Daily bump.
[official-gcc.git] / gcc / sched-rgn.c
blob0ca1a472fa311fafaf4b464563b5501fda881fd4
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* This pass implements list scheduling within basic blocks. It is
25 run twice: (1) after flow analysis, but before register allocation,
26 and (2) after register allocation.
28 The first run performs interblock scheduling, moving insns between
29 different blocks in the same "region", and the second runs only
30 basic block scheduling.
32 Interblock motions performed are useful motions and speculative
33 motions, including speculative loads. Motions requiring code
34 duplication are not supported. The identification of motion type
35 and the check for validity of speculative motions requires
36 construction and analysis of the function's control flow graph.
38 The main entry point for this pass is schedule_insns(), called for
39 each function. The work of the scheduler is organized in three
40 levels: (1) function level: insns are subject to splitting,
41 control-flow-graph is constructed, regions are computed (after
42 reload, each region is of one block), (2) region level: control
43 flow graph attributes required for interblock scheduling are
44 computed (dominators, reachability, etc.), data dependences and
45 priorities are computed, and (3) block level: insns in the block
46 are actually scheduled. */
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "toplev.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "function.h"
58 #include "flags.h"
59 #include "insn-config.h"
60 #include "insn-attr.h"
61 #include "except.h"
62 #include "toplev.h"
63 #include "recog.h"
64 #include "cfglayout.h"
65 #include "params.h"
66 #include "sched-int.h"
67 #include "target.h"
68 #include "timevar.h"
69 #include "tree-pass.h"
70 #include "dbgcnt.h"
72 #ifdef INSN_SCHEDULING
73 /* Some accessor macros for h_i_d members only used within this file. */
74 #define INSN_REF_COUNT(INSN) (h_i_d[INSN_UID (INSN)].ref_count)
75 #define FED_BY_SPEC_LOAD(insn) (h_i_d[INSN_UID (insn)].fed_by_spec_load)
76 #define IS_LOAD_INSN(insn) (h_i_d[INSN_UID (insn)].is_load_insn)
78 /* nr_inter/spec counts interblock/speculative motion for the function. */
79 static int nr_inter, nr_spec;
81 static int is_cfg_nonregular (void);
82 static bool sched_is_disabled_for_current_region_p (void);
84 /* A region is the main entity for interblock scheduling: insns
85 are allowed to move between blocks in the same region, along
86 control flow graph edges, in the 'up' direction. */
87 typedef struct
89 /* Number of extended basic blocks in region. */
90 int rgn_nr_blocks;
91 /* cblocks in the region (actually index in rgn_bb_table). */
92 int rgn_blocks;
93 /* Dependencies for this region are already computed. Basically, indicates,
94 that this is a recovery block. */
95 unsigned int dont_calc_deps : 1;
96 /* This region has at least one non-trivial ebb. */
97 unsigned int has_real_ebb : 1;
99 region;
101 /* Number of regions in the procedure. */
102 static int nr_regions;
104 /* Table of region descriptions. */
105 static region *rgn_table;
107 /* Array of lists of regions' blocks. */
108 static int *rgn_bb_table;
110 /* Topological order of blocks in the region (if b2 is reachable from
111 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
112 always referred to by either block or b, while its topological
113 order name (in the region) is referred to by bb. */
114 static int *block_to_bb;
116 /* The number of the region containing a block. */
117 static int *containing_rgn;
119 /* The minimum probability of reaching a source block so that it will be
120 considered for speculative scheduling. */
121 static int min_spec_prob;
123 #define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
124 #define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
125 #define RGN_DONT_CALC_DEPS(rgn) (rgn_table[rgn].dont_calc_deps)
126 #define RGN_HAS_REAL_EBB(rgn) (rgn_table[rgn].has_real_ebb)
127 #define BLOCK_TO_BB(block) (block_to_bb[block])
128 #define CONTAINING_RGN(block) (containing_rgn[block])
130 void debug_regions (void);
131 static void find_single_block_region (void);
132 static void find_rgns (void);
133 static void extend_rgns (int *, int *, sbitmap, int *);
134 static bool too_large (int, int *, int *);
136 extern void debug_live (int, int);
138 /* Blocks of the current region being scheduled. */
139 static int current_nr_blocks;
140 static int current_blocks;
142 static int rgn_n_insns;
144 /* The mapping from ebb to block. */
145 /* ebb_head [i] - is index in rgn_bb_table, while
146 EBB_HEAD (i) - is basic block index.
147 BASIC_BLOCK (EBB_HEAD (i)) - head of ebb. */
148 #define BB_TO_BLOCK(ebb) (rgn_bb_table[ebb_head[ebb]])
149 #define EBB_FIRST_BB(ebb) BASIC_BLOCK (BB_TO_BLOCK (ebb))
150 #define EBB_LAST_BB(ebb) BASIC_BLOCK (rgn_bb_table[ebb_head[ebb + 1] - 1])
152 /* Target info declarations.
154 The block currently being scheduled is referred to as the "target" block,
155 while other blocks in the region from which insns can be moved to the
156 target are called "source" blocks. The candidate structure holds info
157 about such sources: are they valid? Speculative? Etc. */
158 typedef struct
160 basic_block *first_member;
161 int nr_members;
163 bblst;
165 typedef struct
167 char is_valid;
168 char is_speculative;
169 int src_prob;
170 bblst split_bbs;
171 bblst update_bbs;
173 candidate;
175 static candidate *candidate_table;
177 /* A speculative motion requires checking live information on the path
178 from 'source' to 'target'. The split blocks are those to be checked.
179 After a speculative motion, live information should be modified in
180 the 'update' blocks.
182 Lists of split and update blocks for each candidate of the current
183 target are in array bblst_table. */
184 static basic_block *bblst_table;
185 static int bblst_size, bblst_last;
187 #define IS_VALID(src) ( candidate_table[src].is_valid )
188 #define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
189 #define SRC_PROB(src) ( candidate_table[src].src_prob )
191 /* The bb being currently scheduled. */
192 static int target_bb;
194 /* List of edges. */
195 typedef struct
197 edge *first_member;
198 int nr_members;
200 edgelst;
202 static edge *edgelst_table;
203 static int edgelst_last;
205 static void extract_edgelst (sbitmap, edgelst *);
208 /* Target info functions. */
209 static void split_edges (int, int, edgelst *);
210 static void compute_trg_info (int);
211 void debug_candidate (int);
212 void debug_candidates (int);
214 /* Dominators array: dom[i] contains the sbitmap of dominators of
215 bb i in the region. */
216 static sbitmap *dom;
218 /* bb 0 is the only region entry. */
219 #define IS_RGN_ENTRY(bb) (!bb)
221 /* Is bb_src dominated by bb_trg. */
222 #define IS_DOMINATED(bb_src, bb_trg) \
223 ( TEST_BIT (dom[bb_src], bb_trg) )
225 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
226 the probability of bb i relative to the region entry. */
227 static int *prob;
229 /* Bit-set of edges, where bit i stands for edge i. */
230 typedef sbitmap edgeset;
232 /* Number of edges in the region. */
233 static int rgn_nr_edges;
235 /* Array of size rgn_nr_edges. */
236 static edge *rgn_edges;
238 /* Mapping from each edge in the graph to its number in the rgn. */
239 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
240 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
242 /* The split edges of a source bb is different for each target
243 bb. In order to compute this efficiently, the 'potential-split edges'
244 are computed for each bb prior to scheduling a region. This is actually
245 the split edges of each bb relative to the region entry.
247 pot_split[bb] is the set of potential split edges of bb. */
248 static edgeset *pot_split;
250 /* For every bb, a set of its ancestor edges. */
251 static edgeset *ancestor_edges;
253 /* Array of EBBs sizes. Currently we can get a ebb only through
254 splitting of currently scheduling block, therefore, we don't need
255 ebb_head array for every region, its sufficient to hold it only
256 for current one. */
257 static int *ebb_head;
259 static void compute_dom_prob_ps (int);
261 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
262 #define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
263 #define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN)))
265 /* Speculative scheduling functions. */
266 static int check_live_1 (int, rtx);
267 static void update_live_1 (int, rtx);
268 static int check_live (rtx, int);
269 static void update_live (rtx, int);
270 static void set_spec_fed (rtx);
271 static int is_pfree (rtx, int, int);
272 static int find_conditional_protection (rtx, int);
273 static int is_conditionally_protected (rtx, int, int);
274 static int is_prisky (rtx, int, int);
275 static int is_exception_free (rtx, int, int);
277 static bool sets_likely_spilled (rtx);
278 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
279 static void add_branch_dependences (rtx, rtx);
280 static void compute_block_dependences (int);
282 static void init_regions (void);
283 static void schedule_region (int);
284 static rtx concat_INSN_LIST (rtx, rtx);
285 static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
286 static void propagate_deps (int, struct deps *);
287 static void free_pending_lists (void);
289 /* Functions for construction of the control flow graph. */
291 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
293 We decide not to build the control flow graph if there is possibly more
294 than one entry to the function, if computed branches exist, if we
295 have nonlocal gotos, or if we have an unreachable loop. */
297 static int
298 is_cfg_nonregular (void)
300 basic_block b;
301 rtx insn;
303 /* If we have a label that could be the target of a nonlocal goto, then
304 the cfg is not well structured. */
305 if (nonlocal_goto_handler_labels)
306 return 1;
308 /* If we have any forced labels, then the cfg is not well structured. */
309 if (forced_labels)
310 return 1;
312 /* If we have exception handlers, then we consider the cfg not well
313 structured. ?!? We should be able to handle this now that we
314 compute an accurate cfg for EH. */
315 if (current_function_has_exception_handlers ())
316 return 1;
318 /* If we have insns which refer to labels as non-jumped-to operands,
319 then we consider the cfg not well structured. */
320 FOR_EACH_BB (b)
321 FOR_BB_INSNS (b, insn)
323 /* Check for labels referred to but (at least not directly) as
324 jump targets. */
325 if (INSN_P (insn)
326 && find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX))
327 return 1;
329 /* If this function has a computed jump, then we consider the cfg
330 not well structured. */
331 if (JUMP_P (insn) && computed_jump_p (insn))
332 return 1;
335 /* Unreachable loops with more than one basic block are detected
336 during the DFS traversal in find_rgns.
338 Unreachable loops with a single block are detected here. This
339 test is redundant with the one in find_rgns, but it's much
340 cheaper to go ahead and catch the trivial case here. */
341 FOR_EACH_BB (b)
343 if (EDGE_COUNT (b->preds) == 0
344 || (single_pred_p (b)
345 && single_pred (b) == b))
346 return 1;
349 /* All the tests passed. Consider the cfg well structured. */
350 return 0;
353 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
355 static void
356 extract_edgelst (sbitmap set, edgelst *el)
358 unsigned int i = 0;
359 sbitmap_iterator sbi;
361 /* edgelst table space is reused in each call to extract_edgelst. */
362 edgelst_last = 0;
364 el->first_member = &edgelst_table[edgelst_last];
365 el->nr_members = 0;
367 /* Iterate over each word in the bitset. */
368 EXECUTE_IF_SET_IN_SBITMAP (set, 0, i, sbi)
370 edgelst_table[edgelst_last++] = rgn_edges[i];
371 el->nr_members++;
375 /* Functions for the construction of regions. */
377 /* Print the regions, for debugging purposes. Callable from debugger. */
379 void
380 debug_regions (void)
382 int rgn, bb;
384 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
385 for (rgn = 0; rgn < nr_regions; rgn++)
387 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
388 rgn_table[rgn].rgn_nr_blocks);
389 fprintf (sched_dump, ";;\tbb/block: ");
391 /* We don't have ebb_head initialized yet, so we can't use
392 BB_TO_BLOCK (). */
393 current_blocks = RGN_BLOCKS (rgn);
395 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
396 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
398 fprintf (sched_dump, "\n\n");
402 /* Build a single block region for each basic block in the function.
