[gcc]
[official-gcc.git] / gcc / ada / uintp.adb
blobd6e4495b4097d9ff2b048b7e4824697f96247650
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- U I N T P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Output; use Output;
33 with Tree_IO; use Tree_IO;
35 with GNAT.HTable; use GNAT.HTable;
37 package body Uintp is
39 ------------------------
40 -- Local Declarations --
41 ------------------------
43 Uint_Int_First : Uint := Uint_0;
44 -- Uint value containing Int'First value, set by Initialize. The initial
45 -- value of Uint_0 is used for an assertion check that ensures that this
46 -- value is not used before it is initialized. This value is used in the
47 -- UI_Is_In_Int_Range predicate, and it is right that this is a host value,
48 -- since the issue is host representation of integer values.
50 Uint_Int_Last : Uint;
51 -- Uint value containing Int'Last value set by Initialize
53 UI_Power_2 : array (Int range 0 .. 64) of Uint;
54 -- This table is used to memoize exponentiations by powers of 2. The Nth
55 -- entry, if set, contains the Uint value 2**N. Initially UI_Power_2_Set
56 -- is zero and only the 0'th entry is set, the invariant being that all
57 -- entries in the range 0 .. UI_Power_2_Set are initialized.
59 UI_Power_2_Set : Nat;
60 -- Number of entries set in UI_Power_2;
62 UI_Power_10 : array (Int range 0 .. 64) of Uint;
63 -- This table is used to memoize exponentiations by powers of 10 in the
64 -- same manner as described above for UI_Power_2.
66 UI_Power_10_Set : Nat;
67 -- Number of entries set in UI_Power_10;
69 Uints_Min : Uint;
70 Udigits_Min : Int;
71 -- These values are used to make sure that the mark/release mechanism does
72 -- not destroy values saved in the U_Power tables or in the hash table used
73 -- by UI_From_Int. Whenever an entry is made in either of these tables,
74 -- Uints_Min and Udigits_Min are updated to protect the entry, and Release
75 -- never cuts back beyond these minimum values.
77 Int_0 : constant Int := 0;
78 Int_1 : constant Int := 1;
79 Int_2 : constant Int := 2;
80 -- These values are used in some cases where the use of numeric literals
81 -- would cause ambiguities (integer vs Uint).
83 ----------------------------
84 -- UI_From_Int Hash Table --
85 ----------------------------
87 -- UI_From_Int uses a hash table to avoid duplicating entries and wasting
88 -- storage. This is particularly important for complex cases of back
89 -- annotation.
91 subtype Hnum is Nat range 0 .. 1022;
93 function Hash_Num (F : Int) return Hnum;
94 -- Hashing function
96 package UI_Ints is new Simple_HTable (
97 Header_Num => Hnum,
98 Element => Uint,
99 No_Element => No_Uint,
100 Key => Int,
101 Hash => Hash_Num,
102 Equal => "=");
104 -----------------------
105 -- Local Subprograms --
106 -----------------------
108 function Direct (U : Uint) return Boolean;
109 pragma Inline (Direct);
110 -- Returns True if U is represented directly
112 function Direct_Val (U : Uint) return Int;
113 -- U is a Uint for is represented directly. The returned result is the
114 -- value represented.
116 function GCD (Jin, Kin : Int) return Int;
117 -- Compute GCD of two integers. Assumes that Jin >= Kin >= 0
119 procedure Image_Out
120 (Input : Uint;
121 To_Buffer : Boolean;
122 Format : UI_Format);
123 -- Common processing for UI_Image and UI_Write, To_Buffer is set True for
124 -- UI_Image, and false for UI_Write, and Format is copied from the Format
125 -- parameter to UI_Image or UI_Write.
127 procedure Init_Operand (UI : Uint; Vec : out UI_Vector);
128 pragma Inline (Init_Operand);
129 -- This procedure puts the value of UI into the vector in canonical
130 -- multiple precision format. The parameter should be of the correct size
131 -- as determined by a previous call to N_Digits (UI). The first digit of
132 -- Vec contains the sign, all other digits are always non-negative. Note
133 -- that the input may be directly represented, and in this case Vec will
134 -- contain the corresponding one or two digit value. The low bound of Vec
135 -- is always 1.
137 function Least_Sig_Digit (Arg : Uint) return Int;
138 pragma Inline (Least_Sig_Digit);
139 -- Returns the Least Significant Digit of Arg quickly. When the given Uint
140 -- is less than 2**15, the value returned is the input value, in this case
141 -- the result may be negative. It is expected that any use will mask off
142 -- unnecessary bits. This is used for finding Arg mod B where B is a power
143 -- of two. Hence the actual base is irrelevant as long as it is a power of
144 -- two.
146 procedure Most_Sig_2_Digits
147 (Left : Uint;
148 Right : Uint;
149 Left_Hat : out Int;
150 Right_Hat : out Int);
151 -- Returns leading two significant digits from the given pair of Uint's.
152 -- Mathematically: returns Left / (Base**K) and Right / (Base**K) where
153 -- K is as small as possible S.T. Right_Hat < Base * Base. It is required
154 -- that Left >= Right for the algorithm to work.
156 function N_Digits (Input : Uint) return Int;
157 pragma Inline (N_Digits);
158 -- Returns number of "digits" in a Uint
160 procedure UI_Div_Rem
161 (Left, Right : Uint;
162 Quotient : out Uint;
163 Remainder : out Uint;
164 Discard_Quotient : Boolean := False;
165 Discard_Remainder : Boolean := False);
166 -- Compute Euclidean division of Left by Right. If Discard_Quotient is
167 -- False then the quotient is returned in Quotient (otherwise Quotient is
168 -- set to No_Uint). If Discard_Remainder is False, then the remainder is
169 -- returned in Remainder (otherwise Remainder is set to No_Uint).
171 -- If Discard_Quotient is True, Quotient is set to No_Uint
172 -- If Discard_Remainder is True, Remainder is set to No_Uint
174 ------------
175 -- Direct --
176 ------------
178 function Direct (U : Uint) return Boolean is
179 begin
180 return Int (U) <= Int (Uint_Direct_Last);
181 end Direct;
183 ----------------
184 -- Direct_Val --
185 ----------------
187 function Direct_Val (U : Uint) return Int is
188 begin
189 pragma Assert (Direct (U));
190 return Int (U) - Int (Uint_Direct_Bias);
191 end Direct_Val;
193 ---------
194 -- GCD --
195 ---------
197 function GCD (Jin, Kin : Int) return Int is
198 J, K, Tmp : Int;
200 begin
201 pragma Assert (Jin >= Kin);
202 pragma Assert (Kin >= Int_0);
204 J := Jin;
205 K := Kin;
206 while K /= Uint_0 loop
207 Tmp := J mod K;
208 J := K;
209 K := Tmp;
210 end loop;
212 return J;
213 end GCD;
215 --------------
216 -- Hash_Num --
217 --------------
219 function Hash_Num (F : Int) return Hnum is
220 begin
221 return Types."mod" (F, Hnum'Range_Length);
222 end Hash_Num;
224 ---------------
225 -- Image_Out --
226 ---------------
228 procedure Image_Out
229 (Input : Uint;
230 To_Buffer : Boolean;
231 Format : UI_Format)
233 Marks : constant Uintp.Save_Mark := Uintp.Mark;
234 Base : Uint;
235 Ainput : Uint;
237 Digs_Output : Natural := 0;
238 -- Counts digits output. In hex mode, but not in decimal mode, we
239 -- put an underline after every four hex digits that are output.
241 Exponent : Natural := 0;
242 -- If the number is too long to fit in the buffer, we switch to an
243 -- approximate output format with an exponent. This variable records
244 -- the exponent value.
246 function Better_In_Hex return Boolean;
247 -- Determines if it is better to generate digits in base 16 (result
248 -- is true) or base 10 (result is false). The choice is purely a
249 -- matter of convenience and aesthetics, so it does not matter which
250 -- value is returned from a correctness point of view.
252 procedure Image_Char (C : Character);
253 -- Internal procedure to output one character
255 procedure Image_Exponent (N : Natural);
256 -- Output non-zero exponent. Note that we only use the exponent form in
257 -- the buffer case, so we know that To_Buffer is true.
259 procedure Image_Uint (U : Uint);
260 -- Internal procedure to output characters of non-negative Uint
262 -------------------
263 -- Better_In_Hex --
264 -------------------
266 function Better_In_Hex return Boolean is
267 T16 : constant Uint := Uint_2**Int'(16);
268 A : Uint;
270 begin
271 A := UI_Abs (Input);
273 -- Small values up to 2**16 can always be in decimal
275 if A < T16 then
276 return False;
277 end if;
279 -- Otherwise, see if we are a power of 2 or one less than a power
280 -- of 2. For the moment these are the only cases printed in hex.
