in the same named association
8822 -- must be associated with a separate copy of the
8823 -- corresponding expression.
8825 if Present (Next (Id)) then
8826 Expr := New_Copy_Tree (Expression (Constr));
8827 Set_Parent (Expr, Parent (Expression (Constr)));
8828 else
8829 Expr := Expression (Constr);
8830 end if;
8832 Discr_Expr (Position) := Expr;
8833 Process_Discriminant_Expression (Expr, Discr);
8834 end if;
8836 -- A discriminant association with more than one discriminant
8837 -- name is only allowed if the named discriminants are all of
8838 -- the same type (RM 3.7.1(8)).
8840 if E = Empty then
8841 E := Base_Type (Etype (Discr));
8843 elsif Base_Type (Etype (Discr)) /= E then
8844 Error_Msg_N
8845 ("all discriminants in an association " &
8846 "must have the same type", Id);
8847 end if;
8849 Next (Id);
8850 end loop;
8851 end if;
8853 Next (Constr);
8854 end loop;
8856 -- A discriminant constraint must provide exactly one value for each
8857 -- discriminant of the type (RM 3.7.1(8)).
8859 for J in Discr_Expr'Range loop
8860 if No (Discr_Expr (J)) then
8861 Error_Msg_N ("too few discriminants given in constraint", C);
8862 return New_Elmt_List;
8863 end if;
8864 end loop;
8866 -- Determine if there are discriminant expressions in the constraint
8868 for J in Discr_Expr'Range loop
8869 if Denotes_Discriminant
8870 (Discr_Expr (J), Check_Concurrent => True)
8871 then
8872 Discrim_Present := True;
8873 end if;
8874 end loop;
8876 -- Build an element list consisting of the expressions given in the
8877 -- discriminant constraint and apply the appropriate checks. The list
8878 -- is constructed after resolving any named discriminant associations
8879 -- and therefore the expressions appear in the textual order of the
8880 -- discriminants.
8882 Discr := First_Discriminant (T);
8883 for J in Discr_Expr'Range loop
8884 if Discr_Expr (J) /= Error then
8885 Append_Elmt (Discr_Expr (J), Elist);
8887 -- If any of the discriminant constraints is given by a
8888 -- discriminant and we are in a derived type declaration we
8889 -- have a discriminant renaming. Establish link between new
8890 -- and old discriminant.
8892 if Denotes_Discriminant (Discr_Expr (J)) then
8893 if Derived_Def then
8894 Set_Corresponding_Discriminant
8895 (Entity (Discr_Expr (J)), Discr);
8896 end if;
8898 -- Force the evaluation of non-discriminant expressions.
8899 -- If we have found a discriminant in the constraint 3.4(26)
8900 -- and 3.8(18) demand that no range checks are performed are
8901 -- after evaluation. If the constraint is for a component
8902 -- definition that has a per-object constraint, expressions are
8903 -- evaluated but not checked either. In all other cases perform
8904 -- a range check.
8906 else
8907 if Discrim_Present then
8908 null;
8910 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
8911 and then
8912 Has_Per_Object_Constraint
8913 (Defining_Identifier (Parent (Parent (Def))))
8914 then
8915 null;
8917 elsif Is_Access_Type (Etype (Discr)) then
8918 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
8920 else
8921 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
8922 end if;
8924 Force_Evaluation (Discr_Expr (J));
8925 end if;
8927 -- Check that the designated type of an access discriminant's
8928 -- expression is not a class-wide type unless the discriminant's
8929 -- designated type is also class-wide.
8931 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
8932 and then not Is_Class_Wide_Type
8933 (Designated_Type (Etype (Discr)))
8934 and then Etype (Discr_Expr (J)) /= Any_Type
8935 and then Is_Class_Wide_Type
8936 (Designated_Type (Etype (Discr_Expr (J))))
8937 then
8938 Wrong_Type (Discr_Expr (J), Etype (Discr));
8940 elsif Is_Access_Type (Etype (Discr))
8941 and then not Is_Access_Constant (Etype (Discr))
8942 and then Is_Access_Type (Etype (Discr_Expr (J)))
8943 and then Is_Access_Constant (Etype (Discr_Expr (J)))
8944 then
8945 Error_Msg_NE
8946 ("constraint for discriminant& must be access to variable",
8947 Def, Discr);
8948 end if;
8949 end if;
8951 Next_Discriminant (Discr);
8952 end loop;
8954 return Elist;
8955 end Build_Discriminant_Constraints;
8957 ---------------------------------
8958 -- Build_Discriminated_Subtype --
8959 ---------------------------------
8961 procedure Build_Discriminated_Subtype
8962 (T : Entity_Id;
8963 Def_Id : Entity_Id;
8964 Elist : Elist_Id;
8965 Related_Nod : Node_Id;
8966 For_Access : Boolean := False)
8968 Has_Discrs : constant Boolean := Has_Discriminants (T);
8969 Constrained : constant Boolean :=
8970 (Has_Discrs
8971 and then not Is_Empty_Elmt_List (Elist)
8972 and then not Is_Class_Wide_Type (T))
8973 or else Is_Constrained (T);
8975 begin
8976 if Ekind (T) = E_Record_Type then
8977 if For_Access then
8978 Set_Ekind (Def_Id, E_Private_Subtype);
8979 Set_Is_For_Access_Subtype (Def_Id, True);
8980 else
8981 Set_Ekind (Def_Id, E_Record_Subtype);
8982 end if;
8984 -- Inherit preelaboration flag from base, for types for which it
8985 -- may have been set: records, private types, protected types.
8987 Set_Known_To_Have_Preelab_Init
8988 (Def_Id, Known_To_Have_Preelab_Init (T));
8990 elsif Ekind (T) = E_Task_Type then
8991 Set_Ekind (Def_Id, E_Task_Subtype);
8993 elsif Ekind (T) = E_Protected_Type then
8994 Set_Ekind (Def_Id, E_Protected_Subtype);
8995 Set_Known_To_Have_Preelab_Init
8996 (Def_Id, Known_To_Have_Preelab_Init (T));
8998 elsif Is_Private_Type (T) then
8999 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9000 Set_Known_To_Have_Preelab_Init
9001 (Def_Id, Known_To_Have_Preelab_Init (T));
9003 -- Private subtypes may have private dependents
9005 Set_Private_Dependents (Def_Id, New_Elmt_List);
9007 elsif Is_Class_Wide_Type (T) then
9008 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9010 else
9011 -- Incomplete type. Attach subtype to list of dependents, to be
9012 -- completed with full view of parent type, unless is it the
9013 -- designated subtype of a record component within an init_proc.
9014 -- This last case arises for a component of an access type whose
9015 -- designated type is incomplete (e.g. a Taft Amendment type).
9016 -- The designated subtype is within an inner scope, and needs no
9017 -- elaboration, because only the access type is needed in the
9018 -- initialization procedure.
9020 Set_Ekind (Def_Id, Ekind (T));
9022 if For_Access and then Within_Init_Proc then
9023 null;
9024 else
9025 Append_Elmt (Def_Id, Private_Dependents (T));
9026 end if;
9027 end if;
9029 Set_Etype (Def_Id, T);
9030 Init_Size_Align (Def_Id);
9031 Set_Has_Discriminants (Def_Id, Has_Discrs);
9032 Set_Is_Constrained (Def_Id, Constrained);
9034 Set_First_Entity (Def_Id, First_Entity (T));
9035 Set_Last_Entity (Def_Id, Last_Entity (T));
9036 Set_Has_Implicit_Dereference
9037 (Def_Id, Has_Implicit_Dereference (T));
9039 -- If the subtype is the completion of a private declaration, there may
9040 -- have been representation clauses for the partial view, and they must
9041 -- be preserved. Build_Derived_Type chains the inherited clauses with
9042 -- the ones appearing on the extension. If this comes from a subtype
9043 -- declaration, all clauses are inherited.
9045 if No (First_Rep_Item (Def_Id)) then
9046 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9047 end if;
9049 if Is_Tagged_Type (T) then
9050 Set_Is_Tagged_Type (Def_Id);
9051 Make_Class_Wide_Type (Def_Id);
9052 end if;
9054 Set_Stored_Constraint (Def_Id, No_Elist);
9056 if Has_Discrs then
9057 Set_Discriminant_Constraint (Def_Id, Elist);
9058 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9059 end if;
9061 if Is_Tagged_Type (T) then
9063 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9064 -- concurrent record type (which has the list of primitive
9065 -- operations).
9067 if Ada_Version >= Ada_2005
9068 and then Is_Concurrent_Type (T)
9069 then
9070 Set_Corresponding_Record_Type (Def_Id,
9071 Corresponding_Record_Type (T));
9072 else
9073 Set_Direct_Primitive_Operations (Def_Id,
9074 Direct_Primitive_Operations (T));
9075 end if;
9077 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9078 end if;
9080 -- Subtypes introduced by component declarations do not need to be
9081 -- marked as delayed, and do not get freeze nodes, because the semantics
9082 -- verifies that the parents of the subtypes are frozen before the
9083 -- enclosing record is frozen.
9085 if not Is_Type (Scope (Def_Id)) then
9086 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9088 if Is_Private_Type (T)
9089 and then Present (Full_View (T))
9090 then
9091 Conditional_Delay (Def_Id, Full_View (T));
9092 else
9093 Conditional_Delay (Def_Id, T);
9094 end if;
9095 end if;
9097 if Is_Record_Type (T) then
9098 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9100 if Has_Discrs
9101 and then not Is_Empty_Elmt_List (Elist)
9102 and then not For_Access
9103 then
9104 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9105 elsif not For_Access then
9106 Set_Cloned_Subtype (Def_Id, T);
9107 end if;
9108 end if;
9109 end Build_Discriminated_Subtype;
9111 ---------------------------
9112 -- Build_Itype_Reference --
9113 ---------------------------
9115 procedure Build_Itype_Reference
9116 (Ityp : Entity_Id;
9117 Nod : Node_Id)
9119 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9120 begin
9122 -- Itype references are only created for use by the back-end
9124 if Inside_A_Generic then
9125 return;
9126 else
9127 Set_Itype (IR, Ityp);
9128 Insert_After (Nod, IR);
9129 end if;
9130 end Build_Itype_Reference;
9132 ------------------------
9133 -- Build_Scalar_Bound --
9134 ------------------------
9136 function Build_Scalar_Bound
9137 (Bound : Node_Id;
9138 Par_T : Entity_Id;
9139 Der_T : Entity_Id) return Node_Id
9141 New_Bound : Entity_Id;
9143 begin
9144 -- Note: not clear why this is needed, how can the original bound
9145 -- be unanalyzed at this point? and if it is, what business do we
9146 -- have messing around with it? and why is the base type of the
9147 -- parent type the right type for the resolution. It probably is
9148 -- not. It is OK for the new bound we are creating, but not for
9149 -- the old one??? Still if it never happens, no problem.
9151 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9153 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9154 New_Bound := New_Copy (Bound);
9155 Set_Etype (New_Bound, Der_T);
9156 Set_Analyzed (New_Bound);
9158 elsif Is_Entity_Name (Bound) then
9159 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9161 -- The following is almost certainly wrong. What business do we have
9162 -- relocating a node (Bound) that is presumably still attached to
9163 -- the tree elsewhere???
9165 else
9166 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9167 end if;
9169 Set_Etype (New_Bound, Der_T);
9170 return New_Bound;
9171 end Build_Scalar_Bound;
9173 --------------------------------
9174 -- Build_Underlying_Full_View --
9175 --------------------------------
9177 procedure Build_Underlying_Full_View
9178 (N : Node_Id;
9179 Typ : Entity_Id;
9180 Par : Entity_Id)
9182 Loc : constant Source_Ptr := Sloc (N);
9183 Subt : constant Entity_Id :=
9184 Make_Defining_Identifier
9185 (Loc, New_External_Name (Chars (Typ), 'S'));
9187 Constr : Node_Id;
9188 Indic : Node_Id;
9189 C : Node_Id;
9190 Id : Node_Id;
9192 procedure Set_Discriminant_Name (Id : Node_Id);
9193 -- If the derived type has discriminants, they may rename discriminants
9194 -- of the parent. When building the full view of the parent, we need to
9195 -- recover the names of the original discriminants if the constraint is
9196 -- given by named associations.
9198 ---------------------------
9199 -- Set_Discriminant_Name --
9200 ---------------------------
9202 procedure Set_Discriminant_Name (Id : Node_Id) is
9203 Disc : Entity_Id;
9205 begin
9206 Set_Original_Discriminant (Id, Empty);
9208 if Has_Discriminants (Typ) then
9209 Disc := First_Discriminant (Typ);
9210 while Present (Disc) loop
9211 if Chars (Disc) = Chars (Id)
9212 and then Present (Corresponding_Discriminant (Disc))
9213 then
9214 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9215 end if;
9216 Next_Discriminant (Disc);
9217 end loop;
9218 end if;
9219 end Set_Discriminant_Name;
9221 -- Start of processing for Build_Underlying_Full_View
9223 begin
9224 if Nkind (N) = N_Full_Type_Declaration then
9225 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9227 elsif Nkind (N) = N_Subtype_Declaration then
9228 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9230 elsif Nkind (N) = N_Component_Declaration then
9231 Constr :=
9232 New_Copy_Tree
9233 (Constraint (Subtype_Indication (Component_Definition (N))));
9235 else
9236 raise Program_Error;
9237 end if;
9239 C := First (Constraints (Constr));
9240 while Present (C) loop
9241 if Nkind (C) = N_Discriminant_Association then
9242 Id := First (Selector_Names (C));
9243 while Present (Id) loop
9244 Set_Discriminant_Name (Id);
9245 Next (Id);
9246 end loop;
9247 end if;
9249 Next (C);
9250 end loop;
9252 Indic :=
9253 Make_Subtype_Declaration (Loc,
9254 Defining_Identifier => Subt,
9255 Subtype_Indication =>
9256 Make_Subtype_Indication (Loc,
9257 Subtype_Mark => New_Reference_To (Par, Loc),
9258 Constraint => New_Copy_Tree (Constr)));
9260 -- If this is a component subtype for an outer itype, it is not
9261 -- a list member, so simply set the parent link for analysis: if
9262 -- the enclosing type does not need to be in a declarative list,
9263 -- neither do the components.
9265 if Is_List_Member (N)
9266 and then Nkind (N) /= N_Component_Declaration
9267 then
9268 Insert_Before (N, Indic);
9269 else
9270 Set_Parent (Indic, Parent (N));
9271 end if;
9273 Analyze (Indic);
9274 Set_Underlying_Full_View (Typ, Full_View (Subt));
9275 end Build_Underlying_Full_View;
9277 -------------------------------
9278 -- Check_Abstract_Overriding --
9279 -------------------------------
9281 procedure Check_Abstract_Overriding (T : Entity_Id) is
9282 Alias_Subp : Entity_Id;
9283 Elmt : Elmt_Id;
9284 Op_List : Elist_Id;
9285 Subp : Entity_Id;
9286 Type_Def : Node_Id;
9288 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9289 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9290 -- which has pragma Implemented already set. Check whether Subp's entity
9291 -- kind conforms to the implementation kind of the overridden routine.
9293 procedure Check_Pragma_Implemented
9294 (Subp : Entity_Id;
9295 Iface_Subp : Entity_Id);
9296 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9297 -- Iface_Subp and both entities have pragma Implemented already set on
9298 -- them. Check whether the two implementation kinds are conforming.
9300 procedure Inherit_Pragma_Implemented
9301 (Subp : Entity_Id;
9302 Iface_Subp : Entity_Id);
9303 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9304 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9305 -- Propagate the implementation kind of Iface_Subp to Subp.
9307 ------------------------------
9308 -- Check_Pragma_Implemented --
9309 ------------------------------
9311 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9312 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9313 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9314 Subp_Alias : constant Entity_Id := Alias (Subp);
9315 Contr_Typ : Entity_Id;
9316 Impl_Subp : Entity_Id;
9318 begin
9319 -- Subp must have an alias since it is a hidden entity used to link
9320 -- an interface subprogram to its overriding counterpart.
9322 pragma Assert (Present (Subp_Alias));
9324 -- Handle aliases to synchronized wrappers
9326 Impl_Subp := Subp_Alias;
9328 if Is_Primitive_Wrapper (Impl_Subp) then
9329 Impl_Subp := Wrapped_Entity (Impl_Subp);
9330 end if;
9332 -- Extract the type of the controlling formal
9334 Contr_Typ := Etype (First_Formal (Subp_Alias));
9336 if Is_Concurrent_Record_Type (Contr_Typ) then
9337 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9338 end if;
9340 -- An interface subprogram whose implementation kind is By_Entry must
9341 -- be implemented by an entry.
9343 if Impl_Kind = Name_By_Entry
9344 and then Ekind (Impl_Subp) /= E_Entry
9345 then
9346 Error_Msg_Node_2 := Iface_Alias;
9347 Error_Msg_NE
9348 ("type & must implement abstract subprogram & with an entry",
9349 Subp_Alias, Contr_Typ);
9351 elsif Impl_Kind = Name_By_Protected_Procedure then
9353 -- An interface subprogram whose implementation kind is By_
9354 -- Protected_Procedure cannot be implemented by a primitive
9355 -- procedure of a task type.
9357 if Ekind (Contr_Typ) /= E_Protected_Type then
9358 Error_Msg_Node_2 := Contr_Typ;
9359 Error_Msg_NE
9360 ("interface subprogram & cannot be implemented by a " &
9361 "primitive procedure of task type &", Subp_Alias,
9362 Iface_Alias);
9364 -- An interface subprogram whose implementation kind is By_
9365 -- Protected_Procedure must be implemented by a procedure.
9367 elsif Ekind (Impl_Subp) /= E_Procedure then
9368 Error_Msg_Node_2 := Iface_Alias;
9369 Error_Msg_NE
9370 ("type & must implement abstract subprogram & with a " &
9371 "procedure", Subp_Alias, Contr_Typ);
9372 end if;
9373 end if;
9374 end Check_Pragma_Implemented;
9376 ------------------------------
9377 -- Check_Pragma_Implemented --
9378 ------------------------------
9380 procedure Check_Pragma_Implemented
9381 (Subp : Entity_Id;
9382 Iface_Subp : Entity_Id)
9384 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9385 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9387 begin
9388 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9389 -- and overriding subprogram are different. In general this is an
9390 -- error except when the implementation kind of the overridden
9391 -- subprograms is By_Any or Optional.
9393 if Iface_Kind /= Subp_Kind
9394 and then Iface_Kind /= Name_By_Any
9395 and then Iface_Kind /= Name_Optional
9396 then
9397 if Iface_Kind = Name_By_Entry then
9398 Error_Msg_N
9399 ("incompatible implementation kind, overridden subprogram " &
9400 "is marked By_Entry", Subp);
9401 else
9402 Error_Msg_N
9403 ("incompatible implementation kind, overridden subprogram " &
9404 "is marked By_Protected_Procedure", Subp);
9405 end if;
9406 end if;
9407 end Check_Pragma_Implemented;
9409 --------------------------------
9410 -- Inherit_Pragma_Implemented --
9411 --------------------------------
9413 procedure Inherit_Pragma_Implemented
9414 (Subp : Entity_Id;
9415 Iface_Subp : Entity_Id)
9417 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9418 Loc : constant Source_Ptr := Sloc (Subp);
9419 Impl_Prag : Node_Id;
9421 begin
9422 -- Since the implementation kind is stored as a representation item
9423 -- rather than a flag, create a pragma node.
9425 Impl_Prag :=
9426 Make_Pragma (Loc,
9427 Chars => Name_Implemented,
9428 Pragma_Argument_Associations => New_List (
9429 Make_Pragma_Argument_Association (Loc,
9430 Expression => New_Reference_To (Subp, Loc)),
9432 Make_Pragma_Argument_Association (Loc,
9433 Expression => Make_Identifier (Loc, Iface_Kind))));
9435 -- The pragma doesn't need to be analyzed because it is internally
9436 -- built. It is safe to directly register it as a rep item since we
9437 -- are only interested in the characters of the implementation kind.
9439 Record_Rep_Item (Subp, Impl_Prag);
9440 end Inherit_Pragma_Implemented;
9442 -- Start of processing for Check_Abstract_Overriding
9444 begin
9445 Op_List := Primitive_Operations (T);
9447 -- Loop to check primitive operations
9449 Elmt := First_Elmt (Op_List);
9450 while Present (Elmt) loop
9451 Subp := Node (Elmt);
9452 Alias_Subp := Alias (Subp);
9454 -- Inherited subprograms are identified by the fact that they do not
9455 -- come from source, and the associated source location is the
9456 -- location of the first subtype of the derived type.
9458 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9459 -- subprograms that "require overriding".
9461 -- Special exception, do not complain about failure to override the
9462 -- stream routines _Input and _Output, as well as the primitive
9463 -- operations used in dispatching selects since we always provide
9464 -- automatic overridings for these subprograms.
9466 -- Also ignore this rule for convention CIL since .NET libraries
9467 -- do bizarre things with interfaces???
9469 -- The partial view of T may have been a private extension, for
9470 -- which inherited functions dispatching on result are abstract.
9471 -- If the full view is a null extension, there is no need for
9472 -- overriding in Ada 2005, but wrappers need to be built for them
9473 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9475 if Is_Null_Extension (T)
9476 and then Has_Controlling_Result (Subp)
9477 and then Ada_Version >= Ada_2005
9478 and then Present (Alias_Subp)
9479 and then not Comes_From_Source (Subp)
9480 and then not Is_Abstract_Subprogram (Alias_Subp)
9481 and then not Is_Access_Type (Etype (Subp))
9482 then
9483 null;
9485 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9486 -- processing because this check is done with the aliased
9487 -- entity
9489 elsif Present (Interface_Alias (Subp)) then
9490 null;
9492 elsif (Is_Abstract_Subprogram (Subp)
9493 or else Requires_Overriding (Subp)
9494 or else
9495 (Has_Controlling_Result (Subp)
9496 and then Present (Alias_Subp)
9497 and then not Comes_From_Source (Subp)
9498 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9499 and then not Is_TSS (Subp, TSS_Stream_Input)
9500 and then not Is_TSS (Subp, TSS_Stream_Output)
9501 and then not Is_Abstract_Type (T)
9502 and then Convention (T) /= Convention_CIL
9503 and then not Is_Predefined_Interface_Primitive (Subp)
9505 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9506 -- with abstract interface types because the check will be done
9507 -- with the aliased entity (otherwise we generate a duplicated
9508 -- error message).
9510 and then not Present (Interface_Alias (Subp))
9511 then
9512 if Present (Alias_Subp) then
9514 -- Only perform the check for a derived subprogram when the
9515 -- type has an explicit record extension. This avoids incorrect
9516 -- flagging of abstract subprograms for the case of a type
9517 -- without an extension that is derived from a formal type
9518 -- with a tagged actual (can occur within a private part).
9520 -- Ada 2005 (AI-391): In the case of an inherited function with
9521 -- a controlling result of the type, the rule does not apply if
9522 -- the type is a null extension (unless the parent function
9523 -- itself is abstract, in which case the function must still be
9524 -- be overridden). The expander will generate an overriding
9525 -- wrapper function calling the parent subprogram (see
9526 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9528 Type_Def := Type_Definition (Parent (T));
9530 if Nkind (Type_Def) = N_Derived_Type_Definition
9531 and then Present (Record_Extension_Part (Type_Def))
9532 and then
9533 (Ada_Version < Ada_2005
9534 or else not Is_Null_Extension (T)
9535 or else Ekind (Subp) = E_Procedure
9536 or else not Has_Controlling_Result (Subp)
9537 or else Is_Abstract_Subprogram (Alias_Subp)
9538 or else Requires_Overriding (Subp)
9539 or else Is_Access_Type (Etype (Subp)))
9540 then
9541 -- Avoid reporting error in case of abstract predefined
9542 -- primitive inherited from interface type because the
9543 -- body of internally generated predefined primitives
9544 -- of tagged types are generated later by Freeze_Type
9546 if Is_Interface (Root_Type (T))
9547 and then Is_Abstract_Subprogram (Subp)
9548 and then Is_Predefined_Dispatching_Operation (Subp)
9549 and then not Comes_From_Source (Ultimate_Alias (Subp))
9550 then
9551 null;
9553 else
9554 Error_Msg_NE
9555 ("type must be declared abstract or & overridden",
9556 T, Subp);
9558 -- Traverse the whole chain of aliased subprograms to
9559 -- complete the error notification. This is especially
9560 -- useful for traceability of the chain of entities when
9561 -- the subprogram corresponds with an interface
9562 -- subprogram (which may be defined in another package).
9564 if Present (Alias_Subp) then
9565 declare
9566 E : Entity_Id;
9568 begin
9569 E := Subp;
9570 while Present (Alias (E)) loop
9572 -- Avoid reporting redundant errors on entities
9573 -- inherited from interfaces
9575 if Sloc (E) /= Sloc (T) then
9576 Error_Msg_Sloc := Sloc (E);
9577 Error_Msg_NE
9578 ("\& has been inherited #", T, Subp);
9579 end if;
9581 E := Alias (E);
9582 end loop;
9584 Error_Msg_Sloc := Sloc (E);
9586 -- AI05-0068: report if there is an overriding
9587 -- non-abstract subprogram that is invisible.
9589 if Is_Hidden (E)
9590 and then not Is_Abstract_Subprogram (E)
9591 then
9592 Error_Msg_NE
9593 ("\& subprogram# is not visible",
9594 T, Subp);
9596 else
9597 Error_Msg_NE
9598 ("\& has been inherited from subprogram #",
9599 T, Subp);
9600 end if;
9601 end;
9602 end if;
9603 end if;
9605 -- Ada 2005 (AI-345): Protected or task type implementing
9606 -- abstract interfaces.
9608 elsif Is_Concurrent_Record_Type (T)
9609 and then Present (Interfaces (T))
9610 then
9611 -- If an inherited subprogram is implemented by a protected
9612 -- procedure or an entry, then the first parameter of the
9613 -- inherited subprogram shall be of mode OUT or IN OUT, or
9614 -- an access-to-variable parameter (RM 9.4(11.9/3))
9616 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9617 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9618 and then Ekind (Subp) /= E_Function
9619 and then not Is_Predefined_Dispatching_Operation (Subp)
9620 then
9621 Error_Msg_PT (T, Subp);
9623 -- Some other kind of overriding failure
9625 else
9626 Error_Msg_NE
9627 ("interface subprogram & must be overridden",
9628 T, Subp);
9630 -- Examine primitive operations of synchronized type,
9631 -- to find homonyms that have the wrong profile.
9633 declare
9634 Prim : Entity_Id;
9636 begin
9637 Prim :=
9638 First_Entity (Corresponding_Concurrent_Type (T));
9639 while Present (Prim) loop
9640 if Chars (Prim) = Chars (Subp) then
9641 Error_Msg_NE
9642 ("profile is not type conformant with "
9643 & "prefixed view profile of "
9644 & "inherited operation&", Prim, Subp);
9645 end if;
9647 Next_Entity (Prim);
9648 end loop;
9649 end;
9650 end if;
9651 end if;
9653 else
9654 Error_Msg_Node_2 := T;
9655 Error_Msg_N
9656 ("abstract subprogram& not allowed for type&", Subp);
9658 -- Also post unconditional warning on the type (unconditional
9659 -- so that if there are more than one of these cases, we get
9660 -- them all, and not just the first one).
9662 Error_Msg_Node_2 := Subp;
9663 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9664 end if;
9665 end if;
9667 -- Ada 2012 (AI05-0030): Perform some checks related to pragma
9668 -- Implemented
9670 -- Subp is an expander-generated procedure which maps an interface
9671 -- alias to a protected wrapper. The interface alias is flagged by
9672 -- pragma Implemented. Ensure that Subp is a procedure when the
9673 -- implementation kind is By_Protected_Procedure or an entry when
9674 -- By_Entry.
9676 if Ada_Version >= Ada_2012
9677 and then Is_Hidden (Subp)
9678 and then Present (Interface_Alias (Subp))
9679 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9680 then
9681 Check_Pragma_Implemented (Subp);
9682 end if;
9684 -- Subp is an interface primitive which overrides another interface
9685 -- primitive marked with pragma Implemented.
9687 if Ada_Version >= Ada_2012
9688 and then Present (Overridden_Operation (Subp))
9689 and then Has_Rep_Pragma
9690 (Overridden_Operation (Subp), Name_Implemented)
9691 then
9692 -- If the overriding routine is also marked by Implemented, check
9693 -- that the two implementation kinds are conforming.
9695 if Has_Rep_Pragma (Subp, Name_Implemented) then
9696 Check_Pragma_Implemented
9697 (Subp => Subp,
9698 Iface_Subp => Overridden_Operation (Subp));
9700 -- Otherwise the overriding routine inherits the implementation
9701 -- kind from the overridden subprogram.
9703 else
9704 Inherit_Pragma_Implemented
9705 (Subp => Subp,
9706 Iface_Subp => Overridden_Operation (Subp));
9707 end if;
9708 end if;
9710 -- If the operation is a wrapper for a synchronized primitive, it
9711 -- may be called indirectly through a dispatching select. We assume
9712 -- that it will be referenced elsewhere indirectly, and suppress
9713 -- warnings about an unused entity.
9715 if Is_Primitive_Wrapper (Subp)
9716 and then Present (Wrapped_Entity (Subp))
9717 then
9718 Set_Referenced (Wrapped_Entity (Subp));
9719 end if;
9721 Next_Elmt (Elmt);
9722 end loop;
9723 end Check_Abstract_Overriding;
9725 ------------------------------------------------
9726 -- Check_Access_Discriminant_Requires_Limited --
9727 ------------------------------------------------
9729 procedure Check_Access_Discriminant_Requires_Limited
9730 (D : Node_Id;
9731 Loc : Node_Id)
9733 begin
9734 -- A discriminant_specification for an access discriminant shall appear
9735 -- only in the declaration for a task or protected type, or for a type
9736 -- with the reserved word 'limited' in its definition or in one of its
9737 -- ancestors (RM 3.7(10)).
9739 -- AI-0063: The proper condition is that type must be immutably limited,
9740 -- or else be a partial view.
9742 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9743 if Is_Limited_View (Current_Scope)
9744 or else
9745 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9746 and then Limited_Present (Parent (Current_Scope)))
9747 then
9748 null;
9750 else
9751 Error_Msg_N
9752 ("access discriminants allowed only for limited types", Loc);
9753 end if;
9754 end if;
9755 end Check_Access_Discriminant_Requires_Limited;
9757 -----------------------------------
9758 -- Check_Aliased_Component_Types --
9759 -----------------------------------
9761 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9762 C : Entity_Id;
9764 begin
9765 -- ??? Also need to check components of record extensions, but not
9766 -- components of protected types (which are always limited).
9768 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9769 -- types to be unconstrained. This is safe because it is illegal to
9770 -- create access subtypes to such types with explicit discriminant
9771 -- constraints.
9773 if not Is_Limited_Type (T) then
9774 if Ekind (T) = E_Record_Type then
9775 C := First_Component (T);
9776 while Present (C) loop
9777 if Is_Aliased (C)
9778 and then Has_Discriminants (Etype (C))
9779 and then not Is_Constrained (Etype (C))
9780 and then not In_Instance_Body
9781 and then Ada_Version < Ada_2005
9782 then
9783 Error_Msg_N
9784 ("aliased component must be constrained (RM 3.6(11))",
9786 end if;
9788 Next_Component (C);
9789 end loop;
9791 elsif Ekind (T) = E_Array_Type then
9792 if Has_Aliased_Components (T)
9793 and then Has_Discriminants (Component_Type (T))
9794 and then not Is_Constrained (Component_Type (T))
9795 and then not In_Instance_Body
9796 and then Ada_Version < Ada_2005
9797 then
9798 Error_Msg_N
9799 ("aliased component type must be constrained (RM 3.6(11))",
9801 end if;
9802 end if;
9803 end if;
9804 end Check_Aliased_Component_Types;
9806 ----------------------
9807 -- Check_Completion --
9808 ----------------------
9810 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9811 E : Entity_Id;
9813 procedure Post_Error;
9814 -- Post error message for lack of completion for entity E
9816 ----------------
9817 -- Post_Error --
9818 ----------------
9820 procedure Post_Error is
9822 procedure Missing_Body;
9823 -- Output missing body message
9825 ------------------
9826 -- Missing_Body --
9827 ------------------
9829 procedure Missing_Body is
9830 begin
9831 -- Spec is in same unit, so we can post on spec
9833 if In_Same_Source_Unit (Body_Id, E) then
9834 Error_Msg_N ("missing body for &", E);
9836 -- Spec is in a separate unit, so we have to post on the body
9838 else
9839 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9840 end if;
9841 end Missing_Body;
9843 -- Start of processing for Post_Error
9845 begin
9846 if not Comes_From_Source (E) then
9848 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9849 -- It may be an anonymous protected type created for a
9850 -- single variable. Post error on variable, if present.
9852 declare
9853 Var : Entity_Id;
9855 begin
9856 Var := First_Entity (Current_Scope);
9857 while Present (Var) loop
9858 exit when Etype (Var) = E
9859 and then Comes_From_Source (Var);
9861 Next_Entity (Var);
9862 end loop;
9864 if Present (Var) then
9865 E := Var;
9866 end if;
9867 end;
9868 end if;
9869 end if;
9871 -- If a generated entity has no completion, then either previous
9872 -- semantic errors have disabled the expansion phase, or else we had
9873 -- missing subunits, or else we are compiling without expansion,
9874 -- or else something is very wrong.
9876 if not Comes_From_Source (E) then
9877 pragma Assert
9878 (Serious_Errors_Detected > 0
9879 or else Configurable_Run_Time_Violations > 0
9880 or else Subunits_Missing
9881 or else not Expander_Active);
9882 return;
9884 -- Here for source entity
9886 else
9887 -- Here if no body to post the error message, so we post the error
9888 -- on the declaration that has no completion. This is not really
9889 -- the right place to post it, think about this later ???
9891 if No (Body_Id) then
9892 if Is_Type (E) then
9893 Error_Msg_NE
9894 ("missing full declaration for }", Parent (E), E);
9895 else
9896 Error_Msg_NE ("missing body for &", Parent (E), E);
9897 end if;
9899 -- Package body has no completion for a declaration that appears
9900 -- in the corresponding spec. Post error on the body, with a
9901 -- reference to the non-completed declaration.
9903 else
9904 Error_Msg_Sloc := Sloc (E);
9906 if Is_Type (E) then
9907 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
9909 elsif Is_Overloadable (E)
9910 and then Current_Entity_In_Scope (E) /= E
9911 then
9912 -- It may be that the completion is mistyped and appears as
9913 -- a distinct overloading of the entity.
9915 declare
9916 Candidate : constant Entity_Id :=
9917 Current_Entity_In_Scope (E);
9918 Decl : constant Node_Id :=
9919 Unit_Declaration_Node (Candidate);
9921 begin
9922 if Is_Overloadable (Candidate)
9923 and then Ekind (Candidate) = Ekind (E)
9924 and then Nkind (Decl) = N_Subprogram_Body
9925 and then Acts_As_Spec (Decl)
9926 then
9927 Check_Type_Conformant (Candidate, E);
9929 else
9930 Missing_Body;
9931 end if;
9932 end;
9934 else
9935 Missing_Body;
9936 end if;
9937 end if;
9938 end if;
9939 end Post_Error;
9941 -- Start of processing for Check_Completion
9943 begin
9944 E := First_Entity (Current_Scope);
9945 while Present (E) loop
9946 if Is_Intrinsic_Subprogram (E) then
9947 null;
9949 -- The following situation requires special handling: a child unit
9950 -- that appears in the context clause of the body of its parent:
9952 -- procedure Parent.Child (...);
9954 -- with Parent.Child;
9955 -- package body Parent is
9957 -- Here Parent.Child appears as a local entity, but should not be
9958 -- flagged as requiring completion, because it is a compilation
9959 -- unit.
9961 -- Ignore missing completion for a subprogram that does not come from
9962 -- source (including the _Call primitive operation of RAS types,
9963 -- which has to have the flag Comes_From_Source for other purposes):
9964 -- we assume that the expander will provide the missing completion.
9965 -- In case of previous errors, other expansion actions that provide
9966 -- bodies for null procedures with not be invoked, so inhibit message
9967 -- in those cases.
9969 -- Note that E_Operator is not in the list that follows, because
9970 -- this kind is reserved for predefined operators, that are
9971 -- intrinsic and do not need completion.
9973 elsif Ekind (E) = E_Function
9974 or else Ekind (E) = E_Procedure
9975 or else Ekind (E) = E_Generic_Function
9976 or else Ekind (E) = E_Generic_Procedure
9977 then
9978 if Has_Completion (E) then
9979 null;
9981 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
9982 null;
9984 elsif Is_Subprogram (E)
9985 and then (not Comes_From_Source (E)
9986 or else Chars (E) = Name_uCall)
9987 then
9988 null;
9990 elsif
9991 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
9992 then
9993 null;
9995 elsif Nkind (Parent (E)) = N_Procedure_Specification
9996 and then Null_Present (Parent (E))
9997 and then Serious_Errors_Detected > 0
9998 then
9999 null;
10001 else
10002 Post_Error;
10003 end if;
10005 elsif Is_Entry (E) then
10006 if not Has_Completion (E) and then
10007 (Ekind (Scope (E)) = E_Protected_Object
10008 or else Ekind (Scope (E)) = E_Protected_Type)
10009 then
10010 Post_Error;
10011 end if;
10013 elsif Is_Package_Or_Generic_Package (E) then
10014 if Unit_Requires_Body (E) then
10015 if not Has_Completion (E)
10016 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10017 N_Compilation_Unit
10018 then
10019 Post_Error;
10020 end if;
10022 elsif not Is_Child_Unit (E) then
10023 May_Need_Implicit_Body (E);
10024 end if;
10026 -- A formal incomplete type (Ada 2012) does not require a completion;
10027 -- other incomplete type declarations do.
10029 elsif Ekind (E) = E_Incomplete_Type
10030 and then No (Underlying_Type (E))
10031 and then not Is_Generic_Type (E)
10032 then
10033 Post_Error;
10035 elsif (Ekind (E) = E_Task_Type or else
10036 Ekind (E) = E_Protected_Type)
10037 and then not Has_Completion (E)
10038 then
10039 Post_Error;
10041 -- A single task declared in the current scope is a constant, verify
10042 -- that the body of its anonymous type is in the same scope. If the
10043 -- task is defined elsewhere, this may be a renaming declaration for
10044 -- which no completion is needed.
10046 elsif Ekind (E) = E_Constant
10047 and then Ekind (Etype (E)) = E_Task_Type
10048 and then not Has_Completion (Etype (E))
10049 and then Scope (Etype (E)) = Current_Scope
10050 then
10051 Post_Error;
10053 elsif Ekind (E) = E_Protected_Object
10054 and then not Has_Completion (Etype (E))
10055 then
10056 Post_Error;
10058 elsif Ekind (E) = E_Record_Type then
10059 if Is_Tagged_Type (E) then
10060 Check_Abstract_Overriding (E);
10061 Check_Conventions (E);
10062 end if;
10064 Check_Aliased_Component_Types (E);
10066 elsif Ekind (E) = E_Array_Type then
10067 Check_Aliased_Component_Types (E);
10069 end if;
10071 Next_Entity (E);
10072 end loop;
10073 end Check_Completion;
10075 ------------------------------------
10076 -- Check_CPP_Type_Has_No_Defaults --
10077 ------------------------------------
10079 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10080 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10081 Clist : Node_Id;
10082 Comp : Node_Id;
10084 begin
10085 -- Obtain the component list
10087 if Nkind (Tdef) = N_Record_Definition then
10088 Clist := Component_List (Tdef);
10089 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10090 Clist := Component_List (Record_Extension_Part (Tdef));
10091 end if;
10093 -- Check all components to ensure no default expressions
10095 if Present (Clist) then
10096 Comp := First (Component_Items (Clist));
10097 while Present (Comp) loop
10098 if Present (Expression (Comp)) then
10099 Error_Msg_N
10100 ("component of imported 'C'P'P type cannot have "
10101 & "default expression", Expression (Comp));
10102 end if;
10104 Next (Comp);
10105 end loop;
10106 end if;
10107 end Check_CPP_Type_Has_No_Defaults;
10109 ----------------------------
10110 -- Check_Delta_Expression --
10111 ----------------------------
10113 procedure Check_Delta_Expression (E : Node_Id) is
10114 begin
10115 if not (Is_Real_Type (Etype (E))) then
10116 Wrong_Type (E, Any_Real);
10118 elsif not Is_OK_Static_Expression (E) then
10119 Flag_Non_Static_Expr
10120 ("non-static expression used for delta value!", E);
10122 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10123 Error_Msg_N ("delta expression must be positive", E);
10125 else
10126 return;
10127 end if;
10129 -- If any of above errors occurred, then replace the incorrect
10130 -- expression by the real 0.1, which should prevent further errors.
10132 Rewrite (E,
10133 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10134 Analyze_And_Resolve (E, Standard_Float);
10135 end Check_Delta_Expression;
10137 -----------------------------
10138 -- Check_Digits_Expression --
10139 -----------------------------
10141 procedure Check_Digits_Expression (E : Node_Id) is
10142 begin
10143 if not (Is_Integer_Type (Etype (E))) then
10144 Wrong_Type (E, Any_Integer);
10146 elsif not Is_OK_Static_Expression (E) then
10147 Flag_Non_Static_Expr
10148 ("non-static expression used for digits value!", E);
10150 elsif Expr_Value (E) <= 0 then
10151 Error_Msg_N ("digits value must be greater than zero", E);
10153 else
10154 return;
10155 end if;
10157 -- If any of above errors occurred, then replace the incorrect
10158 -- expression by the integer 1, which should prevent further errors.
10160 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10161 Analyze_And_Resolve (E, Standard_Integer);
10163 end Check_Digits_Expression;
10165 --------------------------
10166 -- Check_Initialization --
10167 --------------------------
10169 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10170 begin
10171 if Is_Limited_Type (T)
10172 and then not In_Instance
10173 and then not In_Inlined_Body
10174 then
10175 if not OK_For_Limited_Init (T, Exp) then
10177 -- In GNAT mode, this is just a warning, to allow it to be evilly
10178 -- turned off. Otherwise it is a real error.
10180 if GNAT_Mode then
10181 Error_Msg_N
10182 ("?cannot initialize entities of limited type!", Exp);
10184 elsif Ada_Version < Ada_2005 then
10186 -- The side effect removal machinery may generate illegal Ada
10187 -- code to avoid the usage of access types and 'reference in
10188 -- SPARK mode. Since this is legal code with respect to theorem
10189 -- proving, do not emit the error.
10191 if GNATprove_Mode
10192 and then Nkind (Exp) = N_Function_Call
10193 and then Nkind (Parent (Exp)) = N_Object_Declaration
10194 and then not Comes_From_Source
10195 (Defining_Identifier (Parent (Exp)))
10196 then
10197 null;
10199 else
10200 Error_Msg_N
10201 ("cannot initialize entities of limited type", Exp);
10202 Explain_Limited_Type (T, Exp);
10203 end if;
10205 else
10206 -- Specialize error message according to kind of illegal
10207 -- initial expression.
10209 if Nkind (Exp) = N_Type_Conversion
10210 and then Nkind (Expression (Exp)) = N_Function_Call
10211 then
10212 Error_Msg_N
10213 ("illegal context for call"
10214 & " to function with limited result", Exp);
10216 else
10217 Error_Msg_N
10218 ("initialization of limited object requires aggregate "
10219 & "or function call", Exp);
10220 end if;
10221 end if;
10222 end if;
10223 end if;
10224 end Check_Initialization;
10226 ----------------------
10227 -- Check_Interfaces --
10228 ----------------------
10230 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10231 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10233 Iface : Node_Id;
10234 Iface_Def : Node_Id;
10235 Iface_Typ : Entity_Id;
10236 Parent_Node : Node_Id;
10238 Is_Task : Boolean := False;
10239 -- Set True if parent type or any progenitor is a task interface
10241 Is_Protected : Boolean := False;
10242 -- Set True if parent type or any progenitor is a protected interface
10244 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10245 -- Check that a progenitor is compatible with declaration.
10246 -- Error is posted on Error_Node.
10248 ------------------
10249 -- Check_Ifaces --
10250 ------------------
10252 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10253 Iface_Id : constant Entity_Id :=
10254 Defining_Identifier (Parent (Iface_Def));
10255 Type_Def : Node_Id;
10257 begin
10258 if Nkind (N) = N_Private_Extension_Declaration then
10259 Type_Def := N;
10260 else
10261 Type_Def := Type_Definition (N);
10262 end if;
10264 if Is_Task_Interface (Iface_Id) then
10265 Is_Task := True;
10267 elsif Is_Protected_Interface (Iface_Id) then
10268 Is_Protected := True;
10269 end if;
10271 if Is_Synchronized_Interface (Iface_Id) then
10273 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10274 -- extension derived from a synchronized interface must explicitly
10275 -- be declared synchronized, because the full view will be a
10276 -- synchronized type.
10278 if Nkind (N) = N_Private_Extension_Declaration then
10279 if not Synchronized_Present (N) then
10280 Error_Msg_NE
10281 ("private extension of& must be explicitly synchronized",
10282 N, Iface_Id);
10283 end if;
10285 -- However, by 3.9.4(16/2), a full type that is a record extension
10286 -- is never allowed to derive from a synchronized interface (note
10287 -- that interfaces must be excluded from this check, because those
10288 -- are represented by derived type definitions in some cases).