403 This allows for using the same code for interblock and basic block
404 scheduling. */
406 static void
407 find_single_block_region (void)
409 basic_block bb;
411 nr_regions = 0;
413 FOR_EACH_BB (bb)
415 rgn_bb_table[nr_regions] = bb->index;
416 RGN_NR_BLOCKS (nr_regions) = 1;
417 RGN_BLOCKS (nr_regions) = nr_regions;
418 RGN_DONT_CALC_DEPS (nr_regions) = 0;
419 RGN_HAS_REAL_EBB (nr_regions) = 0;
420 CONTAINING_RGN (bb->index) = nr_regions;
421 BLOCK_TO_BB (bb->index) = 0;
422 nr_regions++;
426 /* Update number of blocks and the estimate for number of insns
427 in the region. Return true if the region is "too large" for interblock
428 scheduling (compile time considerations). */
430 static bool
431 too_large (int block, int *num_bbs, int *num_insns)
433 (*num_bbs)++;
434 (*num_insns) += (INSN_LUID (BB_END (BASIC_BLOCK (block)))
435 - INSN_LUID (BB_HEAD (BASIC_BLOCK (block))));
437 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
438 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
441 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
442 is still an inner loop. Put in max_hdr[blk] the header of the most inner
443 loop containing blk. */
444 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
446 if (max_hdr[blk] == -1) \
447 max_hdr[blk] = hdr; \
448 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
449 RESET_BIT (inner, hdr); \
450 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
452 RESET_BIT (inner,max_hdr[blk]); \
453 max_hdr[blk] = hdr; \
457 /* Find regions for interblock scheduling.
459 A region for scheduling can be:
461 * A loop-free procedure, or
463 * A reducible inner loop, or
465 * A basic block not contained in any other region.
467 ?!? In theory we could build other regions based on extended basic
468 blocks or reverse extended basic blocks. Is it worth the trouble?
470 Loop blocks that form a region are put into the region's block list
471 in topological order.
473 This procedure stores its results into the following global (ick) variables
475 * rgn_nr
476 * rgn_table
477 * rgn_bb_table
478 * block_to_bb
479 * containing region
481 We use dominator relationships to avoid making regions out of non-reducible
482 loops.
484 This procedure needs to be converted to work on pred/succ lists instead
485 of edge tables. That would simplify it somewhat. */
487 static void
488 find_rgns (void)
490 int *max_hdr, *dfs_nr, *degree;
491 char no_loops = 1;
492 int node, child, loop_head, i, head, tail;
493 int count = 0, sp, idx = 0;
494 edge_iterator current_edge;
495 edge_iterator *stack;
496 int num_bbs, num_insns, unreachable;
497 int too_large_failure;
498 basic_block bb;
500 /* Note if a block is a natural loop header. */
501 sbitmap header;
503 /* Note if a block is a natural inner loop header. */
504 sbitmap inner;
506 /* Note if a block is in the block queue. */
507 sbitmap in_queue;
509 /* Note if a block is in the block queue. */
510 sbitmap in_stack;
512 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
513 and a mapping from block to its loop header (if the block is contained
514 in a loop, else -1).
516 Store results in HEADER, INNER, and MAX_HDR respectively, these will
517 be used as inputs to the second traversal.
519 STACK, SP and DFS_NR are only used during the first traversal. */
521 /* Allocate and initialize variables for the first traversal. */
522 max_hdr = XNEWVEC (int, last_basic_block);
523 dfs_nr = XCNEWVEC (int, last_basic_block);
524 stack = XNEWVEC (edge_iterator, n_edges);
526 inner = sbitmap_alloc (last_basic_block);
527 sbitmap_ones (inner);
529 header = sbitmap_alloc (last_basic_block);
530 sbitmap_zero (header);
532 in_queue = sbitmap_alloc (last_basic_block);
533 sbitmap_zero (in_queue);
535 in_stack = sbitmap_alloc (last_basic_block);
536 sbitmap_zero (in_stack);
538 for (i = 0; i < last_basic_block; i++)
539 max_hdr[i] = -1;
541 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
542 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
544 /* DFS traversal to find inner loops in the cfg. */
546 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
547 sp = -1;
549 while (1)
551 if (EDGE_PASSED (current_edge))
553 /* We have reached a leaf node or a node that was already
554 processed. Pop edges off the stack until we find
555 an edge that has not yet been processed. */
556 while (sp >= 0 && EDGE_PASSED (current_edge))
558 /* Pop entry off the stack. */
559 current_edge = stack[sp--];
560 node = ei_edge (current_edge)->src->index;
561 gcc_assert (node != ENTRY_BLOCK);
562 child = ei_edge (current_edge)->dest->index;
563 gcc_assert (child != EXIT_BLOCK);
564 RESET_BIT (in_stack, child);
565 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
566 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
567 ei_next (&current_edge);
570 /* See if have finished the DFS tree traversal. */
571 if (sp < 0 && EDGE_PASSED (current_edge))
572 break;
574 /* Nope, continue the traversal with the popped node. */
575 continue;
578 /* Process a node. */
579 node = ei_edge (current_edge)->src->index;
580 gcc_assert (node != ENTRY_BLOCK);
581 SET_BIT (in_stack, node);
582 dfs_nr[node] = ++count;
584 /* We don't traverse to the exit block. */
585 child = ei_edge (current_edge)->dest->index;
586 if (child == EXIT_BLOCK)
588 SET_EDGE_PASSED (current_edge);
589 ei_next (&current_edge);
590 continue;
593 /* If the successor is in the stack, then we've found a loop.
594 Mark the loop, if it is not a natural loop, then it will
595 be rejected during the second traversal. */
596 if (TEST_BIT (in_stack, child))
598 no_loops = 0;
599 SET_BIT (header, child);
600 UPDATE_LOOP_RELATIONS (node, child);
601 SET_EDGE_PASSED (current_edge);
602 ei_next (&current_edge);
603 continue;
606 /* If the child was already visited, then there is no need to visit
607 it again. Just update the loop relationships and restart
608 with a new edge. */
609 if (dfs_nr[child])
611 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
612 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
613 SET_EDGE_PASSED (current_edge);
614 ei_next (&current_edge);
615 continue;
618 /* Push an entry on the stack and continue DFS traversal. */
619 stack[++sp] = current_edge;
620 SET_EDGE_PASSED (current_edge);
621 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
624 /* Reset ->aux field used by EDGE_PASSED. */
625 FOR_ALL_BB (bb)
627 edge_iterator ei;
628 edge e;
629 FOR_EACH_EDGE (e, ei, bb->succs)
630 e->aux = NULL;
634 /* Another check for unreachable blocks. The earlier test in
635 is_cfg_nonregular only finds unreachable blocks that do not
636 form a loop.
638 The DFS traversal will mark every block that is reachable from
639 the entry node by placing a nonzero value in dfs_nr. Thus if
640 dfs_nr is zero for any block, then it must be unreachable. */
641 unreachable = 0;
642 FOR_EACH_BB (bb)
643 if (dfs_nr[bb->index] == 0)
645 unreachable = 1;
646 break;
649 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
650 to hold degree counts. */
651 degree = dfs_nr;
653 FOR_EACH_BB (bb)
654 degree[bb->index] = EDGE_COUNT (bb->preds);
656 /* Do not perform region scheduling if there are any unreachable
657 blocks. */
658 if (!unreachable)
660 int *queue, *degree1 = NULL;
661 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
662 there basic blocks, which are forced to be region heads.
663 This is done to try to assemble few smaller regions
664 from a too_large region. */
665 sbitmap extended_rgn_header = NULL;
666 bool extend_regions_p;
668 if (no_loops)
669 SET_BIT (header, 0);
671 /* Second traversal:find reducible inner loops and topologically sort
672 block of each region. */
674 queue = XNEWVEC (int, n_basic_blocks);
676 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
677 if (extend_regions_p)
679 degree1 = xmalloc (last_basic_block * sizeof (int));
680 extended_rgn_header = sbitmap_alloc (last_basic_block);
681 sbitmap_zero (extended_rgn_header);
684 /* Find blocks which are inner loop headers. We still have non-reducible
685 loops to consider at this point. */
686 FOR_EACH_BB (bb)
688 if (TEST_BIT (header, bb->index) && TEST_BIT (inner, bb->index))
690 edge e;
691 edge_iterator ei;
692 basic_block jbb;
694 /* Now check that the loop is reducible. We do this separate
695 from finding inner loops so that we do not find a reducible
696 loop which contains an inner non-reducible loop.
698 A simple way to find reducible/natural loops is to verify
699 that each block in the loop is dominated by the loop
700 header.
702 If there exists a block that is not dominated by the loop
703 header, then the block is reachable from outside the loop
704 and thus the loop is not a natural loop. */
705 FOR_EACH_BB (jbb)
707 /* First identify blocks in the loop, except for the loop
708 entry block. */
709 if (bb->index == max_hdr[jbb->index] && bb != jbb)
711 /* Now verify that the block is dominated by the loop
712 header. */
713 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
714 break;
718 /* If we exited the loop early, then I is the header of
719 a non-reducible loop and we should quit processing it
720 now. */
721 if (jbb != EXIT_BLOCK_PTR)
722 continue;
724 /* I is a header of an inner loop, or block 0 in a subroutine
725 with no loops at all. */
726 head = tail = -1;
727 too_large_failure = 0;
728 loop_head = max_hdr[bb->index];
730 if (extend_regions_p)
731 /* We save degree in case when we meet a too_large region
732 and cancel it. We need a correct degree later when
733 calling extend_rgns. */
734 memcpy (degree1, degree, last_basic_block * sizeof (int));
736 /* Decrease degree of all I's successors for topological
737 ordering. */
738 FOR_EACH_EDGE (e, ei, bb->succs)
739 if (e->dest != EXIT_BLOCK_PTR)
740 --degree[e->dest->index];
742 /* Estimate # insns, and count # blocks in the region. */
743 num_bbs = 1;
744 num_insns = (INSN_LUID (BB_END (bb))
745 - INSN_LUID (BB_HEAD (bb)));
747 /* Find all loop latches (blocks with back edges to the loop
748 header) or all the leaf blocks in the cfg has no loops.
