1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
89 #include "coretypes.h"
95 #include "double-int.h"
102 #include "fold-const.h"
104 #include "hard-reg-set.h"
105 #include "function.h"
106 #include "dominance.h"
108 #include "basic-block.h"
109 #include "tree-ssa-alias.h"
110 #include "internal-fn.h"
111 #include "gimple-fold.h"
112 #include "gimple-expr.h"
115 #include "gimple-iterator.h"
116 #include "gimplify.h"
117 #include "gimplify-me.h"
118 #include "stor-layout.h"
119 #include "gimple-ssa.h"
120 #include "tree-cfg.h"
121 #include "tree-phinodes.h"
122 #include "ssa-iterators.h"
123 #include "stringpool.h"
124 #include "tree-ssanames.h"
127 #include "statistics.h"
129 #include "fixed-value.h"
130 #include "insn-config.h"
135 #include "emit-rtl.h"
139 #include "tree-dfa.h"
140 #include "tree-ssa.h"
141 #include "tree-pass.h"
142 #include "alloc-pool.h"
144 #include "gimple-pretty-print.h"
145 #include "builtins.h"
148 /* FIXME: RTL headers have to be included here for optabs. */
149 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
150 #include "expr.h" /* Because optabs.h wants sepops. */
151 #include "insn-codes.h"
154 /* This structure represents one basic block that either computes a
155 division, or is a common dominator for basic block that compute a
158 /* The basic block represented by this structure. */
161 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
165 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
166 was inserted in BB. */
167 gimple recip_def_stmt
;
169 /* Pointer to a list of "struct occurrence"s for blocks dominated
171 struct occurrence
*children
;
173 /* Pointer to the next "struct occurrence"s in the list of blocks
174 sharing a common dominator. */
175 struct occurrence
*next
;
177 /* The number of divisions that are in BB before compute_merit. The
178 number of divisions that are in BB or post-dominate it after
182 /* True if the basic block has a division, false if it is a common
183 dominator for basic blocks that do. If it is false and trapping
184 math is active, BB is not a candidate for inserting a reciprocal. */
185 bool bb_has_division
;
190 /* Number of 1.0/X ops inserted. */
193 /* Number of 1.0/FUNC ops inserted. */
199 /* Number of cexpi calls inserted. */
205 /* Number of hand-written 16-bit nop / bswaps found. */
208 /* Number of hand-written 32-bit nop / bswaps found. */
211 /* Number of hand-written 64-bit nop / bswaps found. */
213 } nop_stats
, bswap_stats
;
217 /* Number of widening multiplication ops inserted. */
218 int widen_mults_inserted
;
220 /* Number of integer multiply-and-accumulate ops inserted. */
223 /* Number of fp fused multiply-add ops inserted. */
227 /* The instance of "struct occurrence" representing the highest
228 interesting block in the dominator tree. */
229 static struct occurrence
*occ_head
;
231 /* Allocation pool for getting instances of "struct occurrence". */
232 static alloc_pool occ_pool
;
236 /* Allocate and return a new struct occurrence for basic block BB, and
237 whose children list is headed by CHILDREN. */
238 static struct occurrence
*
239 occ_new (basic_block bb
, struct occurrence
*children
)
241 struct occurrence
*occ
;
243 bb
->aux
= occ
= (struct occurrence
*) pool_alloc (occ_pool
);
244 memset (occ
, 0, sizeof (struct occurrence
));
247 occ
->children
= children
;
252 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
253 list of "struct occurrence"s, one per basic block, having IDOM as
254 their common dominator.
256 We try to insert NEW_OCC as deep as possible in the tree, and we also
257 insert any other block that is a common dominator for BB and one
258 block already in the tree. */
261 insert_bb (struct occurrence
*new_occ
, basic_block idom
,
262 struct occurrence
**p_head
)
264 struct occurrence
*occ
, **p_occ
;
266 for (p_occ
= p_head
; (occ
= *p_occ
) != NULL
; )
268 basic_block bb
= new_occ
->bb
, occ_bb
= occ
->bb
;
269 basic_block dom
= nearest_common_dominator (CDI_DOMINATORS
, occ_bb
, bb
);
272 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
275 occ
->next
= new_occ
->children
;
276 new_occ
->children
= occ
;
278 /* Try the next block (it may as well be dominated by BB). */
281 else if (dom
== occ_bb
)
283 /* OCC_BB dominates BB. Tail recurse to look deeper. */
284 insert_bb (new_occ
, dom
, &occ
->children
);
288 else if (dom
!= idom
)
290 gcc_assert (!dom
->aux
);
292 /* There is a dominator between IDOM and BB, add it and make
293 two children out of NEW_OCC and OCC. First, remove OCC from
299 /* None of the previous blocks has DOM as a dominator: if we tail
300 recursed, we would reexamine them uselessly. Just switch BB with
301 DOM, and go on looking for blocks dominated by DOM. */
302 new_occ
= occ_new (dom
, new_occ
);
307 /* Nothing special, go on with the next element. */
312 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
313 new_occ
->next
= *p_head
;
317 /* Register that we found a division in BB. */
320 register_division_in (basic_block bb
)
322 struct occurrence
*occ
;
324 occ
= (struct occurrence
*) bb
->aux
;
327 occ
= occ_new (bb
, NULL
);
328 insert_bb (occ
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), &occ_head
);
331 occ
->bb_has_division
= true;
332 occ
->num_divisions
++;
336 /* Compute the number of divisions that postdominate each block in OCC and
340 compute_merit (struct occurrence
*occ
)
342 struct occurrence
*occ_child
;
343 basic_block dom
= occ
->bb
;
345 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
348 if (occ_child
->children
)
349 compute_merit (occ_child
);
352 bb
= single_noncomplex_succ (dom
);
356 if (dominated_by_p (CDI_POST_DOMINATORS
, bb
, occ_child
->bb
))
357 occ
->num_divisions
+= occ_child
->num_divisions
;
362 /* Return whether USE_STMT is a floating-point division by DEF. */
364 is_division_by (gimple use_stmt
, tree def
)
366 return is_gimple_assign (use_stmt
)
367 && gimple_assign_rhs_code (use_stmt
) == RDIV_EXPR
368 && gimple_assign_rhs2 (use_stmt
) == def
369 /* Do not recognize x / x as valid division, as we are getting
370 confused later by replacing all immediate uses x in such
372 && gimple_assign_rhs1 (use_stmt
) != def
;
375 /* Walk the subset of the dominator tree rooted at OCC, setting the
376 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
377 the given basic block. The field may be left NULL, of course,
378 if it is not possible or profitable to do the optimization.
380 DEF_BSI is an iterator pointing at the statement defining DEF.
381 If RECIP_DEF is set, a dominator already has a computation that can
385 insert_reciprocals (gimple_stmt_iterator
*def_gsi
, struct occurrence
*occ
,
386 tree def
, tree recip_def
, int threshold
)
390 gimple_stmt_iterator gsi
;
391 struct occurrence
*occ_child
;
394 && (occ
->bb_has_division
|| !flag_trapping_math
)
395 && occ
->num_divisions
>= threshold
)
397 /* Make a variable with the replacement and substitute it. */
398 type
= TREE_TYPE (def
);
399 recip_def
= create_tmp_reg (type
, "reciptmp");
400 new_stmt
= gimple_build_assign (recip_def
, RDIV_EXPR
,
401 build_one_cst (type
), def
);
403 if (occ
->bb_has_division
)
405 /* Case 1: insert before an existing division. */
406 gsi
= gsi_after_labels (occ
->bb
);
407 while (!gsi_end_p (gsi
) && !is_division_by (gsi_stmt (gsi
), def
))
410 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
412 else if (def_gsi
&& occ
->bb
== def_gsi
->bb
)
414 /* Case 2: insert right after the definition. Note that this will
415 never happen if the definition statement can throw, because in
416 that case the sole successor of the statement's basic block will
417 dominate all the uses as well. */
418 gsi_insert_after (def_gsi
, new_stmt
, GSI_NEW_STMT
);
422 /* Case 3: insert in a basic block not containing defs/uses. */
423 gsi
= gsi_after_labels (occ
->bb
);
424 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
427 reciprocal_stats
.rdivs_inserted
++;
429 occ
->recip_def_stmt
= new_stmt
;
432 occ
->recip_def
= recip_def
;
433 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
434 insert_reciprocals (def_gsi
, occ_child
, def
, recip_def
, threshold
);
438 /* Replace the division at USE_P with a multiplication by the reciprocal, if
442 replace_reciprocal (use_operand_p use_p
)
444 gimple use_stmt
= USE_STMT (use_p
);
445 basic_block bb
= gimple_bb (use_stmt
);
446 struct occurrence
*occ
= (struct occurrence
*) bb
->aux
;
448 if (optimize_bb_for_speed_p (bb
)
449 && occ
->recip_def
&& use_stmt
!= occ
->recip_def_stmt
)
451 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
452 gimple_assign_set_rhs_code (use_stmt
, MULT_EXPR
);
453 SET_USE (use_p
, occ
->recip_def
);
454 fold_stmt_inplace (&gsi
);
455 update_stmt (use_stmt
);
460 /* Free OCC and return one more "struct occurrence" to be freed. */
462 static struct occurrence
*
463 free_bb (struct occurrence
*occ
)
465 struct occurrence
*child
, *next
;
467 /* First get the two pointers hanging off OCC. */
469 child
= occ
->children
;
471 pool_free (occ_pool
, occ
);
473 /* Now ensure that we don't recurse unless it is necessary. */
479 next
= free_bb (next
);
486 /* Look for floating-point divisions among DEF's uses, and try to
487 replace them by multiplications with the reciprocal. Add
488 as many statements computing the reciprocal as needed.
