1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "double-int.h"
35 #include "fold-const.h"
36 #include "stringpool.h"
37 #include "stor-layout.h"
42 #include "hard-reg-set.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
48 #include "statistics.h"
50 #include "fixed-value.h"
57 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
59 #include "insn-codes.h"
64 #include "typeclass.h"
66 #include "langhooks.h"
69 #include "tree-iterator.h"
71 #include "dominance.h"
73 #include "basic-block.h"
74 #include "tree-ssa-alias.h"
75 #include "internal-fn.h"
76 #include "gimple-expr.h"
79 #include "gimple-ssa.h"
81 #include "plugin-api.h"
84 #include "tree-ssanames.h"
86 #include "common/common-target.h"
89 #include "diagnostic.h"
90 #include "tree-ssa-live.h"
91 #include "tree-outof-ssa.h"
92 #include "target-globals.h"
94 #include "tree-ssa-address.h"
95 #include "cfgexpand.h"
97 #include "tree-chkp.h"
102 /* If this is nonzero, we do not bother generating VOLATILE
103 around volatile memory references, and we are willing to
104 output indirect addresses. If cse is to follow, we reject
105 indirect addresses so a useful potential cse is generated;
106 if it is used only once, instruction combination will produce
107 the same indirect address eventually. */
108 int cse_not_expected
;
110 /* This structure is used by move_by_pieces to describe the move to
112 struct move_by_pieces_d
121 int explicit_inc_from
;
122 unsigned HOST_WIDE_INT len
;
123 HOST_WIDE_INT offset
;
127 /* This structure is used by store_by_pieces to describe the clear to
130 struct store_by_pieces_d
136 unsigned HOST_WIDE_INT len
;
137 HOST_WIDE_INT offset
;
138 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
);
143 static void move_by_pieces_1 (insn_gen_fn
, machine_mode
,
144 struct move_by_pieces_d
*);
145 static bool block_move_libcall_safe_for_call_parm (void);
146 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
,
147 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
148 unsigned HOST_WIDE_INT
);
149 static tree
emit_block_move_libcall_fn (int);
150 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
151 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, machine_mode
);
152 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
153 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
154 static void store_by_pieces_2 (insn_gen_fn
, machine_mode
,
155 struct store_by_pieces_d
*);
156 static tree
clear_storage_libcall_fn (int);
157 static rtx_insn
*compress_float_constant (rtx
, rtx
);
158 static rtx
get_subtarget (rtx
);
159 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
160 HOST_WIDE_INT
, machine_mode
,
161 tree
, int, alias_set_type
);
162 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
163 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
164 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
165 machine_mode
, tree
, alias_set_type
, bool);
167 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
169 static int is_aligning_offset (const_tree
, const_tree
);
170 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
171 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
173 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
175 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
, int);
176 static rtx
const_vector_from_tree (tree
);
177 static tree
tree_expr_size (const_tree
);
178 static HOST_WIDE_INT
int_expr_size (tree
);
181 /* This is run to set up which modes can be used
182 directly in memory and to initialize the block move optab. It is run
183 at the beginning of compilation and when the target is reinitialized. */
186 init_expr_target (void)
194 /* Try indexing by frame ptr and try by stack ptr.
195 It is known that on the Convex the stack ptr isn't a valid index.
196 With luck, one or the other is valid on any machine. */
197 mem
= gen_rtx_MEM (word_mode
, stack_pointer_rtx
);
198 mem1
= gen_rtx_MEM (word_mode
, frame_pointer_rtx
);
200 /* A scratch register we can modify in-place below to avoid
201 useless RTL allocations. */
202 reg
= gen_rtx_REG (word_mode
, FIRST_PSEUDO_REGISTER
);
204 insn
= rtx_alloc (INSN
);
205 pat
= gen_rtx_SET (NULL_RTX
, NULL_RTX
);
206 PATTERN (insn
) = pat
;
208 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
209 mode
= (machine_mode
) ((int) mode
+ 1))
213 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
214 PUT_MODE (mem
, mode
);
215 PUT_MODE (mem1
, mode
);
217 /* See if there is some register that can be used in this mode and
218 directly loaded or stored from memory. */
220 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
221 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
222 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
225 if (! HARD_REGNO_MODE_OK (regno
, mode
))
228 set_mode_and_regno (reg
, mode
, regno
);
231 SET_DEST (pat
) = reg
;
232 if (recog (pat
, insn
, &num_clobbers
) >= 0)
233 direct_load
[(int) mode
] = 1;
235 SET_SRC (pat
) = mem1
;
236 SET_DEST (pat
) = reg
;
237 if (recog (pat
, insn
, &num_clobbers
) >= 0)
238 direct_load
[(int) mode
] = 1;
241 SET_DEST (pat
) = mem
;
242 if (recog (pat
, insn
, &num_clobbers
) >= 0)
243 direct_store
[(int) mode
] = 1;
246 SET_DEST (pat
) = mem1
;
247 if (recog (pat
, insn
, &num_clobbers
) >= 0)
248 direct_store
[(int) mode
] = 1;
252 mem
= gen_rtx_MEM (VOIDmode
, gen_raw_REG (Pmode
, FIRST_PSEUDO_REGISTER
));
254 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
255 mode
= GET_MODE_WIDER_MODE (mode
))
257 machine_mode srcmode
;
258 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
259 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
263 ic
= can_extend_p (mode
, srcmode
, 0);
264 if (ic
== CODE_FOR_nothing
)
267 PUT_MODE (mem
, srcmode
);
269 if (insn_operand_matches (ic
, 1, mem
))
270 float_extend_from_mem
[mode
][srcmode
] = true;
275 /* This is run at the start of compiling a function. */
280 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
283 /* Copy data from FROM to TO, where the machine modes are not the same.
284 Both modes may be integer, or both may be floating, or both may be
286 UNSIGNEDP should be nonzero if FROM is an unsigned type.
287 This causes zero-extension instead of sign-extension. */
290 convert_move (rtx to
, rtx from
, int unsignedp
)
292 machine_mode to_mode
= GET_MODE (to
);
293 machine_mode from_mode
= GET_MODE (from
);
294 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
295 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
299 /* rtx code for making an equivalent value. */
300 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
301 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
304 gcc_assert (to_real
== from_real
);
305 gcc_assert (to_mode
!= BLKmode
);
306 gcc_assert (from_mode
!= BLKmode
);
308 /* If the source and destination are already the same, then there's
313 /* If FROM is a SUBREG that indicates that we have already done at least
314 the required extension, strip it. We don't handle such SUBREGs as
317 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
318 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
319 >= GET_MODE_PRECISION (to_mode
))
320 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
321 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
323 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
325 if (to_mode
== from_mode
326 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
328 emit_move_insn (to
, from
);
332 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
334 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
336 if (VECTOR_MODE_P (to_mode
))
337 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
339 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
341 emit_move_insn (to
, from
);
345 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
347 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
348 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
358 gcc_assert ((GET_MODE_PRECISION (from_mode
)
359 != GET_MODE_PRECISION (to_mode
))
360 || (DECIMAL_FLOAT_MODE_P (from_mode
)
361 != DECIMAL_FLOAT_MODE_P (to_mode
)));
363 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
364 /* Conversion between decimal float and binary float, same size. */
365 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
366 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
371 /* Try converting directly if the insn is supported. */
373 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
374 if (code
!= CODE_FOR_nothing
)
376 emit_unop_insn (code
, to
, from
,
377 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
381 /* Otherwise use a libcall. */
382 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
384 /* Is this conversion implemented yet? */
385 gcc_assert (libcall
);
388 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
390 insns
= get_insns ();
392 emit_libcall_block (insns
, to
, value
,
393 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
395 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
399 /* Handle pointer conversion. */ /* SPEE 900220. */
400 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
404 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
411 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
414 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
420 /* Targets are expected to provide conversion insns between PxImode and
421 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
422 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
424 machine_mode full_mode
425 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
427 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
428 != CODE_FOR_nothing
);
430 if (full_mode
!= from_mode
)
431 from
= convert_to_mode (full_mode
, from
, unsignedp
);
432 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
436 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
439 machine_mode full_mode
440 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
441 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
442 enum insn_code icode
;
444 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
445 gcc_assert (icode
!= CODE_FOR_nothing
);
447 if (to_mode
== full_mode
)
449 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
453 new_from
= gen_reg_rtx (full_mode
);
454 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
456 /* else proceed to integer conversions below. */
457 from_mode
= full_mode
;
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
470 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
471 expand_fixed_convert (to
, from
, 0, 0);
473 expand_fixed_convert (to
, from
, 0, 1);
477 /* Now both modes are integers. */
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
481 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
488 machine_mode lowpart_mode
;
489 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
491 /* Try converting directly if the insn is supported. */
492 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
500 from
= force_reg (from_mode
, from
);
501 emit_unop_insn (code
, to
, from
, equiv_code
);
504 /* Next, try converting via full word. */
505 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
506 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
507 != CODE_FOR_nothing
))
509 rtx word_to
= gen_reg_rtx (word_mode
);
512 if (reg_overlap_mentioned_p (to
, from
))
513 from
= force_reg (from_mode
, from
);
516 convert_move (word_to
, from
, unsignedp
);
517 emit_unop_insn (code
, to
, word_to
, equiv_code
);
521 /* No special multiword conversion insn; do it by hand. */
524 /* Since we will turn this into a no conflict block, we must ensure the
525 the source does not overlap the target so force it into an isolated
526 register when maybe so. Likewise for any MEM input, since the
527 conversion sequence might require several references to it and we
528 must ensure we're getting the same value every time. */
530 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
531 from
= force_reg (from_mode
, from
);
533 /* Get a copy of FROM widened to a word, if necessary. */
534 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
535 lowpart_mode
= word_mode
;
537 lowpart_mode
= from_mode
;
539 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
541 lowpart
= gen_lowpart (lowpart_mode
, to
);
542 emit_move_insn (lowpart
, lowfrom
);
544 /* Compute the value to put in each remaining word. */
546 fill_value
= const0_rtx
;
548 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
549 LT
, lowfrom
, const0_rtx
,
550 lowpart_mode
, 0, -1);
552 /* Fill the remaining words. */
553 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
555 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
556 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
558 gcc_assert (subword
);
560 if (fill_value
!= subword
)
561 emit_move_insn (subword
, fill_value
);
564 insns
= get_insns ();
571 /* Truncating multi-word to a word or less. */
572 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
573 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
576 && ! MEM_VOLATILE_P (from
)
577 && direct_load
[(int) to_mode
]
578 && ! mode_dependent_address_p (XEXP (from
, 0),
579 MEM_ADDR_SPACE (from
)))
581 || GET_CODE (from
) == SUBREG
))
582 from
= force_reg (from_mode
, from
);
583 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
587 /* Now follow all the conversions between integers
588 no more than a word long. */
590 /* For truncation, usually we can just refer to FROM in a narrower mode. */
591 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
592 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
595 && ! MEM_VOLATILE_P (from
)
596 && direct_load
[(int) to_mode
]
597 && ! mode_dependent_address_p (XEXP (from
, 0),
598 MEM_ADDR_SPACE (from
)))
600 || GET_CODE (from
) == SUBREG
))
601 from
= force_reg (from_mode
, from
);
602 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
603 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
604 from
= copy_to_reg (from
);
605 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
609 /* Handle extension. */
610 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
612 /* Convert directly if that works. */
613 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
616 emit_unop_insn (code
, to
, from
, equiv_code
);
621 machine_mode intermediate
;
625 /* Search for a mode to convert via. */
626 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
627 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
628 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
630 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
631 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
632 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
633 != CODE_FOR_nothing
))
635 convert_move (to
, convert_to_mode (intermediate
, from
,
636 unsignedp
), unsignedp
);
640 /* No suitable intermediate mode.
641 Generate what we need with shifts. */
642 shift_amount
= (GET_MODE_PRECISION (to_mode
)
643 - GET_MODE_PRECISION (from_mode
));
644 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
645 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
647 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
650 emit_move_insn (to
, tmp
);
655 /* Support special truncate insns for certain modes. */
656 if (convert_optab_handler (trunc_optab
, to_mode
,
657 from_mode
) != CODE_FOR_nothing
)
659 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
664 /* Handle truncation of volatile memrefs, and so on;
665 the things that couldn't be truncated directly,
666 and for which there was no special instruction.
668 ??? Code above formerly short-circuited this, for most integer
669 mode pairs, with a force_reg in from_mode followed by a recursive
670 call to this routine. Appears always to have been wrong. */
671 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
673 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
674 emit_move_insn (to
, temp
);
678 /* Mode combination is not recognized. */
682 /* Return an rtx for a value that would result
683 from converting X to mode MODE.
684 Both X and MODE may be floating, or both integer.
685 UNSIGNEDP is nonzero if X is an unsigned value.
686 This can be done by referring to a part of X in place
687 or by copying to a new temporary with conversion. */
690 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
692 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
695 /* Return an rtx for a value that would result
696 from converting X from mode OLDMODE to mode MODE.
697 Both modes may be floating, or both integer.
698 UNSIGNEDP is nonzero if X is an unsigned value.
700 This can be done by referring to a part of X in place
701 or by copying to a new temporary with conversion.
703 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
706 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
710 /* If FROM is a SUBREG that indicates that we have already done at least
711 the required extension, strip it. */
713 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
714 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
715 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
716 x
= gen_lowpart (mode
, SUBREG_REG (x
));
718 if (GET_MODE (x
) != VOIDmode
)
719 oldmode
= GET_MODE (x
);
724 if (CONST_SCALAR_INT_P (x
) && GET_MODE_CLASS (mode
) == MODE_INT
)
726 /* If the caller did not tell us the old mode, then there is not
727 much to do with respect to canonicalization. We have to
728 assume that all the bits are significant. */
729 if (GET_MODE_CLASS (oldmode
) != MODE_INT
)
730 oldmode
= MAX_MODE_INT
;
731 wide_int w
= wide_int::from (std::make_pair (x
, oldmode
),
732 GET_MODE_PRECISION (mode
),
733 unsignedp
? UNSIGNED
: SIGNED
);
734 return immed_wide_int_const (w
, mode
);
737 /* We can do this with a gen_lowpart if both desired and current modes
738 are integer, and this is either a constant integer, a register, or a
740 if (GET_MODE_CLASS (mode
) == MODE_INT
741 && GET_MODE_CLASS (oldmode
) == MODE_INT
742 && GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
743 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) mode
])
745 && (!HARD_REGISTER_P (x
)
746 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
747 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
)))))
749 return gen_lowpart (mode
, x
);
751 /* Converting from integer constant into mode is always equivalent to an
753 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
755 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
756 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
759 temp
= gen_reg_rtx (mode
);
760 convert_move (temp
, x
, unsignedp
);
764 /* Return the largest alignment we can use for doing a move (or store)
765 of MAX_PIECES. ALIGN is the largest alignment we could use. */
768 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
772 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
773 if (align
>= GET_MODE_ALIGNMENT (tmode
))
774 align
= GET_MODE_ALIGNMENT (tmode
);
777 machine_mode tmode
, xmode
;
779 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
781 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
782 if (GET_MODE_SIZE (tmode
) > max_pieces
783 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
786 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
792 /* Return the widest integer mode no wider than SIZE. If no such mode
793 can be found, return VOIDmode. */
796 widest_int_mode_for_size (unsigned int size
)
798 machine_mode tmode
, mode
= VOIDmode
;
800 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
801 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
802 if (GET_MODE_SIZE (tmode
) < size
)
808 /* Determine whether the LEN bytes can be moved by using several move
809 instructions. Return nonzero if a call to move_by_pieces should
813 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
816 return targetm
.use_by_pieces_infrastructure_p (len
, align
, MOVE_BY_PIECES
,
817 optimize_insn_for_speed_p ());
820 /* Generate several move instructions to copy LEN bytes from block FROM to
821 block TO. (These are MEM rtx's with BLKmode).
823 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
824 used to push FROM to the stack.
826 ALIGN is maximum stack alignment we can assume.
828 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
829 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
833 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
834 unsigned int align
, int endp
)
836 struct move_by_pieces_d data
;
837 machine_mode to_addr_mode
;
838 machine_mode from_addr_mode
= get_address_mode (from
);
839 rtx to_addr
, from_addr
= XEXP (from
, 0);
840 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
841 enum insn_code icode
;
843 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
846 data
.from_addr
= from_addr
;
849 to_addr_mode
= get_address_mode (to
);
850 to_addr
= XEXP (to
, 0);
853 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
854 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
856 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
860 to_addr_mode
= VOIDmode
;
864 if (STACK_GROWS_DOWNWARD
)
869 data
.to_addr
= to_addr
;
872 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
873 || GET_CODE (from_addr
) == POST_INC
874 || GET_CODE (from_addr
) == POST_DEC
);
876 data
.explicit_inc_from
= 0;
877 data
.explicit_inc_to
= 0;
878 if (data
.reverse
) data
.offset
= len
;
881 /* If copying requires more than two move insns,
882 copy addresses to registers (to make displacements shorter)
883 and use post-increment if available. */
884 if (!(data
.autinc_from
&& data
.autinc_to
)
885 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
887 /* Find the mode of the largest move...
888 MODE might not be used depending on the definitions of the
889 USE_* macros below. */
890 machine_mode mode ATTRIBUTE_UNUSED
891 = widest_int_mode_for_size (max_size
);
893 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
895 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
896 plus_constant (from_addr_mode
,
898 data
.autinc_from
= 1;
899 data
.explicit_inc_from
= -1;
901 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
903 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
904 data
.autinc_from
= 1;
905 data
.explicit_inc_from
= 1;
907 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
908 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
909 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
911 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
912 plus_constant (to_addr_mode
,
915 data
.explicit_inc_to
= -1;
917 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
919 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
921 data
.explicit_inc_to
= 1;
923 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
924 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
927 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
929 /* First move what we can in the largest integer mode, then go to
930 successively smaller modes. */
932 while (max_size
> 1 && data
.len
> 0)
934 machine_mode mode
= widest_int_mode_for_size (max_size
);
936 if (mode
== VOIDmode
)
939 icode
= optab_handler (mov_optab
, mode
);
940 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
941 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
943 max_size
= GET_MODE_SIZE (mode
);
946 /* The code above should have handled everything. */
947 gcc_assert (!data
.len
);
953 gcc_assert (!data
.reverse
);
958 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
959 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
961 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
962 plus_constant (to_addr_mode
,
966 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
973 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
981 /* Return number of insns required to move L bytes by pieces.
982 ALIGN (in bits) is maximum alignment we can assume. */
984 unsigned HOST_WIDE_INT
985 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
986 unsigned int max_size
)
988 unsigned HOST_WIDE_INT n_insns
= 0;
990 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
992 while (max_size
> 1 && l
> 0)
995 enum insn_code icode
;
997 mode
= widest_int_mode_for_size (max_size
);
999 if (mode
== VOIDmode
)
1002 icode
= optab_handler (mov_optab
, mode
);
1003 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1004 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1006 max_size
= GET_MODE_SIZE (mode
);
1013 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1014 with move instructions for mode MODE. GENFUN is the gen_... function
1015 to make a move insn for that mode. DATA has all the other info. */
1018 move_by_pieces_1 (insn_gen_fn genfun
, machine_mode mode
,
1019 struct move_by_pieces_d
*data
)
1021 unsigned int size
= GET_MODE_SIZE (mode
);
1022 rtx to1
= NULL_RTX
, from1
;
1024 while (data
->len
>= size
)
1027 data
->offset
-= size
;
1031 if (data
->autinc_to
)
1032 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1035 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1038 if (data
->autinc_from
)
1039 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1042 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1044 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1045 emit_insn (gen_add2_insn (data
->to_addr
,
1046 gen_int_mode (-(HOST_WIDE_INT
) size
,
1047 GET_MODE (data
->to_addr
))));
1048 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1049 emit_insn (gen_add2_insn (data
->from_addr
,
1050 gen_int_mode (-(HOST_WIDE_INT
) size
,
1051 GET_MODE (data
->from_addr
))));
1054 emit_insn ((*genfun
) (to1
, from1
));
1057 #ifdef PUSH_ROUNDING
1058 emit_single_push_insn (mode
, from1
, NULL
);
1064 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1065 emit_insn (gen_add2_insn (data
->to_addr
,
1067 GET_MODE (data
->to_addr
))));
1068 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1069 emit_insn (gen_add2_insn (data
->from_addr
,
1071 GET_MODE (data
->from_addr
))));
1073 if (! data
->reverse
)
1074 data
->offset
+= size
;
1080 /* Emit code to move a block Y to a block X. This may be done with
1081 string-move instructions, with multiple scalar move instructions,
1082 or with a library call.
1084 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1085 SIZE is an rtx that says how long they are.
1086 ALIGN is the maximum alignment we can assume they have.
1087 METHOD describes what kind of copy this is, and what mechanisms may be used.
1088 MIN_SIZE is the minimal size of block to move
1089 MAX_SIZE is the maximal size of block to move, if it can not be represented
1090 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1092 Return the address of the new block, if memcpy is called and returns it,
1096 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1097 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1098 unsigned HOST_WIDE_INT min_size
,
1099 unsigned HOST_WIDE_INT max_size
,
1100 unsigned HOST_WIDE_INT probable_max_size
)
1107 if (CONST_INT_P (size
)
1108 && INTVAL (size
) == 0)
1113 case BLOCK_OP_NORMAL
:
1114 case BLOCK_OP_TAILCALL
:
1115 may_use_call
= true;
1118 case BLOCK_OP_CALL_PARM
:
1119 may_use_call
= block_move_libcall_safe_for_call_parm ();
1121 /* Make inhibit_defer_pop nonzero around the library call
1122 to force it to pop the arguments right away. */
1126 case BLOCK_OP_NO_LIBCALL
:
1127 may_use_call
= false;
1134 gcc_assert (MEM_P (x
) && MEM_P (y
));
1135 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1136 gcc_assert (align
>= BITS_PER_UNIT
);
1138 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1139 block copy is more efficient for other large modes, e.g. DCmode. */
1140 x
= adjust_address (x
, BLKmode
, 0);
1141 y
= adjust_address (y
, BLKmode
, 0);
1143 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1144 can be incorrect is coming from __builtin_memcpy. */
1145 if (CONST_INT_P (size
))
1147 x
= shallow_copy_rtx (x
);
1148 y
= shallow_copy_rtx (y
);
1149 set_mem_size (x
, INTVAL (size
));
1150 set_mem_size (y
, INTVAL (size
));
1153 if (CONST_INT_P (size
) && can_move_by_pieces (INTVAL (size
), align
))
1154 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1155 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1156 expected_align
, expected_size
,
1157 min_size
, max_size
, probable_max_size
))
1159 else if (may_use_call
1160 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1161 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1163 /* Since x and y are passed to a libcall, mark the corresponding
1164 tree EXPR as addressable. */
1165 tree y_expr
= MEM_EXPR (y
);
1166 tree x_expr
= MEM_EXPR (x
);
1168 mark_addressable (y_expr
);
1170 mark_addressable (x_expr
);
1171 retval
= emit_block_move_via_libcall (x
, y
, size
,
1172 method
== BLOCK_OP_TAILCALL
);
1176 emit_block_move_via_loop (x
, y
, size
, align
);
1178 if (method
== BLOCK_OP_CALL_PARM
)
1185 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1187 unsigned HOST_WIDE_INT max
, min
= 0;
1188 if (GET_CODE (size
) == CONST_INT
)
1189 min
= max
= UINTVAL (size
);
1191 max
= GET_MODE_MASK (GET_MODE (size
));
1192 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1196 /* A subroutine of emit_block_move. Returns true if calling the
1197 block move libcall will not clobber any parameters which may have
1198 already been placed on the stack. */
1201 block_move_libcall_safe_for_call_parm (void)
1203 #if defined (REG_PARM_STACK_SPACE)
1207 /* If arguments are pushed on the stack, then they're safe. */
1211 /* If registers go on the stack anyway, any argument is sure to clobber
1212 an outgoing argument. */
1213 #if defined (REG_PARM_STACK_SPACE)
1214 fn
= emit_block_move_libcall_fn (false);
1215 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1216 depend on its argument. */
1218 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1219 && REG_PARM_STACK_SPACE (fn
) != 0)
1223 /* If any argument goes in memory, then it might clobber an outgoing
1226 CUMULATIVE_ARGS args_so_far_v
;
1227 cumulative_args_t args_so_far
;
1230 fn
= emit_block_move_libcall_fn (false);
1231 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1232 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1234 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1235 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1237 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1238 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1240 if (!tmp
|| !REG_P (tmp
))
1242 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1244 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1251 /* A subroutine of emit_block_move. Expand a movmem pattern;
1252 return true if successful. */
1255 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1256 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1257 unsigned HOST_WIDE_INT min_size
,
1258 unsigned HOST_WIDE_INT max_size
,
1259 unsigned HOST_WIDE_INT probable_max_size
)
1261 int save_volatile_ok
= volatile_ok
;
1264 if (expected_align
< align
)
1265 expected_align
= align
;
1266 if (expected_size
!= -1)
1268 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1269 expected_size
= probable_max_size
;
1270 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1271 expected_size
= min_size
;
1274 /* Since this is a move insn, we don't care about volatility. */
1277 /* Try the most limited insn first, because there's no point
1278 including more than one in the machine description unless
1279 the more limited one has some advantage. */
1281 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1282 mode
= GET_MODE_WIDER_MODE (mode
))
1284 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1286 if (code
!= CODE_FOR_nothing
1287 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1288 here because if SIZE is less than the mode mask, as it is
1289 returned by the macro, it will definitely be less than the
1290 actual mode mask. Since SIZE is within the Pmode address
1291 space, we limit MODE to Pmode. */
1292 && ((CONST_INT_P (size
)
1293 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1294 <= (GET_MODE_MASK (mode
) >> 1)))
1295 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1296 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1298 struct expand_operand ops
[9];
1301 /* ??? When called via emit_block_move_for_call, it'd be
1302 nice if there were some way to inform the backend, so
1303 that it doesn't fail the expansion because it thinks
1304 emitting the libcall would be more efficient. */
1305 nops
= insn_data
[(int) code
].n_generator_args
;
1306 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1308 create_fixed_operand (&ops
[0], x
);
1309 create_fixed_operand (&ops
[1], y
);
1310 /* The check above guarantees that this size conversion is valid. */
1311 create_convert_operand_to (&ops
[2], size
, mode
, true);
1312 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1315 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1316 create_integer_operand (&ops
[5], expected_size
);
1320 create_integer_operand (&ops
[6], min_size
);
1321 /* If we can not represent the maximal size,
1322 make parameter NULL. */
1323 if ((HOST_WIDE_INT
) max_size
!= -1)
1324 create_integer_operand (&ops
[7], max_size
);
1326 create_fixed_operand (&ops
[7], NULL
);
1330 /* If we can not represent the maximal size,
1331 make parameter NULL. */
1332 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1333 create_integer_operand (&ops
[8], probable_max_size
);
1335 create_fixed_operand (&ops
[8], NULL
);
1337 if (maybe_expand_insn (code
, nops
, ops
))
1339 volatile_ok
= save_volatile_ok
;
1345 volatile_ok
= save_volatile_ok
;
1349 /* A subroutine of emit_block_move. Expand a call to memcpy.
1350 Return the return value from memcpy, 0 otherwise. */
1353 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1355 rtx dst_addr
, src_addr
;
1356 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1357 machine_mode size_mode
;
1360 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1361 pseudos. We can then place those new pseudos into a VAR_DECL and
1364 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1365 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1367 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1368 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1370 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1371 src_tree
= make_tree (ptr_type_node
, src_addr
);
1373 size_mode
= TYPE_MODE (sizetype
);
1375 size
= convert_to_mode (size_mode
, size
, 1);
1376 size
= copy_to_mode_reg (size_mode
, size
);
1378 /* It is incorrect to use the libcall calling conventions to call
1379 memcpy in this context. This could be a user call to memcpy and
1380 the user may wish to examine the return value from memcpy. For
1381 targets where libcalls and normal calls have different conventions
1382 for returning pointers, we could end up generating incorrect code. */
1384 size_tree
= make_tree (sizetype
, size
);
1386 fn
= emit_block_move_libcall_fn (true);
1387 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1388 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1390 retval
= expand_normal (call_expr
);
1395 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1396 for the function we use for block copies. */
1398 static GTY(()) tree block_move_fn
;
1401 init_block_move_fn (const char *asmspec
)
1405 tree args
, fn
, attrs
, attr_args
;
1407 fn
= get_identifier ("memcpy");
1408 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1409 const_ptr_type_node
, sizetype
,
1412 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1413 DECL_EXTERNAL (fn
) = 1;
1414 TREE_PUBLIC (fn
) = 1;
1415 DECL_ARTIFICIAL (fn
) = 1;
1416 TREE_NOTHROW (fn
) = 1;
1417 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1418 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1420 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1421 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1423 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1429 set_user_assembler_name (block_move_fn
, asmspec
);
1433 emit_block_move_libcall_fn (int for_call
)
1435 static bool emitted_extern
;
1438 init_block_move_fn (NULL
);
1440 if (for_call
&& !emitted_extern
)
1442 emitted_extern
= true;
1443 make_decl_rtl (block_move_fn
);
1446 return block_move_fn
;
1449 /* A subroutine of emit_block_move. Copy the data via an explicit
1450 loop. This is used only when libcalls are forbidden. */
1451 /* ??? It'd be nice to copy in hunks larger than QImode. */
1454 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1455 unsigned int align ATTRIBUTE_UNUSED
)
1457 rtx_code_label
*cmp_label
, *top_label
;
1458 rtx iter
, x_addr
, y_addr
, tmp
;
1459 machine_mode x_addr_mode
= get_address_mode (x
);
1460 machine_mode y_addr_mode
= get_address_mode (y
);
1461 machine_mode iter_mode
;
1463 iter_mode
= GET_MODE (size
);
1464 if (iter_mode
== VOIDmode
)
1465 iter_mode
= word_mode
;
1467 top_label
= gen_label_rtx ();
1468 cmp_label
= gen_label_rtx ();
1469 iter
= gen_reg_rtx (iter_mode
);
1471 emit_move_insn (iter
, const0_rtx
);
1473 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1474 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1475 do_pending_stack_adjust ();
1477 emit_jump (cmp_label
);
1478 emit_label (top_label
);
1480 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1481 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1483 if (x_addr_mode
!= y_addr_mode
)
1484 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1485 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1487 x
= change_address (x
, QImode
, x_addr
);
1488 y
= change_address (y
, QImode
, y_addr
);
1490 emit_move_insn (x
, y
);
1492 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1493 true, OPTAB_LIB_WIDEN
);
1495 emit_move_insn (iter
, tmp
);
1497 emit_label (cmp_label
);
1499 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1500 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1503 /* Copy all or part of a value X into registers starting at REGNO.
1504 The number of registers to be filled is NREGS. */
1507 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
1516 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1517 x
= validize_mem (force_const_mem (mode
, x
));
1519 /* See if the machine can do this with a load multiple insn. */
1520 if (HAVE_load_multiple
)
1522 last
= get_last_insn ();
1523 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1531 delete_insns_since (last
);
1534 for (i
= 0; i
< nregs
; i
++)
1535 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1536 operand_subword_force (x
, i
, mode
));
1539 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1540 The number of registers to be filled is NREGS. */
1543 move_block_from_reg (int regno
, rtx x
, int nregs
)
1550 /* See if the machine can do this with a store multiple insn. */
1551 if (HAVE_store_multiple
)
1553 rtx_insn
*last
= get_last_insn ();
1554 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1562 delete_insns_since (last
);
1565 for (i
= 0; i
< nregs
; i
++)
1567 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1571 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1575 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1576 ORIG, where ORIG is a non-consecutive group of registers represented by
1577 a PARALLEL. The clone is identical to the original except in that the
1578 original set of registers is replaced by a new set of pseudo registers.
1579 The new set has the same modes as the original set. */
1582 gen_group_rtx (rtx orig
)
1587 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1589 length
= XVECLEN (orig
, 0);
1590 tmps
= XALLOCAVEC (rtx
, length
);
1592 /* Skip a NULL entry in first slot. */
1593 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1598 for (; i
< length
; i
++)
1600 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1601 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1603 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1606 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1609 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1610 except that values are placed in TMPS[i], and must later be moved
1611 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1614 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1618 machine_mode m
= GET_MODE (orig_src
);
1620 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1623 && !SCALAR_INT_MODE_P (m
)
1624 && !MEM_P (orig_src
)
1625 && GET_CODE (orig_src
) != CONCAT
)
1627 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1628 if (imode
== BLKmode
)
1629 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1631 src
= gen_reg_rtx (imode
);
1632 if (imode
!= BLKmode
)
1633 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1634 emit_move_insn (src
, orig_src
);
1635 /* ...and back again. */
1636 if (imode
!= BLKmode
)
1637 src
= gen_lowpart (imode
, src
);
1638 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1642 /* Check for a NULL entry, used to indicate that the parameter goes
1643 both on the stack and in registers. */
1644 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1649 /* Process the pieces. */
1650 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1652 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1653 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1654 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1657 /* Handle trailing fragments that run over the size of the struct. */
1658 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1660 /* Arrange to shift the fragment to where it belongs.