750 Place those blocks into the queue. */
751 if (no_loops)
753 FOR_EACH_BB (jbb)
754 /* Leaf nodes have only a single successor which must
755 be EXIT_BLOCK. */
756 if (single_succ_p (jbb)
757 && single_succ (jbb) == EXIT_BLOCK_PTR)
759 queue[++tail] = jbb->index;
760 SET_BIT (in_queue, jbb->index);
762 if (too_large (jbb->index, &num_bbs, &num_insns))
764 too_large_failure = 1;
765 break;
769 else
771 edge e;
773 FOR_EACH_EDGE (e, ei, bb->preds)
775 if (e->src == ENTRY_BLOCK_PTR)
776 continue;
778 node = e->src->index;
780 if (max_hdr[node] == loop_head && node != bb->index)
782 /* This is a loop latch. */
783 queue[++tail] = node;
784 SET_BIT (in_queue, node);
786 if (too_large (node, &num_bbs, &num_insns))
788 too_large_failure = 1;
789 break;
795 /* Now add all the blocks in the loop to the queue.
797 We know the loop is a natural loop; however the algorithm
798 above will not always mark certain blocks as being in the
799 loop. Consider:
800 node children
801 a b,c
803 c a,d
806 The algorithm in the DFS traversal may not mark B & D as part
807 of the loop (i.e. they will not have max_hdr set to A).
809 We know they can not be loop latches (else they would have
810 had max_hdr set since they'd have a backedge to a dominator
811 block). So we don't need them on the initial queue.
813 We know they are part of the loop because they are dominated
814 by the loop header and can be reached by a backwards walk of
815 the edges starting with nodes on the initial queue.
817 It is safe and desirable to include those nodes in the
818 loop/scheduling region. To do so we would need to decrease
819 the degree of a node if it is the target of a backedge
820 within the loop itself as the node is placed in the queue.
822 We do not do this because I'm not sure that the actual
823 scheduling code will properly handle this case. ?!? */
825 while (head < tail && !too_large_failure)
827 edge e;
828 child = queue[++head];
830 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
832 node = e->src->index;
834 /* See discussion above about nodes not marked as in
835 this loop during the initial DFS traversal. */
836 if (e->src == ENTRY_BLOCK_PTR
837 || max_hdr[node] != loop_head)
839 tail = -1;
840 break;
842 else if (!TEST_BIT (in_queue, node) && node != bb->index)
844 queue[++tail] = node;
845 SET_BIT (in_queue, node);
847 if (too_large (node, &num_bbs, &num_insns))
849 too_large_failure = 1;
850 break;
856 if (tail >= 0 && !too_large_failure)
858 /* Place the loop header into list of region blocks. */
859 degree[bb->index] = -1;
860 rgn_bb_table[idx] = bb->index;
861 RGN_NR_BLOCKS (nr_regions) = num_bbs;
862 RGN_BLOCKS (nr_regions) = idx++;
863 RGN_DONT_CALC_DEPS (nr_regions) = 0;
864 RGN_HAS_REAL_EBB (nr_regions) = 0;
865 CONTAINING_RGN (bb->index) = nr_regions;
866 BLOCK_TO_BB (bb->index) = count = 0;
868 /* Remove blocks from queue[] when their in degree
869 becomes zero. Repeat until no blocks are left on the
870 list. This produces a topological list of blocks in
871 the region. */
872 while (tail >= 0)
874 if (head < 0)
875 head = tail;
876 child = queue[head];
877 if (degree[child] == 0)
879 edge e;
881 degree[child] = -1;
882 rgn_bb_table[idx++] = child;
883 BLOCK_TO_BB (child) = ++count;
884 CONTAINING_RGN (child) = nr_regions;
885 queue[head] = queue[tail--];
887 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
888 if (e->dest != EXIT_BLOCK_PTR)
889 --degree[e->dest->index];
891 else
892 --head;
894 ++nr_regions;
896 else if (extend_regions_p)
898 /* Restore DEGREE. */
899 int *t = degree;
901 degree = degree1;
902 degree1 = t;
904 /* And force successors of BB to be region heads.
905 This may provide several smaller regions instead
906 of one too_large region. */
907 FOR_EACH_EDGE (e, ei, bb->succs)
908 if (e->dest != EXIT_BLOCK_PTR)
909 SET_BIT (extended_rgn_header, e->dest->index);
913 free (queue);
915 if (extend_regions_p)
917 free (degree1);
919 sbitmap_a_or_b (header, header, extended_rgn_header);
920 sbitmap_free (extended_rgn_header);
922 extend_rgns (degree, &idx, header, max_hdr);
926 /* Any block that did not end up in a region is placed into a region
927 by itself. */
928 FOR_EACH_BB (bb)
929 if (degree[bb->index] >= 0)
931 rgn_bb_table[idx] = bb->index;
932 RGN_NR_BLOCKS (nr_regions) = 1;
933 RGN_BLOCKS (nr_regions) = idx++;
934 RGN_DONT_CALC_DEPS (nr_regions) = 0;
935 RGN_HAS_REAL_EBB (nr_regions) = 0;
936 CONTAINING_RGN (bb->index) = nr_regions++;
937 BLOCK_TO_BB (bb->index) = 0;
940 free (max_hdr);
941 free (degree);
942 free (stack);
943 sbitmap_free (header);
944 sbitmap_free (inner);
945 sbitmap_free (in_queue);
946 sbitmap_free (in_stack);
949 static int gather_region_statistics (int **);
950 static void print_region_statistics (int *, int, int *, int);
952 /* Calculate the histogram that shows the number of regions having the
953 given number of basic blocks, and store it in the RSP array. Return
954 the size of this array. */
955 static int
956 gather_region_statistics (int **rsp)
958 int i, *a = 0, a_sz = 0;
960 /* a[i] is the number of regions that have (i + 1) basic blocks. */
961 for (i = 0; i < nr_regions; i++)
963 int nr_blocks = RGN_NR_BLOCKS (i);
965 gcc_assert (nr_blocks >= 1);
967 if (nr_blocks > a_sz)
969 a = xrealloc (a, nr_blocks * sizeof (*a));
971 a[a_sz++] = 0;
972 while (a_sz != nr_blocks);
975 a[nr_blocks - 1]++;
978 *rsp = a;
979 return a_sz;
982 /* Print regions statistics. S1 and S2 denote the data before and after
983 calling extend_rgns, respectively. */
984 static void
985 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
987 int i;
989 /* We iterate until s2_sz because extend_rgns does not decrease
990 the maximal region size. */
991 for (i = 1; i < s2_sz; i++)
993 int n1, n2;
995 n2 = s2[i];
997 if (n2 == 0)
998 continue;
1000 if (i >= s1_sz)
1001 n1 = 0;
1002 else
1003 n1 = s1[i];
1005 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1006 "was %d + %d more\n", i + 1, n1, n2 - n1);
1010 /* Extend regions.
1011 DEGREE - Array of incoming edge count, considering only
1012 the edges, that don't have their sources in formed regions yet.
1013 IDXP - pointer to the next available index in rgn_bb_table.
1014 HEADER - set of all region heads.
1015 LOOP_HDR - mapping from block to the containing loop
1016 (two blocks can reside within one region if they have
1017 the same loop header). */
1018 static void
1019 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1021 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1022 int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
1024 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1026 max_hdr = xmalloc (last_basic_block * sizeof (*max_hdr));
1028 order = xmalloc (last_basic_block * sizeof (*order));
1029 post_order_compute (order, false, false);
1031 for (i = nblocks - 1; i >= 0; i--)
1033 int bbn = order[i];
1034 if (degree[bbn] >= 0)
1036 max_hdr[bbn] = bbn;
1037 rescan = 1;
1039 else
1040 /* This block already was processed in find_rgns. */
1041 max_hdr[bbn] = -1;
1044 /* The idea is to topologically walk through CFG in top-down order.
1045 During the traversal, if all the predecessors of a node are
1046 marked to be in the same region (they all have the same max_hdr),
1047 then current node is also marked to be a part of that region.
1048 Otherwise the node starts its own region.
1049 CFG should be traversed until no further changes are made. On each
1050 iteration the set of the region heads is extended (the set of those
1051 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1052 set of all basic blocks, thus the algorithm is guaranteed to terminate. */
1054 while (rescan && iter < max_iter)
1056 rescan = 0;
1058 for (i = nblocks - 1; i >= 0; i--)
1060 edge e;
1061 edge_iterator ei;
1062 int bbn = order[i];
1064 if (max_hdr[bbn] != -1 && !TEST_BIT (header, bbn))
1066 int hdr = -1;
1068 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
1070 int predn = e->src->index;
1072 if (predn != ENTRY_BLOCK
1073 /* If pred wasn't processed in find_rgns. */
1074 && max_hdr[predn] != -1
1075 /* And pred and bb reside in the same loop.
1076 (Or out of any loop). */
1077 && loop_hdr[bbn] == loop_hdr[predn])
1079 if (hdr == -1)
1080 /* Then bb extends the containing region of pred. */
1081 hdr = max_hdr[predn];
1082 else if (hdr != max_hdr[predn])
1083 /* Too bad, there are at least two predecessors
1084 that reside in different regions. Thus, BB should
1085 begin its own region. */
1087 hdr = bbn;
1088 break;
1091 else
1092 /* BB starts its own region. */
1094 hdr = bbn;
1095 break;
1099 if (hdr == bbn)
1101 /* If BB start its own region,
1102 update set of headers with BB. */
1103 SET_BIT (header, bbn);
1104 rescan = 1;
1106 else
1107 gcc_assert (hdr != -1);
1109 max_hdr[bbn] = hdr;
1113 iter++;
1116 /* Statistics were gathered on the SPEC2000 package of tests with
1117 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1119 Statistics for SPECint:
1120 1 iteration : 1751 cases (38.7%)
1121 2 iterations: 2770 cases (61.3%)
1122 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1123 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1124 (We don't count single block regions here).
1126 Statistics for SPECfp:
1127 1 iteration : 621 cases (35.9%)
1128 2 iterations: 1110 cases (64.1%)
1129 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1130 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1131 (We don't count single block regions here).
1133 By default we do at most 2 iterations.
1134 This can be overridden with max-sched-extend-regions-iters parameter:
1135 0 - disable region extension,
1136 N > 0 - do at most N iterations. */
1138 if (sched_verbose && iter != 0)
1139 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1140 rescan ? "... failed" : "");
1142 if (!rescan && iter != 0)
1144 int *s1 = NULL, s1_sz = 0;
1146 /* Save the old statistics for later printout. */
1147 if (sched_verbose >= 6)
1148 s1_sz = gather_region_statistics (&s1);
1150 /* We have succeeded. Now assemble the regions. */
1151 for (i = nblocks - 1; i >= 0; i--)
1153 int bbn = order[i];
1155 if (max_hdr[bbn] == bbn)
1156 /* BBN is a region head. */
1158 edge e;
1159 edge_iterator ei;
1160 int num_bbs = 0, j, num_insns = 0, large;
1162 large = too_large (bbn, &num_bbs, &num_insns);
1164 degree[bbn] = -1;
1165 rgn_bb_table[idx] = bbn;
1166 RGN_BLOCKS (nr_regions) = idx++;
1167 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1168 RGN_HAS_REAL_EBB (nr_regions) = 0;
1169 CONTAINING_RGN (bbn) = nr_regions;
1170 BLOCK_TO_BB (bbn) = 0;
1172 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
1173 if (e->dest != EXIT_BLOCK_PTR)
1174 degree[e->dest->index]--;
1176 if (!large)
1177 /* Here we check whether the region is too_large. */
1178 for (j = i - 1; j >= 0; j--)
1180 int succn = order[j];
1181 if (max_hdr[succn] == bbn)
1183 if ((large = too_large (succn, &num_bbs, &num_insns)))
1184 break;
1188 if (large)
1189 /* If the region is too_large, then wrap every block of
1190 the region into single block region.