490 DEF must be a GIMPLE register of a floating-point type. */
493 execute_cse_reciprocals_1 (gimple_stmt_iterator
*def_gsi
, tree def
)
496 imm_use_iterator use_iter
;
497 struct occurrence
*occ
;
498 int count
= 0, threshold
;
500 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def
)) && is_gimple_reg (def
));
502 FOR_EACH_IMM_USE_FAST (use_p
, use_iter
, def
)
504 gimple use_stmt
= USE_STMT (use_p
);
505 if (is_division_by (use_stmt
, def
))
507 register_division_in (gimple_bb (use_stmt
));
512 /* Do the expensive part only if we can hope to optimize something. */
513 threshold
= targetm
.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def
)));
514 if (count
>= threshold
)
517 for (occ
= occ_head
; occ
; occ
= occ
->next
)
520 insert_reciprocals (def_gsi
, occ
, def
, NULL
, threshold
);
523 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, def
)
525 if (is_division_by (use_stmt
, def
))
527 FOR_EACH_IMM_USE_ON_STMT (use_p
, use_iter
)
528 replace_reciprocal (use_p
);
533 for (occ
= occ_head
; occ
; )
539 /* Go through all the floating-point SSA_NAMEs, and call
540 execute_cse_reciprocals_1 on each of them. */
543 const pass_data pass_data_cse_reciprocals
=
545 GIMPLE_PASS
, /* type */
547 OPTGROUP_NONE
, /* optinfo_flags */
549 PROP_ssa
, /* properties_required */
550 0, /* properties_provided */
551 0, /* properties_destroyed */
552 0, /* todo_flags_start */
553 TODO_update_ssa
, /* todo_flags_finish */
556 class pass_cse_reciprocals
: public gimple_opt_pass
559 pass_cse_reciprocals (gcc::context
*ctxt
)
560 : gimple_opt_pass (pass_data_cse_reciprocals
, ctxt
)
563 /* opt_pass methods: */
564 virtual bool gate (function
*) { return optimize
&& flag_reciprocal_math
; }
565 virtual unsigned int execute (function
*);
567 }; // class pass_cse_reciprocals
570 pass_cse_reciprocals::execute (function
*fun
)
575 occ_pool
= create_alloc_pool ("dominators for recip",
576 sizeof (struct occurrence
),
577 n_basic_blocks_for_fn (fun
) / 3 + 1);
579 memset (&reciprocal_stats
, 0, sizeof (reciprocal_stats
));
580 calculate_dominance_info (CDI_DOMINATORS
);
581 calculate_dominance_info (CDI_POST_DOMINATORS
);
583 #ifdef ENABLE_CHECKING
584 FOR_EACH_BB_FN (bb
, fun
)
585 gcc_assert (!bb
->aux
);
588 for (arg
= DECL_ARGUMENTS (fun
->decl
); arg
; arg
= DECL_CHAIN (arg
))
589 if (FLOAT_TYPE_P (TREE_TYPE (arg
))
590 && is_gimple_reg (arg
))
592 tree name
= ssa_default_def (fun
, arg
);
594 execute_cse_reciprocals_1 (NULL
, name
);
597 FOR_EACH_BB_FN (bb
, fun
)
601 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
604 gphi
*phi
= gsi
.phi ();
605 def
= PHI_RESULT (phi
);
606 if (! virtual_operand_p (def
)
607 && FLOAT_TYPE_P (TREE_TYPE (def
)))
608 execute_cse_reciprocals_1 (NULL
, def
);
611 for (gimple_stmt_iterator gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);
614 gimple stmt
= gsi_stmt (gsi
);
616 if (gimple_has_lhs (stmt
)
617 && (def
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_DEF
)) != NULL
618 && FLOAT_TYPE_P (TREE_TYPE (def
))
619 && TREE_CODE (def
) == SSA_NAME
)
620 execute_cse_reciprocals_1 (&gsi
, def
);
623 if (optimize_bb_for_size_p (bb
))
626 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
627 for (gimple_stmt_iterator gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);
630 gimple stmt
= gsi_stmt (gsi
);
633 if (is_gimple_assign (stmt
)
634 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
)
636 tree arg1
= gimple_assign_rhs2 (stmt
);
639 if (TREE_CODE (arg1
) != SSA_NAME
)
642 stmt1
= SSA_NAME_DEF_STMT (arg1
);
644 if (is_gimple_call (stmt1
)
645 && gimple_call_lhs (stmt1
)
646 && (fndecl
= gimple_call_fndecl (stmt1
))
647 && (DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
648 || DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
))
650 enum built_in_function code
;
655 code
= DECL_FUNCTION_CODE (fndecl
);
656 md_code
= DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
;
658 fndecl
= targetm
.builtin_reciprocal (code
, md_code
, false);
662 /* Check that all uses of the SSA name are divisions,
663 otherwise replacing the defining statement will do
666 FOR_EACH_IMM_USE_FAST (use_p
, ui
, arg1
)
668 gimple stmt2
= USE_STMT (use_p
);
669 if (is_gimple_debug (stmt2
))
671 if (!is_gimple_assign (stmt2
)
672 || gimple_assign_rhs_code (stmt2
) != RDIV_EXPR
673 || gimple_assign_rhs1 (stmt2
) == arg1
674 || gimple_assign_rhs2 (stmt2
) != arg1
)
683 gimple_replace_ssa_lhs (stmt1
, arg1
);
684 gimple_call_set_fndecl (stmt1
, fndecl
);
686 reciprocal_stats
.rfuncs_inserted
++;
688 FOR_EACH_IMM_USE_STMT (stmt
, ui
, arg1
)
690 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
691 gimple_assign_set_rhs_code (stmt
, MULT_EXPR
);
692 fold_stmt_inplace (&gsi
);
700 statistics_counter_event (fun
, "reciprocal divs inserted",
701 reciprocal_stats
.rdivs_inserted
);
702 statistics_counter_event (fun
, "reciprocal functions inserted",
703 reciprocal_stats
.rfuncs_inserted
);
705 free_dominance_info (CDI_DOMINATORS
);
706 free_dominance_info (CDI_POST_DOMINATORS
);
707 free_alloc_pool (occ_pool
);
714 make_pass_cse_reciprocals (gcc::context
*ctxt
)
716 return new pass_cse_reciprocals (ctxt
);
719 /* Records an occurrence at statement USE_STMT in the vector of trees
720 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
721 is not yet initialized. Returns true if the occurrence was pushed on
722 the vector. Adjusts *TOP_BB to be the basic block dominating all
723 statements in the vector. */
726 maybe_record_sincos (vec
<gimple
> *stmts
,
727 basic_block
*top_bb
, gimple use_stmt
)
729 basic_block use_bb
= gimple_bb (use_stmt
);
731 && (*top_bb
== use_bb
732 || dominated_by_p (CDI_DOMINATORS
, use_bb
, *top_bb
)))
733 stmts
->safe_push (use_stmt
);
735 || dominated_by_p (CDI_DOMINATORS
, *top_bb
, use_bb
))
737 stmts
->safe_push (use_stmt
);
746 /* Look for sin, cos and cexpi calls with the same argument NAME and
747 create a single call to cexpi CSEing the result in this case.
748 We first walk over all immediate uses of the argument collecting
749 statements that we can CSE in a vector and in a second pass replace
750 the statement rhs with a REALPART or IMAGPART expression on the
751 result of the cexpi call we insert before the use statement that
752 dominates all other candidates. */
755 execute_cse_sincos_1 (tree name
)
757 gimple_stmt_iterator gsi
;
758 imm_use_iterator use_iter
;
759 tree fndecl
, res
, type
;
760 gimple def_stmt
, use_stmt
, stmt
;
761 int seen_cos
= 0, seen_sin
= 0, seen_cexpi
= 0;
762 auto_vec
<gimple
> stmts
;
763 basic_block top_bb
= NULL
;
765 bool cfg_changed
= false;
767 type
= TREE_TYPE (name
);
768 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, name
)
770 if (gimple_code (use_stmt
) != GIMPLE_CALL
771 || !gimple_call_lhs (use_stmt
)
772 || !(fndecl
= gimple_call_fndecl (use_stmt
))
773 || DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_NORMAL
)
776 switch (DECL_FUNCTION_CODE (fndecl
))
778 CASE_FLT_FN (BUILT_IN_COS
):
779 seen_cos
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
782 CASE_FLT_FN (BUILT_IN_SIN
):
783 seen_sin
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
786 CASE_FLT_FN (BUILT_IN_CEXPI
):
787 seen_cexpi
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
794 if (seen_cos
+ seen_sin
+ seen_cexpi
<= 1)
797 /* Simply insert cexpi at the beginning of top_bb but not earlier than
798 the name def statement. */
799 fndecl
= mathfn_built_in (type
, BUILT_IN_CEXPI
);
802 stmt
= gimple_build_call (fndecl
, 1, name
);
803 res
= make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl
)), stmt
, "sincostmp");
804 gimple_call_set_lhs (stmt
, res
);
806 def_stmt
= SSA_NAME_DEF_STMT (name
);
807 if (!SSA_NAME_IS_DEFAULT_DEF (name
)
808 && gimple_code (def_stmt
) != GIMPLE_PHI
809 && gimple_bb (def_stmt
) == top_bb
)
811 gsi
= gsi_for_stmt (def_stmt
);
812 gsi_insert_after (&gsi
, stmt
, GSI_SAME_STMT
);
816 gsi
= gsi_after_labels (top_bb
);
817 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
819 sincos_stats
.inserted
++;
821 /* And adjust the recorded old call sites. */
822 for (i
= 0; stmts
.iterate (i
, &use_stmt
); ++i
)
825 fndecl
= gimple_call_fndecl (use_stmt
);
827 switch (DECL_FUNCTION_CODE (fndecl
))
829 CASE_FLT_FN (BUILT_IN_COS
):
830 rhs
= fold_build1 (REALPART_EXPR
, type
, res
);
833 CASE_FLT_FN (BUILT_IN_SIN
):
834 rhs
= fold_build1 (IMAGPART_EXPR
, type
, res
);
837 CASE_FLT_FN (BUILT_IN_CEXPI
):
845 /* Replace call with a copy. */
846 stmt
= gimple_build_assign (gimple_call_lhs (use_stmt
), rhs
);
848 gsi
= gsi_for_stmt (use_stmt
);
849 gsi_replace (&gsi
, stmt
, true);
850 if (gimple_purge_dead_eh_edges (gimple_bb (stmt
)))
857 /* To evaluate powi(x,n), the floating point value x raised to the
858 constant integer exponent n, we use a hybrid algorithm that
859 combines the "window method" with look-up tables. For an
860 introduction to exponentiation algorithms and "addition chains",
861 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
862 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
863 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
864 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
866 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
867 multiplications to inline before calling the system library's pow
868 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
869 so this default never requires calling pow, powf or powl. */
871 #ifndef POWI_MAX_MULTS
872 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
875 /* The size of the "optimal power tree" lookup table. All
876 exponents less than this value are simply looked up in the
877 powi_table below. This threshold is also used to size the
878 cache of pseudo registers that hold intermediate results. */
879 #define POWI_TABLE_SIZE 256
881 /* The size, in bits of the window, used in the "window method"
882 exponentiation algorithm. This is equivalent to a radix of
883 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
884 #define POWI_WINDOW_SIZE 3
886 /* The following table is an efficient representation of an
887 "optimal power tree". For each value, i, the corresponding
888 value, j, in the table states than an optimal evaluation
889 sequence for calculating pow(x,i) can be found by evaluating
890 pow(x,j)*pow(x,i-j). An optimal power tree for the first
891 100 integers is given in Knuth's "Seminumerical algorithms". */
893 static const unsigned char powi_table
[POWI_TABLE_SIZE
] =
895 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
896 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
897 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
898 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
899 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
900 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
901 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
902 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
903 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
904 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
905 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
906 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
907 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
908 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
909 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
910 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
911 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
912 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
913 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
914 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
915 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
916 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
917 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
918 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
919 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
920 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
921 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
922 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
923 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
924 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
925 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
926 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
930 /* Return the number of multiplications required to calculate
931 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
932 subroutine of powi_cost. CACHE is an array indicating
933 which exponents have already been calculated. */
936 powi_lookup_cost (unsigned HOST_WIDE_INT n
, bool *cache
)
938 /* If we've already calculated this exponent, then this evaluation
939 doesn't require any additional multiplications. */
944 return powi_lookup_cost (n
- powi_table
[n
], cache
)
945 + powi_lookup_cost (powi_table
[n
], cache
) + 1;
948 /* Return the number of multiplications required to calculate
949 powi(x,n) for an arbitrary x, given the exponent N. This
950 function needs to be kept in sync with powi_as_mults below. */
953 powi_cost (HOST_WIDE_INT n
)
955 bool cache
[POWI_TABLE_SIZE
];
956 unsigned HOST_WIDE_INT digit
;
957 unsigned HOST_WIDE_INT val
;
963 /* Ignore the reciprocal when calculating the cost. */
964 val
= (n
< 0) ? -n
: n
;
966 /* Initialize the exponent cache. */
967 memset (cache
, 0, POWI_TABLE_SIZE
* sizeof (bool));
972 while (val
>= POWI_TABLE_SIZE
)
976 digit
= val
& ((1 << POWI_WINDOW_SIZE
) - 1);
977 result
+= powi_lookup_cost (digit
, cache
)
978 + POWI_WINDOW_SIZE
+ 1;
979 val
>>= POWI_WINDOW_SIZE
;
988 return result
+ powi_lookup_cost (val
, cache
);
991 /* Recursive subroutine of powi_as_mults. This function takes the
992 array, CACHE, of already calculated exponents and an exponent N and
993 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
996 powi_as_mults_1 (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
997 HOST_WIDE_INT n
, tree
*cache
)
999 tree op0
, op1
, ssa_target
;
1000 unsigned HOST_WIDE_INT digit
;
1003 if (n
< POWI_TABLE_SIZE
&& cache
[n
])
1006 ssa_target
= make_temp_ssa_name (type
, NULL
, "powmult");
1008 if (n
< POWI_TABLE_SIZE
)
1010 cache
[n
] = ssa_target
;
1011 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- powi_table
[n
], cache
);
1012 op1
= powi_as_mults_1 (gsi
, loc
, type
, powi_table
[n
], cache
);
1016 digit
= n
& ((1 << POWI_WINDOW_SIZE
) - 1);
1017 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- digit
, cache
);
1018 op1
= powi_as_mults_1 (gsi
, loc
, type
, digit
, cache
);
1022 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
>> 1, cache
);
1026 mult_stmt
= gimple_build_assign (ssa_target
, MULT_EXPR
, op0
, op1
);
1027 gimple_set_location (mult_stmt
, loc
);
1028 gsi_insert_before (gsi
, mult_stmt
, GSI_SAME_STMT
);
1033 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1034 This function needs to be kept in sync with powi_cost above. */
1037 powi_as_mults (gimple_stmt_iterator
*gsi
, location_t loc
,
1038 tree arg0
, HOST_WIDE_INT n
)
1040 tree cache
[POWI_TABLE_SIZE
], result
, type
= TREE_TYPE (arg0
);
1045 return build_real (type
, dconst1
);
1047 memset (cache
, 0, sizeof (cache
));
1050 result
= powi_as_mults_1 (gsi
, loc
, type
, (n
< 0) ? -n
: n
, cache
);
1054 /* If the original exponent was negative, reciprocate the result. */
1055 target
= make_temp_ssa_name (type
, NULL
, "powmult");
1056 div_stmt
= gimple_build_assign (target
, RDIV_EXPR
,
1057 build_real (type
, dconst1
), result
);
1058 gimple_set_location (div_stmt
, loc
);
1059 gsi_insert_before (gsi
, div_stmt
, GSI_SAME_STMT
);
1064 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1065 location info LOC. If the arguments are appropriate, create an
1066 equivalent sequence of statements prior to GSI using an optimal
1067 number of multiplications, and return an expession holding the
1071 gimple_expand_builtin_powi (gimple_stmt_iterator
*gsi
, location_t loc
,
1072 tree arg0
, HOST_WIDE_INT n
)
1074 /* Avoid largest negative number. */
1076 && ((n
>= -1 && n
<= 2)
1077 || (optimize_function_for_speed_p (cfun
)
1078 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1079 return powi_as_mults (gsi
, loc
, arg0
, n
);
1084 /* Build a gimple call statement that calls FN with argument ARG.