282 if A mod Uint_2 = Uint_1 then
283 A := A + Uint_1;
284 end if;
286 loop
287 if A mod T16 /= Uint_0 then
288 return False;
290 else
291 A := A / T16;
292 end if;
294 exit when A < T16;
295 end loop;
297 while A > Uint_2 loop
298 if A mod Uint_2 /= Uint_0 then
299 return False;
301 else
302 A := A / Uint_2;
303 end if;
304 end loop;
306 return True;
307 end Better_In_Hex;
309 ----------------
310 -- Image_Char --
311 ----------------
313 procedure Image_Char (C : Character) is
314 begin
315 if To_Buffer then
316 if UI_Image_Length + 6 > UI_Image_Max then
317 Exponent := Exponent + 1;
318 else
319 UI_Image_Length := UI_Image_Length + 1;
320 UI_Image_Buffer (UI_Image_Length) := C;
321 end if;
322 else
323 Write_Char (C);
324 end if;
325 end Image_Char;
327 --------------------
328 -- Image_Exponent --
329 --------------------
331 procedure Image_Exponent (N : Natural) is
332 begin
333 if N >= 10 then
334 Image_Exponent (N / 10);
335 end if;
337 UI_Image_Length := UI_Image_Length + 1;
338 UI_Image_Buffer (UI_Image_Length) :=
339 Character'Val (Character'Pos ('0') + N mod 10);
340 end Image_Exponent;
342 ----------------
343 -- Image_Uint --
344 ----------------
346 procedure Image_Uint (U : Uint) is
347 H : constant array (Int range 0 .. 15) of Character :=
348 "0123456789ABCDEF";
350 Q, R : Uint;
351 begin
352 UI_Div_Rem (U, Base, Q, R);
354 if Q > Uint_0 then
355 Image_Uint (Q);
356 end if;
358 if Digs_Output = 4 and then Base = Uint_16 then
359 Image_Char ('_');
360 Digs_Output := 0;
361 end if;
363 Image_Char (H (UI_To_Int (R)));
365 Digs_Output := Digs_Output + 1;
366 end Image_Uint;
368 -- Start of processing for Image_Out
370 begin
371 if Input = No_Uint then
372 Image_Char ('?');
373 return;
374 end if;
376 UI_Image_Length := 0;
378 if Input < Uint_0 then
379 Image_Char ('-');
380 Ainput := -Input;
381 else
382 Ainput := Input;
383 end if;
385 if Format = Hex
386 or else (Format = Auto and then Better_In_Hex)
387 then
388 Base := Uint_16;
389 Image_Char ('1');
390 Image_Char ('6');
391 Image_Char ('#');
392 Image_Uint (Ainput);
393 Image_Char ('#');
395 else
396 Base := Uint_10;
397 Image_Uint (Ainput);
398 end if;
400 if Exponent /= 0 then
401 UI_Image_Length := UI_Image_Length + 1;
402 UI_Image_Buffer (UI_Image_Length) := 'E';
403 Image_Exponent (Exponent);
404 end if;
406 Uintp.Release (Marks);
407 end Image_Out;
409 -------------------
410 -- Init_Operand --
411 -------------------
413 procedure Init_Operand (UI : Uint; Vec : out UI_Vector) is
414 Loc : Int;
416 pragma Assert (Vec'First = Int'(1));
418 begin
419 if Direct (UI) then
420 Vec (1) := Direct_Val (UI);
422 if Vec (1) >= Base then
423 Vec (2) := Vec (1) rem Base;
424 Vec (1) := Vec (1) / Base;
425 end if;
427 else
428 Loc := Uints.Table (UI).Loc;
430 for J in 1 .. Uints.Table (UI).Length loop
431 Vec (J) := Udigits.Table (Loc + J - 1);
432 end loop;
433 end if;
434 end Init_Operand;
436 ----------------
437 -- Initialize --
438 ----------------
440 procedure Initialize is
441 begin
442 Uints.Init;
443 Udigits.Init;
445 Uint_Int_First := UI_From_Int (Int'First);
446 Uint_Int_Last := UI_From_Int (Int'Last);
448 UI_Power_2 (0) := Uint_1;
449 UI_Power_2_Set := 0;
451 UI_Power_10 (0) := Uint_1;
452 UI_Power_10_Set := 0;
454 Uints_Min := Uints.Last;
455 Udigits_Min := Udigits.Last;
457 UI_Ints.Reset;
458 end Initialize;
460 ---------------------
461 -- Least_Sig_Digit --
462 ---------------------
464 function Least_Sig_Digit (Arg : Uint) return Int is
465 V : Int;
467 begin
468 if Direct (Arg) then
469 V := Direct_Val (Arg);
471 if V >= Base then
472 V := V mod Base;
473 end if;
475 -- Note that this result may be negative
477 return V;
479 else
480 return
481 Udigits.Table
482 (Uints.Table (Arg).Loc + Uints.Table (Arg).Length - 1);
483 end if;
484 end Least_Sig_Digit;
486 ----------
487 -- Mark --
488 ----------
490 function Mark return Save_Mark is
491 begin
492 return (Save_Uint => Uints.Last, Save_Udigit => Udigits.Last);
493 end Mark;
495 -----------------------
496 -- Most_Sig_2_Digits --
497 -----------------------
499 procedure Most_Sig_2_Digits
500 (Left : Uint;
501 Right : Uint;
502 Left_Hat : out Int;
503 Right_Hat : out Int)
505 begin
506 pragma Assert (Left >= Right);
508 if Direct (Left) then
509 pragma Assert (Direct (Right));
510 Left_Hat := Direct_Val (Left);
511 Right_Hat := Direct_Val (Right);
512 return;
514 else
515 declare
516 L1 : constant Int :=
517 Udigits.Table (Uints.Table (Left).Loc);
518 L2 : constant Int :=
519 Udigits.Table (Uints.Table (Left).Loc + 1);
521 begin
522 -- It is not so clear what to return when Arg is negative???
524 Left_Hat := abs (L1) * Base + L2;
525 end;
526 end if;
528 declare
529 Length_L : constant Int := Uints.Table (Left).Length;
530 Length_R : Int;
531 R1 : Int;
532 R2 : Int;
533 T : Int;
535 begin
536 if Direct (Right) then
537 T := Direct_Val (Right);
538 R1 := abs (T / Base);
539 R2 := T rem Base;
540 Length_R := 2;
542 else
543 R1 := abs (Udigits.Table (Uints.Table (Right).Loc));
544 R2 := Udigits.Table (Uints.Table (Right).Loc + 1);
545 Length_R := Uints.Table (Right).Length;
546 end if;
548 if Length_L = Length_R then
549 Right_Hat := R1 * Base + R2;
550 elsif Length_L = Length_R + Int_1 then
551 Right_Hat := R1;
552 else
553 Right_Hat := 0;
554 end if;
555 end;
556 end Most_Sig_2_Digits;
558 ---------------
559 -- N_Digits --
560 ---------------
562 -- Note: N_Digits returns 1 for No_Uint
564 function N_Digits (Input : Uint) return Int is
565 begin
566 if Direct (Input) then
567 if Direct_Val (Input) >= Base then
568 return 2;
569 else
570 return 1;
571 end if;
573 else
574 return Uints.Table (Input).Length;
575 end if;
576 end N_Digits;
578 --------------
579 -- Num_Bits --
580 --------------
582 function Num_Bits (Input : Uint) return Nat is
583 Bits : Nat;
584 Num : Nat;
586 begin
587 -- Largest negative number has to be handled specially, since it is in
588 -- Int_Range, but we cannot take the absolute value.
590 if Input = Uint_Int_First then
591 return Int'Size;
593 -- For any other number in Int_Range, get absolute value of number
595 elsif UI_Is_In_Int_Range (Input) then
596 Num := abs (UI_To_Int (Input));
597 Bits := 0;
599 -- If not in Int_Range then initialize bit count for all low order
600 -- words, and set number to high order digit.
