match.pd: Relax some tree_nop_conversion_p
[official-gcc.git] / gcc / tree-cfg.c
blob7c2ee78bdfbdebb85e4ed8eec12d8bcafc77d352
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-low.h"
58 #include "tree-cfgcleanup.h"
59 #include "gimplify.h"
60 #include "attribs.h"
62 /* This file contains functions for building the Control Flow Graph (CFG)
63 for a function tree. */
65 /* Local declarations. */
67 /* Initial capacity for the basic block array. */
68 static const int initial_cfg_capacity = 20;
70 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
71 which use a particular edge. The CASE_LABEL_EXPRs are chained together
72 via their CASE_CHAIN field, which we clear after we're done with the
73 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
75 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
76 update the case vector in response to edge redirections.
78 Right now this table is set up and torn down at key points in the
79 compilation process. It would be nice if we could make the table
80 more persistent. The key is getting notification of changes to
81 the CFG (particularly edge removal, creation and redirection). */
83 static hash_map<edge, tree> *edge_to_cases;
85 /* If we record edge_to_cases, this bitmap will hold indexes
86 of basic blocks that end in a GIMPLE_SWITCH which we touched
87 due to edge manipulations. */
89 static bitmap touched_switch_bbs;
91 /* CFG statistics. */
92 struct cfg_stats_d
94 long num_merged_labels;
97 static struct cfg_stats_d cfg_stats;
99 /* Data to pass to replace_block_vars_by_duplicates_1. */
100 struct replace_decls_d
102 hash_map<tree, tree> *vars_map;
103 tree to_context;
106 /* Hash table to store last discriminator assigned for each locus. */
107 struct locus_discrim_map
109 location_t locus;
110 int discriminator;
113 /* Hashtable helpers. */
115 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
117 static inline hashval_t hash (const locus_discrim_map *);
118 static inline bool equal (const locus_discrim_map *,
119 const locus_discrim_map *);
122 /* Trivial hash function for a location_t. ITEM is a pointer to
123 a hash table entry that maps a location_t to a discriminator. */
125 inline hashval_t
126 locus_discrim_hasher::hash (const locus_discrim_map *item)
128 return LOCATION_LINE (item->locus);
131 /* Equality function for the locus-to-discriminator map. A and B
132 point to the two hash table entries to compare. */
134 inline bool
135 locus_discrim_hasher::equal (const locus_discrim_map *a,
136 const locus_discrim_map *b)
138 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
141 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
143 /* Basic blocks and flowgraphs. */
144 static void make_blocks (gimple_seq);
146 /* Edges. */
147 static void make_edges (void);
148 static void assign_discriminators (void);
149 static void make_cond_expr_edges (basic_block);
150 static void make_gimple_switch_edges (gswitch *, basic_block);
151 static bool make_goto_expr_edges (basic_block);
152 static void make_gimple_asm_edges (basic_block);
153 static edge gimple_redirect_edge_and_branch (edge, basic_block);
154 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
156 /* Various helpers. */
157 static inline bool stmt_starts_bb_p (gimple *, gimple *);
158 static int gimple_verify_flow_info (void);
159 static void gimple_make_forwarder_block (edge);
160 static gimple *first_non_label_stmt (basic_block);
161 static bool verify_gimple_transaction (gtransaction *);
162 static bool call_can_make_abnormal_goto (gimple *);
164 /* Flowgraph optimization and cleanup. */
165 static void gimple_merge_blocks (basic_block, basic_block);
166 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
167 static void remove_bb (basic_block);
168 static edge find_taken_edge_computed_goto (basic_block, tree);
169 static edge find_taken_edge_cond_expr (basic_block, tree);
170 static edge find_taken_edge_switch_expr (gswitch *, basic_block, tree);
171 static tree find_case_label_for_value (gswitch *, tree);
173 void
174 init_empty_tree_cfg_for_function (struct function *fn)
176 /* Initialize the basic block array. */
177 init_flow (fn);
178 profile_status_for_fn (fn) = PROFILE_ABSENT;
179 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
180 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
181 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
182 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
183 initial_cfg_capacity);
185 /* Build a mapping of labels to their associated blocks. */
186 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
188 initial_cfg_capacity);
190 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
191 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
193 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
194 = EXIT_BLOCK_PTR_FOR_FN (fn);
195 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
196 = ENTRY_BLOCK_PTR_FOR_FN (fn);
199 void
200 init_empty_tree_cfg (void)
202 init_empty_tree_cfg_for_function (cfun);
205 /*---------------------------------------------------------------------------
206 Create basic blocks
207 ---------------------------------------------------------------------------*/
209 /* Entry point to the CFG builder for trees. SEQ is the sequence of
210 statements to be added to the flowgraph. */
212 static void
213 build_gimple_cfg (gimple_seq seq)
215 /* Register specific gimple functions. */
216 gimple_register_cfg_hooks ();
218 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
220 init_empty_tree_cfg ();
222 make_blocks (seq);
224 /* Make sure there is always at least one block, even if it's empty. */
225 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
226 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
228 /* Adjust the size of the array. */
229 if (basic_block_info_for_fn (cfun)->length ()
230 < (size_t) n_basic_blocks_for_fn (cfun))
231 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
232 n_basic_blocks_for_fn (cfun));
234 /* To speed up statement iterator walks, we first purge dead labels. */
235 cleanup_dead_labels ();
237 /* Group case nodes to reduce the number of edges.
238 We do this after cleaning up dead labels because otherwise we miss
239 a lot of obvious case merging opportunities. */
240 group_case_labels ();
242 /* Create the edges of the flowgraph. */
243 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
244 make_edges ();
245 assign_discriminators ();
246 cleanup_dead_labels ();
247 delete discriminator_per_locus;
248 discriminator_per_locus = NULL;
251 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
252 them and propagate the information to LOOP. We assume that the annotations
253 come immediately before the condition in BB, if any. */
255 static void
256 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
258 gimple_stmt_iterator gsi = gsi_last_bb (bb);
259 gimple *stmt = gsi_stmt (gsi);
261 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
262 return;
264 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
266 stmt = gsi_stmt (gsi);
267 if (gimple_code (stmt) != GIMPLE_CALL)
268 break;
269 if (!gimple_call_internal_p (stmt)
270 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
271 break;
273 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
275 case annot_expr_ivdep_kind:
276 loop->safelen = INT_MAX;
277 break;
278 case annot_expr_no_vector_kind:
279 loop->dont_vectorize = true;
280 break;
281 case annot_expr_vector_kind:
282 loop->force_vectorize = true;
283 cfun->has_force_vectorize_loops = true;
284 break;
285 default:
286 gcc_unreachable ();
289 stmt = gimple_build_assign (gimple_call_lhs (stmt),
290 gimple_call_arg (stmt, 0));
291 gsi_replace (&gsi, stmt, true);
295 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
296 them and propagate the information to the loop. We assume that the
297 annotations come immediately before the condition of the loop. */
299 static void
300 replace_loop_annotate (void)
302 struct loop *loop;
303 basic_block bb;
304 gimple_stmt_iterator gsi;
305 gimple *stmt;
307 FOR_EACH_LOOP (loop, 0)
309 /* First look into the header. */
310 replace_loop_annotate_in_block (loop->header, loop);
312 /* Then look into the latch, if any. */
313 if (loop->latch)
314 replace_loop_annotate_in_block (loop->latch, loop);
317 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
318 FOR_EACH_BB_FN (bb, cfun)
320 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
322 stmt = gsi_stmt (gsi);
323 if (gimple_code (stmt) != GIMPLE_CALL)
324 continue;
325 if (!gimple_call_internal_p (stmt)
326 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
327 continue;
329 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
331 case annot_expr_ivdep_kind:
332 case annot_expr_no_vector_kind:
333 case annot_expr_vector_kind:
334 break;
335 default:
336 gcc_unreachable ();
339 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
340 stmt = gimple_build_assign (gimple_call_lhs (stmt),
341 gimple_call_arg (stmt, 0));
342 gsi_replace (&gsi, stmt, true);
348 static unsigned int
349 execute_build_cfg (void)
351 gimple_seq body = gimple_body (current_function_decl);
353 build_gimple_cfg (body);
354 gimple_set_body (current_function_decl, NULL);
355 if (dump_file && (dump_flags & TDF_DETAILS))
357 fprintf (dump_file, "Scope blocks:\n");
358 dump_scope_blocks (dump_file, dump_flags);
360 cleanup_tree_cfg ();
361 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
362 replace_loop_annotate ();
363 return 0;
366 namespace {
368 const pass_data pass_data_build_cfg =
370 GIMPLE_PASS, /* type */
371 "cfg", /* name */
372 OPTGROUP_NONE, /* optinfo_flags */
373 TV_TREE_CFG, /* tv_id */
374 PROP_gimple_leh, /* properties_required */
375 ( PROP_cfg | PROP_loops ), /* properties_provided */
376 0, /* properties_destroyed */
377 0, /* todo_flags_start */
378 0, /* todo_flags_finish */
381 class pass_build_cfg : public gimple_opt_pass
383 public:
384 pass_build_cfg (gcc::context *ctxt)
385 : gimple_opt_pass (pass_data_build_cfg, ctxt)
388 /* opt_pass methods: */
389 virtual unsigned int execute (function *) { return execute_build_cfg (); }
391 }; // class pass_build_cfg
393 } // anon namespace
395 gimple_opt_pass *
396 make_pass_build_cfg (gcc::context *ctxt)
398 return new pass_build_cfg (ctxt);
402 /* Return true if T is a computed goto. */
404 bool
405 computed_goto_p (gimple *t)
407 return (gimple_code (t) == GIMPLE_GOTO
408 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
411 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
412 the other edge points to a bb with just __builtin_unreachable ().
413 I.e. return true for C->M edge in:
414 <bb C>:
416 if (something)
417 goto <bb N>;
418 else
419 goto <bb M>;
420 <bb N>:
421 __builtin_unreachable ();
422 <bb M>: */
424 bool
425 assert_unreachable_fallthru_edge_p (edge e)
427 basic_block pred_bb = e->src;
428 gimple *last = last_stmt (pred_bb);
429 if (last && gimple_code (last) == GIMPLE_COND)
431 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
432 if (other_bb == e->dest)
433 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
434 if (EDGE_COUNT (other_bb->succs) == 0)
436 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
437 gimple *stmt;
439 if (gsi_end_p (gsi))
440 return false;
441 stmt = gsi_stmt (gsi);
442 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
444 gsi_next (&gsi);
445 if (gsi_end_p (gsi))
446 return false;
447 stmt = gsi_stmt (gsi);
449 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
452 return false;
456 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
457 could alter control flow except via eh. We initialize the flag at
458 CFG build time and only ever clear it later. */
460 static void
461 gimple_call_initialize_ctrl_altering (gimple *stmt)
463 int flags = gimple_call_flags (stmt);
465 /* A call alters control flow if it can make an abnormal goto. */
466 if (call_can_make_abnormal_goto (stmt)
467 /* A call also alters control flow if it does not return. */
468 || flags & ECF_NORETURN
469 /* TM ending statements have backedges out of the transaction.
470 Return true so we split the basic block containing them.
471 Note that the TM_BUILTIN test is merely an optimization. */
472 || ((flags & ECF_TM_BUILTIN)
473 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
474 /* BUILT_IN_RETURN call is same as return statement. */
475 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
476 /* IFN_UNIQUE should be the last insn, to make checking for it
477 as cheap as possible. */
478 || (gimple_call_internal_p (stmt)
479 && gimple_call_internal_unique_p (stmt)))
480 gimple_call_set_ctrl_altering (stmt, true);
481 else
482 gimple_call_set_ctrl_altering (stmt, false);
486 /* Insert SEQ after BB and build a flowgraph. */
488 static basic_block
489 make_blocks_1 (gimple_seq seq, basic_block bb)
491 gimple_stmt_iterator i = gsi_start (seq);
492 gimple *stmt = NULL;
493 bool start_new_block = true;
494 bool first_stmt_of_seq = true;
496 while (!gsi_end_p (i))
498 gimple *prev_stmt;
500 prev_stmt = stmt;
501 stmt = gsi_stmt (i);
503 if (stmt && is_gimple_call (stmt))
504 gimple_call_initialize_ctrl_altering (stmt);
506 /* If the statement starts a new basic block or if we have determined
507 in a previous pass that we need to create a new block for STMT, do
508 so now. */
509 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
511 if (!first_stmt_of_seq)
512 gsi_split_seq_before (&i, &seq);
513 bb = create_basic_block (seq, bb);
514 start_new_block = false;
517 /* Now add STMT to BB and create the subgraphs for special statement
518 codes. */
519 gimple_set_bb (stmt, bb);
521 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
522 next iteration. */
523 if (stmt_ends_bb_p (stmt))
525 /* If the stmt can make abnormal goto use a new temporary
526 for the assignment to the LHS. This makes sure the old value
527 of the LHS is available on the abnormal edge. Otherwise
528 we will end up with overlapping life-ranges for abnormal
529 SSA names. */
530 if (gimple_has_lhs (stmt)
531 && stmt_can_make_abnormal_goto (stmt)
532 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
534 tree lhs = gimple_get_lhs (stmt);
535 tree tmp = create_tmp_var (TREE_TYPE (lhs));
536 gimple *s = gimple_build_assign (lhs, tmp);
537 gimple_set_location (s, gimple_location (stmt));
538 gimple_set_block (s, gimple_block (stmt));
539 gimple_set_lhs (stmt, tmp);
540 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
541 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
542 DECL_GIMPLE_REG_P (tmp) = 1;
543 gsi_insert_after (&i, s, GSI_SAME_STMT);
545 start_new_block = true;
548 gsi_next (&i);
549 first_stmt_of_seq = false;
551 return bb;
554 /* Build a flowgraph for the sequence of stmts SEQ. */
556 static void
557 make_blocks (gimple_seq seq)
559 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
562 /* Create and return a new empty basic block after bb AFTER. */
564 static basic_block
565 create_bb (void *h, void *e, basic_block after)
567 basic_block bb;
569 gcc_assert (!e);
571 /* Create and initialize a new basic block. Since alloc_block uses
572 GC allocation that clears memory to allocate a basic block, we do
573 not have to clear the newly allocated basic block here. */
574 bb = alloc_block ();
576 bb->index = last_basic_block_for_fn (cfun);
577 bb->flags = BB_NEW;
578 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
580 /* Add the new block to the linked list of blocks. */
581 link_block (bb, after);
583 /* Grow the basic block array if needed. */
584 if ((size_t) last_basic_block_for_fn (cfun)
585 == basic_block_info_for_fn (cfun)->length ())
587 size_t new_size =
588 (last_basic_block_for_fn (cfun)
589 + (last_basic_block_for_fn (cfun) + 3) / 4);
590 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
593 /* Add the newly created block to the array. */
594 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
596 n_basic_blocks_for_fn (cfun)++;
597 last_basic_block_for_fn (cfun)++;
599 return bb;
603 /*---------------------------------------------------------------------------
604 Edge creation
605 ---------------------------------------------------------------------------*/
607 /* If basic block BB has an abnormal edge to a basic block
608 containing IFN_ABNORMAL_DISPATCHER internal call, return
609 that the dispatcher's basic block, otherwise return NULL. */
611 basic_block
612 get_abnormal_succ_dispatcher (basic_block bb)
614 edge e;
615 edge_iterator ei;
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
620 gimple_stmt_iterator gsi
621 = gsi_start_nondebug_after_labels_bb (e->dest);
622 gimple *g = gsi_stmt (gsi);
623 if (g
624 && is_gimple_call (g)
625 && gimple_call_internal_p (g)
626 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
627 return e->dest;
629 return NULL;
632 /* Helper function for make_edges. Create a basic block with
633 with ABNORMAL_DISPATCHER internal call in it if needed, and
634 create abnormal edges from BBS to it and from it to FOR_BB
635 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
637 static void
638 handle_abnormal_edges (basic_block *dispatcher_bbs,
639 basic_block for_bb, int *bb_to_omp_idx,
640 auto_vec<basic_block> *bbs, bool computed_goto)
642 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
643 unsigned int idx = 0;
644 basic_block bb;
645 bool inner = false;
647 if (bb_to_omp_idx)
649 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
650 if (bb_to_omp_idx[for_bb->index] != 0)
651 inner = true;
654 /* If the dispatcher has been created already, then there are basic
655 blocks with abnormal edges to it, so just make a new edge to
656 for_bb. */
657 if (*dispatcher == NULL)
659 /* Check if there are any basic blocks that need to have
660 abnormal edges to this dispatcher. If there are none, return
661 early. */
662 if (bb_to_omp_idx == NULL)
664 if (bbs->is_empty ())
665 return;
667 else
669 FOR_EACH_VEC_ELT (*bbs, idx, bb)
670 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
671 break;
672 if (bb == NULL)
673 return;
676 /* Create the dispatcher bb. */
677 *dispatcher = create_basic_block (NULL, for_bb);
678 if (computed_goto)
680 /* Factor computed gotos into a common computed goto site. Also
681 record the location of that site so that we can un-factor the
682 gotos after we have converted back to normal form. */
683 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
685 /* Create the destination of the factored goto. Each original
686 computed goto will put its desired destination into this
687 variable and jump to the label we create immediately below. */
688 tree var = create_tmp_var (ptr_type_node, "gotovar");
690 /* Build a label for the new block which will contain the
691 factored computed goto. */
692 tree factored_label_decl
693 = create_artificial_label (UNKNOWN_LOCATION);
694 gimple *factored_computed_goto_label
695 = gimple_build_label (factored_label_decl);
696 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
698 /* Build our new computed goto. */
699 gimple *factored_computed_goto = gimple_build_goto (var);
700 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
702 FOR_EACH_VEC_ELT (*bbs, idx, bb)
704 if (bb_to_omp_idx
705 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
706 continue;
708 gsi = gsi_last_bb (bb);
709 gimple *last = gsi_stmt (gsi);
711 gcc_assert (computed_goto_p (last));
713 /* Copy the original computed goto's destination into VAR. */
714 gimple *assignment
715 = gimple_build_assign (var, gimple_goto_dest (last));
716 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
718 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
719 e->goto_locus = gimple_location (last);
720 gsi_remove (&gsi, true);
723 else
725 tree arg = inner ? boolean_true_node : boolean_false_node;
726 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
727 1, arg);
728 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
729 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
731 /* Create predecessor edges of the dispatcher. */
732 FOR_EACH_VEC_ELT (*bbs, idx, bb)
734 if (bb_to_omp_idx
735 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
736 continue;
737 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
742 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
745 /* Creates outgoing edges for BB. Returns 1 when it ends with an
746 computed goto, returns 2 when it ends with a statement that
747 might return to this function via an nonlocal goto, otherwise
748 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
750 static int
751 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
753 gimple *last = last_stmt (bb);
754 bool fallthru = false;
755 int ret = 0;
757 if (!last)
758 return ret;
760 switch (gimple_code (last))
762 case GIMPLE_GOTO:
763 if (make_goto_expr_edges (bb))
764 ret = 1;
765 fallthru = false;
766 break;
767 case GIMPLE_RETURN:
769 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
770 e->goto_locus = gimple_location (last);
771 fallthru = false;
773 break;
774 case GIMPLE_COND:
775 make_cond_expr_edges (bb);
776 fallthru = false;
777 break;
778 case GIMPLE_SWITCH:
779 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
780 fallthru = false;
781 break;
782 case GIMPLE_RESX:
783 make_eh_edges (last);
784 fallthru = false;
785 break;
786 case GIMPLE_EH_DISPATCH:
787 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
788 break;
790 case GIMPLE_CALL:
791 /* If this function receives a nonlocal goto, then we need to
792 make edges from this call site to all the nonlocal goto
793 handlers. */
794 if (stmt_can_make_abnormal_goto (last))
795 ret = 2;
797 /* If this statement has reachable exception handlers, then
798 create abnormal edges to them. */
799 make_eh_edges (last);
801 /* BUILTIN_RETURN is really a return statement. */
802 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
804 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
805 fallthru = false;
807 /* Some calls are known not to return. */
808 else
809 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
810 break;
812 case GIMPLE_ASSIGN:
813 /* A GIMPLE_ASSIGN may throw internally and thus be considered
814 control-altering. */
815 if (is_ctrl_altering_stmt (last))
816 make_eh_edges (last);
817 fallthru = true;
818 break;
820 case GIMPLE_ASM:
821 make_gimple_asm_edges (bb);
822 fallthru = true;
823 break;
825 CASE_GIMPLE_OMP:
826 fallthru = make_gimple_omp_edges (bb, pcur_region, pomp_index);
827 break;
829 case GIMPLE_TRANSACTION:
831 gtransaction *txn = as_a <gtransaction *> (last);
832 tree label1 = gimple_transaction_label_norm (txn);
833 tree label2 = gimple_transaction_label_uninst (txn);
835 if (label1)
836 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
837 if (label2)
838 make_edge (bb, label_to_block (label2),
839 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
841 tree label3 = gimple_transaction_label_over (txn);
842 if (gimple_transaction_subcode (txn)
843 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
844 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
846 fallthru = false;
848 break;
850 default:
851 gcc_assert (!stmt_ends_bb_p (last));
852 fallthru = true;
853 break;
856 if (fallthru)
857 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
859 return ret;
862 /* Join all the blocks in the flowgraph. */
864 static void
865 make_edges (void)
867 basic_block bb;
868 struct omp_region *cur_region = NULL;
869 auto_vec<basic_block> ab_edge_goto;
870 auto_vec<basic_block> ab_edge_call;
871 int *bb_to_omp_idx = NULL;
872 int cur_omp_region_idx = 0;
874 /* Create an edge from entry to the first block with executable
875 statements in it. */
876 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
877 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
878 EDGE_FALLTHRU);
880 /* Traverse the basic block array placing edges. */
881 FOR_EACH_BB_FN (bb, cfun)
883 int mer;
885 if (bb_to_omp_idx)
886 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
888 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
889 if (mer == 1)
890 ab_edge_goto.safe_push (bb);
891 else if (mer == 2)
892 ab_edge_call.safe_push (bb);
894 if (cur_region && bb_to_omp_idx == NULL)
895 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
898 /* Computed gotos are hell to deal with, especially if there are
899 lots of them with a large number of destinations. So we factor
900 them to a common computed goto location before we build the
901 edge list. After we convert back to normal form, we will un-factor
902 the computed gotos since factoring introduces an unwanted jump.
903 For non-local gotos and abnormal edges from calls to calls that return
904 twice or forced labels, factor the abnormal edges too, by having all
905 abnormal edges from the calls go to a common artificial basic block
906 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
907 basic block to all forced labels and calls returning twice.