1085 Set the lhs of the call statement to a fresh SSA name. Insert the
1086 statement prior to GSI's current position, and return the fresh
1090 build_and_insert_call (gimple_stmt_iterator
*gsi
, location_t loc
,
1096 call_stmt
= gimple_build_call (fn
, 1, arg
);
1097 ssa_target
= make_temp_ssa_name (TREE_TYPE (arg
), NULL
, "powroot");
1098 gimple_set_lhs (call_stmt
, ssa_target
);
1099 gimple_set_location (call_stmt
, loc
);
1100 gsi_insert_before (gsi
, call_stmt
, GSI_SAME_STMT
);
1105 /* Build a gimple binary operation with the given CODE and arguments
1106 ARG0, ARG1, assigning the result to a new SSA name for variable
1107 TARGET. Insert the statement prior to GSI's current position, and
1108 return the fresh SSA name.*/
1111 build_and_insert_binop (gimple_stmt_iterator
*gsi
, location_t loc
,
1112 const char *name
, enum tree_code code
,
1113 tree arg0
, tree arg1
)
1115 tree result
= make_temp_ssa_name (TREE_TYPE (arg0
), NULL
, name
);
1116 gassign
*stmt
= gimple_build_assign (result
, code
, arg0
, arg1
);
1117 gimple_set_location (stmt
, loc
);
1118 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1122 /* Build a gimple reference operation with the given CODE and argument
1123 ARG, assigning the result to a new SSA name of TYPE with NAME.
1124 Insert the statement prior to GSI's current position, and return
1125 the fresh SSA name. */
1128 build_and_insert_ref (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
1129 const char *name
, enum tree_code code
, tree arg0
)
1131 tree result
= make_temp_ssa_name (type
, NULL
, name
);
1132 gimple stmt
= gimple_build_assign (result
, build1 (code
, type
, arg0
));
1133 gimple_set_location (stmt
, loc
);
1134 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1138 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1139 prior to GSI's current position, and return the fresh SSA name. */
1142 build_and_insert_cast (gimple_stmt_iterator
*gsi
, location_t loc
,
1143 tree type
, tree val
)
1145 tree result
= make_ssa_name (type
);
1146 gassign
*stmt
= gimple_build_assign (result
, NOP_EXPR
, val
);
1147 gimple_set_location (stmt
, loc
);
1148 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1152 struct pow_synth_sqrt_info
1155 unsigned int deepest
;
1156 unsigned int num_mults
;
1159 /* Return true iff the real value C can be represented as a
1160 sum of powers of 0.5 up to N. That is:
1161 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1162 Record in INFO the various parameters of the synthesis algorithm such
1163 as the factors a[i], the maximum 0.5 power and the number of
1164 multiplications that will be required. */
1167 representable_as_half_series_p (REAL_VALUE_TYPE c
, unsigned n
,
1168 struct pow_synth_sqrt_info
*info
)
1170 REAL_VALUE_TYPE factor
= dconsthalf
;
1171 REAL_VALUE_TYPE remainder
= c
;
1174 info
->num_mults
= 0;
1175 memset (info
->factors
, 0, n
* sizeof (bool));
1177 for (unsigned i
= 0; i
< n
; i
++)
1179 REAL_VALUE_TYPE res
;
1181 /* If something inexact happened bail out now. */
1182 if (REAL_ARITHMETIC (res
, MINUS_EXPR
, remainder
, factor
))
1185 /* We have hit zero. The number is representable as a sum
1186 of powers of 0.5. */
1187 if (REAL_VALUES_EQUAL (res
, dconst0
))
1189 info
->factors
[i
] = true;
1190 info
->deepest
= i
+ 1;
1193 else if (!REAL_VALUE_NEGATIVE (res
))
1196 info
->factors
[i
] = true;
1200 info
->factors
[i
] = false;
1202 REAL_ARITHMETIC (factor
, MULT_EXPR
, factor
, dconsthalf
);
1207 /* Return the tree corresponding to FN being applied
1208 to ARG N times at GSI and LOC.
1209 Look up previous results from CACHE if need be.
1210 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1213 get_fn_chain (tree arg
, unsigned int n
, gimple_stmt_iterator
*gsi
,
1214 tree fn
, location_t loc
, tree
*cache
)
1216 tree res
= cache
[n
];
1219 tree prev
= get_fn_chain (arg
, n
- 1, gsi
, fn
, loc
, cache
);
1220 res
= build_and_insert_call (gsi
, loc
, fn
, prev
);
1227 /* Print to STREAM the repeated application of function FNAME to ARG
1228 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1232 print_nested_fn (FILE* stream
, const char *fname
, const char* arg
,
1236 fprintf (stream
, "%s", arg
);
1239 fprintf (stream
, "%s (", fname
);
1240 print_nested_fn (stream
, fname
, arg
, n
- 1);
1241 fprintf (stream
, ")");
1245 /* Print to STREAM the fractional sequence of sqrt chains
1246 applied to ARG, described by INFO. Used for the dump file. */
1249 dump_fractional_sqrt_sequence (FILE *stream
, const char *arg
,
1250 struct pow_synth_sqrt_info
*info
)
1252 for (unsigned int i
= 0; i
< info
->deepest
; i
++)
1254 bool is_set
= info
->factors
[i
];
1257 print_nested_fn (stream
, "sqrt", arg
, i
+ 1);
1258 if (i
!= info
->deepest
- 1)
1259 fprintf (stream
, " * ");
1264 /* Print to STREAM a representation of raising ARG to an integer
1265 power N. Used for the dump file. */
1268 dump_integer_part (FILE *stream
, const char* arg
, HOST_WIDE_INT n
)
1271 fprintf (stream
, "powi (%s, " HOST_WIDE_INT_PRINT_DEC
")", arg
, n
);
1273 fprintf (stream
, "%s", arg
);
1276 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1277 square roots. Place at GSI and LOC. Limit the maximum depth
1278 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1279 result of the expanded sequence or NULL_TREE if the expansion failed.
1281 This routine assumes that ARG1 is a real number with a fractional part
1282 (the integer exponent case will have been handled earlier in
1283 gimple_expand_builtin_pow).
1286 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1287 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1288 FRAC_PART == ARG1 - WHOLE_PART:
1289 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1290 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1291 if it can be expressed as such, that is if FRAC_PART satisfies:
1292 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1293 where integer a[i] is either 0 or 1.
1296 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1297 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1299 For ARG1 < 0.0 there are two approaches:
1300 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1301 is calculated as above.
1304 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1305 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1307 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1308 FRAC_PART := ARG1 - WHOLE_PART
1309 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1311 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1312 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1314 For ARG1 < 0.0 we choose between (A) and (B) depending on
1315 how many multiplications we'd have to do.
1316 So, for the example in (B): POW (x, -5.875), if we were to
1317 follow algorithm (A) we would produce:
1318 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1319 which contains more multiplications than approach (B).
1321 Hopefully, this approach will eliminate potentially expensive POW library
1322 calls when unsafe floating point math is enabled and allow the compiler to
1323 further optimise the multiplies, square roots and divides produced by this
1327 expand_pow_as_sqrts (gimple_stmt_iterator
*gsi
, location_t loc
,
1328 tree arg0
, tree arg1
, HOST_WIDE_INT max_depth
)
1330 tree type
= TREE_TYPE (arg0
);
1331 machine_mode mode
= TYPE_MODE (type
);
1332 tree sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1333 bool one_over
= true;
1338 if (TREE_CODE (arg1
) != REAL_CST
)
1341 REAL_VALUE_TYPE exp_init
= TREE_REAL_CST (arg1
);
1343 gcc_assert (max_depth
> 0);
1344 tree
*cache
= XALLOCAVEC (tree
, max_depth
+ 1);
1346 struct pow_synth_sqrt_info synth_info
;
1347 synth_info
.factors
= XALLOCAVEC (bool, max_depth
+ 1);
1348 synth_info
.deepest
= 0;
1349 synth_info
.num_mults
= 0;
1351 bool neg_exp
= REAL_VALUE_NEGATIVE (exp_init
);
1352 REAL_VALUE_TYPE exp
= real_value_abs (&exp_init
);
1354 /* The whole and fractional parts of exp. */
1355 REAL_VALUE_TYPE whole_part
;
1356 REAL_VALUE_TYPE frac_part
;
1358 real_floor (&whole_part
, mode
, &exp
);
1359 REAL_ARITHMETIC (frac_part
, MINUS_EXPR
, exp
, whole_part
);
1362 REAL_VALUE_TYPE ceil_whole
= dconst0
;
1363 REAL_VALUE_TYPE ceil_fract
= dconst0
;
1367 real_ceil (&ceil_whole
, mode
, &exp
);
1368 REAL_ARITHMETIC (ceil_fract
, MINUS_EXPR
, ceil_whole
, exp
);
1371 if (!representable_as_half_series_p (frac_part
, max_depth
, &synth_info
))
1374 /* Check whether it's more profitable to not use 1.0 / ... */
1377 struct pow_synth_sqrt_info alt_synth_info
;
1378 alt_synth_info
.factors
= XALLOCAVEC (bool, max_depth
+ 1);
1379 alt_synth_info
.deepest
= 0;
1380 alt_synth_info
.num_mults
= 0;
1382 if (representable_as_half_series_p (ceil_fract
, max_depth
,
1384 && alt_synth_info
.deepest
<= synth_info
.deepest
1385 && alt_synth_info
.num_mults
< synth_info
.num_mults
)
1387 whole_part
= ceil_whole
;
1388 frac_part
= ceil_fract
;
1389 synth_info
.deepest
= alt_synth_info
.deepest
;
1390 synth_info
.num_mults
= alt_synth_info
.num_mults
;
1391 memcpy (synth_info
.factors
, alt_synth_info
.factors
,
1392 (max_depth
+ 1) * sizeof (bool));
1397 HOST_WIDE_INT n
= real_to_integer (&whole_part
);
1398 REAL_VALUE_TYPE cint
;
1399 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1401 if (!real_identical (&whole_part
, &cint
))
1404 if (powi_cost (n
) + synth_info
.num_mults
> POWI_MAX_MULTS
)
1407 memset (cache
, 0, (max_depth
+ 1) * sizeof (tree
));
1409 tree integer_res
= n
== 0 ? build_real (type
, dconst1
) : arg0
;
1411 /* Calculate the integer part of the exponent. */
1414 integer_res
= gimple_expand_builtin_powi (gsi
, loc
, arg0
, n
);
1423 real_to_decimal (string
, &exp_init
, sizeof (string
), 0, 1);
1424 fprintf (dump_file
, "synthesizing pow (x, %s) as:\n", string
);
1430 fprintf (dump_file
, "1.0 / (");
1431 dump_integer_part (dump_file
, "x", n
);
1433 fprintf (dump_file
, " * ");
1434 dump_fractional_sqrt_sequence (dump_file
, "x", &synth_info
);
1435 fprintf (dump_file
, ")");
1439 dump_fractional_sqrt_sequence (dump_file
, "x", &synth_info
);
1440 fprintf (dump_file
, " / (");
1441 dump_integer_part (dump_file
, "x", n
);
1442 fprintf (dump_file
, ")");
1447 dump_fractional_sqrt_sequence (dump_file
, "x", &synth_info
);
1449 fprintf (dump_file
, " * ");
1450 dump_integer_part (dump_file
, "x", n
);
1453 fprintf (dump_file
, "\ndeepest sqrt chain: %d\n", synth_info
.deepest
);
1457 tree fract_res
= NULL_TREE
;
1460 /* Calculate the fractional part of the exponent. */
1461 for (unsigned i
= 0; i
< synth_info
.deepest
; i
++)
1463 if (synth_info
.factors
[i
])
1465 tree sqrt_chain
= get_fn_chain (arg0
, i
+ 1, gsi
, sqrtfn
, loc
, cache
);
1468 fract_res
= sqrt_chain
;
1471 fract_res
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1472 fract_res
, sqrt_chain
);
1476 tree res
= NULL_TREE
;
1483 res
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1484 fract_res
, integer_res
);
1488 res
= build_and_insert_binop (gsi
, loc
, "powrootrecip", RDIV_EXPR
,
1489 build_real (type
, dconst1
), res
);
1493 res
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1494 fract_res
, integer_res
);
1498 res
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1499 fract_res
, integer_res
);
1503 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1504 with location info LOC. If possible, create an equivalent and
1505 less expensive sequence of statements prior to GSI, and return an
1506 expession holding the result. */
1509 gimple_expand_builtin_pow (gimple_stmt_iterator
*gsi
, location_t loc
,
1510 tree arg0
, tree arg1
)
1512 REAL_VALUE_TYPE c
, cint
, dconst1_3
, dconst1_4
, dconst1_6
;
1513 REAL_VALUE_TYPE c2
, dconst3
;
1515 tree type
, sqrtfn
, cbrtfn
, sqrt_arg0
, result
, cbrt_x
, powi_cbrt_x
;
1517 bool speed_p
= optimize_bb_for_speed_p (gsi_bb (*gsi
));
1518 bool hw_sqrt_exists
, c_is_int
, c2_is_int
;
1520 dconst1_4
= dconst1
;
1521 SET_REAL_EXP (&dconst1_4
, REAL_EXP (&dconst1_4
) - 2);
1523 /* If the exponent isn't a constant, there's nothing of interest
1525 if (TREE_CODE (arg1
) != REAL_CST
)
1528 /* If the exponent is equivalent to an integer, expand to an optimal
1529 multiplication sequence when profitable. */
1530 c
= TREE_REAL_CST (arg1
);
1531 n
= real_to_integer (&c
);
1532 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1533 c_is_int
= real_identical (&c
, &cint
);
1536 && ((n
>= -1 && n
<= 2)
1537 || (flag_unsafe_math_optimizations
1539 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1540 return gimple_expand_builtin_powi (gsi
, loc
, arg0
, n
);
1542 /* Attempt various optimizations using sqrt and cbrt. */
1543 type
= TREE_TYPE (arg0
);
1544 mode
= TYPE_MODE (type
);
1545 sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1547 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1548 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1551 && REAL_VALUES_EQUAL (c
, dconsthalf
)
1552 && !HONOR_SIGNED_ZEROS (mode
))
1553 return build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1555 hw_sqrt_exists
= optab_handler (sqrt_optab
, mode
) != CODE_FOR_nothing
;
1557 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1558 optimizations since 1./3. is not exactly representable. If x
1559 is negative and finite, the correct value of pow(x,1./3.) is
1560 a NaN with the "invalid" exception raised, because the value
1561 of 1./3. actually has an even denominator. The correct value
1562 of cbrt(x) is a negative real value. */
1563 cbrtfn
= mathfn_built_in (type
, BUILT_IN_CBRT
);
1564 dconst1_3
= real_value_truncate (mode
, dconst_third ());
1566 if (flag_unsafe_math_optimizations
1568 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1569 && REAL_VALUES_EQUAL (c
, dconst1_3
))
1570 return build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1572 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1573 if we don't have a hardware sqrt insn. */
1574 dconst1_6
= dconst1_3
;
1575 SET_REAL_EXP (&dconst1_6
, REAL_EXP (&dconst1_6
) - 1);
1577 if (flag_unsafe_math_optimizations
1580 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1583 && REAL_VALUES_EQUAL (c
, dconst1_6
))
1586 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1589 return build_and_insert_call (gsi
, loc
, cbrtfn
, sqrt_arg0
);
1593 /* Attempt to expand the POW as a product of square root chains.