1191 Here we wrap region head only. Other blocks are
1192 processed in the below cycle. */
1194 RGN_NR_BLOCKS (nr_regions) = 1;
1195 nr_regions++;
1198 num_bbs = 1;
1200 for (j = i - 1; j >= 0; j--)
1202 int succn = order[j];
1204 if (max_hdr[succn] == bbn)
1205 /* This cycle iterates over all basic blocks, that
1206 are supposed to be in the region with head BBN,
1207 and wraps them into that region (or in single
1208 block region). */
1210 gcc_assert (degree[succn] == 0);
1212 degree[succn] = -1;
1213 rgn_bb_table[idx] = succn;
1214 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1215 CONTAINING_RGN (succn) = nr_regions;
1217 if (large)
1218 /* Wrap SUCCN into single block region. */
1220 RGN_BLOCKS (nr_regions) = idx;
1221 RGN_NR_BLOCKS (nr_regions) = 1;
1222 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1223 RGN_HAS_REAL_EBB (nr_regions) = 0;
1224 nr_regions++;
1227 idx++;
1229 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
1230 if (e->dest != EXIT_BLOCK_PTR)
1231 degree[e->dest->index]--;
1235 if (!large)
1237 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1238 nr_regions++;
1243 if (sched_verbose >= 6)
1245 int *s2, s2_sz;
1247 /* Get the new statistics and print the comparison with the
1248 one before calling this function. */
1249 s2_sz = gather_region_statistics (&s2);
1250 print_region_statistics (s1, s1_sz, s2, s2_sz);
1251 free (s1);
1252 free (s2);
1256 free (order);
1257 free (max_hdr);
1259 *idxp = idx;
1262 /* Functions for regions scheduling information. */
1264 /* Compute dominators, probability, and potential-split-edges of bb.
1265 Assume that these values were already computed for bb's predecessors. */
1267 static void
1268 compute_dom_prob_ps (int bb)
1270 edge_iterator in_ei;
1271 edge in_edge;
1273 /* We shouldn't have any real ebbs yet. */
1274 gcc_assert (ebb_head [bb] == bb + current_blocks);
1276 if (IS_RGN_ENTRY (bb))
1278 SET_BIT (dom[bb], 0);
1279 prob[bb] = REG_BR_PROB_BASE;
1280 return;
1283 prob[bb] = 0;
1285 /* Initialize dom[bb] to '111..1'. */
1286 sbitmap_ones (dom[bb]);
1288 FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
1290 int pred_bb;
1291 edge out_edge;
1292 edge_iterator out_ei;
1294 if (in_edge->src == ENTRY_BLOCK_PTR)
1295 continue;
1297 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1298 sbitmap_a_and_b (dom[bb], dom[bb], dom[pred_bb]);
1299 sbitmap_a_or_b (ancestor_edges[bb],
1300 ancestor_edges[bb], ancestor_edges[pred_bb]);
1302 SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1304 sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1306 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1307 SET_BIT (pot_split[bb], EDGE_TO_BIT (out_edge));
1309 prob[bb] += ((prob[pred_bb] * in_edge->probability) / REG_BR_PROB_BASE);
1312 SET_BIT (dom[bb], bb);
1313 sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1315 if (sched_verbose >= 2)
1316 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1317 (100 * prob[bb]) / REG_BR_PROB_BASE);
1320 /* Functions for target info. */
1322 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1323 Note that bb_trg dominates bb_src. */
1325 static void
1326 split_edges (int bb_src, int bb_trg, edgelst *bl)
1328 sbitmap src = sbitmap_alloc (pot_split[bb_src]->n_bits);
1329 sbitmap_copy (src, pot_split[bb_src]);
1331 sbitmap_difference (src, src, pot_split[bb_trg]);
1332 extract_edgelst (src, bl);
1333 sbitmap_free (src);
1336 /* Find the valid candidate-source-blocks for the target block TRG, compute
1337 their probability, and check if they are speculative or not.
1338 For speculative sources, compute their update-blocks and split-blocks. */
1340 static void
1341 compute_trg_info (int trg)
1343 candidate *sp;
1344 edgelst el;
1345 int i, j, k, update_idx;
1346 basic_block block;
1347 sbitmap visited;
1348 edge_iterator ei;
1349 edge e;
1351 /* Define some of the fields for the target bb as well. */
1352 sp = candidate_table + trg;
1353 sp->is_valid = 1;
1354 sp->is_speculative = 0;
1355 sp->src_prob = REG_BR_PROB_BASE;
1357 visited = sbitmap_alloc (last_basic_block);
1359 for (i = trg + 1; i < current_nr_blocks; i++)
1361 sp = candidate_table + i;
1363 sp->is_valid = IS_DOMINATED (i, trg);
1364 if (sp->is_valid)
1366 int tf = prob[trg], cf = prob[i];
1368 /* In CFGs with low probability edges TF can possibly be zero. */
1369 sp->src_prob = (tf ? ((cf * REG_BR_PROB_BASE) / tf) : 0);
1370 sp->is_valid = (sp->src_prob >= min_spec_prob);
1373 if (sp->is_valid)
1375 split_edges (i, trg, &el);
1376 sp->is_speculative = (el.nr_members) ? 1 : 0;
1377 if (sp->is_speculative && !flag_schedule_speculative)
1378 sp->is_valid = 0;
1381 if (sp->is_valid)
1383 /* Compute split blocks and store them in bblst_table.
1384 The TO block of every split edge is a split block. */
1385 sp->split_bbs.first_member = &bblst_table[bblst_last];
1386 sp->split_bbs.nr_members = el.nr_members;
1387 for (j = 0; j < el.nr_members; bblst_last++, j++)
1388 bblst_table[bblst_last] = el.first_member[j]->dest;
1389 sp->update_bbs.first_member = &bblst_table[bblst_last];
1391 /* Compute update blocks and store them in bblst_table.
1392 For every split edge, look at the FROM block, and check
1393 all out edges. For each out edge that is not a split edge,
1394 add the TO block to the update block list. This list can end
1395 up with a lot of duplicates. We need to weed them out to avoid
1396 overrunning the end of the bblst_table. */
1398 update_idx = 0;
1399 sbitmap_zero (visited);
1400 for (j = 0; j < el.nr_members; j++)
1402 block = el.first_member[j]->src;
1403 FOR_EACH_EDGE (e, ei, block->succs)
1405 if (!TEST_BIT (visited, e->dest->index))
1407 for (k = 0; k < el.nr_members; k++)
1408 if (e == el.first_member[k])
1409 break;
1411 if (k >= el.nr_members)
1413 bblst_table[bblst_last++] = e->dest;
1414 SET_BIT (visited, e->dest->index);
1415 update_idx++;
1420 sp->update_bbs.nr_members = update_idx;
1422 /* Make sure we didn't overrun the end of bblst_table. */
1423 gcc_assert (bblst_last <= bblst_size);
1425 else
1427 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1429 sp->is_speculative = 0;
1430 sp->src_prob = 0;
1434 sbitmap_free (visited);
1437 /* Print candidates info, for debugging purposes. Callable from debugger. */
1439 void
1440 debug_candidate (int i)
1442 if (!candidate_table[i].is_valid)
1443 return;
1445 if (candidate_table[i].is_speculative)
1447 int j;
1448 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1450 fprintf (sched_dump, "split path: ");
1451 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1453 int b = candidate_table[i].split_bbs.first_member[j]->index;
1455 fprintf (sched_dump, " %d ", b);
1457 fprintf (sched_dump, "\n");
1459 fprintf (sched_dump, "update path: ");
1460 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1462 int b = candidate_table[i].update_bbs.first_member[j]->index;
1464 fprintf (sched_dump, " %d ", b);
1466 fprintf (sched_dump, "\n");
1468 else
1470 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1474 /* Print candidates info, for debugging purposes. Callable from debugger. */
1476 void
1477 debug_candidates (int trg)
1479 int i;
1481 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1482 BB_TO_BLOCK (trg), trg);
1483 for (i = trg + 1; i < current_nr_blocks; i++)
1484 debug_candidate (i);
1487 /* Functions for speculative scheduling. */
1489 static bitmap_head not_in_df;
1491 /* Return 0 if x is a set of a register alive in the beginning of one
1492 of the split-blocks of src, otherwise return 1. */
1494 static int
1495 check_live_1 (int src, rtx x)
1497 int i;
1498 int regno;
1499 rtx reg = SET_DEST (x);
1501 if (reg == 0)
1502 return 1;
1504 while (GET_CODE (reg) == SUBREG
1505 || GET_CODE (reg) == ZERO_EXTRACT
1506 || GET_CODE (reg) == STRICT_LOW_PART)
1507 reg = XEXP (reg, 0);
1509 if (GET_CODE (reg) == PARALLEL)
1511 int i;
1513 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1514 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1515 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1516 return 1;
1518 return 0;
1521 if (!REG_P (reg))
1522 return 1;
1524 regno = REGNO (reg);
1526 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1528 /* Global registers are assumed live. */
1529 return 0;
1531 else
1533 if (regno < FIRST_PSEUDO_REGISTER)
1535 /* Check for hard registers. */
1536 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1537 while (--j >= 0)
1539 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1541 basic_block b = candidate_table[src].split_bbs.first_member[i];
1542 int t = bitmap_bit_p (&not_in_df, b->index);
1544 /* We can have split blocks, that were recently generated.