908 We do this per-OpenMP structured block, because those regions
909 are guaranteed to be single entry single exit by the standard,
910 so it is not allowed to enter or exit such regions abnormally this way,
911 thus all computed gotos, non-local gotos and setjmp/longjmp calls
912 must not transfer control across SESE region boundaries. */
913 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
915 gimple_stmt_iterator gsi;
916 basic_block dispatcher_bb_array[2] = { NULL, NULL };
917 basic_block *dispatcher_bbs = dispatcher_bb_array;
918 int count = n_basic_blocks_for_fn (cfun);
920 if (bb_to_omp_idx)
921 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
923 FOR_EACH_BB_FN (bb, cfun)
925 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
927 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
928 tree target;
930 if (!label_stmt)
931 break;
933 target = gimple_label_label (label_stmt);
935 /* Make an edge to every label block that has been marked as a
936 potential target for a computed goto or a non-local goto. */
937 if (FORCED_LABEL (target))
938 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
939 &ab_edge_goto, true);
940 if (DECL_NONLOCAL (target))
942 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
943 &ab_edge_call, false);
944 break;
948 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
949 gsi_next_nondebug (&gsi);
950 if (!gsi_end_p (gsi))
952 /* Make an edge to every setjmp-like call. */
953 gimple *call_stmt = gsi_stmt (gsi);
954 if (is_gimple_call (call_stmt)
955 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
956 || gimple_call_builtin_p (call_stmt,
957 BUILT_IN_SETJMP_RECEIVER)))
958 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
959 &ab_edge_call, false);
963 if (bb_to_omp_idx)
964 XDELETE (dispatcher_bbs);
967 XDELETE (bb_to_omp_idx);
969 free_omp_regions ();
972 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
973 needed. Returns true if new bbs were created.
974 Note: This is transitional code, and should not be used for new code. We
975 should be able to get rid of this by rewriting all target va-arg
976 gimplification hooks to use an interface gimple_build_cond_value as described
977 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
979 bool
980 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
982 gimple *stmt = gsi_stmt (*gsi);
983 basic_block bb = gimple_bb (stmt);
984 basic_block lastbb, afterbb;
985 int old_num_bbs = n_basic_blocks_for_fn (cfun);
986 edge e;
987 lastbb = make_blocks_1 (seq, bb);
988 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
989 return false;
990 e = split_block (bb, stmt);
991 /* Move e->dest to come after the new basic blocks. */
992 afterbb = e->dest;
993 unlink_block (afterbb);
994 link_block (afterbb, lastbb);
995 redirect_edge_succ (e, bb->next_bb);
996 bb = bb->next_bb;
997 while (bb != afterbb)
999 struct omp_region *cur_region = NULL;
1000 int cur_omp_region_idx = 0;
1001 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1002 gcc_assert (!mer && !cur_region);
1003 add_bb_to_loop (bb, afterbb->loop_father);
1004 bb = bb->next_bb;
1006 return true;
1009 /* Find the next available discriminator value for LOCUS. The
1010 discriminator distinguishes among several basic blocks that
1011 share a common locus, allowing for more accurate sample-based
1012 profiling. */
1014 static int
1015 next_discriminator_for_locus (location_t locus)
1017 struct locus_discrim_map item;
1018 struct locus_discrim_map **slot;
1020 item.locus = locus;
1021 item.discriminator = 0;
1022 slot = discriminator_per_locus->find_slot_with_hash (
1023 &item, LOCATION_LINE (locus), INSERT);
1024 gcc_assert (slot);
1025 if (*slot == HTAB_EMPTY_ENTRY)
1027 *slot = XNEW (struct locus_discrim_map);
1028 gcc_assert (*slot);
1029 (*slot)->locus = locus;
1030 (*slot)->discriminator = 0;
1032 (*slot)->discriminator++;
1033 return (*slot)->discriminator;
1036 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1038 static bool
1039 same_line_p (location_t locus1, location_t locus2)
1041 expanded_location from, to;
1043 if (locus1 == locus2)
1044 return true;
1046 from = expand_location (locus1);
1047 to = expand_location (locus2);
1049 if (from.line != to.line)
1050 return false;
1051 if (from.file == to.file)
1052 return true;
1053 return (from.file != NULL
1054 && to.file != NULL
1055 && filename_cmp (from.file, to.file) == 0);
1058 /* Assign discriminators to each basic block. */
1060 static void
1061 assign_discriminators (void)
1063 basic_block bb;
1065 FOR_EACH_BB_FN (bb, cfun)
1067 edge e;
1068 edge_iterator ei;
1069 gimple *last = last_stmt (bb);
1070 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1072 if (locus == UNKNOWN_LOCATION)
1073 continue;
1075 FOR_EACH_EDGE (e, ei, bb->succs)
1077 gimple *first = first_non_label_stmt (e->dest);
1078 gimple *last = last_stmt (e->dest);
1079 if ((first && same_line_p (locus, gimple_location (first)))
1080 || (last && same_line_p (locus, gimple_location (last))))
1082 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1083 bb->discriminator = next_discriminator_for_locus (locus);
1084 else
1085 e->dest->discriminator = next_discriminator_for_locus (locus);
1091 /* Create the edges for a GIMPLE_COND starting at block BB. */
1093 static void
1094 make_cond_expr_edges (basic_block bb)
1096 gcond *entry = as_a <gcond *> (last_stmt (bb));
1097 gimple *then_stmt, *else_stmt;
1098 basic_block then_bb, else_bb;
1099 tree then_label, else_label;
1100 edge e;
1102 gcc_assert (entry);
1103 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1105 /* Entry basic blocks for each component. */
1106 then_label = gimple_cond_true_label (entry);
1107 else_label = gimple_cond_false_label (entry);
1108 then_bb = label_to_block (then_label);
1109 else_bb = label_to_block (else_label);
1110 then_stmt = first_stmt (then_bb);
1111 else_stmt = first_stmt (else_bb);
1113 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1114 e->goto_locus = gimple_location (then_stmt);
1115 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1116 if (e)
1117 e->goto_locus = gimple_location (else_stmt);
1119 /* We do not need the labels anymore. */
1120 gimple_cond_set_true_label (entry, NULL_TREE);
1121 gimple_cond_set_false_label (entry, NULL_TREE);
1125 /* Called for each element in the hash table (P) as we delete the
1126 edge to cases hash table.
1128 Clear all the TREE_CHAINs to prevent problems with copying of
1129 SWITCH_EXPRs and structure sharing rules, then free the hash table
1130 element. */
1132 bool
1133 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1135 tree t, next;
1137 for (t = value; t; t = next)
1139 next = CASE_CHAIN (t);
1140 CASE_CHAIN (t) = NULL;
1143 return true;
1146 /* Start recording information mapping edges to case labels. */
1148 void
1149 start_recording_case_labels (void)
1151 gcc_assert (edge_to_cases == NULL);
1152 edge_to_cases = new hash_map<edge, tree>;
1153 touched_switch_bbs = BITMAP_ALLOC (NULL);
1156 /* Return nonzero if we are recording information for case labels. */
1158 static bool
1159 recording_case_labels_p (void)
1161 return (edge_to_cases != NULL);
1164 /* Stop recording information mapping edges to case labels and
1165 remove any information we have recorded. */
1166 void
1167 end_recording_case_labels (void)
1169 bitmap_iterator bi;
1170 unsigned i;
1171 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1172 delete edge_to_cases;
1173 edge_to_cases = NULL;
1174 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1176 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1177 if (bb)
1179 gimple *stmt = last_stmt (bb);
1180 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1181 group_case_labels_stmt (as_a <gswitch *> (stmt));
1184 BITMAP_FREE (touched_switch_bbs);
1187 /* If we are inside a {start,end}_recording_cases block, then return
1188 a chain of CASE_LABEL_EXPRs from T which reference E.
1190 Otherwise return NULL. */
1192 static tree
1193 get_cases_for_edge (edge e, gswitch *t)
1195 tree *slot;
1196 size_t i, n;
1198 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1199 chains available. Return NULL so the caller can detect this case. */
1200 if (!recording_case_labels_p ())
1201 return NULL;
1203 slot = edge_to_cases->get (e);
1204 if (slot)
1205 return *slot;
1207 /* If we did not find E in the hash table, then this must be the first
1208 time we have been queried for information about E & T. Add all the
1209 elements from T to the hash table then perform the query again. */
1211 n = gimple_switch_num_labels (t);
1212 for (i = 0; i < n; i++)
1214 tree elt = gimple_switch_label (t, i);
1215 tree lab = CASE_LABEL (elt);
1216 basic_block label_bb = label_to_block (lab);
1217 edge this_edge = find_edge (e->src, label_bb);
1219 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1220 a new chain. */
1221 tree &s = edge_to_cases->get_or_insert (this_edge);
1222 CASE_CHAIN (elt) = s;
1223 s = elt;
1226 return *edge_to_cases->get (e);
1229 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1231 static void
1232 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1234 size_t i, n;
1236 n = gimple_switch_num_labels (entry);
1238 for (i = 0; i < n; ++i)
1240 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1241 basic_block label_bb = label_to_block (lab);
1242 make_edge (bb, label_bb, 0);
1247 /* Return the basic block holding label DEST. */
1249 basic_block
1250 label_to_block_fn (struct function *ifun, tree dest)
1252 int uid = LABEL_DECL_UID (dest);
1254 /* We would die hard when faced by an undefined label. Emit a label to
1255 the very first basic block. This will hopefully make even the dataflow
1256 and undefined variable warnings quite right. */
1257 if (seen_error () && uid < 0)
1259 gimple_stmt_iterator gsi =
1260 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1261 gimple *stmt;
1263 stmt = gimple_build_label (dest);
1264 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1265 uid = LABEL_DECL_UID (dest);
1267 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1268 return NULL;
1269 return (*ifun->cfg->x_label_to_block_map)[uid];
1272 /* Create edges for a goto statement at block BB. Returns true
1273 if abnormal edges should be created. */
1275 static bool
1276 make_goto_expr_edges (basic_block bb)
1278 gimple_stmt_iterator last = gsi_last_bb (bb);
1279 gimple *goto_t = gsi_stmt (last);
1281 /* A simple GOTO creates normal edges. */
1282 if (simple_goto_p (goto_t))
1284 tree dest = gimple_goto_dest (goto_t);
1285 basic_block label_bb = label_to_block (dest);
1286 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1287 e->goto_locus = gimple_location (goto_t);
1288 gsi_remove (&last, true);
1289 return false;
1292 /* A computed GOTO creates abnormal edges. */
1293 return true;
1296 /* Create edges for an asm statement with labels at block BB. */
1298 static void
1299 make_gimple_asm_edges (basic_block bb)
1301 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1302 int i, n = gimple_asm_nlabels (stmt);
1304 for (i = 0; i < n; ++i)
1306 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1307 basic_block label_bb = label_to_block (label);
1308 make_edge (bb, label_bb, 0);
1312 /*---------------------------------------------------------------------------
1313 Flowgraph analysis
1314 ---------------------------------------------------------------------------*/
1316 /* Cleanup useless labels in basic blocks. This is something we wish
1317 to do early because it allows us to group case labels before creating
1318 the edges for the CFG, and it speeds up block statement iterators in
1319 all passes later on.
1320 We rerun this pass after CFG is created, to get rid of the labels that
1321 are no longer referenced. After then we do not run it any more, since
1322 (almost) no new labels should be created. */
1324 /* A map from basic block index to the leading label of that block. */
1325 static struct label_record
1327 /* The label. */
1328 tree label;
1330 /* True if the label is referenced from somewhere. */
1331 bool used;
1332 } *label_for_bb;
1334 /* Given LABEL return the first label in the same basic block. */
1336 static tree
1337 main_block_label (tree label)
1339 basic_block bb = label_to_block (label);
1340 tree main_label = label_for_bb[bb->index].label;
1342 /* label_to_block possibly inserted undefined label into the chain. */
1343 if (!main_label)
1345 label_for_bb[bb->index].label = label;
1346 main_label = label;
1349 label_for_bb[bb->index].used = true;
1350 return main_label;
1353 /* Clean up redundant labels within the exception tree. */
1355 static void
1356 cleanup_dead_labels_eh (void)
1358 eh_landing_pad lp;
1359 eh_region r;
1360 tree lab;
1361 int i;
1363 if (cfun->eh == NULL)
1364 return;
1366 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1367 if (lp && lp->post_landing_pad)
1369 lab = main_block_label (lp->post_landing_pad);
1370 if (lab != lp->post_landing_pad)
1372 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1373 EH_LANDING_PAD_NR (lab) = lp->index;
1377 FOR_ALL_EH_REGION (r)
1378 switch (r->type)
1380 case ERT_CLEANUP:
1381 case ERT_MUST_NOT_THROW:
1382 break;
1384 case ERT_TRY:
1386 eh_catch c;
1387 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1389 lab = c->label;
1390 if (lab)
1391 c->label = main_block_label (lab);
1394 break;
1396 case ERT_ALLOWED_EXCEPTIONS:
1397 lab = r->u.allowed.label;
1398 if (lab)
1399 r->u.allowed.label = main_block_label (lab);
1400 break;
1405 /* Cleanup redundant labels. This is a three-step process:
1406 1) Find the leading label for each block.
1407 2) Redirect all references to labels to the leading labels.
1408 3) Cleanup all useless labels. */
1410 void
1411 cleanup_dead_labels (void)
1413 basic_block bb;
1414 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1416 /* Find a suitable label for each block. We use the first user-defined
1417 label if there is one, or otherwise just the first label we see. */
1418 FOR_EACH_BB_FN (bb, cfun)
1420 gimple_stmt_iterator i;
1422 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1424 tree label;
1425 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1427 if (!label_stmt)
1428 break;
1430 label = gimple_label_label (label_stmt);
1432 /* If we have not yet seen a label for the current block,
1433 remember this one and see if there are more labels. */
1434 if (!label_for_bb[bb->index].label)
1436 label_for_bb[bb->index].label = label;
1437 continue;
1440 /* If we did see a label for the current block already, but it
1441 is an artificially created label, replace it if the current
1442 label is a user defined label. */
1443 if (!DECL_ARTIFICIAL (label)
1444 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1446 label_for_bb[bb->index].label = label;
1447 break;
1452 /* Now redirect all jumps/branches to the selected label.
1453 First do so for each block ending in a control statement. */
1454 FOR_EACH_BB_FN (bb, cfun)
1456 gimple *stmt = last_stmt (bb);
1457 tree label, new_label;
1459 if (!stmt)
1460 continue;
1462 switch (gimple_code (stmt))
1464 case GIMPLE_COND:
1466 gcond *cond_stmt = as_a <gcond *> (stmt);
1467 label = gimple_cond_true_label (cond_stmt);
1468 if (label)
1470 new_label = main_block_label (label);
1471 if (new_label != label)
1472 gimple_cond_set_true_label (cond_stmt, new_label);
1475 label = gimple_cond_false_label (cond_stmt);
1476 if (label)
1478 new_label = main_block_label (label);
1479 if (new_label != label)
1480 gimple_cond_set_false_label (cond_stmt, new_label);
1483 break;
1485 case GIMPLE_SWITCH:
1487 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1488 size_t i, n = gimple_switch_num_labels (switch_stmt);
1490 /* Replace all destination labels. */
1491 for (i = 0; i < n; ++i)
1493 tree case_label = gimple_switch_label (switch_stmt, i);
1494 label = CASE_LABEL (case_label);
1495 new_label = main_block_label (label);
1496 if (new_label != label)
1497 CASE_LABEL (case_label) = new_label;
1499 break;
1502 case GIMPLE_ASM:
1504 gasm *asm_stmt = as_a <gasm *> (stmt);
1505 int i, n = gimple_asm_nlabels (asm_stmt);
1507 for (i = 0; i < n; ++i)
1509 tree cons = gimple_asm_label_op (asm_stmt, i);
1510 tree label = main_block_label (TREE_VALUE (cons));
1511 TREE_VALUE (cons) = label;
1513 break;
1516 /* We have to handle gotos until they're removed, and we don't
1517 remove them until after we've created the CFG edges. */
1518 case GIMPLE_GOTO:
1519 if (!computed_goto_p (stmt))
1521 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1522 label = gimple_goto_dest (goto_stmt);
1523 new_label = main_block_label (label);
1524 if (new_label != label)
1525 gimple_goto_set_dest (goto_stmt, new_label);
1527 break;
1529 case GIMPLE_TRANSACTION:
1531 gtransaction *txn = as_a <gtransaction *> (stmt);
1533 label = gimple_transaction_label_norm (txn);
1534 if (label)
1536 new_label = main_block_label (label);
1537 if (new_label != label)
1538 gimple_transaction_set_label_norm (txn, new_label);
1541 label = gimple_transaction_label_uninst (txn);
1542 if (label)
1544 new_label = main_block_label (label);
1545 if (new_label != label)
1546 gimple_transaction_set_label_uninst (txn, new_label);
1549 label = gimple_transaction_label_over (txn);
1550 if (label)
1552 new_label = main_block_label (label);
1553 if (new_label != label)
1554 gimple_transaction_set_label_over (txn, new_label);
1557 break;
1559 default:
1560 break;
1564 /* Do the same for the exception region tree labels. */
1565 cleanup_dead_labels_eh ();
1567 /* Finally, purge dead labels. All user-defined labels and labels that
1568 can be the target of non-local gotos and labels which have their
1569 address taken are preserved. */
1570 FOR_EACH_BB_FN (bb, cfun)
1572 gimple_stmt_iterator i;
1573 tree label_for_this_bb = label_for_bb[bb->index].label;
1575 if (!label_for_this_bb)
1576 continue;
1578 /* If the main label of the block is unused, we may still remove it. */
1579 if (!label_for_bb[bb->index].used)
1580 label_for_this_bb = NULL;
1582 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1584 tree label;
1585 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1587 if (!label_stmt)
1588 break;
1590 label = gimple_label_label (label_stmt);
1592 if (label == label_for_this_bb
1593 || !DECL_ARTIFICIAL (label)
1594 || DECL_NONLOCAL (label)
1595 || FORCED_LABEL (label))
1596 gsi_next (&i);
1597 else
1598 gsi_remove (&i, true);
1602 free (label_for_bb);
1605 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1606 the ones jumping to the same label.
1607 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1609 void
1610 group_case_labels_stmt (gswitch *stmt)
1612 int old_size = gimple_switch_num_labels (stmt);
1613 int i, j, new_size = old_size;
1614 basic_block default_bb = NULL;
1616 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1618 /* Look for possible opportunities to merge cases. */
1619 i = 1;
1620 while (i < old_size)
1622 tree base_case, base_high;
1623 basic_block base_bb;
1625 base_case = gimple_switch_label (stmt, i);
1627 gcc_assert (base_case);
1628 base_bb = label_to_block (CASE_LABEL (base_case));
1630 /* Discard cases that have the same destination as the
1631 default case. */
1632 if (base_bb == default_bb)
1634 gimple_switch_set_label (stmt, i, NULL_TREE);
1635 i++;
1636 new_size--;
1637 continue;
1640 base_high = CASE_HIGH (base_case)
1641 ? CASE_HIGH (base_case)
1642 : CASE_LOW (base_case);
1643 i++;
1645 /* Try to merge case labels. Break out when we reach the end
1646 of the label vector or when we cannot merge the next case
1647 label with the current one. */
1648 while (i < old_size)
1650 tree merge_case = gimple_switch_label (stmt, i);
1651 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1652 wide_int bhp1 = wi::add (base_high, 1);
1654 /* Merge the cases if they jump to the same place,
1655 and their ranges are consecutive. */
1656 if (merge_bb == base_bb
1657 && wi::eq_p (CASE_LOW (merge_case), bhp1))
1659 base_high = CASE_HIGH (merge_case) ?