602 else
603 Bits := Base_Bits * (Uints.Table (Input).Length - 1);
604 Num := abs (Udigits.Table (Uints.Table (Input).Loc));
605 end if;
607 -- Increase bit count for remaining value in Num
609 while Types.">" (Num, 0) loop
610 Num := Num / 2;
611 Bits := Bits + 1;
612 end loop;
614 return Bits;
615 end Num_Bits;
617 ---------
618 -- pid --
619 ---------
621 procedure pid (Input : Uint) is
622 begin
623 UI_Write (Input, Decimal);
624 Write_Eol;
625 end pid;
627 ---------
628 -- pih --
629 ---------
631 procedure pih (Input : Uint) is
632 begin
633 UI_Write (Input, Hex);
634 Write_Eol;
635 end pih;
637 -------------
638 -- Release --
639 -------------
641 procedure Release (M : Save_Mark) is
642 begin
643 Uints.Set_Last (Uint'Max (M.Save_Uint, Uints_Min));
644 Udigits.Set_Last (Int'Max (M.Save_Udigit, Udigits_Min));
645 end Release;
647 ----------------------
648 -- Release_And_Save --
649 ----------------------
651 procedure Release_And_Save (M : Save_Mark; UI : in out Uint) is
652 begin
653 if Direct (UI) then
654 Release (M);
656 else
657 declare
658 UE_Len : constant Pos := Uints.Table (UI).Length;
659 UE_Loc : constant Int := Uints.Table (UI).Loc;
661 UD : constant Udigits.Table_Type (1 .. UE_Len) :=
662 Udigits.Table (UE_Loc .. UE_Loc + UE_Len - 1);
664 begin
665 Release (M);
667 Uints.Append ((Length => UE_Len, Loc => Udigits.Last + 1));
668 UI := Uints.Last;
670 for J in 1 .. UE_Len loop
671 Udigits.Append (UD (J));
672 end loop;
673 end;
674 end if;
675 end Release_And_Save;
677 procedure Release_And_Save (M : Save_Mark; UI1, UI2 : in out Uint) is
678 begin
679 if Direct (UI1) then
680 Release_And_Save (M, UI2);
682 elsif Direct (UI2) then
683 Release_And_Save (M, UI1);
685 else
686 declare
687 UE1_Len : constant Pos := Uints.Table (UI1).Length;
688 UE1_Loc : constant Int := Uints.Table (UI1).Loc;
690 UD1 : constant Udigits.Table_Type (1 .. UE1_Len) :=
691 Udigits.Table (UE1_Loc .. UE1_Loc + UE1_Len - 1);
693 UE2_Len : constant Pos := Uints.Table (UI2).Length;
694 UE2_Loc : constant Int := Uints.Table (UI2).Loc;
696 UD2 : constant Udigits.Table_Type (1 .. UE2_Len) :=
697 Udigits.Table (UE2_Loc .. UE2_Loc + UE2_Len - 1);
699 begin
700 Release (M);
702 Uints.Append ((Length => UE1_Len, Loc => Udigits.Last + 1));
703 UI1 := Uints.Last;
705 for J in 1 .. UE1_Len loop
706 Udigits.Append (UD1 (J));
707 end loop;
709 Uints.Append ((Length => UE2_Len, Loc => Udigits.Last + 1));
710 UI2 := Uints.Last;
712 for J in 1 .. UE2_Len loop
713 Udigits.Append (UD2 (J));
714 end loop;
715 end;
716 end if;
717 end Release_And_Save;
719 ---------------
720 -- Tree_Read --
721 ---------------
723 procedure Tree_Read is
724 begin
725 Uints.Tree_Read;
726 Udigits.Tree_Read;
728 Tree_Read_Int (Int (Uint_Int_First));
729 Tree_Read_Int (Int (Uint_Int_Last));
730 Tree_Read_Int (UI_Power_2_Set);
731 Tree_Read_Int (UI_Power_10_Set);
732 Tree_Read_Int (Int (Uints_Min));
733 Tree_Read_Int (Udigits_Min);
735 for J in 0 .. UI_Power_2_Set loop
736 Tree_Read_Int (Int (UI_Power_2 (J)));
737 end loop;
739 for J in 0 .. UI_Power_10_Set loop
740 Tree_Read_Int (Int (UI_Power_10 (J)));
741 end loop;
743 end Tree_Read;
745 ----------------
746 -- Tree_Write --
747 ----------------
749 procedure Tree_Write is
750 begin
751 Uints.Tree_Write;
752 Udigits.Tree_Write;
754 Tree_Write_Int (Int (Uint_Int_First));
755 Tree_Write_Int (Int (Uint_Int_Last));
756 Tree_Write_Int (UI_Power_2_Set);
757 Tree_Write_Int (UI_Power_10_Set);
758 Tree_Write_Int (Int (Uints_Min));
759 Tree_Write_Int (Udigits_Min);
761 for J in 0 .. UI_Power_2_Set loop
762 Tree_Write_Int (Int (UI_Power_2 (J)));
763 end loop;
765 for J in 0 .. UI_Power_10_Set loop
766 Tree_Write_Int (Int (UI_Power_10 (J)));
767 end loop;
769 end Tree_Write;
771 -------------
772 -- UI_Abs --
773 -------------
775 function UI_Abs (Right : Uint) return Uint is
776 begin
777 if Right < Uint_0 then
778 return -Right;
779 else
780 return Right;
781 end if;
782 end UI_Abs;
784 -------------
785 -- UI_Add --
786 -------------
788 function UI_Add (Left : Int; Right : Uint) return Uint is
789 begin
790 return UI_Add (UI_From_Int (Left), Right);
791 end UI_Add;
793 function UI_Add (Left : Uint; Right : Int) return Uint is
794 begin
795 return UI_Add (Left, UI_From_Int (Right));
796 end UI_Add;
798 function UI_Add (Left : Uint; Right : Uint) return Uint is
799 begin
800 -- Simple cases of direct operands and addition of zero
802 if Direct (Left) then
803 if Direct (Right) then
804 return UI_From_Int (Direct_Val (Left) + Direct_Val (Right));
806 elsif Int (Left) = Int (Uint_0) then
807 return Right;
808 end if;
810 elsif Direct (Right) and then Int (Right) = Int (Uint_0) then
811 return Left;
812 end if;
814 -- Otherwise full circuit is needed
816 declare
817 L_Length : constant Int := N_Digits (Left);
818 R_Length : constant Int := N_Digits (Right);
819 L_Vec : UI_Vector (1 .. L_Length);
820 R_Vec : UI_Vector (1 .. R_Length);
821 Sum_Length : Int;
822 Tmp_Int : Int;
823 Carry : Int;
824 Borrow : Int;
825 X_Bigger : Boolean := False;
826 Y_Bigger : Boolean := False;
827 Result_Neg : Boolean := False;
829 begin
830 Init_Operand (Left, L_Vec);
831 Init_Operand (Right, R_Vec);
833 -- At least one of the two operands is in multi-digit form.
834 -- Calculate the number of digits sufficient to hold result.
836 if L_Length > R_Length then
837 Sum_Length := L_Length + 1;
838 X_Bigger := True;
839 else
840 Sum_Length := R_Length + 1;
842 if R_Length > L_Length then
843 Y_Bigger := True;
844 end if;
845 end if;
847 -- Make copies of the absolute values of L_Vec and R_Vec into X and Y
848 -- both with lengths equal to the maximum possibly needed. This makes
849 -- looping over the digits much simpler.
851 declare
852 X : UI_Vector (1 .. Sum_Length);
853 Y : UI_Vector (1 .. Sum_Length);
854 Tmp_UI : UI_Vector (1 .. Sum_Length);
856 begin
857 for J in 1 .. Sum_Length - L_Length loop
858 X (J) := 0;
859 end loop;
861 X (Sum_Length - L_Length + 1) := abs L_Vec (1);
863 for J in 2 .. L_Length loop
864 X (J + (Sum_Length - L_Length)) := L_Vec (J);
865 end loop;
867 for J in 1 .. Sum_Length - R_Length loop
868 Y (J) := 0;
869 end loop;
871 Y (Sum_Length - R_Length + 1) := abs R_Vec (1);
873 for J in 2 .. R_Length loop
874 Y (J + (Sum_Length - R_Length)) := R_Vec (J);
875 end loop;
877 if (L_Vec (1) < Int_0) = (R_Vec (1) < Int_0) then
879 -- Same sign so just add
881 Carry := 0;
882 for J in reverse 1 .. Sum_Length loop
883 Tmp_Int := X (J) + Y (J) + Carry;
885 if Tmp_Int >= Base then
886 Tmp_Int := Tmp_Int - Base;
887 Carry := 1;
888 else
889 Carry := 0;
890 end if;
892 X (J) := Tmp_Int;
893 end loop;
895 return Vector_To_Uint (X, L_Vec (1) < Int_0);
897 else
898 -- Find which one has bigger magnitude
900 if not (X_Bigger or Y_Bigger) then
901 for J in L_Vec'Range loop
902 if abs L_Vec (J) > abs R_Vec (J) then
903 X_Bigger := True;
904 exit;
905 elsif abs R_Vec (J) > abs L_Vec (J) then
906 Y_Bigger := True;
907 exit;
908 end if;
909 end loop;
910 end if;
912 -- If they have identical magnitude, just return 0, else swap
913 -- if necessary so that X had the bigger magnitude. Determine
914 -- if result is negative at this time.