1594 Expand the 0.25 case even when otpimising for size. */
1595 if (flag_unsafe_math_optimizations
1598 && (speed_p
|| REAL_VALUES_EQUAL (c
, dconst1_4
))
1599 && !HONOR_SIGNED_ZEROS (mode
))
1601 unsigned int max_depth
= speed_p
1602 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH
)
1605 tree expand_with_sqrts
1606 = expand_pow_as_sqrts (gsi
, loc
, arg0
, arg1
, max_depth
);
1608 if (expand_with_sqrts
)
1609 return expand_with_sqrts
;
1612 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst2
);
1613 n
= real_to_integer (&c2
);
1614 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1615 c2_is_int
= real_identical (&c2
, &cint
);
1617 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1619 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1620 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1622 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1623 different from pow(x, 1./3.) due to rounding and behavior with
1624 negative x, we need to constrain this transformation to unsafe
1625 math and positive x or finite math. */
1626 real_from_integer (&dconst3
, VOIDmode
, 3, SIGNED
);
1627 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst3
);
1628 real_round (&c2
, mode
, &c2
);
1629 n
= real_to_integer (&c2
);
1630 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1631 real_arithmetic (&c2
, RDIV_EXPR
, &cint
, &dconst3
);
1632 real_convert (&c2
, mode
, &c2
);
1634 if (flag_unsafe_math_optimizations
1636 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1637 && real_identical (&c2
, &c
)
1639 && optimize_function_for_speed_p (cfun
)
1640 && powi_cost (n
/ 3) <= POWI_MAX_MULTS
)
1642 tree powi_x_ndiv3
= NULL_TREE
;
1644 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1645 possible or profitable, give up. Skip the degenerate case when
1646 abs(n) < 3, where the result is always 1. */
1647 if (absu_hwi (n
) >= 3)
1649 powi_x_ndiv3
= gimple_expand_builtin_powi (gsi
, loc
, arg0
,
1655 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1656 as that creates an unnecessary variable. Instead, just produce
1657 either cbrt(x) or cbrt(x) * cbrt(x). */
1658 cbrt_x
= build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1660 if (absu_hwi (n
) % 3 == 1)
1661 powi_cbrt_x
= cbrt_x
;
1663 powi_cbrt_x
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1666 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1667 if (absu_hwi (n
) < 3)
1668 result
= powi_cbrt_x
;
1670 result
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1671 powi_x_ndiv3
, powi_cbrt_x
);
1673 /* If n is negative, reciprocate the result. */
1675 result
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1676 build_real (type
, dconst1
), result
);
1681 /* No optimizations succeeded. */
1685 /* ARG is the argument to a cabs builtin call in GSI with location info
1686 LOC. Create a sequence of statements prior to GSI that calculates
1687 sqrt(R*R + I*I), where R and I are the real and imaginary components
1688 of ARG, respectively. Return an expression holding the result. */
1691 gimple_expand_builtin_cabs (gimple_stmt_iterator
*gsi
, location_t loc
, tree arg
)
1693 tree real_part
, imag_part
, addend1
, addend2
, sum
, result
;
1694 tree type
= TREE_TYPE (TREE_TYPE (arg
));
1695 tree sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1696 machine_mode mode
= TYPE_MODE (type
);
1698 if (!flag_unsafe_math_optimizations
1699 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi
)))
1701 || optab_handler (sqrt_optab
, mode
) == CODE_FOR_nothing
)
1704 real_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1705 REALPART_EXPR
, arg
);
1706 addend1
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1707 real_part
, real_part
);
1708 imag_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1709 IMAGPART_EXPR
, arg
);
1710 addend2
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1711 imag_part
, imag_part
);
1712 sum
= build_and_insert_binop (gsi
, loc
, "cabs", PLUS_EXPR
, addend1
, addend2
);
1713 result
= build_and_insert_call (gsi
, loc
, sqrtfn
, sum
);
1718 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1719 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1720 an optimal number of multiplies, when n is a constant. */
1724 const pass_data pass_data_cse_sincos
=
1726 GIMPLE_PASS
, /* type */
1727 "sincos", /* name */
1728 OPTGROUP_NONE
, /* optinfo_flags */
1729 TV_NONE
, /* tv_id */
1730 PROP_ssa
, /* properties_required */
1731 0, /* properties_provided */
1732 0, /* properties_destroyed */
1733 0, /* todo_flags_start */
1734 TODO_update_ssa
, /* todo_flags_finish */
1737 class pass_cse_sincos
: public gimple_opt_pass
1740 pass_cse_sincos (gcc::context
*ctxt
)
1741 : gimple_opt_pass (pass_data_cse_sincos
, ctxt
)
1744 /* opt_pass methods: */
1745 virtual bool gate (function
*)
1747 /* We no longer require either sincos or cexp, since powi expansion
1748 piggybacks on this pass. */
1752 virtual unsigned int execute (function
*);
1754 }; // class pass_cse_sincos
1757 pass_cse_sincos::execute (function
*fun
)
1760 bool cfg_changed
= false;
1762 calculate_dominance_info (CDI_DOMINATORS
);
1763 memset (&sincos_stats
, 0, sizeof (sincos_stats
));
1765 FOR_EACH_BB_FN (bb
, fun
)
1767 gimple_stmt_iterator gsi
;
1768 bool cleanup_eh
= false;
1770 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1772 gimple stmt
= gsi_stmt (gsi
);
1775 /* Only the last stmt in a bb could throw, no need to call
1776 gimple_purge_dead_eh_edges if we change something in the middle
1777 of a basic block. */
1780 if (is_gimple_call (stmt
)
1781 && gimple_call_lhs (stmt
)
1782 && (fndecl
= gimple_call_fndecl (stmt
))
1783 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1785 tree arg
, arg0
, arg1
, result
;
1789 switch (DECL_FUNCTION_CODE (fndecl
))
1791 CASE_FLT_FN (BUILT_IN_COS
):
1792 CASE_FLT_FN (BUILT_IN_SIN
):
1793 CASE_FLT_FN (BUILT_IN_CEXPI
):
1794 /* Make sure we have either sincos or cexp. */
1795 if (!targetm
.libc_has_function (function_c99_math_complex
)
1796 && !targetm
.libc_has_function (function_sincos
))
1799 arg
= gimple_call_arg (stmt
, 0);
1800 if (TREE_CODE (arg
) == SSA_NAME
)
1801 cfg_changed
|= execute_cse_sincos_1 (arg
);
1804 CASE_FLT_FN (BUILT_IN_POW
):
1805 arg0
= gimple_call_arg (stmt
, 0);
1806 arg1
= gimple_call_arg (stmt
, 1);
1808 loc
= gimple_location (stmt
);
1809 result
= gimple_expand_builtin_pow (&gsi
, loc
, arg0
, arg1
);
1813 tree lhs
= gimple_get_lhs (stmt
);
1814 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
1815 gimple_set_location (new_stmt
, loc
);
1816 unlink_stmt_vdef (stmt
);
1817 gsi_replace (&gsi
, new_stmt
, true);
1819 if (gimple_vdef (stmt
))
1820 release_ssa_name (gimple_vdef (stmt
));
1824 CASE_FLT_FN (BUILT_IN_POWI
):
1825 arg0
= gimple_call_arg (stmt
, 0);
1826 arg1
= gimple_call_arg (stmt
, 1);
1827 loc
= gimple_location (stmt
);
1829 if (real_minus_onep (arg0
))
1831 tree t0
, t1
, cond
, one
, minus_one
;
1834 t0
= TREE_TYPE (arg0
);
1835 t1
= TREE_TYPE (arg1
);
1836 one
= build_real (t0
, dconst1
);
1837 minus_one
= build_real (t0
, dconstm1
);
1839 cond
= make_temp_ssa_name (t1
, NULL
, "powi_cond");
1840 stmt
= gimple_build_assign (cond
, BIT_AND_EXPR
,
1841 arg1
, build_int_cst (t1
, 1));
1842 gimple_set_location (stmt
, loc
);
1843 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1845 result
= make_temp_ssa_name (t0
, NULL
, "powi");
1846 stmt
= gimple_build_assign (result
, COND_EXPR
, cond
,
1848 gimple_set_location (stmt
, loc
);
1849 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1853 if (!tree_fits_shwi_p (arg1
))
1856 n
= tree_to_shwi (arg1
);
1857 result
= gimple_expand_builtin_powi (&gsi
, loc
, arg0
, n
);
1862 tree lhs
= gimple_get_lhs (stmt
);
1863 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
1864 gimple_set_location (new_stmt
, loc
);
1865 unlink_stmt_vdef (stmt
);
1866 gsi_replace (&gsi
, new_stmt
, true);
1868 if (gimple_vdef (stmt
))
1869 release_ssa_name (gimple_vdef (stmt
));
1873 CASE_FLT_FN (BUILT_IN_CABS
):
1874 arg0
= gimple_call_arg (stmt
, 0);
1875 loc
= gimple_location (stmt
);
1876 result
= gimple_expand_builtin_cabs (&gsi
, loc
, arg0
);
1880 tree lhs
= gimple_get_lhs (stmt
);
1881 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
1882 gimple_set_location (new_stmt
, loc
);
1883 unlink_stmt_vdef (stmt
);
1884 gsi_replace (&gsi
, new_stmt
, true);
1886 if (gimple_vdef (stmt
))
1887 release_ssa_name (gimple_vdef (stmt
));
1896 cfg_changed
|= gimple_purge_dead_eh_edges (bb
);
1899 statistics_counter_event (fun
, "sincos statements inserted",
1900 sincos_stats
.inserted
);
1902 free_dominance_info (CDI_DOMINATORS
);
1903 return cfg_changed
? TODO_cleanup_cfg
: 0;
1909 make_pass_cse_sincos (gcc::context
*ctxt
)
1911 return new pass_cse_sincos (ctxt
);
1914 /* A symbolic number is used to detect byte permutation and selection
1915 patterns. Therefore the field N contains an artificial number
1916 consisting of octet sized markers:
1918 0 - target byte has the value 0
1919 FF - target byte has an unknown value (eg. due to sign extension)
1920 1..size - marker value is the target byte index minus one.
1922 To detect permutations on memory sources (arrays and structures), a symbolic
1923 number is also associated a base address (the array or structure the load is
1924 made from), an offset from the base address and a range which gives the
1925 difference between the highest and lowest accessed memory location to make
1926 such a symbolic number. The range is thus different from size which reflects
1927 the size of the type of current expression. Note that for non memory source,
1928 range holds the same value as size.