1661 extract_bit_field loads to the lsb of the reg. */
1663 #ifdef BLOCK_REG_PADDING
1664 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1665 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1670 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1671 bytelen
= ssize
- bytepos
;
1672 gcc_assert (bytelen
> 0);
1675 /* If we won't be loading directly from memory, protect the real source
1676 from strange tricks we might play; but make sure that the source can
1677 be loaded directly into the destination. */
1679 if (!MEM_P (orig_src
)
1680 && (!CONSTANT_P (orig_src
)
1681 || (GET_MODE (orig_src
) != mode
1682 && GET_MODE (orig_src
) != VOIDmode
)))
1684 if (GET_MODE (orig_src
) == VOIDmode
)
1685 src
= gen_reg_rtx (mode
);
1687 src
= gen_reg_rtx (GET_MODE (orig_src
));
1689 emit_move_insn (src
, orig_src
);
1692 /* Optimize the access just a bit. */
1694 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1695 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1696 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1697 && bytelen
== GET_MODE_SIZE (mode
))
1699 tmps
[i
] = gen_reg_rtx (mode
);
1700 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1702 else if (COMPLEX_MODE_P (mode
)
1703 && GET_MODE (src
) == mode
1704 && bytelen
== GET_MODE_SIZE (mode
))
1705 /* Let emit_move_complex do the bulk of the work. */
1707 else if (GET_CODE (src
) == CONCAT
)
1709 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1710 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1712 if ((bytepos
== 0 && bytelen
== slen0
)
1713 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1715 /* The following assumes that the concatenated objects all
1716 have the same size. In this case, a simple calculation
1717 can be used to determine the object and the bit field
1719 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1720 if (! CONSTANT_P (tmps
[i
])
1721 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1722 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1723 (bytepos
% slen0
) * BITS_PER_UNIT
,
1724 1, NULL_RTX
, mode
, mode
);
1730 gcc_assert (!bytepos
);
1731 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1732 emit_move_insn (mem
, src
);
1733 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1734 0, 1, NULL_RTX
, mode
, mode
);
1737 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1738 SIMD register, which is currently broken. While we get GCC
1739 to emit proper RTL for these cases, let's dump to memory. */
1740 else if (VECTOR_MODE_P (GET_MODE (dst
))
1743 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1746 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1747 emit_move_insn (mem
, src
);
1748 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1750 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1751 && XVECLEN (dst
, 0) > 1)
1752 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
1753 else if (CONSTANT_P (src
))
1755 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1763 /* TODO: const_wide_int can have sizes other than this... */
1764 gcc_assert (2 * len
== ssize
);
1765 split_double (src
, &first
, &second
);
1772 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1775 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1776 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1780 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1785 /* Emit code to move a block SRC of type TYPE to a block DST,
1786 where DST is non-consecutive registers represented by a PARALLEL.
1787 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1791 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1796 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1797 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1799 /* Copy the extracted pieces into the proper (probable) hard regs. */
1800 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1802 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1805 emit_move_insn (d
, tmps
[i
]);
1809 /* Similar, but load SRC into new pseudos in a format that looks like
1810 PARALLEL. This can later be fed to emit_group_move to get things
1811 in the right place. */
1814 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1819 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1820 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1822 /* Convert the vector to look just like the original PARALLEL, except
1823 with the computed values. */
1824 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1826 rtx e
= XVECEXP (parallel
, 0, i
);
1827 rtx d
= XEXP (e
, 0);
1831 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1832 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1834 RTVEC_ELT (vec
, i
) = e
;
1837 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1840 /* Emit code to move a block SRC to block DST, where SRC and DST are
1841 non-consecutive groups of registers, each represented by a PARALLEL. */
1844 emit_group_move (rtx dst
, rtx src
)
1848 gcc_assert (GET_CODE (src
) == PARALLEL
1849 && GET_CODE (dst
) == PARALLEL
1850 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1852 /* Skip first entry if NULL. */
1853 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1854 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1855 XEXP (XVECEXP (src
, 0, i
), 0));
1858 /* Move a group of registers represented by a PARALLEL into pseudos. */
1861 emit_group_move_into_temps (rtx src
)
1863 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1866 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1868 rtx e
= XVECEXP (src
, 0, i
);
1869 rtx d
= XEXP (e
, 0);
1872 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1873 RTVEC_ELT (vec
, i
) = e
;
1876 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1879 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1880 where SRC is non-consecutive registers represented by a PARALLEL.
1881 SSIZE represents the total size of block ORIG_DST, or -1 if not
1885 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1888 int start
, finish
, i
;
1889 machine_mode m
= GET_MODE (orig_dst
);
1891 gcc_assert (GET_CODE (src
) == PARALLEL
);
1893 if (!SCALAR_INT_MODE_P (m
)
1894 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1896 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1897 if (imode
== BLKmode
)
1898 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1900 dst
= gen_reg_rtx (imode
);
1901 emit_group_store (dst
, src
, type
, ssize
);
1902 if (imode
!= BLKmode
)
1903 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1904 emit_move_insn (orig_dst
, dst
);
1908 /* Check for a NULL entry, used to indicate that the parameter goes
1909 both on the stack and in registers. */
1910 if (XEXP (XVECEXP (src
, 0, 0), 0))
1914 finish
= XVECLEN (src
, 0);
1916 tmps
= XALLOCAVEC (rtx
, finish
);
1918 /* Copy the (probable) hard regs into pseudos. */
1919 for (i
= start
; i
< finish
; i
++)
1921 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1922 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1924 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1925 emit_move_insn (tmps
[i
], reg
);
1931 /* If we won't be storing directly into memory, protect the real destination
1932 from strange tricks we might play. */
1934 if (GET_CODE (dst
) == PARALLEL
)
1938 /* We can get a PARALLEL dst if there is a conditional expression in
1939 a return statement. In that case, the dst and src are the same,
1940 so no action is necessary. */
1941 if (rtx_equal_p (dst
, src
))
1944 /* It is unclear if we can ever reach here, but we may as well handle
1945 it. Allocate a temporary, and split this into a store/load to/from
1947 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1948 emit_group_store (temp
, src
, type
, ssize
);
1949 emit_group_load (dst
, temp
, type
, ssize
);
1952 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1954 machine_mode outer
= GET_MODE (dst
);
1956 HOST_WIDE_INT bytepos
;
1960 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1961 dst
= gen_reg_rtx (outer
);
1963 /* Make life a bit easier for combine. */
1964 /* If the first element of the vector is the low part
1965 of the destination mode, use a paradoxical subreg to
1966 initialize the destination. */
1969 inner
= GET_MODE (tmps
[start
]);
1970 bytepos
= subreg_lowpart_offset (inner
, outer
);
1971 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1973 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1977 emit_move_insn (dst
, temp
);
1984 /* If the first element wasn't the low part, try the last. */
1986 && start
< finish
- 1)
1988 inner
= GET_MODE (tmps
[finish
- 1]);
1989 bytepos
= subreg_lowpart_offset (inner
, outer
);
1990 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
1992 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
1996 emit_move_insn (dst
, temp
);
2003 /* Otherwise, simply initialize the result to zero. */
2005 emit_move_insn (dst
, CONST0_RTX (outer
));
2008 /* Process the pieces. */
2009 for (i
= start
; i
< finish
; i
++)
2011 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2012 machine_mode mode
= GET_MODE (tmps
[i
]);
2013 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2014 unsigned int adj_bytelen
;
2017 /* Handle trailing fragments that run over the size of the struct. */
2018 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2019 adj_bytelen
= ssize
- bytepos
;
2021 adj_bytelen
= bytelen
;
2023 if (GET_CODE (dst
) == CONCAT
)
2025 if (bytepos
+ adj_bytelen
2026 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2027 dest
= XEXP (dst
, 0);
2028 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2030 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2031 dest
= XEXP (dst
, 1);
2035 machine_mode dest_mode
= GET_MODE (dest
);
2036 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2038 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2040 if (GET_MODE_ALIGNMENT (dest_mode
)
2041 >= GET_MODE_ALIGNMENT (tmp_mode
))
2043 dest
= assign_stack_temp (dest_mode
,
2044 GET_MODE_SIZE (dest_mode
));
2045 emit_move_insn (adjust_address (dest
,
2053 dest
= assign_stack_temp (tmp_mode
,
2054 GET_MODE_SIZE (tmp_mode
));
2055 emit_move_insn (dest
, tmps
[i
]);
2056 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2062 /* Handle trailing fragments that run over the size of the struct. */
2063 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2065 /* store_bit_field always takes its value from the lsb.
2066 Move the fragment to the lsb if it's not already there. */
2068 #ifdef BLOCK_REG_PADDING
2069 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2070 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2076 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2077 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2081 /* Make sure not to write past the end of the struct. */
2082 store_bit_field (dest
,
2083 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2084 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2088 /* Optimize the access just a bit. */
2089 else if (MEM_P (dest
)
2090 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2091 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2092 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2093 && bytelen
== GET_MODE_SIZE (mode
))
2094 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2097 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2098 0, 0, mode
, tmps
[i
]);
2101 /* Copy from the pseudo into the (probable) hard reg. */
2102 if (orig_dst
!= dst
)
2103 emit_move_insn (orig_dst
, dst
);
2106 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2107 of the value stored in X. */
2110 maybe_emit_group_store (rtx x
, tree type
)
2112 machine_mode mode
= TYPE_MODE (type
);
2113 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2114 if (GET_CODE (x
) == PARALLEL
)
2116 rtx result
= gen_reg_rtx (mode
);
2117 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2123 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2125 This is used on targets that return BLKmode values in registers. */
2128 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2130 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2131 rtx src
= NULL
, dst
= NULL
;
2132 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2133 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2134 machine_mode mode
= GET_MODE (srcreg
);
2135 machine_mode tmode
= GET_MODE (target
);
2136 machine_mode copy_mode
;
2138 /* BLKmode registers created in the back-end shouldn't have survived. */
2139 gcc_assert (mode
!= BLKmode
);
2141 /* If the structure doesn't take up a whole number of words, see whether
2142 SRCREG is padded on the left or on the right. If it's on the left,
2143 set PADDING_CORRECTION to the number of bits to skip.
2145 In most ABIs, the structure will be returned at the least end of
2146 the register, which translates to right padding on little-endian
2147 targets and left padding on big-endian targets. The opposite
2148 holds if the structure is returned at the most significant
2149 end of the register. */
2150 if (bytes
% UNITS_PER_WORD
!= 0
2151 && (targetm
.calls
.return_in_msb (type
)
2153 : BYTES_BIG_ENDIAN
))
2155 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2157 /* We can use a single move if we have an exact mode for the size. */
2158 else if (MEM_P (target
)
2159 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2160 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2161 && bytes
== GET_MODE_SIZE (mode
))
2163 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2167 /* And if we additionally have the same mode for a register. */
2168 else if (REG_P (target
)
2169 && GET_MODE (target
) == mode
2170 && bytes
== GET_MODE_SIZE (mode
))
2172 emit_move_insn (target
, srcreg
);
2176 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2177 into a new pseudo which is a full word. */
2178 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2180 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2184 /* Copy the structure BITSIZE bits at a time. If the target lives in
2185 memory, take care of not reading/writing past its end by selecting
2186 a copy mode suited to BITSIZE. This should always be possible given
2189 If the target lives in register, make sure not to select a copy mode
2190 larger than the mode of the register.
2192 We could probably emit more efficient code for machines which do not use
2193 strict alignment, but it doesn't seem worth the effort at the current
2196 copy_mode
= word_mode
;
2199 machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2200 if (mem_mode
!= BLKmode
)
2201 copy_mode
= mem_mode
;
2203 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2206 for (bitpos
= 0, xbitpos
= padding_correction
;
2207 bitpos
< bytes
* BITS_PER_UNIT
;
2208 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2210 /* We need a new source operand each time xbitpos is on a
2211 word boundary and when xbitpos == padding_correction
2212 (the first time through). */
2213 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2214 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2216 /* We need a new destination operand each time bitpos is on
2218 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2220 else if (bitpos
% BITS_PER_WORD
== 0)
2221 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2223 /* Use xbitpos for the source extraction (right justified) and
2224 bitpos for the destination store (left justified). */
2225 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2226 extract_bit_field (src
, bitsize
,
2227 xbitpos
% BITS_PER_WORD
, 1,
2228 NULL_RTX
, copy_mode
, copy_mode
));
2232 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2233 register if it contains any data, otherwise return null.
2235 This is used on targets that return BLKmode values in registers. */
2238 copy_blkmode_to_reg (machine_mode mode
, tree src
)
2241 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2242 unsigned int bitsize
;
2243 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2244 machine_mode dst_mode
;
2246 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2248 x
= expand_normal (src
);
2250 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2254 /* If the structure doesn't take up a whole number of words, see
2255 whether the register value should be padded on the left or on
2256 the right. Set PADDING_CORRECTION to the number of padding
2257 bits needed on the left side.
2259 In most ABIs, the structure will be returned at the least end of
2260 the register, which translates to right padding on little-endian
2261 targets and left padding on big-endian targets. The opposite
2262 holds if the structure is returned at the most significant
2263 end of the register. */
2264 if (bytes
% UNITS_PER_WORD
!= 0
2265 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2267 : BYTES_BIG_ENDIAN
))
2268 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2271 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2272 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2273 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2275 /* Copy the structure BITSIZE bits at a time. */
2276 for (bitpos
= 0, xbitpos
= padding_correction
;
2277 bitpos
< bytes
* BITS_PER_UNIT
;
2278 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2280 /* We need a new destination pseudo each time xbitpos is
2281 on a word boundary and when xbitpos == padding_correction
2282 (the first time through). */
2283 if (xbitpos
% BITS_PER_WORD
== 0
2284 || xbitpos
== padding_correction
)
2286 /* Generate an appropriate register. */
2287 dst_word
= gen_reg_rtx (word_mode
);
2288 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2290 /* Clear the destination before we move anything into it. */
2291 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2294 /* We need a new source operand each time bitpos is on a word
2296 if (bitpos
% BITS_PER_WORD
== 0)
2297 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2299 /* Use bitpos for the source extraction (left justified) and
2300 xbitpos for the destination store (right justified). */
2301 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2303 extract_bit_field (src_word
, bitsize
,
2304 bitpos
% BITS_PER_WORD
, 1,
2305 NULL_RTX
, word_mode
, word_mode
));
2308 if (mode
== BLKmode
)
2310 /* Find the smallest integer mode large enough to hold the
2311 entire structure. */
2312 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2314 mode
= GET_MODE_WIDER_MODE (mode
))
2315 /* Have we found a large enough mode? */
2316 if (GET_MODE_SIZE (mode
) >= bytes
)
2319 /* A suitable mode should have been found. */
2320 gcc_assert (mode
!= VOIDmode
);
2323 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2324 dst_mode
= word_mode
;
2327 dst
= gen_reg_rtx (dst_mode
);
2329 for (i
= 0; i
< n_regs
; i
++)
2330 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2332 if (mode
!= dst_mode
)
2333 dst
= gen_lowpart (mode
, dst
);
2338 /* Add a USE expression for REG to the (possibly empty) list pointed
2339 to by CALL_FUSAGE. REG must denote a hard register. */
2342 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2344 gcc_assert (REG_P (reg
));
2346 if (!HARD_REGISTER_P (reg
))
2350 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2353 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2354 to by CALL_FUSAGE. REG must denote a hard register. */
2357 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2359 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2362 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
2365 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2366 starting at REGNO. All of these registers must be hard registers. */
2369 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2373 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2375 for (i
= 0; i
< nregs
; i
++)
2376 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2379 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2380 PARALLEL REGS. This is for calls that pass values in multiple
2381 non-contiguous locations. The Irix 6 ABI has examples of this. */
2384 use_group_regs (rtx
*call_fusage
, rtx regs
)
2388 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2390 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2392 /* A NULL entry means the parameter goes both on the stack and in
2393 registers. This can also be a MEM for targets that pass values
2394 partially on the stack and partially in registers. */
2395 if (reg
!= 0 && REG_P (reg
))
2396 use_reg (call_fusage
, reg
);
2400 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2401 assigment and the code of the expresion on the RHS is CODE. Return
2405 get_def_for_expr (tree name
, enum tree_code code
)
2409 if (TREE_CODE (name
) != SSA_NAME
)
2412 def_stmt
= get_gimple_for_ssa_name (name
);
2414 || gimple_assign_rhs_code (def_stmt
) != code
)
2420 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2421 assigment and the class of the expresion on the RHS is CLASS. Return
2425 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2429 if (TREE_CODE (name
) != SSA_NAME
)
2432 def_stmt
= get_gimple_for_ssa_name (name
);
2434 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2441 /* Determine whether the LEN bytes generated by CONSTFUN can be
2442 stored to memory using several move instructions. CONSTFUNDATA is
2443 a pointer which will be passed as argument in every CONSTFUN call.
2444 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2445 a memset operation and false if it's a copy of a constant string.
2446 Return nonzero if a call to store_by_pieces should succeed. */
2449 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2450 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2451 void *constfundata
, unsigned int align
, bool memsetp
)
2453 unsigned HOST_WIDE_INT l
;
2454 unsigned int max_size
;
2455 HOST_WIDE_INT offset
= 0;
2457 enum insn_code icode
;
2459 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2460 rtx cst ATTRIBUTE_UNUSED
;
2465 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
2469 optimize_insn_for_speed_p ()))
2472 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2474 /* We would first store what we can in the largest integer mode, then go to
2475 successively smaller modes. */
2478 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2482 max_size
= STORE_MAX_PIECES
+ 1;
2483 while (max_size
> 1 && l
> 0)
2485 mode
= widest_int_mode_for_size (max_size
);
2487 if (mode
== VOIDmode
)
2490 icode
= optab_handler (mov_optab
, mode
);
2491 if (icode
!= CODE_FOR_nothing
2492 && align
>= GET_MODE_ALIGNMENT (mode
))
2494 unsigned int size
= GET_MODE_SIZE (mode
);
2501 cst
= (*constfun
) (constfundata
, offset
, mode
);
2502 if (!targetm
.legitimate_constant_p (mode
, cst
))
2512 max_size
= GET_MODE_SIZE (mode
);
2515 /* The code above should have handled everything. */
2522 /* Generate several move instructions to store LEN bytes generated by
2523 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2524 pointer which will be passed as argument in every CONSTFUN call.
2525 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2526 a memset operation and false if it's a copy of a constant string.
2527 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2528 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2532 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2533 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2534 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2536 machine_mode to_addr_mode
= get_address_mode (to
);
2537 struct store_by_pieces_d data
;
2541 gcc_assert (endp
!= 2);
2545 gcc_assert (targetm
.use_by_pieces_infrastructure_p
2550 optimize_insn_for_speed_p ()));
2552 data
.constfun
= constfun
;
2553 data
.constfundata
= constfundata
;
2556 store_by_pieces_1 (&data
, align
);
2561 gcc_assert (!data
.reverse
);
2566 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2567 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2569 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2570 plus_constant (to_addr_mode
,
2574 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2581 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2589 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2590 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2593 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2595 struct store_by_pieces_d data
;
2600 data
.constfun
= clear_by_pieces_1
;
2601 data
.constfundata
= NULL
;
2604 store_by_pieces_1 (&data
, align
);
2607 /* Callback routine for clear_by_pieces.
2608 Return const0_rtx unconditionally. */
2611 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2612 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2613 machine_mode mode ATTRIBUTE_UNUSED
)
2618 /* Subroutine of clear_by_pieces and store_by_pieces.
2619 Generate several move instructions to store LEN bytes of block TO. (A MEM
2620 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2623 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2624 unsigned int align ATTRIBUTE_UNUSED
)
2626 machine_mode to_addr_mode
= get_address_mode (data
->to
);
2627 rtx to_addr
= XEXP (data
->to
, 0);
2628 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2629 enum insn_code icode
;
2632 data
->to_addr
= to_addr
;
2634 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2635 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2637 data
->explicit_inc_to
= 0;
2639 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2641 data
->offset
= data
->len
;
2643 /* If storing requires more than two move insns,
2644 copy addresses to registers (to make displacements shorter)
2645 and use post-increment if available. */
2646 if (!data
->autinc_to
2647 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2649 /* Determine the main mode we'll be using.
2650 MODE might not be used depending on the definitions of the
2651 USE_* macros below. */
2652 machine_mode mode ATTRIBUTE_UNUSED
2653 = widest_int_mode_for_size (max_size
);
2655 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2657 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2658 plus_constant (to_addr_mode
,
2661 data
->autinc_to
= 1;
2662 data
->explicit_inc_to
= -1;
2665 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2666 && ! data
->autinc_to
)
2668 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2669 data
->autinc_to
= 1;
2670 data
->explicit_inc_to
= 1;
2673 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2674 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2677 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2679 /* First store what we can in the largest integer mode, then go to
2680 successively smaller modes. */
2682 while (max_size
> 1 && data
->len
> 0)
2684 machine_mode mode
= widest_int_mode_for_size (max_size
);
2686 if (mode
== VOIDmode
)
2689 icode
= optab_handler (mov_optab
, mode
);
2690 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2691 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2693 max_size
= GET_MODE_SIZE (mode
);
2696 /* The code above should have handled everything. */
2697 gcc_assert (!data
->len
);
2700 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2701 with move instructions for mode MODE. GENFUN is the gen_... function
2702 to make a move insn for that mode. DATA has all the other info. */
2705 store_by_pieces_2 (insn_gen_fn genfun
, machine_mode mode
,
2706 struct store_by_pieces_d
*data
)
2708 unsigned int size
= GET_MODE_SIZE (mode
);
2711 while (data
->len
>= size
)
2714 data
->offset
-= size
;
2716 if (data
->autinc_to
)
2717 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2720 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2722 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2723 emit_insn (gen_add2_insn (data
->to_addr
,
2724 gen_int_mode (-(HOST_WIDE_INT
) size
,
2725 GET_MODE (data
->to_addr
))));
2727 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2728 emit_insn ((*genfun
) (to1
, cst
));
2730 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2731 emit_insn (gen_add2_insn (data
->to_addr
,
2733 GET_MODE (data
->to_addr
))));
2735 if (! data
->reverse
)
2736 data
->offset
+= size
;
2742 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2743 its length in bytes. */
2746 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2747 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2748 unsigned HOST_WIDE_INT min_size
,
2749 unsigned HOST_WIDE_INT max_size
,
2750 unsigned HOST_WIDE_INT probable_max_size
)
2752 machine_mode mode
= GET_MODE (object
);
2755 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2757 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2758 just move a zero. Otherwise, do this a piece at a time. */
2760 && CONST_INT_P (size
)
2761 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2763 rtx zero
= CONST0_RTX (mode
);
2766 emit_move_insn (object
, zero
);
2770 if (COMPLEX_MODE_P (mode
))
2772 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2775 write_complex_part (object
, zero
, 0);
2776 write_complex_part (object
, zero
, 1);
2782 if (size
== const0_rtx
)
2785 align
= MEM_ALIGN (object
);
2787 if (CONST_INT_P (size
)
2788 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
2790 optimize_insn_for_speed_p ()))
2791 clear_by_pieces (object
, INTVAL (size
), align
);
2792 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2793 expected_align
, expected_size
,
2794 min_size
, max_size
, probable_max_size
))
2796 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2797 return set_storage_via_libcall (object
, size
, const0_rtx
,
2798 method
== BLOCK_OP_TAILCALL
);
2806 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2808 unsigned HOST_WIDE_INT max
, min
= 0;
2809 if (GET_CODE (size
) == CONST_INT
)
2810 min
= max
= UINTVAL (size
);
2812 max
= GET_MODE_MASK (GET_MODE (size
));
2813 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
2817 /* A subroutine of clear_storage. Expand a call to memset.
2818 Return the return value of memset, 0 otherwise. */
2821 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2823 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2824 machine_mode size_mode
;
2827 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2828 place those into new pseudos into a VAR_DECL and use them later. */
2830 object
= copy_addr_to_reg (XEXP (object
, 0));
2832 size_mode
= TYPE_MODE (sizetype
);
2833 size
= convert_to_mode (size_mode
, size
, 1);
2834 size
= copy_to_mode_reg (size_mode
, size
);
2836 /* It is incorrect to use the libcall calling conventions to call
2837 memset in this context. This could be a user call to memset and
2838 the user may wish to examine the return value from memset. For
2839 targets where libcalls and normal calls have different conventions
2840 for returning pointers, we could end up generating incorrect code. */
2842 object_tree
= make_tree (ptr_type_node
, object
);
2843 if (!CONST_INT_P (val
))
2844 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2845 size_tree
= make_tree (sizetype
, size
);
2846 val_tree
= make_tree (integer_type_node
, val
);
2848 fn
= clear_storage_libcall_fn (true);
2849 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2850 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2852 retval
= expand_normal (call_expr
);
2857 /* A subroutine of set_storage_via_libcall. Create the tree node
2858 for the function we use for block clears. */
2860 tree block_clear_fn
;
2863 init_block_clear_fn (const char *asmspec
)
2865 if (!block_clear_fn
)
2869 fn
= get_identifier ("memset");
2870 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2871 integer_type_node
, sizetype
,
2874 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2875 DECL_EXTERNAL (fn
) = 1;
2876 TREE_PUBLIC (fn
) = 1;
2877 DECL_ARTIFICIAL (fn
) = 1;
2878 TREE_NOTHROW (fn
) = 1;
2879 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2880 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2882 block_clear_fn
= fn
;
2886 set_user_assembler_name (block_clear_fn
, asmspec
);
2890 clear_storage_libcall_fn (int for_call
)
2892 static bool emitted_extern
;
2894 if (!block_clear_fn
)
2895 init_block_clear_fn (NULL
);
2897 if (for_call
&& !emitted_extern
)
2899 emitted_extern
= true;
2900 make_decl_rtl (block_clear_fn
);
2903 return block_clear_fn
;
2906 /* Expand a setmem pattern; return true if successful. */
2909 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2910 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2911 unsigned HOST_WIDE_INT min_size
,
2912 unsigned HOST_WIDE_INT max_size
,
2913 unsigned HOST_WIDE_INT probable_max_size
)
2915 /* Try the most limited insn first, because there's no point
2916 including more than one in the machine description unless
2917 the more limited one has some advantage. */
2921 if (expected_align
< align
)
2922 expected_align
= align
;
2923 if (expected_size
!= -1)
2925 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
2926 expected_size
= max_size
;
2927 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
2928 expected_size
= min_size
;
2931 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2932 mode
= GET_MODE_WIDER_MODE (mode
))
2934 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2936 if (code
!= CODE_FOR_nothing
2937 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2938 here because if SIZE is less than the mode mask, as it is
2939 returned by the macro, it will definitely be less than the
2940 actual mode mask. Since SIZE is within the Pmode address
2941 space, we limit MODE to Pmode. */
2942 && ((CONST_INT_P (size
)
2943 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2944 <= (GET_MODE_MASK (mode
) >> 1)))
2945 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
2946 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
2948 struct expand_operand ops
[9];
2951 nops
= insn_data
[(int) code
].n_generator_args
;
2952 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
2954 create_fixed_operand (&ops
[0], object
);
2955 /* The check above guarantees that this size conversion is valid. */
2956 create_convert_operand_to (&ops
[1], size
, mode
, true);
2957 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2958 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2961 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2962 create_integer_operand (&ops
[5], expected_size
);
2966 create_integer_operand (&ops
[6], min_size
);
2967 /* If we can not represent the maximal size,
2968 make parameter NULL. */
2969 if ((HOST_WIDE_INT
) max_size
!= -1)
2970 create_integer_operand (&ops
[7], max_size
);
2972 create_fixed_operand (&ops
[7], NULL
);
2976 /* If we can not represent the maximal size,
2977 make parameter NULL. */
2978 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
2979 create_integer_operand (&ops
[8], probable_max_size
);
2981 create_fixed_operand (&ops
[8], NULL
);
2983 if (maybe_expand_insn (code
, nops
, ops
))
2992 /* Write to one of the components of the complex value CPLX. Write VAL to
2993 the real part if IMAG_P is false, and the imaginary part if its true. */
2996 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
3002 if (GET_CODE (cplx
) == CONCAT
)
3004 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3008 cmode
= GET_MODE (cplx
);
3009 imode
= GET_MODE_INNER (cmode
);
3010 ibitsize
= GET_MODE_BITSIZE (imode
);
3012 /* For MEMs simplify_gen_subreg may generate an invalid new address
3013 because, e.g., the original address is considered mode-dependent
3014 by the target, which restricts simplify_subreg from invoking
3015 adjust_address_nv. Instead of preparing fallback support for an
3016 invalid address, we call adjust_address_nv directly. */
3019 emit_move_insn (adjust_address_nv (cplx
, imode
,
3020 imag_p
? GET_MODE_SIZE (imode
) : 0),
3025 /* If the sub-object is at least word sized, then we know that subregging
3026 will work. This special case is important, since store_bit_field
3027 wants to operate on integer modes, and there's rarely an OImode to
3028 correspond to TCmode. */
3029 if (ibitsize
>= BITS_PER_WORD
3030 /* For hard regs we have exact predicates. Assume we can split
3031 the original object if it spans an even number of hard regs.
3032 This special case is important for SCmode on 64-bit platforms
3033 where the natural size of floating-point regs is 32-bit. */
3035 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3036 && REG_NREGS (cplx
) % 2 == 0))
3038 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3039 imag_p
? GET_MODE_SIZE (imode
) : 0);
3042 emit_move_insn (part
, val
);
3046 /* simplify_gen_subreg may fail for sub-word MEMs. */
3047 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3050 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
3053 /* Extract one of the components of the complex value CPLX. Extract the
3054 real part if IMAG_P is false, and the imaginary part if it's true. */
3057 read_complex_part (rtx cplx
, bool imag_p
)
3059 machine_mode cmode
, imode
;
3062 if (GET_CODE (cplx
) == CONCAT
)
3063 return XEXP (cplx
, imag_p
);
3065 cmode
= GET_MODE (cplx
);
3066 imode
= GET_MODE_INNER (cmode
);
3067 ibitsize
= GET_MODE_BITSIZE (imode
);
3069 /* Special case reads from complex constants that got spilled to memory. */
3070 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3072 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3073 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3075 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3076 if (CONSTANT_CLASS_P (part
))
3077 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3081 /* For MEMs simplify_gen_subreg may generate an invalid new address
3082 because, e.g., the original address is considered mode-dependent
3083 by the target, which restricts simplify_subreg from invoking
3084 adjust_address_nv. Instead of preparing fallback support for an
3085 invalid address, we call adjust_address_nv directly. */
3087 return adjust_address_nv (cplx
, imode
,
3088 imag_p
? GET_MODE_SIZE (imode
) : 0);
3090 /* If the sub-object is at least word sized, then we know that subregging
3091 will work. This special case is important, since extract_bit_field
3092 wants to operate on integer modes, and there's rarely an OImode to
3093 correspond to TCmode. */
3094 if (ibitsize
>= BITS_PER_WORD
3095 /* For hard regs we have exact predicates. Assume we can split
3096 the original object if it spans an even number of hard regs.
3097 This special case is important for SCmode on 64-bit platforms
3098 where the natural size of floating-point regs is 32-bit. */
3100 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3101 && REG_NREGS (cplx
) % 2 == 0))
3103 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3104 imag_p
? GET_MODE_SIZE (imode
) : 0);
3108 /* simplify_gen_subreg may fail for sub-word MEMs. */
3109 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3112 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3113 true, NULL_RTX
, imode
, imode
);
3116 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3117 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3118 represented in NEW_MODE. If FORCE is true, this will never happen, as
3119 we'll force-create a SUBREG if needed. */
3122 emit_move_change_mode (machine_mode new_mode
,
3123 machine_mode old_mode
, rtx x
, bool force
)
3127 if (push_operand (x
, GET_MODE (x
)))
3129 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3130 MEM_COPY_ATTRIBUTES (ret
, x
);
3134 /* We don't have to worry about changing the address since the
3135 size in bytes is supposed to be the same. */
3136 if (reload_in_progress
)
3138 /* Copy the MEM to change the mode and move any
3139 substitutions from the old MEM to the new one. */
3140 ret
= adjust_address_nv (x
, new_mode
, 0);
3141 copy_replacements (x
, ret
);
3144 ret
= adjust_address (x
, new_mode
, 0);
3148 /* Note that we do want simplify_subreg's behavior of validating
3149 that the new mode is ok for a hard register. If we were to use
3150 simplify_gen_subreg, we would create the subreg, but would
3151 probably run into the target not being able to implement it. */
3152 /* Except, of course, when FORCE is true, when this is exactly what
3153 we want. Which is needed for CCmodes on some targets. */
3155 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3157 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3163 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3164 an integer mode of the same size as MODE. Returns the instruction
3165 emitted, or NULL if such a move could not be generated. */
3168 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
3171 enum insn_code code
;
3173 /* There must exist a mode of the exact size we require. */
3174 imode
= int_mode_for_mode (mode
);
3175 if (imode
== BLKmode
)
3178 /* The target must support moves in this mode. */
3179 code
= optab_handler (mov_optab
, imode
);
3180 if (code
== CODE_FOR_nothing
)
3183 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3186 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3189 return emit_insn (GEN_FCN (code
) (x
, y
));
3192 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3193 Return an equivalent MEM that does not use an auto-increment. */
3196 emit_move_resolve_push (machine_mode mode
, rtx x
)
3198 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3199 HOST_WIDE_INT adjust
;
3202 adjust
= GET_MODE_SIZE (mode
);
3203 #ifdef PUSH_ROUNDING
3204 adjust
= PUSH_ROUNDING (adjust
);
3206 if (code
== PRE_DEC
|| code
== POST_DEC
)
3208 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3210 rtx expr
= XEXP (XEXP (x
, 0), 1);
3213 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3214 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3215 val
= INTVAL (XEXP (expr
, 1));
3216 if (GET_CODE (expr
) == MINUS
)
3218 gcc_assert (adjust
== val
|| adjust
== -val
);
3222 /* Do not use anti_adjust_stack, since we don't want to update
3223 stack_pointer_delta. */
3224 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3225 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3226 0, OPTAB_LIB_WIDEN
);
3227 if (temp
!= stack_pointer_rtx
)
3228 emit_move_insn (stack_pointer_rtx
, temp
);
3235 temp
= stack_pointer_rtx
;
3240 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3246 return replace_equiv_address (x
, temp
);
3249 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3250 X is known to satisfy push_operand, and MODE is known to be complex.