916 Result_Neg := False;
918 if not (X_Bigger or Y_Bigger) then
919 return Uint_0;
921 elsif Y_Bigger then
922 if R_Vec (1) < Int_0 then
923 Result_Neg := True;
924 end if;
926 Tmp_UI := X;
927 X := Y;
928 Y := Tmp_UI;
930 else
931 if L_Vec (1) < Int_0 then
932 Result_Neg := True;
933 end if;
934 end if;
936 -- Subtract Y from the bigger X
938 Borrow := 0;
940 for J in reverse 1 .. Sum_Length loop
941 Tmp_Int := X (J) - Y (J) + Borrow;
943 if Tmp_Int < Int_0 then
944 Tmp_Int := Tmp_Int + Base;
945 Borrow := -1;
946 else
947 Borrow := 0;
948 end if;
950 X (J) := Tmp_Int;
951 end loop;
953 return Vector_To_Uint (X, Result_Neg);
955 end if;
956 end;
957 end;
958 end UI_Add;
960 --------------------------
961 -- UI_Decimal_Digits_Hi --
962 --------------------------
964 function UI_Decimal_Digits_Hi (U : Uint) return Nat is
965 begin
966 -- The maximum value of a "digit" is 32767, which is 5 decimal digits,
967 -- so an N_Digit number could take up to 5 times this number of digits.
968 -- This is certainly too high for large numbers but it is not worth
969 -- worrying about.
971 return 5 * N_Digits (U);
972 end UI_Decimal_Digits_Hi;
974 --------------------------
975 -- UI_Decimal_Digits_Lo --
976 --------------------------
978 function UI_Decimal_Digits_Lo (U : Uint) return Nat is
979 begin
980 -- The maximum value of a "digit" is 32767, which is more than four
981 -- decimal digits, but not a full five digits. The easily computed
982 -- minimum number of decimal digits is thus 1 + 4 * the number of
983 -- digits. This is certainly too low for large numbers but it is not
984 -- worth worrying about.
986 return 1 + 4 * (N_Digits (U) - 1);
987 end UI_Decimal_Digits_Lo;
989 ------------
990 -- UI_Div --
991 ------------
993 function UI_Div (Left : Int; Right : Uint) return Uint is
994 begin
995 return UI_Div (UI_From_Int (Left), Right);
996 end UI_Div;
998 function UI_Div (Left : Uint; Right : Int) return Uint is
999 begin
1000 return UI_Div (Left, UI_From_Int (Right));
1001 end UI_Div;
1003 function UI_Div (Left, Right : Uint) return Uint is
1004 Quotient : Uint;
1005 Remainder : Uint;
1006 pragma Warnings (Off, Remainder);
1007 begin
1008 UI_Div_Rem
1009 (Left, Right,
1010 Quotient, Remainder,
1011 Discard_Remainder => True);
1012 return Quotient;
1013 end UI_Div;
1015 ----------------
1016 -- UI_Div_Rem --
1017 ----------------
1019 procedure UI_Div_Rem
1020 (Left, Right : Uint;
1021 Quotient : out Uint;
1022 Remainder : out Uint;
1023 Discard_Quotient : Boolean := False;
1024 Discard_Remainder : Boolean := False)
1026 begin
1027 pragma Assert (Right /= Uint_0);
1029 Quotient := No_Uint;
1030 Remainder := No_Uint;
1032 -- Cases where both operands are represented directly
1034 if Direct (Left) and then Direct (Right) then
1035 declare
1036 DV_Left : constant Int := Direct_Val (Left);
1037 DV_Right : constant Int := Direct_Val (Right);
1039 begin
1040 if not Discard_Quotient then
1041 Quotient := UI_From_Int (DV_Left / DV_Right);
1042 end if;
1044 if not Discard_Remainder then
1045 Remainder := UI_From_Int (DV_Left rem DV_Right);
1046 end if;
1048 return;
1049 end;
1050 end if;
1052 declare
1053 L_Length : constant Int := N_Digits (Left);
1054 R_Length : constant Int := N_Digits (Right);
1055 Q_Length : constant Int := L_Length - R_Length + 1;
1056 L_Vec : UI_Vector (1 .. L_Length);
1057 R_Vec : UI_Vector (1 .. R_Length);
1058 D : Int;
1059 Remainder_I : Int;
1060 Tmp_Divisor : Int;
1061 Carry : Int;
1062 Tmp_Int : Int;
1063 Tmp_Dig : Int;
1065 procedure UI_Div_Vector
1066 (L_Vec : UI_Vector;
1067 R_Int : Int;
1068 Quotient : out UI_Vector;
1069 Remainder : out Int);
1070 pragma Inline (UI_Div_Vector);
1071 -- Specialised variant for case where the divisor is a single digit
1073 procedure UI_Div_Vector
1074 (L_Vec : UI_Vector;
1075 R_Int : Int;
1076 Quotient : out UI_Vector;
1077 Remainder : out Int)
1079 Tmp_Int : Int;
1081 begin
1082 Remainder := 0;
1083 for J in L_Vec'Range loop
1084 Tmp_Int := Remainder * Base + abs L_Vec (J);
1085 Quotient (Quotient'First + J - L_Vec'First) := Tmp_Int / R_Int;
1086 Remainder := Tmp_Int rem R_Int;
1087 end loop;
1089 if L_Vec (L_Vec'First) < Int_0 then
1090 Remainder := -Remainder;
1091 end if;
1092 end UI_Div_Vector;
1094 -- Start of processing for UI_Div_Rem
1096 begin
1097 -- Result is zero if left operand is shorter than right
1099 if L_Length < R_Length then
1100 if not Discard_Quotient then
1101 Quotient := Uint_0;
1102 end if;
1104 if not Discard_Remainder then
1105 Remainder := Left;
1106 end if;
1108 return;
1109 end if;
1111 Init_Operand (Left, L_Vec);
1112 Init_Operand (Right, R_Vec);
1114 -- Case of right operand is single digit. Here we can simply divide
1115 -- each digit of the left operand by the divisor, from most to least
1116 -- significant, carrying the remainder to the next digit (just like
1117 -- ordinary long division by hand).
1119 if R_Length = Int_1 then
1120 Tmp_Divisor := abs R_Vec (1);
1122 declare
1123 Quotient_V : UI_Vector (1 .. L_Length);
1125 begin
1126 UI_Div_Vector (L_Vec, Tmp_Divisor, Quotient_V, Remainder_I);
1128 if not Discard_Quotient then
1129 Quotient :=
1130 Vector_To_Uint
1131 (Quotient_V, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
1132 end if;
1134 if not Discard_Remainder then
1135 Remainder := UI_From_Int (Remainder_I);
1136 end if;
1138 return;
1139 end;
1140 end if;
1142 -- The possible simple cases have been exhausted. Now turn to the
1143 -- algorithm D from the section of Knuth mentioned at the top of
1144 -- this package.
1146 Algorithm_D : declare
1147 Dividend : UI_Vector (1 .. L_Length + 1);
1148 Divisor : UI_Vector (1 .. R_Length);
1149 Quotient_V : UI_Vector (1 .. Q_Length);
1150 Divisor_Dig1 : Int;
1151 Divisor_Dig2 : Int;
1152 Q_Guess : Int;
1153 R_Guess : Int;
1155 begin
1156 -- [ NORMALIZE ] (step D1 in the algorithm). First calculate the
1157 -- scale d, and then multiply Left and Right (u and v in the book)
1158 -- by d to get the dividend and divisor to work with.