10290 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10291 and then not Interface_Present (Type_Definition (N))
10292 then
10293 Error_Msg_N ("record extension cannot derive from synchronized"
10294 & " interface", Error_Node);
10295 end if;
10296 end if;
10298 -- Check that the characteristics of the progenitor are compatible
10299 -- with the explicit qualifier in the declaration.
10300 -- The check only applies to qualifiers that come from source.
10301 -- Limited_Present also appears in the declaration of corresponding
10302 -- records, and the check does not apply to them.
10304 if Limited_Present (Type_Def)
10305 and then not
10306 Is_Concurrent_Record_Type (Defining_Identifier (N))
10307 then
10308 if Is_Limited_Interface (Parent_Type)
10309 and then not Is_Limited_Interface (Iface_Id)
10310 then
10311 Error_Msg_NE
10312 ("progenitor& must be limited interface",
10313 Error_Node, Iface_Id);
10315 elsif
10316 (Task_Present (Iface_Def)
10317 or else Protected_Present (Iface_Def)
10318 or else Synchronized_Present (Iface_Def))
10319 and then Nkind (N) /= N_Private_Extension_Declaration
10320 and then not Error_Posted (N)
10321 then
10322 Error_Msg_NE
10323 ("progenitor& must be limited interface",
10324 Error_Node, Iface_Id);
10325 end if;
10327 -- Protected interfaces can only inherit from limited, synchronized
10328 -- or protected interfaces.
10330 elsif Nkind (N) = N_Full_Type_Declaration
10331 and then Protected_Present (Type_Def)
10332 then
10333 if Limited_Present (Iface_Def)
10334 or else Synchronized_Present (Iface_Def)
10335 or else Protected_Present (Iface_Def)
10336 then
10337 null;
10339 elsif Task_Present (Iface_Def) then
10340 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10341 & " from task interface", Error_Node);
10343 else
10344 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10345 & " from non-limited interface", Error_Node);
10346 end if;
10348 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10349 -- limited and synchronized.
10351 elsif Synchronized_Present (Type_Def) then
10352 if Limited_Present (Iface_Def)
10353 or else Synchronized_Present (Iface_Def)
10354 then
10355 null;
10357 elsif Protected_Present (Iface_Def)
10358 and then Nkind (N) /= N_Private_Extension_Declaration
10359 then
10360 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10361 & " from protected interface", Error_Node);
10363 elsif Task_Present (Iface_Def)
10364 and then Nkind (N) /= N_Private_Extension_Declaration
10365 then
10366 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10367 & " from task interface", Error_Node);
10369 elsif not Is_Limited_Interface (Iface_Id) then
10370 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10371 & " from non-limited interface", Error_Node);
10372 end if;
10374 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10375 -- synchronized or task interfaces.
10377 elsif Nkind (N) = N_Full_Type_Declaration
10378 and then Task_Present (Type_Def)
10379 then
10380 if Limited_Present (Iface_Def)
10381 or else Synchronized_Present (Iface_Def)
10382 or else Task_Present (Iface_Def)
10383 then
10384 null;
10386 elsif Protected_Present (Iface_Def) then
10387 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10388 & " protected interface", Error_Node);
10390 else
10391 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10392 & " non-limited interface", Error_Node);
10393 end if;
10394 end if;
10395 end Check_Ifaces;
10397 -- Start of processing for Check_Interfaces
10399 begin
10400 if Is_Interface (Parent_Type) then
10401 if Is_Task_Interface (Parent_Type) then
10402 Is_Task := True;
10404 elsif Is_Protected_Interface (Parent_Type) then
10405 Is_Protected := True;
10406 end if;
10407 end if;
10409 if Nkind (N) = N_Private_Extension_Declaration then
10411 -- Check that progenitors are compatible with declaration
10413 Iface := First (Interface_List (Def));
10414 while Present (Iface) loop
10415 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10417 Parent_Node := Parent (Base_Type (Iface_Typ));
10418 Iface_Def := Type_Definition (Parent_Node);
10420 if not Is_Interface (Iface_Typ) then
10421 Diagnose_Interface (Iface, Iface_Typ);
10423 else
10424 Check_Ifaces (Iface_Def, Iface);
10425 end if;
10427 Next (Iface);
10428 end loop;
10430 if Is_Task and Is_Protected then
10431 Error_Msg_N
10432 ("type cannot derive from task and protected interface", N);
10433 end if;
10435 return;
10436 end if;
10438 -- Full type declaration of derived type.
10439 -- Check compatibility with parent if it is interface type
10441 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10442 and then Is_Interface (Parent_Type)
10443 then
10444 Parent_Node := Parent (Parent_Type);
10446 -- More detailed checks for interface varieties
10448 Check_Ifaces
10449 (Iface_Def => Type_Definition (Parent_Node),
10450 Error_Node => Subtype_Indication (Type_Definition (N)));
10451 end if;
10453 Iface := First (Interface_List (Def));
10454 while Present (Iface) loop
10455 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10457 Parent_Node := Parent (Base_Type (Iface_Typ));
10458 Iface_Def := Type_Definition (Parent_Node);
10460 if not Is_Interface (Iface_Typ) then
10461 Diagnose_Interface (Iface, Iface_Typ);
10463 else
10464 -- "The declaration of a specific descendant of an interface
10465 -- type freezes the interface type" RM 13.14
10467 Freeze_Before (N, Iface_Typ);
10468 Check_Ifaces (Iface_Def, Error_Node => Iface);
10469 end if;
10471 Next (Iface);
10472 end loop;
10474 if Is_Task and Is_Protected then
10475 Error_Msg_N
10476 ("type cannot derive from task and protected interface", N);
10477 end if;
10478 end Check_Interfaces;
10480 ------------------------------------
10481 -- Check_Or_Process_Discriminants --
10482 ------------------------------------
10484 -- If an incomplete or private type declaration was already given for the
10485 -- type, the discriminants may have already been processed if they were
10486 -- present on the incomplete declaration. In this case a full conformance
10487 -- check has been performed in Find_Type_Name, and we then recheck here
10488 -- some properties that can't be checked on the partial view alone.
10489 -- Otherwise we call Process_Discriminants.
10491 procedure Check_Or_Process_Discriminants
10492 (N : Node_Id;
10493 T : Entity_Id;
10494 Prev : Entity_Id := Empty)
10496 begin
10497 if Has_Discriminants (T) then
10499 -- Discriminants are already set on T if they were already present
10500 -- on the partial view. Make them visible to component declarations.
10502 declare
10503 D : Entity_Id;
10504 -- Discriminant on T (full view) referencing expr on partial view
10506 Prev_D : Entity_Id;
10507 -- Entity of corresponding discriminant on partial view
10509 New_D : Node_Id;
10510 -- Discriminant specification for full view, expression is the
10511 -- syntactic copy on full view (which has been checked for
10512 -- conformance with partial view), only used here to post error
10513 -- message.
10515 begin
10516 D := First_Discriminant (T);
10517 New_D := First (Discriminant_Specifications (N));
10518 while Present (D) loop
10519 Prev_D := Current_Entity (D);
10520 Set_Current_Entity (D);
10521 Set_Is_Immediately_Visible (D);
10522 Set_Homonym (D, Prev_D);
10524 -- Handle the case where there is an untagged partial view and
10525 -- the full view is tagged: must disallow discriminants with
10526 -- defaults, unless compiling for Ada 2012, which allows a
10527 -- limited tagged type to have defaulted discriminants (see
10528 -- AI05-0214). However, suppress the error here if it was
10529 -- already reported on the default expression of the partial
10530 -- view.
10532 if Is_Tagged_Type (T)
10533 and then Present (Expression (Parent (D)))
10534 and then (not Is_Limited_Type (Current_Scope)
10535 or else Ada_Version < Ada_2012)
10536 and then not Error_Posted (Expression (Parent (D)))
10537 then
10538 if Ada_Version >= Ada_2012 then
10539 Error_Msg_N
10540 ("discriminants of nonlimited tagged type cannot have"
10541 & " defaults",
10542 Expression (New_D));
10543 else
10544 Error_Msg_N
10545 ("discriminants of tagged type cannot have defaults",
10546 Expression (New_D));
10547 end if;
10548 end if;
10550 -- Ada 2005 (AI-230): Access discriminant allowed in
10551 -- non-limited record types.
10553 if Ada_Version < Ada_2005 then
10555 -- This restriction gets applied to the full type here. It
10556 -- has already been applied earlier to the partial view.
10558 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10559 end if;
10561 Next_Discriminant (D);
10562 Next (New_D);
10563 end loop;
10564 end;
10566 elsif Present (Discriminant_Specifications (N)) then
10567 Process_Discriminants (N, Prev);
10568 end if;
10569 end Check_Or_Process_Discriminants;
10571 ----------------------
10572 -- Check_Real_Bound --
10573 ----------------------
10575 procedure Check_Real_Bound (Bound : Node_Id) is
10576 begin
10577 if not Is_Real_Type (Etype (Bound)) then
10578 Error_Msg_N
10579 ("bound in real type definition must be of real type", Bound);
10581 elsif not Is_OK_Static_Expression (Bound) then
10582 Flag_Non_Static_Expr
10583 ("non-static expression used for real type bound!", Bound);
10585 else
10586 return;
10587 end if;
10589 Rewrite
10590 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10591 Analyze (Bound);
10592 Resolve (Bound, Standard_Float);
10593 end Check_Real_Bound;
10595 ------------------------------
10596 -- Complete_Private_Subtype --
10597 ------------------------------
10599 procedure Complete_Private_Subtype
10600 (Priv : Entity_Id;
10601 Full : Entity_Id;
10602 Full_Base : Entity_Id;
10603 Related_Nod : Node_Id)
10605 Save_Next_Entity : Entity_Id;
10606 Save_Homonym : Entity_Id;
10608 begin
10609 -- Set semantic attributes for (implicit) private subtype completion.
10610 -- If the full type has no discriminants, then it is a copy of the full
10611 -- view of the base. Otherwise, it is a subtype of the base with a
10612 -- possible discriminant constraint. Save and restore the original
10613 -- Next_Entity field of full to ensure that the calls to Copy_Node
10614 -- do not corrupt the entity chain.
10616 -- Note that the type of the full view is the same entity as the type of
10617 -- the partial view. In this fashion, the subtype has access to the
10618 -- correct view of the parent.
10620 Save_Next_Entity := Next_Entity (Full);
10621 Save_Homonym := Homonym (Priv);
10623 case Ekind (Full_Base) is
10624 when E_Record_Type |
10625 E_Record_Subtype |
10626 Class_Wide_Kind |
10627 Private_Kind |
10628 Task_Kind |
10629 Protected_Kind =>
10630 Copy_Node (Priv, Full);
10632 Set_Has_Discriminants
10633 (Full, Has_Discriminants (Full_Base));
10634 Set_Has_Unknown_Discriminants
10635 (Full, Has_Unknown_Discriminants (Full_Base));
10636 Set_First_Entity (Full, First_Entity (Full_Base));
10637 Set_Last_Entity (Full, Last_Entity (Full_Base));
10639 -- If the underlying base type is constrained, we know that the
10640 -- full view of the subtype is constrained as well (the converse
10641 -- is not necessarily true).
10643 if Is_Constrained (Full_Base) then
10644 Set_Is_Constrained (Full);
10645 end if;
10647 when others =>
10648 Copy_Node (Full_Base, Full);
10650 Set_Chars (Full, Chars (Priv));
10651 Conditional_Delay (Full, Priv);
10652 Set_Sloc (Full, Sloc (Priv));
10653 end case;
10655 Set_Next_Entity (Full, Save_Next_Entity);
10656 Set_Homonym (Full, Save_Homonym);
10657 Set_Associated_Node_For_Itype (Full, Related_Nod);
10659 -- Set common attributes for all subtypes: kind, convention, etc.
10661 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10662 Set_Convention (Full, Convention (Full_Base));
10664 -- The Etype of the full view is inconsistent. Gigi needs to see the
10665 -- structural full view, which is what the current scheme gives:
10666 -- the Etype of the full view is the etype of the full base. However,
10667 -- if the full base is a derived type, the full view then looks like
10668 -- a subtype of the parent, not a subtype of the full base. If instead
10669 -- we write:
10671 -- Set_Etype (Full, Full_Base);
10673 -- then we get inconsistencies in the front-end (confusion between
10674 -- views). Several outstanding bugs are related to this ???
10676 Set_Is_First_Subtype (Full, False);
10677 Set_Scope (Full, Scope (Priv));
10678 Set_Size_Info (Full, Full_Base);
10679 Set_RM_Size (Full, RM_Size (Full_Base));
10680 Set_Is_Itype (Full);
10682 -- A subtype of a private-type-without-discriminants, whose full-view
10683 -- has discriminants with default expressions, is not constrained.
10685 if not Has_Discriminants (Priv) then
10686 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10688 if Has_Discriminants (Full_Base) then
10689 Set_Discriminant_Constraint
10690 (Full, Discriminant_Constraint (Full_Base));
10692 -- The partial view may have been indefinite, the full view
10693 -- might not be.
10695 Set_Has_Unknown_Discriminants
10696 (Full, Has_Unknown_Discriminants (Full_Base));
10697 end if;
10698 end if;
10700 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10701 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10703 -- Freeze the private subtype entity if its parent is delayed, and not
10704 -- already frozen. We skip this processing if the type is an anonymous
10705 -- subtype of a record component, or is the corresponding record of a
10706 -- protected type, since ???
10708 if not Is_Type (Scope (Full)) then
10709 Set_Has_Delayed_Freeze (Full,
10710 Has_Delayed_Freeze (Full_Base)
10711 and then (not Is_Frozen (Full_Base)));
10712 end if;
10714 Set_Freeze_Node (Full, Empty);
10715 Set_Is_Frozen (Full, False);
10716 Set_Full_View (Priv, Full);
10718 if Has_Discriminants (Full) then
10719 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10720 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10722 if Has_Unknown_Discriminants (Full) then
10723 Set_Discriminant_Constraint (Full, No_Elist);
10724 end if;
10725 end if;
10727 if Ekind (Full_Base) = E_Record_Type
10728 and then Has_Discriminants (Full_Base)
10729 and then Has_Discriminants (Priv) -- might not, if errors
10730 and then not Has_Unknown_Discriminants (Priv)
10731 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10732 then
10733 Create_Constrained_Components
10734 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10736 -- If the full base is itself derived from private, build a congruent
10737 -- subtype of its underlying type, for use by the back end. For a
10738 -- constrained record component, the declaration cannot be placed on
10739 -- the component list, but it must nevertheless be built an analyzed, to
10740 -- supply enough information for Gigi to compute the size of component.
10742 elsif Ekind (Full_Base) in Private_Kind
10743 and then Is_Derived_Type (Full_Base)
10744 and then Has_Discriminants (Full_Base)
10745 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10746 then
10747 if not Is_Itype (Priv)
10748 and then
10749 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10750 then
10751 Build_Underlying_Full_View
10752 (Parent (Priv), Full, Etype (Full_Base));
10754 elsif Nkind (Related_Nod) = N_Component_Declaration then
10755 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10756 end if;
10758 elsif Is_Record_Type (Full_Base) then
10760 -- Show Full is simply a renaming of Full_Base
10762 Set_Cloned_Subtype (Full, Full_Base);
10763 end if;
10765 -- It is unsafe to share the bounds of a scalar type, because the Itype
10766 -- is elaborated on demand, and if a bound is non-static then different
10767 -- orders of elaboration in different units will lead to different
10768 -- external symbols.
10770 if Is_Scalar_Type (Full_Base) then
10771 Set_Scalar_Range (Full,
10772 Make_Range (Sloc (Related_Nod),
10773 Low_Bound =>
10774 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10775 High_Bound =>
10776 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10778 -- This completion inherits the bounds of the full parent, but if
10779 -- the parent is an unconstrained floating point type, so is the
10780 -- completion.
10782 if Is_Floating_Point_Type (Full_Base) then
10783 Set_Includes_Infinities
10784 (Scalar_Range (Full), Has_Infinities (Full_Base));
10785 end if;
10786 end if;
10788 -- ??? It seems that a lot of fields are missing that should be copied
10789 -- from Full_Base to Full. Here are some that are introduced in a
10790 -- non-disruptive way but a cleanup is necessary.
10792 if Is_Tagged_Type (Full_Base) then
10793 Set_Is_Tagged_Type (Full);
10794 Set_Direct_Primitive_Operations (Full,
10795 Direct_Primitive_Operations (Full_Base));
10797 -- Inherit class_wide type of full_base in case the partial view was
10798 -- not tagged. Otherwise it has already been created when the private
10799 -- subtype was analyzed.
10801 if No (Class_Wide_Type (Full)) then
10802 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10803 end if;
10805 -- If this is a subtype of a protected or task type, constrain its
10806 -- corresponding record, unless this is a subtype without constraints,
10807 -- i.e. a simple renaming as with an actual subtype in an instance.
10809 elsif Is_Concurrent_Type (Full_Base) then
10810 if Has_Discriminants (Full)
10811 and then Present (Corresponding_Record_Type (Full_Base))
10812 and then
10813 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10814 then
10815 Set_Corresponding_Record_Type (Full,
10816 Constrain_Corresponding_Record
10817 (Full, Corresponding_Record_Type (Full_Base),
10818 Related_Nod, Full_Base));
10820 else
10821 Set_Corresponding_Record_Type (Full,
10822 Corresponding_Record_Type (Full_Base));
10823 end if;
10824 end if;
10826 -- Link rep item chain, and also setting of Has_Predicates from private
10827 -- subtype to full subtype, since we will need these on the full subtype
10828 -- to create the predicate function. Note that the full subtype may
10829 -- already have rep items, inherited from the full view of the base
10830 -- type, so we must be sure not to overwrite these entries.
10832 declare
10833 Append : Boolean;
10834 Item : Node_Id;
10835 Next_Item : Node_Id;
10837 begin
10838 Item := First_Rep_Item (Full);
10840 -- If no existing rep items on full type, we can just link directly
10841 -- to the list of items on the private type.
10843 if No (Item) then
10844 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10846 -- Otherwise, search to the end of items currently linked to the full
10847 -- subtype and append the private items to the end. However, if Priv
10848 -- and Full already have the same list of rep items, then the append
10849 -- is not done, as that would create a circularity.
10851 elsif Item /= First_Rep_Item (Priv) then
10852 Append := True;
10854 loop
10855 Next_Item := Next_Rep_Item (Item);
10856 exit when No (Next_Item);
10857 Item := Next_Item;
10859 -- If the private view has aspect specifications, the full view
10860 -- inherits them. Since these aspects may already have been
10861 -- attached to the full view during derivation, do not append
10862 -- them if already present.
10864 if Item = First_Rep_Item (Priv) then
10865 Append := False;
10866 exit;
10867 end if;
10868 end loop;
10870 -- And link the private type items at the end of the chain
10872 if Append then
10873 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
10874 end if;
10875 end if;
10876 end;
10878 -- Make sure Has_Predicates is set on full type if it is set on the
10879 -- private type. Note that it may already be set on the full type and
10880 -- if so, we don't want to unset it.
10882 if Has_Predicates (Priv) then
10883 Set_Has_Predicates (Full);
10884 end if;
10885 end Complete_Private_Subtype;
10887 ----------------------------
10888 -- Constant_Redeclaration --
10889 ----------------------------
10891 procedure Constant_Redeclaration
10892 (Id : Entity_Id;
10893 N : Node_Id;
10894 T : out Entity_Id)
10896 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
10897 Obj_Def : constant Node_Id := Object_Definition (N);
10898 New_T : Entity_Id;
10900 procedure Check_Possible_Deferred_Completion
10901 (Prev_Id : Entity_Id;
10902 Prev_Obj_Def : Node_Id;
10903 Curr_Obj_Def : Node_Id);
10904 -- Determine whether the two object definitions describe the partial
10905 -- and the full view of a constrained deferred constant. Generate
10906 -- a subtype for the full view and verify that it statically matches
10907 -- the subtype of the partial view.
10909 procedure Check_Recursive_Declaration (Typ : Entity_Id);
10910 -- If deferred constant is an access type initialized with an allocator,
10911 -- check whether there is an illegal recursion in the definition,
10912 -- through a default value of some record subcomponent. This is normally
10913 -- detected when generating init procs, but requires this additional
10914 -- mechanism when expansion is disabled.
10916 ----------------------------------------
10917 -- Check_Possible_Deferred_Completion --
10918 ----------------------------------------
10920 procedure Check_Possible_Deferred_Completion
10921 (Prev_Id : Entity_Id;
10922 Prev_Obj_Def : Node_Id;
10923 Curr_Obj_Def : Node_Id)
10925 begin
10926 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
10927 and then Present (Constraint (Prev_Obj_Def))
10928 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
10929 and then Present (Constraint (Curr_Obj_Def))
10930 then
10931 declare
10932 Loc : constant Source_Ptr := Sloc (N);
10933 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
10934 Decl : constant Node_Id :=
10935 Make_Subtype_Declaration (Loc,
10936 Defining_Identifier => Def_Id,
10937 Subtype_Indication =>
10938 Relocate_Node (Curr_Obj_Def));
10940 begin
10941 Insert_Before_And_Analyze (N, Decl);
10942 Set_Etype (Id, Def_Id);
10944 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
10945 Error_Msg_Sloc := Sloc (Prev_Id);
10946 Error_Msg_N ("subtype does not statically match deferred " &
10947 "declaration#", N);
10948 end if;
10949 end;
10950 end if;
10951 end Check_Possible_Deferred_Completion;
10953 ---------------------------------
10954 -- Check_Recursive_Declaration --
10955 ---------------------------------
10957 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
10958 Comp : Entity_Id;
10960 begin
10961 if Is_Record_Type (Typ) then
10962 Comp := First_Component (Typ);
10963 while Present (Comp) loop
10964 if Comes_From_Source (Comp) then
10965 if Present (Expression (Parent (Comp)))
10966 and then Is_Entity_Name (Expression (Parent (Comp)))
10967 and then Entity (Expression (Parent (Comp))) = Prev
10968 then
10969 Error_Msg_Sloc := Sloc (Parent (Comp));
10970 Error_Msg_NE
10971 ("illegal circularity with declaration for&#",
10972 N, Comp);
10973 return;
10975 elsif Is_Record_Type (Etype (Comp)) then
10976 Check_Recursive_Declaration (Etype (Comp));
10977 end if;
10978 end if;
10980 Next_Component (Comp);
10981 end loop;
10982 end if;
10983 end Check_Recursive_Declaration;
10985 -- Start of processing for Constant_Redeclaration
10987 begin
10988 if Nkind (Parent (Prev)) = N_Object_Declaration then
10989 if Nkind (Object_Definition
10990 (Parent (Prev))) = N_Subtype_Indication
10991 then
10992 -- Find type of new declaration. The constraints of the two
10993 -- views must match statically, but there is no point in
10994 -- creating an itype for the full view.
10996 if Nkind (Obj_Def) = N_Subtype_Indication then
10997 Find_Type (Subtype_Mark (Obj_Def));
10998 New_T := Entity (Subtype_Mark (Obj_Def));
11000 else
11001 Find_Type (Obj_Def);
11002 New_T := Entity (Obj_Def);
11003 end if;
11005 T := Etype (Prev);
11007 else
11008 -- The full view may impose a constraint, even if the partial
11009 -- view does not, so construct the subtype.
11011 New_T := Find_Type_Of_Object (Obj_Def, N);
11012 T := New_T;
11013 end if;
11015 else
11016 -- Current declaration is illegal, diagnosed below in Enter_Name
11018 T := Empty;
11019 New_T := Any_Type;
11020 end if;
11022 -- If previous full declaration or a renaming declaration exists, or if
11023 -- a homograph is present, let Enter_Name handle it, either with an
11024 -- error or with the removal of an overridden implicit subprogram.
11025 -- The previous one is a full declaration if it has an expression
11026 -- (which in the case of an aggregate is indicated by the Init flag).
11028 if Ekind (Prev) /= E_Constant
11029 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11030 or else Present (Expression (Parent (Prev)))
11031 or else Has_Init_Expression (Parent (Prev))
11032 or else Present (Full_View (Prev))
11033 then
11034 Enter_Name (Id);
11036 -- Verify that types of both declarations match, or else that both types
11037 -- are anonymous access types whose designated subtypes statically match
11038 -- (as allowed in Ada 2005 by AI-385).
11040 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11041 and then
11042 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11043 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11044 or else Is_Access_Constant (Etype (New_T)) /=
11045 Is_Access_Constant (Etype (Prev))
11046 or else Can_Never_Be_Null (Etype (New_T)) /=
11047 Can_Never_Be_Null (Etype (Prev))
11048 or else Null_Exclusion_Present (Parent (Prev)) /=
11049 Null_Exclusion_Present (Parent (Id))
11050 or else not Subtypes_Statically_Match
11051 (Designated_Type (Etype (Prev)),
11052 Designated_Type (Etype (New_T))))
11053 then
11054 Error_Msg_Sloc := Sloc (Prev);
11055 Error_Msg_N ("type does not match declaration#", N);
11056 Set_Full_View (Prev, Id);
11057 Set_Etype (Id, Any_Type);
11059 elsif
11060 Null_Exclusion_Present (Parent (Prev))
11061 and then not Null_Exclusion_Present (N)
11062 then
11063 Error_Msg_Sloc := Sloc (Prev);
11064 Error_Msg_N ("null-exclusion does not match declaration#", N);
11065 Set_Full_View (Prev, Id);
11066 Set_Etype (Id, Any_Type);
11068 -- If so, process the full constant declaration
11070 else
11071 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11072 -- the deferred declaration is constrained, then the subtype defined
11073 -- by the subtype_indication in the full declaration shall match it
11074 -- statically.
11076 Check_Possible_Deferred_Completion
11077 (Prev_Id => Prev,
11078 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11079 Curr_Obj_Def => Obj_Def);
11081 Set_Full_View (Prev, Id);
11082 Set_Is_Public (Id, Is_Public (Prev));
11083 Set_Is_Internal (Id);
11084 Append_Entity (Id, Current_Scope);
11086 -- Check ALIASED present if present before (RM 7.4(7))
11088 if Is_Aliased (Prev)
11089 and then not Aliased_Present (N)
11090 then
11091 Error_Msg_Sloc := Sloc (Prev);
11092 Error_Msg_N ("ALIASED required (see declaration#)", N);
11093 end if;
11095 -- Check that placement is in private part and that the incomplete
11096 -- declaration appeared in the visible part.
11098 if Ekind (Current_Scope) = E_Package
11099 and then not In_Private_Part (Current_Scope)
11100 then
11101 Error_Msg_Sloc := Sloc (Prev);
11102 Error_Msg_N
11103 ("full constant for declaration#"
11104 & " must be in private part", N);
11106 elsif Ekind (Current_Scope) = E_Package
11107 and then
11108 List_Containing (Parent (Prev)) /=
11109 Visible_Declarations (Package_Specification (Current_Scope))
11110 then
11111 Error_Msg_N
11112 ("deferred constant must be declared in visible part",
11113 Parent (Prev));
11114 end if;
11116 if Is_Access_Type (T)
11117 and then Nkind (Expression (N)) = N_Allocator
11118 then
11119 Check_Recursive_Declaration (Designated_Type (T));
11120 end if;
11122 -- A deferred constant is a visible entity. If type has invariants,
11123 -- verify that the initial value satisfies them.
11125 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11126 Insert_After (N,
11127 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11128 end if;
11129 end if;
11130 end Constant_Redeclaration;
11132 ----------------------
11133 -- Constrain_Access --
11134 ----------------------
11136 procedure Constrain_Access
11137 (Def_Id : in out Entity_Id;
11138 S : Node_Id;
11139 Related_Nod : Node_Id)
11141 T : constant Entity_Id := Entity (Subtype_Mark (S));
11142 Desig_Type : constant Entity_Id := Designated_Type (T);
11143 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11144 Constraint_OK : Boolean := True;
11146 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
11147 -- Simple predicate to test for defaulted discriminants
11148 -- Shouldn't this be in sem_util???
11150 ---------------------------------
11151 -- Has_Defaulted_Discriminants --
11152 ---------------------------------
11154 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
11155 begin
11156 return Has_Discriminants (Typ)
11157 and then Present (First_Discriminant (Typ))
11158 and then Present
11159 (Discriminant_Default_Value (First_Discriminant (Typ)));
11160 end Has_Defaulted_Discriminants;
11162 -- Start of processing for Constrain_Access
11164 begin
11165 if Is_Array_Type (Desig_Type) then
11166 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11168 elsif (Is_Record_Type (Desig_Type)
11169 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11170 and then not Is_Constrained (Desig_Type)
11171 then
11172 -- ??? The following code is a temporary kludge to ignore a
11173 -- discriminant constraint on access type if it is constraining
11174 -- the current record. Avoid creating the implicit subtype of the
11175 -- record we are currently compiling since right now, we cannot
11176 -- handle these. For now, just return the access type itself.
11178 if Desig_Type = Current_Scope
11179 and then No (Def_Id)
11180 then
11181 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11182 Def_Id := Entity (Subtype_Mark (S));
11184 -- This call added to ensure that the constraint is analyzed
11185 -- (needed for a B test). Note that we still return early from
11186 -- this procedure to avoid recursive processing. ???
11188 Constrain_Discriminated_Type
11189 (Desig_Subtype, S, Related_Nod, For_Access => True);
11190 return;
11191 end if;
11193 -- Enforce rule that the constraint is illegal if there is an
11194 -- unconstrained view of the designated type. This means that the
11195 -- partial view (either a private type declaration or a derivation
11196 -- from a private type) has no discriminants. (Defect Report
11197 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11199 -- Rule updated for Ada 2005: The private type is said to have
11200 -- a constrained partial view, given that objects of the type
11201 -- can be declared. Furthermore, the rule applies to all access
11202 -- types, unlike the rule concerning default discriminants (see
11203 -- RM 3.7.1(7/3))
11205 if (Ekind (T) = E_General_Access_Type
11206 or else Ada_Version >= Ada_2005)
11207 and then Has_Private_Declaration (Desig_Type)
11208 and then In_Open_Scopes (Scope (Desig_Type))
11209 and then Has_Discriminants (Desig_Type)
11210 then
11211 declare
11212 Pack : constant Node_Id :=
11213 Unit_Declaration_Node (Scope (Desig_Type));
11214 Decls : List_Id;
11215 Decl : Node_Id;
11217 begin
11218 if Nkind (Pack) = N_Package_Declaration then
11219 Decls := Visible_Declarations (Specification (Pack));
11220 Decl := First (Decls);
11221 while Present (Decl) loop
11222 if (Nkind (Decl) = N_Private_Type_Declaration
11223 and then
11224 Chars (Defining_Identifier (Decl)) =
11225 Chars (Desig_Type))
11227 or else
11228 (Nkind (Decl) = N_Full_Type_Declaration
11229 and then
11230 Chars (Defining_Identifier (Decl)) =
11231 Chars (Desig_Type)
11232 and then Is_Derived_Type (Desig_Type)
11233 and then
11234 Has_Private_Declaration (Etype (Desig_Type)))
11235 then
11236 if No (Discriminant_Specifications (Decl)) then
11237 Error_Msg_N
11238 ("cannot constrain access type if designated " &
11239 "type has constrained partial view", S);
11240 end if;
11242 exit;
11243 end if;
11245 Next (Decl);
11246 end loop;
11247 end if;
11248 end;
11249 end if;
11251 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11252 For_Access => True);
11254 elsif (Is_Task_Type (Desig_Type)
11255 or else Is_Protected_Type (Desig_Type))
11256 and then not Is_Constrained (Desig_Type)
11257 then
11258 Constrain_Concurrent
11259 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11261 else
11262 Error_Msg_N ("invalid constraint on access type", S);
11263 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11264 Constraint_OK := False;
11265 end if;
11267 if No (Def_Id) then
11268 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11269 else
11270 Set_Ekind (Def_Id, E_Access_Subtype);
11271 end if;
11273 if Constraint_OK then
11274 Set_Etype (Def_Id, Base_Type (T));
11276 if Is_Private_Type (Desig_Type) then
11277 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11278 end if;
11279 else
11280 Set_Etype (Def_Id, Any_Type);
11281 end if;
11283 Set_Size_Info (Def_Id, T);
11284 Set_Is_Constrained (Def_Id, Constraint_OK);
11285 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11286 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11287 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11289 Conditional_Delay (Def_Id, T);
11291 -- AI-363 : Subtypes of general access types whose designated types have
11292 -- default discriminants are disallowed. In instances, the rule has to
11293 -- be checked against the actual, of which T is the subtype. In a
11294 -- generic body, the rule is checked assuming that the actual type has
11295 -- defaulted discriminants.
11297 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11298 if Ekind (Base_Type (T)) = E_General_Access_Type
11299 and then Has_Defaulted_Discriminants (Desig_Type)
11300 then
11301 if Ada_Version < Ada_2005 then
11302 Error_Msg_N
11303 ("access subtype of general access type would not " &
11304 "be allowed in Ada 2005?y?", S);
11305 else
11306 Error_Msg_N
11307 ("access subtype of general access type not allowed", S);
11308 end if;
11310 Error_Msg_N ("\discriminants have defaults", S);
11312 elsif Is_Access_Type (T)
11313 and then Is_Generic_Type (Desig_Type)
11314 and then Has_Discriminants (Desig_Type)
11315 and then In_Package_Body (Current_Scope)
11316 then
11317 if Ada_Version < Ada_2005 then
11318 Error_Msg_N
11319 ("access subtype would not be allowed in generic body " &
11320 "in Ada 2005?y?", S);
11321 else
11322 Error_Msg_N
11323 ("access subtype not allowed in generic body", S);
11324 end if;
11326 Error_Msg_N
11327 ("\designated type is a discriminated formal", S);
11328 end if;
11329 end if;
11330 end Constrain_Access;
11332 ---------------------
11333 -- Constrain_Array --
11334 ---------------------
11336 procedure Constrain_Array
11337 (Def_Id : in out Entity_Id;
11338 SI : Node_Id;
11339 Related_Nod : Node_Id;
11340 Related_Id : Entity_Id;
11341 Suffix : Character)
11343 C : constant Node_Id := Constraint (SI);
11344 Number_Of_Constraints : Nat := 0;
11345 Index : Node_Id;
11346 S, T : Entity_Id;
11347 Constraint_OK : Boolean := True;
11349 begin
11350 T := Entity (Subtype_Mark (SI));
11352 if Ekind (T) in Access_Kind then
11353 T := Designated_Type (T);
11354 end if;
11356 -- If an index constraint follows a subtype mark in a subtype indication
11357 -- then the type or subtype denoted by the subtype mark must not already
11358 -- impose an index constraint. The subtype mark must denote either an
11359 -- unconstrained array type or an access type whose designated type
11360 -- is such an array type... (RM 3.6.1)
11362 if Is_Constrained (T) then
11363 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11364 Constraint_OK := False;
11366 else
11367 S := First (Constraints (C));
11368 while Present (S) loop
11369 Number_Of_Constraints := Number_Of_Constraints + 1;
11370 Next (S);
11371 end loop;
11373 -- In either case, the index constraint must provide a discrete
11374 -- range for each index of the array type and the type of each
11375 -- discrete range must be the same as that of the corresponding
11376 -- index. (RM 3.6.1)
11378 if Number_Of_Constraints /= Number_Dimensions (T) then
11379 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11380 Constraint_OK := False;
11382 else
11383 S := First (Constraints (C));
11384 Index := First_Index (T);
11385 Analyze (Index);
11387 -- Apply constraints to each index type
11389 for J in 1 .. Number_Of_Constraints loop
11390 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11391 Next (Index);
11392 Next (S);
11393 end loop;
11395 end if;
11396 end if;
11398 if No (Def_Id) then
11399 Def_Id :=
11400 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11401 Set_Parent (Def_Id, Related_Nod);
11403 else
11404 Set_Ekind (Def_Id, E_Array_Subtype);
11405 end if;
11407 Set_Size_Info (Def_Id, (T));
11408 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11409 Set_Etype (Def_Id, Base_Type (T));
11411 if Constraint_OK then
11412 Set_First_Index (Def_Id, First (Constraints (C)));
11413 else
11414 Set_First_Index (Def_Id, First_Index (T));
11415 end if;
11417 Set_Is_Constrained (Def_Id, True);
11418 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11419 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11421 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11422 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11424 -- A subtype does not inherit the packed_array_type of is parent. We
11425 -- need to initialize the attribute because if Def_Id is previously
11426 -- analyzed through a limited_with clause, it will have the attributes
11427 -- of an incomplete type, one of which is an Elist that overlaps the
11428 -- Packed_Array_Type field.
11430 Set_Packed_Array_Type (Def_Id, Empty);
11432 -- Build a freeze node if parent still needs one. Also make sure that
11433 -- the Depends_On_Private status is set because the subtype will need
11434 -- reprocessing at the time the base type does, and also we must set a
11435 -- conditional delay.
11437 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11438 Conditional_Delay (Def_Id, T);
11439 end Constrain_Array;
11441 ------------------------------
11442 -- Constrain_Component_Type --
11443 ------------------------------
11445 function Constrain_Component_Type
11446 (Comp : Entity_Id;
11447 Constrained_Typ : Entity_Id;
11448 Related_Node : Node_Id;
11449 Typ : Entity_Id;
11450 Constraints : Elist_Id) return Entity_Id
11452 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11453 Compon_Type : constant Entity_Id := Etype (Comp);
11454 Array_Comp : Node_Id;
11456 function Build_Constrained_Array_Type
11457 (Old_Type : Entity_Id) return Entity_Id;
11458 -- If Old_Type is an array type, one of whose indexes is constrained
11459 -- by a discriminant, build an Itype whose constraint replaces the
11460 -- discriminant with its value in the constraint.
11462 function Build_Constrained_Discriminated_Type
11463 (Old_Type : Entity_Id) return Entity_Id;
11464 -- Ditto for record components
11466 function Build_Constrained_Access_Type
11467 (Old_Type : Entity_Id) return Entity_Id;
11468 -- Ditto for access types. Makes use of previous two functions, to
11469 -- constrain designated type.
11471 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11472 -- T is an array or discriminated type, C is a list of constraints
11473 -- that apply to T. This routine builds the constrained subtype.
11475 function Is_Discriminant (Expr : Node_Id) return Boolean;
11476 -- Returns True if Expr is a discriminant
11478 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11479 -- Find the value of discriminant Discrim in Constraint
11481 -----------------------------------
11482 -- Build_Constrained_Access_Type --
11483 -----------------------------------
11485 function Build_Constrained_Access_Type
11486 (Old_Type : Entity_Id) return Entity_Id
11488 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11489 Itype : Entity_Id;
11490 Desig_Subtype : Entity_Id;
11491 Scop : Entity_Id;
11493 begin
11494 -- if the original access type was not embedded in the enclosing
11495 -- type definition, there is no need to produce a new access
11496 -- subtype. In fact every access type with an explicit constraint
11497 -- generates an itype whose scope is the enclosing record.
11499 if not Is_Type (Scope (Old_Type)) then
11500 return Old_Type;
11502 elsif Is_Array_Type (Desig_Type) then
11503 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11505 elsif Has_Discriminants (Desig_Type) then
11507 -- This may be an access type to an enclosing record type for
11508 -- which we are constructing the constrained components. Return
11509 -- the enclosing record subtype. This is not always correct,
11510 -- but avoids infinite recursion. ???
11512 Desig_Subtype := Any_Type;
11514 for J in reverse 0 .. Scope_Stack.Last loop
11515 Scop := Scope_Stack.Table (J).Entity;
11517 if Is_Type (Scop)
11518 and then Base_Type (Scop) = Base_Type (Desig_Type)
11519 then
11520 Desig_Subtype := Scop;
11521 end if;
11523 exit when not Is_Type (Scop);
11524 end loop;
11526 if Desig_Subtype = Any_Type then
11527 Desig_Subtype :=
11528 Build_Constrained_Discriminated_Type (Desig_Type);
11529 end if;
11531 else
11532 return Old_Type;
11533 end if;
11535 if Desig_Subtype /= Desig_Type then
11537 -- The Related_Node better be here or else we won't be able
11538 -- to attach new itypes to a node in the tree.
11540 pragma Assert (Present (Related_Node));
11542 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11544 Set_Etype (Itype, Base_Type (Old_Type));
11545 Set_Size_Info (Itype, (Old_Type));
11546 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11547 Set_Depends_On_Private (Itype, Has_Private_Component
11548 (Old_Type));
11549 Set_Is_Access_Constant (Itype, Is_Access_Constant
11550 (Old_Type));
11552 -- The new itype needs freezing when it depends on a not frozen
11553 -- type and the enclosing subtype needs freezing.
11555 if Has_Delayed_Freeze (Constrained_Typ)
11556 and then not Is_Frozen (Constrained_Typ)
11557 then
11558 Conditional_Delay (Itype, Base_Type (Old_Type));
11559 end if;
11561 return Itype;
11563 else
11564 return Old_Type;
11565 end if;
11566 end Build_Constrained_Access_Type;
11568 ----------------------------------
11569 -- Build_Constrained_Array_Type --
11570 ----------------------------------
11572 function Build_Constrained_Array_Type
11573 (Old_Type : Entity_Id) return Entity_Id
11575 Lo_Expr : Node_Id;
11576 Hi_Expr : Node_Id;
11577 Old_Index : Node_Id;
11578 Range_Node : Node_Id;
11579 Constr_List : List_Id;
11581 Need_To_Create_Itype : Boolean := False;
11583 begin
11584 Old_Index := First_Index (Old_Type);
11585 while Present (Old_Index) loop
11586 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11588 if Is_Discriminant (Lo_Expr)
11589 or else Is_Discriminant (Hi_Expr)
11590 then
11591 Need_To_Create_Itype := True;
11592 end if;
11594 Next_Index (Old_Index);
11595 end loop;
11597 if Need_To_Create_Itype then
11598 Constr_List := New_List;
11600 Old_Index := First_Index (Old_Type);
11601 while Present (Old_Index) loop
11602 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11604 if Is_Discriminant (Lo_Expr) then
11605 Lo_Expr := Get_Discr_Value (Lo_Expr);
11606 end if;
11608 if Is_Discriminant (Hi_Expr) then
11609 Hi_Expr := Get_Discr_Value (Hi_Expr);
11610 end if;
11612 Range_Node :=
11613 Make_Range
11614 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11616 Append (Range_Node, To => Constr_List);
11618 Next_Index (Old_Index);
11619 end loop;
11621 return Build_Subtype (Old_Type, Constr_List);
11623 else
11624 return Old_Type;
11625 end if;
11626 end Build_Constrained_Array_Type;
11628 ------------------------------------------
11629 -- Build_Constrained_Discriminated_Type --
11630 ------------------------------------------
11632 function Build_Constrained_Discriminated_Type
11633 (Old_Type : Entity_Id) return Entity_Id
11635 Expr : Node_Id;
11636 Constr_List : List_Id;
11637 Old_Constraint : Elmt_Id;
11639 Need_To_Create_Itype : Boolean := False;
11641 begin
11642 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11643 while Present (Old_Constraint) loop
11644 Expr := Node (Old_Constraint);
11646 if Is_Discriminant (Expr) then
11647 Need_To_Create_Itype := True;
11648 end if;
11650 Next_Elmt (Old_Constraint);
11651 end loop;
11653 if Need_To_Create_Itype then
11654 Constr_List := New_List;
11656 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11657 while Present (Old_Constraint) loop
11658 Expr := Node (Old_Constraint);
11660 if Is_Discriminant (Expr) then
11661 Expr := Get_Discr_Value (Expr);
11662 end if;
11664 Append (New_Copy_Tree (Expr), To => Constr_List);
11666 Next_Elmt (Old_Constraint);
11667 end loop;
11669 return Build_Subtype (Old_Type, Constr_List);
11671 else
11672 return Old_Type;
11673 end if;
11674 end Build_Constrained_Discriminated_Type;
11676 -------------------
11677 -- Build_Subtype --
11678 -------------------
11680 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11681 Indic : Node_Id;
11682 Subtyp_Decl : Node_Id;
11683 Def_Id : Entity_Id;
11684 Btyp : Entity_Id := Base_Type (T);
11686 begin
11687 -- The Related_Node better be here or else we won't be able to
11688 -- attach new itypes to a node in the tree.
11690 pragma Assert (Present (Related_Node));
11692 -- If the view of the component's type is incomplete or private
11693 -- with unknown discriminants, then the constraint must be applied
11694 -- to the full type.
11696 if Has_Unknown_Discriminants (Btyp)
11697 and then Present (Underlying_Type (Btyp))
11698 then
11699 Btyp := Underlying_Type (Btyp);
11700 end if;
11702 Indic :=
11703 Make_Subtype_Indication (Loc,
11704 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11705 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11707 Def_Id := Create_Itype (Ekind (T), Related_Node);
11709 Subtyp_Decl :=
11710 Make_Subtype_Declaration (Loc,
11711 Defining_Identifier => Def_Id,
11712 Subtype_Indication => Indic);
11714 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11716 -- Itypes must be analyzed with checks off (see package Itypes)
11718 Analyze (Subtyp_Decl, Suppress => All_Checks);
11720 return Def_Id;
11721 end Build_Subtype;
11723 ---------------------
11724 -- Get_Discr_Value --
11725 ---------------------
11727 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11728 D : Entity_Id;
11729 E : Elmt_Id;
11731 begin
11732 -- The discriminant may be declared for the type, in which case we
11733 -- find it by iterating over the list of discriminants. If the
11734 -- discriminant is inherited from a parent type, it appears as the
11735 -- corresponding discriminant of the current type. This will be the
11736 -- case when constraining an inherited component whose constraint is
11737 -- given by a discriminant of the parent.