1660 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1661 CASE_HIGH (base_case) = base_high;
1662 gimple_switch_set_label (stmt, i, NULL_TREE);
1663 new_size--;
1664 i++;
1666 else
1667 break;
1671 /* Compress the case labels in the label vector, and adjust the
1672 length of the vector. */
1673 for (i = 0, j = 0; i < new_size; i++)
1675 while (! gimple_switch_label (stmt, j))
1676 j++;
1677 gimple_switch_set_label (stmt, i,
1678 gimple_switch_label (stmt, j++));
1681 gcc_assert (new_size <= old_size);
1682 gimple_switch_set_num_labels (stmt, new_size);
1685 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1686 and scan the sorted vector of cases. Combine the ones jumping to the
1687 same label. */
1689 void
1690 group_case_labels (void)
1692 basic_block bb;
1694 FOR_EACH_BB_FN (bb, cfun)
1696 gimple *stmt = last_stmt (bb);
1697 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1698 group_case_labels_stmt (as_a <gswitch *> (stmt));
1702 /* Checks whether we can merge block B into block A. */
1704 static bool
1705 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1707 gimple *stmt;
1709 if (!single_succ_p (a))
1710 return false;
1712 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1713 return false;
1715 if (single_succ (a) != b)
1716 return false;
1718 if (!single_pred_p (b))
1719 return false;
1721 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1722 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1723 return false;
1725 /* If A ends by a statement causing exceptions or something similar, we
1726 cannot merge the blocks. */
1727 stmt = last_stmt (a);
1728 if (stmt && stmt_ends_bb_p (stmt))
1729 return false;
1731 /* Do not allow a block with only a non-local label to be merged. */
1732 if (stmt)
1733 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1734 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1735 return false;
1737 /* Examine the labels at the beginning of B. */
1738 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1739 gsi_next (&gsi))
1741 tree lab;
1742 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1743 if (!label_stmt)
1744 break;
1745 lab = gimple_label_label (label_stmt);
1747 /* Do not remove user forced labels or for -O0 any user labels. */
1748 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1749 return false;
1752 /* Protect simple loop latches. We only want to avoid merging
1753 the latch with the loop header or with a block in another
1754 loop in this case. */
1755 if (current_loops
1756 && b->loop_father->latch == b
1757 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1758 && (b->loop_father->header == a
1759 || b->loop_father != a->loop_father))
1760 return false;
1762 /* It must be possible to eliminate all phi nodes in B. If ssa form
1763 is not up-to-date and a name-mapping is registered, we cannot eliminate
1764 any phis. Symbols marked for renaming are never a problem though. */
1765 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1766 gsi_next (&gsi))
1768 gphi *phi = gsi.phi ();
1769 /* Technically only new names matter. */
1770 if (name_registered_for_update_p (PHI_RESULT (phi)))
1771 return false;
1774 /* When not optimizing, don't merge if we'd lose goto_locus. */
1775 if (!optimize
1776 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1778 location_t goto_locus = single_succ_edge (a)->goto_locus;
1779 gimple_stmt_iterator prev, next;
1780 prev = gsi_last_nondebug_bb (a);
1781 next = gsi_after_labels (b);
1782 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1783 gsi_next_nondebug (&next);
1784 if ((gsi_end_p (prev)
1785 || gimple_location (gsi_stmt (prev)) != goto_locus)
1786 && (gsi_end_p (next)
1787 || gimple_location (gsi_stmt (next)) != goto_locus))
1788 return false;
1791 return true;
1794 /* Replaces all uses of NAME by VAL. */
1796 void
1797 replace_uses_by (tree name, tree val)
1799 imm_use_iterator imm_iter;
1800 use_operand_p use;
1801 gimple *stmt;
1802 edge e;
1804 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1806 /* Mark the block if we change the last stmt in it. */
1807 if (cfgcleanup_altered_bbs
1808 && stmt_ends_bb_p (stmt))
1809 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1811 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1813 replace_exp (use, val);
1815 if (gimple_code (stmt) == GIMPLE_PHI)
1817 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1818 PHI_ARG_INDEX_FROM_USE (use));
1819 if (e->flags & EDGE_ABNORMAL
1820 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1822 /* This can only occur for virtual operands, since
1823 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1824 would prevent replacement. */
1825 gcc_checking_assert (virtual_operand_p (name));
1826 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1831 if (gimple_code (stmt) != GIMPLE_PHI)
1833 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1834 gimple *orig_stmt = stmt;
1835 size_t i;
1837 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1838 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1839 only change sth from non-invariant to invariant, and only
1840 when propagating constants. */
1841 if (is_gimple_min_invariant (val))
1842 for (i = 0; i < gimple_num_ops (stmt); i++)
1844 tree op = gimple_op (stmt, i);
1845 /* Operands may be empty here. For example, the labels
1846 of a GIMPLE_COND are nulled out following the creation
1847 of the corresponding CFG edges. */
1848 if (op && TREE_CODE (op) == ADDR_EXPR)
1849 recompute_tree_invariant_for_addr_expr (op);
1852 if (fold_stmt (&gsi))
1853 stmt = gsi_stmt (gsi);
1855 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1856 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1858 update_stmt (stmt);
1862 gcc_checking_assert (has_zero_uses (name));
1864 /* Also update the trees stored in loop structures. */
1865 if (current_loops)
1867 struct loop *loop;
1869 FOR_EACH_LOOP (loop, 0)
1871 substitute_in_loop_info (loop, name, val);
1876 /* Merge block B into block A. */
1878 static void
1879 gimple_merge_blocks (basic_block a, basic_block b)
1881 gimple_stmt_iterator last, gsi;
1882 gphi_iterator psi;
1884 if (dump_file)
1885 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1887 /* Remove all single-valued PHI nodes from block B of the form
1888 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1889 gsi = gsi_last_bb (a);
1890 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1892 gimple *phi = gsi_stmt (psi);
1893 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1894 gimple *copy;
1895 bool may_replace_uses = (virtual_operand_p (def)
1896 || may_propagate_copy (def, use));
1898 /* In case we maintain loop closed ssa form, do not propagate arguments
1899 of loop exit phi nodes. */
1900 if (current_loops
1901 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1902 && !virtual_operand_p (def)
1903 && TREE_CODE (use) == SSA_NAME
1904 && a->loop_father != b->loop_father)
1905 may_replace_uses = false;
1907 if (!may_replace_uses)
1909 gcc_assert (!virtual_operand_p (def));
1911 /* Note that just emitting the copies is fine -- there is no problem
1912 with ordering of phi nodes. This is because A is the single
1913 predecessor of B, therefore results of the phi nodes cannot
1914 appear as arguments of the phi nodes. */
1915 copy = gimple_build_assign (def, use);
1916 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1917 remove_phi_node (&psi, false);
1919 else
1921 /* If we deal with a PHI for virtual operands, we can simply
1922 propagate these without fussing with folding or updating
1923 the stmt. */
1924 if (virtual_operand_p (def))
1926 imm_use_iterator iter;
1927 use_operand_p use_p;
1928 gimple *stmt;
1930 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1931 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1932 SET_USE (use_p, use);
1934 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1935 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1937 else
1938 replace_uses_by (def, use);
1940 remove_phi_node (&psi, true);
1944 /* Ensure that B follows A. */
1945 move_block_after (b, a);
1947 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1948 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1950 /* Remove labels from B and set gimple_bb to A for other statements. */
1951 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1953 gimple *stmt = gsi_stmt (gsi);
1954 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1956 tree label = gimple_label_label (label_stmt);
1957 int lp_nr;
1959 gsi_remove (&gsi, false);
1961 /* Now that we can thread computed gotos, we might have
1962 a situation where we have a forced label in block B
1963 However, the label at the start of block B might still be
1964 used in other ways (think about the runtime checking for
1965 Fortran assigned gotos). So we can not just delete the
1966 label. Instead we move the label to the start of block A. */
1967 if (FORCED_LABEL (label))
1969 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1970 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1972 /* Other user labels keep around in a form of a debug stmt. */
1973 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1975 gimple *dbg = gimple_build_debug_bind (label,
1976 integer_zero_node,
1977 stmt);
1978 gimple_debug_bind_reset_value (dbg);
1979 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1982 lp_nr = EH_LANDING_PAD_NR (label);
1983 if (lp_nr)
1985 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1986 lp->post_landing_pad = NULL;
1989 else
1991 gimple_set_bb (stmt, a);
1992 gsi_next (&gsi);
1996 /* When merging two BBs, if their counts are different, the larger count
1997 is selected as the new bb count. This is to handle inconsistent
1998 profiles. */
1999 if (a->loop_father == b->loop_father)
2001 a->count = MAX (a->count, b->count);
2002 a->frequency = MAX (a->frequency, b->frequency);
2005 /* Merge the sequences. */
2006 last = gsi_last_bb (a);
2007 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2008 set_bb_seq (b, NULL);
2010 if (cfgcleanup_altered_bbs)
2011 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2015 /* Return the one of two successors of BB that is not reachable by a
2016 complex edge, if there is one. Else, return BB. We use
2017 this in optimizations that use post-dominators for their heuristics,
2018 to catch the cases in C++ where function calls are involved. */
2020 basic_block
2021 single_noncomplex_succ (basic_block bb)
2023 edge e0, e1;
2024 if (EDGE_COUNT (bb->succs) != 2)
2025 return bb;
2027 e0 = EDGE_SUCC (bb, 0);
2028 e1 = EDGE_SUCC (bb, 1);
2029 if (e0->flags & EDGE_COMPLEX)
2030 return e1->dest;
2031 if (e1->flags & EDGE_COMPLEX)
2032 return e0->dest;
2034 return bb;
2037 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2039 void
2040 notice_special_calls (gcall *call)
2042 int flags = gimple_call_flags (call);
2044 if (flags & ECF_MAY_BE_ALLOCA)
2045 cfun->calls_alloca = true;
2046 if (flags & ECF_RETURNS_TWICE)
2047 cfun->calls_setjmp = true;
2051 /* Clear flags set by notice_special_calls. Used by dead code removal
2052 to update the flags. */
2054 void
2055 clear_special_calls (void)
2057 cfun->calls_alloca = false;
2058 cfun->calls_setjmp = false;
2061 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2063 static void
2064 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2066 /* Since this block is no longer reachable, we can just delete all
2067 of its PHI nodes. */
2068 remove_phi_nodes (bb);
2070 /* Remove edges to BB's successors. */
2071 while (EDGE_COUNT (bb->succs) > 0)
2072 remove_edge (EDGE_SUCC (bb, 0));
2076 /* Remove statements of basic block BB. */
2078 static void
2079 remove_bb (basic_block bb)
2081 gimple_stmt_iterator i;
2083 if (dump_file)
2085 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2086 if (dump_flags & TDF_DETAILS)
2088 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2089 fprintf (dump_file, "\n");
2093 if (current_loops)
2095 struct loop *loop = bb->loop_father;
2097 /* If a loop gets removed, clean up the information associated
2098 with it. */
2099 if (loop->latch == bb
2100 || loop->header == bb)
2101 free_numbers_of_iterations_estimates_loop (loop);
2104 /* Remove all the instructions in the block. */
2105 if (bb_seq (bb) != NULL)
2107 /* Walk backwards so as to get a chance to substitute all
2108 released DEFs into debug stmts. See
2109 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2110 details. */
2111 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2113 gimple *stmt = gsi_stmt (i);
2114 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2115 if (label_stmt
2116 && (FORCED_LABEL (gimple_label_label (label_stmt))
2117 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2119 basic_block new_bb;
2120 gimple_stmt_iterator new_gsi;
2122 /* A non-reachable non-local label may still be referenced.
2123 But it no longer needs to carry the extra semantics of
2124 non-locality. */
2125 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2127 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2128 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2131 new_bb = bb->prev_bb;
2132 new_gsi = gsi_start_bb (new_bb);
2133 gsi_remove (&i, false);
2134 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2136 else
2138 /* Release SSA definitions. */
2139 release_defs (stmt);
2140 gsi_remove (&i, true);
2143 if (gsi_end_p (i))
2144 i = gsi_last_bb (bb);
2145 else
2146 gsi_prev (&i);
2150 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2151 bb->il.gimple.seq = NULL;
2152 bb->il.gimple.phi_nodes = NULL;
2156 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2157 predicate VAL, return the edge that will be taken out of the block.
2158 If VAL does not match a unique edge, NULL is returned. */
2160 edge
2161 find_taken_edge (basic_block bb, tree val)
2163 gimple *stmt;
2165 stmt = last_stmt (bb);
2167 gcc_assert (stmt);
2168 gcc_assert (is_ctrl_stmt (stmt));
2170 if (val == NULL)
2171 return NULL;
2173 if (!is_gimple_min_invariant (val))
2174 return NULL;
2176 if (gimple_code (stmt) == GIMPLE_COND)
2177 return find_taken_edge_cond_expr (bb, val);
2179 if (gimple_code (stmt) == GIMPLE_SWITCH)
2180 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), bb, val);
2182 if (computed_goto_p (stmt))
2184 /* Only optimize if the argument is a label, if the argument is
2185 not a label then we can not construct a proper CFG.
2187 It may be the case that we only need to allow the LABEL_REF to
2188 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2189 appear inside a LABEL_EXPR just to be safe. */
2190 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2191 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2192 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2193 return NULL;
2196 gcc_unreachable ();
2199 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2200 statement, determine which of the outgoing edges will be taken out of the
2201 block. Return NULL if either edge may be taken. */
2203 static edge
2204 find_taken_edge_computed_goto (basic_block bb, tree val)
2206 basic_block dest;
2207 edge e = NULL;
2209 dest = label_to_block (val);
2210 if (dest)
2212 e = find_edge (bb, dest);
2213 gcc_assert (e != NULL);
2216 return e;
2219 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2220 statement, determine which of the two edges will be taken out of the
2221 block. Return NULL if either edge may be taken. */
2223 static edge
2224 find_taken_edge_cond_expr (basic_block bb, tree val)
2226 edge true_edge, false_edge;
2228 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2230 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2231 return (integer_zerop (val) ? false_edge : true_edge);
2234 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2235 statement, determine which edge will be taken out of the block. Return
2236 NULL if any edge may be taken. */
2238 static edge
2239 find_taken_edge_switch_expr (gswitch *switch_stmt, basic_block bb,
2240 tree val)
2242 basic_block dest_bb;
2243 edge e;
2244 tree taken_case;
2246 taken_case = find_case_label_for_value (switch_stmt, val);
2247 dest_bb = label_to_block (CASE_LABEL (taken_case));
2249 e = find_edge (bb, dest_bb);
2250 gcc_assert (e);
2251 return e;
2255 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2256 We can make optimal use here of the fact that the case labels are
2257 sorted: We can do a binary search for a case matching VAL. */
2259 static tree
2260 find_case_label_for_value (gswitch *switch_stmt, tree val)
2262 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2263 tree default_case = gimple_switch_default_label (switch_stmt);
2265 for (low = 0, high = n; high - low > 1; )
2267 size_t i = (high + low) / 2;
2268 tree t = gimple_switch_label (switch_stmt, i);
2269 int cmp;
2271 /* Cache the result of comparing CASE_LOW and val. */
2272 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2274 if (cmp > 0)
2275 high = i;
2276 else
2277 low = i;
2279 if (CASE_HIGH (t) == NULL)
2281 /* A singe-valued case label. */
2282 if (cmp == 0)
2283 return t;
2285 else
2287 /* A case range. We can only handle integer ranges. */
2288 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2289 return t;
2293 return default_case;
2297 /* Dump a basic block on stderr. */
2299 void
2300 gimple_debug_bb (basic_block bb)
2302 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2306 /* Dump basic block with index N on stderr. */
2308 basic_block
2309 gimple_debug_bb_n (int n)
2311 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2312 return BASIC_BLOCK_FOR_FN (cfun, n);
2316 /* Dump the CFG on stderr.
2318 FLAGS are the same used by the tree dumping functions
2319 (see TDF_* in dumpfile.h). */
2321 void
2322 gimple_debug_cfg (int flags)
2324 gimple_dump_cfg (stderr, flags);
2328 /* Dump the program showing basic block boundaries on the given FILE.
2330 FLAGS are the same used by the tree dumping functions (see TDF_* in
2331 tree.h). */
2333 void
2334 gimple_dump_cfg (FILE *file, int flags)
2336 if (flags & TDF_DETAILS)
2338 dump_function_header (file, current_function_decl, flags);
2339 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2340 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2341 last_basic_block_for_fn (cfun));
2343 brief_dump_cfg (file, flags | TDF_COMMENT);
2344 fprintf (file, "\n");
2347 if (flags & TDF_STATS)
2348 dump_cfg_stats (file);
2350 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2354 /* Dump CFG statistics on FILE. */
2356 void
2357 dump_cfg_stats (FILE *file)
2359 static long max_num_merged_labels = 0;
2360 unsigned long size, total = 0;
2361 long num_edges;
2362 basic_block bb;
2363 const char * const fmt_str = "%-30s%-13s%12s\n";
2364 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2365 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2366 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2367 const char *funcname = current_function_name ();
2369 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2371 fprintf (file, "---------------------------------------------------------\n");
2372 fprintf (file, fmt_str, "", " Number of ", "Memory");
2373 fprintf (file, fmt_str, "", " instances ", "used ");
2374 fprintf (file, "---------------------------------------------------------\n");
2376 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2377 total += size;
2378 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2379 SCALE (size), LABEL (size));
2381 num_edges = 0;
2382 FOR_EACH_BB_FN (bb, cfun)
2383 num_edges += EDGE_COUNT (bb->succs);
2384 size = num_edges * sizeof (struct edge_def);
2385 total += size;
2386 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2388 fprintf (file, "---------------------------------------------------------\n");
2389 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2390 LABEL (total));
2391 fprintf (file, "---------------------------------------------------------\n");
2392 fprintf (file, "\n");
2394 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2395 max_num_merged_labels = cfg_stats.num_merged_labels;
2397 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2398 cfg_stats.num_merged_labels, max_num_merged_labels);
2400 fprintf (file, "\n");
2404 /* Dump CFG statistics on stderr. Keep extern so that it's always
2405 linked in the final executable. */
2407 DEBUG_FUNCTION void
2408 debug_cfg_stats (void)
2410 dump_cfg_stats (stderr);
2413 /*---------------------------------------------------------------------------
2414 Miscellaneous helpers
2415 ---------------------------------------------------------------------------*/
2417 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2418 flow. Transfers of control flow associated with EH are excluded. */
2420 static bool
2421 call_can_make_abnormal_goto (gimple *t)
2423 /* If the function has no non-local labels, then a call cannot make an
2424 abnormal transfer of control. */
2425 if (!cfun->has_nonlocal_label
2426 && !cfun->calls_setjmp)
2427 return false;
2429 /* Likewise if the call has no side effects. */
2430 if (!gimple_has_side_effects (t))
2431 return false;
2433 /* Likewise if the called function is leaf. */
2434 if (gimple_call_flags (t) & ECF_LEAF)
2435 return false;
2437 return true;
2441 /* Return true if T can make an abnormal transfer of control flow.
2442 Transfers of control flow associated with EH are excluded. */
2444 bool
2445 stmt_can_make_abnormal_goto (gimple *t)
2447 if (computed_goto_p (t))
2448 return true;
2449 if (is_gimple_call (t))
2450 return call_can_make_abnormal_goto (t);
2451 return false;
2455 /* Return true if T represents a stmt that always transfers control. */
2457 bool
2458 is_ctrl_stmt (gimple *t)
2460 switch (gimple_code (t))
2462 case GIMPLE_COND:
2463 case GIMPLE_SWITCH:
2464 case GIMPLE_GOTO:
2465 case GIMPLE_RETURN:
2466 case GIMPLE_RESX:
2467 return true;
2468 default:
2469 return false;
2474 /* Return true if T is a statement that may alter the flow of control
2475 (e.g., a call to a non-returning function). */
2477 bool
2478 is_ctrl_altering_stmt (gimple *t)
2480 gcc_assert (t);
2482 switch (gimple_code (t))
2484 case GIMPLE_CALL:
2485 /* Per stmt call flag indicates whether the call could alter
2486 controlflow. */
2487 if (gimple_call_ctrl_altering_p (t))
2488 return true;
2489 break;
2491 case GIMPLE_EH_DISPATCH:
2492 /* EH_DISPATCH branches to the individual catch handlers at
2493 this level of a try or allowed-exceptions region. It can
2494 fallthru to the next statement as well. */
2495 return true;
2497 case GIMPLE_ASM:
2498 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2499 return true;
2500 break;
2502 CASE_GIMPLE_OMP:
2503 /* OpenMP directives alter control flow. */
2504 return true;
2506 case GIMPLE_TRANSACTION:
2507 /* A transaction start alters control flow. */
2508 return true;
2510 default:
2511 break;
2514 /* If a statement can throw, it alters control flow. */
2515 return stmt_can_throw_internal (t);
2519 /* Return true if T is a simple local goto. */
2521 bool
2522 simple_goto_p (gimple *t)
2524 return (gimple_code (t) == GIMPLE_GOTO
2525 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2529 /* Return true if STMT should start a new basic block. PREV_STMT is
2530 the statement preceding STMT. It is used when STMT is a label or a
2531 case label. Labels should only start a new basic block if their
2532 previous statement wasn't a label. Otherwise, sequence of labels
2533 would generate unnecessary basic blocks that only contain a single
2534 label. */
2536 static inline bool
2537 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2539 if (stmt == NULL)
2540 return false;
2542 /* Labels start a new basic block only if the preceding statement
2543 wasn't a label of the same type. This prevents the creation of
2544 consecutive blocks that have nothing but a single label. */
2545 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2547 /* Nonlocal and computed GOTO targets always start a new block. */
2548 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2549 || FORCED_LABEL (gimple_label_label (label_stmt)))
2550 return true;
2552 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2554 if (DECL_NONLOCAL (gimple_label_label (
2555 as_a <glabel *> (prev_stmt))))
2556 return true;
2558 cfg_stats.num_merged_labels++;
2559 return false;
2561 else
2562 return true;
2564 else if (gimple_code (stmt) == GIMPLE_CALL
2565 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2566 /* setjmp acts similar to a nonlocal GOTO target and thus should
2567 start a new block. */
2568 return true;
2570 return false;
2574 /* Return true if T should end a basic block. */
2576 bool
2577 stmt_ends_bb_p (gimple *t)
2579 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2582 /* Remove block annotations and other data structures. */
2584 void
2585 delete_tree_cfg_annotations (struct function *fn)
2587 vec_free (label_to_block_map_for_fn (fn));
2590 /* Return the virtual phi in BB. */
2592 gphi *
2593 get_virtual_phi (basic_block bb)
2595 for (gphi_iterator gsi = gsi_start_phis (bb);
2596 !gsi_end_p (gsi);
2597 gsi_next (&gsi))
2599 gphi *phi = gsi.phi ();
2601 if (virtual_operand_p (PHI_RESULT (phi)))
2602 return phi;
2605 return NULL;
2608 /* Return the first statement in basic block BB. */
2610 gimple *
2611 first_stmt (basic_block bb)
2613 gimple_stmt_iterator i = gsi_start_bb (bb);
2614 gimple *stmt = NULL;
2616 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2618 gsi_next (&i);
2619 stmt = NULL;
2621 return stmt;
2624 /* Return the first non-label statement in basic block BB. */
2626 static gimple *
2627 first_non_label_stmt (basic_block bb)
2629 gimple_stmt_iterator i = gsi_start_bb (bb);
2630 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2631 gsi_next (&i);
2632 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2635 /* Return the last statement in basic block BB. */
2637 gimple *
2638 last_stmt (basic_block bb)
2640 gimple_stmt_iterator i = gsi_last_bb (bb);
2641 gimple *stmt = NULL;
2643 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2645 gsi_prev (&i);
2646 stmt = NULL;
2648 return stmt;
2651 /* Return the last statement of an otherwise empty block. Return NULL
2652 if the block is totally empty, or if it contains more than one
2653 statement. */
2655 gimple *
2656 last_and_only_stmt (basic_block bb)
2658 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2659 gimple *last, *prev;
2661 if (gsi_end_p (i))
2662 return NULL;
2664 last = gsi_stmt (i);
2665 gsi_prev_nondebug (&i);
2666 if (gsi_end_p (i))
2667 return last;
2669 /* Empty statements should no longer appear in the instruction stream.
2670 Everything that might have appeared before should be deleted by
2671 remove_useless_stmts, and the optimizers should just gsi_remove
2672 instead of smashing with build_empty_stmt.