1160 D := Base / (abs R_Vec (1) + 1);
1162 Dividend (1) := 0;
1163 Dividend (2) := abs L_Vec (1);
1165 for J in 3 .. L_Length + Int_1 loop
1166 Dividend (J) := L_Vec (J - 1);
1167 end loop;
1169 Divisor (1) := abs R_Vec (1);
1171 for J in Int_2 .. R_Length loop
1172 Divisor (J) := R_Vec (J);
1173 end loop;
1175 if D > Int_1 then
1177 -- Multiply Dividend by d
1179 Carry := 0;
1180 for J in reverse Dividend'Range loop
1181 Tmp_Int := Dividend (J) * D + Carry;
1182 Dividend (J) := Tmp_Int rem Base;
1183 Carry := Tmp_Int / Base;
1184 end loop;
1186 -- Multiply Divisor by d
1188 Carry := 0;
1189 for J in reverse Divisor'Range loop
1190 Tmp_Int := Divisor (J) * D + Carry;
1191 Divisor (J) := Tmp_Int rem Base;
1192 Carry := Tmp_Int / Base;
1193 end loop;
1194 end if;
1196 -- Main loop of long division algorithm
1198 Divisor_Dig1 := Divisor (1);
1199 Divisor_Dig2 := Divisor (2);
1201 for J in Quotient_V'Range loop
1203 -- [ CALCULATE Q (hat) ] (step D3 in the algorithm)
1205 -- Note: this version of step D3 is from the original published
1206 -- algorithm, which is known to have a bug causing overflows.
1207 -- See: http://www-cs-faculty.stanford.edu/~uno/err2-2e.ps.gz
1208 -- and http://www-cs-faculty.stanford.edu/~uno/all2-pre.ps.gz.
1209 -- The code below is the fixed version of this step.
1211 Tmp_Int := Dividend (J) * Base + Dividend (J + 1);
1213 -- Initial guess
1215 Q_Guess := Tmp_Int / Divisor_Dig1;
1216 R_Guess := Tmp_Int rem Divisor_Dig1;
1218 -- Refine the guess
1220 while Q_Guess >= Base
1221 or else Divisor_Dig2 * Q_Guess >
1222 R_Guess * Base + Dividend (J + 2)
1223 loop
1224 Q_Guess := Q_Guess - 1;
1225 R_Guess := R_Guess + Divisor_Dig1;
1226 exit when R_Guess >= Base;
1227 end loop;
1229 -- [ MULTIPLY & SUBTRACT ] (step D4). Q_Guess * Divisor is
1230 -- subtracted from the remaining dividend.
1232 Carry := 0;
1233 for K in reverse Divisor'Range loop
1234 Tmp_Int := Dividend (J + K) - Q_Guess * Divisor (K) + Carry;
1235 Tmp_Dig := Tmp_Int rem Base;
1236 Carry := Tmp_Int / Base;
1238 if Tmp_Dig < Int_0 then
1239 Tmp_Dig := Tmp_Dig + Base;
1240 Carry := Carry - 1;
1241 end if;
1243 Dividend (J + K) := Tmp_Dig;
1244 end loop;
1246 Dividend (J) := Dividend (J) + Carry;
1248 -- [ TEST REMAINDER ] & [ ADD BACK ] (steps D5 and D6)
1250 -- Here there is a slight difference from the book: the last
1251 -- carry is always added in above and below (cancelling each
1252 -- other). In fact the dividend going negative is used as
1253 -- the test.
1255 -- If the Dividend went negative, then Q_Guess was off by
1256 -- one, so it is decremented, and the divisor is added back
1257 -- into the relevant portion of the dividend.
1259 if Dividend (J) < Int_0 then
1260 Q_Guess := Q_Guess - 1;
1262 Carry := 0;
1263 for K in reverse Divisor'Range loop
1264 Tmp_Int := Dividend (J + K) + Divisor (K) + Carry;
1266 if Tmp_Int >= Base then
1267 Tmp_Int := Tmp_Int - Base;
1268 Carry := 1;
1269 else
1270 Carry := 0;
1271 end if;
1273 Dividend (J + K) := Tmp_Int;
1274 end loop;
1276 Dividend (J) := Dividend (J) + Carry;
1277 end if;
1279 -- Finally we can get the next quotient digit
1281 Quotient_V (J) := Q_Guess;
1282 end loop;
1284 -- [ UNNORMALIZE ] (step D8)
1286 if not Discard_Quotient then
1287 Quotient := Vector_To_Uint
1288 (Quotient_V, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
1289 end if;
1291 if not Discard_Remainder then
1292 declare
1293 Remainder_V : UI_Vector (1 .. R_Length);
1294 Discard_Int : Int;
1295 pragma Warnings (Off, Discard_Int);
1296 begin
1297 UI_Div_Vector
1298 (Dividend (Dividend'Last - R_Length + 1 .. Dividend'Last),
1300 Remainder_V, Discard_Int);
1301 Remainder := Vector_To_Uint (Remainder_V, L_Vec (1) < Int_0);
1302 end;
1303 end if;
1304 end Algorithm_D;
1305 end;
1306 end UI_Div_Rem;
1308 ------------
1309 -- UI_Eq --
1310 ------------
1312 function UI_Eq (Left : Int; Right : Uint) return Boolean is
1313 begin
1314 return not UI_Ne (UI_From_Int (Left), Right);
1315 end UI_Eq;
1317 function UI_Eq (Left : Uint; Right : Int) return Boolean is
1318 begin
1319 return not UI_Ne (Left, UI_From_Int (Right));
1320 end UI_Eq;
1322 function UI_Eq (Left : Uint; Right : Uint) return Boolean is
1323 begin
1324 return not UI_Ne (Left, Right);
1325 end UI_Eq;
1327 --------------
1328 -- UI_Expon --
1329 --------------
1331 function UI_Expon (Left : Int; Right : Uint) return Uint is
1332 begin
1333 return UI_Expon (UI_From_Int (Left), Right);
1334 end UI_Expon;
1336 function UI_Expon (Left : Uint; Right : Int) return Uint is
1337 begin
1338 return UI_Expon (Left, UI_From_Int (Right));
1339 end UI_Expon;
1341 function UI_Expon (Left : Int; Right : Int) return Uint is
1342 begin
1343 return UI_Expon (UI_From_Int (Left), UI_From_Int (Right));
1344 end UI_Expon;
1346 function UI_Expon (Left : Uint; Right : Uint) return Uint is
1347 begin
1348 pragma Assert (Right >= Uint_0);
1350 -- Any value raised to power of 0 is 1
1352 if Right = Uint_0 then
1353 return Uint_1;
1355 -- 0 to any positive power is 0
1357 elsif Left = Uint_0 then
1358 return Uint_0;
1360 -- 1 to any power is 1
1362 elsif Left = Uint_1 then
1363 return Uint_1;
1365 -- Any value raised to power of 1 is that value
1367 elsif Right = Uint_1 then
1368 return Left;
1370 -- Cases which can be done by table lookup
1372 elsif Right <= Uint_64 then
1374 -- 2**N for N in 2 .. 64
1376 if Left = Uint_2 then
1377 declare
1378 Right_Int : constant Int := Direct_Val (Right);
1380 begin
1381 if Right_Int > UI_Power_2_Set then
1382 for J in UI_Power_2_Set + Int_1 .. Right_Int loop
1383 UI_Power_2 (J) := UI_Power_2 (J - Int_1) * Int_2;
1384 Uints_Min := Uints.Last;
1385 Udigits_Min := Udigits.Last;
1386 end loop;
1388 UI_Power_2_Set := Right_Int;
1389 end if;
1391 return UI_Power_2 (Right_Int);
1392 end;
1394 -- 10**N for N in 2 .. 64
1396 elsif Left = Uint_10 then
1397 declare
1398 Right_Int : constant Int := Direct_Val (Right);
1400 begin
1401 if Right_Int > UI_Power_10_Set then
1402 for J in UI_Power_10_Set + Int_1 .. Right_Int loop
1403 UI_Power_10 (J) := UI_Power_10 (J - Int_1) * Int (10);
1404 Uints_Min := Uints.Last;
1405 Udigits_Min := Udigits.Last;
1406 end loop;
1408 UI_Power_10_Set := Right_Int;
1409 end if;
1411 return UI_Power_10 (Right_Int);
1412 end;
1413 end if;
1414 end if;
1416 -- If we fall through, then we have the general case (see Knuth 4.6.3)
1418 declare
1419 N : Uint := Right;
1420 Squares : Uint := Left;
1421 Result : Uint := Uint_1;
1422 M : constant Uintp.Save_Mark := Uintp.Mark;
1424 begin
1425 loop
1426 if (Least_Sig_Digit (N) mod Int_2) = Int_1 then
1427 Result := Result * Squares;
1428 end if;
1430 N := N / Uint_2;
1431 exit when N = Uint_0;
1432 Squares := Squares * Squares;
1433 end loop;
1435 Uintp.Release_And_Save (M, Result);
1436 return Result;
1437 end;
1438 end UI_Expon;
1440 ----------------
1441 -- UI_From_CC --
1442 ----------------
1444 function UI_From_CC (Input : Char_Code) return Uint is
1445 begin
1446 return UI_From_Int (Int (Input));
1447 end UI_From_CC;
1449 -----------------
1450 -- UI_From_Int --
1451 -----------------
1453 function UI_From_Int (Input : Int) return Uint is
1454 U : Uint;
1456 begin
1457 if Min_Direct <= Input and then Input <= Max_Direct then
1458 return Uint (Int (Uint_Direct_Bias) + Input);
1459 end if;
1461 -- If already in the hash table, return entry
1463 U := UI_Ints.Get (Input);
1465 if U /= No_Uint then
1466 return U;
1467 end if;
1469 -- For values of larger magnitude, compute digits into a vector and call
1470 -- Vector_To_Uint.