3251 Returns the last instruction emitted. */
3254 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
3256 machine_mode submode
= GET_MODE_INNER (mode
);
3259 #ifdef PUSH_ROUNDING
3260 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3262 /* In case we output to the stack, but the size is smaller than the
3263 machine can push exactly, we need to use move instructions. */
3264 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3266 x
= emit_move_resolve_push (mode
, x
);
3267 return emit_move_insn (x
, y
);
3271 /* Note that the real part always precedes the imag part in memory
3272 regardless of machine's endianness. */
3273 switch (GET_CODE (XEXP (x
, 0)))
3287 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3288 read_complex_part (y
, imag_first
));
3289 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3290 read_complex_part (y
, !imag_first
));
3293 /* A subroutine of emit_move_complex. Perform the move from Y to X
3294 via two moves of the parts. Returns the last instruction emitted. */
3297 emit_move_complex_parts (rtx x
, rtx y
)
3299 /* Show the output dies here. This is necessary for SUBREGs
3300 of pseudos since we cannot track their lifetimes correctly;
3301 hard regs shouldn't appear here except as return values. */
3302 if (!reload_completed
&& !reload_in_progress
3303 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3306 write_complex_part (x
, read_complex_part (y
, false), false);
3307 write_complex_part (x
, read_complex_part (y
, true), true);
3309 return get_last_insn ();
3312 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3313 MODE is known to be complex. Returns the last instruction emitted. */
3316 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
3320 /* Need to take special care for pushes, to maintain proper ordering
3321 of the data, and possibly extra padding. */
3322 if (push_operand (x
, mode
))
3323 return emit_move_complex_push (mode
, x
, y
);
3325 /* See if we can coerce the target into moving both values at once, except
3326 for floating point where we favor moving as parts if this is easy. */
3327 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3328 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3330 && HARD_REGISTER_P (x
)
3331 && REG_NREGS (x
) == 1)
3333 && HARD_REGISTER_P (y
)
3334 && REG_NREGS (y
) == 1))
3336 /* Not possible if the values are inherently not adjacent. */
3337 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3339 /* Is possible if both are registers (or subregs of registers). */
3340 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3342 /* If one of the operands is a memory, and alignment constraints
3343 are friendly enough, we may be able to do combined memory operations.
3344 We do not attempt this if Y is a constant because that combination is
3345 usually better with the by-parts thing below. */
3346 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3347 && (!STRICT_ALIGNMENT
3348 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3357 /* For memory to memory moves, optimal behavior can be had with the
3358 existing block move logic. */
3359 if (MEM_P (x
) && MEM_P (y
))
3361 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3362 BLOCK_OP_NO_LIBCALL
);
3363 return get_last_insn ();
3366 ret
= emit_move_via_integer (mode
, x
, y
, true);
3371 return emit_move_complex_parts (x
, y
);
3374 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3375 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3378 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
3382 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3385 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3386 if (code
!= CODE_FOR_nothing
)
3388 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3389 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3390 return emit_insn (GEN_FCN (code
) (x
, y
));
3394 /* Otherwise, find the MODE_INT mode of the same width. */
3395 ret
= emit_move_via_integer (mode
, x
, y
, false);
3396 gcc_assert (ret
!= NULL
);
3400 /* Return true if word I of OP lies entirely in the
3401 undefined bits of a paradoxical subreg. */
3404 undefined_operand_subword_p (const_rtx op
, int i
)
3406 machine_mode innermode
, innermostmode
;
3408 if (GET_CODE (op
) != SUBREG
)
3410 innermode
= GET_MODE (op
);
3411 innermostmode
= GET_MODE (SUBREG_REG (op
));
3412 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3413 /* The SUBREG_BYTE represents offset, as if the value were stored in
3414 memory, except for a paradoxical subreg where we define
3415 SUBREG_BYTE to be 0; undo this exception as in
3417 if (SUBREG_BYTE (op
) == 0
3418 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3420 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3421 if (WORDS_BIG_ENDIAN
)
3422 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3423 if (BYTES_BIG_ENDIAN
)
3424 offset
+= difference
% UNITS_PER_WORD
;
3426 if (offset
>= GET_MODE_SIZE (innermostmode
)
3427 || offset
<= -GET_MODE_SIZE (word_mode
))
3432 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3433 MODE is any multi-word or full-word mode that lacks a move_insn
3434 pattern. Note that you will get better code if you define such
3435 patterns, even if they must turn into multiple assembler instructions. */
3438 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
3440 rtx_insn
*last_insn
= 0;
3446 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3448 /* If X is a push on the stack, do the push now and replace
3449 X with a reference to the stack pointer. */
3450 if (push_operand (x
, mode
))
3451 x
= emit_move_resolve_push (mode
, x
);
3453 /* If we are in reload, see if either operand is a MEM whose address
3454 is scheduled for replacement. */
3455 if (reload_in_progress
&& MEM_P (x
)
3456 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3457 x
= replace_equiv_address_nv (x
, inner
);
3458 if (reload_in_progress
&& MEM_P (y
)
3459 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3460 y
= replace_equiv_address_nv (y
, inner
);
3464 need_clobber
= false;
3466 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3469 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3472 /* Do not generate code for a move if it would come entirely
3473 from the undefined bits of a paradoxical subreg. */
3474 if (undefined_operand_subword_p (y
, i
))
3477 ypart
= operand_subword (y
, i
, 1, mode
);
3479 /* If we can't get a part of Y, put Y into memory if it is a
3480 constant. Otherwise, force it into a register. Then we must
3481 be able to get a part of Y. */
3482 if (ypart
== 0 && CONSTANT_P (y
))
3484 y
= use_anchored_address (force_const_mem (mode
, y
));
3485 ypart
= operand_subword (y
, i
, 1, mode
);
3487 else if (ypart
== 0)
3488 ypart
= operand_subword_force (y
, i
, mode
);
3490 gcc_assert (xpart
&& ypart
);
3492 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3494 last_insn
= emit_move_insn (xpart
, ypart
);
3500 /* Show the output dies here. This is necessary for SUBREGs
3501 of pseudos since we cannot track their lifetimes correctly;
3502 hard regs shouldn't appear here except as return values.
3503 We never want to emit such a clobber after reload. */
3505 && ! (reload_in_progress
|| reload_completed
)
3506 && need_clobber
!= 0)
3514 /* Low level part of emit_move_insn.
3515 Called just like emit_move_insn, but assumes X and Y
3516 are basically valid. */
3519 emit_move_insn_1 (rtx x
, rtx y
)
3521 machine_mode mode
= GET_MODE (x
);
3522 enum insn_code code
;
3524 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3526 code
= optab_handler (mov_optab
, mode
);
3527 if (code
!= CODE_FOR_nothing
)
3528 return emit_insn (GEN_FCN (code
) (x
, y
));
3530 /* Expand complex moves by moving real part and imag part. */
3531 if (COMPLEX_MODE_P (mode
))
3532 return emit_move_complex (mode
, x
, y
);
3534 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3535 || ALL_FIXED_POINT_MODE_P (mode
))
3537 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
3539 /* If we can't find an integer mode, use multi words. */
3543 return emit_move_multi_word (mode
, x
, y
);
3546 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3547 return emit_move_ccmode (mode
, x
, y
);
3549 /* Try using a move pattern for the corresponding integer mode. This is
3550 only safe when simplify_subreg can convert MODE constants into integer
3551 constants. At present, it can only do this reliably if the value
3552 fits within a HOST_WIDE_INT. */
3553 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3555 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3559 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3564 return emit_move_multi_word (mode
, x
, y
);
3567 /* Generate code to copy Y into X.
3568 Both Y and X must have the same mode, except that
3569 Y can be a constant with VOIDmode.
3570 This mode cannot be BLKmode; use emit_block_move for that.
3572 Return the last instruction emitted. */
3575 emit_move_insn (rtx x
, rtx y
)
3577 machine_mode mode
= GET_MODE (x
);
3578 rtx y_cst
= NULL_RTX
;
3579 rtx_insn
*last_insn
;
3582 gcc_assert (mode
!= BLKmode
3583 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3588 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3589 && (last_insn
= compress_float_constant (x
, y
)))
3594 if (!targetm
.legitimate_constant_p (mode
, y
))
3596 y
= force_const_mem (mode
, y
);
3598 /* If the target's cannot_force_const_mem prevented the spill,
3599 assume that the target's move expanders will also take care
3600 of the non-legitimate constant. */
3604 y
= use_anchored_address (y
);
3608 /* If X or Y are memory references, verify that their addresses are valid
3611 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3613 && ! push_operand (x
, GET_MODE (x
))))
3614 x
= validize_mem (x
);
3617 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3618 MEM_ADDR_SPACE (y
)))
3619 y
= validize_mem (y
);
3621 gcc_assert (mode
!= BLKmode
);
3623 last_insn
= emit_move_insn_1 (x
, y
);
3625 if (y_cst
&& REG_P (x
)
3626 && (set
= single_set (last_insn
)) != NULL_RTX
3627 && SET_DEST (set
) == x
3628 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3629 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3634 /* Generate the body of an instruction to copy Y into X.
3635 It may be a list of insns, if one insn isn't enough. */
3638 gen_move_insn (rtx x
, rtx y
)
3643 emit_move_insn_1 (x
, y
);
3649 /* Same as above, but return rtx (used as a callback, which must have
3650 prototype compatible with other functions returning rtx). */
3653 gen_move_insn_uncast (rtx x
, rtx y
)
3655 return gen_move_insn (x
, y
);
3658 /* If Y is representable exactly in a narrower mode, and the target can
3659 perform the extension directly from constant or memory, then emit the
3660 move as an extension. */
3663 compress_float_constant (rtx x
, rtx y
)
3665 machine_mode dstmode
= GET_MODE (x
);
3666 machine_mode orig_srcmode
= GET_MODE (y
);
3667 machine_mode srcmode
;
3669 int oldcost
, newcost
;
3670 bool speed
= optimize_insn_for_speed_p ();
3672 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3674 if (targetm
.legitimate_constant_p (dstmode
, y
))
3675 oldcost
= set_src_cost (y
, speed
);
3677 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3679 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3680 srcmode
!= orig_srcmode
;
3681 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3685 rtx_insn
*last_insn
;
3687 /* Skip if the target can't extend this way. */
3688 ic
= can_extend_p (dstmode
, srcmode
, 0);
3689 if (ic
== CODE_FOR_nothing
)
3692 /* Skip if the narrowed value isn't exact. */
3693 if (! exact_real_truncate (srcmode
, &r
))
3696 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3698 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3700 /* Skip if the target needs extra instructions to perform
3702 if (!insn_operand_matches (ic
, 1, trunc_y
))
3704 /* This is valid, but may not be cheaper than the original. */
3705 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3707 if (oldcost
< newcost
)
3710 else if (float_extend_from_mem
[dstmode
][srcmode
])
3712 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3713 /* This is valid, but may not be cheaper than the original. */
3714 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3716 if (oldcost
< newcost
)
3718 trunc_y
= validize_mem (trunc_y
);
3723 /* For CSE's benefit, force the compressed constant pool entry
3724 into a new pseudo. This constant may be used in different modes,
3725 and if not, combine will put things back together for us. */
3726 trunc_y
= force_reg (srcmode
, trunc_y
);
3728 /* If x is a hard register, perform the extension into a pseudo,
3729 so that e.g. stack realignment code is aware of it. */
3731 if (REG_P (x
) && HARD_REGISTER_P (x
))
3732 target
= gen_reg_rtx (dstmode
);
3734 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
3735 last_insn
= get_last_insn ();
3738 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3741 return emit_move_insn (x
, target
);
3748 /* Pushing data onto the stack. */
3750 /* Push a block of length SIZE (perhaps variable)
3751 and return an rtx to address the beginning of the block.
3752 The value may be virtual_outgoing_args_rtx.
3754 EXTRA is the number of bytes of padding to push in addition to SIZE.
3755 BELOW nonzero means this padding comes at low addresses;
3756 otherwise, the padding comes at high addresses. */
3759 push_block (rtx size
, int extra
, int below
)
3763 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3764 if (CONSTANT_P (size
))
3765 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3766 else if (REG_P (size
) && extra
== 0)
3767 anti_adjust_stack (size
);
3770 temp
= copy_to_mode_reg (Pmode
, size
);
3772 temp
= expand_binop (Pmode
, add_optab
, temp
,
3773 gen_int_mode (extra
, Pmode
),
3774 temp
, 0, OPTAB_LIB_WIDEN
);
3775 anti_adjust_stack (temp
);
3778 if (STACK_GROWS_DOWNWARD
)
3780 temp
= virtual_outgoing_args_rtx
;
3781 if (extra
!= 0 && below
)
3782 temp
= plus_constant (Pmode
, temp
, extra
);
3786 if (CONST_INT_P (size
))
3787 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3788 -INTVAL (size
) - (below
? 0 : extra
));
3789 else if (extra
!= 0 && !below
)
3790 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3791 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3794 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3795 negate_rtx (Pmode
, size
));
3798 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3801 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3804 mem_autoinc_base (rtx mem
)
3808 rtx addr
= XEXP (mem
, 0);
3809 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3810 return XEXP (addr
, 0);
3815 /* A utility routine used here, in reload, and in try_split. The insns
3816 after PREV up to and including LAST are known to adjust the stack,
3817 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3818 placing notes as appropriate. PREV may be NULL, indicating the
3819 entire insn sequence prior to LAST should be scanned.
3821 The set of allowed stack pointer modifications is small:
3822 (1) One or more auto-inc style memory references (aka pushes),
3823 (2) One or more addition/subtraction with the SP as destination,
3824 (3) A single move insn with the SP as destination,
3825 (4) A call_pop insn,
3826 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3828 Insns in the sequence that do not modify the SP are ignored,
3829 except for noreturn calls.
3831 The return value is the amount of adjustment that can be trivially
3832 verified, via immediate operand or auto-inc. If the adjustment
3833 cannot be trivially extracted, the return value is INT_MIN. */
3836 find_args_size_adjust (rtx_insn
*insn
)
3841 pat
= PATTERN (insn
);
3844 /* Look for a call_pop pattern. */
3847 /* We have to allow non-call_pop patterns for the case
3848 of emit_single_push_insn of a TLS address. */
3849 if (GET_CODE (pat
) != PARALLEL
)
3852 /* All call_pop have a stack pointer adjust in the parallel.
3853 The call itself is always first, and the stack adjust is
3854 usually last, so search from the end. */
3855 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3857 set
= XVECEXP (pat
, 0, i
);
3858 if (GET_CODE (set
) != SET
)
3860 dest
= SET_DEST (set
);
3861 if (dest
== stack_pointer_rtx
)
3864 /* We'd better have found the stack pointer adjust. */
3867 /* Fall through to process the extracted SET and DEST
3868 as if it was a standalone insn. */
3870 else if (GET_CODE (pat
) == SET
)
3872 else if ((set
= single_set (insn
)) != NULL
)
3874 else if (GET_CODE (pat
) == PARALLEL
)
3876 /* ??? Some older ports use a parallel with a stack adjust
3877 and a store for a PUSH_ROUNDING pattern, rather than a
3878 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3879 /* ??? See h8300 and m68k, pushqi1. */
3880 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3882 set
= XVECEXP (pat
, 0, i
);
3883 if (GET_CODE (set
) != SET
)
3885 dest
= SET_DEST (set
);
3886 if (dest
== stack_pointer_rtx
)
3889 /* We do not expect an auto-inc of the sp in the parallel. */
3890 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3891 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3892 != stack_pointer_rtx
);
3900 dest
= SET_DEST (set
);
3902 /* Look for direct modifications of the stack pointer. */
3903 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3905 /* Look for a trivial adjustment, otherwise assume nothing. */
3906 /* Note that the SPU restore_stack_block pattern refers to
3907 the stack pointer in V4SImode. Consider that non-trivial. */
3908 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3909 && GET_CODE (SET_SRC (set
)) == PLUS
3910 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3911 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3912 return INTVAL (XEXP (SET_SRC (set
), 1));
3913 /* ??? Reload can generate no-op moves, which will be cleaned
3914 up later. Recognize it and continue searching. */
3915 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3918 return HOST_WIDE_INT_MIN
;
3924 /* Otherwise only think about autoinc patterns. */
3925 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3928 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3929 != stack_pointer_rtx
);
3931 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3932 mem
= SET_SRC (set
);
3936 addr
= XEXP (mem
, 0);
3937 switch (GET_CODE (addr
))
3941 return GET_MODE_SIZE (GET_MODE (mem
));
3944 return -GET_MODE_SIZE (GET_MODE (mem
));
3947 addr
= XEXP (addr
, 1);
3948 gcc_assert (GET_CODE (addr
) == PLUS
);
3949 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3950 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3951 return INTVAL (XEXP (addr
, 1));
3959 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
, int end_args_size
)
3961 int args_size
= end_args_size
;
3962 bool saw_unknown
= false;
3965 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3967 HOST_WIDE_INT this_delta
;
3969 if (!NONDEBUG_INSN_P (insn
))
3972 this_delta
= find_args_size_adjust (insn
);
3973 if (this_delta
== 0)
3976 || ACCUMULATE_OUTGOING_ARGS
3977 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3981 gcc_assert (!saw_unknown
);
3982 if (this_delta
== HOST_WIDE_INT_MIN
)
3985 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3986 if (STACK_GROWS_DOWNWARD
)
3987 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
3989 args_size
-= this_delta
;
3992 return saw_unknown
? INT_MIN
: args_size
;
3995 #ifdef PUSH_ROUNDING
3996 /* Emit single push insn. */
3999 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
4002 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4004 enum insn_code icode
;
4006 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4007 /* If there is push pattern, use it. Otherwise try old way of throwing
4008 MEM representing push operation to move expander. */
4009 icode
= optab_handler (push_optab
, mode
);
4010 if (icode
!= CODE_FOR_nothing
)
4012 struct expand_operand ops
[1];
4014 create_input_operand (&ops
[0], x
, mode
);
4015 if (maybe_expand_insn (icode
, 1, ops
))
4018 if (GET_MODE_SIZE (mode
) == rounded_size
)
4019 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4020 /* If we are to pad downward, adjust the stack pointer first and
4021 then store X into the stack location using an offset. This is
4022 because emit_move_insn does not know how to pad; it does not have
4024 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
4026 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
4027 HOST_WIDE_INT offset
;
4029 emit_move_insn (stack_pointer_rtx
,
4030 expand_binop (Pmode
,
4031 STACK_GROWS_DOWNWARD
? sub_optab
4034 gen_int_mode (rounded_size
, Pmode
),
4035 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4037 offset
= (HOST_WIDE_INT
) padding_size
;
4038 if (STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_DEC
)
4039 /* We have already decremented the stack pointer, so get the
4041 offset
+= (HOST_WIDE_INT
) rounded_size
;
4043 if (!STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_INC
)
4044 /* We have already incremented the stack pointer, so get the
4046 offset
-= (HOST_WIDE_INT
) rounded_size
;
4048 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4049 gen_int_mode (offset
, Pmode
));
4053 if (STACK_GROWS_DOWNWARD
)
4054 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4055 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4056 gen_int_mode (-(HOST_WIDE_INT
) rounded_size
,
4059 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4060 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4061 gen_int_mode (rounded_size
, Pmode
));
4063 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4066 dest
= gen_rtx_MEM (mode
, dest_addr
);
4070 set_mem_attributes (dest
, type
, 1);
4072 if (cfun
->tail_call_marked
)
4073 /* Function incoming arguments may overlap with sibling call
4074 outgoing arguments and we cannot allow reordering of reads
4075 from function arguments with stores to outgoing arguments
4076 of sibling calls. */
4077 set_mem_alias_set (dest
, 0);
4079 emit_move_insn (dest
, x
);
4082 /* Emit and annotate a single push insn. */
4085 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
4087 int delta
, old_delta
= stack_pointer_delta
;
4088 rtx_insn
*prev
= get_last_insn ();
4091 emit_single_push_insn_1 (mode
, x
, type
);
4093 last
= get_last_insn ();
4095 /* Notice the common case where we emitted exactly one insn. */
4096 if (PREV_INSN (last
) == prev
)
4098 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
4102 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4103 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
4107 /* Generate code to push X onto the stack, assuming it has mode MODE and
4109 MODE is redundant except when X is a CONST_INT (since they don't
4111 SIZE is an rtx for the size of data to be copied (in bytes),
4112 needed only if X is BLKmode.
4114 ALIGN (in bits) is maximum alignment we can assume.
4116 If PARTIAL and REG are both nonzero, then copy that many of the first
4117 bytes of X into registers starting with REG, and push the rest of X.
4118 The amount of space pushed is decreased by PARTIAL bytes.
4119 REG must be a hard register in this case.
4120 If REG is zero but PARTIAL is not, take any all others actions for an
4121 argument partially in registers, but do not actually load any
4124 EXTRA is the amount in bytes of extra space to leave next to this arg.
4125 This is ignored if an argument block has already been allocated.
4127 On a machine that lacks real push insns, ARGS_ADDR is the address of
4128 the bottom of the argument block for this call. We use indexing off there
4129 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4130 argument block has not been preallocated.
4132 ARGS_SO_FAR is the size of args previously pushed for this call.
4134 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4135 for arguments passed in registers. If nonzero, it will be the number
4136 of bytes required. */
4139 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
4140 unsigned int align
, int partial
, rtx reg
, int extra
,
4141 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4145 enum direction stack_direction
= STACK_GROWS_DOWNWARD
? downward
: upward
;
4147 /* Decide where to pad the argument: `downward' for below,
4148 `upward' for above, or `none' for don't pad it.
4149 Default is below for small data on big-endian machines; else above. */
4150 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4152 /* Invert direction if stack is post-decrement.
4154 if (STACK_PUSH_CODE
== POST_DEC
)
4155 if (where_pad
!= none
)
4156 where_pad
= (where_pad
== downward
? upward
: downward
);
4161 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4163 /* Copy a block into the stack, entirely or partially. */
4170 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4171 used
= partial
- offset
;
4173 if (mode
!= BLKmode
)
4175 /* A value is to be stored in an insufficiently aligned
4176 stack slot; copy via a suitably aligned slot if
4178 size
= GEN_INT (GET_MODE_SIZE (mode
));
4179 if (!MEM_P (xinner
))
4181 temp
= assign_temp (type
, 1, 1);
4182 emit_move_insn (temp
, xinner
);
4189 /* USED is now the # of bytes we need not copy to the stack
4190 because registers will take care of them. */
4193 xinner
= adjust_address (xinner
, BLKmode
, used
);
4195 /* If the partial register-part of the arg counts in its stack size,
4196 skip the part of stack space corresponding to the registers.
4197 Otherwise, start copying to the beginning of the stack space,
4198 by setting SKIP to 0. */
4199 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4201 #ifdef PUSH_ROUNDING
4202 /* Do it with several push insns if that doesn't take lots of insns
4203 and if there is no difficulty with push insns that skip bytes
4204 on the stack for alignment purposes. */
4207 && CONST_INT_P (size
)
4209 && MEM_ALIGN (xinner
) >= align
4210 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
4211 /* Here we avoid the case of a structure whose weak alignment
4212 forces many pushes of a small amount of data,
4213 and such small pushes do rounding that causes trouble. */
4214 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4215 || align
>= BIGGEST_ALIGNMENT
4216 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4217 == (align
/ BITS_PER_UNIT
)))
4218 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4220 /* Push padding now if padding above and stack grows down,
4221 or if padding below and stack grows up.
4222 But if space already allocated, this has already been done. */
4223 if (extra
&& args_addr
== 0
4224 && where_pad
!= none
&& where_pad
!= stack_direction
)
4225 anti_adjust_stack (GEN_INT (extra
));
4227 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4230 #endif /* PUSH_ROUNDING */
4234 /* Otherwise make space on the stack and copy the data
4235 to the address of that space. */
4237 /* Deduct words put into registers from the size we must copy. */
4240 if (CONST_INT_P (size
))
4241 size
= GEN_INT (INTVAL (size
) - used
);
4243 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4244 gen_int_mode (used
, GET_MODE (size
)),
4245 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4248 /* Get the address of the stack space.
4249 In this case, we do not deal with EXTRA separately.
4250 A single stack adjust will do. */
4253 temp
= push_block (size
, extra
, where_pad
== downward
);
4256 else if (CONST_INT_P (args_so_far
))
4257 temp
= memory_address (BLKmode
,
4258 plus_constant (Pmode
, args_addr
,
4259 skip
+ INTVAL (args_so_far
)));
4261 temp
= memory_address (BLKmode
,
4262 plus_constant (Pmode
,
4263 gen_rtx_PLUS (Pmode
,
4268 if (!ACCUMULATE_OUTGOING_ARGS
)
4270 /* If the source is referenced relative to the stack pointer,
4271 copy it to another register to stabilize it. We do not need
4272 to do this if we know that we won't be changing sp. */
4274 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4275 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4276 temp
= copy_to_reg (temp
);
4279 target
= gen_rtx_MEM (BLKmode
, temp
);
4281 /* We do *not* set_mem_attributes here, because incoming arguments
4282 may overlap with sibling call outgoing arguments and we cannot
4283 allow reordering of reads from function arguments with stores
4284 to outgoing arguments of sibling calls. We do, however, want
4285 to record the alignment of the stack slot. */
4286 /* ALIGN may well be better aligned than TYPE, e.g. due to
4287 PARM_BOUNDARY. Assume the caller isn't lying. */
4288 set_mem_align (target
, align
);
4290 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4293 else if (partial
> 0)
4295 /* Scalar partly in registers. */
4297 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4300 /* # bytes of start of argument
4301 that we must make space for but need not store. */
4302 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4303 int args_offset
= INTVAL (args_so_far
);
4306 /* Push padding now if padding above and stack grows down,
4307 or if padding below and stack grows up.
4308 But if space already allocated, this has already been done. */
4309 if (extra
&& args_addr
== 0
4310 && where_pad
!= none
&& where_pad
!= stack_direction
)
4311 anti_adjust_stack (GEN_INT (extra
));
4313 /* If we make space by pushing it, we might as well push
4314 the real data. Otherwise, we can leave OFFSET nonzero
4315 and leave the space uninitialized. */
4319 /* Now NOT_STACK gets the number of words that we don't need to
4320 allocate on the stack. Convert OFFSET to words too. */
4321 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4322 offset
/= UNITS_PER_WORD
;
4324 /* If the partial register-part of the arg counts in its stack size,
4325 skip the part of stack space corresponding to the registers.
4326 Otherwise, start copying to the beginning of the stack space,
4327 by setting SKIP to 0. */
4328 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4330 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4331 x
= validize_mem (force_const_mem (mode
, x
));
4333 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4334 SUBREGs of such registers are not allowed. */
4335 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4336 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4337 x
= copy_to_reg (x
);
4339 /* Loop over all the words allocated on the stack for this arg. */
4340 /* We can do it by words, because any scalar bigger than a word
4341 has a size a multiple of a word. */
4342 for (i
= size
- 1; i
>= not_stack
; i
--)
4343 if (i
>= not_stack
+ offset
)
4344 emit_push_insn (operand_subword_force (x
, i
, mode
),
4345 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4347 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4349 reg_parm_stack_space
, alignment_pad
);
4356 /* Push padding now if padding above and stack grows down,
4357 or if padding below and stack grows up.
4358 But if space already allocated, this has already been done. */
4359 if (extra
&& args_addr
== 0
4360 && where_pad
!= none
&& where_pad
!= stack_direction
)
4361 anti_adjust_stack (GEN_INT (extra
));
4363 #ifdef PUSH_ROUNDING
4364 if (args_addr
== 0 && PUSH_ARGS
)
4365 emit_single_push_insn (mode
, x
, type
);
4369 if (CONST_INT_P (args_so_far
))
4371 = memory_address (mode
,
4372 plus_constant (Pmode
, args_addr
,
4373 INTVAL (args_so_far
)));
4375 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4377 dest
= gen_rtx_MEM (mode
, addr
);
4379 /* We do *not* set_mem_attributes here, because incoming arguments
4380 may overlap with sibling call outgoing arguments and we cannot
4381 allow reordering of reads from function arguments with stores
4382 to outgoing arguments of sibling calls. We do, however, want
4383 to record the alignment of the stack slot. */
4384 /* ALIGN may well be better aligned than TYPE, e.g. due to
4385 PARM_BOUNDARY. Assume the caller isn't lying. */
4386 set_mem_align (dest
, align
);
4388 emit_move_insn (dest
, x
);
4392 /* If part should go in registers, copy that part
4393 into the appropriate registers. Do this now, at the end,
4394 since mem-to-mem copies above may do function calls. */
4395 if (partial
> 0 && reg
!= 0)
4397 /* Handle calls that pass values in multiple non-contiguous locations.
4398 The Irix 6 ABI has examples of this. */
4399 if (GET_CODE (reg
) == PARALLEL
)
4400 emit_group_load (reg
, x
, type
, -1);
4403 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4404 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4408 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4409 anti_adjust_stack (GEN_INT (extra
));
4411 if (alignment_pad
&& args_addr
== 0)
4412 anti_adjust_stack (alignment_pad
);
4415 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4419 get_subtarget (rtx x
)
4423 /* Only registers can be subtargets. */
4425 /* Don't use hard regs to avoid extending their life. */
4426 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4430 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4431 FIELD is a bitfield. Returns true if the optimization was successful,
4432 and there's nothing else to do. */
4435 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4436 unsigned HOST_WIDE_INT bitpos
,
4437 unsigned HOST_WIDE_INT bitregion_start
,
4438 unsigned HOST_WIDE_INT bitregion_end
,
4439 machine_mode mode1
, rtx str_rtx
,
4442 machine_mode str_mode
= GET_MODE (str_rtx
);
4443 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4448 enum tree_code code
;
4450 if (mode1
!= VOIDmode
4451 || bitsize
>= BITS_PER_WORD
4452 || str_bitsize
> BITS_PER_WORD
4453 || TREE_SIDE_EFFECTS (to
)
4454 || TREE_THIS_VOLATILE (to
))
4458 if (TREE_CODE (src
) != SSA_NAME
)
4460 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4463 srcstmt
= get_gimple_for_ssa_name (src
);
4465 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4468 code
= gimple_assign_rhs_code (srcstmt
);
4470 op0
= gimple_assign_rhs1 (srcstmt
);
4472 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4473 to find its initialization. Hopefully the initialization will
4474 be from a bitfield load. */
4475 if (TREE_CODE (op0
) == SSA_NAME
)
4477 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4479 /* We want to eventually have OP0 be the same as TO, which
4480 should be a bitfield. */
4482 || !is_gimple_assign (op0stmt
)
4483 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4485 op0
= gimple_assign_rhs1 (op0stmt
);
4488 op1
= gimple_assign_rhs2 (srcstmt
);
4490 if (!operand_equal_p (to
, op0
, 0))
4493 if (MEM_P (str_rtx
))
4495 unsigned HOST_WIDE_INT offset1
;
4497 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4498 str_mode
= word_mode
;
4499 str_mode
= get_best_mode (bitsize
, bitpos
,
4500 bitregion_start
, bitregion_end
,
4501 MEM_ALIGN (str_rtx
), str_mode
, 0);
4502 if (str_mode
== VOIDmode
)
4504 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4507 bitpos
%= str_bitsize
;
4508 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4509 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4511 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4514 /* If the bit field covers the whole REG/MEM, store_field
4515 will likely generate better code. */
4516 if (bitsize
>= str_bitsize
)
4519 /* We can't handle fields split across multiple entities. */
4520 if (bitpos
+ bitsize
> str_bitsize
)
4523 if (BYTES_BIG_ENDIAN
)
4524 bitpos
= str_bitsize
- bitpos
- bitsize
;
4530 /* For now, just optimize the case of the topmost bitfield
4531 where we don't need to do any masking and also
4532 1 bit bitfields where xor can be used.
4533 We might win by one instruction for the other bitfields
4534 too if insv/extv instructions aren't used, so that
4535 can be added later. */
4536 if (bitpos
+ bitsize
!= str_bitsize
4537 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4540 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4541 value
= convert_modes (str_mode
,
4542 TYPE_MODE (TREE_TYPE (op1
)), value
,
4543 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4545 /* We may be accessing data outside the field, which means
4546 we can alias adjacent data. */
4547 if (MEM_P (str_rtx
))
4549 str_rtx
= shallow_copy_rtx (str_rtx
);
4550 set_mem_alias_set (str_rtx
, 0);
4551 set_mem_expr (str_rtx
, 0);
4554 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4555 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4557 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4560 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4561 result
= expand_binop (str_mode
, binop
, str_rtx
,
4562 value
, str_rtx
, 1, OPTAB_WIDEN
);
4563 if (result
!= str_rtx
)
4564 emit_move_insn (str_rtx
, result
);
4569 if (TREE_CODE (op1
) != INTEGER_CST
)
4571 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4572 value
= convert_modes (str_mode
,
4573 TYPE_MODE (TREE_TYPE (op1
)), value
,
4574 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4576 /* We may be accessing data outside the field, which means
4577 we can alias adjacent data. */
4578 if (MEM_P (str_rtx
))
4580 str_rtx
= shallow_copy_rtx (str_rtx
);
4581 set_mem_alias_set (str_rtx
, 0);
4582 set_mem_expr (str_rtx
, 0);
4585 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4586 if (bitpos
+ bitsize
!= str_bitsize
)
4588 rtx mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1,
4590 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4592 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4593 result
= expand_binop (str_mode
, binop
, str_rtx
,
4594 value
, str_rtx
, 1, OPTAB_WIDEN
);
4595 if (result
!= str_rtx
)
4596 emit_move_insn (str_rtx
, result
);
4606 /* In the C++ memory model, consecutive bit fields in a structure are
4607 considered one memory location.