11739 D := First_Discriminant (Typ);
11740 E := First_Elmt (Constraints);
11742 while Present (D) loop
11743 if D = Entity (Discrim)
11744 or else D = CR_Discriminant (Entity (Discrim))
11745 or else Corresponding_Discriminant (D) = Entity (Discrim)
11746 then
11747 return Node (E);
11748 end if;
11750 Next_Discriminant (D);
11751 Next_Elmt (E);
11752 end loop;
11754 -- The Corresponding_Discriminant mechanism is incomplete, because
11755 -- the correspondence between new and old discriminants is not one
11756 -- to one: one new discriminant can constrain several old ones. In
11757 -- that case, scan sequentially the stored_constraint, the list of
11758 -- discriminants of the parents, and the constraints.
11760 -- Previous code checked for the present of the Stored_Constraint
11761 -- list for the derived type, but did not use it at all. Should it
11762 -- be present when the component is a discriminated task type?
11764 if Is_Derived_Type (Typ)
11765 and then Scope (Entity (Discrim)) = Etype (Typ)
11766 then
11767 D := First_Discriminant (Etype (Typ));
11768 E := First_Elmt (Constraints);
11769 while Present (D) loop
11770 if D = Entity (Discrim) then
11771 return Node (E);
11772 end if;
11774 Next_Discriminant (D);
11775 Next_Elmt (E);
11776 end loop;
11777 end if;
11779 -- Something is wrong if we did not find the value
11781 raise Program_Error;
11782 end Get_Discr_Value;
11784 ---------------------
11785 -- Is_Discriminant --
11786 ---------------------
11788 function Is_Discriminant (Expr : Node_Id) return Boolean is
11789 Discrim_Scope : Entity_Id;
11791 begin
11792 if Denotes_Discriminant (Expr) then
11793 Discrim_Scope := Scope (Entity (Expr));
11795 -- Either we have a reference to one of Typ's discriminants,
11797 pragma Assert (Discrim_Scope = Typ
11799 -- or to the discriminants of the parent type, in the case
11800 -- of a derivation of a tagged type with variants.
11802 or else Discrim_Scope = Etype (Typ)
11803 or else Full_View (Discrim_Scope) = Etype (Typ)
11805 -- or same as above for the case where the discriminants
11806 -- were declared in Typ's private view.
11808 or else (Is_Private_Type (Discrim_Scope)
11809 and then Chars (Discrim_Scope) = Chars (Typ))
11811 -- or else we are deriving from the full view and the
11812 -- discriminant is declared in the private entity.
11814 or else (Is_Private_Type (Typ)
11815 and then Chars (Discrim_Scope) = Chars (Typ))
11817 -- Or we are constrained the corresponding record of a
11818 -- synchronized type that completes a private declaration.
11820 or else (Is_Concurrent_Record_Type (Typ)
11821 and then
11822 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11824 -- or we have a class-wide type, in which case make sure the
11825 -- discriminant found belongs to the root type.
11827 or else (Is_Class_Wide_Type (Typ)
11828 and then Etype (Typ) = Discrim_Scope));
11830 return True;
11831 end if;
11833 -- In all other cases we have something wrong
11835 return False;
11836 end Is_Discriminant;
11838 -- Start of processing for Constrain_Component_Type
11840 begin
11841 if Nkind (Parent (Comp)) = N_Component_Declaration
11842 and then Comes_From_Source (Parent (Comp))
11843 and then Comes_From_Source
11844 (Subtype_Indication (Component_Definition (Parent (Comp))))
11845 and then
11846 Is_Entity_Name
11847 (Subtype_Indication (Component_Definition (Parent (Comp))))
11848 then
11849 return Compon_Type;
11851 elsif Is_Array_Type (Compon_Type) then
11852 Array_Comp := Build_Constrained_Array_Type (Compon_Type);
11854 -- If the component of the parent is packed, and the record type is
11855 -- already frozen, as is the case for an itype, the component type
11856 -- itself will not be frozen, and the packed array type for it must
11857 -- be constructed explicitly. Since the creation of packed types is
11858 -- an expansion activity, we only do this if expansion is active.
11860 if Expander_Active
11861 and then Is_Packed (Compon_Type)
11862 and then Is_Frozen (Current_Scope)
11863 then
11864 Create_Packed_Array_Type (Array_Comp);
11865 end if;
11867 return Array_Comp;
11869 elsif Has_Discriminants (Compon_Type) then
11870 return Build_Constrained_Discriminated_Type (Compon_Type);
11872 elsif Is_Access_Type (Compon_Type) then
11873 return Build_Constrained_Access_Type (Compon_Type);
11875 else
11876 return Compon_Type;
11877 end if;
11878 end Constrain_Component_Type;
11880 --------------------------
11881 -- Constrain_Concurrent --
11882 --------------------------
11884 -- For concurrent types, the associated record value type carries the same
11885 -- discriminants, so when we constrain a concurrent type, we must constrain
11886 -- the corresponding record type as well.
11888 procedure Constrain_Concurrent
11889 (Def_Id : in out Entity_Id;
11890 SI : Node_Id;
11891 Related_Nod : Node_Id;
11892 Related_Id : Entity_Id;
11893 Suffix : Character)
11895 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11896 -- case of a private subtype (needed when only doing semantic analysis).
11898 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
11899 T_Val : Entity_Id;
11901 begin
11902 if Ekind (T_Ent) in Access_Kind then
11903 T_Ent := Designated_Type (T_Ent);
11904 end if;
11906 T_Val := Corresponding_Record_Type (T_Ent);
11908 if Present (T_Val) then
11910 if No (Def_Id) then
11911 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11912 end if;
11914 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11916 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11917 Set_Corresponding_Record_Type (Def_Id,
11918 Constrain_Corresponding_Record
11919 (Def_Id, T_Val, Related_Nod, Related_Id));
11921 else
11922 -- If there is no associated record, expansion is disabled and this
11923 -- is a generic context. Create a subtype in any case, so that
11924 -- semantic analysis can proceed.
11926 if No (Def_Id) then
11927 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11928 end if;
11930 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11931 end if;
11932 end Constrain_Concurrent;
11934 ------------------------------------
11935 -- Constrain_Corresponding_Record --
11936 ------------------------------------
11938 function Constrain_Corresponding_Record
11939 (Prot_Subt : Entity_Id;
11940 Corr_Rec : Entity_Id;
11941 Related_Nod : Node_Id;
11942 Related_Id : Entity_Id) return Entity_Id
11944 T_Sub : constant Entity_Id :=
11945 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
11947 begin
11948 Set_Etype (T_Sub, Corr_Rec);
11949 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
11950 Set_Is_Constrained (T_Sub, True);
11951 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
11952 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
11954 -- As elsewhere, we do not want to create a freeze node for this itype
11955 -- if it is created for a constrained component of an enclosing record
11956 -- because references to outer discriminants will appear out of scope.
11958 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
11959 Conditional_Delay (T_Sub, Corr_Rec);
11960 else
11961 Set_Is_Frozen (T_Sub);
11962 end if;
11964 if Has_Discriminants (Prot_Subt) then -- False only if errors.
11965 Set_Discriminant_Constraint
11966 (T_Sub, Discriminant_Constraint (Prot_Subt));
11967 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
11968 Create_Constrained_Components
11969 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
11970 end if;
11972 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
11974 return T_Sub;
11975 end Constrain_Corresponding_Record;
11977 -----------------------
11978 -- Constrain_Decimal --
11979 -----------------------
11981 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
11982 T : constant Entity_Id := Entity (Subtype_Mark (S));
11983 C : constant Node_Id := Constraint (S);
11984 Loc : constant Source_Ptr := Sloc (C);
11985 Range_Expr : Node_Id;
11986 Digits_Expr : Node_Id;
11987 Digits_Val : Uint;
11988 Bound_Val : Ureal;
11990 begin
11991 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
11993 if Nkind (C) = N_Range_Constraint then
11994 Range_Expr := Range_Expression (C);
11995 Digits_Val := Digits_Value (T);
11997 else
11998 pragma Assert (Nkind (C) = N_Digits_Constraint);
12000 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12002 Digits_Expr := Digits_Expression (C);
12003 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12005 Check_Digits_Expression (Digits_Expr);
12006 Digits_Val := Expr_Value (Digits_Expr);
12008 if Digits_Val > Digits_Value (T) then
12009 Error_Msg_N
12010 ("digits expression is incompatible with subtype", C);
12011 Digits_Val := Digits_Value (T);
12012 end if;
12014 if Present (Range_Constraint (C)) then
12015 Range_Expr := Range_Expression (Range_Constraint (C));
12016 else
12017 Range_Expr := Empty;
12018 end if;
12019 end if;
12021 Set_Etype (Def_Id, Base_Type (T));
12022 Set_Size_Info (Def_Id, (T));
12023 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12024 Set_Delta_Value (Def_Id, Delta_Value (T));
12025 Set_Scale_Value (Def_Id, Scale_Value (T));
12026 Set_Small_Value (Def_Id, Small_Value (T));
12027 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12028 Set_Digits_Value (Def_Id, Digits_Val);
12030 -- Manufacture range from given digits value if no range present
12032 if No (Range_Expr) then
12033 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12034 Range_Expr :=
12035 Make_Range (Loc,
12036 Low_Bound =>
12037 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12038 High_Bound =>
12039 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12040 end if;
12042 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12043 Set_Discrete_RM_Size (Def_Id);
12045 -- Unconditionally delay the freeze, since we cannot set size
12046 -- information in all cases correctly until the freeze point.
12048 Set_Has_Delayed_Freeze (Def_Id);
12049 end Constrain_Decimal;
12051 ----------------------------------
12052 -- Constrain_Discriminated_Type --
12053 ----------------------------------
12055 procedure Constrain_Discriminated_Type
12056 (Def_Id : Entity_Id;
12057 S : Node_Id;
12058 Related_Nod : Node_Id;
12059 For_Access : Boolean := False)
12061 E : constant Entity_Id := Entity (Subtype_Mark (S));
12062 T : Entity_Id;
12063 C : Node_Id;
12064 Elist : Elist_Id := New_Elmt_List;
12066 procedure Fixup_Bad_Constraint;
12067 -- This is called after finding a bad constraint, and after having
12068 -- posted an appropriate error message. The mission is to leave the
12069 -- entity T in as reasonable state as possible.
12071 --------------------------
12072 -- Fixup_Bad_Constraint --
12073 --------------------------
12075 procedure Fixup_Bad_Constraint is
12076 begin
12077 -- Set a reasonable Ekind for the entity. For an incomplete type,
12078 -- we can't do much, but for other types, we can set the proper
12079 -- corresponding subtype kind.
12081 if Ekind (T) = E_Incomplete_Type then
12082 Set_Ekind (Def_Id, Ekind (T));
12083 else
12084 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12085 end if;
12087 -- Set Etype to the known type, to reduce chances of cascaded errors
12089 Set_Etype (Def_Id, E);
12090 Set_Error_Posted (Def_Id);
12091 end Fixup_Bad_Constraint;
12093 -- Start of processing for Constrain_Discriminated_Type
12095 begin
12096 C := Constraint (S);
12098 -- A discriminant constraint is only allowed in a subtype indication,
12099 -- after a subtype mark. This subtype mark must denote either a type
12100 -- with discriminants, or an access type whose designated type is a
12101 -- type with discriminants. A discriminant constraint specifies the
12102 -- values of these discriminants (RM 3.7.2(5)).
12104 T := Base_Type (Entity (Subtype_Mark (S)));
12106 if Ekind (T) in Access_Kind then
12107 T := Designated_Type (T);
12108 end if;
12110 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12111 -- Avoid generating an error for access-to-incomplete subtypes.
12113 if Ada_Version >= Ada_2005
12114 and then Ekind (T) = E_Incomplete_Type
12115 and then Nkind (Parent (S)) = N_Subtype_Declaration
12116 and then not Is_Itype (Def_Id)
12117 then
12118 -- A little sanity check, emit an error message if the type
12119 -- has discriminants to begin with. Type T may be a regular
12120 -- incomplete type or imported via a limited with clause.
12122 if Has_Discriminants (T)
12123 or else (From_Limited_With (T)
12124 and then Present (Non_Limited_View (T))
12125 and then Nkind (Parent (Non_Limited_View (T))) =
12126 N_Full_Type_Declaration
12127 and then Present (Discriminant_Specifications
12128 (Parent (Non_Limited_View (T)))))
12129 then
12130 Error_Msg_N
12131 ("(Ada 2005) incomplete subtype may not be constrained", C);
12132 else
12133 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12134 end if;
12136 Fixup_Bad_Constraint;
12137 return;
12139 -- Check that the type has visible discriminants. The type may be
12140 -- a private type with unknown discriminants whose full view has
12141 -- discriminants which are invisible.
12143 elsif not Has_Discriminants (T)
12144 or else
12145 (Has_Unknown_Discriminants (T)
12146 and then Is_Private_Type (T))
12147 then
12148 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12149 Fixup_Bad_Constraint;
12150 return;
12152 elsif Is_Constrained (E)
12153 or else (Ekind (E) = E_Class_Wide_Subtype
12154 and then Present (Discriminant_Constraint (E)))
12155 then
12156 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12157 Fixup_Bad_Constraint;
12158 return;
12159 end if;
12161 -- T may be an unconstrained subtype (e.g. a generic actual).
12162 -- Constraint applies to the base type.
12164 T := Base_Type (T);
12166 Elist := Build_Discriminant_Constraints (T, S);
12168 -- If the list returned was empty we had an error in building the
12169 -- discriminant constraint. We have also already signalled an error
12170 -- in the incomplete type case
12172 if Is_Empty_Elmt_List (Elist) then
12173 Fixup_Bad_Constraint;
12174 return;
12175 end if;
12177 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12178 end Constrain_Discriminated_Type;
12180 ---------------------------
12181 -- Constrain_Enumeration --
12182 ---------------------------
12184 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12185 T : constant Entity_Id := Entity (Subtype_Mark (S));
12186 C : constant Node_Id := Constraint (S);
12188 begin
12189 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12191 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12193 Set_Etype (Def_Id, Base_Type (T));
12194 Set_Size_Info (Def_Id, (T));
12195 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12196 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12198 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12200 Set_Discrete_RM_Size (Def_Id);
12201 end Constrain_Enumeration;
12203 ----------------------
12204 -- Constrain_Float --
12205 ----------------------
12207 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12208 T : constant Entity_Id := Entity (Subtype_Mark (S));
12209 C : Node_Id;
12210 D : Node_Id;
12211 Rais : Node_Id;
12213 begin
12214 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12216 Set_Etype (Def_Id, Base_Type (T));
12217 Set_Size_Info (Def_Id, (T));
12218 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12220 -- Process the constraint
12222 C := Constraint (S);
12224 -- Digits constraint present
12226 if Nkind (C) = N_Digits_Constraint then
12228 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12229 Check_Restriction (No_Obsolescent_Features, C);
12231 if Warn_On_Obsolescent_Feature then
12232 Error_Msg_N
12233 ("subtype digits constraint is an " &
12234 "obsolescent feature (RM J.3(8))?j?", C);
12235 end if;
12237 D := Digits_Expression (C);
12238 Analyze_And_Resolve (D, Any_Integer);
12239 Check_Digits_Expression (D);
12240 Set_Digits_Value (Def_Id, Expr_Value (D));
12242 -- Check that digits value is in range. Obviously we can do this
12243 -- at compile time, but it is strictly a runtime check, and of
12244 -- course there is an ACVC test that checks this.
12246 if Digits_Value (Def_Id) > Digits_Value (T) then
12247 Error_Msg_Uint_1 := Digits_Value (T);
12248 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12249 Rais :=
12250 Make_Raise_Constraint_Error (Sloc (D),
12251 Reason => CE_Range_Check_Failed);
12252 Insert_Action (Declaration_Node (Def_Id), Rais);
12253 end if;
12255 C := Range_Constraint (C);
12257 -- No digits constraint present
12259 else
12260 Set_Digits_Value (Def_Id, Digits_Value (T));
12261 end if;
12263 -- Range constraint present
12265 if Nkind (C) = N_Range_Constraint then
12266 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12268 -- No range constraint present
12270 else
12271 pragma Assert (No (C));
12272 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12273 end if;
12275 Set_Is_Constrained (Def_Id);
12276 end Constrain_Float;
12278 ---------------------
12279 -- Constrain_Index --
12280 ---------------------
12282 procedure Constrain_Index
12283 (Index : Node_Id;
12284 S : Node_Id;
12285 Related_Nod : Node_Id;
12286 Related_Id : Entity_Id;
12287 Suffix : Character;
12288 Suffix_Index : Nat)
12290 Def_Id : Entity_Id;
12291 R : Node_Id := Empty;
12292 T : constant Entity_Id := Etype (Index);
12294 begin
12295 if Nkind (S) = N_Range
12296 or else
12297 (Nkind (S) = N_Attribute_Reference
12298 and then Attribute_Name (S) = Name_Range)
12299 then
12300 -- A Range attribute will be transformed into N_Range by Resolve
12302 Analyze (S);
12303 Set_Etype (S, T);
12304 R := S;
12306 Process_Range_Expr_In_Decl (R, T, Empty_List);
12308 if not Error_Posted (S)
12309 and then
12310 (Nkind (S) /= N_Range
12311 or else not Covers (T, (Etype (Low_Bound (S))))
12312 or else not Covers (T, (Etype (High_Bound (S)))))
12313 then
12314 if Base_Type (T) /= Any_Type
12315 and then Etype (Low_Bound (S)) /= Any_Type
12316 and then Etype (High_Bound (S)) /= Any_Type
12317 then
12318 Error_Msg_N ("range expected", S);
12319 end if;
12320 end if;
12322 elsif Nkind (S) = N_Subtype_Indication then
12324 -- The parser has verified that this is a discrete indication
12326 Resolve_Discrete_Subtype_Indication (S, T);
12327 R := Range_Expression (Constraint (S));
12329 -- Capture values of bounds and generate temporaries for them if
12330 -- needed, since checks may cause duplication of the expressions
12331 -- which must not be reevaluated.
12333 -- The forced evaluation removes side effects from expressions, which
12334 -- should occur also in GNATprove mode. Otherwise, we end up with
12335 -- unexpected insertions of actions at places where this is not
12336 -- supposed to occur, e.g. on default parameters of a call.
12338 if Expander_Active or GNATprove_Mode then
12339 Force_Evaluation (Low_Bound (R));
12340 Force_Evaluation (High_Bound (R));
12341 end if;
12343 elsif Nkind (S) = N_Discriminant_Association then
12345 -- Syntactically valid in subtype indication
12347 Error_Msg_N ("invalid index constraint", S);
12348 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12349 return;
12351 -- Subtype_Mark case, no anonymous subtypes to construct
12353 else
12354 Analyze (S);
12356 if Is_Entity_Name (S) then
12357 if not Is_Type (Entity (S)) then
12358 Error_Msg_N ("expect subtype mark for index constraint", S);
12360 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12361 Wrong_Type (S, Base_Type (T));
12363 -- Check error of subtype with predicate in index constraint
12365 else
12366 Bad_Predicated_Subtype_Use
12367 ("subtype& has predicate, not allowed in index constraint",
12368 S, Entity (S));
12369 end if;
12371 return;
12373 else
12374 Error_Msg_N ("invalid index constraint", S);
12375 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12376 return;
12377 end if;
12378 end if;
12380 Def_Id :=
12381 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12383 Set_Etype (Def_Id, Base_Type (T));
12385 if Is_Modular_Integer_Type (T) then
12386 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12388 elsif Is_Integer_Type (T) then
12389 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12391 else
12392 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12393 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12394 Set_First_Literal (Def_Id, First_Literal (T));
12395 end if;
12397 Set_Size_Info (Def_Id, (T));
12398 Set_RM_Size (Def_Id, RM_Size (T));
12399 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12401 Set_Scalar_Range (Def_Id, R);
12403 Set_Etype (S, Def_Id);
12404 Set_Discrete_RM_Size (Def_Id);
12405 end Constrain_Index;
12407 -----------------------
12408 -- Constrain_Integer --
12409 -----------------------
12411 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12412 T : constant Entity_Id := Entity (Subtype_Mark (S));
12413 C : constant Node_Id := Constraint (S);
12415 begin
12416 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12418 if Is_Modular_Integer_Type (T) then
12419 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12420 else
12421 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12422 end if;
12424 Set_Etype (Def_Id, Base_Type (T));
12425 Set_Size_Info (Def_Id, (T));
12426 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12427 Set_Discrete_RM_Size (Def_Id);
12428 end Constrain_Integer;
12430 ------------------------------
12431 -- Constrain_Ordinary_Fixed --
12432 ------------------------------
12434 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12435 T : constant Entity_Id := Entity (Subtype_Mark (S));
12436 C : Node_Id;
12437 D : Node_Id;
12438 Rais : Node_Id;
12440 begin
12441 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12442 Set_Etype (Def_Id, Base_Type (T));
12443 Set_Size_Info (Def_Id, (T));
12444 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12445 Set_Small_Value (Def_Id, Small_Value (T));
12447 -- Process the constraint
12449 C := Constraint (S);
12451 -- Delta constraint present
12453 if Nkind (C) = N_Delta_Constraint then
12455 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12456 Check_Restriction (No_Obsolescent_Features, C);
12458 if Warn_On_Obsolescent_Feature then
12459 Error_Msg_S
12460 ("subtype delta constraint is an " &
12461 "obsolescent feature (RM J.3(7))?j?");
12462 end if;
12464 D := Delta_Expression (C);
12465 Analyze_And_Resolve (D, Any_Real);
12466 Check_Delta_Expression (D);
12467 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12469 -- Check that delta value is in range. Obviously we can do this
12470 -- at compile time, but it is strictly a runtime check, and of
12471 -- course there is an ACVC test that checks this.
12473 if Delta_Value (Def_Id) < Delta_Value (T) then
12474 Error_Msg_N ("??delta value is too small", D);
12475 Rais :=
12476 Make_Raise_Constraint_Error (Sloc (D),
12477 Reason => CE_Range_Check_Failed);
12478 Insert_Action (Declaration_Node (Def_Id), Rais);
12479 end if;
12481 C := Range_Constraint (C);
12483 -- No delta constraint present
12485 else
12486 Set_Delta_Value (Def_Id, Delta_Value (T));
12487 end if;
12489 -- Range constraint present
12491 if Nkind (C) = N_Range_Constraint then
12492 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12494 -- No range constraint present
12496 else
12497 pragma Assert (No (C));
12498 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12500 end if;
12502 Set_Discrete_RM_Size (Def_Id);
12504 -- Unconditionally delay the freeze, since we cannot set size
12505 -- information in all cases correctly until the freeze point.
12507 Set_Has_Delayed_Freeze (Def_Id);
12508 end Constrain_Ordinary_Fixed;
12510 -----------------------
12511 -- Contain_Interface --
12512 -----------------------
12514 function Contain_Interface
12515 (Iface : Entity_Id;
12516 Ifaces : Elist_Id) return Boolean
12518 Iface_Elmt : Elmt_Id;
12520 begin
12521 if Present (Ifaces) then
12522 Iface_Elmt := First_Elmt (Ifaces);
12523 while Present (Iface_Elmt) loop
12524 if Node (Iface_Elmt) = Iface then
12525 return True;
12526 end if;
12528 Next_Elmt (Iface_Elmt);
12529 end loop;
12530 end if;
12532 return False;
12533 end Contain_Interface;
12535 ---------------------------
12536 -- Convert_Scalar_Bounds --
12537 ---------------------------
12539 procedure Convert_Scalar_Bounds
12540 (N : Node_Id;
12541 Parent_Type : Entity_Id;
12542 Derived_Type : Entity_Id;
12543 Loc : Source_Ptr)
12545 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12547 Lo : Node_Id;
12548 Hi : Node_Id;
12549 Rng : Node_Id;
12551 begin
12552 -- Defend against previous errors
12554 if No (Scalar_Range (Derived_Type)) then
12555 Check_Error_Detected;
12556 return;
12557 end if;
12559 Lo := Build_Scalar_Bound
12560 (Type_Low_Bound (Derived_Type),
12561 Parent_Type, Implicit_Base);
12563 Hi := Build_Scalar_Bound
12564 (Type_High_Bound (Derived_Type),
12565 Parent_Type, Implicit_Base);
12567 Rng :=
12568 Make_Range (Loc,
12569 Low_Bound => Lo,
12570 High_Bound => Hi);
12572 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12574 Set_Parent (Rng, N);
12575 Set_Scalar_Range (Derived_Type, Rng);
12577 -- Analyze the bounds
12579 Analyze_And_Resolve (Lo, Implicit_Base);
12580 Analyze_And_Resolve (Hi, Implicit_Base);
12582 -- Analyze the range itself, except that we do not analyze it if
12583 -- the bounds are real literals, and we have a fixed-point type.
12584 -- The reason for this is that we delay setting the bounds in this
12585 -- case till we know the final Small and Size values (see circuit
12586 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12588 if Is_Fixed_Point_Type (Parent_Type)
12589 and then Nkind (Lo) = N_Real_Literal
12590 and then Nkind (Hi) = N_Real_Literal
12591 then
12592 return;
12594 -- Here we do the analysis of the range
12596 -- Note: we do this manually, since if we do a normal Analyze and
12597 -- Resolve call, there are problems with the conversions used for
12598 -- the derived type range.
12600 else
12601 Set_Etype (Rng, Implicit_Base);
12602 Set_Analyzed (Rng, True);
12603 end if;
12604 end Convert_Scalar_Bounds;
12606 -------------------
12607 -- Copy_And_Swap --
12608 -------------------
12610 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12611 begin
12612 -- Initialize new full declaration entity by copying the pertinent
12613 -- fields of the corresponding private declaration entity.
12615 -- We temporarily set Ekind to a value appropriate for a type to
12616 -- avoid assert failures in Einfo from checking for setting type
12617 -- attributes on something that is not a type. Ekind (Priv) is an
12618 -- appropriate choice, since it allowed the attributes to be set
12619 -- in the first place. This Ekind value will be modified later.
12621 Set_Ekind (Full, Ekind (Priv));
12623 -- Also set Etype temporarily to Any_Type, again, in the absence
12624 -- of errors, it will be properly reset, and if there are errors,
12625 -- then we want a value of Any_Type to remain.
12627 Set_Etype (Full, Any_Type);
12629 -- Now start copying attributes
12631 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12633 if Has_Discriminants (Full) then
12634 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12635 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12636 end if;
12638 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12639 Set_Homonym (Full, Homonym (Priv));
12640 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12641 Set_Is_Public (Full, Is_Public (Priv));
12642 Set_Is_Pure (Full, Is_Pure (Priv));
12643 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12644 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12645 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12646 Set_Has_Pragma_Unreferenced_Objects
12647 (Full, Has_Pragma_Unreferenced_Objects
12648 (Priv));
12650 Conditional_Delay (Full, Priv);
12652 if Is_Tagged_Type (Full) then
12653 Set_Direct_Primitive_Operations (Full,
12654 Direct_Primitive_Operations (Priv));
12656 if Is_Base_Type (Priv) then
12657 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12658 end if;
12659 end if;
12661 Set_Is_Volatile (Full, Is_Volatile (Priv));
12662 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12663 Set_Scope (Full, Scope (Priv));
12664 Set_Next_Entity (Full, Next_Entity (Priv));
12665 Set_First_Entity (Full, First_Entity (Priv));
12666 Set_Last_Entity (Full, Last_Entity (Priv));
12668 -- If access types have been recorded for later handling, keep them in
12669 -- the full view so that they get handled when the full view freeze
12670 -- node is expanded.
12672 if Present (Freeze_Node (Priv))
12673 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12674 then
12675 Ensure_Freeze_Node (Full);
12676 Set_Access_Types_To_Process
12677 (Freeze_Node (Full),
12678 Access_Types_To_Process (Freeze_Node (Priv)));
12679 end if;
12681 -- Swap the two entities. Now Private is the full type entity and Full
12682 -- is the private one. They will be swapped back at the end of the
12683 -- private part. This swapping ensures that the entity that is visible
12684 -- in the private part is the full declaration.
12686 Exchange_Entities (Priv, Full);
12687 Append_Entity (Full, Scope (Full));
12688 end Copy_And_Swap;
12690 -------------------------------------
12691 -- Copy_Array_Base_Type_Attributes --
12692 -------------------------------------
12694 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12695 begin
12696 Set_Component_Alignment (T1, Component_Alignment (T2));
12697 Set_Component_Type (T1, Component_Type (T2));
12698 Set_Component_Size (T1, Component_Size (T2));
12699 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12700 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12701 Set_Has_Task (T1, Has_Task (T2));
12702 Set_Is_Packed (T1, Is_Packed (T2));
12703 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12704 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12705 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12706 end Copy_Array_Base_Type_Attributes;
12708 -----------------------------------
12709 -- Copy_Array_Subtype_Attributes --
12710 -----------------------------------
12712 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12713 begin
12714 Set_Size_Info (T1, T2);
12716 Set_First_Index (T1, First_Index (T2));
12717 Set_Is_Aliased (T1, Is_Aliased (T2));
12718 Set_Is_Volatile (T1, Is_Volatile (T2));
12719 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12720 Set_Is_Constrained (T1, Is_Constrained (T2));
12721 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12722 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12723 Set_Convention (T1, Convention (T2));
12724 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12725 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12726 Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
12727 end Copy_Array_Subtype_Attributes;
12729 -----------------------------------
12730 -- Create_Constrained_Components --
12731 -----------------------------------
12733 procedure Create_Constrained_Components
12734 (Subt : Entity_Id;
12735 Decl_Node : Node_Id;
12736 Typ : Entity_Id;
12737 Constraints : Elist_Id)
12739 Loc : constant Source_Ptr := Sloc (Subt);
12740 Comp_List : constant Elist_Id := New_Elmt_List;
12741 Parent_Type : constant Entity_Id := Etype (Typ);
12742 Assoc_List : constant List_Id := New_List;
12743 Discr_Val : Elmt_Id;
12744 Errors : Boolean;
12745 New_C : Entity_Id;
12746 Old_C : Entity_Id;
12747 Is_Static : Boolean := True;
12749 procedure Collect_Fixed_Components (Typ : Entity_Id);
12750 -- Collect parent type components that do not appear in a variant part
12752 procedure Create_All_Components;
12753 -- Iterate over Comp_List to create the components of the subtype
12755 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12756 -- Creates a new component from Old_Compon, copying all the fields from
12757 -- it, including its Etype, inserts the new component in the Subt entity
12758 -- chain and returns the new component.
12760 function Is_Variant_Record (T : Entity_Id) return Boolean;
12761 -- If true, and discriminants are static, collect only components from
12762 -- variants selected by discriminant values.
12764 ------------------------------
12765 -- Collect_Fixed_Components --
12766 ------------------------------
12768 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12769 begin
12770 -- Build association list for discriminants, and find components of the
12771 -- variant part selected by the values of the discriminants.
12773 Old_C := First_Discriminant (Typ);
12774 Discr_Val := First_Elmt (Constraints);
12775 while Present (Old_C) loop
12776 Append_To (Assoc_List,
12777 Make_Component_Association (Loc,
12778 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12779 Expression => New_Copy (Node (Discr_Val))));
12781 Next_Elmt (Discr_Val);
12782 Next_Discriminant (Old_C);
12783 end loop;
12785 -- The tag and the possible parent component are unconditionally in
12786 -- the subtype.
12788 if Is_Tagged_Type (Typ)
12789 or else Has_Controlled_Component (Typ)
12790 then
12791 Old_C := First_Component (Typ);
12792 while Present (Old_C) loop
12793 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12794 Append_Elmt (Old_C, Comp_List);
12795 end if;
12797 Next_Component (Old_C);
12798 end loop;
12799 end if;
12800 end Collect_Fixed_Components;
12802 ---------------------------
12803 -- Create_All_Components --
12804 ---------------------------
12806 procedure Create_All_Components is
12807 Comp : Elmt_Id;
12809 begin
12810 Comp := First_Elmt (Comp_List);
12811 while Present (Comp) loop
12812 Old_C := Node (Comp);
12813 New_C := Create_Component (Old_C);
12815 Set_Etype
12816 (New_C,
12817 Constrain_Component_Type
12818 (Old_C, Subt, Decl_Node, Typ, Constraints));
12819 Set_Is_Public (New_C, Is_Public (Subt));
12821 Next_Elmt (Comp);
12822 end loop;
12823 end Create_All_Components;
12825 ----------------------
12826 -- Create_Component --
12827 ----------------------
12829 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12830 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12832 begin
12833 if Ekind (Old_Compon) = E_Discriminant
12834 and then Is_Completely_Hidden (Old_Compon)
12835 then
12836 -- This is a shadow discriminant created for a discriminant of
12837 -- the parent type, which needs to be present in the subtype.
12838 -- Give the shadow discriminant an internal name that cannot
12839 -- conflict with that of visible components.
12841 Set_Chars (New_Compon, New_Internal_Name ('C'));
12842 end if;
12844 -- Set the parent so we have a proper link for freezing etc. This is
12845 -- not a real parent pointer, since of course our parent does not own
12846 -- up to us and reference us, we are an illegitimate child of the
12847 -- original parent.
12849 Set_Parent (New_Compon, Parent (Old_Compon));
12851 -- If the old component's Esize was already determined and is a
12852 -- static value, then the new component simply inherits it. Otherwise
12853 -- the old component's size may require run-time determination, but
12854 -- the new component's size still might be statically determinable
12855 -- (if, for example it has a static constraint). In that case we want
12856 -- Layout_Type to recompute the component's size, so we reset its
12857 -- size and positional fields.
12859 if Frontend_Layout_On_Target
12860 and then not Known_Static_Esize (Old_Compon)
12861 then
12862 Set_Esize (New_Compon, Uint_0);
12863 Init_Normalized_First_Bit (New_Compon);
12864 Init_Normalized_Position (New_Compon);
12865 Init_Normalized_Position_Max (New_Compon);
12866 end if;
12868 -- We do not want this node marked as Comes_From_Source, since
12869 -- otherwise it would get first class status and a separate cross-
12870 -- reference line would be generated. Illegitimate children do not
12871 -- rate such recognition.
12873 Set_Comes_From_Source (New_Compon, False);
12875 -- But it is a real entity, and a birth certificate must be properly
12876 -- registered by entering it into the entity list.
12878 Enter_Name (New_Compon);
12880 return New_Compon;
12881 end Create_Component;
12883 -----------------------
12884 -- Is_Variant_Record --
12885 -----------------------
12887 function Is_Variant_Record (T : Entity_Id) return Boolean is
12888 begin
12889 return Nkind (Parent (T)) = N_Full_Type_Declaration
12890 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
12891 and then Present (Component_List (Type_Definition (Parent (T))))
12892 and then
12893 Present
12894 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
12895 end Is_Variant_Record;
12897 -- Start of processing for Create_Constrained_Components
12899 begin
12900 pragma Assert (Subt /= Base_Type (Subt));
12901 pragma Assert (Typ = Base_Type (Typ));
12903 Set_First_Entity (Subt, Empty);
12904 Set_Last_Entity (Subt, Empty);
12906 -- Check whether constraint is fully static, in which case we can
12907 -- optimize the list of components.
12909 Discr_Val := First_Elmt (Constraints);
12910 while Present (Discr_Val) loop
12911 if not Is_OK_Static_Expression (Node (Discr_Val)) then
12912 Is_Static := False;
12913 exit;
12914 end if;
12916 Next_Elmt (Discr_Val);
12917 end loop;
12919 Set_Has_Static_Discriminants (Subt, Is_Static);
12921 Push_Scope (Subt);
12923 -- Inherit the discriminants of the parent type
12925 Add_Discriminants : declare
12926 Num_Disc : Int;
12927 Num_Gird : Int;
12929 begin
12930 Num_Disc := 0;
12931 Old_C := First_Discriminant (Typ);
12933 while Present (Old_C) loop
12934 Num_Disc := Num_Disc + 1;
12935 New_C := Create_Component (Old_C);
12936 Set_Is_Public (New_C, Is_Public (Subt));
12937 Next_Discriminant (Old_C);
12938 end loop;
12940 -- For an untagged derived subtype, the number of discriminants may
12941 -- be smaller than the number of inherited discriminants, because
12942 -- several of them may be renamed by a single new discriminant or
12943 -- constrained. In this case, add the hidden discriminants back into
12944 -- the subtype, because they need to be present if the optimizer of
12945 -- the GCC 4.x back-end decides to break apart assignments between
12946 -- objects using the parent view into member-wise assignments.
12948 Num_Gird := 0;
12950 if Is_Derived_Type (Typ)
12951 and then not Is_Tagged_Type (Typ)
12952 then
12953 Old_C := First_Stored_Discriminant (Typ);
12955 while Present (Old_C) loop
12956 Num_Gird := Num_Gird + 1;
12957 Next_Stored_Discriminant (Old_C);
12958 end loop;
12959 end if;
12961 if Num_Gird > Num_Disc then
12963 -- Find out multiple uses of new discriminants, and add hidden
12964 -- components for the extra renamed discriminants. We recognize
12965 -- multiple uses through the Corresponding_Discriminant of a
12966 -- new discriminant: if it constrains several old discriminants,
12967 -- this field points to the last one in the parent type. The
12968 -- stored discriminants of the derived type have the same name
12969 -- as those of the parent.
12971 declare
12972 Constr : Elmt_Id;
12973 New_Discr : Entity_Id;
12974 Old_Discr : Entity_Id;
12976 begin
12977 Constr := First_Elmt (Stored_Constraint (Typ));
12978 Old_Discr := First_Stored_Discriminant (Typ);
12979 while Present (Constr) loop
12980 if Is_Entity_Name (Node (Constr))
12981 and then Ekind (Entity (Node (Constr))) = E_Discriminant
12982 then
12983 New_Discr := Entity (Node (Constr));
12985 if Chars (Corresponding_Discriminant (New_Discr)) /=
12986 Chars (Old_Discr)
12987 then
12988 -- The new discriminant has been used to rename a
12989 -- subsequent old discriminant. Introduce a shadow
12990 -- component for the current old discriminant.
12992 New_C := Create_Component (Old_Discr);
12993 Set_Original_Record_Component (New_C, Old_Discr);
12994 end if;
12996 else
12997 -- The constraint has eliminated the old discriminant.
12998 -- Introduce a shadow component.
13000 New_C := Create_Component (Old_Discr);
13001 Set_Original_Record_Component (New_C, Old_Discr);
13002 end if;
13004 Next_Elmt (Constr);
13005 Next_Stored_Discriminant (Old_Discr);
13006 end loop;
13007 end;
13008 end if;
13009 end Add_Discriminants;
13011 if Is_Static
13012 and then Is_Variant_Record (Typ)
13013 then
13014 Collect_Fixed_Components (Typ);
13016 Gather_Components (
13017 Typ,
13018 Component_List (Type_Definition (Parent (Typ))),
13019 Governed_By => Assoc_List,
13020 Into => Comp_List,
13021 Report_Errors => Errors);
13022 pragma Assert (not Errors);
13024 Create_All_Components;
13026 -- If the subtype declaration is created for a tagged type derivation
13027 -- with constraints, we retrieve the record definition of the parent
13028 -- type to select the components of the proper variant.
13030 elsif Is_Static
13031 and then Is_Tagged_Type (Typ)
13032 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13033 and then
13034 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13035 and then Is_Variant_Record (Parent_Type)
13036 then
13037 Collect_Fixed_Components (Typ);
13039 Gather_Components (
13040 Typ,
13041 Component_List (Type_Definition (Parent (Parent_Type))),
13042 Governed_By => Assoc_List,
13043 Into => Comp_List,
13044 Report_Errors => Errors);
13045 pragma Assert (not Errors);
13047 -- If the tagged derivation has a type extension, collect all the
13048 -- new components therein.
13050 if Present
13051 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13052 then
13053 Old_C := First_Component (Typ);
13054 while Present (Old_C) loop
13055 if Original_Record_Component (Old_C) = Old_C
13056 and then Chars (Old_C) /= Name_uTag
13057 and then Chars (Old_C) /= Name_uParent
13058 then
13059 Append_Elmt (Old_C, Comp_List);
13060 end if;
13062 Next_Component (Old_C);
13063 end loop;
13064 end if;
13066 Create_All_Components;
13068 else
13069 -- If discriminants are not static, or if this is a multi-level type
13070 -- extension, we have to include all components of the parent type.
13072 Old_C := First_Component (Typ);
13073 while Present (Old_C) loop
13074 New_C := Create_Component (Old_C);
13076 Set_Etype
13077 (New_C,
13078 Constrain_Component_Type
13079 (Old_C, Subt, Decl_Node, Typ, Constraints));
13080 Set_Is_Public (New_C, Is_Public (Subt));
13082 Next_Component (Old_C);
13083 end loop;
13084 end if;
13086 End_Scope;
13087 end Create_Constrained_Components;
13089 ------------------------------------------
13090 -- Decimal_Fixed_Point_Type_Declaration --
13091 ------------------------------------------
13093 procedure Decimal_Fixed_Point_Type_Declaration
13094 (T : Entity_Id;
13095 Def : Node_Id)
13097 Loc : constant Source_Ptr := Sloc (Def);
13098 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13099 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13100 Implicit_Base : Entity_Id;
13101 Digs_Val : Uint;
13102 Delta_Val : Ureal;
13103 Scale_Val : Uint;
13104 Bound_Val : Ureal;
13106 begin
13107 Check_SPARK_Restriction
13108 ("decimal fixed point type is not allowed", Def);
13109 Check_Restriction (No_Fixed_Point, Def);
13111 -- Create implicit base type
13113 Implicit_Base :=
13114 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13115 Set_Etype (Implicit_Base, Implicit_Base);
13117 -- Analyze and process delta expression
13119 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13121 Check_Delta_Expression (Delta_Expr);
13122 Delta_Val := Expr_Value_R (Delta_Expr);
13124 -- Check delta is power of 10, and determine scale value from it
13126 declare
13127 Val : Ureal;
13129 begin
13130 Scale_Val := Uint_0;
13131 Val := Delta_Val;
13133 if Val < Ureal_1 then
13134 while Val < Ureal_1 loop
13135 Val := Val * Ureal_10;
13136 Scale_Val := Scale_Val + 1;
13137 end loop;
13139 if Scale_Val > 18 then
13140 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13141 Scale_Val := UI_From_Int (+18);
13142 end if;
13144 else
13145 while Val > Ureal_1 loop
13146 Val := Val / Ureal_10;
13147 Scale_Val := Scale_Val - 1;
13148 end loop;
13150 if Scale_Val < -18 then
13151 Error_Msg_N ("scale is less than minimum value of -18", Def);
13152 Scale_Val := UI_From_Int (-18);
13153 end if;
13154 end if;
13156 if Val /= Ureal_1 then
13157 Error_Msg_N ("delta expression must be a power of 10", Def);
13158 Delta_Val := Ureal_10 ** (-Scale_Val);
13159 end if;
13160 end;
13162 -- Set delta, scale and small (small = delta for decimal type)
13164 Set_Delta_Value (Implicit_Base, Delta_Val);
13165 Set_Scale_Value (Implicit_Base, Scale_Val);
13166 Set_Small_Value (Implicit_Base, Delta_Val);
13168 -- Analyze and process digits expression
13170 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13171 Check_Digits_Expression (Digs_Expr);
13172 Digs_Val := Expr_Value (Digs_Expr);
13174 if Digs_Val > 18 then
13175 Digs_Val := UI_From_Int (+18);
13176 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13177 end if;
13179 Set_Digits_Value (Implicit_Base, Digs_Val);
13180 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13182 -- Set range of base type from digits value for now. This will be
13183 -- expanded to represent the true underlying base range by Freeze.
13185 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13187 -- Note: We leave size as zero for now, size will be set at freeze
13188 -- time. We have to do this for ordinary fixed-point, because the size
13189 -- depends on the specified small, and we might as well do the same for
13190 -- decimal fixed-point.
13192 pragma Assert (Esize (Implicit_Base) = Uint_0);
13194 -- If there are bounds given in the declaration use them as the
13195 -- bounds of the first named subtype.
13197 if Present (Real_Range_Specification (Def)) then
13198 declare
13199 RRS : constant Node_Id := Real_Range_Specification (Def);
13200 Low : constant Node_Id := Low_Bound (RRS);
13201 High : constant Node_Id := High_Bound (RRS);
13202 Low_Val : Ureal;
13203 High_Val : Ureal;
13205 begin
13206 Analyze_And_Resolve (Low, Any_Real);
13207 Analyze_And_Resolve (High, Any_Real);
13208 Check_Real_Bound (Low);
13209 Check_Real_Bound (High);
13210 Low_Val := Expr_Value_R (Low);
13211 High_Val := Expr_Value_R (High);
13213 if Low_Val < (-Bound_Val) then
13214 Error_Msg_N
13215 ("range low bound too small for digits value", Low);
13216 Low_Val := -Bound_Val;
13217 end if;
13219 if High_Val > Bound_Val then
13220 Error_Msg_N
13221 ("range high bound too large for digits value", High);
13222 High_Val := Bound_Val;
13223 end if;
13225 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13226 end;
13228 -- If no explicit range, use range that corresponds to given
13229 -- digits value. This will end up as the final range for the
13230 -- first subtype.