2674 Thus the only thing that should appear here in a block containing
2675 one executable statement is a label. */
2676 prev = gsi_stmt (i);
2677 if (gimple_code (prev) == GIMPLE_LABEL)
2678 return last;
2679 else
2680 return NULL;
2683 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2685 static void
2686 reinstall_phi_args (edge new_edge, edge old_edge)
2688 edge_var_map *vm;
2689 int i;
2690 gphi_iterator phis;
2692 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2693 if (!v)
2694 return;
2696 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2697 v->iterate (i, &vm) && !gsi_end_p (phis);
2698 i++, gsi_next (&phis))
2700 gphi *phi = phis.phi ();
2701 tree result = redirect_edge_var_map_result (vm);
2702 tree arg = redirect_edge_var_map_def (vm);
2704 gcc_assert (result == gimple_phi_result (phi));
2706 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2709 redirect_edge_var_map_clear (old_edge);
2712 /* Returns the basic block after which the new basic block created
2713 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2714 near its "logical" location. This is of most help to humans looking
2715 at debugging dumps. */
2717 basic_block
2718 split_edge_bb_loc (edge edge_in)
2720 basic_block dest = edge_in->dest;
2721 basic_block dest_prev = dest->prev_bb;
2723 if (dest_prev)
2725 edge e = find_edge (dest_prev, dest);
2726 if (e && !(e->flags & EDGE_COMPLEX))
2727 return edge_in->src;
2729 return dest_prev;
2732 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2733 Abort on abnormal edges. */
2735 static basic_block
2736 gimple_split_edge (edge edge_in)
2738 basic_block new_bb, after_bb, dest;
2739 edge new_edge, e;
2741 /* Abnormal edges cannot be split. */
2742 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2744 dest = edge_in->dest;
2746 after_bb = split_edge_bb_loc (edge_in);
2748 new_bb = create_empty_bb (after_bb);
2749 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2750 new_bb->count = edge_in->count;
2751 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2752 new_edge->probability = REG_BR_PROB_BASE;
2753 new_edge->count = edge_in->count;
2755 e = redirect_edge_and_branch (edge_in, new_bb);
2756 gcc_assert (e == edge_in);
2757 reinstall_phi_args (new_edge, e);
2759 return new_bb;
2763 /* Verify properties of the address expression T with base object BASE. */
2765 static tree
2766 verify_address (tree t, tree base)
2768 bool old_constant;
2769 bool old_side_effects;
2770 bool new_constant;
2771 bool new_side_effects;
2773 old_constant = TREE_CONSTANT (t);
2774 old_side_effects = TREE_SIDE_EFFECTS (t);
2776 recompute_tree_invariant_for_addr_expr (t);
2777 new_side_effects = TREE_SIDE_EFFECTS (t);
2778 new_constant = TREE_CONSTANT (t);
2780 if (old_constant != new_constant)
2782 error ("constant not recomputed when ADDR_EXPR changed");
2783 return t;
2785 if (old_side_effects != new_side_effects)
2787 error ("side effects not recomputed when ADDR_EXPR changed");
2788 return t;
2791 if (!(TREE_CODE (base) == VAR_DECL
2792 || TREE_CODE (base) == PARM_DECL
2793 || TREE_CODE (base) == RESULT_DECL))
2794 return NULL_TREE;
2796 if (DECL_GIMPLE_REG_P (base))
2798 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2799 return base;
2802 return NULL_TREE;
2805 /* Callback for walk_tree, check that all elements with address taken are
2806 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2807 inside a PHI node. */
2809 static tree
2810 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2812 tree t = *tp, x;
2814 if (TYPE_P (t))
2815 *walk_subtrees = 0;
2817 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2818 #define CHECK_OP(N, MSG) \
2819 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2820 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2822 switch (TREE_CODE (t))
2824 case SSA_NAME:
2825 if (SSA_NAME_IN_FREE_LIST (t))
2827 error ("SSA name in freelist but still referenced");
2828 return *tp;
2830 break;
2832 case PARM_DECL:
2833 case VAR_DECL:
2834 case RESULT_DECL:
2836 tree context = decl_function_context (t);
2837 if (context != cfun->decl
2838 && !SCOPE_FILE_SCOPE_P (context)
2839 && !TREE_STATIC (t)
2840 && !DECL_EXTERNAL (t))
2842 error ("Local declaration from a different function");
2843 return t;
2846 break;
2848 case INDIRECT_REF:
2849 error ("INDIRECT_REF in gimple IL");
2850 return t;
2852 case MEM_REF:
2853 x = TREE_OPERAND (t, 0);
2854 if (!POINTER_TYPE_P (TREE_TYPE (x))
2855 || !is_gimple_mem_ref_addr (x))
2857 error ("invalid first operand of MEM_REF");
2858 return x;
2860 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2861 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2863 error ("invalid offset operand of MEM_REF");
2864 return TREE_OPERAND (t, 1);
2866 if (TREE_CODE (x) == ADDR_EXPR)
2868 tree va = verify_address (x, TREE_OPERAND (x, 0));
2869 if (va)
2870 return va;
2871 x = TREE_OPERAND (x, 0);
2873 walk_tree (&x, verify_expr, data, NULL);
2874 *walk_subtrees = 0;
2875 break;
2877 case ASSERT_EXPR:
2878 x = fold (ASSERT_EXPR_COND (t));
2879 if (x == boolean_false_node)
2881 error ("ASSERT_EXPR with an always-false condition");
2882 return *tp;
2884 break;
2886 case MODIFY_EXPR:
2887 error ("MODIFY_EXPR not expected while having tuples");
2888 return *tp;
2890 case ADDR_EXPR:
2892 tree tem;
2894 gcc_assert (is_gimple_address (t));
2896 /* Skip any references (they will be checked when we recurse down the
2897 tree) and ensure that any variable used as a prefix is marked
2898 addressable. */
2899 for (x = TREE_OPERAND (t, 0);
2900 handled_component_p (x);
2901 x = TREE_OPERAND (x, 0))
2904 if ((tem = verify_address (t, x)))
2905 return tem;
2907 if (!(TREE_CODE (x) == VAR_DECL
2908 || TREE_CODE (x) == PARM_DECL
2909 || TREE_CODE (x) == RESULT_DECL))
2910 return NULL;
2912 if (!TREE_ADDRESSABLE (x))
2914 error ("address taken, but ADDRESSABLE bit not set");
2915 return x;
2918 break;
2921 case COND_EXPR:
2922 x = COND_EXPR_COND (t);
2923 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2925 error ("non-integral used in condition");
2926 return x;
2928 if (!is_gimple_condexpr (x))
2930 error ("invalid conditional operand");
2931 return x;
2933 break;
2935 case NON_LVALUE_EXPR:
2936 case TRUTH_NOT_EXPR:
2937 gcc_unreachable ();
2939 CASE_CONVERT:
2940 case FIX_TRUNC_EXPR:
2941 case FLOAT_EXPR:
2942 case NEGATE_EXPR:
2943 case ABS_EXPR:
2944 case BIT_NOT_EXPR:
2945 CHECK_OP (0, "invalid operand to unary operator");
2946 break;
2948 case REALPART_EXPR:
2949 case IMAGPART_EXPR:
2950 case BIT_FIELD_REF:
2951 if (!is_gimple_reg_type (TREE_TYPE (t)))
2953 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2954 return t;
2957 if (TREE_CODE (t) == BIT_FIELD_REF)
2959 tree t0 = TREE_OPERAND (t, 0);
2960 tree t1 = TREE_OPERAND (t, 1);
2961 tree t2 = TREE_OPERAND (t, 2);
2962 if (!tree_fits_uhwi_p (t1)
2963 || !tree_fits_uhwi_p (t2))
2965 error ("invalid position or size operand to BIT_FIELD_REF");
2966 return t;
2968 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2969 && (TYPE_PRECISION (TREE_TYPE (t))
2970 != tree_to_uhwi (t1)))
2972 error ("integral result type precision does not match "
2973 "field size of BIT_FIELD_REF");
2974 return t;
2976 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2977 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2978 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t)))
2979 != tree_to_uhwi (t1)))
2981 error ("mode size of non-integral result does not "
2982 "match field size of BIT_FIELD_REF");
2983 return t;
2985 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2986 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2987 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2989 error ("position plus size exceeds size of referenced object in "
2990 "BIT_FIELD_REF");
2991 return t;
2994 t = TREE_OPERAND (t, 0);
2996 /* Fall-through. */
2997 case COMPONENT_REF:
2998 case ARRAY_REF:
2999 case ARRAY_RANGE_REF:
3000 case VIEW_CONVERT_EXPR:
3001 /* We have a nest of references. Verify that each of the operands
3002 that determine where to reference is either a constant or a variable,
3003 verify that the base is valid, and then show we've already checked
3004 the subtrees. */
3005 while (handled_component_p (t))
3007 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3008 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3009 else if (TREE_CODE (t) == ARRAY_REF
3010 || TREE_CODE (t) == ARRAY_RANGE_REF)
3012 CHECK_OP (1, "invalid array index");
3013 if (TREE_OPERAND (t, 2))
3014 CHECK_OP (2, "invalid array lower bound");
3015 if (TREE_OPERAND (t, 3))
3016 CHECK_OP (3, "invalid array stride");
3018 else if (TREE_CODE (t) == BIT_FIELD_REF
3019 || TREE_CODE (t) == REALPART_EXPR
3020 || TREE_CODE (t) == IMAGPART_EXPR)
3022 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3023 "REALPART_EXPR");
3024 return t;
3027 t = TREE_OPERAND (t, 0);
3030 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3032 error ("invalid reference prefix");
3033 return t;
3035 walk_tree (&t, verify_expr, data, NULL);
3036 *walk_subtrees = 0;
3037 break;
3038 case PLUS_EXPR:
3039 case MINUS_EXPR:
3040 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3041 POINTER_PLUS_EXPR. */
3042 if (POINTER_TYPE_P (TREE_TYPE (t)))
3044 error ("invalid operand to plus/minus, type is a pointer");
3045 return t;
3047 CHECK_OP (0, "invalid operand to binary operator");
3048 CHECK_OP (1, "invalid operand to binary operator");
3049 break;
3051 case POINTER_PLUS_EXPR:
3052 /* Check to make sure the first operand is a pointer or reference type. */
3053 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3055 error ("invalid operand to pointer plus, first operand is not a pointer");
3056 return t;
3058 /* Check to make sure the second operand is a ptrofftype. */
3059 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3061 error ("invalid operand to pointer plus, second operand is not an "
3062 "integer type of appropriate width");
3063 return t;
3065 /* FALLTHROUGH */
3066 case LT_EXPR:
3067 case LE_EXPR:
3068 case GT_EXPR:
3069 case GE_EXPR:
3070 case EQ_EXPR:
3071 case NE_EXPR:
3072 case UNORDERED_EXPR:
3073 case ORDERED_EXPR:
3074 case UNLT_EXPR:
3075 case UNLE_EXPR:
3076 case UNGT_EXPR:
3077 case UNGE_EXPR:
3078 case UNEQ_EXPR:
3079 case LTGT_EXPR:
3080 case MULT_EXPR:
3081 case TRUNC_DIV_EXPR:
3082 case CEIL_DIV_EXPR:
3083 case FLOOR_DIV_EXPR:
3084 case ROUND_DIV_EXPR:
3085 case TRUNC_MOD_EXPR:
3086 case CEIL_MOD_EXPR:
3087 case FLOOR_MOD_EXPR:
3088 case ROUND_MOD_EXPR:
3089 case RDIV_EXPR:
3090 case EXACT_DIV_EXPR:
3091 case MIN_EXPR:
3092 case MAX_EXPR:
3093 case LSHIFT_EXPR:
3094 case RSHIFT_EXPR:
3095 case LROTATE_EXPR:
3096 case RROTATE_EXPR:
3097 case BIT_IOR_EXPR:
3098 case BIT_XOR_EXPR:
3099 case BIT_AND_EXPR:
3100 CHECK_OP (0, "invalid operand to binary operator");
3101 CHECK_OP (1, "invalid operand to binary operator");
3102 break;
3104 case CONSTRUCTOR:
3105 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3106 *walk_subtrees = 0;
3107 break;
3109 case CASE_LABEL_EXPR:
3110 if (CASE_CHAIN (t))
3112 error ("invalid CASE_CHAIN");
3113 return t;
3115 break;
3117 default:
3118 break;
3120 return NULL;
3122 #undef CHECK_OP
3126 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3127 Returns true if there is an error, otherwise false. */
3129 static bool
3130 verify_types_in_gimple_min_lval (tree expr)
3132 tree op;
3134 if (is_gimple_id (expr))
3135 return false;
3137 if (TREE_CODE (expr) != TARGET_MEM_REF
3138 && TREE_CODE (expr) != MEM_REF)
3140 error ("invalid expression for min lvalue");
3141 return true;
3144 /* TARGET_MEM_REFs are strange beasts. */
3145 if (TREE_CODE (expr) == TARGET_MEM_REF)
3146 return false;
3148 op = TREE_OPERAND (expr, 0);
3149 if (!is_gimple_val (op))
3151 error ("invalid operand in indirect reference");
3152 debug_generic_stmt (op);
3153 return true;
3155 /* Memory references now generally can involve a value conversion. */
3157 return false;
3160 /* Verify if EXPR is a valid GIMPLE reference expression. If
3161 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3162 if there is an error, otherwise false. */
3164 static bool
3165 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3167 while (handled_component_p (expr))
3169 tree op = TREE_OPERAND (expr, 0);
3171 if (TREE_CODE (expr) == ARRAY_REF
3172 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3174 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3175 || (TREE_OPERAND (expr, 2)
3176 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3177 || (TREE_OPERAND (expr, 3)
3178 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3180 error ("invalid operands to array reference");
3181 debug_generic_stmt (expr);
3182 return true;
3186 /* Verify if the reference array element types are compatible. */
3187 if (TREE_CODE (expr) == ARRAY_REF
3188 && !useless_type_conversion_p (TREE_TYPE (expr),
3189 TREE_TYPE (TREE_TYPE (op))))
3191 error ("type mismatch in array reference");
3192 debug_generic_stmt (TREE_TYPE (expr));
3193 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3194 return true;
3196 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3197 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3198 TREE_TYPE (TREE_TYPE (op))))
3200 error ("type mismatch in array range reference");
3201 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3202 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3203 return true;
3206 if ((TREE_CODE (expr) == REALPART_EXPR
3207 || TREE_CODE (expr) == IMAGPART_EXPR)
3208 && !useless_type_conversion_p (TREE_TYPE (expr),
3209 TREE_TYPE (TREE_TYPE (op))))
3211 error ("type mismatch in real/imagpart reference");
3212 debug_generic_stmt (TREE_TYPE (expr));
3213 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3214 return true;
3217 if (TREE_CODE (expr) == COMPONENT_REF
3218 && !useless_type_conversion_p (TREE_TYPE (expr),
3219 TREE_TYPE (TREE_OPERAND (expr, 1))))
3221 error ("type mismatch in component reference");
3222 debug_generic_stmt (TREE_TYPE (expr));
3223 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3224 return true;
3227 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3229 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3230 that their operand is not an SSA name or an invariant when
3231 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3232 bug). Otherwise there is nothing to verify, gross mismatches at
3233 most invoke undefined behavior. */
3234 if (require_lvalue
3235 && (TREE_CODE (op) == SSA_NAME
3236 || is_gimple_min_invariant (op)))
3238 error ("conversion of an SSA_NAME on the left hand side");
3239 debug_generic_stmt (expr);
3240 return true;
3242 else if (TREE_CODE (op) == SSA_NAME
3243 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3245 error ("conversion of register to a different size");
3246 debug_generic_stmt (expr);
3247 return true;
3249 else if (!handled_component_p (op))
3250 return false;
3253 expr = op;
3256 if (TREE_CODE (expr) == MEM_REF)
3258 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3260 error ("invalid address operand in MEM_REF");
3261 debug_generic_stmt (expr);
3262 return true;
3264 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3265 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3267 error ("invalid offset operand in MEM_REF");
3268 debug_generic_stmt (expr);
3269 return true;
3272 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3274 if (!TMR_BASE (expr)
3275 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3277 error ("invalid address operand in TARGET_MEM_REF");
3278 return true;
3280 if (!TMR_OFFSET (expr)
3281 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3282 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3284 error ("invalid offset operand in TARGET_MEM_REF");
3285 debug_generic_stmt (expr);
3286 return true;
3290 return ((require_lvalue || !is_gimple_min_invariant (expr))
3291 && verify_types_in_gimple_min_lval (expr));
3294 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3295 list of pointer-to types that is trivially convertible to DEST. */
3297 static bool
3298 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3300 tree src;
3302 if (!TYPE_POINTER_TO (src_obj))
3303 return true;
3305 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3306 if (useless_type_conversion_p (dest, src))
3307 return true;
3309 return false;
3312 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3313 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3315 static bool
3316 valid_fixed_convert_types_p (tree type1, tree type2)
3318 return (FIXED_POINT_TYPE_P (type1)
3319 && (INTEGRAL_TYPE_P (type2)
3320 || SCALAR_FLOAT_TYPE_P (type2)
3321 || FIXED_POINT_TYPE_P (type2)));
3324 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3325 is a problem, otherwise false. */
3327 static bool
3328 verify_gimple_call (gcall *stmt)
3330 tree fn = gimple_call_fn (stmt);
3331 tree fntype, fndecl;
3332 unsigned i;
3334 if (gimple_call_internal_p (stmt))
3336 if (fn)
3338 error ("gimple call has two targets");
3339 debug_generic_stmt (fn);
3340 return true;
3343 else
3345 if (!fn)
3347 error ("gimple call has no target");
3348 return true;
3352 if (fn && !is_gimple_call_addr (fn))
3354 error ("invalid function in gimple call");
3355 debug_generic_stmt (fn);
3356 return true;
3359 if (fn
3360 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3361 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3362 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3364 error ("non-function in gimple call");
3365 return true;
3368 fndecl = gimple_call_fndecl (stmt);
3369 if (fndecl
3370 && TREE_CODE (fndecl) == FUNCTION_DECL
3371 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3372 && !DECL_PURE_P (fndecl)
3373 && !TREE_READONLY (fndecl))
3375 error ("invalid pure const state for function");
3376 return true;
3379 tree lhs = gimple_call_lhs (stmt);
3380 if (lhs
3381 && (!is_gimple_lvalue (lhs)
3382 || verify_types_in_gimple_reference (lhs, true)))
3384 error ("invalid LHS in gimple call");
3385 return true;
3388 if (lhs
3389 && gimple_call_ctrl_altering_p (stmt)
3390 && gimple_call_noreturn_p (stmt)
3391 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (lhs))) == INTEGER_CST
3392 && !TREE_ADDRESSABLE (TREE_TYPE (lhs)))
3394 error ("LHS in noreturn call");
3395 return true;
3398 fntype = gimple_call_fntype (stmt);
3399 if (fntype
3400 && lhs
3401 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3402 /* ??? At least C++ misses conversions at assignments from
3403 void * call results.
3404 ??? Java is completely off. Especially with functions
3405 returning java.lang.Object.
3406 For now simply allow arbitrary pointer type conversions. */
3407 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3408 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3410 error ("invalid conversion in gimple call");
3411 debug_generic_stmt (TREE_TYPE (lhs));
3412 debug_generic_stmt (TREE_TYPE (fntype));
3413 return true;
3416 if (gimple_call_chain (stmt)
3417 && !is_gimple_val (gimple_call_chain (stmt)))
3419 error ("invalid static chain in gimple call");
3420 debug_generic_stmt (gimple_call_chain (stmt));
3421 return true;
3424 /* If there is a static chain argument, the call should either be
3425 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3426 if (gimple_call_chain (stmt)
3427 && fndecl
3428 && !DECL_STATIC_CHAIN (fndecl))
3430 error ("static chain with function that doesn%'t use one");
3431 return true;
3434 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3436 switch (DECL_FUNCTION_CODE (fndecl))
3438 case BUILT_IN_UNREACHABLE:
3439 case BUILT_IN_TRAP:
3440 if (gimple_call_num_args (stmt) > 0)
3442 /* Built-in unreachable with parameters might not be caught by
3443 undefined behavior sanitizer. Front-ends do check users do not
3444 call them that way but we also produce calls to
3445 __builtin_unreachable internally, for example when IPA figures
3446 out a call cannot happen in a legal program. In such cases,
3447 we must make sure arguments are stripped off. */
3448 error ("__builtin_unreachable or __builtin_trap call with "
3449 "arguments");
3450 return true;
3452 break;
3453 default:
3454 break;
3458 /* ??? The C frontend passes unpromoted arguments in case it
3459 didn't see a function declaration before the call. So for now
3460 leave the call arguments mostly unverified. Once we gimplify
3461 unit-at-a-time we have a chance to fix this. */
3463 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3465 tree arg = gimple_call_arg (stmt, i);
3466 if ((is_gimple_reg_type (TREE_TYPE (arg))
3467 && !is_gimple_val (arg))
3468 || (!is_gimple_reg_type (TREE_TYPE (arg))
3469 && !is_gimple_lvalue (arg)))
3471 error ("invalid argument to gimple call");
3472 debug_generic_expr (arg);
3473 return true;
3477 return false;
3480 /* Verifies the gimple comparison with the result type TYPE and
3481 the operands OP0 and OP1, comparison code is CODE. */
3483 static bool
3484 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3486 tree op0_type = TREE_TYPE (op0);
3487 tree op1_type = TREE_TYPE (op1);
3489 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3491 error ("invalid operands in gimple comparison");
3492 return true;
3495 /* For comparisons we do not have the operations type as the
3496 effective type the comparison is carried out in. Instead
3497 we require that either the first operand is trivially
3498 convertible into the second, or the other way around.
3499 Because we special-case pointers to void we allow
3500 comparisons of pointers with the same mode as well. */
3501 if (!useless_type_conversion_p (op0_type, op1_type)
3502 && !useless_type_conversion_p (op1_type, op0_type)
3503 && (!POINTER_TYPE_P (op0_type)
3504 || !POINTER_TYPE_P (op1_type)
3505 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3507 error ("mismatching comparison operand types");
3508 debug_generic_expr (op0_type);
3509 debug_generic_expr (op1_type);
3510 return true;
3513 /* The resulting type of a comparison may be an effective boolean type. */
3514 if (INTEGRAL_TYPE_P (type)
3515 && (TREE_CODE (type) == BOOLEAN_TYPE
3516 || TYPE_PRECISION (type) == 1))
3518 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3519 || TREE_CODE (op1_type) == VECTOR_TYPE)
3520 && code != EQ_EXPR && code != NE_EXPR
3521 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3522 && !VECTOR_INTEGER_TYPE_P (op0_type))
3524 error ("unsupported operation or type for vector comparison"
3525 " returning a boolean");
3526 debug_generic_expr (op0_type);
3527 debug_generic_expr (op1_type);
3528 return true;
3531 /* Or a boolean vector type with the same element count
3532 as the comparison operand types. */
3533 else if (TREE_CODE (type) == VECTOR_TYPE
3534 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3536 if (TREE_CODE (op0_type) != VECTOR_TYPE
3537 || TREE_CODE (op1_type) != VECTOR_TYPE)
3539 error ("non-vector operands in vector comparison");
3540 debug_generic_expr (op0_type);
3541 debug_generic_expr (op1_type);
3542 return true;
3545 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type))
3547 error ("invalid vector comparison resulting type");
3548 debug_generic_expr (type);
3549 return true;
3552 else
3554 error ("bogus comparison result type");
3555 debug_generic_expr (type);
3556 return true;
3559 return false;
3562 /* Verify a gimple assignment statement STMT with an unary rhs.
3563 Returns true if anything is wrong. */
3565 static bool
3566 verify_gimple_assign_unary (gassign *stmt)
3568 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3569 tree lhs = gimple_assign_lhs (stmt);
3570 tree lhs_type = TREE_TYPE (lhs);
3571 tree rhs1 = gimple_assign_rhs1 (stmt);
3572 tree rhs1_type = TREE_TYPE (rhs1);
3574 if (!is_gimple_reg (lhs))
3576 error ("non-register as LHS of unary operation");
3577 return true;
3580 if (!is_gimple_val (rhs1))
3582 error ("invalid operand in unary operation");
3583 return true;
3586 /* First handle conversions. */
3587 switch (rhs_code)
3589 CASE_CONVERT:
3591 /* Allow conversions from pointer type to integral type only if
3592 there is no sign or zero extension involved.
3593 For targets were the precision of ptrofftype doesn't match that
3594 of pointers we need to allow arbitrary conversions to ptrofftype. */
3595 if ((POINTER_TYPE_P (lhs_type)
3596 && INTEGRAL_TYPE_P (rhs1_type))
3597 || (POINTER_TYPE_P (rhs1_type)
3598 && INTEGRAL_TYPE_P (lhs_type)
3599 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3600 || ptrofftype_p (sizetype))))
3601 return false;
3603 /* Allow conversion from integral to offset type and vice versa. */
3604 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3605 && INTEGRAL_TYPE_P (rhs1_type))
3606 || (INTEGRAL_TYPE_P (lhs_type)
3607 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3608 return false;
3610 /* Otherwise assert we are converting between types of the
3611 same kind. */
3612 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3614 error ("invalid types in nop conversion");
3615 debug_generic_expr (lhs_type);
3616 debug_generic_expr (rhs1_type);
3617 return true;
3620 return false;
3623 case ADDR_SPACE_CONVERT_EXPR:
3625 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3626 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3627 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3629 error ("invalid types in address space conversion");
3630 debug_generic_expr (lhs_type);
3631 debug_generic_expr (rhs1_type);
3632 return true;
3635 return false;
3638 case FIXED_CONVERT_EXPR:
3640 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3641 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3643 error ("invalid types in fixed-point conversion");
3644 debug_generic_expr (lhs_type);
3645 debug_generic_expr (rhs1_type);
3646 return true;
3649 return false;
3652 case FLOAT_EXPR:
3654 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3655 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3656 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3658 error ("invalid types in conversion to floating point");
3659 debug_generic_expr (lhs_type);
3660 debug_generic_expr (rhs1_type);
3661 return true;
3664 return false;
3667 case FIX_TRUNC_EXPR:
3669 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3670 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3671 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3673 error ("invalid types in conversion to integer");
3674 debug_generic_expr (lhs_type);
3675 debug_generic_expr (rhs1_type);
3676 return true;
3679 return false;
3681 case REDUC_MAX_EXPR:
3682 case REDUC_MIN_EXPR:
3683 case REDUC_PLUS_EXPR:
3684 if (!VECTOR_TYPE_P (rhs1_type)
3685 || !useless_type_conversion_p (lhs_type, TREE_TYPE (rhs1_type)))
3687 error ("reduction should convert from vector to element type");
3688 debug_generic_expr (lhs_type);
3689 debug_generic_expr (rhs1_type);
3690 return true;
3692 return false;
3694 case VEC_UNPACK_HI_EXPR:
3695 case VEC_UNPACK_LO_EXPR:
3696 case VEC_UNPACK_FLOAT_HI_EXPR:
3697 case VEC_UNPACK_FLOAT_LO_EXPR:
3698 /* FIXME. */
3699 return false;
3701 case NEGATE_EXPR:
3702 case ABS_EXPR:
3703 case BIT_NOT_EXPR:
3704 case PAREN_EXPR:
3705 case CONJ_EXPR:
3706 break;
3708 default:
3709 gcc_unreachable ();
3712 /* For the remaining codes assert there is no conversion involved. */
3713 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3715 error ("non-trivial conversion in unary operation");
3716 debug_generic_expr (lhs_type);
3717 debug_generic_expr (rhs1_type);
3718 return true;
3721 return false;
3724 /* Verify a gimple assignment statement STMT with a binary rhs.