4609 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4610 returns the bit range of consecutive bits in which this COMPONENT_REF
4611 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4612 and *OFFSET may be adjusted in the process.
4614 If the access does not need to be restricted, 0 is returned in both
4615 *BITSTART and *BITEND. */
4618 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4619 unsigned HOST_WIDE_INT
*bitend
,
4621 HOST_WIDE_INT
*bitpos
,
4624 HOST_WIDE_INT bitoffset
;
4627 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4629 field
= TREE_OPERAND (exp
, 1);
4630 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4631 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4632 need to limit the range we can access. */
4635 *bitstart
= *bitend
= 0;
4639 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4640 part of a larger bit field, then the representative does not serve any
4641 useful purpose. This can occur in Ada. */
4642 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4645 HOST_WIDE_INT rbitsize
, rbitpos
;
4649 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4650 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4651 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4653 *bitstart
= *bitend
= 0;
4658 /* Compute the adjustment to bitpos from the offset of the field
4659 relative to the representative. DECL_FIELD_OFFSET of field and
4660 repr are the same by construction if they are not constants,
4661 see finish_bitfield_layout. */
4662 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
))
4663 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
)))
4664 bitoffset
= (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
4665 - tree_to_uhwi (DECL_FIELD_OFFSET (repr
))) * BITS_PER_UNIT
;
4668 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4669 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4671 /* If the adjustment is larger than bitpos, we would have a negative bit
4672 position for the lower bound and this may wreak havoc later. Adjust
4673 offset and bitpos to make the lower bound non-negative in that case. */
4674 if (bitoffset
> *bitpos
)
4676 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4677 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4680 if (*offset
== NULL_TREE
)
4681 *offset
= size_int (-adjust
/ BITS_PER_UNIT
);
4684 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4688 *bitstart
= *bitpos
- bitoffset
;
4690 *bitend
= *bitstart
+ tree_to_uhwi (DECL_SIZE (repr
)) - 1;
4693 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4694 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4695 DECL_RTL was not set yet, return NORTL. */
4698 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4700 if (TREE_CODE (addr
) != ADDR_EXPR
)
4703 tree base
= TREE_OPERAND (addr
, 0);
4706 || TREE_ADDRESSABLE (base
)
4707 || DECL_MODE (base
) == BLKmode
)
4710 if (!DECL_RTL_SET_P (base
))
4713 return (!MEM_P (DECL_RTL (base
)));
4716 /* Returns true if the MEM_REF REF refers to an object that does not
4717 reside in memory and has non-BLKmode. */
4720 mem_ref_refers_to_non_mem_p (tree ref
)
4722 tree base
= TREE_OPERAND (ref
, 0);
4723 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4726 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4727 is true, try generating a nontemporal store. */
4730 expand_assignment (tree to
, tree from
, bool nontemporal
)
4736 enum insn_code icode
;
4738 /* Don't crash if the lhs of the assignment was erroneous. */
4739 if (TREE_CODE (to
) == ERROR_MARK
)
4741 expand_normal (from
);
4745 /* Optimize away no-op moves without side-effects. */
4746 if (operand_equal_p (to
, from
, 0))
4749 /* Handle misaligned stores. */
4750 mode
= TYPE_MODE (TREE_TYPE (to
));
4751 if ((TREE_CODE (to
) == MEM_REF
4752 || TREE_CODE (to
) == TARGET_MEM_REF
)
4754 && !mem_ref_refers_to_non_mem_p (to
)
4755 && ((align
= get_object_alignment (to
))
4756 < GET_MODE_ALIGNMENT (mode
))
4757 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4758 != CODE_FOR_nothing
)
4759 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4763 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4764 reg
= force_not_mem (reg
);
4765 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4767 if (icode
!= CODE_FOR_nothing
)
4769 struct expand_operand ops
[2];
4771 create_fixed_operand (&ops
[0], mem
);
4772 create_input_operand (&ops
[1], reg
, mode
);
4773 /* The movmisalign<mode> pattern cannot fail, else the assignment
4774 would silently be omitted. */
4775 expand_insn (icode
, 2, ops
);
4778 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
);
4782 /* Assignment of a structure component needs special treatment
4783 if the structure component's rtx is not simply a MEM.
4784 Assignment of an array element at a constant index, and assignment of
4785 an array element in an unaligned packed structure field, has the same
4786 problem. Same for (partially) storing into a non-memory object. */
4787 if (handled_component_p (to
)
4788 || (TREE_CODE (to
) == MEM_REF
4789 && mem_ref_refers_to_non_mem_p (to
))
4790 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4793 HOST_WIDE_INT bitsize
, bitpos
;
4794 unsigned HOST_WIDE_INT bitregion_start
= 0;
4795 unsigned HOST_WIDE_INT bitregion_end
= 0;
4802 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4803 &unsignedp
, &volatilep
, true);
4805 /* Make sure bitpos is not negative, it can wreak havoc later. */
4808 gcc_assert (offset
== NULL_TREE
);
4809 offset
= size_int (bitpos
>> (BITS_PER_UNIT
== 8
4810 ? 3 : exact_log2 (BITS_PER_UNIT
)));
4811 bitpos
&= BITS_PER_UNIT
- 1;
4814 if (TREE_CODE (to
) == COMPONENT_REF
4815 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4816 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4817 /* The C++ memory model naturally applies to byte-aligned fields.
4818 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4819 BITSIZE are not byte-aligned, there is no need to limit the range
4820 we can access. This can occur with packed structures in Ada. */
4821 else if (bitsize
> 0
4822 && bitsize
% BITS_PER_UNIT
== 0
4823 && bitpos
% BITS_PER_UNIT
== 0)
4825 bitregion_start
= bitpos
;
4826 bitregion_end
= bitpos
+ bitsize
- 1;
4829 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4831 /* If the field has a mode, we want to access it in the
4832 field's mode, not the computed mode.
4833 If a MEM has VOIDmode (external with incomplete type),
4834 use BLKmode for it instead. */
4837 if (mode1
!= VOIDmode
)
4838 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4839 else if (GET_MODE (to_rtx
) == VOIDmode
)
4840 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4845 machine_mode address_mode
;
4848 if (!MEM_P (to_rtx
))
4850 /* We can get constant negative offsets into arrays with broken
4851 user code. Translate this to a trap instead of ICEing. */
4852 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4853 expand_builtin_trap ();
4854 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4857 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4858 address_mode
= get_address_mode (to_rtx
);
4859 if (GET_MODE (offset_rtx
) != address_mode
)
4861 /* We cannot be sure that the RTL in offset_rtx is valid outside
4862 of a memory address context, so force it into a register
4863 before attempting to convert it to the desired mode. */
4864 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
4865 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4868 /* If we have an expression in OFFSET_RTX and a non-zero
4869 byte offset in BITPOS, adding the byte offset before the
4870 OFFSET_RTX results in better intermediate code, which makes
4871 later rtl optimization passes perform better.
4873 We prefer intermediate code like this:
4875 r124:DI=r123:DI+0x18
4880 r124:DI=r123:DI+0x10
4881 [r124:DI+0x8]=r121:DI
4883 This is only done for aligned data values, as these can
4884 be expected to result in single move instructions. */
4885 if (mode1
!= VOIDmode
4888 && (bitpos
% bitsize
) == 0
4889 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4890 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
4892 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4893 bitregion_start
= 0;
4894 if (bitregion_end
>= (unsigned HOST_WIDE_INT
) bitpos
)
4895 bitregion_end
-= bitpos
;
4899 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4900 highest_pow2_factor_for_target (to
,
4904 /* No action is needed if the target is not a memory and the field
4905 lies completely outside that target. This can occur if the source
4906 code contains an out-of-bounds access to a small array. */
4908 && GET_MODE (to_rtx
) != BLKmode
4909 && (unsigned HOST_WIDE_INT
) bitpos
4910 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4912 expand_normal (from
);
4915 /* Handle expand_expr of a complex value returning a CONCAT. */
4916 else if (GET_CODE (to_rtx
) == CONCAT
)
4918 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4919 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4921 && bitsize
== mode_bitsize
)
4922 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4923 else if (bitsize
== mode_bitsize
/ 2
4924 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4925 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4927 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4928 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4929 bitregion_start
, bitregion_end
,
4931 get_alias_set (to
), nontemporal
);
4932 else if (bitpos
>= mode_bitsize
/ 2)
4933 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4934 bitpos
- mode_bitsize
/ 2,
4935 bitregion_start
, bitregion_end
,
4937 get_alias_set (to
), nontemporal
);
4938 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4941 result
= expand_normal (from
);
4942 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4943 TYPE_MODE (TREE_TYPE (from
)), 0);
4944 emit_move_insn (XEXP (to_rtx
, 0),
4945 read_complex_part (from_rtx
, false));
4946 emit_move_insn (XEXP (to_rtx
, 1),
4947 read_complex_part (from_rtx
, true));
4951 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4952 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4953 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4954 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4955 result
= store_field (temp
, bitsize
, bitpos
,
4956 bitregion_start
, bitregion_end
,
4958 get_alias_set (to
), nontemporal
);
4959 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4960 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4967 /* If the field is at offset zero, we could have been given the
4968 DECL_RTX of the parent struct. Don't munge it. */
4969 to_rtx
= shallow_copy_rtx (to_rtx
);
4970 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4972 MEM_VOLATILE_P (to_rtx
) = 1;
4975 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4976 bitregion_start
, bitregion_end
,
4981 result
= store_field (to_rtx
, bitsize
, bitpos
,
4982 bitregion_start
, bitregion_end
,
4984 get_alias_set (to
), nontemporal
);
4988 preserve_temp_slots (result
);
4993 /* If the rhs is a function call and its value is not an aggregate,
4994 call the function before we start to compute the lhs.
4995 This is needed for correct code for cases such as
4996 val = setjmp (buf) on machines where reference to val
4997 requires loading up part of an address in a separate insn.
4999 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5000 since it might be a promoted variable where the zero- or sign- extension
5001 needs to be done. Handling this in the normal way is safe because no
5002 computation is done before the call. The same is true for SSA names. */
5003 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
5004 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5005 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
5006 && ! (((TREE_CODE (to
) == VAR_DECL
5007 || TREE_CODE (to
) == PARM_DECL
5008 || TREE_CODE (to
) == RESULT_DECL
)
5009 && REG_P (DECL_RTL (to
)))
5010 || TREE_CODE (to
) == SSA_NAME
))
5016 value
= expand_normal (from
);
5018 /* Split value and bounds to store them separately. */
5019 chkp_split_slot (value
, &value
, &bounds
);
5022 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5024 /* Handle calls that return values in multiple non-contiguous locations.
5025 The Irix 6 ABI has examples of this. */
5026 if (GET_CODE (to_rtx
) == PARALLEL
)
5028 if (GET_CODE (value
) == PARALLEL
)
5029 emit_group_move (to_rtx
, value
);
5031 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5032 int_size_in_bytes (TREE_TYPE (from
)));
5034 else if (GET_CODE (value
) == PARALLEL
)
5035 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5036 int_size_in_bytes (TREE_TYPE (from
)));
5037 else if (GET_MODE (to_rtx
) == BLKmode
)
5039 /* Handle calls that return BLKmode values in registers. */
5041 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5043 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5047 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5048 value
= convert_memory_address_addr_space
5049 (GET_MODE (to_rtx
), value
,
5050 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5052 emit_move_insn (to_rtx
, value
);
5055 /* Store bounds if required. */
5057 && (BOUNDED_P (to
) || chkp_type_has_pointer (TREE_TYPE (to
))))
5059 gcc_assert (MEM_P (to_rtx
));
5060 chkp_emit_bounds_store (bounds
, value
, to_rtx
);
5063 preserve_temp_slots (to_rtx
);
5068 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5069 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5071 /* Don't move directly into a return register. */
5072 if (TREE_CODE (to
) == RESULT_DECL
5073 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5079 /* If the source is itself a return value, it still is in a pseudo at
5080 this point so we can move it back to the return register directly. */
5082 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5083 && TREE_CODE (from
) != CALL_EXPR
)
5084 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5086 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5088 /* Handle calls that return values in multiple non-contiguous locations.
5089 The Irix 6 ABI has examples of this. */
5090 if (GET_CODE (to_rtx
) == PARALLEL
)
5092 if (GET_CODE (temp
) == PARALLEL
)
5093 emit_group_move (to_rtx
, temp
);
5095 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5096 int_size_in_bytes (TREE_TYPE (from
)));
5099 emit_move_insn (to_rtx
, temp
);
5101 preserve_temp_slots (to_rtx
);
5106 /* In case we are returning the contents of an object which overlaps
5107 the place the value is being stored, use a safe function when copying
5108 a value through a pointer into a structure value return block. */
5109 if (TREE_CODE (to
) == RESULT_DECL
5110 && TREE_CODE (from
) == INDIRECT_REF
5111 && ADDR_SPACE_GENERIC_P
5112 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5113 && refs_may_alias_p (to
, from
)
5114 && cfun
->returns_struct
5115 && !cfun
->returns_pcc_struct
)
5120 size
= expr_size (from
);
5121 from_rtx
= expand_normal (from
);
5123 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
5124 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
5125 XEXP (from_rtx
, 0), Pmode
,
5126 convert_to_mode (TYPE_MODE (sizetype
),
5127 size
, TYPE_UNSIGNED (sizetype
)),
5128 TYPE_MODE (sizetype
));
5130 preserve_temp_slots (to_rtx
);
5135 /* Compute FROM and store the value in the rtx we got. */
5138 result
= store_expr_with_bounds (from
, to_rtx
, 0, nontemporal
, to
);
5139 preserve_temp_slots (result
);
5144 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5145 succeeded, false otherwise. */
5148 emit_storent_insn (rtx to
, rtx from
)
5150 struct expand_operand ops
[2];
5151 machine_mode mode
= GET_MODE (to
);
5152 enum insn_code code
= optab_handler (storent_optab
, mode
);
5154 if (code
== CODE_FOR_nothing
)
5157 create_fixed_operand (&ops
[0], to
);
5158 create_input_operand (&ops
[1], from
, mode
);
5159 return maybe_expand_insn (code
, 2, ops
);
5162 /* Generate code for computing expression EXP,
5163 and storing the value into TARGET.
5165 If the mode is BLKmode then we may return TARGET itself.
5166 It turns out that in BLKmode it doesn't cause a problem.
5167 because C has no operators that could combine two different
5168 assignments into the same BLKmode object with different values
5169 with no sequence point. Will other languages need this to
5172 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5173 stack, and block moves may need to be treated specially.
5175 If NONTEMPORAL is true, try using a nontemporal store instruction.
5177 If BTARGET is not NULL then computed bounds of EXP are
5178 associated with BTARGET. */
5181 store_expr_with_bounds (tree exp
, rtx target
, int call_param_p
,
5182 bool nontemporal
, tree btarget
)
5185 rtx alt_rtl
= NULL_RTX
;
5186 location_t loc
= curr_insn_location ();
5188 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5190 /* C++ can generate ?: expressions with a throw expression in one
5191 branch and an rvalue in the other. Here, we resolve attempts to
5192 store the throw expression's nonexistent result. */
5193 gcc_assert (!call_param_p
);
5194 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5197 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5199 /* Perform first part of compound expression, then assign from second
5201 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5202 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5203 return store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
,
5204 call_param_p
, nontemporal
, btarget
);
5206 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5208 /* For conditional expression, get safe form of the target. Then
5209 test the condition, doing the appropriate assignment on either
5210 side. This avoids the creation of unnecessary temporaries.
5211 For non-BLKmode, it is more efficient not to do this. */
5213 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
5215 do_pending_stack_adjust ();
5217 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5218 store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5219 nontemporal
, btarget
);
5220 emit_jump_insn (gen_jump (lab2
));
5223 store_expr_with_bounds (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5224 nontemporal
, btarget
);
5230 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5231 /* If this is a scalar in a register that is stored in a wider mode
5232 than the declared mode, compute the result into its declared mode
5233 and then convert to the wider mode. Our value is the computed
5236 rtx inner_target
= 0;
5238 /* We can do the conversion inside EXP, which will often result
5239 in some optimizations. Do the conversion in two steps: first
5240 change the signedness, if needed, then the extend. But don't
5241 do this if the type of EXP is a subtype of something else
5242 since then the conversion might involve more than just
5243 converting modes. */
5244 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5245 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5246 && GET_MODE_PRECISION (GET_MODE (target
))
5247 == TYPE_PRECISION (TREE_TYPE (exp
)))
5249 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
5250 TYPE_UNSIGNED (TREE_TYPE (exp
))))
5252 /* Some types, e.g. Fortran's logical*4, won't have a signed
5253 version, so use the mode instead. */
5255 = (signed_or_unsigned_type_for
5256 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
5258 ntype
= lang_hooks
.types
.type_for_mode
5259 (TYPE_MODE (TREE_TYPE (exp
)),
5260 SUBREG_PROMOTED_SIGN (target
));
5262 exp
= fold_convert_loc (loc
, ntype
, exp
);
5265 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5266 (GET_MODE (SUBREG_REG (target
)),
5267 SUBREG_PROMOTED_SIGN (target
)),
5270 inner_target
= SUBREG_REG (target
);
5273 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5274 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5276 /* Handle bounds returned by call. */
5277 if (TREE_CODE (exp
) == CALL_EXPR
)
5280 chkp_split_slot (temp
, &temp
, &bounds
);
5281 if (bounds
&& btarget
)
5283 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5284 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5285 chkp_set_rtl_bounds (btarget
, tmp
);
5289 /* If TEMP is a VOIDmode constant, use convert_modes to make
5290 sure that we properly convert it. */
5291 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5293 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5294 temp
, SUBREG_PROMOTED_SIGN (target
));
5295 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5296 GET_MODE (target
), temp
,
5297 SUBREG_PROMOTED_SIGN (target
));
5300 convert_move (SUBREG_REG (target
), temp
,
5301 SUBREG_PROMOTED_SIGN (target
));
5305 else if ((TREE_CODE (exp
) == STRING_CST
5306 || (TREE_CODE (exp
) == MEM_REF
5307 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5308 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5310 && integer_zerop (TREE_OPERAND (exp
, 1))))
5311 && !nontemporal
&& !call_param_p
5314 /* Optimize initialization of an array with a STRING_CST. */
5315 HOST_WIDE_INT exp_len
, str_copy_len
;
5317 tree str
= TREE_CODE (exp
) == STRING_CST
5318 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5320 exp_len
= int_expr_size (exp
);
5324 if (TREE_STRING_LENGTH (str
) <= 0)
5327 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5328 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5331 str_copy_len
= TREE_STRING_LENGTH (str
);
5332 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5333 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5335 str_copy_len
+= STORE_MAX_PIECES
- 1;
5336 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5338 str_copy_len
= MIN (str_copy_len
, exp_len
);
5339 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5340 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5341 MEM_ALIGN (target
), false))
5346 dest_mem
= store_by_pieces (dest_mem
,
5347 str_copy_len
, builtin_strncpy_read_str
,
5349 TREE_STRING_POINTER (str
)),
5350 MEM_ALIGN (target
), false,
5351 exp_len
> str_copy_len
? 1 : 0);
5352 if (exp_len
> str_copy_len
)
5353 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5354 GEN_INT (exp_len
- str_copy_len
),
5363 /* If we want to use a nontemporal store, force the value to
5365 tmp_target
= nontemporal
? NULL_RTX
: target
;
5366 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5368 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5371 /* Handle bounds returned by call. */
5372 if (TREE_CODE (exp
) == CALL_EXPR
)
5375 chkp_split_slot (temp
, &temp
, &bounds
);
5376 if (bounds
&& btarget
)
5378 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5379 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5380 chkp_set_rtl_bounds (btarget
, tmp
);
5385 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5386 the same as that of TARGET, adjust the constant. This is needed, for
5387 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5388 only a word-sized value. */
5389 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5390 && TREE_CODE (exp
) != ERROR_MARK
5391 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5392 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5393 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5395 /* If value was not generated in the target, store it there.
5396 Convert the value to TARGET's type first if necessary and emit the
5397 pending incrementations that have been queued when expanding EXP.
5398 Note that we cannot emit the whole queue blindly because this will
5399 effectively disable the POST_INC optimization later.
5401 If TEMP and TARGET compare equal according to rtx_equal_p, but
5402 one or both of them are volatile memory refs, we have to distinguish
5404 - expand_expr has used TARGET. In this case, we must not generate
5405 another copy. This can be detected by TARGET being equal according
5407 - expand_expr has not used TARGET - that means that the source just
5408 happens to have the same RTX form. Since temp will have been created
5409 by expand_expr, it will compare unequal according to == .
5410 We must generate a copy in this case, to reach the correct number
5411 of volatile memory references. */
5413 if ((! rtx_equal_p (temp
, target
)
5414 || (temp
!= target
&& (side_effects_p (temp
)
5415 || side_effects_p (target
))))
5416 && TREE_CODE (exp
) != ERROR_MARK
5417 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5418 but TARGET is not valid memory reference, TEMP will differ
5419 from TARGET although it is really the same location. */
5421 && rtx_equal_p (alt_rtl
, target
)
5422 && !side_effects_p (alt_rtl
)
5423 && !side_effects_p (target
))
5424 /* If there's nothing to copy, don't bother. Don't call
5425 expr_size unless necessary, because some front-ends (C++)
5426 expr_size-hook must not be given objects that are not
5427 supposed to be bit-copied or bit-initialized. */
5428 && expr_size (exp
) != const0_rtx
)
5430 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5432 if (GET_MODE (target
) == BLKmode
)
5434 /* Handle calls that return BLKmode values in registers. */
5435 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5436 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5438 store_bit_field (target
,
5439 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5440 0, 0, 0, GET_MODE (temp
), temp
);
5443 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5446 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5448 /* Handle copying a string constant into an array. The string
5449 constant may be shorter than the array. So copy just the string's
5450 actual length, and clear the rest. First get the size of the data
5451 type of the string, which is actually the size of the target. */
5452 rtx size
= expr_size (exp
);
5454 if (CONST_INT_P (size
)
5455 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5456 emit_block_move (target
, temp
, size
,
5458 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5461 machine_mode pointer_mode
5462 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5463 machine_mode address_mode
= get_address_mode (target
);
5465 /* Compute the size of the data to copy from the string. */
5467 = size_binop_loc (loc
, MIN_EXPR
,
5468 make_tree (sizetype
, size
),
5469 size_int (TREE_STRING_LENGTH (exp
)));
5471 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5473 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5474 rtx_code_label
*label
= 0;
5476 /* Copy that much. */
5477 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5478 TYPE_UNSIGNED (sizetype
));
5479 emit_block_move (target
, temp
, copy_size_rtx
,
5481 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5483 /* Figure out how much is left in TARGET that we have to clear.
5484 Do all calculations in pointer_mode. */
5485 if (CONST_INT_P (copy_size_rtx
))
5487 size
= plus_constant (address_mode
, size
,
5488 -INTVAL (copy_size_rtx
));
5489 target
= adjust_address (target
, BLKmode
,
5490 INTVAL (copy_size_rtx
));
5494 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5495 copy_size_rtx
, NULL_RTX
, 0,
5498 if (GET_MODE (copy_size_rtx
) != address_mode
)
5499 copy_size_rtx
= convert_to_mode (address_mode
,
5501 TYPE_UNSIGNED (sizetype
));
5503 target
= offset_address (target
, copy_size_rtx
,
5504 highest_pow2_factor (copy_size
));
5505 label
= gen_label_rtx ();
5506 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5507 GET_MODE (size
), 0, label
);
5510 if (size
!= const0_rtx
)
5511 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5517 /* Handle calls that return values in multiple non-contiguous locations.
5518 The Irix 6 ABI has examples of this. */
5519 else if (GET_CODE (target
) == PARALLEL
)
5521 if (GET_CODE (temp
) == PARALLEL
)
5522 emit_group_move (target
, temp
);
5524 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5525 int_size_in_bytes (TREE_TYPE (exp
)));
5527 else if (GET_CODE (temp
) == PARALLEL
)
5528 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5529 int_size_in_bytes (TREE_TYPE (exp
)));
5530 else if (GET_MODE (temp
) == BLKmode
)
5531 emit_block_move (target
, temp
, expr_size (exp
),
5533 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5534 /* If we emit a nontemporal store, there is nothing else to do. */
5535 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5539 temp
= force_operand (temp
, target
);
5541 emit_move_insn (target
, temp
);
5548 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5550 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5552 return store_expr_with_bounds (exp
, target
, call_param_p
, nontemporal
, NULL
);
5555 /* Return true if field F of structure TYPE is a flexible array. */
5558 flexible_array_member_p (const_tree f
, const_tree type
)
5563 return (DECL_CHAIN (f
) == NULL
5564 && TREE_CODE (tf
) == ARRAY_TYPE
5566 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5567 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5568 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5569 && int_size_in_bytes (type
) >= 0);
5572 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5573 must have in order for it to completely initialize a value of type TYPE.
5574 Return -1 if the number isn't known.
5576 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5578 static HOST_WIDE_INT
5579 count_type_elements (const_tree type
, bool for_ctor_p
)
5581 switch (TREE_CODE (type
))
5587 nelts
= array_type_nelts (type
);
5588 if (nelts
&& tree_fits_uhwi_p (nelts
))
5590 unsigned HOST_WIDE_INT n
;
5592 n
= tree_to_uhwi (nelts
) + 1;
5593 if (n
== 0 || for_ctor_p
)
5596 return n
* count_type_elements (TREE_TYPE (type
), false);
5598 return for_ctor_p
? -1 : 1;
5603 unsigned HOST_WIDE_INT n
;
5607 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5608 if (TREE_CODE (f
) == FIELD_DECL
)
5611 n
+= count_type_elements (TREE_TYPE (f
), false);
5612 else if (!flexible_array_member_p (f
, type
))
5613 /* Don't count flexible arrays, which are not supposed
5614 to be initialized. */
5622 case QUAL_UNION_TYPE
:
5627 gcc_assert (!for_ctor_p
);
5628 /* Estimate the number of scalars in each field and pick the
5629 maximum. Other estimates would do instead; the idea is simply
5630 to make sure that the estimate is not sensitive to the ordering
5633 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5634 if (TREE_CODE (f
) == FIELD_DECL
)
5636 m
= count_type_elements (TREE_TYPE (f
), false);
5637 /* If the field doesn't span the whole union, add an extra
5638 scalar for the rest. */
5639 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5640 TYPE_SIZE (type
)) != 1)
5652 return TYPE_VECTOR_SUBPARTS (type
);
5656 case FIXED_POINT_TYPE
:
5661 case REFERENCE_TYPE
:
5677 /* Helper for categorize_ctor_elements. Identical interface. */
5680 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5681 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5683 unsigned HOST_WIDE_INT idx
;
5684 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5685 tree value
, purpose
, elt_type
;
5687 /* Whether CTOR is a valid constant initializer, in accordance with what
5688 initializer_constant_valid_p does. If inferred from the constructor
5689 elements, true until proven otherwise. */
5690 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5691 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5696 elt_type
= NULL_TREE
;
5698 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5700 HOST_WIDE_INT mult
= 1;
5702 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5704 tree lo_index
= TREE_OPERAND (purpose
, 0);
5705 tree hi_index
= TREE_OPERAND (purpose
, 1);
5707 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
5708 mult
= (tree_to_uhwi (hi_index
)
5709 - tree_to_uhwi (lo_index
) + 1);
5712 elt_type
= TREE_TYPE (value
);
5714 switch (TREE_CODE (value
))
5718 HOST_WIDE_INT nz
= 0, ic
= 0;
5720 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5723 nz_elts
+= mult
* nz
;
5724 init_elts
+= mult
* ic
;
5726 if (const_from_elts_p
&& const_p
)
5727 const_p
= const_elt_p
;
5734 if (!initializer_zerop (value
))
5740 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5741 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5745 if (!initializer_zerop (TREE_REALPART (value
)))
5747 if (!initializer_zerop (TREE_IMAGPART (value
)))
5755 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5757 tree v
= VECTOR_CST_ELT (value
, i
);
5758 if (!initializer_zerop (v
))
5767 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5768 nz_elts
+= mult
* tc
;
5769 init_elts
+= mult
* tc
;
5771 if (const_from_elts_p
&& const_p
)
5772 const_p
= initializer_constant_valid_p (value
, elt_type
)
5779 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5780 num_fields
, elt_type
))
5781 *p_complete
= false;
5783 *p_nz_elts
+= nz_elts
;
5784 *p_init_elts
+= init_elts
;
5789 /* Examine CTOR to discover:
5790 * how many scalar fields are set to nonzero values,
5791 and place it in *P_NZ_ELTS;
5792 * how many scalar fields in total are in CTOR,
5793 and place it in *P_ELT_COUNT.
5794 * whether the constructor is complete -- in the sense that every
5795 meaningful byte is explicitly given a value --
5796 and place it in *P_COMPLETE.
5798 Return whether or not CTOR is a valid static constant initializer, the same
5799 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5802 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5803 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5809 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5812 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5813 of which had type LAST_TYPE. Each element was itself a complete
5814 initializer, in the sense that every meaningful byte was explicitly
5815 given a value. Return true if the same is true for the constructor
5819 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5820 const_tree last_type
)
5822 if (TREE_CODE (type
) == UNION_TYPE
5823 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5828 gcc_assert (num_elts
== 1 && last_type
);
5830 /* ??? We could look at each element of the union, and find the
5831 largest element. Which would avoid comparing the size of the
5832 initialized element against any tail padding in the union.
5833 Doesn't seem worth the effort... */
5834 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5837 return count_type_elements (type
, true) == num_elts
;
5840 /* Return 1 if EXP contains mostly (3/4) zeros. */
5843 mostly_zeros_p (const_tree exp
)
5845 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5847 HOST_WIDE_INT nz_elts
, init_elts
;
5850 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5851 return !complete_p
|| nz_elts
< init_elts
/ 4;
5854 return initializer_zerop (exp
);
5857 /* Return 1 if EXP contains all zeros. */
5860 all_zeros_p (const_tree exp
)
5862 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5864 HOST_WIDE_INT nz_elts
, init_elts
;
5867 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5868 return nz_elts
== 0;
5871 return initializer_zerop (exp
);
5874 /* Helper function for store_constructor.
5875 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5876 CLEARED is as for store_constructor.
5877 ALIAS_SET is the alias set to use for any stores.
5879 This provides a recursive shortcut back to store_constructor when it isn't
5880 necessary to go through store_field. This is so that we can pass through
5881 the cleared field to let store_constructor know that we may not have to
5882 clear a substructure if the outer structure has already been cleared. */
5885 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5886 HOST_WIDE_INT bitpos
, machine_mode mode
,
5887 tree exp
, int cleared
, alias_set_type alias_set
)
5889 if (TREE_CODE (exp
) == CONSTRUCTOR
5890 /* We can only call store_constructor recursively if the size and
5891 bit position are on a byte boundary. */
5892 && bitpos
% BITS_PER_UNIT
== 0
5893 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5894 /* If we have a nonzero bitpos for a register target, then we just
5895 let store_field do the bitfield handling. This is unlikely to
5896 generate unnecessary clear instructions anyways. */
5897 && (bitpos
== 0 || MEM_P (target
)))
5901 = adjust_address (target
,
5902 GET_MODE (target
) == BLKmode
5904 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5905 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5908 /* Update the alias set, if required. */
5909 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5910 && MEM_ALIAS_SET (target
) != 0)
5912 target
= copy_rtx (target
);
5913 set_mem_alias_set (target
, alias_set
);
5916 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5919 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5923 /* Returns the number of FIELD_DECLs in TYPE. */
5926 fields_length (const_tree type
)
5928 tree t
= TYPE_FIELDS (type
);
5931 for (; t
; t
= DECL_CHAIN (t
))
5932 if (TREE_CODE (t
) == FIELD_DECL
)
5939 /* Store the value of constructor EXP into the rtx TARGET.
5940 TARGET is either a REG or a MEM; we know it cannot conflict, since
5941 safe_from_p has been called.