13232 else
13233 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13234 end if;
13236 -- Complete entity for first subtype
13238 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13239 Set_Etype (T, Implicit_Base);
13240 Set_Size_Info (T, Implicit_Base);
13241 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13242 Set_Digits_Value (T, Digs_Val);
13243 Set_Delta_Value (T, Delta_Val);
13244 Set_Small_Value (T, Delta_Val);
13245 Set_Scale_Value (T, Scale_Val);
13246 Set_Is_Constrained (T);
13247 end Decimal_Fixed_Point_Type_Declaration;
13249 -----------------------------------
13250 -- Derive_Progenitor_Subprograms --
13251 -----------------------------------
13253 procedure Derive_Progenitor_Subprograms
13254 (Parent_Type : Entity_Id;
13255 Tagged_Type : Entity_Id)
13257 E : Entity_Id;
13258 Elmt : Elmt_Id;
13259 Iface : Entity_Id;
13260 Iface_Elmt : Elmt_Id;
13261 Iface_Subp : Entity_Id;
13262 New_Subp : Entity_Id := Empty;
13263 Prim_Elmt : Elmt_Id;
13264 Subp : Entity_Id;
13265 Typ : Entity_Id;
13267 begin
13268 pragma Assert (Ada_Version >= Ada_2005
13269 and then Is_Record_Type (Tagged_Type)
13270 and then Is_Tagged_Type (Tagged_Type)
13271 and then Has_Interfaces (Tagged_Type));
13273 -- Step 1: Transfer to the full-view primitives associated with the
13274 -- partial-view that cover interface primitives. Conceptually this
13275 -- work should be done later by Process_Full_View; done here to
13276 -- simplify its implementation at later stages. It can be safely
13277 -- done here because interfaces must be visible in the partial and
13278 -- private view (RM 7.3(7.3/2)).
13280 -- Small optimization: This work is only required if the parent may
13281 -- have entities whose Alias attribute reference an interface primitive.
13282 -- Such a situation may occur if the parent is an abstract type and the
13283 -- primitive has not been yet overridden or if the parent is a generic
13284 -- formal type covering interfaces.
13286 -- If the tagged type is not abstract, it cannot have abstract
13287 -- primitives (the only entities in the list of primitives of
13288 -- non-abstract tagged types that can reference abstract primitives
13289 -- through its Alias attribute are the internal entities that have
13290 -- attribute Interface_Alias, and these entities are generated later
13291 -- by Add_Internal_Interface_Entities).
13293 if In_Private_Part (Current_Scope)
13294 and then (Is_Abstract_Type (Parent_Type)
13295 or else
13296 Is_Generic_Type (Parent_Type))
13297 then
13298 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13299 while Present (Elmt) loop
13300 Subp := Node (Elmt);
13302 -- At this stage it is not possible to have entities in the list
13303 -- of primitives that have attribute Interface_Alias.
13305 pragma Assert (No (Interface_Alias (Subp)));
13307 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13309 if Is_Interface (Typ) then
13310 E := Find_Primitive_Covering_Interface
13311 (Tagged_Type => Tagged_Type,
13312 Iface_Prim => Subp);
13314 if Present (E)
13315 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13316 then
13317 Replace_Elmt (Elmt, E);
13318 Remove_Homonym (Subp);
13319 end if;
13320 end if;
13322 Next_Elmt (Elmt);
13323 end loop;
13324 end if;
13326 -- Step 2: Add primitives of progenitors that are not implemented by
13327 -- parents of Tagged_Type.
13329 if Present (Interfaces (Base_Type (Tagged_Type))) then
13330 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13331 while Present (Iface_Elmt) loop
13332 Iface := Node (Iface_Elmt);
13334 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13335 while Present (Prim_Elmt) loop
13336 Iface_Subp := Node (Prim_Elmt);
13338 -- Exclude derivation of predefined primitives except those
13339 -- that come from source, or are inherited from one that comes
13340 -- from source. Required to catch declarations of equality
13341 -- operators of interfaces. For example:
13343 -- type Iface is interface;
13344 -- function "=" (Left, Right : Iface) return Boolean;
13346 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13347 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13348 then
13349 E := Find_Primitive_Covering_Interface
13350 (Tagged_Type => Tagged_Type,
13351 Iface_Prim => Iface_Subp);
13353 -- If not found we derive a new primitive leaving its alias
13354 -- attribute referencing the interface primitive.
13356 if No (E) then
13357 Derive_Subprogram
13358 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13360 -- Ada 2012 (AI05-0197): If the covering primitive's name
13361 -- differs from the name of the interface primitive then it
13362 -- is a private primitive inherited from a parent type. In
13363 -- such case, given that Tagged_Type covers the interface,
13364 -- the inherited private primitive becomes visible. For such
13365 -- purpose we add a new entity that renames the inherited
13366 -- private primitive.
13368 elsif Chars (E) /= Chars (Iface_Subp) then
13369 pragma Assert (Has_Suffix (E, 'P'));
13370 Derive_Subprogram
13371 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13372 Set_Alias (New_Subp, E);
13373 Set_Is_Abstract_Subprogram (New_Subp,
13374 Is_Abstract_Subprogram (E));
13376 -- Propagate to the full view interface entities associated
13377 -- with the partial view.
13379 elsif In_Private_Part (Current_Scope)
13380 and then Present (Alias (E))
13381 and then Alias (E) = Iface_Subp
13382 and then
13383 List_Containing (Parent (E)) /=
13384 Private_Declarations
13385 (Specification
13386 (Unit_Declaration_Node (Current_Scope)))
13387 then
13388 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13389 end if;
13390 end if;
13392 Next_Elmt (Prim_Elmt);
13393 end loop;
13395 Next_Elmt (Iface_Elmt);
13396 end loop;
13397 end if;
13398 end Derive_Progenitor_Subprograms;
13400 -----------------------
13401 -- Derive_Subprogram --
13402 -----------------------
13404 procedure Derive_Subprogram
13405 (New_Subp : in out Entity_Id;
13406 Parent_Subp : Entity_Id;
13407 Derived_Type : Entity_Id;
13408 Parent_Type : Entity_Id;
13409 Actual_Subp : Entity_Id := Empty)
13411 Formal : Entity_Id;
13412 -- Formal parameter of parent primitive operation
13414 Formal_Of_Actual : Entity_Id;
13415 -- Formal parameter of actual operation, when the derivation is to
13416 -- create a renaming for a primitive operation of an actual in an
13417 -- instantiation.
13419 New_Formal : Entity_Id;
13420 -- Formal of inherited operation
13422 Visible_Subp : Entity_Id := Parent_Subp;
13424 function Is_Private_Overriding return Boolean;
13425 -- If Subp is a private overriding of a visible operation, the inherited
13426 -- operation derives from the overridden op (even though its body is the
13427 -- overriding one) and the inherited operation is visible now. See
13428 -- sem_disp to see the full details of the handling of the overridden
13429 -- subprogram, which is removed from the list of primitive operations of
13430 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13431 -- and used to diagnose abstract operations that need overriding in the
13432 -- derived type.
13434 procedure Replace_Type (Id, New_Id : Entity_Id);
13435 -- When the type is an anonymous access type, create a new access type
13436 -- designating the derived type.
13438 procedure Set_Derived_Name;
13439 -- This procedure sets the appropriate Chars name for New_Subp. This
13440 -- is normally just a copy of the parent name. An exception arises for
13441 -- type support subprograms, where the name is changed to reflect the
13442 -- name of the derived type, e.g. if type foo is derived from type bar,
13443 -- then a procedure barDA is derived with a name fooDA.
13445 ---------------------------
13446 -- Is_Private_Overriding --
13447 ---------------------------
13449 function Is_Private_Overriding return Boolean is
13450 Prev : Entity_Id;
13452 begin
13453 -- If the parent is not a dispatching operation there is no
13454 -- need to investigate overridings
13456 if not Is_Dispatching_Operation (Parent_Subp) then
13457 return False;
13458 end if;
13460 -- The visible operation that is overridden is a homonym of the
13461 -- parent subprogram. We scan the homonym chain to find the one
13462 -- whose alias is the subprogram we are deriving.
13464 Prev := Current_Entity (Parent_Subp);
13465 while Present (Prev) loop
13466 if Ekind (Prev) = Ekind (Parent_Subp)
13467 and then Alias (Prev) = Parent_Subp
13468 and then Scope (Parent_Subp) = Scope (Prev)
13469 and then not Is_Hidden (Prev)
13470 then
13471 Visible_Subp := Prev;
13472 return True;
13473 end if;
13475 Prev := Homonym (Prev);
13476 end loop;
13478 return False;
13479 end Is_Private_Overriding;
13481 ------------------
13482 -- Replace_Type --
13483 ------------------
13485 procedure Replace_Type (Id, New_Id : Entity_Id) is
13486 Acc_Type : Entity_Id;
13487 Par : constant Node_Id := Parent (Derived_Type);
13489 begin
13490 -- When the type is an anonymous access type, create a new access
13491 -- type designating the derived type. This itype must be elaborated
13492 -- at the point of the derivation, not on subsequent calls that may
13493 -- be out of the proper scope for Gigi, so we insert a reference to
13494 -- it after the derivation.
13496 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
13497 declare
13498 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
13500 begin
13501 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13502 and then Present (Full_View (Desig_Typ))
13503 and then not Is_Private_Type (Parent_Type)
13504 then
13505 Desig_Typ := Full_View (Desig_Typ);
13506 end if;
13508 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13510 -- Ada 2005 (AI-251): Handle also derivations of abstract
13511 -- interface primitives.
13513 or else (Is_Interface (Desig_Typ)
13514 and then not Is_Class_Wide_Type (Desig_Typ))
13515 then
13516 Acc_Type := New_Copy (Etype (Id));
13517 Set_Etype (Acc_Type, Acc_Type);
13518 Set_Scope (Acc_Type, New_Subp);
13520 -- Compute size of anonymous access type
13522 if Is_Array_Type (Desig_Typ)
13523 and then not Is_Constrained (Desig_Typ)
13524 then
13525 Init_Size (Acc_Type, 2 * System_Address_Size);
13526 else
13527 Init_Size (Acc_Type, System_Address_Size);
13528 end if;
13530 Init_Alignment (Acc_Type);
13531 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13533 Set_Etype (New_Id, Acc_Type);
13534 Set_Scope (New_Id, New_Subp);
13536 -- Create a reference to it
13537 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13539 else
13540 Set_Etype (New_Id, Etype (Id));
13541 end if;
13542 end;
13544 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
13545 or else
13546 (Ekind (Etype (Id)) = E_Record_Type_With_Private
13547 and then Present (Full_View (Etype (Id)))
13548 and then
13549 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
13550 then
13551 -- Constraint checks on formals are generated during expansion,
13552 -- based on the signature of the original subprogram. The bounds
13553 -- of the derived type are not relevant, and thus we can use
13554 -- the base type for the formals. However, the return type may be
13555 -- used in a context that requires that the proper static bounds
13556 -- be used (a case statement, for example) and for those cases
13557 -- we must use the derived type (first subtype), not its base.
13559 -- If the derived_type_definition has no constraints, we know that
13560 -- the derived type has the same constraints as the first subtype
13561 -- of the parent, and we can also use it rather than its base,
13562 -- which can lead to more efficient code.
13564 if Etype (Id) = Parent_Type then
13565 if Is_Scalar_Type (Parent_Type)
13566 and then
13567 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13568 then
13569 Set_Etype (New_Id, Derived_Type);
13571 elsif Nkind (Par) = N_Full_Type_Declaration
13572 and then
13573 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13574 and then
13575 Is_Entity_Name
13576 (Subtype_Indication (Type_Definition (Par)))
13577 then
13578 Set_Etype (New_Id, Derived_Type);
13580 else
13581 Set_Etype (New_Id, Base_Type (Derived_Type));
13582 end if;
13584 else
13585 Set_Etype (New_Id, Base_Type (Derived_Type));
13586 end if;
13588 else
13589 Set_Etype (New_Id, Etype (Id));
13590 end if;
13591 end Replace_Type;
13593 ----------------------
13594 -- Set_Derived_Name --
13595 ----------------------
13597 procedure Set_Derived_Name is
13598 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13599 begin
13600 if Nm = TSS_Null then
13601 Set_Chars (New_Subp, Chars (Parent_Subp));
13602 else
13603 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13604 end if;
13605 end Set_Derived_Name;
13607 -- Start of processing for Derive_Subprogram
13609 begin
13610 New_Subp :=
13611 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13612 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13613 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13615 -- Check whether the inherited subprogram is a private operation that
13616 -- should be inherited but not yet made visible. Such subprograms can
13617 -- become visible at a later point (e.g., the private part of a public
13618 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13619 -- following predicate is true, then this is not such a private
13620 -- operation and the subprogram simply inherits the name of the parent
13621 -- subprogram. Note the special check for the names of controlled
13622 -- operations, which are currently exempted from being inherited with
13623 -- a hidden name because they must be findable for generation of
13624 -- implicit run-time calls.
13626 if not Is_Hidden (Parent_Subp)
13627 or else Is_Internal (Parent_Subp)
13628 or else Is_Private_Overriding
13629 or else Is_Internal_Name (Chars (Parent_Subp))
13630 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13631 Name_Adjust,
13632 Name_Finalize)
13633 then
13634 Set_Derived_Name;
13636 -- An inherited dispatching equality will be overridden by an internally
13637 -- generated one, or by an explicit one, so preserve its name and thus
13638 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13639 -- private operation it may become invisible if the full view has
13640 -- progenitors, and the dispatch table will be malformed.
13641 -- We check that the type is limited to handle the anomalous declaration
13642 -- of Limited_Controlled, which is derived from a non-limited type, and
13643 -- which is handled specially elsewhere as well.
13645 elsif Chars (Parent_Subp) = Name_Op_Eq
13646 and then Is_Dispatching_Operation (Parent_Subp)
13647 and then Etype (Parent_Subp) = Standard_Boolean
13648 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13649 and then
13650 Etype (First_Formal (Parent_Subp)) =
13651 Etype (Next_Formal (First_Formal (Parent_Subp)))
13652 then
13653 Set_Derived_Name;
13655 -- If parent is hidden, this can be a regular derivation if the
13656 -- parent is immediately visible in a non-instantiating context,
13657 -- or if we are in the private part of an instance. This test
13658 -- should still be refined ???
13660 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13661 -- operation as a non-visible operation in cases where the parent
13662 -- subprogram might not be visible now, but was visible within the
13663 -- original generic, so it would be wrong to make the inherited
13664 -- subprogram non-visible now. (Not clear if this test is fully
13665 -- correct; are there any cases where we should declare the inherited
13666 -- operation as not visible to avoid it being overridden, e.g., when
13667 -- the parent type is a generic actual with private primitives ???)
13669 -- (they should be treated the same as other private inherited
13670 -- subprograms, but it's not clear how to do this cleanly). ???
13672 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13673 and then Is_Immediately_Visible (Parent_Subp)
13674 and then not In_Instance)
13675 or else In_Instance_Not_Visible
13676 then
13677 Set_Derived_Name;
13679 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13680 -- overrides an interface primitive because interface primitives
13681 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13683 elsif Ada_Version >= Ada_2005
13684 and then Is_Dispatching_Operation (Parent_Subp)
13685 and then Covers_Some_Interface (Parent_Subp)
13686 then
13687 Set_Derived_Name;
13689 -- Otherwise, the type is inheriting a private operation, so enter
13690 -- it with a special name so it can't be overridden.
13692 else
13693 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13694 end if;
13696 Set_Parent (New_Subp, Parent (Derived_Type));
13698 if Present (Actual_Subp) then
13699 Replace_Type (Actual_Subp, New_Subp);
13700 else
13701 Replace_Type (Parent_Subp, New_Subp);
13702 end if;
13704 Conditional_Delay (New_Subp, Parent_Subp);
13706 -- If we are creating a renaming for a primitive operation of an
13707 -- actual of a generic derived type, we must examine the signature
13708 -- of the actual primitive, not that of the generic formal, which for
13709 -- example may be an interface. However the name and initial value
13710 -- of the inherited operation are those of the formal primitive.
13712 Formal := First_Formal (Parent_Subp);
13714 if Present (Actual_Subp) then
13715 Formal_Of_Actual := First_Formal (Actual_Subp);
13716 else
13717 Formal_Of_Actual := Empty;
13718 end if;
13720 while Present (Formal) loop
13721 New_Formal := New_Copy (Formal);
13723 -- Normally we do not go copying parents, but in the case of
13724 -- formals, we need to link up to the declaration (which is the
13725 -- parameter specification), and it is fine to link up to the
13726 -- original formal's parameter specification in this case.
13728 Set_Parent (New_Formal, Parent (Formal));
13729 Append_Entity (New_Formal, New_Subp);
13731 if Present (Formal_Of_Actual) then
13732 Replace_Type (Formal_Of_Actual, New_Formal);
13733 Next_Formal (Formal_Of_Actual);
13734 else
13735 Replace_Type (Formal, New_Formal);
13736 end if;
13738 Next_Formal (Formal);
13739 end loop;
13741 -- If this derivation corresponds to a tagged generic actual, then
13742 -- primitive operations rename those of the actual. Otherwise the
13743 -- primitive operations rename those of the parent type, If the parent
13744 -- renames an intrinsic operator, so does the new subprogram. We except
13745 -- concatenation, which is always properly typed, and does not get
13746 -- expanded as other intrinsic operations.
13748 if No (Actual_Subp) then
13749 if Is_Intrinsic_Subprogram (Parent_Subp) then
13750 Set_Is_Intrinsic_Subprogram (New_Subp);
13752 if Present (Alias (Parent_Subp))
13753 and then Chars (Parent_Subp) /= Name_Op_Concat
13754 then
13755 Set_Alias (New_Subp, Alias (Parent_Subp));
13756 else
13757 Set_Alias (New_Subp, Parent_Subp);
13758 end if;
13760 else
13761 Set_Alias (New_Subp, Parent_Subp);
13762 end if;
13764 else
13765 Set_Alias (New_Subp, Actual_Subp);
13766 end if;
13768 -- Derived subprograms of a tagged type must inherit the convention
13769 -- of the parent subprogram (a requirement of AI-117). Derived
13770 -- subprograms of untagged types simply get convention Ada by default.
13772 -- If the derived type is a tagged generic formal type with unknown
13773 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13775 -- However, if the type is derived from a generic formal, the further
13776 -- inherited subprogram has the convention of the non-generic ancestor.
13777 -- Otherwise there would be no way to override the operation.
13778 -- (This is subject to forthcoming ARG discussions).
13780 if Is_Tagged_Type (Derived_Type) then
13781 if Is_Generic_Type (Derived_Type)
13782 and then Has_Unknown_Discriminants (Derived_Type)
13783 then
13784 Set_Convention (New_Subp, Convention_Intrinsic);
13786 else
13787 if Is_Generic_Type (Parent_Type)
13788 and then Has_Unknown_Discriminants (Parent_Type)
13789 then
13790 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13791 else
13792 Set_Convention (New_Subp, Convention (Parent_Subp));
13793 end if;
13794 end if;
13795 end if;
13797 -- Predefined controlled operations retain their name even if the parent
13798 -- is hidden (see above), but they are not primitive operations if the
13799 -- ancestor is not visible, for example if the parent is a private
13800 -- extension completed with a controlled extension. Note that a full
13801 -- type that is controlled can break privacy: the flag Is_Controlled is
13802 -- set on both views of the type.
13804 if Is_Controlled (Parent_Type)
13805 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13806 Name_Adjust,
13807 Name_Finalize)
13808 and then Is_Hidden (Parent_Subp)
13809 and then not Is_Visibly_Controlled (Parent_Type)
13810 then
13811 Set_Is_Hidden (New_Subp);
13812 end if;
13814 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13815 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13817 if Ekind (Parent_Subp) = E_Procedure then
13818 Set_Is_Valued_Procedure
13819 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13820 else
13821 Set_Has_Controlling_Result
13822 (New_Subp, Has_Controlling_Result (Parent_Subp));
13823 end if;
13825 -- No_Return must be inherited properly. If this is overridden in the
13826 -- case of a dispatching operation, then a check is made in Sem_Disp
13827 -- that the overriding operation is also No_Return (no such check is
13828 -- required for the case of non-dispatching operation.
13830 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13832 -- A derived function with a controlling result is abstract. If the
13833 -- Derived_Type is a nonabstract formal generic derived type, then
13834 -- inherited operations are not abstract: the required check is done at
13835 -- instantiation time. If the derivation is for a generic actual, the
13836 -- function is not abstract unless the actual is.
13838 if Is_Generic_Type (Derived_Type)
13839 and then not Is_Abstract_Type (Derived_Type)
13840 then
13841 null;
13843 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13844 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13846 elsif Ada_Version >= Ada_2005
13847 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13848 or else (Is_Tagged_Type (Derived_Type)
13849 and then Etype (New_Subp) = Derived_Type
13850 and then not Is_Null_Extension (Derived_Type))
13851 or else (Is_Tagged_Type (Derived_Type)
13852 and then Ekind (Etype (New_Subp)) =
13853 E_Anonymous_Access_Type
13854 and then Designated_Type (Etype (New_Subp)) =
13855 Derived_Type
13856 and then not Is_Null_Extension (Derived_Type)))
13857 and then No (Actual_Subp)
13858 then
13859 if not Is_Tagged_Type (Derived_Type)
13860 or else Is_Abstract_Type (Derived_Type)
13861 or else Is_Abstract_Subprogram (Alias (New_Subp))
13862 then
13863 Set_Is_Abstract_Subprogram (New_Subp);
13864 else
13865 Set_Requires_Overriding (New_Subp);
13866 end if;
13868 elsif Ada_Version < Ada_2005
13869 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13870 or else (Is_Tagged_Type (Derived_Type)
13871 and then Etype (New_Subp) = Derived_Type
13872 and then No (Actual_Subp)))
13873 then
13874 Set_Is_Abstract_Subprogram (New_Subp);
13876 -- AI05-0097 : an inherited operation that dispatches on result is
13877 -- abstract if the derived type is abstract, even if the parent type
13878 -- is concrete and the derived type is a null extension.
13880 elsif Has_Controlling_Result (Alias (New_Subp))
13881 and then Is_Abstract_Type (Etype (New_Subp))
13882 then
13883 Set_Is_Abstract_Subprogram (New_Subp);
13885 -- Finally, if the parent type is abstract we must verify that all
13886 -- inherited operations are either non-abstract or overridden, or that
13887 -- the derived type itself is abstract (this check is performed at the
13888 -- end of a package declaration, in Check_Abstract_Overriding). A
13889 -- private overriding in the parent type will not be visible in the
13890 -- derivation if we are not in an inner package or in a child unit of
13891 -- the parent type, in which case the abstractness of the inherited
13892 -- operation is carried to the new subprogram.
13894 elsif Is_Abstract_Type (Parent_Type)
13895 and then not In_Open_Scopes (Scope (Parent_Type))
13896 and then Is_Private_Overriding
13897 and then Is_Abstract_Subprogram (Visible_Subp)
13898 then
13899 if No (Actual_Subp) then
13900 Set_Alias (New_Subp, Visible_Subp);
13901 Set_Is_Abstract_Subprogram (New_Subp, True);
13903 else
13904 -- If this is a derivation for an instance of a formal derived
13905 -- type, abstractness comes from the primitive operation of the
13906 -- actual, not from the operation inherited from the ancestor.
13908 Set_Is_Abstract_Subprogram
13909 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
13910 end if;
13911 end if;
13913 New_Overloaded_Entity (New_Subp, Derived_Type);
13915 -- Check for case of a derived subprogram for the instantiation of a
13916 -- formal derived tagged type, if so mark the subprogram as dispatching
13917 -- and inherit the dispatching attributes of the actual subprogram. The
13918 -- derived subprogram is effectively renaming of the actual subprogram,
13919 -- so it needs to have the same attributes as the actual.
13921 if Present (Actual_Subp)
13922 and then Is_Dispatching_Operation (Actual_Subp)
13923 then
13924 Set_Is_Dispatching_Operation (New_Subp);
13926 if Present (DTC_Entity (Actual_Subp)) then
13927 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
13928 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
13929 end if;
13930 end if;
13932 -- Indicate that a derived subprogram does not require a body and that
13933 -- it does not require processing of default expressions.
13935 Set_Has_Completion (New_Subp);
13936 Set_Default_Expressions_Processed (New_Subp);
13938 if Ekind (New_Subp) = E_Function then
13939 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
13940 end if;
13941 end Derive_Subprogram;
13943 ------------------------
13944 -- Derive_Subprograms --
13945 ------------------------
13947 procedure Derive_Subprograms
13948 (Parent_Type : Entity_Id;
13949 Derived_Type : Entity_Id;
13950 Generic_Actual : Entity_Id := Empty)
13952 Op_List : constant Elist_Id :=
13953 Collect_Primitive_Operations (Parent_Type);
13955 function Check_Derived_Type return Boolean;
13956 -- Check that all the entities derived from Parent_Type are found in
13957 -- the list of primitives of Derived_Type exactly in the same order.
13959 procedure Derive_Interface_Subprogram
13960 (New_Subp : in out Entity_Id;
13961 Subp : Entity_Id;
13962 Actual_Subp : Entity_Id);
13963 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
13964 -- (which is an interface primitive). If Generic_Actual is present then
13965 -- Actual_Subp is the actual subprogram corresponding with the generic
13966 -- subprogram Subp.
13968 function Check_Derived_Type return Boolean is
13969 E : Entity_Id;
13970 Elmt : Elmt_Id;
13971 List : Elist_Id;
13972 New_Subp : Entity_Id;
13973 Op_Elmt : Elmt_Id;
13974 Subp : Entity_Id;
13976 begin
13977 -- Traverse list of entities in the current scope searching for
13978 -- an incomplete type whose full-view is derived type
13980 E := First_Entity (Scope (Derived_Type));
13981 while Present (E) and then E /= Derived_Type loop
13982 if Ekind (E) = E_Incomplete_Type
13983 and then Present (Full_View (E))
13984 and then Full_View (E) = Derived_Type
13985 then
13986 -- Disable this test if Derived_Type completes an incomplete
13987 -- type because in such case more primitives can be added
13988 -- later to the list of primitives of Derived_Type by routine
13989 -- Process_Incomplete_Dependents
13991 return True;
13992 end if;
13994 E := Next_Entity (E);
13995 end loop;
13997 List := Collect_Primitive_Operations (Derived_Type);
13998 Elmt := First_Elmt (List);
14000 Op_Elmt := First_Elmt (Op_List);
14001 while Present (Op_Elmt) loop
14002 Subp := Node (Op_Elmt);
14003 New_Subp := Node (Elmt);
14005 -- At this early stage Derived_Type has no entities with attribute
14006 -- Interface_Alias. In addition, such primitives are always
14007 -- located at the end of the list of primitives of Parent_Type.
14008 -- Therefore, if found we can safely stop processing pending
14009 -- entities.
14011 exit when Present (Interface_Alias (Subp));
14013 -- Handle hidden entities
14015 if not Is_Predefined_Dispatching_Operation (Subp)
14016 and then Is_Hidden (Subp)
14017 then
14018 if Present (New_Subp)
14019 and then Primitive_Names_Match (Subp, New_Subp)
14020 then
14021 Next_Elmt (Elmt);
14022 end if;
14024 else
14025 if not Present (New_Subp)
14026 or else Ekind (Subp) /= Ekind (New_Subp)
14027 or else not Primitive_Names_Match (Subp, New_Subp)
14028 then
14029 return False;
14030 end if;
14032 Next_Elmt (Elmt);
14033 end if;
14035 Next_Elmt (Op_Elmt);
14036 end loop;
14038 return True;
14039 end Check_Derived_Type;
14041 ---------------------------------
14042 -- Derive_Interface_Subprogram --
14043 ---------------------------------
14045 procedure Derive_Interface_Subprogram
14046 (New_Subp : in out Entity_Id;
14047 Subp : Entity_Id;
14048 Actual_Subp : Entity_Id)
14050 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14051 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14053 begin
14054 pragma Assert (Is_Interface (Iface_Type));
14056 Derive_Subprogram
14057 (New_Subp => New_Subp,
14058 Parent_Subp => Iface_Subp,
14059 Derived_Type => Derived_Type,
14060 Parent_Type => Iface_Type,
14061 Actual_Subp => Actual_Subp);
14063 -- Given that this new interface entity corresponds with a primitive
14064 -- of the parent that was not overridden we must leave it associated
14065 -- with its parent primitive to ensure that it will share the same
14066 -- dispatch table slot when overridden.
14068 if No (Actual_Subp) then
14069 Set_Alias (New_Subp, Subp);
14071 -- For instantiations this is not needed since the previous call to
14072 -- Derive_Subprogram leaves the entity well decorated.
14074 else
14075 pragma Assert (Alias (New_Subp) = Actual_Subp);
14076 null;
14077 end if;
14078 end Derive_Interface_Subprogram;
14080 -- Local variables
14082 Alias_Subp : Entity_Id;
14083 Act_List : Elist_Id;
14084 Act_Elmt : Elmt_Id;
14085 Act_Subp : Entity_Id := Empty;
14086 Elmt : Elmt_Id;
14087 Need_Search : Boolean := False;
14088 New_Subp : Entity_Id := Empty;
14089 Parent_Base : Entity_Id;
14090 Subp : Entity_Id;
14092 -- Start of processing for Derive_Subprograms
14094 begin
14095 if Ekind (Parent_Type) = E_Record_Type_With_Private
14096 and then Has_Discriminants (Parent_Type)
14097 and then Present (Full_View (Parent_Type))
14098 then
14099 Parent_Base := Full_View (Parent_Type);
14100 else
14101 Parent_Base := Parent_Type;
14102 end if;
14104 if Present (Generic_Actual) then
14105 Act_List := Collect_Primitive_Operations (Generic_Actual);
14106 Act_Elmt := First_Elmt (Act_List);
14107 else
14108 Act_List := No_Elist;
14109 Act_Elmt := No_Elmt;
14110 end if;
14112 -- Derive primitives inherited from the parent. Note that if the generic
14113 -- actual is present, this is not really a type derivation, it is a
14114 -- completion within an instance.
14116 -- Case 1: Derived_Type does not implement interfaces
14118 if not Is_Tagged_Type (Derived_Type)
14119 or else (not Has_Interfaces (Derived_Type)
14120 and then not (Present (Generic_Actual)
14121 and then Has_Interfaces (Generic_Actual)))
14122 then
14123 Elmt := First_Elmt (Op_List);
14124 while Present (Elmt) loop
14125 Subp := Node (Elmt);
14127 -- Literals are derived earlier in the process of building the
14128 -- derived type, and are skipped here.
14130 if Ekind (Subp) = E_Enumeration_Literal then
14131 null;
14133 -- The actual is a direct descendant and the common primitive
14134 -- operations appear in the same order.
14136 -- If the generic parent type is present, the derived type is an
14137 -- instance of a formal derived type, and within the instance its
14138 -- operations are those of the actual. We derive from the formal
14139 -- type but make the inherited operations aliases of the
14140 -- corresponding operations of the actual.
14142 else
14143 pragma Assert (No (Node (Act_Elmt))
14144 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14145 and then
14146 Type_Conformant
14147 (Subp, Node (Act_Elmt),
14148 Skip_Controlling_Formals => True)));
14150 Derive_Subprogram
14151 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14153 if Present (Act_Elmt) then
14154 Next_Elmt (Act_Elmt);
14155 end if;
14156 end if;
14158 Next_Elmt (Elmt);
14159 end loop;
14161 -- Case 2: Derived_Type implements interfaces
14163 else
14164 -- If the parent type has no predefined primitives we remove
14165 -- predefined primitives from the list of primitives of generic
14166 -- actual to simplify the complexity of this algorithm.
14168 if Present (Generic_Actual) then
14169 declare
14170 Has_Predefined_Primitives : Boolean := False;
14172 begin
14173 -- Check if the parent type has predefined primitives
14175 Elmt := First_Elmt (Op_List);
14176 while Present (Elmt) loop
14177 Subp := Node (Elmt);
14179 if Is_Predefined_Dispatching_Operation (Subp)
14180 and then not Comes_From_Source (Ultimate_Alias (Subp))
14181 then
14182 Has_Predefined_Primitives := True;
14183 exit;
14184 end if;
14186 Next_Elmt (Elmt);
14187 end loop;
14189 -- Remove predefined primitives of Generic_Actual. We must use
14190 -- an auxiliary list because in case of tagged types the value
14191 -- returned by Collect_Primitive_Operations is the value stored
14192 -- in its Primitive_Operations attribute (and we don't want to
14193 -- modify its current contents).
14195 if not Has_Predefined_Primitives then
14196 declare
14197 Aux_List : constant Elist_Id := New_Elmt_List;
14199 begin
14200 Elmt := First_Elmt (Act_List);
14201 while Present (Elmt) loop
14202 Subp := Node (Elmt);
14204 if not Is_Predefined_Dispatching_Operation (Subp)
14205 or else Comes_From_Source (Subp)
14206 then
14207 Append_Elmt (Subp, Aux_List);
14208 end if;
14210 Next_Elmt (Elmt);
14211 end loop;
14213 Act_List := Aux_List;
14214 end;
14215 end if;
14217 Act_Elmt := First_Elmt (Act_List);
14218 Act_Subp := Node (Act_Elmt);
14219 end;
14220 end if;
14222 -- Stage 1: If the generic actual is not present we derive the
14223 -- primitives inherited from the parent type. If the generic parent
14224 -- type is present, the derived type is an instance of a formal
14225 -- derived type, and within the instance its operations are those of
14226 -- the actual. We derive from the formal type but make the inherited
14227 -- operations aliases of the corresponding operations of the actual.
14229 Elmt := First_Elmt (Op_List);
14230 while Present (Elmt) loop
14231 Subp := Node (Elmt);
14232 Alias_Subp := Ultimate_Alias (Subp);
14234 -- Do not derive internal entities of the parent that link
14235 -- interface primitives with their covering primitive. These
14236 -- entities will be added to this type when frozen.
14238 if Present (Interface_Alias (Subp)) then
14239 goto Continue;
14240 end if;
14242 -- If the generic actual is present find the corresponding
14243 -- operation in the generic actual. If the parent type is a
14244 -- direct ancestor of the derived type then, even if it is an
14245 -- interface, the operations are inherited from the primary
14246 -- dispatch table and are in the proper order. If we detect here
14247 -- that primitives are not in the same order we traverse the list
14248 -- of primitive operations of the actual to find the one that
14249 -- implements the interface primitive.
14251 if Need_Search
14252 or else
14253 (Present (Generic_Actual)
14254 and then Present (Act_Subp)
14255 and then not
14256 (Primitive_Names_Match (Subp, Act_Subp)
14257 and then
14258 Type_Conformant (Subp, Act_Subp,
14259 Skip_Controlling_Formals => True)))
14260 then
14261 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14262 Use_Full_View => True));
14264 -- Remember that we need searching for all pending primitives
14266 Need_Search := True;
14268 -- Handle entities associated with interface primitives
14270 if Present (Alias_Subp)
14271 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14272 and then not Is_Predefined_Dispatching_Operation (Subp)
14273 then
14274 -- Search for the primitive in the homonym chain
14276 Act_Subp :=
14277 Find_Primitive_Covering_Interface
14278 (Tagged_Type => Generic_Actual,
14279 Iface_Prim => Alias_Subp);
14281 -- Previous search may not locate primitives covering
14282 -- interfaces defined in generics units or instantiations.
14283 -- (it fails if the covering primitive has formals whose
14284 -- type is also defined in generics or instantiations).
14285 -- In such case we search in the list of primitives of the
14286 -- generic actual for the internal entity that links the
14287 -- interface primitive and the covering primitive.
14289 if No (Act_Subp)
14290 and then Is_Generic_Type (Parent_Type)
14291 then
14292 -- This code has been designed to handle only generic
14293 -- formals that implement interfaces that are defined
14294 -- in a generic unit or instantiation. If this code is
14295 -- needed for other cases we must review it because
14296 -- (given that it relies on Original_Location to locate
14297 -- the primitive of Generic_Actual that covers the
14298 -- interface) it could leave linked through attribute
14299 -- Alias entities of unrelated instantiations).
14301 pragma Assert
14302 (Is_Generic_Unit
14303 (Scope (Find_Dispatching_Type (Alias_Subp)))
14304 or else
14305 Instantiation_Depth
14306 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14308 declare
14309 Iface_Prim_Loc : constant Source_Ptr :=
14310 Original_Location (Sloc (Alias_Subp));
14312 Elmt : Elmt_Id;
14313 Prim : Entity_Id;
14315 begin
14316 Elmt :=
14317 First_Elmt (Primitive_Operations (Generic_Actual));
14319 Search : while Present (Elmt) loop
14320 Prim := Node (Elmt);
14322 if Present (Interface_Alias (Prim))
14323 and then Original_Location
14324 (Sloc (Interface_Alias (Prim))) =
14325 Iface_Prim_Loc
14326 then
14327 Act_Subp := Alias (Prim);
14328 exit Search;
14329 end if;
14331 Next_Elmt (Elmt);
14332 end loop Search;
14333 end;
14334 end if;
14336 pragma Assert (Present (Act_Subp)
14337 or else Is_Abstract_Type (Generic_Actual)
14338 or else Serious_Errors_Detected > 0);
14340 -- Handle predefined primitives plus the rest of user-defined
14341 -- primitives
14343 else
14344 Act_Elmt := First_Elmt (Act_List);
14345 while Present (Act_Elmt) loop
14346 Act_Subp := Node (Act_Elmt);
14348 exit when Primitive_Names_Match (Subp, Act_Subp)
14349 and then Type_Conformant
14350 (Subp, Act_Subp,
14351 Skip_Controlling_Formals => True)
14352 and then No (Interface_Alias (Act_Subp));
14354 Next_Elmt (Act_Elmt);
14355 end loop;
14357 if No (Act_Elmt) then
14358 Act_Subp := Empty;
14359 end if;
14360 end if;
14361 end if;
14363 -- Case 1: If the parent is a limited interface then it has the
14364 -- predefined primitives of synchronized interfaces. However, the
14365 -- actual type may be a non-limited type and hence it does not
14366 -- have such primitives.
14368 if Present (Generic_Actual)
14369 and then not Present (Act_Subp)
14370 and then Is_Limited_Interface (Parent_Base)
14371 and then Is_Predefined_Interface_Primitive (Subp)
14372 then
14373 null;
14375 -- Case 2: Inherit entities associated with interfaces that were
14376 -- not covered by the parent type. We exclude here null interface
14377 -- primitives because they do not need special management.
14379 -- We also exclude interface operations that are renamings. If the
14380 -- subprogram is an explicit renaming of an interface primitive,
14381 -- it is a regular primitive operation, and the presence of its
14382 -- alias is not relevant: it has to be derived like any other
14383 -- primitive.
14385 elsif Present (Alias (Subp))
14386 and then Nkind (Unit_Declaration_Node (Subp)) /=
14387 N_Subprogram_Renaming_Declaration
14388 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14389 and then not
14390 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14391 and then Null_Present (Parent (Alias_Subp)))
14392 then
14393 -- If this is an abstract private type then we transfer the
14394 -- derivation of the interface primitive from the partial view
14395 -- to the full view. This is safe because all the interfaces
14396 -- must be visible in the partial view. Done to avoid adding
14397 -- a new interface derivation to the private part of the
14398 -- enclosing package; otherwise this new derivation would be
14399 -- decorated as hidden when the analysis of the enclosing
14400 -- package completes.
14402 if Is_Abstract_Type (Derived_Type)
14403 and then In_Private_Part (Current_Scope)
14404 and then Has_Private_Declaration (Derived_Type)
14405 then
14406 declare
14407 Partial_View : Entity_Id;
14408 Elmt : Elmt_Id;
14409 Ent : Entity_Id;
14411 begin
14412 Partial_View := First_Entity (Current_Scope);
14413 loop
14414 exit when No (Partial_View)
14415 or else (Has_Private_Declaration (Partial_View)
14416 and then
14417 Full_View (Partial_View) = Derived_Type);
14419 Next_Entity (Partial_View);
14420 end loop;
14422 -- If the partial view was not found then the source code
14423 -- has errors and the derivation is not needed.
14425 if Present (Partial_View) then
14426 Elmt :=
14427 First_Elmt (Primitive_Operations (Partial_View));
14428 while Present (Elmt) loop
14429 Ent := Node (Elmt);
14431 if Present (Alias (Ent))
14432 and then Ultimate_Alias (Ent) = Alias (Subp)
14433 then
14434 Append_Elmt
14435 (Ent, Primitive_Operations (Derived_Type));
14436 exit;
14437 end if;
14439 Next_Elmt (Elmt);
14440 end loop;
14442 -- If the interface primitive was not found in the
14443 -- partial view then this interface primitive was
14444 -- overridden. We add a derivation to activate in
14445 -- Derive_Progenitor_Subprograms the machinery to
14446 -- search for it.
14448 if No (Elmt) then
14449 Derive_Interface_Subprogram
14450 (New_Subp => New_Subp,
14451 Subp => Subp,
14452 Actual_Subp => Act_Subp);
14453 end if;
14454 end if;
14455 end;
14456 else
14457 Derive_Interface_Subprogram
14458 (New_Subp => New_Subp,
14459 Subp => Subp,
14460 Actual_Subp => Act_Subp);
14461 end if;
14463 -- Case 3: Common derivation
14465 else
14466 Derive_Subprogram
14467 (New_Subp => New_Subp,
14468 Parent_Subp => Subp,
14469 Derived_Type => Derived_Type,
14470 Parent_Type => Parent_Base,
14471 Actual_Subp => Act_Subp);
14472 end if;
14474 -- No need to update Act_Elm if we must search for the
14475 -- corresponding operation in the generic actual
14477 if not Need_Search
14478 and then Present (Act_Elmt)
14479 then
14480 Next_Elmt (Act_Elmt);
14481 Act_Subp := Node (Act_Elmt);
14482 end if;
14484 <<Continue>>
14485 Next_Elmt (Elmt);
14486 end loop;
14488 -- Inherit additional operations from progenitors. If the derived
14489 -- type is a generic actual, there are not new primitive operations
14490 -- for the type because it has those of the actual, and therefore
14491 -- nothing needs to be done. The renamings generated above are not
14492 -- primitive operations, and their purpose is simply to make the
14493 -- proper operations visible within an instantiation.
14495 if No (Generic_Actual) then
14496 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14497 end if;
14498 end if;
14500 -- Final check: Direct descendants must have their primitives in the
14501 -- same order. We exclude from this test untagged types and instances
14502 -- of formal derived types. We skip this test if we have already
14503 -- reported serious errors in the sources.
14505 pragma Assert (not Is_Tagged_Type (Derived_Type)
14506 or else Present (Generic_Actual)
14507 or else Serious_Errors_Detected > 0
14508 or else Check_Derived_Type);
14509 end Derive_Subprograms;
14511 --------------------------------
14512 -- Derived_Standard_Character --
14513 --------------------------------
14515 procedure Derived_Standard_Character
14516 (N : Node_Id;
14517 Parent_Type : Entity_Id;
14518 Derived_Type : Entity_Id)
14520 Loc : constant Source_Ptr := Sloc (N);
14521 Def : constant Node_Id := Type_Definition (N);
14522 Indic : constant Node_Id := Subtype_Indication (Def);
14523 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14524 Implicit_Base : constant Entity_Id :=
14525 Create_Itype
14526 (E_Enumeration_Type, N, Derived_Type, 'B');
14528 Lo : Node_Id;
14529 Hi : Node_Id;
14531 begin
14532 Discard_Node (Process_Subtype (Indic, N));
14534 Set_Etype (Implicit_Base, Parent_Base);
14535 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14536 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14538 Set_Is_Character_Type (Implicit_Base, True);
14539 Set_Has_Delayed_Freeze (Implicit_Base);
14541 -- The bounds of the implicit base are the bounds of the parent base.
14542 -- Note that their type is the parent base.
14544 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14545 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14547 Set_Scalar_Range (Implicit_Base,
14548 Make_Range (Loc,
14549 Low_Bound => Lo,
14550 High_Bound => Hi));
14552 Conditional_Delay (Derived_Type, Parent_Type);
14554 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14555 Set_Etype (Derived_Type, Implicit_Base);
14556 Set_Size_Info (Derived_Type, Parent_Type);
14558 if Unknown_RM_Size (Derived_Type) then
14559 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14560 end if;
14562 Set_Is_Character_Type (Derived_Type, True);
14564 if Nkind (Indic) /= N_Subtype_Indication then
14566 -- If no explicit constraint, the bounds are those
14567 -- of the parent type.
14569 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14570 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14571 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14572 end if;
14574 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14576 -- Because the implicit base is used in the conversion of the bounds, we
14577 -- have to freeze it now. This is similar to what is done for numeric
14578 -- types, and it equally suspicious, but otherwise a non-static bound
14579 -- will have a reference to an unfrozen type, which is rejected by Gigi
14580 -- (???). This requires specific care for definition of stream
14581 -- attributes. For details, see comments at the end of
14582 -- Build_Derived_Numeric_Type.
14584 Freeze_Before (N, Implicit_Base);
14585 end Derived_Standard_Character;
14587 ------------------------------
14588 -- Derived_Type_Declaration --
14589 ------------------------------
14591 procedure Derived_Type_Declaration
14592 (T : Entity_Id;
14593 N : Node_Id;
14594 Is_Completion : Boolean)
14596 Parent_Type : Entity_Id;
14598 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14599 -- Check whether the parent type is a generic formal, or derives
14600 -- directly or indirectly from one.
