1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Ada
.Characters
.Latin_1
; use Ada
.Characters
.Latin_1
;
28 with Atree
; use Atree
;
29 with Casing
; use Casing
;
30 with Checks
; use Checks
;
31 with Debug
; use Debug
;
32 with Einfo
; use Einfo
;
33 with Elists
; use Elists
;
34 with Errout
; use Errout
;
36 with Exp_Dist
; use Exp_Dist
;
37 with Exp_Util
; use Exp_Util
;
38 with Expander
; use Expander
;
39 with Freeze
; use Freeze
;
40 with Gnatvsn
; use Gnatvsn
;
41 with Itypes
; use Itypes
;
43 with Lib
.Xref
; use Lib
.Xref
;
44 with Nlists
; use Nlists
;
45 with Nmake
; use Nmake
;
47 with Restrict
; use Restrict
;
48 with Rident
; use Rident
;
49 with Rtsfind
; use Rtsfind
;
50 with Sdefault
; use Sdefault
;
52 with Sem_Aux
; use Sem_Aux
;
53 with Sem_Cat
; use Sem_Cat
;
54 with Sem_Ch6
; use Sem_Ch6
;
55 with Sem_Ch8
; use Sem_Ch8
;
56 with Sem_Ch10
; use Sem_Ch10
;
57 with Sem_Dim
; use Sem_Dim
;
58 with Sem_Dist
; use Sem_Dist
;
59 with Sem_Elab
; use Sem_Elab
;
60 with Sem_Elim
; use Sem_Elim
;
61 with Sem_Eval
; use Sem_Eval
;
62 with Sem_Prag
; use Sem_Prag
;
63 with Sem_Res
; use Sem_Res
;
64 with Sem_Type
; use Sem_Type
;
65 with Sem_Util
; use Sem_Util
;
67 with Stand
; use Stand
;
68 with Sinfo
; use Sinfo
;
69 with Sinput
; use Sinput
;
71 with Stringt
; use Stringt
;
73 with Stylesw
; use Stylesw
;
74 with Targparm
; use Targparm
;
75 with Ttypes
; use Ttypes
;
76 with Tbuild
; use Tbuild
;
77 with Uintp
; use Uintp
;
78 with Uname
; use Uname
;
79 with Urealp
; use Urealp
;
81 with System
.CRC32
; use System
.CRC32
;
83 package body Sem_Attr
is
85 True_Value
: constant Uint
:= Uint_1
;
86 False_Value
: constant Uint
:= Uint_0
;
87 -- Synonyms to be used when these constants are used as Boolean values
89 Bad_Attribute
: exception;
90 -- Exception raised if an error is detected during attribute processing,
91 -- used so that we can abandon the processing so we don't run into
92 -- trouble with cascaded errors.
94 -- The following array is the list of attributes defined in the Ada 83 RM.
95 -- In Ada 83 mode, these are the only recognized attributes. In other Ada
96 -- modes all these attributes are recognized, even if removed in Ada 95.
98 Attribute_83
: constant Attribute_Class_Array
:= Attribute_Class_Array
'(
101 Attribute_Alignment |
104 Attribute_Constrained |
111 Attribute_First_Bit |
117 Attribute_Leading_Part |
119 Attribute_Machine_Emax |
120 Attribute_Machine_Emin |
121 Attribute_Machine_Mantissa |
122 Attribute_Machine_Overflows |
123 Attribute_Machine_Radix |
124 Attribute_Machine_Rounds |
130 Attribute_Safe_Emax |
131 Attribute_Safe_Large |
132 Attribute_Safe_Small |
135 Attribute_Storage_Size |
137 Attribute_Terminated |
140 Attribute_Width => True,
143 -- The following array is the list of attributes defined in the Ada 2005
144 -- RM which are not defined in Ada 95. These are recognized in Ada 95 mode,
145 -- but in Ada 95 they are considered to be implementation defined.
147 Attribute_05 : constant Attribute_Class_Array := Attribute_Class_Array'(
148 Attribute_Machine_Rounding |
151 Attribute_Stream_Size |
152 Attribute_Wide_Wide_Width
=> True,
155 -- The following array is the list of attributes defined in the Ada 2012
156 -- RM which are not defined in Ada 2005. These are recognized in Ada 95
157 -- and Ada 2005 modes, but are considered to be implementation defined.
159 Attribute_12
: constant Attribute_Class_Array
:= Attribute_Class_Array
'(
160 Attribute_First_Valid |
161 Attribute_Has_Same_Storage |
162 Attribute_Last_Valid |
163 Attribute_Max_Alignment_For_Allocation => True,
166 -- The following array contains all attributes that imply a modification
167 -- of their prefixes or result in an access value. Such prefixes can be
168 -- considered as lvalues.
170 Attribute_Name_Implies_Lvalue_Prefix : constant Attribute_Class_Array :=
171 Attribute_Class_Array'(
176 Attribute_Unchecked_Access |
177 Attribute_Unrestricted_Access
=> True,
180 -----------------------
181 -- Local_Subprograms --
182 -----------------------
184 procedure Eval_Attribute
(N
: Node_Id
);
185 -- Performs compile time evaluation of attributes where possible, leaving
186 -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
187 -- set, and replacing the node with a literal node if the value can be
188 -- computed at compile time. All static attribute references are folded,
189 -- as well as a number of cases of non-static attributes that can always
190 -- be computed at compile time (e.g. floating-point model attributes that
191 -- are applied to non-static subtypes). Of course in such cases, the
192 -- Is_Static_Expression flag will not be set on the resulting literal.
193 -- Note that the only required action of this procedure is to catch the
194 -- static expression cases as described in the RM. Folding of other cases
195 -- is done where convenient, but some additional non-static folding is in
196 -- Expand_N_Attribute_Reference in cases where this is more convenient.
198 function Is_Anonymous_Tagged_Base
200 Typ
: Entity_Id
) return Boolean;
201 -- For derived tagged types that constrain parent discriminants we build
202 -- an anonymous unconstrained base type. We need to recognize the relation
203 -- between the two when analyzing an access attribute for a constrained
204 -- component, before the full declaration for Typ has been analyzed, and
205 -- where therefore the prefix of the attribute does not match the enclosing
208 procedure Set_Boolean_Result
(N
: Node_Id
; B
: Boolean);
209 -- Rewrites node N with an occurrence of either Standard_False or
210 -- Standard_True, depending on the value of the parameter B. The
211 -- result is marked as a static expression.
213 function Statically_Denotes_Object
(N
: Node_Id
) return Boolean;
214 -- Predicate used to check the legality of the prefix to 'Loop_Entry and
215 -- 'Old, when the prefix is not an entity name. Current RM specfies that
216 -- the prefix must be a direct or expanded name, but it has been proposed
217 -- that the prefix be allowed to be a selected component that does not
218 -- depend on a discriminant, or an indexed component with static indices.
219 -- Current code for this predicate implements this more permissive
222 -----------------------
223 -- Analyze_Attribute --
224 -----------------------
226 procedure Analyze_Attribute
(N
: Node_Id
) is
227 Loc
: constant Source_Ptr
:= Sloc
(N
);
228 Aname
: constant Name_Id
:= Attribute_Name
(N
);
229 P
: constant Node_Id
:= Prefix
(N
);
230 Exprs
: constant List_Id
:= Expressions
(N
);
231 Attr_Id
: constant Attribute_Id
:= Get_Attribute_Id
(Aname
);
236 -- Type of prefix after analysis
238 P_Base_Type
: Entity_Id
;
239 -- Base type of prefix after analysis
241 -----------------------
242 -- Local Subprograms --
243 -----------------------
245 procedure Address_Checks
;
246 -- Semantic checks for valid use of Address attribute. This was made
247 -- a separate routine with the idea of using it for unrestricted access
248 -- which seems like it should follow the same rules, but that turned
249 -- out to be impractical. So now this is only used for Address.
251 procedure Analyze_Access_Attribute
;
252 -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
253 -- Internally, Id distinguishes which of the three cases is involved.
255 procedure Analyze_Attribute_Old_Result
256 (Legal
: out Boolean;
257 Spec_Id
: out Entity_Id
);
258 -- Common processing for attributes 'Old and 'Result. The routine checks
259 -- that the attribute appears in a postcondition-like aspect or pragma
260 -- associated with a suitable subprogram or a body. Flag Legal is set
261 -- when the above criteria are met. Spec_Id denotes the entity of the
262 -- subprogram [body] or Empty if the attribute is illegal.
264 procedure Bad_Attribute_For_Predicate
;
265 -- Output error message for use of a predicate (First, Last, Range) not
266 -- allowed with a type that has predicates. If the type is a generic
267 -- actual, then the message is a warning, and we generate code to raise
268 -- program error with an appropriate reason. No error message is given
269 -- for internally generated uses of the attributes. This legality rule
270 -- only applies to scalar types.
272 procedure Check_Array_Or_Scalar_Type
;
273 -- Common procedure used by First, Last, Range attribute to check
274 -- that the prefix is a constrained array or scalar type, or a name
275 -- of an array object, and that an argument appears only if appropriate
276 -- (i.e. only in the array case).
278 procedure Check_Array_Type
;
279 -- Common semantic checks for all array attributes. Checks that the
280 -- prefix is a constrained array type or the name of an array object.
281 -- The error message for non-arrays is specialized appropriately.
283 procedure Check_Asm_Attribute
;
284 -- Common semantic checks for Asm_Input and Asm_Output attributes
286 procedure Check_Component
;
287 -- Common processing for Bit_Position, First_Bit, Last_Bit, and
288 -- Position. Checks prefix is an appropriate selected component.
290 procedure Check_Decimal_Fixed_Point_Type
;
291 -- Check that prefix of attribute N is a decimal fixed-point type
293 procedure Check_Dereference
;
294 -- If the prefix of attribute is an object of an access type, then
295 -- introduce an explicit dereference, and adjust P_Type accordingly.
297 procedure Check_Discrete_Type
;
298 -- Verify that prefix of attribute N is a discrete type
301 -- Check that no attribute arguments are present
303 procedure Check_Either_E0_Or_E1
;
304 -- Check that there are zero or one attribute arguments present
307 -- Check that exactly one attribute argument is present
310 -- Check that two attribute arguments are present
312 procedure Check_Enum_Image
;
313 -- If the prefix type of 'Image is an enumeration type, set all its
314 -- literals as referenced, since the image function could possibly end
315 -- up referencing any of the literals indirectly. Same for Enum_Val.
316 -- Set the flag only if the reference is in the main code unit. Same
317 -- restriction when resolving 'Value; otherwise an improperly set
318 -- reference when analyzing an inlined body will lose a proper
319 -- warning on a useless with_clause.
321 procedure Check_First_Last_Valid
;
322 -- Perform all checks for First_Valid and Last_Valid attributes
324 procedure Check_Fixed_Point_Type
;
325 -- Verify that prefix of attribute N is a fixed type
327 procedure Check_Fixed_Point_Type_0
;
328 -- Verify that prefix of attribute N is a fixed type and that
329 -- no attribute expressions are present
331 procedure Check_Floating_Point_Type
;
332 -- Verify that prefix of attribute N is a float type
334 procedure Check_Floating_Point_Type_0
;
335 -- Verify that prefix of attribute N is a float type and that
336 -- no attribute expressions are present
338 procedure Check_Floating_Point_Type_1
;
339 -- Verify that prefix of attribute N is a float type and that
340 -- exactly one attribute expression is present
342 procedure Check_Floating_Point_Type_2
;
343 -- Verify that prefix of attribute N is a float type and that
344 -- two attribute expressions are present
346 procedure Check_SPARK_05_Restriction_On_Attribute
;
347 -- Issue an error in formal mode because attribute N is allowed
349 procedure Check_Integer_Type
;
350 -- Verify that prefix of attribute N is an integer type
352 procedure Check_Modular_Integer_Type
;
353 -- Verify that prefix of attribute N is a modular integer type
355 procedure Check_Not_CPP_Type
;
356 -- Check that P (the prefix of the attribute) is not an CPP type
357 -- for which no Ada predefined primitive is available.
359 procedure Check_Not_Incomplete_Type
;
360 -- Check that P (the prefix of the attribute) is not an incomplete
361 -- type or a private type for which no full view has been given.
363 procedure Check_Object_Reference
(P
: Node_Id
);
364 -- Check that P is an object reference
366 procedure Check_PolyORB_Attribute
;
367 -- Validity checking for PolyORB/DSA attribute
369 procedure Check_Program_Unit
;
370 -- Verify that prefix of attribute N is a program unit
372 procedure Check_Real_Type
;
373 -- Verify that prefix of attribute N is fixed or float type
375 procedure Check_Scalar_Type
;
376 -- Verify that prefix of attribute N is a scalar type
378 procedure Check_Standard_Prefix
;
379 -- Verify that prefix of attribute N is package Standard. Also checks
380 -- that there are no arguments.
382 procedure Check_Stream_Attribute
(Nam
: TSS_Name_Type
);
383 -- Validity checking for stream attribute. Nam is the TSS name of the
384 -- corresponding possible defined attribute function (e.g. for the
385 -- Read attribute, Nam will be TSS_Stream_Read).
387 procedure Check_System_Prefix
;
388 -- Verify that prefix of attribute N is package System
390 procedure Check_Task_Prefix
;
391 -- Verify that prefix of attribute N is a task or task type
393 procedure Check_Type
;
394 -- Verify that the prefix of attribute N is a type
396 procedure Check_Unit_Name
(Nod
: Node_Id
);
397 -- Check that Nod is of the form of a library unit name, i.e that
398 -- it is an identifier, or a selected component whose prefix is
399 -- itself of the form of a library unit name. Note that this is
400 -- quite different from Check_Program_Unit, since it only checks
401 -- the syntactic form of the name, not the semantic identity. This
402 -- is because it is used with attributes (Elab_Body, Elab_Spec and
403 -- Elaborated) which can refer to non-visible unit.
405 procedure Error_Attr
(Msg
: String; Error_Node
: Node_Id
);
406 pragma No_Return
(Error_Attr
);
407 procedure Error_Attr
;
408 pragma No_Return
(Error_Attr
);
409 -- Posts error using Error_Msg_N at given node, sets type of attribute
410 -- node to Any_Type, and then raises Bad_Attribute to avoid any further
411 -- semantic processing. The message typically contains a % insertion
412 -- character which is replaced by the attribute name. The call with
413 -- no arguments is used when the caller has already generated the
414 -- required error messages.
416 procedure Error_Attr_P
(Msg
: String);
417 pragma No_Return
(Error_Attr
);
418 -- Like Error_Attr, but error is posted at the start of the prefix
420 procedure Legal_Formal_Attribute
;
421 -- Common processing for attributes Definite and Has_Discriminants.
422 -- Checks that prefix is generic indefinite formal type.
424 procedure Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements
;
425 -- Common processing for attributes Max_Alignment_For_Allocation and
426 -- Max_Size_In_Storage_Elements.
429 -- Common processing for attributes Max and Min
431 procedure Standard_Attribute
(Val
: Int
);
432 -- Used to process attributes whose prefix is package Standard which
433 -- yield values of type Universal_Integer. The attribute reference
434 -- node is rewritten with an integer literal of the given value which
435 -- is marked as static.
437 procedure Uneval_Old_Msg
;
438 -- Called when Loop_Entry or Old is used in a potentially unevaluated
439 -- expression. Generates appropriate message or warning depending on
440 -- the setting of Opt.Uneval_Old (or flags in an N_Aspect_Specification
441 -- node in the aspect case).
443 procedure Unexpected_Argument
(En
: Node_Id
);
444 -- Signal unexpected attribute argument (En is the argument)
446 procedure Validate_Non_Static_Attribute_Function_Call
;
447 -- Called when processing an attribute that is a function call to a
448 -- non-static function, i.e. an attribute function that either takes
449 -- non-scalar arguments or returns a non-scalar result. Verifies that
450 -- such a call does not appear in a preelaborable context.
456 procedure Address_Checks
is
458 -- An Address attribute created by expansion is legal even when it
459 -- applies to other entity-denoting expressions.
461 if not Comes_From_Source
(N
) then
464 -- Address attribute on a protected object self reference is legal
466 elsif Is_Protected_Self_Reference
(P
) then
469 -- Address applied to an entity
471 elsif Is_Entity_Name
(P
) then
473 Ent
: constant Entity_Id
:= Entity
(P
);
476 if Is_Subprogram
(Ent
) then
477 Set_Address_Taken
(Ent
);
478 Kill_Current_Values
(Ent
);
480 -- An Address attribute is accepted when generated by the
481 -- compiler for dispatching operation, and an error is
482 -- issued once the subprogram is frozen (to avoid confusing
483 -- errors about implicit uses of Address in the dispatch
484 -- table initialization).
486 if Has_Pragma_Inline_Always
(Entity
(P
))
487 and then Comes_From_Source
(P
)
490 ("prefix of % attribute cannot be Inline_Always "
493 -- It is illegal to apply 'Address to an intrinsic
494 -- subprogram. This is now formalized in AI05-0095.
495 -- In an instance, an attempt to obtain 'Address of an
496 -- intrinsic subprogram (e.g the renaming of a predefined
497 -- operator that is an actual) raises Program_Error.
499 elsif Convention
(Ent
) = Convention_Intrinsic
then
502 Make_Raise_Program_Error
(Loc
,
503 Reason
=> PE_Address_Of_Intrinsic
));
506 Error_Msg_Name_1
:= Aname
;
508 ("cannot take % of intrinsic subprogram", N
);
511 -- Issue an error if prefix denotes an eliminated subprogram
514 Check_For_Eliminated_Subprogram
(P
, Ent
);
517 -- Object or label reference
519 elsif Is_Object
(Ent
) or else Ekind
(Ent
) = E_Label
then
520 Set_Address_Taken
(Ent
);
522 -- Deal with No_Implicit_Aliasing restriction
524 if Restriction_Check_Required
(No_Implicit_Aliasing
) then
525 if not Is_Aliased_View
(P
) then
526 Check_Restriction
(No_Implicit_Aliasing
, P
);
528 Check_No_Implicit_Aliasing
(P
);
532 -- If we have an address of an object, and the attribute
533 -- comes from source, then set the object as potentially
534 -- source modified. We do this because the resulting address
535 -- can potentially be used to modify the variable and we
536 -- might not detect this, leading to some junk warnings.
538 Set_Never_Set_In_Source
(Ent
, False);
540 -- Allow Address to be applied to task or protected type,
541 -- returning null address (what is that about???)
543 elsif (Is_Concurrent_Type
(Etype
(Ent
))
544 and then Etype
(Ent
) = Base_Type
(Ent
))
545 or else Ekind
(Ent
) = E_Package
546 or else Is_Generic_Unit
(Ent
)
549 New_Occurrence_Of
(RTE
(RE_Null_Address
), Sloc
(N
)));
551 -- Anything else is illegal
554 Error_Attr
("invalid prefix for % attribute", P
);
560 elsif Is_Object_Reference
(P
) then
563 -- Subprogram called using dot notation
565 elsif Nkind
(P
) = N_Selected_Component
566 and then Is_Subprogram
(Entity
(Selector_Name
(P
)))
570 -- What exactly are we allowing here ??? and is this properly
571 -- documented in the sinfo documentation for this node ???
573 elsif Relaxed_RM_Semantics
574 and then Nkind
(P
) = N_Attribute_Reference
578 -- All other non-entity name cases are illegal
581 Error_Attr
("invalid prefix for % attribute", P
);
585 ------------------------------
586 -- Analyze_Access_Attribute --
587 ------------------------------
589 procedure Analyze_Access_Attribute
is
590 Acc_Type
: Entity_Id
;
595 function Build_Access_Object_Type
(DT
: Entity_Id
) return Entity_Id
;
596 -- Build an access-to-object type whose designated type is DT,
597 -- and whose Ekind is appropriate to the attribute type. The
598 -- type that is constructed is returned as the result.
600 procedure Build_Access_Subprogram_Type
(P
: Node_Id
);
601 -- Build an access to subprogram whose designated type is the type of
602 -- the prefix. If prefix is overloaded, so is the node itself. The
603 -- result is stored in Acc_Type.
605 function OK_Self_Reference
return Boolean;
606 -- An access reference whose prefix is a type can legally appear
607 -- within an aggregate, where it is obtained by expansion of
608 -- a defaulted aggregate. The enclosing aggregate that contains
609 -- the self-referenced is flagged so that the self-reference can
610 -- be expanded into a reference to the target object (see exp_aggr).
612 ------------------------------
613 -- Build_Access_Object_Type --
614 ------------------------------
616 function Build_Access_Object_Type
(DT
: Entity_Id
) return Entity_Id
is
617 Typ
: constant Entity_Id
:=
619 (E_Access_Attribute_Type
, Current_Scope
, Loc
, 'A');
621 Set_Etype
(Typ
, Typ
);
623 Set_Associated_Node_For_Itype
(Typ
, N
);
624 Set_Directly_Designated_Type
(Typ
, DT
);
626 end Build_Access_Object_Type
;
628 ----------------------------------
629 -- Build_Access_Subprogram_Type --
630 ----------------------------------
632 procedure Build_Access_Subprogram_Type
(P
: Node_Id
) is
633 Index
: Interp_Index
;
636 procedure Check_Local_Access
(E
: Entity_Id
);
637 -- Deal with possible access to local subprogram. If we have such
638 -- an access, we set a flag to kill all tracked values on any call
639 -- because this access value may be passed around, and any called
640 -- code might use it to access a local procedure which clobbers a
641 -- tracked value. If the scope is a loop or block, indicate that
642 -- value tracking is disabled for the enclosing subprogram.
644 function Get_Kind
(E
: Entity_Id
) return Entity_Kind
;
645 -- Distinguish between access to regular/protected subprograms
647 ------------------------
648 -- Check_Local_Access --
649 ------------------------
651 procedure Check_Local_Access
(E
: Entity_Id
) is
653 if not Is_Library_Level_Entity
(E
) then
654 Set_Suppress_Value_Tracking_On_Call
(Current_Scope
);
655 Set_Suppress_Value_Tracking_On_Call
656 (Nearest_Dynamic_Scope
(Current_Scope
));
658 end Check_Local_Access
;
664 function Get_Kind
(E
: Entity_Id
) return Entity_Kind
is
666 if Convention
(E
) = Convention_Protected
then
667 return E_Access_Protected_Subprogram_Type
;
669 return E_Access_Subprogram_Type
;
673 -- Start of processing for Build_Access_Subprogram_Type
676 -- In the case of an access to subprogram, use the name of the
677 -- subprogram itself as the designated type. Type-checking in
678 -- this case compares the signatures of the designated types.
680 -- Note: This fragment of the tree is temporarily malformed
681 -- because the correct tree requires an E_Subprogram_Type entity
682 -- as the designated type. In most cases this designated type is
683 -- later overridden by the semantics with the type imposed by the
684 -- context during the resolution phase. In the specific case of
685 -- the expression Address!(Prim'Unrestricted_Access), used to
686 -- initialize slots of dispatch tables, this work will be done by
687 -- the expander (see Exp_Aggr).
689 -- The reason to temporarily add this kind of node to the tree
690 -- instead of a proper E_Subprogram_Type itype, is the following:
691 -- in case of errors found in the source file we report better
692 -- error messages. For example, instead of generating the
695 -- "expected access to subprogram with profile
696 -- defined at line X"
698 -- we currently generate:
700 -- "expected access to function Z defined at line X"
702 Set_Etype
(N
, Any_Type
);
704 if not Is_Overloaded
(P
) then
705 Check_Local_Access
(Entity
(P
));
707 if not Is_Intrinsic_Subprogram
(Entity
(P
)) then
708 Acc_Type
:= Create_Itype
(Get_Kind
(Entity
(P
)), N
);
709 Set_Is_Public
(Acc_Type
, False);
710 Set_Etype
(Acc_Type
, Acc_Type
);
711 Set_Convention
(Acc_Type
, Convention
(Entity
(P
)));
712 Set_Directly_Designated_Type
(Acc_Type
, Entity
(P
));
713 Set_Etype
(N
, Acc_Type
);
714 Freeze_Before
(N
, Acc_Type
);
718 Get_First_Interp
(P
, Index
, It
);
719 while Present
(It
.Nam
) loop
720 Check_Local_Access
(It
.Nam
);
722 if not Is_Intrinsic_Subprogram
(It
.Nam
) then
723 Acc_Type
:= Create_Itype
(Get_Kind
(It
.Nam
), N
);
724 Set_Is_Public
(Acc_Type
, False);
725 Set_Etype
(Acc_Type
, Acc_Type
);
726 Set_Convention
(Acc_Type
, Convention
(It
.Nam
));
727 Set_Directly_Designated_Type
(Acc_Type
, It
.Nam
);
728 Add_One_Interp
(N
, Acc_Type
, Acc_Type
);
729 Freeze_Before
(N
, Acc_Type
);
732 Get_Next_Interp
(Index
, It
);
736 -- Cannot be applied to intrinsic. Looking at the tests above,
737 -- the only way Etype (N) can still be set to Any_Type is if
738 -- Is_Intrinsic_Subprogram was True for some referenced entity.
740 if Etype
(N
) = Any_Type
then
741 Error_Attr_P
("prefix of % attribute cannot be intrinsic");
743 end Build_Access_Subprogram_Type
;
745 ----------------------
746 -- OK_Self_Reference --
747 ----------------------
749 function OK_Self_Reference
return Boolean is
756 (Nkind
(Par
) = N_Component_Association
757 or else Nkind
(Par
) in N_Subexpr
)
759 if Nkind_In
(Par
, N_Aggregate
, N_Extension_Aggregate
) then
760 if Etype
(Par
) = Typ
then
761 Set_Has_Self_Reference
(Par
);
763 -- Check the context: the aggregate must be part of the
764 -- initialization of a type or component, or it is the
765 -- resulting expansion in an initialization procedure.
767 if Is_Init_Proc
(Current_Scope
) then
771 while Present
(Par
) loop
772 if Nkind
(Par
) = N_Full_Type_Declaration
then
787 -- No enclosing aggregate, or not a self-reference
790 end OK_Self_Reference
;
792 -- Start of processing for Analyze_Access_Attribute
795 Check_SPARK_05_Restriction_On_Attribute
;
798 if Nkind
(P
) = N_Character_Literal
then
800 ("prefix of % attribute cannot be enumeration literal");
803 -- Case of access to subprogram
805 if Is_Entity_Name
(P
) and then Is_Overloadable
(Entity
(P
)) then
806 if Has_Pragma_Inline_Always
(Entity
(P
)) then
808 ("prefix of % attribute cannot be Inline_Always subprogram");
810 elsif Aname
= Name_Unchecked_Access
then
811 Error_Attr
("attribute% cannot be applied to a subprogram", P
);
814 -- Issue an error if the prefix denotes an eliminated subprogram
816 Check_For_Eliminated_Subprogram
(P
, Entity
(P
));
818 -- Check for obsolescent subprogram reference
820 Check_Obsolescent_2005_Entity
(Entity
(P
), P
);
822 -- Build the appropriate subprogram type
824 Build_Access_Subprogram_Type
(P
);
826 -- For P'Access or P'Unrestricted_Access, where P is a nested
827 -- subprogram, we might be passing P to another subprogram (but we
828 -- don't check that here), which might call P. P could modify
829 -- local variables, so we need to kill current values. It is
830 -- important not to do this for library-level subprograms, because
831 -- Kill_Current_Values is very inefficient in the case of library
832 -- level packages with lots of tagged types.
834 if Is_Library_Level_Entity
(Entity
(Prefix
(N
))) then
837 -- Do not kill values on nodes initializing dispatch tables
838 -- slots. The construct Prim_Ptr!(Prim'Unrestricted_Access)
839 -- is currently generated by the expander only for this
840 -- purpose. Done to keep the quality of warnings currently
841 -- generated by the compiler (otherwise any declaration of
842 -- a tagged type cleans constant indications from its scope).
844 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
845 and then (Etype
(Parent
(N
)) = RTE
(RE_Prim_Ptr
)
847 Etype
(Parent
(N
)) = RTE
(RE_Size_Ptr
))
848 and then Is_Dispatching_Operation
849 (Directly_Designated_Type
(Etype
(N
)))
857 -- In the static elaboration model, treat the attribute reference
858 -- as a call for elaboration purposes. Suppress this treatment
859 -- under debug flag. In any case, we are all done.
861 if not Dynamic_Elaboration_Checks
and not Debug_Flag_Dot_UU
then
867 -- Component is an operation of a protected type
869 elsif Nkind
(P
) = N_Selected_Component
870 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
872 if Ekind
(Entity
(Selector_Name
(P
))) = E_Entry
then
873 Error_Attr_P
("prefix of % attribute must be subprogram");
876 Build_Access_Subprogram_Type
(Selector_Name
(P
));
880 -- Deal with incorrect reference to a type, but note that some
881 -- accesses are allowed: references to the current type instance,
882 -- or in Ada 2005 self-referential pointer in a default-initialized
885 if Is_Entity_Name
(P
) then
888 -- The reference may appear in an aggregate that has been expanded
889 -- into a loop. Locate scope of type definition, if any.
891 Scop
:= Current_Scope
;
892 while Ekind
(Scop
) = E_Loop
loop
893 Scop
:= Scope
(Scop
);
896 if Is_Type
(Typ
) then
898 -- OK if we are within the scope of a limited type
899 -- let's mark the component as having per object constraint
901 if Is_Anonymous_Tagged_Base
(Scop
, Typ
) then
909 Q
: Node_Id
:= Parent
(N
);
913 and then Nkind
(Q
) /= N_Component_Declaration
919 Set_Has_Per_Object_Constraint
920 (Defining_Identifier
(Q
), True);
924 if Nkind
(P
) = N_Expanded_Name
then
926 ("current instance prefix must be a direct name", P
);
929 -- If a current instance attribute appears in a component
930 -- constraint it must appear alone; other contexts (spec-
931 -- expressions, within a task body) are not subject to this
934 if not In_Spec_Expression
935 and then not Has_Completion
(Scop
)
937 Nkind_In
(Parent
(N
), N_Discriminant_Association
,
938 N_Index_Or_Discriminant_Constraint
)
941 ("current instance attribute must appear alone", N
);
944 if Is_CPP_Class
(Root_Type
(Typ
)) then
946 ("??current instance unsupported for derivations of "
947 & "'C'P'P types", N
);
950 -- OK if we are in initialization procedure for the type
951 -- in question, in which case the reference to the type
952 -- is rewritten as a reference to the current object.
954 elsif Ekind
(Scop
) = E_Procedure
955 and then Is_Init_Proc
(Scop
)
956 and then Etype
(First_Formal
(Scop
)) = Typ
959 Make_Attribute_Reference
(Loc
,
960 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
961 Attribute_Name
=> Name_Unrestricted_Access
));
965 -- OK if a task type, this test needs sharpening up ???
967 elsif Is_Task_Type
(Typ
) then
970 -- OK if self-reference in an aggregate in Ada 2005, and
971 -- the reference comes from a copied default expression.
973 -- Note that we check legality of self-reference even if the
974 -- expression comes from source, e.g. when a single component
975 -- association in an aggregate has a box association.
977 elsif Ada_Version
>= Ada_2005
978 and then OK_Self_Reference
982 -- OK if reference to current instance of a protected object
984 elsif Is_Protected_Self_Reference
(P
) then
987 -- Otherwise we have an error case
990 Error_Attr
("% attribute cannot be applied to type", P
);
996 -- If we fall through, we have a normal access to object case
998 -- Unrestricted_Access is (for now) legal wherever an allocator would
999 -- be legal, so its Etype is set to E_Allocator. The expected type
1000 -- of the other attributes is a general access type, and therefore
1001 -- we label them with E_Access_Attribute_Type.
1003 if not Is_Overloaded
(P
) then
1004 Acc_Type
:= Build_Access_Object_Type
(P_Type
);
1005 Set_Etype
(N
, Acc_Type
);
1009 Index
: Interp_Index
;
1012 Set_Etype
(N
, Any_Type
);
1013 Get_First_Interp
(P
, Index
, It
);
1014 while Present
(It
.Typ
) loop
1015 Acc_Type
:= Build_Access_Object_Type
(It
.Typ
);
1016 Add_One_Interp
(N
, Acc_Type
, Acc_Type
);
1017 Get_Next_Interp
(Index
, It
);
1022 -- Special cases when we can find a prefix that is an entity name
1031 if Is_Entity_Name
(PP
) then
1034 -- If we have an access to an object, and the attribute
1035 -- comes from source, then set the object as potentially
1036 -- source modified. We do this because the resulting access
1037 -- pointer can be used to modify the variable, and we might
1038 -- not detect this, leading to some junk warnings.
1040 -- We only do this for source references, since otherwise
1041 -- we can suppress warnings, e.g. from the unrestricted
1042 -- access generated for validity checks in -gnatVa mode.
1044 if Comes_From_Source
(N
) then
1045 Set_Never_Set_In_Source
(Ent
, False);
1048 -- Mark entity as address taken in the case of
1049 -- 'Unrestricted_Access or subprograms, and kill current
1052 if Aname
= Name_Unrestricted_Access
1053 or else Is_Subprogram
(Ent
)
1055 Set_Address_Taken
(Ent
);
1058 Kill_Current_Values
(Ent
);
1061 elsif Nkind_In
(PP
, N_Selected_Component
,
1062 N_Indexed_Component
)
1072 -- Check for aliased view. We allow a nonaliased prefix when within
1073 -- an instance because the prefix may have been a tagged formal
1074 -- object, which is defined to be aliased even when the actual
1075 -- might not be (other instance cases will have been caught in the
1076 -- generic). Similarly, within an inlined body we know that the
1077 -- attribute is legal in the original subprogram, and therefore
1078 -- legal in the expansion.
1080 if not Is_Aliased_View
(P
)
1081 and then not In_Instance
1082 and then not In_Inlined_Body
1083 and then Comes_From_Source
(N
)
1085 -- Here we have a non-aliased view. This is illegal unless we
1086 -- have the case of Unrestricted_Access, where for now we allow
1087 -- this (we will reject later if expected type is access to an
1088 -- unconstrained array with a thin pointer).
1090 -- No need for an error message on a generated access reference
1091 -- for the controlling argument in a dispatching call: error will
1092 -- be reported when resolving the call.
1094 if Aname
/= Name_Unrestricted_Access
then
1095 Error_Attr_P
("prefix of % attribute must be aliased");
1096 Check_No_Implicit_Aliasing
(P
);
1098 -- For Unrestricted_Access, record that prefix is not aliased
1099 -- to simplify legality check later on.
1102 Set_Non_Aliased_Prefix
(N
);
1105 -- If we have an aliased view, and we have Unrestricted_Access, then
1106 -- output a warning that Unchecked_Access would have been fine, and
1107 -- change the node to be Unchecked_Access.
1110 -- For now, hold off on this change ???
1114 end Analyze_Access_Attribute
;
1116 ----------------------------------
1117 -- Analyze_Attribute_Old_Result --
1118 ----------------------------------
1120 procedure Analyze_Attribute_Old_Result
1121 (Legal
: out Boolean;
1122 Spec_Id
: out Entity_Id
)
1124 procedure Check_Placement_In_Check
(Prag
: Node_Id
);
1125 -- Verify that the attribute appears within pragma Check that mimics
1128 procedure Check_Placement_In_Contract_Cases
(Prag
: Node_Id
);
1129 -- Verify that the attribute appears within a consequence of aspect
1130 -- or pragma Contract_Cases denoted by Prag.
1132 procedure Check_Placement_In_Test_Case
(Prag
: Node_Id
);
1133 -- Verify that the attribute appears within the "Ensures" argument of
1134 -- aspect or pragma Test_Case denoted by Prag.
1138 Encl_Nod
: Node_Id
) return Boolean;
1139 -- Subsidiary to Check_Placemenet_In_XXX. Determine whether arbitrary
1140 -- node Nod is within enclosing node Encl_Nod.
1142 procedure Placement_Error
;
1143 -- Emit a general error when the attributes does not appear in a
1144 -- postcondition-like aspect or pragma.
1146 ------------------------------
1147 -- Check_Placement_In_Check --
1148 ------------------------------
1150 procedure Check_Placement_In_Check
(Prag
: Node_Id
) is
1151 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
1152 Nam
: constant Name_Id
:= Chars
(Get_Pragma_Arg
(First
(Args
)));
1155 -- The "Name" argument of pragma Check denotes a postcondition
1157 if Nam_In
(Nam
, Name_Post
,
1164 -- Otherwise the placement of the attribute is illegal
1169 end Check_Placement_In_Check
;
1171 ---------------------------------------
1172 -- Check_Placement_In_Contract_Cases --
1173 ---------------------------------------
1175 procedure Check_Placement_In_Contract_Cases
(Prag
: Node_Id
) is
1181 -- Obtain the argument of the aspect or pragma
1183 if Nkind
(Prag
) = N_Aspect_Specification
then
1186 Arg
:= First
(Pragma_Argument_Associations
(Prag
));
1189 Cases
:= Expression
(Arg
);
1191 if Present
(Component_Associations
(Cases
)) then
1192 CCase
:= First
(Component_Associations
(Cases
));
1193 while Present
(CCase
) loop
1195 -- Detect whether the attribute appears within the
1196 -- consequence of the current contract case.
1198 if Nkind
(CCase
) = N_Component_Association
1199 and then Is_Within
(N
, Expression
(CCase
))
1208 -- Otherwise aspect or pragma Contract_Cases is either malformed
1209 -- or the attribute does not appear within a consequence.
1212 ("attribute % must appear in the consequence of a contract case",
1214 end Check_Placement_In_Contract_Cases
;
1216 ----------------------------------
1217 -- Check_Placement_In_Test_Case --
1218 ----------------------------------
1220 procedure Check_Placement_In_Test_Case
(Prag
: Node_Id
) is
1221 Arg
: constant Node_Id
:=
1224 Arg_Nam
=> Name_Ensures
,
1225 From_Aspect
=> Nkind
(Prag
) = N_Aspect_Specification
);
1228 -- Detect whether the attribute appears within the "Ensures"
1229 -- expression of aspect or pragma Test_Case.
1231 if Present
(Arg
) and then Is_Within
(N
, Arg
) then
1236 ("attribute % must appear in the ensures expression of a "
1239 end Check_Placement_In_Test_Case
;
1247 Encl_Nod
: Node_Id
) return Boolean
1253 while Present
(Par
) loop
1254 if Par
= Encl_Nod
then
1257 -- Prevent the search from going too far
1259 elsif Is_Body_Or_Package_Declaration
(Par
) then
1263 Par
:= Parent
(Par
);
1269 ---------------------
1270 -- Placement_Error --
1271 ---------------------
1273 procedure Placement_Error
is
1275 if Aname
= Name_Old
then
1276 Error_Attr
("attribute % can only appear in postcondition", P
);
1278 -- Specialize the error message for attribute 'Result
1282 ("attribute % can only appear in postcondition of function",
1285 end Placement_Error
;
1291 Subp_Decl
: Node_Id
;
1293 -- Start of processing for Analyze_Attribute_Old_Result
1296 -- Assume that the attribute is illegal
1301 -- Traverse the parent chain to find the aspect or pragma where the
1302 -- attribute resides.
1305 while Present
(Prag
) loop
1306 if Nkind_In
(Prag
, N_Aspect_Specification
, N_Pragma
) then
1309 -- Prevent the search from going too far
1311 elsif Is_Body_Or_Package_Declaration
(Prag
) then
1315 Prag
:= Parent
(Prag
);
1318 -- The attribute is allowed to appear only in postcondition-like
1319 -- aspects or pragmas.
1321 if Nkind_In
(Prag
, N_Aspect_Specification
, N_Pragma
) then
1322 if Nkind
(Prag
) = N_Aspect_Specification
then
1323 Prag_Nam
:= Chars
(Identifier
(Prag
));
1325 Prag_Nam
:= Pragma_Name
(Prag
);
1328 if Prag_Nam
= Name_Check
then
1329 Check_Placement_In_Check
(Prag
);
1331 elsif Prag_Nam
= Name_Contract_Cases
then
1332 Check_Placement_In_Contract_Cases
(Prag
);
1334 -- Attribute 'Result is allowed to appear in aspect or pragma
1335 -- [Refined_]Depends (SPARK RM 6.1.5(11)).