5942 CLEARED is true if TARGET is known to have been zero'd.
5943 SIZE is the number of bytes of TARGET we are allowed to modify: this
5944 may not be the same as the size of EXP if we are assigning to a field
5945 which has been packed to exclude padding bits. */
5948 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5950 tree type
= TREE_TYPE (exp
);
5951 #ifdef WORD_REGISTER_OPERATIONS
5952 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5955 switch (TREE_CODE (type
))
5959 case QUAL_UNION_TYPE
:
5961 unsigned HOST_WIDE_INT idx
;
5964 /* If size is zero or the target is already cleared, do nothing. */
5965 if (size
== 0 || cleared
)
5967 /* We either clear the aggregate or indicate the value is dead. */
5968 else if ((TREE_CODE (type
) == UNION_TYPE
5969 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5970 && ! CONSTRUCTOR_ELTS (exp
))
5971 /* If the constructor is empty, clear the union. */
5973 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5977 /* If we are building a static constructor into a register,
5978 set the initial value as zero so we can fold the value into
5979 a constant. But if more than one register is involved,
5980 this probably loses. */
5981 else if (REG_P (target
) && TREE_STATIC (exp
)
5982 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5984 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5988 /* If the constructor has fewer fields than the structure or
5989 if we are initializing the structure to mostly zeros, clear
5990 the whole structure first. Don't do this if TARGET is a
5991 register whose mode size isn't equal to SIZE since
5992 clear_storage can't handle this case. */
5994 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
5995 != fields_length (type
))
5996 || mostly_zeros_p (exp
))
5998 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
6001 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6005 if (REG_P (target
) && !cleared
)
6006 emit_clobber (target
);
6008 /* Store each element of the constructor into the
6009 corresponding field of TARGET. */
6010 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
6013 HOST_WIDE_INT bitsize
;
6014 HOST_WIDE_INT bitpos
= 0;
6016 rtx to_rtx
= target
;
6018 /* Just ignore missing fields. We cleared the whole
6019 structure, above, if any fields are missing. */
6023 if (cleared
&& initializer_zerop (value
))
6026 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
6027 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
6031 mode
= DECL_MODE (field
);
6032 if (DECL_BIT_FIELD (field
))
6035 offset
= DECL_FIELD_OFFSET (field
);
6036 if (tree_fits_shwi_p (offset
)
6037 && tree_fits_shwi_p (bit_position (field
)))
6039 bitpos
= int_bit_position (field
);
6043 bitpos
= tree_to_shwi (DECL_FIELD_BIT_OFFSET (field
));
6047 machine_mode address_mode
;
6051 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
6052 make_tree (TREE_TYPE (exp
),
6055 offset_rtx
= expand_normal (offset
);
6056 gcc_assert (MEM_P (to_rtx
));
6058 address_mode
= get_address_mode (to_rtx
);
6059 if (GET_MODE (offset_rtx
) != address_mode
)
6060 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
6062 to_rtx
= offset_address (to_rtx
, offset_rtx
,
6063 highest_pow2_factor (offset
));
6066 #ifdef WORD_REGISTER_OPERATIONS
6067 /* If this initializes a field that is smaller than a
6068 word, at the start of a word, try to widen it to a full
6069 word. This special case allows us to output C++ member
6070 function initializations in a form that the optimizers
6073 && bitsize
< BITS_PER_WORD
6074 && bitpos
% BITS_PER_WORD
== 0
6075 && GET_MODE_CLASS (mode
) == MODE_INT
6076 && TREE_CODE (value
) == INTEGER_CST
6078 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6080 tree type
= TREE_TYPE (value
);
6082 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6084 type
= lang_hooks
.types
.type_for_mode
6085 (word_mode
, TYPE_UNSIGNED (type
));
6086 value
= fold_convert (type
, value
);
6089 if (BYTES_BIG_ENDIAN
)
6091 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6092 build_int_cst (type
,
6093 BITS_PER_WORD
- bitsize
));
6094 bitsize
= BITS_PER_WORD
;
6099 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6100 && DECL_NONADDRESSABLE_P (field
))
6102 to_rtx
= copy_rtx (to_rtx
);
6103 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6106 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
6108 get_alias_set (TREE_TYPE (field
)));
6115 unsigned HOST_WIDE_INT i
;
6118 tree elttype
= TREE_TYPE (type
);
6120 HOST_WIDE_INT minelt
= 0;
6121 HOST_WIDE_INT maxelt
= 0;
6123 domain
= TYPE_DOMAIN (type
);
6124 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6125 && TYPE_MAX_VALUE (domain
)
6126 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6127 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6129 /* If we have constant bounds for the range of the type, get them. */
6132 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6133 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6136 /* If the constructor has fewer elements than the array, clear
6137 the whole array first. Similarly if this is static
6138 constructor of a non-BLKmode object. */
6141 else if (REG_P (target
) && TREE_STATIC (exp
))
6145 unsigned HOST_WIDE_INT idx
;
6147 HOST_WIDE_INT count
= 0, zero_count
= 0;
6148 need_to_clear
= ! const_bounds_p
;
6150 /* This loop is a more accurate version of the loop in
6151 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6152 is also needed to check for missing elements. */
6153 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6155 HOST_WIDE_INT this_node_count
;
6160 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6162 tree lo_index
= TREE_OPERAND (index
, 0);
6163 tree hi_index
= TREE_OPERAND (index
, 1);
6165 if (! tree_fits_uhwi_p (lo_index
)
6166 || ! tree_fits_uhwi_p (hi_index
))
6172 this_node_count
= (tree_to_uhwi (hi_index
)
6173 - tree_to_uhwi (lo_index
) + 1);
6176 this_node_count
= 1;
6178 count
+= this_node_count
;
6179 if (mostly_zeros_p (value
))
6180 zero_count
+= this_node_count
;
6183 /* Clear the entire array first if there are any missing
6184 elements, or if the incidence of zero elements is >=
6187 && (count
< maxelt
- minelt
+ 1
6188 || 4 * zero_count
>= 3 * count
))
6192 if (need_to_clear
&& size
> 0)
6195 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6197 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6201 if (!cleared
&& REG_P (target
))
6202 /* Inform later passes that the old value is dead. */
6203 emit_clobber (target
);
6205 /* Store each element of the constructor into the
6206 corresponding element of TARGET, determined by counting the
6208 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6211 HOST_WIDE_INT bitsize
;
6212 HOST_WIDE_INT bitpos
;
6213 rtx xtarget
= target
;
6215 if (cleared
&& initializer_zerop (value
))
6218 mode
= TYPE_MODE (elttype
);
6219 if (mode
== BLKmode
)
6220 bitsize
= (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6221 ? tree_to_uhwi (TYPE_SIZE (elttype
))
6224 bitsize
= GET_MODE_BITSIZE (mode
);
6226 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6228 tree lo_index
= TREE_OPERAND (index
, 0);
6229 tree hi_index
= TREE_OPERAND (index
, 1);
6230 rtx index_r
, pos_rtx
;
6231 HOST_WIDE_INT lo
, hi
, count
;
6234 /* If the range is constant and "small", unroll the loop. */
6236 && tree_fits_shwi_p (lo_index
)
6237 && tree_fits_shwi_p (hi_index
)
6238 && (lo
= tree_to_shwi (lo_index
),
6239 hi
= tree_to_shwi (hi_index
),
6240 count
= hi
- lo
+ 1,
6243 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6244 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6247 lo
-= minelt
; hi
-= minelt
;
6248 for (; lo
<= hi
; lo
++)
6250 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6253 && !MEM_KEEP_ALIAS_SET_P (target
)
6254 && TREE_CODE (type
) == ARRAY_TYPE
6255 && TYPE_NONALIASED_COMPONENT (type
))
6257 target
= copy_rtx (target
);
6258 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6261 store_constructor_field
6262 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6263 get_alias_set (elttype
));
6268 rtx_code_label
*loop_start
= gen_label_rtx ();
6269 rtx_code_label
*loop_end
= gen_label_rtx ();
6272 expand_normal (hi_index
);
6274 index
= build_decl (EXPR_LOCATION (exp
),
6275 VAR_DECL
, NULL_TREE
, domain
);
6276 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6277 SET_DECL_RTL (index
, index_r
);
6278 store_expr (lo_index
, index_r
, 0, false);
6280 /* Build the head of the loop. */
6281 do_pending_stack_adjust ();
6282 emit_label (loop_start
);
6284 /* Assign value to element index. */
6286 fold_convert (ssizetype
,
6287 fold_build2 (MINUS_EXPR
,
6290 TYPE_MIN_VALUE (domain
)));
6293 size_binop (MULT_EXPR
, position
,
6294 fold_convert (ssizetype
,
6295 TYPE_SIZE_UNIT (elttype
)));
6297 pos_rtx
= expand_normal (position
);
6298 xtarget
= offset_address (target
, pos_rtx
,
6299 highest_pow2_factor (position
));
6300 xtarget
= adjust_address (xtarget
, mode
, 0);
6301 if (TREE_CODE (value
) == CONSTRUCTOR
)
6302 store_constructor (value
, xtarget
, cleared
,
6303 bitsize
/ BITS_PER_UNIT
);
6305 store_expr (value
, xtarget
, 0, false);
6307 /* Generate a conditional jump to exit the loop. */
6308 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6310 jumpif (exit_cond
, loop_end
, -1);
6312 /* Update the loop counter, and jump to the head of
6314 expand_assignment (index
,
6315 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6316 index
, integer_one_node
),
6319 emit_jump (loop_start
);
6321 /* Build the end of the loop. */
6322 emit_label (loop_end
);
6325 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6326 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6331 index
= ssize_int (1);
6334 index
= fold_convert (ssizetype
,
6335 fold_build2 (MINUS_EXPR
,
6338 TYPE_MIN_VALUE (domain
)));
6341 size_binop (MULT_EXPR
, index
,
6342 fold_convert (ssizetype
,
6343 TYPE_SIZE_UNIT (elttype
)));
6344 xtarget
= offset_address (target
,
6345 expand_normal (position
),
6346 highest_pow2_factor (position
));
6347 xtarget
= adjust_address (xtarget
, mode
, 0);
6348 store_expr (value
, xtarget
, 0, false);
6353 bitpos
= ((tree_to_shwi (index
) - minelt
)
6354 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6356 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6358 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6359 && TREE_CODE (type
) == ARRAY_TYPE
6360 && TYPE_NONALIASED_COMPONENT (type
))
6362 target
= copy_rtx (target
);
6363 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6365 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6366 cleared
, get_alias_set (elttype
));
6374 unsigned HOST_WIDE_INT idx
;
6375 constructor_elt
*ce
;
6378 int icode
= CODE_FOR_nothing
;
6379 tree elttype
= TREE_TYPE (type
);
6380 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6381 machine_mode eltmode
= TYPE_MODE (elttype
);
6382 HOST_WIDE_INT bitsize
;
6383 HOST_WIDE_INT bitpos
;
6384 rtvec vector
= NULL
;
6386 alias_set_type alias
;
6388 gcc_assert (eltmode
!= BLKmode
);
6390 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6391 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6393 machine_mode mode
= GET_MODE (target
);
6395 icode
= (int) optab_handler (vec_init_optab
, mode
);
6396 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6397 if (icode
!= CODE_FOR_nothing
)
6401 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6402 if (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
)
6404 icode
= CODE_FOR_nothing
;
6408 if (icode
!= CODE_FOR_nothing
)
6412 vector
= rtvec_alloc (n_elts
);
6413 for (i
= 0; i
< n_elts
; i
++)
6414 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6418 /* If the constructor has fewer elements than the vector,
6419 clear the whole array first. Similarly if this is static
6420 constructor of a non-BLKmode object. */
6423 else if (REG_P (target
) && TREE_STATIC (exp
))
6427 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6430 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6432 int n_elts_here
= tree_to_uhwi
6433 (int_const_binop (TRUNC_DIV_EXPR
,
6434 TYPE_SIZE (TREE_TYPE (value
)),
6435 TYPE_SIZE (elttype
)));
6437 count
+= n_elts_here
;
6438 if (mostly_zeros_p (value
))
6439 zero_count
+= n_elts_here
;
6442 /* Clear the entire vector first if there are any missing elements,
6443 or if the incidence of zero elements is >= 75%. */
6444 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6447 if (need_to_clear
&& size
> 0 && !vector
)
6450 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6452 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6456 /* Inform later passes that the old value is dead. */
6457 if (!cleared
&& !vector
&& REG_P (target
))
6458 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6461 alias
= MEM_ALIAS_SET (target
);
6463 alias
= get_alias_set (elttype
);
6465 /* Store each element of the constructor into the corresponding
6466 element of TARGET, determined by counting the elements. */
6467 for (idx
= 0, i
= 0;
6468 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6469 idx
++, i
+= bitsize
/ elt_size
)
6471 HOST_WIDE_INT eltpos
;
6472 tree value
= ce
->value
;
6474 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6475 if (cleared
&& initializer_zerop (value
))
6479 eltpos
= tree_to_uhwi (ce
->index
);
6485 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6487 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6488 RTVEC_ELT (vector
, eltpos
)
6489 = expand_normal (value
);
6493 machine_mode value_mode
=
6494 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6495 ? TYPE_MODE (TREE_TYPE (value
))
6497 bitpos
= eltpos
* elt_size
;
6498 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6499 value
, cleared
, alias
);
6504 emit_insn (GEN_FCN (icode
)
6506 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6515 /* Store the value of EXP (an expression tree)
6516 into a subfield of TARGET which has mode MODE and occupies
6517 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6518 If MODE is VOIDmode, it means that we are storing into a bit-field.
6520 BITREGION_START is bitpos of the first bitfield in this region.
6521 BITREGION_END is the bitpos of the ending bitfield in this region.
6522 These two fields are 0, if the C++ memory model does not apply,
6523 or we are not interested in keeping track of bitfield regions.
6525 Always return const0_rtx unless we have something particular to
6528 ALIAS_SET is the alias set for the destination. This value will
6529 (in general) be different from that for TARGET, since TARGET is a
6530 reference to the containing structure.
6532 If NONTEMPORAL is true, try generating a nontemporal store. */
6535 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6536 unsigned HOST_WIDE_INT bitregion_start
,
6537 unsigned HOST_WIDE_INT bitregion_end
,
6538 machine_mode mode
, tree exp
,
6539 alias_set_type alias_set
, bool nontemporal
)
6541 if (TREE_CODE (exp
) == ERROR_MARK
)
6544 /* If we have nothing to store, do nothing unless the expression has
6547 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6549 if (GET_CODE (target
) == CONCAT
)
6551 /* We're storing into a struct containing a single __complex. */
6553 gcc_assert (!bitpos
);
6554 return store_expr (exp
, target
, 0, nontemporal
);
6557 /* If the structure is in a register or if the component
6558 is a bit field, we cannot use addressing to access it.
6559 Use bit-field techniques or SUBREG to store in it. */
6561 if (mode
== VOIDmode
6562 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6563 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6564 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6566 || GET_CODE (target
) == SUBREG
6567 /* If the field isn't aligned enough to store as an ordinary memref,
6568 store it as a bit field. */
6570 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6571 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6572 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6573 || (bitpos
% BITS_PER_UNIT
!= 0)))
6574 || (bitsize
>= 0 && mode
!= BLKmode
6575 && GET_MODE_BITSIZE (mode
) > bitsize
)
6576 /* If the RHS and field are a constant size and the size of the
6577 RHS isn't the same size as the bitfield, we must use bitfield
6580 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6581 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6582 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6583 decl we must use bitfield operations. */
6585 && TREE_CODE (exp
) == MEM_REF
6586 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6587 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6588 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6589 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6594 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6595 implies a mask operation. If the precision is the same size as
6596 the field we're storing into, that mask is redundant. This is
6597 particularly common with bit field assignments generated by the
6599 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6602 tree type
= TREE_TYPE (exp
);
6603 if (INTEGRAL_TYPE_P (type
)
6604 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6605 && bitsize
== TYPE_PRECISION (type
))
6607 tree op
= gimple_assign_rhs1 (nop_def
);
6608 type
= TREE_TYPE (op
);
6609 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6614 temp
= expand_normal (exp
);
6616 /* If BITSIZE is narrower than the size of the type of EXP
6617 we will be narrowing TEMP. Normally, what's wanted are the
6618 low-order bits. However, if EXP's type is a record and this is
6619 big-endian machine, we want the upper BITSIZE bits. */
6620 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6621 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6622 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6623 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6624 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6627 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6628 if (mode
!= VOIDmode
&& mode
!= BLKmode
6629 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6630 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6632 /* If TEMP is not a PARALLEL (see below) and its mode and that of TARGET
6633 are both BLKmode, both must be in memory and BITPOS must be aligned
6634 on a byte boundary. If so, we simply do a block copy. Likewise for
6635 a BLKmode-like TARGET. */
6636 if (GET_CODE (temp
) != PARALLEL
6637 && GET_MODE (temp
) == BLKmode
6638 && (GET_MODE (target
) == BLKmode
6640 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6641 && (bitpos
% BITS_PER_UNIT
) == 0
6642 && (bitsize
% BITS_PER_UNIT
) == 0)))
6644 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6645 && (bitpos
% BITS_PER_UNIT
) == 0);
6647 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6648 emit_block_move (target
, temp
,
6649 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6656 /* Handle calls that return values in multiple non-contiguous locations.
6657 The Irix 6 ABI has examples of this. */
6658 if (GET_CODE (temp
) == PARALLEL
)
6660 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6662 if (mode
== BLKmode
|| mode
== VOIDmode
)
6663 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6664 temp_target
= gen_reg_rtx (mode
);
6665 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6668 else if (mode
== BLKmode
)
6670 /* Handle calls that return BLKmode values in registers. */
6671 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6673 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6674 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6679 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6681 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6682 temp_target
= gen_reg_rtx (mode
);
6684 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6685 temp_target
, mode
, mode
);
6690 /* Store the value in the bitfield. */
6691 store_bit_field (target
, bitsize
, bitpos
,
6692 bitregion_start
, bitregion_end
,
6699 /* Now build a reference to just the desired component. */
6700 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6702 if (to_rtx
== target
)
6703 to_rtx
= copy_rtx (to_rtx
);
6705 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6706 set_mem_alias_set (to_rtx
, alias_set
);
6708 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6712 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6713 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6714 codes and find the ultimate containing object, which we return.
6716 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6717 bit position, and *PUNSIGNEDP to the signedness of the field.
6718 If the position of the field is variable, we store a tree
6719 giving the variable offset (in units) in *POFFSET.
6720 This offset is in addition to the bit position.
6721 If the position is not variable, we store 0 in *POFFSET.
6723 If any of the extraction expressions is volatile,
6724 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6726 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6727 Otherwise, it is a mode that can be used to access the field.
6729 If the field describes a variable-sized object, *PMODE is set to
6730 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6731 this case, but the address of the object can be found.
6733 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6734 look through nodes that serve as markers of a greater alignment than
6735 the one that can be deduced from the expression. These nodes make it
6736 possible for front-ends to prevent temporaries from being created by
6737 the middle-end on alignment considerations. For that purpose, the
6738 normal operating mode at high-level is to always pass FALSE so that
6739 the ultimate containing object is really returned; moreover, the
6740 associated predicate handled_component_p will always return TRUE
6741 on these nodes, thus indicating that they are essentially handled
6742 by get_inner_reference. TRUE should only be passed when the caller
6743 is scanning the expression in order to build another representation
6744 and specifically knows how to handle these nodes; as such, this is
6745 the normal operating mode in the RTL expanders. */
6748 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6749 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6750 machine_mode
*pmode
, int *punsignedp
,
6751 int *pvolatilep
, bool keep_aligning
)
6754 machine_mode mode
= VOIDmode
;
6755 bool blkmode_bitfield
= false;
6756 tree offset
= size_zero_node
;
6757 offset_int bit_offset
= 0;
6759 /* First get the mode, signedness, and size. We do this from just the
6760 outermost expression. */
6762 if (TREE_CODE (exp
) == COMPONENT_REF
)
6764 tree field
= TREE_OPERAND (exp
, 1);
6765 size_tree
= DECL_SIZE (field
);
6766 if (flag_strict_volatile_bitfields
> 0
6767 && TREE_THIS_VOLATILE (exp
)
6768 && DECL_BIT_FIELD_TYPE (field
)
6769 && DECL_MODE (field
) != BLKmode
)
6770 /* Volatile bitfields should be accessed in the mode of the
6771 field's type, not the mode computed based on the bit
6773 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6774 else if (!DECL_BIT_FIELD (field
))
6775 mode
= DECL_MODE (field
);
6776 else if (DECL_MODE (field
) == BLKmode
)
6777 blkmode_bitfield
= true;
6779 *punsignedp
= DECL_UNSIGNED (field
);
6781 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6783 size_tree
= TREE_OPERAND (exp
, 1);
6784 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6785 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6787 /* For vector types, with the correct size of access, use the mode of
6789 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6790 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6791 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6792 mode
= TYPE_MODE (TREE_TYPE (exp
));
6796 mode
= TYPE_MODE (TREE_TYPE (exp
));
6797 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6799 if (mode
== BLKmode
)
6800 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6802 *pbitsize
= GET_MODE_BITSIZE (mode
);
6807 if (! tree_fits_uhwi_p (size_tree
))
6808 mode
= BLKmode
, *pbitsize
= -1;
6810 *pbitsize
= tree_to_uhwi (size_tree
);
6813 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6814 and find the ultimate containing object. */
6817 switch (TREE_CODE (exp
))
6820 bit_offset
+= wi::to_offset (TREE_OPERAND (exp
, 2));
6825 tree field
= TREE_OPERAND (exp
, 1);
6826 tree this_offset
= component_ref_field_offset (exp
);
6828 /* If this field hasn't been filled in yet, don't go past it.
6829 This should only happen when folding expressions made during
6830 type construction. */
6831 if (this_offset
== 0)
6834 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6835 bit_offset
+= wi::to_offset (DECL_FIELD_BIT_OFFSET (field
));
6837 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6842 case ARRAY_RANGE_REF
:
6844 tree index
= TREE_OPERAND (exp
, 1);
6845 tree low_bound
= array_ref_low_bound (exp
);
6846 tree unit_size
= array_ref_element_size (exp
);
6848 /* We assume all arrays have sizes that are a multiple of a byte.
6849 First subtract the lower bound, if any, in the type of the
6850 index, then convert to sizetype and multiply by the size of
6851 the array element. */
6852 if (! integer_zerop (low_bound
))
6853 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6856 offset
= size_binop (PLUS_EXPR
, offset
,
6857 size_binop (MULT_EXPR
,
6858 fold_convert (sizetype
, index
),
6867 bit_offset
+= *pbitsize
;
6870 case VIEW_CONVERT_EXPR
:
6871 if (keep_aligning
&& STRICT_ALIGNMENT
6872 && (TYPE_ALIGN (TREE_TYPE (exp
))
6873 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6874 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6875 < BIGGEST_ALIGNMENT
)
6876 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6877 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6882 /* Hand back the decl for MEM[&decl, off]. */
6883 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6885 tree off
= TREE_OPERAND (exp
, 1);
6886 if (!integer_zerop (off
))
6888 offset_int boff
, coff
= mem_ref_offset (exp
);
6889 boff
= wi::lshift (coff
, LOG2_BITS_PER_UNIT
);
6892 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6900 /* If any reference in the chain is volatile, the effect is volatile. */
6901 if (TREE_THIS_VOLATILE (exp
))
6904 exp
= TREE_OPERAND (exp
, 0);
6908 /* If OFFSET is constant, see if we can return the whole thing as a
6909 constant bit position. Make sure to handle overflow during
6911 if (TREE_CODE (offset
) == INTEGER_CST
)
6913 offset_int tem
= wi::sext (wi::to_offset (offset
),
6914 TYPE_PRECISION (sizetype
));
6915 tem
= wi::lshift (tem
, LOG2_BITS_PER_UNIT
);
6917 if (wi::fits_shwi_p (tem
))
6919 *pbitpos
= tem
.to_shwi ();
6920 *poffset
= offset
= NULL_TREE
;
6924 /* Otherwise, split it up. */
6927 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6928 if (wi::neg_p (bit_offset
) || !wi::fits_shwi_p (bit_offset
))
6930 offset_int mask
= wi::mask
<offset_int
> (LOG2_BITS_PER_UNIT
, false);
6931 offset_int tem
= bit_offset
.and_not (mask
);
6932 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6933 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6935 tem
= wi::arshift (tem
, LOG2_BITS_PER_UNIT
);
6936 offset
= size_binop (PLUS_EXPR
, offset
,
6937 wide_int_to_tree (sizetype
, tem
));
6940 *pbitpos
= bit_offset
.to_shwi ();
6944 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6945 if (mode
== VOIDmode
6947 && (*pbitpos
% BITS_PER_UNIT
) == 0
6948 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6956 /* Return a tree of sizetype representing the size, in bytes, of the element
6957 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6960 array_ref_element_size (tree exp
)
6962 tree aligned_size
= TREE_OPERAND (exp
, 3);
6963 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6964 location_t loc
= EXPR_LOCATION (exp
);
6966 /* If a size was specified in the ARRAY_REF, it's the size measured
6967 in alignment units of the element type. So multiply by that value. */
6970 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6971 sizetype from another type of the same width and signedness. */
6972 if (TREE_TYPE (aligned_size
) != sizetype
)
6973 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6974 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6975 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6978 /* Otherwise, take the size from that of the element type. Substitute
6979 any PLACEHOLDER_EXPR that we have. */
6981 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6984 /* Return a tree representing the lower bound of the array mentioned in
6985 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6988 array_ref_low_bound (tree exp
)
6990 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6992 /* If a lower bound is specified in EXP, use it. */
6993 if (TREE_OPERAND (exp
, 2))
6994 return TREE_OPERAND (exp
, 2);
6996 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6997 substituting for a PLACEHOLDER_EXPR as needed. */
6998 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6999 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
7001 /* Otherwise, return a zero of the appropriate type. */
7002 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
7005 /* Returns true if REF is an array reference to an array at the end of
7006 a structure. If this is the case, the array may be allocated larger
7007 than its upper bound implies. */
7010 array_at_struct_end_p (tree ref
)
7012 if (TREE_CODE (ref
) != ARRAY_REF
7013 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
7016 while (handled_component_p (ref
))
7018 /* If the reference chain contains a component reference to a
7019 non-union type and there follows another field the reference
7020 is not at the end of a structure. */
7021 if (TREE_CODE (ref
) == COMPONENT_REF
7022 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
7024 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
7025 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
7026 nextf
= DECL_CHAIN (nextf
);
7031 ref
= TREE_OPERAND (ref
, 0);
7034 /* If the reference is based on a declared entity, the size of the array
7035 is constrained by its given domain. */
7042 /* Return a tree representing the upper bound of the array mentioned in
7043 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7046 array_ref_up_bound (tree exp
)
7048 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
7050 /* If there is a domain type and it has an upper bound, use it, substituting
7051 for a PLACEHOLDER_EXPR as needed. */
7052 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
7053 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
7055 /* Otherwise fail. */
7059 /* Return a tree representing the offset, in bytes, of the field referenced
7060 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7063 component_ref_field_offset (tree exp
)
7065 tree aligned_offset
= TREE_OPERAND (exp
, 2);
7066 tree field
= TREE_OPERAND (exp
, 1);
7067 location_t loc
= EXPR_LOCATION (exp
);
7069 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7070 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7074 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7075 sizetype from another type of the same width and signedness. */
7076 if (TREE_TYPE (aligned_offset
) != sizetype
)
7077 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
7078 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
7079 size_int (DECL_OFFSET_ALIGN (field
)
7083 /* Otherwise, take the offset from that of the field. Substitute
7084 any PLACEHOLDER_EXPR that we have. */
7086 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
7089 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7091 static unsigned HOST_WIDE_INT
7092 target_align (const_tree target
)
7094 /* We might have a chain of nested references with intermediate misaligning
7095 bitfields components, so need to recurse to find out. */
7097 unsigned HOST_WIDE_INT this_align
, outer_align
;
7099 switch (TREE_CODE (target
))
7105 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7106 outer_align
= target_align (TREE_OPERAND (target
, 0));
7107 return MIN (this_align
, outer_align
);
7110 case ARRAY_RANGE_REF
:
7111 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7112 outer_align
= target_align (TREE_OPERAND (target
, 0));
7113 return MIN (this_align
, outer_align
);
7116 case NON_LVALUE_EXPR
:
7117 case VIEW_CONVERT_EXPR
:
7118 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7119 outer_align
= target_align (TREE_OPERAND (target
, 0));
7120 return MAX (this_align
, outer_align
);
7123 return TYPE_ALIGN (TREE_TYPE (target
));
7128 /* Given an rtx VALUE that may contain additions and multiplications, return
7129 an equivalent value that just refers to a register, memory, or constant.
7130 This is done by generating instructions to perform the arithmetic and
7131 returning a pseudo-register containing the value.
7133 The returned value may be a REG, SUBREG, MEM or constant. */
7136 force_operand (rtx value
, rtx target
)
7139 /* Use subtarget as the target for operand 0 of a binary operation. */
7140 rtx subtarget
= get_subtarget (target
);
7141 enum rtx_code code
= GET_CODE (value
);
7143 /* Check for subreg applied to an expression produced by loop optimizer. */
7145 && !REG_P (SUBREG_REG (value
))
7146 && !MEM_P (SUBREG_REG (value
)))
7149 = simplify_gen_subreg (GET_MODE (value
),
7150 force_reg (GET_MODE (SUBREG_REG (value
)),
7151 force_operand (SUBREG_REG (value
),
7153 GET_MODE (SUBREG_REG (value
)),
7154 SUBREG_BYTE (value
));
7155 code
= GET_CODE (value
);
7158 /* Check for a PIC address load. */
7159 if ((code
== PLUS
|| code
== MINUS
)
7160 && XEXP (value
, 0) == pic_offset_table_rtx
7161 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7162 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7163 || GET_CODE (XEXP (value
, 1)) == CONST
))
7166 subtarget
= gen_reg_rtx (GET_MODE (value
));
7167 emit_move_insn (subtarget
, value
);
7171 if (ARITHMETIC_P (value
))
7173 op2
= XEXP (value
, 1);
7174 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7176 if (code
== MINUS
&& CONST_INT_P (op2
))
7179 op2
= negate_rtx (GET_MODE (value
), op2
);
7182 /* Check for an addition with OP2 a constant integer and our first
7183 operand a PLUS of a virtual register and something else. In that
7184 case, we want to emit the sum of the virtual register and the
7185 constant first and then add the other value. This allows virtual
7186 register instantiation to simply modify the constant rather than
7187 creating another one around this addition. */
7188 if (code
== PLUS
&& CONST_INT_P (op2
)
7189 && GET_CODE (XEXP (value
, 0)) == PLUS
7190 && REG_P (XEXP (XEXP (value
, 0), 0))
7191 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7192 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7194 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7195 XEXP (XEXP (value
, 0), 0), op2
,
7196 subtarget
, 0, OPTAB_LIB_WIDEN
);
7197 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7198 force_operand (XEXP (XEXP (value
,
7200 target
, 0, OPTAB_LIB_WIDEN
);
7203 op1
= force_operand (XEXP (value
, 0), subtarget
);
7204 op2
= force_operand (op2
, NULL_RTX
);
7208 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7210 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7211 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7212 target
, 1, OPTAB_LIB_WIDEN
);
7214 return expand_divmod (0,
7215 FLOAT_MODE_P (GET_MODE (value
))
7216 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7217 GET_MODE (value
), op1
, op2
, target
, 0);
7219 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7222 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7225 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7228 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7229 target
, 0, OPTAB_LIB_WIDEN
);
7231 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7232 target
, 1, OPTAB_LIB_WIDEN
);
7235 if (UNARY_P (value
))
7238 target
= gen_reg_rtx (GET_MODE (value
));
7239 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7246 case FLOAT_TRUNCATE
:
7247 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7252 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7256 case UNSIGNED_FLOAT
:
7257 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7261 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7265 #ifdef INSN_SCHEDULING
7266 /* On machines that have insn scheduling, we want all memory reference to be
7267 explicit, so we need to deal with such paradoxical SUBREGs. */
7268 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7270 = simplify_gen_subreg (GET_MODE (value
),
7271 force_reg (GET_MODE (SUBREG_REG (value
)),
7272 force_operand (SUBREG_REG (value
),
7274 GET_MODE (SUBREG_REG (value
)),
7275 SUBREG_BYTE (value
));
7281 /* Subroutine of expand_expr: return nonzero iff there is no way that
7282 EXP can reference X, which is being modified. TOP_P is nonzero if this
7283 call is going to be used to determine whether we need a temporary
7284 for EXP, as opposed to a recursive call to this function.
7286 It is always safe for this routine to return zero since it merely
7287 searches for optimization opportunities. */
7290 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7296 /* If EXP has varying size, we MUST use a target since we currently
7297 have no way of allocating temporaries of variable size
7298 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7299 So we assume here that something at a higher level has prevented a
7300 clash. This is somewhat bogus, but the best we can do. Only
7301 do this when X is BLKmode and when we are at the top level. */
7302 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7303 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7304 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7305 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7306 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7308 && GET_MODE (x
) == BLKmode
)
7309 /* If X is in the outgoing argument area, it is always safe. */
7311 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7312 || (GET_CODE (XEXP (x
, 0)) == PLUS
7313 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7316 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7317 find the underlying pseudo. */
7318 if (GET_CODE (x
) == SUBREG
)
7321 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7325 /* Now look at our tree code and possibly recurse. */
7326 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7328 case tcc_declaration
:
7329 exp_rtl
= DECL_RTL_IF_SET (exp
);
7335 case tcc_exceptional
:
7336 if (TREE_CODE (exp
) == TREE_LIST
)
7340 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7342 exp
= TREE_CHAIN (exp
);
7345 if (TREE_CODE (exp
) != TREE_LIST
)
7346 return safe_from_p (x
, exp
, 0);
7349 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7351 constructor_elt
*ce
;
7352 unsigned HOST_WIDE_INT idx
;
7354 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7355 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7356 || !safe_from_p (x
, ce
->value
, 0))
7360 else if (TREE_CODE (exp
) == ERROR_MARK
)
7361 return 1; /* An already-visited SAVE_EXPR? */
7366 /* The only case we look at here is the DECL_INITIAL inside a
7368 return (TREE_CODE (exp
) != DECL_EXPR
7369 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7370 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7371 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7374 case tcc_comparison
:
7375 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7380 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7382 case tcc_expression
:
7385 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7386 the expression. If it is set, we conflict iff we are that rtx or
7387 both are in memory. Otherwise, we check all operands of the
7388 expression recursively. */
7390 switch (TREE_CODE (exp
))
7393 /* If the operand is static or we are static, we can't conflict.