1930 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1931 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1932 still have a size of 2 but this time a range of 1. */
1934 struct symbolic_number
{
1939 HOST_WIDE_INT bytepos
;
1942 unsigned HOST_WIDE_INT range
;
1945 #define BITS_PER_MARKER 8
1946 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1947 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1948 #define HEAD_MARKER(n, size) \
1949 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1951 /* The number which the find_bswap_or_nop_1 result should match in
1952 order to have a nop. The number is masked according to the size of
1953 the symbolic number before using it. */
1954 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1955 (uint64_t)0x08070605 << 32 | 0x04030201)
1957 /* The number which the find_bswap_or_nop_1 result should match in
1958 order to have a byte swap. The number is masked according to the
1959 size of the symbolic number before using it. */
1960 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1961 (uint64_t)0x01020304 << 32 | 0x05060708)
1963 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1964 number N. Return false if the requested operation is not permitted
1965 on a symbolic number. */
1968 do_shift_rotate (enum tree_code code
,
1969 struct symbolic_number
*n
,
1972 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
1973 unsigned head_marker
;
1975 if (count
% BITS_PER_UNIT
!= 0)
1977 count
= (count
/ BITS_PER_UNIT
) * BITS_PER_MARKER
;
1979 /* Zero out the extra bits of N in order to avoid them being shifted
1980 into the significant bits. */
1981 if (size
< 64 / BITS_PER_MARKER
)
1982 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
1990 head_marker
= HEAD_MARKER (n
->n
, size
);
1992 /* Arithmetic shift of signed type: result is dependent on the value. */
1993 if (!TYPE_UNSIGNED (n
->type
) && head_marker
)
1994 for (i
= 0; i
< count
/ BITS_PER_MARKER
; i
++)
1995 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
1996 << ((size
- 1 - i
) * BITS_PER_MARKER
);
1999 n
->n
= (n
->n
<< count
) | (n
->n
>> ((size
* BITS_PER_MARKER
) - count
));
2002 n
->n
= (n
->n
>> count
) | (n
->n
<< ((size
* BITS_PER_MARKER
) - count
));
2007 /* Zero unused bits for size. */
2008 if (size
< 64 / BITS_PER_MARKER
)
2009 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
2013 /* Perform sanity checking for the symbolic number N and the gimple
2017 verify_symbolic_number_p (struct symbolic_number
*n
, gimple stmt
)
2021 lhs_type
= gimple_expr_type (stmt
);
2023 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
2026 if (TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (n
->type
))
2032 /* Initialize the symbolic number N for the bswap pass from the base element
2033 SRC manipulated by the bitwise OR expression. */
2036 init_symbolic_number (struct symbolic_number
*n
, tree src
)
2040 n
->base_addr
= n
->offset
= n
->alias_set
= n
->vuse
= NULL_TREE
;
2042 /* Set up the symbolic number N by setting each byte to a value between 1 and
2043 the byte size of rhs1. The highest order byte is set to n->size and the
2044 lowest order byte to 1. */
2045 n
->type
= TREE_TYPE (src
);
2046 size
= TYPE_PRECISION (n
->type
);
2047 if (size
% BITS_PER_UNIT
!= 0)
2049 size
/= BITS_PER_UNIT
;
2050 if (size
> 64 / BITS_PER_MARKER
)
2055 if (size
< 64 / BITS_PER_MARKER
)
2056 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
2061 /* Check if STMT might be a byte swap or a nop from a memory source and returns
2062 the answer. If so, REF is that memory source and the base of the memory area
2063 accessed and the offset of the access from that base are recorded in N. */
2066 find_bswap_or_nop_load (gimple stmt
, tree ref
, struct symbolic_number
*n
)
2068 /* Leaf node is an array or component ref. Memorize its base and
2069 offset from base to compare to other such leaf node. */
2070 HOST_WIDE_INT bitsize
, bitpos
;
2072 int unsignedp
, volatilep
;
2073 tree offset
, base_addr
;
2075 /* Not prepared to handle PDP endian. */
2076 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
2079 if (!gimple_assign_load_p (stmt
) || gimple_has_volatile_ops (stmt
))
2082 base_addr
= get_inner_reference (ref
, &bitsize
, &bitpos
, &offset
, &mode
,
2083 &unsignedp
, &volatilep
, false);
2085 if (TREE_CODE (base_addr
) == MEM_REF
)
2087 offset_int bit_offset
= 0;
2088 tree off
= TREE_OPERAND (base_addr
, 1);
2090 if (!integer_zerop (off
))
2092 offset_int boff
, coff
= mem_ref_offset (base_addr
);
2093 boff
= wi::lshift (coff
, LOG2_BITS_PER_UNIT
);
2097 base_addr
= TREE_OPERAND (base_addr
, 0);
2099 /* Avoid returning a negative bitpos as this may wreak havoc later. */
2100 if (wi::neg_p (bit_offset
))
2102 offset_int mask
= wi::mask
<offset_int
> (LOG2_BITS_PER_UNIT
, false);
2103 offset_int tem
= bit_offset
.and_not (mask
);
2104 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
2105 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
2107 tem
= wi::arshift (tem
, LOG2_BITS_PER_UNIT
);
2109 offset
= size_binop (PLUS_EXPR
, offset
,
2110 wide_int_to_tree (sizetype
, tem
));
2112 offset
= wide_int_to_tree (sizetype
, tem
);
2115 bitpos
+= bit_offset
.to_shwi ();
2118 if (bitpos
% BITS_PER_UNIT
)
2120 if (bitsize
% BITS_PER_UNIT
)
2123 if (!init_symbolic_number (n
, ref
))
2125 n
->base_addr
= base_addr
;
2127 n
->bytepos
= bitpos
/ BITS_PER_UNIT
;
2128 n
->alias_set
= reference_alias_ptr_type (ref
);
2129 n
->vuse
= gimple_vuse (stmt
);
2133 /* Compute the symbolic number N representing the result of a bitwise OR on 2
2134 symbolic number N1 and N2 whose source statements are respectively
2135 SOURCE_STMT1 and SOURCE_STMT2. */
2138 perform_symbolic_merge (gimple source_stmt1
, struct symbolic_number
*n1
,
2139 gimple source_stmt2
, struct symbolic_number
*n2
,
2140 struct symbolic_number
*n
)
2145 struct symbolic_number
*n_start
;
2147 /* Sources are different, cancel bswap if they are not memory location with
2148 the same base (array, structure, ...). */
2149 if (gimple_assign_rhs1 (source_stmt1
) != gimple_assign_rhs1 (source_stmt2
))
2152 HOST_WIDE_INT start_sub
, end_sub
, end1
, end2
, end
;
2153 struct symbolic_number
*toinc_n_ptr
, *n_end
;
2155 if (!n1
->base_addr
|| !n2
->base_addr
2156 || !operand_equal_p (n1
->base_addr
, n2
->base_addr
, 0))
2159 if (!n1
->offset
!= !n2
->offset
2160 || (n1
->offset
&& !operand_equal_p (n1
->offset
, n2
->offset
, 0)))
2163 if (n1
->bytepos
< n2
->bytepos
)
2166 start_sub
= n2
->bytepos
- n1
->bytepos
;
2167 source_stmt
= source_stmt1
;
2172 start_sub
= n1
->bytepos
- n2
->bytepos
;
2173 source_stmt
= source_stmt2
;
2176 /* Find the highest address at which a load is performed and
2177 compute related info. */
2178 end1
= n1
->bytepos
+ (n1
->range
- 1);
2179 end2
= n2
->bytepos
+ (n2
->range
- 1);
2183 end_sub
= end2
- end1
;
2188 end_sub
= end1
- end2
;
2190 n_end
= (end2
> end1
) ? n2
: n1
;
2192 /* Find symbolic number whose lsb is the most significant. */
2193 if (BYTES_BIG_ENDIAN
)
2194 toinc_n_ptr
= (n_end
== n1
) ? n2
: n1
;
2196 toinc_n_ptr
= (n_start
== n1
) ? n2
: n1
;
2198 n
->range
= end
- n_start
->bytepos
+ 1;
2200 /* Check that the range of memory covered can be represented by
2201 a symbolic number. */
2202 if (n
->range
> 64 / BITS_PER_MARKER
)
2205 /* Reinterpret byte marks in symbolic number holding the value of
2206 bigger weight according to target endianness. */
2207 inc
= BYTES_BIG_ENDIAN
? end_sub
: start_sub
;
2208 size
= TYPE_PRECISION (n1
->type
) / BITS_PER_UNIT
;
2209 for (i
= 0; i
< size
; i
++, inc
<<= BITS_PER_MARKER
)
2212 = (toinc_n_ptr
->n
>> (i
* BITS_PER_MARKER
)) & MARKER_MASK
;
2213 if (marker
&& marker
!= MARKER_BYTE_UNKNOWN
)
2214 toinc_n_ptr
->n
+= inc
;
2219 n
->range
= n1
->range
;
2221 source_stmt
= source_stmt1
;
2225 || alias_ptr_types_compatible_p (n1
->alias_set
, n2
->alias_set
))
2226 n
->alias_set
= n1
->alias_set
;
2228 n
->alias_set
= ptr_type_node
;
2229 n
->vuse
= n_start
->vuse
;
2230 n
->base_addr
= n_start
->base_addr
;
2231 n
->offset
= n_start
->offset
;
2232 n
->bytepos
= n_start
->bytepos
;
2233 n
->type
= n_start
->type
;
2234 size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
2236 for (i
= 0, mask
= MARKER_MASK
; i
< size
; i
++, mask
<<= BITS_PER_MARKER
)
2238 uint64_t masked1
, masked2
;
2240 masked1
= n1
->n
& mask
;
2241 masked2
= n2
->n
& mask
;
2242 if (masked1
&& masked2
&& masked1
!= masked2
)
2245 n
->n
= n1
->n
| n2
->n
;
2250 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
2251 the operation given by the rhs of STMT on the result. If the operation
2252 could successfully be executed the function returns a gimple stmt whose
2253 rhs's first tree is the expression of the source operand and NULL
2257 find_bswap_or_nop_1 (gimple stmt
, struct symbolic_number
*n
, int limit
)
2259 enum tree_code code
;
2260 tree rhs1
, rhs2
= NULL
;
2261 gimple rhs1_stmt
, rhs2_stmt
, source_stmt1
;
2262 enum gimple_rhs_class rhs_class
;
2264 if (!limit
|| !is_gimple_assign (stmt
))
2267 rhs1
= gimple_assign_rhs1 (stmt
);
2269 if (find_bswap_or_nop_load (stmt
, rhs1
, n
))
2272 if (TREE_CODE (rhs1
) != SSA_NAME
)
2275 code
= gimple_assign_rhs_code (stmt
);
2276 rhs_class
= gimple_assign_rhs_class (stmt
);
2277 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
2279 if (rhs_class
== GIMPLE_BINARY_RHS
)
2280 rhs2
= gimple_assign_rhs2 (stmt
);
2282 /* Handle unary rhs and binary rhs with integer constants as second
2285 if (rhs_class
== GIMPLE_UNARY_RHS
2286 || (rhs_class
== GIMPLE_BINARY_RHS
2287 && TREE_CODE (rhs2
) == INTEGER_CST
))
2289 if (code
!= BIT_AND_EXPR
2290 && code
!= LSHIFT_EXPR
2291 && code
!= RSHIFT_EXPR
2292 && code
!= LROTATE_EXPR
2293 && code
!= RROTATE_EXPR
2294 && !CONVERT_EXPR_CODE_P (code
))
2297 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, n
, limit
- 1);
2299 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2300 we have to initialize the symbolic number. */
2303 if (gimple_assign_load_p (stmt
)
2304 || !init_symbolic_number (n
, rhs1
))
2306 source_stmt1
= stmt
;
2313 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
2314 uint64_t val
= int_cst_value (rhs2
), mask
= 0;
2315 uint64_t tmp
= (1 << BITS_PER_UNIT
) - 1;
2317 /* Only constants masking full bytes are allowed. */
2318 for (i
= 0; i
< size
; i
++, tmp
<<= BITS_PER_UNIT
)
2319 if ((val
& tmp
) != 0 && (val
& tmp
) != tmp
)
2322 mask
|= (uint64_t) MARKER_MASK
<< (i
* BITS_PER_MARKER
);
2331 if (!do_shift_rotate (code
, n
, (int) TREE_INT_CST_LOW (rhs2
)))
2336 int i
, type_size
, old_type_size
;
2339 type
= gimple_expr_type (stmt
);
2340 type_size
= TYPE_PRECISION (type
);
2341 if (type_size
% BITS_PER_UNIT
!= 0)
2343 type_size
/= BITS_PER_UNIT
;
2344 if (type_size
> 64 / BITS_PER_MARKER
)
2347 /* Sign extension: result is dependent on the value. */
2348 old_type_size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
2349 if (!TYPE_UNSIGNED (n
->type
) && type_size
> old_type_size
2350 && HEAD_MARKER (n
->n
, old_type_size
))
2351 for (i
= 0; i
< type_size
- old_type_size
; i
++)
2352 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
2353 << ((type_size
- 1 - i
) * BITS_PER_MARKER
);
2355 if (type_size
< 64 / BITS_PER_MARKER
)
2357 /* If STMT casts to a smaller type mask out the bits not
2358 belonging to the target type. */
2359 n
->n
&= ((uint64_t) 1 << (type_size
* BITS_PER_MARKER
)) - 1;
2363 n
->range
= type_size
;
2369 return verify_symbolic_number_p (n
, stmt
) ? source_stmt1
: NULL
;
2372 /* Handle binary rhs. */
2374 if (rhs_class
== GIMPLE_BINARY_RHS
)
2376 struct symbolic_number n1
, n2
;
2377 gimple source_stmt
, source_stmt2
;
2379 if (code
!= BIT_IOR_EXPR
)
2382 if (TREE_CODE (rhs2
) != SSA_NAME
)
2385 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2390 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, &n1
, limit
- 1);
2395 source_stmt2
= find_bswap_or_nop_1 (rhs2_stmt
, &n2
, limit
- 1);
2400 if (TYPE_PRECISION (n1
.type
) != TYPE_PRECISION (n2
.type
))
2403 if (!n1
.vuse
!= !n2
.vuse
2404 || (n1
.vuse
&& !operand_equal_p (n1
.vuse
, n2
.vuse
, 0)))
2408 = perform_symbolic_merge (source_stmt1
, &n1
, source_stmt2
, &n2
, n
);
2413 if (!verify_symbolic_number_p (n
, stmt
))
2425 /* Check if STMT completes a bswap implementation or a read in a given
2426 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2427 accordingly. It also sets N to represent the kind of operations
2428 performed: size of the resulting expression and whether it works on
2429 a memory source, and if so alias-set and vuse. At last, the
2430 function returns a stmt whose rhs's first tree is the source
2434 find_bswap_or_nop (gimple stmt
, struct symbolic_number
*n
, bool *bswap
)
2436 /* The number which the find_bswap_or_nop_1 result should match in order
2437 to have a full byte swap. The number is shifted to the right
2438 according to the size of the symbolic number before using it. */
2439 uint64_t cmpxchg