1337 elsif Nam_In
(Prag_Nam
, Name_Depends
, Name_Refined_Depends
)
1338 and then Aname
= Name_Result
1342 elsif Nam_In
(Prag_Nam
, Name_Post
,
1349 elsif Prag_Nam
= Name_Test_Case
then
1350 Check_Placement_In_Test_Case
(Prag
);
1357 -- Otherwise the placement of the attribute is illegal
1364 -- Find the related subprogram subject to the aspect or pragma
1366 if Nkind
(Prag
) = N_Aspect_Specification
then
1367 Subp_Decl
:= Parent
(Prag
);
1369 Subp_Decl
:= Find_Related_Declaration_Or_Body
(Prag
);
1372 -- The aspect or pragma where the attribute resides should be
1373 -- associated with a subprogram declaration or a body. If this is not
1374 -- the case, then the aspect or pragma is illegal. Return as analysis
1375 -- cannot be carried out. Note that it is legal to have the aspect
1376 -- appear on a subprogram renaming, when the renamed entity is an
1377 -- attribute reference.
1379 -- Generating C code the internally built nested _postcondition
1380 -- subprograms are inlined; after expanded, inlined aspects are
1381 -- located in the internal block generated by the frontend.
1383 if Nkind
(Subp_Decl
) = N_Block_Statement
1384 and then Modify_Tree_For_C
1385 and then In_Inlined_Body
1389 elsif not Nkind_In
(Subp_Decl
, N_Abstract_Subprogram_Declaration
,
1390 N_Entry_Declaration
,
1391 N_Generic_Subprogram_Declaration
,
1393 N_Subprogram_Body_Stub
,
1394 N_Subprogram_Declaration
,
1395 N_Subprogram_Renaming_Declaration
)
1400 -- If we get here, then the attribute is legal
1403 Spec_Id
:= Unique_Defining_Entity
(Subp_Decl
);
1405 -- When generating C code, nested _postcondition subprograms are
1406 -- inlined by the front end to avoid problems (when unnested) with
1407 -- referenced itypes. Handle that here, since as part of inlining the
1408 -- expander nests subprogram within a dummy procedure named _parent
1409 -- (see Build_Postconditions_Procedure and Build_Body_To_Inline).
1410 -- Hence, in this context, the spec_id of _postconditions is the
1413 if Modify_Tree_For_C
1414 and then Chars
(Spec_Id
) = Name_uParent
1415 and then Chars
(Scope
(Spec_Id
)) = Name_uPostconditions
1417 -- This situation occurs only when preanalyzing the inlined body
1419 pragma Assert
(not Full_Analysis
);
1421 Spec_Id
:= Scope
(Spec_Id
);
1422 pragma Assert
(Is_Inlined
(Spec_Id
));
1424 end Analyze_Attribute_Old_Result
;
1426 ---------------------------------
1427 -- Bad_Attribute_For_Predicate --
1428 ---------------------------------
1430 procedure Bad_Attribute_For_Predicate
is
1432 if Is_Scalar_Type
(P_Type
)
1433 and then Comes_From_Source
(N
)
1435 Error_Msg_Name_1
:= Aname
;
1436 Bad_Predicated_Subtype_Use
1437 ("type& has predicates, attribute % not allowed", N
, P_Type
);
1439 end Bad_Attribute_For_Predicate
;
1441 --------------------------------
1442 -- Check_Array_Or_Scalar_Type --
1443 --------------------------------
1445 procedure Check_Array_Or_Scalar_Type
is
1446 function In_Aspect_Specification
return Boolean;
1447 -- A current instance of a type in an aspect specification is an
1448 -- object and not a type, and therefore cannot be of a scalar type
1449 -- in the prefix of one of the array attributes if the attribute
1450 -- reference is part of an aspect expression.
1452 -----------------------------
1453 -- In_Aspect_Specification --
1454 -----------------------------
1456 function In_Aspect_Specification
return Boolean is
1461 while Present
(P
) loop
1462 if Nkind
(P
) = N_Aspect_Specification
then
1463 return P_Type
= Entity
(P
);
1465 elsif Nkind
(P
) in N_Declaration
then
1473 end In_Aspect_Specification
;
1480 -- Start of processing for Check_Array_Or_Scalar_Type
1483 -- Case of string literal or string literal subtype. These cases
1484 -- cannot arise from legal Ada code, but the expander is allowed
1485 -- to generate them. They require special handling because string
1486 -- literal subtypes do not have standard bounds (the whole idea
1487 -- of these subtypes is to avoid having to generate the bounds)
1489 if Ekind
(P_Type
) = E_String_Literal_Subtype
then
1490 Set_Etype
(N
, Etype
(First_Index
(P_Base_Type
)));
1495 elsif Is_Scalar_Type
(P_Type
) then
1498 if Present
(E1
) then
1499 Error_Attr
("invalid argument in % attribute", E1
);
1501 elsif In_Aspect_Specification
then
1503 ("prefix of % attribute cannot be the current instance of a "
1504 & "scalar type", P
);
1507 Set_Etype
(N
, P_Base_Type
);
1511 -- The following is a special test to allow 'First to apply to
1512 -- private scalar types if the attribute comes from generated
1513 -- code. This occurs in the case of Normalize_Scalars code.
1515 elsif Is_Private_Type
(P_Type
)
1516 and then Present
(Full_View
(P_Type
))
1517 and then Is_Scalar_Type
(Full_View
(P_Type
))
1518 and then not Comes_From_Source
(N
)
1520 Set_Etype
(N
, Implementation_Base_Type
(P_Type
));
1522 -- Array types other than string literal subtypes handled above
1527 -- We know prefix is an array type, or the name of an array
1528 -- object, and that the expression, if present, is static
1529 -- and within the range of the dimensions of the type.
1531 pragma Assert
(Is_Array_Type
(P_Type
));
1532 Index
:= First_Index
(P_Base_Type
);
1536 -- First dimension assumed
1538 Set_Etype
(N
, Base_Type
(Etype
(Index
)));
1541 Dims
:= UI_To_Int
(Intval
(E1
));
1543 for J
in 1 .. Dims
- 1 loop
1547 Set_Etype
(N
, Base_Type
(Etype
(Index
)));
1548 Set_Etype
(E1
, Standard_Integer
);
1551 end Check_Array_Or_Scalar_Type
;
1553 ----------------------
1554 -- Check_Array_Type --
1555 ----------------------
1557 procedure Check_Array_Type
is
1559 -- Dimension number for array attributes
1562 -- If the type is a string literal type, then this must be generated
1563 -- internally, and no further check is required on its legality.
1565 if Ekind
(P_Type
) = E_String_Literal_Subtype
then
1568 -- If the type is a composite, it is an illegal aggregate, no point
1571 elsif P_Type
= Any_Composite
then
1572 raise Bad_Attribute
;
1575 -- Normal case of array type or subtype
1577 Check_Either_E0_Or_E1
;
1580 if Is_Array_Type
(P_Type
) then
1581 if not Is_Constrained
(P_Type
)
1582 and then Is_Entity_Name
(P
)
1583 and then Is_Type
(Entity
(P
))
1585 -- Note: we do not call Error_Attr here, since we prefer to
1586 -- continue, using the relevant index type of the array,
1587 -- even though it is unconstrained. This gives better error
1588 -- recovery behavior.
1590 Error_Msg_Name_1
:= Aname
;
1592 ("prefix for % attribute must be constrained array", P
);
1595 -- The attribute reference freezes the type, and thus the
1596 -- component type, even if the attribute may not depend on the
1597 -- component. Diagnose arrays with incomplete components now.
1598 -- If the prefix is an access to array, this does not freeze
1599 -- the designated type.
1601 if Nkind
(P
) /= N_Explicit_Dereference
then
1602 Check_Fully_Declared
(Component_Type
(P_Type
), P
);
1605 D
:= Number_Dimensions
(P_Type
);
1608 if Is_Private_Type
(P_Type
) then
1609 Error_Attr_P
("prefix for % attribute may not be private type");
1611 elsif Is_Access_Type
(P_Type
)
1612 and then Is_Array_Type
(Designated_Type
(P_Type
))
1613 and then Is_Entity_Name
(P
)
1614 and then Is_Type
(Entity
(P
))
1616 Error_Attr_P
("prefix of % attribute cannot be access type");
1618 elsif Attr_Id
= Attribute_First
1620 Attr_Id
= Attribute_Last
1622 Error_Attr
("invalid prefix for % attribute", P
);
1625 Error_Attr_P
("prefix for % attribute must be array");
1629 if Present
(E1
) then
1630 Resolve
(E1
, Any_Integer
);
1631 Set_Etype
(E1
, Standard_Integer
);
1633 if not Is_OK_Static_Expression
(E1
)
1634 or else Raises_Constraint_Error
(E1
)
1636 Flag_Non_Static_Expr
1637 ("expression for dimension must be static!", E1
);
1640 elsif UI_To_Int
(Expr_Value
(E1
)) > D
1641 or else UI_To_Int
(Expr_Value
(E1
)) < 1
1643 Error_Attr
("invalid dimension number for array type", E1
);
1647 if (Style_Check
and Style_Check_Array_Attribute_Index
)
1648 and then Comes_From_Source
(N
)
1650 Style
.Check_Array_Attribute_Index
(N
, E1
, D
);
1652 end Check_Array_Type
;
1654 -------------------------
1655 -- Check_Asm_Attribute --
1656 -------------------------
1658 procedure Check_Asm_Attribute
is
1663 -- Check first argument is static string expression
1665 Analyze_And_Resolve
(E1
, Standard_String
);
1667 if Etype
(E1
) = Any_Type
then
1670 elsif not Is_OK_Static_Expression
(E1
) then
1671 Flag_Non_Static_Expr
1672 ("constraint argument must be static string expression!", E1
);
1676 -- Check second argument is right type
1678 Analyze_And_Resolve
(E2
, Entity
(P
));
1680 -- Note: that is all we need to do, we don't need to check
1681 -- that it appears in a correct context. The Ada type system
1682 -- will do that for us.
1684 end Check_Asm_Attribute
;
1686 ---------------------
1687 -- Check_Component --
1688 ---------------------
1690 procedure Check_Component
is
1694 if Nkind
(P
) /= N_Selected_Component
1696 (Ekind
(Entity
(Selector_Name
(P
))) /= E_Component
1698 Ekind
(Entity
(Selector_Name
(P
))) /= E_Discriminant
)
1700 Error_Attr_P
("prefix for % attribute must be selected component");
1702 end Check_Component
;
1704 ------------------------------------
1705 -- Check_Decimal_Fixed_Point_Type --
1706 ------------------------------------
1708 procedure Check_Decimal_Fixed_Point_Type
is
1712 if not Is_Decimal_Fixed_Point_Type
(P_Type
) then
1713 Error_Attr_P
("prefix of % attribute must be decimal type");
1715 end Check_Decimal_Fixed_Point_Type
;
1717 -----------------------
1718 -- Check_Dereference --
1719 -----------------------
1721 procedure Check_Dereference
is
1724 -- Case of a subtype mark
1726 if Is_Entity_Name
(P
) and then Is_Type
(Entity
(P
)) then
1730 -- Case of an expression
1734 if Is_Access_Type
(P_Type
) then
1736 -- If there is an implicit dereference, then we must freeze the
1737 -- designated type of the access type, since the type of the
1738 -- referenced array is this type (see AI95-00106).
1740 -- As done elsewhere, freezing must not happen when pre-analyzing
1741 -- a pre- or postcondition or a default value for an object or for
1742 -- a formal parameter.
1744 if not In_Spec_Expression
then
1745 Freeze_Before
(N
, Designated_Type
(P_Type
));
1749 Make_Explicit_Dereference
(Sloc
(P
),
1750 Prefix
=> Relocate_Node
(P
)));
1752 Analyze_And_Resolve
(P
);
1753 P_Type
:= Etype
(P
);
1755 if P_Type
= Any_Type
then
1756 raise Bad_Attribute
;
1759 P_Base_Type
:= Base_Type
(P_Type
);
1761 end Check_Dereference
;
1763 -------------------------
1764 -- Check_Discrete_Type --
1765 -------------------------
1767 procedure Check_Discrete_Type
is
1771 if not Is_Discrete_Type
(P_Type
) then
1772 Error_Attr_P
("prefix of % attribute must be discrete type");
1774 end Check_Discrete_Type
;
1780 procedure Check_E0
is
1782 if Present
(E1
) then
1783 Unexpected_Argument
(E1
);
1791 procedure Check_E1
is
1793 Check_Either_E0_Or_E1
;
1797 -- Special-case attributes that are functions and that appear as
1798 -- the prefix of another attribute. Error is posted on parent.
1800 if Nkind
(Parent
(N
)) = N_Attribute_Reference
1801 and then Nam_In
(Attribute_Name
(Parent
(N
)), Name_Address
,
1805 Error_Msg_Name_1
:= Attribute_Name
(Parent
(N
));
1806 Error_Msg_N
("illegal prefix for % attribute", Parent
(N
));
1807 Set_Etype
(Parent
(N
), Any_Type
);
1808 Set_Entity
(Parent
(N
), Any_Type
);
1809 raise Bad_Attribute
;
1812 Error_Attr
("missing argument for % attribute", N
);
1821 procedure Check_E2
is
1824 Error_Attr
("missing arguments for % attribute (2 required)", N
);
1826 Error_Attr
("missing argument for % attribute (2 required)", N
);
1830 ---------------------------
1831 -- Check_Either_E0_Or_E1 --
1832 ---------------------------
1834 procedure Check_Either_E0_Or_E1
is
1836 if Present
(E2
) then
1837 Unexpected_Argument
(E2
);
1839 end Check_Either_E0_Or_E1
;
1841 ----------------------
1842 -- Check_Enum_Image --
1843 ----------------------
1845 procedure Check_Enum_Image
is
1849 -- When an enumeration type appears in an attribute reference, all
1850 -- literals of the type are marked as referenced. This must only be
1851 -- done if the attribute reference appears in the current source.
1852 -- Otherwise the information on references may differ between a
1853 -- normal compilation and one that performs inlining.
1855 if Is_Enumeration_Type
(P_Base_Type
)
1856 and then In_Extended_Main_Code_Unit
(N
)
1858 Lit
:= First_Literal
(P_Base_Type
);
1859 while Present
(Lit
) loop
1860 Set_Referenced
(Lit
);
1864 end Check_Enum_Image
;
1866 ----------------------------
1867 -- Check_First_Last_Valid --
1868 ----------------------------
1870 procedure Check_First_Last_Valid
is
1872 Check_Discrete_Type
;
1874 -- Freeze the subtype now, so that the following test for predicates
1875 -- works (we set the predicates stuff up at freeze time)
1877 Insert_Actions
(N
, Freeze_Entity
(P_Type
, P
));
1879 -- Now test for dynamic predicate
1881 if Has_Predicates
(P_Type
)
1882 and then not (Has_Static_Predicate
(P_Type
))
1885 ("prefix of % attribute may not have dynamic predicate");
1888 -- Check non-static subtype
1890 if not Is_OK_Static_Subtype
(P_Type
) then
1891 Error_Attr_P
("prefix of % attribute must be a static subtype");
1894 -- Test case for no values
1896 if Expr_Value
(Type_Low_Bound
(P_Type
)) >
1897 Expr_Value
(Type_High_Bound
(P_Type
))
1898 or else (Has_Predicates
(P_Type
)
1900 Is_Empty_List
(Static_Discrete_Predicate
(P_Type
)))
1903 ("prefix of % attribute must be subtype with at least one "
1906 end Check_First_Last_Valid
;
1908 ----------------------------
1909 -- Check_Fixed_Point_Type --
1910 ----------------------------
1912 procedure Check_Fixed_Point_Type
is
1916 if not Is_Fixed_Point_Type
(P_Type
) then
1917 Error_Attr_P
("prefix of % attribute must be fixed point type");
1919 end Check_Fixed_Point_Type
;
1921 ------------------------------
1922 -- Check_Fixed_Point_Type_0 --
1923 ------------------------------
1925 procedure Check_Fixed_Point_Type_0
is
1927 Check_Fixed_Point_Type
;
1929 end Check_Fixed_Point_Type_0
;
1931 -------------------------------
1932 -- Check_Floating_Point_Type --
1933 -------------------------------
1935 procedure Check_Floating_Point_Type
is
1939 if not Is_Floating_Point_Type
(P_Type
) then
1940 Error_Attr_P
("prefix of % attribute must be float type");
1942 end Check_Floating_Point_Type
;
1944 ---------------------------------
1945 -- Check_Floating_Point_Type_0 --
1946 ---------------------------------
1948 procedure Check_Floating_Point_Type_0
is
1950 Check_Floating_Point_Type
;
1952 end Check_Floating_Point_Type_0
;
1954 ---------------------------------
1955 -- Check_Floating_Point_Type_1 --
1956 ---------------------------------
1958 procedure Check_Floating_Point_Type_1
is
1960 Check_Floating_Point_Type
;
1962 end Check_Floating_Point_Type_1
;
1964 ---------------------------------
1965 -- Check_Floating_Point_Type_2 --
1966 ---------------------------------
1968 procedure Check_Floating_Point_Type_2
is
1970 Check_Floating_Point_Type
;
1972 end Check_Floating_Point_Type_2
;
1974 ------------------------
1975 -- Check_Integer_Type --
1976 ------------------------
1978 procedure Check_Integer_Type
is
1982 if not Is_Integer_Type
(P_Type
) then
1983 Error_Attr_P
("prefix of % attribute must be integer type");
1985 end Check_Integer_Type
;
1987 --------------------------------
1988 -- Check_Modular_Integer_Type --
1989 --------------------------------
1991 procedure Check_Modular_Integer_Type
is
1995 if not Is_Modular_Integer_Type
(P_Type
) then
1997 ("prefix of % attribute must be modular integer type");
1999 end Check_Modular_Integer_Type
;
2001 ------------------------
2002 -- Check_Not_CPP_Type --
2003 ------------------------
2005 procedure Check_Not_CPP_Type
is
2007 if Is_Tagged_Type
(Etype
(P
))
2008 and then Convention
(Etype
(P
)) = Convention_CPP
2009 and then Is_CPP_Class
(Root_Type
(Etype
(P
)))
2012 ("invalid use of % attribute with 'C'P'P tagged type");
2014 end Check_Not_CPP_Type
;
2016 -------------------------------
2017 -- Check_Not_Incomplete_Type --
2018 -------------------------------
2020 procedure Check_Not_Incomplete_Type
is
2025 -- Ada 2005 (AI-50217, AI-326): If the prefix is an explicit
2026 -- dereference we have to check wrong uses of incomplete types
2027 -- (other wrong uses are checked at their freezing point).
2029 -- In Ada 2012, incomplete types can appear in subprogram
2030 -- profiles, but formals with incomplete types cannot be the
2031 -- prefix of attributes.
2033 -- Example 1: Limited-with
2035 -- limited with Pkg;
2037 -- type Acc is access Pkg.T;
2039 -- S : Integer := X.all'Size; -- ERROR
2042 -- Example 2: Tagged incomplete
2044 -- type T is tagged;
2045 -- type Acc is access all T;
2047 -- S : constant Integer := X.all'Size; -- ERROR
2048 -- procedure Q (Obj : Integer := X.all'Alignment); -- ERROR
2050 if Ada_Version
>= Ada_2005
2051 and then Nkind
(P
) = N_Explicit_Dereference
2054 while Nkind
(E
) = N_Explicit_Dereference
loop
2060 if From_Limited_With
(Typ
) then
2062 ("prefix of % attribute cannot be an incomplete type");
2064 -- If the prefix is an access type check the designated type
2066 elsif Is_Access_Type
(Typ
)
2067 and then Nkind
(P
) = N_Explicit_Dereference
2069 Typ
:= Directly_Designated_Type
(Typ
);
2072 if Is_Class_Wide_Type
(Typ
) then
2073 Typ
:= Root_Type
(Typ
);
2076 -- A legal use of a shadow entity occurs only when the unit where
2077 -- the non-limited view resides is imported via a regular with
2078 -- clause in the current body. Such references to shadow entities
2079 -- may occur in subprogram formals.
2081 if Is_Incomplete_Type
(Typ
)
2082 and then From_Limited_With
(Typ
)
2083 and then Present
(Non_Limited_View
(Typ
))
2084 and then Is_Legal_Shadow_Entity_In_Body
(Typ
)
2086 Typ
:= Non_Limited_View
(Typ
);
2089 -- If still incomplete, it can be a local incomplete type, or a
2090 -- limited view whose scope is also a limited view.
2092 if Ekind
(Typ
) = E_Incomplete_Type
then
2093 if not From_Limited_With
(Typ
)
2094 and then No
(Full_View
(Typ
))
2097 ("prefix of % attribute cannot be an incomplete type");
2099 -- The limited view may be available indirectly through
2100 -- an intermediate unit. If the non-limited view is available
2101 -- the attribute reference is legal.
2103 elsif From_Limited_With
(Typ
)
2105 (No
(Non_Limited_View
(Typ
))
2106 or else Is_Incomplete_Type
(Non_Limited_View
(Typ
)))
2109 ("prefix of % attribute cannot be an incomplete type");
2113 -- Ada 2012 : formals in bodies may be incomplete, but no attribute
2116 elsif Is_Entity_Name
(P
)
2117 and then Is_Formal
(Entity
(P
))
2118 and then Is_Incomplete_Type
(Etype
(Etype
(P
)))
2121 ("prefix of % attribute cannot be an incomplete type");
2124 if not Is_Entity_Name
(P
)
2125 or else not Is_Type
(Entity
(P
))
2126 or else In_Spec_Expression
2130 Check_Fully_Declared
(P_Type
, P
);
2132 end Check_Not_Incomplete_Type
;
2134 ----------------------------
2135 -- Check_Object_Reference --
2136 ----------------------------
2138 procedure Check_Object_Reference
(P
: Node_Id
) is
2142 -- If we need an object, and we have a prefix that is the name of
2143 -- a function entity, convert it into a function call.
2145 if Is_Entity_Name
(P
)
2146 and then Ekind
(Entity
(P
)) = E_Function
2148 Rtyp
:= Etype
(Entity
(P
));
2151 Make_Function_Call
(Sloc
(P
),
2152 Name
=> Relocate_Node
(P
)));
2154 Analyze_And_Resolve
(P
, Rtyp
);
2156 -- Otherwise we must have an object reference
2158 elsif not Is_Object_Reference
(P
) then
2159 Error_Attr_P
("prefix of % attribute must be object");
2161 end Check_Object_Reference
;
2163 ----------------------------
2164 -- Check_PolyORB_Attribute --
2165 ----------------------------
2167 procedure Check_PolyORB_Attribute
is
2169 Validate_Non_Static_Attribute_Function_Call
;
2174 if Get_PCS_Name
/= Name_PolyORB_DSA
then
2176 ("attribute% requires the 'Poly'O'R'B 'P'C'S", N
);
2178 end Check_PolyORB_Attribute
;
2180 ------------------------
2181 -- Check_Program_Unit --
2182 ------------------------
2184 procedure Check_Program_Unit
is
2186 if Is_Entity_Name
(P
) then
2188 K
: constant Entity_Kind
:= Ekind
(Entity
(P
));
2189 T
: constant Entity_Id
:= Etype
(Entity
(P
));
2192 if K
in Subprogram_Kind
2193 or else K
in Task_Kind
2194 or else K
in Protected_Kind
2195 or else K
= E_Package
2196 or else K
in Generic_Unit_Kind
2197 or else (K
= E_Variable
2201 Is_Protected_Type
(T
)))
2208 Error_Attr_P
("prefix of % attribute must be program unit");
2209 end Check_Program_Unit
;
2211 ---------------------
2212 -- Check_Real_Type --
2213 ---------------------
2215 procedure Check_Real_Type
is
2219 if not Is_Real_Type
(P_Type
) then
2220 Error_Attr_P
("prefix of % attribute must be real type");
2222 end Check_Real_Type
;
2224 -----------------------
2225 -- Check_Scalar_Type --
2226 -----------------------
2228 procedure Check_Scalar_Type
is
2232 if not Is_Scalar_Type
(P_Type
) then
2233 Error_Attr_P
("prefix of % attribute must be scalar type");
2235 end Check_Scalar_Type
;
2237 ------------------------------------------
2238 -- Check_SPARK_05_Restriction_On_Attribute --
2239 ------------------------------------------
2241 procedure Check_SPARK_05_Restriction_On_Attribute
is
2243 Error_Msg_Name_1
:= Aname
;
2244 Check_SPARK_05_Restriction
("attribute % is not allowed", P
);
2245 end Check_SPARK_05_Restriction_On_Attribute
;
2247 ---------------------------
2248 -- Check_Standard_Prefix --
2249 ---------------------------
2251 procedure Check_Standard_Prefix
is
2255 if Nkind
(P
) /= N_Identifier
or else Chars
(P
) /= Name_Standard
then
2256 Error_Attr
("only allowed prefix for % attribute is Standard", P
);
2258 end Check_Standard_Prefix
;
2260 ----------------------------
2261 -- Check_Stream_Attribute --
2262 ----------------------------
2264 procedure Check_Stream_Attribute
(Nam
: TSS_Name_Type
) is
2268 In_Shared_Var_Procs
: Boolean;
2269 -- True when compiling System.Shared_Storage.Shared_Var_Procs body.
2270 -- For this runtime package (always compiled in GNAT mode), we allow
2271 -- stream attributes references for limited types for the case where
2272 -- shared passive objects are implemented using stream attributes,
2273 -- which is the default in GNAT's persistent storage implementation.
2276 Validate_Non_Static_Attribute_Function_Call
;
2278 -- With the exception of 'Input, Stream attributes are procedures,
2279 -- and can only appear at the position of procedure calls. We check
2280 -- for this here, before they are rewritten, to give a more precise
2283 if Nam
= TSS_Stream_Input
then
2286 elsif Is_List_Member
(N
)
2287 and then not Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
2294 ("invalid context for attribute%, which is a procedure", N
);
2298 Btyp
:= Implementation_Base_Type
(P_Type
);
2300 -- Stream attributes not allowed on limited types unless the
2301 -- attribute reference was generated by the expander (in which
2302 -- case the underlying type will be used, as described in Sinfo),
2303 -- or the attribute was specified explicitly for the type itself
2304 -- or one of its ancestors (taking visibility rules into account if
2305 -- in Ada 2005 mode), or a pragma Stream_Convert applies to Btyp
2306 -- (with no visibility restriction).
2309 Gen_Body
: constant Node_Id
:= Enclosing_Generic_Body
(N
);
2311 if Present
(Gen_Body
) then
2312 In_Shared_Var_Procs
:=
2313 Is_RTE
(Corresponding_Spec
(Gen_Body
), RE_Shared_Var_Procs
);
2315 In_Shared_Var_Procs
:= False;
2319 if (Comes_From_Source
(N
)
2320 and then not (In_Shared_Var_Procs
or In_Instance
))
2321 and then not Stream_Attribute_Available
(P_Type
, Nam
)
2322 and then not Has_Rep_Pragma
(Btyp
, Name_Stream_Convert
)
2324 Error_Msg_Name_1
:= Aname
;
2326 if Is_Limited_Type
(P_Type
) then
2328 ("limited type& has no% attribute", P
, P_Type
);
2329 Explain_Limited_Type
(P_Type
, P
);
2332 ("attribute% for type& is not available", P
, P_Type
);
2336 -- Check for no stream operations allowed from No_Tagged_Streams
2338 if Is_Tagged_Type
(P_Type
)
2339 and then Present
(No_Tagged_Streams_Pragma
(P_Type
))
2341 Error_Msg_Sloc
:= Sloc
(No_Tagged_Streams_Pragma
(P_Type
));
2343 ("no stream operations for & (No_Tagged_Streams #)", N
, P_Type
);
2347 -- Check restriction violations
2349 -- First check the No_Streams restriction, which prohibits the use
2350 -- of explicit stream attributes in the source program. We do not
2351 -- prevent the occurrence of stream attributes in generated code,
2352 -- for instance those generated implicitly for dispatching purposes.
2354 if Comes_From_Source
(N
) then
2355 Check_Restriction
(No_Streams
, P
);
2358 -- AI05-0057: if restriction No_Default_Stream_Attributes is active,
2359 -- it is illegal to use a predefined elementary type stream attribute
2360 -- either by itself, or more importantly as part of the attribute
2361 -- subprogram for a composite type. However, if the broader
2362 -- restriction No_Streams is active, stream operations are not
2363 -- generated, and there is no error.
2365 if Restriction_Active
(No_Default_Stream_Attributes
)
2366 and then not Restriction_Active
(No_Streams
)
2372 if Nam
= TSS_Stream_Input
2374 Nam
= TSS_Stream_Read
2377 Type_Without_Stream_Operation
(P_Type
, TSS_Stream_Read
);
2380 Type_Without_Stream_Operation
(P_Type
, TSS_Stream_Write
);
2384 Check_Restriction
(No_Default_Stream_Attributes
, N
);
2387 ("missing user-defined Stream Read or Write for type&",
2389 if not Is_Elementary_Type
(P_Type
) then
2391 ("\which is a component of type&", N
, P_Type
);
2397 -- Check special case of Exception_Id and Exception_Occurrence which
2398 -- are not allowed for restriction No_Exception_Registration.
2400 if Restriction_Check_Required
(No_Exception_Registration
)
2401 and then (Is_RTE
(P_Type
, RE_Exception_Id
)
2403 Is_RTE
(P_Type
, RE_Exception_Occurrence
))
2405 Check_Restriction
(No_Exception_Registration
, P
);
2408 -- Here we must check that the first argument is an access type
2409 -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
2411 Analyze_And_Resolve
(E1
);
2414 -- Note: the double call to Root_Type here is needed because the
2415 -- root type of a class-wide type is the corresponding type (e.g.
2416 -- X for X'Class, and we really want to go to the root.)
2418 if not Is_Access_Type
(Etyp
)
2419 or else Root_Type
(Root_Type
(Designated_Type
(Etyp
))) /=
2420 RTE
(RE_Root_Stream_Type
)
2423 ("expected access to Ada.Streams.Root_Stream_Type''Class", E1
);
2426 -- Check that the second argument is of the right type if there is
2427 -- one (the Input attribute has only one argument so this is skipped)
2429 if Present
(E2
) then
2432 if Nam
= TSS_Stream_Read
2433 and then not Is_OK_Variable_For_Out_Formal
(E2
)
2436 ("second argument of % attribute must be a variable", E2
);
2439 Resolve
(E2
, P_Type
);
2443 end Check_Stream_Attribute
;
2445 -------------------------
2446 -- Check_System_Prefix --
2447 -------------------------
2449 procedure Check_System_Prefix
is
2451 if Nkind
(P
) /= N_Identifier
or else Chars
(P
) /= Name_System
then
2452 Error_Attr
("only allowed prefix for % attribute is System", P
);
2454 end Check_System_Prefix
;
2456 -----------------------
2457 -- Check_Task_Prefix --
2458 -----------------------
2460 procedure Check_Task_Prefix
is
2464 -- Ada 2005 (AI-345): Attribute 'Terminated can be applied to
2465 -- task interface class-wide types.
2467 if Is_Task_Type
(Etype
(P
))
2468 or else (Is_Access_Type
(Etype
(P
))
2469 and then Is_Task_Type
(Designated_Type
(Etype
(P
))))
2470 or else (Ada_Version
>= Ada_2005
2471 and then Ekind
(Etype
(P
)) = E_Class_Wide_Type
2472 and then Is_Interface
(Etype
(P
))
2473 and then Is_Task_Interface
(Etype
(P
)))
2478 if Ada_Version
>= Ada_2005
then
2480 ("prefix of % attribute must be a task or a task " &
2481 "interface class-wide object");
2484 Error_Attr_P
("prefix of % attribute must be a task");
2487 end Check_Task_Prefix
;
2493 -- The possibilities are an entity name denoting a type, or an
2494 -- attribute reference that denotes a type (Base or Class). If
2495 -- the type is incomplete, replace it with its full view.
2497 procedure Check_Type
is
2499 if not Is_Entity_Name
(P
)
2500 or else not Is_Type
(Entity
(P
))
2502 Error_Attr_P
("prefix of % attribute must be a type");
2504 elsif Is_Protected_Self_Reference
(P
) then
2506 ("prefix of % attribute denotes current instance "
2507 & "(RM 9.4(21/2))");
2509 elsif Ekind
(Entity
(P
)) = E_Incomplete_Type
2510 and then Present
(Full_View
(Entity
(P
)))
2512 P_Type
:= Full_View
(Entity
(P
));
2513 Set_Entity
(P
, P_Type
);
2517 ---------------------
2518 -- Check_Unit_Name --
2519 ---------------------
2521 procedure Check_Unit_Name
(Nod
: Node_Id
) is
2523 if Nkind
(Nod
) = N_Identifier
then
2526 elsif Nkind_In
(Nod
, N_Selected_Component
, N_Expanded_Name
) then
2527 Check_Unit_Name
(Prefix
(Nod
));
2529 if Nkind
(Selector_Name
(Nod
)) = N_Identifier
then
2534 Error_Attr
("argument for % attribute must be unit name", P
);
2535 end Check_Unit_Name
;
2541 procedure Error_Attr
is
2543 Set_Etype
(N
, Any_Type
);
2544 Set_Entity
(N
, Any_Type
);
2545 raise Bad_Attribute
;
2548 procedure Error_Attr
(Msg
: String; Error_Node
: Node_Id
) is
2550 Error_Msg_Name_1
:= Aname
;
2551 Error_Msg_N
(Msg
, Error_Node
);
2559 procedure Error_Attr_P
(Msg
: String) is
2561 Error_Msg_Name_1
:= Aname
;
2562 Error_Msg_F
(Msg
, P
);
2566 ----------------------------
2567 -- Legal_Formal_Attribute --
2568 ----------------------------
2570 procedure Legal_Formal_Attribute
is
2574 if not Is_Entity_Name
(P
)
2575 or else not Is_Type
(Entity
(P
))
2577 Error_Attr_P
("prefix of % attribute must be generic type");
2579 elsif Is_Generic_Actual_Type
(Entity
(P
))
2581 or else In_Inlined_Body
2585 elsif Is_Generic_Type
(Entity
(P
)) then
2586 if Is_Definite_Subtype
(Entity
(P
)) then
2588 ("prefix of % attribute must be indefinite generic type");
2593 ("prefix of % attribute must be indefinite generic type");
2596 Set_Etype
(N
, Standard_Boolean
);
2597 end Legal_Formal_Attribute
;
2599 ---------------------------------------------------------------
2600 -- Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements --
2601 ---------------------------------------------------------------
2603 procedure Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements
is
2607 Check_Not_Incomplete_Type
;
2608 Set_Etype
(N
, Universal_Integer
);
2609 end Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements
;
2615 procedure Min_Max
is
2619 Resolve
(E1
, P_Base_Type
);
2620 Resolve
(E2
, P_Base_Type
);
2621 Set_Etype
(N
, P_Base_Type
);
2623 -- Check for comparison on unordered enumeration type
2625 if Bad_Unordered_Enumeration_Reference
(N
, P_Base_Type
) then
2626 Error_Msg_Sloc
:= Sloc
(P_Base_Type
);
2628 ("comparison on unordered enumeration type& declared#?U?",
2633 ------------------------
2634 -- Standard_Attribute --
2635 ------------------------
2637 procedure Standard_Attribute
(Val
: Int
) is
2639 Check_Standard_Prefix
;
2640 Rewrite
(N
, Make_Integer_Literal
(Loc
, Val
));
2642 Set_Is_Static_Expression
(N
, True);
2643 end Standard_Attribute
;
2645 --------------------
2646 -- Uneval_Old_Msg --
2647 --------------------
2649 procedure Uneval_Old_Msg
is
2650 Uneval_Old_Setting
: Character;
2654 -- If from aspect, then Uneval_Old_Setting comes from flags in the
2655 -- N_Aspect_Specification node that corresponds to the attribute.
2657 -- First find the pragma in which we appear (note that at this stage,
2658 -- even if we appeared originally within an aspect specification, we
2659 -- are now within the corresponding pragma).
2663 Prag
:= Parent
(Prag
);
2664 exit when No
(Prag
) or else Nkind
(Prag
) = N_Pragma
;
2667 if Present
(Prag
) then
2668 if Uneval_Old_Accept
(Prag
) then
2669 Uneval_Old_Setting
:= 'A';
2670 elsif Uneval_Old_Warn
(Prag
) then
2671 Uneval_Old_Setting
:= 'W';
2673 Uneval_Old_Setting
:= 'E';
2676 -- If we did not find the pragma, that's odd, just use the setting
2677 -- from Opt.Uneval_Old. Perhaps this is due to a previous error?
2680 Uneval_Old_Setting
:= Opt
.Uneval_Old
;
2683 -- Processing depends on the setting of Uneval_Old
2685 case Uneval_Old_Setting
is
2688 ("prefix of attribute % that is potentially "
2689 & "unevaluated must denote an entity");
2692 Error_Msg_Name_1
:= Aname
;
2694 ("??prefix of attribute % appears in potentially "
2695 & "unevaluated context, exception may be raised", P
);
2701 raise Program_Error
;
2705 -------------------------
2706 -- Unexpected Argument --
2707 -------------------------
2709 procedure Unexpected_Argument
(En
: Node_Id
) is
2711 Error_Attr
("unexpected argument for % attribute", En
);
2712 end Unexpected_Argument
;
2714 -------------------------------------------------
2715 -- Validate_Non_Static_Attribute_Function_Call --
2716 -------------------------------------------------
2718 -- This function should be moved to Sem_Dist ???
2720 procedure Validate_Non_Static_Attribute_Function_Call
is
2722 if In_Preelaborated_Unit
2723 and then not In_Subprogram_Or_Concurrent_Unit
2725 Flag_Non_Static_Expr
2726 ("non-static function call in preelaborated unit!", N
);
2728 end Validate_Non_Static_Attribute_Function_Call
;
2730 -- Start of processing for Analyze_Attribute
2733 -- Immediate return if unrecognized attribute (already diagnosed by
2734 -- parser, so there is nothing more that we need to do).
2736 if not Is_Attribute_Name
(Aname
) then
2737 raise Bad_Attribute
;
2740 Check_Restriction_No_Use_Of_Attribute
(N
);
2742 -- Deal with Ada 83 issues
2744 if Comes_From_Source
(N
) then
2745 if not Attribute_83
(Attr_Id
) then
2746 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
2747 Error_Msg_Name_1
:= Aname
;
2748 Error_Msg_N
("(Ada 83) attribute% is not standard??", N
);
2751 if Attribute_Impl_Def
(Attr_Id
) then
2752 Check_Restriction
(No_Implementation_Attributes
, N
);
2757 -- Deal with Ada 2005 attributes that are implementation attributes
2758 -- because they appear in a version of Ada before Ada 2005, and
2759 -- similarly for Ada 2012 attributes appearing in an earlier version.
2761 if (Attribute_05
(Attr_Id
) and then Ada_Version
< Ada_2005
)
2763 (Attribute_12
(Attr_Id
) and then Ada_Version
< Ada_2012
)
2765 Check_Restriction
(No_Implementation_Attributes
, N
);
2768 -- Remote access to subprogram type access attribute reference needs
2769 -- unanalyzed copy for tree transformation. The analyzed copy is used
2770 -- for its semantic information (whether prefix is a remote subprogram
2771 -- name), the unanalyzed copy is used to construct new subtree rooted
2772 -- with N_Aggregate which represents a fat pointer aggregate.
2774 if Aname
= Name_Access
then
2775 Discard_Node
(Copy_Separate_Tree
(N
));
2778 -- Analyze prefix and exit if error in analysis. If the prefix is an
2779 -- incomplete type, use full view if available. Note that there are
2780 -- some attributes for which we do not analyze the prefix, since the
2781 -- prefix is not a normal name, or else needs special handling.
2783 if Aname
/= Name_Elab_Body
and then
2784 Aname
/= Name_Elab_Spec
and then
2785 Aname
/= Name_Elab_Subp_Body
and then
2786 Aname
/= Name_Enabled
and then
2790 P_Type
:= Etype
(P
);
2792 if Is_Entity_Name
(P
)
2793 and then Present
(Entity
(P
))
2794 and then Is_Type
(Entity
(P
))
2796 if Ekind
(Entity
(P
)) = E_Incomplete_Type
then
2797 P_Type
:= Get_Full_View
(P_Type
);
2798 Set_Entity
(P
, P_Type
);
2799 Set_Etype
(P
, P_Type
);
2801 elsif Entity
(P
) = Current_Scope
2802 and then Is_Record_Type
(Entity
(P
))
2804 -- Use of current instance within the type. Verify that if the
2805 -- attribute appears within a constraint, it yields an access
2806 -- type, other uses are illegal.