14602 ------------------------
14603 -- Comes_From_Generic --
14604 ------------------------
14606 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14607 begin
14608 if Is_Generic_Type (Typ) then
14609 return True;
14611 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14612 return True;
14614 elsif Is_Private_Type (Typ)
14615 and then Present (Full_View (Typ))
14616 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14617 then
14618 return True;
14620 elsif Is_Generic_Actual_Type (Typ) then
14621 return True;
14623 else
14624 return False;
14625 end if;
14626 end Comes_From_Generic;
14628 -- Local variables
14630 Def : constant Node_Id := Type_Definition (N);
14631 Iface_Def : Node_Id;
14632 Indic : constant Node_Id := Subtype_Indication (Def);
14633 Extension : constant Node_Id := Record_Extension_Part (Def);
14634 Parent_Node : Node_Id;
14635 Taggd : Boolean;
14637 -- Start of processing for Derived_Type_Declaration
14639 begin
14640 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14642 -- Ada 2005 (AI-251): In case of interface derivation check that the
14643 -- parent is also an interface.
14645 if Interface_Present (Def) then
14646 Check_SPARK_Restriction ("interface is not allowed", Def);
14648 if not Is_Interface (Parent_Type) then
14649 Diagnose_Interface (Indic, Parent_Type);
14651 else
14652 Parent_Node := Parent (Base_Type (Parent_Type));
14653 Iface_Def := Type_Definition (Parent_Node);
14655 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14656 -- other limited interfaces.
14658 if Limited_Present (Def) then
14659 if Limited_Present (Iface_Def) then
14660 null;
14662 elsif Protected_Present (Iface_Def) then
14663 Error_Msg_NE
14664 ("descendant of& must be declared"
14665 & " as a protected interface",
14666 N, Parent_Type);
14668 elsif Synchronized_Present (Iface_Def) then
14669 Error_Msg_NE
14670 ("descendant of& must be declared"
14671 & " as a synchronized interface",
14672 N, Parent_Type);
14674 elsif Task_Present (Iface_Def) then
14675 Error_Msg_NE
14676 ("descendant of& must be declared as a task interface",
14677 N, Parent_Type);
14679 else
14680 Error_Msg_N
14681 ("(Ada 2005) limited interface cannot "
14682 & "inherit from non-limited interface", Indic);
14683 end if;
14685 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14686 -- from non-limited or limited interfaces.
14688 elsif not Protected_Present (Def)
14689 and then not Synchronized_Present (Def)
14690 and then not Task_Present (Def)
14691 then
14692 if Limited_Present (Iface_Def) then
14693 null;
14695 elsif Protected_Present (Iface_Def) then
14696 Error_Msg_NE
14697 ("descendant of& must be declared"
14698 & " as a protected interface",
14699 N, Parent_Type);
14701 elsif Synchronized_Present (Iface_Def) then
14702 Error_Msg_NE
14703 ("descendant of& must be declared"
14704 & " as a synchronized interface",
14705 N, Parent_Type);
14707 elsif Task_Present (Iface_Def) then
14708 Error_Msg_NE
14709 ("descendant of& must be declared as a task interface",
14710 N, Parent_Type);
14711 else
14712 null;
14713 end if;
14714 end if;
14715 end if;
14716 end if;
14718 if Is_Tagged_Type (Parent_Type)
14719 and then Is_Concurrent_Type (Parent_Type)
14720 and then not Is_Interface (Parent_Type)
14721 then
14722 Error_Msg_N
14723 ("parent type of a record extension cannot be "
14724 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14725 Set_Etype (T, Any_Type);
14726 return;
14727 end if;
14729 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14730 -- interfaces
14732 if Is_Tagged_Type (Parent_Type)
14733 and then Is_Non_Empty_List (Interface_List (Def))
14734 then
14735 declare
14736 Intf : Node_Id;
14737 T : Entity_Id;
14739 begin
14740 Intf := First (Interface_List (Def));
14741 while Present (Intf) loop
14742 T := Find_Type_Of_Subtype_Indic (Intf);
14744 if not Is_Interface (T) then
14745 Diagnose_Interface (Intf, T);
14747 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14748 -- a limited type from having a nonlimited progenitor.
14750 elsif (Limited_Present (Def)
14751 or else (not Is_Interface (Parent_Type)
14752 and then Is_Limited_Type (Parent_Type)))
14753 and then not Is_Limited_Interface (T)
14754 then
14755 Error_Msg_NE
14756 ("progenitor interface& of limited type must be limited",
14757 N, T);
14758 end if;
14760 Next (Intf);
14761 end loop;
14762 end;
14763 end if;
14765 if Parent_Type = Any_Type
14766 or else Etype (Parent_Type) = Any_Type
14767 or else (Is_Class_Wide_Type (Parent_Type)
14768 and then Etype (Parent_Type) = T)
14769 then
14770 -- If Parent_Type is undefined or illegal, make new type into a
14771 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14772 -- errors. If this is a self-definition, emit error now.
14774 if T = Parent_Type
14775 or else T = Etype (Parent_Type)
14776 then
14777 Error_Msg_N ("type cannot be used in its own definition", Indic);
14778 end if;
14780 Set_Ekind (T, Ekind (Parent_Type));
14781 Set_Etype (T, Any_Type);
14782 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14784 if Is_Tagged_Type (T)
14785 and then Is_Record_Type (T)
14786 then
14787 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14788 end if;
14790 return;
14791 end if;
14793 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14794 -- an interface is special because the list of interfaces in the full
14795 -- view can be given in any order. For example:
14797 -- type A is interface;
14798 -- type B is interface and A;
14799 -- type D is new B with private;
14800 -- private
14801 -- type D is new A and B with null record; -- 1 --
14803 -- In this case we perform the following transformation of -1-:
14805 -- type D is new B and A with null record;
14807 -- If the parent of the full-view covers the parent of the partial-view
14808 -- we have two possible cases:
14810 -- 1) They have the same parent
14811 -- 2) The parent of the full-view implements some further interfaces
14813 -- In both cases we do not need to perform the transformation. In the
14814 -- first case the source program is correct and the transformation is
14815 -- not needed; in the second case the source program does not fulfill
14816 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14817 -- later.
14819 -- This transformation not only simplifies the rest of the analysis of
14820 -- this type declaration but also simplifies the correct generation of
14821 -- the object layout to the expander.
14823 if In_Private_Part (Current_Scope)
14824 and then Is_Interface (Parent_Type)
14825 then
14826 declare
14827 Iface : Node_Id;
14828 Partial_View : Entity_Id;
14829 Partial_View_Parent : Entity_Id;
14830 New_Iface : Node_Id;
14832 begin
14833 -- Look for the associated private type declaration
14835 Partial_View := First_Entity (Current_Scope);
14836 loop
14837 exit when No (Partial_View)
14838 or else (Has_Private_Declaration (Partial_View)
14839 and then Full_View (Partial_View) = T);
14841 Next_Entity (Partial_View);
14842 end loop;
14844 -- If the partial view was not found then the source code has
14845 -- errors and the transformation is not needed.
14847 if Present (Partial_View) then
14848 Partial_View_Parent := Etype (Partial_View);
14850 -- If the parent of the full-view covers the parent of the
14851 -- partial-view we have nothing else to do.
14853 if Interface_Present_In_Ancestor
14854 (Parent_Type, Partial_View_Parent)
14855 then
14856 null;
14858 -- Traverse the list of interfaces of the full-view to look
14859 -- for the parent of the partial-view and perform the tree
14860 -- transformation.
14862 else
14863 Iface := First (Interface_List (Def));
14864 while Present (Iface) loop
14865 if Etype (Iface) = Etype (Partial_View) then
14866 Rewrite (Subtype_Indication (Def),
14867 New_Copy (Subtype_Indication
14868 (Parent (Partial_View))));
14870 New_Iface :=
14871 Make_Identifier (Sloc (N), Chars (Parent_Type));
14872 Append (New_Iface, Interface_List (Def));
14874 -- Analyze the transformed code
14876 Derived_Type_Declaration (T, N, Is_Completion);
14877 return;
14878 end if;
14880 Next (Iface);
14881 end loop;
14882 end if;
14883 end if;
14884 end;
14885 end if;
14887 -- Only composite types other than array types are allowed to have
14888 -- discriminants. In SPARK, no types are allowed to have discriminants.
14890 if Present (Discriminant_Specifications (N)) then
14891 if (Is_Elementary_Type (Parent_Type)
14892 or else Is_Array_Type (Parent_Type))
14893 and then not Error_Posted (N)
14894 then
14895 Error_Msg_N
14896 ("elementary or array type cannot have discriminants",
14897 Defining_Identifier (First (Discriminant_Specifications (N))));
14898 Set_Has_Discriminants (T, False);
14899 else
14900 Check_SPARK_Restriction ("discriminant type is not allowed", N);
14901 end if;
14902 end if;
14904 -- In Ada 83, a derived type defined in a package specification cannot
14905 -- be used for further derivation until the end of its visible part.
14906 -- Note that derivation in the private part of the package is allowed.
14908 if Ada_Version = Ada_83
14909 and then Is_Derived_Type (Parent_Type)
14910 and then In_Visible_Part (Scope (Parent_Type))
14911 then
14912 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
14913 Error_Msg_N
14914 ("(Ada 83): premature use of type for derivation", Indic);
14915 end if;
14916 end if;
14918 -- Check for early use of incomplete or private type
14920 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
14921 Error_Msg_N ("premature derivation of incomplete type", Indic);
14922 return;
14924 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
14925 and then not Comes_From_Generic (Parent_Type))
14926 or else Has_Private_Component (Parent_Type)
14927 then
14928 -- The ancestor type of a formal type can be incomplete, in which
14929 -- case only the operations of the partial view are available in the
14930 -- generic. Subsequent checks may be required when the full view is
14931 -- analyzed to verify that a derivation from a tagged type has an
14932 -- extension.
14934 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
14935 null;
14937 elsif No (Underlying_Type (Parent_Type))
14938 or else Has_Private_Component (Parent_Type)
14939 then
14940 Error_Msg_N
14941 ("premature derivation of derived or private type", Indic);
14943 -- Flag the type itself as being in error, this prevents some
14944 -- nasty problems with subsequent uses of the malformed type.
14946 Set_Error_Posted (T);
14948 -- Check that within the immediate scope of an untagged partial
14949 -- view it's illegal to derive from the partial view if the
14950 -- full view is tagged. (7.3(7))
14952 -- We verify that the Parent_Type is a partial view by checking
14953 -- that it is not a Full_Type_Declaration (i.e. a private type or
14954 -- private extension declaration), to distinguish a partial view
14955 -- from a derivation from a private type which also appears as
14956 -- E_Private_Type. If the parent base type is not declared in an
14957 -- enclosing scope there is no need to check.
14959 elsif Present (Full_View (Parent_Type))
14960 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
14961 and then not Is_Tagged_Type (Parent_Type)
14962 and then Is_Tagged_Type (Full_View (Parent_Type))
14963 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14964 then
14965 Error_Msg_N
14966 ("premature derivation from type with tagged full view",
14967 Indic);
14968 end if;
14969 end if;
14971 -- Check that form of derivation is appropriate
14973 Taggd := Is_Tagged_Type (Parent_Type);
14975 -- Perhaps the parent type should be changed to the class-wide type's
14976 -- specific type in this case to prevent cascading errors ???
14978 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
14979 Error_Msg_N ("parent type must not be a class-wide type", Indic);
14980 return;
14981 end if;
14983 if Present (Extension) and then not Taggd then
14984 Error_Msg_N
14985 ("type derived from untagged type cannot have extension", Indic);
14987 elsif No (Extension) and then Taggd then
14989 -- If this declaration is within a private part (or body) of a
14990 -- generic instantiation then the derivation is allowed (the parent
14991 -- type can only appear tagged in this case if it's a generic actual
14992 -- type, since it would otherwise have been rejected in the analysis
14993 -- of the generic template).
14995 if not Is_Generic_Actual_Type (Parent_Type)
14996 or else In_Visible_Part (Scope (Parent_Type))
14997 then
14998 if Is_Class_Wide_Type (Parent_Type) then
14999 Error_Msg_N
15000 ("parent type must not be a class-wide type", Indic);
15002 -- Use specific type to prevent cascaded errors.
15004 Parent_Type := Etype (Parent_Type);
15006 else
15007 Error_Msg_N
15008 ("type derived from tagged type must have extension", Indic);
15009 end if;
15010 end if;
15011 end if;
15013 -- AI-443: Synchronized formal derived types require a private
15014 -- extension. There is no point in checking the ancestor type or
15015 -- the progenitors since the construct is wrong to begin with.
15017 if Ada_Version >= Ada_2005
15018 and then Is_Generic_Type (T)
15019 and then Present (Original_Node (N))
15020 then
15021 declare
15022 Decl : constant Node_Id := Original_Node (N);
15024 begin
15025 if Nkind (Decl) = N_Formal_Type_Declaration
15026 and then Nkind (Formal_Type_Definition (Decl)) =
15027 N_Formal_Derived_Type_Definition
15028 and then Synchronized_Present (Formal_Type_Definition (Decl))
15029 and then No (Extension)
15031 -- Avoid emitting a duplicate error message
15033 and then not Error_Posted (Indic)
15034 then
15035 Error_Msg_N
15036 ("synchronized derived type must have extension", N);
15037 end if;
15038 end;
15039 end if;
15041 if Null_Exclusion_Present (Def)
15042 and then not Is_Access_Type (Parent_Type)
15043 then
15044 Error_Msg_N ("null exclusion can only apply to an access type", N);
15045 end if;
15047 -- Avoid deriving parent primitives of underlying record views
15049 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15050 Derive_Subps => not Is_Underlying_Record_View (T));
15052 -- AI-419: The parent type of an explicitly limited derived type must
15053 -- be a limited type or a limited interface.
15055 if Limited_Present (Def) then
15056 Set_Is_Limited_Record (T);
15058 if Is_Interface (T) then
15059 Set_Is_Limited_Interface (T);
15060 end if;
15062 if not Is_Limited_Type (Parent_Type)
15063 and then
15064 (not Is_Interface (Parent_Type)
15065 or else not Is_Limited_Interface (Parent_Type))
15066 then
15067 -- AI05-0096: a derivation in the private part of an instance is
15068 -- legal if the generic formal is untagged limited, and the actual
15069 -- is non-limited.
15071 if Is_Generic_Actual_Type (Parent_Type)
15072 and then In_Private_Part (Current_Scope)
15073 and then
15074 not Is_Tagged_Type
15075 (Generic_Parent_Type (Parent (Parent_Type)))
15076 then
15077 null;
15079 else
15080 Error_Msg_NE
15081 ("parent type& of limited type must be limited",
15082 N, Parent_Type);
15083 end if;
15084 end if;
15085 end if;
15087 -- In SPARK, there are no derived type definitions other than type
15088 -- extensions of tagged record types.
15090 if No (Extension) then
15091 Check_SPARK_Restriction
15092 ("derived type is not allowed", Original_Node (N));
15093 end if;
15094 end Derived_Type_Declaration;
15096 ------------------------
15097 -- Diagnose_Interface --
15098 ------------------------
15100 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15101 begin
15102 if not Is_Interface (E)
15103 and then E /= Any_Type
15104 then
15105 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15106 end if;
15107 end Diagnose_Interface;
15109 ----------------------------------
15110 -- Enumeration_Type_Declaration --
15111 ----------------------------------
15113 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15114 Ev : Uint;
15115 L : Node_Id;
15116 R_Node : Node_Id;
15117 B_Node : Node_Id;
15119 begin
15120 -- Create identifier node representing lower bound
15122 B_Node := New_Node (N_Identifier, Sloc (Def));
15123 L := First (Literals (Def));
15124 Set_Chars (B_Node, Chars (L));
15125 Set_Entity (B_Node, L);
15126 Set_Etype (B_Node, T);
15127 Set_Is_Static_Expression (B_Node, True);
15129 R_Node := New_Node (N_Range, Sloc (Def));
15130 Set_Low_Bound (R_Node, B_Node);
15132 Set_Ekind (T, E_Enumeration_Type);
15133 Set_First_Literal (T, L);
15134 Set_Etype (T, T);
15135 Set_Is_Constrained (T);
15137 Ev := Uint_0;
15139 -- Loop through literals of enumeration type setting pos and rep values
15140 -- except that if the Ekind is already set, then it means the literal
15141 -- was already constructed (case of a derived type declaration and we
15142 -- should not disturb the Pos and Rep values.
15144 while Present (L) loop
15145 if Ekind (L) /= E_Enumeration_Literal then
15146 Set_Ekind (L, E_Enumeration_Literal);
15147 Set_Enumeration_Pos (L, Ev);
15148 Set_Enumeration_Rep (L, Ev);
15149 Set_Is_Known_Valid (L, True);
15150 end if;
15152 Set_Etype (L, T);
15153 New_Overloaded_Entity (L);
15154 Generate_Definition (L);
15155 Set_Convention (L, Convention_Intrinsic);
15157 -- Case of character literal
15159 if Nkind (L) = N_Defining_Character_Literal then
15160 Set_Is_Character_Type (T, True);
15162 -- Check violation of No_Wide_Characters
15164 if Restriction_Check_Required (No_Wide_Characters) then
15165 Get_Name_String (Chars (L));
15167 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15168 Check_Restriction (No_Wide_Characters, L);
15169 end if;
15170 end if;
15171 end if;
15173 Ev := Ev + 1;
15174 Next (L);
15175 end loop;
15177 -- Now create a node representing upper bound
15179 B_Node := New_Node (N_Identifier, Sloc (Def));
15180 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15181 Set_Entity (B_Node, Last (Literals (Def)));
15182 Set_Etype (B_Node, T);
15183 Set_Is_Static_Expression (B_Node, True);
15185 Set_High_Bound (R_Node, B_Node);
15187 -- Initialize various fields of the type. Some of this information
15188 -- may be overwritten later through rep.clauses.
15190 Set_Scalar_Range (T, R_Node);
15191 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15192 Set_Enum_Esize (T);
15193 Set_Enum_Pos_To_Rep (T, Empty);
15195 -- Set Discard_Names if configuration pragma set, or if there is
15196 -- a parameterless pragma in the current declarative region
15198 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15199 Set_Discard_Names (T);
15200 end if;
15202 -- Process end label if there is one
15204 if Present (Def) then
15205 Process_End_Label (Def, 'e', T);
15206 end if;
15207 end Enumeration_Type_Declaration;
15209 ---------------------------------
15210 -- Expand_To_Stored_Constraint --
15211 ---------------------------------
15213 function Expand_To_Stored_Constraint
15214 (Typ : Entity_Id;
15215 Constraint : Elist_Id) return Elist_Id
15217 Explicitly_Discriminated_Type : Entity_Id;
15218 Expansion : Elist_Id;
15219 Discriminant : Entity_Id;
15221 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15222 -- Find the nearest type that actually specifies discriminants
15224 ---------------------------------
15225 -- Type_With_Explicit_Discrims --
15226 ---------------------------------
15228 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15229 Typ : constant E := Base_Type (Id);
15231 begin
15232 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15233 if Present (Full_View (Typ)) then
15234 return Type_With_Explicit_Discrims (Full_View (Typ));
15235 end if;
15237 else
15238 if Has_Discriminants (Typ) then
15239 return Typ;
15240 end if;
15241 end if;
15243 if Etype (Typ) = Typ then
15244 return Empty;
15245 elsif Has_Discriminants (Typ) then
15246 return Typ;
15247 else
15248 return Type_With_Explicit_Discrims (Etype (Typ));
15249 end if;
15251 end Type_With_Explicit_Discrims;
15253 -- Start of processing for Expand_To_Stored_Constraint
15255 begin
15256 if No (Constraint)
15257 or else Is_Empty_Elmt_List (Constraint)
15258 then
15259 return No_Elist;
15260 end if;
15262 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15264 if No (Explicitly_Discriminated_Type) then
15265 return No_Elist;
15266 end if;
15268 Expansion := New_Elmt_List;
15270 Discriminant :=
15271 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15272 while Present (Discriminant) loop
15273 Append_Elmt (
15274 Get_Discriminant_Value (
15275 Discriminant, Explicitly_Discriminated_Type, Constraint),
15276 Expansion);
15277 Next_Stored_Discriminant (Discriminant);
15278 end loop;
15280 return Expansion;
15281 end Expand_To_Stored_Constraint;
15283 ---------------------------
15284 -- Find_Hidden_Interface --
15285 ---------------------------
15287 function Find_Hidden_Interface
15288 (Src : Elist_Id;
15289 Dest : Elist_Id) return Entity_Id
15291 Iface : Entity_Id;
15292 Iface_Elmt : Elmt_Id;
15294 begin
15295 if Present (Src) and then Present (Dest) then
15296 Iface_Elmt := First_Elmt (Src);
15297 while Present (Iface_Elmt) loop
15298 Iface := Node (Iface_Elmt);
15300 if Is_Interface (Iface)
15301 and then not Contain_Interface (Iface, Dest)
15302 then
15303 return Iface;
15304 end if;
15306 Next_Elmt (Iface_Elmt);
15307 end loop;
15308 end if;
15310 return Empty;
15311 end Find_Hidden_Interface;
15313 --------------------
15314 -- Find_Type_Name --
15315 --------------------
15317 function Find_Type_Name (N : Node_Id) return Entity_Id is
15318 Id : constant Entity_Id := Defining_Identifier (N);
15319 Prev : Entity_Id;
15320 New_Id : Entity_Id;
15321 Prev_Par : Node_Id;
15323 procedure Check_Duplicate_Aspects;
15324 -- Check that aspects specified in a completion have not been specified
15325 -- already in the partial view. Type_Invariant and others can be
15326 -- specified on either view but never on both.
15328 procedure Tag_Mismatch;
15329 -- Diagnose a tagged partial view whose full view is untagged.
15330 -- We post the message on the full view, with a reference to
15331 -- the previous partial view. The partial view can be private
15332 -- or incomplete, and these are handled in a different manner,
15333 -- so we determine the position of the error message from the
15334 -- respective slocs of both.
15336 -----------------------------
15337 -- Check_Duplicate_Aspects --
15338 -----------------------------
15339 procedure Check_Duplicate_Aspects is
15340 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15341 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15342 F_Spec, P_Spec : Node_Id;
15344 begin
15345 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15346 F_Spec := First (Full_Aspects);
15347 while Present (F_Spec) loop
15348 P_Spec := First (Prev_Aspects);
15349 while Present (P_Spec) loop
15351 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15352 then
15353 Error_Msg_N
15354 ("aspect already specified in private declaration",
15355 F_Spec);
15356 Remove (F_Spec);
15357 return;
15358 end if;
15360 Next (P_Spec);
15361 end loop;
15363 Next (F_Spec);
15364 end loop;
15365 end if;
15366 end Check_Duplicate_Aspects;
15368 ------------------
15369 -- Tag_Mismatch --
15370 ------------------
15372 procedure Tag_Mismatch is
15373 begin
15374 if Sloc (Prev) < Sloc (Id) then
15375 if Ada_Version >= Ada_2012
15376 and then Nkind (N) = N_Private_Type_Declaration
15377 then
15378 Error_Msg_NE
15379 ("declaration of private } must be a tagged type ", Id, Prev);
15380 else
15381 Error_Msg_NE
15382 ("full declaration of } must be a tagged type ", Id, Prev);
15383 end if;
15384 else
15385 if Ada_Version >= Ada_2012
15386 and then Nkind (N) = N_Private_Type_Declaration
15387 then
15388 Error_Msg_NE
15389 ("declaration of private } must be a tagged type ", Prev, Id);
15390 else
15391 Error_Msg_NE
15392 ("full declaration of } must be a tagged type ", Prev, Id);
15393 end if;
15394 end if;
15395 end Tag_Mismatch;
15397 -- Start of processing for Find_Type_Name
15399 begin
15400 -- Find incomplete declaration, if one was given
15402 Prev := Current_Entity_In_Scope (Id);
15404 -- New type declaration
15406 if No (Prev) then
15407 Enter_Name (Id);
15408 return Id;
15410 -- Previous declaration exists
15412 else
15413 Prev_Par := Parent (Prev);
15415 -- Error if not incomplete/private case except if previous
15416 -- declaration is implicit, etc. Enter_Name will emit error if
15417 -- appropriate.
15419 if not Is_Incomplete_Or_Private_Type (Prev) then
15420 Enter_Name (Id);
15421 New_Id := Id;
15423 -- Check invalid completion of private or incomplete type
15425 elsif not Nkind_In (N, N_Full_Type_Declaration,
15426 N_Task_Type_Declaration,
15427 N_Protected_Type_Declaration)
15428 and then
15429 (Ada_Version < Ada_2012
15430 or else not Is_Incomplete_Type (Prev)
15431 or else not Nkind_In (N, N_Private_Type_Declaration,
15432 N_Private_Extension_Declaration))
15433 then
15434 -- Completion must be a full type declarations (RM 7.3(4))
15436 Error_Msg_Sloc := Sloc (Prev);
15437 Error_Msg_NE ("invalid completion of }", Id, Prev);
15439 -- Set scope of Id to avoid cascaded errors. Entity is never
15440 -- examined again, except when saving globals in generics.
15442 Set_Scope (Id, Current_Scope);
15443 New_Id := Id;
15445 -- If this is a repeated incomplete declaration, no further
15446 -- checks are possible.
15448 if Nkind (N) = N_Incomplete_Type_Declaration then
15449 return Prev;
15450 end if;
15452 -- Case of full declaration of incomplete type
15454 elsif Ekind (Prev) = E_Incomplete_Type
15455 and then (Ada_Version < Ada_2012
15456 or else No (Full_View (Prev))
15457 or else not Is_Private_Type (Full_View (Prev)))
15458 then
15460 -- Indicate that the incomplete declaration has a matching full
15461 -- declaration. The defining occurrence of the incomplete
15462 -- declaration remains the visible one, and the procedure
15463 -- Get_Full_View dereferences it whenever the type is used.
15465 if Present (Full_View (Prev)) then
15466 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15467 end if;
15469 Set_Full_View (Prev, Id);
15470 Append_Entity (Id, Current_Scope);
15471 Set_Is_Public (Id, Is_Public (Prev));
15472 Set_Is_Internal (Id);
15473 New_Id := Prev;
15475 -- If the incomplete view is tagged, a class_wide type has been
15476 -- created already. Use it for the private type as well, in order
15477 -- to prevent multiple incompatible class-wide types that may be
15478 -- created for self-referential anonymous access components.
15480 if Is_Tagged_Type (Prev)
15481 and then Present (Class_Wide_Type (Prev))
15482 then
15483 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15484 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15486 -- If the incomplete type is completed by a private declaration
15487 -- the class-wide type remains associated with the incomplete
15488 -- type, to prevent order-of-elaboration issues in gigi, else
15489 -- we associate the class-wide type with the known full view.
15491 if Nkind (N) /= N_Private_Type_Declaration then
15492 Set_Etype (Class_Wide_Type (Id), Id);
15493 end if;
15494 end if;
15496 -- Case of full declaration of private type
15498 else
15499 -- If the private type was a completion of an incomplete type then
15500 -- update Prev to reference the private type
15502 if Ada_Version >= Ada_2012
15503 and then Ekind (Prev) = E_Incomplete_Type
15504 and then Present (Full_View (Prev))
15505 and then Is_Private_Type (Full_View (Prev))
15506 then
15507 Prev := Full_View (Prev);
15508 Prev_Par := Parent (Prev);
15509 end if;
15511 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15512 if Etype (Prev) /= Prev then
15514 -- Prev is a private subtype or a derived type, and needs
15515 -- no completion.
15517 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15518 New_Id := Id;
15520 elsif Ekind (Prev) = E_Private_Type
15521 and then Nkind_In (N, N_Task_Type_Declaration,
15522 N_Protected_Type_Declaration)
15523 then
15524 Error_Msg_N
15525 ("completion of nonlimited type cannot be limited", N);
15527 elsif Ekind (Prev) = E_Record_Type_With_Private
15528 and then Nkind_In (N, N_Task_Type_Declaration,
15529 N_Protected_Type_Declaration)
15530 then
15531 if not Is_Limited_Record (Prev) then
15532 Error_Msg_N
15533 ("completion of nonlimited type cannot be limited", N);
15535 elsif No (Interface_List (N)) then
15536 Error_Msg_N
15537 ("completion of tagged private type must be tagged",
15539 end if;
15541 elsif Nkind (N) = N_Full_Type_Declaration
15542 and then
15543 Nkind (Type_Definition (N)) = N_Record_Definition
15544 and then Interface_Present (Type_Definition (N))
15545 then
15546 Error_Msg_N
15547 ("completion of private type cannot be an interface", N);
15548 end if;
15550 -- Ada 2005 (AI-251): Private extension declaration of a task
15551 -- type or a protected type. This case arises when covering
15552 -- interface types.
15554 elsif Nkind_In (N, N_Task_Type_Declaration,
15555 N_Protected_Type_Declaration)
15556 then
15557 null;
15559 elsif Nkind (N) /= N_Full_Type_Declaration
15560 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15561 then
15562 Error_Msg_N
15563 ("full view of private extension must be an extension", N);
15565 elsif not (Abstract_Present (Parent (Prev)))
15566 and then Abstract_Present (Type_Definition (N))
15567 then
15568 Error_Msg_N
15569 ("full view of non-abstract extension cannot be abstract", N);
15570 end if;
15572 if not In_Private_Part (Current_Scope) then
15573 Error_Msg_N
15574 ("declaration of full view must appear in private part", N);
15575 end if;
15577 if Ada_Version >= Ada_2012 then
15578 Check_Duplicate_Aspects;
15579 end if;
15581 Copy_And_Swap (Prev, Id);
15582 Set_Has_Private_Declaration (Prev);
15583 Set_Has_Private_Declaration (Id);
15585 -- Preserve aspect and iterator flags that may have been set on
15586 -- the partial view.
15588 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15589 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15591 -- If no error, propagate freeze_node from private to full view.
15592 -- It may have been generated for an early operational item.
15594 if Present (Freeze_Node (Id))
15595 and then Serious_Errors_Detected = 0
15596 and then No (Full_View (Id))
15597 then
15598 Set_Freeze_Node (Prev, Freeze_Node (Id));
15599 Set_Freeze_Node (Id, Empty);
15600 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15601 end if;
15603 Set_Full_View (Id, Prev);
15604 New_Id := Prev;
15605 end if;
15607 -- Verify that full declaration conforms to partial one
15609 if Is_Incomplete_Or_Private_Type (Prev)
15610 and then Present (Discriminant_Specifications (Prev_Par))
15611 then
15612 if Present (Discriminant_Specifications (N)) then
15613 if Ekind (Prev) = E_Incomplete_Type then
15614 Check_Discriminant_Conformance (N, Prev, Prev);
15615 else
15616 Check_Discriminant_Conformance (N, Prev, Id);
15617 end if;
15619 else
15620 Error_Msg_N
15621 ("missing discriminants in full type declaration", N);
15623 -- To avoid cascaded errors on subsequent use, share the
15624 -- discriminants of the partial view.
15626 Set_Discriminant_Specifications (N,
15627 Discriminant_Specifications (Prev_Par));
15628 end if;
15629 end if;
15631 -- A prior untagged partial view can have an associated class-wide
15632 -- type due to use of the class attribute, and in this case the full
15633 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15634 -- of incomplete tagged declarations, but we check for it.
15636 if Is_Type (Prev)
15637 and then (Is_Tagged_Type (Prev)
15638 or else Present (Class_Wide_Type (Prev)))
15639 then
15640 -- Ada 2012 (AI05-0162): A private type may be the completion of
15641 -- an incomplete type
15643 if Ada_Version >= Ada_2012
15644 and then Is_Incomplete_Type (Prev)
15645 and then Nkind_In (N, N_Private_Type_Declaration,
15646 N_Private_Extension_Declaration)
15647 then
15648 -- No need to check private extensions since they are tagged
15650 if Nkind (N) = N_Private_Type_Declaration
15651 and then not Tagged_Present (N)
15652 then
15653 Tag_Mismatch;
15654 end if;
15656 -- The full declaration is either a tagged type (including
15657 -- a synchronized type that implements interfaces) or a
15658 -- type extension, otherwise this is an error.
15660 elsif Nkind_In (N, N_Task_Type_Declaration,
15661 N_Protected_Type_Declaration)
15662 then
15663 if No (Interface_List (N))
15664 and then not Error_Posted (N)
15665 then
15666 Tag_Mismatch;
15667 end if;
15669 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15671 -- Indicate that the previous declaration (tagged incomplete
15672 -- or private declaration) requires the same on the full one.
15674 if not Tagged_Present (Type_Definition (N)) then
15675 Tag_Mismatch;
15676 Set_Is_Tagged_Type (Id);
15677 end if;
15679 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15680 if No (Record_Extension_Part (Type_Definition (N))) then
15681 Error_Msg_NE
15682 ("full declaration of } must be a record extension",
15683 Prev, Id);
15685 -- Set some attributes to produce a usable full view
15687 Set_Is_Tagged_Type (Id);
15688 end if;
15690 else
15691 Tag_Mismatch;
15692 end if;
15693 end if;
15695 if Present (Prev)
15696 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15697 and then Present (Premature_Use (Parent (Prev)))
15698 then
15699 Error_Msg_Sloc := Sloc (N);
15700 Error_Msg_N
15701 ("\full declaration #", Premature_Use (Parent (Prev)));
15702 end if;
15704 return New_Id;
15705 end if;
15706 end Find_Type_Name;
15708 -------------------------
15709 -- Find_Type_Of_Object --
15710 -------------------------
15712 function Find_Type_Of_Object
15713 (Obj_Def : Node_Id;
15714 Related_Nod : Node_Id) return Entity_Id
15716 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15717 P : Node_Id := Parent (Obj_Def);
15718 T : Entity_Id;
15719 Nam : Name_Id;
15721 begin
15722 -- If the parent is a component_definition node we climb to the
15723 -- component_declaration node
15725 if Nkind (P) = N_Component_Definition then
15726 P := Parent (P);
15727 end if;
15729 -- Case of an anonymous array subtype
15731 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15732 N_Unconstrained_Array_Definition)
15733 then
15734 T := Empty;
15735 Array_Type_Declaration (T, Obj_Def);
15737 -- Create an explicit subtype whenever possible
15739 elsif Nkind (P) /= N_Component_Declaration
15740 and then Def_Kind = N_Subtype_Indication
15741 then
15742 -- Base name of subtype on object name, which will be unique in
15743 -- the current scope.
15745 -- If this is a duplicate declaration, return base type, to avoid
15746 -- generating duplicate anonymous types.
15748 if Error_Posted (P) then
15749 Analyze (Subtype_Mark (Obj_Def));
15750 return Entity (Subtype_Mark (Obj_Def));
15751 end if;
15753 Nam :=
15754 New_External_Name
15755 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15757 T := Make_Defining_Identifier (Sloc (P), Nam);
15759 Insert_Action (Obj_Def,
15760 Make_Subtype_Declaration (Sloc (P),
15761 Defining_Identifier => T,
15762 Subtype_Indication => Relocate_Node (Obj_Def)));
15764 -- This subtype may need freezing, and this will not be done
15765 -- automatically if the object declaration is not in declarative
15766 -- part. Since this is an object declaration, the type cannot always
15767 -- be frozen here. Deferred constants do not freeze their type
15768 -- (which often enough will be private).
15770 if Nkind (P) = N_Object_Declaration
15771 and then Constant_Present (P)
15772 and then No (Expression (P))
15773 then
15774 null;
15775 else
15776 Insert_Actions (Obj_Def, Freeze_Entity (T, P));
15777 end if;
15779 -- Ada 2005 AI-406: the object definition in an object declaration
15780 -- can be an access definition.
15782 elsif Def_Kind = N_Access_Definition then
15783 T := Access_Definition (Related_Nod, Obj_Def);
15785 Set_Is_Local_Anonymous_Access
15787 V => (Ada_Version < Ada_2012)
15788 or else (Nkind (P) /= N_Object_Declaration)
15789 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15791 -- Otherwise, the object definition is just a subtype_mark
15793 else
15794 T := Process_Subtype (Obj_Def, Related_Nod);
15796 -- If expansion is disabled an object definition that is an aggregate
15797 -- will not get expanded and may lead to scoping problems in the back
15798 -- end, if the object is referenced in an inner scope. In that case
15799 -- create an itype reference for the object definition now. This
15800 -- may be redundant in some cases, but harmless.
15802 if Is_Itype (T)
15803 and then Nkind (Related_Nod) = N_Object_Declaration
15804 and then ASIS_Mode
15805 then
15806 Build_Itype_Reference (T, Related_Nod);
15807 end if;
15808 end if;
15810 return T;
15811 end Find_Type_Of_Object;
15813 --------------------------------
15814 -- Find_Type_Of_Subtype_Indic --
15815 --------------------------------
15817 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15818 Typ : Entity_Id;
15820 begin
15821 -- Case of subtype mark with a constraint
15823 if Nkind (S) = N_Subtype_Indication then
15824 Find_Type (Subtype_Mark (S));
15825 Typ := Entity (Subtype_Mark (S));
15827 if not
15828 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15829 then
15830 Error_Msg_N
15831 ("incorrect constraint for this kind of type", Constraint (S));
15832 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15833 end if;
15835 -- Otherwise we have a subtype mark without a constraint
15837 elsif Error_Posted (S) then
15838 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15839 return Any_Type;
15841 else
15842 Find_Type (S);
15843 Typ := Entity (S);
15844 end if;
15846 -- Check No_Wide_Characters restriction
15848 Check_Wide_Character_Restriction (Typ, S);
15850 return Typ;
15851 end Find_Type_Of_Subtype_Indic;
15853 -------------------------------------
15854 -- Floating_Point_Type_Declaration --
15855 -------------------------------------
15857 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15858 Digs : constant Node_Id := Digits_Expression (Def);
15859 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15860 Digs_Val : Uint;
15861 Base_Typ : Entity_Id;
15862 Implicit_Base : Entity_Id;
15863 Bound : Node_Id;
15865 function Can_Derive_From (E : Entity_Id) return Boolean;
15866 -- Find if given digits value, and possibly a specified range, allows
15867 -- derivation from specified type
15869 function Find_Base_Type return Entity_Id;
15870 -- Find a predefined base type that Def can derive from, or generate
15871 -- an error and substitute Long_Long_Float if none exists.
15873 ---------------------
15874 -- Can_Derive_From --
15875 ---------------------
15877 function Can_Derive_From (E : Entity_Id) return Boolean is
15878 Spec : constant Entity_Id := Real_Range_Specification (Def);
15880 begin
15881 -- Check specified "digits" constraint
15883 if Digs_Val > Digits_Value (E) then
15884 return False;
15885 end if;
15887 -- Avoid types not matching pragma Float_Representation, if present
15889 if (Opt.Float_Format = 'I' and then Float_Rep (E) /= IEEE_Binary)
15890 or else
15891 (Opt.Float_Format = 'V' and then Float_Rep (E) /= VAX_Native)
15892 then
15893 return False;
15894 end if;
15896 -- Check for matching range, if specified
15898 if Present (Spec) then
15899 if Expr_Value_R (Type_Low_Bound (E)) >
15900 Expr_Value_R (Low_Bound (Spec))
15901 then
15902 return False;
15903 end if;
15905 if Expr_Value_R (Type_High_Bound (E)) <
15906 Expr_Value_R (High_Bound (Spec))
15907 then
15908 return False;
15909 end if;
15910 end if;
15912 return True;
15913 end Can_Derive_From;
15915 --------------------
15916 -- Find_Base_Type --
15917 --------------------
15919 function Find_Base_Type return Entity_Id is
15920 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
15922 begin
15923 -- Iterate over the predefined types in order, returning the first
15924 -- one that Def can derive from.
15926 while Present (Choice) loop
15927 if Can_Derive_From (Node (Choice)) then
15928 return Node (Choice);
15929 end if;
15931 Next_Elmt (Choice);
15932 end loop;
15934 -- If we can't derive from any existing type, use Long_Long_Float
15935 -- and give appropriate message explaining the problem.
15937 if Digs_Val > Max_Digs_Val then
15938 -- It might be the case that there is a type with the requested
15939 -- range, just not the combination of digits and range.
15941 Error_Msg_N
15942 ("no predefined type has requested range and precision",
15943 Real_Range_Specification (Def));
15945 else
15946 Error_Msg_N
15947 ("range too large for any predefined type",
15948 Real_Range_Specification (Def));
15949 end if;
15951 return Standard_Long_Long_Float;
15952 end Find_Base_Type;
15954 -- Start of processing for Floating_Point_Type_Declaration
15956 begin
15957 Check_Restriction (No_Floating_Point, Def);
15959 -- Create an implicit base type
15961 Implicit_Base :=
15962 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
15964 -- Analyze and verify digits value
15966 Analyze_And_Resolve (Digs, Any_Integer);
15967 Check_Digits_Expression (Digs);
15968 Digs_Val := Expr_Value (Digs);
15970 -- Process possible range spec and find correct type to derive from
15972 Process_Real_Range_Specification (Def);
15974 -- Check that requested number of digits is not too high.
15976 if Digs_Val > Max_Digs_Val then
15977 -- The check for Max_Base_Digits may be somewhat expensive, as it
15978 -- requires reading System, so only do it when necessary.
15980 declare
15981 Max_Base_Digits : constant Uint :=
15982 Expr_Value
15983 (Expression
15984 (Parent (RTE (RE_Max_Base_Digits))));
15986 begin
15987 if Digs_Val > Max_Base_Digits then
15988 Error_Msg_Uint_1 := Max_Base_Digits;
15989 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
15991 elsif No (Real_Range_Specification (Def)) then
15992 Error_Msg_Uint_1 := Max_Digs_Val;
15993 Error_Msg_N ("types with more than ^ digits need range spec "
15994 & "(RM 3.5.7(6))", Digs);
15995 end if;
15996 end;
15997 end if;
15999 -- Find a suitable type to derive from or complain and use a substitute
16001 Base_Typ := Find_Base_Type;
16003 -- If there are bounds given in the declaration use them as the bounds
16004 -- of the type, otherwise use the bounds of the predefined base type
16005 -- that was chosen based on the Digits value.
16007 if Present (Real_Range_Specification (Def)) then
16008 Set_Scalar_Range (T, Real_Range_Specification (Def));
16009 Set_Is_Constrained (T);
16011 -- The bounds of this range must be converted to machine numbers
16012 -- in accordance with RM 4.9(38).
16014 Bound := Type_Low_Bound (T);
16016 if Nkind (Bound) = N_Real_Literal then
16017 Set_Realval
16018 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16019 Set_Is_Machine_Number (Bound);
16020 end if;
16022 Bound := Type_High_Bound (T);
16024 if Nkind (Bound) = N_Real_Literal then
16025 Set_Realval
16026 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16027 Set_Is_Machine_Number (Bound);
16028 end if;
16030 else
16031 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16032 end if;
16034 -- Complete definition of implicit base and declared first subtype
16036 Set_Etype (Implicit_Base, Base_Typ);
16038 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16039 Set_Size_Info (Implicit_Base, (Base_Typ));
16040 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16041 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16042 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16043 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16045 Set_Ekind (T, E_Floating_Point_Subtype);
16046 Set_Etype (T, Implicit_Base);
16048 Set_Size_Info (T, (Implicit_Base));
16049 Set_RM_Size (T, RM_Size (Implicit_Base));
16050 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16051 Set_Digits_Value (T, Digs_Val);
16052 end Floating_Point_Type_Declaration;
16054 ----------------------------
16055 -- Get_Discriminant_Value --
16056 ----------------------------
16058 -- This is the situation:
16060 -- There is a non-derived type
16062 -- type T0 (Dx, Dy, Dz...)
16064 -- There are zero or more levels of derivation, with each derivation
16065 -- either purely inheriting the discriminants, or defining its own.
16067 -- type Ti is new Ti-1
16068 -- or
16069 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16070 -- or
16071 -- subtype Ti is ...
16073 -- The subtype issue is avoided by the use of Original_Record_Component,
16074 -- and the fact that derived subtypes also derive the constraints.
16076 -- This chain leads back from
16078 -- Typ_For_Constraint
16080 -- Typ_For_Constraint has discriminants, and the value for each
16081 -- discriminant is given by its corresponding Elmt of Constraints.
16083 -- Discriminant is some discriminant in this hierarchy
16085 -- We need to return its value
16087 -- We do this by recursively searching each level, and looking for
16088 -- Discriminant. Once we get to the bottom, we start backing up
16089 -- returning the value for it which may in turn be a discriminant
16090 -- further up, so on the backup we continue the substitution.
16092 function Get_Discriminant_Value
16093 (Discriminant : Entity_Id;
16094 Typ_For_Constraint : Entity_Id;
16095 Constraint : Elist_Id) return Node_Id
16097 function Root_Corresponding_Discriminant
16098 (Discr : Entity_Id) return Entity_Id;
16099 -- Given a discriminant, traverse the chain of inherited discriminants
16100 -- and return the topmost discriminant.
16102 function Search_Derivation_Levels
16103 (Ti : Entity_Id;
16104 Discrim_Values : Elist_Id;
16105 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16106 -- This is the routine that performs the recursive search of levels
16107 -- as described above.