7394 Likewise if we don't conflict with the operand at all. */
7395 if (staticp (TREE_OPERAND (exp
, 0))
7396 || TREE_STATIC (exp
)
7397 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7400 /* Otherwise, the only way this can conflict is if we are taking
7401 the address of a DECL a that address if part of X, which is
7403 exp
= TREE_OPERAND (exp
, 0);
7406 if (!DECL_RTL_SET_P (exp
)
7407 || !MEM_P (DECL_RTL (exp
)))
7410 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7416 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7417 get_alias_set (exp
)))
7422 /* Assume that the call will clobber all hard registers and
7424 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7429 case WITH_CLEANUP_EXPR
:
7430 case CLEANUP_POINT_EXPR
:
7431 /* Lowered by gimplify.c. */
7435 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7441 /* If we have an rtx, we do not need to scan our operands. */
7445 nops
= TREE_OPERAND_LENGTH (exp
);
7446 for (i
= 0; i
< nops
; i
++)
7447 if (TREE_OPERAND (exp
, i
) != 0
7448 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7454 /* Should never get a type here. */
7458 /* If we have an rtl, find any enclosed object. Then see if we conflict
7462 if (GET_CODE (exp_rtl
) == SUBREG
)
7464 exp_rtl
= SUBREG_REG (exp_rtl
);
7466 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7470 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7471 are memory and they conflict. */
7472 return ! (rtx_equal_p (x
, exp_rtl
)
7473 || (MEM_P (x
) && MEM_P (exp_rtl
)
7474 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7477 /* If we reach here, it is safe. */
7482 /* Return the highest power of two that EXP is known to be a multiple of.
7483 This is used in updating alignment of MEMs in array references. */
7485 unsigned HOST_WIDE_INT
7486 highest_pow2_factor (const_tree exp
)
7488 unsigned HOST_WIDE_INT ret
;
7489 int trailing_zeros
= tree_ctz (exp
);
7490 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7491 return BIGGEST_ALIGNMENT
;
7492 ret
= (unsigned HOST_WIDE_INT
) 1 << trailing_zeros
;
7493 if (ret
> BIGGEST_ALIGNMENT
)
7494 return BIGGEST_ALIGNMENT
;
7498 /* Similar, except that the alignment requirements of TARGET are
7499 taken into account. Assume it is at least as aligned as its
7500 type, unless it is a COMPONENT_REF in which case the layout of
7501 the structure gives the alignment. */
7503 static unsigned HOST_WIDE_INT
7504 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7506 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7507 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7509 return MAX (factor
, talign
);
7512 /* Convert the tree comparison code TCODE to the rtl one where the
7513 signedness is UNSIGNEDP. */
7515 static enum rtx_code
7516 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7528 code
= unsignedp
? LTU
: LT
;
7531 code
= unsignedp
? LEU
: LE
;
7534 code
= unsignedp
? GTU
: GT
;
7537 code
= unsignedp
? GEU
: GE
;
7539 case UNORDERED_EXPR
:
7570 /* Subroutine of expand_expr. Expand the two operands of a binary
7571 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7572 The value may be stored in TARGET if TARGET is nonzero. The
7573 MODIFIER argument is as documented by expand_expr. */
7576 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7577 enum expand_modifier modifier
)
7579 if (! safe_from_p (target
, exp1
, 1))
7581 if (operand_equal_p (exp0
, exp1
, 0))
7583 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7584 *op1
= copy_rtx (*op0
);
7588 /* If we need to preserve evaluation order, copy exp0 into its own
7589 temporary variable so that it can't be clobbered by exp1. */
7590 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7591 exp0
= save_expr (exp0
);
7592 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7593 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7598 /* Return a MEM that contains constant EXP. DEFER is as for
7599 output_constant_def and MODIFIER is as for expand_expr. */
7602 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7606 mem
= output_constant_def (exp
, defer
);
7607 if (modifier
!= EXPAND_INITIALIZER
)
7608 mem
= use_anchored_address (mem
);
7612 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7613 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7616 expand_expr_addr_expr_1 (tree exp
, rtx target
, machine_mode tmode
,
7617 enum expand_modifier modifier
, addr_space_t as
)
7619 rtx result
, subtarget
;
7621 HOST_WIDE_INT bitsize
, bitpos
;
7622 int volatilep
, unsignedp
;
7625 /* If we are taking the address of a constant and are at the top level,
7626 we have to use output_constant_def since we can't call force_const_mem
7628 /* ??? This should be considered a front-end bug. We should not be
7629 generating ADDR_EXPR of something that isn't an LVALUE. The only
7630 exception here is STRING_CST. */
7631 if (CONSTANT_CLASS_P (exp
))
7633 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7634 if (modifier
< EXPAND_SUM
)
7635 result
= force_operand (result
, target
);
7639 /* Everything must be something allowed by is_gimple_addressable. */
7640 switch (TREE_CODE (exp
))
7643 /* This case will happen via recursion for &a->b. */
7644 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7648 tree tem
= TREE_OPERAND (exp
, 0);
7649 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7650 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7651 return expand_expr (tem
, target
, tmode
, modifier
);
7655 /* Expand the initializer like constants above. */
7656 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7658 if (modifier
< EXPAND_SUM
)
7659 result
= force_operand (result
, target
);
7663 /* The real part of the complex number is always first, therefore
7664 the address is the same as the address of the parent object. */
7667 inner
= TREE_OPERAND (exp
, 0);
7671 /* The imaginary part of the complex number is always second.
7672 The expression is therefore always offset by the size of the
7675 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7676 inner
= TREE_OPERAND (exp
, 0);
7679 case COMPOUND_LITERAL_EXPR
:
7680 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7681 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7682 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7683 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7684 the initializers aren't gimplified. */
7685 if (COMPOUND_LITERAL_EXPR_DECL (exp
)
7686 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp
)))
7687 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7688 target
, tmode
, modifier
, as
);
7691 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7692 expand_expr, as that can have various side effects; LABEL_DECLs for
7693 example, may not have their DECL_RTL set yet. Expand the rtl of
7694 CONSTRUCTORs too, which should yield a memory reference for the
7695 constructor's contents. Assume language specific tree nodes can
7696 be expanded in some interesting way. */
7697 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7699 || TREE_CODE (exp
) == CONSTRUCTOR
7700 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7702 result
= expand_expr (exp
, target
, tmode
,
7703 modifier
== EXPAND_INITIALIZER
7704 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7706 /* If the DECL isn't in memory, then the DECL wasn't properly
7707 marked TREE_ADDRESSABLE, which will be either a front-end
7708 or a tree optimizer bug. */
7710 if (TREE_ADDRESSABLE (exp
)
7712 && ! targetm
.calls
.allocate_stack_slots_for_args ())
7714 error ("local frame unavailable (naked function?)");
7718 gcc_assert (MEM_P (result
));
7719 result
= XEXP (result
, 0);
7721 /* ??? Is this needed anymore? */
7723 TREE_USED (exp
) = 1;
7725 if (modifier
!= EXPAND_INITIALIZER
7726 && modifier
!= EXPAND_CONST_ADDRESS
7727 && modifier
!= EXPAND_SUM
)
7728 result
= force_operand (result
, target
);
7732 /* Pass FALSE as the last argument to get_inner_reference although
7733 we are expanding to RTL. The rationale is that we know how to
7734 handle "aligning nodes" here: we can just bypass them because
7735 they won't change the final object whose address will be returned
7736 (they actually exist only for that purpose). */
7737 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7738 &mode1
, &unsignedp
, &volatilep
, false);
7742 /* We must have made progress. */
7743 gcc_assert (inner
!= exp
);
7745 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7746 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7747 inner alignment, force the inner to be sufficiently aligned. */
7748 if (CONSTANT_CLASS_P (inner
)
7749 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7751 inner
= copy_node (inner
);
7752 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7753 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7754 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7756 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7762 if (modifier
!= EXPAND_NORMAL
)
7763 result
= force_operand (result
, NULL
);
7764 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7765 modifier
== EXPAND_INITIALIZER
7766 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7768 /* expand_expr is allowed to return an object in a mode other
7769 than TMODE. If it did, we need to convert. */
7770 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
7771 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
7772 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
7773 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7774 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7776 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7777 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7780 subtarget
= bitpos
? NULL_RTX
: target
;
7781 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7782 1, OPTAB_LIB_WIDEN
);
7788 /* Someone beforehand should have rejected taking the address
7789 of such an object. */
7790 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7792 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7793 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7794 if (modifier
< EXPAND_SUM
)
7795 result
= force_operand (result
, target
);
7801 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7802 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7805 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
7806 enum expand_modifier modifier
)
7808 addr_space_t as
= ADDR_SPACE_GENERIC
;
7809 machine_mode address_mode
= Pmode
;
7810 machine_mode pointer_mode
= ptr_mode
;
7814 /* Target mode of VOIDmode says "whatever's natural". */
7815 if (tmode
== VOIDmode
)
7816 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7818 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7820 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7821 address_mode
= targetm
.addr_space
.address_mode (as
);
7822 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7825 /* We can get called with some Weird Things if the user does silliness
7826 like "(short) &a". In that case, convert_memory_address won't do
7827 the right thing, so ignore the given target mode. */
7828 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7829 tmode
= address_mode
;
7831 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7832 tmode
, modifier
, as
);
7834 /* Despite expand_expr claims concerning ignoring TMODE when not
7835 strictly convenient, stuff breaks if we don't honor it. Note
7836 that combined with the above, we only do this for pointer modes. */
7837 rmode
= GET_MODE (result
);
7838 if (rmode
== VOIDmode
)
7841 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7846 /* Generate code for computing CONSTRUCTOR EXP.
7847 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7848 is TRUE, instead of creating a temporary variable in memory
7849 NULL is returned and the caller needs to handle it differently. */
7852 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7853 bool avoid_temp_mem
)
7855 tree type
= TREE_TYPE (exp
);
7856 machine_mode mode
= TYPE_MODE (type
);
7858 /* Try to avoid creating a temporary at all. This is possible
7859 if all of the initializer is zero.
7860 FIXME: try to handle all [0..255] initializers we can handle
7862 if (TREE_STATIC (exp
)
7863 && !TREE_ADDRESSABLE (exp
)
7864 && target
!= 0 && mode
== BLKmode
7865 && all_zeros_p (exp
))
7867 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7871 /* All elts simple constants => refer to a constant in memory. But
7872 if this is a non-BLKmode mode, let it store a field at a time
7873 since that should make a CONST_INT, CONST_WIDE_INT or
7874 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7875 use, it is best to store directly into the target unless the type
7876 is large enough that memcpy will be used. If we are making an
7877 initializer and all operands are constant, put it in memory as
7880 FIXME: Avoid trying to fill vector constructors piece-meal.
7881 Output them with output_constant_def below unless we're sure
7882 they're zeros. This should go away when vector initializers
7883 are treated like VECTOR_CST instead of arrays. */
7884 if ((TREE_STATIC (exp
)
7885 && ((mode
== BLKmode
7886 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7887 || TREE_ADDRESSABLE (exp
)
7888 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
7889 && (! can_move_by_pieces
7890 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
7892 && ! mostly_zeros_p (exp
))))
7893 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7894 && TREE_CONSTANT (exp
)))
7901 constructor
= expand_expr_constant (exp
, 1, modifier
);
7903 if (modifier
!= EXPAND_CONST_ADDRESS
7904 && modifier
!= EXPAND_INITIALIZER
7905 && modifier
!= EXPAND_SUM
)
7906 constructor
= validize_mem (constructor
);
7911 /* Handle calls that pass values in multiple non-contiguous
7912 locations. The Irix 6 ABI has examples of this. */
7913 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7914 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7919 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
7922 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7927 /* expand_expr: generate code for computing expression EXP.
7928 An rtx for the computed value is returned. The value is never null.
7929 In the case of a void EXP, const0_rtx is returned.
7931 The value may be stored in TARGET if TARGET is nonzero.
7932 TARGET is just a suggestion; callers must assume that
7933 the rtx returned may not be the same as TARGET.
7935 If TARGET is CONST0_RTX, it means that the value will be ignored.
7937 If TMODE is not VOIDmode, it suggests generating the
7938 result in mode TMODE. But this is done only when convenient.
7939 Otherwise, TMODE is ignored and the value generated in its natural mode.
7940 TMODE is just a suggestion; callers must assume that
7941 the rtx returned may not have mode TMODE.
7943 Note that TARGET may have neither TMODE nor MODE. In that case, it
7944 probably will not be used.
7946 If MODIFIER is EXPAND_SUM then when EXP is an addition
7947 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7948 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7949 products as above, or REG or MEM, or constant.
7950 Ordinarily in such cases we would output mul or add instructions
7951 and then return a pseudo reg containing the sum.
7953 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7954 it also marks a label as absolutely required (it can't be dead).
7955 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7956 This is used for outputting expressions used in initializers.
7958 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7959 with a constant address even if that address is not normally legitimate.
7960 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7962 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7963 a call parameter. Such targets require special care as we haven't yet
7964 marked TARGET so that it's safe from being trashed by libcalls. We
7965 don't want to use TARGET for anything but the final result;
7966 Intermediate values must go elsewhere. Additionally, calls to
7967 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7969 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7970 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7971 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7972 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7975 If INNER_REFERENCE_P is true, we are expanding an inner reference.
7976 In this case, we don't adjust a returned MEM rtx that wouldn't be
7977 sufficiently aligned for its mode; instead, it's up to the caller
7978 to deal with it afterwards. This is used to make sure that unaligned
7979 base objects for which out-of-bounds accesses are supported, for
7980 example record types with trailing arrays, aren't realigned behind
7981 the back of the caller.
7982 The normal operating mode is to pass FALSE for this parameter. */
7985 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
7986 enum expand_modifier modifier
, rtx
*alt_rtl
,
7987 bool inner_reference_p
)
7991 /* Handle ERROR_MARK before anybody tries to access its type. */
7992 if (TREE_CODE (exp
) == ERROR_MARK
7993 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7995 ret
= CONST0_RTX (tmode
);
7996 return ret
? ret
: const0_rtx
;
7999 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
8004 /* Try to expand the conditional expression which is represented by
8005 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
8006 return the rtl reg which repsents the result. Otherwise return
8010 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
8011 tree treeop1 ATTRIBUTE_UNUSED
,
8012 tree treeop2 ATTRIBUTE_UNUSED
)
8015 rtx op00
, op01
, op1
, op2
;
8016 enum rtx_code comparison_code
;
8017 machine_mode comparison_mode
;
8020 tree type
= TREE_TYPE (treeop1
);
8021 int unsignedp
= TYPE_UNSIGNED (type
);
8022 machine_mode mode
= TYPE_MODE (type
);
8023 machine_mode orig_mode
= mode
;
8025 /* If we cannot do a conditional move on the mode, try doing it
8026 with the promoted mode. */
8027 if (!can_conditionally_move_p (mode
))
8029 mode
= promote_mode (type
, mode
, &unsignedp
);
8030 if (!can_conditionally_move_p (mode
))
8032 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
8035 temp
= assign_temp (type
, 0, 1);
8038 expand_operands (treeop1
, treeop2
,
8039 temp
, &op1
, &op2
, EXPAND_NORMAL
);
8041 if (TREE_CODE (treeop0
) == SSA_NAME
8042 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
8044 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
8045 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
8046 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
8047 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
8048 comparison_mode
= TYPE_MODE (type
);
8049 unsignedp
= TYPE_UNSIGNED (type
);
8050 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8052 else if (COMPARISON_CLASS_P (treeop0
))
8054 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
8055 enum tree_code cmpcode
= TREE_CODE (treeop0
);
8056 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
8057 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
8058 unsignedp
= TYPE_UNSIGNED (type
);
8059 comparison_mode
= TYPE_MODE (type
);
8060 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8064 op00
= expand_normal (treeop0
);
8066 comparison_code
= NE
;
8067 comparison_mode
= GET_MODE (op00
);
8068 if (comparison_mode
== VOIDmode
)
8069 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8072 if (GET_MODE (op1
) != mode
)
8073 op1
= gen_lowpart (mode
, op1
);
8075 if (GET_MODE (op2
) != mode
)
8076 op2
= gen_lowpart (mode
, op2
);
8078 /* Try to emit the conditional move. */
8079 insn
= emit_conditional_move (temp
, comparison_code
,
8080 op00
, op01
, comparison_mode
,
8084 /* If we could do the conditional move, emit the sequence,
8088 rtx_insn
*seq
= get_insns ();
8091 return convert_modes (orig_mode
, mode
, temp
, 0);
8094 /* Otherwise discard the sequence and fall back to code with
8101 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
8102 enum expand_modifier modifier
)
8104 rtx op0
, op1
, op2
, temp
;
8105 rtx_code_label
*lab
;
8109 enum tree_code code
= ops
->code
;
8111 rtx subtarget
, original_target
;
8113 bool reduce_bit_field
;
8114 location_t loc
= ops
->location
;
8115 tree treeop0
, treeop1
, treeop2
;
8116 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8117 ? reduce_to_bit_field_precision ((expr), \
8123 mode
= TYPE_MODE (type
);
8124 unsignedp
= TYPE_UNSIGNED (type
);
8130 /* We should be called only on simple (binary or unary) expressions,
8131 exactly those that are valid in gimple expressions that aren't
8132 GIMPLE_SINGLE_RHS (or invalid). */
8133 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8134 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8135 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8137 ignore
= (target
== const0_rtx
8138 || ((CONVERT_EXPR_CODE_P (code
)
8139 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8140 && TREE_CODE (type
) == VOID_TYPE
));
8142 /* We should be called only if we need the result. */
8143 gcc_assert (!ignore
);
8145 /* An operation in what may be a bit-field type needs the
8146 result to be reduced to the precision of the bit-field type,
8147 which is narrower than that of the type's mode. */
8148 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8149 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8151 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8154 /* Use subtarget as the target for operand 0 of a binary operation. */
8155 subtarget
= get_subtarget (target
);
8156 original_target
= target
;
8160 case NON_LVALUE_EXPR
:
8163 if (treeop0
== error_mark_node
)
8166 if (TREE_CODE (type
) == UNION_TYPE
)
8168 tree valtype
= TREE_TYPE (treeop0
);
8170 /* If both input and output are BLKmode, this conversion isn't doing
8171 anything except possibly changing memory attribute. */
8172 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8174 rtx result
= expand_expr (treeop0
, target
, tmode
,
8177 result
= copy_rtx (result
);
8178 set_mem_attributes (result
, type
, 0);
8184 if (TYPE_MODE (type
) != BLKmode
)
8185 target
= gen_reg_rtx (TYPE_MODE (type
));
8187 target
= assign_temp (type
, 1, 1);
8191 /* Store data into beginning of memory target. */
8192 store_expr (treeop0
,
8193 adjust_address (target
, TYPE_MODE (valtype
), 0),
8194 modifier
== EXPAND_STACK_PARM
,
8199 gcc_assert (REG_P (target
));
8201 /* Store this field into a union of the proper type. */
8202 store_field (target
,
8203 MIN ((int_size_in_bytes (TREE_TYPE
8206 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8207 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8210 /* Return the entire union. */
8214 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8216 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8219 /* If the signedness of the conversion differs and OP0 is
8220 a promoted SUBREG, clear that indication since we now
8221 have to do the proper extension. */
8222 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8223 && GET_CODE (op0
) == SUBREG
)
8224 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8226 return REDUCE_BIT_FIELD (op0
);
8229 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8230 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8231 if (GET_MODE (op0
) == mode
)
8234 /* If OP0 is a constant, just convert it into the proper mode. */
8235 else if (CONSTANT_P (op0
))
8237 tree inner_type
= TREE_TYPE (treeop0
);
8238 machine_mode inner_mode
= GET_MODE (op0
);
8240 if (inner_mode
== VOIDmode
)
8241 inner_mode
= TYPE_MODE (inner_type
);
8243 if (modifier
== EXPAND_INITIALIZER
)
8244 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8245 subreg_lowpart_offset (mode
,
8248 op0
= convert_modes (mode
, inner_mode
, op0
,
8249 TYPE_UNSIGNED (inner_type
));
8252 else if (modifier
== EXPAND_INITIALIZER
)
8253 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8255 else if (target
== 0)
8256 op0
= convert_to_mode (mode
, op0
,
8257 TYPE_UNSIGNED (TREE_TYPE
8261 convert_move (target
, op0
,
8262 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8266 return REDUCE_BIT_FIELD (op0
);
8268 case ADDR_SPACE_CONVERT_EXPR
:
8270 tree treeop0_type
= TREE_TYPE (treeop0
);
8272 addr_space_t as_from
;
8274 gcc_assert (POINTER_TYPE_P (type
));
8275 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8277 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8278 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8280 /* Conversions between pointers to the same address space should
8281 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8282 gcc_assert (as_to
!= as_from
);
8284 /* Ask target code to handle conversion between pointers
8285 to overlapping address spaces. */
8286 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8287 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8289 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8290 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8295 /* For disjoint address spaces, converting anything but
8296 a null pointer invokes undefined behaviour. We simply
8297 always return a null pointer here. */
8298 return CONST0_RTX (mode
);
8301 case POINTER_PLUS_EXPR
:
8302 /* Even though the sizetype mode and the pointer's mode can be different
8303 expand is able to handle this correctly and get the correct result out
8304 of the PLUS_EXPR code. */
8305 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8306 if sizetype precision is smaller than pointer precision. */
8307 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8308 treeop1
= fold_convert_loc (loc
, type
,
8309 fold_convert_loc (loc
, ssizetype
,
8311 /* If sizetype precision is larger than pointer precision, truncate the
8312 offset to have matching modes. */
8313 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8314 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8317 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8318 something else, make sure we add the register to the constant and
8319 then to the other thing. This case can occur during strength
8320 reduction and doing it this way will produce better code if the
8321 frame pointer or argument pointer is eliminated.
8323 fold-const.c will ensure that the constant is always in the inner
8324 PLUS_EXPR, so the only case we need to do anything about is if
8325 sp, ap, or fp is our second argument, in which case we must swap
8326 the innermost first argument and our second argument. */
8328 if (TREE_CODE (treeop0
) == PLUS_EXPR
8329 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8330 && TREE_CODE (treeop1
) == VAR_DECL
8331 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8332 || DECL_RTL (treeop1
) == stack_pointer_rtx
8333 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8338 /* If the result is to be ptr_mode and we are adding an integer to
8339 something, we might be forming a constant. So try to use
8340 plus_constant. If it produces a sum and we can't accept it,
8341 use force_operand. This allows P = &ARR[const] to generate
8342 efficient code on machines where a SYMBOL_REF is not a valid
8345 If this is an EXPAND_SUM call, always return the sum. */
8346 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8347 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8349 if (modifier
== EXPAND_STACK_PARM
)
8351 if (TREE_CODE (treeop0
) == INTEGER_CST
8352 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8353 && TREE_CONSTANT (treeop1
))
8357 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
8359 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8361 /* Use wi::shwi to ensure that the constant is
8362 truncated according to the mode of OP1, then sign extended
8363 to a HOST_WIDE_INT. Using the constant directly can result
8364 in non-canonical RTL in a 64x32 cross compile. */
8365 wc
= TREE_INT_CST_LOW (treeop0
);
8367 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8368 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8369 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8370 op1
= force_operand (op1
, target
);
8371 return REDUCE_BIT_FIELD (op1
);
8374 else if (TREE_CODE (treeop1
) == INTEGER_CST
8375 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8376 && TREE_CONSTANT (treeop0
))
8380 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
8382 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8383 (modifier
== EXPAND_INITIALIZER
8384 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8385 if (! CONSTANT_P (op0
))
8387 op1
= expand_expr (treeop1
, NULL_RTX
,
8388 VOIDmode
, modifier
);
8389 /* Return a PLUS if modifier says it's OK. */
8390 if (modifier
== EXPAND_SUM
8391 || modifier
== EXPAND_INITIALIZER
)
8392 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8395 /* Use wi::shwi to ensure that the constant is
8396 truncated according to the mode of OP1, then sign extended
8397 to a HOST_WIDE_INT. Using the constant directly can result
8398 in non-canonical RTL in a 64x32 cross compile. */
8399 wc
= TREE_INT_CST_LOW (treeop1
);
8401 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8402 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8403 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8404 op0
= force_operand (op0
, target
);
8405 return REDUCE_BIT_FIELD (op0
);
8409 /* Use TER to expand pointer addition of a negated value
8410 as pointer subtraction. */
8411 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8412 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8413 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8414 && TREE_CODE (treeop1
) == SSA_NAME
8415 && TYPE_MODE (TREE_TYPE (treeop0
))
8416 == TYPE_MODE (TREE_TYPE (treeop1
)))
8418 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8421 treeop1
= gimple_assign_rhs1 (def
);
8427 /* No sense saving up arithmetic to be done
8428 if it's all in the wrong mode to form part of an address.
8429 And force_operand won't know whether to sign-extend or
8431 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8432 || mode
!= ptr_mode
)
8434 expand_operands (treeop0
, treeop1
,
8435 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8436 if (op0
== const0_rtx
)
8438 if (op1
== const0_rtx
)
8443 expand_operands (treeop0
, treeop1
,
8444 subtarget
, &op0
, &op1
, modifier
);
8445 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8449 /* For initializers, we are allowed to return a MINUS of two
8450 symbolic constants. Here we handle all cases when both operands
8452 /* Handle difference of two symbolic constants,
8453 for the sake of an initializer. */
8454 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8455 && really_constant_p (treeop0
)
8456 && really_constant_p (treeop1
))
8458 expand_operands (treeop0
, treeop1
,
8459 NULL_RTX
, &op0
, &op1
, modifier
);
8461 /* If the last operand is a CONST_INT, use plus_constant of
8462 the negated constant. Else make the MINUS. */
8463 if (CONST_INT_P (op1
))
8464 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8467 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8470 /* No sense saving up arithmetic to be done
8471 if it's all in the wrong mode to form part of an address.
8472 And force_operand won't know whether to sign-extend or
8474 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8475 || mode
!= ptr_mode
)
8478 expand_operands (treeop0
, treeop1
,
8479 subtarget
, &op0
, &op1
, modifier
);
8481 /* Convert A - const to A + (-const). */
8482 if (CONST_INT_P (op1
))
8484 op1
= negate_rtx (mode
, op1
);
8485 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8490 case WIDEN_MULT_PLUS_EXPR
:
8491 case WIDEN_MULT_MINUS_EXPR
:
8492 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8493 op2
= expand_normal (treeop2
);
8494 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8498 case WIDEN_MULT_EXPR
:
8499 /* If first operand is constant, swap them.
8500 Thus the following special case checks need only
8501 check the second operand. */
8502 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8509 /* First, check if we have a multiplication of one signed and one
8510 unsigned operand. */
8511 if (TREE_CODE (treeop1
) != INTEGER_CST
8512 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8513 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8515 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8516 this_optab
= usmul_widen_optab
;
8517 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8518 != CODE_FOR_nothing
)
8520 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8521 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8524 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8526 /* op0 and op1 might still be constant, despite the above
8527 != INTEGER_CST check. Handle it. */
8528 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8530 op0
= convert_modes (innermode
, mode
, op0
, true);
8531 op1
= convert_modes (innermode
, mode
, op1
, false);
8532 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8533 target
, unsignedp
));
8538 /* Check for a multiplication with matching signedness. */
8539 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8540 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8541 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8542 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8544 tree op0type
= TREE_TYPE (treeop0
);
8545 machine_mode innermode
= TYPE_MODE (op0type
);
8546 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8547 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8548 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8550 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8552 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8553 != CODE_FOR_nothing
)
8555 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8557 /* op0 and op1 might still be constant, despite the above
8558 != INTEGER_CST check. Handle it. */
8559 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8562 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8564 = convert_modes (innermode
, mode
, op1
,
8565 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8566 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8570 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8571 unsignedp
, this_optab
);
8572 return REDUCE_BIT_FIELD (temp
);
8574 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8576 && innermode
== word_mode
)
8579 op0
= expand_normal (treeop0
);
8580 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8581 op1
= convert_modes (innermode
, mode
,
8582 expand_normal (treeop1
),
8583 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8585 op1
= expand_normal (treeop1
);
8586 /* op0 and op1 might still be constant, despite the above
8587 != INTEGER_CST check. Handle it. */
8588 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8589 goto widen_mult_const
;
8590 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8591 unsignedp
, OPTAB_LIB_WIDEN
);
8592 hipart
= gen_highpart (innermode
, temp
);
8593 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8597 emit_move_insn (hipart
, htem
);
8598 return REDUCE_BIT_FIELD (temp
);
8602 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8603 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8604 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8605 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8609 optab opt
= fma_optab
;
8612 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8614 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8616 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8619 gcc_assert (fn
!= NULL_TREE
);
8620 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8621 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8624 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8625 /* The multiplication is commutative - look at its 2nd operand
8626 if the first isn't fed by a negate. */
8629 def0
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8630 /* Swap operands if the 2nd operand is fed by a negate. */
8638 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8643 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8646 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8647 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8650 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8653 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8656 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8659 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8663 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8665 op2
= expand_normal (treeop2
);
8666 op1
= expand_normal (treeop1
);
8668 return expand_ternary_op (TYPE_MODE (type
), opt
,
8669 op0
, op1
, op2
, target
, 0);
8673 /* If this is a fixed-point operation, then we cannot use the code
8674 below because "expand_mult" doesn't support sat/no-sat fixed-point
8676 if (ALL_FIXED_POINT_MODE_P (mode
))
8679 /* If first operand is constant, swap them.
8680 Thus the following special case checks need only
8681 check the second operand. */
8682 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8689 /* Attempt to return something suitable for generating an
8690 indexed address, for machines that support that. */
8692 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8693 && tree_fits_shwi_p (treeop1
))
8695 tree exp1
= treeop1
;
8697 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8701 op0
= force_operand (op0
, NULL_RTX
);
8703 op0
= copy_to_mode_reg (mode
, op0
);
8705 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8706 gen_int_mode (tree_to_shwi (exp1
),
8707 TYPE_MODE (TREE_TYPE (exp1
)))));
8710 if (modifier
== EXPAND_STACK_PARM
)
8713 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8714 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8716 case TRUNC_DIV_EXPR
:
8717 case FLOOR_DIV_EXPR
:
8719 case ROUND_DIV_EXPR
:
8720 case EXACT_DIV_EXPR
:
8721 /* If this is a fixed-point operation, then we cannot use the code
8722 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8724 if (ALL_FIXED_POINT_MODE_P (mode
))
8727 if (modifier
== EXPAND_STACK_PARM
)
8729 /* Possible optimization: compute the dividend with EXPAND_SUM
8730 then if the divisor is constant can optimize the case
8731 where some terms of the dividend have coeffs divisible by it. */
8732 expand_operands (treeop0
, treeop1
,
8733 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8734 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8739 case MULT_HIGHPART_EXPR
:
8740 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8741 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8745 case TRUNC_MOD_EXPR
:
8746 case FLOOR_MOD_EXPR
:
8748 case ROUND_MOD_EXPR
:
8749 if (modifier
== EXPAND_STACK_PARM
)
8751 expand_operands (treeop0
, treeop1
,
8752 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8753 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8755 case FIXED_CONVERT_EXPR
:
8756 op0
= expand_normal (treeop0
);
8757 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8758 target
= gen_reg_rtx (mode
);
8760 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8761 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8762 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8763 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8765 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8768 case FIX_TRUNC_EXPR
:
8769 op0
= expand_normal (treeop0
);
8770 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8771 target
= gen_reg_rtx (mode
);
8772 expand_fix (target
, op0
, unsignedp
);
8776 op0
= expand_normal (treeop0
);
8777 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8778 target
= gen_reg_rtx (mode
);
8779 /* expand_float can't figure out what to do if FROM has VOIDmode.
8780 So give it the correct mode. With -O, cse will optimize this. */
8781 if (GET_MODE (op0
) == VOIDmode
)
8782 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8784 expand_float (target
, op0
,
8785 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8789 op0
= expand_expr (treeop0
, subtarget
,
8790 VOIDmode
, EXPAND_NORMAL
);
8791 if (modifier
== EXPAND_STACK_PARM
)
8793 temp
= expand_unop (mode
,
8794 optab_for_tree_code (NEGATE_EXPR
, type
,
8798 return REDUCE_BIT_FIELD (temp
);
8801 op0
= expand_expr (treeop0
, subtarget
,
8802 VOIDmode
, EXPAND_NORMAL
);
8803 if (modifier
== EXPAND_STACK_PARM
)
8806 /* ABS_EXPR is not valid for complex arguments. */
8807 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8808 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8810 /* Unsigned abs is simply the operand. Testing here means we don't
8811 risk generating incorrect code below. */
8812 if (TYPE_UNSIGNED (type
))
8815 return expand_abs (mode
, op0
, target
, unsignedp
,
8816 safe_from_p (target
, treeop0
, 1));
8820 target
= original_target
;
8822 || modifier
== EXPAND_STACK_PARM
8823 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8824 || GET_MODE (target
) != mode
8826 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8827 target
= gen_reg_rtx (mode
);
8828 expand_operands (treeop0
, treeop1
,
8829 target
, &op0
, &op1
, EXPAND_NORMAL
);
8831 /* First try to do it with a special MIN or MAX instruction.