1545 such blocks are always outside current region. */
1546 gcc_assert (!t || (CONTAINING_RGN (b->index)
1547 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1549 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1550 return 0;
1554 else
1556 /* Check for pseudo registers. */
1557 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1559 basic_block b = candidate_table[src].split_bbs.first_member[i];
1560 int t = bitmap_bit_p (&not_in_df, b->index);
1562 gcc_assert (!t || (CONTAINING_RGN (b->index)
1563 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1565 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1566 return 0;
1571 return 1;
1574 /* If x is a set of a register R, mark that R is alive in the beginning
1575 of every update-block of src. */
1577 static void
1578 update_live_1 (int src, rtx x)
1580 int i;
1581 int regno;
1582 rtx reg = SET_DEST (x);
1584 if (reg == 0)
1585 return;
1587 while (GET_CODE (reg) == SUBREG
1588 || GET_CODE (reg) == ZERO_EXTRACT
1589 || GET_CODE (reg) == STRICT_LOW_PART)
1590 reg = XEXP (reg, 0);
1592 if (GET_CODE (reg) == PARALLEL)
1594 int i;
1596 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1597 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1598 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1600 return;
1603 if (!REG_P (reg))
1604 return;
1606 /* Global registers are always live, so the code below does not apply
1607 to them. */
1609 regno = REGNO (reg);
1611 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
1613 if (regno < FIRST_PSEUDO_REGISTER)
1615 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1616 while (--j >= 0)
1618 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1620 basic_block b = candidate_table[src].update_bbs.first_member[i];
1622 SET_REGNO_REG_SET (df_get_live_in (b), regno + j);
1626 else
1628 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1630 basic_block b = candidate_table[src].update_bbs.first_member[i];
1632 SET_REGNO_REG_SET (df_get_live_in (b), regno);
1638 /* Return 1 if insn can be speculatively moved from block src to trg,
1639 otherwise return 0. Called before first insertion of insn to
1640 ready-list or before the scheduling. */
1642 static int
1643 check_live (rtx insn, int src)
1645 /* Find the registers set by instruction. */
1646 if (GET_CODE (PATTERN (insn)) == SET
1647 || GET_CODE (PATTERN (insn)) == CLOBBER)
1648 return check_live_1 (src, PATTERN (insn));
1649 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1651 int j;
1652 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1653 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1654 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1655 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1656 return 0;
1658 return 1;
1661 return 1;
1664 /* Update the live registers info after insn was moved speculatively from
1665 block src to trg. */
1667 static void
1668 update_live (rtx insn, int src)
1670 /* Find the registers set by instruction. */
1671 if (GET_CODE (PATTERN (insn)) == SET
1672 || GET_CODE (PATTERN (insn)) == CLOBBER)
1673 update_live_1 (src, PATTERN (insn));
1674 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1676 int j;
1677 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1678 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1679 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1680 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1684 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1685 #define IS_REACHABLE(bb_from, bb_to) \
1686 (bb_from == bb_to \
1687 || IS_RGN_ENTRY (bb_from) \
1688 || (TEST_BIT (ancestor_edges[bb_to], \
1689 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
1691 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1693 static void
1694 set_spec_fed (rtx load_insn)
1696 sd_iterator_def sd_it;
1697 dep_t dep;
1699 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1700 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1701 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1704 /* On the path from the insn to load_insn_bb, find a conditional
1705 branch depending on insn, that guards the speculative load. */
1707 static int
1708 find_conditional_protection (rtx insn, int load_insn_bb)
1710 sd_iterator_def sd_it;
1711 dep_t dep;
1713 /* Iterate through DEF-USE forward dependences. */
1714 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1716 rtx next = DEP_CON (dep);
1718 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1719 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1720 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1721 && load_insn_bb != INSN_BB (next)
1722 && DEP_TYPE (dep) == REG_DEP_TRUE
1723 && (JUMP_P (next)
1724 || find_conditional_protection (next, load_insn_bb)))
1725 return 1;
1727 return 0;
1728 } /* find_conditional_protection */
1730 /* Returns 1 if the same insn1 that participates in the computation
1731 of load_insn's address is feeding a conditional branch that is
1732 guarding on load_insn. This is true if we find a the two DEF-USE
1733 chains:
1734 insn1 -> ... -> conditional-branch
1735 insn1 -> ... -> load_insn,
1736 and if a flow path exist:
1737 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1738 and if insn1 is on the path
1739 region-entry -> ... -> bb_trg -> ... load_insn.
1741 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1742 Locate the branch by following INSN_FORW_DEPS from insn1. */
1744 static int
1745 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1747 sd_iterator_def sd_it;
1748 dep_t dep;
1750 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1752 rtx insn1 = DEP_PRO (dep);
1754 /* Must be a DEF-USE dependence upon non-branch. */
1755 if (DEP_TYPE (dep) != REG_DEP_TRUE
1756 || JUMP_P (insn1))
1757 continue;
1759 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1760 if (INSN_BB (insn1) == bb_src
1761 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1762 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1763 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1764 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1765 continue;
1767 /* Now search for the conditional-branch. */
1768 if (find_conditional_protection (insn1, bb_src))
1769 return 1;
1771 /* Recursive step: search another insn1, "above" current insn1. */
1772 return is_conditionally_protected (insn1, bb_src, bb_trg);
1775 /* The chain does not exist. */
1776 return 0;
1777 } /* is_conditionally_protected */
1779 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1780 load_insn can move speculatively from bb_src to bb_trg. All the
1781 following must hold:
1783 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1784 (2) load_insn and load1 have a def-use dependence upon
1785 the same insn 'insn1'.
1786 (3) either load2 is in bb_trg, or:
1787 - there's only one split-block, and
1788 - load1 is on the escape path, and
1790 From all these we can conclude that the two loads access memory
1791 addresses that differ at most by a constant, and hence if moving
1792 load_insn would cause an exception, it would have been caused by
1793 load2 anyhow. */
1795 static int
1796 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1798 sd_iterator_def back_sd_it;
1799 dep_t back_dep;
1800 candidate *candp = candidate_table + bb_src;
1802 if (candp->split_bbs.nr_members != 1)
1803 /* Must have exactly one escape block. */
1804 return 0;
1806 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1808 rtx insn1 = DEP_PRO (back_dep);
1810 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1811 /* Found a DEF-USE dependence (insn1, load_insn). */
1813 sd_iterator_def fore_sd_it;
1814 dep_t fore_dep;
1816 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1818 rtx insn2 = DEP_CON (fore_dep);
1820 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1822 /* Found a DEF-USE dependence (insn1, insn2). */
1823 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1824 /* insn2 not guaranteed to be a 1 base reg load. */
1825 continue;
1827 if (INSN_BB (insn2) == bb_trg)
1828 /* insn2 is the similar load, in the target block. */
1829 return 1;
1831 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1832 /* insn2 is a similar load, in a split-block. */
1833 return 1;
1839 /* Couldn't find a similar load. */
1840 return 0;
1841 } /* is_pfree */
1843 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1844 a load moved speculatively, or if load_insn is protected by
1845 a compare on load_insn's address). */
1847 static int
1848 is_prisky (rtx load_insn, int bb_src, int bb_trg)
1850 if (FED_BY_SPEC_LOAD (load_insn))
1851 return 1;
1853 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
1854 /* Dependence may 'hide' out of the region. */
1855 return 1;
1857 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
1858 return 1;
1860 return 0;
1863 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
1864 Return 1 if insn is exception-free (and the motion is valid)
1865 and 0 otherwise. */
1867 static int
1868 is_exception_free (rtx insn, int bb_src, int bb_trg)
1870 int insn_class = haifa_classify_insn (insn);
1872 /* Handle non-load insns. */
1873 switch (insn_class)
1875 case TRAP_FREE:
1876 return 1;
1877 case TRAP_RISKY:
1878 return 0;
1879 default:;
1882 /* Handle loads. */
1883 if (!flag_schedule_speculative_load)
1884 return 0;
1885 IS_LOAD_INSN (insn) = 1;
1886 switch (insn_class)
1888 case IFREE:
1889 return (1);
1890 case IRISKY:
1891 return 0;
1892 case PFREE_CANDIDATE:
1893 if (is_pfree (insn, bb_src, bb_trg))
1894 return 1;
1895 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
1896 case PRISKY_CANDIDATE:
1897 if (!flag_schedule_speculative_load_dangerous
1898 || is_prisky (insn, bb_src, bb_trg))
1899 return 0;
1900 break;
1901 default:;
1904 return flag_schedule_speculative_load_dangerous;
1907 /* The number of insns from the current block scheduled so far. */
1908 static int sched_target_n_insns;
1909 /* The number of insns from the current block to be scheduled in total. */
1910 static int target_n_insns;
1911 /* The number of insns from the entire region scheduled so far. */
1912 static int sched_n_insns;
1914 /* Implementations of the sched_info functions for region scheduling. */
1915 static void init_ready_list (void);
1916 static int can_schedule_ready_p (rtx);
1917 static void begin_schedule_ready (rtx, rtx);
1918 static ds_t new_ready (rtx, ds_t);
1919 static int schedule_more_p (void);
1920 static const char *rgn_print_insn (rtx, int);
1921 static int rgn_rank (rtx, rtx);
1922 static int contributes_to_priority (rtx, rtx);
1923 static void compute_jump_reg_dependencies (rtx, regset, regset, regset);
1925 /* Functions for speculative scheduling. */
1926 static void add_remove_insn (rtx, int);
1927 static void extend_regions (void);
1928 static void add_block1 (basic_block, basic_block);
1929 static void fix_recovery_cfg (int, int, int);
1930 static basic_block advance_target_bb (basic_block, rtx);
1932 static void debug_rgn_dependencies (int);
1934 /* Return nonzero if there are more insns that should be scheduled. */
1936 static int
1937 schedule_more_p (void)
1939 return sched_target_n_insns < target_n_insns;
1942 /* Add all insns that are initially ready to the ready list READY. Called
1943 once before scheduling a set of insns. */
1945 static void
1946 init_ready_list (void)
1948 rtx prev_head = current_sched_info->prev_head;
1949 rtx next_tail = current_sched_info->next_tail;
1950 int bb_src;
1951 rtx insn;
1953 target_n_insns = 0;
1954 sched_target_n_insns = 0;
1955 sched_n_insns = 0;
1957 /* Print debugging information. */
1958 if (sched_verbose >= 5)
1959 debug_rgn_dependencies (target_bb);
1961 /* Prepare current target block info. */
1962 if (current_nr_blocks > 1)
1964 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1966 bblst_last = 0;
1967 /* bblst_table holds split blocks and update blocks for each block after
1968 the current one in the region. split blocks and update blocks are
1969 the TO blocks of region edges, so there can be at most rgn_nr_edges
1970 of them. */
1971 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1972 bblst_table = XNEWVEC (basic_block, bblst_size);
1974 edgelst_last = 0;
1975 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1977 compute_trg_info (target_bb);
1980 /* Initialize ready list with all 'ready' insns in target block.
1981 Count number of insns in the target block being scheduled. */
1982 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
1984 try_ready (insn);
1985 target_n_insns++;
1987 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
1990 /* Add to ready list all 'ready' insns in valid source blocks.
1991 For speculative insns, check-live, exception-free, and
1992 issue-delay. */
1993 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
1994 if (IS_VALID (bb_src))
1996 rtx src_head;
1997 rtx src_next_tail;
1998 rtx tail, head;
2000 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2001 &head, &tail);
2002 src_next_tail = NEXT_INSN (tail);
2003 src_head = head;
2005 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2006 if (INSN_P (insn))
2007 try_ready (insn);
2011 /* Called after taking INSN from the ready list. Returns nonzero if this
2012 insn can be scheduled, nonzero if we should silently discard it. */
2014 static int
2015 can_schedule_ready_p (rtx insn)
2017 /* An interblock motion? */
2018 if (INSN_BB (insn) != target_bb
2019 && IS_SPECULATIVE_INSN (insn)
2020 && !check_live (insn, INSN_BB (insn)))
2021 return 0;
2022 else
2023 return 1;
2026 /* Updates counter and other information. Split from can_schedule_ready_p ()
2027 because when we schedule insn speculatively then insn passed to
2028 can_schedule_ready_p () differs from the one passed to
2029 begin_schedule_ready (). */
2030 static void
2031 begin_schedule_ready (rtx insn, rtx last ATTRIBUTE_UNUSED)
2033 /* An interblock motion? */
2034 if (INSN_BB (insn) != target_bb)
2036 if (IS_SPECULATIVE_INSN (insn))
2038 gcc_assert (check_live (insn, INSN_BB (insn)));
2040 update_live (insn, INSN_BB (insn));
2042 /* For speculative load, mark insns fed by it. */
2043 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2044 set_spec_fed (insn);
2046 nr_spec++;
2048 nr_inter++;
2050 else
2052 /* In block motion. */
2053 sched_target_n_insns++;
2055 sched_n_insns++;
2058 /* Called after INSN has all its hard dependencies resolved and the speculation
2059 of type TS is enough to overcome them all.