3725 Returns true if anything is wrong. */
3727 static bool
3728 verify_gimple_assign_binary (gassign *stmt)
3730 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3731 tree lhs = gimple_assign_lhs (stmt);
3732 tree lhs_type = TREE_TYPE (lhs);
3733 tree rhs1 = gimple_assign_rhs1 (stmt);
3734 tree rhs1_type = TREE_TYPE (rhs1);
3735 tree rhs2 = gimple_assign_rhs2 (stmt);
3736 tree rhs2_type = TREE_TYPE (rhs2);
3738 if (!is_gimple_reg (lhs))
3740 error ("non-register as LHS of binary operation");
3741 return true;
3744 if (!is_gimple_val (rhs1)
3745 || !is_gimple_val (rhs2))
3747 error ("invalid operands in binary operation");
3748 return true;
3751 /* First handle operations that involve different types. */
3752 switch (rhs_code)
3754 case COMPLEX_EXPR:
3756 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3757 || !(INTEGRAL_TYPE_P (rhs1_type)
3758 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3759 || !(INTEGRAL_TYPE_P (rhs2_type)
3760 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3762 error ("type mismatch in complex expression");
3763 debug_generic_expr (lhs_type);
3764 debug_generic_expr (rhs1_type);
3765 debug_generic_expr (rhs2_type);
3766 return true;
3769 return false;
3772 case LSHIFT_EXPR:
3773 case RSHIFT_EXPR:
3774 case LROTATE_EXPR:
3775 case RROTATE_EXPR:
3777 /* Shifts and rotates are ok on integral types, fixed point
3778 types and integer vector types. */
3779 if ((!INTEGRAL_TYPE_P (rhs1_type)
3780 && !FIXED_POINT_TYPE_P (rhs1_type)
3781 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3782 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3783 || (!INTEGRAL_TYPE_P (rhs2_type)
3784 /* Vector shifts of vectors are also ok. */
3785 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3786 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3787 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3788 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3789 || !useless_type_conversion_p (lhs_type, rhs1_type))
3791 error ("type mismatch in shift expression");
3792 debug_generic_expr (lhs_type);
3793 debug_generic_expr (rhs1_type);
3794 debug_generic_expr (rhs2_type);
3795 return true;
3798 return false;
3801 case WIDEN_LSHIFT_EXPR:
3803 if (!INTEGRAL_TYPE_P (lhs_type)
3804 || !INTEGRAL_TYPE_P (rhs1_type)
3805 || TREE_CODE (rhs2) != INTEGER_CST
3806 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3808 error ("type mismatch in widening vector shift expression");
3809 debug_generic_expr (lhs_type);
3810 debug_generic_expr (rhs1_type);
3811 debug_generic_expr (rhs2_type);
3812 return true;
3815 return false;
3818 case VEC_WIDEN_LSHIFT_HI_EXPR:
3819 case VEC_WIDEN_LSHIFT_LO_EXPR:
3821 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3822 || TREE_CODE (lhs_type) != VECTOR_TYPE
3823 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3824 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3825 || TREE_CODE (rhs2) != INTEGER_CST
3826 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3827 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3829 error ("type mismatch in widening vector shift expression");
3830 debug_generic_expr (lhs_type);
3831 debug_generic_expr (rhs1_type);
3832 debug_generic_expr (rhs2_type);
3833 return true;
3836 return false;
3839 case PLUS_EXPR:
3840 case MINUS_EXPR:
3842 tree lhs_etype = lhs_type;
3843 tree rhs1_etype = rhs1_type;
3844 tree rhs2_etype = rhs2_type;
3845 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3847 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3848 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3850 error ("invalid non-vector operands to vector valued plus");
3851 return true;
3853 lhs_etype = TREE_TYPE (lhs_type);
3854 rhs1_etype = TREE_TYPE (rhs1_type);
3855 rhs2_etype = TREE_TYPE (rhs2_type);
3857 if (POINTER_TYPE_P (lhs_etype)
3858 || POINTER_TYPE_P (rhs1_etype)
3859 || POINTER_TYPE_P (rhs2_etype))
3861 error ("invalid (pointer) operands to plus/minus");
3862 return true;
3865 /* Continue with generic binary expression handling. */
3866 break;
3869 case POINTER_PLUS_EXPR:
3871 if (!POINTER_TYPE_P (rhs1_type)
3872 || !useless_type_conversion_p (lhs_type, rhs1_type)
3873 || !ptrofftype_p (rhs2_type))
3875 error ("type mismatch in pointer plus expression");
3876 debug_generic_stmt (lhs_type);
3877 debug_generic_stmt (rhs1_type);
3878 debug_generic_stmt (rhs2_type);
3879 return true;
3882 return false;
3885 case TRUTH_ANDIF_EXPR:
3886 case TRUTH_ORIF_EXPR:
3887 case TRUTH_AND_EXPR:
3888 case TRUTH_OR_EXPR:
3889 case TRUTH_XOR_EXPR:
3891 gcc_unreachable ();
3893 case LT_EXPR:
3894 case LE_EXPR:
3895 case GT_EXPR:
3896 case GE_EXPR:
3897 case EQ_EXPR:
3898 case NE_EXPR:
3899 case UNORDERED_EXPR:
3900 case ORDERED_EXPR:
3901 case UNLT_EXPR:
3902 case UNLE_EXPR:
3903 case UNGT_EXPR:
3904 case UNGE_EXPR:
3905 case UNEQ_EXPR:
3906 case LTGT_EXPR:
3907 /* Comparisons are also binary, but the result type is not
3908 connected to the operand types. */
3909 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
3911 case WIDEN_MULT_EXPR:
3912 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3913 return true;
3914 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3915 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3917 case WIDEN_SUM_EXPR:
3918 case VEC_WIDEN_MULT_HI_EXPR:
3919 case VEC_WIDEN_MULT_LO_EXPR:
3920 case VEC_WIDEN_MULT_EVEN_EXPR:
3921 case VEC_WIDEN_MULT_ODD_EXPR:
3922 case VEC_PACK_TRUNC_EXPR:
3923 case VEC_PACK_SAT_EXPR:
3924 case VEC_PACK_FIX_TRUNC_EXPR:
3925 /* FIXME. */
3926 return false;
3928 case MULT_EXPR:
3929 case MULT_HIGHPART_EXPR:
3930 case TRUNC_DIV_EXPR:
3931 case CEIL_DIV_EXPR:
3932 case FLOOR_DIV_EXPR:
3933 case ROUND_DIV_EXPR:
3934 case TRUNC_MOD_EXPR:
3935 case CEIL_MOD_EXPR:
3936 case FLOOR_MOD_EXPR:
3937 case ROUND_MOD_EXPR:
3938 case RDIV_EXPR:
3939 case EXACT_DIV_EXPR:
3940 case MIN_EXPR:
3941 case MAX_EXPR:
3942 case BIT_IOR_EXPR:
3943 case BIT_XOR_EXPR:
3944 case BIT_AND_EXPR:
3945 /* Continue with generic binary expression handling. */
3946 break;
3948 default:
3949 gcc_unreachable ();
3952 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3953 || !useless_type_conversion_p (lhs_type, rhs2_type))
3955 error ("type mismatch in binary expression");
3956 debug_generic_stmt (lhs_type);
3957 debug_generic_stmt (rhs1_type);
3958 debug_generic_stmt (rhs2_type);
3959 return true;
3962 return false;
3965 /* Verify a gimple assignment statement STMT with a ternary rhs.
3966 Returns true if anything is wrong. */
3968 static bool
3969 verify_gimple_assign_ternary (gassign *stmt)
3971 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3972 tree lhs = gimple_assign_lhs (stmt);
3973 tree lhs_type = TREE_TYPE (lhs);
3974 tree rhs1 = gimple_assign_rhs1 (stmt);
3975 tree rhs1_type = TREE_TYPE (rhs1);
3976 tree rhs2 = gimple_assign_rhs2 (stmt);
3977 tree rhs2_type = TREE_TYPE (rhs2);
3978 tree rhs3 = gimple_assign_rhs3 (stmt);
3979 tree rhs3_type = TREE_TYPE (rhs3);
3981 if (!is_gimple_reg (lhs))
3983 error ("non-register as LHS of ternary operation");
3984 return true;
3987 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3988 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3989 || !is_gimple_val (rhs2)
3990 || !is_gimple_val (rhs3))
3992 error ("invalid operands in ternary operation");
3993 return true;
3996 /* First handle operations that involve different types. */
3997 switch (rhs_code)
3999 case WIDEN_MULT_PLUS_EXPR:
4000 case WIDEN_MULT_MINUS_EXPR:
4001 if ((!INTEGRAL_TYPE_P (rhs1_type)
4002 && !FIXED_POINT_TYPE_P (rhs1_type))
4003 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4004 || !useless_type_conversion_p (lhs_type, rhs3_type)
4005 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4006 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4008 error ("type mismatch in widening multiply-accumulate expression");
4009 debug_generic_expr (lhs_type);
4010 debug_generic_expr (rhs1_type);
4011 debug_generic_expr (rhs2_type);
4012 debug_generic_expr (rhs3_type);
4013 return true;
4015 break;
4017 case FMA_EXPR:
4018 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4019 || !useless_type_conversion_p (lhs_type, rhs2_type)
4020 || !useless_type_conversion_p (lhs_type, rhs3_type))
4022 error ("type mismatch in fused multiply-add expression");
4023 debug_generic_expr (lhs_type);
4024 debug_generic_expr (rhs1_type);
4025 debug_generic_expr (rhs2_type);
4026 debug_generic_expr (rhs3_type);
4027 return true;
4029 break;
4031 case VEC_COND_EXPR:
4032 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4033 || TYPE_VECTOR_SUBPARTS (rhs1_type)
4034 != TYPE_VECTOR_SUBPARTS (lhs_type))
4036 error ("the first argument of a VEC_COND_EXPR must be of a "
4037 "boolean vector type of the same number of elements "
4038 "as the result");
4039 debug_generic_expr (lhs_type);
4040 debug_generic_expr (rhs1_type);
4041 return true;
4043 /* Fallthrough. */
4044 case COND_EXPR:
4045 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4046 || !useless_type_conversion_p (lhs_type, rhs3_type))
4048 error ("type mismatch in conditional expression");
4049 debug_generic_expr (lhs_type);
4050 debug_generic_expr (rhs2_type);
4051 debug_generic_expr (rhs3_type);
4052 return true;
4054 break;
4056 case VEC_PERM_EXPR:
4057 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4058 || !useless_type_conversion_p (lhs_type, rhs2_type))
4060 error ("type mismatch in vector permute expression");
4061 debug_generic_expr (lhs_type);
4062 debug_generic_expr (rhs1_type);
4063 debug_generic_expr (rhs2_type);
4064 debug_generic_expr (rhs3_type);
4065 return true;
4068 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4069 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4070 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4072 error ("vector types expected in vector permute expression");
4073 debug_generic_expr (lhs_type);
4074 debug_generic_expr (rhs1_type);
4075 debug_generic_expr (rhs2_type);
4076 debug_generic_expr (rhs3_type);
4077 return true;
4080 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
4081 || TYPE_VECTOR_SUBPARTS (rhs2_type)
4082 != TYPE_VECTOR_SUBPARTS (rhs3_type)
4083 || TYPE_VECTOR_SUBPARTS (rhs3_type)
4084 != TYPE_VECTOR_SUBPARTS (lhs_type))
4086 error ("vectors with different element number found "
4087 "in vector permute expression");
4088 debug_generic_expr (lhs_type);
4089 debug_generic_expr (rhs1_type);
4090 debug_generic_expr (rhs2_type);
4091 debug_generic_expr (rhs3_type);
4092 return true;
4095 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4096 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
4097 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
4099 error ("invalid mask type in vector permute expression");
4100 debug_generic_expr (lhs_type);
4101 debug_generic_expr (rhs1_type);
4102 debug_generic_expr (rhs2_type);
4103 debug_generic_expr (rhs3_type);
4104 return true;
4107 return false;
4109 case SAD_EXPR:
4110 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4111 || !useless_type_conversion_p (lhs_type, rhs3_type)
4112 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4113 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4115 error ("type mismatch in sad expression");
4116 debug_generic_expr (lhs_type);
4117 debug_generic_expr (rhs1_type);
4118 debug_generic_expr (rhs2_type);
4119 debug_generic_expr (rhs3_type);
4120 return true;
4123 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4124 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4125 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4127 error ("vector types expected in sad expression");
4128 debug_generic_expr (lhs_type);
4129 debug_generic_expr (rhs1_type);
4130 debug_generic_expr (rhs2_type);
4131 debug_generic_expr (rhs3_type);
4132 return true;
4135 return false;
4137 case BIT_INSERT_EXPR:
4138 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4140 error ("type mismatch in BIT_INSERT_EXPR");
4141 debug_generic_expr (lhs_type);
4142 debug_generic_expr (rhs1_type);
4143 return true;
4145 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4146 && INTEGRAL_TYPE_P (rhs2_type))
4147 || (VECTOR_TYPE_P (rhs1_type)
4148 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4150 error ("not allowed type combination in BIT_INSERT_EXPR");
4151 debug_generic_expr (rhs1_type);
4152 debug_generic_expr (rhs2_type);
4153 return true;
4155 if (! tree_fits_uhwi_p (rhs3)
4156 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4158 error ("invalid position or size in BIT_INSERT_EXPR");
4159 return true;
4161 if (INTEGRAL_TYPE_P (rhs1_type))
4163 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4164 if (bitpos >= TYPE_PRECISION (rhs1_type)
4165 || (bitpos + TYPE_PRECISION (rhs2_type)
4166 > TYPE_PRECISION (rhs1_type)))
4168 error ("insertion out of range in BIT_INSERT_EXPR");
4169 return true;
4172 else if (VECTOR_TYPE_P (rhs1_type))
4174 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4175 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4176 if (bitpos % bitsize != 0)
4178 error ("vector insertion not at element boundary");
4179 return true;
4182 return false;
4184 case DOT_PROD_EXPR:
4185 case REALIGN_LOAD_EXPR:
4186 /* FIXME. */
4187 return false;
4189 default:
4190 gcc_unreachable ();
4192 return false;
4195 /* Verify a gimple assignment statement STMT with a single rhs.
4196 Returns true if anything is wrong. */
4198 static bool
4199 verify_gimple_assign_single (gassign *stmt)
4201 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4202 tree lhs = gimple_assign_lhs (stmt);
4203 tree lhs_type = TREE_TYPE (lhs);
4204 tree rhs1 = gimple_assign_rhs1 (stmt);
4205 tree rhs1_type = TREE_TYPE (rhs1);
4206 bool res = false;
4208 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4210 error ("non-trivial conversion at assignment");
4211 debug_generic_expr (lhs_type);
4212 debug_generic_expr (rhs1_type);
4213 return true;
4216 if (gimple_clobber_p (stmt)
4217 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4219 error ("non-decl/MEM_REF LHS in clobber statement");
4220 debug_generic_expr (lhs);
4221 return true;
4224 if (handled_component_p (lhs)
4225 || TREE_CODE (lhs) == MEM_REF
4226 || TREE_CODE (lhs) == TARGET_MEM_REF)
4227 res |= verify_types_in_gimple_reference (lhs, true);
4229 /* Special codes we cannot handle via their class. */
4230 switch (rhs_code)
4232 case ADDR_EXPR:
4234 tree op = TREE_OPERAND (rhs1, 0);
4235 if (!is_gimple_addressable (op))
4237 error ("invalid operand in unary expression");
4238 return true;
4241 /* Technically there is no longer a need for matching types, but
4242 gimple hygiene asks for this check. In LTO we can end up
4243 combining incompatible units and thus end up with addresses
4244 of globals that change their type to a common one. */
4245 if (!in_lto_p
4246 && !types_compatible_p (TREE_TYPE (op),
4247 TREE_TYPE (TREE_TYPE (rhs1)))
4248 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4249 TREE_TYPE (op)))
4251 error ("type mismatch in address expression");
4252 debug_generic_stmt (TREE_TYPE (rhs1));
4253 debug_generic_stmt (TREE_TYPE (op));
4254 return true;
4257 return verify_types_in_gimple_reference (op, true);
4260 /* tcc_reference */
4261 case INDIRECT_REF:
4262 error ("INDIRECT_REF in gimple IL");
4263 return true;
4265 case COMPONENT_REF:
4266 case BIT_FIELD_REF:
4267 case ARRAY_REF:
4268 case ARRAY_RANGE_REF:
4269 case VIEW_CONVERT_EXPR:
4270 case REALPART_EXPR:
4271 case IMAGPART_EXPR:
4272 case TARGET_MEM_REF:
4273 case MEM_REF:
4274 if (!is_gimple_reg (lhs)
4275 && is_gimple_reg_type (TREE_TYPE (lhs)))
4277 error ("invalid rhs for gimple memory store");
4278 debug_generic_stmt (lhs);
4279 debug_generic_stmt (rhs1);
4280 return true;
4282 return res || verify_types_in_gimple_reference (rhs1, false);
4284 /* tcc_constant */
4285 case SSA_NAME:
4286 case INTEGER_CST:
4287 case REAL_CST:
4288 case FIXED_CST:
4289 case COMPLEX_CST:
4290 case VECTOR_CST:
4291 case STRING_CST:
4292 return res;
4294 /* tcc_declaration */
4295 case CONST_DECL:
4296 return res;
4297 case VAR_DECL:
4298 case PARM_DECL:
4299 if (!is_gimple_reg (lhs)
4300 && !is_gimple_reg (rhs1)
4301 && is_gimple_reg_type (TREE_TYPE (lhs)))
4303 error ("invalid rhs for gimple memory store");
4304 debug_generic_stmt (lhs);
4305 debug_generic_stmt (rhs1);
4306 return true;
4308 return res;
4310 case CONSTRUCTOR:
4311 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4313 unsigned int i;
4314 tree elt_i, elt_v, elt_t = NULL_TREE;
4316 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4317 return res;
4318 /* For vector CONSTRUCTORs we require that either it is empty
4319 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4320 (then the element count must be correct to cover the whole
4321 outer vector and index must be NULL on all elements, or it is
4322 a CONSTRUCTOR of scalar elements, where we as an exception allow
4323 smaller number of elements (assuming zero filling) and
4324 consecutive indexes as compared to NULL indexes (such
4325 CONSTRUCTORs can appear in the IL from FEs). */
4326 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4328 if (elt_t == NULL_TREE)
4330 elt_t = TREE_TYPE (elt_v);
4331 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4333 tree elt_t = TREE_TYPE (elt_v);
4334 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4335 TREE_TYPE (elt_t)))
4337 error ("incorrect type of vector CONSTRUCTOR"
4338 " elements");
4339 debug_generic_stmt (rhs1);
4340 return true;
4342 else if (CONSTRUCTOR_NELTS (rhs1)
4343 * TYPE_VECTOR_SUBPARTS (elt_t)
4344 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4346 error ("incorrect number of vector CONSTRUCTOR"
4347 " elements");
4348 debug_generic_stmt (rhs1);
4349 return true;
4352 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4353 elt_t))
4355 error ("incorrect type of vector CONSTRUCTOR elements");
4356 debug_generic_stmt (rhs1);
4357 return true;
4359 else if (CONSTRUCTOR_NELTS (rhs1)
4360 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4362 error ("incorrect number of vector CONSTRUCTOR elements");
4363 debug_generic_stmt (rhs1);
4364 return true;
4367 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4369 error ("incorrect type of vector CONSTRUCTOR elements");
4370 debug_generic_stmt (rhs1);
4371 return true;
4373 if (elt_i != NULL_TREE
4374 && (TREE_CODE (elt_t) == VECTOR_TYPE
4375 || TREE_CODE (elt_i) != INTEGER_CST
4376 || compare_tree_int (elt_i, i) != 0))
4378 error ("vector CONSTRUCTOR with non-NULL element index");
4379 debug_generic_stmt (rhs1);
4380 return true;
4382 if (!is_gimple_val (elt_v))
4384 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4385 debug_generic_stmt (rhs1);
4386 return true;
4390 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4392 error ("non-vector CONSTRUCTOR with elements");
4393 debug_generic_stmt (rhs1);
4394 return true;
4396 return res;
4397 case OBJ_TYPE_REF:
4398 case ASSERT_EXPR:
4399 case WITH_SIZE_EXPR:
4400 /* FIXME. */
4401 return res;
4403 default:;
4406 return res;
4409 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4410 is a problem, otherwise false. */
4412 static bool
4413 verify_gimple_assign (gassign *stmt)
4415 switch (gimple_assign_rhs_class (stmt))
4417 case GIMPLE_SINGLE_RHS:
4418 return verify_gimple_assign_single (stmt);
4420 case GIMPLE_UNARY_RHS:
4421 return verify_gimple_assign_unary (stmt);
4423 case GIMPLE_BINARY_RHS:
4424 return verify_gimple_assign_binary (stmt);
4426 case GIMPLE_TERNARY_RHS:
4427 return verify_gimple_assign_ternary (stmt);
4429 default:
4430 gcc_unreachable ();
4434 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4435 is a problem, otherwise false. */
4437 static bool
4438 verify_gimple_return (greturn *stmt)
4440 tree op = gimple_return_retval (stmt);
4441 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4443 /* We cannot test for present return values as we do not fix up missing
4444 return values from the original source. */
4445 if (op == NULL)
4446 return false;
4448 if (!is_gimple_val (op)
4449 && TREE_CODE (op) != RESULT_DECL)
4451 error ("invalid operand in return statement");
4452 debug_generic_stmt (op);
4453 return true;
4456 if ((TREE_CODE (op) == RESULT_DECL
4457 && DECL_BY_REFERENCE (op))
4458 || (TREE_CODE (op) == SSA_NAME
4459 && SSA_NAME_VAR (op)
4460 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4461 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4462 op = TREE_TYPE (op);
4464 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4466 error ("invalid conversion in return statement");
4467 debug_generic_stmt (restype);
4468 debug_generic_stmt (TREE_TYPE (op));
4469 return true;
4472 return false;
4476 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4477 is a problem, otherwise false. */
4479 static bool
4480 verify_gimple_goto (ggoto *stmt)
4482 tree dest = gimple_goto_dest (stmt);
4484 /* ??? We have two canonical forms of direct goto destinations, a
4485 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4486 if (TREE_CODE (dest) != LABEL_DECL
4487 && (!is_gimple_val (dest)
4488 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4490 error ("goto destination is neither a label nor a pointer");
4491 return true;
4494 return false;
4497 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4498 is a problem, otherwise false. */
4500 static bool
4501 verify_gimple_switch (gswitch *stmt)
4503 unsigned int i, n;
4504 tree elt, prev_upper_bound = NULL_TREE;
4505 tree index_type, elt_type = NULL_TREE;
4507 if (!is_gimple_val (gimple_switch_index (stmt)))
4509 error ("invalid operand to switch statement");
4510 debug_generic_stmt (gimple_switch_index (stmt));
4511 return true;
4514 index_type = TREE_TYPE (gimple_switch_index (stmt));
4515 if (! INTEGRAL_TYPE_P (index_type))
4517 error ("non-integral type switch statement");
4518 debug_generic_expr (index_type);
4519 return true;
4522 elt = gimple_switch_label (stmt, 0);
4523 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4525 error ("invalid default case label in switch statement");
4526 debug_generic_expr (elt);
4527 return true;
4530 n = gimple_switch_num_labels (stmt);
4531 for (i = 1; i < n; i++)
4533 elt = gimple_switch_label (stmt, i);
4535 if (! CASE_LOW (elt))
4537 error ("invalid case label in switch statement");
4538 debug_generic_expr (elt);
4539 return true;
4541 if (CASE_HIGH (elt)
4542 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4544 error ("invalid case range in switch statement");
4545 debug_generic_expr (elt);
4546 return true;
4549 if (elt_type)
4551 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4552 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4554 error ("type mismatch for case label in switch statement");
4555 debug_generic_expr (elt);
4556 return true;
4559 else
4561 elt_type = TREE_TYPE (CASE_LOW (elt));
4562 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4564 error ("type precision mismatch in switch statement");
4565 return true;
4569 if (prev_upper_bound)
4571 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4573 error ("case labels not sorted in switch statement");
4574 return true;
4578 prev_upper_bound = CASE_HIGH (elt);
4579 if (! prev_upper_bound)
4580 prev_upper_bound = CASE_LOW (elt);
4583 return false;
4586 /* Verify a gimple debug statement STMT.