= CMPXCHG
;
2440 uint64_t cmpnop
= CMPNOP
;
2445 /* The last parameter determines the depth search limit. It usually
2446 correlates directly to the number n of bytes to be touched. We
2447 increase that number by log2(n) + 1 here in order to also
2448 cover signed -> unsigned conversions of the src operand as can be seen
2449 in libgcc, and for initial shift/and operation of the src operand. */
2450 limit
= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt
)));
2451 limit
+= 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT
) limit
);
2452 source_stmt
= find_bswap_or_nop_1 (stmt
, n
, limit
);
2457 /* Find real size of result (highest non-zero byte). */
2463 for (tmpn
= n
->n
, rsize
= 0; tmpn
; tmpn
>>= BITS_PER_MARKER
, rsize
++);
2467 /* Zero out the extra bits of N and CMP*. */
2468 if (n
->range
< (int) sizeof (int64_t))
2472 mask
= ((uint64_t) 1 << (n
->range
* BITS_PER_MARKER
)) - 1;
2473 cmpxchg
>>= (64 / BITS_PER_MARKER
- n
->range
) * BITS_PER_MARKER
;
2477 /* A complete byte swap should make the symbolic number to start with
2478 the largest digit in the highest order byte. Unchanged symbolic
2479 number indicates a read with same endianness as target architecture. */
2482 else if (n
->n
== cmpxchg
)
2487 /* Useless bit manipulation performed by code. */
2488 if (!n
->base_addr
&& n
->n
== cmpnop
)
2491 n
->range
*= BITS_PER_UNIT
;
2497 const pass_data pass_data_optimize_bswap
=
2499 GIMPLE_PASS
, /* type */
2501 OPTGROUP_NONE
, /* optinfo_flags */
2502 TV_NONE
, /* tv_id */
2503 PROP_ssa
, /* properties_required */
2504 0, /* properties_provided */
2505 0, /* properties_destroyed */
2506 0, /* todo_flags_start */
2507 0, /* todo_flags_finish */
2510 class pass_optimize_bswap
: public gimple_opt_pass
2513 pass_optimize_bswap (gcc::context
*ctxt
)
2514 : gimple_opt_pass (pass_data_optimize_bswap
, ctxt
)
2517 /* opt_pass methods: */
2518 virtual bool gate (function
*)
2520 return flag_expensive_optimizations
&& optimize
;
2523 virtual unsigned int execute (function
*);
2525 }; // class pass_optimize_bswap
2527 /* Perform the bswap optimization: replace the expression computed in the rhs
2528 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2529 Which of these alternatives replace the rhs is given by N->base_addr (non
2530 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2531 load to perform are also given in N while the builtin bswap invoke is given
2532 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2533 load statements involved to construct the rhs in CUR_STMT and N->range gives
2534 the size of the rhs expression for maintaining some statistics.
2536 Note that if the replacement involve a load, CUR_STMT is moved just after
2537 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2538 changing of basic block. */
2541 bswap_replace (gimple cur_stmt
, gimple src_stmt
, tree fndecl
, tree bswap_type
,
2542 tree load_type
, struct symbolic_number
*n
, bool bswap
)
2544 gimple_stmt_iterator gsi
;
2548 gsi
= gsi_for_stmt (cur_stmt
);
2549 src
= gimple_assign_rhs1 (src_stmt
);
2550 tgt
= gimple_assign_lhs (cur_stmt
);
2552 /* Need to load the value from memory first. */
2555 gimple_stmt_iterator gsi_ins
= gsi_for_stmt (src_stmt
);
2556 tree addr_expr
, addr_tmp
, val_expr
, val_tmp
;
2557 tree load_offset_ptr
, aligned_load_type
;
2558 gimple addr_stmt
, load_stmt
;
2560 HOST_WIDE_INT load_offset
= 0;
2562 align
= get_object_alignment (src
);
2563 /* If the new access is smaller than the original one, we need
2564 to perform big endian adjustment. */
2565 if (BYTES_BIG_ENDIAN
)
2567 HOST_WIDE_INT bitsize
, bitpos
;
2569 int unsignedp
, volatilep
;
2572 get_inner_reference (src
, &bitsize
, &bitpos
, &offset
, &mode
,
2573 &unsignedp
, &volatilep
, false);
2574 if (n
->range
< (unsigned HOST_WIDE_INT
) bitsize
)
2576 load_offset
= (bitsize
- n
->range
) / BITS_PER_UNIT
;
2577 unsigned HOST_WIDE_INT l
2578 = (load_offset
* BITS_PER_UNIT
) & (align
- 1);
2585 && align
< GET_MODE_ALIGNMENT (TYPE_MODE (load_type
))
2586 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type
), align
))
2589 /* Move cur_stmt just before one of the load of the original
2590 to ensure it has the same VUSE. See PR61517 for what could
2592 gsi_move_before (&gsi
, &gsi_ins
);
2593 gsi
= gsi_for_stmt (cur_stmt
);
2595 /* Compute address to load from and cast according to the size
2597 addr_expr
= build_fold_addr_expr (unshare_expr (src
));
2598 if (is_gimple_mem_ref_addr (addr_expr
))
2599 addr_tmp
= addr_expr
;
2602 addr_tmp
= make_temp_ssa_name (TREE_TYPE (addr_expr
), NULL
,
2604 addr_stmt
= gimple_build_assign (addr_tmp
, addr_expr
);
2605 gsi_insert_before (&gsi
, addr_stmt
, GSI_SAME_STMT
);
2608 /* Perform the load. */
2609 aligned_load_type
= load_type
;
2610 if (align
< TYPE_ALIGN (load_type
))
2611 aligned_load_type
= build_aligned_type (load_type
, align
);
2612 load_offset_ptr
= build_int_cst (n
->alias_set
, load_offset
);
2613 val_expr
= fold_build2 (MEM_REF
, aligned_load_type
, addr_tmp
,
2619 nop_stats
.found_16bit
++;
2620 else if (n
->range
== 32)
2621 nop_stats
.found_32bit
++;
2624 gcc_assert (n
->range
== 64);
2625 nop_stats
.found_64bit
++;
2628 /* Convert the result of load if necessary. */
2629 if (!useless_type_conversion_p (TREE_TYPE (tgt
), load_type
))
2631 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
,
2633 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
2634 gimple_set_vuse (load_stmt
, n
->vuse
);
2635 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
2636 gimple_assign_set_rhs_with_ops (&gsi
, NOP_EXPR
, val_tmp
);
2640 gimple_assign_set_rhs_with_ops (&gsi
, MEM_REF
, val_expr
);
2641 gimple_set_vuse (cur_stmt
, n
->vuse
);
2643 update_stmt (cur_stmt
);
2648 "%d bit load in target endianness found at: ",
2650 print_gimple_stmt (dump_file
, cur_stmt
, 0, 0);
2656 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
, "load_dst");
2657 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
2658 gimple_set_vuse (load_stmt
, n
->vuse
);
2659 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
2665 bswap_stats
.found_16bit
++;
2666 else if (n
->range
== 32)
2667 bswap_stats
.found_32bit
++;
2670 gcc_assert (n
->range
== 64);
2671 bswap_stats
.found_64bit
++;
2676 /* Convert the src expression if necessary. */
2677 if (!useless_type_conversion_p (TREE_TYPE (tmp
), bswap_type
))
2679 gimple convert_stmt
;
2681 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapsrc");
2682 convert_stmt
= gimple_build_assign (tmp
, NOP_EXPR
, src
);
2683 gsi_insert_before (&gsi
, convert_stmt
, GSI_SAME_STMT
);
2686 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2687 are considered as rotation of 2N bit values by N bits is generally not
2688 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2689 gives 0x03040102 while a bswap for that value is 0x04030201. */
2690 if (bswap
&& n
->range
== 16)
2692 tree count
= build_int_cst (NULL
, BITS_PER_UNIT
);
2693 src
= fold_build2 (LROTATE_EXPR
, bswap_type
, tmp
, count
);
2694 bswap_stmt
= gimple_build_assign (NULL
, src
);
2697 bswap_stmt
= gimple_build_call (fndecl
, 1, tmp
);
2701 /* Convert the result if necessary. */
2702 if (!useless_type_conversion_p (TREE_TYPE (tgt
), bswap_type
))
2704 gimple convert_stmt
;
2706 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapdst");
2707 convert_stmt
= gimple_build_assign (tgt
, NOP_EXPR
, tmp
);
2708 gsi_insert_after (&gsi
, convert_stmt
, GSI_SAME_STMT
);
2711 gimple_set_lhs (bswap_stmt
, tmp
);
2715 fprintf (dump_file
, "%d bit bswap implementation found at: ",
2717 print_gimple_stmt (dump_file
, cur_stmt
, 0, 0);
2720 gsi_insert_after (&gsi
, bswap_stmt
, GSI_SAME_STMT
);
2721 gsi_remove (&gsi
, true);
2725 /* Find manual byte swap implementations as well as load in a given
2726 endianness. Byte swaps are turned into a bswap builtin invokation
2727 while endian loads are converted to bswap builtin invokation or
2728 simple load according to the target endianness. */
2731 pass_optimize_bswap::execute (function
*fun
)
2734 bool bswap32_p
, bswap64_p
;
2735 bool changed
= false;
2736 tree bswap32_type
= NULL_TREE
, bswap64_type
= NULL_TREE
;
2738 if (BITS_PER_UNIT
!= 8)
2741 bswap32_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
2742 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
);
2743 bswap64_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP64
)
2744 && (optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
2745 || (bswap32_p
&& word_mode
== SImode
)));
2747 /* Determine the argument type of the builtins. The code later on
2748 assumes that the return and argument type are the same. */
2751 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
2752 bswap32_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
2757 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
2758 bswap64_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
2761 memset (&nop_stats
, 0, sizeof (nop_stats
));
2762 memset (&bswap_stats
, 0, sizeof (bswap_stats
));
2764 FOR_EACH_BB_FN (bb
, fun
)
2766 gimple_stmt_iterator gsi
;
2768 /* We do a reverse scan for bswap patterns to make sure we get the
2769 widest match. As bswap pattern matching doesn't handle previously
2770 inserted smaller bswap replacements as sub-patterns, the wider
2771 variant wouldn't be detected. */
2772 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);)
2774 gimple src_stmt
, cur_stmt
= gsi_stmt (gsi
);
2775 tree fndecl
= NULL_TREE
, bswap_type
= NULL_TREE
, load_type
;
2776 enum tree_code code
;
2777 struct symbolic_number n
;
2780 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2781 might be moved to a different basic block by bswap_replace and gsi
2782 must not points to it if that's the case. Moving the gsi_prev
2783 there make sure that gsi points to the statement previous to
2784 cur_stmt while still making sure that all statements are
2785 considered in this basic block. */
2788 if (!is_gimple_assign (cur_stmt
))
2791 code
= gimple_assign_rhs_code (cur_stmt
);
2796 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt
))
2797 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt
))
2807 src_stmt
= find_bswap_or_nop (cur_stmt
, &n
, &bswap
);
2815 /* Already in canonical form, nothing to do. */
2816 if (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
2818 load_type
= bswap_type
= uint16_type_node
;
2821 load_type
= uint32_type_node
;
2824 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
2825 bswap_type
= bswap32_type
;
2829 load_type
= uint64_type_node
;
2832 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
2833 bswap_type
= bswap64_type
;
2840 if (bswap
&& !fndecl
&& n
.range
!= 16)
2843 if (bswap_replace (cur_stmt
, src_stmt
, fndecl
, bswap_type
, load_type
,
2849 statistics_counter_event (fun
, "16-bit nop implementations found",
2850 nop_stats
.found_16bit
);
2851 statistics_counter_event (fun
, "32-bit nop implementations found",
2852 nop_stats
.found_32bit
);
2853 statistics_counter_event (fun
, "64-bit nop implementations found",
2854 nop_stats
.found_64bit
);
2855 statistics_counter_event (fun
, "16-bit bswap implementations found",
2856 bswap_stats
.found_16bit
);
2857 statistics_counter_event (fun
, "32-bit bswap implementations found",
2858 bswap_stats
.found_32bit
);
2859 statistics_counter_event (fun
, "64-bit bswap implementations found",
2860 bswap_stats
.found_64bit
);
2862 return (changed
? TODO_update_ssa
: 0);
2868 make_pass_optimize_bswap (gcc::context
*ctxt
)
2870 return new pass_optimize_bswap (ctxt
);
2873 /* Return true if stmt is a type conversion operation that can be stripped
2874 when used in a widening multiply operation. */
2876 widening_mult_conversion_strippable_p (tree result_type
, gimple stmt
)
2878 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
2880 if (TREE_CODE (result_type
) == INTEGER_TYPE
)
2885 if (!CONVERT_EXPR_CODE_P (rhs_code
))
2888 op_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2890 /* If the type of OP has the same precision as the result, then
2891 we can strip this conversion. The multiply operation will be
2892 selected to create the correct extension as a by-product. */
2893 if (TYPE_PRECISION (result_type
) == TYPE_PRECISION (op_type
))
2896 /* We can also strip a conversion if it preserves the signed-ness of
2897 the operation and doesn't narrow the range. */
2898 inner_op_type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2900 /* If the inner-most type is unsigned, then we can strip any
2901 intermediate widening operation. If it's signed, then the
2902 intermediate widening operation must also be signed. */
2903 if ((TYPE_UNSIGNED (inner_op_type
)
2904 || TYPE_UNSIGNED (op_type
) == TYPE_UNSIGNED (inner_op_type
))
2905 && TYPE_PRECISION (op_type
) > TYPE_PRECISION (inner_op_type
))
2911 return rhs_code
== FIXED_CONVERT_EXPR
;
2914 /* Return true if RHS is a suitable operand for a widening multiplication,
2915 assuming a target type of TYPE.
