1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME COMPONENTS --
5 -- A D A . N U M E R I C S . A U X --
8 -- (Apple OS X Version) --
10 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 3, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. --
19 -- As a special exception under Section 7 of GPL version 3, you are granted --
20 -- additional permissions described in the GCC Runtime Library Exception, --
21 -- version 3.1, as published by the Free Software Foundation. --
23 -- You should have received a copy of the GNU General Public License and --
24 -- a copy of the GCC Runtime Library Exception along with this program; --
25 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
26 -- <http://www.gnu.org/licenses/>. --
28 -- GNAT was originally developed by the GNAT team at New York University. --
29 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 ------------------------------------------------------------------------------
33 -- This version is for use on OS X. It uses the normal Unix math functions,
34 -- except for sine/cosine which have been implemented directly in Ada to get
35 -- the required accuracy.
37 package Ada
.Numerics
.Aux
is
40 pragma Linker_Options
("-lm");
42 type Double
is new Long_Float;
43 -- Type Double is the type used to call the C routines
45 -- The following functions have been implemented in Ada, since
46 -- the OS X math library didn't meet accuracy requirements for
47 -- argument reduction. The implementation here has been tailored
48 -- to match Ada strict mode Numerics requirements while maintaining
49 -- maximum efficiency.
50 function Sin
(X
: Double
) return Double
;
53 function Cos
(X
: Double
) return Double
;
56 -- We import these functions directly from C. Note that we label them
57 -- all as pure functions, because indeed all of them are in fact pure.
59 function Tan
(X
: Double
) return Double
;
60 pragma Import
(C
, Tan
, "tan");
61 pragma Pure_Function
(Tan
);
63 function Exp
(X
: Double
) return Double
;
64 pragma Import
(C
, Exp
, "exp");
65 pragma Pure_Function
(Exp
);
67 function Sqrt
(X
: Double
) return Double
;
68 pragma Import
(C
, Sqrt
, "sqrt");
69 pragma Pure_Function
(Sqrt
);
71 function Log
(X
: Double
) return Double
;
72 pragma Import
(C
, Log
, "log");
73 pragma Pure_Function
(Log
);
75 function Acos
(X
: Double
) return Double
;
76 pragma Import
(C
, Acos
, "acos");
77 pragma Pure_Function
(Acos
);
79 function Asin
(X
: Double
) return Double
;
80 pragma Import
(C
, Asin
, "asin");
81 pragma Pure_Function
(Asin
);
83 function Atan
(X
: Double
) return Double
;
84 pragma Import
(C
, Atan
, "atan");
85 pragma Pure_Function
(Atan
);
87 function Sinh
(X
: Double
) return Double
;
88 pragma Import
(C
, Sinh
, "sinh");
89 pragma Pure_Function
(Sinh
);
91 function Cosh
(X
: Double
) return Double
;
92 pragma Import
(C
, Cosh
, "cosh");
93 pragma Pure_Function
(Cosh
);
95 function Tanh
(X
: Double
) return Double
;
96 pragma Import
(C
, Tanh
, "tanh");
97 pragma Pure_Function
(Tanh
);
99 function Pow
(X
, Y
: Double
) return Double
;
100 pragma Import
(C
, Pow
, "pow");
101 pragma Pure_Function
(Pow
);
103 end Ada
.Numerics
.Aux
;