4587 Returns true if anything is wrong. */
4589 static bool
4590 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4592 /* There isn't much that could be wrong in a gimple debug stmt. A
4593 gimple debug bind stmt, for example, maps a tree, that's usually
4594 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4595 component or member of an aggregate type, to another tree, that
4596 can be an arbitrary expression. These stmts expand into debug
4597 insns, and are converted to debug notes by var-tracking.c. */
4598 return false;
4601 /* Verify a gimple label statement STMT.
4602 Returns true if anything is wrong. */
4604 static bool
4605 verify_gimple_label (glabel *stmt)
4607 tree decl = gimple_label_label (stmt);
4608 int uid;
4609 bool err = false;
4611 if (TREE_CODE (decl) != LABEL_DECL)
4612 return true;
4613 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4614 && DECL_CONTEXT (decl) != current_function_decl)
4616 error ("label's context is not the current function decl");
4617 err |= true;
4620 uid = LABEL_DECL_UID (decl);
4621 if (cfun->cfg
4622 && (uid == -1
4623 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4625 error ("incorrect entry in label_to_block_map");
4626 err |= true;
4629 uid = EH_LANDING_PAD_NR (decl);
4630 if (uid)
4632 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4633 if (decl != lp->post_landing_pad)
4635 error ("incorrect setting of landing pad number");
4636 err |= true;
4640 return err;
4643 /* Verify a gimple cond statement STMT.
4644 Returns true if anything is wrong. */
4646 static bool
4647 verify_gimple_cond (gcond *stmt)
4649 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4651 error ("invalid comparison code in gimple cond");
4652 return true;
4654 if (!(!gimple_cond_true_label (stmt)
4655 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4656 || !(!gimple_cond_false_label (stmt)
4657 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4659 error ("invalid labels in gimple cond");
4660 return true;
4663 return verify_gimple_comparison (boolean_type_node,
4664 gimple_cond_lhs (stmt),
4665 gimple_cond_rhs (stmt),
4666 gimple_cond_code (stmt));
4669 /* Verify the GIMPLE statement STMT. Returns true if there is an
4670 error, otherwise false. */
4672 static bool
4673 verify_gimple_stmt (gimple *stmt)
4675 switch (gimple_code (stmt))
4677 case GIMPLE_ASSIGN:
4678 return verify_gimple_assign (as_a <gassign *> (stmt));
4680 case GIMPLE_LABEL:
4681 return verify_gimple_label (as_a <glabel *> (stmt));
4683 case GIMPLE_CALL:
4684 return verify_gimple_call (as_a <gcall *> (stmt));
4686 case GIMPLE_COND:
4687 return verify_gimple_cond (as_a <gcond *> (stmt));
4689 case GIMPLE_GOTO:
4690 return verify_gimple_goto (as_a <ggoto *> (stmt));
4692 case GIMPLE_SWITCH:
4693 return verify_gimple_switch (as_a <gswitch *> (stmt));
4695 case GIMPLE_RETURN:
4696 return verify_gimple_return (as_a <greturn *> (stmt));
4698 case GIMPLE_ASM:
4699 return false;
4701 case GIMPLE_TRANSACTION:
4702 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4704 /* Tuples that do not have tree operands. */
4705 case GIMPLE_NOP:
4706 case GIMPLE_PREDICT:
4707 case GIMPLE_RESX:
4708 case GIMPLE_EH_DISPATCH:
4709 case GIMPLE_EH_MUST_NOT_THROW:
4710 return false;
4712 CASE_GIMPLE_OMP:
4713 /* OpenMP directives are validated by the FE and never operated
4714 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4715 non-gimple expressions when the main index variable has had
4716 its address taken. This does not affect the loop itself
4717 because the header of an GIMPLE_OMP_FOR is merely used to determine
4718 how to setup the parallel iteration. */
4719 return false;
4721 case GIMPLE_DEBUG:
4722 return verify_gimple_debug (stmt);
4724 default:
4725 gcc_unreachable ();
4729 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4730 and false otherwise. */
4732 static bool
4733 verify_gimple_phi (gimple *phi)
4735 bool err = false;
4736 unsigned i;
4737 tree phi_result = gimple_phi_result (phi);
4738 bool virtual_p;
4740 if (!phi_result)
4742 error ("invalid PHI result");
4743 return true;
4746 virtual_p = virtual_operand_p (phi_result);
4747 if (TREE_CODE (phi_result) != SSA_NAME
4748 || (virtual_p
4749 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4751 error ("invalid PHI result");
4752 err = true;
4755 for (i = 0; i < gimple_phi_num_args (phi); i++)
4757 tree t = gimple_phi_arg_def (phi, i);
4759 if (!t)
4761 error ("missing PHI def");
4762 err |= true;
4763 continue;
4765 /* Addressable variables do have SSA_NAMEs but they
4766 are not considered gimple values. */
4767 else if ((TREE_CODE (t) == SSA_NAME
4768 && virtual_p != virtual_operand_p (t))
4769 || (virtual_p
4770 && (TREE_CODE (t) != SSA_NAME
4771 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4772 || (!virtual_p
4773 && !is_gimple_val (t)))
4775 error ("invalid PHI argument");
4776 debug_generic_expr (t);
4777 err |= true;
4779 #ifdef ENABLE_TYPES_CHECKING
4780 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4782 error ("incompatible types in PHI argument %u", i);
4783 debug_generic_stmt (TREE_TYPE (phi_result));
4784 debug_generic_stmt (TREE_TYPE (t));
4785 err |= true;
4787 #endif
4790 return err;
4793 /* Verify the GIMPLE statements inside the sequence STMTS. */
4795 static bool
4796 verify_gimple_in_seq_2 (gimple_seq stmts)
4798 gimple_stmt_iterator ittr;
4799 bool err = false;
4801 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4803 gimple *stmt = gsi_stmt (ittr);
4805 switch (gimple_code (stmt))
4807 case GIMPLE_BIND:
4808 err |= verify_gimple_in_seq_2 (
4809 gimple_bind_body (as_a <gbind *> (stmt)));
4810 break;
4812 case GIMPLE_TRY:
4813 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4814 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4815 break;
4817 case GIMPLE_EH_FILTER:
4818 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4819 break;
4821 case GIMPLE_EH_ELSE:
4823 geh_else *eh_else = as_a <geh_else *> (stmt);
4824 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
4825 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
4827 break;
4829 case GIMPLE_CATCH:
4830 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
4831 as_a <gcatch *> (stmt)));
4832 break;
4834 case GIMPLE_TRANSACTION:
4835 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
4836 break;
4838 default:
4840 bool err2 = verify_gimple_stmt (stmt);
4841 if (err2)
4842 debug_gimple_stmt (stmt);
4843 err |= err2;
4848 return err;
4851 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4852 is a problem, otherwise false. */
4854 static bool
4855 verify_gimple_transaction (gtransaction *stmt)
4857 tree lab;
4859 lab = gimple_transaction_label_norm (stmt);
4860 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4861 return true;
4862 lab = gimple_transaction_label_uninst (stmt);
4863 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4864 return true;
4865 lab = gimple_transaction_label_over (stmt);
4866 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4867 return true;
4869 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4873 /* Verify the GIMPLE statements inside the statement list STMTS. */
4875 DEBUG_FUNCTION void
4876 verify_gimple_in_seq (gimple_seq stmts)
4878 timevar_push (TV_TREE_STMT_VERIFY);
4879 if (verify_gimple_in_seq_2 (stmts))
4880 internal_error ("verify_gimple failed");
4881 timevar_pop (TV_TREE_STMT_VERIFY);
4884 /* Return true when the T can be shared. */
4886 static bool
4887 tree_node_can_be_shared (tree t)
4889 if (IS_TYPE_OR_DECL_P (t)
4890 || is_gimple_min_invariant (t)
4891 || TREE_CODE (t) == SSA_NAME
4892 || t == error_mark_node
4893 || TREE_CODE (t) == IDENTIFIER_NODE)
4894 return true;
4896 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4897 return true;
4899 if (DECL_P (t))
4900 return true;
4902 return false;
4905 /* Called via walk_tree. Verify tree sharing. */
4907 static tree
4908 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4910 hash_set<void *> *visited = (hash_set<void *> *) data;
4912 if (tree_node_can_be_shared (*tp))
4914 *walk_subtrees = false;
4915 return NULL;
4918 if (visited->add (*tp))
4919 return *tp;
4921 return NULL;
4924 /* Called via walk_gimple_stmt. Verify tree sharing. */
4926 static tree
4927 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4929 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4930 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4933 static bool eh_error_found;
4934 bool
4935 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
4936 hash_set<gimple *> *visited)
4938 if (!visited->contains (stmt))
4940 error ("dead STMT in EH table");
4941 debug_gimple_stmt (stmt);
4942 eh_error_found = true;
4944 return true;
4947 /* Verify if the location LOCs block is in BLOCKS. */
4949 static bool
4950 verify_location (hash_set<tree> *blocks, location_t loc)
4952 tree block = LOCATION_BLOCK (loc);
4953 if (block != NULL_TREE
4954 && !blocks->contains (block))
4956 error ("location references block not in block tree");
4957 return true;
4959 if (block != NULL_TREE)
4960 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4961 return false;
4964 /* Called via walk_tree. Verify that expressions have no blocks. */
4966 static tree
4967 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4969 if (!EXPR_P (*tp))
4971 *walk_subtrees = false;
4972 return NULL;
4975 location_t loc = EXPR_LOCATION (*tp);
4976 if (LOCATION_BLOCK (loc) != NULL)
4977 return *tp;
4979 return NULL;
4982 /* Called via walk_tree. Verify locations of expressions. */
4984 static tree
4985 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4987 hash_set<tree> *blocks = (hash_set<tree> *) data;
4989 if (TREE_CODE (*tp) == VAR_DECL
4990 && DECL_HAS_DEBUG_EXPR_P (*tp))
4992 tree t = DECL_DEBUG_EXPR (*tp);
4993 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4994 if (addr)
4995 return addr;
4997 if ((TREE_CODE (*tp) == VAR_DECL
4998 || TREE_CODE (*tp) == PARM_DECL
4999 || TREE_CODE (*tp) == RESULT_DECL)
5000 && DECL_HAS_VALUE_EXPR_P (*tp))
5002 tree t = DECL_VALUE_EXPR (*tp);
5003 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5004 if (addr)
5005 return addr;
5008 if (!EXPR_P (*tp))
5010 *walk_subtrees = false;
5011 return NULL;
5014 location_t loc = EXPR_LOCATION (*tp);
5015 if (verify_location (blocks, loc))
5016 return *tp;
5018 return NULL;
5021 /* Called via walk_gimple_op. Verify locations of expressions. */
5023 static tree
5024 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5026 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5027 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5030 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5032 static void
5033 collect_subblocks (hash_set<tree> *blocks, tree block)
5035 tree t;
5036 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5038 blocks->add (t);
5039 collect_subblocks (blocks, t);
5043 /* Verify the GIMPLE statements in the CFG of FN. */
5045 DEBUG_FUNCTION void
5046 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5048 basic_block bb;
5049 bool err = false;
5051 timevar_push (TV_TREE_STMT_VERIFY);
5052 hash_set<void *> visited;
5053 hash_set<gimple *> visited_stmts;
5055 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5056 hash_set<tree> blocks;
5057 if (DECL_INITIAL (fn->decl))
5059 blocks.add (DECL_INITIAL (fn->decl));
5060 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5063 FOR_EACH_BB_FN (bb, fn)
5065 gimple_stmt_iterator gsi;
5067 for (gphi_iterator gpi = gsi_start_phis (bb);
5068 !gsi_end_p (gpi);
5069 gsi_next (&gpi))
5071 gphi *phi = gpi.phi ();
5072 bool err2 = false;
5073 unsigned i;
5075 visited_stmts.add (phi);
5077 if (gimple_bb (phi) != bb)
5079 error ("gimple_bb (phi) is set to a wrong basic block");
5080 err2 = true;
5083 err2 |= verify_gimple_phi (phi);
5085 /* Only PHI arguments have locations. */
5086 if (gimple_location (phi) != UNKNOWN_LOCATION)
5088 error ("PHI node with location");
5089 err2 = true;
5092 for (i = 0; i < gimple_phi_num_args (phi); i++)
5094 tree arg = gimple_phi_arg_def (phi, i);
5095 tree addr = walk_tree (&arg, verify_node_sharing_1,
5096 &visited, NULL);
5097 if (addr)
5099 error ("incorrect sharing of tree nodes");
5100 debug_generic_expr (addr);
5101 err2 |= true;
5103 location_t loc = gimple_phi_arg_location (phi, i);
5104 if (virtual_operand_p (gimple_phi_result (phi))
5105 && loc != UNKNOWN_LOCATION)
5107 error ("virtual PHI with argument locations");
5108 err2 = true;
5110 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5111 if (addr)
5113 debug_generic_expr (addr);
5114 err2 = true;
5116 err2 |= verify_location (&blocks, loc);
5119 if (err2)
5120 debug_gimple_stmt (phi);
5121 err |= err2;
5124 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5126 gimple *stmt = gsi_stmt (gsi);
5127 bool err2 = false;
5128 struct walk_stmt_info wi;
5129 tree addr;
5130 int lp_nr;
5132 visited_stmts.add (stmt);
5134 if (gimple_bb (stmt) != bb)
5136 error ("gimple_bb (stmt) is set to a wrong basic block");
5137 err2 = true;
5140 err2 |= verify_gimple_stmt (stmt);
5141 err2 |= verify_location (&blocks, gimple_location (stmt));
5143 memset (&wi, 0, sizeof (wi));
5144 wi.info = (void *) &visited;
5145 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5146 if (addr)
5148 error ("incorrect sharing of tree nodes");
5149 debug_generic_expr (addr);
5150 err2 |= true;
5153 memset (&wi, 0, sizeof (wi));
5154 wi.info = (void *) &blocks;
5155 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5156 if (addr)
5158 debug_generic_expr (addr);
5159 err2 |= true;
5162 /* ??? Instead of not checking these stmts at all the walker
5163 should know its context via wi. */
5164 if (!is_gimple_debug (stmt)
5165 && !is_gimple_omp (stmt))
5167 memset (&wi, 0, sizeof (wi));
5168 addr = walk_gimple_op (stmt, verify_expr, &wi);
5169 if (addr)
5171 debug_generic_expr (addr);
5172 inform (gimple_location (stmt), "in statement");
5173 err2 |= true;
5177 /* If the statement is marked as part of an EH region, then it is
5178 expected that the statement could throw. Verify that when we
5179 have optimizations that simplify statements such that we prove
5180 that they cannot throw, that we update other data structures
5181 to match. */
5182 lp_nr = lookup_stmt_eh_lp (stmt);
5183 if (lp_nr > 0)
5185 if (!stmt_could_throw_p (stmt))
5187 if (verify_nothrow)
5189 error ("statement marked for throw, but doesn%'t");
5190 err2 |= true;
5193 else if (!gsi_one_before_end_p (gsi))
5195 error ("statement marked for throw in middle of block");
5196 err2 |= true;
5200 if (err2)
5201 debug_gimple_stmt (stmt);
5202 err |= err2;
5206 eh_error_found = false;
5207 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5208 if (eh_table)
5209 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5210 (&visited_stmts);
5212 if (err || eh_error_found)
5213 internal_error ("verify_gimple failed");
5215 verify_histograms ();
5216 timevar_pop (TV_TREE_STMT_VERIFY);
5220 /* Verifies that the flow information is OK. */
5222 static int
5223 gimple_verify_flow_info (void)
5225 int err = 0;
5226 basic_block bb;
5227 gimple_stmt_iterator gsi;
5228 gimple *stmt;
5229 edge e;
5230 edge_iterator ei;
5232 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5233 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5235 error ("ENTRY_BLOCK has IL associated with it");
5236 err = 1;
5239 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5240 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5242 error ("EXIT_BLOCK has IL associated with it");
5243 err = 1;
5246 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5247 if (e->flags & EDGE_FALLTHRU)
5249 error ("fallthru to exit from bb %d", e->src->index);
5250 err = 1;
5253 FOR_EACH_BB_FN (bb, cfun)
5255 bool found_ctrl_stmt = false;
5257 stmt = NULL;
5259 /* Skip labels on the start of basic block. */
5260 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5262 tree label;
5263 gimple *prev_stmt = stmt;
5265 stmt = gsi_stmt (gsi);
5267 if (gimple_code (stmt) != GIMPLE_LABEL)
5268 break;
5270 label = gimple_label_label (as_a <glabel *> (stmt));
5271 if (prev_stmt && DECL_NONLOCAL (label))
5273 error ("nonlocal label ");
5274 print_generic_expr (stderr, label, 0);
5275 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5276 bb->index);
5277 err = 1;
5280 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5282 error ("EH landing pad label ");
5283 print_generic_expr (stderr, label, 0);
5284 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5285 bb->index);
5286 err = 1;
5289 if (label_to_block (label) != bb)
5291 error ("label ");
5292 print_generic_expr (stderr, label, 0);
5293 fprintf (stderr, " to block does not match in bb %d",
5294 bb->index);
5295 err = 1;
5298 if (decl_function_context (label) != current_function_decl)
5300 error ("label ");
5301 print_generic_expr (stderr, label, 0);
5302 fprintf (stderr, " has incorrect context in bb %d",
5303 bb->index);
5304 err = 1;
5308 /* Verify that body of basic block BB is free of control flow. */
5309 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5311 gimple *stmt = gsi_stmt (gsi);
5313 if (found_ctrl_stmt)
5315 error ("control flow in the middle of basic block %d",
5316 bb->index);
5317 err = 1;
5320 if (stmt_ends_bb_p (stmt))
5321 found_ctrl_stmt = true;
5323 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5325 error ("label ");
5326 print_generic_expr (stderr, gimple_label_label (label_stmt), 0);
5327 fprintf (stderr, " in the middle of basic block %d", bb->index);
5328 err = 1;
5332 gsi = gsi_last_bb (bb);
5333 if (gsi_end_p (gsi))
5334 continue;
5336 stmt = gsi_stmt (gsi);
5338 if (gimple_code (stmt) == GIMPLE_LABEL)
5339 continue;
5341 err |= verify_eh_edges (stmt);
5343 if (is_ctrl_stmt (stmt))
5345 FOR_EACH_EDGE (e, ei, bb->succs)
5346 if (e->flags & EDGE_FALLTHRU)
5348 error ("fallthru edge after a control statement in bb %d",
5349 bb->index);
5350 err = 1;
5354 if (gimple_code (stmt) != GIMPLE_COND)
5356 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5357 after anything else but if statement. */
5358 FOR_EACH_EDGE (e, ei, bb->succs)
5359 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5361 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5362 bb->index);
5363 err = 1;
5367 switch (gimple_code (stmt))
5369 case GIMPLE_COND:
5371 edge true_edge;
5372 edge false_edge;
5374 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5376 if (!true_edge
5377 || !false_edge
5378 || !(true_edge->flags & EDGE_TRUE_VALUE)
5379 || !(false_edge->flags & EDGE_FALSE_VALUE)
5380 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5381 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5382 || EDGE_COUNT (bb->succs) >= 3)
5384 error ("wrong outgoing edge flags at end of bb %d",
5385 bb->index);
5386 err = 1;
5389 break;
5391 case GIMPLE_GOTO:
5392 if (simple_goto_p (stmt))
5394 error ("explicit goto at end of bb %d", bb->index);
5395 err = 1;
5397 else
5399 /* FIXME. We should double check that the labels in the
5400 destination blocks have their address taken. */
5401 FOR_EACH_EDGE (e, ei, bb->succs)
5402 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5403 | EDGE_FALSE_VALUE))
5404 || !(e->flags & EDGE_ABNORMAL))
5406 error ("wrong outgoing edge flags at end of bb %d",
5407 bb->index);
5408 err = 1;
5411 break;
5413 case GIMPLE_CALL:
5414 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5415 break;
5416 /* ... fallthru ... */
5417 case GIMPLE_RETURN:
5418 if (!single_succ_p (bb)
5419 || (single_succ_edge (bb)->flags
5420 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5421 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5423 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5424 err = 1;
5426 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5428 error ("return edge does not point to exit in bb %d",
5429 bb->index);
5430 err = 1;
5432 break;
5434 case GIMPLE_SWITCH:
5436 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5437 tree prev;
5438 edge e;
5439 size_t i, n;
5441 n = gimple_switch_num_labels (switch_stmt);
5443 /* Mark all the destination basic blocks. */
5444 for (i = 0; i < n; ++i)
5446 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5447 basic_block label_bb = label_to_block (lab);
5448 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5449 label_bb->aux = (void *)1;
5452 /* Verify that the case labels are sorted. */
5453 prev = gimple_switch_label (switch_stmt, 0);
5454 for (i = 1; i < n; ++i)
5456 tree c = gimple_switch_label (switch_stmt, i);
5457 if (!CASE_LOW (c))
5459 error ("found default case not at the start of "
5460 "case vector");
5461 err = 1;
5462 continue;
5464 if (CASE_LOW (prev)
5465 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5467 error ("case labels not sorted: ");
5468 print_generic_expr (stderr, prev, 0);
5469 fprintf (stderr," is greater than ");
5470 print_generic_expr (stderr, c, 0);
5471 fprintf (stderr," but comes before it.\n");
5472 err = 1;
5474 prev = c;
5476 /* VRP will remove the default case if it can prove it will
5477 never be executed. So do not verify there always exists
5478 a default case here. */
5480 FOR_EACH_EDGE (e, ei, bb->succs)
5482 if (!e->dest->aux)
5484 error ("extra outgoing edge %d->%d",
5485 bb->index, e->dest->index);
5486 err = 1;
5489 e->dest->aux = (void *)2;
5490 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5491 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5493 error ("wrong outgoing edge flags at end of bb %d",
5494 bb->index);
5495 err = 1;
5499 /* Check that we have all of them. */
5500 for (i = 0; i < n; ++i)
5502 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5503 basic_block label_bb = label_to_block (lab);
5505 if (label_bb->aux != (void *)2)
5507 error ("missing edge %i->%i", bb->index, label_bb->index);
5508 err = 1;
5512 FOR_EACH_EDGE (e, ei, bb->succs)
5513 e->dest->aux = (void *)0;
5515 break;
5517 case GIMPLE_EH_DISPATCH:
5518 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5519 break;
5521 default:
5522 break;
5526 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5527 verify_dominators (CDI_DOMINATORS);
5529 return err;
5533 /* Updates phi nodes after creating a forwarder block joined
5534 by edge FALLTHRU. */
5536 static void
5537 gimple_make_forwarder_block (edge fallthru)
5539 edge e;
5540 edge_iterator ei;
5541 basic_block dummy, bb;
5542 tree var;
5543 gphi_iterator gsi;
5545 dummy = fallthru->src;
5546 bb = fallthru->dest;
5548 if (single_pred_p (bb))
5549 return;
5551 /* If we redirected a branch we must create new PHI nodes at the
5552 start of BB. */
5553 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5555 gphi *phi, *new_phi;
5557 phi = gsi.phi ();
5558 var = gimple_phi_result (phi);
5559 new_phi = create_phi_node (var, bb);
5560 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5561 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5562 UNKNOWN_LOCATION);
5565 /* Add the arguments we have stored on edges. */
5566 FOR_EACH_EDGE (e, ei, bb->preds)
5568 if (e == fallthru)
5569 continue;
5571 flush_pending_stmts (e);
5576 /* Return a non-special label in the head of basic block BLOCK.