2814 and then Nkind
(Parent
(Par
)) /= N_Component_Definition
2816 Par
:= Parent
(Par
);
2820 and then Nkind
(Par
) = N_Subtype_Indication
2822 if Attr_Id
/= Attribute_Access
2823 and then Attr_Id
/= Attribute_Unchecked_Access
2824 and then Attr_Id
/= Attribute_Unrestricted_Access
2827 ("in a constraint the current instance can only "
2828 & "be used with an access attribute", N
);
2835 if P_Type
= Any_Type
then
2836 raise Bad_Attribute
;
2839 P_Base_Type
:= Base_Type
(P_Type
);
2842 -- Analyze expressions that may be present, exiting if an error occurs
2849 E1
:= First
(Exprs
);
2851 -- Skip analysis for case of Restriction_Set, we do not expect
2852 -- the argument to be analyzed in this case.
2854 if Aname
/= Name_Restriction_Set
then
2857 -- Check for missing/bad expression (result of previous error)
2859 if No
(E1
) or else Etype
(E1
) = Any_Type
then
2860 raise Bad_Attribute
;
2866 if Present
(E2
) then
2869 if Etype
(E2
) = Any_Type
then
2870 raise Bad_Attribute
;
2873 if Present
(Next
(E2
)) then
2874 Unexpected_Argument
(Next
(E2
));
2879 -- Cases where prefix must be resolvable by itself
2881 if Is_Overloaded
(P
)
2882 and then Aname
/= Name_Access
2883 and then Aname
/= Name_Address
2884 and then Aname
/= Name_Code_Address
2885 and then Aname
/= Name_Result
2886 and then Aname
/= Name_Unchecked_Access
2888 -- The prefix must be resolvable by itself, without reference to the
2889 -- attribute. One case that requires special handling is a prefix
2890 -- that is a function name, where one interpretation may be a
2891 -- parameterless call. Entry attributes are handled specially below.
2893 if Is_Entity_Name
(P
)
2894 and then not Nam_In
(Aname
, Name_Count
, Name_Caller
)
2896 Check_Parameterless_Call
(P
);
2899 if Is_Overloaded
(P
) then
2901 -- Ada 2005 (AI-345): Since protected and task types have
2902 -- primitive entry wrappers, the attributes Count, and Caller
2903 -- require a context check
2905 if Nam_In
(Aname
, Name_Count
, Name_Caller
) then
2907 Count
: Natural := 0;
2912 Get_First_Interp
(P
, I
, It
);
2913 while Present
(It
.Nam
) loop
2914 if Comes_From_Source
(It
.Nam
) then
2920 Get_Next_Interp
(I
, It
);
2924 Error_Attr
("ambiguous prefix for % attribute", P
);
2926 Set_Is_Overloaded
(P
, False);
2931 Error_Attr
("ambiguous prefix for % attribute", P
);
2936 -- In SPARK, attributes of private types are only allowed if the full
2937 -- type declaration is visible.
2939 -- Note: the check for Present (Entity (P)) defends against some error
2940 -- conditions where the Entity field is not set.
2942 if Is_Entity_Name
(P
) and then Present
(Entity
(P
))
2943 and then Is_Type
(Entity
(P
))
2944 and then Is_Private_Type
(P_Type
)
2945 and then not In_Open_Scopes
(Scope
(P_Type
))
2946 and then not In_Spec_Expression
2948 Check_SPARK_05_Restriction
("invisible attribute of type", N
);
2951 -- Remaining processing depends on attribute
2955 -- Attributes related to Ada 2012 iterators. Attribute specifications
2956 -- exist for these, but they cannot be queried.
2958 when Attribute_Constant_Indexing
2959 | Attribute_Default_Iterator
2960 | Attribute_Implicit_Dereference
2961 | Attribute_Iterator_Element
2962 | Attribute_Iterable
2963 | Attribute_Variable_Indexing
2965 Error_Msg_N
("illegal attribute", N
);
2967 -- Internal attributes used to deal with Ada 2012 delayed aspects. These
2968 -- were already rejected by the parser. Thus they shouldn't appear here.
2970 when Internal_Attribute_Id
=>
2971 raise Program_Error
;
2977 when Attribute_Abort_Signal
=>
2978 Check_Standard_Prefix
;
2979 Rewrite
(N
, New_Occurrence_Of
(Stand
.Abort_Signal
, Loc
));
2986 when Attribute_Access
=>
2987 Analyze_Access_Attribute
;
2988 Check_Not_Incomplete_Type
;
2994 when Attribute_Address
=>
2997 Check_Not_Incomplete_Type
;
2998 Set_Etype
(N
, RTE
(RE_Address
));
3004 when Attribute_Address_Size
=>
3005 Standard_Attribute
(System_Address_Size
);
3011 when Attribute_Adjacent
=>
3012 Check_Floating_Point_Type_2
;
3013 Set_Etype
(N
, P_Base_Type
);
3014 Resolve
(E1
, P_Base_Type
);
3015 Resolve
(E2
, P_Base_Type
);
3021 when Attribute_Aft
=>
3022 Check_Fixed_Point_Type_0
;
3023 Set_Etype
(N
, Universal_Integer
);
3029 when Attribute_Alignment
=>
3031 -- Don't we need more checking here, cf Size ???
3034 Check_Not_Incomplete_Type
;
3036 Set_Etype
(N
, Universal_Integer
);
3042 when Attribute_Asm_Input
=>
3043 Check_Asm_Attribute
;
3045 -- The back end may need to take the address of E2
3047 if Is_Entity_Name
(E2
) then
3048 Set_Address_Taken
(Entity
(E2
));
3051 Set_Etype
(N
, RTE
(RE_Asm_Input_Operand
));
3057 when Attribute_Asm_Output
=>
3058 Check_Asm_Attribute
;
3060 if Etype
(E2
) = Any_Type
then
3063 elsif Aname
= Name_Asm_Output
then
3064 if not Is_Variable
(E2
) then
3066 ("second argument for Asm_Output is not variable", E2
);
3070 Note_Possible_Modification
(E2
, Sure
=> True);
3072 -- The back end may need to take the address of E2
3074 if Is_Entity_Name
(E2
) then
3075 Set_Address_Taken
(Entity
(E2
));
3078 Set_Etype
(N
, RTE
(RE_Asm_Output_Operand
));
3080 -----------------------------
3081 -- Atomic_Always_Lock_Free --
3082 -----------------------------
3084 when Attribute_Atomic_Always_Lock_Free
=>
3087 Set_Etype
(N
, Standard_Boolean
);
3093 -- Note: when the base attribute appears in the context of a subtype
3094 -- mark, the analysis is done by Sem_Ch8.Find_Type, rather than by
3095 -- the following circuit.
3097 when Attribute_Base
=> Base
: declare
3105 if Ada_Version
>= Ada_95
3106 and then not Is_Scalar_Type
(Typ
)
3107 and then not Is_Generic_Type
(Typ
)
3109 Error_Attr_P
("prefix of Base attribute must be scalar type");
3111 elsif Sloc
(Typ
) = Standard_Location
3112 and then Base_Type
(Typ
) = Typ
3113 and then Warn_On_Redundant_Constructs
3115 Error_Msg_NE
-- CODEFIX
3116 ("?r?redundant attribute, & is its own base type", N
, Typ
);
3119 if Nkind
(Parent
(N
)) /= N_Attribute_Reference
then
3120 Error_Msg_Name_1
:= Aname
;
3121 Check_SPARK_05_Restriction
3122 ("attribute% is only allowed as prefix of another attribute", P
);
3125 Set_Etype
(N
, Base_Type
(Entity
(P
)));
3126 Set_Entity
(N
, Base_Type
(Entity
(P
)));
3127 Rewrite
(N
, New_Occurrence_Of
(Entity
(N
), Loc
));
3135 when Attribute_Bit
=>
3138 if not Is_Object_Reference
(P
) then
3139 Error_Attr_P
("prefix for % attribute must be object");
3141 -- What about the access object cases ???
3147 Set_Etype
(N
, Universal_Integer
);
3153 when Attribute_Bit_Order
=>
3157 if not Is_Record_Type
(P_Type
) then
3158 Error_Attr_P
("prefix of % attribute must be record type");
3161 if Bytes_Big_Endian
xor Reverse_Bit_Order
(P_Type
) then
3163 New_Occurrence_Of
(RTE
(RE_High_Order_First
), Loc
));
3166 New_Occurrence_Of
(RTE
(RE_Low_Order_First
), Loc
));
3169 Set_Etype
(N
, RTE
(RE_Bit_Order
));
3172 -- Reset incorrect indication of staticness
3174 Set_Is_Static_Expression
(N
, False);
3180 -- Note: in generated code, we can have a Bit_Position attribute
3181 -- applied to a (naked) record component (i.e. the prefix is an
3182 -- identifier that references an E_Component or E_Discriminant
3183 -- entity directly, and this is interpreted as expected by Gigi.
3184 -- The following code will not tolerate such usage, but when the
3185 -- expander creates this special case, it marks it as analyzed
3186 -- immediately and sets an appropriate type.
3188 when Attribute_Bit_Position
=>
3189 if Comes_From_Source
(N
) then
3193 Set_Etype
(N
, Universal_Integer
);
3199 when Attribute_Body_Version
=>
3202 Set_Etype
(N
, RTE
(RE_Version_String
));
3208 when Attribute_Callable
=>
3210 Set_Etype
(N
, Standard_Boolean
);
3217 when Attribute_Caller
=> Caller
: declare
3224 if Nkind_In
(P
, N_Identifier
, N_Expanded_Name
) then
3227 if not Is_Entry
(Ent
) then
3228 Error_Attr
("invalid entry name", N
);
3232 Error_Attr
("invalid entry name", N
);
3236 for J
in reverse 0 .. Scope_Stack
.Last
loop
3237 S
:= Scope_Stack
.Table
(J
).Entity
;
3239 if S
= Scope
(Ent
) then
3240 Error_Attr
("Caller must appear in matching accept or body", N
);
3246 Set_Etype
(N
, RTE
(RO_AT_Task_Id
));
3253 when Attribute_Ceiling
=>
3254 Check_Floating_Point_Type_1
;
3255 Set_Etype
(N
, P_Base_Type
);
3256 Resolve
(E1
, P_Base_Type
);
3262 when Attribute_Class
=>
3263 Check_Restriction
(No_Dispatch
, N
);
3267 -- Applying Class to untagged incomplete type is obsolescent in Ada
3268 -- 2005. Note that we can't test Is_Tagged_Type here on P_Type, since
3269 -- this flag gets set by Find_Type in this situation.
3271 if Restriction_Check_Required
(No_Obsolescent_Features
)
3272 and then Ada_Version
>= Ada_2005
3273 and then Ekind
(P_Type
) = E_Incomplete_Type
3276 DN
: constant Node_Id
:= Declaration_Node
(P_Type
);
3278 if Nkind
(DN
) = N_Incomplete_Type_Declaration
3279 and then not Tagged_Present
(DN
)
3281 Check_Restriction
(No_Obsolescent_Features
, P
);
3290 when Attribute_Code_Address
=>
3293 if Nkind
(P
) = N_Attribute_Reference
3294 and then Nam_In
(Attribute_Name
(P
), Name_Elab_Body
, Name_Elab_Spec
)
3298 elsif not Is_Entity_Name
(P
)
3299 or else (Ekind
(Entity
(P
)) /= E_Function
3301 Ekind
(Entity
(P
)) /= E_Procedure
)
3303 Error_Attr
("invalid prefix for % attribute", P
);
3304 Set_Address_Taken
(Entity
(P
));
3306 -- Issue an error if the prefix denotes an eliminated subprogram
3309 Check_For_Eliminated_Subprogram
(P
, Entity
(P
));
3312 Set_Etype
(N
, RTE
(RE_Address
));
3314 ----------------------
3315 -- Compiler_Version --
3316 ----------------------
3318 when Attribute_Compiler_Version
=>
3320 Check_Standard_Prefix
;
3321 Rewrite
(N
, Make_String_Literal
(Loc
, "GNAT " & Gnat_Version_String
));
3322 Analyze_And_Resolve
(N
, Standard_String
);
3323 Set_Is_Static_Expression
(N
, True);
3325 --------------------
3326 -- Component_Size --
3327 --------------------
3329 when Attribute_Component_Size
=>
3331 Set_Etype
(N
, Universal_Integer
);
3333 -- Note: unlike other array attributes, unconstrained arrays are OK
3335 if Is_Array_Type
(P_Type
) and then not Is_Constrained
(P_Type
) then
3345 when Attribute_Compose
=>
3346 Check_Floating_Point_Type_2
;
3347 Set_Etype
(N
, P_Base_Type
);
3348 Resolve
(E1
, P_Base_Type
);
3349 Resolve
(E2
, Any_Integer
);
3355 when Attribute_Constrained
=>
3357 Set_Etype
(N
, Standard_Boolean
);
3359 -- Case from RM J.4(2) of constrained applied to private type
3361 if Is_Entity_Name
(P
) and then Is_Type
(Entity
(P
)) then
3362 Check_Restriction
(No_Obsolescent_Features
, P
);
3364 if Warn_On_Obsolescent_Feature
then
3366 ("constrained for private type is an obsolescent feature "
3367 & "(RM J.4)?j?", N
);
3370 -- If we are within an instance, the attribute must be legal
3371 -- because it was valid in the generic unit. Ditto if this is
3372 -- an inlining of a function declared in an instance.
3374 if In_Instance
or else In_Inlined_Body
then
3377 -- For sure OK if we have a real private type itself, but must
3378 -- be completed, cannot apply Constrained to incomplete type.
3380 elsif Is_Private_Type
(Entity
(P
)) then
3382 -- Note: this is one of the Annex J features that does not
3383 -- generate a warning from -gnatwj, since in fact it seems
3384 -- very useful, and is used in the GNAT runtime.
3386 Check_Not_Incomplete_Type
;
3390 -- Normal (non-obsolescent case) of application to object of
3391 -- a discriminated type.
3394 Check_Object_Reference
(P
);
3396 -- If N does not come from source, then we allow the
3397 -- the attribute prefix to be of a private type whose
3398 -- full type has discriminants. This occurs in cases
3399 -- involving expanded calls to stream attributes.
3401 if not Comes_From_Source
(N
) then
3402 P_Type
:= Underlying_Type
(P_Type
);
3405 -- Must have discriminants or be an access type designating a type
3406 -- with discriminants. If it is a class-wide type it has unknown
3409 if Has_Discriminants
(P_Type
)
3410 or else Has_Unknown_Discriminants
(P_Type
)
3412 (Is_Access_Type
(P_Type
)
3413 and then Has_Discriminants
(Designated_Type
(P_Type
)))
3417 -- The rule given in 3.7.2 is part of static semantics, but the
3418 -- intent is clearly that it be treated as a legality rule, and
3419 -- rechecked in the visible part of an instance. Nevertheless
3420 -- the intent also seems to be it should legally apply to the
3421 -- actual of a formal with unknown discriminants, regardless of
3422 -- whether the actual has discriminants, in which case the value
3423 -- of the attribute is determined using the J.4 rules. This choice
3424 -- seems the most useful, and is compatible with existing tests.
3426 elsif In_Instance
then
3429 -- Also allow an object of a generic type if extensions allowed
3430 -- and allow this for any type at all. (this may be obsolete ???)
3432 elsif (Is_Generic_Type
(P_Type
)
3433 or else Is_Generic_Actual_Type
(P_Type
))
3434 and then Extensions_Allowed
3440 -- Fall through if bad prefix
3443 ("prefix of % attribute must be object of discriminated type");
3449 when Attribute_Copy_Sign
=>
3450 Check_Floating_Point_Type_2
;
3451 Set_Etype
(N
, P_Base_Type
);
3452 Resolve
(E1
, P_Base_Type
);
3453 Resolve
(E2
, P_Base_Type
);
3459 when Attribute_Count
=> Count
: declare
3467 if Nkind_In
(P
, N_Identifier
, N_Expanded_Name
) then
3470 if Ekind
(Ent
) /= E_Entry
then
3471 Error_Attr
("invalid entry name", N
);
3474 elsif Nkind
(P
) = N_Indexed_Component
then
3475 if not Is_Entity_Name
(Prefix
(P
))
3476 or else No
(Entity
(Prefix
(P
)))
3477 or else Ekind
(Entity
(Prefix
(P
))) /= E_Entry_Family
3479 if Nkind
(Prefix
(P
)) = N_Selected_Component
3480 and then Present
(Entity
(Selector_Name
(Prefix
(P
))))
3481 and then Ekind
(Entity
(Selector_Name
(Prefix
(P
)))) =
3485 ("attribute % must apply to entry of current task", P
);
3488 Error_Attr
("invalid entry family name", P
);
3493 Ent
:= Entity
(Prefix
(P
));
3496 elsif Nkind
(P
) = N_Selected_Component
3497 and then Present
(Entity
(Selector_Name
(P
)))
3498 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry
3501 ("attribute % must apply to entry of current task", P
);
3504 Error_Attr
("invalid entry name", N
);
3508 for J
in reverse 0 .. Scope_Stack
.Last
loop
3509 S
:= Scope_Stack
.Table
(J
).Entity
;
3511 if S
= Scope
(Ent
) then
3512 if Nkind
(P
) = N_Expanded_Name
then
3513 Tsk
:= Entity
(Prefix
(P
));
3515 -- The prefix denotes either the task type, or else a
3516 -- single task whose task type is being analyzed.
3518 if (Is_Type
(Tsk
) and then Tsk
= S
)
3519 or else (not Is_Type
(Tsk
)
3520 and then Etype
(Tsk
) = S
3521 and then not (Comes_From_Source
(S
)))
3526 ("Attribute % must apply to entry of current task", N
);
3532 elsif Ekind
(Scope
(Ent
)) in Task_Kind
3533 and then not Ekind_In
(S
, E_Block
,
3538 Error_Attr
("Attribute % cannot appear in inner unit", N
);
3540 elsif Ekind
(Scope
(Ent
)) = E_Protected_Type
3541 and then not Has_Completion
(Scope
(Ent
))
3543 Error_Attr
("attribute % can only be used inside body", N
);
3547 if Is_Overloaded
(P
) then
3549 Index
: Interp_Index
;
3553 Get_First_Interp
(P
, Index
, It
);
3554 while Present
(It
.Nam
) loop
3555 if It
.Nam
= Ent
then
3558 -- Ada 2005 (AI-345): Do not consider primitive entry
3559 -- wrappers generated for task or protected types.
3561 elsif Ada_Version
>= Ada_2005
3562 and then not Comes_From_Source
(It
.Nam
)
3567 Error_Attr
("ambiguous entry name", N
);
3570 Get_Next_Interp
(Index
, It
);
3575 Set_Etype
(N
, Universal_Integer
);
3578 -----------------------
3579 -- Default_Bit_Order --
3580 -----------------------
3582 when Attribute_Default_Bit_Order
=> Default_Bit_Order
: declare
3583 Target_Default_Bit_Order
: System
.Bit_Order
;
3586 Check_Standard_Prefix
;
3588 if Bytes_Big_Endian
then
3589 Target_Default_Bit_Order
:= System
.High_Order_First
;
3591 Target_Default_Bit_Order
:= System
.Low_Order_First
;
3595 Make_Integer_Literal
(Loc
,
3596 UI_From_Int
(System
.Bit_Order
'Pos (Target_Default_Bit_Order
))));
3598 Set_Etype
(N
, Universal_Integer
);
3599 Set_Is_Static_Expression
(N
);
3600 end Default_Bit_Order
;
3602 ----------------------------------
3603 -- Default_Scalar_Storage_Order --
3604 ----------------------------------
3606 when Attribute_Default_Scalar_Storage_Order
=> Default_SSO
: declare
3607 RE_Default_SSO
: RE_Id
;
3610 Check_Standard_Prefix
;
3612 case Opt
.Default_SSO
is
3614 if Bytes_Big_Endian
then
3615 RE_Default_SSO
:= RE_High_Order_First
;
3617 RE_Default_SSO
:= RE_Low_Order_First
;
3621 RE_Default_SSO
:= RE_High_Order_First
;
3624 RE_Default_SSO
:= RE_Low_Order_First
;
3627 raise Program_Error
;
3630 Rewrite
(N
, New_Occurrence_Of
(RTE
(RE_Default_SSO
), Loc
));
3637 when Attribute_Definite
=>
3638 Legal_Formal_Attribute
;
3644 when Attribute_Delta
=>
3645 Check_Fixed_Point_Type_0
;
3646 Set_Etype
(N
, Universal_Real
);
3652 when Attribute_Denorm
=>
3653 Check_Floating_Point_Type_0
;
3654 Set_Etype
(N
, Standard_Boolean
);
3660 when Attribute_Deref
=>
3663 Resolve
(E1
, RTE
(RE_Address
));
3664 Set_Etype
(N
, P_Type
);
3666 ---------------------
3667 -- Descriptor_Size --
3668 ---------------------
3670 when Attribute_Descriptor_Size
=>
3673 if not Is_Entity_Name
(P
) or else not Is_Type
(Entity
(P
)) then
3674 Error_Attr_P
("prefix of attribute % must denote a type");
3677 Set_Etype
(N
, Universal_Integer
);
3683 when Attribute_Digits
=>
3687 if not Is_Floating_Point_Type
(P_Type
)
3688 and then not Is_Decimal_Fixed_Point_Type
(P_Type
)
3691 ("prefix of % attribute must be float or decimal type");
3694 Set_Etype
(N
, Universal_Integer
);
3700 -- Also handles processing for Elab_Spec and Elab_Subp_Body
3702 when Attribute_Elab_Body
3703 | Attribute_Elab_Spec
3704 | Attribute_Elab_Subp_Body
3707 Check_Unit_Name
(P
);
3708 Set_Etype
(N
, Standard_Void_Type
);
3710 -- We have to manually call the expander in this case to get
3711 -- the necessary expansion (normally attributes that return
3712 -- entities are not expanded).
3720 -- Shares processing with Elab_Body
3726 when Attribute_Elaborated
=>
3728 Check_Unit_Name
(P
);
3729 Set_Etype
(N
, Standard_Boolean
);
3735 when Attribute_Emax
=>
3736 Check_Floating_Point_Type_0
;
3737 Set_Etype
(N
, Universal_Integer
);
3743 when Attribute_Enabled
=>
3744 Check_Either_E0_Or_E1
;
3746 if Present
(E1
) then
3747 if not Is_Entity_Name
(E1
) or else No
(Entity
(E1
)) then
3748 Error_Msg_N
("entity name expected for Enabled attribute", E1
);
3753 if Nkind
(P
) /= N_Identifier
then
3754 Error_Msg_N
("identifier expected (check name)", P
);
3755 elsif Get_Check_Id
(Chars
(P
)) = No_Check_Id
then
3756 Error_Msg_N
("& is not a recognized check name", P
);
3759 Set_Etype
(N
, Standard_Boolean
);
3765 when Attribute_Enum_Rep
=>
3766 -- T'Enum_Rep (X) case
3768 if Present
(E1
) then
3770 Check_Discrete_Type
;
3771 Resolve
(E1
, P_Base_Type
);
3773 -- X'Enum_Rep case. X must be an object or enumeration literal, and
3774 -- it must be of a discrete type.
3776 elsif not ((Is_Object_Reference
(P
)
3777 or else (Is_Entity_Name
(P
)
3778 and then Ekind
(Entity
(P
)) =
3779 E_Enumeration_Literal
))
3780 and then Is_Discrete_Type
(Etype
(P
)))
3782 Error_Attr_P
("prefix of % attribute must be discrete object");
3785 Set_Etype
(N
, Universal_Integer
);
3791 when Attribute_Enum_Val
=>
3795 if not Is_Enumeration_Type
(P_Type
) then
3796 Error_Attr_P
("prefix of % attribute must be enumeration type");
3799 -- If the enumeration type has a standard representation, the effect
3800 -- is the same as 'Val, so rewrite the attribute as a 'Val.
3802 if not Has_Non_Standard_Rep
(P_Base_Type
) then
3804 Make_Attribute_Reference
(Loc
,
3805 Prefix
=> Relocate_Node
(Prefix
(N
)),
3806 Attribute_Name
=> Name_Val
,
3807 Expressions
=> New_List
(Relocate_Node
(E1
))));
3808 Analyze_And_Resolve
(N
, P_Base_Type
);
3810 -- Non-standard representation case (enumeration with holes)
3814 Resolve
(E1
, Any_Integer
);
3815 Set_Etype
(N
, P_Base_Type
);
3822 when Attribute_Epsilon
=>
3823 Check_Floating_Point_Type_0
;
3824 Set_Etype
(N
, Universal_Real
);
3830 when Attribute_Exponent
=>
3831 Check_Floating_Point_Type_1
;
3832 Set_Etype
(N
, Universal_Integer
);
3833 Resolve
(E1
, P_Base_Type
);
3839 when Attribute_External_Tag
=>
3843 Set_Etype
(N
, Standard_String
);
3845 if not Is_Tagged_Type
(P_Type
) then
3846 Error_Attr_P
("prefix of % attribute must be tagged");
3853 when Attribute_Fast_Math
=>
3854 Check_Standard_Prefix
;
3855 Rewrite
(N
, New_Occurrence_Of
(Boolean_Literals
(Fast_Math
), Loc
));
3857 -----------------------
3858 -- Finalization_Size --
3859 -----------------------
3861 when Attribute_Finalization_Size
=>
3864 -- The prefix denotes an object
3866 if Is_Object_Reference
(P
) then
3867 Check_Object_Reference
(P
);
3869 -- The prefix denotes a type
3871 elsif Is_Entity_Name
(P
) and then Is_Type
(Entity
(P
)) then
3873 Check_Not_Incomplete_Type
;
3875 -- Attribute 'Finalization_Size is not defined for class-wide
3876 -- types because it is not possible to know statically whether
3877 -- a definite type will have controlled components or not.
3879 if Is_Class_Wide_Type
(Etype
(P
)) then
3881 ("prefix of % attribute cannot denote a class-wide type");
3884 -- The prefix denotes an illegal construct
3888 ("prefix of % attribute must be a definite type or an object");
3891 Set_Etype
(N
, Universal_Integer
);
3897 when Attribute_First
=>
3898 Check_Array_Or_Scalar_Type
;
3899 Bad_Attribute_For_Predicate
;
3905 when Attribute_First_Bit
=>
3907 Set_Etype
(N
, Universal_Integer
);
3913 when Attribute_First_Valid
=>
3914 Check_First_Last_Valid
;
3915 Set_Etype
(N
, P_Type
);
3921 when Attribute_Fixed_Value
=>
3923 Check_Fixed_Point_Type
;
3924 Resolve
(E1
, Any_Integer
);
3925 Set_Etype
(N
, P_Base_Type
);
3931 when Attribute_Floor
=>
3932 Check_Floating_Point_Type_1
;
3933 Set_Etype
(N
, P_Base_Type
);
3934 Resolve
(E1
, P_Base_Type
);
3940 when Attribute_Fore
=>
3941 Check_Fixed_Point_Type_0
;
3942 Set_Etype
(N
, Universal_Integer
);
3948 when Attribute_Fraction
=>
3949 Check_Floating_Point_Type_1
;
3950 Set_Etype
(N
, P_Base_Type
);
3951 Resolve
(E1
, P_Base_Type
);
3957 when Attribute_From_Any
=>
3959 Check_PolyORB_Attribute
;
3960 Set_Etype
(N
, P_Base_Type
);
3962 -----------------------
3963 -- Has_Access_Values --
3964 -----------------------
3966 when Attribute_Has_Access_Values
=>
3969 Set_Etype
(N
, Standard_Boolean
);
3971 ----------------------
3972 -- Has_Same_Storage --
3973 ----------------------
3975 when Attribute_Has_Same_Storage
=>
3978 -- The arguments must be objects of any type
3980 Analyze_And_Resolve
(P
);
3981 Analyze_And_Resolve
(E1
);
3982 Check_Object_Reference
(P
);
3983 Check_Object_Reference
(E1
);
3984 Set_Etype
(N
, Standard_Boolean
);
3986 -----------------------
3987 -- Has_Tagged_Values --
3988 -----------------------
3990 when Attribute_Has_Tagged_Values
=>
3993 Set_Etype
(N
, Standard_Boolean
);
3995 -----------------------
3996 -- Has_Discriminants --
3997 -----------------------
3999 when Attribute_Has_Discriminants
=>
4000 Legal_Formal_Attribute
;
4006 when Attribute_Identity
=>
4010 if Etype
(P
) = Standard_Exception_Type
then
4011 Set_Etype
(N
, RTE
(RE_Exception_Id
));
4013 -- Ada 2005 (AI-345): Attribute 'Identity may be applied to task
4014 -- interface class-wide types.
4016 elsif Is_Task_Type
(Etype
(P
))
4017 or else (Is_Access_Type
(Etype
(P
))
4018 and then Is_Task_Type
(Designated_Type
(Etype
(P
))))
4019 or else (Ada_Version
>= Ada_2005
4020 and then Ekind
(Etype
(P
)) = E_Class_Wide_Type
4021 and then Is_Interface
(Etype
(P
))
4022 and then Is_Task_Interface
(Etype
(P
)))
4025 Set_Etype
(N
, RTE
(RO_AT_Task_Id
));
4028 if Ada_Version
>= Ada_2005
then
4030 ("prefix of % attribute must be an exception, a task or a "
4031 & "task interface class-wide object");
4034 ("prefix of % attribute must be a task or an exception");
4042 when Attribute_Image
=>
4043 Check_SPARK_05_Restriction_On_Attribute
;
4045 -- AI12-00124-1 : The ARG has adopted the GNAT semantics of 'Img for
4046 -- scalar types, so that the prefix can be an object and not a type,
4047 -- and there is no need for an argument. Given the vote of confidence
4048 -- from the ARG, simplest is to transform this new usage of 'Image
4049 -- into a reference to 'Img.
4051 if Ada_Version
> Ada_2005
4052 and then Is_Object_Reference
(P
)
4053 and then Is_Scalar_Type
(P_Type
)
4055 if No
(Expressions
(N
)) then
4057 Make_Attribute_Reference
(Loc
,
4058 Prefix
=> Relocate_Node
(P
),
4059 Attribute_Name
=> Name_Img
));
4061 -- If the attribute reference includes expressions, the only
4062 -- possible interpretation is as an indexing of the parameterless
4063 -- version of 'Image, so rewrite it accordingly.
4067 Make_Indexed_Component
(Loc
,
4069 Make_Attribute_Reference
(Loc
,
4070 Prefix
=> Relocate_Node
(P
),
4071 Attribute_Name
=> Name_Img
),
4072 Expressions
=> Expressions
(N
)));
4082 Set_Etype
(N
, Standard_String
);
4084 if Is_Real_Type
(P_Type
) then
4085 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
4086 Error_Msg_Name_1
:= Aname
;
4088 ("(Ada 83) % attribute not allowed for real types", N
);
4092 if Is_Enumeration_Type
(P_Type
) then
4093 Check_Restriction
(No_Enumeration_Maps
, N
);
4097 Resolve
(E1
, P_Base_Type
);
4099 Validate_Non_Static_Attribute_Function_Call
;
4101 -- Check restriction No_Fixed_IO. Note the check of Comes_From_Source
4102 -- to avoid giving a duplicate message for Img expanded into Image.
4104 if Restriction_Check_Required
(No_Fixed_IO
)
4105 and then Comes_From_Source
(N
)
4106 and then Is_Fixed_Point_Type
(P_Type
)
4108 Check_Restriction
(No_Fixed_IO
, P
);
4115 when Attribute_Img
=>
4117 Set_Etype
(N
, Standard_String
);
4119 if not Is_Scalar_Type
(P_Type
)
4120 or else (Is_Entity_Name
(P
) and then Is_Type
(Entity
(P
)))
4123 ("prefix of % attribute must be scalar object name");
4128 -- Check restriction No_Fixed_IO
4130 if Restriction_Check_Required
(No_Fixed_IO
)
4131 and then Is_Fixed_Point_Type
(P_Type
)
4133 Check_Restriction
(No_Fixed_IO
, P
);
4140 when Attribute_Input
=>
4142 Check_Stream_Attribute
(TSS_Stream_Input
);
4143 Set_Etype
(N
, P_Base_Type
);
4149 when Attribute_Integer_Value
=>
4152 Resolve
(E1
, Any_Fixed
);
4154 -- Signal an error if argument type is not a specific fixed-point
4155 -- subtype. An error has been signalled already if the argument
4156 -- was not of a fixed-point type.
4158 if Etype
(E1
) = Any_Fixed
and then not Error_Posted
(E1
) then
4159 Error_Attr
("argument of % must be of a fixed-point type", E1
);
4162 Set_Etype
(N
, P_Base_Type
);
4168 when Attribute_Invalid_Value
=>
4171 Set_Etype
(N
, P_Base_Type
);
4172 Invalid_Value_Used
:= True;
4178 when Attribute_Large
=>
4181 Set_Etype
(N
, Universal_Real
);
4187 when Attribute_Last
=>
4188 Check_Array_Or_Scalar_Type
;
4189 Bad_Attribute_For_Predicate
;
4195 when Attribute_Last_Bit
=>
4197 Set_Etype
(N
, Universal_Integer
);
4203 when Attribute_Last_Valid
=>
4204 Check_First_Last_Valid
;
4205 Set_Etype
(N
, P_Type
);
4211 when Attribute_Leading_Part
=>
4212 Check_Floating_Point_Type_2
;
4213 Set_Etype
(N
, P_Base_Type
);
4214 Resolve
(E1
, P_Base_Type
);
4215 Resolve
(E2
, Any_Integer
);
4221 when Attribute_Length
=>
4223 Set_Etype
(N
, Universal_Integer
);
4229 when Attribute_Library_Level
=>
4232 if not Is_Entity_Name
(P
) then
4233 Error_Attr_P
("prefix of % attribute must be an entity name");
4236 if not Inside_A_Generic
then
4237 Set_Boolean_Result
(N
,
4238 Is_Library_Level_Entity
(Entity
(P
)));
4241 Set_Etype
(N
, Standard_Boolean
);
4247 when Attribute_Lock_Free
=>
4249 Set_Etype
(N
, Standard_Boolean
);
4251 if not Is_Protected_Type
(P_Type
) then
4253 ("prefix of % attribute must be a protected object");
4260 when Attribute_Loop_Entry
=> Loop_Entry
: declare
4261 procedure Check_References_In_Prefix
(Loop_Id
: Entity_Id
);
4262 -- Inspect the prefix for any uses of entities declared within the
4263 -- related loop. Loop_Id denotes the loop identifier.
4265 --------------------------------
4266 -- Check_References_In_Prefix --
4267 --------------------------------
4269 procedure Check_References_In_Prefix
(Loop_Id
: Entity_Id
) is
4270 Loop_Decl
: constant Node_Id
:= Label_Construct
(Parent
(Loop_Id
));
4272 function Check_Reference
(Nod
: Node_Id
) return Traverse_Result
;
4273 -- Determine whether a reference mentions an entity declared
4274 -- within the related loop.
4276 function Declared_Within
(Nod
: Node_Id
) return Boolean;
4277 -- Determine whether Nod appears in the subtree of Loop_Decl
4279 ---------------------
4280 -- Check_Reference --
4281 ---------------------
4283 function Check_Reference
(Nod
: Node_Id
) return Traverse_Result
is
4285 if Nkind
(Nod
) = N_Identifier
4286 and then Present
(Entity
(Nod
))
4287 and then Declared_Within
(Declaration_Node
(Entity
(Nod
)))
4290 ("prefix of attribute % cannot reference local entities",
4296 end Check_Reference
;
4298 procedure Check_References
is new Traverse_Proc
(Check_Reference
);
4300 ---------------------
4301 -- Declared_Within --
4302 ---------------------
4304 function Declared_Within
(Nod
: Node_Id
) return Boolean is
4309 while Present
(Stmt
) loop
4310 if Stmt
= Loop_Decl
then
4313 -- Prevent the search from going too far
4315 elsif Is_Body_Or_Package_Declaration
(Stmt
) then
4319 Stmt
:= Parent
(Stmt
);
4323 end Declared_Within
;
4325 -- Start of processing for Check_Prefix_For_Local_References
4328 Check_References
(P
);
4329 end Check_References_In_Prefix
;
4333 Context
: constant Node_Id
:= Parent
(N
);
4335 Encl_Loop
: Node_Id
:= Empty
;
4336 Encl_Prag
: Node_Id
:= Empty
;
4337 Loop_Id
: Entity_Id
:= Empty
;
4341 -- Start of processing for Loop_Entry
4346 -- Set the type of the attribute now to ensure the successful
4347 -- continuation of analysis even if the attribute is misplaced.
4349 Set_Etype
(Attr
, P_Type
);
4351 -- Attribute 'Loop_Entry may appear in several flavors:
4353 -- * Prefix'Loop_Entry - in this form, the attribute applies to the
4354 -- nearest enclosing loop.
4356 -- * Prefix'Loop_Entry (Expr) - depending on what Expr denotes, the
4357 -- attribute may be related to a loop denoted by label Expr or
4358 -- the prefix may denote an array object and Expr may act as an
4359 -- indexed component.
4361 -- * Prefix'Loop_Entry (Expr1, ..., ExprN) - the attribute applies
4362 -- to the nearest enclosing loop, all expressions are part of
4363 -- an indexed component.
4365 -- * Prefix'Loop_Entry (Expr) (...) (...) - depending on what Expr
4366 -- denotes, the attribute may be related to a loop denoted by
4367 -- label Expr or the prefix may denote a multidimensional array
4368 -- array object and Expr along with the rest of the expressions
4369 -- may act as indexed components.
4371 -- Regardless of variations, the attribute reference does not have an
4372 -- expression list. Instead, all available expressions are stored as
4373 -- indexed components.
4375 -- When the attribute is part of an indexed component, find the first
4376 -- expression as it will determine the semantics of 'Loop_Entry.
4378 if Nkind
(Context
) = N_Indexed_Component
then
4379 E1
:= First
(Expressions
(Context
));
4382 -- The attribute reference appears in the following form:
4384 -- Prefix'Loop_Entry (Exp1, Expr2, ..., ExprN) [(...)]
4386 -- In this case, the loop name is omitted and no rewriting is
4389 if Present
(E2
) then
4392 -- The form of the attribute is:
4394 -- Prefix'Loop_Entry (Expr) [(...)]
4396 -- If Expr denotes a loop entry, the whole attribute and indexed
4397 -- component will have to be rewritten to reflect this relation.
4400 pragma Assert
(Present
(E1
));
4402 -- Do not expand the expression as it may have side effects.
4403 -- Simply preanalyze to determine whether it is a loop name or
4406 Preanalyze_And_Resolve
(E1
);
4408 if Is_Entity_Name
(E1
)
4409 and then Present
(Entity
(E1
))
4410 and then Ekind
(Entity
(E1
)) = E_Loop
4412 Loop_Id
:= Entity
(E1
);
4414 -- Transform the attribute and enclosing indexed component
4416 Set_Expressions
(N
, Expressions
(Context
));
4417 Rewrite
(Context
, N
);
4418 Set_Etype
(Context
, P_Type
);
4425 -- The prefix must denote an object
4427 if not Is_Object_Reference
(P
) then
4428 Error_Attr_P
("prefix of attribute % must denote an object");
4431 -- The prefix cannot be of a limited type because the expansion of
4432 -- Loop_Entry must create a constant initialized by the evaluated
4435 if Is_Limited_View
(Etype
(P
)) then
4436 Error_Attr_P
("prefix of attribute % cannot be limited");
4439 -- Climb the parent chain to verify the location of the attribute and
4440 -- find the enclosing loop.
4443 while Present
(Stmt
) loop
4445 -- Locate the corresponding enclosing pragma. Note that in the
4446 -- case of Assert[And_Cut] and Assume, we have already checked
4447 -- that the pragma appears in an appropriate loop location.
4449 if Nkind
(Original_Node
(Stmt
)) = N_Pragma
4450 and then Nam_In
(Pragma_Name_Unmapped
(Original_Node
(Stmt
)),
4451 Name_Loop_Invariant
,
4454 Name_Assert_And_Cut
,
4457 Encl_Prag
:= Original_Node
(Stmt
);
4459 -- Locate the enclosing loop (if any). Note that Ada 2012 array
4460 -- iteration may be expanded into several nested loops, we are
4461 -- interested in the outermost one which has the loop identifier,
4462 -- and comes from source.