16109 -------------------------------------
16110 -- Root_Corresponding_Discriminant --
16111 -------------------------------------
16113 function Root_Corresponding_Discriminant
16114 (Discr : Entity_Id) return Entity_Id
16116 D : Entity_Id;
16118 begin
16119 D := Discr;
16120 while Present (Corresponding_Discriminant (D)) loop
16121 D := Corresponding_Discriminant (D);
16122 end loop;
16124 return D;
16125 end Root_Corresponding_Discriminant;
16127 ------------------------------
16128 -- Search_Derivation_Levels --
16129 ------------------------------
16131 function Search_Derivation_Levels
16132 (Ti : Entity_Id;
16133 Discrim_Values : Elist_Id;
16134 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16136 Assoc : Elmt_Id;
16137 Disc : Entity_Id;
16138 Result : Node_Or_Entity_Id;
16139 Result_Entity : Node_Id;
16141 begin
16142 -- If inappropriate type, return Error, this happens only in
16143 -- cascaded error situations, and we want to avoid a blow up.
16145 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16146 return Error;
16147 end if;
16149 -- Look deeper if possible. Use Stored_Constraints only for
16150 -- untagged types. For tagged types use the given constraint.
16151 -- This asymmetry needs explanation???
16153 if not Stored_Discrim_Values
16154 and then Present (Stored_Constraint (Ti))
16155 and then not Is_Tagged_Type (Ti)
16156 then
16157 Result :=
16158 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16159 else
16160 declare
16161 Td : constant Entity_Id := Etype (Ti);
16163 begin
16164 if Td = Ti then
16165 Result := Discriminant;
16167 else
16168 if Present (Stored_Constraint (Ti)) then
16169 Result :=
16170 Search_Derivation_Levels
16171 (Td, Stored_Constraint (Ti), True);
16172 else
16173 Result :=
16174 Search_Derivation_Levels
16175 (Td, Discrim_Values, Stored_Discrim_Values);
16176 end if;
16177 end if;
16178 end;
16179 end if;
16181 -- Extra underlying places to search, if not found above. For
16182 -- concurrent types, the relevant discriminant appears in the
16183 -- corresponding record. For a type derived from a private type
16184 -- without discriminant, the full view inherits the discriminants
16185 -- of the full view of the parent.
16187 if Result = Discriminant then
16188 if Is_Concurrent_Type (Ti)
16189 and then Present (Corresponding_Record_Type (Ti))
16190 then
16191 Result :=
16192 Search_Derivation_Levels (
16193 Corresponding_Record_Type (Ti),
16194 Discrim_Values,
16195 Stored_Discrim_Values);
16197 elsif Is_Private_Type (Ti)
16198 and then not Has_Discriminants (Ti)
16199 and then Present (Full_View (Ti))
16200 and then Etype (Full_View (Ti)) /= Ti
16201 then
16202 Result :=
16203 Search_Derivation_Levels (
16204 Full_View (Ti),
16205 Discrim_Values,
16206 Stored_Discrim_Values);
16207 end if;
16208 end if;
16210 -- If Result is not a (reference to a) discriminant, return it,
16211 -- otherwise set Result_Entity to the discriminant.
16213 if Nkind (Result) = N_Defining_Identifier then
16214 pragma Assert (Result = Discriminant);
16215 Result_Entity := Result;
16217 else
16218 if not Denotes_Discriminant (Result) then
16219 return Result;
16220 end if;
16222 Result_Entity := Entity (Result);
16223 end if;
16225 -- See if this level of derivation actually has discriminants
16226 -- because tagged derivations can add them, hence the lower
16227 -- levels need not have any.
16229 if not Has_Discriminants (Ti) then
16230 return Result;
16231 end if;
16233 -- Scan Ti's discriminants for Result_Entity,
16234 -- and return its corresponding value, if any.
16236 Result_Entity := Original_Record_Component (Result_Entity);
16238 Assoc := First_Elmt (Discrim_Values);
16240 if Stored_Discrim_Values then
16241 Disc := First_Stored_Discriminant (Ti);
16242 else
16243 Disc := First_Discriminant (Ti);
16244 end if;
16246 while Present (Disc) loop
16247 pragma Assert (Present (Assoc));
16249 if Original_Record_Component (Disc) = Result_Entity then
16250 return Node (Assoc);
16251 end if;
16253 Next_Elmt (Assoc);
16255 if Stored_Discrim_Values then
16256 Next_Stored_Discriminant (Disc);
16257 else
16258 Next_Discriminant (Disc);
16259 end if;
16260 end loop;
16262 -- Could not find it
16264 return Result;
16265 end Search_Derivation_Levels;
16267 -- Local Variables
16269 Result : Node_Or_Entity_Id;
16271 -- Start of processing for Get_Discriminant_Value
16273 begin
16274 -- ??? This routine is a gigantic mess and will be deleted. For the
16275 -- time being just test for the trivial case before calling recurse.
16277 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16278 declare
16279 D : Entity_Id;
16280 E : Elmt_Id;
16282 begin
16283 D := First_Discriminant (Typ_For_Constraint);
16284 E := First_Elmt (Constraint);
16285 while Present (D) loop
16286 if Chars (D) = Chars (Discriminant) then
16287 return Node (E);
16288 end if;
16290 Next_Discriminant (D);
16291 Next_Elmt (E);
16292 end loop;
16293 end;
16294 end if;
16296 Result := Search_Derivation_Levels
16297 (Typ_For_Constraint, Constraint, False);
16299 -- ??? hack to disappear when this routine is gone
16301 if Nkind (Result) = N_Defining_Identifier then
16302 declare
16303 D : Entity_Id;
16304 E : Elmt_Id;
16306 begin
16307 D := First_Discriminant (Typ_For_Constraint);
16308 E := First_Elmt (Constraint);
16309 while Present (D) loop
16310 if Root_Corresponding_Discriminant (D) = Discriminant then
16311 return Node (E);
16312 end if;
16314 Next_Discriminant (D);
16315 Next_Elmt (E);
16316 end loop;
16317 end;
16318 end if;
16320 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16321 return Result;
16322 end Get_Discriminant_Value;
16324 --------------------------
16325 -- Has_Range_Constraint --
16326 --------------------------
16328 function Has_Range_Constraint (N : Node_Id) return Boolean is
16329 C : constant Node_Id := Constraint (N);
16331 begin
16332 if Nkind (C) = N_Range_Constraint then
16333 return True;
16335 elsif Nkind (C) = N_Digits_Constraint then
16336 return
16337 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16338 or else
16339 Present (Range_Constraint (C));
16341 elsif Nkind (C) = N_Delta_Constraint then
16342 return Present (Range_Constraint (C));
16344 else
16345 return False;
16346 end if;
16347 end Has_Range_Constraint;
16349 ------------------------
16350 -- Inherit_Components --
16351 ------------------------
16353 function Inherit_Components
16354 (N : Node_Id;
16355 Parent_Base : Entity_Id;
16356 Derived_Base : Entity_Id;
16357 Is_Tagged : Boolean;
16358 Inherit_Discr : Boolean;
16359 Discs : Elist_Id) return Elist_Id
16361 Assoc_List : constant Elist_Id := New_Elmt_List;
16363 procedure Inherit_Component
16364 (Old_C : Entity_Id;
16365 Plain_Discrim : Boolean := False;
16366 Stored_Discrim : Boolean := False);
16367 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16368 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16369 -- True, Old_C is a stored discriminant. If they are both false then
16370 -- Old_C is a regular component.
16372 -----------------------
16373 -- Inherit_Component --
16374 -----------------------
16376 procedure Inherit_Component
16377 (Old_C : Entity_Id;
16378 Plain_Discrim : Boolean := False;
16379 Stored_Discrim : Boolean := False)
16381 procedure Set_Anonymous_Type (Id : Entity_Id);
16382 -- Id denotes the entity of an access discriminant or anonymous
16383 -- access component. Set the type of Id to either the same type of
16384 -- Old_C or create a new one depending on whether the parent and
16385 -- the child types are in the same scope.
16387 ------------------------
16388 -- Set_Anonymous_Type --
16389 ------------------------
16391 procedure Set_Anonymous_Type (Id : Entity_Id) is
16392 Old_Typ : constant Entity_Id := Etype (Old_C);
16394 begin
16395 if Scope (Parent_Base) = Scope (Derived_Base) then
16396 Set_Etype (Id, Old_Typ);
16398 -- The parent and the derived type are in two different scopes.
16399 -- Reuse the type of the original discriminant / component by
16400 -- copying it in order to preserve all attributes.
16402 else
16403 declare
16404 Typ : constant Entity_Id := New_Copy (Old_Typ);
16406 begin
16407 Set_Etype (Id, Typ);
16409 -- Since we do not generate component declarations for
16410 -- inherited components, associate the itype with the
16411 -- derived type.
16413 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16414 Set_Scope (Typ, Derived_Base);
16415 end;
16416 end if;
16417 end Set_Anonymous_Type;
16419 -- Local variables and constants
16421 New_C : constant Entity_Id := New_Copy (Old_C);
16423 Corr_Discrim : Entity_Id;
16424 Discrim : Entity_Id;
16426 -- Start of processing for Inherit_Component
16428 begin
16429 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16431 Set_Parent (New_C, Parent (Old_C));
16433 -- Regular discriminants and components must be inserted in the scope
16434 -- of the Derived_Base. Do it here.
16436 if not Stored_Discrim then
16437 Enter_Name (New_C);
16438 end if;
16440 -- For tagged types the Original_Record_Component must point to
16441 -- whatever this field was pointing to in the parent type. This has
16442 -- already been achieved by the call to New_Copy above.
16444 if not Is_Tagged then
16445 Set_Original_Record_Component (New_C, New_C);
16446 end if;
16448 -- Set the proper type of an access discriminant
16450 if Ekind (New_C) = E_Discriminant
16451 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16452 then
16453 Set_Anonymous_Type (New_C);
16454 end if;
16456 -- If we have inherited a component then see if its Etype contains
16457 -- references to Parent_Base discriminants. In this case, replace
16458 -- these references with the constraints given in Discs. We do not
16459 -- do this for the partial view of private types because this is
16460 -- not needed (only the components of the full view will be used
16461 -- for code generation) and cause problem. We also avoid this
16462 -- transformation in some error situations.
16464 if Ekind (New_C) = E_Component then
16466 -- Set the proper type of an anonymous access component
16468 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16469 Set_Anonymous_Type (New_C);
16471 elsif (Is_Private_Type (Derived_Base)
16472 and then not Is_Generic_Type (Derived_Base))
16473 or else (Is_Empty_Elmt_List (Discs)
16474 and then not Expander_Active)
16475 then
16476 Set_Etype (New_C, Etype (Old_C));
16478 else
16479 -- The current component introduces a circularity of the
16480 -- following kind:
16482 -- limited with Pack_2;
16483 -- package Pack_1 is
16484 -- type T_1 is tagged record
16485 -- Comp : access Pack_2.T_2;
16486 -- ...
16487 -- end record;
16488 -- end Pack_1;
16490 -- with Pack_1;
16491 -- package Pack_2 is
16492 -- type T_2 is new Pack_1.T_1 with ...;
16493 -- end Pack_2;
16495 Set_Etype
16496 (New_C,
16497 Constrain_Component_Type
16498 (Old_C, Derived_Base, N, Parent_Base, Discs));
16499 end if;
16500 end if;
16502 -- In derived tagged types it is illegal to reference a non
16503 -- discriminant component in the parent type. To catch this, mark
16504 -- these components with an Ekind of E_Void. This will be reset in
16505 -- Record_Type_Definition after processing the record extension of
16506 -- the derived type.
16508 -- If the declaration is a private extension, there is no further
16509 -- record extension to process, and the components retain their
16510 -- current kind, because they are visible at this point.
16512 if Is_Tagged and then Ekind (New_C) = E_Component
16513 and then Nkind (N) /= N_Private_Extension_Declaration
16514 then
16515 Set_Ekind (New_C, E_Void);
16516 end if;
16518 if Plain_Discrim then
16519 Set_Corresponding_Discriminant (New_C, Old_C);
16520 Build_Discriminal (New_C);
16522 -- If we are explicitly inheriting a stored discriminant it will be
16523 -- completely hidden.
16525 elsif Stored_Discrim then
16526 Set_Corresponding_Discriminant (New_C, Empty);
16527 Set_Discriminal (New_C, Empty);
16528 Set_Is_Completely_Hidden (New_C);
16530 -- Set the Original_Record_Component of each discriminant in the
16531 -- derived base to point to the corresponding stored that we just
16532 -- created.
16534 Discrim := First_Discriminant (Derived_Base);
16535 while Present (Discrim) loop
16536 Corr_Discrim := Corresponding_Discriminant (Discrim);
16538 -- Corr_Discrim could be missing in an error situation
16540 if Present (Corr_Discrim)
16541 and then Original_Record_Component (Corr_Discrim) = Old_C
16542 then
16543 Set_Original_Record_Component (Discrim, New_C);
16544 end if;
16546 Next_Discriminant (Discrim);
16547 end loop;
16549 Append_Entity (New_C, Derived_Base);
16550 end if;
16552 if not Is_Tagged then
16553 Append_Elmt (Old_C, Assoc_List);
16554 Append_Elmt (New_C, Assoc_List);
16555 end if;
16556 end Inherit_Component;
16558 -- Variables local to Inherit_Component
16560 Loc : constant Source_Ptr := Sloc (N);
16562 Parent_Discrim : Entity_Id;
16563 Stored_Discrim : Entity_Id;
16564 D : Entity_Id;
16565 Component : Entity_Id;
16567 -- Start of processing for Inherit_Components
16569 begin
16570 if not Is_Tagged then
16571 Append_Elmt (Parent_Base, Assoc_List);
16572 Append_Elmt (Derived_Base, Assoc_List);
16573 end if;
16575 -- Inherit parent discriminants if needed
16577 if Inherit_Discr then
16578 Parent_Discrim := First_Discriminant (Parent_Base);
16579 while Present (Parent_Discrim) loop
16580 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16581 Next_Discriminant (Parent_Discrim);
16582 end loop;
16583 end if;
16585 -- Create explicit stored discrims for untagged types when necessary
16587 if not Has_Unknown_Discriminants (Derived_Base)
16588 and then Has_Discriminants (Parent_Base)
16589 and then not Is_Tagged
16590 and then
16591 (not Inherit_Discr
16592 or else First_Discriminant (Parent_Base) /=
16593 First_Stored_Discriminant (Parent_Base))
16594 then
16595 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16596 while Present (Stored_Discrim) loop
16597 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16598 Next_Stored_Discriminant (Stored_Discrim);
16599 end loop;
16600 end if;
16602 -- See if we can apply the second transformation for derived types, as
16603 -- explained in point 6. in the comments above Build_Derived_Record_Type
16604 -- This is achieved by appending Derived_Base discriminants into Discs,
16605 -- which has the side effect of returning a non empty Discs list to the
16606 -- caller of Inherit_Components, which is what we want. This must be
16607 -- done for private derived types if there are explicit stored
16608 -- discriminants, to ensure that we can retrieve the values of the
16609 -- constraints provided in the ancestors.
16611 if Inherit_Discr
16612 and then Is_Empty_Elmt_List (Discs)
16613 and then Present (First_Discriminant (Derived_Base))
16614 and then
16615 (not Is_Private_Type (Derived_Base)
16616 or else Is_Completely_Hidden
16617 (First_Stored_Discriminant (Derived_Base))
16618 or else Is_Generic_Type (Derived_Base))
16619 then
16620 D := First_Discriminant (Derived_Base);
16621 while Present (D) loop
16622 Append_Elmt (New_Reference_To (D, Loc), Discs);
16623 Next_Discriminant (D);
16624 end loop;
16625 end if;
16627 -- Finally, inherit non-discriminant components unless they are not
16628 -- visible because defined or inherited from the full view of the
16629 -- parent. Don't inherit the _parent field of the parent type.
16631 Component := First_Entity (Parent_Base);
16632 while Present (Component) loop
16634 -- Ada 2005 (AI-251): Do not inherit components associated with
16635 -- secondary tags of the parent.
16637 if Ekind (Component) = E_Component
16638 and then Present (Related_Type (Component))
16639 then
16640 null;
16642 elsif Ekind (Component) /= E_Component
16643 or else Chars (Component) = Name_uParent
16644 then
16645 null;
16647 -- If the derived type is within the parent type's declarative
16648 -- region, then the components can still be inherited even though
16649 -- they aren't visible at this point. This can occur for cases
16650 -- such as within public child units where the components must
16651 -- become visible upon entering the child unit's private part.
16653 elsif not Is_Visible_Component (Component)
16654 and then not In_Open_Scopes (Scope (Parent_Base))
16655 then
16656 null;
16658 elsif Ekind_In (Derived_Base, E_Private_Type,
16659 E_Limited_Private_Type)
16660 then
16661 null;
16663 else
16664 Inherit_Component (Component);
16665 end if;
16667 Next_Entity (Component);
16668 end loop;
16670 -- For tagged derived types, inherited discriminants cannot be used in
16671 -- component declarations of the record extension part. To achieve this
16672 -- we mark the inherited discriminants as not visible.
16674 if Is_Tagged and then Inherit_Discr then
16675 D := First_Discriminant (Derived_Base);
16676 while Present (D) loop
16677 Set_Is_Immediately_Visible (D, False);
16678 Next_Discriminant (D);
16679 end loop;
16680 end if;
16682 return Assoc_List;
16683 end Inherit_Components;
16685 -----------------------
16686 -- Is_Null_Extension --
16687 -----------------------
16689 function Is_Null_Extension (T : Entity_Id) return Boolean is
16690 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16691 Comp_List : Node_Id;
16692 Comp : Node_Id;
16694 begin
16695 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16696 or else not Is_Tagged_Type (T)
16697 or else Nkind (Type_Definition (Type_Decl)) /=
16698 N_Derived_Type_Definition
16699 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16700 then
16701 return False;
16702 end if;
16704 Comp_List :=
16705 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16707 if Present (Discriminant_Specifications (Type_Decl)) then
16708 return False;
16710 elsif Present (Comp_List)
16711 and then Is_Non_Empty_List (Component_Items (Comp_List))
16712 then
16713 Comp := First (Component_Items (Comp_List));
16715 -- Only user-defined components are relevant. The component list
16716 -- may also contain a parent component and internal components
16717 -- corresponding to secondary tags, but these do not determine
16718 -- whether this is a null extension.
16720 while Present (Comp) loop
16721 if Comes_From_Source (Comp) then
16722 return False;
16723 end if;
16725 Next (Comp);
16726 end loop;
16728 return True;
16729 else
16730 return True;
16731 end if;
16732 end Is_Null_Extension;
16734 ------------------------------
16735 -- Is_Valid_Constraint_Kind --
16736 ------------------------------
16738 function Is_Valid_Constraint_Kind
16739 (T_Kind : Type_Kind;
16740 Constraint_Kind : Node_Kind) return Boolean
16742 begin
16743 case T_Kind is
16744 when Enumeration_Kind |
16745 Integer_Kind =>
16746 return Constraint_Kind = N_Range_Constraint;
16748 when Decimal_Fixed_Point_Kind =>
16749 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16750 N_Range_Constraint);
16752 when Ordinary_Fixed_Point_Kind =>
16753 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16754 N_Range_Constraint);
16756 when Float_Kind =>
16757 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16758 N_Range_Constraint);
16760 when Access_Kind |
16761 Array_Kind |
16762 E_Record_Type |
16763 E_Record_Subtype |
16764 Class_Wide_Kind |
16765 E_Incomplete_Type |
16766 Private_Kind |
16767 Concurrent_Kind =>
16768 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16770 when others =>
16771 return True; -- Error will be detected later
16772 end case;
16773 end Is_Valid_Constraint_Kind;
16775 --------------------------
16776 -- Is_Visible_Component --
16777 --------------------------
16779 function Is_Visible_Component
16780 (C : Entity_Id;
16781 N : Node_Id := Empty) return Boolean
16783 Original_Comp : Entity_Id := Empty;
16784 Original_Scope : Entity_Id;
16785 Type_Scope : Entity_Id;
16787 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16788 -- Check whether parent type of inherited component is declared locally,
16789 -- possibly within a nested package or instance. The current scope is
16790 -- the derived record itself.
16792 -------------------
16793 -- Is_Local_Type --
16794 -------------------
16796 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16797 Scop : Entity_Id;
16799 begin
16800 Scop := Scope (Typ);
16801 while Present (Scop)
16802 and then Scop /= Standard_Standard
16803 loop
16804 if Scop = Scope (Current_Scope) then
16805 return True;
16806 end if;
16808 Scop := Scope (Scop);
16809 end loop;
16811 return False;
16812 end Is_Local_Type;
16814 -- Start of processing for Is_Visible_Component
16816 begin
16817 if Ekind_In (C, E_Component, E_Discriminant) then
16818 Original_Comp := Original_Record_Component (C);
16819 end if;
16821 if No (Original_Comp) then
16823 -- Premature usage, or previous error
16825 return False;
16827 else
16828 Original_Scope := Scope (Original_Comp);
16829 Type_Scope := Scope (Base_Type (Scope (C)));
16830 end if;
16832 -- For an untagged type derived from a private type, the only visible
16833 -- components are new discriminants. In an instance all components are
16834 -- visible (see Analyze_Selected_Component).
16836 if not Is_Tagged_Type (Original_Scope) then
16837 return not Has_Private_Ancestor (Original_Scope)
16838 or else In_Open_Scopes (Scope (Original_Scope))
16839 or else In_Instance
16840 or else (Ekind (Original_Comp) = E_Discriminant
16841 and then Original_Scope = Type_Scope);
16843 -- If it is _Parent or _Tag, there is no visibility issue
16845 elsif not Comes_From_Source (Original_Comp) then
16846 return True;
16848 -- Discriminants are visible unless the (private) type has unknown
16849 -- discriminants. If the discriminant reference is inserted for a
16850 -- discriminant check on a full view it is also visible.
16852 elsif Ekind (Original_Comp) = E_Discriminant
16853 and then
16854 (not Has_Unknown_Discriminants (Original_Scope)
16855 or else (Present (N)
16856 and then Nkind (N) = N_Selected_Component
16857 and then Nkind (Prefix (N)) = N_Type_Conversion
16858 and then not Comes_From_Source (Prefix (N))))
16859 then
16860 return True;
16862 -- In the body of an instantiation, no need to check for the visibility
16863 -- of a component.
16865 elsif In_Instance_Body then
16866 return True;
16868 -- If the component has been declared in an ancestor which is currently
16869 -- a private type, then it is not visible. The same applies if the
16870 -- component's containing type is not in an open scope and the original
16871 -- component's enclosing type is a visible full view of a private type
16872 -- (which can occur in cases where an attempt is being made to reference
16873 -- a component in a sibling package that is inherited from a visible
16874 -- component of a type in an ancestor package; the component in the
16875 -- sibling package should not be visible even though the component it
16876 -- inherited from is visible). This does not apply however in the case
16877 -- where the scope of the type is a private child unit, or when the
16878 -- parent comes from a local package in which the ancestor is currently
16879 -- visible. The latter suppression of visibility is needed for cases
16880 -- that are tested in B730006.
16882 elsif Is_Private_Type (Original_Scope)
16883 or else
16884 (not Is_Private_Descendant (Type_Scope)
16885 and then not In_Open_Scopes (Type_Scope)
16886 and then Has_Private_Declaration (Original_Scope))
16887 then
16888 -- If the type derives from an entity in a formal package, there
16889 -- are no additional visible components.
16891 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
16892 N_Formal_Package_Declaration
16893 then
16894 return False;
16896 -- if we are not in the private part of the current package, there
16897 -- are no additional visible components.
16899 elsif Ekind (Scope (Current_Scope)) = E_Package
16900 and then not In_Private_Part (Scope (Current_Scope))
16901 then
16902 return False;
16903 else
16904 return
16905 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
16906 and then In_Open_Scopes (Scope (Original_Scope))
16907 and then Is_Local_Type (Type_Scope);
16908 end if;
16910 -- There is another weird way in which a component may be invisible when
16911 -- the private and the full view are not derived from the same ancestor.
16912 -- Here is an example :
16914 -- type A1 is tagged record F1 : integer; end record;
16915 -- type A2 is new A1 with record F2 : integer; end record;
16916 -- type T is new A1 with private;
16917 -- private
16918 -- type T is new A2 with null record;
16920 -- In this case, the full view of T inherits F1 and F2 but the private
16921 -- view inherits only F1
16923 else
16924 declare
16925 Ancestor : Entity_Id := Scope (C);
16927 begin
16928 loop
16929 if Ancestor = Original_Scope then
16930 return True;
16931 elsif Ancestor = Etype (Ancestor) then
16932 return False;
16933 end if;
16935 Ancestor := Etype (Ancestor);
16936 end loop;
16937 end;
16938 end if;
16939 end Is_Visible_Component;
16941 --------------------------
16942 -- Make_Class_Wide_Type --
16943 --------------------------
16945 procedure Make_Class_Wide_Type (T : Entity_Id) is
16946 CW_Type : Entity_Id;
16947 CW_Name : Name_Id;
16948 Next_E : Entity_Id;
16950 begin
16951 if Present (Class_Wide_Type (T)) then
16953 -- The class-wide type is a partially decorated entity created for a
16954 -- unanalyzed tagged type referenced through a limited with clause.
16955 -- When the tagged type is analyzed, its class-wide type needs to be
16956 -- redecorated. Note that we reuse the entity created by Decorate_
16957 -- Tagged_Type in order to preserve all links.
16959 if Materialize_Entity (Class_Wide_Type (T)) then
16960 CW_Type := Class_Wide_Type (T);
16961 Set_Materialize_Entity (CW_Type, False);
16963 -- The class wide type can have been defined by the partial view, in
16964 -- which case everything is already done.
16966 else
16967 return;
16968 end if;
16970 -- Default case, we need to create a new class-wide type
16972 else
16973 CW_Type :=
16974 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
16975 end if;
16977 -- Inherit root type characteristics
16979 CW_Name := Chars (CW_Type);
16980 Next_E := Next_Entity (CW_Type);
16981 Copy_Node (T, CW_Type);
16982 Set_Comes_From_Source (CW_Type, False);
16983 Set_Chars (CW_Type, CW_Name);
16984 Set_Parent (CW_Type, Parent (T));
16985 Set_Next_Entity (CW_Type, Next_E);
16987 -- Ensure we have a new freeze node for the class-wide type. The partial
16988 -- view may have freeze action of its own, requiring a proper freeze
16989 -- node, and the same freeze node cannot be shared between the two
16990 -- types.
16992 Set_Has_Delayed_Freeze (CW_Type);
16993 Set_Freeze_Node (CW_Type, Empty);
16995 -- Customize the class-wide type: It has no prim. op., it cannot be
16996 -- abstract and its Etype points back to the specific root type.
16998 Set_Ekind (CW_Type, E_Class_Wide_Type);
16999 Set_Is_Tagged_Type (CW_Type, True);
17000 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17001 Set_Is_Abstract_Type (CW_Type, False);
17002 Set_Is_Constrained (CW_Type, False);
17003 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17005 if Ekind (T) = E_Class_Wide_Subtype then
17006 Set_Etype (CW_Type, Etype (Base_Type (T)));
17007 else
17008 Set_Etype (CW_Type, T);
17009 end if;
17011 -- If this is the class_wide type of a constrained subtype, it does
17012 -- not have discriminants.
17014 Set_Has_Discriminants (CW_Type,
17015 Has_Discriminants (T) and then not Is_Constrained (T));
17017 Set_Has_Unknown_Discriminants (CW_Type, True);
17018 Set_Class_Wide_Type (T, CW_Type);
17019 Set_Equivalent_Type (CW_Type, Empty);
17021 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17023 Set_Class_Wide_Type (CW_Type, CW_Type);
17024 end Make_Class_Wide_Type;
17026 ----------------
17027 -- Make_Index --
17028 ----------------
17030 procedure Make_Index
17031 (I : Node_Id;
17032 Related_Nod : Node_Id;
17033 Related_Id : Entity_Id := Empty;
17034 Suffix_Index : Nat := 1;
17035 In_Iter_Schm : Boolean := False)
17037 R : Node_Id;
17038 T : Entity_Id;
17039 Def_Id : Entity_Id := Empty;
17040 Found : Boolean := False;
17042 begin
17043 -- For a discrete range used in a constrained array definition and
17044 -- defined by a range, an implicit conversion to the predefined type
17045 -- INTEGER is assumed if each bound is either a numeric literal, a named
17046 -- number, or an attribute, and the type of both bounds (prior to the
17047 -- implicit conversion) is the type universal_integer. Otherwise, both
17048 -- bounds must be of the same discrete type, other than universal
17049 -- integer; this type must be determinable independently of the
17050 -- context, but using the fact that the type must be discrete and that
17051 -- both bounds must have the same type.
17053 -- Character literals also have a universal type in the absence of
17054 -- of additional context, and are resolved to Standard_Character.
17056 if Nkind (I) = N_Range then
17058 -- The index is given by a range constraint. The bounds are known
17059 -- to be of a consistent type.
17061 if not Is_Overloaded (I) then
17062 T := Etype (I);
17064 -- For universal bounds, choose the specific predefined type
17066 if T = Universal_Integer then
17067 T := Standard_Integer;
17069 elsif T = Any_Character then
17070 Ambiguous_Character (Low_Bound (I));
17072 T := Standard_Character;
17073 end if;
17075 -- The node may be overloaded because some user-defined operators
17076 -- are available, but if a universal interpretation exists it is
17077 -- also the selected one.
17079 elsif Universal_Interpretation (I) = Universal_Integer then
17080 T := Standard_Integer;
17082 else
17083 T := Any_Type;
17085 declare
17086 Ind : Interp_Index;
17087 It : Interp;
17089 begin
17090 Get_First_Interp (I, Ind, It);
17091 while Present (It.Typ) loop
17092 if Is_Discrete_Type (It.Typ) then
17094 if Found
17095 and then not Covers (It.Typ, T)
17096 and then not Covers (T, It.Typ)
17097 then
17098 Error_Msg_N ("ambiguous bounds in discrete range", I);
17099 exit;
17100 else
17101 T := It.Typ;
17102 Found := True;
17103 end if;
17104 end if;
17106 Get_Next_Interp (Ind, It);
17107 end loop;
17109 if T = Any_Type then
17110 Error_Msg_N ("discrete type required for range", I);
17111 Set_Etype (I, Any_Type);
17112 return;
17114 elsif T = Universal_Integer then
17115 T := Standard_Integer;
17116 end if;
17117 end;
17118 end if;
17120 if not Is_Discrete_Type (T) then
17121 Error_Msg_N ("discrete type required for range", I);
17122 Set_Etype (I, Any_Type);
17123 return;
17124 end if;
17126 if Nkind (Low_Bound (I)) = N_Attribute_Reference
17127 and then Attribute_Name (Low_Bound (I)) = Name_First
17128 and then Is_Entity_Name (Prefix (Low_Bound (I)))
17129 and then Is_Type (Entity (Prefix (Low_Bound (I))))
17130 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
17131 then
17132 -- The type of the index will be the type of the prefix, as long
17133 -- as the upper bound is 'Last of the same type.
17135 Def_Id := Entity (Prefix (Low_Bound (I)));
17137 if Nkind (High_Bound (I)) /= N_Attribute_Reference
17138 or else Attribute_Name (High_Bound (I)) /= Name_Last
17139 or else not Is_Entity_Name (Prefix (High_Bound (I)))
17140 or else Entity (Prefix (High_Bound (I))) /= Def_Id
17141 then
17142 Def_Id := Empty;
17143 end if;
17144 end if;
17146 R := I;
17147 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17149 elsif Nkind (I) = N_Subtype_Indication then
17151 -- The index is given by a subtype with a range constraint
17153 T := Base_Type (Entity (Subtype_Mark (I)));
17155 if not Is_Discrete_Type (T) then
17156 Error_Msg_N ("discrete type required for range", I);
17157 Set_Etype (I, Any_Type);
17158 return;
17159 end if;
17161 R := Range_Expression (Constraint (I));
17163 Resolve (R, T);
17164 Process_Range_Expr_In_Decl
17165 (R, Entity (Subtype_Mark (I)), In_Iter_Schm => In_Iter_Schm);
17167 elsif Nkind (I) = N_Attribute_Reference then
17169 -- The parser guarantees that the attribute is a RANGE attribute
17171 -- If the node denotes the range of a type mark, that is also the
17172 -- resulting type, and we do no need to create an Itype for it.
17174 if Is_Entity_Name (Prefix (I))
17175 and then Comes_From_Source (I)
17176 and then Is_Type (Entity (Prefix (I)))
17177 and then Is_Discrete_Type (Entity (Prefix (I)))
17178 then
17179 Def_Id := Entity (Prefix (I));
17180 end if;
17182 Analyze_And_Resolve (I);
17183 T := Etype (I);
17184 R := I;
17186 -- If none of the above, must be a subtype. We convert this to a
17187 -- range attribute reference because in the case of declared first
17188 -- named subtypes, the types in the range reference can be different
17189 -- from the type of the entity. A range attribute normalizes the
17190 -- reference and obtains the correct types for the bounds.
17192 -- This transformation is in the nature of an expansion, is only
17193 -- done if expansion is active. In particular, it is not done on
17194 -- formal generic types, because we need to retain the name of the
17195 -- original index for instantiation purposes.
17197 else
17198 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
17199 Error_Msg_N ("invalid subtype mark in discrete range ", I);
17200 Set_Etype (I, Any_Integer);
17201 return;
17203 else
17204 -- The type mark may be that of an incomplete type. It is only
17205 -- now that we can get the full view, previous analysis does
17206 -- not look specifically for a type mark.
17208 Set_Entity (I, Get_Full_View (Entity (I)));
17209 Set_Etype (I, Entity (I));
17210 Def_Id := Entity (I);
17212 if not Is_Discrete_Type (Def_Id) then
17213 Error_Msg_N ("discrete type required for index", I);
17214 Set_Etype (I, Any_Type);
17215 return;
17216 end if;
17217 end if;
17219 if Expander_Active then
17220 Rewrite (I,
17221 Make_Attribute_Reference (Sloc (I),
17222 Attribute_Name => Name_Range,
17223 Prefix => Relocate_Node (I)));
17225 -- The original was a subtype mark that does not freeze. This
17226 -- means that the rewritten version must not freeze either.
17228 Set_Must_Not_Freeze (I);
17229 Set_Must_Not_Freeze (Prefix (I));
17230 Analyze_And_Resolve (I);
17231 T := Etype (I);
17232 R := I;
17234 -- If expander is inactive, type is legal, nothing else to construct
17236 else
17237 return;
17238 end if;
17239 end if;
17241 if not Is_Discrete_Type (T) then
17242 Error_Msg_N ("discrete type required for range", I);
17243 Set_Etype (I, Any_Type);
17244 return;
17246 elsif T = Any_Type then
17247 Set_Etype (I, Any_Type);
17248 return;
17249 end if;
17251 -- We will now create the appropriate Itype to describe the range, but
17252 -- first a check. If we originally had a subtype, then we just label
17253 -- the range with this subtype. Not only is there no need to construct
17254 -- a new subtype, but it is wrong to do so for two reasons:
17256 -- 1. A legality concern, if we have a subtype, it must not freeze,
17257 -- and the Itype would cause freezing incorrectly
17259 -- 2. An efficiency concern, if we created an Itype, it would not be
17260 -- recognized as the same type for the purposes of eliminating
17261 -- checks in some circumstances.
17263 -- We signal this case by setting the subtype entity in Def_Id
17265 if No (Def_Id) then
17266 Def_Id :=
17267 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17268 Set_Etype (Def_Id, Base_Type (T));
17270 if Is_Signed_Integer_Type (T) then
17271 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17273 elsif Is_Modular_Integer_Type (T) then
17274 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17276 else
17277 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17278 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17279 Set_First_Literal (Def_Id, First_Literal (T));
17280 end if;
17282 Set_Size_Info (Def_Id, (T));
17283 Set_RM_Size (Def_Id, RM_Size (T));
17284 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17286 Set_Scalar_Range (Def_Id, R);
17287 Conditional_Delay (Def_Id, T);
17289 -- In the subtype indication case, if the immediate parent of the
17290 -- new subtype is non-static, then the subtype we create is non-
17291 -- static, even if its bounds are static.
17293 if Nkind (I) = N_Subtype_Indication
17294 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
17295 then
17296 Set_Is_Non_Static_Subtype (Def_Id);
17297 end if;
17298 end if;
17300 -- Final step is to label the index with this constructed type
17302 Set_Etype (I, Def_Id);
17303 end Make_Index;
17305 ------------------------------
17306 -- Modular_Type_Declaration --
17307 ------------------------------
17309 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17310 Mod_Expr : constant Node_Id := Expression (Def);
17311 M_Val : Uint;
17313 procedure Set_Modular_Size (Bits : Int);
17314 -- Sets RM_Size to Bits, and Esize to normal word size above this
17316 ----------------------
17317 -- Set_Modular_Size --
17318 ----------------------
17320 procedure Set_Modular_Size (Bits : Int) is
17321 begin
17322 Set_RM_Size (T, UI_From_Int (Bits));
17324 if Bits <= 8 then
17325 Init_Esize (T, 8);
17327 elsif Bits <= 16 then
17328 Init_Esize (T, 16);
17330 elsif Bits <= 32 then
17331 Init_Esize (T, 32);
17333 else
17334 Init_Esize (T, System_Max_Binary_Modulus_Power);
17335 end if;
17337 if not Non_Binary_Modulus (T)
17338 and then Esize (T) = RM_Size (T)
17339 then
17340 Set_Is_Known_Valid (T);
17341 end if;
17342 end Set_Modular_Size;
17344 -- Start of processing for Modular_Type_Declaration
17346 begin
17347 -- If the mod expression is (exactly) 2 * literal, where literal is
17348 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17350 if Warn_On_Suspicious_Modulus_Value
17351 and then Nkind (Mod_Expr) = N_Op_Multiply
17352 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17353 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17354 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17355 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17356 then
17357 Error_Msg_N
17358 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17359 end if;
17361 -- Proceed with analysis of mod expression
17363 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17364 Set_Etype (T, T);
17365 Set_Ekind (T, E_Modular_Integer_Type);
17366 Init_Alignment (T);
17367 Set_Is_Constrained (T);
17369 if not Is_OK_Static_Expression (Mod_Expr) then
17370 Flag_Non_Static_Expr
17371 ("non-static expression used for modular type bound!", Mod_Expr);
17372 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17373 else
17374 M_Val := Expr_Value (Mod_Expr);
17375 end if;
17377 if M_Val < 1 then
17378 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17379 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17380 end if;
17382 Set_Modulus (T, M_Val);
17384 -- Create bounds for the modular type based on the modulus given in
17385 -- the type declaration and then analyze and resolve those bounds.
17387 Set_Scalar_Range (T,
17388 Make_Range (Sloc (Mod_Expr),
17389 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17390 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17392 -- Properly analyze the literals for the range. We do this manually
17393 -- because we can't go calling Resolve, since we are resolving these
17394 -- bounds with the type, and this type is certainly not complete yet.
17396 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17397 Set_Etype (High_Bound (Scalar_Range (T)), T);
17398 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17399 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17401 -- Loop through powers of two to find number of bits required
17403 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17405 -- Binary case
17407 if M_Val = 2 ** Bits then
17408 Set_Modular_Size (Bits);
17409 return;
17411 -- Non-binary case
17413 elsif M_Val < 2 ** Bits then
17414 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17415 Set_Non_Binary_Modulus (T);
17417 if Bits > System_Max_Nonbinary_Modulus_Power then
17418 Error_Msg_Uint_1 :=
17419 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17420 Error_Msg_F
17421 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17422 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17423 return;
17425 else
17426 -- In the non-binary case, set size as per RM 13.3(55)
17428 Set_Modular_Size (Bits);
17429 return;
17430 end if;
17431 end if;
17433 end loop;
17435 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17436 -- so we just signal an error and set the maximum size.
17438 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17439 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17441 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17442 Init_Alignment (T);
17444 end Modular_Type_Declaration;
17446 --------------------------
17447 -- New_Concatenation_Op --
17448 --------------------------
17450 procedure New_Concatenation_Op (Typ : Entity_Id) is
17451 Loc : constant Source_Ptr := Sloc (Typ);
17452 Op : Entity_Id;
17454 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17455 -- Create abbreviated declaration for the formal of a predefined
17456 -- Operator 'Op' of type 'Typ'
17458 --------------------
17459 -- Make_Op_Formal --
17460 --------------------
17462 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17463 Formal : Entity_Id;
17464 begin
17465 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17466 Set_Etype (Formal, Typ);
17467 Set_Mechanism (Formal, Default_Mechanism);
17468 return Formal;
17469 end Make_Op_Formal;
17471 -- Start of processing for New_Concatenation_Op
17473 begin
17474 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17476 Set_Ekind (Op, E_Operator);
17477 Set_Scope (Op, Current_Scope);
17478 Set_Etype (Op, Typ);
17479 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17480 Set_Is_Immediately_Visible (Op);
17481 Set_Is_Intrinsic_Subprogram (Op);
17482 Set_Has_Completion (Op);
17483 Append_Entity (Op, Current_Scope);
17485 Set_Name_Entity_Id (Name_Op_Concat, Op);
17487 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17488 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17489 end New_Concatenation_Op;
17491 -------------------------
17492 -- OK_For_Limited_Init --
17493 -------------------------
17495 -- ???Check all calls of this, and compare the conditions under which it's
17496 -- called.
17498 function OK_For_Limited_Init
17499 (Typ : Entity_Id;
17500 Exp : Node_Id) return Boolean
17502 begin
17503 return Is_CPP_Constructor_Call (Exp)
17504 or else (Ada_Version >= Ada_2005
17505 and then not Debug_Flag_Dot_L
17506 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17507 end OK_For_Limited_Init;
17509 -------------------------------
17510 -- OK_For_Limited_Init_In_05 --
17511 -------------------------------
17513 function OK_For_Limited_Init_In_05
17514 (Typ : Entity_Id;
17515 Exp : Node_Id) return Boolean
17517 begin
17518 -- An object of a limited interface type can be initialized with any
17519 -- expression of a nonlimited descendant type.
17521 if Is_Class_Wide_Type (Typ)
17522 and then Is_Limited_Interface (Typ)
17523 and then not Is_Limited_Type (Etype (Exp))
17524 then
17525 return True;
17526 end if;
17528 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17529 -- case of limited aggregates (including extension aggregates), and
17530 -- function calls. The function call may have been given in prefixed
17531 -- notation, in which case the original node is an indexed component.
17532 -- If the function is parameterless, the original node was an explicit
17533 -- dereference. The function may also be parameterless, in which case
17534 -- the source node is just an identifier.
17536 case Nkind (Original_Node (Exp)) is
17537 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17538 return True;
17540 when N_Identifier =>
17541 return Present (Entity (Original_Node (Exp)))
17542 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17544 when N_Qualified_Expression =>
17545 return
17546 OK_For_Limited_Init_In_05
17547 (Typ, Expression (Original_Node (Exp)));
17549 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17550 -- with a function call, the expander has rewritten the call into an
17551 -- N_Type_Conversion node to force displacement of the pointer to
17552 -- reference the component containing the secondary dispatch table.
17553 -- Otherwise a type conversion is not a legal context.
17554 -- A return statement for a build-in-place function returning a
17555 -- synchronized type also introduces an unchecked conversion.
17557 when N_Type_Conversion |
17558 N_Unchecked_Type_Conversion =>
17559 return not Comes_From_Source (Exp)
17560 and then
17561 OK_For_Limited_Init_In_05
17562 (Typ, Expression (Original_Node (Exp)));
17564 when N_Indexed_Component |
17565 N_Selected_Component |
17566 N_Explicit_Dereference =>
17567 return Nkind (Exp) = N_Function_Call;
17569 -- A use of 'Input is a function call, hence allowed. Normally the
17570 -- attribute will be changed to a call, but the attribute by itself
17571 -- can occur with -gnatc.
17573 when N_Attribute_Reference =>
17574 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17576 -- For a case expression, all dependent expressions must be legal
17578 when N_Case_Expression =>
17579 declare
17580 Alt : Node_Id;
17582 begin
17583 Alt := First (Alternatives (Original_Node (Exp)));
17584 while Present (Alt) loop
17585 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17586 return False;
17587 end if;
17589 Next (Alt);
17590 end loop;
17592 return True;
17593 end;
17595 -- For an if expression, all dependent expressions must be legal
17597 when N_If_Expression =>
17598 declare
17599 Then_Expr : constant Node_Id :=
17600 Next (First (Expressions (Original_Node (Exp))));
17601 Else_Expr : constant Node_Id := Next (Then_Expr);
17602 begin
17603 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17604 and then
17605 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17606 end;
17608 when others =>
17609 return False;
17610 end case;
17611 end OK_For_Limited_Init_In_05;
17613 -------------------------------------------
17614 -- Ordinary_Fixed_Point_Type_Declaration --
17615 -------------------------------------------
17617 procedure Ordinary_Fixed_Point_Type_Declaration
17618 (T : Entity_Id;
17619 Def : Node_Id)
17621 Loc : constant Source_Ptr := Sloc (Def);
17622 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17623 RRS : constant Node_Id := Real_Range_Specification (Def);
17624 Implicit_Base : Entity_Id;
17625 Delta_Val : Ureal;
17626 Small_Val : Ureal;
17627 Low_Val : Ureal;
17628 High_Val : Ureal;
17630 begin
17631 Check_Restriction (No_Fixed_Point, Def);
17633 -- Create implicit base type
17635 Implicit_Base :=
17636 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17637 Set_Etype (Implicit_Base, Implicit_Base);
17639 -- Analyze and process delta expression
17641 Analyze_And_Resolve (Delta_Expr, Any_Real);
17643 Check_Delta_Expression (Delta_Expr);
17644 Delta_Val := Expr_Value_R (Delta_Expr);
17646 Set_Delta_Value (Implicit_Base, Delta_Val);
17648 -- Compute default small from given delta, which is the largest power
17649 -- of two that does not exceed the given delta value.