2060 Return nonzero if it should be moved to the ready list or the queue, or zero
2061 if we should silently discard it. */
2062 static ds_t
2063 new_ready (rtx next, ds_t ts)
2065 if (INSN_BB (next) != target_bb)
2067 int not_ex_free = 0;
2069 /* For speculative insns, before inserting to ready/queue,
2070 check live, exception-free, and issue-delay. */
2071 if (!IS_VALID (INSN_BB (next))
2072 || CANT_MOVE (next)
2073 || (IS_SPECULATIVE_INSN (next)
2074 && ((recog_memoized (next) >= 0
2075 && min_insn_conflict_delay (curr_state, next, next)
2076 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2077 || IS_SPECULATION_CHECK_P (next)
2078 || !check_live (next, INSN_BB (next))
2079 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2080 target_bb)))))
2082 if (not_ex_free
2083 /* We are here because is_exception_free () == false.
2084 But we possibly can handle that with control speculation. */
2085 && (current_sched_info->flags & DO_SPECULATION)
2086 && (spec_info->mask & BEGIN_CONTROL))
2087 /* Here we got new control-speculative instruction. */
2088 ts = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2089 else
2090 ts = (ts & ~SPECULATIVE) | HARD_DEP;
2094 return ts;
2097 /* Return a string that contains the insn uid and optionally anything else
2098 necessary to identify this insn in an output. It's valid to use a
2099 static buffer for this. The ALIGNED parameter should cause the string
2100 to be formatted so that multiple output lines will line up nicely. */
2102 static const char *
2103 rgn_print_insn (rtx insn, int aligned)
2105 static char tmp[80];
2107 if (aligned)
2108 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2109 else
2111 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2112 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2113 else
2114 sprintf (tmp, "%d", INSN_UID (insn));
2116 return tmp;
2119 /* Compare priority of two insns. Return a positive number if the second
2120 insn is to be preferred for scheduling, and a negative one if the first
2121 is to be preferred. Zero if they are equally good. */
2123 static int
2124 rgn_rank (rtx insn1, rtx insn2)
2126 /* Some comparison make sense in interblock scheduling only. */
2127 if (INSN_BB (insn1) != INSN_BB (insn2))
2129 int spec_val, prob_val;
2131 /* Prefer an inblock motion on an interblock motion. */
2132 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2133 return 1;
2134 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2135 return -1;
2137 /* Prefer a useful motion on a speculative one. */
2138 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2139 if (spec_val)
2140 return spec_val;
2142 /* Prefer a more probable (speculative) insn. */
2143 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2144 if (prob_val)
2145 return prob_val;
2147 return 0;
2150 /* NEXT is an instruction that depends on INSN (a backward dependence);
2151 return nonzero if we should include this dependence in priority
2152 calculations. */
2154 static int
2155 contributes_to_priority (rtx next, rtx insn)
2157 /* NEXT and INSN reside in one ebb. */
2158 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2161 /* INSN is a JUMP_INSN, COND_SET is the set of registers that are
2162 conditionally set before INSN. Store the set of registers that
2163 must be considered as used by this jump in USED and that of
2164 registers that must be considered as set in SET. */
2166 static void
2167 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2168 regset cond_exec ATTRIBUTE_UNUSED,
2169 regset used ATTRIBUTE_UNUSED,
2170 regset set ATTRIBUTE_UNUSED)
2172 /* Nothing to do here, since we postprocess jumps in
2173 add_branch_dependences. */
2176 /* Used in schedule_insns to initialize current_sched_info for scheduling
2177 regions (or single basic blocks). */
2179 static struct sched_info region_sched_info =
2181 init_ready_list,
2182 can_schedule_ready_p,
2183 schedule_more_p,
2184 new_ready,
2185 rgn_rank,
2186 rgn_print_insn,
2187 contributes_to_priority,
2188 compute_jump_reg_dependencies,
2190 NULL, NULL,
2191 NULL, NULL,
2192 0, 0, 0,
2194 add_remove_insn,
2195 begin_schedule_ready,
2196 add_block1,
2197 advance_target_bb,
2198 fix_recovery_cfg,
2199 SCHED_RGN
2202 /* Determine if PAT sets a CLASS_LIKELY_SPILLED_P register. */
2204 static bool
2205 sets_likely_spilled (rtx pat)
2207 bool ret = false;
2208 note_stores (pat, sets_likely_spilled_1, &ret);
2209 return ret;
2212 static void
2213 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2215 bool *ret = (bool *) data;
2217 if (GET_CODE (pat) == SET
2218 && REG_P (x)
2219 && REGNO (x) < FIRST_PSEUDO_REGISTER
2220 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
2221 *ret = true;
2224 /* Add dependences so that branches are scheduled to run last in their
2225 block. */
2227 static void
2228 add_branch_dependences (rtx head, rtx tail)
2230 rtx insn, last;
2232 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2233 that can throw exceptions, force them to remain in order at the end of
2234 the block by adding dependencies and giving the last a high priority.
2235 There may be notes present, and prev_head may also be a note.
2237 Branches must obviously remain at the end. Calls should remain at the
2238 end since moving them results in worse register allocation. Uses remain
2239 at the end to ensure proper register allocation.
2241 cc0 setters remain at the end because they can't be moved away from
2242 their cc0 user.
2244 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2246 Insns setting CLASS_LIKELY_SPILLED_P registers (usually return values)
2247 are not moved before reload because we can wind up with register
2248 allocation failures. */
2250 insn = tail;
2251 last = 0;
2252 while (CALL_P (insn)
2253 || JUMP_P (insn)
2254 || (NONJUMP_INSN_P (insn)
2255 && (GET_CODE (PATTERN (insn)) == USE
2256 || GET_CODE (PATTERN (insn)) == CLOBBER
2257 || can_throw_internal (insn)
2258 #ifdef HAVE_cc0
2259 || sets_cc0_p (PATTERN (insn))
2260 #endif
2261 || (!reload_completed
2262 && sets_likely_spilled (PATTERN (insn)))))
2263 || NOTE_P (insn))
2265 if (!NOTE_P (insn))
2267 if (last != 0
2268 && sd_find_dep_between (insn, last, false) == NULL)
2270 if (! sched_insns_conditions_mutex_p (last, insn))
2271 add_dependence (last, insn, REG_DEP_ANTI);
2272 INSN_REF_COUNT (insn)++;
2275 CANT_MOVE (insn) = 1;
2277 last = insn;
2280 /* Don't overrun the bounds of the basic block. */
2281 if (insn == head)
2282 break;
2284 insn = PREV_INSN (insn);
2287 /* Make sure these insns are scheduled last in their block. */
2288 insn = last;
2289 if (insn != 0)
2290 while (insn != head)
2292 insn = prev_nonnote_insn (insn);
2294 if (INSN_REF_COUNT (insn) != 0)
2295 continue;
2297 if (! sched_insns_conditions_mutex_p (last, insn))
2298 add_dependence (last, insn, REG_DEP_ANTI);
2299 INSN_REF_COUNT (insn) = 1;
2302 #ifdef HAVE_conditional_execution
2303 /* Finally, if the block ends in a jump, and we are doing intra-block
2304 scheduling, make sure that the branch depends on any COND_EXEC insns
2305 inside the block to avoid moving the COND_EXECs past the branch insn.
2307 We only have to do this after reload, because (1) before reload there
2308 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2309 scheduler after reload.
2311 FIXME: We could in some cases move COND_EXEC insns past the branch if
2312 this scheduler would be a little smarter. Consider this code:
2314 T = [addr]
2315 C ? addr += 4
2316 !C ? X += 12
2317 C ? T += 1
2318 C ? jump foo
2320 On a target with a one cycle stall on a memory access the optimal
2321 sequence would be:
2323 T = [addr]
2324 C ? addr += 4
2325 C ? T += 1
2326 C ? jump foo
2327 !C ? X += 12
2329 We don't want to put the 'X += 12' before the branch because it just
2330 wastes a cycle of execution time when the branch is taken.
2332 Note that in the example "!C" will always be true. That is another
2333 possible improvement for handling COND_EXECs in this scheduler: it
2334 could remove always-true predicates. */
2336 if (!reload_completed || ! JUMP_P (tail))
2337 return;
2339 insn = tail;
2340 while (insn != head)
2342 insn = PREV_INSN (insn);
2344 /* Note that we want to add this dependency even when
2345 sched_insns_conditions_mutex_p returns true. The whole point
2346 is that we _want_ this dependency, even if these insns really
2347 are independent. */
2348 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2349 add_dependence (tail, insn, REG_DEP_ANTI);
2351 #endif
2354 /* Data structures for the computation of data dependences in a regions. We
2355 keep one `deps' structure for every basic block. Before analyzing the
2356 data dependences for a bb, its variables are initialized as a function of
2357 the variables of its predecessors. When the analysis for a bb completes,
2358 we save the contents to the corresponding bb_deps[bb] variable. */
2360 static struct deps *bb_deps;
2362 /* Duplicate the INSN_LIST elements of COPY and prepend them to OLD. */
2364 static rtx
2365 concat_INSN_LIST (rtx copy, rtx old)
2367 rtx new = old;
2368 for (; copy ; copy = XEXP (copy, 1))
2369 new = alloc_INSN_LIST (XEXP (copy, 0), new);
2370 return new;
2373 static void
2374 concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2375 rtx *old_mems_p)
2377 rtx new_insns = *old_insns_p;
2378 rtx new_mems = *old_mems_p;
2380 while (copy_insns)
2382 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2383 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2384 copy_insns = XEXP (copy_insns, 1);
2385 copy_mems = XEXP (copy_mems, 1);
2388 *old_insns_p = new_insns;
2389 *old_mems_p = new_mems;
2392 /* After computing the dependencies for block BB, propagate the dependencies
2393 found in TMP_DEPS to the successors of the block. */
2394 static void
2395 propagate_deps (int bb, struct deps *pred_deps)
2397 basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
2398 edge_iterator ei;
2399 edge e;
2401 /* bb's structures are inherited by its successors. */
2402 FOR_EACH_EDGE (e, ei, block->succs)
2404 struct deps *succ_deps;
2405 unsigned reg;
2406 reg_set_iterator rsi;
2408 /* Only bbs "below" bb, in the same region, are interesting. */
2409 if (e->dest == EXIT_BLOCK_PTR
2410 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2411 || BLOCK_TO_BB (e->dest->index) <= bb)
2412 continue;
2414 succ_deps = bb_deps + BLOCK_TO_BB (e->dest->index);
2416 /* The reg_last lists are inherited by successor. */
2417 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2419 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2420 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2422 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2423 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2424 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2425 succ_rl->clobbers);
2426 succ_rl->uses_length += pred_rl->uses_length;
2427 succ_rl->clobbers_length += pred_rl->clobbers_length;
2429 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2431 /* Mem read/write lists are inherited by successor. */
2432 concat_insn_mem_list (pred_deps->pending_read_insns,
2433 pred_deps->pending_read_mems,
2434 &succ_deps->pending_read_insns,
2435 &succ_deps->pending_read_mems);
2436 concat_insn_mem_list (pred_deps->pending_write_insns,
2437 pred_deps->pending_write_mems,
2438 &succ_deps->pending_write_insns,
2439 &succ_deps->pending_write_mems);
2441 succ_deps->last_pending_memory_flush
2442 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2443 succ_deps->last_pending_memory_flush);
2445 succ_deps->pending_read_list_length
2446 += pred_deps->pending_read_list_length;
2447 succ_deps->pending_write_list_length
2448 += pred_deps->pending_write_list_length;
2449 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2451 /* last_function_call is inherited by successor. */
2452 succ_deps->last_function_call
2453 = concat_INSN_LIST (pred_deps->last_function_call,
2454 succ_deps->last_function_call);
2456 /* sched_before_next_call is inherited by successor. */
2457 succ_deps->sched_before_next_call
2458 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2459 succ_deps->sched_before_next_call);
2462 /* These lists should point to the right place, for correct
2463 freeing later. */
2464 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2465 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2466 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2467 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2469 /* Can't allow these to be freed twice. */
2470 pred_deps->pending_read_insns = 0;
2471 pred_deps->pending_read_mems = 0;
2472 pred_deps->pending_write_insns = 0;
2473 pred_deps->pending_write_mems = 0;
2476 /* Compute dependences inside bb. In a multiple blocks region:
2477 (1) a bb is analyzed after its predecessors, and (2) the lists in
2478 effect at the end of bb (after analyzing for bb) are inherited by
2479 bb's successors.