1472 declare
1473 Max_For_Int : constant := 3;
1474 -- Base is defined so that 3 Uint digits is sufficient to hold the
1475 -- largest possible Int value.
1477 V : UI_Vector (1 .. Max_For_Int);
1479 Temp_Integer : Int := Input;
1481 begin
1482 for J in reverse V'Range loop
1483 V (J) := abs (Temp_Integer rem Base);
1484 Temp_Integer := Temp_Integer / Base;
1485 end loop;
1487 U := Vector_To_Uint (V, Input < Int_0);
1488 UI_Ints.Set (Input, U);
1489 Uints_Min := Uints.Last;
1490 Udigits_Min := Udigits.Last;
1491 return U;
1492 end;
1493 end UI_From_Int;
1495 ------------
1496 -- UI_GCD --
1497 ------------
1499 -- Lehmer's algorithm for GCD
1501 -- The idea is to avoid using multiple precision arithmetic wherever
1502 -- possible, substituting Int arithmetic instead. See Knuth volume II,
1503 -- Algorithm L (page 329).
1505 -- We use the same notation as Knuth (U_Hat standing for the obvious)
1507 function UI_GCD (Uin, Vin : Uint) return Uint is
1508 U, V : Uint;
1509 -- Copies of Uin and Vin
1511 U_Hat, V_Hat : Int;
1512 -- The most Significant digits of U,V
1514 A, B, C, D, T, Q, Den1, Den2 : Int;
1516 Tmp_UI : Uint;
1517 Marks : constant Uintp.Save_Mark := Uintp.Mark;
1518 Iterations : Integer := 0;
1520 begin
1521 pragma Assert (Uin >= Vin);
1522 pragma Assert (Vin >= Uint_0);
1524 U := Uin;
1525 V := Vin;
1527 loop
1528 Iterations := Iterations + 1;
1530 if Direct (V) then
1531 if V = Uint_0 then
1532 return U;
1533 else
1534 return
1535 UI_From_Int (GCD (Direct_Val (V), UI_To_Int (U rem V)));
1536 end if;
1537 end if;
1539 Most_Sig_2_Digits (U, V, U_Hat, V_Hat);
1540 A := 1;
1541 B := 0;
1542 C := 0;
1543 D := 1;
1545 loop
1546 -- We might overflow and get division by zero here. This just
1547 -- means we cannot take the single precision step
1549 Den1 := V_Hat + C;
1550 Den2 := V_Hat + D;
1551 exit when Den1 = Int_0 or else Den2 = Int_0;
1553 -- Compute Q, the trial quotient
1555 Q := (U_Hat + A) / Den1;
1557 exit when Q /= ((U_Hat + B) / Den2);
1559 -- A single precision step Euclid step will give same answer as a
1560 -- multiprecision one.
1562 T := A - (Q * C);
1563 A := C;
1564 C := T;
1566 T := B - (Q * D);
1567 B := D;
1568 D := T;
1570 T := U_Hat - (Q * V_Hat);
1571 U_Hat := V_Hat;
1572 V_Hat := T;
1574 end loop;
1576 -- Take a multiprecision Euclid step
1578 if B = Int_0 then
1580 -- No single precision steps take a regular Euclid step
1582 Tmp_UI := U rem V;
1583 U := V;
1584 V := Tmp_UI;
1586 else
1587 -- Use prior single precision steps to compute this Euclid step
1589 Tmp_UI := (UI_From_Int (A) * U) + (UI_From_Int (B) * V);
1590 V := (UI_From_Int (C) * U) + (UI_From_Int (D) * V);
1591 U := Tmp_UI;
1592 end if;
1594 -- If the operands are very different in magnitude, the loop will
1595 -- generate large amounts of short-lived data, which it is worth
1596 -- removing periodically.
1598 if Iterations > 100 then
1599 Release_And_Save (Marks, U, V);
1600 Iterations := 0;
1601 end if;
1602 end loop;
1603 end UI_GCD;
1605 ------------
1606 -- UI_Ge --
1607 ------------
1609 function UI_Ge (Left : Int; Right : Uint) return Boolean is
1610 begin
1611 return not UI_Lt (UI_From_Int (Left), Right);
1612 end UI_Ge;
1614 function UI_Ge (Left : Uint; Right : Int) return Boolean is
1615 begin
1616 return not UI_Lt (Left, UI_From_Int (Right));
1617 end UI_Ge;
1619 function UI_Ge (Left : Uint; Right : Uint) return Boolean is
1620 begin
1621 return not UI_Lt (Left, Right);
1622 end UI_Ge;
1624 ------------
1625 -- UI_Gt --
1626 ------------
1628 function UI_Gt (Left : Int; Right : Uint) return Boolean is
1629 begin
1630 return UI_Lt (Right, UI_From_Int (Left));
1631 end UI_Gt;
1633 function UI_Gt (Left : Uint; Right : Int) return Boolean is
1634 begin
1635 return UI_Lt (UI_From_Int (Right), Left);
1636 end UI_Gt;
1638 function UI_Gt (Left : Uint; Right : Uint) return Boolean is
1639 begin
1640 return UI_Lt (Left => Right, Right => Left);
1641 end UI_Gt;
1643 ---------------
1644 -- UI_Image --
1645 ---------------
1647 procedure UI_Image (Input : Uint; Format : UI_Format := Auto) is
1648 begin
1649 Image_Out (Input, True, Format);
1650 end UI_Image;
1652 function UI_Image
1653 (Input : Uint;
1654 Format : UI_Format := Auto) return String
1656 begin
1657 Image_Out (Input, True, Format);
1658 return UI_Image_Buffer (1 .. UI_Image_Length);
1659 end UI_Image;
1661 -------------------------
1662 -- UI_Is_In_Int_Range --
1663 -------------------------
1665 function UI_Is_In_Int_Range (Input : Uint) return Boolean is
1666 begin
1667 -- Make sure we don't get called before Initialize
1669 pragma Assert (Uint_Int_First /= Uint_0);
1671 if Direct (Input) then
1672 return True;
1673 else
1674 return Input >= Uint_Int_First
1675 and then Input <= Uint_Int_Last;
1676 end if;
1677 end UI_Is_In_Int_Range;
1679 ------------
1680 -- UI_Le --
1681 ------------
1683 function UI_Le (Left : Int; Right : Uint) return Boolean is
1684 begin
1685 return not UI_Lt (Right, UI_From_Int (Left));
1686 end UI_Le;
1688 function UI_Le (Left : Uint; Right : Int) return Boolean is
1689 begin
1690 return not UI_Lt (UI_From_Int (Right), Left);
1691 end UI_Le;
1693 function UI_Le (Left : Uint; Right : Uint) return Boolean is
1694 begin
1695 return not UI_Lt (Left => Right, Right => Left);
1696 end UI_Le;
1698 ------------
1699 -- UI_Lt --
1700 ------------
1702 function UI_Lt (Left : Int; Right : Uint) return Boolean is
1703 begin
1704 return UI_Lt (UI_From_Int (Left), Right);
1705 end UI_Lt;
1707 function UI_Lt (Left : Uint; Right : Int) return Boolean is
1708 begin
1709 return UI_Lt (Left, UI_From_Int (Right));
1710 end UI_Lt;
1712 function UI_Lt (Left : Uint; Right : Uint) return Boolean is
1713 begin
1714 -- Quick processing for identical arguments
1716 if Int (Left) = Int (Right) then
1717 return False;
1719 -- Quick processing for both arguments directly represented
1721 elsif Direct (Left) and then Direct (Right) then
1722 return Int (Left) < Int (Right);
1724 -- At least one argument is more than one digit long
1726 else
1727 declare
1728 L_Length : constant Int := N_Digits (Left);
1729 R_Length : constant Int := N_Digits (Right);
1731 L_Vec : UI_Vector (1 .. L_Length);
1732 R_Vec : UI_Vector (1 .. R_Length);
1734 begin
1735 Init_Operand (Left, L_Vec);
1736 Init_Operand (Right, R_Vec);