17651 declare
17652 Tmp : Ureal;
17653 Scale : Int;
17655 begin
17656 Tmp := Ureal_1;
17657 Scale := 0;
17659 if Delta_Val < Ureal_1 then
17660 while Delta_Val < Tmp loop
17661 Tmp := Tmp / Ureal_2;
17662 Scale := Scale + 1;
17663 end loop;
17665 else
17666 loop
17667 Tmp := Tmp * Ureal_2;
17668 exit when Tmp > Delta_Val;
17669 Scale := Scale - 1;
17670 end loop;
17671 end if;
17673 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17674 end;
17676 Set_Small_Value (Implicit_Base, Small_Val);
17678 -- If no range was given, set a dummy range
17680 if RRS <= Empty_Or_Error then
17681 Low_Val := -Small_Val;
17682 High_Val := Small_Val;
17684 -- Otherwise analyze and process given range
17686 else
17687 declare
17688 Low : constant Node_Id := Low_Bound (RRS);
17689 High : constant Node_Id := High_Bound (RRS);
17691 begin
17692 Analyze_And_Resolve (Low, Any_Real);
17693 Analyze_And_Resolve (High, Any_Real);
17694 Check_Real_Bound (Low);
17695 Check_Real_Bound (High);
17697 -- Obtain and set the range
17699 Low_Val := Expr_Value_R (Low);
17700 High_Val := Expr_Value_R (High);
17702 if Low_Val > High_Val then
17703 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17704 end if;
17705 end;
17706 end if;
17708 -- The range for both the implicit base and the declared first subtype
17709 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17710 -- set a temporary range in place. Note that the bounds of the base
17711 -- type will be widened to be symmetrical and to fill the available
17712 -- bits when the type is frozen.
17714 -- We could do this with all discrete types, and probably should, but
17715 -- we absolutely have to do it for fixed-point, since the end-points
17716 -- of the range and the size are determined by the small value, which
17717 -- could be reset before the freeze point.
17719 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17720 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17722 -- Complete definition of first subtype
17724 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17725 Set_Etype (T, Implicit_Base);
17726 Init_Size_Align (T);
17727 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17728 Set_Small_Value (T, Small_Val);
17729 Set_Delta_Value (T, Delta_Val);
17730 Set_Is_Constrained (T);
17732 end Ordinary_Fixed_Point_Type_Declaration;
17734 ----------------------------------------
17735 -- Prepare_Private_Subtype_Completion --
17736 ----------------------------------------
17738 procedure Prepare_Private_Subtype_Completion
17739 (Id : Entity_Id;
17740 Related_Nod : Node_Id)
17742 Id_B : constant Entity_Id := Base_Type (Id);
17743 Full_B : constant Entity_Id := Full_View (Id_B);
17744 Full : Entity_Id;
17746 begin
17747 if Present (Full_B) then
17749 -- The Base_Type is already completed, we can complete the subtype
17750 -- now. We have to create a new entity with the same name, Thus we
17751 -- can't use Create_Itype.
17753 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17754 Set_Is_Itype (Full);
17755 Set_Associated_Node_For_Itype (Full, Related_Nod);
17756 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17757 end if;
17759 -- The parent subtype may be private, but the base might not, in some
17760 -- nested instances. In that case, the subtype does not need to be
17761 -- exchanged. It would still be nice to make private subtypes and their
17762 -- bases consistent at all times ???
17764 if Is_Private_Type (Id_B) then
17765 Append_Elmt (Id, Private_Dependents (Id_B));
17766 end if;
17767 end Prepare_Private_Subtype_Completion;
17769 ---------------------------
17770 -- Process_Discriminants --
17771 ---------------------------
17773 procedure Process_Discriminants
17774 (N : Node_Id;
17775 Prev : Entity_Id := Empty)
17777 Elist : constant Elist_Id := New_Elmt_List;
17778 Id : Node_Id;
17779 Discr : Node_Id;
17780 Discr_Number : Uint;
17781 Discr_Type : Entity_Id;
17782 Default_Present : Boolean := False;
17783 Default_Not_Present : Boolean := False;
17785 begin
17786 -- A composite type other than an array type can have discriminants.
17787 -- On entry, the current scope is the composite type.
17789 -- The discriminants are initially entered into the scope of the type
17790 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17791 -- use, as explained at the end of this procedure.
17793 Discr := First (Discriminant_Specifications (N));
17794 while Present (Discr) loop
17795 Enter_Name (Defining_Identifier (Discr));
17797 -- For navigation purposes we add a reference to the discriminant
17798 -- in the entity for the type. If the current declaration is a
17799 -- completion, place references on the partial view. Otherwise the
17800 -- type is the current scope.
17802 if Present (Prev) then
17804 -- The references go on the partial view, if present. If the
17805 -- partial view has discriminants, the references have been
17806 -- generated already.
17808 if not Has_Discriminants (Prev) then
17809 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17810 end if;
17811 else
17812 Generate_Reference
17813 (Current_Scope, Defining_Identifier (Discr), 'd');
17814 end if;
17816 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17817 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17819 -- Ada 2005 (AI-254)
17821 if Present (Access_To_Subprogram_Definition
17822 (Discriminant_Type (Discr)))
17823 and then Protected_Present (Access_To_Subprogram_Definition
17824 (Discriminant_Type (Discr)))
17825 then
17826 Discr_Type :=
17827 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17828 end if;
17830 else
17831 Find_Type (Discriminant_Type (Discr));
17832 Discr_Type := Etype (Discriminant_Type (Discr));
17834 if Error_Posted (Discriminant_Type (Discr)) then
17835 Discr_Type := Any_Type;
17836 end if;
17837 end if;
17839 if Is_Access_Type (Discr_Type) then
17841 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17842 -- record types
17844 if Ada_Version < Ada_2005 then
17845 Check_Access_Discriminant_Requires_Limited
17846 (Discr, Discriminant_Type (Discr));
17847 end if;
17849 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
17850 Error_Msg_N
17851 ("(Ada 83) access discriminant not allowed", Discr);
17852 end if;
17854 elsif not Is_Discrete_Type (Discr_Type) then
17855 Error_Msg_N ("discriminants must have a discrete or access type",
17856 Discriminant_Type (Discr));
17857 end if;
17859 Set_Etype (Defining_Identifier (Discr), Discr_Type);
17861 -- If a discriminant specification includes the assignment compound
17862 -- delimiter followed by an expression, the expression is the default
17863 -- expression of the discriminant; the default expression must be of
17864 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17865 -- a default expression, we do the special preanalysis, since this
17866 -- expression does not freeze (see "Handling of Default and Per-
17867 -- Object Expressions" in spec of package Sem).
17869 if Present (Expression (Discr)) then
17870 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
17872 if Nkind (N) = N_Formal_Type_Declaration then
17873 Error_Msg_N
17874 ("discriminant defaults not allowed for formal type",
17875 Expression (Discr));
17877 -- Flag an error for a tagged type with defaulted discriminants,
17878 -- excluding limited tagged types when compiling for Ada 2012
17879 -- (see AI05-0214).
17881 elsif Is_Tagged_Type (Current_Scope)
17882 and then (not Is_Limited_Type (Current_Scope)
17883 or else Ada_Version < Ada_2012)
17884 and then Comes_From_Source (N)
17885 then
17886 -- Note: see similar test in Check_Or_Process_Discriminants, to
17887 -- handle the (illegal) case of the completion of an untagged
17888 -- view with discriminants with defaults by a tagged full view.
17889 -- We skip the check if Discr does not come from source, to
17890 -- account for the case of an untagged derived type providing
17891 -- defaults for a renamed discriminant from a private untagged
17892 -- ancestor with a tagged full view (ACATS B460006).
17894 if Ada_Version >= Ada_2012 then
17895 Error_Msg_N
17896 ("discriminants of nonlimited tagged type cannot have"
17897 & " defaults",
17898 Expression (Discr));
17899 else
17900 Error_Msg_N
17901 ("discriminants of tagged type cannot have defaults",
17902 Expression (Discr));
17903 end if;
17905 else
17906 Default_Present := True;
17907 Append_Elmt (Expression (Discr), Elist);
17909 -- Tag the defining identifiers for the discriminants with
17910 -- their corresponding default expressions from the tree.
17912 Set_Discriminant_Default_Value
17913 (Defining_Identifier (Discr), Expression (Discr));
17914 end if;
17916 else
17917 Default_Not_Present := True;
17918 end if;
17920 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17921 -- Discr_Type but with the null-exclusion attribute
17923 if Ada_Version >= Ada_2005 then
17925 -- Ada 2005 (AI-231): Static checks
17927 if Can_Never_Be_Null (Discr_Type) then
17928 Null_Exclusion_Static_Checks (Discr);
17930 elsif Is_Access_Type (Discr_Type)
17931 and then Null_Exclusion_Present (Discr)
17933 -- No need to check itypes because in their case this check
17934 -- was done at their point of creation
17936 and then not Is_Itype (Discr_Type)
17937 then
17938 if Can_Never_Be_Null (Discr_Type) then
17939 Error_Msg_NE
17940 ("`NOT NULL` not allowed (& already excludes null)",
17941 Discr,
17942 Discr_Type);
17943 end if;
17945 Set_Etype (Defining_Identifier (Discr),
17946 Create_Null_Excluding_Itype
17947 (T => Discr_Type,
17948 Related_Nod => Discr));
17950 -- Check for improper null exclusion if the type is otherwise
17951 -- legal for a discriminant.
17953 elsif Null_Exclusion_Present (Discr)
17954 and then Is_Discrete_Type (Discr_Type)
17955 then
17956 Error_Msg_N
17957 ("null exclusion can only apply to an access type", Discr);
17958 end if;
17960 -- Ada 2005 (AI-402): access discriminants of nonlimited types
17961 -- can't have defaults. Synchronized types, or types that are
17962 -- explicitly limited are fine, but special tests apply to derived
17963 -- types in generics: in a generic body we have to assume the
17964 -- worst, and therefore defaults are not allowed if the parent is
17965 -- a generic formal private type (see ACATS B370001).
17967 if Is_Access_Type (Discr_Type) and then Default_Present then
17968 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
17969 or else Is_Limited_Record (Current_Scope)
17970 or else Is_Concurrent_Type (Current_Scope)
17971 or else Is_Concurrent_Record_Type (Current_Scope)
17972 or else Ekind (Current_Scope) = E_Limited_Private_Type
17973 then
17974 if not Is_Derived_Type (Current_Scope)
17975 or else not Is_Generic_Type (Etype (Current_Scope))
17976 or else not In_Package_Body (Scope (Etype (Current_Scope)))
17977 or else Limited_Present
17978 (Type_Definition (Parent (Current_Scope)))
17979 then
17980 null;
17982 else
17983 Error_Msg_N ("access discriminants of nonlimited types",
17984 Expression (Discr));
17985 Error_Msg_N ("\cannot have defaults", Expression (Discr));
17986 end if;
17988 elsif Present (Expression (Discr)) then
17989 Error_Msg_N
17990 ("(Ada 2005) access discriminants of nonlimited types",
17991 Expression (Discr));
17992 Error_Msg_N ("\cannot have defaults", Expression (Discr));
17993 end if;
17994 end if;
17995 end if;
17997 -- A discriminant cannot be volatile. This check is only relevant
17998 -- when SPARK_Mode is on as it is not standard Ada legality rule.
18000 if SPARK_Mode = On
18001 and then Is_SPARK_Volatile_Object (Defining_Identifier (Discr))
18002 then
18003 Error_Msg_N
18004 ("discriminant cannot be volatile (SPARK RM 7.1.3(6))", Discr);
18005 end if;
18007 Next (Discr);
18008 end loop;
18010 -- An element list consisting of the default expressions of the
18011 -- discriminants is constructed in the above loop and used to set
18012 -- the Discriminant_Constraint attribute for the type. If an object
18013 -- is declared of this (record or task) type without any explicit
18014 -- discriminant constraint given, this element list will form the
18015 -- actual parameters for the corresponding initialization procedure
18016 -- for the type.
18018 Set_Discriminant_Constraint (Current_Scope, Elist);
18019 Set_Stored_Constraint (Current_Scope, No_Elist);
18021 -- Default expressions must be provided either for all or for none
18022 -- of the discriminants of a discriminant part. (RM 3.7.1)
18024 if Default_Present and then Default_Not_Present then
18025 Error_Msg_N
18026 ("incomplete specification of defaults for discriminants", N);
18027 end if;
18029 -- The use of the name of a discriminant is not allowed in default
18030 -- expressions of a discriminant part if the specification of the
18031 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18033 -- To detect this, the discriminant names are entered initially with an
18034 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18035 -- attempt to use a void entity (for example in an expression that is
18036 -- type-checked) produces the error message: premature usage. Now after
18037 -- completing the semantic analysis of the discriminant part, we can set
18038 -- the Ekind of all the discriminants appropriately.
18040 Discr := First (Discriminant_Specifications (N));
18041 Discr_Number := Uint_1;
18042 while Present (Discr) loop
18043 Id := Defining_Identifier (Discr);
18044 Set_Ekind (Id, E_Discriminant);
18045 Init_Component_Location (Id);
18046 Init_Esize (Id);
18047 Set_Discriminant_Number (Id, Discr_Number);
18049 -- Make sure this is always set, even in illegal programs
18051 Set_Corresponding_Discriminant (Id, Empty);
18053 -- Initialize the Original_Record_Component to the entity itself.
18054 -- Inherit_Components will propagate the right value to
18055 -- discriminants in derived record types.
18057 Set_Original_Record_Component (Id, Id);
18059 -- Create the discriminal for the discriminant
18061 Build_Discriminal (Id);
18063 Next (Discr);
18064 Discr_Number := Discr_Number + 1;
18065 end loop;
18067 Set_Has_Discriminants (Current_Scope);
18068 end Process_Discriminants;
18070 -----------------------
18071 -- Process_Full_View --
18072 -----------------------
18074 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18075 Priv_Parent : Entity_Id;
18076 Full_Parent : Entity_Id;
18077 Full_Indic : Node_Id;
18079 procedure Collect_Implemented_Interfaces
18080 (Typ : Entity_Id;
18081 Ifaces : Elist_Id);
18082 -- Ada 2005: Gather all the interfaces that Typ directly or
18083 -- inherently implements. Duplicate entries are not added to
18084 -- the list Ifaces.
18086 ------------------------------------
18087 -- Collect_Implemented_Interfaces --
18088 ------------------------------------
18090 procedure Collect_Implemented_Interfaces
18091 (Typ : Entity_Id;
18092 Ifaces : Elist_Id)
18094 Iface : Entity_Id;
18095 Iface_Elmt : Elmt_Id;
18097 begin
18098 -- Abstract interfaces are only associated with tagged record types
18100 if not Is_Tagged_Type (Typ)
18101 or else not Is_Record_Type (Typ)
18102 then
18103 return;
18104 end if;
18106 -- Recursively climb to the ancestors
18108 if Etype (Typ) /= Typ
18110 -- Protect the frontend against wrong cyclic declarations like:
18112 -- type B is new A with private;
18113 -- type C is new A with private;
18114 -- private
18115 -- type B is new C with null record;
18116 -- type C is new B with null record;
18118 and then Etype (Typ) /= Priv_T
18119 and then Etype (Typ) /= Full_T
18120 then
18121 -- Keep separate the management of private type declarations
18123 if Ekind (Typ) = E_Record_Type_With_Private then
18125 -- Handle the following erroneous case:
18126 -- type Private_Type is tagged private;
18127 -- private
18128 -- type Private_Type is new Type_Implementing_Iface;
18130 if Present (Full_View (Typ))
18131 and then Etype (Typ) /= Full_View (Typ)
18132 then
18133 if Is_Interface (Etype (Typ)) then
18134 Append_Unique_Elmt (Etype (Typ), Ifaces);
18135 end if;
18137 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18138 end if;
18140 -- Non-private types
18142 else
18143 if Is_Interface (Etype (Typ)) then
18144 Append_Unique_Elmt (Etype (Typ), Ifaces);
18145 end if;
18147 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18148 end if;
18149 end if;
18151 -- Handle entities in the list of abstract interfaces
18153 if Present (Interfaces (Typ)) then
18154 Iface_Elmt := First_Elmt (Interfaces (Typ));
18155 while Present (Iface_Elmt) loop
18156 Iface := Node (Iface_Elmt);
18158 pragma Assert (Is_Interface (Iface));
18160 if not Contain_Interface (Iface, Ifaces) then
18161 Append_Elmt (Iface, Ifaces);
18162 Collect_Implemented_Interfaces (Iface, Ifaces);
18163 end if;
18165 Next_Elmt (Iface_Elmt);
18166 end loop;
18167 end if;
18168 end Collect_Implemented_Interfaces;
18170 -- Start of processing for Process_Full_View
18172 begin
18173 -- First some sanity checks that must be done after semantic
18174 -- decoration of the full view and thus cannot be placed with other
18175 -- similar checks in Find_Type_Name
18177 if not Is_Limited_Type (Priv_T)
18178 and then (Is_Limited_Type (Full_T)
18179 or else Is_Limited_Composite (Full_T))
18180 then
18181 if In_Instance then
18182 null;
18183 else
18184 Error_Msg_N
18185 ("completion of nonlimited type cannot be limited", Full_T);
18186 Explain_Limited_Type (Full_T, Full_T);
18187 end if;
18189 elsif Is_Abstract_Type (Full_T)
18190 and then not Is_Abstract_Type (Priv_T)
18191 then
18192 Error_Msg_N
18193 ("completion of nonabstract type cannot be abstract", Full_T);
18195 elsif Is_Tagged_Type (Priv_T)
18196 and then Is_Limited_Type (Priv_T)
18197 and then not Is_Limited_Type (Full_T)
18198 then
18199 -- If pragma CPP_Class was applied to the private declaration
18200 -- propagate the limitedness to the full-view
18202 if Is_CPP_Class (Priv_T) then
18203 Set_Is_Limited_Record (Full_T);
18205 -- GNAT allow its own definition of Limited_Controlled to disobey
18206 -- this rule in order in ease the implementation. This test is safe
18207 -- because Root_Controlled is defined in a child of System that
18208 -- normal programs are not supposed to use.
18210 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18211 Set_Is_Limited_Composite (Full_T);
18212 else
18213 Error_Msg_N
18214 ("completion of limited tagged type must be limited", Full_T);
18215 end if;
18217 elsif Is_Generic_Type (Priv_T) then
18218 Error_Msg_N ("generic type cannot have a completion", Full_T);
18219 end if;
18221 -- Check that ancestor interfaces of private and full views are
18222 -- consistent. We omit this check for synchronized types because
18223 -- they are performed on the corresponding record type when frozen.
18225 if Ada_Version >= Ada_2005
18226 and then Is_Tagged_Type (Priv_T)
18227 and then Is_Tagged_Type (Full_T)
18228 and then not Is_Concurrent_Type (Full_T)
18229 then
18230 declare
18231 Iface : Entity_Id;
18232 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18233 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18235 begin
18236 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18237 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18239 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18240 -- an interface type if and only if the full type is descendant
18241 -- of the interface type (AARM 7.3 (7.3/2)).
18243 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18245 if Present (Iface) then
18246 Error_Msg_NE
18247 ("interface & not implemented by full type " &
18248 "(RM-2005 7.3 (7.3/2))", Priv_T, Iface);
18249 end if;
18251 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18253 if Present (Iface) then
18254 Error_Msg_NE
18255 ("interface & not implemented by partial view " &
18256 "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18257 end if;
18258 end;
18259 end if;
18261 if Is_Tagged_Type (Priv_T)
18262 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18263 and then Is_Derived_Type (Full_T)
18264 then
18265 Priv_Parent := Etype (Priv_T);
18267 -- The full view of a private extension may have been transformed
18268 -- into an unconstrained derived type declaration and a subtype
18269 -- declaration (see build_derived_record_type for details).
18271 if Nkind (N) = N_Subtype_Declaration then
18272 Full_Indic := Subtype_Indication (N);
18273 Full_Parent := Etype (Base_Type (Full_T));
18274 else
18275 Full_Indic := Subtype_Indication (Type_Definition (N));
18276 Full_Parent := Etype (Full_T);
18277 end if;
18279 -- Check that the parent type of the full type is a descendant of
18280 -- the ancestor subtype given in the private extension. If either
18281 -- entity has an Etype equal to Any_Type then we had some previous
18282 -- error situation [7.3(8)].
18284 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18285 return;
18287 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
18288 -- any order. Therefore we don't have to check that its parent must
18289 -- be a descendant of the parent of the private type declaration.
18291 elsif Is_Interface (Priv_Parent)
18292 and then Is_Interface (Full_Parent)
18293 then
18294 null;
18296 -- Ada 2005 (AI-251): If the parent of the private type declaration
18297 -- is an interface there is no need to check that it is an ancestor
18298 -- of the associated full type declaration. The required tests for
18299 -- this case are performed by Build_Derived_Record_Type.
18301 elsif not Is_Interface (Base_Type (Priv_Parent))
18302 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18303 then
18304 Error_Msg_N
18305 ("parent of full type must descend from parent"
18306 & " of private extension", Full_Indic);
18308 -- First check a formal restriction, and then proceed with checking
18309 -- Ada rules. Since the formal restriction is not a serious error, we
18310 -- don't prevent further error detection for this check, hence the
18311 -- ELSE.
18313 else
18315 -- In formal mode, when completing a private extension the type
18316 -- named in the private part must be exactly the same as that
18317 -- named in the visible part.
18319 if Priv_Parent /= Full_Parent then
18320 Error_Msg_Name_1 := Chars (Priv_Parent);
18321 Check_SPARK_Restriction ("% expected", Full_Indic);
18322 end if;
18324 -- Check the rules of 7.3(10): if the private extension inherits
18325 -- known discriminants, then the full type must also inherit those
18326 -- discriminants from the same (ancestor) type, and the parent
18327 -- subtype of the full type must be constrained if and only if
18328 -- the ancestor subtype of the private extension is constrained.
18330 if No (Discriminant_Specifications (Parent (Priv_T)))
18331 and then not Has_Unknown_Discriminants (Priv_T)
18332 and then Has_Discriminants (Base_Type (Priv_Parent))
18333 then
18334 declare
18335 Priv_Indic : constant Node_Id :=
18336 Subtype_Indication (Parent (Priv_T));
18338 Priv_Constr : constant Boolean :=
18339 Is_Constrained (Priv_Parent)
18340 or else
18341 Nkind (Priv_Indic) = N_Subtype_Indication
18342 or else
18343 Is_Constrained (Entity (Priv_Indic));
18345 Full_Constr : constant Boolean :=
18346 Is_Constrained (Full_Parent)
18347 or else
18348 Nkind (Full_Indic) = N_Subtype_Indication
18349 or else
18350 Is_Constrained (Entity (Full_Indic));
18352 Priv_Discr : Entity_Id;
18353 Full_Discr : Entity_Id;
18355 begin
18356 Priv_Discr := First_Discriminant (Priv_Parent);
18357 Full_Discr := First_Discriminant (Full_Parent);
18358 while Present (Priv_Discr) and then Present (Full_Discr) loop
18359 if Original_Record_Component (Priv_Discr) =
18360 Original_Record_Component (Full_Discr)
18361 or else
18362 Corresponding_Discriminant (Priv_Discr) =
18363 Corresponding_Discriminant (Full_Discr)
18364 then
18365 null;
18366 else
18367 exit;
18368 end if;
18370 Next_Discriminant (Priv_Discr);
18371 Next_Discriminant (Full_Discr);
18372 end loop;
18374 if Present (Priv_Discr) or else Present (Full_Discr) then
18375 Error_Msg_N
18376 ("full view must inherit discriminants of the parent"
18377 & " type used in the private extension", Full_Indic);
18379 elsif Priv_Constr and then not Full_Constr then
18380 Error_Msg_N
18381 ("parent subtype of full type must be constrained",
18382 Full_Indic);
18384 elsif Full_Constr and then not Priv_Constr then
18385 Error_Msg_N
18386 ("parent subtype of full type must be unconstrained",
18387 Full_Indic);
18388 end if;
18389 end;
18391 -- Check the rules of 7.3(12): if a partial view has neither
18392 -- known or unknown discriminants, then the full type
18393 -- declaration shall define a definite subtype.
18395 elsif not Has_Unknown_Discriminants (Priv_T)
18396 and then not Has_Discriminants (Priv_T)
18397 and then not Is_Constrained (Full_T)
18398 then
18399 Error_Msg_N
18400 ("full view must define a constrained type if partial view"
18401 & " has no discriminants", Full_T);
18402 end if;
18404 -- ??????? Do we implement the following properly ?????
18405 -- If the ancestor subtype of a private extension has constrained
18406 -- discriminants, then the parent subtype of the full view shall
18407 -- impose a statically matching constraint on those discriminants
18408 -- [7.3(13)].
18409 end if;
18411 else
18412 -- For untagged types, verify that a type without discriminants
18413 -- is not completed with an unconstrained type.
18415 if not Is_Indefinite_Subtype (Priv_T)
18416 and then Is_Indefinite_Subtype (Full_T)
18417 then
18418 Error_Msg_N ("full view of type must be definite subtype", Full_T);
18419 end if;
18420 end if;
18422 -- AI-419: verify that the use of "limited" is consistent
18424 declare
18425 Orig_Decl : constant Node_Id := Original_Node (N);
18427 begin
18428 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18429 and then not Limited_Present (Parent (Priv_T))
18430 and then not Synchronized_Present (Parent (Priv_T))
18431 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18432 and then Nkind
18433 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18434 and then Limited_Present (Type_Definition (Orig_Decl))
18435 then
18436 Error_Msg_N
18437 ("full view of non-limited extension cannot be limited", N);
18438 end if;
18439 end;
18441 -- Ada 2005 (AI-443): A synchronized private extension must be
18442 -- completed by a task or protected type.
18444 if Ada_Version >= Ada_2005
18445 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18446 and then Synchronized_Present (Parent (Priv_T))
18447 and then not Is_Concurrent_Type (Full_T)
18448 then
18449 Error_Msg_N ("full view of synchronized extension must " &
18450 "be synchronized type", N);
18451 end if;
18453 -- Ada 2005 AI-363: if the full view has discriminants with
18454 -- defaults, it is illegal to declare constrained access subtypes
18455 -- whose designated type is the current type. This allows objects
18456 -- of the type that are declared in the heap to be unconstrained.
18458 if not Has_Unknown_Discriminants (Priv_T)
18459 and then not Has_Discriminants (Priv_T)
18460 and then Has_Discriminants (Full_T)
18461 and then
18462 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18463 then
18464 Set_Has_Constrained_Partial_View (Full_T);
18465 Set_Has_Constrained_Partial_View (Priv_T);
18466 end if;
18468 -- Create a full declaration for all its subtypes recorded in
18469 -- Private_Dependents and swap them similarly to the base type. These
18470 -- are subtypes that have been define before the full declaration of
18471 -- the private type. We also swap the entry in Private_Dependents list
18472 -- so we can properly restore the private view on exit from the scope.
18474 declare
18475 Priv_Elmt : Elmt_Id;
18476 Priv : Entity_Id;
18477 Full : Entity_Id;
18479 begin
18480 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18481 while Present (Priv_Elmt) loop
18482 Priv := Node (Priv_Elmt);
18484 if Ekind_In (Priv, E_Private_Subtype,
18485 E_Limited_Private_Subtype,
18486 E_Record_Subtype_With_Private)
18487 then
18488 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18489 Set_Is_Itype (Full);
18490 Set_Parent (Full, Parent (Priv));
18491 Set_Associated_Node_For_Itype (Full, N);
18493 -- Now we need to complete the private subtype, but since the
18494 -- base type has already been swapped, we must also swap the
18495 -- subtypes (and thus, reverse the arguments in the call to
18496 -- Complete_Private_Subtype).
18498 Copy_And_Swap (Priv, Full);
18499 Complete_Private_Subtype (Full, Priv, Full_T, N);
18500 Replace_Elmt (Priv_Elmt, Full);
18501 end if;
18503 Next_Elmt (Priv_Elmt);
18504 end loop;
18505 end;
18507 -- If the private view was tagged, copy the new primitive operations
18508 -- from the private view to the full view.
18510 if Is_Tagged_Type (Full_T) then
18511 declare
18512 Disp_Typ : Entity_Id;
18513 Full_List : Elist_Id;
18514 Prim : Entity_Id;
18515 Prim_Elmt : Elmt_Id;
18516 Priv_List : Elist_Id;
18518 function Contains
18519 (E : Entity_Id;
18520 L : Elist_Id) return Boolean;
18521 -- Determine whether list L contains element E
18523 --------------
18524 -- Contains --
18525 --------------
18527 function Contains
18528 (E : Entity_Id;
18529 L : Elist_Id) return Boolean
18531 List_Elmt : Elmt_Id;
18533 begin
18534 List_Elmt := First_Elmt (L);
18535 while Present (List_Elmt) loop
18536 if Node (List_Elmt) = E then
18537 return True;
18538 end if;
18540 Next_Elmt (List_Elmt);
18541 end loop;
18543 return False;
18544 end Contains;
18546 -- Start of processing
18548 begin
18549 if Is_Tagged_Type (Priv_T) then
18550 Priv_List := Primitive_Operations (Priv_T);
18551 Prim_Elmt := First_Elmt (Priv_List);
18553 -- In the case of a concurrent type completing a private tagged
18554 -- type, primitives may have been declared in between the two
18555 -- views. These subprograms need to be wrapped the same way
18556 -- entries and protected procedures are handled because they
18557 -- cannot be directly shared by the two views.
18559 if Is_Concurrent_Type (Full_T) then
18560 declare
18561 Conc_Typ : constant Entity_Id :=
18562 Corresponding_Record_Type (Full_T);
18563 Curr_Nod : Node_Id := Parent (Conc_Typ);
18564 Wrap_Spec : Node_Id;
18566 begin
18567 while Present (Prim_Elmt) loop
18568 Prim := Node (Prim_Elmt);
18570 if Comes_From_Source (Prim)
18571 and then not Is_Abstract_Subprogram (Prim)
18572 then
18573 Wrap_Spec :=
18574 Make_Subprogram_Declaration (Sloc (Prim),
18575 Specification =>
18576 Build_Wrapper_Spec
18577 (Subp_Id => Prim,
18578 Obj_Typ => Conc_Typ,
18579 Formals =>
18580 Parameter_Specifications (
18581 Parent (Prim))));
18583 Insert_After (Curr_Nod, Wrap_Spec);
18584 Curr_Nod := Wrap_Spec;
18586 Analyze (Wrap_Spec);
18587 end if;
18589 Next_Elmt (Prim_Elmt);
18590 end loop;
18592 return;
18593 end;
18595 -- For non-concurrent types, transfer explicit primitives, but
18596 -- omit those inherited from the parent of the private view
18597 -- since they will be re-inherited later on.
18599 else
18600 Full_List := Primitive_Operations (Full_T);
18602 while Present (Prim_Elmt) loop
18603 Prim := Node (Prim_Elmt);
18605 if Comes_From_Source (Prim)
18606 and then not Contains (Prim, Full_List)
18607 then
18608 Append_Elmt (Prim, Full_List);
18609 end if;
18611 Next_Elmt (Prim_Elmt);
18612 end loop;
18613 end if;
18615 -- Untagged private view
18617 else
18618 Full_List := Primitive_Operations (Full_T);
18620 -- In this case the partial view is untagged, so here we locate
18621 -- all of the earlier primitives that need to be treated as
18622 -- dispatching (those that appear between the two views). Note
18623 -- that these additional operations must all be new operations
18624 -- (any earlier operations that override inherited operations
18625 -- of the full view will already have been inserted in the
18626 -- primitives list, marked by Check_Operation_From_Private_View
18627 -- as dispatching. Note that implicit "/=" operators are
18628 -- excluded from being added to the primitives list since they
18629 -- shouldn't be treated as dispatching (tagged "/=" is handled
18630 -- specially).
18632 Prim := Next_Entity (Full_T);
18633 while Present (Prim) and then Prim /= Priv_T loop
18634 if Ekind_In (Prim, E_Procedure, E_Function) then
18635 Disp_Typ := Find_Dispatching_Type (Prim);
18637 if Disp_Typ = Full_T
18638 and then (Chars (Prim) /= Name_Op_Ne
18639 or else Comes_From_Source (Prim))
18640 then
18641 Check_Controlling_Formals (Full_T, Prim);
18643 if not Is_Dispatching_Operation (Prim) then
18644 Append_Elmt (Prim, Full_List);
18645 Set_Is_Dispatching_Operation (Prim, True);
18646 Set_DT_Position (Prim, No_Uint);
18647 end if;
18649 elsif Is_Dispatching_Operation (Prim)
18650 and then Disp_Typ /= Full_T
18651 then
18653 -- Verify that it is not otherwise controlled by a
18654 -- formal or a return value of type T.
18656 Check_Controlling_Formals (Disp_Typ, Prim);
18657 end if;
18658 end if;
18660 Next_Entity (Prim);
18661 end loop;
18662 end if;
18664 -- For the tagged case, the two views can share the same primitive
18665 -- operations list and the same class-wide type. Update attributes
18666 -- of the class-wide type which depend on the full declaration.
18668 if Is_Tagged_Type (Priv_T) then
18669 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18670 Set_Class_Wide_Type
18671 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18673 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18674 end if;
18675 end;
18676 end if;
18678 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
18680 if Known_To_Have_Preelab_Init (Priv_T) then
18682 -- Case where there is a pragma Preelaborable_Initialization. We
18683 -- always allow this in predefined units, which is a bit of a kludge,
18684 -- but it means we don't have to struggle to meet the requirements in
18685 -- the RM for having Preelaborable Initialization. Otherwise we
18686 -- require that the type meets the RM rules. But we can't check that
18687 -- yet, because of the rule about overriding Initialize, so we simply
18688 -- set a flag that will be checked at freeze time.
18690 if not In_Predefined_Unit (Full_T) then
18691 Set_Must_Have_Preelab_Init (Full_T);
18692 end if;
18693 end if;
18695 -- If pragma CPP_Class was applied to the private type declaration,
18696 -- propagate it now to the full type declaration.
18698 if Is_CPP_Class (Priv_T) then
18699 Set_Is_CPP_Class (Full_T);
18700 Set_Convention (Full_T, Convention_CPP);
18702 -- Check that components of imported CPP types do not have default
18703 -- expressions.
18705 Check_CPP_Type_Has_No_Defaults (Full_T);
18706 end if;
18708 -- If the private view has user specified stream attributes, then so has
18709 -- the full view.
18711 -- Why the test, how could these flags be already set in Full_T ???
18713 if Has_Specified_Stream_Read (Priv_T) then
18714 Set_Has_Specified_Stream_Read (Full_T);
18715 end if;
18717 if Has_Specified_Stream_Write (Priv_T) then
18718 Set_Has_Specified_Stream_Write (Full_T);
18719 end if;
18721 if Has_Specified_Stream_Input (Priv_T) then
18722 Set_Has_Specified_Stream_Input (Full_T);
18723 end if;
18725 if Has_Specified_Stream_Output (Priv_T) then
18726 Set_Has_Specified_Stream_Output (Full_T);
18727 end if;
18729 -- Propagate invariants to full type
18731 if Has_Invariants (Priv_T) then
18732 Set_Has_Invariants (Full_T);
18733 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18734 end if;
18736 if Has_Inheritable_Invariants (Priv_T) then
18737 Set_Has_Inheritable_Invariants (Full_T);
18738 end if;
18740 -- Propagate predicates to full type
18742 if Has_Predicates (Priv_T) then
18743 Set_Predicate_Function (Priv_T, Predicate_Function (Full_T));
18744 Set_Has_Predicates (Full_T);
18745 end if;
18746 end Process_Full_View;
18748 -----------------------------------
18749 -- Process_Incomplete_Dependents --
18750 -----------------------------------
18752 procedure Process_Incomplete_Dependents
18753 (N : Node_Id;
18754 Full_T : Entity_Id;
18755 Inc_T : Entity_Id)
18757 Inc_Elmt : Elmt_Id;
18758 Priv_Dep : Entity_Id;
18759 New_Subt : Entity_Id;
18761 Disc_Constraint : Elist_Id;
18763 begin
18764 if No (Private_Dependents (Inc_T)) then
18765 return;
18766 end if;
18768 -- Itypes that may be generated by the completion of an incomplete
18769 -- subtype are not used by the back-end and not attached to the tree.
18770 -- They are created only for constraint-checking purposes.
18772 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18773 while Present (Inc_Elmt) loop
18774 Priv_Dep := Node (Inc_Elmt);
18776 if Ekind (Priv_Dep) = E_Subprogram_Type then
18778 -- An Access_To_Subprogram type may have a return type or a
18779 -- parameter type that is incomplete. Replace with the full view.
18781 if Etype (Priv_Dep) = Inc_T then
18782 Set_Etype (Priv_Dep, Full_T);
18783 end if;
18785 declare
18786 Formal : Entity_Id;
18788 begin
18789 Formal := First_Formal (Priv_Dep);
18790 while Present (Formal) loop
18791 if Etype (Formal) = Inc_T then
18792 Set_Etype (Formal, Full_T);
18793 end if;
18795 Next_Formal (Formal);
18796 end loop;
18797 end;
18799 elsif Is_Overloadable (Priv_Dep) then
18801 -- If a subprogram in the incomplete dependents list is primitive
18802 -- for a tagged full type then mark it as a dispatching operation,
18803 -- check whether it overrides an inherited subprogram, and check
18804 -- restrictions on its controlling formals. Note that a protected
18805 -- operation is never dispatching: only its wrapper operation
18806 -- (which has convention Ada) is.
18808 if Is_Tagged_Type (Full_T)
18809 and then Is_Primitive (Priv_Dep)
18810 and then Convention (Priv_Dep) /= Convention_Protected
18811 then
18812 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
18813 Set_Is_Dispatching_Operation (Priv_Dep);
18814 Check_Controlling_Formals (Full_T, Priv_Dep);
18815 end if;
18817 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
18819 -- Can happen during processing of a body before the completion
18820 -- of a TA type. Ignore, because spec is also on dependent list.
18822 return;
18824 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18825 -- corresponding subtype of the full view.
18827 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
18828 Set_Subtype_Indication
18829 (Parent (Priv_Dep), New_Reference_To (Full_T, Sloc (Priv_Dep)));
18830 Set_Etype (Priv_Dep, Full_T);
18831 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
18832 Set_Analyzed (Parent (Priv_Dep), False);
18834 -- Reanalyze the declaration, suppressing the call to
18835 -- Enter_Name to avoid duplicate names.
18837 Analyze_Subtype_Declaration
18838 (N => Parent (Priv_Dep),
18839 Skip => True);
18841 -- Dependent is a subtype
18843 else
18844 -- We build a new subtype indication using the full view of the
18845 -- incomplete parent. The discriminant constraints have been
18846 -- elaborated already at the point of the subtype declaration.
18848 New_Subt := Create_Itype (E_Void, N);
18850 if Has_Discriminants (Full_T) then
18851 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
18852 else
18853 Disc_Constraint := No_Elist;
18854 end if;
18856 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
18857 Set_Full_View (Priv_Dep, New_Subt);
18858 end if;
18860 Next_Elmt (Inc_Elmt);
18861 end loop;
18862 end Process_Incomplete_Dependents;
18864 --------------------------------
18865 -- Process_Range_Expr_In_Decl --
18866 --------------------------------
18868 procedure Process_Range_Expr_In_Decl
18869 (R : Node_Id;
18870 T : Entity_Id;
18871 Check_List : List_Id := Empty_List;
18872 R_Check_Off : Boolean := False;
18873 In_Iter_Schm : Boolean := False)
18875 Lo, Hi : Node_Id;
18876 R_Checks : Check_Result;
18877 Insert_Node : Node_Id;
18878 Def_Id : Entity_Id;
18880 begin
18881 Analyze_And_Resolve (R, Base_Type (T));
18883 if Nkind (R) = N_Range then
18885 -- In SPARK, all ranges should be static, with the exception of the
18886 -- discrete type definition of a loop parameter specification.
18888 if not In_Iter_Schm
18889 and then not Is_Static_Range (R)
18890 then
18891 Check_SPARK_Restriction ("range should be static", R);
18892 end if;
18894 Lo := Low_Bound (R);
18895 Hi := High_Bound (R);
18897 -- We need to ensure validity of the bounds here, because if we
18898 -- go ahead and do the expansion, then the expanded code will get
18899 -- analyzed with range checks suppressed and we miss the check.
18900 -- Validity checks on the range of a quantified expression are
18901 -- delayed until the construct is transformed into a loop.
18903 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
18904 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
18905 then
18906 Validity_Check_Range (R);
18907 end if;
18909 -- If there were errors in the declaration, try and patch up some
18910 -- common mistakes in the bounds. The cases handled are literals
18911 -- which are Integer where the expected type is Real and vice versa.
18912 -- These corrections allow the compilation process to proceed further
18913 -- along since some basic assumptions of the format of the bounds
18914 -- are guaranteed.
18916 if Etype (R) = Any_Type then
18917 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
18918 Rewrite (Lo,
18919 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
18921 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
18922 Rewrite (Hi,
18923 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
18925 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
18926 Rewrite (Lo,
18927 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
18929 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
18930 Rewrite (Hi,
18931 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
18932 end if;
18934 Set_Etype (Lo, T);
18935 Set_Etype (Hi, T);
18936 end if;
18938 -- If the bounds of the range have been mistakenly given as string
18939 -- literals (perhaps in place of character literals), then an error
18940 -- has already been reported, but we rewrite the string literal as a
18941 -- bound of the range's type to avoid blowups in later processing
18942 -- that looks at static values.
18944 if Nkind (Lo) = N_String_Literal then
18945 Rewrite (Lo,
18946 Make_Attribute_Reference (Sloc (Lo),
18947 Attribute_Name => Name_First,
18948 Prefix => New_Reference_To (T, Sloc (Lo))));
18949 Analyze_And_Resolve (Lo);
18950 end if;
18952 if Nkind (Hi) = N_String_Literal then
18953 Rewrite (Hi,
18954 Make_Attribute_Reference (Sloc (Hi),
18955 Attribute_Name => Name_First,
18956 Prefix => New_Reference_To (T, Sloc (Hi))));
18957 Analyze_And_Resolve (Hi);
18958 end if;
18960 -- If bounds aren't scalar at this point then exit, avoiding
18961 -- problems with further processing of the range in this procedure.
18963 if not Is_Scalar_Type (Etype (Lo)) then
18964 return;
18965 end if;
18967 -- Resolve (actually Sem_Eval) has checked that the bounds are in
18968 -- then range of the base type. Here we check whether the bounds
18969 -- are in the range of the subtype itself. Note that if the bounds
18970 -- represent the null range the Constraint_Error exception should
18971 -- not be raised.
18973 -- ??? The following code should be cleaned up as follows
18975 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
18976 -- is done in the call to Range_Check (R, T); below
18978 -- 2. The use of R_Check_Off should be investigated and possibly
18979 -- removed, this would clean up things a bit.
18981 if Is_Null_Range (Lo, Hi) then
18982 null;
18984 else
18985 -- Capture values of bounds and generate temporaries for them
18986 -- if needed, before applying checks, since checks may cause
18987 -- duplication of the expression without forcing evaluation.
18989 -- The forced evaluation removes side effects from expressions,
18990 -- which should occur also in GNATprove mode. Otherwise, we end up
18991 -- with unexpected insertions of actions at places where this is
18992 -- not supposed to occur, e.g. on default parameters of a call.
18994 if Expander_Active or GNATprove_Mode then
18995 Force_Evaluation (Lo);
18996 Force_Evaluation (Hi);
18997 end if;
18999 -- We use a flag here instead of suppressing checks on the
19000 -- type because the type we check against isn't necessarily
19001 -- the place where we put the check.
19003 if not R_Check_Off then
19004 R_Checks := Get_Range_Checks (R, T);
19006 -- Look up tree to find an appropriate insertion point. We
19007 -- can't just use insert_actions because later processing
19008 -- depends on the insertion node. Prior to Ada 2012 the
19009 -- insertion point could only be a declaration or a loop, but
19010 -- quantified expressions can appear within any context in an
19011 -- expression, and the insertion point can be any statement,
19012 -- pragma, or declaration.
19014 Insert_Node := Parent (R);
19015 while Present (Insert_Node) loop
19016 exit when
19017 Nkind (Insert_Node) in N_Declaration
19018 and then
19019 not Nkind_In
19020 (Insert_Node, N_Component_Declaration,
19021 N_Loop_Parameter_Specification,
19022 N_Function_Specification,
19023 N_Procedure_Specification);
19025 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19026 or else Nkind (Insert_Node) in
19027 N_Statement_Other_Than_Procedure_Call
19028 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19029 N_Pragma);
19031 Insert_Node := Parent (Insert_Node);
19032 end loop;
19034 -- Why would Type_Decl not be present??? Without this test,
19035 -- short regression tests fail.
19037 if Present (Insert_Node) then
19039 -- Case of loop statement. Verify that the range is part
19040 -- of the subtype indication of the iteration scheme.