4464 elsif Nkind
(Stmt
) = N_Loop_Statement
4465 and then Present
(Identifier
(Stmt
))
4466 and then Comes_From_Source
(Original_Node
(Stmt
))
4467 and then Nkind
(Original_Node
(Stmt
)) = N_Loop_Statement
4471 -- The original attribute reference may lack a loop name. Use
4472 -- the name of the enclosing loop because it is the related
4475 if No
(Loop_Id
) then
4476 Loop_Id
:= Entity
(Identifier
(Encl_Loop
));
4481 -- Prevent the search from going too far
4483 elsif Is_Body_Or_Package_Declaration
(Stmt
) then
4487 Stmt
:= Parent
(Stmt
);
4490 -- Loop_Entry must appear within a Loop_Assertion pragma (Assert,
4491 -- Assert_And_Cut, Assume count as loop assertion pragmas for this
4492 -- purpose if they appear in an appropriate location in a loop,
4493 -- which was already checked by the top level pragma circuit).
4495 -- Loop_Entry also denotes a value and as such can appear within an
4496 -- expression that is an argument for another loop aspect. In that
4497 -- case it will have been expanded into the corresponding assignment.
4500 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
4501 and then not Comes_From_Source
(Parent
(N
))
4505 elsif No
(Encl_Prag
) then
4506 Error_Attr
("attribute% must appear within appropriate pragma", N
);
4509 -- A Loop_Entry that applies to a given loop statement must not
4510 -- appear within a body of accept statement, if this construct is
4511 -- itself enclosed by the given loop statement.
4513 for Index
in reverse 0 .. Scope_Stack
.Last
loop
4514 Scop
:= Scope_Stack
.Table
(Index
).Entity
;
4516 if Ekind
(Scop
) = E_Loop
and then Scop
= Loop_Id
then
4518 elsif Ekind_In
(Scop
, E_Block
, E_Loop
, E_Return_Statement
) then
4522 ("attribute % cannot appear in body or accept statement", N
);
4527 -- The prefix cannot mention entities declared within the related
4528 -- loop because they will not be visible once the prefix is moved
4529 -- outside the loop.
4531 Check_References_In_Prefix
(Loop_Id
);
4533 -- The prefix must denote a static entity if the pragma does not
4534 -- apply to the innermost enclosing loop statement, or if it appears
4535 -- within a potentially unevaluated epxression.
4537 if Is_Entity_Name
(P
)
4538 or else Nkind
(Parent
(P
)) = N_Object_Renaming_Declaration
4539 or else Statically_Denotes_Object
(P
)
4543 elsif Present
(Encl_Loop
)
4544 and then Entity
(Identifier
(Encl_Loop
)) /= Loop_Id
4547 ("prefix of attribute % that applies to outer loop must denote "
4550 elsif Is_Potentially_Unevaluated
(P
) then
4554 -- Replace the Loop_Entry attribute reference by its prefix if the
4555 -- related pragma is ignored. This transformation is OK with respect
4556 -- to typing because Loop_Entry's type is that of its prefix. This
4557 -- early transformation also avoids the generation of a useless loop
4560 if Present
(Encl_Prag
) and then Is_Ignored
(Encl_Prag
) then
4561 Rewrite
(N
, Relocate_Node
(P
));
4562 Preanalyze_And_Resolve
(N
);
4565 Preanalyze_And_Resolve
(P
);
4573 when Attribute_Machine
=>
4574 Check_Floating_Point_Type_1
;
4575 Set_Etype
(N
, P_Base_Type
);
4576 Resolve
(E1
, P_Base_Type
);
4582 when Attribute_Machine_Emax
=>
4583 Check_Floating_Point_Type_0
;
4584 Set_Etype
(N
, Universal_Integer
);
4590 when Attribute_Machine_Emin
=>
4591 Check_Floating_Point_Type_0
;
4592 Set_Etype
(N
, Universal_Integer
);
4594 ----------------------
4595 -- Machine_Mantissa --
4596 ----------------------
4598 when Attribute_Machine_Mantissa
=>
4599 Check_Floating_Point_Type_0
;
4600 Set_Etype
(N
, Universal_Integer
);
4602 -----------------------
4603 -- Machine_Overflows --
4604 -----------------------
4606 when Attribute_Machine_Overflows
=>
4609 Set_Etype
(N
, Standard_Boolean
);
4615 when Attribute_Machine_Radix
=>
4618 Set_Etype
(N
, Universal_Integer
);
4620 ----------------------
4621 -- Machine_Rounding --
4622 ----------------------
4624 when Attribute_Machine_Rounding
=>
4625 Check_Floating_Point_Type_1
;
4626 Set_Etype
(N
, P_Base_Type
);
4627 Resolve
(E1
, P_Base_Type
);
4629 --------------------
4630 -- Machine_Rounds --
4631 --------------------
4633 when Attribute_Machine_Rounds
=>
4636 Set_Etype
(N
, Standard_Boolean
);
4642 when Attribute_Machine_Size
=>
4645 Check_Not_Incomplete_Type
;
4646 Set_Etype
(N
, Universal_Integer
);
4652 when Attribute_Mantissa
=>
4655 Set_Etype
(N
, Universal_Integer
);
4661 when Attribute_Max
=>
4664 ----------------------------------
4665 -- Max_Alignment_For_Allocation --
4666 ----------------------------------
4668 when Attribute_Max_Size_In_Storage_Elements
=>
4669 Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements
;
4671 ----------------------------------
4672 -- Max_Size_In_Storage_Elements --
4673 ----------------------------------
4675 when Attribute_Max_Alignment_For_Allocation
=>
4676 Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements
;
4678 -----------------------
4679 -- Maximum_Alignment --
4680 -----------------------
4682 when Attribute_Maximum_Alignment
=>
4683 Standard_Attribute
(Ttypes
.Maximum_Alignment
);
4685 --------------------
4686 -- Mechanism_Code --
4687 --------------------
4689 when Attribute_Mechanism_Code
=>
4690 if not Is_Entity_Name
(P
)
4691 or else not Is_Subprogram
(Entity
(P
))
4693 Error_Attr_P
("prefix of % attribute must be subprogram");
4696 Check_Either_E0_Or_E1
;
4698 if Present
(E1
) then
4699 Resolve
(E1
, Any_Integer
);
4700 Set_Etype
(E1
, Standard_Integer
);
4702 if not Is_OK_Static_Expression
(E1
) then
4703 Flag_Non_Static_Expr
4704 ("expression for parameter number must be static!", E1
);
4707 elsif UI_To_Int
(Intval
(E1
)) > Number_Formals
(Entity
(P
))
4708 or else UI_To_Int
(Intval
(E1
)) < 0
4710 Error_Attr
("invalid parameter number for % attribute", E1
);
4714 Set_Etype
(N
, Universal_Integer
);
4720 when Attribute_Min
=>
4727 when Attribute_Mod
=>
4729 -- Note: this attribute is only allowed in Ada 2005 mode, but
4730 -- we do not need to test that here, since Mod is only recognized
4731 -- as an attribute name in Ada 2005 mode during the parse.
4734 Check_Modular_Integer_Type
;
4735 Resolve
(E1
, Any_Integer
);
4736 Set_Etype
(N
, P_Base_Type
);
4742 when Attribute_Model
=>
4743 Check_Floating_Point_Type_1
;
4744 Set_Etype
(N
, P_Base_Type
);
4745 Resolve
(E1
, P_Base_Type
);
4751 when Attribute_Model_Emin
=>
4752 Check_Floating_Point_Type_0
;
4753 Set_Etype
(N
, Universal_Integer
);
4759 when Attribute_Model_Epsilon
=>
4760 Check_Floating_Point_Type_0
;
4761 Set_Etype
(N
, Universal_Real
);
4763 --------------------
4764 -- Model_Mantissa --
4765 --------------------
4767 when Attribute_Model_Mantissa
=>
4768 Check_Floating_Point_Type_0
;
4769 Set_Etype
(N
, Universal_Integer
);
4775 when Attribute_Model_Small
=>
4776 Check_Floating_Point_Type_0
;
4777 Set_Etype
(N
, Universal_Real
);
4783 when Attribute_Modulus
=>
4785 Check_Modular_Integer_Type
;
4786 Set_Etype
(N
, Universal_Integer
);
4788 --------------------
4789 -- Null_Parameter --
4790 --------------------
4792 when Attribute_Null_Parameter
=> Null_Parameter
: declare
4793 Parnt
: constant Node_Id
:= Parent
(N
);
4794 GParnt
: constant Node_Id
:= Parent
(Parnt
);
4796 procedure Bad_Null_Parameter
(Msg
: String);
4797 -- Used if bad Null parameter attribute node is found. Issues
4798 -- given error message, and also sets the type to Any_Type to
4799 -- avoid blowups later on from dealing with a junk node.
4801 procedure Must_Be_Imported
(Proc_Ent
: Entity_Id
);
4802 -- Called to check that Proc_Ent is imported subprogram
4804 ------------------------
4805 -- Bad_Null_Parameter --
4806 ------------------------
4808 procedure Bad_Null_Parameter
(Msg
: String) is
4810 Error_Msg_N
(Msg
, N
);
4811 Set_Etype
(N
, Any_Type
);
4812 end Bad_Null_Parameter
;
4814 ----------------------
4815 -- Must_Be_Imported --
4816 ----------------------
4818 procedure Must_Be_Imported
(Proc_Ent
: Entity_Id
) is
4819 Pent
: constant Entity_Id
:= Ultimate_Alias
(Proc_Ent
);
4822 -- Ignore check if procedure not frozen yet (we will get
4823 -- another chance when the default parameter is reanalyzed)
4825 if not Is_Frozen
(Pent
) then
4828 elsif not Is_Imported
(Pent
) then
4830 ("Null_Parameter can only be used with imported subprogram");
4835 end Must_Be_Imported
;
4837 -- Start of processing for Null_Parameter
4842 Set_Etype
(N
, P_Type
);
4844 -- Case of attribute used as default expression
4846 if Nkind
(Parnt
) = N_Parameter_Specification
then
4847 Must_Be_Imported
(Defining_Entity
(GParnt
));
4849 -- Case of attribute used as actual for subprogram (positional)
4851 elsif Nkind
(Parnt
) in N_Subprogram_Call
4852 and then Is_Entity_Name
(Name
(Parnt
))
4854 Must_Be_Imported
(Entity
(Name
(Parnt
)));
4856 -- Case of attribute used as actual for subprogram (named)
4858 elsif Nkind
(Parnt
) = N_Parameter_Association
4859 and then Nkind
(GParnt
) in N_Subprogram_Call
4860 and then Is_Entity_Name
(Name
(GParnt
))
4862 Must_Be_Imported
(Entity
(Name
(GParnt
)));
4864 -- Not an allowed case
4868 ("Null_Parameter must be actual or default parameter");
4876 when Attribute_Object_Size
=>
4879 Check_Not_Incomplete_Type
;
4880 Set_Etype
(N
, Universal_Integer
);
4886 when Attribute_Old
=> Old
: declare
4887 procedure Check_References_In_Prefix
(Subp_Id
: Entity_Id
);
4888 -- Inspect the contents of the prefix and detect illegal uses of a
4889 -- nested 'Old, attribute 'Result or a use of an entity declared in
4890 -- the related postcondition expression. Subp_Id is the subprogram to
4891 -- which the related postcondition applies.
4893 --------------------------------
4894 -- Check_References_In_Prefix --
4895 --------------------------------
4897 procedure Check_References_In_Prefix
(Subp_Id
: Entity_Id
) is
4898 function Check_Reference
(Nod
: Node_Id
) return Traverse_Result
;
4899 -- Detect attribute 'Old, attribute 'Result of a use of an entity
4900 -- and perform the appropriate semantic check.
4902 ---------------------
4903 -- Check_Reference --
4904 ---------------------
4906 function Check_Reference
(Nod
: Node_Id
) return Traverse_Result
is
4908 -- Attributes 'Old and 'Result cannot appear in the prefix of
4909 -- another attribute 'Old.
4911 if Nkind
(Nod
) = N_Attribute_Reference
4912 and then Nam_In
(Attribute_Name
(Nod
), Name_Old
,
4915 Error_Msg_Name_1
:= Attribute_Name
(Nod
);
4916 Error_Msg_Name_2
:= Name_Old
;
4918 ("attribute % cannot appear in the prefix of attribute %",
4922 -- Entities mentioned within the prefix of attribute 'Old must
4923 -- be global to the related postcondition. If this is not the
4924 -- case, then the scope of the local entity is nested within
4925 -- that of the subprogram.
4927 elsif Is_Entity_Name
(Nod
)
4928 and then Present
(Entity
(Nod
))
4929 and then Scope_Within
(Scope
(Entity
(Nod
)), Subp_Id
)
4932 ("prefix of attribute % cannot reference local entities",
4936 -- Otherwise keep inspecting the prefix
4941 end Check_Reference
;
4943 procedure Check_References
is new Traverse_Proc
(Check_Reference
);
4945 -- Start of processing for Check_References_In_Prefix
4948 Check_References
(P
);
4949 end Check_References_In_Prefix
;
4954 Pref_Id
: Entity_Id
;
4955 Pref_Typ
: Entity_Id
;
4956 Spec_Id
: Entity_Id
;
4958 -- Start of processing for Old
4961 -- The attribute reference is a primary. If any expressions follow,
4962 -- then the attribute reference is an indexable object. Transform the
4963 -- attribute into an indexed component and analyze it.
4965 if Present
(E1
) then
4967 Make_Indexed_Component
(Loc
,
4969 Make_Attribute_Reference
(Loc
,
4970 Prefix
=> Relocate_Node
(P
),
4971 Attribute_Name
=> Name_Old
),
4972 Expressions
=> Expressions
(N
)));
4977 Analyze_Attribute_Old_Result
(Legal
, Spec_Id
);
4979 -- The aspect or pragma where attribute 'Old resides should be
4980 -- associated with a subprogram declaration or a body. If this is not
4981 -- the case, then the aspect or pragma is illegal. Return as analysis
4982 -- cannot be carried out.
4984 -- The exception to this rule is when generating C since in this case
4985 -- postconditions are inlined.
4988 and then Modify_Tree_For_C
4989 and then In_Inlined_Body
4991 Spec_Id
:= Entity
(P
);
4993 elsif not Legal
then
4997 -- The prefix must be preanalyzed as the full analysis will take
4998 -- place during expansion.
5000 Preanalyze_And_Resolve
(P
);
5002 -- Ensure that the prefix does not contain attributes 'Old or 'Result
5004 Check_References_In_Prefix
(Spec_Id
);
5006 -- Set the type of the attribute now to prevent cascaded errors
5008 Pref_Typ
:= Etype
(P
);
5009 Set_Etype
(N
, Pref_Typ
);
5013 if Is_Limited_Type
(Pref_Typ
) then
5014 Error_Attr
("attribute % cannot apply to limited objects", P
);
5017 -- The prefix is a simple name
5019 if Is_Entity_Name
(P
) and then Present
(Entity
(P
)) then
5020 Pref_Id
:= Entity
(P
);
5022 -- Emit a warning when the prefix is a constant. Note that the use
5023 -- of Error_Attr would reset the type of N to Any_Type even though
5024 -- this is a warning. Use Error_Msg_XXX instead.
5026 if Is_Constant_Object
(Pref_Id
) then
5027 Error_Msg_Name_1
:= Name_Old
;
5029 ("??attribute % applied to constant has no effect", P
);
5032 -- Otherwise the prefix is not a simple name
5035 -- Ensure that the prefix of attribute 'Old is an entity when it
5036 -- is potentially unevaluated (6.1.1 (27/3)).
5038 if Is_Potentially_Unevaluated
(N
)
5039 and then not Statically_Denotes_Object
(P
)
5043 -- Detect a possible infinite recursion when the prefix denotes
5044 -- the related function.
5046 -- function Func (...) return ...
5047 -- with Post => Func'Old ...;
5049 -- The function may be specified in qualified form X.Y where X is
5050 -- a protected object and Y is a protected function. In that case
5051 -- ensure that the qualified form has an entity.
5053 elsif Nkind
(P
) = N_Function_Call
5054 and then Nkind
(Name
(P
)) in N_Has_Entity
5056 Pref_Id
:= Entity
(Name
(P
));
5058 if Ekind_In
(Spec_Id
, E_Function
, E_Generic_Function
)
5059 and then Pref_Id
= Spec_Id
5061 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5062 Error_Msg_N
("!possible infinite recursion<<", P
);
5063 Error_Msg_N
("\!??Storage_Error ]<<", P
);
5067 -- The prefix of attribute 'Old may refer to a component of a
5068 -- formal parameter. In this case its expansion may generate
5069 -- actual subtypes that are referenced in an inner context and
5070 -- that must be elaborated within the subprogram itself. If the
5071 -- prefix includes a function call, it may involve finalization
5072 -- actions that should be inserted when the attribute has been
5073 -- rewritten as a declaration. Create a declaration for the prefix
5074 -- and insert it at the start of the enclosing subprogram. This is
5075 -- an expansion activity that has to be performed now to prevent
5076 -- out-of-order issues.
5078 -- This expansion is both harmful and not needed in SPARK mode,
5079 -- since the formal verification back end relies on the types of
5080 -- nodes (hence is not robust w.r.t. a change to base type here),
5081 -- and does not suffer from the out-of-order issue described
5082 -- above. Thus, this expansion is skipped in SPARK mode.
5084 -- The expansion is not relevant for discrete types, which will
5085 -- not generate extra declarations, and where use of the base type
5086 -- may lead to spurious errors if context is a case.
5088 if not GNATprove_Mode
then
5089 if not Is_Discrete_Type
(Pref_Typ
) then
5090 Pref_Typ
:= Base_Type
(Pref_Typ
);
5093 Set_Etype
(N
, Pref_Typ
);
5094 Set_Etype
(P
, Pref_Typ
);
5096 Analyze_Dimension
(N
);
5102 ----------------------
5103 -- Overlaps_Storage --
5104 ----------------------
5106 when Attribute_Overlaps_Storage
=>
5109 -- Both arguments must be objects of any type
5111 Analyze_And_Resolve
(P
);
5112 Analyze_And_Resolve
(E1
);
5113 Check_Object_Reference
(P
);
5114 Check_Object_Reference
(E1
);
5115 Set_Etype
(N
, Standard_Boolean
);
5121 when Attribute_Output
=>
5123 Check_Stream_Attribute
(TSS_Stream_Output
);
5124 Set_Etype
(N
, Standard_Void_Type
);
5125 Resolve
(N
, Standard_Void_Type
);
5131 when Attribute_Partition_ID
=>
5134 if P_Type
/= Any_Type
then
5135 if not Is_Library_Level_Entity
(Entity
(P
)) then
5137 ("prefix of % attribute must be library-level entity");
5139 -- The defining entity of prefix should not be declared inside a
5140 -- Pure unit. RM E.1(8). Is_Pure was set during declaration.
5142 elsif Is_Entity_Name
(P
)
5143 and then Is_Pure
(Entity
(P
))
5145 Error_Attr_P
("prefix of% attribute must not be declared pure");
5149 Set_Etype
(N
, Universal_Integer
);
5151 -------------------------
5152 -- Passed_By_Reference --
5153 -------------------------
5155 when Attribute_Passed_By_Reference
=>
5158 Set_Etype
(N
, Standard_Boolean
);
5164 when Attribute_Pool_Address
=>
5166 Set_Etype
(N
, RTE
(RE_Address
));
5172 when Attribute_Pos
=>
5173 Check_Discrete_Type
;
5176 if Is_Boolean_Type
(P_Type
) then
5177 Error_Msg_Name_1
:= Aname
;
5178 Error_Msg_Name_2
:= Chars
(P_Type
);
5179 Check_SPARK_05_Restriction
5180 ("attribute% is not allowed for type%", P
);
5183 Resolve
(E1
, P_Base_Type
);
5184 Set_Etype
(N
, Universal_Integer
);
5190 when Attribute_Position
=>
5192 Set_Etype
(N
, Universal_Integer
);
5198 when Attribute_Pred
=>
5202 if Is_Real_Type
(P_Type
) or else Is_Boolean_Type
(P_Type
) then
5203 Error_Msg_Name_1
:= Aname
;
5204 Error_Msg_Name_2
:= Chars
(P_Type
);
5205 Check_SPARK_05_Restriction
5206 ("attribute% is not allowed for type%", P
);
5209 Resolve
(E1
, P_Base_Type
);
5210 Set_Etype
(N
, P_Base_Type
);
5212 -- Since Pred works on the base type, we normally do no check for the
5213 -- floating-point case, since the base type is unconstrained. But we
5214 -- make an exception in Check_Float_Overflow mode.
5216 if Is_Floating_Point_Type
(P_Type
) then
5217 if not Range_Checks_Suppressed
(P_Base_Type
) then
5218 Set_Do_Range_Check
(E1
);
5221 -- If not modular type, test for overflow check required
5224 if not Is_Modular_Integer_Type
(P_Type
)
5225 and then not Range_Checks_Suppressed
(P_Base_Type
)
5227 Enable_Range_Check
(E1
);
5235 -- Ada 2005 (AI-327): Dynamic ceiling priorities
5237 when Attribute_Priority
=>
5238 if Ada_Version
< Ada_2005
then
5239 Error_Attr
("% attribute is allowed only in Ada 2005 mode", P
);
5244 Check_Restriction
(No_Dynamic_Priorities
, N
);
5246 -- The prefix must be a protected object (AARM D.5.2 (2/2))
5250 if Is_Protected_Type
(Etype
(P
))
5251 or else (Is_Access_Type
(Etype
(P
))
5252 and then Is_Protected_Type
(Designated_Type
(Etype
(P
))))
5254 Resolve
(P
, Etype
(P
));
5256 Error_Attr_P
("prefix of % attribute must be a protected object");
5259 Set_Etype
(N
, Standard_Integer
);
5261 -- Must be called from within a protected procedure or entry of the
5262 -- protected object.
5269 while S
/= Etype
(P
)
5270 and then S
/= Standard_Standard
5275 if S
= Standard_Standard
then
5276 Error_Attr
("the attribute % is only allowed inside protected "
5281 Validate_Non_Static_Attribute_Function_Call
;
5287 when Attribute_Range
=>
5288 Check_Array_Or_Scalar_Type
;
5289 Bad_Attribute_For_Predicate
;
5291 if Ada_Version
= Ada_83
5292 and then Is_Scalar_Type
(P_Type
)
5293 and then Comes_From_Source
(N
)
5296 ("(Ada 83) % attribute not allowed for scalar type", P
);
5303 when Attribute_Result
=> Result
: declare
5304 function Denote_Same_Function
5305 (Pref_Id
: Entity_Id
;
5306 Spec_Id
: Entity_Id
) return Boolean;
5307 -- Determine whether the entity of the prefix Pref_Id denotes the
5308 -- same entity as that of the related subprogram Spec_Id.
5310 --------------------------
5311 -- Denote_Same_Function --
5312 --------------------------
5314 function Denote_Same_Function
5315 (Pref_Id
: Entity_Id
;
5316 Spec_Id
: Entity_Id
) return Boolean
5318 Over_Id
: constant Entity_Id
:= Overridden_Operation
(Spec_Id
);
5319 Subp_Spec
: constant Node_Id
:= Parent
(Spec_Id
);
5322 -- The prefix denotes the related subprogram
5324 if Pref_Id
= Spec_Id
then
5327 -- Account for a special case when attribute 'Result appears in
5328 -- the postcondition of a generic function.
5331 -- function Gen_Func return ...
5332 -- with Post => Gen_Func'Result ...;
5334 -- When the generic function is instantiated, the Chars field of
5335 -- the instantiated prefix still denotes the name of the generic
5336 -- function. Note that any preemptive transformation is impossible
5337 -- without a proper analysis. The structure of the wrapper package
5340 -- package Anon_Gen_Pack is
5341 -- <subtypes and renamings>
5342 -- function Subp_Decl return ...; -- (!)
5343 -- pragma Postcondition (Gen_Func'Result ...); -- (!)
5344 -- function Gen_Func ... renames Subp_Decl;
5345 -- end Anon_Gen_Pack;
5347 elsif Nkind
(Subp_Spec
) = N_Function_Specification
5348 and then Present
(Generic_Parent
(Subp_Spec
))
5349 and then Ekind_In
(Pref_Id
, E_Generic_Function
, E_Function
)
5351 if Generic_Parent
(Subp_Spec
) = Pref_Id
then
5354 elsif Present
(Alias
(Pref_Id
))
5355 and then Alias
(Pref_Id
) = Spec_Id
5360 -- Account for a special case where a primitive of a tagged type
5361 -- inherits a class-wide postcondition from a parent type. In this
5362 -- case the prefix of attribute 'Result denotes the overriding
5365 elsif Present
(Over_Id
) and then Pref_Id
= Over_Id
then
5369 -- Otherwise the prefix does not denote the related subprogram
5372 end Denote_Same_Function
;
5376 In_Inlined_C_Postcondition
: constant Boolean :=
5378 and then In_Inlined_Body
;
5381 Pref_Id
: Entity_Id
;
5382 Spec_Id
: Entity_Id
;
5384 -- Start of processing for Result
5387 -- The attribute reference is a primary. If any expressions follow,
5388 -- then the attribute reference is an indexable object. Transform the
5389 -- attribute into an indexed component and analyze it.
5391 if Present
(E1
) then
5393 Make_Indexed_Component
(Loc
,
5395 Make_Attribute_Reference
(Loc
,
5396 Prefix
=> Relocate_Node
(P
),
5397 Attribute_Name
=> Name_Result
),
5398 Expressions
=> Expressions
(N
)));
5403 Analyze_Attribute_Old_Result
(Legal
, Spec_Id
);
5405 -- The aspect or pragma where attribute 'Result resides should be
5406 -- associated with a subprogram declaration or a body. If this is not
5407 -- the case, then the aspect or pragma is illegal. Return as analysis
5408 -- cannot be carried out.
5410 -- The exception to this rule is when generating C since in this case
5411 -- postconditions are inlined.
5413 if No
(Spec_Id
) and then In_Inlined_C_Postcondition
then
5414 Spec_Id
:= Entity
(P
);
5416 elsif not Legal
then
5420 -- Attribute 'Result is part of a _Postconditions procedure. There is
5421 -- no need to perform the semantic checks below as they were already
5422 -- verified when the attribute was analyzed in its original context.
5423 -- Instead, rewrite the attribute as a reference to formal parameter
5424 -- _Result of the _Postconditions procedure.
5426 if Chars
(Spec_Id
) = Name_uPostconditions
5428 (In_Inlined_C_Postcondition
5429 and then Nkind
(Parent
(Spec_Id
)) = N_Block_Statement
)
5431 Rewrite
(N
, Make_Identifier
(Loc
, Name_uResult
));
5433 -- The type of formal parameter _Result is that of the function
5434 -- encapsulating the _Postconditions procedure. Resolution must
5435 -- be carried out against the function return type.
5437 Analyze_And_Resolve
(N
, Etype
(Scope
(Spec_Id
)));
5439 -- Otherwise attribute 'Result appears in its original context and
5440 -- all semantic checks should be carried out.
5443 -- Verify the legality of the prefix. It must denotes the entity
5444 -- of the related [generic] function.
5446 if Is_Entity_Name
(P
) then
5447 Pref_Id
:= Entity
(P
);
5449 if Ekind_In
(Pref_Id
, E_Function
, E_Generic_Function
)
5450 and then Ekind
(Spec_Id
) = Ekind
(Pref_Id
)
5452 if Denote_Same_Function
(Pref_Id
, Spec_Id
) then
5454 -- Correct the prefix of the attribute when the context
5455 -- is a generic function.
5457 if Pref_Id
/= Spec_Id
then
5458 Rewrite
(P
, New_Occurrence_Of
(Spec_Id
, Loc
));
5462 Set_Etype
(N
, Etype
(Spec_Id
));
5464 -- Otherwise the prefix denotes some unrelated function
5467 Error_Msg_Name_2
:= Chars
(Spec_Id
);
5469 ("incorrect prefix for attribute %, expected %", P
);
5472 -- Otherwise the prefix denotes some other form of subprogram
5477 ("attribute % can only appear in postcondition of "
5481 -- Otherwise the prefix is illegal
5484 Error_Msg_Name_2
:= Chars
(Spec_Id
);
5485 Error_Attr
("incorrect prefix for attribute %, expected %", P
);
5494 when Attribute_Range_Length
=>
5496 Check_Discrete_Type
;
5497 Set_Etype
(N
, Universal_Integer
);
5503 when Attribute_Read
=>
5505 Check_Stream_Attribute
(TSS_Stream_Read
);
5506 Set_Etype
(N
, Standard_Void_Type
);
5507 Resolve
(N
, Standard_Void_Type
);
5508 Note_Possible_Modification
(E2
, Sure
=> True);
5514 when Attribute_Ref
=>
5518 if Nkind
(P
) /= N_Expanded_Name
5519 or else not Is_RTE
(P_Type
, RE_Address
)
5521 Error_Attr_P
("prefix of % attribute must be System.Address");
5524 Analyze_And_Resolve
(E1
, Any_Integer
);
5525 Set_Etype
(N
, RTE
(RE_Address
));
5531 when Attribute_Remainder
=>
5532 Check_Floating_Point_Type_2
;
5533 Set_Etype
(N
, P_Base_Type
);
5534 Resolve
(E1
, P_Base_Type
);
5535 Resolve
(E2
, P_Base_Type
);
5537 ---------------------
5538 -- Restriction_Set --
5539 ---------------------
5541 when Attribute_Restriction_Set
=> Restriction_Set
: declare
5544 Unam
: Unit_Name_Type
;
5549 Check_System_Prefix
;
5551 -- No_Dependence case
5553 if Nkind
(E1
) = N_Parameter_Association
then
5554 pragma Assert
(Chars
(Selector_Name
(E1
)) = Name_No_Dependence
);
5555 U
:= Explicit_Actual_Parameter
(E1
);
5557 if not OK_No_Dependence_Unit_Name
(U
) then
5558 Set_Boolean_Result
(N
, False);
5562 -- See if there is an entry already in the table. That's the
5563 -- case in which we can return True.
5565 for J
in No_Dependences
.First
.. No_Dependences
.Last
loop
5566 if Designate_Same_Unit
(U
, No_Dependences
.Table
(J
).Unit
)
5567 and then No_Dependences
.Table
(J
).Warn
= False
5569 Set_Boolean_Result
(N
, True);
5574 -- If not in the No_Dependence table, result is False
5576 Set_Boolean_Result
(N
, False);
5578 -- In this case, we must ensure that the binder will reject any
5579 -- other unit in the partition that sets No_Dependence for this
5580 -- unit. We do that by making an entry in the special table kept
5581 -- for this purpose (if the entry is not there already).
5583 Unam
:= Get_Spec_Name
(Get_Unit_Name
(U
));
5585 for J
in Restriction_Set_Dependences
.First
..
5586 Restriction_Set_Dependences
.Last
5588 if Restriction_Set_Dependences
.Table
(J
) = Unam
then
5593 Restriction_Set_Dependences
.Append
(Unam
);
5595 -- Normal restriction case
5598 if Nkind
(E1
) /= N_Identifier
then
5599 Set_Boolean_Result
(N
, False);
5600 Error_Attr
("attribute % requires restriction identifier", E1
);
5603 R
:= Get_Restriction_Id
(Process_Restriction_Synonyms
(E1
));
5605 if R
= Not_A_Restriction_Id
then
5606 Set_Boolean_Result
(N
, False);
5607 Error_Msg_Node_1
:= E1
;
5608 Error_Attr
("invalid restriction identifier &", E1
);
5610 elsif R
not in Partition_Boolean_Restrictions
then
5611 Set_Boolean_Result
(N
, False);
5612 Error_Msg_Node_1
:= E1
;
5614 ("& is not a boolean partition-wide restriction", E1
);
5617 if Restriction_Active
(R
) then
5618 Set_Boolean_Result
(N
, True);
5620 Check_Restriction
(R
, N
);
5621 Set_Boolean_Result
(N
, False);
5625 end Restriction_Set
;
5631 when Attribute_Round
=>
5633 Check_Decimal_Fixed_Point_Type
;
5634 Set_Etype
(N
, P_Base_Type
);
5636 -- Because the context is universal_real (3.5.10(12)) it is a
5637 -- legal context for a universal fixed expression. This is the
5638 -- only attribute whose functional description involves U_R.
5640 if Etype
(E1
) = Universal_Fixed
then
5642 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
5643 Subtype_Mark
=> New_Occurrence_Of
(Universal_Real
, Loc
),
5644 Expression
=> Relocate_Node
(E1
));
5652 Resolve
(E1
, Any_Real
);
5658 when Attribute_Rounding
=>
5659 Check_Floating_Point_Type_1
;
5660 Set_Etype
(N
, P_Base_Type
);
5661 Resolve
(E1
, P_Base_Type
);
5667 when Attribute_Safe_Emax
=>
5668 Check_Floating_Point_Type_0
;
5669 Set_Etype
(N
, Universal_Integer
);
5675 when Attribute_Safe_First
=>
5676 Check_Floating_Point_Type_0
;
5677 Set_Etype
(N
, Universal_Real
);
5683 when Attribute_Safe_Large
=>
5686 Set_Etype
(N
, Universal_Real
);
5692 when Attribute_Safe_Last
=>
5693 Check_Floating_Point_Type_0
;
5694 Set_Etype
(N
, Universal_Real
);
5700 when Attribute_Safe_Small
=>
5703 Set_Etype
(N
, Universal_Real
);
5705 --------------------------
5706 -- Scalar_Storage_Order --
5707 --------------------------
5709 when Attribute_Scalar_Storage_Order
=> Scalar_Storage_Order
: declare
5710 Ent
: Entity_Id
:= Empty
;
5716 if not (Is_Record_Type
(P_Type
) or else Is_Array_Type
(P_Type
)) then
5718 -- In GNAT mode, the attribute applies to generic types as well
5719 -- as composite types, and for non-composite types always returns
5720 -- the default bit order for the target.
5722 if not (GNAT_Mode
and then Is_Generic_Type
(P_Type
))
5723 and then not In_Instance
5726 ("prefix of % attribute must be record or array type");
5728 elsif not Is_Generic_Type
(P_Type
) then
5729 if Bytes_Big_Endian
then
5730 Ent
:= RTE
(RE_High_Order_First
);
5732 Ent
:= RTE
(RE_Low_Order_First
);
5736 elsif Bytes_Big_Endian
xor Reverse_Storage_Order
(P_Type
) then
5737 Ent
:= RTE
(RE_High_Order_First
);
5740 Ent
:= RTE
(RE_Low_Order_First
);
5743 if Present
(Ent
) then
5744 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
5747 Set_Etype
(N
, RTE
(RE_Bit_Order
));
5750 -- Reset incorrect indication of staticness
5752 Set_Is_Static_Expression
(N
, False);
5753 end Scalar_Storage_Order
;
5759 when Attribute_Scale
=>
5761 Check_Decimal_Fixed_Point_Type
;
5762 Set_Etype
(N
, Universal_Integer
);
5768 when Attribute_Scaling
=>
5769 Check_Floating_Point_Type_2
;
5770 Set_Etype
(N
, P_Base_Type
);
5771 Resolve
(E1
, P_Base_Type
);
5777 when Attribute_Signed_Zeros
=>
5778 Check_Floating_Point_Type_0
;
5779 Set_Etype
(N
, Standard_Boolean
);
5786 | Attribute_VADS_Size
5790 -- If prefix is parameterless function call, rewrite and resolve
5793 if Is_Entity_Name
(P
)
5794 and then Ekind
(Entity
(P
)) = E_Function
5798 -- Similar processing for a protected function call
5800 elsif Nkind
(P
) = N_Selected_Component
5801 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Function
5806 if Is_Object_Reference
(P
) then
5807 Check_Object_Reference
(P
);
5809 elsif Is_Entity_Name
(P
)
5810 and then (Is_Type
(Entity
(P
))
5811 or else Ekind
(Entity
(P
)) = E_Enumeration_Literal
)
5815 elsif Nkind
(P
) = N_Type_Conversion
5816 and then not Comes_From_Source
(P
)
5820 -- Some other compilers allow dubious use of X'???'Size
5822 elsif Relaxed_RM_Semantics
5823 and then Nkind
(P
) = N_Attribute_Reference
5828 Error_Attr_P
("invalid prefix for % attribute");
5831 Check_Not_Incomplete_Type
;
5833 Set_Etype
(N
, Universal_Integer
);
5835 -- If we are processing pragmas Compile_Time_Warning and Compile_
5836 -- Time_Errors after the back end has been called and this occurrence
5837 -- of 'Size is known at compile time then it is safe to perform this
5838 -- evaluation. Needed to perform the static evaluation of the full
5839 -- boolean expression of these pragmas.
5841 if In_Compile_Time_Warning_Or_Error
5842 and then Is_Entity_Name
(P
)
5843 and then (Is_Type
(Entity
(P
))
5844 or else Ekind
(Entity
(P
)) = E_Enumeration_Literal
)
5845 and then Size_Known_At_Compile_Time
(Entity
(P
))
5847 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Esize
(Entity
(P
))));
5855 when Attribute_Small
=>
5858 Set_Etype
(N
, Universal_Real
);
5864 when Attribute_Storage_Pool
5865 | Attribute_Simple_Storage_Pool
5869 if Is_Access_Type
(P_Type
) then
5870 if Ekind
(P_Type
) = E_Access_Subprogram_Type
then
5872 ("cannot use % attribute for access-to-subprogram type");
5875 -- Set appropriate entity
5877 if Present
(Associated_Storage_Pool
(Root_Type
(P_Type
))) then
5878 Set_Entity
(N
, Associated_Storage_Pool
(Root_Type
(P_Type
)));
5880 Set_Entity
(N
, RTE
(RE_Global_Pool_Object
));
5883 if Attr_Id
= Attribute_Storage_Pool
then
5884 if Present
(Get_Rep_Pragma
(Etype
(Entity
(N
)),
5885 Name_Simple_Storage_Pool_Type
))
5887 Error_Msg_Name_1
:= Aname
;
5888 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5890 ("cannot use % attribute for type with simple storage "
5892 Error_Msg_N
("\Program_Error [<<", N
);
5895 (N
, Make_Raise_Program_Error
5896 (Sloc
(N
), Reason
=> PE_Explicit_Raise
));
5899 Set_Etype
(N
, Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
)));
5901 -- In the Simple_Storage_Pool case, verify that the pool entity is
5902 -- actually of a simple storage pool type, and set the attribute's
5903 -- type to the pool object's type.
5906 if not Present
(Get_Rep_Pragma
(Etype
(Entity
(N
)),
5907 Name_Simple_Storage_Pool_Type
))
5910 ("cannot use % attribute for type without simple " &
5914 Set_Etype
(N
, Etype
(Entity
(N
)));
5917 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
5918 -- Storage_Pool since this attribute is not defined for such
5919 -- types (RM E.2.3(22)).
5921 Validate_Remote_Access_To_Class_Wide_Type
(N
);
5924 Error_Attr_P
("prefix of % attribute must be access type");
5931 when Attribute_Storage_Size
=>
5934 if Is_Task_Type
(P_Type
) then
5935 Set_Etype
(N
, Universal_Integer
);
5937 -- Use with tasks is an obsolescent feature
5939 Check_Restriction
(No_Obsolescent_Features
, P
);
5941 elsif Is_Access_Type
(P_Type
) then
5942 if Ekind
(P_Type
) = E_Access_Subprogram_Type
then
5944 ("cannot use % attribute for access-to-subprogram type");
5947 if Is_Entity_Name
(P
)
5948 and then Is_Type
(Entity
(P
))
5951 Set_Etype
(N
, Universal_Integer
);
5953 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
5954 -- Storage_Size since this attribute is not defined for
5955 -- such types (RM E.2.3(22)).
5957 Validate_Remote_Access_To_Class_Wide_Type
(N
);
5959 -- The prefix is allowed to be an implicit dereference of an
5960 -- access value designating a task.
5964 Set_Etype
(N
, Universal_Integer
);
5968 Error_Attr_P
("prefix of % attribute must be access or task type");
5975 when Attribute_Storage_Unit
=>
5976 Standard_Attribute
(Ttypes
.System_Storage_Unit
);
5982 when Attribute_Stream_Size
=>
5986 if Is_Entity_Name
(P
)
5987 and then Is_Elementary_Type
(Entity
(P
))
5989 Set_Etype
(N
, Universal_Integer
);
5991 Error_Attr_P
("invalid prefix for % attribute");
5998 when Attribute_Stub_Type
=>
6002 if Is_Remote_Access_To_Class_Wide_Type
(Base_Type
(P_Type
)) then
6004 -- For a real RACW [sub]type, use corresponding stub type
6006 if not Is_Generic_Type
(P_Type
) then
6009 (Corresponding_Stub_Type
(Base_Type
(P_Type
)), Loc
));
6011 -- For a generic type (that has been marked as an RACW using the
6012 -- Remote_Access_Type aspect or pragma), use a generic RACW stub
6013 -- type. Note that if the actual is not a remote access type, the
6014 -- instantiation will fail.