8832 If that does not win, use a conditional jump to select the proper
8834 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8835 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8840 /* At this point, a MEM target is no longer useful; we will get better
8843 if (! REG_P (target
))
8844 target
= gen_reg_rtx (mode
);
8846 /* If op1 was placed in target, swap op0 and op1. */
8847 if (target
!= op0
&& target
== op1
)
8848 std::swap (op0
, op1
);
8850 /* We generate better code and avoid problems with op1 mentioning
8851 target by forcing op1 into a pseudo if it isn't a constant. */
8852 if (! CONSTANT_P (op1
))
8853 op1
= force_reg (mode
, op1
);
8856 enum rtx_code comparison_code
;
8859 if (code
== MAX_EXPR
)
8860 comparison_code
= unsignedp
? GEU
: GE
;
8862 comparison_code
= unsignedp
? LEU
: LE
;
8864 /* Canonicalize to comparisons against 0. */
8865 if (op1
== const1_rtx
)
8867 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8868 or (a != 0 ? a : 1) for unsigned.
8869 For MIN we are safe converting (a <= 1 ? a : 1)
8870 into (a <= 0 ? a : 1) */
8871 cmpop1
= const0_rtx
;
8872 if (code
== MAX_EXPR
)
8873 comparison_code
= unsignedp
? NE
: GT
;
8875 if (op1
== constm1_rtx
&& !unsignedp
)
8877 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8878 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8879 cmpop1
= const0_rtx
;
8880 if (code
== MIN_EXPR
)
8881 comparison_code
= LT
;
8884 /* Use a conditional move if possible. */
8885 if (can_conditionally_move_p (mode
))
8891 /* Try to emit the conditional move. */
8892 insn
= emit_conditional_move (target
, comparison_code
,
8897 /* If we could do the conditional move, emit the sequence,
8901 rtx_insn
*seq
= get_insns ();
8907 /* Otherwise discard the sequence and fall back to code with
8913 emit_move_insn (target
, op0
);
8915 lab
= gen_label_rtx ();
8916 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8917 unsignedp
, mode
, NULL_RTX
, NULL
, lab
,
8920 emit_move_insn (target
, op1
);
8925 op0
= expand_expr (treeop0
, subtarget
,
8926 VOIDmode
, EXPAND_NORMAL
);
8927 if (modifier
== EXPAND_STACK_PARM
)
8929 /* In case we have to reduce the result to bitfield precision
8930 for unsigned bitfield expand this as XOR with a proper constant
8932 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8934 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
8935 false, GET_MODE_PRECISION (mode
));
8937 temp
= expand_binop (mode
, xor_optab
, op0
,
8938 immed_wide_int_const (mask
, mode
),
8939 target
, 1, OPTAB_LIB_WIDEN
);
8942 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8946 /* ??? Can optimize bitwise operations with one arg constant.
8947 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8948 and (a bitwise1 b) bitwise2 b (etc)
8949 but that is probably not worth while. */
8958 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8959 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8960 == TYPE_PRECISION (type
)));
8965 /* If this is a fixed-point operation, then we cannot use the code
8966 below because "expand_shift" doesn't support sat/no-sat fixed-point
8968 if (ALL_FIXED_POINT_MODE_P (mode
))
8971 if (! safe_from_p (subtarget
, treeop1
, 1))
8973 if (modifier
== EXPAND_STACK_PARM
)
8975 op0
= expand_expr (treeop0
, subtarget
,
8976 VOIDmode
, EXPAND_NORMAL
);
8977 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
8979 if (code
== LSHIFT_EXPR
)
8980 temp
= REDUCE_BIT_FIELD (temp
);
8983 /* Could determine the answer when only additive constants differ. Also,
8984 the addition of one can be handled by changing the condition. */
8991 case UNORDERED_EXPR
:
9000 temp
= do_store_flag (ops
,
9001 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9002 tmode
!= VOIDmode
? tmode
: mode
);
9006 /* Use a compare and a jump for BLKmode comparisons, or for function
9007 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9010 || modifier
== EXPAND_STACK_PARM
9011 || ! safe_from_p (target
, treeop0
, 1)
9012 || ! safe_from_p (target
, treeop1
, 1)
9013 /* Make sure we don't have a hard reg (such as function's return
9014 value) live across basic blocks, if not optimizing. */
9015 || (!optimize
&& REG_P (target
)
9016 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9017 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9019 emit_move_insn (target
, const0_rtx
);
9021 rtx_code_label
*lab1
= gen_label_rtx ();
9022 jumpifnot_1 (code
, treeop0
, treeop1
, lab1
, -1);
9024 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
9025 emit_move_insn (target
, constm1_rtx
);
9027 emit_move_insn (target
, const1_rtx
);
9033 /* Get the rtx code of the operands. */
9034 op0
= expand_normal (treeop0
);
9035 op1
= expand_normal (treeop1
);
9038 target
= gen_reg_rtx (TYPE_MODE (type
));
9040 /* If target overlaps with op1, then either we need to force
9041 op1 into a pseudo (if target also overlaps with op0),
9042 or write the complex parts in reverse order. */
9043 switch (GET_CODE (target
))
9046 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
9048 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
9050 complex_expr_force_op1
:
9051 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
9052 emit_move_insn (temp
, op1
);
9056 complex_expr_swap_order
:
9057 /* Move the imaginary (op1) and real (op0) parts to their
9059 write_complex_part (target
, op1
, true);
9060 write_complex_part (target
, op0
, false);
9066 temp
= adjust_address_nv (target
,
9067 GET_MODE_INNER (GET_MODE (target
)), 0);
9068 if (reg_overlap_mentioned_p (temp
, op1
))
9070 machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
9071 temp
= adjust_address_nv (target
, imode
,
9072 GET_MODE_SIZE (imode
));
9073 if (reg_overlap_mentioned_p (temp
, op0
))
9074 goto complex_expr_force_op1
;
9075 goto complex_expr_swap_order
;
9079 if (reg_overlap_mentioned_p (target
, op1
))
9081 if (reg_overlap_mentioned_p (target
, op0
))
9082 goto complex_expr_force_op1
;
9083 goto complex_expr_swap_order
;
9088 /* Move the real (op0) and imaginary (op1) parts to their location. */
9089 write_complex_part (target
, op0
, false);
9090 write_complex_part (target
, op1
, true);
9094 case WIDEN_SUM_EXPR
:
9096 tree oprnd0
= treeop0
;
9097 tree oprnd1
= treeop1
;
9099 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9100 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9105 case REDUC_MAX_EXPR
:
9106 case REDUC_MIN_EXPR
:
9107 case REDUC_PLUS_EXPR
:
9109 op0
= expand_normal (treeop0
);
9110 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9111 machine_mode vec_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9113 if (optab_handler (this_optab
, vec_mode
) != CODE_FOR_nothing
)
9115 struct expand_operand ops
[2];
9116 enum insn_code icode
= optab_handler (this_optab
, vec_mode
);
9118 create_output_operand (&ops
[0], target
, mode
);
9119 create_input_operand (&ops
[1], op0
, vec_mode
);
9120 if (maybe_expand_insn (icode
, 2, ops
))
9122 target
= ops
[0].value
;
9123 if (GET_MODE (target
) != mode
)
9124 return gen_lowpart (tmode
, target
);
9128 /* Fall back to optab with vector result, and then extract scalar. */
9129 this_optab
= scalar_reduc_to_vector (this_optab
, type
);
9130 temp
= expand_unop (vec_mode
, this_optab
, op0
, NULL_RTX
, unsignedp
);
9132 /* The tree code produces a scalar result, but (somewhat by convention)
9133 the optab produces a vector with the result in element 0 if
9134 little-endian, or element N-1 if big-endian. So pull the scalar
9135 result out of that element. */
9136 int index
= BYTES_BIG_ENDIAN
? GET_MODE_NUNITS (vec_mode
) - 1 : 0;
9137 int bitsize
= GET_MODE_BITSIZE (GET_MODE_INNER (vec_mode
));
9138 temp
= extract_bit_field (temp
, bitsize
, bitsize
* index
, unsignedp
,
9139 target
, mode
, mode
);
9144 case VEC_UNPACK_HI_EXPR
:
9145 case VEC_UNPACK_LO_EXPR
:
9147 op0
= expand_normal (treeop0
);
9148 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9154 case VEC_UNPACK_FLOAT_HI_EXPR
:
9155 case VEC_UNPACK_FLOAT_LO_EXPR
:
9157 op0
= expand_normal (treeop0
);
9158 /* The signedness is determined from input operand. */
9159 temp
= expand_widen_pattern_expr
9160 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9161 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9167 case VEC_WIDEN_MULT_HI_EXPR
:
9168 case VEC_WIDEN_MULT_LO_EXPR
:
9169 case VEC_WIDEN_MULT_EVEN_EXPR
:
9170 case VEC_WIDEN_MULT_ODD_EXPR
:
9171 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9172 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9173 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9174 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9176 gcc_assert (target
);
9179 case VEC_PACK_TRUNC_EXPR
:
9180 case VEC_PACK_SAT_EXPR
:
9181 case VEC_PACK_FIX_TRUNC_EXPR
:
9182 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9186 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9187 op2
= expand_normal (treeop2
);
9189 /* Careful here: if the target doesn't support integral vector modes,
9190 a constant selection vector could wind up smooshed into a normal
9191 integral constant. */
9192 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
9194 tree sel_type
= TREE_TYPE (treeop2
);
9196 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9197 TYPE_VECTOR_SUBPARTS (sel_type
));
9198 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9199 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9200 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9203 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9205 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9211 tree oprnd0
= treeop0
;
9212 tree oprnd1
= treeop1
;
9213 tree oprnd2
= treeop2
;
9216 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9217 op2
= expand_normal (oprnd2
);
9218 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9225 tree oprnd0
= treeop0
;
9226 tree oprnd1
= treeop1
;
9227 tree oprnd2
= treeop2
;
9230 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9231 op2
= expand_normal (oprnd2
);
9232 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9237 case REALIGN_LOAD_EXPR
:
9239 tree oprnd0
= treeop0
;
9240 tree oprnd1
= treeop1
;
9241 tree oprnd2
= treeop2
;
9244 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9245 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9246 op2
= expand_normal (oprnd2
);
9247 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9255 /* A COND_EXPR with its type being VOID_TYPE represents a
9256 conditional jump and is handled in
9257 expand_gimple_cond_expr. */
9258 gcc_assert (!VOID_TYPE_P (type
));
9260 /* Note that COND_EXPRs whose type is a structure or union
9261 are required to be constructed to contain assignments of
9262 a temporary variable, so that we can evaluate them here
9263 for side effect only. If type is void, we must do likewise. */
9265 gcc_assert (!TREE_ADDRESSABLE (type
)
9267 && TREE_TYPE (treeop1
) != void_type_node
9268 && TREE_TYPE (treeop2
) != void_type_node
);
9270 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9274 /* If we are not to produce a result, we have no target. Otherwise,
9275 if a target was specified use it; it will not be used as an
9276 intermediate target unless it is safe. If no target, use a
9279 if (modifier
!= EXPAND_STACK_PARM
9281 && safe_from_p (original_target
, treeop0
, 1)
9282 && GET_MODE (original_target
) == mode
9283 && !MEM_P (original_target
))
9284 temp
= original_target
;
9286 temp
= assign_temp (type
, 0, 1);
9288 do_pending_stack_adjust ();
9290 rtx_code_label
*lab0
= gen_label_rtx ();
9291 rtx_code_label
*lab1
= gen_label_rtx ();
9292 jumpifnot (treeop0
, lab0
, -1);
9293 store_expr (treeop1
, temp
,
9294 modifier
== EXPAND_STACK_PARM
,
9297 emit_jump_insn (gen_jump (lab1
));
9300 store_expr (treeop2
, temp
,
9301 modifier
== EXPAND_STACK_PARM
,
9310 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9317 /* Here to do an ordinary binary operator. */
9319 expand_operands (treeop0
, treeop1
,
9320 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9322 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9324 if (modifier
== EXPAND_STACK_PARM
)
9326 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9327 unsignedp
, OPTAB_LIB_WIDEN
);
9329 /* Bitwise operations do not need bitfield reduction as we expect their
9330 operands being properly truncated. */
9331 if (code
== BIT_XOR_EXPR
9332 || code
== BIT_AND_EXPR
9333 || code
== BIT_IOR_EXPR
)
9335 return REDUCE_BIT_FIELD (temp
);
9337 #undef REDUCE_BIT_FIELD
9340 /* Return TRUE if expression STMT is suitable for replacement.
9341 Never consider memory loads as replaceable, because those don't ever lead
9342 into constant expressions. */
9345 stmt_is_replaceable_p (gimple stmt
)
9347 if (ssa_is_replaceable_p (stmt
))
9349 /* Don't move around loads. */
9350 if (!gimple_assign_single_p (stmt
)
9351 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9358 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
9359 enum expand_modifier modifier
, rtx
*alt_rtl
,
9360 bool inner_reference_p
)
9362 rtx op0
, op1
, temp
, decl_rtl
;
9366 enum tree_code code
= TREE_CODE (exp
);
9367 rtx subtarget
, original_target
;
9370 bool reduce_bit_field
;
9371 location_t loc
= EXPR_LOCATION (exp
);
9372 struct separate_ops ops
;
9373 tree treeop0
, treeop1
, treeop2
;
9374 tree ssa_name
= NULL_TREE
;
9377 type
= TREE_TYPE (exp
);
9378 mode
= TYPE_MODE (type
);
9379 unsignedp
= TYPE_UNSIGNED (type
);
9381 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9382 if (!VL_EXP_CLASS_P (exp
))
9383 switch (TREE_CODE_LENGTH (code
))
9386 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9387 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9388 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9398 ignore
= (target
== const0_rtx
9399 || ((CONVERT_EXPR_CODE_P (code
)
9400 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9401 && TREE_CODE (type
) == VOID_TYPE
));
9403 /* An operation in what may be a bit-field type needs the
9404 result to be reduced to the precision of the bit-field type,
9405 which is narrower than that of the type's mode. */
9406 reduce_bit_field
= (!ignore
9407 && INTEGRAL_TYPE_P (type
)
9408 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9410 /* If we are going to ignore this result, we need only do something
9411 if there is a side-effect somewhere in the expression. If there
9412 is, short-circuit the most common cases here. Note that we must
9413 not call expand_expr with anything but const0_rtx in case this
9414 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9418 if (! TREE_SIDE_EFFECTS (exp
))
9421 /* Ensure we reference a volatile object even if value is ignored, but
9422 don't do this if all we are doing is taking its address. */
9423 if (TREE_THIS_VOLATILE (exp
)
9424 && TREE_CODE (exp
) != FUNCTION_DECL
9425 && mode
!= VOIDmode
&& mode
!= BLKmode
9426 && modifier
!= EXPAND_CONST_ADDRESS
)
9428 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9434 if (TREE_CODE_CLASS (code
) == tcc_unary
9435 || code
== BIT_FIELD_REF
9436 || code
== COMPONENT_REF
9437 || code
== INDIRECT_REF
)
9438 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9441 else if (TREE_CODE_CLASS (code
) == tcc_binary
9442 || TREE_CODE_CLASS (code
) == tcc_comparison
9443 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9445 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9446 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9453 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9456 /* Use subtarget as the target for operand 0 of a binary operation. */
9457 subtarget
= get_subtarget (target
);
9458 original_target
= target
;
9464 tree function
= decl_function_context (exp
);
9466 temp
= label_rtx (exp
);
9467 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9469 if (function
!= current_function_decl
9471 LABEL_REF_NONLOCAL_P (temp
) = 1;
9473 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9478 /* ??? ivopts calls expander, without any preparation from
9479 out-of-ssa. So fake instructions as if this was an access to the
9480 base variable. This unnecessarily allocates a pseudo, see how we can
9481 reuse it, if partition base vars have it set already. */
9482 if (!currently_expanding_to_rtl
)
9484 tree var
= SSA_NAME_VAR (exp
);
9485 if (var
&& DECL_RTL_SET_P (var
))
9486 return DECL_RTL (var
);
9487 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9488 LAST_VIRTUAL_REGISTER
+ 1);
9491 g
= get_gimple_for_ssa_name (exp
);
9492 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9494 && modifier
== EXPAND_INITIALIZER
9495 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9496 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9497 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9498 g
= SSA_NAME_DEF_STMT (exp
);
9502 ops
.code
= gimple_assign_rhs_code (g
);
9503 switch (get_gimple_rhs_class (ops
.code
))
9505 case GIMPLE_TERNARY_RHS
:
9506 ops
.op2
= gimple_assign_rhs3 (g
);
9508 case GIMPLE_BINARY_RHS
:
9509 ops
.op1
= gimple_assign_rhs2 (g
);
9511 /* Try to expand conditonal compare. */
9512 if (targetm
.gen_ccmp_first
)
9514 gcc_checking_assert (targetm
.gen_ccmp_next
!= NULL
);
9515 r
= expand_ccmp_expr (g
);
9520 case GIMPLE_UNARY_RHS
:
9521 ops
.op0
= gimple_assign_rhs1 (g
);
9522 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
9523 ops
.location
= gimple_location (g
);
9524 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
9526 case GIMPLE_SINGLE_RHS
:
9528 location_t saved_loc
= curr_insn_location ();
9529 set_curr_insn_location (gimple_location (g
));
9530 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
9531 tmode
, modifier
, NULL
, inner_reference_p
);
9532 set_curr_insn_location (saved_loc
);
9538 if (REG_P (r
) && !REG_EXPR (r
))
9539 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9544 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9545 exp
= SSA_NAME_VAR (ssa_name
);
9546 goto expand_decl_rtl
;
9550 /* If a static var's type was incomplete when the decl was written,
9551 but the type is complete now, lay out the decl now. */
9552 if (DECL_SIZE (exp
) == 0
9553 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9554 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9555 layout_decl (exp
, 0);
9557 /* ... fall through ... */
9561 decl_rtl
= DECL_RTL (exp
);
9563 gcc_assert (decl_rtl
);
9564 decl_rtl
= copy_rtx (decl_rtl
);
9565 /* Record writes to register variables. */
9566 if (modifier
== EXPAND_WRITE
9568 && HARD_REGISTER_P (decl_rtl
))
9569 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9570 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9572 /* Ensure variable marked as used even if it doesn't go through
9573 a parser. If it hasn't be used yet, write out an external
9575 TREE_USED (exp
) = 1;
9577 /* Show we haven't gotten RTL for this yet. */
9580 /* Variables inherited from containing functions should have
9581 been lowered by this point. */
9582 context
= decl_function_context (exp
);
9583 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
9584 || context
== current_function_decl
9585 || TREE_STATIC (exp
)
9586 || DECL_EXTERNAL (exp
)
9587 /* ??? C++ creates functions that are not TREE_STATIC. */
9588 || TREE_CODE (exp
) == FUNCTION_DECL
);
9590 /* This is the case of an array whose size is to be determined
9591 from its initializer, while the initializer is still being parsed.
9592 ??? We aren't parsing while expanding anymore. */
9594 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9595 temp
= validize_mem (decl_rtl
);
9597 /* If DECL_RTL is memory, we are in the normal case and the
9598 address is not valid, get the address into a register. */
9600 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9603 *alt_rtl
= decl_rtl
;
9604 decl_rtl
= use_anchored_address (decl_rtl
);
9605 if (modifier
!= EXPAND_CONST_ADDRESS
9606 && modifier
!= EXPAND_SUM
9607 && !memory_address_addr_space_p (DECL_MODE (exp
),
9609 MEM_ADDR_SPACE (decl_rtl
)))
9610 temp
= replace_equiv_address (decl_rtl
,
9611 copy_rtx (XEXP (decl_rtl
, 0)));
9614 /* If we got something, return it. But first, set the alignment
9615 if the address is a register. */
9618 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9619 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9624 /* If the mode of DECL_RTL does not match that of the decl,
9625 there are two cases: we are dealing with a BLKmode value
9626 that is returned in a register, or we are dealing with
9627 a promoted value. In the latter case, return a SUBREG
9628 of the wanted mode, but mark it so that we know that it
9629 was already extended. */
9630 if (REG_P (decl_rtl
)
9631 && DECL_MODE (exp
) != BLKmode
9632 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9636 /* Get the signedness to be used for this variable. Ensure we get
9637 the same mode we got when the variable was declared. */
9638 if (code
== SSA_NAME
9639 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9640 && gimple_code (g
) == GIMPLE_CALL
9641 && !gimple_call_internal_p (g
))
9642 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9643 gimple_call_fntype (g
),
9646 pmode
= promote_decl_mode (exp
, &unsignedp
);
9647 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9649 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9650 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9651 SUBREG_PROMOTED_SET (temp
, unsignedp
);
9658 /* Given that TYPE_PRECISION (type) is not always equal to
9659 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9660 the former to the latter according to the signedness of the
9662 temp
= immed_wide_int_const (wide_int::from
9664 GET_MODE_PRECISION (TYPE_MODE (type
)),
9671 tree tmp
= NULL_TREE
;
9672 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9673 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9674 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9675 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9676 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9677 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9678 return const_vector_from_tree (exp
);
9679 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9681 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9683 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9687 vec
<constructor_elt
, va_gc
> *v
;
9689 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9690 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9691 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9692 tmp
= build_constructor (type
, v
);
9694 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9699 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9702 /* If optimized, generate immediate CONST_DOUBLE
9703 which will be turned into memory by reload if necessary.
9705 We used to force a register so that loop.c could see it. But
9706 this does not allow gen_* patterns to perform optimizations with
9707 the constants. It also produces two insns in cases like "x = 1.0;".
9708 On most machines, floating-point constants are not permitted in
9709 many insns, so we'd end up copying it to a register in any case.
9711 Now, we do the copying in expand_binop, if appropriate. */
9712 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9713 TYPE_MODE (TREE_TYPE (exp
)));
9716 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9717 TYPE_MODE (TREE_TYPE (exp
)));
9720 /* Handle evaluating a complex constant in a CONCAT target. */
9721 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9723 machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9726 rtarg
= XEXP (original_target
, 0);
9727 itarg
= XEXP (original_target
, 1);
9729 /* Move the real and imaginary parts separately. */
9730 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9731 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9734 emit_move_insn (rtarg
, op0
);
9736 emit_move_insn (itarg
, op1
);
9738 return original_target
;
9741 /* ... fall through ... */
9744 temp
= expand_expr_constant (exp
, 1, modifier
);
9746 /* temp contains a constant address.
9747 On RISC machines where a constant address isn't valid,
9748 make some insns to get that address into a register. */
9749 if (modifier
!= EXPAND_CONST_ADDRESS
9750 && modifier
!= EXPAND_INITIALIZER
9751 && modifier
!= EXPAND_SUM
9752 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9753 MEM_ADDR_SPACE (temp
)))
9754 return replace_equiv_address (temp
,
9755 copy_rtx (XEXP (temp
, 0)));
9761 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
9764 if (!SAVE_EXPR_RESOLVED_P (exp
))
9766 /* We can indeed still hit this case, typically via builtin
9767 expanders calling save_expr immediately before expanding
9768 something. Assume this means that we only have to deal
9769 with non-BLKmode values. */
9770 gcc_assert (GET_MODE (ret
) != BLKmode
);
9772 val
= build_decl (curr_insn_location (),
9773 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9774 DECL_ARTIFICIAL (val
) = 1;
9775 DECL_IGNORED_P (val
) = 1;
9777 TREE_OPERAND (exp
, 0) = treeop0
;
9778 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9780 if (!CONSTANT_P (ret
))
9781 ret
= copy_to_reg (ret
);
9782 SET_DECL_RTL (val
, ret
);
9790 /* If we don't need the result, just ensure we evaluate any
9794 unsigned HOST_WIDE_INT idx
;
9797 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9798 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9803 return expand_constructor (exp
, target
, modifier
, false);
9805 case TARGET_MEM_REF
:
9808 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9809 enum insn_code icode
;
9812 op0
= addr_for_mem_ref (exp
, as
, true);
9813 op0
= memory_address_addr_space (mode
, op0
, as
);
9814 temp
= gen_rtx_MEM (mode
, op0
);
9815 set_mem_attributes (temp
, exp
, 0);
9816 set_mem_addr_space (temp
, as
);
9817 align
= get_object_alignment (exp
);
9818 if (modifier
!= EXPAND_WRITE
9819 && modifier
!= EXPAND_MEMORY
9821 && align
< GET_MODE_ALIGNMENT (mode
)
9822 /* If the target does not have special handling for unaligned
9823 loads of mode then it can use regular moves for them. */
9824 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9825 != CODE_FOR_nothing
))
9827 struct expand_operand ops
[2];
9829 /* We've already validated the memory, and we're creating a
9830 new pseudo destination. The predicates really can't fail,
9831 nor can the generator. */
9832 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9833 create_fixed_operand (&ops
[1], temp
);
9834 expand_insn (icode
, 2, ops
);
9835 temp
= ops
[0].value
;
9843 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9844 machine_mode address_mode
;
9845 tree base
= TREE_OPERAND (exp
, 0);
9847 enum insn_code icode
;
9849 /* Handle expansion of non-aliased memory with non-BLKmode. That
9850 might end up in a register. */
9851 if (mem_ref_refers_to_non_mem_p (exp
))
9853 HOST_WIDE_INT offset
= mem_ref_offset (exp
).to_short_addr ();
9854 base
= TREE_OPERAND (base
, 0);
9856 && tree_fits_uhwi_p (TYPE_SIZE (type
))
9857 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9858 == tree_to_uhwi (TYPE_SIZE (type
))))
9859 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
9860 target
, tmode
, modifier
);
9861 if (TYPE_MODE (type
) == BLKmode
)
9863 temp
= assign_stack_temp (DECL_MODE (base
),
9864 GET_MODE_SIZE (DECL_MODE (base
)));
9865 store_expr (base
, temp
, 0, false);
9866 temp
= adjust_address (temp
, BLKmode
, offset
);
9867 set_mem_size (temp
, int_size_in_bytes (type
));
9870 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
9871 bitsize_int (offset
* BITS_PER_UNIT
));
9872 return expand_expr (exp
, target
, tmode
, modifier
);
9874 address_mode
= targetm
.addr_space
.address_mode (as
);
9875 base
= TREE_OPERAND (exp
, 0);
9876 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9878 tree mask
= gimple_assign_rhs2 (def_stmt
);
9879 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9880 gimple_assign_rhs1 (def_stmt
), mask
);
9881 TREE_OPERAND (exp
, 0) = base
;
9883 align
= get_object_alignment (exp
);
9884 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9885 op0
= memory_address_addr_space (mode
, op0
, as
);
9886 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9888 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
9889 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9890 op0
= memory_address_addr_space (mode
, op0
, as
);
9892 temp
= gen_rtx_MEM (mode
, op0
);
9893 set_mem_attributes (temp
, exp
, 0);
9894 set_mem_addr_space (temp
, as
);
9895 if (TREE_THIS_VOLATILE (exp
))
9896 MEM_VOLATILE_P (temp
) = 1;
9897 if (modifier
!= EXPAND_WRITE
9898 && modifier
!= EXPAND_MEMORY
9899 && !inner_reference_p
9901 && align
< GET_MODE_ALIGNMENT (mode
))
9903 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9904 != CODE_FOR_nothing
)
9906 struct expand_operand ops
[2];
9908 /* We've already validated the memory, and we're creating a
9909 new pseudo destination. The predicates really can't fail,
9910 nor can the generator. */
9911 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9912 create_fixed_operand (&ops
[1], temp
);
9913 expand_insn (icode
, 2, ops
);
9914 temp
= ops
[0].value
;
9916 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9917 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9918 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9919 (modifier
== EXPAND_STACK_PARM
9920 ? NULL_RTX
: target
),
9929 tree array
= treeop0
;
9930 tree index
= treeop1
;
9933 /* Fold an expression like: "foo"[2].
9934 This is not done in fold so it won't happen inside &.
9935 Don't fold if this is for wide characters since it's too
9936 difficult to do correctly and this is a very rare case. */
9938 if (modifier
!= EXPAND_CONST_ADDRESS
9939 && modifier
!= EXPAND_INITIALIZER
9940 && modifier
!= EXPAND_MEMORY
)
9942 tree t
= fold_read_from_constant_string (exp
);
9945 return expand_expr (t
, target
, tmode
, modifier
);
9948 /* If this is a constant index into a constant array,
9949 just get the value from the array. Handle both the cases when
9950 we have an explicit constructor and when our operand is a variable
9951 that was declared const. */
9953 if (modifier
!= EXPAND_CONST_ADDRESS
9954 && modifier
!= EXPAND_INITIALIZER
9955 && modifier
!= EXPAND_MEMORY
9956 && TREE_CODE (array
) == CONSTRUCTOR
9957 && ! TREE_SIDE_EFFECTS (array
)
9958 && TREE_CODE (index
) == INTEGER_CST
)
9960 unsigned HOST_WIDE_INT ix
;
9963 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9965 if (tree_int_cst_equal (field
, index
))
9967 if (!TREE_SIDE_EFFECTS (value
))
9968 return expand_expr (fold (value
), target
, tmode
, modifier
);
9973 else if (optimize
>= 1
9974 && modifier
!= EXPAND_CONST_ADDRESS
9975 && modifier
!= EXPAND_INITIALIZER
9976 && modifier
!= EXPAND_MEMORY
9977 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9978 && TREE_CODE (index
) == INTEGER_CST
9979 && (TREE_CODE (array
) == VAR_DECL
9980 || TREE_CODE (array
) == CONST_DECL
)
9981 && (init
= ctor_for_folding (array
)) != error_mark_node
)
9983 if (init
== NULL_TREE
)
9985 tree value
= build_zero_cst (type
);
9986 if (TREE_CODE (value
) == CONSTRUCTOR
)
9988 /* If VALUE is a CONSTRUCTOR, this optimization is only
9989 useful if this doesn't store the CONSTRUCTOR into
9990 memory. If it does, it is more efficient to just
9991 load the data from the array directly. */
9992 rtx ret
= expand_constructor (value
, target
,
9994 if (ret
== NULL_RTX
)
9999 return expand_expr (value
, target
, tmode
, modifier
);
10001 else if (TREE_CODE (init
) == CONSTRUCTOR
)
10003 unsigned HOST_WIDE_INT ix
;
10006 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
10008 if (tree_int_cst_equal (field
, index
))
10010 if (TREE_SIDE_EFFECTS (value
))
10013 if (TREE_CODE (value
) == CONSTRUCTOR
)
10015 /* If VALUE is a CONSTRUCTOR, this
10016 optimization is only useful if
10017 this doesn't store the CONSTRUCTOR
10018 into memory. If it does, it is more
10019 efficient to just load the data from
10020 the array directly. */
10021 rtx ret
= expand_constructor (value
, target
,
10023 if (ret
== NULL_RTX
)
10028 expand_expr (fold (value
), target
, tmode
, modifier
);
10031 else if (TREE_CODE (init
) == STRING_CST
)
10033 tree low_bound
= array_ref_low_bound (exp
);
10034 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
10036 /* Optimize the special case of a zero lower bound.
10038 We convert the lower bound to sizetype to avoid problems
10039 with constant folding. E.g. suppose the lower bound is
10040 1 and its mode is QI. Without the conversion
10041 (ARRAY + (INDEX - (unsigned char)1))
10043 (ARRAY + (-(unsigned char)1) + INDEX)
10045 (ARRAY + 255 + INDEX). Oops! */
10046 if (!integer_zerop (low_bound
))
10047 index1
= size_diffop_loc (loc
, index1
,
10048 fold_convert_loc (loc
, sizetype
,
10051 if (compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
10053 tree type
= TREE_TYPE (TREE_TYPE (init
));
10054 machine_mode mode
= TYPE_MODE (type
);
10056 if (GET_MODE_CLASS (mode
) == MODE_INT
10057 && GET_MODE_SIZE (mode
) == 1)
10058 return gen_int_mode (TREE_STRING_POINTER (init
)
10059 [TREE_INT_CST_LOW (index1
)],
10065 goto normal_inner_ref
;
10067 case COMPONENT_REF
:
10068 /* If the operand is a CONSTRUCTOR, we can just extract the
10069 appropriate field if it is present. */
10070 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
10072 unsigned HOST_WIDE_INT idx
;
10075 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
10077 if (field
== treeop1
10078 /* We can normally use the value of the field in the
10079 CONSTRUCTOR. However, if this is a bitfield in
10080 an integral mode that we can fit in a HOST_WIDE_INT,
10081 we must mask only the number of bits in the bitfield,
10082 since this is done implicitly by the constructor. If
10083 the bitfield does not meet either of those conditions,
10084 we can't do this optimization. */
10085 && (! DECL_BIT_FIELD (field
)
10086 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
10087 && (GET_MODE_PRECISION (DECL_MODE (field
))
10088 <= HOST_BITS_PER_WIDE_INT
))))
10090 if (DECL_BIT_FIELD (field
)
10091 && modifier
== EXPAND_STACK_PARM
)
10093 op0
= expand_expr (value
, target
, tmode
, modifier
);
10094 if (DECL_BIT_FIELD (field
))
10096 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
10097 machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
10099 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
10101 op1
= gen_int_mode (((HOST_WIDE_INT
) 1 << bitsize
) - 1,
10103 op0
= expand_and (imode
, op0
, op1
, target
);
10107 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
10109 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
10111 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
10119 goto normal_inner_ref
;
10121 case BIT_FIELD_REF
:
10122 case ARRAY_RANGE_REF
:
10125 machine_mode mode1
, mode2
;
10126 HOST_WIDE_INT bitsize
, bitpos
;
10128 int volatilep
= 0, must_force_mem
;
10129 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
10130 &mode1
, &unsignedp
, &volatilep
, true);
10131 rtx orig_op0
, memloc
;
10132 bool clear_mem_expr
= false;
10134 /* If we got back the original object, something is wrong. Perhaps
10135 we are evaluating an expression too early. In any event, don't
10136 infinitely recurse. */
10137 gcc_assert (tem
!= exp
);
10139 /* If TEM's type is a union of variable size, pass TARGET to the inner
10140 computation, since it will need a temporary and TARGET is known
10141 to have to do. This occurs in unchecked conversion in Ada. */
10143 = expand_expr_real (tem
,
10144 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10145 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
10146 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10148 && modifier
!= EXPAND_STACK_PARM
10149 ? target
: NULL_RTX
),
10151 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10154 /* If the field has a mode, we want to access it in the
10155 field's mode, not the computed mode.