5577 Create one if it doesn't exist. */
5579 tree
5580 gimple_block_label (basic_block bb)
5582 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5583 bool first = true;
5584 tree label;
5585 glabel *stmt;
5587 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5589 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5590 if (!stmt)
5591 break;
5592 label = gimple_label_label (stmt);
5593 if (!DECL_NONLOCAL (label))
5595 if (!first)
5596 gsi_move_before (&i, &s);
5597 return label;
5601 label = create_artificial_label (UNKNOWN_LOCATION);
5602 stmt = gimple_build_label (label);
5603 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5604 return label;
5608 /* Attempt to perform edge redirection by replacing a possibly complex
5609 jump instruction by a goto or by removing the jump completely.
5610 This can apply only if all edges now point to the same block. The
5611 parameters and return values are equivalent to
5612 redirect_edge_and_branch. */
5614 static edge
5615 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5617 basic_block src = e->src;
5618 gimple_stmt_iterator i;
5619 gimple *stmt;
5621 /* We can replace or remove a complex jump only when we have exactly
5622 two edges. */
5623 if (EDGE_COUNT (src->succs) != 2
5624 /* Verify that all targets will be TARGET. Specifically, the
5625 edge that is not E must also go to TARGET. */
5626 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5627 return NULL;
5629 i = gsi_last_bb (src);
5630 if (gsi_end_p (i))
5631 return NULL;
5633 stmt = gsi_stmt (i);
5635 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5637 gsi_remove (&i, true);
5638 e = ssa_redirect_edge (e, target);
5639 e->flags = EDGE_FALLTHRU;
5640 return e;
5643 return NULL;
5647 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5648 edge representing the redirected branch. */
5650 static edge
5651 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5653 basic_block bb = e->src;
5654 gimple_stmt_iterator gsi;
5655 edge ret;
5656 gimple *stmt;
5658 if (e->flags & EDGE_ABNORMAL)
5659 return NULL;
5661 if (e->dest == dest)
5662 return NULL;
5664 if (e->flags & EDGE_EH)
5665 return redirect_eh_edge (e, dest);
5667 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5669 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5670 if (ret)
5671 return ret;
5674 gsi = gsi_last_bb (bb);
5675 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5677 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5679 case GIMPLE_COND:
5680 /* For COND_EXPR, we only need to redirect the edge. */
5681 break;
5683 case GIMPLE_GOTO:
5684 /* No non-abnormal edges should lead from a non-simple goto, and
5685 simple ones should be represented implicitly. */
5686 gcc_unreachable ();
5688 case GIMPLE_SWITCH:
5690 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5691 tree label = gimple_block_label (dest);
5692 tree cases = get_cases_for_edge (e, switch_stmt);
5694 /* If we have a list of cases associated with E, then use it
5695 as it's a lot faster than walking the entire case vector. */
5696 if (cases)
5698 edge e2 = find_edge (e->src, dest);
5699 tree last, first;
5701 first = cases;
5702 while (cases)
5704 last = cases;
5705 CASE_LABEL (cases) = label;
5706 cases = CASE_CHAIN (cases);
5709 /* If there was already an edge in the CFG, then we need
5710 to move all the cases associated with E to E2. */
5711 if (e2)
5713 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5715 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5716 CASE_CHAIN (cases2) = first;
5718 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5720 else
5722 size_t i, n = gimple_switch_num_labels (switch_stmt);
5724 for (i = 0; i < n; i++)
5726 tree elt = gimple_switch_label (switch_stmt, i);
5727 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5728 CASE_LABEL (elt) = label;
5732 break;
5734 case GIMPLE_ASM:
5736 gasm *asm_stmt = as_a <gasm *> (stmt);
5737 int i, n = gimple_asm_nlabels (asm_stmt);
5738 tree label = NULL;
5740 for (i = 0; i < n; ++i)
5742 tree cons = gimple_asm_label_op (asm_stmt, i);
5743 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5745 if (!label)
5746 label = gimple_block_label (dest);
5747 TREE_VALUE (cons) = label;
5751 /* If we didn't find any label matching the former edge in the
5752 asm labels, we must be redirecting the fallthrough
5753 edge. */
5754 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5756 break;
5758 case GIMPLE_RETURN:
5759 gsi_remove (&gsi, true);
5760 e->flags |= EDGE_FALLTHRU;
5761 break;
5763 case GIMPLE_OMP_RETURN:
5764 case GIMPLE_OMP_CONTINUE:
5765 case GIMPLE_OMP_SECTIONS_SWITCH:
5766 case GIMPLE_OMP_FOR:
5767 /* The edges from OMP constructs can be simply redirected. */
5768 break;
5770 case GIMPLE_EH_DISPATCH:
5771 if (!(e->flags & EDGE_FALLTHRU))
5772 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5773 break;
5775 case GIMPLE_TRANSACTION:
5776 if (e->flags & EDGE_TM_ABORT)
5777 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5778 gimple_block_label (dest));
5779 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5780 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5781 gimple_block_label (dest));
5782 else
5783 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5784 gimple_block_label (dest));
5785 break;
5787 default:
5788 /* Otherwise it must be a fallthru edge, and we don't need to
5789 do anything besides redirecting it. */
5790 gcc_assert (e->flags & EDGE_FALLTHRU);
5791 break;
5794 /* Update/insert PHI nodes as necessary. */
5796 /* Now update the edges in the CFG. */
5797 e = ssa_redirect_edge (e, dest);
5799 return e;
5802 /* Returns true if it is possible to remove edge E by redirecting
5803 it to the destination of the other edge from E->src. */
5805 static bool
5806 gimple_can_remove_branch_p (const_edge e)
5808 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5809 return false;
5811 return true;
5814 /* Simple wrapper, as we can always redirect fallthru edges. */
5816 static basic_block
5817 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5819 e = gimple_redirect_edge_and_branch (e, dest);
5820 gcc_assert (e);
5822 return NULL;
5826 /* Splits basic block BB after statement STMT (but at least after the
5827 labels). If STMT is NULL, BB is split just after the labels. */
5829 static basic_block
5830 gimple_split_block (basic_block bb, void *stmt)
5832 gimple_stmt_iterator gsi;
5833 gimple_stmt_iterator gsi_tgt;
5834 gimple_seq list;
5835 basic_block new_bb;
5836 edge e;
5837 edge_iterator ei;
5839 new_bb = create_empty_bb (bb);
5841 /* Redirect the outgoing edges. */
5842 new_bb->succs = bb->succs;
5843 bb->succs = NULL;
5844 FOR_EACH_EDGE (e, ei, new_bb->succs)
5845 e->src = new_bb;
5847 /* Get a stmt iterator pointing to the first stmt to move. */
5848 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
5849 gsi = gsi_after_labels (bb);
5850 else
5852 gsi = gsi_for_stmt ((gimple *) stmt);
5853 gsi_next (&gsi);
5856 /* Move everything from GSI to the new basic block. */
5857 if (gsi_end_p (gsi))
5858 return new_bb;
5860 /* Split the statement list - avoid re-creating new containers as this
5861 brings ugly quadratic memory consumption in the inliner.
5862 (We are still quadratic since we need to update stmt BB pointers,
5863 sadly.) */
5864 gsi_split_seq_before (&gsi, &list);
5865 set_bb_seq (new_bb, list);
5866 for (gsi_tgt = gsi_start (list);
5867 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5868 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5870 return new_bb;
5874 /* Moves basic block BB after block AFTER. */
5876 static bool
5877 gimple_move_block_after (basic_block bb, basic_block after)
5879 if (bb->prev_bb == after)
5880 return true;
5882 unlink_block (bb);
5883 link_block (bb, after);
5885 return true;
5889 /* Return TRUE if block BB has no executable statements, otherwise return
5890 FALSE. */
5892 static bool
5893 gimple_empty_block_p (basic_block bb)
5895 /* BB must have no executable statements. */
5896 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5897 if (phi_nodes (bb))
5898 return false;
5899 if (gsi_end_p (gsi))
5900 return true;
5901 if (is_gimple_debug (gsi_stmt (gsi)))
5902 gsi_next_nondebug (&gsi);
5903 return gsi_end_p (gsi);
5907 /* Split a basic block if it ends with a conditional branch and if the
5908 other part of the block is not empty. */
5910 static basic_block
5911 gimple_split_block_before_cond_jump (basic_block bb)
5913 gimple *last, *split_point;
5914 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5915 if (gsi_end_p (gsi))
5916 return NULL;
5917 last = gsi_stmt (gsi);
5918 if (gimple_code (last) != GIMPLE_COND
5919 && gimple_code (last) != GIMPLE_SWITCH)
5920 return NULL;
5921 gsi_prev (&gsi);
5922 split_point = gsi_stmt (gsi);
5923 return split_block (bb, split_point)->dest;
5927 /* Return true if basic_block can be duplicated. */
5929 static bool
5930 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5932 return true;
5935 /* Create a duplicate of the basic block BB. NOTE: This does not
5936 preserve SSA form. */
5938 static basic_block
5939 gimple_duplicate_bb (basic_block bb)
5941 basic_block new_bb;
5942 gimple_stmt_iterator gsi_tgt;
5944 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5946 /* Copy the PHI nodes. We ignore PHI node arguments here because
5947 the incoming edges have not been setup yet. */
5948 for (gphi_iterator gpi = gsi_start_phis (bb);
5949 !gsi_end_p (gpi);
5950 gsi_next (&gpi))
5952 gphi *phi, *copy;
5953 phi = gpi.phi ();
5954 copy = create_phi_node (NULL_TREE, new_bb);
5955 create_new_def_for (gimple_phi_result (phi), copy,
5956 gimple_phi_result_ptr (copy));
5957 gimple_set_uid (copy, gimple_uid (phi));
5960 gsi_tgt = gsi_start_bb (new_bb);
5961 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
5962 !gsi_end_p (gsi);
5963 gsi_next (&gsi))
5965 def_operand_p def_p;
5966 ssa_op_iter op_iter;
5967 tree lhs;
5968 gimple *stmt, *copy;
5970 stmt = gsi_stmt (gsi);
5971 if (gimple_code (stmt) == GIMPLE_LABEL)
5972 continue;
5974 /* Don't duplicate label debug stmts. */
5975 if (gimple_debug_bind_p (stmt)
5976 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5977 == LABEL_DECL)
5978 continue;
5980 /* Create a new copy of STMT and duplicate STMT's virtual
5981 operands. */
5982 copy = gimple_copy (stmt);
5983 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5985 maybe_duplicate_eh_stmt (copy, stmt);
5986 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5988 /* When copying around a stmt writing into a local non-user
5989 aggregate, make sure it won't share stack slot with other
5990 vars. */
5991 lhs = gimple_get_lhs (stmt);
5992 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5994 tree base = get_base_address (lhs);
5995 if (base
5996 && (TREE_CODE (base) == VAR_DECL
5997 || TREE_CODE (base) == RESULT_DECL)
5998 && DECL_IGNORED_P (base)
5999 && !TREE_STATIC (base)
6000 && !DECL_EXTERNAL (base)
6001 && (TREE_CODE (base) != VAR_DECL
6002 || !DECL_HAS_VALUE_EXPR_P (base)))
6003 DECL_NONSHAREABLE (base) = 1;
6006 /* Create new names for all the definitions created by COPY and
6007 add replacement mappings for each new name. */
6008 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6009 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6012 return new_bb;
6015 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6017 static void
6018 add_phi_args_after_copy_edge (edge e_copy)
6020 basic_block bb, bb_copy = e_copy->src, dest;
6021 edge e;
6022 edge_iterator ei;
6023 gphi *phi, *phi_copy;
6024 tree def;
6025 gphi_iterator psi, psi_copy;
6027 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6028 return;
6030 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6032 if (e_copy->dest->flags & BB_DUPLICATED)
6033 dest = get_bb_original (e_copy->dest);
6034 else
6035 dest = e_copy->dest;
6037 e = find_edge (bb, dest);
6038 if (!e)
6040 /* During loop unrolling the target of the latch edge is copied.
6041 In this case we are not looking for edge to dest, but to
6042 duplicated block whose original was dest. */
6043 FOR_EACH_EDGE (e, ei, bb->succs)
6045 if ((e->dest->flags & BB_DUPLICATED)
6046 && get_bb_original (e->dest) == dest)
6047 break;
6050 gcc_assert (e != NULL);
6053 for (psi = gsi_start_phis (e->dest),
6054 psi_copy = gsi_start_phis (e_copy->dest);
6055 !gsi_end_p (psi);
6056 gsi_next (&psi), gsi_next (&psi_copy))
6058 phi = psi.phi ();
6059 phi_copy = psi_copy.phi ();
6060 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6061 add_phi_arg (phi_copy, def, e_copy,
6062 gimple_phi_arg_location_from_edge (phi, e));
6067 /* Basic block BB_COPY was created by code duplication. Add phi node
6068 arguments for edges going out of BB_COPY. The blocks that were
6069 duplicated have BB_DUPLICATED set. */
6071 void
6072 add_phi_args_after_copy_bb (basic_block bb_copy)
6074 edge e_copy;
6075 edge_iterator ei;
6077 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6079 add_phi_args_after_copy_edge (e_copy);
6083 /* Blocks in REGION_COPY array of length N_REGION were created by
6084 duplication of basic blocks. Add phi node arguments for edges
6085 going from these blocks. If E_COPY is not NULL, also add
6086 phi node arguments for its destination.*/
6088 void
6089 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6090 edge e_copy)
6092 unsigned i;
6094 for (i = 0; i < n_region; i++)
6095 region_copy[i]->flags |= BB_DUPLICATED;
6097 for (i = 0; i < n_region; i++)
6098 add_phi_args_after_copy_bb (region_copy[i]);
6099 if (e_copy)
6100 add_phi_args_after_copy_edge (e_copy);
6102 for (i = 0; i < n_region; i++)
6103 region_copy[i]->flags &= ~BB_DUPLICATED;
6106 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6107 important exit edge EXIT. By important we mean that no SSA name defined
6108 inside region is live over the other exit edges of the region. All entry
6109 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6110 to the duplicate of the region. Dominance and loop information is
6111 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6112 UPDATE_DOMINANCE is false then we assume that the caller will update the
6113 dominance information after calling this function. The new basic
6114 blocks are stored to REGION_COPY in the same order as they had in REGION,
6115 provided that REGION_COPY is not NULL.
6116 The function returns false if it is unable to copy the region,
6117 true otherwise. */
6119 bool
6120 gimple_duplicate_sese_region (edge entry, edge exit,
6121 basic_block *region, unsigned n_region,
6122 basic_block *region_copy,
6123 bool update_dominance)
6125 unsigned i;
6126 bool free_region_copy = false, copying_header = false;
6127 struct loop *loop = entry->dest->loop_father;
6128 edge exit_copy;
6129 vec<basic_block> doms;
6130 edge redirected;
6131 int total_freq = 0, entry_freq = 0;
6132 gcov_type total_count = 0, entry_count = 0;
6134 if (!can_copy_bbs_p (region, n_region))
6135 return false;
6137 /* Some sanity checking. Note that we do not check for all possible
6138 missuses of the functions. I.e. if you ask to copy something weird,
6139 it will work, but the state of structures probably will not be
6140 correct. */
6141 for (i = 0; i < n_region; i++)
6143 /* We do not handle subloops, i.e. all the blocks must belong to the
6144 same loop. */
6145 if (region[i]->loop_father != loop)
6146 return false;
6148 if (region[i] != entry->dest
6149 && region[i] == loop->header)
6150 return false;
6153 /* In case the function is used for loop header copying (which is the primary
6154 use), ensure that EXIT and its copy will be new latch and entry edges. */
6155 if (loop->header == entry->dest)
6157 copying_header = true;
6159 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6160 return false;
6162 for (i = 0; i < n_region; i++)
6163 if (region[i] != exit->src
6164 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6165 return false;
6168 initialize_original_copy_tables ();
6170 if (copying_header)
6171 set_loop_copy (loop, loop_outer (loop));
6172 else
6173 set_loop_copy (loop, loop);
6175 if (!region_copy)
6177 region_copy = XNEWVEC (basic_block, n_region);
6178 free_region_copy = true;
6181 /* Record blocks outside the region that are dominated by something
6182 inside. */
6183 if (update_dominance)
6185 doms.create (0);
6186 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6189 if (entry->dest->count)
6191 total_count = entry->dest->count;
6192 entry_count = entry->count;
6193 /* Fix up corner cases, to avoid division by zero or creation of negative
6194 frequencies. */
6195 if (entry_count > total_count)
6196 entry_count = total_count;
6198 else
6200 total_freq = entry->dest->frequency;
6201 entry_freq = EDGE_FREQUENCY (entry);
6202 /* Fix up corner cases, to avoid division by zero or creation of negative
6203 frequencies. */
6204 if (total_freq == 0)
6205 total_freq = 1;
6206 else if (entry_freq > total_freq)
6207 entry_freq = total_freq;
6210 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6211 split_edge_bb_loc (entry), update_dominance);
6212 if (total_count)
6214 scale_bbs_frequencies_gcov_type (region, n_region,
6215 total_count - entry_count,
6216 total_count);
6217 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
6218 total_count);
6220 else
6222 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
6223 total_freq);
6224 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
6227 if (copying_header)
6229 loop->header = exit->dest;
6230 loop->latch = exit->src;
6233 /* Redirect the entry and add the phi node arguments. */
6234 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6235 gcc_assert (redirected != NULL);
6236 flush_pending_stmts (entry);
6238 /* Concerning updating of dominators: We must recount dominators
6239 for entry block and its copy. Anything that is outside of the
6240 region, but was dominated by something inside needs recounting as
6241 well. */
6242 if (update_dominance)
6244 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6245 doms.safe_push (get_bb_original (entry->dest));
6246 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6247 doms.release ();
6250 /* Add the other PHI node arguments. */
6251 add_phi_args_after_copy (region_copy, n_region, NULL);
6253 if (free_region_copy)
6254 free (region_copy);
6256 free_original_copy_tables ();
6257 return true;
6260 /* Checks if BB is part of the region defined by N_REGION BBS. */
6261 static bool
6262 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6264 unsigned int n;
6266 for (n = 0; n < n_region; n++)
6268 if (bb == bbs[n])
6269 return true;
6271 return false;
6274 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6275 are stored to REGION_COPY in the same order in that they appear
6276 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6277 the region, EXIT an exit from it. The condition guarding EXIT
6278 is moved to ENTRY. Returns true if duplication succeeds, false
6279 otherwise.