1738 if L_Vec (1) < Int_0 then
1740 -- First argument negative, second argument non-negative
1742 if R_Vec (1) >= Int_0 then
1743 return True;
1745 -- Both arguments negative
1747 else
1748 if L_Length /= R_Length then
1749 return L_Length > R_Length;
1751 elsif L_Vec (1) /= R_Vec (1) then
1752 return L_Vec (1) < R_Vec (1);
1754 else
1755 for J in 2 .. L_Vec'Last loop
1756 if L_Vec (J) /= R_Vec (J) then
1757 return L_Vec (J) > R_Vec (J);
1758 end if;
1759 end loop;
1761 return False;
1762 end if;
1763 end if;
1765 else
1766 -- First argument non-negative, second argument negative
1768 if R_Vec (1) < Int_0 then
1769 return False;
1771 -- Both arguments non-negative
1773 else
1774 if L_Length /= R_Length then
1775 return L_Length < R_Length;
1776 else
1777 for J in L_Vec'Range loop
1778 if L_Vec (J) /= R_Vec (J) then
1779 return L_Vec (J) < R_Vec (J);
1780 end if;
1781 end loop;
1783 return False;
1784 end if;
1785 end if;
1786 end if;
1787 end;
1788 end if;
1789 end UI_Lt;
1791 ------------
1792 -- UI_Max --
1793 ------------
1795 function UI_Max (Left : Int; Right : Uint) return Uint is
1796 begin
1797 return UI_Max (UI_From_Int (Left), Right);
1798 end UI_Max;
1800 function UI_Max (Left : Uint; Right : Int) return Uint is
1801 begin
1802 return UI_Max (Left, UI_From_Int (Right));
1803 end UI_Max;
1805 function UI_Max (Left : Uint; Right : Uint) return Uint is
1806 begin
1807 if Left >= Right then
1808 return Left;
1809 else
1810 return Right;
1811 end if;
1812 end UI_Max;
1814 ------------
1815 -- UI_Min --
1816 ------------
1818 function UI_Min (Left : Int; Right : Uint) return Uint is
1819 begin
1820 return UI_Min (UI_From_Int (Left), Right);
1821 end UI_Min;
1823 function UI_Min (Left : Uint; Right : Int) return Uint is
1824 begin
1825 return UI_Min (Left, UI_From_Int (Right));
1826 end UI_Min;
1828 function UI_Min (Left : Uint; Right : Uint) return Uint is
1829 begin
1830 if Left <= Right then
1831 return Left;
1832 else
1833 return Right;
1834 end if;
1835 end UI_Min;
1837 -------------
1838 -- UI_Mod --
1839 -------------
1841 function UI_Mod (Left : Int; Right : Uint) return Uint is
1842 begin
1843 return UI_Mod (UI_From_Int (Left), Right);
1844 end UI_Mod;
1846 function UI_Mod (Left : Uint; Right : Int) return Uint is
1847 begin
1848 return UI_Mod (Left, UI_From_Int (Right));
1849 end UI_Mod;
1851 function UI_Mod (Left : Uint; Right : Uint) return Uint is
1852 Urem : constant Uint := Left rem Right;
1854 begin
1855 if (Left < Uint_0) = (Right < Uint_0)
1856 or else Urem = Uint_0
1857 then
1858 return Urem;
1859 else
1860 return Right + Urem;
1861 end if;
1862 end UI_Mod;
1864 -------------------------------
1865 -- UI_Modular_Exponentiation --
1866 -------------------------------
1868 function UI_Modular_Exponentiation
1869 (B : Uint;
1870 E : Uint;
1871 Modulo : Uint) return Uint
1873 M : constant Save_Mark := Mark;
1875 Result : Uint := Uint_1;
1876 Base : Uint := B;
1877 Exponent : Uint := E;
1879 begin
1880 while Exponent /= Uint_0 loop
1881 if Least_Sig_Digit (Exponent) rem Int'(2) = Int'(1) then
1882 Result := (Result * Base) rem Modulo;
1883 end if;
1885 Exponent := Exponent / Uint_2;
1886 Base := (Base * Base) rem Modulo;
1887 end loop;
1889 Release_And_Save (M, Result);
1890 return Result;
1891 end UI_Modular_Exponentiation;
1893 ------------------------
1894 -- UI_Modular_Inverse --
1895 ------------------------
1897 function UI_Modular_Inverse (N : Uint; Modulo : Uint) return Uint is
1898 M : constant Save_Mark := Mark;
1899 U : Uint;
1900 V : Uint;
1901 Q : Uint;
1902 R : Uint;
1903 X : Uint;
1904 Y : Uint;
1905 T : Uint;
1906 S : Int := 1;
1908 begin
1909 U := Modulo;
1910 V := N;
1912 X := Uint_1;
1913 Y := Uint_0;
1915 loop
1916 UI_Div_Rem (U, V, Quotient => Q, Remainder => R);
1918 U := V;
1919 V := R;
1921 T := X;
1922 X := Y + Q * X;
1923 Y := T;
1924 S := -S;
1926 exit when R = Uint_1;
1927 end loop;
1929 if S = Int'(-1) then
1930 X := Modulo - X;
1931 end if;
1933 Release_And_Save (M, X);
1934 return X;
1935 end UI_Modular_Inverse;
1937 ------------
1938 -- UI_Mul --
1939 ------------
1941 function UI_Mul (Left : Int; Right : Uint) return Uint is
1942 begin
1943 return UI_Mul (UI_From_Int (Left), Right);
1944 end UI_Mul;
1946 function UI_Mul (Left : Uint; Right : Int) return Uint is
1947 begin
1948 return UI_Mul (Left, UI_From_Int (Right));
1949 end UI_Mul;
1951 function UI_Mul (Left : Uint; Right : Uint) return Uint is
1952 begin
1953 -- Case where product fits in the range of a 32-bit integer
1955 if Int (Left) <= Int (Uint_Max_Simple_Mul)
1956 and then
1957 Int (Right) <= Int (Uint_Max_Simple_Mul)
1958 then
1959 return UI_From_Int (Direct_Val (Left) * Direct_Val (Right));
1960 end if;
1962 -- Otherwise we have the general case (Algorithm M in Knuth)
1964 declare
1965 L_Length : constant Int := N_Digits (Left);
1966 R_Length : constant Int := N_Digits (Right);
1967 L_Vec : UI_Vector (1 .. L_Length);
1968 R_Vec : UI_Vector (1 .. R_Length);
1969 Neg : Boolean;
1971 begin
1972 Init_Operand (Left, L_Vec);
1973 Init_Operand (Right, R_Vec);
1974 Neg := (L_Vec (1) < Int_0) xor (R_Vec (1) < Int_0);
1975 L_Vec (1) := abs (L_Vec (1));
1976 R_Vec (1) := abs (R_Vec (1));
1978 Algorithm_M : declare
1979 Product : UI_Vector (1 .. L_Length + R_Length);
1980 Tmp_Sum : Int;
1981 Carry : Int;
1983 begin
1984 for J in Product'Range loop
1985 Product (J) := 0;
1986 end loop;
1988 for J in reverse R_Vec'Range loop
1989 Carry := 0;
1990 for K in reverse L_Vec'Range loop
1991 Tmp_Sum :=
1992 L_Vec (K) * R_Vec (J) + Product (J + K) + Carry;
1993 Product (J + K) := Tmp_Sum rem Base;
1994 Carry := Tmp_Sum / Base;
1995 end loop;
1997 Product (J) := Carry;
1998 end loop;
2000 return Vector_To_Uint (Product, Neg);
2001 end Algorithm_M;
2002 end;
2003 end UI_Mul;
2005 ------------
2006 -- UI_Ne --
2007 ------------
2009 function UI_Ne (Left : Int; Right : Uint) return Boolean is
2010 begin
2011 return UI_Ne (UI_From_Int (Left), Right);
2012 end UI_Ne;
2014 function UI_Ne (Left : Uint; Right : Int) return Boolean is
2015 begin
2016 return UI_Ne (Left, UI_From_Int (Right));
2017 end UI_Ne;
2019 function UI_Ne (Left : Uint; Right : Uint) return Boolean is
2020 begin
2021 -- Quick processing for identical arguments. Note that this takes
2022 -- care of the case of two No_Uint arguments.