6017 -- Note: we go to the underlying type here because the view
6018 -- returned by RTE (RE_RACW_Stub_Type) might be incomplete.
6022 (Underlying_Type
(RTE
(RE_RACW_Stub_Type
)), Loc
));
6027 ("prefix of% attribute must be remote access-to-class-wide");
6034 when Attribute_Succ
=>
6038 if Is_Real_Type
(P_Type
) or else Is_Boolean_Type
(P_Type
) then
6039 Error_Msg_Name_1
:= Aname
;
6040 Error_Msg_Name_2
:= Chars
(P_Type
);
6041 Check_SPARK_05_Restriction
6042 ("attribute% is not allowed for type%", P
);
6045 Resolve
(E1
, P_Base_Type
);
6046 Set_Etype
(N
, P_Base_Type
);
6048 -- Since Pred works on the base type, we normally do no check for the
6049 -- floating-point case, since the base type is unconstrained. But we
6050 -- make an exception in Check_Float_Overflow mode.
6052 if Is_Floating_Point_Type
(P_Type
) then
6053 if not Range_Checks_Suppressed
(P_Base_Type
) then
6054 Set_Do_Range_Check
(E1
);
6057 -- If not modular type, test for overflow check required
6060 if not Is_Modular_Integer_Type
(P_Type
)
6061 and then not Range_Checks_Suppressed
(P_Base_Type
)
6063 Enable_Range_Check
(E1
);
6067 --------------------------------
6068 -- System_Allocator_Alignment --
6069 --------------------------------
6071 when Attribute_System_Allocator_Alignment
=>
6072 Standard_Attribute
(Ttypes
.System_Allocator_Alignment
);
6078 when Attribute_Tag
=>
6082 if not Is_Tagged_Type
(P_Type
) then
6083 Error_Attr_P
("prefix of % attribute must be tagged");
6085 -- Next test does not apply to generated code why not, and what does
6086 -- the illegal reference mean???
6088 elsif Is_Object_Reference
(P
)
6089 and then not Is_Class_Wide_Type
(P_Type
)
6090 and then Comes_From_Source
(N
)
6093 ("% attribute can only be applied to objects " &
6094 "of class - wide type");
6097 -- The prefix cannot be an incomplete type. However, references to
6098 -- 'Tag can be generated when expanding interface conversions, and
6101 if Comes_From_Source
(N
) then
6102 Check_Not_Incomplete_Type
;
6105 -- Set appropriate type
6107 Set_Etype
(N
, RTE
(RE_Tag
));
6113 when Attribute_Target_Name
=> Target_Name
: declare
6114 TN
: constant String := Sdefault
.Target_Name
.all;
6118 Check_Standard_Prefix
;
6122 if TN
(TL
) = '/' or else TN
(TL
) = '\' then
6127 Make_String_Literal
(Loc
,
6128 Strval
=> TN
(TN
'First .. TL
)));
6129 Analyze_And_Resolve
(N
, Standard_String
);
6130 Set_Is_Static_Expression
(N
, True);
6137 when Attribute_Terminated
=>
6139 Set_Etype
(N
, Standard_Boolean
);
6146 when Attribute_To_Address
=> To_Address
: declare
6152 Check_System_Prefix
;
6154 Generate_Reference
(RTE
(RE_Address
), P
);
6155 Analyze_And_Resolve
(E1
, Any_Integer
);
6156 Set_Etype
(N
, RTE
(RE_Address
));
6158 if Is_Static_Expression
(E1
) then
6159 Set_Is_Static_Expression
(N
, True);
6162 -- OK static expression case, check range and set appropriate type
6164 if Is_OK_Static_Expression
(E1
) then
6165 Val
:= Expr_Value
(E1
);
6167 if Val
< -(2 ** UI_From_Int
(Standard
'Address_Size - 1))
6169 Val
> 2 ** UI_From_Int
(Standard
'Address_Size) - 1
6171 Error_Attr
("address value out of range for % attribute", E1
);
6174 -- In most cases the expression is a numeric literal or some other
6175 -- address expression, but if it is a declared constant it may be
6176 -- of a compatible type that must be left on the node.
6178 if Is_Entity_Name
(E1
) then
6181 -- Set type to universal integer if negative
6184 Set_Etype
(E1
, Universal_Integer
);
6186 -- Otherwise set type to Unsigned_64 to accommodate max values
6189 Set_Etype
(E1
, Standard_Unsigned_64
);
6193 Set_Is_Static_Expression
(N
, True);
6200 when Attribute_To_Any
=>
6202 Check_PolyORB_Attribute
;
6203 Set_Etype
(N
, RTE
(RE_Any
));
6209 when Attribute_Truncation
=>
6210 Check_Floating_Point_Type_1
;
6211 Resolve
(E1
, P_Base_Type
);
6212 Set_Etype
(N
, P_Base_Type
);
6218 when Attribute_Type_Class
=>
6221 Check_Not_Incomplete_Type
;
6222 Set_Etype
(N
, RTE
(RE_Type_Class
));
6228 when Attribute_TypeCode
=>
6230 Check_PolyORB_Attribute
;
6231 Set_Etype
(N
, RTE
(RE_TypeCode
));
6237 when Attribute_Type_Key
=> Type_Key
: declare
6238 Full_Name
: constant String_Id
:=
6239 Fully_Qualified_Name_String
(Entity
(P
));
6242 -- The computed signature for the type
6245 -- To simplify the handling of mutually recursive types, follow a
6246 -- single dereference link in a composite type.
6248 procedure Compute_Type_Key
(T
: Entity_Id
);
6249 -- Create a CRC integer from the declaration of the type. For a
6250 -- composite type, fold in the representation of its components in
6251 -- recursive fashion. We use directly the source representation of
6252 -- the types involved.
6254 ----------------------
6255 -- Compute_Type_Key --
6256 ----------------------
6258 procedure Compute_Type_Key
(T
: Entity_Id
) is
6259 Buffer
: Source_Buffer_Ptr
;
6263 SFI
: Source_File_Index
;
6265 procedure Process_One_Declaration
;
6266 -- Update CRC with the characters of one type declaration, or a
6267 -- representation pragma that applies to the type.
6269 -----------------------------
6270 -- Process_One_Declaration --
6271 -----------------------------
6273 procedure Process_One_Declaration
is
6275 -- Scan type declaration, skipping blanks
6277 for Ptr
in P_Min
.. P_Max
loop
6278 if Buffer
(Ptr
) /= ' ' then
6279 System
.CRC32
.Update
(CRC
, Buffer
(Ptr
));
6282 end Process_One_Declaration
;
6284 -- Start of processing for Compute_Type_Key
6287 if Is_Itype
(T
) then
6291 -- If the type is declared in Standard, there is no source, so
6292 -- just use its name.
6294 if Scope
(T
) = Standard_Standard
then
6296 Name
: constant String := Get_Name_String
(Chars
(T
));
6298 for J
in Name
'Range loop
6299 System
.CRC32
.Update
(CRC
, Name
(J
));
6306 Sloc_Range
(Enclosing_Declaration
(T
), P_Min
, P_Max
);
6307 SFI
:= Get_Source_File_Index
(P_Min
);
6308 pragma Assert
(SFI
= Get_Source_File_Index
(P_Max
));
6309 Buffer
:= Source_Text
(SFI
);
6311 Process_One_Declaration
;
6313 -- Recurse on relevant component types
6315 if Is_Array_Type
(T
) then
6316 Compute_Type_Key
(Component_Type
(T
));
6318 elsif Is_Access_Type
(T
) then
6321 Compute_Type_Key
(Designated_Type
(T
));
6324 elsif Is_Derived_Type
(T
) then
6325 Compute_Type_Key
(Etype
(T
));
6327 elsif Is_Record_Type
(T
) then
6331 Comp
:= First_Component
(T
);
6332 while Present
(Comp
) loop
6333 Compute_Type_Key
(Etype
(Comp
));
6334 Next_Component
(Comp
);
6339 if Is_First_Subtype
(T
) then
6341 -- Fold in representation aspects for the type, which appear in
6342 -- the same source buffer. If the representation aspects are in
6343 -- a different source file, then skip them; they apply to some
6344 -- other type, perhaps one we're derived from.
6346 Rep
:= First_Rep_Item
(T
);
6348 while Present
(Rep
) loop
6349 if Comes_From_Source
(Rep
) then
6350 Sloc_Range
(Rep
, P_Min
, P_Max
);
6352 if SFI
= Get_Source_File_Index
(P_Min
) then
6353 pragma Assert
(SFI
= Get_Source_File_Index
(P_Max
));
6354 Process_One_Declaration
;
6358 Rep
:= Next_Rep_Item
(Rep
);
6361 end Compute_Type_Key
;
6363 -- Start of processing for Type_Key
6372 -- Copy all characters in Full_Name but the trailing NUL
6374 for J
in 1 .. String_Length
(Full_Name
) - 1 loop
6375 Store_String_Char
(Get_String_Char
(Full_Name
, Pos
(J
)));
6378 -- Compute CRC and convert it to string one character at a time, so
6379 -- as not to use Image within the compiler.
6382 Compute_Type_Key
(Entity
(P
));
6384 if not Is_Frozen
(Entity
(P
)) then
6385 Error_Msg_N
("premature usage of Type_Key?", N
);
6389 Store_String_Char
(Character'Val (48 + (CRC
rem 10)));
6393 Rewrite
(N
, Make_String_Literal
(Loc
, End_String
));
6394 Analyze_And_Resolve
(N
, Standard_String
);
6397 -----------------------
6398 -- Unbiased_Rounding --
6399 -----------------------
6401 when Attribute_Unbiased_Rounding
=>
6402 Check_Floating_Point_Type_1
;
6403 Set_Etype
(N
, P_Base_Type
);
6404 Resolve
(E1
, P_Base_Type
);
6406 ----------------------
6407 -- Unchecked_Access --
6408 ----------------------
6410 when Attribute_Unchecked_Access
=>
6411 if Comes_From_Source
(N
) then
6412 Check_Restriction
(No_Unchecked_Access
, N
);
6415 Analyze_Access_Attribute
;
6416 Check_Not_Incomplete_Type
;
6418 -------------------------
6419 -- Unconstrained_Array --
6420 -------------------------
6422 when Attribute_Unconstrained_Array
=>
6425 Check_Not_Incomplete_Type
;
6426 Set_Etype
(N
, Standard_Boolean
);
6427 Set_Is_Static_Expression
(N
, True);
6429 ------------------------------
6430 -- Universal_Literal_String --
6431 ------------------------------
6433 -- This is a GNAT specific attribute whose prefix must be a named
6434 -- number where the expression is either a single numeric literal,
6435 -- or a numeric literal immediately preceded by a minus sign. The
6436 -- result is equivalent to a string literal containing the text of
6437 -- the literal as it appeared in the source program with a possible
6438 -- leading minus sign.
6440 when Attribute_Universal_Literal_String
=>
6443 if not Is_Entity_Name
(P
)
6444 or else Ekind
(Entity
(P
)) not in Named_Kind
6446 Error_Attr_P
("prefix for % attribute must be named number");
6453 Src
: Source_Buffer_Ptr
;
6456 Expr
:= Original_Node
(Expression
(Parent
(Entity
(P
))));
6458 if Nkind
(Expr
) = N_Op_Minus
then
6460 Expr
:= Original_Node
(Right_Opnd
(Expr
));
6465 if not Nkind_In
(Expr
, N_Integer_Literal
, N_Real_Literal
) then
6467 ("named number for % attribute must be simple literal", N
);
6470 -- Build string literal corresponding to source literal text
6475 Store_String_Char
(Get_Char_Code
('-'));
6479 Src
:= Source_Text
(Get_Source_File_Index
(S
));
6481 while Src
(S
) /= ';' and then Src
(S
) /= ' ' loop
6482 Store_String_Char
(Get_Char_Code
(Src
(S
)));
6486 -- Now we rewrite the attribute with the string literal
6489 Make_String_Literal
(Loc
, End_String
));
6491 Set_Is_Static_Expression
(N
, True);
6495 -------------------------
6496 -- Unrestricted_Access --
6497 -------------------------
6499 -- This is a GNAT specific attribute which is like Access except that
6500 -- all scope checks and checks for aliased views are omitted. It is
6501 -- documented as being equivalent to the use of the Address attribute
6502 -- followed by an unchecked conversion to the target access type.
6504 when Attribute_Unrestricted_Access
=>
6506 -- If from source, deal with relevant restrictions
6508 if Comes_From_Source
(N
) then
6509 Check_Restriction
(No_Unchecked_Access
, N
);
6511 if Nkind
(P
) in N_Has_Entity
6512 and then Present
(Entity
(P
))
6513 and then Is_Object
(Entity
(P
))
6515 Check_Restriction
(No_Implicit_Aliasing
, N
);
6519 if Is_Entity_Name
(P
) then
6520 Set_Address_Taken
(Entity
(P
));
6523 -- It might seem reasonable to call Address_Checks here to apply the
6524 -- same set of semantic checks that we enforce for 'Address (after
6525 -- all we document Unrestricted_Access as being equivalent to the
6526 -- use of Address followed by an Unchecked_Conversion). However, if
6527 -- we do enable these checks, we get multiple failures in both the
6528 -- compiler run-time and in our regression test suite, so we leave
6529 -- out these checks for now. To be investigated further some time???
6533 -- Now complete analysis using common access processing
6535 Analyze_Access_Attribute
;
6541 when Attribute_Update
=> Update
: declare
6542 Common_Typ
: Entity_Id
;
6543 -- The common type of a multiple component update for a record
6545 Comps
: Elist_Id
:= No_Elist
;
6546 -- A list used in the resolution of a record update. It contains the
6547 -- entities of all record components processed so far.
6549 procedure Analyze_Array_Component_Update
(Assoc
: Node_Id
);
6550 -- Analyze and resolve array_component_association Assoc against the
6551 -- index of array type P_Type.
6553 procedure Analyze_Record_Component_Update
(Comp
: Node_Id
);
6554 -- Analyze and resolve record_component_association Comp against
6555 -- record type P_Type.
6557 ------------------------------------
6558 -- Analyze_Array_Component_Update --
6559 ------------------------------------
6561 procedure Analyze_Array_Component_Update
(Assoc
: Node_Id
) is
6565 Index_Typ
: Entity_Id
;
6569 -- The current association contains a sequence of indexes denoting
6570 -- an element of a multidimensional array:
6572 -- (Index_1, ..., Index_N)
6574 -- Examine each individual index and resolve it against the proper
6575 -- index type of the array.
6577 if Nkind
(First
(Choices
(Assoc
))) = N_Aggregate
then
6578 Expr
:= First
(Choices
(Assoc
));
6579 while Present
(Expr
) loop
6581 -- The use of others is illegal (SPARK RM 4.4.1(12))
6583 if Nkind
(Expr
) = N_Others_Choice
then
6585 ("others choice not allowed in attribute %", Expr
);
6587 -- Otherwise analyze and resolve all indexes
6590 Index
:= First
(Expressions
(Expr
));
6591 Index_Typ
:= First_Index
(P_Type
);
6592 while Present
(Index
) and then Present
(Index_Typ
) loop
6593 Analyze_And_Resolve
(Index
, Etype
(Index_Typ
));
6595 Next_Index
(Index_Typ
);
6598 -- Detect a case where the association either lacks an
6599 -- index or contains an extra index.
6601 if Present
(Index
) or else Present
(Index_Typ
) then
6603 ("dimension mismatch in index list", Assoc
);
6610 -- The current association denotes either a single component or a
6611 -- range of components of a one dimensional array:
6615 -- Resolve the index or its high and low bounds (if range) against
6616 -- the proper index type of the array.
6619 Index
:= First
(Choices
(Assoc
));
6620 Index_Typ
:= First_Index
(P_Type
);
6622 if Present
(Next_Index
(Index_Typ
)) then
6623 Error_Msg_N
("too few subscripts in array reference", Assoc
);
6626 while Present
(Index
) loop
6628 -- The use of others is illegal (SPARK RM 4.4.1(12))
6630 if Nkind
(Index
) = N_Others_Choice
then
6632 ("others choice not allowed in attribute %", Index
);
6634 -- The index denotes a range of elements
6636 elsif Nkind
(Index
) = N_Range
then
6637 Low
:= Low_Bound
(Index
);
6638 High
:= High_Bound
(Index
);
6640 Analyze_And_Resolve
(Low
, Etype
(Index_Typ
));
6641 Analyze_And_Resolve
(High
, Etype
(Index_Typ
));
6643 -- Add a range check to ensure that the bounds of the
6644 -- range are within the index type when this cannot be
6645 -- determined statically.
6647 if not Is_OK_Static_Expression
(Low
) then
6648 Set_Do_Range_Check
(Low
);
6651 if not Is_OK_Static_Expression
(High
) then
6652 Set_Do_Range_Check
(High
);
6655 -- Otherwise the index denotes a single element
6658 Analyze_And_Resolve
(Index
, Etype
(Index_Typ
));
6660 -- Add a range check to ensure that the index is within
6661 -- the index type when it is not possible to determine
6664 if not Is_OK_Static_Expression
(Index
) then
6665 Set_Do_Range_Check
(Index
);
6672 end Analyze_Array_Component_Update
;
6674 -------------------------------------
6675 -- Analyze_Record_Component_Update --
6676 -------------------------------------
6678 procedure Analyze_Record_Component_Update
(Comp
: Node_Id
) is
6679 Comp_Name
: constant Name_Id
:= Chars
(Comp
);
6680 Base_Typ
: Entity_Id
;
6681 Comp_Or_Discr
: Entity_Id
;
6684 -- Find the discriminant or component whose name corresponds to
6685 -- Comp. A simple character comparison is sufficient because all
6686 -- visible names within a record type are unique.
6688 Comp_Or_Discr
:= First_Entity
(P_Type
);
6689 while Present
(Comp_Or_Discr
) loop
6690 if Chars
(Comp_Or_Discr
) = Comp_Name
then
6692 -- Decorate the component reference by setting its entity
6693 -- and type for resolution purposes.
6695 Set_Entity
(Comp
, Comp_Or_Discr
);
6696 Set_Etype
(Comp
, Etype
(Comp_Or_Discr
));
6700 Comp_Or_Discr
:= Next_Entity
(Comp_Or_Discr
);
6703 -- Diagnose an illegal reference
6705 if Present
(Comp_Or_Discr
) then
6706 if Ekind
(Comp_Or_Discr
) = E_Discriminant
then
6708 ("attribute % may not modify record discriminants", Comp
);
6710 else pragma Assert
(Ekind
(Comp_Or_Discr
) = E_Component
);
6711 if Contains
(Comps
, Comp_Or_Discr
) then
6712 Error_Msg_N
("component & already updated", Comp
);
6714 -- Mark this component as processed
6717 Append_New_Elmt
(Comp_Or_Discr
, Comps
);
6721 -- The update aggregate mentions an entity that does not belong to
6725 Error_Msg_N
("& is not a component of aggregate subtype", Comp
);
6728 -- Verify the consistency of types when the current component is
6729 -- part of a miltiple component update.
6731 -- Comp_1, ..., Comp_N => <value>
6733 if Present
(Etype
(Comp
)) then
6734 Base_Typ
:= Base_Type
(Etype
(Comp
));
6736 -- Save the type of the first component reference as the
6737 -- remaning references (if any) must resolve to this type.
6739 if No
(Common_Typ
) then
6740 Common_Typ
:= Base_Typ
;
6742 elsif Base_Typ
/= Common_Typ
then
6744 ("components in choice list must have same type", Comp
);
6747 end Analyze_Record_Component_Update
;
6754 -- Start of processing for Update
6759 if not Is_Object_Reference
(P
) then
6760 Error_Attr_P
("prefix of attribute % must denote an object");
6762 elsif not Is_Array_Type
(P_Type
)
6763 and then not Is_Record_Type
(P_Type
)
6765 Error_Attr_P
("prefix of attribute % must be a record or array");
6767 elsif Is_Limited_View
(P_Type
) then
6768 Error_Attr
("prefix of attribute % cannot be limited", N
);
6770 elsif Nkind
(E1
) /= N_Aggregate
then
6771 Error_Attr
("attribute % requires component association list", N
);
6774 -- Inspect the update aggregate, looking at all the associations and
6775 -- choices. Perform the following checks:
6777 -- 1) Legality of "others" in all cases
6778 -- 2) Legality of <>
6779 -- 3) Component legality for arrays
6780 -- 4) Component legality for records
6782 -- The remaining checks are performed on the expanded attribute
6784 Assoc
:= First
(Component_Associations
(E1
));
6785 while Present
(Assoc
) loop
6787 -- The use of <> is illegal (SPARK RM 4.4.1(1))
6789 if Box_Present
(Assoc
) then
6791 ("default initialization not allowed in attribute %", Assoc
);
6793 -- Otherwise process the association
6796 Analyze
(Expression
(Assoc
));
6798 if Is_Array_Type
(P_Type
) then
6799 Analyze_Array_Component_Update
(Assoc
);
6801 elsif Is_Record_Type
(P_Type
) then
6803 -- Reset the common type used in a multiple component update
6804 -- as we are processing the contents of a new association.
6806 Common_Typ
:= Empty
;
6808 Comp
:= First
(Choices
(Assoc
));
6809 while Present
(Comp
) loop
6810 if Nkind
(Comp
) = N_Identifier
then
6811 Analyze_Record_Component_Update
(Comp
);
6813 -- The use of others is illegal (SPARK RM 4.4.1(5))
6815 elsif Nkind
(Comp
) = N_Others_Choice
then
6817 ("others choice not allowed in attribute %", Comp
);
6819 -- The name of a record component cannot appear in any
6824 ("name should be identifier or OTHERS", Comp
);
6835 -- The type of attribute 'Update is that of the prefix
6837 Set_Etype
(N
, P_Type
);
6839 Sem_Warn
.Warn_On_Suspicious_Update
(N
);
6846 when Attribute_Val
=>
6848 Check_Discrete_Type
;
6850 if Is_Boolean_Type
(P_Type
) then
6851 Error_Msg_Name_1
:= Aname
;
6852 Error_Msg_Name_2
:= Chars
(P_Type
);
6853 Check_SPARK_05_Restriction
6854 ("attribute% is not allowed for type%", P
);
6857 -- Note, we need a range check in general, but we wait for the
6858 -- Resolve call to do this, since we want to let Eval_Attribute
6859 -- have a chance to find an static illegality first.
6861 Resolve
(E1
, Any_Integer
);
6862 Set_Etype
(N
, P_Base_Type
);
6868 when Attribute_Valid
=>
6871 -- Ignore check for object if we have a 'Valid reference generated
6872 -- by the expanded code, since in some cases valid checks can occur
6873 -- on items that are names, but are not objects (e.g. attributes).
6875 if Comes_From_Source
(N
) then
6876 Check_Object_Reference
(P
);
6879 if not Is_Scalar_Type
(P_Type
) then
6880 Error_Attr_P
("object for % attribute must be of scalar type");
6883 -- If the attribute appears within the subtype's own predicate
6884 -- function, then issue a warning that this will cause infinite
6888 Pred_Func
: constant Entity_Id
:= Predicate_Function
(P_Type
);
6891 if Present
(Pred_Func
) and then Current_Scope
= Pred_Func
then
6893 ("attribute Valid requires a predicate check??", N
);
6894 Error_Msg_N
("\and will result in infinite recursion??", N
);
6898 Set_Etype
(N
, Standard_Boolean
);
6904 when Attribute_Valid_Scalars
=>
6906 Check_Object_Reference
(P
);
6907 Set_Etype
(N
, Standard_Boolean
);
6909 -- Following checks are only for source types
6911 if Comes_From_Source
(N
) then
6912 if not Scalar_Part_Present
(P_Type
) then
6914 ("??attribute % always True, no scalars to check");
6917 -- Not allowed for unchecked union type
6919 if Has_Unchecked_Union
(P_Type
) then
6921 ("attribute % not allowed for Unchecked_Union type");
6929 when Attribute_Value
=>
6930 Check_SPARK_05_Restriction_On_Attribute
;
6934 -- Case of enumeration type
6936 -- When an enumeration type appears in an attribute reference, all
6937 -- literals of the type are marked as referenced. This must only be
6938 -- done if the attribute reference appears in the current source.
6939 -- Otherwise the information on references may differ between a
6940 -- normal compilation and one that performs inlining.
6942 if Is_Enumeration_Type
(P_Type
)
6943 and then In_Extended_Main_Code_Unit
(N
)
6945 Check_Restriction
(No_Enumeration_Maps
, N
);
6947 -- Mark all enumeration literals as referenced, since the use of
6948 -- the Value attribute can implicitly reference any of the
6949 -- literals of the enumeration base type.
6952 Ent
: Entity_Id
:= First_Literal
(P_Base_Type
);
6954 while Present
(Ent
) loop
6955 Set_Referenced
(Ent
);
6961 -- Set Etype before resolving expression because expansion of
6962 -- expression may require enclosing type. Note that the type
6963 -- returned by 'Value is the base type of the prefix type.
6965 Set_Etype
(N
, P_Base_Type
);
6966 Validate_Non_Static_Attribute_Function_Call
;
6968 -- Check restriction No_Fixed_IO
6970 if Restriction_Check_Required
(No_Fixed_IO
)
6971 and then Is_Fixed_Point_Type
(P_Type
)
6973 Check_Restriction
(No_Fixed_IO
, P
);
6980 when Attribute_Value_Size
=>
6983 Check_Not_Incomplete_Type
;
6984 Set_Etype
(N
, Universal_Integer
);
6990 when Attribute_Version
=>
6993 Set_Etype
(N
, RTE
(RE_Version_String
));
6999 when Attribute_Wchar_T_Size
=>
7000 Standard_Attribute
(Interfaces_Wchar_T_Size
);
7006 when Attribute_Wide_Image
=>
7007 Check_SPARK_05_Restriction_On_Attribute
;
7009 Set_Etype
(N
, Standard_Wide_String
);
7011 Resolve
(E1
, P_Base_Type
);
7012 Validate_Non_Static_Attribute_Function_Call
;
7014 -- Check restriction No_Fixed_IO
7016 if Restriction_Check_Required
(No_Fixed_IO
)
7017 and then Is_Fixed_Point_Type
(P_Type
)
7019 Check_Restriction
(No_Fixed_IO
, P
);
7022 ---------------------
7023 -- Wide_Wide_Image --
7024 ---------------------
7026 when Attribute_Wide_Wide_Image
=>
7028 Set_Etype
(N
, Standard_Wide_Wide_String
);
7030 Resolve
(E1
, P_Base_Type
);
7031 Validate_Non_Static_Attribute_Function_Call
;
7033 -- Check restriction No_Fixed_IO
7035 if Restriction_Check_Required
(No_Fixed_IO
)
7036 and then Is_Fixed_Point_Type
(P_Type
)
7038 Check_Restriction
(No_Fixed_IO
, P
);
7045 when Attribute_Wide_Value
=>
7046 Check_SPARK_05_Restriction_On_Attribute
;
7050 -- Set Etype before resolving expression because expansion
7051 -- of expression may require enclosing type.
7053 Set_Etype
(N
, P_Type
);
7054 Validate_Non_Static_Attribute_Function_Call
;
7056 -- Check restriction No_Fixed_IO
7058 if Restriction_Check_Required
(No_Fixed_IO
)
7059 and then Is_Fixed_Point_Type
(P_Type
)
7061 Check_Restriction
(No_Fixed_IO
, P
);
7064 ---------------------
7065 -- Wide_Wide_Value --
7066 ---------------------
7068 when Attribute_Wide_Wide_Value
=>
7072 -- Set Etype before resolving expression because expansion
7073 -- of expression may require enclosing type.
7075 Set_Etype
(N
, P_Type
);
7076 Validate_Non_Static_Attribute_Function_Call
;
7078 -- Check restriction No_Fixed_IO
7080 if Restriction_Check_Required
(No_Fixed_IO
)
7081 and then Is_Fixed_Point_Type
(P_Type
)
7083 Check_Restriction
(No_Fixed_IO
, P
);
7086 ---------------------
7087 -- Wide_Wide_Width --
7088 ---------------------
7090 when Attribute_Wide_Wide_Width
=>
7093 Set_Etype
(N
, Universal_Integer
);
7099 when Attribute_Wide_Width
=>
7100 Check_SPARK_05_Restriction_On_Attribute
;
7103 Set_Etype
(N
, Universal_Integer
);
7109 when Attribute_Width
=>
7110 Check_SPARK_05_Restriction_On_Attribute
;
7113 Set_Etype
(N
, Universal_Integer
);
7119 when Attribute_Word_Size
=>
7120 Standard_Attribute
(System_Word_Size
);
7126 when Attribute_Write
=>
7128 Check_Stream_Attribute
(TSS_Stream_Write
);
7129 Set_Etype
(N
, Standard_Void_Type
);
7130 Resolve
(N
, Standard_Void_Type
);
7134 -- In SPARK certain attributes (see below) depend on Tasking_State.
7135 -- Ensure that the entity is available for gnat2why by loading it.
7136 -- See SPARK RM 9(18) for the relevant rule.
7138 if GNATprove_Mode
then
7144 when Attribute_Callable
7147 | Attribute_Terminated
7149 Unused
:= RTE
(RE_Tasking_State
);
7157 -- All errors raise Bad_Attribute, so that we get out before any further
7158 -- damage occurs when an error is detected (for example, if we check for
7159 -- one attribute expression, and the check succeeds, we want to be able
7160 -- to proceed securely assuming that an expression is in fact present.
7162 -- Note: we set the attribute analyzed in this case to prevent any
7163 -- attempt at reanalysis which could generate spurious error msgs.
7166 when Bad_Attribute
=>
7168 Set_Etype
(N
, Any_Type
);
7170 end Analyze_Attribute
;
7172 --------------------
7173 -- Eval_Attribute --
7174 --------------------
7176 procedure Eval_Attribute
(N
: Node_Id
) is
7177 Loc
: constant Source_Ptr
:= Sloc
(N
);
7178 Aname
: constant Name_Id
:= Attribute_Name
(N
);
7179 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Aname
);
7180 P
: constant Node_Id
:= Prefix
(N
);
7182 C_Type
: constant Entity_Id
:= Etype
(N
);
7183 -- The type imposed by the context
7186 -- First expression, or Empty if none
7189 -- Second expression, or Empty if none
7191 P_Entity
: Entity_Id
;
7192 -- Entity denoted by prefix
7195 -- The type of the prefix
7197 P_Base_Type
: Entity_Id
;
7198 -- The base type of the prefix type
7200 P_Root_Type
: Entity_Id
;
7201 -- The root type of the prefix type
7204 -- True if the result is Static. This is set by the general processing
7205 -- to true if the prefix is static, and all expressions are static. It
7206 -- can be reset as processing continues for particular attributes. This
7207 -- flag can still be True if the reference raises a constraint error.
7208 -- Is_Static_Expression (N) is set to follow this value as it is set
7209 -- and we could always reference this, but it is convenient to have a
7210 -- simple short name to use, since it is frequently referenced.
7212 Lo_Bound
, Hi_Bound
: Node_Id
;
7213 -- Expressions for low and high bounds of type or array index referenced
7214 -- by First, Last, or Length attribute for array, set by Set_Bounds.
7217 -- Constraint error node used if we have an attribute reference has
7218 -- an argument that raises a constraint error. In this case we replace
7219 -- the attribute with a raise constraint_error node. This is important
7220 -- processing, since otherwise gigi might see an attribute which it is
7221 -- unprepared to deal with.
7223 procedure Check_Concurrent_Discriminant
(Bound
: Node_Id
);
7224 -- If Bound is a reference to a discriminant of a task or protected type
7225 -- occurring within the object's body, rewrite attribute reference into
7226 -- a reference to the corresponding discriminal. Use for the expansion
7227 -- of checks against bounds of entry family index subtypes.
7229 procedure Check_Expressions
;
7230 -- In case where the attribute is not foldable, the expressions, if
7231 -- any, of the attribute, are in a non-static context. This procedure
7232 -- performs the required additional checks.
7234 function Compile_Time_Known_Bounds
(Typ
: Entity_Id
) return Boolean;
7235 -- Determines if the given type has compile time known bounds. Note
7236 -- that we enter the case statement even in cases where the prefix
7237 -- type does NOT have known bounds, so it is important to guard any
7238 -- attempt to evaluate both bounds with a call to this function.
7240 procedure Compile_Time_Known_Attribute
(N
: Node_Id
; Val
: Uint
);
7241 -- This procedure is called when the attribute N has a non-static
7242 -- but compile time known value given by Val. It includes the
7243 -- necessary checks for out of range values.
7245 function Fore_Value
return Nat
;
7246 -- Computes the Fore value for the current attribute prefix, which is
7247 -- known to be a static fixed-point type. Used by Fore and Width.
7249 function Mantissa
return Uint
;
7250 -- Returns the Mantissa value for the prefix type
7252 procedure Set_Bounds
;
7253 -- Used for First, Last and Length attributes applied to an array or
7254 -- array subtype. Sets the variables Lo_Bound and Hi_Bound to the low
7255 -- and high bound expressions for the index referenced by the attribute
7256 -- designator (i.e. the first index if no expression is present, and the
7257 -- N'th index if the value N is present as an expression). Also used for
7258 -- First and Last of scalar types and for First_Valid and Last_Valid.
7259 -- Static is reset to False if the type or index type is not statically
7262 function Statically_Denotes_Entity
(N
: Node_Id
) return Boolean;
7263 -- Verify that the prefix of a potentially static array attribute
7264 -- satisfies the conditions of 4.9 (14).
7266 -----------------------------------
7267 -- Check_Concurrent_Discriminant --
7268 -----------------------------------
7270 procedure Check_Concurrent_Discriminant
(Bound
: Node_Id
) is
7272 -- The concurrent (task or protected) type
7275 if Nkind
(Bound
) = N_Identifier
7276 and then Ekind
(Entity
(Bound
)) = E_Discriminant
7277 and then Is_Concurrent_Record_Type
(Scope
(Entity
(Bound
)))
7279 Tsk
:= Corresponding_Concurrent_Type
(Scope
(Entity
(Bound
)));
7281 if In_Open_Scopes
(Tsk
) and then Has_Completion
(Tsk
) then
7283 -- Find discriminant of original concurrent type, and use
7284 -- its current discriminal, which is the renaming within
7285 -- the task/protected body.
7289 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
));
7292 end Check_Concurrent_Discriminant
;
7294 -----------------------
7295 -- Check_Expressions --
7296 -----------------------
7298 procedure Check_Expressions
is
7302 while Present
(E
) loop
7303 Check_Non_Static_Context
(E
);
7306 end Check_Expressions
;
7308 ----------------------------------
7309 -- Compile_Time_Known_Attribute --
7310 ----------------------------------
7312 procedure Compile_Time_Known_Attribute
(N
: Node_Id
; Val
: Uint
) is
7313 T
: constant Entity_Id
:= Etype
(N
);
7316 Fold_Uint
(N
, Val
, False);
7318 -- Check that result is in bounds of the type if it is static
7320 if Is_In_Range
(N
, T
, Assume_Valid
=> False) then
7323 elsif Is_Out_Of_Range
(N
, T
) then
7324 Apply_Compile_Time_Constraint_Error
7325 (N
, "value not in range of}??", CE_Range_Check_Failed
);
7327 elsif not Range_Checks_Suppressed
(T
) then
7328 Enable_Range_Check
(N
);
7331 Set_Do_Range_Check
(N
, False);
7333 end Compile_Time_Known_Attribute
;
7335 -------------------------------
7336 -- Compile_Time_Known_Bounds --
7337 -------------------------------
7339 function Compile_Time_Known_Bounds
(Typ
: Entity_Id
) return Boolean is
7342 Compile_Time_Known_Value
(Type_Low_Bound
(Typ
))
7344 Compile_Time_Known_Value
(Type_High_Bound
(Typ
));
7345 end Compile_Time_Known_Bounds
;
7351 -- Note that the Fore calculation is based on the actual values
7352 -- of the bounds, and does not take into account possible rounding.
7354 function Fore_Value
return Nat
is
7355 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(P_Type
));
7356 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(P_Type
));
7357 Small
: constant Ureal
:= Small_Value
(P_Type
);
7358 Lo_Real
: constant Ureal
:= Lo
* Small
;
7359 Hi_Real
: constant Ureal
:= Hi
* Small
;
7364 -- Bounds are given in terms of small units, so first compute
7365 -- proper values as reals.
7367 T
:= UR_Max
(abs Lo_Real
, abs Hi_Real
);
7370 -- Loop to compute proper value if more than one digit required
7372 while T
>= Ureal_10
loop
7384 -- Table of mantissa values accessed by function Computed using
7387 -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
7389 -- where D is T'Digits (RM83 3.5.7)
7391 Mantissa_Value
: constant array (Nat
range 1 .. 40) of Nat
:= (
7433 function Mantissa
return Uint
is
7436 UI_From_Int
(Mantissa_Value
(UI_To_Int
(Digits_Value
(P_Type
))));
7443 procedure Set_Bounds
is
7449 -- For a string literal subtype, we have to construct the bounds.
7450 -- Valid Ada code never applies attributes to string literals, but
7451 -- it is convenient to allow the expander to generate attribute
7452 -- references of this type (e.g. First and Last applied to a string
7455 -- Note that the whole point of the E_String_Literal_Subtype is to
7456 -- avoid this construction of bounds, but the cases in which we
7457 -- have to materialize them are rare enough that we don't worry.
7459 -- The low bound is simply the low bound of the base type. The
7460 -- high bound is computed from the length of the string and this
7463 if Ekind
(P_Type
) = E_String_Literal_Subtype
then
7464 Ityp
:= Etype
(First_Index
(Base_Type
(P_Type
)));
7465 Lo_Bound
:= Type_Low_Bound
(Ityp
);
7468 Make_Integer_Literal
(Sloc
(P
),
7470 Expr_Value
(Lo_Bound
) + String_Literal_Length
(P_Type
) - 1);
7472 Set_Parent
(Hi_Bound
, P
);
7473 Analyze_And_Resolve
(Hi_Bound
, Etype
(Lo_Bound
));
7476 -- For non-array case, just get bounds of scalar type
7478 elsif Is_Scalar_Type
(P_Type
) then
7481 -- For a fixed-point type, we must freeze to get the attributes
7482 -- of the fixed-point type set now so we can reference them.
7484 if Is_Fixed_Point_Type
(P_Type
)
7485 and then not Is_Frozen
(Base_Type
(P_Type
))
7486 and then Compile_Time_Known_Value
(Type_Low_Bound
(P_Type
))
7487 and then Compile_Time_Known_Value
(Type_High_Bound
(P_Type
))
7489 Freeze_Fixed_Point_Type
(Base_Type
(P_Type
));
7492 -- For array case, get type of proper index
7498 Ndim
:= UI_To_Int
(Expr_Value
(E1
));
7501 Indx
:= First_Index
(P_Type
);
7502 for J
in 1 .. Ndim
- 1 loop
7506 -- If no index type, get out (some other error occurred, and
7507 -- we don't have enough information to complete the job).
7515 Ityp
:= Etype
(Indx
);
7518 -- A discrete range in an index constraint is allowed to be a
7519 -- subtype indication. This is syntactically a pain, but should
7520 -- not propagate to the entity for the corresponding index subtype.
7521 -- After checking that the subtype indication is legal, the range
7522 -- of the subtype indication should be transfered to the entity.
7523 -- The attributes for the bounds should remain the simple retrievals
7524 -- that they are now.
7526 Lo_Bound
:= Type_Low_Bound
(Ityp
);
7527 Hi_Bound
:= Type_High_Bound
(Ityp
);
7529 -- If subtype is non-static, result is definitely non-static
7531 if not Is_Static_Subtype
(Ityp
) then
7533 Set_Is_Static_Expression
(N
, False);
7535 -- Subtype is static, does it raise CE?