2916 There are two cases:
2918 - RHS makes some value at least twice as wide. Store that value
2919 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2921 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2922 but leave *TYPE_OUT untouched. */
2925 is_widening_mult_rhs_p (tree type
, tree rhs
, tree
*type_out
,
2931 if (TREE_CODE (rhs
) == SSA_NAME
)
2933 stmt
= SSA_NAME_DEF_STMT (rhs
);
2934 if (is_gimple_assign (stmt
))
2936 if (! widening_mult_conversion_strippable_p (type
, stmt
))
2940 rhs1
= gimple_assign_rhs1 (stmt
);
2942 if (TREE_CODE (rhs1
) == INTEGER_CST
)
2944 *new_rhs_out
= rhs1
;
2953 type1
= TREE_TYPE (rhs1
);
2955 if (TREE_CODE (type1
) != TREE_CODE (type
)
2956 || TYPE_PRECISION (type1
) * 2 > TYPE_PRECISION (type
))
2959 *new_rhs_out
= rhs1
;
2964 if (TREE_CODE (rhs
) == INTEGER_CST
)
2974 /* Return true if STMT performs a widening multiplication, assuming the
2975 output type is TYPE. If so, store the unwidened types of the operands
2976 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2977 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2978 and *TYPE2_OUT would give the operands of the multiplication. */
2981 is_widening_mult_p (gimple stmt
,
2982 tree
*type1_out
, tree
*rhs1_out
,
2983 tree
*type2_out
, tree
*rhs2_out
)
2985 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2987 if (TREE_CODE (type
) != INTEGER_TYPE
2988 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
2991 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs1 (stmt
), type1_out
,
2995 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs2 (stmt
), type2_out
,
2999 if (*type1_out
== NULL
)
3001 if (*type2_out
== NULL
|| !int_fits_type_p (*rhs1_out
, *type2_out
))
3003 *type1_out
= *type2_out
;
3006 if (*type2_out
== NULL
)
3008 if (!int_fits_type_p (*rhs2_out
, *type1_out
))
3010 *type2_out
= *type1_out
;
3013 /* Ensure that the larger of the two operands comes first. */
3014 if (TYPE_PRECISION (*type1_out
) < TYPE_PRECISION (*type2_out
))
3016 std::swap (*type1_out
, *type2_out
);
3017 std::swap (*rhs1_out
, *rhs2_out
);
3023 /* Process a single gimple statement STMT, which has a MULT_EXPR as
3024 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
3025 value is true iff we converted the statement. */
3028 convert_mult_to_widen (gimple stmt
, gimple_stmt_iterator
*gsi
)
3030 tree lhs
, rhs1
, rhs2
, type
, type1
, type2
;
3031 enum insn_code handler
;
3032 machine_mode to_mode
, from_mode
, actual_mode
;
3034 int actual_precision
;
3035 location_t loc
= gimple_location (stmt
);
3036 bool from_unsigned1
, from_unsigned2
;
3038 lhs
= gimple_assign_lhs (stmt
);
3039 type
= TREE_TYPE (lhs
);
3040 if (TREE_CODE (type
) != INTEGER_TYPE
)
3043 if (!is_widening_mult_p (stmt
, &type1
, &rhs1
, &type2
, &rhs2
))
3046 to_mode
= TYPE_MODE (type
);
3047 from_mode
= TYPE_MODE (type1
);
3048 from_unsigned1
= TYPE_UNSIGNED (type1
);
3049 from_unsigned2
= TYPE_UNSIGNED (type2
);
3051 if (from_unsigned1
&& from_unsigned2
)
3052 op
= umul_widen_optab
;
3053 else if (!from_unsigned1
&& !from_unsigned2
)
3054 op
= smul_widen_optab
;
3056 op
= usmul_widen_optab
;
3058 handler
= find_widening_optab_handler_and_mode (op
, to_mode
, from_mode
,
3061 if (handler
== CODE_FOR_nothing
)
3063 if (op
!= smul_widen_optab
)
3065 /* We can use a signed multiply with unsigned types as long as
3066 there is a wider mode to use, or it is the smaller of the two
3067 types that is unsigned. Note that type1 >= type2, always. */
3068 if ((TYPE_UNSIGNED (type1
)
3069 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
3070 || (TYPE_UNSIGNED (type2
)
3071 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
3073 from_mode
= GET_MODE_WIDER_MODE (from_mode
);
3074 if (GET_MODE_SIZE (to_mode
) <= GET_MODE_SIZE (from_mode
))
3078 op
= smul_widen_optab
;
3079 handler
= find_widening_optab_handler_and_mode (op
, to_mode
,
3083 if (handler
== CODE_FOR_nothing
)
3086 from_unsigned1
= from_unsigned2
= false;
3092 /* Ensure that the inputs to the handler are in the correct precison
3093 for the opcode. This will be the full mode size. */
3094 actual_precision
= GET_MODE_PRECISION (actual_mode
);
3095 if (2 * actual_precision
> TYPE_PRECISION (type
))
3097 if (actual_precision
!= TYPE_PRECISION (type1
)
3098 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
3099 rhs1
= build_and_insert_cast (gsi
, loc
,
3100 build_nonstandard_integer_type
3101 (actual_precision
, from_unsigned1
), rhs1
);
3102 if (actual_precision
!= TYPE_PRECISION (type2
)
3103 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
3104 rhs2
= build_and_insert_cast (gsi
, loc
,
3105 build_nonstandard_integer_type
3106 (actual_precision
, from_unsigned2
), rhs2
);
3108 /* Handle constants. */
3109 if (TREE_CODE (rhs1
) == INTEGER_CST
)
3110 rhs1
= fold_convert (type1
, rhs1
);
3111 if (TREE_CODE (rhs2
) == INTEGER_CST
)
3112 rhs2
= fold_convert (type2
, rhs2
);
3114 gimple_assign_set_rhs1 (stmt
, rhs1
);
3115 gimple_assign_set_rhs2 (stmt
, rhs2
);
3116 gimple_assign_set_rhs_code (stmt
, WIDEN_MULT_EXPR
);
3118 widen_mul_stats
.widen_mults_inserted
++;
3122 /* Process a single gimple statement STMT, which is found at the
3123 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
3124 rhs (given by CODE), and try to convert it into a
3125 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
3126 is true iff we converted the statement. */
3129 convert_plusminus_to_widen (gimple_stmt_iterator
*gsi
, gimple stmt
,
3130 enum tree_code code
)
3132 gimple rhs1_stmt
= NULL
, rhs2_stmt
= NULL
;
3133 gimple conv1_stmt
= NULL
, conv2_stmt
= NULL
, conv_stmt
;
3134 tree type
, type1
, type2
, optype
;
3135 tree lhs
, rhs1
, rhs2
, mult_rhs1
, mult_rhs2
, add_rhs
;
3136 enum tree_code rhs1_code
= ERROR_MARK
, rhs2_code
= ERROR_MARK
;
3138 enum tree_code wmult_code
;
3139 enum insn_code handler
;
3140 machine_mode to_mode
, from_mode
, actual_mode
;
3141 location_t loc
= gimple_location (stmt
);
3142 int actual_precision
;
3143 bool from_unsigned1
, from_unsigned2
;
3145 lhs
= gimple_assign_lhs (stmt
);
3146 type
= TREE_TYPE (lhs
);
3147 if (TREE_CODE (type
) != INTEGER_TYPE
3148 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
3151 if (code
== MINUS_EXPR
)
3152 wmult_code
= WIDEN_MULT_MINUS_EXPR
;
3154 wmult_code
= WIDEN_MULT_PLUS_EXPR
;
3156 rhs1
= gimple_assign_rhs1 (stmt
);
3157 rhs2
= gimple_assign_rhs2 (stmt
);
3159 if (TREE_CODE (rhs1
) == SSA_NAME
)
3161 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
3162 if (is_gimple_assign (rhs1_stmt
))
3163 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
3166 if (TREE_CODE (rhs2
) == SSA_NAME
)
3168 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
3169 if (is_gimple_assign (rhs2_stmt
))
3170 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
3173 /* Allow for one conversion statement between the multiply
3174 and addition/subtraction statement. If there are more than
3175 one conversions then we assume they would invalidate this
3176 transformation. If that's not the case then they should have
3177 been folded before now. */
3178 if (CONVERT_EXPR_CODE_P (rhs1_code
))
3180 conv1_stmt
= rhs1_stmt
;
3181 rhs1
= gimple_assign_rhs1 (rhs1_stmt
);
3182 if (TREE_CODE (rhs1
) == SSA_NAME
)
3184 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
3185 if (is_gimple_assign (rhs1_stmt
))
3186 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
3191 if (CONVERT_EXPR_CODE_P (rhs2_code
))
3193 conv2_stmt
= rhs2_stmt
;
3194 rhs2
= gimple_assign_rhs1 (rhs2_stmt
);
3195 if (TREE_CODE (rhs2
) == SSA_NAME
)
3197 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
3198 if (is_gimple_assign (rhs2_stmt
))
3199 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
3205 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
3206 is_widening_mult_p, but we still need the rhs returns.
3208 It might also appear that it would be sufficient to use the existing
3209 operands of the widening multiply, but that would limit the choice of
3210 multiply-and-accumulate instructions.
3212 If the widened-multiplication result has more than one uses, it is
3213 probably wiser not to do the conversion. */
3214 if (code
== PLUS_EXPR
3215 && (rhs1_code
== MULT_EXPR
|| rhs1_code
== WIDEN_MULT_EXPR
))
3217 if (!has_single_use (rhs1
)
3218 || !is_widening_mult_p (rhs1_stmt
, &type1
, &mult_rhs1
,
3219 &type2
, &mult_rhs2
))
3222 conv_stmt
= conv1_stmt
;
3224 else if (rhs2_code
== MULT_EXPR
|| rhs2_code
== WIDEN_MULT_EXPR
)
3226 if (!has_single_use (rhs2
)
3227 || !is_widening_mult_p (rhs2_stmt
, &type1
, &mult_rhs1
,
3228 &type2
, &mult_rhs2
))
3231 conv_stmt
= conv2_stmt
;
3236 to_mode
= TYPE_MODE (type
);
3237 from_mode
= TYPE_MODE (type1
);
3238 from_unsigned1
= TYPE_UNSIGNED (type1
);
3239 from_unsigned2
= TYPE_UNSIGNED (type2
);
3242 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
3243 if (from_unsigned1
!= from_unsigned2
)
3245 if (!INTEGRAL_TYPE_P (type
))
3247 /* We can use a signed multiply with unsigned types as long as
3248 there is a wider mode to use, or it is the smaller of the two
3249 types that is unsigned. Note that type1 >= type2, always. */
3251 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
3253 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
3255 from_mode
= GET_MODE_WIDER_MODE (from_mode
);
3256 if (GET_MODE_SIZE (from_mode
) >= GET_MODE_SIZE (to_mode
))
3260 from_unsigned1
= from_unsigned2
= false;
3261 optype
= build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode
),
3265 /* If there was a conversion between the multiply and addition
3266 then we need to make sure it fits a multiply-and-accumulate.