10156 If a MEM has VOIDmode (external with incomplete type),
10157 use BLKmode for it instead. */
10160 if (mode1
!= VOIDmode
)
10161 op0
= adjust_address (op0
, mode1
, 0);
10162 else if (GET_MODE (op0
) == VOIDmode
)
10163 op0
= adjust_address (op0
, BLKmode
, 0);
10167 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
10169 /* If we have either an offset, a BLKmode result, or a reference
10170 outside the underlying object, we must force it to memory.
10171 Such a case can occur in Ada if we have unchecked conversion
10172 of an expression from a scalar type to an aggregate type or
10173 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10174 passed a partially uninitialized object or a view-conversion
10175 to a larger size. */
10176 must_force_mem
= (offset
10177 || mode1
== BLKmode
10178 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
10180 /* Handle CONCAT first. */
10181 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10184 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
10187 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10190 op0
= XEXP (op0
, 0);
10191 mode2
= GET_MODE (op0
);
10193 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10194 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
10198 op0
= XEXP (op0
, 1);
10200 mode2
= GET_MODE (op0
);
10203 /* Otherwise force into memory. */
10204 must_force_mem
= 1;
10207 /* If this is a constant, put it in a register if it is a legitimate
10208 constant and we don't need a memory reference. */
10209 if (CONSTANT_P (op0
)
10210 && mode2
!= BLKmode
10211 && targetm
.legitimate_constant_p (mode2
, op0
)
10212 && !must_force_mem
)
10213 op0
= force_reg (mode2
, op0
);
10215 /* Otherwise, if this is a constant, try to force it to the constant
10216 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10217 is a legitimate constant. */
10218 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10219 op0
= validize_mem (memloc
);
10221 /* Otherwise, if this is a constant or the object is not in memory
10222 and need be, put it there. */
10223 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10225 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
10226 emit_move_insn (memloc
, op0
);
10228 clear_mem_expr
= true;
10233 machine_mode address_mode
;
10234 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10237 gcc_assert (MEM_P (op0
));
10239 address_mode
= get_address_mode (op0
);
10240 if (GET_MODE (offset_rtx
) != address_mode
)
10242 /* We cannot be sure that the RTL in offset_rtx is valid outside
10243 of a memory address context, so force it into a register
10244 before attempting to convert it to the desired mode. */
10245 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
10246 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10249 /* See the comment in expand_assignment for the rationale. */
10250 if (mode1
!= VOIDmode
10253 && (bitpos
% bitsize
) == 0
10254 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
10255 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
10257 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10261 op0
= offset_address (op0
, offset_rtx
,
10262 highest_pow2_factor (offset
));
10265 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10266 record its alignment as BIGGEST_ALIGNMENT. */
10267 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
10268 && is_aligning_offset (offset
, tem
))
10269 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10271 /* Don't forget about volatility even if this is a bitfield. */
10272 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10274 if (op0
== orig_op0
)
10275 op0
= copy_rtx (op0
);
10277 MEM_VOLATILE_P (op0
) = 1;
10280 /* In cases where an aligned union has an unaligned object
10281 as a field, we might be extracting a BLKmode value from
10282 an integer-mode (e.g., SImode) object. Handle this case
10283 by doing the extract into an object as wide as the field
10284 (which we know to be the width of a basic mode), then
10285 storing into memory, and changing the mode to BLKmode. */
10286 if (mode1
== VOIDmode
10287 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10288 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10289 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10290 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10291 && modifier
!= EXPAND_CONST_ADDRESS
10292 && modifier
!= EXPAND_INITIALIZER
10293 && modifier
!= EXPAND_MEMORY
)
10294 /* If the bitfield is volatile and the bitsize
10295 is narrower than the access size of the bitfield,
10296 we need to extract bitfields from the access. */
10297 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
10298 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
10299 && mode1
!= BLKmode
10300 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)
10301 /* If the field isn't aligned enough to fetch as a memref,
10302 fetch it as a bit field. */
10303 || (mode1
!= BLKmode
10304 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10305 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10307 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10308 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10309 && modifier
!= EXPAND_MEMORY
10310 && ((modifier
== EXPAND_CONST_ADDRESS
10311 || modifier
== EXPAND_INITIALIZER
)
10313 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10314 || (bitpos
% BITS_PER_UNIT
!= 0)))
10315 /* If the type and the field are a constant size and the
10316 size of the type isn't the same size as the bitfield,
10317 we must use bitfield operations. */
10319 && TYPE_SIZE (TREE_TYPE (exp
))
10320 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10321 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10324 machine_mode ext_mode
= mode
;
10326 if (ext_mode
== BLKmode
10327 && ! (target
!= 0 && MEM_P (op0
)
10329 && bitpos
% BITS_PER_UNIT
== 0))
10330 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10332 if (ext_mode
== BLKmode
)
10335 target
= assign_temp (type
, 1, 1);
10337 /* ??? Unlike the similar test a few lines below, this one is
10338 very likely obsolete. */
10342 /* In this case, BITPOS must start at a byte boundary and
10343 TARGET, if specified, must be a MEM. */
10344 gcc_assert (MEM_P (op0
)
10345 && (!target
|| MEM_P (target
))
10346 && !(bitpos
% BITS_PER_UNIT
));
10348 emit_block_move (target
,
10349 adjust_address (op0
, VOIDmode
,
10350 bitpos
/ BITS_PER_UNIT
),
10351 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10353 (modifier
== EXPAND_STACK_PARM
10354 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10359 /* If we have nothing to extract, the result will be 0 for targets
10360 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10361 return 0 for the sake of consistency, as reading a zero-sized
10362 bitfield is valid in Ada and the value is fully specified. */
10366 op0
= validize_mem (op0
);
10368 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10369 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10371 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10372 (modifier
== EXPAND_STACK_PARM
10373 ? NULL_RTX
: target
),
10374 ext_mode
, ext_mode
);
10376 /* If the result is a record type and BITSIZE is narrower than
10377 the mode of OP0, an integral mode, and this is a big endian
10378 machine, we must put the field into the high-order bits. */
10379 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10380 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10381 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10382 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10383 GET_MODE_BITSIZE (GET_MODE (op0
))
10384 - bitsize
, op0
, 1);
10386 /* If the result type is BLKmode, store the data into a temporary
10387 of the appropriate type, but with the mode corresponding to the
10388 mode for the data we have (op0's mode). */
10389 if (mode
== BLKmode
)
10392 = assign_stack_temp_for_type (ext_mode
,
10393 GET_MODE_BITSIZE (ext_mode
),
10395 emit_move_insn (new_rtx
, op0
);
10396 op0
= copy_rtx (new_rtx
);
10397 PUT_MODE (op0
, BLKmode
);
10403 /* If the result is BLKmode, use that to access the object
10405 if (mode
== BLKmode
)
10408 /* Get a reference to just this component. */
10409 if (modifier
== EXPAND_CONST_ADDRESS
10410 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10411 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10413 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10415 if (op0
== orig_op0
)
10416 op0
= copy_rtx (op0
);
10418 set_mem_attributes (op0
, exp
, 0);
10420 if (REG_P (XEXP (op0
, 0)))
10421 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10423 /* If op0 is a temporary because the original expressions was forced
10424 to memory, clear MEM_EXPR so that the original expression cannot
10425 be marked as addressable through MEM_EXPR of the temporary. */
10426 if (clear_mem_expr
)
10427 set_mem_expr (op0
, NULL_TREE
);
10429 MEM_VOLATILE_P (op0
) |= volatilep
;
10430 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10431 || modifier
== EXPAND_CONST_ADDRESS
10432 || modifier
== EXPAND_INITIALIZER
)
10436 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10438 convert_move (target
, op0
, unsignedp
);
10443 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10446 /* All valid uses of __builtin_va_arg_pack () are removed during
10448 if (CALL_EXPR_VA_ARG_PACK (exp
))
10449 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10451 tree fndecl
= get_callee_fndecl (exp
), attr
;
10454 && (attr
= lookup_attribute ("error",
10455 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10456 error ("%Kcall to %qs declared with attribute error: %s",
10457 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10458 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10460 && (attr
= lookup_attribute ("warning",
10461 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10462 warning_at (tree_nonartificial_location (exp
),
10463 0, "%Kcall to %qs declared with attribute warning: %s",
10464 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10465 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10467 /* Check for a built-in function. */
10468 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10470 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10471 if (CALL_WITH_BOUNDS_P (exp
))
10472 return expand_builtin_with_bounds (exp
, target
, subtarget
,
10475 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10478 return expand_call (exp
, target
, ignore
);
10480 case VIEW_CONVERT_EXPR
:
10483 /* If we are converting to BLKmode, try to avoid an intermediate
10484 temporary by fetching an inner memory reference. */
10485 if (mode
== BLKmode
10486 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
10487 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10488 && handled_component_p (treeop0
))
10490 machine_mode mode1
;
10491 HOST_WIDE_INT bitsize
, bitpos
;
10496 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10497 &offset
, &mode1
, &unsignedp
, &volatilep
,
10501 /* ??? We should work harder and deal with non-zero offsets. */
10503 && (bitpos
% BITS_PER_UNIT
) == 0
10505 && compare_tree_int (TYPE_SIZE (type
), bitsize
) == 0)
10507 /* See the normal_inner_ref case for the rationale. */
10509 = expand_expr_real (tem
,
10510 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10511 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10513 && modifier
!= EXPAND_STACK_PARM
10514 ? target
: NULL_RTX
),
10516 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10519 if (MEM_P (orig_op0
))
10523 /* Get a reference to just this component. */
10524 if (modifier
== EXPAND_CONST_ADDRESS
10525 || modifier
== EXPAND_SUM
10526 || modifier
== EXPAND_INITIALIZER
)
10527 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10529 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10531 if (op0
== orig_op0
)
10532 op0
= copy_rtx (op0
);
10534 set_mem_attributes (op0
, treeop0
, 0);
10535 if (REG_P (XEXP (op0
, 0)))
10536 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10538 MEM_VOLATILE_P (op0
) |= volatilep
;
10544 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
10545 NULL
, inner_reference_p
);
10547 /* If the input and output modes are both the same, we are done. */
10548 if (mode
== GET_MODE (op0
))
10550 /* If neither mode is BLKmode, and both modes are the same size
10551 then we can use gen_lowpart. */
10552 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10553 && (GET_MODE_PRECISION (mode
)
10554 == GET_MODE_PRECISION (GET_MODE (op0
)))
10555 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10557 if (GET_CODE (op0
) == SUBREG
)
10558 op0
= force_reg (GET_MODE (op0
), op0
);
10559 temp
= gen_lowpart_common (mode
, op0
);
10564 if (!REG_P (op0
) && !MEM_P (op0
))
10565 op0
= force_reg (GET_MODE (op0
), op0
);
10566 op0
= gen_lowpart (mode
, op0
);
10569 /* If both types are integral, convert from one mode to the other. */
10570 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10571 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10572 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10573 /* If the output type is a bit-field type, do an extraction. */
10574 else if (reduce_bit_field
)
10575 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
10576 TYPE_UNSIGNED (type
), NULL_RTX
,
10578 /* As a last resort, spill op0 to memory, and reload it in a
10580 else if (!MEM_P (op0
))
10582 /* If the operand is not a MEM, force it into memory. Since we
10583 are going to be changing the mode of the MEM, don't call
10584 force_const_mem for constants because we don't allow pool
10585 constants to change mode. */
10586 tree inner_type
= TREE_TYPE (treeop0
);
10588 gcc_assert (!TREE_ADDRESSABLE (exp
));
10590 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10592 = assign_stack_temp_for_type
10593 (TYPE_MODE (inner_type
),
10594 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10596 emit_move_insn (target
, op0
);
10600 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10601 output type is such that the operand is known to be aligned, indicate
10602 that it is. Otherwise, we need only be concerned about alignment for
10603 non-BLKmode results. */
10606 enum insn_code icode
;
10608 if (TYPE_ALIGN_OK (type
))
10610 /* ??? Copying the MEM without substantially changing it might
10611 run afoul of the code handling volatile memory references in
10612 store_expr, which assumes that TARGET is returned unmodified
10613 if it has been used. */
10614 op0
= copy_rtx (op0
);
10615 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10617 else if (modifier
!= EXPAND_WRITE
10618 && modifier
!= EXPAND_MEMORY
10619 && !inner_reference_p
10621 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10623 /* If the target does have special handling for unaligned
10624 loads of mode then use them. */
10625 if ((icode
= optab_handler (movmisalign_optab
, mode
))
10626 != CODE_FOR_nothing
)
10630 op0
= adjust_address (op0
, mode
, 0);
10631 /* We've already validated the memory, and we're creating a
10632 new pseudo destination. The predicates really can't
10634 reg
= gen_reg_rtx (mode
);
10636 /* Nor can the insn generator. */
10637 insn
= GEN_FCN (icode
) (reg
, op0
);
10641 else if (STRICT_ALIGNMENT
)
10643 tree inner_type
= TREE_TYPE (treeop0
);
10644 HOST_WIDE_INT temp_size
10645 = MAX (int_size_in_bytes (inner_type
),
10646 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10648 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10649 rtx new_with_op0_mode
10650 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10652 gcc_assert (!TREE_ADDRESSABLE (exp
));
10654 if (GET_MODE (op0
) == BLKmode
)
10655 emit_block_move (new_with_op0_mode
, op0
,
10656 GEN_INT (GET_MODE_SIZE (mode
)),
10657 (modifier
== EXPAND_STACK_PARM
10658 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10660 emit_move_insn (new_with_op0_mode
, op0
);
10666 op0
= adjust_address (op0
, mode
, 0);
10673 tree lhs
= treeop0
;
10674 tree rhs
= treeop1
;
10675 gcc_assert (ignore
);
10677 /* Check for |= or &= of a bitfield of size one into another bitfield
10678 of size 1. In this case, (unless we need the result of the
10679 assignment) we can do this more efficiently with a
10680 test followed by an assignment, if necessary.
10682 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10683 things change so we do, this code should be enhanced to
10685 if (TREE_CODE (lhs
) == COMPONENT_REF
10686 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10687 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10688 && TREE_OPERAND (rhs
, 0) == lhs
10689 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10690 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10691 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10693 rtx_code_label
*label
= gen_label_rtx ();
10694 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10695 do_jump (TREE_OPERAND (rhs
, 1),
10697 value
? 0 : label
, -1);
10698 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10700 do_pending_stack_adjust ();
10701 emit_label (label
);
10705 expand_assignment (lhs
, rhs
, false);
10710 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10712 case REALPART_EXPR
:
10713 op0
= expand_normal (treeop0
);
10714 return read_complex_part (op0
, false);
10716 case IMAGPART_EXPR
:
10717 op0
= expand_normal (treeop0
);
10718 return read_complex_part (op0
, true);
10725 /* Expanded in cfgexpand.c. */
10726 gcc_unreachable ();
10728 case TRY_CATCH_EXPR
:
10730 case EH_FILTER_EXPR
:
10731 case TRY_FINALLY_EXPR
:
10732 /* Lowered by tree-eh.c. */
10733 gcc_unreachable ();
10735 case WITH_CLEANUP_EXPR
:
10736 case CLEANUP_POINT_EXPR
:
10738 case CASE_LABEL_EXPR
:
10743 case COMPOUND_EXPR
:
10744 case PREINCREMENT_EXPR
:
10745 case PREDECREMENT_EXPR
:
10746 case POSTINCREMENT_EXPR
:
10747 case POSTDECREMENT_EXPR
:
10750 case COMPOUND_LITERAL_EXPR
:
10751 /* Lowered by gimplify.c. */
10752 gcc_unreachable ();
10755 /* Function descriptors are not valid except for as
10756 initialization constants, and should not be expanded. */
10757 gcc_unreachable ();
10759 case WITH_SIZE_EXPR
:
10760 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10761 have pulled out the size to use in whatever context it needed. */
10762 return expand_expr_real (treeop0
, original_target
, tmode
,
10763 modifier
, alt_rtl
, inner_reference_p
);
10766 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10770 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10771 signedness of TYPE), possibly returning the result in TARGET. */
10773 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10775 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10776 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10778 /* For constant values, reduce using build_int_cst_type. */
10779 if (CONST_INT_P (exp
))
10781 HOST_WIDE_INT value
= INTVAL (exp
);
10782 tree t
= build_int_cst_type (type
, value
);
10783 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10785 else if (TYPE_UNSIGNED (type
))
10787 machine_mode mode
= GET_MODE (exp
);
10788 rtx mask
= immed_wide_int_const
10789 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
10790 return expand_and (mode
, exp
, mask
, target
);
10794 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10795 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10796 exp
, count
, target
, 0);
10797 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10798 exp
, count
, target
, 0);
10802 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10803 when applied to the address of EXP produces an address known to be
10804 aligned more than BIGGEST_ALIGNMENT. */
10807 is_aligning_offset (const_tree offset
, const_tree exp
)
10809 /* Strip off any conversions. */
10810 while (CONVERT_EXPR_P (offset
))
10811 offset
= TREE_OPERAND (offset
, 0);
10813 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10814 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10815 if (TREE_CODE (offset
) != BIT_AND_EXPR
10816 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
10817 || compare_tree_int (TREE_OPERAND (offset
, 1),
10818 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10819 || exact_log2 (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1) < 0)
10822 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10823 It must be NEGATE_EXPR. Then strip any more conversions. */
10824 offset
= TREE_OPERAND (offset
, 0);
10825 while (CONVERT_EXPR_P (offset
))
10826 offset
= TREE_OPERAND (offset
, 0);
10828 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10831 offset
= TREE_OPERAND (offset
, 0);
10832 while (CONVERT_EXPR_P (offset
))
10833 offset
= TREE_OPERAND (offset
, 0);
10835 /* This must now be the address of EXP. */
10836 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10839 /* Return the tree node if an ARG corresponds to a string constant or zero
10840 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10841 in bytes within the string that ARG is accessing. The type of the
10842 offset will be `sizetype'. */
10845 string_constant (tree arg
, tree
*ptr_offset
)
10847 tree array
, offset
, lower_bound
;
10850 if (TREE_CODE (arg
) == ADDR_EXPR
)
10852 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10854 *ptr_offset
= size_zero_node
;
10855 return TREE_OPERAND (arg
, 0);
10857 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10859 array
= TREE_OPERAND (arg
, 0);
10860 offset
= size_zero_node
;
10862 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10864 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10865 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10866 if (TREE_CODE (array
) != STRING_CST
10867 && TREE_CODE (array
) != VAR_DECL
)
10870 /* Check if the array has a nonzero lower bound. */
10871 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10872 if (!integer_zerop (lower_bound
))
10874 /* If the offset and base aren't both constants, return 0. */
10875 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10877 if (TREE_CODE (offset
) != INTEGER_CST
)
10879 /* Adjust offset by the lower bound. */
10880 offset
= size_diffop (fold_convert (sizetype
, offset
),
10881 fold_convert (sizetype
, lower_bound
));
10884 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10886 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10887 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10888 if (TREE_CODE (array
) != ADDR_EXPR
)
10890 array
= TREE_OPERAND (array
, 0);
10891 if (TREE_CODE (array
) != STRING_CST
10892 && TREE_CODE (array
) != VAR_DECL
)
10898 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10900 tree arg0
= TREE_OPERAND (arg
, 0);
10901 tree arg1
= TREE_OPERAND (arg
, 1);
10906 if (TREE_CODE (arg0
) == ADDR_EXPR
10907 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10908 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10910 array
= TREE_OPERAND (arg0
, 0);
10913 else if (TREE_CODE (arg1
) == ADDR_EXPR
10914 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10915 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10917 array
= TREE_OPERAND (arg1
, 0);
10926 if (TREE_CODE (array
) == STRING_CST
)
10928 *ptr_offset
= fold_convert (sizetype
, offset
);
10931 else if (TREE_CODE (array
) == VAR_DECL
10932 || TREE_CODE (array
) == CONST_DECL
)
10935 tree init
= ctor_for_folding (array
);
10937 /* Variables initialized to string literals can be handled too. */
10938 if (init
== error_mark_node
10940 || TREE_CODE (init
) != STRING_CST
)
10943 /* Avoid const char foo[4] = "abcde"; */
10944 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10945 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10946 || (length
= TREE_STRING_LENGTH (init
)) <= 0
10947 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10950 /* If variable is bigger than the string literal, OFFSET must be constant
10951 and inside of the bounds of the string literal. */
10952 offset
= fold_convert (sizetype
, offset
);
10953 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10954 && (! tree_fits_uhwi_p (offset
)
10955 || compare_tree_int (offset
, length
) >= 0))
10958 *ptr_offset
= offset
;
10965 /* Generate code to calculate OPS, and exploded expression
10966 using a store-flag instruction and return an rtx for the result.
10967 OPS reflects a comparison.
10969 If TARGET is nonzero, store the result there if convenient.
10971 Return zero if there is no suitable set-flag instruction
10972 available on this machine.
10974 Once expand_expr has been called on the arguments of the comparison,
10975 we are committed to doing the store flag, since it is not safe to
10976 re-evaluate the expression. We emit the store-flag insn by calling
10977 emit_store_flag, but only expand the arguments if we have a reason
10978 to believe that emit_store_flag will be successful. If we think that
10979 it will, but it isn't, we have to simulate the store-flag with a
10980 set/jump/set sequence. */
10983 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
10985 enum rtx_code code
;
10986 tree arg0
, arg1
, type
;
10988 machine_mode operand_mode
;
10991 rtx subtarget
= target
;
10992 location_t loc
= ops
->location
;
10997 /* Don't crash if the comparison was erroneous. */
10998 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
11001 type
= TREE_TYPE (arg0
);
11002 operand_mode
= TYPE_MODE (type
);
11003 unsignedp
= TYPE_UNSIGNED (type
);
11005 /* We won't bother with BLKmode store-flag operations because it would mean
11006 passing a lot of information to emit_store_flag. */
11007 if (operand_mode
== BLKmode
)
11010 /* We won't bother with store-flag operations involving function pointers
11011 when function pointers must be canonicalized before comparisons. */
11012 #ifdef HAVE_canonicalize_funcptr_for_compare
11013 if (HAVE_canonicalize_funcptr_for_compare
11014 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
11015 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
11017 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
11018 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
11019 == FUNCTION_TYPE
))))
11026 /* For vector typed comparisons emit code to generate the desired
11027 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11028 expander for this. */
11029 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
11031 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
11032 tree if_true
= constant_boolean_node (true, ops
->type
);
11033 tree if_false
= constant_boolean_node (false, ops
->type
);
11034 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
11037 /* Get the rtx comparison code to use. We know that EXP is a comparison
11038 operation of some type. Some comparisons against 1 and -1 can be
11039 converted to comparisons with zero. Do so here so that the tests
11040 below will be aware that we have a comparison with zero. These
11041 tests will not catch constants in the first operand, but constants
11042 are rarely passed as the first operand. */
11053 if (integer_onep (arg1
))
11054 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
11056 code
= unsignedp
? LTU
: LT
;
11059 if (! unsignedp
&& integer_all_onesp (arg1
))
11060 arg1
= integer_zero_node
, code
= LT
;
11062 code
= unsignedp
? LEU
: LE
;
11065 if (! unsignedp
&& integer_all_onesp (arg1
))
11066 arg1
= integer_zero_node
, code
= GE
;
11068 code
= unsignedp
? GTU
: GT
;
11071 if (integer_onep (arg1
))
11072 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
11074 code
= unsignedp
? GEU
: GE
;
11077 case UNORDERED_EXPR
:
11103 gcc_unreachable ();
11106 /* Put a constant second. */
11107 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
11108 || TREE_CODE (arg0
) == FIXED_CST
)
11110 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
11111 code
= swap_condition (code
);
11114 /* If this is an equality or inequality test of a single bit, we can
11115 do this by shifting the bit being tested to the low-order bit and
11116 masking the result with the constant 1. If the condition was EQ,
11117 we xor it with 1. This does not require an scc insn and is faster
11118 than an scc insn even if we have it.
11120 The code to make this transformation was moved into fold_single_bit_test,
11121 so we just call into the folder and expand its result. */
11123 if ((code
== NE
|| code
== EQ
)
11124 && integer_zerop (arg1
)
11125 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
11127 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
11129 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
11131 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
11132 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
11133 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
11134 gimple_assign_rhs1 (srcstmt
),
11135 gimple_assign_rhs2 (srcstmt
));
11136 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
11138 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
11142 if (! get_subtarget (target
)
11143 || GET_MODE (subtarget
) != operand_mode
)
11146 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
11149 target
= gen_reg_rtx (mode
);
11151 /* Try a cstore if possible. */
11152 return emit_store_flag_force (target
, code
, op0
, op1
,
11153 operand_mode
, unsignedp
,
11154 (TYPE_PRECISION (ops
->type
) == 1
11155 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
11159 /* Stubs in case we haven't got a casesi insn. */
11160 #ifndef HAVE_casesi
11161 # define HAVE_casesi 0
11162 # define gen_casesi(a, b, c, d, e) (0)
11163 # define CODE_FOR_casesi CODE_FOR_nothing
11166 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11167 0 otherwise (i.e. if there is no casesi instruction).
11169 DEFAULT_PROBABILITY is the probability of jumping to the default
11172 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
11173 rtx table_label
, rtx default_label
, rtx fallback_label
,
11174 int default_probability
)
11176 struct expand_operand ops
[5];
11177 machine_mode index_mode
= SImode
;
11178 rtx op1
, op2
, index
;
11183 /* Convert the index to SImode. */
11184 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
11186 machine_mode omode
= TYPE_MODE (index_type
);
11187 rtx rangertx
= expand_normal (range
);
11189 /* We must handle the endpoints in the original mode. */
11190 index_expr
= build2 (MINUS_EXPR
, index_type
,
11191 index_expr
, minval
);
11192 minval
= integer_zero_node
;
11193 index
= expand_normal (index_expr
);
11195 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
11196 omode
, 1, default_label
,
11197 default_probability
);
11198 /* Now we can safely truncate. */
11199 index
= convert_to_mode (index_mode
, index
, 0);
11203 if (TYPE_MODE (index_type
) != index_mode
)
11205 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
11206 index_expr
= fold_convert (index_type
, index_expr
);
11209 index
= expand_normal (index_expr
);
11212 do_pending_stack_adjust ();
11214 op1
= expand_normal (minval
);
11215 op2
= expand_normal (range
);
11217 create_input_operand (&ops
[0], index
, index_mode
);
11218 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
11219 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
11220 create_fixed_operand (&ops
[3], table_label
);
11221 create_fixed_operand (&ops
[4], (default_label
11223 : fallback_label
));
11224 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
11228 /* Attempt to generate a tablejump instruction; same concept. */
11229 /* Subroutine of the next function.
11231 INDEX is the value being switched on, with the lowest value
11232 in the table already subtracted.
11233 MODE is its expected mode (needed if INDEX is constant).
11234 RANGE is the length of the jump table.
11235 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11237 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11238 index value is out of range.
11239 DEFAULT_PROBABILITY is the probability of jumping to
11240 the default label. */
11243 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
11244 rtx default_label
, int default_probability
)
11248 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
11249 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
11251 /* Do an unsigned comparison (in the proper mode) between the index
11252 expression and the value which represents the length of the range.
11253 Since we just finished subtracting the lower bound of the range
11254 from the index expression, this comparison allows us to simultaneously
11255 check that the original index expression value is both greater than
11256 or equal to the minimum value of the range and less than or equal to
11257 the maximum value of the range. */
11260 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
11261 default_label
, default_probability
);
11264 /* If index is in range, it must fit in Pmode.
11265 Convert to Pmode so we can index with it. */
11267 index
= convert_to_mode (Pmode
, index
, 1);
11269 /* Don't let a MEM slip through, because then INDEX that comes
11270 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11271 and break_out_memory_refs will go to work on it and mess it up. */
11272 #ifdef PIC_CASE_VECTOR_ADDRESS
11273 if (flag_pic
&& !REG_P (index
))
11274 index
= copy_to_mode_reg (Pmode
, index
);
11277 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11278 GET_MODE_SIZE, because this indicates how large insns are. The other
11279 uses should all be Pmode, because they are addresses. This code
11280 could fail if addresses and insns are not the same size. */
11281 index
= simplify_gen_binary (MULT
, Pmode
, index
,
11282 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
11284 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
11285 gen_rtx_LABEL_REF (Pmode
, table_label
));
11287 #ifdef PIC_CASE_VECTOR_ADDRESS
11289 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11292 index
= memory_address (CASE_VECTOR_MODE
, index
);
11293 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11294 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11295 convert_move (temp
, vector
, 0);
11297 emit_jump_insn (gen_tablejump (temp
, table_label
));
11299 /* If we are generating PIC code or if the table is PC-relative, the
11300 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11301 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11306 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11307 rtx table_label
, rtx default_label
, int default_probability
)
11311 if (! HAVE_tablejump
)
11314 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11315 fold_convert (index_type
, index_expr
),
11316 fold_convert (index_type
, minval
));
11317 index
= expand_normal (index_expr
);
11318 do_pending_stack_adjust ();
11320 do_tablejump (index
, TYPE_MODE (index_type
),
11321 convert_modes (TYPE_MODE (index_type
),
11322 TYPE_MODE (TREE_TYPE (range
)),
11323 expand_normal (range
),
11324 TYPE_UNSIGNED (TREE_TYPE (range
))),
11325 table_label
, default_label
, default_probability
);
11329 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11331 const_vector_from_tree (tree exp
)
11337 machine_mode inner
, mode
;
11339 mode
= TYPE_MODE (TREE_TYPE (exp
));
11341 if (initializer_zerop (exp
))
11342 return CONST0_RTX (mode
);
11344 units
= GET_MODE_NUNITS (mode
);
11345 inner
= GET_MODE_INNER (mode
);
11347 v
= rtvec_alloc (units
);
11349 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11351 elt
= VECTOR_CST_ELT (exp
, i
);
11353 if (TREE_CODE (elt
) == REAL_CST
)
11354 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11356 else if (TREE_CODE (elt
) == FIXED_CST
)
11357 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11360 RTVEC_ELT (v
, i
) = immed_wide_int_const (elt
, inner
);
11363 return gen_rtx_CONST_VECTOR (mode
, v
);
11366 /* Build a decl for a personality function given a language prefix. */
11369 build_personality_function (const char *lang
)
11371 const char *unwind_and_version
;
11375 switch (targetm_common
.except_unwind_info (&global_options
))
11380 unwind_and_version
= "_sj0";
11384 unwind_and_version
= "_v0";
11387 unwind_and_version
= "_seh0";
11390 gcc_unreachable ();
11393 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11395 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11396 long_long_unsigned_type_node
,
11397 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11398 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11399 get_identifier (name
), type
);
11400 DECL_ARTIFICIAL (decl
) = 1;
11401 DECL_EXTERNAL (decl
) = 1;
11402 TREE_PUBLIC (decl
) = 1;
11404 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11405 are the flags assigned by targetm.encode_section_info. */
11406 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11411 /* Extracts the personality function of DECL and returns the corresponding
11415 get_personality_function (tree decl
)
11417 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11418 enum eh_personality_kind pk
;
11420 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11421 if (pk
== eh_personality_none
)
11425 && pk
== eh_personality_any
)
11426 personality
= lang_hooks
.eh_personality ();
11428 if (pk
== eh_personality_lang
)
11429 gcc_assert (personality
!= NULL_TREE
);
11431 return XEXP (DECL_RTL (personality
), 0);
11434 /* Returns a tree for the size of EXP in bytes. */
11437 tree_expr_size (const_tree exp
)
11440 && DECL_SIZE_UNIT (exp
) != 0)
11441 return DECL_SIZE_UNIT (exp
);
11443 return size_in_bytes (TREE_TYPE (exp
));
11446 /* Return an rtx for the size in bytes of the value of EXP. */
11449 expr_size (tree exp
)
11453 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
11454 size
= TREE_OPERAND (exp
, 1);
11457 size
= tree_expr_size (exp
);
11459 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
11462 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
11465 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11466 if the size can vary or is larger than an integer. */
11468 static HOST_WIDE_INT
11469 int_expr_size (tree exp
)
11473 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
11474 size
= TREE_OPERAND (exp
, 1);
11477 size
= tree_expr_size (exp
);
11481 if (size
== 0 || !tree_fits_shwi_p (size
))
11484 return tree_to_shwi (size
);
11487 #include "gt-expr.h"