7537 elsif not Is_OK_Static_Subtype
(Ityp
) then
7538 Set_Raises_Constraint_Error
(N
);
7542 -------------------------------
7543 -- Statically_Denotes_Entity --
7544 -------------------------------
7546 function Statically_Denotes_Entity
(N
: Node_Id
) return Boolean is
7550 if not Is_Entity_Name
(N
) then
7557 Nkind
(Parent
(E
)) /= N_Object_Renaming_Declaration
7558 or else Statically_Denotes_Entity
(Renamed_Object
(E
));
7559 end Statically_Denotes_Entity
;
7561 -- Start of processing for Eval_Attribute
7564 -- Initialize result as non-static, will be reset if appropriate
7566 Set_Is_Static_Expression
(N
, False);
7569 -- Acquire first two expressions (at the moment, no attributes take more
7570 -- than two expressions in any case).
7572 if Present
(Expressions
(N
)) then
7573 E1
:= First
(Expressions
(N
));
7580 -- Special processing for Enabled attribute. This attribute has a very
7581 -- special prefix, and the easiest way to avoid lots of special checks
7582 -- to protect this special prefix from causing trouble is to deal with
7583 -- this attribute immediately and be done with it.
7585 if Id
= Attribute_Enabled
then
7587 -- We skip evaluation if the expander is not active. This is not just
7588 -- an optimization. It is of key importance that we not rewrite the
7589 -- attribute in a generic template, since we want to pick up the
7590 -- setting of the check in the instance, Testing Expander_Active
7591 -- might seem an easy way of doing this, but we need to account for
7592 -- ASIS needs, so check explicitly for a generic context.
7594 if not Inside_A_Generic
then
7596 C
: constant Check_Id
:= Get_Check_Id
(Chars
(P
));
7601 if C
in Predefined_Check_Id
then
7602 R
:= Scope_Suppress
.Suppress
(C
);
7604 R
:= Is_Check_Suppressed
(Empty
, C
);
7608 R
:= Is_Check_Suppressed
(Entity
(E1
), C
);
7611 Rewrite
(N
, New_Occurrence_Of
(Boolean_Literals
(not R
), Loc
));
7618 -- Attribute 'Img applied to a static enumeration value is static, and
7619 -- we will do the folding right here (things get confused if we let this
7620 -- case go through the normal circuitry).
7622 if Attribute_Name
(N
) = Name_Img
7623 and then Is_Entity_Name
(P
)
7624 and then Is_Enumeration_Type
(Etype
(Entity
(P
)))
7625 and then Is_OK_Static_Expression
(P
)
7628 Lit
: constant Entity_Id
:= Expr_Value_E
(P
);
7633 Get_Unqualified_Decoded_Name_String
(Chars
(Lit
));
7634 Set_Casing
(All_Upper_Case
);
7635 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
7638 Rewrite
(N
, Make_String_Literal
(Loc
, Strval
=> Str
));
7639 Analyze_And_Resolve
(N
, Standard_String
);
7640 Set_Is_Static_Expression
(N
, True);
7646 -- Special processing for cases where the prefix is an object. For this
7647 -- purpose, a string literal counts as an object (attributes of string
7648 -- literals can only appear in generated code).
7650 if Is_Object_Reference
(P
) or else Nkind
(P
) = N_String_Literal
then
7652 -- For Component_Size, the prefix is an array object, and we apply
7653 -- the attribute to the type of the object. This is allowed for both
7654 -- unconstrained and constrained arrays, since the bounds have no
7655 -- influence on the value of this attribute.
7657 if Id
= Attribute_Component_Size
then
7658 P_Entity
:= Etype
(P
);
7660 -- For Enum_Rep, evaluation depends on the nature of the prefix and
7661 -- the optional argument.
7663 elsif Id
= Attribute_Enum_Rep
then
7664 if Is_Entity_Name
(P
) then
7667 Enum_Expr
: Node_Id
;
7668 -- The enumeration-type expression of interest
7673 if Ekind_In
(Entity
(P
), E_Constant
,
7674 E_Enumeration_Literal
)
7678 -- Enum_Type'Enum_Rep (E1) case
7680 elsif Is_Enumeration_Type
(Entity
(P
)) then
7683 -- Otherwise the attribute must be expanded into a
7684 -- conversion and evaluated at run time.
7691 -- We can fold if the expression is an enumeration
7692 -- literal, or if it denotes a constant whose value
7693 -- is known at compile time.
7695 if Nkind
(Enum_Expr
) in N_Has_Entity
7696 and then (Ekind
(Entity
(Enum_Expr
)) =
7697 E_Enumeration_Literal
7699 (Ekind
(Entity
(Enum_Expr
)) = E_Constant
7700 and then Nkind
(Parent
(Entity
(Enum_Expr
))) =
7701 N_Object_Declaration
7702 and then Compile_Time_Known_Value
7703 (Expression
(Parent
(Entity
(P
))))))
7705 P_Entity
:= Etype
(P
);
7712 -- Otherwise the attribute is illegal, do not attempt to perform
7713 -- any kind of folding.
7719 -- For First and Last, the prefix is an array object, and we apply
7720 -- the attribute to the type of the array, but we need a constrained
7721 -- type for this, so we use the actual subtype if available.
7723 elsif Id
= Attribute_First
or else
7724 Id
= Attribute_Last
or else
7725 Id
= Attribute_Length
7728 AS
: constant Entity_Id
:= Get_Actual_Subtype_If_Available
(P
);
7731 if Present
(AS
) and then Is_Constrained
(AS
) then
7734 -- If we have an unconstrained type we cannot fold
7742 -- For Size, give size of object if available, otherwise we
7743 -- cannot fold Size.
7745 elsif Id
= Attribute_Size
then
7746 if Is_Entity_Name
(P
)
7747 and then Known_Esize
(Entity
(P
))
7749 Compile_Time_Known_Attribute
(N
, Esize
(Entity
(P
)));
7757 -- For Alignment, give size of object if available, otherwise we
7758 -- cannot fold Alignment.
7760 elsif Id
= Attribute_Alignment
then
7761 if Is_Entity_Name
(P
)
7762 and then Known_Alignment
(Entity
(P
))
7764 Fold_Uint
(N
, Alignment
(Entity
(P
)), Static
);
7772 -- For Lock_Free, we apply the attribute to the type of the object.
7773 -- This is allowed since we have already verified that the type is a
7776 elsif Id
= Attribute_Lock_Free
then
7777 P_Entity
:= Etype
(P
);
7779 -- No other attributes for objects are folded
7786 -- Cases where P is not an object. Cannot do anything if P is not the
7787 -- name of an entity.
7789 elsif not Is_Entity_Name
(P
) then
7793 -- Otherwise get prefix entity
7796 P_Entity
:= Entity
(P
);
7799 -- If we are asked to evaluate an attribute where the prefix is a
7800 -- non-frozen generic actual type whose RM_Size is still set to zero,
7801 -- then abandon the effort.
7803 if Is_Type
(P_Entity
)
7804 and then (not Is_Frozen
(P_Entity
)
7805 and then Is_Generic_Actual_Type
(P_Entity
)
7806 and then RM_Size
(P_Entity
) = 0)
7808 -- However, the attribute Unconstrained_Array must be evaluated,
7809 -- since it is documented to be a static attribute (and can for
7810 -- example appear in a Compile_Time_Warning pragma). The frozen
7811 -- status of the type does not affect its evaluation.
7813 and then Id
/= Attribute_Unconstrained_Array
7818 -- At this stage P_Entity is the entity to which the attribute
7819 -- is to be applied. This is usually simply the entity of the
7820 -- prefix, except in some cases of attributes for objects, where
7821 -- as described above, we apply the attribute to the object type.
7823 -- Here is where we make sure that static attributes are properly
7824 -- marked as such. These are attributes whose prefix is a static
7825 -- scalar subtype, whose result is scalar, and whose arguments, if
7826 -- present, are static scalar expressions. Note that such references
7827 -- are static expressions even if they raise Constraint_Error.
7829 -- For example, Boolean'Pos (1/0 = 0) is a static expression, even
7830 -- though evaluating it raises constraint error. This means that a
7831 -- declaration like:
7833 -- X : constant := (if True then 1 else Boolean'Pos (1/0 = 0));
7835 -- is legal, since here this expression appears in a statically
7836 -- unevaluated position, so it does not actually raise an exception.
7838 if Is_Scalar_Type
(P_Entity
)
7839 and then (not Is_Generic_Type
(P_Entity
))
7840 and then Is_Static_Subtype
(P_Entity
)
7841 and then Is_Scalar_Type
(Etype
(N
))
7844 or else (Is_Static_Expression
(E1
)
7845 and then Is_Scalar_Type
(Etype
(E1
))))
7848 or else (Is_Static_Expression
(E2
)
7849 and then Is_Scalar_Type
(Etype
(E1
))))
7852 Set_Is_Static_Expression
(N
, True);
7855 -- First foldable possibility is a scalar or array type (RM 4.9(7))
7856 -- that is not generic (generic types are eliminated by RM 4.9(25)).
7857 -- Note we allow non-static non-generic types at this stage as further
7860 if Is_Type
(P_Entity
)
7861 and then (Is_Scalar_Type
(P_Entity
) or Is_Array_Type
(P_Entity
))
7862 and then (not Is_Generic_Type
(P_Entity
))
7866 -- Second foldable possibility is an array object (RM 4.9(8))
7868 elsif Ekind_In
(P_Entity
, E_Variable
, E_Constant
)
7869 and then Is_Array_Type
(Etype
(P_Entity
))
7870 and then (not Is_Generic_Type
(Etype
(P_Entity
)))
7872 P_Type
:= Etype
(P_Entity
);
7874 -- If the entity is an array constant with an unconstrained nominal
7875 -- subtype then get the type from the initial value. If the value has
7876 -- been expanded into assignments, there is no expression and the
7877 -- attribute reference remains dynamic.
7879 -- We could do better here and retrieve the type ???
7881 if Ekind
(P_Entity
) = E_Constant
7882 and then not Is_Constrained
(P_Type
)
7884 if No
(Constant_Value
(P_Entity
)) then
7887 P_Type
:= Etype
(Constant_Value
(P_Entity
));
7891 -- Definite must be folded if the prefix is not a generic type, that
7892 -- is to say if we are within an instantiation. Same processing applies
7893 -- to the GNAT attributes Atomic_Always_Lock_Free, Has_Discriminants,
7894 -- Lock_Free, Type_Class, Has_Tagged_Value, and Unconstrained_Array.
7896 elsif (Id
= Attribute_Atomic_Always_Lock_Free
or else
7897 Id
= Attribute_Definite
or else
7898 Id
= Attribute_Has_Access_Values
or else
7899 Id
= Attribute_Has_Discriminants
or else
7900 Id
= Attribute_Has_Tagged_Values
or else
7901 Id
= Attribute_Lock_Free
or else
7902 Id
= Attribute_Type_Class
or else
7903 Id
= Attribute_Unconstrained_Array
or else
7904 Id
= Attribute_Max_Alignment_For_Allocation
)
7905 and then not Is_Generic_Type
(P_Entity
)
7909 -- We can fold 'Size applied to a type if the size is known (as happens
7910 -- for a size from an attribute definition clause). At this stage, this
7911 -- can happen only for types (e.g. record types) for which the size is
7912 -- always non-static. We exclude generic types from consideration (since
7913 -- they have bogus sizes set within templates).
7915 elsif Id
= Attribute_Size
7916 and then Is_Type
(P_Entity
)
7917 and then (not Is_Generic_Type
(P_Entity
))
7918 and then Known_Static_RM_Size
(P_Entity
)
7920 Compile_Time_Known_Attribute
(N
, RM_Size
(P_Entity
));
7923 -- We can fold 'Alignment applied to a type if the alignment is known
7924 -- (as happens for an alignment from an attribute definition clause).
7925 -- At this stage, this can happen only for types (e.g. record types) for
7926 -- which the size is always non-static. We exclude generic types from
7927 -- consideration (since they have bogus sizes set within templates).
7929 elsif Id
= Attribute_Alignment
7930 and then Is_Type
(P_Entity
)
7931 and then (not Is_Generic_Type
(P_Entity
))
7932 and then Known_Alignment
(P_Entity
)
7934 Compile_Time_Known_Attribute
(N
, Alignment
(P_Entity
));
7937 -- If this is an access attribute that is known to fail accessibility
7938 -- check, rewrite accordingly.
7940 elsif Attribute_Name
(N
) = Name_Access
7941 and then Raises_Constraint_Error
(N
)
7944 Make_Raise_Program_Error
(Loc
,
7945 Reason
=> PE_Accessibility_Check_Failed
));
7946 Set_Etype
(N
, C_Type
);
7949 -- No other cases are foldable (they certainly aren't static, and at
7950 -- the moment we don't try to fold any cases other than the ones above).
7957 -- If either attribute or the prefix is Any_Type, then propagate
7958 -- Any_Type to the result and don't do anything else at all.
7960 if P_Type
= Any_Type
7961 or else (Present
(E1
) and then Etype
(E1
) = Any_Type
)
7962 or else (Present
(E2
) and then Etype
(E2
) = Any_Type
)
7964 Set_Etype
(N
, Any_Type
);
7968 -- Scalar subtype case. We have not yet enforced the static requirement
7969 -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
7970 -- of non-static attribute references (e.g. S'Digits for a non-static
7971 -- floating-point type, which we can compute at compile time).
7973 -- Note: this folding of non-static attributes is not simply a case of
7974 -- optimization. For many of the attributes affected, Gigi cannot handle
7975 -- the attribute and depends on the front end having folded them away.
7977 -- Note: although we don't require staticness at this stage, we do set
7978 -- the Static variable to record the staticness, for easy reference by
7979 -- those attributes where it matters (e.g. Succ and Pred), and also to
7980 -- be used to ensure that non-static folded things are not marked as
7981 -- being static (a check that is done right at the end).
7983 P_Root_Type
:= Root_Type
(P_Type
);
7984 P_Base_Type
:= Base_Type
(P_Type
);
7986 -- If the root type or base type is generic, then we cannot fold. This
7987 -- test is needed because subtypes of generic types are not always
7988 -- marked as being generic themselves (which seems odd???)
7990 if Is_Generic_Type
(P_Root_Type
)
7991 or else Is_Generic_Type
(P_Base_Type
)
7996 if Is_Scalar_Type
(P_Type
) then
7997 if not Is_Static_Subtype
(P_Type
) then
7999 Set_Is_Static_Expression
(N
, False);
8000 elsif not Is_OK_Static_Subtype
(P_Type
) then
8001 Set_Raises_Constraint_Error
(N
);
8004 -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
8005 -- since we can't do anything with unconstrained arrays. In addition,
8006 -- only the First, Last and Length attributes are possibly static.
8008 -- Atomic_Always_Lock_Free, Definite, Has_Access_Values,
8009 -- Has_Discriminants, Has_Tagged_Values, Lock_Free, Type_Class, and
8010 -- Unconstrained_Array are again exceptions, because they apply as well
8011 -- to unconstrained types.
8013 -- In addition Component_Size is an exception since it is possibly
8014 -- foldable, even though it is never static, and it does apply to
8015 -- unconstrained arrays. Furthermore, it is essential to fold this
8016 -- in the packed case, since otherwise the value will be incorrect.
8018 elsif Id
= Attribute_Atomic_Always_Lock_Free
or else
8019 Id
= Attribute_Definite
or else
8020 Id
= Attribute_Has_Access_Values
or else
8021 Id
= Attribute_Has_Discriminants
or else
8022 Id
= Attribute_Has_Tagged_Values
or else
8023 Id
= Attribute_Lock_Free
or else
8024 Id
= Attribute_Type_Class
or else
8025 Id
= Attribute_Unconstrained_Array
or else
8026 Id
= Attribute_Component_Size
8029 Set_Is_Static_Expression
(N
, False);
8031 elsif Id
/= Attribute_Max_Alignment_For_Allocation
then
8032 if not Is_Constrained
(P_Type
)
8033 or else (Id
/= Attribute_First
and then
8034 Id
/= Attribute_Last
and then
8035 Id
/= Attribute_Length
)
8041 -- The rules in (RM 4.9(7,8)) require a static array, but as in the
8042 -- scalar case, we hold off on enforcing staticness, since there are
8043 -- cases which we can fold at compile time even though they are not
8044 -- static (e.g. 'Length applied to a static index, even though other
8045 -- non-static indexes make the array type non-static). This is only
8046 -- an optimization, but it falls out essentially free, so why not.
8047 -- Again we compute the variable Static for easy reference later
8048 -- (note that no array attributes are static in Ada 83).
8050 -- We also need to set Static properly for subsequent legality checks
8051 -- which might otherwise accept non-static constants in contexts
8052 -- where they are not legal.
8055 Ada_Version
>= Ada_95
and then Statically_Denotes_Entity
(P
);
8056 Set_Is_Static_Expression
(N
, Static
);
8062 Nod
:= First_Index
(P_Type
);
8064 -- The expression is static if the array type is constrained
8065 -- by given bounds, and not by an initial expression. Constant
8066 -- strings are static in any case.
8068 if Root_Type
(P_Type
) /= Standard_String
then
8070 Static
and then not Is_Constr_Subt_For_U_Nominal
(P_Type
);
8071 Set_Is_Static_Expression
(N
, Static
);
8074 while Present
(Nod
) loop
8075 if not Is_Static_Subtype
(Etype
(Nod
)) then
8077 Set_Is_Static_Expression
(N
, False);
8079 elsif not Is_OK_Static_Subtype
(Etype
(Nod
)) then
8080 Set_Raises_Constraint_Error
(N
);
8082 Set_Is_Static_Expression
(N
, False);
8085 -- If however the index type is generic, or derived from
8086 -- one, attributes cannot be folded.
8088 if Is_Generic_Type
(Root_Type
(Etype
(Nod
)))
8089 and then Id
/= Attribute_Component_Size
8099 -- Check any expressions that are present. Note that these expressions,
8100 -- depending on the particular attribute type, are either part of the
8101 -- attribute designator, or they are arguments in a case where the
8102 -- attribute reference returns a function. In the latter case, the
8103 -- rule in (RM 4.9(22)) applies and in particular requires the type
8104 -- of the expressions to be scalar in order for the attribute to be
8105 -- considered to be static.
8113 while Present
(E
) loop
8115 -- If expression is not static, then the attribute reference
8116 -- result certainly cannot be static.
8118 if not Is_Static_Expression
(E
) then
8120 Set_Is_Static_Expression
(N
, False);
8123 if Raises_Constraint_Error
(E
) then
8124 Set_Raises_Constraint_Error
(N
);
8127 -- If the result is not known at compile time, or is not of
8128 -- a scalar type, then the result is definitely not static,
8129 -- so we can quit now.
8131 if not Compile_Time_Known_Value
(E
)
8132 or else not Is_Scalar_Type
(Etype
(E
))
8134 -- An odd special case, if this is a Pos attribute, this
8135 -- is where we need to apply a range check since it does
8136 -- not get done anywhere else.
8138 if Id
= Attribute_Pos
then
8139 if Is_Integer_Type
(Etype
(E
)) then
8140 Apply_Range_Check
(E
, Etype
(N
));
8147 -- If the expression raises a constraint error, then so does
8148 -- the attribute reference. We keep going in this case because
8149 -- we are still interested in whether the attribute reference
8150 -- is static even if it is not static.
8152 elsif Raises_Constraint_Error
(E
) then
8153 Set_Raises_Constraint_Error
(N
);
8159 if Raises_Constraint_Error
(Prefix
(N
)) then
8160 Set_Is_Static_Expression
(N
, False);
8165 -- Deal with the case of a static attribute reference that raises
8166 -- constraint error. The Raises_Constraint_Error flag will already
8167 -- have been set, and the Static flag shows whether the attribute
8168 -- reference is static. In any case we certainly can't fold such an
8169 -- attribute reference.
8171 -- Note that the rewriting of the attribute node with the constraint
8172 -- error node is essential in this case, because otherwise Gigi might
8173 -- blow up on one of the attributes it never expects to see.
8175 -- The constraint_error node must have the type imposed by the context,
8176 -- to avoid spurious errors in the enclosing expression.
8178 if Raises_Constraint_Error
(N
) then
8180 Make_Raise_Constraint_Error
(Sloc
(N
),
8181 Reason
=> CE_Range_Check_Failed
);
8182 Set_Etype
(CE_Node
, Etype
(N
));
8183 Set_Raises_Constraint_Error
(CE_Node
);
8185 Rewrite
(N
, Relocate_Node
(CE_Node
));
8186 Set_Raises_Constraint_Error
(N
, True);
8190 -- At this point we have a potentially foldable attribute reference.
8191 -- If Static is set, then the attribute reference definitely obeys
8192 -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
8193 -- folded. If Static is not set, then the attribute may or may not
8194 -- be foldable, and the individual attribute processing routines
8195 -- test Static as required in cases where it makes a difference.
8197 -- In the case where Static is not set, we do know that all the
8198 -- expressions present are at least known at compile time (we assumed
8199 -- above that if this was not the case, then there was no hope of static
8200 -- evaluation). However, we did not require that the bounds of the
8201 -- prefix type be compile time known, let alone static). That's because
8202 -- there are many attributes that can be computed at compile time on
8203 -- non-static subtypes, even though such references are not static
8206 -- For VAX float, the root type is an IEEE type. So make sure to use the
8207 -- base type instead of the root-type for floating point attributes.
8211 -- Attributes related to Ada 2012 iterators (placeholder ???)
8213 when Attribute_Constant_Indexing
8214 | Attribute_Default_Iterator
8215 | Attribute_Implicit_Dereference
8216 | Attribute_Iterator_Element
8217 | Attribute_Iterable
8218 | Attribute_Variable_Indexing
8222 -- Internal attributes used to deal with Ada 2012 delayed aspects.
8223 -- These were already rejected by the parser. Thus they shouldn't
8226 when Internal_Attribute_Id
=>
8227 raise Program_Error
;
8233 when Attribute_Adjacent
=>
8237 (P_Base_Type
, Expr_Value_R
(E1
), Expr_Value_R
(E2
)),
8244 when Attribute_Aft
=>
8245 Fold_Uint
(N
, Aft_Value
(P_Type
), Static
);
8251 when Attribute_Alignment
=> Alignment_Block
: declare
8252 P_TypeA
: constant Entity_Id
:= Underlying_Type
(P_Type
);
8255 -- Fold if alignment is set and not otherwise
8257 if Known_Alignment
(P_TypeA
) then
8258 Fold_Uint
(N
, Alignment
(P_TypeA
), Static
);
8260 end Alignment_Block
;
8262 -----------------------------
8263 -- Atomic_Always_Lock_Free --
8264 -----------------------------
8266 -- Atomic_Always_Lock_Free attribute is a Boolean, thus no need to fold
8269 when Attribute_Atomic_Always_Lock_Free
=> Atomic_Always_Lock_Free
:
8271 V
: constant Entity_Id
:=
8273 (Support_Atomic_Primitives_On_Target
8274 and then Support_Atomic_Primitives
(P_Type
));
8277 Rewrite
(N
, New_Occurrence_Of
(V
, Loc
));
8279 -- Analyze and resolve as boolean. Note that this attribute is a
8280 -- static attribute in GNAT.
8282 Analyze_And_Resolve
(N
, Standard_Boolean
);
8284 Set_Is_Static_Expression
(N
, True);
8285 end Atomic_Always_Lock_Free
;
8291 -- Bit can never be folded
8293 when Attribute_Bit
=>
8300 -- Body_version can never be static
8302 when Attribute_Body_Version
=>
8309 when Attribute_Ceiling
=>
8311 (N
, Eval_Fat
.Ceiling
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
8313 --------------------
8314 -- Component_Size --
8315 --------------------
8317 when Attribute_Component_Size
=>
8318 if Known_Static_Component_Size
(P_Type
) then
8319 Fold_Uint
(N
, Component_Size
(P_Type
), Static
);
8326 when Attribute_Compose
=>
8329 Eval_Fat
.Compose
(P_Base_Type
, Expr_Value_R
(E1
), Expr_Value
(E2
)),
8336 -- Constrained is never folded for now, there may be cases that
8337 -- could be handled at compile time. To be looked at later.
8339 when Attribute_Constrained
=>
8341 -- The expander might fold it and set the static flag accordingly,
8342 -- but with expansion disabled (as in ASIS), it remains as an
8343 -- attribute reference, and this reference is not static.
8345 Set_Is_Static_Expression
(N
, False);
8352 when Attribute_Copy_Sign
=>
8356 (P_Base_Type
, Expr_Value_R
(E1
), Expr_Value_R
(E2
)),
8363 when Attribute_Definite
=>
8364 Rewrite
(N
, New_Occurrence_Of
(
8365 Boolean_Literals
(Is_Definite_Subtype
(P_Entity
)), Loc
));
8366 Analyze_And_Resolve
(N
, Standard_Boolean
);
8372 when Attribute_Delta
=>
8373 Fold_Ureal
(N
, Delta_Value
(P_Type
), True);
8379 when Attribute_Denorm
=>
8381 (N
, UI_From_Int
(Boolean'Pos (Has_Denormals
(P_Type
))), Static
);
8383 ---------------------
8384 -- Descriptor_Size --
8385 ---------------------
8387 when Attribute_Descriptor_Size
=>
8394 when Attribute_Digits
=>
8395 Fold_Uint
(N
, Digits_Value
(P_Type
), Static
);
8401 when Attribute_Emax
=>
8403 -- Ada 83 attribute is defined as (RM83 3.5.8)
8405 -- T'Emax = 4 * T'Mantissa
8407 Fold_Uint
(N
, 4 * Mantissa
, Static
);
8413 when Attribute_Enum_Rep
=> Enum_Rep
: declare
8417 -- The attribute appears in the form:
8419 -- Enum_Typ'Enum_Rep (Const)
8420 -- Enum_Typ'Enum_Rep (Enum_Lit)
8422 if Present
(E1
) then
8425 -- Otherwise the prefix denotes a constant or enumeration literal:
8428 -- Enum_Lit'Enum_Rep
8434 -- For an enumeration type with a non-standard representation use
8435 -- the Enumeration_Rep field of the proper constant. Note that this
8436 -- will not work for types Character/Wide_[Wide-]Character, since no
8437 -- real entities are created for the enumeration literals, but that
8438 -- does not matter since these two types do not have non-standard
8439 -- representations anyway.
8441 if Is_Enumeration_Type
(P_Type
)
8442 and then Has_Non_Standard_Rep
(P_Type
)
8444 Fold_Uint
(N
, Enumeration_Rep
(Expr_Value_E
(Val
)), Static
);
8446 -- For enumeration types with standard representations and all other
8447 -- cases (i.e. all integer and modular types), Enum_Rep is equivalent
8451 Fold_Uint
(N
, Expr_Value
(Val
), Static
);
8459 when Attribute_Enum_Val
=> Enum_Val
: declare
8463 -- We have something like Enum_Type'Enum_Val (23), so search for a
8464 -- corresponding value in the list of Enum_Rep values for the type.
8466 Lit
:= First_Literal
(P_Base_Type
);
8468 if Enumeration_Rep
(Lit
) = Expr_Value
(E1
) then
8469 Fold_Uint
(N
, Enumeration_Pos
(Lit
), Static
);
8476 Apply_Compile_Time_Constraint_Error
8477 (N
, "no representation value matches",
8478 CE_Range_Check_Failed
,
8479 Warn
=> not Static
);
8489 when Attribute_Epsilon
=>
8491 -- Ada 83 attribute is defined as (RM83 3.5.8)
8493 -- T'Epsilon = 2.0**(1 - T'Mantissa)
8495 Fold_Ureal
(N
, Ureal_2
** (1 - Mantissa
), True);
8501 when Attribute_Exponent
=>
8503 Eval_Fat
.Exponent
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
8505 -----------------------
8506 -- Finalization_Size --
8507 -----------------------
8509 when Attribute_Finalization_Size
=>
8516 when Attribute_First
=>
8519 if Compile_Time_Known_Value
(Lo_Bound
) then
8520 if Is_Real_Type
(P_Type
) then
8521 Fold_Ureal
(N
, Expr_Value_R
(Lo_Bound
), Static
);
8523 Fold_Uint
(N
, Expr_Value
(Lo_Bound
), Static
);
8527 Check_Concurrent_Discriminant
(Lo_Bound
);
8534 when Attribute_First_Valid
=>
8535 if Has_Predicates
(P_Type
)
8536 and then Has_Static_Predicate
(P_Type
)
8539 FirstN
: constant Node_Id
:=
8540 First
(Static_Discrete_Predicate
(P_Type
));
8542 if Nkind
(FirstN
) = N_Range
then
8543 Fold_Uint
(N
, Expr_Value
(Low_Bound
(FirstN
)), Static
);
8545 Fold_Uint
(N
, Expr_Value
(FirstN
), Static
);
8551 Fold_Uint
(N
, Expr_Value
(Lo_Bound
), Static
);
8558 when Attribute_Fixed_Value
=>
8565 when Attribute_Floor
=>
8567 (N
, Eval_Fat
.Floor
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
8573 when Attribute_Fore
=>
8574 if Compile_Time_Known_Bounds
(P_Type
) then
8575 Fold_Uint
(N
, UI_From_Int
(Fore_Value
), Static
);
8582 when Attribute_Fraction
=>
8584 (N
, Eval_Fat
.Fraction
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
8586 -----------------------
8587 -- Has_Access_Values --
8588 -----------------------
8590 when Attribute_Has_Access_Values
=>
8591 Rewrite
(N
, New_Occurrence_Of
8592 (Boolean_Literals
(Has_Access_Values
(P_Root_Type
)), Loc
));
8593 Analyze_And_Resolve
(N
, Standard_Boolean
);
8595 -----------------------
8596 -- Has_Discriminants --
8597 -----------------------
8599 when Attribute_Has_Discriminants
=>
8600 Rewrite
(N
, New_Occurrence_Of
(
8601 Boolean_Literals
(Has_Discriminants
(P_Entity
)), Loc
));
8602 Analyze_And_Resolve
(N
, Standard_Boolean
);
8604 ----------------------
8605 -- Has_Same_Storage --
8606 ----------------------
8608 when Attribute_Has_Same_Storage
=>
8611 -----------------------
8612 -- Has_Tagged_Values --
8613 -----------------------
8615 when Attribute_Has_Tagged_Values
=>
8616 Rewrite
(N
, New_Occurrence_Of
8617 (Boolean_Literals
(Has_Tagged_Component
(P_Root_Type
)), Loc
));
8618 Analyze_And_Resolve
(N
, Standard_Boolean
);
8624 when Attribute_Identity
=>
8631 -- Image is a scalar attribute, but is never static, because it is
8632 -- not a static function (having a non-scalar argument (RM 4.9(22))
8633 -- However, we can constant-fold the image of an enumeration literal
8634 -- if names are available.
8636 when Attribute_Image
=>
8637 if Is_Entity_Name
(E1
)
8638 and then Ekind
(Entity
(E1
)) = E_Enumeration_Literal
8639 and then not Discard_Names
(First_Subtype
(Etype
(E1
)))
8640 and then not Global_Discard_Names
8643 Lit
: constant Entity_Id
:= Entity
(E1
);
8647 Get_Unqualified_Decoded_Name_String
(Chars
(Lit
));
8648 Set_Casing
(All_Upper_Case
);
8649 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
8651 Rewrite
(N
, Make_String_Literal
(Loc
, Strval
=> Str
));
8652 Analyze_And_Resolve
(N
, Standard_String
);
8653 Set_Is_Static_Expression
(N
, False);
8661 -- We never try to fold Integer_Value (though perhaps we could???)
8663 when Attribute_Integer_Value
=>
8670 -- Invalid_Value is a scalar attribute that is never static, because
8671 -- the value is by design out of range.
8673 when Attribute_Invalid_Value
=>
8680 when Attribute_Large
=>
8682 -- For fixed-point, we use the identity:
8684 -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
8686 if Is_Fixed_Point_Type
(P_Type
) then
8688 Make_Op_Multiply
(Loc
,
8690 Make_Op_Subtract
(Loc
,
8694 Make_Real_Literal
(Loc
, Ureal_2
),
8696 Make_Attribute_Reference
(Loc
,
8698 Attribute_Name
=> Name_Mantissa
)),
8699 Right_Opnd
=> Make_Real_Literal
(Loc
, Ureal_1
)),
8702 Make_Real_Literal
(Loc
, Small_Value
(Entity
(P
)))));
8704 Analyze_And_Resolve
(N
, C_Type
);
8706 -- Floating-point (Ada 83 compatibility)
8709 -- Ada 83 attribute is defined as (RM83 3.5.8)
8711 -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
8715 -- T'Emax = 4 * T'Mantissa
8719 Ureal_2
** (4 * Mantissa
) * (Ureal_1
- Ureal_2
** (-Mantissa
)),
8727 when Attribute_Lock_Free
=> Lock_Free
: declare
8728 V
: constant Entity_Id
:= Boolean_Literals
(Uses_Lock_Free
(P_Type
));
8731 Rewrite
(N
, New_Occurrence_Of
(V
, Loc
));
8733 -- Analyze and resolve as boolean. Note that this attribute is a
8734 -- static attribute in GNAT.
8736 Analyze_And_Resolve
(N
, Standard_Boolean
);
8738 Set_Is_Static_Expression
(N
, True);
8745 when Attribute_Last
=>
8748 if Compile_Time_Known_Value
(Hi_Bound
) then
8749 if Is_Real_Type
(P_Type
) then
8750 Fold_Ureal
(N
, Expr_Value_R
(Hi_Bound
), Static
);
8752 Fold_Uint
(N
, Expr_Value
(Hi_Bound
), Static
);
8756 Check_Concurrent_Discriminant
(Hi_Bound
);
8763 when Attribute_Last_Valid
=>
8764 if Has_Predicates
(P_Type
)
8765 and then Has_Static_Predicate
(P_Type
)
8768 LastN
: constant Node_Id
:=
8769 Last
(Static_Discrete_Predicate
(P_Type
));
8771 if Nkind
(LastN
) = N_Range
then
8772 Fold_Uint
(N
, Expr_Value
(High_Bound
(LastN
)), Static
);
8774 Fold_Uint
(N
, Expr_Value
(LastN
), Static
);
8780 Fold_Uint
(N
, Expr_Value
(Hi_Bound
), Static
);
8787 when Attribute_Leading_Part
=>
8790 Eval_Fat
.Leading_Part
8791 (P_Base_Type
, Expr_Value_R
(E1
), Expr_Value
(E2
)),
8798 when Attribute_Length
=> Length
: declare
8802 -- If any index type is a formal type, or derived from one, the
8803 -- bounds are not static. Treating them as static can produce
8804 -- spurious warnings or improper constant folding.
8806 Ind
:= First_Index
(P_Type
);
8807 while Present
(Ind
) loop
8808 if Is_Generic_Type
(Root_Type
(Etype
(Ind
))) then
8817 -- For two compile time values, we can compute length
8819 if Compile_Time_Known_Value
(Lo_Bound
)
8820 and then Compile_Time_Known_Value
(Hi_Bound
)
8823 UI_Max
(0, 1 + (Expr_Value
(Hi_Bound
) - Expr_Value
(Lo_Bound
))),
8827 -- One more case is where Hi_Bound and Lo_Bound are compile-time
8828 -- comparable, and we can figure out the difference between them.
8831 Diff
: aliased Uint
;
8835 Compile_Time_Compare
8836 (Lo_Bound
, Hi_Bound
, Diff
'Access, Assume_Valid
=> False)
8839 Fold_Uint
(N
, Uint_1
, Static
);
8842 Fold_Uint
(N
, Uint_0
, Static
);
8845 if Diff
/= No_Uint
then
8846 Fold_Uint
(N
, Diff
+ 1, Static
);
8859 -- Loop_Entry acts as an alias of a constant initialized to the prefix
8860 -- of the said attribute at the point of entry into the related loop. As
8861 -- such, the attribute reference does not need to be evaluated because
8862 -- the prefix is the one that is evaluted.
8864 when Attribute_Loop_Entry
=>
8871 when Attribute_Machine
=>
8875 (P_Base_Type
, Expr_Value_R
(E1
), Eval_Fat
.Round
, N
),
8882 when Attribute_Machine_Emax
=>
8883 Fold_Uint
(N
, Machine_Emax_Value
(P_Type
), Static
);
8889 when Attribute_Machine_Emin
=>
8890 Fold_Uint
(N
, Machine_Emin_Value
(P_Type
), Static
);
8892 ----------------------
8893 -- Machine_Mantissa --
8894 ----------------------
8896 when Attribute_Machine_Mantissa
=>
8897 Fold_Uint
(N
, Machine_Mantissa_Value
(P_Type
), Static
);
8899 -----------------------
8900 -- Machine_Overflows --
8901 -----------------------
8903 when Attribute_Machine_Overflows
=>
8905 -- Always true for fixed-point
8907 if Is_Fixed_Point_Type
(P_Type
) then
8908 Fold_Uint
(N
, True_Value
, Static
);
8910 -- Floating point case
8914 UI_From_Int
(Boolean'Pos (Machine_Overflows_On_Target
)),
8922 when Attribute_Machine_Radix
=>
8923 if Is_Fixed_Point_Type
(P_Type
) then
8924 if Is_Decimal_Fixed_Point_Type
(P_Type
)
8925 and then Machine_Radix_10
(P_Type
)
8927 Fold_Uint
(N
, Uint_10
, Static
);
8929 Fold_Uint
(N
, Uint_2
, Static
);
8932 -- All floating-point type always have radix 2
8935 Fold_Uint
(N
, Uint_2
, Static
);
8938 ----------------------
8939 -- Machine_Rounding --
8940 ----------------------
8942 -- Note: for the folding case, it is fine to treat Machine_Rounding
8943 -- exactly the same way as Rounding, since this is one of the allowed
8944 -- behaviors, and performance is not an issue here. It might be a bit
8945 -- better to give the same result as it would give at run time, even
8946 -- though the non-determinism is certainly permitted.
8948 when Attribute_Machine_Rounding
=>
8950 (N
, Eval_Fat
.Rounding
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
8952 --------------------
8953 -- Machine_Rounds --
8954 --------------------
8956 when Attribute_Machine_Rounds
=>
8958 -- Always False for fixed-point
8960 if Is_Fixed_Point_Type
(P_Type
) then
8961 Fold_Uint
(N
, False_Value
, Static
);
8963 -- Else yield proper floating-point result
8967 (N
, UI_From_Int
(Boolean'Pos (Machine_Rounds_On_Target
)),
8975 -- Note: Machine_Size is identical to Object_Size
8977 when Attribute_Machine_Size
=> Machine_Size
: declare
8978 P_TypeA
: constant Entity_Id
:= Underlying_Type
(P_Type
);
8981 if Known_Esize
(P_TypeA
) then
8982 Fold_Uint
(N
, Esize
(P_TypeA
), Static
);
8990 when Attribute_Mantissa
=>
8992 -- Fixed-point mantissa
8994 if Is_Fixed_Point_Type
(P_Type
) then
8996 -- Compile time foldable case
8998 if Compile_Time_Known_Value
(Type_Low_Bound
(P_Type
))
9000 Compile_Time_Known_Value
(Type_High_Bound
(P_Type
))
9002 -- The calculation of the obsolete Ada 83 attribute Mantissa
9003 -- is annoying, because of AI00143, quoted here:
9005 -- !question 84-01-10
9007 -- Consider the model numbers for F:
9009 -- type F is delta 1.0 range -7.0 .. 8.0;
9011 -- The wording requires that F'MANTISSA be the SMALLEST
9012 -- integer number for which each bound of the specified
9013 -- range is either a model number or lies at most small
9014 -- distant from a model number. This means F'MANTISSA
9015 -- is required to be 3 since the range -7.0 .. 7.0 fits
9016 -- in 3 signed bits, and 8 is "at most" 1.0 from a model
9017 -- number, namely, 7. Is this analysis correct? Note that
9018 -- this implies the upper bound of the range is not
9019 -- represented as a model number.
9021 -- !response 84-03-17
9023 -- The analysis is correct. The upper and lower bounds for
9024 -- a fixed point type can lie outside the range of model
9035 LBound
:= Expr_Value_R
(Type_Low_Bound
(P_Type
));
9036 UBound
:= Expr_Value_R
(Type_High_Bound
(P_Type
));
9037 Bound
:= UR_Max
(UR_Abs
(LBound
), UR_Abs
(UBound
));
9038 Max_Man
:= UR_Trunc
(Bound
/ Small_Value
(P_Type
));
9040 -- If the Bound is exactly a model number, i.e. a multiple
9041 -- of Small, then we back it off by one to get the integer
9042 -- value that must be representable.