2481 Specifically for reg-reg data dependences, the block insns are
2482 scanned by sched_analyze () top-to-bottom. Two lists are
2483 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2484 and reg_last[].uses for register USEs.
2486 When analysis is completed for bb, we update for its successors:
2487 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2488 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2490 The mechanism for computing mem-mem data dependence is very
2491 similar, and the result is interblock dependences in the region. */
2493 static void
2494 compute_block_dependences (int bb)
2496 rtx head, tail;
2497 struct deps tmp_deps;
2499 tmp_deps = bb_deps[bb];
2501 /* Do the analysis for this block. */
2502 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2503 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2505 sched_analyze (&tmp_deps, head, tail);
2506 add_branch_dependences (head, tail);
2508 if (current_nr_blocks > 1)
2509 propagate_deps (bb, &tmp_deps);
2511 /* Free up the INSN_LISTs. */
2512 free_deps (&tmp_deps);
2514 if (targetm.sched.dependencies_evaluation_hook)
2515 targetm.sched.dependencies_evaluation_hook (head, tail);
2518 /* Free dependencies of instructions inside BB. */
2519 static void
2520 free_block_dependencies (int bb)
2522 rtx head;
2523 rtx tail;
2525 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2527 sched_free_deps (head, tail, true);
2530 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2531 them to the unused_*_list variables, so that they can be reused. */
2533 static void
2534 free_pending_lists (void)
2536 int bb;
2538 for (bb = 0; bb < current_nr_blocks; bb++)
2540 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2541 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2542 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2543 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2547 /* Print dependences for debugging starting from FROM_BB.
2548 Callable from debugger. */
2549 /* Print dependences for debugging starting from FROM_BB.
2550 Callable from debugger. */
2551 void
2552 debug_rgn_dependencies (int from_bb)
2554 int bb;
2556 fprintf (sched_dump,
2557 ";; --------------- forward dependences: ------------ \n");
2559 for (bb = from_bb; bb < current_nr_blocks; bb++)
2561 rtx head, tail;
2563 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2564 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2565 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2566 BB_TO_BLOCK (bb), bb);
2568 debug_dependencies (head, tail);
2572 /* Print dependencies information for instructions between HEAD and TAIL.
2573 ??? This function would probably fit best in haifa-sched.c. */
2574 void debug_dependencies (rtx head, rtx tail)
2576 rtx insn;
2577 rtx next_tail = NEXT_INSN (tail);
2579 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2580 "insn", "code", "bb", "dep", "prio", "cost",
2581 "reservation");
2582 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2583 "----", "----", "--", "---", "----", "----",
2584 "-----------");
2586 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2588 if (! INSN_P (insn))
2590 int n;
2591 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2592 if (NOTE_P (insn))
2594 n = NOTE_KIND (insn);
2595 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2597 else
2598 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2599 continue;
2602 fprintf (sched_dump,
2603 ";; %s%5d%6d%6d%6d%6d%6d ",
2604 (SCHED_GROUP_P (insn) ? "+" : " "),
2605 INSN_UID (insn),
2606 INSN_CODE (insn),
2607 BLOCK_NUM (insn),
2608 sd_lists_size (insn, SD_LIST_BACK),
2609 INSN_PRIORITY (insn),
2610 insn_cost (insn));
2612 if (recog_memoized (insn) < 0)
2613 fprintf (sched_dump, "nothing");
2614 else
2615 print_reservation (sched_dump, insn);
2617 fprintf (sched_dump, "\t: ");
2619 sd_iterator_def sd_it;
2620 dep_t dep;
2622 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2623 fprintf (sched_dump, "%d ", INSN_UID (DEP_CON (dep)));
2625 fprintf (sched_dump, "\n");
2628 fprintf (sched_dump, "\n");
2631 /* Returns true if all the basic blocks of the current region have
2632 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2633 static bool
2634 sched_is_disabled_for_current_region_p (void)
2636 int bb;
2638 for (bb = 0; bb < current_nr_blocks; bb++)
2639 if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2640 return false;
2642 return true;
2645 /* Schedule a region. A region is either an inner loop, a loop-free
2646 subroutine, or a single basic block. Each bb in the region is
2647 scheduled after its flow predecessors. */
2649 static void
2650 schedule_region (int rgn)
2652 basic_block block;
2653 edge_iterator ei;
2654 edge e;
2655 int bb;
2656 int sched_rgn_n_insns = 0;
2658 rgn_n_insns = 0;
2659 /* Set variables for the current region. */
2660 current_nr_blocks = RGN_NR_BLOCKS (rgn);
2661 current_blocks = RGN_BLOCKS (rgn);
2663 /* See comments in add_block1, for what reasons we allocate +1 element. */
2664 ebb_head = xrealloc (ebb_head, (current_nr_blocks + 1) * sizeof (*ebb_head));
2665 for (bb = 0; bb <= current_nr_blocks; bb++)
2666 ebb_head[bb] = current_blocks + bb;
2668 /* Don't schedule region that is marked by
2669 NOTE_DISABLE_SCHED_OF_BLOCK. */
2670 if (sched_is_disabled_for_current_region_p ())
2671 return;
2673 if (!RGN_DONT_CALC_DEPS (rgn))
2675 init_deps_global ();
2677 /* Initializations for region data dependence analysis. */
2678 bb_deps = XNEWVEC (struct deps, current_nr_blocks);
2679 for (bb = 0; bb < current_nr_blocks; bb++)
2680 init_deps (bb_deps + bb);
2682 /* Compute dependencies. */
2683 for (bb = 0; bb < current_nr_blocks; bb++)
2684 compute_block_dependences (bb);
2686 free_pending_lists ();
2688 finish_deps_global ();
2690 free (bb_deps);
2692 else
2693 /* This is a recovery block. It is always a single block region. */
2694 gcc_assert (current_nr_blocks == 1);
2696 /* Set priorities. */
2697 current_sched_info->sched_max_insns_priority = 0;
2698 for (bb = 0; bb < current_nr_blocks; bb++)
2700 rtx head, tail;
2702 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2703 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2705 rgn_n_insns += set_priorities (head, tail);
2707 current_sched_info->sched_max_insns_priority++;
2709 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
2710 if (current_nr_blocks > 1)
2712 prob = XNEWVEC (int, current_nr_blocks);
2714 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
2715 sbitmap_vector_zero (dom, current_nr_blocks);
2717 /* Use ->aux to implement EDGE_TO_BIT mapping. */
2718 rgn_nr_edges = 0;
2719 FOR_EACH_BB (block)
2721 if (CONTAINING_RGN (block->index) != rgn)
2722 continue;
2723 FOR_EACH_EDGE (e, ei, block->succs)
2724 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
2727 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
2728 rgn_nr_edges = 0;
2729 FOR_EACH_BB (block)
2731 if (CONTAINING_RGN (block->index) != rgn)
2732 continue;
2733 FOR_EACH_EDGE (e, ei, block->succs)
2734 rgn_edges[rgn_nr_edges++] = e;
2737 /* Split edges. */
2738 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
2739 sbitmap_vector_zero (pot_split, current_nr_blocks);
2740 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
2741 sbitmap_vector_zero (ancestor_edges, current_nr_blocks);
2743 /* Compute probabilities, dominators, split_edges. */
2744 for (bb = 0; bb < current_nr_blocks; bb++)
2745 compute_dom_prob_ps (bb);
2747 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
2748 /* We don't need them anymore. But we want to avoid duplication of
2749 aux fields in the newly created edges. */
2750 FOR_EACH_BB (block)
2752 if (CONTAINING_RGN (block->index) != rgn)
2753 continue;
2754 FOR_EACH_EDGE (e, ei, block->succs)
2755 e->aux = NULL;
2759 /* Now we can schedule all blocks. */
2760 for (bb = 0; bb < current_nr_blocks; bb++)
2762 basic_block first_bb, last_bb, curr_bb;
2763 rtx head, tail;
2765 first_bb = EBB_FIRST_BB (bb);
2766 last_bb = EBB_LAST_BB (bb);
2768 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
2770 if (no_real_insns_p (head, tail))
2772 gcc_assert (first_bb == last_bb);
2773 continue;
2776 current_sched_info->prev_head = PREV_INSN (head);
2777 current_sched_info->next_tail = NEXT_INSN (tail);
2780 /* rm_other_notes only removes notes which are _inside_ the
2781 block---that is, it won't remove notes before the first real insn
2782 or after the last real insn of the block. So if the first insn
2783 has a REG_SAVE_NOTE which would otherwise be emitted before the
2784 insn, it is redundant with the note before the start of the
2785 block, and so we have to take it out. */
2786 if (INSN_P (head))
2788 rtx note;
2790 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
2791 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2792 remove_note (head, note);
2794 else
2795 /* This means that first block in ebb is empty.