3267 The should be a single mode change which does not change the
3271 /* We use the original, unmodified data types for this. */
3272 tree from_type
= TREE_TYPE (gimple_assign_rhs1 (conv_stmt
));
3273 tree to_type
= TREE_TYPE (gimple_assign_lhs (conv_stmt
));
3274 int data_size
= TYPE_PRECISION (type1
) + TYPE_PRECISION (type2
);
3275 bool is_unsigned
= TYPE_UNSIGNED (type1
) && TYPE_UNSIGNED (type2
);
3277 if (TYPE_PRECISION (from_type
) > TYPE_PRECISION (to_type
))
3279 /* Conversion is a truncate. */
3280 if (TYPE_PRECISION (to_type
) < data_size
)
3283 else if (TYPE_PRECISION (from_type
) < TYPE_PRECISION (to_type
))
3285 /* Conversion is an extend. Check it's the right sort. */
3286 if (TYPE_UNSIGNED (from_type
) != is_unsigned
3287 && !(is_unsigned
&& TYPE_PRECISION (from_type
) > data_size
))
3290 /* else convert is a no-op for our purposes. */
3293 /* Verify that the machine can perform a widening multiply
3294 accumulate in this mode/signedness combination, otherwise
3295 this transformation is likely to pessimize code. */
3296 this_optab
= optab_for_tree_code (wmult_code
, optype
, optab_default
);
3297 handler
= find_widening_optab_handler_and_mode (this_optab
, to_mode
,
3298 from_mode
, 0, &actual_mode
);
3300 if (handler
== CODE_FOR_nothing
)
3303 /* Ensure that the inputs to the handler are in the correct precison
3304 for the opcode. This will be the full mode size. */
3305 actual_precision
= GET_MODE_PRECISION (actual_mode
);
3306 if (actual_precision
!= TYPE_PRECISION (type1
)
3307 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
3308 mult_rhs1
= build_and_insert_cast (gsi
, loc
,
3309 build_nonstandard_integer_type
3310 (actual_precision
, from_unsigned1
),
3312 if (actual_precision
!= TYPE_PRECISION (type2
)
3313 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
3314 mult_rhs2
= build_and_insert_cast (gsi
, loc
,
3315 build_nonstandard_integer_type
3316 (actual_precision
, from_unsigned2
),
3319 if (!useless_type_conversion_p (type
, TREE_TYPE (add_rhs
)))
3320 add_rhs
= build_and_insert_cast (gsi
, loc
, type
, add_rhs
);
3322 /* Handle constants. */
3323 if (TREE_CODE (mult_rhs1
) == INTEGER_CST
)
3324 mult_rhs1
= fold_convert (type1
, mult_rhs1
);
3325 if (TREE_CODE (mult_rhs2
) == INTEGER_CST
)
3326 mult_rhs2
= fold_convert (type2
, mult_rhs2
);
3328 gimple_assign_set_rhs_with_ops (gsi
, wmult_code
, mult_rhs1
, mult_rhs2
,
3330 update_stmt (gsi_stmt (*gsi
));
3331 widen_mul_stats
.maccs_inserted
++;
3335 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3336 with uses in additions and subtractions to form fused multiply-add
3337 operations. Returns true if successful and MUL_STMT should be removed. */
3340 convert_mult_to_fma (gimple mul_stmt
, tree op1
, tree op2
)
3342 tree mul_result
= gimple_get_lhs (mul_stmt
);
3343 tree type
= TREE_TYPE (mul_result
);
3344 gimple use_stmt
, neguse_stmt
;
3346 use_operand_p use_p
;
3347 imm_use_iterator imm_iter
;
3349 if (FLOAT_TYPE_P (type
)
3350 && flag_fp_contract_mode
== FP_CONTRACT_OFF
)
3353 /* We don't want to do bitfield reduction ops. */
3354 if (INTEGRAL_TYPE_P (type
)
3355 && (TYPE_PRECISION (type
)
3356 != GET_MODE_PRECISION (TYPE_MODE (type
))))
3359 /* If the target doesn't support it, don't generate it. We assume that
3360 if fma isn't available then fms, fnma or fnms are not either. */
3361 if (optab_handler (fma_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
)
3364 /* If the multiplication has zero uses, it is kept around probably because
3365 of -fnon-call-exceptions. Don't optimize it away in that case,
3367 if (has_zero_uses (mul_result
))
3370 /* Make sure that the multiplication statement becomes dead after
3371 the transformation, thus that all uses are transformed to FMAs.
3372 This means we assume that an FMA operation has the same cost
3374 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, mul_result
)
3376 enum tree_code use_code
;
3377 tree result
= mul_result
;
3378 bool negate_p
= false;
3380 use_stmt
= USE_STMT (use_p
);
3382 if (is_gimple_debug (use_stmt
))
3385 /* For now restrict this operations to single basic blocks. In theory
3386 we would want to support sinking the multiplication in
3392 to form a fma in the then block and sink the multiplication to the
3394 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
3397 if (!is_gimple_assign (use_stmt
))
3400 use_code
= gimple_assign_rhs_code (use_stmt
);
3402 /* A negate on the multiplication leads to FNMA. */
3403 if (use_code
== NEGATE_EXPR
)
3408 result
= gimple_assign_lhs (use_stmt
);
3410 /* Make sure the negate statement becomes dead with this
3411 single transformation. */
3412 if (!single_imm_use (gimple_assign_lhs (use_stmt
),
3413 &use_p
, &neguse_stmt
))
3416 /* Make sure the multiplication isn't also used on that stmt. */
3417 FOR_EACH_PHI_OR_STMT_USE (usep
, neguse_stmt
, iter
, SSA_OP_USE
)
3418 if (USE_FROM_PTR (usep
) == mul_result
)
3422 use_stmt
= neguse_stmt
;
3423 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
3425 if (!is_gimple_assign (use_stmt
))
3428 use_code
= gimple_assign_rhs_code (use_stmt
);
3435 if (gimple_assign_rhs2 (use_stmt
) == result
)
3436 negate_p
= !negate_p
;
3441 /* FMA can only be formed from PLUS and MINUS. */
3445 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3446 by a MULT_EXPR that we'll visit later, we might be able to
3447 get a more profitable match with fnma.
3448 OTOH, if we don't, a negate / fma pair has likely lower latency
3449 that a mult / subtract pair. */
3450 if (use_code
== MINUS_EXPR
&& !negate_p
3451 && gimple_assign_rhs1 (use_stmt
) == result
3452 && optab_handler (fms_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
3453 && optab_handler (fnma_optab
, TYPE_MODE (type
)) != CODE_FOR_nothing
)
3455 tree rhs2
= gimple_assign_rhs2 (use_stmt
);
3457 if (TREE_CODE (rhs2
) == SSA_NAME
)
3459 gimple stmt2
= SSA_NAME_DEF_STMT (rhs2
);
3460 if (has_single_use (rhs2
)
3461 && is_gimple_assign (stmt2
)
3462 && gimple_assign_rhs_code (stmt2
) == MULT_EXPR
)
3467 /* We can't handle a * b + a * b. */
3468 if (gimple_assign_rhs1 (use_stmt
) == gimple_assign_rhs2 (use_stmt
))
3471 /* While it is possible to validate whether or not the exact form
3472 that we've recognized is available in the backend, the assumption
3473 is that the transformation is never a loss. For instance, suppose
3474 the target only has the plain FMA pattern available. Consider
3475 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3476 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3477 still have 3 operations, but in the FMA form the two NEGs are
3478 independent and could be run in parallel. */
3481 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, mul_result
)
3483 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
3484 enum tree_code use_code
;
3485 tree addop
, mulop1
= op1
, result
= mul_result
;
3486 bool negate_p
= false;
3488 if (is_gimple_debug (use_stmt
))
3491 use_code
= gimple_assign_rhs_code (use_stmt
);
3492 if (use_code
== NEGATE_EXPR
)
3494 result
= gimple_assign_lhs (use_stmt
);
3495 single_imm_use (gimple_assign_lhs (use_stmt
), &use_p
, &neguse_stmt
);
3496 gsi_remove (&gsi
, true);
3497 release_defs (use_stmt
);
3499 use_stmt
= neguse_stmt
;
3500 gsi
= gsi_for_stmt (use_stmt
);
3501 use_code
= gimple_assign_rhs_code (use_stmt
);
3505 if (gimple_assign_rhs1 (use_stmt
) == result
)
3507 addop
= gimple_assign_rhs2 (use_stmt
);
3508 /* a * b - c -> a * b + (-c) */
3509 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
3510 addop
= force_gimple_operand_gsi (&gsi
,
3511 build1 (NEGATE_EXPR
,
3513 true, NULL_TREE
, true,
3518 addop
= gimple_assign_rhs1 (use_stmt
);
3519 /* a - b * c -> (-b) * c + a */
3520 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
3521 negate_p
= !negate_p
;
3525 mulop1
= force_gimple_operand_gsi (&gsi
,
3526 build1 (NEGATE_EXPR
,
3528 true, NULL_TREE
, true,
3531 fma_stmt
= gimple_build_assign (gimple_assign_lhs (use_stmt
),
3532 FMA_EXPR
, mulop1
, op2
, addop
);
3533 gsi_replace (&gsi
, fma_stmt
, true);
3534 widen_mul_stats
.fmas_inserted
++;
3540 /* Find integer multiplications where the operands are extended from
3541 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3542 where appropriate. */
3546 const pass_data pass_data_optimize_widening_mul
=
3548 GIMPLE_PASS
, /* type */
3549 "widening_mul", /* name */
3550 OPTGROUP_NONE
, /* optinfo_flags */
3551 TV_NONE
, /* tv_id */
3552 PROP_ssa
, /* properties_required */
3553 0, /* properties_provided */
3554 0, /* properties_destroyed */
3555 0, /* todo_flags_start */
3556 TODO_update_ssa
, /* todo_flags_finish */
3559 class pass_optimize_widening_mul
: public gimple_opt_pass
3562 pass_optimize_widening_mul (gcc::context
*ctxt
)
3563 : gimple_opt_pass (pass_data_optimize_widening_mul
, ctxt
)
3566 /* opt_pass methods: */
3567 virtual bool gate (function
*)
3569 return flag_expensive_optimizations
&& optimize
;
3572 virtual unsigned int execute (function
*);
3574 }; // class pass_optimize_widening_mul
3577 pass_optimize_widening_mul::execute (function
*fun
)
3580 bool cfg_changed
= false;
3582 memset (&widen_mul_stats
, 0, sizeof (widen_mul_stats
));
3584 FOR_EACH_BB_FN (bb
, fun
)
3586 gimple_stmt_iterator gsi
;
3588 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
3590 gimple stmt
= gsi_stmt (gsi
);
3591 enum tree_code code
;
3593 if (is_gimple_assign (stmt
))
3595 code
= gimple_assign_rhs_code (stmt
);
3599 if (!convert_mult_to_widen (stmt
, &gsi
)
3600 && convert_mult_to_fma (stmt
,
3601 gimple_assign_rhs1 (stmt
),
3602 gimple_assign_rhs2 (stmt
)))
3604 gsi_remove (&gsi
, true);
3605 release_defs (stmt
);
3612 convert_plusminus_to_widen (&gsi
, stmt
, code
);
3618 else if (is_gimple_call (stmt
)
3619 && gimple_call_lhs (stmt
))
3621 tree fndecl
= gimple_call_fndecl (stmt
);
3623 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3625 switch (DECL_FUNCTION_CODE (fndecl
))
3630 if (TREE_CODE (gimple_call_arg (stmt
, 1)) == REAL_CST
3631 && REAL_VALUES_EQUAL
3632 (TREE_REAL_CST (gimple_call_arg (stmt
, 1)),
3634 && convert_mult_to_fma (stmt
,
3635 gimple_call_arg (stmt
, 0),
3636 gimple_call_arg (stmt
, 0)))
3638 unlink_stmt_vdef (stmt
);
3639 if (gsi_remove (&gsi
, true)
3640 && gimple_purge_dead_eh_edges (bb
))
3642 release_defs (stmt
);
3655 statistics_counter_event (fun
, "widening multiplications inserted",
3656 widen_mul_stats
.widen_mults_inserted
);
3657 statistics_counter_event (fun
, "widening maccs inserted",
3658 widen_mul_stats
.maccs_inserted
);
3659 statistics_counter_event (fun
, "fused multiply-adds inserted",
3660 widen_mul_stats
.fmas_inserted
);
3662 return cfg_changed
? TODO_cleanup_cfg
: 0;
3668 make_pass_optimize_widening_mul (gcc::context
*ctxt
)
3670 return new pass_optimize_widening_mul (ctxt
);