9044 if Small_Value
(P_Type
) * Max_Man
= Bound
then
9045 Max_Man
:= Max_Man
- 1;
9048 -- Now find corresponding size = Mantissa value
9051 while 2 ** Siz
< Max_Man
loop
9055 Fold_Uint
(N
, Siz
, Static
);
9059 -- The case of dynamic bounds cannot be evaluated at compile
9060 -- time. Instead we use a runtime routine (see Exp_Attr).
9065 -- Floating-point Mantissa
9068 Fold_Uint
(N
, Mantissa
, Static
);
9075 when Attribute_Max
=>
9076 if Is_Real_Type
(P_Type
) then
9078 (N
, UR_Max
(Expr_Value_R
(E1
), Expr_Value_R
(E2
)), Static
);
9080 Fold_Uint
(N
, UI_Max
(Expr_Value
(E1
), Expr_Value
(E2
)), Static
);
9083 ----------------------------------
9084 -- Max_Alignment_For_Allocation --
9085 ----------------------------------
9087 -- Max_Alignment_For_Allocation is usually the Alignment. However,
9088 -- arrays are allocated with dope, so we need to take into account both
9089 -- the alignment of the array, which comes from the component alignment,
9090 -- and the alignment of the dope. Also, if the alignment is unknown, we
9091 -- use the max (it's OK to be pessimistic).
9093 when Attribute_Max_Alignment_For_Allocation
=> Max_Align
: declare
9094 A
: Uint
:= UI_From_Int
(Ttypes
.Maximum_Alignment
);
9096 if Known_Alignment
(P_Type
)
9097 and then (not Is_Array_Type
(P_Type
) or else Alignment
(P_Type
) > A
)
9099 A
:= Alignment
(P_Type
);
9102 Fold_Uint
(N
, A
, Static
);
9105 ----------------------------------
9106 -- Max_Size_In_Storage_Elements --
9107 ----------------------------------
9109 -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
9110 -- Storage_Unit boundary. We can fold any cases for which the size
9111 -- is known by the front end.
9113 when Attribute_Max_Size_In_Storage_Elements
=>
9114 if Known_Esize
(P_Type
) then
9116 (Esize
(P_Type
) + System_Storage_Unit
- 1) /
9117 System_Storage_Unit
,
9121 --------------------
9122 -- Mechanism_Code --
9123 --------------------
9125 when Attribute_Mechanism_Code
=> Mechanism_Code
: declare
9127 Mech
: Mechanism_Type
;
9132 Mech
:= Mechanism
(P_Entity
);
9135 Val
:= UI_To_Int
(Expr_Value
(E1
));
9137 Formal
:= First_Formal
(P_Entity
);
9138 for J
in 1 .. Val
- 1 loop
9139 Next_Formal
(Formal
);
9142 Mech
:= Mechanism
(Formal
);
9146 Fold_Uint
(N
, UI_From_Int
(Int
(-Mech
)), Static
);
9154 when Attribute_Min
=>
9155 if Is_Real_Type
(P_Type
) then
9157 (N
, UR_Min
(Expr_Value_R
(E1
), Expr_Value_R
(E2
)), Static
);
9160 (N
, UI_Min
(Expr_Value
(E1
), Expr_Value
(E2
)), Static
);
9167 when Attribute_Mod
=>
9169 (N
, UI_Mod
(Expr_Value
(E1
), Modulus
(P_Base_Type
)), Static
);
9175 when Attribute_Model
=>
9177 (N
, Eval_Fat
.Model
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
9183 when Attribute_Model_Emin
=>
9184 Fold_Uint
(N
, Model_Emin_Value
(P_Base_Type
), Static
);
9190 when Attribute_Model_Epsilon
=>
9191 Fold_Ureal
(N
, Model_Epsilon_Value
(P_Base_Type
), Static
);
9193 --------------------
9194 -- Model_Mantissa --
9195 --------------------
9197 when Attribute_Model_Mantissa
=>
9198 Fold_Uint
(N
, Model_Mantissa_Value
(P_Base_Type
), Static
);
9204 when Attribute_Model_Small
=>
9205 Fold_Ureal
(N
, Model_Small_Value
(P_Base_Type
), Static
);
9211 when Attribute_Modulus
=>
9212 Fold_Uint
(N
, Modulus
(P_Type
), Static
);
9214 --------------------
9215 -- Null_Parameter --
9216 --------------------
9218 -- Cannot fold, we know the value sort of, but the whole point is
9219 -- that there is no way to talk about this imaginary value except
9220 -- by using the attribute, so we leave it the way it is.
9222 when Attribute_Null_Parameter
=>
9229 -- The Object_Size attribute for a type returns the Esize of the
9230 -- type and can be folded if this value is known.
9232 when Attribute_Object_Size
=> Object_Size
: declare
9233 P_TypeA
: constant Entity_Id
:= Underlying_Type
(P_Type
);
9236 if Known_Esize
(P_TypeA
) then
9237 Fold_Uint
(N
, Esize
(P_TypeA
), Static
);
9241 ----------------------
9242 -- Overlaps_Storage --
9243 ----------------------
9245 when Attribute_Overlaps_Storage
=>
9248 -------------------------
9249 -- Passed_By_Reference --
9250 -------------------------
9252 -- Scalar types are never passed by reference
9254 when Attribute_Passed_By_Reference
=>
9255 Fold_Uint
(N
, False_Value
, Static
);
9261 when Attribute_Pos
=>
9262 Fold_Uint
(N
, Expr_Value
(E1
), Static
);
9268 when Attribute_Pred
=>
9270 -- Floating-point case
9272 if Is_Floating_Point_Type
(P_Type
) then
9274 (N
, Eval_Fat
.Pred
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
9278 elsif Is_Fixed_Point_Type
(P_Type
) then
9280 (N
, Expr_Value_R
(E1
) - Small_Value
(P_Type
), True);
9282 -- Modular integer case (wraps)
9284 elsif Is_Modular_Integer_Type
(P_Type
) then
9285 Fold_Uint
(N
, (Expr_Value
(E1
) - 1) mod Modulus
(P_Type
), Static
);
9287 -- Other scalar cases
9290 pragma Assert
(Is_Scalar_Type
(P_Type
));
9292 if Is_Enumeration_Type
(P_Type
)
9293 and then Expr_Value
(E1
) =
9294 Expr_Value
(Type_Low_Bound
(P_Base_Type
))
9296 Apply_Compile_Time_Constraint_Error
9297 (N
, "Pred of `&''First`",
9298 CE_Overflow_Check_Failed
,
9300 Warn
=> not Static
);
9306 Fold_Uint
(N
, Expr_Value
(E1
) - 1, Static
);
9313 -- No processing required, because by this stage, Range has been
9314 -- replaced by First .. Last, so this branch can never be taken.
9316 when Attribute_Range
=>
9317 raise Program_Error
;
9323 when Attribute_Range_Length
=> Range_Length
: declare
9324 Diff
: aliased Uint
;
9329 -- Can fold if both bounds are compile time known
9331 if Compile_Time_Known_Value
(Hi_Bound
)
9332 and then Compile_Time_Known_Value
(Lo_Bound
)
9336 (0, Expr_Value
(Hi_Bound
) - Expr_Value
(Lo_Bound
) + 1),
9340 -- One more case is where Hi_Bound and Lo_Bound are compile-time
9341 -- comparable, and we can figure out the difference between them.
9343 case Compile_Time_Compare
9344 (Lo_Bound
, Hi_Bound
, Diff
'Access, Assume_Valid
=> False)
9347 Fold_Uint
(N
, Uint_1
, Static
);
9350 Fold_Uint
(N
, Uint_0
, Static
);
9353 if Diff
/= No_Uint
then
9354 Fold_Uint
(N
, Diff
+ 1, Static
);
9366 when Attribute_Ref
=>
9367 Fold_Uint
(N
, Expr_Value
(E1
), Static
);
9373 when Attribute_Remainder
=> Remainder
: declare
9374 X
: constant Ureal
:= Expr_Value_R
(E1
);
9375 Y
: constant Ureal
:= Expr_Value_R
(E2
);
9378 if UR_Is_Zero
(Y
) then
9379 Apply_Compile_Time_Constraint_Error
9380 (N
, "division by zero in Remainder",
9381 CE_Overflow_Check_Failed
,
9382 Warn
=> not Static
);
9388 Fold_Ureal
(N
, Eval_Fat
.Remainder
(P_Base_Type
, X
, Y
), Static
);
9395 when Attribute_Restriction_Set
=>
9396 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
9397 Set_Is_Static_Expression
(N
);
9403 when Attribute_Round
=> Round
: declare
9408 -- First we get the (exact result) in units of small
9410 Sr
:= Expr_Value_R
(E1
) / Small_Value
(C_Type
);
9412 -- Now round that exactly to an integer
9414 Si
:= UR_To_Uint
(Sr
);
9416 -- Finally the result is obtained by converting back to real
9418 Fold_Ureal
(N
, Si
* Small_Value
(C_Type
), Static
);
9425 when Attribute_Rounding
=>
9427 (N
, Eval_Fat
.Rounding
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
9433 when Attribute_Safe_Emax
=>
9434 Fold_Uint
(N
, Safe_Emax_Value
(P_Type
), Static
);
9440 when Attribute_Safe_First
=>
9441 Fold_Ureal
(N
, Safe_First_Value
(P_Type
), Static
);
9447 when Attribute_Safe_Large
=>
9448 if Is_Fixed_Point_Type
(P_Type
) then
9450 (N
, Expr_Value_R
(Type_High_Bound
(P_Base_Type
)), Static
);
9452 Fold_Ureal
(N
, Safe_Last_Value
(P_Type
), Static
);
9459 when Attribute_Safe_Last
=>
9460 Fold_Ureal
(N
, Safe_Last_Value
(P_Type
), Static
);
9466 when Attribute_Safe_Small
=>
9468 -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
9469 -- for fixed-point, since is the same as Small, but we implement
9470 -- it for backwards compatibility.
9472 if Is_Fixed_Point_Type
(P_Type
) then
9473 Fold_Ureal
(N
, Small_Value
(P_Type
), Static
);
9475 -- Ada 83 Safe_Small for floating-point cases
9478 Fold_Ureal
(N
, Model_Small_Value
(P_Type
), Static
);
9485 when Attribute_Scale
=>
9486 Fold_Uint
(N
, Scale_Value
(P_Type
), Static
);
9492 when Attribute_Scaling
=>
9496 (P_Base_Type
, Expr_Value_R
(E1
), Expr_Value
(E2
)),
9503 when Attribute_Signed_Zeros
=>
9505 (N
, UI_From_Int
(Boolean'Pos (Has_Signed_Zeros
(P_Type
))), Static
);
9511 -- Size attribute returns the RM size. All scalar types can be folded,
9512 -- as well as any types for which the size is known by the front end,
9513 -- including any type for which a size attribute is specified. This is
9514 -- one of the places where it is annoying that a size of zero means two
9515 -- things (zero size for scalars, unspecified size for non-scalars).
9518 | Attribute_VADS_Size
9521 P_TypeA
: constant Entity_Id
:= Underlying_Type
(P_Type
);
9524 if Is_Scalar_Type
(P_TypeA
)
9525 or else RM_Size
(P_TypeA
) /= Uint_0
9529 if Id
= Attribute_VADS_Size
or else Use_VADS_Size
then
9531 S
: constant Node_Id
:= Size_Clause
(P_TypeA
);
9534 -- If a size clause applies, then use the size from it.
9535 -- This is one of the rare cases where we can use the
9536 -- Size_Clause field for a subtype when Has_Size_Clause
9537 -- is False. Consider:
9539 -- type x is range 1 .. 64;
9540 -- for x'size use 12;
9541 -- subtype y is x range 0 .. 3;
9543 -- Here y has a size clause inherited from x, but
9544 -- normally it does not apply, and y'size is 2. However,
9545 -- y'VADS_Size is indeed 12 and not 2.
9548 and then Is_OK_Static_Expression
(Expression
(S
))
9550 Fold_Uint
(N
, Expr_Value
(Expression
(S
)), Static
);
9552 -- If no size is specified, then we simply use the object
9553 -- size in the VADS_Size case (e.g. Natural'Size is equal
9554 -- to Integer'Size, not one less).
9557 Fold_Uint
(N
, Esize
(P_TypeA
), Static
);
9561 -- Normal case (Size) in which case we want the RM_Size
9564 Fold_Uint
(N
, RM_Size
(P_TypeA
), Static
);
9573 when Attribute_Small
=>
9575 -- The floating-point case is present only for Ada 83 compatibility.
9576 -- Note that strictly this is an illegal addition, since we are
9577 -- extending an Ada 95 defined attribute, but we anticipate an
9578 -- ARG ruling that will permit this.
9580 if Is_Floating_Point_Type
(P_Type
) then
9582 -- Ada 83 attribute is defined as (RM83 3.5.8)
9584 -- T'Small = 2.0**(-T'Emax - 1)
9588 -- T'Emax = 4 * T'Mantissa
9590 Fold_Ureal
(N
, Ureal_2
** ((-(4 * Mantissa
)) - 1), Static
);
9592 -- Normal Ada 95 fixed-point case
9595 Fold_Ureal
(N
, Small_Value
(P_Type
), True);
9602 when Attribute_Stream_Size
=>
9609 when Attribute_Succ
=>
9610 -- Floating-point case
9612 if Is_Floating_Point_Type
(P_Type
) then
9614 (N
, Eval_Fat
.Succ
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
9618 elsif Is_Fixed_Point_Type
(P_Type
) then
9619 Fold_Ureal
(N
, Expr_Value_R
(E1
) + Small_Value
(P_Type
), Static
);
9621 -- Modular integer case (wraps)
9623 elsif Is_Modular_Integer_Type
(P_Type
) then
9624 Fold_Uint
(N
, (Expr_Value
(E1
) + 1) mod Modulus
(P_Type
), Static
);
9626 -- Other scalar cases
9629 pragma Assert
(Is_Scalar_Type
(P_Type
));
9631 if Is_Enumeration_Type
(P_Type
)
9632 and then Expr_Value
(E1
) =
9633 Expr_Value
(Type_High_Bound
(P_Base_Type
))
9635 Apply_Compile_Time_Constraint_Error
9636 (N
, "Succ of `&''Last`",
9637 CE_Overflow_Check_Failed
,
9639 Warn
=> not Static
);
9644 Fold_Uint
(N
, Expr_Value
(E1
) + 1, Static
);
9652 when Attribute_Truncation
=>
9655 Eval_Fat
.Truncation
(P_Base_Type
, Expr_Value_R
(E1
)),
9662 when Attribute_Type_Class
=> Type_Class
: declare
9663 Typ
: constant Entity_Id
:= Underlying_Type
(P_Base_Type
);
9667 if Is_Descendant_Of_Address
(Typ
) then
9668 Id
:= RE_Type_Class_Address
;
9670 elsif Is_Enumeration_Type
(Typ
) then
9671 Id
:= RE_Type_Class_Enumeration
;
9673 elsif Is_Integer_Type
(Typ
) then
9674 Id
:= RE_Type_Class_Integer
;
9676 elsif Is_Fixed_Point_Type
(Typ
) then
9677 Id
:= RE_Type_Class_Fixed_Point
;
9679 elsif Is_Floating_Point_Type
(Typ
) then
9680 Id
:= RE_Type_Class_Floating_Point
;
9682 elsif Is_Array_Type
(Typ
) then
9683 Id
:= RE_Type_Class_Array
;
9685 elsif Is_Record_Type
(Typ
) then
9686 Id
:= RE_Type_Class_Record
;
9688 elsif Is_Access_Type
(Typ
) then
9689 Id
:= RE_Type_Class_Access
;
9691 elsif Is_Task_Type
(Typ
) then
9692 Id
:= RE_Type_Class_Task
;
9694 -- We treat protected types like task types. It would make more
9695 -- sense to have another enumeration value, but after all the
9696 -- whole point of this feature is to be exactly DEC compatible,
9697 -- and changing the type Type_Class would not meet this requirement.
9699 elsif Is_Protected_Type
(Typ
) then
9700 Id
:= RE_Type_Class_Task
;
9702 -- Not clear if there are any other possibilities, but if there
9703 -- are, then we will treat them as the address case.
9706 Id
:= RE_Type_Class_Address
;
9709 Rewrite
(N
, New_Occurrence_Of
(RTE
(Id
), Loc
));
9712 -----------------------
9713 -- Unbiased_Rounding --
9714 -----------------------
9716 when Attribute_Unbiased_Rounding
=>
9719 Eval_Fat
.Unbiased_Rounding
(P_Base_Type
, Expr_Value_R
(E1
)),
9722 -------------------------
9723 -- Unconstrained_Array --
9724 -------------------------
9726 when Attribute_Unconstrained_Array
=> Unconstrained_Array
: declare
9727 Typ
: constant Entity_Id
:= Underlying_Type
(P_Type
);
9730 Rewrite
(N
, New_Occurrence_Of
(
9732 Is_Array_Type
(P_Type
)
9733 and then not Is_Constrained
(Typ
)), Loc
));
9735 -- Analyze and resolve as boolean, note that this attribute is
9736 -- a static attribute in GNAT.
9738 Analyze_And_Resolve
(N
, Standard_Boolean
);
9740 Set_Is_Static_Expression
(N
, True);
9741 end Unconstrained_Array
;
9743 -- Attribute Update is never static
9745 when Attribute_Update
=>
9752 -- Processing is shared with Size
9758 when Attribute_Val
=>
9759 if Expr_Value
(E1
) < Expr_Value
(Type_Low_Bound
(P_Base_Type
))
9761 Expr_Value
(E1
) > Expr_Value
(Type_High_Bound
(P_Base_Type
))
9763 Apply_Compile_Time_Constraint_Error
9764 (N
, "Val expression out of range",
9765 CE_Range_Check_Failed
,
9766 Warn
=> not Static
);
9772 Fold_Uint
(N
, Expr_Value
(E1
), Static
);
9779 -- The Value_Size attribute for a type returns the RM size of the type.
9780 -- This an always be folded for scalar types, and can also be folded for
9781 -- non-scalar types if the size is set. This is one of the places where
9782 -- it is annoying that a size of zero means two things!
9784 when Attribute_Value_Size
=> Value_Size
: declare
9785 P_TypeA
: constant Entity_Id
:= Underlying_Type
(P_Type
);
9788 if Is_Scalar_Type
(P_TypeA
) or else RM_Size
(P_TypeA
) /= Uint_0
then
9789 Fold_Uint
(N
, RM_Size
(P_TypeA
), Static
);
9797 -- Version can never be static
9799 when Attribute_Version
=>
9806 -- Wide_Image is a scalar attribute, but is never static, because it
9807 -- is not a static function (having a non-scalar argument (RM 4.9(22))
9809 when Attribute_Wide_Image
=>
9812 ---------------------
9813 -- Wide_Wide_Image --
9814 ---------------------
9816 -- Wide_Wide_Image is a scalar attribute but is never static, because it
9817 -- is not a static function (having a non-scalar argument (RM 4.9(22)).
9819 when Attribute_Wide_Wide_Image
=>
9822 ---------------------
9823 -- Wide_Wide_Width --
9824 ---------------------
9826 -- Processing for Wide_Wide_Width is combined with Width
9832 -- Processing for Wide_Width is combined with Width
9838 -- This processing also handles the case of Wide_[Wide_]Width
9840 when Attribute_Width
9841 | Attribute_Wide_Width
9842 | Attribute_Wide_Wide_Width
9844 if Compile_Time_Known_Bounds
(P_Type
) then
9846 -- Floating-point types
9848 if Is_Floating_Point_Type
(P_Type
) then
9850 -- Width is zero for a null range (RM 3.5 (38))
9852 if Expr_Value_R
(Type_High_Bound
(P_Type
)) <
9853 Expr_Value_R
(Type_Low_Bound
(P_Type
))
9855 Fold_Uint
(N
, Uint_0
, Static
);
9858 -- For floating-point, we have +N.dddE+nnn where length
9859 -- of ddd is determined by type'Digits - 1, but is one
9860 -- if Digits is one (RM 3.5 (33)).
9862 -- nnn is set to 2 for Short_Float and Float (32 bit
9863 -- floats), and 3 for Long_Float and Long_Long_Float.
9864 -- For machines where Long_Long_Float is the IEEE
9865 -- extended precision type, the exponent takes 4 digits.
9869 Int
'Max (2, UI_To_Int
(Digits_Value
(P_Type
)));
9872 if Esize
(P_Type
) <= 32 then
9874 elsif Esize
(P_Type
) = 64 then
9880 Fold_Uint
(N
, UI_From_Int
(Len
), Static
);
9884 -- Fixed-point types
9886 elsif Is_Fixed_Point_Type
(P_Type
) then
9888 -- Width is zero for a null range (RM 3.5 (38))
9890 if Expr_Value
(Type_High_Bound
(P_Type
)) <
9891 Expr_Value
(Type_Low_Bound
(P_Type
))
9893 Fold_Uint
(N
, Uint_0
, Static
);
9895 -- The non-null case depends on the specific real type
9898 -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
9901 (N
, UI_From_Int
(Fore_Value
+ 1) + Aft_Value
(P_Type
),
9909 R
: constant Entity_Id
:= Root_Type
(P_Type
);
9910 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(P_Type
));
9911 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(P_Type
));
9924 -- Width for types derived from Standard.Character
9925 -- and Standard.Wide_[Wide_]Character.
9927 elsif Is_Standard_Character_Type
(P_Type
) then
9930 -- Set W larger if needed
9932 for J
in UI_To_Int
(Lo
) .. UI_To_Int
(Hi
) loop
9934 -- All wide characters look like Hex_hhhhhhhh
9938 -- No need to compute this more than once
9943 C
:= Character'Val (J
);
9945 -- Test for all cases where Character'Image
9946 -- yields an image that is longer than three
9947 -- characters. First the cases of Reserved_xxx
9948 -- names (length = 12).
10025 when Space
.. Tilde
10026 | No_Break_Space
.. LC_Y_Diaeresis
10028 -- Special case of soft hyphen in Ada 2005
10030 if C
= Character'Val (16#AD#
)
10031 and then Ada_Version
>= Ada_2005
10039 W
:= Int
'Max (W
, Wt
);
10043 -- Width for types derived from Standard.Boolean
10045 elsif R
= Standard_Boolean
then
10052 -- Width for integer types
10054 elsif Is_Integer_Type
(P_Type
) then
10055 T
:= UI_Max
(abs Lo
, abs Hi
);
10063 -- User declared enum type with discard names
10065 elsif Discard_Names
(R
) then
10067 -- If range is null, result is zero, that has already
10068 -- been dealt with, so what we need is the power of ten
10069 -- that accommodates the Pos of the largest value, which
10070 -- is the high bound of the range + one for the space.
10079 -- Only remaining possibility is user declared enum type
10080 -- with normal case of Discard_Names not active.
10083 pragma Assert
(Is_Enumeration_Type
(P_Type
));
10086 L
:= First_Literal
(P_Type
);
10087 while Present
(L
) loop
10089 -- Only pay attention to in range characters
10091 if Lo
<= Enumeration_Pos
(L
)
10092 and then Enumeration_Pos
(L
) <= Hi
10094 -- For Width case, use decoded name
10096 if Id
= Attribute_Width
then
10097 Get_Decoded_Name_String
(Chars
(L
));
10098 Wt
:= Nat
(Name_Len
);
10100 -- For Wide_[Wide_]Width, use encoded name, and
10101 -- then adjust for the encoding.
10104 Get_Name_String
(Chars
(L
));
10106 -- Character literals are always of length 3
10108 if Name_Buffer
(1) = 'Q' then
10111 -- Otherwise loop to adjust for upper/wide chars
10114 Wt
:= Nat
(Name_Len
);
10116 for J
in 1 .. Name_Len
loop
10117 if Name_Buffer
(J
) = 'U' then
10119 elsif Name_Buffer
(J
) = 'W' then
10126 W
:= Int
'Max (W
, Wt
);
10133 Fold_Uint
(N
, UI_From_Int
(W
), Static
);
10138 -- The following attributes denote functions that cannot be folded
10140 when Attribute_From_Any
10142 | Attribute_TypeCode
10146 -- The following attributes can never be folded, and furthermore we
10147 -- should not even have entered the case statement for any of these.
10148 -- Note that in some cases, the values have already been folded as
10149 -- a result of the processing in Analyze_Attribute or earlier in
10152 when Attribute_Abort_Signal
10154 | Attribute_Address
10155 | Attribute_Address_Size
10156 | Attribute_Asm_Input
10157 | Attribute_Asm_Output
10159 | Attribute_Bit_Order
10160 | Attribute_Bit_Position
10161 | Attribute_Callable
10164 | Attribute_Code_Address
10165 | Attribute_Compiler_Version
10167 | Attribute_Default_Bit_Order
10168 | Attribute_Default_Scalar_Storage_Order
10170 | Attribute_Elaborated
10171 | Attribute_Elab_Body
10172 | Attribute_Elab_Spec
10173 | Attribute_Elab_Subp_Body
10174 | Attribute_Enabled
10175 | Attribute_External_Tag
10176 | Attribute_Fast_Math
10177 | Attribute_First_Bit
10180 | Attribute_Last_Bit
10181 | Attribute_Library_Level
10182 | Attribute_Maximum_Alignment
10185 | Attribute_Partition_ID
10186 | Attribute_Pool_Address
10187 | Attribute_Position
10188 | Attribute_Priority
10191 | Attribute_Scalar_Storage_Order
10192 | Attribute_Simple_Storage_Pool
10193 | Attribute_Storage_Pool
10194 | Attribute_Storage_Size
10195 | Attribute_Storage_Unit
10196 | Attribute_Stub_Type
10197 | Attribute_System_Allocator_Alignment
10199 | Attribute_Target_Name
10200 | Attribute_Terminated
10201 | Attribute_To_Address
10202 | Attribute_Type_Key
10203 | Attribute_Unchecked_Access
10204 | Attribute_Universal_Literal_String
10205 | Attribute_Unrestricted_Access
10207 | Attribute_Valid_Scalars
10209 | Attribute_Wchar_T_Size
10210 | Attribute_Wide_Value
10211 | Attribute_Wide_Wide_Value
10212 | Attribute_Word_Size
10215 raise Program_Error
;
10218 -- At the end of the case, one more check. If we did a static evaluation
10219 -- so that the result is now a literal, then set Is_Static_Expression
10220 -- in the constant only if the prefix type is a static subtype. For
10221 -- non-static subtypes, the folding is still OK, but not static.
10223 -- An exception is the GNAT attribute Constrained_Array which is
10224 -- defined to be a static attribute in all cases.
10226 if Nkind_In
(N
, N_Integer_Literal
,
10228 N_Character_Literal
,
10230 or else (Is_Entity_Name
(N
)
10231 and then Ekind
(Entity
(N
)) = E_Enumeration_Literal
)
10233 Set_Is_Static_Expression
(N
, Static
);
10235 -- If this is still an attribute reference, then it has not been folded
10236 -- and that means that its expressions are in a non-static context.
10238 elsif Nkind
(N
) = N_Attribute_Reference
then
10241 -- Note: the else case not covered here are odd cases where the
10242 -- processing has transformed the attribute into something other
10243 -- than a constant. Nothing more to do in such cases.
10248 end Eval_Attribute
;
10250 ------------------------------
10251 -- Is_Anonymous_Tagged_Base --
10252 ------------------------------
10254 function Is_Anonymous_Tagged_Base
10256 Typ
: Entity_Id
) return Boolean
10260 Anon
= Current_Scope
10261 and then Is_Itype
(Anon
)
10262 and then Associated_Node_For_Itype
(Anon
) = Parent
(Typ
);
10263 end Is_Anonymous_Tagged_Base
;
10265 --------------------------------
10266 -- Name_Implies_Lvalue_Prefix --
10267 --------------------------------
10269 function Name_Implies_Lvalue_Prefix
(Nam
: Name_Id
) return Boolean is
10270 pragma Assert
(Is_Attribute_Name
(Nam
));
10272 return Attribute_Name_Implies_Lvalue_Prefix
(Get_Attribute_Id
(Nam
));
10273 end Name_Implies_Lvalue_Prefix
;
10275 -----------------------
10276 -- Resolve_Attribute --
10277 -----------------------
10279 procedure Resolve_Attribute
(N
: Node_Id
; Typ
: Entity_Id
) is
10280 Loc
: constant Source_Ptr
:= Sloc
(N
);
10281 P
: constant Node_Id
:= Prefix
(N
);
10282 Aname
: constant Name_Id
:= Attribute_Name
(N
);
10283 Attr_Id
: constant Attribute_Id
:= Get_Attribute_Id
(Aname
);
10284 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
10285 Des_Btyp
: Entity_Id
;
10286 Index
: Interp_Index
;
10288 Nom_Subt
: Entity_Id
;
10290 procedure Accessibility_Message
;
10291 -- Error, or warning within an instance, if the static accessibility
10292 -- rules of 3.10.2 are violated.
10294 function Declared_Within_Generic_Unit
10295 (Entity
: Entity_Id
;
10296 Generic_Unit
: Node_Id
) return Boolean;
10297 -- Returns True if Declared_Entity is declared within the declarative
10298 -- region of Generic_Unit; otherwise returns False.
10300 ---------------------------
10301 -- Accessibility_Message --
10302 ---------------------------
10304 procedure Accessibility_Message
is
10305 Indic
: Node_Id
:= Parent
(Parent
(N
));
10308 -- In an instance, this is a runtime check, but one we
10309 -- know will fail, so generate an appropriate warning.
10311 if In_Instance_Body
then
10312 Error_Msg_Warn
:= SPARK_Mode
/= On
;
10314 ("non-local pointer cannot point to local object<<", P
);
10315 Error_Msg_F
("\Program_Error [<<", P
);
10317 Make_Raise_Program_Error
(Loc
,
10318 Reason
=> PE_Accessibility_Check_Failed
));
10319 Set_Etype
(N
, Typ
);
10323 Error_Msg_F
("non-local pointer cannot point to local object", P
);
10325 -- Check for case where we have a missing access definition
10327 if Is_Record_Type
(Current_Scope
)
10329 Nkind_In
(Parent
(N
), N_Discriminant_Association
,
10330 N_Index_Or_Discriminant_Constraint
)
10332 Indic
:= Parent
(Parent
(N
));
10333 while Present
(Indic
)
10334 and then Nkind
(Indic
) /= N_Subtype_Indication
10336 Indic
:= Parent
(Indic
);
10339 if Present
(Indic
) then
10341 ("\use an access definition for" &
10342 " the access discriminant of&",
10343 N
, Entity
(Subtype_Mark
(Indic
)));
10347 end Accessibility_Message
;
10349 ----------------------------------
10350 -- Declared_Within_Generic_Unit --
10351 ----------------------------------
10353 function Declared_Within_Generic_Unit
10354 (Entity
: Entity_Id
;
10355 Generic_Unit
: Node_Id
) return Boolean
10357 Generic_Encloser
: Node_Id
:= Enclosing_Generic_Unit
(Entity
);
10360 while Present
(Generic_Encloser
) loop
10361 if Generic_Encloser
= Generic_Unit
then
10365 -- We have to step to the scope of the generic's entity, because
10366 -- otherwise we'll just get back the same generic.
10368 Generic_Encloser
:=
10369 Enclosing_Generic_Unit
10370 (Scope
(Defining_Entity
(Generic_Encloser
)));
10374 end Declared_Within_Generic_Unit
;
10376 -- Start of processing for Resolve_Attribute
10379 -- If error during analysis, no point in continuing, except for array
10380 -- types, where we get better recovery by using unconstrained indexes
10381 -- than nothing at all (see Check_Array_Type).
10383 if Error_Posted
(N
)
10384 and then Attr_Id
/= Attribute_First
10385 and then Attr_Id
/= Attribute_Last
10386 and then Attr_Id
/= Attribute_Length
10387 and then Attr_Id
/= Attribute_Range
10392 -- If attribute was universal type, reset to actual type
10394 if Etype
(N
) = Universal_Integer
10395 or else Etype
(N
) = Universal_Real
10397 Set_Etype
(N
, Typ
);
10400 -- Remaining processing depends on attribute
10408 -- For access attributes, if the prefix denotes an entity, it is
10409 -- interpreted as a name, never as a call. It may be overloaded,
10410 -- in which case resolution uses the profile of the context type.
10411 -- Otherwise prefix must be resolved.
10413 when Attribute_Access
10414 | Attribute_Unchecked_Access
10415 | Attribute_Unrestricted_Access
10417 -- Note possible modification if we have a variable
10419 if Is_Variable
(P
) then
10421 PN
: constant Node_Id
:= Parent
(N
);
10424 Note
: Boolean := True;
10425 -- Skip this for the case of Unrestricted_Access occuring in
10426 -- the context of a Valid check, since this otherwise leads
10427 -- to a missed warning (the Valid check does not really
10428 -- modify!) If this case, Note will be reset to False.
10430 -- Skip it as well if the type is an Acccess_To_Constant,
10431 -- given that no use of the value can modify the prefix.
10434 if Attr_Id
= Attribute_Unrestricted_Access
10435 and then Nkind
(PN
) = N_Function_Call
10439 if Nkind
(Nm
) = N_Expanded_Name
10440 and then Chars
(Nm
) = Name_Valid
10441 and then Nkind
(Prefix
(Nm
)) = N_Identifier
10442 and then Chars
(Prefix
(Nm
)) = Name_Attr_Long_Float
10447 elsif Is_Access_Constant
(Typ
) then
10452 Note_Possible_Modification
(P
, Sure
=> False);
10457 -- The following comes from a query concerning improper use of
10458 -- universal_access in equality tests involving anonymous access
10459 -- types. Another good reason for 'Ref, but for now disable the
10460 -- test, which breaks several filed tests???
10462 if Ekind
(Typ
) = E_Anonymous_Access_Type
10463 and then Nkind_In
(Parent
(N
), N_Op_Eq
, N_Op_Ne
)
10466 Error_Msg_N
("need unique type to resolve 'Access", N
);
10467 Error_Msg_N
("\qualify attribute with some access type", N
);
10470 -- Case where prefix is an entity name
10472 if Is_Entity_Name
(P
) then
10474 -- Deal with case where prefix itself is overloaded
10476 if Is_Overloaded
(P
) then
10477 Get_First_Interp
(P
, Index
, It
);
10478 while Present
(It
.Nam
) loop
10479 if Type_Conformant
(Designated_Type
(Typ
), It
.Nam
) then
10480 Set_Entity
(P
, It
.Nam
);
10482 -- The prefix is definitely NOT overloaded anymore at
10483 -- this point, so we reset the Is_Overloaded flag to
10484 -- avoid any confusion when reanalyzing the node.
10486 Set_Is_Overloaded
(P
, False);
10487 Set_Is_Overloaded
(N
, False);
10488 Generate_Reference
(Entity
(P
), P
);
10492 Get_Next_Interp
(Index
, It
);
10495 -- If Prefix is a subprogram name, this reference freezes,
10496 -- but not if within spec expression mode. The profile of
10497 -- the subprogram is not frozen at this point.
10499 if not In_Spec_Expression
then
10500 Freeze_Before
(N
, Entity
(P
), Do_Freeze_Profile
=> False);
10503 -- If it is a type, there is nothing to resolve.
10504 -- If it is a subprogram, do not freeze its profile.
10505 -- If it is an object, complete its resolution.
10507 elsif Is_Overloadable
(Entity
(P
)) then
10508 if not In_Spec_Expression
then
10509 Freeze_Before
(N
, Entity
(P
), Do_Freeze_Profile
=> False);
10512 -- Nothing to do if prefix is a type name
10514 elsif Is_Type
(Entity
(P
)) then
10517 -- Otherwise non-overloaded other case, resolve the prefix
10523 -- Some further error checks
10525 Error_Msg_Name_1
:= Aname
;
10527 if not Is_Entity_Name
(P
) then
10530 elsif Is_Overloadable
(Entity
(P
))
10531 and then Is_Abstract_Subprogram
(Entity
(P
))
10533 Error_Msg_F
("prefix of % attribute cannot be abstract", P
);
10534 Set_Etype
(N
, Any_Type
);
10536 elsif Ekind
(Entity
(P
)) = E_Enumeration_Literal
then
10538 ("prefix of % attribute cannot be enumeration literal", P
);
10539 Set_Etype
(N
, Any_Type
);
10541 -- An attempt to take 'Access of a function that renames an
10542 -- enumeration literal. Issue a specialized error message.
10544 elsif Ekind
(Entity
(P
)) = E_Function
10545 and then Present
(Alias
(Entity
(P
)))
10546 and then Ekind
(Alias
(Entity
(P
))) = E_Enumeration_Literal
10549 ("prefix of % attribute cannot be function renaming "
10550 & "an enumeration literal", P
);
10551 Set_Etype
(N
, Any_Type
);
10553 elsif Convention
(Entity
(P
)) = Convention_Intrinsic
then
10554 Error_Msg_F
("prefix of % attribute cannot be intrinsic", P
);
10555 Set_Etype
(N
, Any_Type
);
10558 -- Assignments, return statements, components of aggregates,
10559 -- generic instantiations will require convention checks if
10560 -- the type is an access to subprogram. Given that there will
10561 -- also be accessibility checks on those, this is where the
10562 -- checks can eventually be centralized ???
10564 if Ekind_In
(Btyp
, E_Access_Protected_Subprogram_Type
,
10565 E_Access_Subprogram_Type
,
10566 E_Anonymous_Access_Protected_Subprogram_Type
,
10567 E_Anonymous_Access_Subprogram_Type
)
10569 -- Deal with convention mismatch
10571 if Convention
(Designated_Type
(Btyp
)) /=
10572 Convention
(Entity
(P
))
10574 -- The rule in 6.3.1 (8) deserves a special error
10577 if Convention
(Btyp
) = Convention_Intrinsic
10578 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
10579 and then Is_Entity_Name
(Name
(Parent
(N
)))
10580 and then Inside_A_Generic
10583 Subp
: constant Entity_Id
:=
10584 Entity
(Name
(Parent
(N
)));
10586 if Convention
(Subp
) = Convention_Intrinsic
then
10588 ("?subprogram and its formal access "
10589 & "parameters have convention Intrinsic",
10592 ("actual cannot be access attribute", N
);
10598 ("subprogram & has wrong convention", P
, Entity
(P
));
10599 Error_Msg_Sloc
:= Sloc
(Btyp
);
10600 Error_Msg_FE
("\does not match & declared#", P
, Btyp
);
10603 if not Is_Itype
(Btyp
)
10604 and then not Has_Convention_Pragma
(Btyp
)
10607 ("\probable missing pragma Convention for &",
10612 Check_Subtype_Conformant
10613 (New_Id
=> Entity
(P
),
10614 Old_Id
=> Designated_Type
(Btyp
),
10618 if Attr_Id
= Attribute_Unchecked_Access
then
10619 Error_Msg_Name_1
:= Aname
;
10621 ("attribute% cannot be applied to a subprogram", P
);
10623 elsif Aname
= Name_Unrestricted_Access
then
10624 null; -- Nothing to check
10626 -- Check the static accessibility rule of 3.10.2(32).
10627 -- This rule also applies within the private part of an
10628 -- instantiation. This rule does not apply to anonymous
10629 -- access-to-subprogram types in access parameters.
10631 elsif Attr_Id
= Attribute_Access
10632 and then not In_Instance_Body
10634 (Ekind
(Btyp
) = E_Access_Subprogram_Type
10635 or else Is_Local_Anonymous_Access
(Btyp
))
10636 and then Subprogram_Access_Level
(Entity
(P
)) >
10637 Type_Access_Level
(Btyp
)
10640 ("subprogram must not be deeper than access type", P
);
10642 -- Check the restriction of 3.10.2(32) that disallows the
10643 -- access attribute within a generic body when the ultimate
10644 -- ancestor of the type of the attribute is declared outside
10645 -- of the generic unit and the subprogram is declared within
10646 -- that generic unit. This includes any such attribute that
10647 -- occurs within the body of a generic unit that is a child
10648 -- of the generic unit where the subprogram is declared.
10650 -- The rule also prohibits applying the attribute when the
10651 -- access type is a generic formal access type (since the
10652 -- level of the actual type is not known). This restriction
10653 -- does not apply when the attribute type is an anonymous
10654 -- access-to-subprogram type. Note that this check was
10655 -- revised by AI-229, because the original Ada 95 rule
10656 -- was too lax. The original rule only applied when the
10657 -- subprogram was declared within the body of the generic,
10658 -- which allowed the possibility of dangling references).