2796 It looks to me as an impossible thing. There at least should be
2797 a recovery check, that caused the splitting. */
2798 gcc_unreachable ();
2800 /* Remove remaining note insns from the block, save them in
2801 note_list. These notes are restored at the end of
2802 schedule_block (). */
2803 rm_other_notes (head, tail);
2805 unlink_bb_notes (first_bb, last_bb);
2807 target_bb = bb;
2809 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
2810 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
2812 curr_bb = first_bb;
2813 if (dbg_cnt (sched_block))
2815 schedule_block (&curr_bb, rgn_n_insns);
2816 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
2817 sched_rgn_n_insns += sched_n_insns;
2819 else
2821 sched_rgn_n_insns += rgn_n_insns;
2824 /* Clean up. */
2825 if (current_nr_blocks > 1)
2827 free (candidate_table);
2828 free (bblst_table);
2829 free (edgelst_table);
2833 /* Sanity check: verify that all region insns were scheduled. */
2834 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
2836 /* Done with this region. */
2838 if (current_nr_blocks > 1)
2840 free (prob);
2841 sbitmap_vector_free (dom);
2842 sbitmap_vector_free (pot_split);
2843 sbitmap_vector_free (ancestor_edges);
2844 free (rgn_edges);
2847 /* Free dependencies. */
2848 for (bb = 0; bb < current_nr_blocks; ++bb)
2849 free_block_dependencies (bb);
2851 gcc_assert (haifa_recovery_bb_ever_added_p
2852 || deps_pools_are_empty_p ());
2855 /* Initialize data structures for region scheduling. */
2857 static void
2858 init_regions (void)
2860 nr_regions = 0;
2861 rgn_table = 0;
2862 rgn_bb_table = 0;
2863 block_to_bb = 0;
2864 containing_rgn = 0;
2865 extend_regions ();
2867 /* Compute regions for scheduling. */
2868 if (reload_completed
2869 || n_basic_blocks == NUM_FIXED_BLOCKS + 1
2870 || !flag_schedule_interblock
2871 || is_cfg_nonregular ())
2873 find_single_block_region ();
2875 else
2877 /* Compute the dominators and post dominators. */
2878 calculate_dominance_info (CDI_DOMINATORS);
2880 /* Find regions. */
2881 find_rgns ();
2883 if (sched_verbose >= 3)
2884 debug_regions ();
2886 /* For now. This will move as more and more of haifa is converted
2887 to using the cfg code. */
2888 free_dominance_info (CDI_DOMINATORS);
2890 RGN_BLOCKS (nr_regions) = RGN_BLOCKS (nr_regions - 1) +
2891 RGN_NR_BLOCKS (nr_regions - 1);
2894 /* The one entry point in this file. */
2896 void
2897 schedule_insns (void)
2899 int rgn;
2901 /* Taking care of this degenerate case makes the rest of
2902 this code simpler. */
2903 if (n_basic_blocks == NUM_FIXED_BLOCKS)
2904 return;
2906 nr_inter = 0;
2907 nr_spec = 0;
2909 /* We need current_sched_info in init_dependency_caches, which is
2910 invoked via sched_init. */
2911 current_sched_info = &region_sched_info;
2913 df_set_flags (DF_LR_RUN_DCE);
2914 df_note_add_problem ();
2915 df_analyze ();
2916 regstat_compute_calls_crossed ();
2918 sched_init ();
2920 bitmap_initialize (&not_in_df, 0);
2921 bitmap_clear (&not_in_df);
2923 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
2924 / 100);
2926 init_regions ();
2928 /* EBB_HEAD is a region-scope structure. But we realloc it for
2929 each region to save time/memory/something else. */
2930 ebb_head = 0;
2932 /* Schedule every region in the subroutine. */
2933 for (rgn = 0; rgn < nr_regions; rgn++)
2934 if (dbg_cnt (sched_region))
2935 schedule_region (rgn);
2937 free(ebb_head);
2938 /* Reposition the prologue and epilogue notes in case we moved the
2939 prologue/epilogue insns. */
2940 if (reload_completed)
2941 reposition_prologue_and_epilogue_notes ();
2943 if (sched_verbose)
2945 if (reload_completed == 0 && flag_schedule_interblock)
2947 fprintf (sched_dump,
2948 "\n;; Procedure interblock/speculative motions == %d/%d \n",
2949 nr_inter, nr_spec);
2951 else
2952 gcc_assert (nr_inter <= 0);
2953 fprintf (sched_dump, "\n\n");
2956 /* Clean up. */
2957 free (rgn_table);
2958 free (rgn_bb_table);
2959 free (block_to_bb);
2960 free (containing_rgn);
2962 regstat_free_calls_crossed ();
2964 bitmap_clear (&not_in_df);
2966 sched_finish ();
2969 /* INSN has been added to/removed from current region. */
2970 static void
2971 add_remove_insn (rtx insn, int remove_p)
2973 if (!remove_p)
2974 rgn_n_insns++;
2975 else
2976 rgn_n_insns--;
2978 if (INSN_BB (insn) == target_bb)
2980 if (!remove_p)
2981 target_n_insns++;
2982 else
2983 target_n_insns--;
2987 /* Extend internal data structures. */
2988 static void
2989 extend_regions (void)
2991 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
2992 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
2993 block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
2994 containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
2997 /* BB was added to ebb after AFTER. */
2998 static void
2999 add_block1 (basic_block bb, basic_block after)
3001 extend_regions ();
3003 bitmap_set_bit (&not_in_df, bb->index);
3005 if (after == 0 || after == EXIT_BLOCK_PTR)
3007 int i;
3009 i = RGN_BLOCKS (nr_regions);
3010 /* I - first free position in rgn_bb_table. */
3012 rgn_bb_table[i] = bb->index;
3013 RGN_NR_BLOCKS (nr_regions) = 1;
3014 RGN_DONT_CALC_DEPS (nr_regions) = after == EXIT_BLOCK_PTR;
3015 RGN_HAS_REAL_EBB (nr_regions) = 0;
3016 CONTAINING_RGN (bb->index) = nr_regions;
3017 BLOCK_TO_BB (bb->index) = 0;
3019 nr_regions++;
3021 RGN_BLOCKS (nr_regions) = i + 1;
3023 else
3025 int i, pos;
3027 /* We need to fix rgn_table, block_to_bb, containing_rgn
3028 and ebb_head. */
3030 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3032 /* We extend ebb_head to one more position to
3033 easily find the last position of the last ebb in
3034 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3035 is _always_ valid for access. */
3037 i = BLOCK_TO_BB (after->index) + 1;
3038 pos = ebb_head[i] - 1;
3039 /* Now POS is the index of the last block in the region. */
3041 /* Find index of basic block AFTER. */
3042 for (; rgn_bb_table[pos] != after->index; pos--);
3044 pos++;
3045 gcc_assert (pos > ebb_head[i - 1]);
3047 /* i - ebb right after "AFTER". */
3048 /* ebb_head[i] - VALID. */
3050 /* Source position: ebb_head[i]
3051 Destination position: ebb_head[i] + 1
3052 Last position:
3053 RGN_BLOCKS (nr_regions) - 1
3054 Number of elements to copy: (last_position) - (source_position) + 1
3057 memmove (rgn_bb_table + pos + 1,
3058 rgn_bb_table + pos,
3059 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3060 * sizeof (*rgn_bb_table));
3062 rgn_bb_table[pos] = bb->index;
3064 for (; i <= current_nr_blocks; i++)
3065 ebb_head [i]++;
3067 i = CONTAINING_RGN (after->index);
3068 CONTAINING_RGN (bb->index) = i;
3070 RGN_HAS_REAL_EBB (i) = 1;
3072 for (++i; i <= nr_regions; i++)
3073 RGN_BLOCKS (i)++;
3077 /* Fix internal data after interblock movement of jump instruction.
3078 For parameter meaning please refer to
3079 sched-int.h: struct sched_info: fix_recovery_cfg. */
3080 static void
3081 fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3083 int old_pos, new_pos, i;
3085 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3087 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3088 rgn_bb_table[old_pos] != check_bb_nexti;
3089 old_pos--);
3090 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3092 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3093 rgn_bb_table[new_pos] != bbi;
3094 new_pos--);
3095 new_pos++;
3096 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3098 gcc_assert (new_pos < old_pos);
3100 memmove (rgn_bb_table + new_pos + 1,
3101 rgn_bb_table + new_pos,
3102 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3104 rgn_bb_table[new_pos] = check_bb_nexti;
3106 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3107 ebb_head[i]++;
3110 /* Return next block in ebb chain. For parameter meaning please refer to
3111 sched-int.h: struct sched_info: advance_target_bb. */
3112 static basic_block
3113 advance_target_bb (basic_block bb, rtx insn)
3115 if (insn)
3116 return 0;
3118 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3119 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3120 return bb->next_bb;
3123 #endif
3125 static bool
3126 gate_handle_sched (void)
3128 #ifdef INSN_SCHEDULING
3129 return flag_schedule_insns && dbg_cnt (sched_func);
3130 #else
3131 return 0;
3132 #endif
3135 /* Run instruction scheduler. */
3136 static unsigned int
3137 rest_of_handle_sched (void)
3139 #ifdef INSN_SCHEDULING
3140 schedule_insns ();
3141 #endif
3142 return 0;
3145 static bool
3146 gate_handle_sched2 (void)
3148 #ifdef INSN_SCHEDULING
3149 return optimize > 0 && flag_schedule_insns_after_reload
3150 && dbg_cnt (sched2_func);
3151 #else
3152 return 0;
3153 #endif
3156 /* Run second scheduling pass after reload. */
3157 static unsigned int
3158 rest_of_handle_sched2 (void)
3160 #ifdef INSN_SCHEDULING
3161 /* Do control and data sched analysis again,
3162 and write some more of the results to dump file. */
3163 if (flag_sched2_use_superblocks || flag_sched2_use_traces)
3164 schedule_ebbs ();
3165 else
3166 schedule_insns ();
3167 #endif
3168 return 0;
3171 struct tree_opt_pass pass_sched =
3173 "sched1", /* name */
3174 gate_handle_sched, /* gate */
3175 rest_of_handle_sched, /* execute */
3176 NULL, /* sub */
3177 NULL, /* next */
3178 0, /* static_pass_number */
3179 TV_SCHED, /* tv_id */
3180 0, /* properties_required */
3181 0, /* properties_provided */
3182 0, /* properties_destroyed */
3183 0, /* todo_flags_start */
3184 TODO_df_finish | TODO_verify_rtl_sharing |
3185 TODO_dump_func |
3186 TODO_verify_flow |
3187 TODO_ggc_collect, /* todo_flags_finish */
3188 'S' /* letter */
3191 struct tree_opt_pass pass_sched2 =
3193 "sched2", /* name */
3194 gate_handle_sched2, /* gate */
3195 rest_of_handle_sched2, /* execute */
3196 NULL, /* sub */
3197 NULL, /* next */
3198 0, /* static_pass_number */
3199 TV_SCHED2, /* tv_id */
3200 0, /* properties_required */
3201 0, /* properties_provided */
3202 0, /* properties_destroyed */
3203 0, /* todo_flags_start */
3204 TODO_df_finish | TODO_verify_rtl_sharing |
3205 TODO_dump_func |
3206 TODO_verify_flow |
3207 TODO_ggc_collect, /* todo_flags_finish */
3208 'R' /* letter */