19042 if Nkind (Insert_Node) = N_Loop_Statement then
19043 declare
19044 Indic : Node_Id;
19046 begin
19047 Indic := Parent (R);
19048 while Present (Indic)
19049 and then Nkind (Indic) /= N_Subtype_Indication
19050 loop
19051 Indic := Parent (Indic);
19052 end loop;
19054 if Present (Indic) then
19055 Def_Id := Etype (Subtype_Mark (Indic));
19057 Insert_Range_Checks
19058 (R_Checks,
19059 Insert_Node,
19060 Def_Id,
19061 Sloc (Insert_Node),
19063 Do_Before => True);
19064 end if;
19065 end;
19067 -- Insertion before a declaration. If the declaration
19068 -- includes discriminants, the list of applicable checks
19069 -- is given by the caller.
19071 elsif Nkind (Insert_Node) in N_Declaration then
19072 Def_Id := Defining_Identifier (Insert_Node);
19074 if (Ekind (Def_Id) = E_Record_Type
19075 and then Depends_On_Discriminant (R))
19076 or else
19077 (Ekind (Def_Id) = E_Protected_Type
19078 and then Has_Discriminants (Def_Id))
19079 then
19080 Append_Range_Checks
19081 (R_Checks,
19082 Check_List, Def_Id, Sloc (Insert_Node), R);
19084 else
19085 Insert_Range_Checks
19086 (R_Checks,
19087 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19089 end if;
19091 -- Insertion before a statement. Range appears in the
19092 -- context of a quantified expression. Insertion will
19093 -- take place when expression is expanded.
19095 else
19096 null;
19097 end if;
19098 end if;
19099 end if;
19100 end if;
19102 -- Case of other than an explicit N_Range node
19104 -- The forced evaluation removes side effects from expressions, which
19105 -- should occur also in GNATprove mode. Otherwise, we end up with
19106 -- unexpected insertions of actions at places where this is not
19107 -- supposed to occur, e.g. on default parameters of a call.
19109 elsif Expander_Active or GNATprove_Mode then
19110 Get_Index_Bounds (R, Lo, Hi);
19111 Force_Evaluation (Lo);
19112 Force_Evaluation (Hi);
19113 end if;
19114 end Process_Range_Expr_In_Decl;
19116 --------------------------------------
19117 -- Process_Real_Range_Specification --
19118 --------------------------------------
19120 procedure Process_Real_Range_Specification (Def : Node_Id) is
19121 Spec : constant Node_Id := Real_Range_Specification (Def);
19122 Lo : Node_Id;
19123 Hi : Node_Id;
19124 Err : Boolean := False;
19126 procedure Analyze_Bound (N : Node_Id);
19127 -- Analyze and check one bound
19129 -------------------
19130 -- Analyze_Bound --
19131 -------------------
19133 procedure Analyze_Bound (N : Node_Id) is
19134 begin
19135 Analyze_And_Resolve (N, Any_Real);
19137 if not Is_OK_Static_Expression (N) then
19138 Flag_Non_Static_Expr
19139 ("bound in real type definition is not static!", N);
19140 Err := True;
19141 end if;
19142 end Analyze_Bound;
19144 -- Start of processing for Process_Real_Range_Specification
19146 begin
19147 if Present (Spec) then
19148 Lo := Low_Bound (Spec);
19149 Hi := High_Bound (Spec);
19150 Analyze_Bound (Lo);
19151 Analyze_Bound (Hi);
19153 -- If error, clear away junk range specification
19155 if Err then
19156 Set_Real_Range_Specification (Def, Empty);
19157 end if;
19158 end if;
19159 end Process_Real_Range_Specification;
19161 ---------------------
19162 -- Process_Subtype --
19163 ---------------------
19165 function Process_Subtype
19166 (S : Node_Id;
19167 Related_Nod : Node_Id;
19168 Related_Id : Entity_Id := Empty;
19169 Suffix : Character := ' ') return Entity_Id
19171 P : Node_Id;
19172 Def_Id : Entity_Id;
19173 Error_Node : Node_Id;
19174 Full_View_Id : Entity_Id;
19175 Subtype_Mark_Id : Entity_Id;
19177 May_Have_Null_Exclusion : Boolean;
19179 procedure Check_Incomplete (T : Entity_Id);
19180 -- Called to verify that an incomplete type is not used prematurely
19182 ----------------------
19183 -- Check_Incomplete --
19184 ----------------------
19186 procedure Check_Incomplete (T : Entity_Id) is
19187 begin
19188 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19190 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19191 and then
19192 not (Ada_Version >= Ada_2005
19193 and then
19194 (Nkind (Parent (T)) = N_Subtype_Declaration
19195 or else
19196 (Nkind (Parent (T)) = N_Subtype_Indication
19197 and then Nkind (Parent (Parent (T))) =
19198 N_Subtype_Declaration)))
19199 then
19200 Error_Msg_N ("invalid use of type before its full declaration", T);
19201 end if;
19202 end Check_Incomplete;
19204 -- Start of processing for Process_Subtype
19206 begin
19207 -- Case of no constraints present
19209 if Nkind (S) /= N_Subtype_Indication then
19210 Find_Type (S);
19211 Check_Incomplete (S);
19212 P := Parent (S);
19214 -- Ada 2005 (AI-231): Static check
19216 if Ada_Version >= Ada_2005
19217 and then Present (P)
19218 and then Null_Exclusion_Present (P)
19219 and then Nkind (P) /= N_Access_To_Object_Definition
19220 and then not Is_Access_Type (Entity (S))
19221 then
19222 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19223 end if;
19225 -- The following is ugly, can't we have a range or even a flag???
19227 May_Have_Null_Exclusion :=
19228 Nkind_In (P, N_Access_Definition,
19229 N_Access_Function_Definition,
19230 N_Access_Procedure_Definition,
19231 N_Access_To_Object_Definition,
19232 N_Allocator,
19233 N_Component_Definition)
19234 or else
19235 Nkind_In (P, N_Derived_Type_Definition,
19236 N_Discriminant_Specification,
19237 N_Formal_Object_Declaration,
19238 N_Object_Declaration,
19239 N_Object_Renaming_Declaration,
19240 N_Parameter_Specification,
19241 N_Subtype_Declaration);
19243 -- Create an Itype that is a duplicate of Entity (S) but with the
19244 -- null-exclusion attribute.
19246 if May_Have_Null_Exclusion
19247 and then Is_Access_Type (Entity (S))
19248 and then Null_Exclusion_Present (P)
19250 -- No need to check the case of an access to object definition.
19251 -- It is correct to define double not-null pointers.
19253 -- Example:
19254 -- type Not_Null_Int_Ptr is not null access Integer;
19255 -- type Acc is not null access Not_Null_Int_Ptr;
19257 and then Nkind (P) /= N_Access_To_Object_Definition
19258 then
19259 if Can_Never_Be_Null (Entity (S)) then
19260 case Nkind (Related_Nod) is
19261 when N_Full_Type_Declaration =>
19262 if Nkind (Type_Definition (Related_Nod))
19263 in N_Array_Type_Definition
19264 then
19265 Error_Node :=
19266 Subtype_Indication
19267 (Component_Definition
19268 (Type_Definition (Related_Nod)));
19269 else
19270 Error_Node :=
19271 Subtype_Indication (Type_Definition (Related_Nod));
19272 end if;
19274 when N_Subtype_Declaration =>
19275 Error_Node := Subtype_Indication (Related_Nod);
19277 when N_Object_Declaration =>
19278 Error_Node := Object_Definition (Related_Nod);
19280 when N_Component_Declaration =>
19281 Error_Node :=
19282 Subtype_Indication (Component_Definition (Related_Nod));
19284 when N_Allocator =>
19285 Error_Node := Expression (Related_Nod);
19287 when others =>
19288 pragma Assert (False);
19289 Error_Node := Related_Nod;
19290 end case;
19292 Error_Msg_NE
19293 ("`NOT NULL` not allowed (& already excludes null)",
19294 Error_Node,
19295 Entity (S));
19296 end if;
19298 Set_Etype (S,
19299 Create_Null_Excluding_Itype
19300 (T => Entity (S),
19301 Related_Nod => P));
19302 Set_Entity (S, Etype (S));
19303 end if;
19305 return Entity (S);
19307 -- Case of constraint present, so that we have an N_Subtype_Indication
19308 -- node (this node is created only if constraints are present).
19310 else
19311 Find_Type (Subtype_Mark (S));
19313 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19314 and then not
19315 (Nkind (Parent (S)) = N_Subtype_Declaration
19316 and then Is_Itype (Defining_Identifier (Parent (S))))
19317 then
19318 Check_Incomplete (Subtype_Mark (S));
19319 end if;
19321 P := Parent (S);
19322 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19324 -- Explicit subtype declaration case
19326 if Nkind (P) = N_Subtype_Declaration then
19327 Def_Id := Defining_Identifier (P);
19329 -- Explicit derived type definition case
19331 elsif Nkind (P) = N_Derived_Type_Definition then
19332 Def_Id := Defining_Identifier (Parent (P));
19334 -- Implicit case, the Def_Id must be created as an implicit type.
19335 -- The one exception arises in the case of concurrent types, array
19336 -- and access types, where other subsidiary implicit types may be
19337 -- created and must appear before the main implicit type. In these
19338 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19339 -- has not yet been called to create Def_Id.
19341 else
19342 if Is_Array_Type (Subtype_Mark_Id)
19343 or else Is_Concurrent_Type (Subtype_Mark_Id)
19344 or else Is_Access_Type (Subtype_Mark_Id)
19345 then
19346 Def_Id := Empty;
19348 -- For the other cases, we create a new unattached Itype,
19349 -- and set the indication to ensure it gets attached later.
19351 else
19352 Def_Id :=
19353 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19354 end if;
19355 end if;
19357 -- If the kind of constraint is invalid for this kind of type,
19358 -- then give an error, and then pretend no constraint was given.
19360 if not Is_Valid_Constraint_Kind
19361 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19362 then
19363 Error_Msg_N
19364 ("incorrect constraint for this kind of type", Constraint (S));
19366 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19368 -- Set Ekind of orphan itype, to prevent cascaded errors
19370 if Present (Def_Id) then
19371 Set_Ekind (Def_Id, Ekind (Any_Type));
19372 end if;
19374 -- Make recursive call, having got rid of the bogus constraint
19376 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19377 end if;
19379 -- Remaining processing depends on type. Select on Base_Type kind to
19380 -- ensure getting to the concrete type kind in the case of a private
19381 -- subtype (needed when only doing semantic analysis).
19383 case Ekind (Base_Type (Subtype_Mark_Id)) is
19384 when Access_Kind =>
19386 -- If this is a constraint on a class-wide type, discard it.
19387 -- There is currently no way to express a partial discriminant
19388 -- constraint on a type with unknown discriminants. This is
19389 -- a pathology that the ACATS wisely decides not to test.
19391 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19392 if Comes_From_Source (S) then
19393 Error_Msg_N
19394 ("constraint on class-wide type ignored?",
19395 Constraint (S));
19396 end if;
19398 if Nkind (P) = N_Subtype_Declaration then
19399 Set_Subtype_Indication (P,
19400 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19401 end if;
19403 return Subtype_Mark_Id;
19404 end if;
19406 Constrain_Access (Def_Id, S, Related_Nod);
19408 if Expander_Active
19409 and then Is_Itype (Designated_Type (Def_Id))
19410 and then Nkind (Related_Nod) = N_Subtype_Declaration
19411 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19412 then
19413 Build_Itype_Reference
19414 (Designated_Type (Def_Id), Related_Nod);
19415 end if;
19417 when Array_Kind =>
19418 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19420 when Decimal_Fixed_Point_Kind =>
19421 Constrain_Decimal (Def_Id, S);
19423 when Enumeration_Kind =>
19424 Constrain_Enumeration (Def_Id, S);
19426 when Ordinary_Fixed_Point_Kind =>
19427 Constrain_Ordinary_Fixed (Def_Id, S);
19429 when Float_Kind =>
19430 Constrain_Float (Def_Id, S);
19432 when Integer_Kind =>
19433 Constrain_Integer (Def_Id, S);
19435 when E_Record_Type |
19436 E_Record_Subtype |
19437 Class_Wide_Kind |
19438 E_Incomplete_Type =>
19439 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19441 if Ekind (Def_Id) = E_Incomplete_Type then
19442 Set_Private_Dependents (Def_Id, New_Elmt_List);
19443 end if;
19445 when Private_Kind =>
19446 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19447 Set_Private_Dependents (Def_Id, New_Elmt_List);
19449 -- In case of an invalid constraint prevent further processing
19450 -- since the type constructed is missing expected fields.
19452 if Etype (Def_Id) = Any_Type then
19453 return Def_Id;
19454 end if;
19456 -- If the full view is that of a task with discriminants,
19457 -- we must constrain both the concurrent type and its
19458 -- corresponding record type. Otherwise we will just propagate
19459 -- the constraint to the full view, if available.
19461 if Present (Full_View (Subtype_Mark_Id))
19462 and then Has_Discriminants (Subtype_Mark_Id)
19463 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19464 then
19465 Full_View_Id :=
19466 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19468 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19469 Constrain_Concurrent (Full_View_Id, S,
19470 Related_Nod, Related_Id, Suffix);
19471 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19472 Set_Full_View (Def_Id, Full_View_Id);
19474 -- Introduce an explicit reference to the private subtype,
19475 -- to prevent scope anomalies in gigi if first use appears
19476 -- in a nested context, e.g. a later function body.
19477 -- Should this be generated in other contexts than a full
19478 -- type declaration?
19480 if Is_Itype (Def_Id)
19481 and then
19482 Nkind (Parent (P)) = N_Full_Type_Declaration
19483 then
19484 Build_Itype_Reference (Def_Id, Parent (P));
19485 end if;
19487 else
19488 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19489 end if;
19491 when Concurrent_Kind =>
19492 Constrain_Concurrent (Def_Id, S,
19493 Related_Nod, Related_Id, Suffix);
19495 when others =>
19496 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19497 end case;
19499 -- Size and Convention are always inherited from the base type
19501 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19502 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19504 return Def_Id;
19505 end if;
19506 end Process_Subtype;
19508 ---------------------------------------
19509 -- Check_Anonymous_Access_Components --
19510 ---------------------------------------
19512 procedure Check_Anonymous_Access_Components
19513 (Typ_Decl : Node_Id;
19514 Typ : Entity_Id;
19515 Prev : Entity_Id;
19516 Comp_List : Node_Id)
19518 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19519 Anon_Access : Entity_Id;
19520 Acc_Def : Node_Id;
19521 Comp : Node_Id;
19522 Comp_Def : Node_Id;
19523 Decl : Node_Id;
19524 Type_Def : Node_Id;
19526 procedure Build_Incomplete_Type_Declaration;
19527 -- If the record type contains components that include an access to the
19528 -- current record, then create an incomplete type declaration for the
19529 -- record, to be used as the designated type of the anonymous access.
19530 -- This is done only once, and only if there is no previous partial
19531 -- view of the type.
19533 function Designates_T (Subt : Node_Id) return Boolean;
19534 -- Check whether a node designates the enclosing record type, or 'Class
19535 -- of that type
19537 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19538 -- Check whether an access definition includes a reference to
19539 -- the enclosing record type. The reference can be a subtype mark
19540 -- in the access definition itself, a 'Class attribute reference, or
19541 -- recursively a reference appearing in a parameter specification
19542 -- or result definition of an access_to_subprogram definition.
19544 --------------------------------------
19545 -- Build_Incomplete_Type_Declaration --
19546 --------------------------------------
19548 procedure Build_Incomplete_Type_Declaration is
19549 Decl : Node_Id;
19550 Inc_T : Entity_Id;
19551 H : Entity_Id;
19553 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19554 -- it's "is new ... with record" or else "is tagged record ...".
19556 Is_Tagged : constant Boolean :=
19557 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19558 and then
19559 Present
19560 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19561 or else
19562 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19563 and then Tagged_Present (Type_Definition (Typ_Decl)));
19565 begin
19566 -- If there is a previous partial view, no need to create a new one
19567 -- If the partial view, given by Prev, is incomplete, If Prev is
19568 -- a private declaration, full declaration is flagged accordingly.
19570 if Prev /= Typ then
19571 if Is_Tagged then
19572 Make_Class_Wide_Type (Prev);
19573 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19574 Set_Etype (Class_Wide_Type (Typ), Typ);
19575 end if;
19577 return;
19579 elsif Has_Private_Declaration (Typ) then
19581 -- If we refer to T'Class inside T, and T is the completion of a
19582 -- private type, then we need to make sure the class-wide type
19583 -- exists.
19585 if Is_Tagged then
19586 Make_Class_Wide_Type (Typ);
19587 end if;
19589 return;
19591 -- If there was a previous anonymous access type, the incomplete
19592 -- type declaration will have been created already.
19594 elsif Present (Current_Entity (Typ))
19595 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19596 and then Full_View (Current_Entity (Typ)) = Typ
19597 then
19598 if Is_Tagged
19599 and then Comes_From_Source (Current_Entity (Typ))
19600 and then not Is_Tagged_Type (Current_Entity (Typ))
19601 then
19602 Make_Class_Wide_Type (Typ);
19603 Error_Msg_N
19604 ("incomplete view of tagged type should be declared tagged??",
19605 Parent (Current_Entity (Typ)));
19606 end if;
19607 return;
19609 else
19610 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19611 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19613 -- Type has already been inserted into the current scope. Remove
19614 -- it, and add incomplete declaration for type, so that subsequent
19615 -- anonymous access types can use it. The entity is unchained from
19616 -- the homonym list and from immediate visibility. After analysis,
19617 -- the entity in the incomplete declaration becomes immediately
19618 -- visible in the record declaration that follows.
19620 H := Current_Entity (Typ);
19622 if H = Typ then
19623 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19624 else
19625 while Present (H)
19626 and then Homonym (H) /= Typ
19627 loop
19628 H := Homonym (Typ);
19629 end loop;
19631 Set_Homonym (H, Homonym (Typ));
19632 end if;
19634 Insert_Before (Typ_Decl, Decl);
19635 Analyze (Decl);
19636 Set_Full_View (Inc_T, Typ);
19638 if Is_Tagged then
19640 -- Create a common class-wide type for both views, and set the
19641 -- Etype of the class-wide type to the full view.
19643 Make_Class_Wide_Type (Inc_T);
19644 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19645 Set_Etype (Class_Wide_Type (Typ), Typ);
19646 end if;
19647 end if;
19648 end Build_Incomplete_Type_Declaration;
19650 ------------------
19651 -- Designates_T --
19652 ------------------
19654 function Designates_T (Subt : Node_Id) return Boolean is
19655 Type_Id : constant Name_Id := Chars (Typ);
19657 function Names_T (Nam : Node_Id) return Boolean;
19658 -- The record type has not been introduced in the current scope
19659 -- yet, so we must examine the name of the type itself, either
19660 -- an identifier T, or an expanded name of the form P.T, where
19661 -- P denotes the current scope.
19663 -------------
19664 -- Names_T --
19665 -------------
19667 function Names_T (Nam : Node_Id) return Boolean is
19668 begin
19669 if Nkind (Nam) = N_Identifier then
19670 return Chars (Nam) = Type_Id;
19672 elsif Nkind (Nam) = N_Selected_Component then
19673 if Chars (Selector_Name (Nam)) = Type_Id then
19674 if Nkind (Prefix (Nam)) = N_Identifier then
19675 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19677 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19678 return Chars (Selector_Name (Prefix (Nam))) =
19679 Chars (Current_Scope);
19680 else
19681 return False;
19682 end if;
19684 else
19685 return False;
19686 end if;
19688 else
19689 return False;
19690 end if;
19691 end Names_T;
19693 -- Start of processing for Designates_T
19695 begin
19696 if Nkind (Subt) = N_Identifier then
19697 return Chars (Subt) = Type_Id;
19699 -- Reference can be through an expanded name which has not been
19700 -- analyzed yet, and which designates enclosing scopes.
19702 elsif Nkind (Subt) = N_Selected_Component then
19703 if Names_T (Subt) then
19704 return True;
19706 -- Otherwise it must denote an entity that is already visible.
19707 -- The access definition may name a subtype of the enclosing
19708 -- type, if there is a previous incomplete declaration for it.
19710 else
19711 Find_Selected_Component (Subt);
19712 return
19713 Is_Entity_Name (Subt)
19714 and then Scope (Entity (Subt)) = Current_Scope
19715 and then
19716 (Chars (Base_Type (Entity (Subt))) = Type_Id
19717 or else
19718 (Is_Class_Wide_Type (Entity (Subt))
19719 and then
19720 Chars (Etype (Base_Type (Entity (Subt)))) =
19721 Type_Id));
19722 end if;
19724 -- A reference to the current type may appear as the prefix of
19725 -- a 'Class attribute.
19727 elsif Nkind (Subt) = N_Attribute_Reference
19728 and then Attribute_Name (Subt) = Name_Class
19729 then
19730 return Names_T (Prefix (Subt));
19732 else
19733 return False;
19734 end if;
19735 end Designates_T;
19737 ----------------
19738 -- Mentions_T --
19739 ----------------
19741 function Mentions_T (Acc_Def : Node_Id) return Boolean is
19742 Param_Spec : Node_Id;
19744 Acc_Subprg : constant Node_Id :=
19745 Access_To_Subprogram_Definition (Acc_Def);
19747 begin
19748 if No (Acc_Subprg) then
19749 return Designates_T (Subtype_Mark (Acc_Def));
19750 end if;
19752 -- Component is an access_to_subprogram: examine its formals,
19753 -- and result definition in the case of an access_to_function.
19755 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
19756 while Present (Param_Spec) loop
19757 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
19758 and then Mentions_T (Parameter_Type (Param_Spec))
19759 then
19760 return True;
19762 elsif Designates_T (Parameter_Type (Param_Spec)) then
19763 return True;
19764 end if;
19766 Next (Param_Spec);
19767 end loop;
19769 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
19770 if Nkind (Result_Definition (Acc_Subprg)) =
19771 N_Access_Definition
19772 then
19773 return Mentions_T (Result_Definition (Acc_Subprg));
19774 else
19775 return Designates_T (Result_Definition (Acc_Subprg));
19776 end if;
19777 end if;
19779 return False;
19780 end Mentions_T;
19782 -- Start of processing for Check_Anonymous_Access_Components
19784 begin
19785 if No (Comp_List) then
19786 return;
19787 end if;
19789 Comp := First (Component_Items (Comp_List));
19790 while Present (Comp) loop
19791 if Nkind (Comp) = N_Component_Declaration
19792 and then Present
19793 (Access_Definition (Component_Definition (Comp)))
19794 and then
19795 Mentions_T (Access_Definition (Component_Definition (Comp)))
19796 then
19797 Comp_Def := Component_Definition (Comp);
19798 Acc_Def :=
19799 Access_To_Subprogram_Definition
19800 (Access_Definition (Comp_Def));
19802 Build_Incomplete_Type_Declaration;
19803 Anon_Access := Make_Temporary (Loc, 'S');
19805 -- Create a declaration for the anonymous access type: either
19806 -- an access_to_object or an access_to_subprogram.
19808 if Present (Acc_Def) then
19809 if Nkind (Acc_Def) = N_Access_Function_Definition then
19810 Type_Def :=
19811 Make_Access_Function_Definition (Loc,
19812 Parameter_Specifications =>
19813 Parameter_Specifications (Acc_Def),
19814 Result_Definition => Result_Definition (Acc_Def));
19815 else
19816 Type_Def :=
19817 Make_Access_Procedure_Definition (Loc,
19818 Parameter_Specifications =>
19819 Parameter_Specifications (Acc_Def));
19820 end if;
19822 else
19823 Type_Def :=
19824 Make_Access_To_Object_Definition (Loc,
19825 Subtype_Indication =>
19826 Relocate_Node
19827 (Subtype_Mark
19828 (Access_Definition (Comp_Def))));
19830 Set_Constant_Present
19831 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
19832 Set_All_Present
19833 (Type_Def, All_Present (Access_Definition (Comp_Def)));
19834 end if;
19836 Set_Null_Exclusion_Present
19837 (Type_Def,
19838 Null_Exclusion_Present (Access_Definition (Comp_Def)));
19840 Decl :=
19841 Make_Full_Type_Declaration (Loc,
19842 Defining_Identifier => Anon_Access,
19843 Type_Definition => Type_Def);
19845 Insert_Before (Typ_Decl, Decl);
19846 Analyze (Decl);
19848 -- If an access to subprogram, create the extra formals
19850 if Present (Acc_Def) then
19851 Create_Extra_Formals (Designated_Type (Anon_Access));
19853 -- If an access to object, preserve entity of designated type,
19854 -- for ASIS use, before rewriting the component definition.
19856 else
19857 declare
19858 Desig : Entity_Id;
19860 begin
19861 Desig := Entity (Subtype_Indication (Type_Def));
19863 -- If the access definition is to the current record,
19864 -- the visible entity at this point is an incomplete
19865 -- type. Retrieve the full view to simplify ASIS queries
19867 if Ekind (Desig) = E_Incomplete_Type then
19868 Desig := Full_View (Desig);
19869 end if;
19871 Set_Entity
19872 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
19873 end;
19874 end if;
19876 Rewrite (Comp_Def,
19877 Make_Component_Definition (Loc,
19878 Subtype_Indication =>
19879 New_Occurrence_Of (Anon_Access, Loc)));
19881 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
19882 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
19883 else
19884 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
19885 end if;
19887 Set_Is_Local_Anonymous_Access (Anon_Access);
19888 end if;
19890 Next (Comp);
19891 end loop;
19893 if Present (Variant_Part (Comp_List)) then
19894 declare
19895 V : Node_Id;
19896 begin
19897 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
19898 while Present (V) loop
19899 Check_Anonymous_Access_Components
19900 (Typ_Decl, Typ, Prev, Component_List (V));
19901 Next_Non_Pragma (V);
19902 end loop;
19903 end;
19904 end if;
19905 end Check_Anonymous_Access_Components;
19907 ----------------------------------
19908 -- Preanalyze_Assert_Expression --
19909 ----------------------------------
19911 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19912 begin
19913 In_Assertion_Expr := In_Assertion_Expr + 1;
19914 Preanalyze_Spec_Expression (N, T);
19915 In_Assertion_Expr := In_Assertion_Expr - 1;
19916 end Preanalyze_Assert_Expression;
19918 --------------------------------
19919 -- Preanalyze_Spec_Expression --
19920 --------------------------------
19922 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19923 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19924 begin
19925 In_Spec_Expression := True;
19926 Preanalyze_And_Resolve (N, T);
19927 In_Spec_Expression := Save_In_Spec_Expression;
19928 end Preanalyze_Spec_Expression;
19930 -----------------------------
19931 -- Record_Type_Declaration --
19932 -----------------------------
19934 procedure Record_Type_Declaration
19935 (T : Entity_Id;
19936 N : Node_Id;
19937 Prev : Entity_Id)
19939 Def : constant Node_Id := Type_Definition (N);
19940 Is_Tagged : Boolean;
19941 Tag_Comp : Entity_Id;
19943 begin
19944 -- These flags must be initialized before calling Process_Discriminants
19945 -- because this routine makes use of them.
19947 Set_Ekind (T, E_Record_Type);
19948 Set_Etype (T, T);
19949 Init_Size_Align (T);
19950 Set_Interfaces (T, No_Elist);
19951 Set_Stored_Constraint (T, No_Elist);
19953 -- Normal case
19955 if Ada_Version < Ada_2005
19956 or else not Interface_Present (Def)
19957 then
19958 if Limited_Present (Def) then
19959 Check_SPARK_Restriction ("limited is not allowed", N);
19960 end if;
19962 if Abstract_Present (Def) then
19963 Check_SPARK_Restriction ("abstract is not allowed", N);
19964 end if;
19966 -- The flag Is_Tagged_Type might have already been set by
19967 -- Find_Type_Name if it detected an error for declaration T. This
19968 -- arises in the case of private tagged types where the full view
19969 -- omits the word tagged.
19971 Is_Tagged :=
19972 Tagged_Present (Def)
19973 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
19975 Set_Is_Tagged_Type (T, Is_Tagged);
19976 Set_Is_Limited_Record (T, Limited_Present (Def));
19978 -- Type is abstract if full declaration carries keyword, or if
19979 -- previous partial view did.
19981 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
19982 or else Abstract_Present (Def));
19984 else
19985 Check_SPARK_Restriction ("interface is not allowed", N);
19987 Is_Tagged := True;
19988 Analyze_Interface_Declaration (T, Def);
19990 if Present (Discriminant_Specifications (N)) then
19991 Error_Msg_N
19992 ("interface types cannot have discriminants",
19993 Defining_Identifier
19994 (First (Discriminant_Specifications (N))));
19995 end if;
19996 end if;
19998 -- First pass: if there are self-referential access components,
19999 -- create the required anonymous access type declarations, and if
20000 -- need be an incomplete type declaration for T itself.
20002 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20004 if Ada_Version >= Ada_2005
20005 and then Present (Interface_List (Def))
20006 then
20007 Check_Interfaces (N, Def);
20009 declare
20010 Ifaces_List : Elist_Id;
20012 begin
20013 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20014 -- already in the parents.
20016 Collect_Interfaces
20017 (T => T,
20018 Ifaces_List => Ifaces_List,
20019 Exclude_Parents => True);
20021 Set_Interfaces (T, Ifaces_List);
20022 end;
20023 end if;
20025 -- Records constitute a scope for the component declarations within.
20026 -- The scope is created prior to the processing of these declarations.
20027 -- Discriminants are processed first, so that they are visible when
20028 -- processing the other components. The Ekind of the record type itself
20029 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20031 -- Enter record scope
20033 Push_Scope (T);
20035 -- If an incomplete or private type declaration was already given for
20036 -- the type, then this scope already exists, and the discriminants have
20037 -- been declared within. We must verify that the full declaration
20038 -- matches the incomplete one.
20040 Check_Or_Process_Discriminants (N, T, Prev);
20042 Set_Is_Constrained (T, not Has_Discriminants (T));
20043 Set_Has_Delayed_Freeze (T, True);
20045 -- For tagged types add a manually analyzed component corresponding
20046 -- to the component _tag, the corresponding piece of tree will be
20047 -- expanded as part of the freezing actions if it is not a CPP_Class.
20049 if Is_Tagged then
20051 -- Do not add the tag unless we are in expansion mode
20053 if Expander_Active then
20054 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20055 Enter_Name (Tag_Comp);
20057 Set_Ekind (Tag_Comp, E_Component);
20058 Set_Is_Tag (Tag_Comp);
20059 Set_Is_Aliased (Tag_Comp);
20060 Set_Etype (Tag_Comp, RTE (RE_Tag));
20061 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20062 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20063 Init_Component_Location (Tag_Comp);
20065 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20066 -- implemented interfaces.
20068 if Has_Interfaces (T) then
20069 Add_Interface_Tag_Components (N, T);
20070 end if;
20071 end if;
20073 Make_Class_Wide_Type (T);
20074 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20075 end if;
20077 -- We must suppress range checks when processing record components in
20078 -- the presence of discriminants, since we don't want spurious checks to
20079 -- be generated during their analysis, but Suppress_Range_Checks flags
20080 -- must be reset the after processing the record definition.
20082 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20083 -- couldn't we just use the normal range check suppression method here.
20084 -- That would seem cleaner ???
20086 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20087 Set_Kill_Range_Checks (T, True);
20088 Record_Type_Definition (Def, Prev);
20089 Set_Kill_Range_Checks (T, False);
20090 else
20091 Record_Type_Definition (Def, Prev);
20092 end if;
20094 -- Exit from record scope
20096 End_Scope;
20098 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20099 -- the implemented interfaces and associate them an aliased entity.
20101 if Is_Tagged
20102 and then not Is_Empty_List (Interface_List (Def))
20103 then
20104 Derive_Progenitor_Subprograms (T, T);
20105 end if;
20107 Check_Function_Writable_Actuals (N);
20108 end Record_Type_Declaration;
20110 ----------------------------
20111 -- Record_Type_Definition --
20112 ----------------------------
20114 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20115 Component : Entity_Id;
20116 Ctrl_Components : Boolean := False;
20117 Final_Storage_Only : Boolean;
20118 T : Entity_Id;
20120 begin
20121 if Ekind (Prev_T) = E_Incomplete_Type then
20122 T := Full_View (Prev_T);
20123 else
20124 T := Prev_T;
20125 end if;
20127 -- In SPARK, tagged types and type extensions may only be declared in
20128 -- the specification of library unit packages.
20130 if Present (Def) and then Is_Tagged_Type (T) then
20131 declare
20132 Typ : Node_Id;
20133 Ctxt : Node_Id;
20135 begin
20136 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20137 Typ := Parent (Def);
20138 else
20139 pragma Assert
20140 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20141 Typ := Parent (Parent (Def));
20142 end if;
20144 Ctxt := Parent (Typ);
20146 if Nkind (Ctxt) = N_Package_Body
20147 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20148 then
20149 Check_SPARK_Restriction
20150 ("type should be defined in package specification", Typ);
20152 elsif Nkind (Ctxt) /= N_Package_Specification
20153 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20154 then
20155 Check_SPARK_Restriction
20156 ("type should be defined in library unit package", Typ);
20157 end if;
20158 end;
20159 end if;
20161 Final_Storage_Only := not Is_Controlled (T);
20163 -- Ada 2005: Check whether an explicit Limited is present in a derived
20164 -- type declaration.
20166 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20167 and then Limited_Present (Parent (Def))
20168 then
20169 Set_Is_Limited_Record (T);
20170 end if;
20172 -- If the component list of a record type is defined by the reserved
20173 -- word null and there is no discriminant part, then the record type has
20174 -- no components and all records of the type are null records (RM 3.7)
20175 -- This procedure is also called to process the extension part of a
20176 -- record extension, in which case the current scope may have inherited
20177 -- components.
20179 if No (Def)
20180 or else No (Component_List (Def))
20181 or else Null_Present (Component_List (Def))
20182 then
20183 if not Is_Tagged_Type (T) then
20184 Check_SPARK_Restriction ("non-tagged record cannot be null", Def);
20185 end if;
20187 else
20188 Analyze_Declarations (Component_Items (Component_List (Def)));
20190 if Present (Variant_Part (Component_List (Def))) then
20191 Check_SPARK_Restriction ("variant part is not allowed", Def);
20192 Analyze (Variant_Part (Component_List (Def)));
20193 end if;
20194 end if;
20196 -- After completing the semantic analysis of the record definition,
20197 -- record components, both new and inherited, are accessible. Set their
20198 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20199 -- whose Ekind may be void.
20201 Component := First_Entity (Current_Scope);
20202 while Present (Component) loop
20203 if Ekind (Component) = E_Void
20204 and then not Is_Itype (Component)
20205 then
20206 Set_Ekind (Component, E_Component);
20207 Init_Component_Location (Component);
20208 end if;
20210 if Has_Task (Etype (Component)) then
20211 Set_Has_Task (T);
20212 end if;
20214 if Ekind (Component) /= E_Component then
20215 null;
20217 -- Do not set Has_Controlled_Component on a class-wide equivalent
20218 -- type. See Make_CW_Equivalent_Type.
20220 elsif not Is_Class_Wide_Equivalent_Type (T)
20221 and then (Has_Controlled_Component (Etype (Component))
20222 or else (Chars (Component) /= Name_uParent
20223 and then Is_Controlled (Etype (Component))))
20224 then
20225 Set_Has_Controlled_Component (T, True);
20226 Final_Storage_Only :=
20227 Final_Storage_Only
20228 and then Finalize_Storage_Only (Etype (Component));
20229 Ctrl_Components := True;
20230 end if;
20232 Next_Entity (Component);
20233 end loop;
20235 -- A Type is Finalize_Storage_Only only if all its controlled components
20236 -- are also.
20238 if Ctrl_Components then
20239 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20240 end if;
20242 -- Place reference to end record on the proper entity, which may
20243 -- be a partial view.
20245 if Present (Def) then
20246 Process_End_Label (Def, 'e', Prev_T);
20247 end if;
20248 end Record_Type_Definition;
20250 ------------------------
20251 -- Replace_Components --
20252 ------------------------
20254 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20255 function Process (N : Node_Id) return Traverse_Result;
20257 -------------
20258 -- Process --
20259 -------------
20261 function Process (N : Node_Id) return Traverse_Result is
20262 Comp : Entity_Id;
20264 begin
20265 if Nkind (N) = N_Discriminant_Specification then
20266 Comp := First_Discriminant (Typ);
20267 while Present (Comp) loop
20268 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20269 Set_Defining_Identifier (N, Comp);
20270 exit;
20271 end if;
20273 Next_Discriminant (Comp);
20274 end loop;
20276 elsif Nkind (N) = N_Component_Declaration then
20277 Comp := First_Component (Typ);
20278 while Present (Comp) loop
20279 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20280 Set_Defining_Identifier (N, Comp);
20281 exit;
20282 end if;
20284 Next_Component (Comp);
20285 end loop;
20286 end if;
20288 return OK;
20289 end Process;
20291 procedure Replace is new Traverse_Proc (Process);
20293 -- Start of processing for Replace_Components
20295 begin
20296 Replace (Decl);
20297 end Replace_Components;
20299 -------------------------------
20300 -- Set_Completion_Referenced --
20301 -------------------------------
20303 procedure Set_Completion_Referenced (E : Entity_Id) is
20304 begin
20305 -- If in main unit, mark entity that is a completion as referenced,
20306 -- warnings go on the partial view when needed.
20308 if In_Extended_Main_Source_Unit (E) then
20309 Set_Referenced (E);
20310 end if;
20311 end Set_Completion_Referenced;
20313 ---------------------
20314 -- Set_Fixed_Range --
20315 ---------------------
20317 -- The range for fixed-point types is complicated by the fact that we
20318 -- do not know the exact end points at the time of the declaration. This
20319 -- is true for three reasons:
20321 -- A size clause may affect the fudging of the end-points.
20322 -- A small clause may affect the values of the end-points.
20323 -- We try to include the end-points if it does not affect the size.
20325 -- This means that the actual end-points must be established at the
20326 -- point when the type is frozen. Meanwhile, we first narrow the range
20327 -- as permitted (so that it will fit if necessary in a small specified
20328 -- size), and then build a range subtree with these narrowed bounds.
20329 -- Set_Fixed_Range constructs the range from real literal values, and
20330 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20332 -- The parent of this range is set to point to the entity so that it is
20333 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20334 -- other scalar types, which are just pointers to the range in the
20335 -- original tree, this would otherwise be an orphan).
20337 -- The tree is left unanalyzed. When the type is frozen, the processing
20338 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20339 -- analyzed, and uses this as an indication that it should complete
20340 -- work on the range (it will know the final small and size values).
20342 procedure Set_Fixed_Range
20343 (E : Entity_Id;
20344 Loc : Source_Ptr;
20345 Lo : Ureal;
20346 Hi : Ureal)
20348 S : constant Node_Id :=
20349 Make_Range (Loc,
20350 Low_Bound => Make_Real_Literal (Loc, Lo),
20351 High_Bound => Make_Real_Literal (Loc, Hi));
20352 begin
20353 Set_Scalar_Range (E, S);
20354 Set_Parent (S, E);
20356 -- Before the freeze point, the bounds of a fixed point are universal
20357 -- and carry the corresponding type.
20359 Set_Etype (Low_Bound (S), Universal_Real);
20360 Set_Etype (High_Bound (S), Universal_Real);
20361 end Set_Fixed_Range;
20363 ----------------------------------
20364 -- Set_Scalar_Range_For_Subtype --
20365 ----------------------------------
20367 procedure Set_Scalar_Range_For_Subtype
20368 (Def_Id : Entity_Id;
20369 R : Node_Id;
20370 Subt : Entity_Id)
20372 Kind : constant Entity_Kind := Ekind (Def_Id);
20374 begin
20375 -- Defend against previous error
20377 if Nkind (R) = N_Error then
20378 return;
20379 end if;
20381 Set_Scalar_Range (Def_Id, R);
20383 -- We need to link the range into the tree before resolving it so
20384 -- that types that are referenced, including importantly the subtype
20385 -- itself, are properly frozen (Freeze_Expression requires that the
20386 -- expression be properly linked into the tree). Of course if it is
20387 -- already linked in, then we do not disturb the current link.
20389 if No (Parent (R)) then
20390 Set_Parent (R, Def_Id);
20391 end if;
20393 -- Reset the kind of the subtype during analysis of the range, to
20394 -- catch possible premature use in the bounds themselves.
20396 Set_Ekind (Def_Id, E_Void);
20397 Process_Range_Expr_In_Decl (R, Subt);
20398 Set_Ekind (Def_Id, Kind);
20399 end Set_Scalar_Range_For_Subtype;
20401 --------------------------------------------------------
20402 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20403 --------------------------------------------------------
20405 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20406 (E : Entity_Id)
20408 begin
20409 -- Make sure set if encountered during Expand_To_Stored_Constraint
20411 Set_Stored_Constraint (E, No_Elist);
20413 -- Give it the right value
20415 if Is_Constrained (E) and then Has_Discriminants (E) then
20416 Set_Stored_Constraint (E,
20417 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20418 end if;
20419 end Set_Stored_Constraint_From_Discriminant_Constraint;
20421 -------------------------------------
20422 -- Signed_Integer_Type_Declaration --
20423 -------------------------------------
20425 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20426 Implicit_Base : Entity_Id;
20427 Base_Typ : Entity_Id;
20428 Lo_Val : Uint;
20429 Hi_Val : Uint;
20430 Errs : Boolean := False;
20431 Lo : Node_Id;
20432 Hi : Node_Id;
20434 function Can_Derive_From (E : Entity_Id) return Boolean;
20435 -- Determine whether given bounds allow derivation from specified type
20437 procedure Check_Bound (Expr : Node_Id);
20438 -- Check bound to make sure it is integral and static. If not, post
20439 -- appropriate error message and set Errs flag
20441 ---------------------
20442 -- Can_Derive_From --
20443 ---------------------
20445 -- Note we check both bounds against both end values, to deal with
20446 -- strange types like ones with a range of 0 .. -12341234.
20448 function Can_Derive_From (E : Entity_Id) return Boolean is
20449 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20450 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20451 begin
20452 return Lo <= Lo_Val and then Lo_Val <= Hi
20453 and then
20454 Lo <= Hi_Val and then Hi_Val <= Hi;
20455 end Can_Derive_From;
20457 -----------------
20458 -- Check_Bound --
20459 -----------------
20461 procedure Check_Bound (Expr : Node_Id) is
20462 begin
20463 -- If a range constraint is used as an integer type definition, each
20464 -- bound of the range must be defined by a static expression of some
20465 -- integer type, but the two bounds need not have the same integer
20466 -- type (Negative bounds are allowed.) (RM 3.5.4)
20468 if not Is_Integer_Type (Etype (Expr)) then
20469 Error_Msg_N
20470 ("integer type definition bounds must be of integer type", Expr);
20471 Errs := True;
20473 elsif not Is_OK_Static_Expression (Expr) then
20474 Flag_Non_Static_Expr
20475 ("non-static expression used for integer type bound!", Expr);
20476 Errs := True;
20478 -- The bounds are folded into literals, and we set their type to be
20479 -- universal, to avoid typing difficulties: we cannot set the type
20480 -- of the literal to the new type, because this would be a forward
20481 -- reference for the back end, and if the original type is user-
20482 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20484 else
20485 if Is_Entity_Name (Expr) then
20486 Fold_Uint (Expr, Expr_Value (Expr), True);
20487 end if;
20489 Set_Etype (Expr, Universal_Integer);
20490 end if;
20491 end Check_Bound;
20493 -- Start of processing for Signed_Integer_Type_Declaration
20495 begin
20496 -- Create an anonymous base type
20498 Implicit_Base :=
20499 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20501 -- Analyze and check the bounds, they can be of any integer type
20503 Lo := Low_Bound (Def);
20504 Hi := High_Bound (Def);
20506 -- Arbitrarily use Integer as the type if either bound had an error
20508 if Hi = Error or else Lo = Error then
20509 Base_Typ := Any_Integer;
20510 Set_Error_Posted (T, True);
20512 -- Here both bounds are OK expressions
20514 else
20515 Analyze_And_Resolve (Lo, Any_Integer);
20516 Analyze_And_Resolve (Hi, Any_Integer);
20518 Check_Bound (Lo);
20519 Check_Bound (Hi);
20521 if Errs then
20522 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20523 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20524 end if;
20526 -- Find type to derive from
20528 Lo_Val := Expr_Value (Lo);
20529 Hi_Val := Expr_Value (Hi);
20531 if Can_Derive_From (Standard_Short_Short_Integer) then
20532 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20534 elsif Can_Derive_From (Standard_Short_Integer) then
20535 Base_Typ := Base_Type (Standard_Short_Integer);
20537 elsif Can_Derive_From (Standard_Integer) then
20538 Base_Typ := Base_Type (Standard_Integer);
20540 elsif Can_Derive_From (Standard_Long_Integer) then
20541 Base_Typ := Base_Type (Standard_Long_Integer);
20543 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20544 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20546 else
20547 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20548 Error_Msg_N ("integer type definition bounds out of range", Def);
20549 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20550 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20551 end if;
20552 end if;
20554 -- Complete both implicit base and declared first subtype entities
20556 Set_Etype (Implicit_Base, Base_Typ);
20557 Set_Size_Info (Implicit_Base, (Base_Typ));
20558 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20559 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20561 Set_Ekind (T, E_Signed_Integer_Subtype);
20562 Set_Etype (T, Implicit_Base);
20564 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20566 Set_Size_Info (T, (Implicit_Base));
20567 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20568 Set_Scalar_Range (T, Def);
20569 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20570 Set_Is_Constrained (T);
20571 end Signed_Integer_Type_Declaration;
20573 end Sem_Ch3;