10659 -- The rule was also too strict in some cases, in that it
10660 -- didn't permit the access to be declared in the generic
10661 -- spec, whereas the revised rule does (as long as it's not
10664 -- There are a couple of subtleties of the test for applying
10665 -- the check that are worth noting. First, we only apply it
10666 -- when the levels of the subprogram and access type are the
10667 -- same (the case where the subprogram is statically deeper
10668 -- was applied above, and the case where the type is deeper
10669 -- is always safe). Second, we want the check to apply
10670 -- within nested generic bodies and generic child unit
10671 -- bodies, but not to apply to an attribute that appears in
10672 -- the generic unit's specification. This is done by testing
10673 -- that the attribute's innermost enclosing generic body is
10674 -- not the same as the innermost generic body enclosing the
10675 -- generic unit where the subprogram is declared (we don't
10676 -- want the check to apply when the access attribute is in
10677 -- the spec and there's some other generic body enclosing
10678 -- generic). Finally, there's no point applying the check
10679 -- when within an instance, because any violations will have
10680 -- been caught by the compilation of the generic unit.
10682 -- We relax this check in Relaxed_RM_Semantics mode for
10683 -- compatibility with legacy code for use by Ada source
10684 -- code analyzers (e.g. CodePeer).
10686 elsif Attr_Id
= Attribute_Access
10687 and then not Relaxed_RM_Semantics
10688 and then not In_Instance
10689 and then Present
(Enclosing_Generic_Unit
(Entity
(P
)))
10690 and then Present
(Enclosing_Generic_Body
(N
))
10691 and then Enclosing_Generic_Body
(N
) /=
10692 Enclosing_Generic_Body
10693 (Enclosing_Generic_Unit
(Entity
(P
)))
10694 and then Subprogram_Access_Level
(Entity
(P
)) =
10695 Type_Access_Level
(Btyp
)
10696 and then Ekind
(Btyp
) /=
10697 E_Anonymous_Access_Subprogram_Type
10698 and then Ekind
(Btyp
) /=
10699 E_Anonymous_Access_Protected_Subprogram_Type
10701 -- The attribute type's ultimate ancestor must be
10702 -- declared within the same generic unit as the
10703 -- subprogram is declared (including within another
10704 -- nested generic unit). The error message is
10705 -- specialized to say "ancestor" for the case where the
10706 -- access type is not its own ancestor, since saying
10707 -- simply "access type" would be very confusing.
10709 if not Declared_Within_Generic_Unit
10711 Enclosing_Generic_Unit
(Entity
(P
)))
10714 ("''Access attribute not allowed in generic body",
10717 if Root_Type
(Btyp
) = Btyp
then
10720 "access type & is declared outside " &
10721 "generic unit (RM 3.10.2(32))", N
, Btyp
);
10724 ("\because ancestor of " &
10725 "access type & is declared outside " &
10726 "generic unit (RM 3.10.2(32))", N
, Btyp
);
10730 ("\move ''Access to private part, or " &
10731 "(Ada 2005) use anonymous access type instead of &",
10734 -- If the ultimate ancestor of the attribute's type is
10735 -- a formal type, then the attribute is illegal because
10736 -- the actual type might be declared at a higher level.
10737 -- The error message is specialized to say "ancestor"
10738 -- for the case where the access type is not its own
10739 -- ancestor, since saying simply "access type" would be
10742 elsif Is_Generic_Type
(Root_Type
(Btyp
)) then
10743 if Root_Type
(Btyp
) = Btyp
then
10745 ("access type must not be a generic formal type",
10749 ("ancestor access type must not be a generic " &
10756 -- If this is a renaming, an inherited operation, or a
10757 -- subprogram instance, use the original entity. This may make
10758 -- the node type-inconsistent, so this transformation can only
10759 -- be done if the node will not be reanalyzed. In particular,
10760 -- if it is within a default expression, the transformation
10761 -- must be delayed until the default subprogram is created for
10762 -- it, when the enclosing subprogram is frozen.
10764 if Is_Entity_Name
(P
)
10765 and then Is_Overloadable
(Entity
(P
))
10766 and then Present
(Alias
(Entity
(P
)))
10767 and then Expander_Active
10770 New_Occurrence_Of
(Alias
(Entity
(P
)), Sloc
(P
)));
10773 elsif Nkind
(P
) = N_Selected_Component
10774 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
10776 -- Protected operation. If operation is overloaded, must
10777 -- disambiguate. Prefix that denotes protected object itself
10778 -- is resolved with its own type.
10780 if Attr_Id
= Attribute_Unchecked_Access
then
10781 Error_Msg_Name_1
:= Aname
;
10783 ("attribute% cannot be applied to protected operation", P
);
10786 Resolve
(Prefix
(P
));
10787 Generate_Reference
(Entity
(Selector_Name
(P
)), P
);
10789 -- Implement check implied by 3.10.2 (18.1/2) : F.all'access is
10790 -- statically illegal if F is an anonymous access to subprogram.
10792 elsif Nkind
(P
) = N_Explicit_Dereference
10793 and then Is_Entity_Name
(Prefix
(P
))
10794 and then Ekind
(Etype
(Entity
(Prefix
(P
)))) =
10795 E_Anonymous_Access_Subprogram_Type
10797 Error_Msg_N
("anonymous access to subprogram "
10798 & "has deeper accessibility than any master", P
);
10800 elsif Is_Overloaded
(P
) then
10802 -- Use the designated type of the context to disambiguate
10803 -- Note that this was not strictly conformant to Ada 95,
10804 -- but was the implementation adopted by most Ada 95 compilers.
10805 -- The use of the context type to resolve an Access attribute
10806 -- reference is now mandated in AI-235 for Ada 2005.
10809 Index
: Interp_Index
;
10813 Get_First_Interp
(P
, Index
, It
);
10814 while Present
(It
.Typ
) loop
10815 if Covers
(Designated_Type
(Typ
), It
.Typ
) then
10816 Resolve
(P
, It
.Typ
);
10820 Get_Next_Interp
(Index
, It
);
10827 -- X'Access is illegal if X denotes a constant and the access type
10828 -- is access-to-variable. Same for 'Unchecked_Access. The rule
10829 -- does not apply to 'Unrestricted_Access. If the reference is a
10830 -- default-initialized aggregate component for a self-referential
10831 -- type the reference is legal.
10833 if not (Ekind
(Btyp
) = E_Access_Subprogram_Type
10834 or else Ekind
(Btyp
) = E_Anonymous_Access_Subprogram_Type
10835 or else (Is_Record_Type
(Btyp
)
10837 Present
(Corresponding_Remote_Type
(Btyp
)))
10838 or else Ekind
(Btyp
) = E_Access_Protected_Subprogram_Type
10839 or else Ekind
(Btyp
)
10840 = E_Anonymous_Access_Protected_Subprogram_Type
10841 or else Is_Access_Constant
(Btyp
)
10842 or else Is_Variable
(P
)
10843 or else Attr_Id
= Attribute_Unrestricted_Access
)
10845 if Is_Entity_Name
(P
)
10846 and then Is_Type
(Entity
(P
))
10848 -- Legality of a self-reference through an access
10849 -- attribute has been verified in Analyze_Access_Attribute.
10853 elsif Comes_From_Source
(N
) then
10854 Error_Msg_F
("access-to-variable designates constant", P
);
10858 Des_Btyp
:= Designated_Type
(Btyp
);
10860 if Ada_Version
>= Ada_2005
10861 and then Is_Incomplete_Type
(Des_Btyp
)
10863 -- Ada 2005 (AI-412): If the (sub)type is a limited view of an
10864 -- imported entity, and the non-limited view is visible, make
10865 -- use of it. If it is an incomplete subtype, use the base type
10868 if From_Limited_With
(Des_Btyp
)
10869 and then Present
(Non_Limited_View
(Des_Btyp
))
10871 Des_Btyp
:= Non_Limited_View
(Des_Btyp
);
10873 elsif Ekind
(Des_Btyp
) = E_Incomplete_Subtype
then
10874 Des_Btyp
:= Etype
(Des_Btyp
);
10878 if (Attr_Id
= Attribute_Access
10880 Attr_Id
= Attribute_Unchecked_Access
)
10881 and then (Ekind
(Btyp
) = E_General_Access_Type
10882 or else Ekind
(Btyp
) = E_Anonymous_Access_Type
)
10884 -- Ada 2005 (AI-230): Check the accessibility of anonymous
10885 -- access types for stand-alone objects, record and array
10886 -- components, and return objects. For a component definition
10887 -- the level is the same of the enclosing composite type.
10889 if Ada_Version
>= Ada_2005
10890 and then (Is_Local_Anonymous_Access
(Btyp
)
10892 -- Handle cases where Btyp is the anonymous access
10893 -- type of an Ada 2012 stand-alone object.
10895 or else Nkind
(Associated_Node_For_Itype
(Btyp
)) =
10896 N_Object_Declaration
)
10898 Object_Access_Level
(P
) > Deepest_Type_Access_Level
(Btyp
)
10899 and then Attr_Id
= Attribute_Access
10901 -- In an instance, this is a runtime check, but one we know
10902 -- will fail, so generate an appropriate warning. As usual,
10903 -- this kind of warning is an error in SPARK mode.
10905 if In_Instance_Body
then
10906 Error_Msg_Warn
:= SPARK_Mode
/= On
;
10908 ("non-local pointer cannot point to local object<<", P
);
10909 Error_Msg_F
("\Program_Error [<<", P
);
10912 Make_Raise_Program_Error
(Loc
,
10913 Reason
=> PE_Accessibility_Check_Failed
));
10914 Set_Etype
(N
, Typ
);
10918 ("non-local pointer cannot point to local object", P
);
10922 if Is_Dependent_Component_Of_Mutable_Object
(P
) then
10924 ("illegal attribute for discriminant-dependent component",
10928 -- Check static matching rule of 3.10.2(27). Nominal subtype
10929 -- of the prefix must statically match the designated type.
10931 Nom_Subt
:= Etype
(P
);
10933 if Is_Constr_Subt_For_U_Nominal
(Nom_Subt
) then
10934 Nom_Subt
:= Base_Type
(Nom_Subt
);
10937 if Is_Tagged_Type
(Designated_Type
(Typ
)) then
10939 -- If the attribute is in the context of an access
10940 -- parameter, then the prefix is allowed to be of
10941 -- the class-wide type (by AI-127).
10943 if Ekind
(Typ
) = E_Anonymous_Access_Type
then
10944 if not Covers
(Designated_Type
(Typ
), Nom_Subt
)
10945 and then not Covers
(Nom_Subt
, Designated_Type
(Typ
))
10951 Desig
:= Designated_Type
(Typ
);
10953 if Is_Class_Wide_Type
(Desig
) then
10954 Desig
:= Etype
(Desig
);
10957 if Is_Anonymous_Tagged_Base
(Nom_Subt
, Desig
) then
10962 ("type of prefix: & not compatible",
10965 ("\with &, the expected designated type",
10966 P
, Designated_Type
(Typ
));
10971 elsif not Covers
(Designated_Type
(Typ
), Nom_Subt
)
10973 (not Is_Class_Wide_Type
(Designated_Type
(Typ
))
10974 and then Is_Class_Wide_Type
(Nom_Subt
))
10977 ("type of prefix: & is not covered", P
, Nom_Subt
);
10979 ("\by &, the expected designated type" &
10980 " (RM 3.10.2 (27))", P
, Designated_Type
(Typ
));
10983 if Is_Class_Wide_Type
(Designated_Type
(Typ
))
10984 and then Has_Discriminants
(Etype
(Designated_Type
(Typ
)))
10985 and then Is_Constrained
(Etype
(Designated_Type
(Typ
)))
10986 and then Designated_Type
(Typ
) /= Nom_Subt
10988 Apply_Discriminant_Check
10989 (N
, Etype
(Designated_Type
(Typ
)));
10992 -- Ada 2005 (AI-363): Require static matching when designated
10993 -- type has discriminants and a constrained partial view, since
10994 -- in general objects of such types are mutable, so we can't
10995 -- allow the access value to designate a constrained object
10996 -- (because access values must be assumed to designate mutable
10997 -- objects when designated type does not impose a constraint).
10999 elsif Subtypes_Statically_Match
(Des_Btyp
, Nom_Subt
) then
11002 elsif Has_Discriminants
(Designated_Type
(Typ
))
11003 and then not Is_Constrained
(Des_Btyp
)
11005 (Ada_Version
< Ada_2005
11007 not Object_Type_Has_Constrained_Partial_View
11008 (Typ
=> Designated_Type
(Base_Type
(Typ
)),
11009 Scop
=> Current_Scope
))
11015 ("object subtype must statically match "
11016 & "designated subtype", P
);
11018 if Is_Entity_Name
(P
)
11019 and then Is_Array_Type
(Designated_Type
(Typ
))
11022 D
: constant Node_Id
:= Declaration_Node
(Entity
(P
));
11025 ("aliased object has explicit bounds??", D
);
11027 ("\declare without bounds (and with explicit "
11028 & "initialization)??", D
);
11030 ("\for use with unconstrained access??", D
);
11035 -- Check the static accessibility rule of 3.10.2(28). Note that
11036 -- this check is not performed for the case of an anonymous
11037 -- access type, since the access attribute is always legal
11038 -- in such a context.
11040 if Attr_Id
/= Attribute_Unchecked_Access
11041 and then Ekind
(Btyp
) = E_General_Access_Type
11043 Object_Access_Level
(P
) > Deepest_Type_Access_Level
(Btyp
)
11045 Accessibility_Message
;
11050 if Ekind_In
(Btyp
, E_Access_Protected_Subprogram_Type
,
11051 E_Anonymous_Access_Protected_Subprogram_Type
)
11053 if Is_Entity_Name
(P
)
11054 and then not Is_Protected_Type
(Scope
(Entity
(P
)))
11056 Error_Msg_F
("context requires a protected subprogram", P
);
11058 -- Check accessibility of protected object against that of the
11059 -- access type, but only on user code, because the expander
11060 -- creates access references for handlers. If the context is an
11061 -- anonymous_access_to_protected, there are no accessibility
11062 -- checks either. Omit check entirely for Unrestricted_Access.
11064 elsif Object_Access_Level
(P
) > Deepest_Type_Access_Level
(Btyp
)
11065 and then Comes_From_Source
(N
)
11066 and then Ekind
(Btyp
) = E_Access_Protected_Subprogram_Type
11067 and then Attr_Id
/= Attribute_Unrestricted_Access
11069 Accessibility_Message
;
11072 -- AI05-0225: If the context is not an access to protected
11073 -- function, the prefix must be a variable, given that it may
11074 -- be used subsequently in a protected call.
11076 elsif Nkind
(P
) = N_Selected_Component
11077 and then not Is_Variable
(Prefix
(P
))
11078 and then Ekind
(Entity
(Selector_Name
(P
))) /= E_Function
11081 ("target object of access to protected procedure "
11082 & "must be variable", N
);
11084 elsif Is_Entity_Name
(P
) then
11085 Check_Internal_Protected_Use
(N
, Entity
(P
));
11088 elsif Ekind_In
(Btyp
, E_Access_Subprogram_Type
,
11089 E_Anonymous_Access_Subprogram_Type
)
11090 and then Ekind
(Etype
(N
)) = E_Access_Protected_Subprogram_Type
11092 Error_Msg_F
("context requires a non-protected subprogram", P
);
11095 -- The context cannot be a pool-specific type, but this is a
11096 -- legality rule, not a resolution rule, so it must be checked
11097 -- separately, after possibly disambiguation (see AI-245).
11099 if Ekind
(Btyp
) = E_Access_Type
11100 and then Attr_Id
/= Attribute_Unrestricted_Access
11102 Wrong_Type
(N
, Typ
);
11105 -- The context may be a constrained access type (however ill-
11106 -- advised such subtypes might be) so in order to generate a
11107 -- constraint check when needed set the type of the attribute
11108 -- reference to the base type of the context.
11110 Set_Etype
(N
, Btyp
);
11112 -- Check for incorrect atomic/volatile reference (RM C.6(12))
11114 if Attr_Id
/= Attribute_Unrestricted_Access
then
11115 if Is_Atomic_Object
(P
)
11116 and then not Is_Atomic
(Designated_Type
(Typ
))
11119 ("access to atomic object cannot yield access-to-" &
11120 "non-atomic type", P
);
11122 elsif Is_Volatile_Object
(P
)
11123 and then not Is_Volatile
(Designated_Type
(Typ
))
11126 ("access to volatile object cannot yield access-to-" &
11127 "non-volatile type", P
);
11131 -- Check for unrestricted access where expected type is a thin
11132 -- pointer to an unconstrained array.
11134 if Non_Aliased_Prefix
(N
)
11135 and then Has_Size_Clause
(Typ
)
11136 and then RM_Size
(Typ
) = System_Address_Size
11139 DT
: constant Entity_Id
:= Designated_Type
(Typ
);
11141 if Is_Array_Type
(DT
) and then not Is_Constrained
(DT
) then
11143 ("illegal use of Unrestricted_Access attribute", P
);
11145 ("\attempt to generate thin pointer to unaliased "
11151 -- Mark that address of entity is taken in case of
11152 -- 'Unrestricted_Access or in case of a subprogram.
11154 if Is_Entity_Name
(P
)
11155 and then (Attr_Id
= Attribute_Unrestricted_Access
11156 or else Is_Subprogram
(Entity
(P
)))
11158 Set_Address_Taken
(Entity
(P
));
11161 -- Deal with possible elaboration check
11163 if Is_Entity_Name
(P
) and then Is_Subprogram
(Entity
(P
)) then
11165 Subp_Id
: constant Entity_Id
:= Entity
(P
);
11166 Scop
: constant Entity_Id
:= Scope
(Subp_Id
);
11167 Subp_Decl
: constant Node_Id
:=
11168 Unit_Declaration_Node
(Subp_Id
);
11169 Flag_Id
: Entity_Id
;
11170 Subp_Body
: Node_Id
;
11172 -- If the access has been taken and the body of the subprogram
11173 -- has not been see yet, indirect calls must be protected with
11174 -- elaboration checks. We have the proper elaboration machinery
11175 -- for subprograms declared in packages, but within a block or
11176 -- a subprogram the body will appear in the same declarative
11177 -- part, and we must insert a check in the eventual body itself
11178 -- using the elaboration flag that we generate now. The check
11179 -- is then inserted when the body is expanded. This processing
11180 -- is not needed for a stand alone expression function because
11181 -- the internally generated spec and body are always inserted
11182 -- as a pair in the same declarative list.
11186 and then Comes_From_Source
(Subp_Id
)
11187 and then Comes_From_Source
(N
)
11188 and then In_Open_Scopes
(Scop
)
11189 and then Ekind_In
(Scop
, E_Block
, E_Procedure
, E_Function
)
11190 and then not Has_Completion
(Subp_Id
)
11191 and then No
(Elaboration_Entity
(Subp_Id
))
11192 and then Nkind
(Subp_Decl
) = N_Subprogram_Declaration
11193 and then Nkind
(Original_Node
(Subp_Decl
)) /=
11194 N_Expression_Function
11196 -- Create elaboration variable for it
11198 Flag_Id
:= Make_Temporary
(Loc
, 'E');
11199 Set_Elaboration_Entity
(Subp_Id
, Flag_Id
);
11200 Set_Is_Frozen
(Flag_Id
);
11202 -- Insert declaration for flag after subprogram
11203 -- declaration. Note that attribute reference may
11204 -- appear within a nested scope.
11206 Insert_After_And_Analyze
(Subp_Decl
,
11207 Make_Object_Declaration
(Loc
,
11208 Defining_Identifier
=> Flag_Id
,
11209 Object_Definition
=>
11210 New_Occurrence_Of
(Standard_Short_Integer
, Loc
),
11212 Make_Integer_Literal
(Loc
, Uint_0
)));
11215 -- Taking the 'Access of an expression function freezes its
11216 -- expression (RM 13.14 10.3/3). This does not apply to an
11217 -- expression function that acts as a completion because the
11218 -- generated body is immediately analyzed and the expression
11219 -- is automatically frozen.
11221 if Is_Expression_Function
(Subp_Id
)
11222 and then Present
(Corresponding_Body
(Subp_Decl
))
11225 Unit_Declaration_Node
(Corresponding_Body
(Subp_Decl
));
11227 -- The body has already been analyzed when the expression
11228 -- function acts as a completion.
11230 if Analyzed
(Subp_Body
) then
11233 -- Attribute 'Access may appear within the generated body
11234 -- of the expression function subject to the attribute:
11236 -- function F is (... F'Access ...);
11238 -- If the expression function is on the scope stack, then
11239 -- the body is currently being analyzed. Do not reanalyze
11240 -- it because this will lead to infinite recursion.
11242 elsif In_Open_Scopes
(Subp_Id
) then
11245 -- If reference to the expression function appears in an
11246 -- inner scope, for example as an actual in an instance,
11247 -- this is not a freeze point either.
11249 elsif Scope
(Subp_Id
) /= Current_Scope
then
11252 -- Analyze the body of the expression function to freeze
11253 -- the expression. This takes care of the case where the
11254 -- 'Access is part of dispatch table initialization and
11255 -- the generated body of the expression function has not
11256 -- been analyzed yet.
11259 Analyze
(Subp_Body
);
11269 -- Deal with resolving the type for Address attribute, overloading
11270 -- is not permitted here, since there is no context to resolve it.
11272 when Attribute_Address
11273 | Attribute_Code_Address
11275 -- To be safe, assume that if the address of a variable is taken,
11276 -- it may be modified via this address, so note modification.
11278 if Is_Variable
(P
) then
11279 Note_Possible_Modification
(P
, Sure
=> False);
11282 if Nkind
(P
) in N_Subexpr
11283 and then Is_Overloaded
(P
)
11285 Get_First_Interp
(P
, Index
, It
);
11286 Get_Next_Interp
(Index
, It
);
11288 if Present
(It
.Nam
) then
11289 Error_Msg_Name_1
:= Aname
;
11291 ("prefix of % attribute cannot be overloaded", P
);
11295 if not Is_Entity_Name
(P
)
11296 or else not Is_Overloadable
(Entity
(P
))
11298 if not Is_Task_Type
(Etype
(P
))
11299 or else Nkind
(P
) = N_Explicit_Dereference
11305 -- If this is the name of a derived subprogram, or that of a
11306 -- generic actual, the address is that of the original entity.
11308 if Is_Entity_Name
(P
)
11309 and then Is_Overloadable
(Entity
(P
))
11310 and then Present
(Alias
(Entity
(P
)))
11313 New_Occurrence_Of
(Alias
(Entity
(P
)), Sloc
(P
)));
11316 if Is_Entity_Name
(P
) then
11317 Set_Address_Taken
(Entity
(P
));
11320 if Nkind
(P
) = N_Slice
then
11322 -- Arr (X .. Y)'address is identical to Arr (X)'address,
11323 -- even if the array is packed and the slice itself is not
11324 -- addressable. Transform the prefix into an indexed component.
11326 -- Note that the transformation is safe only if we know that
11327 -- the slice is non-null. That is because a null slice can have
11328 -- an out of bounds index value.
11330 -- Right now, gigi blows up if given 'Address on a slice as a
11331 -- result of some incorrect freeze nodes generated by the front
11332 -- end, and this covers up that bug in one case, but the bug is
11333 -- likely still there in the cases not handled by this code ???
11335 -- It's not clear what 'Address *should* return for a null
11336 -- slice with out of bounds indexes, this might be worth an ARG
11339 -- One approach would be to do a length check unconditionally,
11340 -- and then do the transformation below unconditionally, but
11341 -- analyze with checks off, avoiding the problem of the out of
11342 -- bounds index. This approach would interpret the address of
11343 -- an out of bounds null slice as being the address where the
11344 -- array element would be if there was one, which is probably
11345 -- as reasonable an interpretation as any ???
11348 Loc
: constant Source_Ptr
:= Sloc
(P
);
11349 D
: constant Node_Id
:= Discrete_Range
(P
);
11353 if Is_Entity_Name
(D
)
11356 (Type_Low_Bound
(Entity
(D
)),
11357 Type_High_Bound
(Entity
(D
)))
11360 Make_Attribute_Reference
(Loc
,
11361 Prefix
=> (New_Occurrence_Of
(Entity
(D
), Loc
)),
11362 Attribute_Name
=> Name_First
);
11364 elsif Nkind
(D
) = N_Range
11365 and then Not_Null_Range
(Low_Bound
(D
), High_Bound
(D
))
11367 Lo
:= Low_Bound
(D
);
11373 if Present
(Lo
) then
11375 Make_Indexed_Component
(Loc
,
11376 Prefix
=> Relocate_Node
(Prefix
(P
)),
11377 Expressions
=> New_List
(Lo
)));
11379 Analyze_And_Resolve
(P
);
11388 -- Prefix of Body_Version attribute can be a subprogram name which
11389 -- must not be resolved, since this is not a call.
11391 when Attribute_Body_Version
=>
11398 -- Prefix of Caller attribute is an entry name which must not
11399 -- be resolved, since this is definitely not an entry call.
11401 when Attribute_Caller
=>
11408 -- Shares processing with Address attribute
11414 -- If the prefix of the Count attribute is an entry name it must not
11415 -- be resolved, since this is definitely not an entry call. However,
11416 -- if it is an element of an entry family, the index itself may
11417 -- have to be resolved because it can be a general expression.
11419 when Attribute_Count
=>
11420 if Nkind
(P
) = N_Indexed_Component
11421 and then Is_Entity_Name
(Prefix
(P
))
11424 Indx
: constant Node_Id
:= First
(Expressions
(P
));
11425 Fam
: constant Entity_Id
:= Entity
(Prefix
(P
));
11427 Resolve
(Indx
, Entry_Index_Type
(Fam
));
11428 Apply_Range_Check
(Indx
, Entry_Index_Type
(Fam
));
11436 -- Prefix of the Elaborated attribute is a subprogram name which
11437 -- must not be resolved, since this is definitely not a call. Note
11438 -- that it is a library unit, so it cannot be overloaded here.
11440 when Attribute_Elaborated
=>
11447 -- Prefix of Enabled attribute is a check name, which must be treated
11448 -- specially and not touched by Resolve.
11450 when Attribute_Enabled
=>
11457 -- Do not resolve the prefix of Loop_Entry, instead wait until the
11458 -- attribute has been expanded (see Expand_Loop_Entry_Attributes).
11459 -- The delay ensures that any generated checks or temporaries are
11460 -- inserted before the relocated prefix.
11462 when Attribute_Loop_Entry
=>
11465 --------------------
11466 -- Mechanism_Code --
11467 --------------------
11469 -- Prefix of the Mechanism_Code attribute is a function name
11470 -- which must not be resolved. Should we check for overloaded ???
11472 when Attribute_Mechanism_Code
=>
11479 -- Most processing is done in sem_dist, after determining the
11480 -- context type. Node is rewritten as a conversion to a runtime call.
11482 when Attribute_Partition_ID
=>
11483 Process_Partition_Id
(N
);
11490 when Attribute_Pool_Address
=>
11497 -- We replace the Range attribute node with a range expression whose
11498 -- bounds are the 'First and 'Last attributes applied to the same
11499 -- prefix. The reason that we do this transformation here instead of
11500 -- in the expander is that it simplifies other parts of the semantic
11501 -- analysis which assume that the Range has been replaced; thus it
11502 -- must be done even when in semantic-only mode (note that the RM
11503 -- specifically mentions this equivalence, we take care that the
11504 -- prefix is only evaluated once).
11506 when Attribute_Range
=> Range_Attribute
: declare
11512 if not Is_Entity_Name
(P
) or else not Is_Type
(Entity
(P
)) then
11516 Dims
:= Expressions
(N
);
11519 Make_Attribute_Reference
(Loc
,
11520 Prefix
=> Duplicate_Subexpr
(P
, Name_Req
=> True),
11521 Attribute_Name
=> Name_Last
,
11522 Expressions
=> Dims
);
11525 Make_Attribute_Reference
(Loc
,
11527 Attribute_Name
=> Name_First
,
11528 Expressions
=> (Dims
));
11530 -- Do not share the dimension indicator, if present. Even though
11531 -- it is a static constant, its source location may be modified
11532 -- when printing expanded code and node sharing will lead to chaos
11535 if Present
(Dims
) then
11536 Set_Expressions
(LB
, New_List
(New_Copy_Tree
(First
(Dims
))));
11539 -- If the original was marked as Must_Not_Freeze (see code in
11540 -- Sem_Ch3.Make_Index), then make sure the rewriting does not
11543 if Must_Not_Freeze
(N
) then
11544 Set_Must_Not_Freeze
(HB
);
11545 Set_Must_Not_Freeze
(LB
);
11546 Set_Must_Not_Freeze
(Prefix
(HB
));
11547 Set_Must_Not_Freeze
(Prefix
(LB
));
11550 if Raises_Constraint_Error
(Prefix
(N
)) then
11552 -- Preserve Sloc of prefix in the new bounds, so that the
11553 -- posted warning can be removed if we are within unreachable
11556 Set_Sloc
(LB
, Sloc
(Prefix
(N
)));
11557 Set_Sloc
(HB
, Sloc
(Prefix
(N
)));
11560 Rewrite
(N
, Make_Range
(Loc
, LB
, HB
));
11561 Analyze_And_Resolve
(N
, Typ
);
11563 -- Ensure that the expanded range does not have side effects
11565 Force_Evaluation
(LB
);
11566 Force_Evaluation
(HB
);
11568 -- Normally after resolving attribute nodes, Eval_Attribute
11569 -- is called to do any possible static evaluation of the node.
11570 -- However, here since the Range attribute has just been
11571 -- transformed into a range expression it is no longer an
11572 -- attribute node and therefore the call needs to be avoided
11573 -- and is accomplished by simply returning from the procedure.
11576 end Range_Attribute
;
11582 -- We will only come here during the prescan of a spec expression
11583 -- containing a Result attribute. In that case the proper Etype has
11584 -- already been set, and nothing more needs to be done here.
11586 when Attribute_Result
=>
11589 ----------------------
11590 -- Unchecked_Access --
11591 ----------------------
11593 -- Processing is shared with Access
11595 -------------------------
11596 -- Unrestricted_Access --
11597 -------------------------
11599 -- Processing is shared with Access
11605 -- Resolve aggregate components in component associations
11607 when Attribute_Update
=> Update
: declare
11608 Aggr
: constant Node_Id
:= First
(Expressions
(N
));
11609 Typ
: constant Entity_Id
:= Etype
(Prefix
(N
));
11615 -- Set the Etype of the aggregate to that of the prefix, even
11616 -- though the aggregate may not be a proper representation of a
11617 -- value of the type (missing or duplicated associations, etc.)
11618 -- Complete resolution of the prefix. Note that in Ada 2012 it
11619 -- can be a qualified expression that is e.g. an aggregate.
11621 Set_Etype
(Aggr
, Typ
);
11622 Resolve
(Prefix
(N
), Typ
);
11624 -- For an array type, resolve expressions with the component type
11625 -- of the array, and apply constraint checks when needed.
11627 if Is_Array_Type
(Typ
) then
11628 Assoc
:= First
(Component_Associations
(Aggr
));
11629 while Present
(Assoc
) loop
11630 Expr
:= Expression
(Assoc
);
11631 Resolve
(Expr
, Component_Type
(Typ
));
11633 -- For scalar array components set Do_Range_Check when
11634 -- needed. Constraint checking on non-scalar components
11635 -- is done in Aggregate_Constraint_Checks, but only if
11636 -- full analysis is enabled. These flags are not set in
11637 -- the front-end in GnatProve mode.
11639 if Is_Scalar_Type
(Component_Type
(Typ
))
11640 and then not Is_OK_Static_Expression
(Expr
)
11641 and then not Range_Checks_Suppressed
(Component_Type
(Typ
))
11643 if Is_Entity_Name
(Expr
)
11644 and then Etype
(Expr
) = Component_Type
(Typ
)
11649 Set_Do_Range_Check
(Expr
);
11653 -- The choices in the association are static constants,
11654 -- or static aggregates each of whose components belongs
11655 -- to the proper index type. However, they must also
11656 -- belong to the index subtype (s) of the prefix, which
11657 -- may be a subtype (e.g. given by a slice).
11659 -- Choices may also be identifiers with no staticness
11660 -- requirements, in which case they must resolve to the
11669 C
:= First
(Choices
(Assoc
));
11670 while Present
(C
) loop
11671 Indx
:= First_Index
(Etype
(Prefix
(N
)));
11673 if Nkind
(C
) /= N_Aggregate
then
11674 Analyze_And_Resolve
(C
, Etype
(Indx
));
11675 Apply_Constraint_Check
(C
, Etype
(Indx
));
11676 Check_Non_Static_Context
(C
);
11679 C_E
:= First
(Expressions
(C
));
11680 while Present
(C_E
) loop
11681 Analyze_And_Resolve
(C_E
, Etype
(Indx
));
11682 Apply_Constraint_Check
(C_E
, Etype
(Indx
));
11683 Check_Non_Static_Context
(C_E
);
11697 -- For a record type, use type of each component, which is
11698 -- recorded during analysis.
11701 Assoc
:= First
(Component_Associations
(Aggr
));
11702 while Present
(Assoc
) loop
11703 Comp
:= First
(Choices
(Assoc
));
11704 Expr
:= Expression
(Assoc
);
11706 if Nkind
(Comp
) /= N_Others_Choice
11707 and then not Error_Posted
(Comp
)
11709 Resolve
(Expr
, Etype
(Entity
(Comp
)));
11711 if Is_Scalar_Type
(Etype
(Entity
(Comp
)))
11712 and then not Is_OK_Static_Expression
(Expr
)
11713 and then not Range_Checks_Suppressed
11714 (Etype
(Entity
(Comp
)))
11716 Set_Do_Range_Check
(Expr
);
11729 -- Apply range check. Note that we did not do this during the
11730 -- analysis phase, since we wanted Eval_Attribute to have a
11731 -- chance at finding an illegal out of range value.
11733 when Attribute_Val
=>
11735 -- Note that we do our own Eval_Attribute call here rather than
11736 -- use the common one, because we need to do processing after
11737 -- the call, as per above comment.
11739 Eval_Attribute
(N
);
11741 -- Eval_Attribute may replace the node with a raise CE, or
11742 -- fold it to a constant. Obviously we only apply a scalar
11743 -- range check if this did not happen.
11745 if Nkind
(N
) = N_Attribute_Reference
11746 and then Attribute_Name
(N
) = Name_Val
11748 Apply_Scalar_Range_Check
(First
(Expressions
(N
)), Btyp
);
11757 -- Prefix of Version attribute can be a subprogram name which
11758 -- must not be resolved, since this is not a call.
11760 when Attribute_Version
=>
11763 ----------------------
11764 -- Other Attributes --
11765 ----------------------
11767 -- For other attributes, resolve prefix unless it is a type. If
11768 -- the attribute reference itself is a type name ('Base and 'Class)
11769 -- then this is only legal within a task or protected record.
11772 if not Is_Entity_Name
(P
) or else not Is_Type
(Entity
(P
)) then
11776 -- If the attribute reference itself is a type name ('Base,
11777 -- 'Class) then this is only legal within a task or protected
11778 -- record. What is this all about ???
11780 if Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
)) then
11781 if Is_Concurrent_Type
(Entity
(N
))
11782 and then In_Open_Scopes
(Entity
(P
))
11787 ("invalid use of subtype name in expression or call", N
);
11791 -- For attributes whose argument may be a string, complete
11792 -- resolution of argument now. This avoids premature expansion
11793 -- (and the creation of transient scopes) before the attribute
11794 -- reference is resolved.
11797 when Attribute_Value
=>
11798 Resolve
(First
(Expressions
(N
)), Standard_String
);
11800 when Attribute_Wide_Value
=>
11801 Resolve
(First
(Expressions
(N
)), Standard_Wide_String
);
11803 when Attribute_Wide_Wide_Value
=>
11804 Resolve
(First
(Expressions
(N
)), Standard_Wide_Wide_String
);
11806 when others => null;
11809 -- If the prefix of the attribute is a class-wide type then it
11810 -- will be expanded into a dispatching call to a predefined
11811 -- primitive. Therefore we must check for potential violation
11812 -- of such restriction.
11814 if Is_Class_Wide_Type
(Etype
(P
)) then
11815 Check_Restriction
(No_Dispatching_Calls
, N
);
11819 -- Normally the Freezing is done by Resolve but sometimes the Prefix
11820 -- is not resolved, in which case the freezing must be done now.
11822 -- For an elaboration check on a subprogram, we do not freeze its type.
11823 -- It may be declared in an unrelated scope, in particular in the case
11824 -- of a generic function whose type may remain unelaborated.
11826 if Attr_Id
= Attribute_Elaborated
then
11830 Freeze_Expression
(P
);
11833 -- Finally perform static evaluation on the attribute reference
11835 Analyze_Dimension
(N
);
11836 Eval_Attribute
(N
);
11837 end Resolve_Attribute
;
11839 ------------------------
11840 -- Set_Boolean_Result --
11841 ------------------------
11843 procedure Set_Boolean_Result
(N
: Node_Id
; B
: Boolean) is
11844 Loc
: constant Source_Ptr
:= Sloc
(N
);
11847 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
11849 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
11851 end Set_Boolean_Result
;
11853 -------------------------------
11854 -- Statically_Denotes_Object --
11855 -------------------------------
11857 function Statically_Denotes_Object
(N
: Node_Id
) return Boolean is
11861 if Is_Entity_Name
(N
) then
11864 elsif Nkind
(N
) = N_Selected_Component
11865 and then Statically_Denotes_Object
(Prefix
(N
))
11866 and then Present
(Entity
(Selector_Name
(N
)))
11869 Sel_Id
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
11870 Comp_Decl
: constant Node_Id
:= Parent
(Sel_Id
);
11873 if Depends_On_Discriminant
(Sel_Id
) then
11876 elsif Nkind
(Parent
(Parent
(Comp_Decl
))) = N_Variant
then
11884 elsif Nkind
(N
) = N_Indexed_Component
11885 and then Statically_Denotes_Object
(Prefix
(N
))
11886 and then Is_Constrained
(Etype
(Prefix
(N
)))
11888 Indx
:= First
(Expressions
(N
));
11889 while Present
(Indx
) loop
11890 if not Compile_Time_Known_Value
(Indx
)
11891 or else Do_Range_Check
(Indx
)
11904 end Statically_Denotes_Object
;
11906 --------------------------------
11907 -- Stream_Attribute_Available --
11908 --------------------------------
11910 function Stream_Attribute_Available
11912 Nam
: TSS_Name_Type
;
11913 Partial_View
: Node_Id
:= Empty
) return Boolean
11915 Etyp
: Entity_Id
:= Typ
;
11917 -- Start of processing for Stream_Attribute_Available
11920 -- We need some comments in this body ???
11922 if Has_Stream_Attribute_Definition
(Typ
, Nam
) then
11926 if Is_Class_Wide_Type
(Typ
) then
11927 return not Is_Limited_Type
(Typ
)
11928 or else Stream_Attribute_Available
(Etype
(Typ
), Nam
);
11931 if Nam
= TSS_Stream_Input
11932 and then Is_Abstract_Type
(Typ
)
11933 and then not Is_Class_Wide_Type
(Typ
)
11938 if not (Is_Limited_Type
(Typ
)
11939 or else (Present
(Partial_View
)
11940 and then Is_Limited_Type
(Partial_View
)))
11945 -- In Ada 2005, Input can invoke Read, and Output can invoke Write
11947 if Nam
= TSS_Stream_Input
11948 and then Ada_Version
>= Ada_2005
11949 and then Stream_Attribute_Available
(Etyp
, TSS_Stream_Read
)
11953 elsif Nam
= TSS_Stream_Output
11954 and then Ada_Version
>= Ada_2005
11955 and then Stream_Attribute_Available
(Etyp
, TSS_Stream_Write
)
11960 -- Case of Read and Write: check for attribute definition clause that
11961 -- applies to an ancestor type.
11963 while Etype
(Etyp
) /= Etyp
loop
11964 Etyp
:= Etype
(Etyp
);
11966 if Has_Stream_Attribute_Definition
(Etyp
, Nam
) then
11971 if Ada_Version
< Ada_2005
then
11973 -- In Ada 95 mode, also consider a non-visible definition
11976 Btyp
: constant Entity_Id
:= Implementation_Base_Type
(Typ
);
11979 and then Stream_Attribute_Available
11980 (Btyp
, Nam
, Partial_View
=> Typ
);
11985 end Stream_Attribute_Available
;