2024 if Int (Left) = Int (Right) then
2025 return False;
2026 end if;
2028 -- See if left operand directly represented
2030 if Direct (Left) then
2032 -- If right operand directly represented then compare
2034 if Direct (Right) then
2035 return Int (Left) /= Int (Right);
2037 -- Left operand directly represented, right not, must be unequal
2039 else
2040 return True;
2041 end if;
2043 -- Right operand directly represented, left not, must be unequal
2045 elsif Direct (Right) then
2046 return True;
2047 end if;
2049 -- Otherwise both multi-word, do comparison
2051 declare
2052 Size : constant Int := N_Digits (Left);
2053 Left_Loc : Int;
2054 Right_Loc : Int;
2056 begin
2057 if Size /= N_Digits (Right) then
2058 return True;
2059 end if;
2061 Left_Loc := Uints.Table (Left).Loc;
2062 Right_Loc := Uints.Table (Right).Loc;
2064 for J in Int_0 .. Size - Int_1 loop
2065 if Udigits.Table (Left_Loc + J) /=
2066 Udigits.Table (Right_Loc + J)
2067 then
2068 return True;
2069 end if;
2070 end loop;
2072 return False;
2073 end;
2074 end UI_Ne;
2076 ----------------
2077 -- UI_Negate --
2078 ----------------
2080 function UI_Negate (Right : Uint) return Uint is
2081 begin
2082 -- Case where input is directly represented. Note that since the range
2083 -- of Direct values is non-symmetrical, the result may not be directly
2084 -- represented, this is taken care of in UI_From_Int.
2086 if Direct (Right) then
2087 return UI_From_Int (-Direct_Val (Right));
2089 -- Full processing for multi-digit case. Note that we cannot just copy
2090 -- the value to the end of the table negating the first digit, since the
2091 -- range of Direct values is non-symmetrical, so we can have a negative
2092 -- value that is not Direct whose negation can be represented directly.
2094 else
2095 declare
2096 R_Length : constant Int := N_Digits (Right);
2097 R_Vec : UI_Vector (1 .. R_Length);
2098 Neg : Boolean;
2100 begin
2101 Init_Operand (Right, R_Vec);
2102 Neg := R_Vec (1) > Int_0;
2103 R_Vec (1) := abs R_Vec (1);
2104 return Vector_To_Uint (R_Vec, Neg);
2105 end;
2106 end if;
2107 end UI_Negate;
2109 -------------
2110 -- UI_Rem --
2111 -------------
2113 function UI_Rem (Left : Int; Right : Uint) return Uint is
2114 begin
2115 return UI_Rem (UI_From_Int (Left), Right);
2116 end UI_Rem;
2118 function UI_Rem (Left : Uint; Right : Int) return Uint is
2119 begin
2120 return UI_Rem (Left, UI_From_Int (Right));
2121 end UI_Rem;
2123 function UI_Rem (Left, Right : Uint) return Uint is
2124 Remainder : Uint;
2125 Quotient : Uint;
2126 pragma Warnings (Off, Quotient);
2128 begin
2129 pragma Assert (Right /= Uint_0);
2131 if Direct (Right) and then Direct (Left) then
2132 return UI_From_Int (Direct_Val (Left) rem Direct_Val (Right));
2134 else
2135 UI_Div_Rem
2136 (Left, Right, Quotient, Remainder, Discard_Quotient => True);
2137 return Remainder;
2138 end if;
2139 end UI_Rem;
2141 ------------
2142 -- UI_Sub --
2143 ------------
2145 function UI_Sub (Left : Int; Right : Uint) return Uint is
2146 begin
2147 return UI_Add (Left, -Right);
2148 end UI_Sub;
2150 function UI_Sub (Left : Uint; Right : Int) return Uint is
2151 begin
2152 return UI_Add (Left, -Right);
2153 end UI_Sub;
2155 function UI_Sub (Left : Uint; Right : Uint) return Uint is
2156 begin
2157 if Direct (Left) and then Direct (Right) then
2158 return UI_From_Int (Direct_Val (Left) - Direct_Val (Right));
2159 else
2160 return UI_Add (Left, -Right);
2161 end if;
2162 end UI_Sub;
2164 --------------
2165 -- UI_To_CC --
2166 --------------
2168 function UI_To_CC (Input : Uint) return Char_Code is
2169 begin
2170 if Direct (Input) then
2171 return Char_Code (Direct_Val (Input));
2173 -- Case of input is more than one digit
2175 else
2176 declare
2177 In_Length : constant Int := N_Digits (Input);
2178 In_Vec : UI_Vector (1 .. In_Length);
2179 Ret_CC : Char_Code;
2181 begin
2182 Init_Operand (Input, In_Vec);
2184 -- We assume value is positive
2186 Ret_CC := 0;
2187 for Idx in In_Vec'Range loop
2188 Ret_CC := Ret_CC * Char_Code (Base) +
2189 Char_Code (abs In_Vec (Idx));
2190 end loop;
2192 return Ret_CC;
2193 end;
2194 end if;
2195 end UI_To_CC;
2197 ----------------
2198 -- UI_To_Int --
2199 ----------------
2201 function UI_To_Int (Input : Uint) return Int is
2202 pragma Assert (Input /= No_Uint);
2204 begin
2205 if Direct (Input) then
2206 return Direct_Val (Input);
2208 -- Case of input is more than one digit
2210 else
2211 declare
2212 In_Length : constant Int := N_Digits (Input);
2213 In_Vec : UI_Vector (1 .. In_Length);
2214 Ret_Int : Int;
2216 begin
2217 -- Uints of more than one digit could be outside the range for
2218 -- Ints. Caller should have checked for this if not certain.
2219 -- Constraint_Error to attempt to convert from value outside
2220 -- Int'Range.
2222 if not UI_Is_In_Int_Range (Input) then
2223 raise Constraint_Error;
2224 end if;
2226 -- Otherwise, proceed ahead, we are OK
2228 Init_Operand (Input, In_Vec);
2229 Ret_Int := 0;
2231 -- Calculate -|Input| and then negates if value is positive. This
2232 -- handles our current definition of Int (based on 2s complement).
2233 -- Is it secure enough???
2235 for Idx in In_Vec'Range loop
2236 Ret_Int := Ret_Int * Base - abs In_Vec (Idx);
2237 end loop;
2239 if In_Vec (1) < Int_0 then
2240 return Ret_Int;
2241 else
2242 return -Ret_Int;
2243 end if;
2244 end;
2245 end if;
2246 end UI_To_Int;
2248 --------------
2249 -- UI_Write --
2250 --------------
2252 procedure UI_Write (Input : Uint; Format : UI_Format := Auto) is
2253 begin
2254 Image_Out (Input, False, Format);
2255 end UI_Write;
2257 ---------------------
2258 -- Vector_To_Uint --
2259 ---------------------
2261 function Vector_To_Uint
2262 (In_Vec : UI_Vector;
2263 Negative : Boolean)
2264 return Uint
2266 Size : Int;
2267 Val : Int;
2269 begin
2270 -- The vector can contain leading zeros. These are not stored in the
2271 -- table, so loop through the vector looking for first non-zero digit
2273 for J in In_Vec'Range loop
2274 if In_Vec (J) /= Int_0 then
2276 -- The length of the value is the length of the rest of the vector
2278 Size := In_Vec'Last - J + 1;
2280 -- One digit value can always be represented directly
2282 if Size = Int_1 then
2283 if Negative then
2284 return Uint (Int (Uint_Direct_Bias) - In_Vec (J));
2285 else
2286 return Uint (Int (Uint_Direct_Bias) + In_Vec (J));
2287 end if;
2289 -- Positive two digit values may be in direct representation range
2291 elsif Size = Int_2 and then not Negative then
2292 Val := In_Vec (J) * Base + In_Vec (J + 1);
2294 if Val <= Max_Direct then
2295 return Uint (Int (Uint_Direct_Bias) + Val);
2296 end if;
2297 end if;
2299 -- The value is outside the direct representation range and must
2300 -- therefore be stored in the table. Expand the table to contain
2301 -- the count and digits. The index of the new table entry will be
2302 -- returned as the result.
2304 Uints.Append ((Length => Size, Loc => Udigits.Last + 1));
2306 if Negative then
2307 Val := -In_Vec (J);
2308 else
2309 Val := +In_Vec (J);
2310 end if;
2312 Udigits.Append (Val);
2314 for K in 2 .. Size loop
2315 Udigits.Append (In_Vec (J + K - 1));
2316 end loop;
2318 return Uints.Last;
2319 end if;
2320 end loop;
2322 -- Dropped through loop only if vector contained all zeros
2324 return Uint_0;
2325 end Vector_To_Uint;
2327 end Uintp;