6281 For example,
6283 some_code;
6284 if (cond)
6286 else
6289 is transformed to
6291 if (cond)
6293 some_code;
6296 else
6298 some_code;
6303 bool
6304 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6305 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6306 basic_block *region_copy ATTRIBUTE_UNUSED)
6308 unsigned i;
6309 bool free_region_copy = false;
6310 struct loop *loop = exit->dest->loop_father;
6311 struct loop *orig_loop = entry->dest->loop_father;
6312 basic_block switch_bb, entry_bb, nentry_bb;
6313 vec<basic_block> doms;
6314 int total_freq = 0, exit_freq = 0;
6315 gcov_type total_count = 0, exit_count = 0;
6316 edge exits[2], nexits[2], e;
6317 gimple_stmt_iterator gsi;
6318 gimple *cond_stmt;
6319 edge sorig, snew;
6320 basic_block exit_bb;
6321 gphi_iterator psi;
6322 gphi *phi;
6323 tree def;
6324 struct loop *target, *aloop, *cloop;
6326 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6327 exits[0] = exit;
6328 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6330 if (!can_copy_bbs_p (region, n_region))
6331 return false;
6333 initialize_original_copy_tables ();
6334 set_loop_copy (orig_loop, loop);
6336 target= loop;
6337 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6339 if (bb_part_of_region_p (aloop->header, region, n_region))
6341 cloop = duplicate_loop (aloop, target);
6342 duplicate_subloops (aloop, cloop);
6346 if (!region_copy)
6348 region_copy = XNEWVEC (basic_block, n_region);
6349 free_region_copy = true;
6352 gcc_assert (!need_ssa_update_p (cfun));
6354 /* Record blocks outside the region that are dominated by something
6355 inside. */
6356 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6358 if (exit->src->count)
6360 total_count = exit->src->count;
6361 exit_count = exit->count;
6362 /* Fix up corner cases, to avoid division by zero or creation of negative
6363 frequencies. */
6364 if (exit_count > total_count)
6365 exit_count = total_count;
6367 else
6369 total_freq = exit->src->frequency;
6370 exit_freq = EDGE_FREQUENCY (exit);
6371 /* Fix up corner cases, to avoid division by zero or creation of negative
6372 frequencies. */
6373 if (total_freq == 0)
6374 total_freq = 1;
6375 if (exit_freq > total_freq)
6376 exit_freq = total_freq;
6379 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6380 split_edge_bb_loc (exit), true);
6381 if (total_count)
6383 scale_bbs_frequencies_gcov_type (region, n_region,
6384 total_count - exit_count,
6385 total_count);
6386 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6387 total_count);
6389 else
6391 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6392 total_freq);
6393 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6396 /* Create the switch block, and put the exit condition to it. */
6397 entry_bb = entry->dest;
6398 nentry_bb = get_bb_copy (entry_bb);
6399 if (!last_stmt (entry->src)
6400 || !stmt_ends_bb_p (last_stmt (entry->src)))
6401 switch_bb = entry->src;
6402 else
6403 switch_bb = split_edge (entry);
6404 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6406 gsi = gsi_last_bb (switch_bb);
6407 cond_stmt = last_stmt (exit->src);
6408 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6409 cond_stmt = gimple_copy (cond_stmt);
6411 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6413 sorig = single_succ_edge (switch_bb);
6414 sorig->flags = exits[1]->flags;
6415 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6417 /* Register the new edge from SWITCH_BB in loop exit lists. */
6418 rescan_loop_exit (snew, true, false);
6420 /* Add the PHI node arguments. */
6421 add_phi_args_after_copy (region_copy, n_region, snew);
6423 /* Get rid of now superfluous conditions and associated edges (and phi node
6424 arguments). */
6425 exit_bb = exit->dest;
6427 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6428 PENDING_STMT (e) = NULL;
6430 /* The latch of ORIG_LOOP was copied, and so was the backedge
6431 to the original header. We redirect this backedge to EXIT_BB. */
6432 for (i = 0; i < n_region; i++)
6433 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6435 gcc_assert (single_succ_edge (region_copy[i]));
6436 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6437 PENDING_STMT (e) = NULL;
6438 for (psi = gsi_start_phis (exit_bb);
6439 !gsi_end_p (psi);
6440 gsi_next (&psi))
6442 phi = psi.phi ();
6443 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6444 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6447 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6448 PENDING_STMT (e) = NULL;
6450 /* Anything that is outside of the region, but was dominated by something
6451 inside needs to update dominance info. */
6452 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6453 doms.release ();
6454 /* Update the SSA web. */
6455 update_ssa (TODO_update_ssa);
6457 if (free_region_copy)
6458 free (region_copy);
6460 free_original_copy_tables ();
6461 return true;
6464 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6465 adding blocks when the dominator traversal reaches EXIT. This
6466 function silently assumes that ENTRY strictly dominates EXIT. */
6468 void
6469 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6470 vec<basic_block> *bbs_p)
6472 basic_block son;
6474 for (son = first_dom_son (CDI_DOMINATORS, entry);
6475 son;
6476 son = next_dom_son (CDI_DOMINATORS, son))
6478 bbs_p->safe_push (son);
6479 if (son != exit)
6480 gather_blocks_in_sese_region (son, exit, bbs_p);
6484 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6485 The duplicates are recorded in VARS_MAP. */
6487 static void
6488 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6489 tree to_context)
6491 tree t = *tp, new_t;
6492 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6494 if (DECL_CONTEXT (t) == to_context)
6495 return;
6497 bool existed;
6498 tree &loc = vars_map->get_or_insert (t, &existed);
6500 if (!existed)
6502 if (SSA_VAR_P (t))
6504 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6505 add_local_decl (f, new_t);
6507 else
6509 gcc_assert (TREE_CODE (t) == CONST_DECL);
6510 new_t = copy_node (t);
6512 DECL_CONTEXT (new_t) = to_context;
6514 loc = new_t;
6516 else
6517 new_t = loc;
6519 *tp = new_t;
6523 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6524 VARS_MAP maps old ssa names and var_decls to the new ones. */
6526 static tree
6527 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6528 tree to_context)
6530 tree new_name;
6532 gcc_assert (!virtual_operand_p (name));
6534 tree *loc = vars_map->get (name);
6536 if (!loc)
6538 tree decl = SSA_NAME_VAR (name);
6539 if (decl)
6541 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6542 replace_by_duplicate_decl (&decl, vars_map, to_context);
6543 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6544 decl, SSA_NAME_DEF_STMT (name));
6546 else
6547 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6548 name, SSA_NAME_DEF_STMT (name));
6550 /* Now that we've used the def stmt to define new_name, make sure it
6551 doesn't define name anymore. */
6552 SSA_NAME_DEF_STMT (name) = NULL;
6554 vars_map->put (name, new_name);
6556 else
6557 new_name = *loc;
6559 return new_name;
6562 struct move_stmt_d
6564 tree orig_block;
6565 tree new_block;
6566 tree from_context;
6567 tree to_context;
6568 hash_map<tree, tree> *vars_map;
6569 htab_t new_label_map;
6570 hash_map<void *, void *> *eh_map;
6571 bool remap_decls_p;
6574 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6575 contained in *TP if it has been ORIG_BLOCK previously and change the
6576 DECL_CONTEXT of every local variable referenced in *TP. */
6578 static tree
6579 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6581 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6582 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6583 tree t = *tp;
6585 if (EXPR_P (t))
6587 tree block = TREE_BLOCK (t);
6588 if (block == p->orig_block
6589 || (p->orig_block == NULL_TREE
6590 && block != NULL_TREE))
6591 TREE_SET_BLOCK (t, p->new_block);
6592 else if (flag_checking && block != NULL_TREE)
6594 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6595 block = BLOCK_SUPERCONTEXT (block);
6596 gcc_assert (block == p->orig_block);
6599 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6601 if (TREE_CODE (t) == SSA_NAME)
6602 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6603 else if (TREE_CODE (t) == PARM_DECL
6604 && gimple_in_ssa_p (cfun))
6605 *tp = *(p->vars_map->get (t));
6606 else if (TREE_CODE (t) == LABEL_DECL)
6608 if (p->new_label_map)
6610 struct tree_map in, *out;
6611 in.base.from = t;
6612 out = (struct tree_map *)
6613 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6614 if (out)
6615 *tp = t = out->to;
6618 DECL_CONTEXT (t) = p->to_context;
6620 else if (p->remap_decls_p)
6622 /* Replace T with its duplicate. T should no longer appear in the
6623 parent function, so this looks wasteful; however, it may appear
6624 in referenced_vars, and more importantly, as virtual operands of
6625 statements, and in alias lists of other variables. It would be
6626 quite difficult to expunge it from all those places. ??? It might
6627 suffice to do this for addressable variables. */
6628 if ((TREE_CODE (t) == VAR_DECL
6629 && !is_global_var (t))
6630 || TREE_CODE (t) == CONST_DECL)
6631 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6633 *walk_subtrees = 0;
6635 else if (TYPE_P (t))
6636 *walk_subtrees = 0;
6638 return NULL_TREE;
6641 /* Helper for move_stmt_r. Given an EH region number for the source
6642 function, map that to the duplicate EH regio number in the dest. */
6644 static int
6645 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6647 eh_region old_r, new_r;
6649 old_r = get_eh_region_from_number (old_nr);
6650 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6652 return new_r->index;
6655 /* Similar, but operate on INTEGER_CSTs. */
6657 static tree
6658 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6660 int old_nr, new_nr;
6662 old_nr = tree_to_shwi (old_t_nr);
6663 new_nr = move_stmt_eh_region_nr (old_nr, p);
6665 return build_int_cst (integer_type_node, new_nr);
6668 /* Like move_stmt_op, but for gimple statements.
6670 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6671 contained in the current statement in *GSI_P and change the
6672 DECL_CONTEXT of every local variable referenced in the current
6673 statement. */
6675 static tree
6676 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6677 struct walk_stmt_info *wi)
6679 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6680 gimple *stmt = gsi_stmt (*gsi_p);
6681 tree block = gimple_block (stmt);
6683 if (block == p->orig_block
6684 || (p->orig_block == NULL_TREE
6685 && block != NULL_TREE))
6686 gimple_set_block (stmt, p->new_block);
6688 switch (gimple_code (stmt))
6690 case GIMPLE_CALL:
6691 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6693 tree r, fndecl = gimple_call_fndecl (stmt);
6694 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6695 switch (DECL_FUNCTION_CODE (fndecl))
6697 case BUILT_IN_EH_COPY_VALUES:
6698 r = gimple_call_arg (stmt, 1);
6699 r = move_stmt_eh_region_tree_nr (r, p);
6700 gimple_call_set_arg (stmt, 1, r);
6701 /* FALLTHRU */
6703 case BUILT_IN_EH_POINTER:
6704 case BUILT_IN_EH_FILTER:
6705 r = gimple_call_arg (stmt, 0);
6706 r = move_stmt_eh_region_tree_nr (r, p);
6707 gimple_call_set_arg (stmt, 0, r);
6708 break;
6710 default:
6711 break;
6714 break;
6716 case GIMPLE_RESX:
6718 gresx *resx_stmt = as_a <gresx *> (stmt);
6719 int r = gimple_resx_region (resx_stmt);
6720 r = move_stmt_eh_region_nr (r, p);
6721 gimple_resx_set_region (resx_stmt, r);
6723 break;
6725 case GIMPLE_EH_DISPATCH:
6727 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6728 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6729 r = move_stmt_eh_region_nr (r, p);
6730 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6732 break;
6734 case GIMPLE_OMP_RETURN:
6735 case GIMPLE_OMP_CONTINUE:
6736 break;
6737 default:
6738 if (is_gimple_omp (stmt))
6740 /* Do not remap variables inside OMP directives. Variables
6741 referenced in clauses and directive header belong to the
6742 parent function and should not be moved into the child
6743 function. */
6744 bool save_remap_decls_p = p->remap_decls_p;
6745 p->remap_decls_p = false;
6746 *handled_ops_p = true;
6748 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6749 move_stmt_op, wi);
6751 p->remap_decls_p = save_remap_decls_p;
6753 break;
6756 return NULL_TREE;
6759 /* Move basic block BB from function CFUN to function DEST_FN. The
6760 block is moved out of the original linked list and placed after
6761 block AFTER in the new list. Also, the block is removed from the
6762 original array of blocks and placed in DEST_FN's array of blocks.
6763 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6764 updated to reflect the moved edges.
6766 The local variables are remapped to new instances, VARS_MAP is used
6767 to record the mapping. */
6769 static void
6770 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6771 basic_block after, bool update_edge_count_p,
6772 struct move_stmt_d *d)
6774 struct control_flow_graph *cfg;
6775 edge_iterator ei;
6776 edge e;
6777 gimple_stmt_iterator si;
6778 unsigned old_len, new_len;
6780 /* Remove BB from dominance structures. */
6781 delete_from_dominance_info (CDI_DOMINATORS, bb);
6783 /* Move BB from its current loop to the copy in the new function. */
6784 if (current_loops)
6786 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6787 if (new_loop)
6788 bb->loop_father = new_loop;
6791 /* Link BB to the new linked list. */
6792 move_block_after (bb, after);
6794 /* Update the edge count in the corresponding flowgraphs. */
6795 if (update_edge_count_p)
6796 FOR_EACH_EDGE (e, ei, bb->succs)
6798 cfun->cfg->x_n_edges--;
6799 dest_cfun->cfg->x_n_edges++;
6802 /* Remove BB from the original basic block array. */
6803 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6804 cfun->cfg->x_n_basic_blocks--;
6806 /* Grow DEST_CFUN's basic block array if needed. */
6807 cfg = dest_cfun->cfg;
6808 cfg->x_n_basic_blocks++;
6809 if (bb->index >= cfg->x_last_basic_block)
6810 cfg->x_last_basic_block = bb->index + 1;
6812 old_len = vec_safe_length (cfg->x_basic_block_info);
6813 if ((unsigned) cfg->x_last_basic_block >= old_len)
6815 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6816 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6819 (*cfg->x_basic_block_info)[bb->index] = bb;
6821 /* Remap the variables in phi nodes. */
6822 for (gphi_iterator psi = gsi_start_phis (bb);
6823 !gsi_end_p (psi); )
6825 gphi *phi = psi.phi ();
6826 use_operand_p use;
6827 tree op = PHI_RESULT (phi);
6828 ssa_op_iter oi;
6829 unsigned i;
6831 if (virtual_operand_p (op))
6833 /* Remove the phi nodes for virtual operands (alias analysis will be
6834 run for the new function, anyway). */
6835 remove_phi_node (&psi, true);
6836 continue;
6839 SET_PHI_RESULT (phi,
6840 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6841 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6843 op = USE_FROM_PTR (use);
6844 if (TREE_CODE (op) == SSA_NAME)
6845 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6848 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6850 location_t locus = gimple_phi_arg_location (phi, i);
6851 tree block = LOCATION_BLOCK (locus);
6853 if (locus == UNKNOWN_LOCATION)
6854 continue;
6855 if (d->orig_block == NULL_TREE || block == d->orig_block)
6857 locus = set_block (locus, d->new_block);
6858 gimple_phi_arg_set_location (phi, i, locus);
6862 gsi_next (&psi);
6865 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6867 gimple *stmt = gsi_stmt (si);
6868 struct walk_stmt_info wi;
6870 memset (&wi, 0, sizeof (wi));
6871 wi.info = d;
6872 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6874 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
6876 tree label = gimple_label_label (label_stmt);
6877 int uid = LABEL_DECL_UID (label);
6879 gcc_assert (uid > -1);
6881 old_len = vec_safe_length (cfg->x_label_to_block_map);
6882 if (old_len <= (unsigned) uid)
6884 new_len = 3 * uid / 2 + 1;
6885 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6888 (*cfg->x_label_to_block_map)[uid] = bb;
6889 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6891 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6893 if (uid >= dest_cfun->cfg->last_label_uid)
6894 dest_cfun->cfg->last_label_uid = uid + 1;
6897 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6898 remove_stmt_from_eh_lp_fn (cfun, stmt);
6900 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6901 gimple_remove_stmt_histograms (cfun, stmt);
6903 /* We cannot leave any operands allocated from the operand caches of
6904 the current function. */
6905 free_stmt_operands (cfun, stmt);
6906 push_cfun (dest_cfun);
6907 update_stmt (stmt);
6908 pop_cfun ();
6911 FOR_EACH_EDGE (e, ei, bb->succs)
6912 if (e->goto_locus != UNKNOWN_LOCATION)
6914 tree block = LOCATION_BLOCK (e->goto_locus);
6915 if (d->orig_block == NULL_TREE
6916 || block == d->orig_block)
6917 e->goto_locus = set_block (e->goto_locus, d->new_block);
6921 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6922 the outermost EH region. Use REGION as the incoming base EH region. */
6924 static eh_region
6925 find_outermost_region_in_block (struct function *src_cfun,
6926 basic_block bb, eh_region region)
6928 gimple_stmt_iterator si;
6930 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6932 gimple *stmt = gsi_stmt (si);
6933 eh_region stmt_region;
6934 int lp_nr;
6936 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6937 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6938 if (stmt_region)
6940 if (region == NULL)
6941 region = stmt_region;
6942 else if (stmt_region != region)
6944 region = eh_region_outermost (src_cfun, stmt_region, region);
6945 gcc_assert (region != NULL);
6950 return region;
6953 static tree
6954 new_label_mapper (tree decl, void *data)
6956 htab_t hash = (htab_t) data;
6957 struct tree_map *m;
6958 void **slot;
6960 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6962 m = XNEW (struct tree_map);
6963 m->hash = DECL_UID (decl);
6964 m->base.from = decl;
6965 m->to = create_artificial_label (UNKNOWN_LOCATION);
6966 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6967 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6968 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6970 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6971 gcc_assert (*slot == NULL);
6973 *slot = m;
6975 return m->to;
6978 /* Tree walker to replace the decls used inside value expressions by
6979 duplicates. */
6981 static tree
6982 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
6984 struct replace_decls_d *rd = (struct replace_decls_d *)data;
6986 switch (TREE_CODE (*tp))
6988 case VAR_DECL:
6989 case PARM_DECL:
6990 case RESULT_DECL:
6991 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
6992 break;
6993 default:
6994 break;
6997 if (IS_TYPE_OR_DECL_P (*tp))
6998 *walk_subtrees = false;
7000 return NULL;
7003 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7004 subblocks. */
7006 static void
7007 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7008 tree to_context)
7010 tree *tp, t;
7012 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7014 t = *tp;
7015 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
7016 continue;
7017 replace_by_duplicate_decl (&t, vars_map, to_context);
7018 if (t != *tp)
7020 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
7022 tree x = DECL_VALUE_EXPR (*tp);
7023 struct replace_decls_d rd = { vars_map, to_context };
7024 unshare_expr (x);
7025 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7026 SET_DECL_VALUE_EXPR (t, x);
7027 DECL_HAS_VALUE_EXPR_P (t) = 1;
7029 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7030 *tp = t;
7034 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7035 replace_block_vars_by_duplicates (block, vars_map, to_context);
7038 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7039 from FN1 to FN2. */
7041 static void
7042 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7043 struct loop *loop)
7045 /* Discard it from the old loop array. */
7046 (*get_loops (fn1))[loop->num] = NULL;
7048 /* Place it in the new loop array, assigning it a new number. */
7049 loop->num = number_of_loops (fn2);
7050 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7052 /* Recurse to children. */
7053 for (loop = loop->inner; loop; loop = loop->next)
7054 fixup_loop_arrays_after_move (fn1, fn2, loop);
7057 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7058 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7060 DEBUG_FUNCTION void
7061 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7063 basic_block bb;
7064 edge_iterator ei;
7065 edge e;
7066 bitmap bbs = BITMAP_ALLOC (NULL);
7067 int i;
7069 gcc_assert (entry != NULL);
7070 gcc_assert (entry != exit);
7071 gcc_assert (bbs_p != NULL);
7073 gcc_assert (bbs_p->length () > 0);
7075 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7076 bitmap_set_bit (bbs, bb->index);
7078 gcc_assert (bitmap_bit_p (bbs, entry->index));
7079 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7081 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7083 if (bb == entry)
7085 gcc_assert (single_pred_p (entry));
7086 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7088 else
7089 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7091 e = ei_edge (ei);
7092 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7095 if (bb == exit)
7097 gcc_assert (single_succ_p (exit));
7098 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7100 else
7101 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7103 e = ei_edge (ei);
7104 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7108 BITMAP_FREE (bbs);
7111 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7113 bool
7114 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7116 bitmap release_names = (bitmap)data;
7118 if (TREE_CODE (from) != SSA_NAME)
7119 return true;
7121 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7122 return true;
7125 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7126 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7127 single basic block in the original CFG and the new basic block is
7128 returned. DEST_CFUN must not have a CFG yet.
7130 Note that the region need not be a pure SESE region. Blocks inside
7131 the region may contain calls to abort/exit. The only restriction
7132 is that ENTRY_BB should be the only entry point and it must
7133 dominate EXIT_BB.
7135 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7136 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7137 to the new function.
7139 All local variables referenced in the region are assumed to be in
7140 the corresponding BLOCK_VARS and unexpanded variable lists
7141 associated with DEST_CFUN.
7143 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7144 reimplement move_sese_region_to_fn by duplicating the region rather than
7145 moving it. */
7147 basic_block
7148 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7149 basic_block exit_bb, tree orig_block)
7151 vec<basic_block> bbs, dom_bbs;
7152 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7153 basic_block after, bb, *entry_pred, *exit_succ, abb;
7154 struct function *saved_cfun = cfun;
7155 int *entry_flag, *exit_flag;
7156 unsigned *entry_prob, *exit_prob;
7157 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7158 edge e;
7159 edge_iterator ei;
7160 htab_t new_label_map;
7161 hash_map<void *, void *> *eh_map;
7162 struct loop *loop = entry_bb->loop_father;
7163 struct loop *loop0 = get_loop (saved_cfun, 0);
7164 struct move_stmt_d d;
7166 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7167 region. */
7168 gcc_assert (entry_bb != exit_bb
7169 && (!exit_bb
7170 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7172 /* Collect all the blocks in the region. Manually add ENTRY_BB
7173 because it won't be added by dfs_enumerate_from. */
7174 bbs.create (0);
7175 bbs.safe_push (entry_bb);
7176 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7178 if (flag_checking)
7179 verify_sese (entry_bb, exit_bb, &bbs);
7181 /* The blocks that used to be dominated by something in BBS will now be
7182 dominated by the new block. */
7183 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7184 bbs.address (),
7185 bbs.length ());
7187 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7188 the predecessor edges to ENTRY_BB and the successor edges to
7189 EXIT_BB so that we can re-attach them to the new basic block that
7190 will replace the region. */
7191 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7192 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7193 entry_flag = XNEWVEC (int, num_entry_edges);
7194 entry_prob = XNEWVEC (unsigned, num_entry_edges);
7195 i = 0;
7196 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7198 entry_prob[i] = e->probability;
7199 entry_flag[i] = e->flags;
7200 entry_pred[i++] = e->src;
7201 remove_edge (e);
7204 if (exit_bb)
7206 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7207 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7208 exit_flag = XNEWVEC (int, num_exit_edges);
7209 exit_prob = XNEWVEC (unsigned, num_exit_edges);
7210 i = 0;
7211 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7213 exit_prob[i] = e->probability;
7214 exit_flag[i] = e->flags;
7215 exit_succ[i++] = e->dest;
7216 remove_edge (e);
7219 else
7221 num_exit_edges = 0;
7222 exit_succ = NULL;
7223 exit_flag = NULL;
7224 exit_prob = NULL;
7227 /* Switch context to the child function to initialize DEST_FN's CFG. */
7228 gcc_assert (dest_cfun->cfg == NULL);
7229 push_cfun (dest_cfun);
7231 init_empty_tree_cfg ();
7233 /* Initialize EH information for the new function. */
7234 eh_map = NULL;
7235 new_label_map = NULL;
7236 if (saved_cfun->eh)
7238 eh_region region = NULL;
7240 FOR_EACH_VEC_ELT (bbs, i, bb)
7241 region = find_outermost_region_in_block (saved_cfun, bb, region);
7243 init_eh_for_function ();
7244 if (region != NULL)
7246 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7247 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7248 new_label_mapper, new_label_map);
7252 /* Initialize an empty loop tree. */
7253 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7254 init_loops_structure (dest_cfun, loops, 1);
7255 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7256 set_loops_for_fn (dest_cfun, loops);
7258 /* Move the outlined loop tree part. */
7259 num_nodes = bbs.length ();
7260 FOR_EACH_VEC_ELT (bbs, i, bb)
7262 if (bb->loop_father->header == bb)
7264 struct loop *this_loop = bb->loop_father;
7265 struct loop *outer = loop_outer (this_loop);
7266 if (outer == loop
7267 /* If the SESE region contains some bbs ending with
7268 a noreturn call, those are considered to belong
7269 to the outermost loop in saved_cfun, rather than
7270 the entry_bb's loop_father. */
7271 || outer == loop0)
7273 if (outer != loop)
7274 num_nodes -= this_loop->num_nodes;
7275 flow_loop_tree_node_remove (bb->loop_father);
7276 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7277 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7280 else if (bb->loop_father == loop0 && loop0 != loop)
7281 num_nodes--;
7283 /* Remove loop exits from the outlined region. */
7284 if (loops_for_fn (saved_cfun)->exits)
7285 FOR_EACH_EDGE (e, ei, bb->succs)
7287 struct loops *l = loops_for_fn (saved_cfun);
7288 loop_exit **slot
7289 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7290 NO_INSERT);
7291 if (slot)
7292 l->exits->clear_slot (slot);
7297 /* Adjust the number of blocks in the tree root of the outlined part. */
7298 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7300 /* Setup a mapping to be used by move_block_to_fn. */
7301 loop->aux = current_loops->tree_root;
7302 loop0->aux = current_loops->tree_root;
7304 pop_cfun ();
7306 /* Move blocks from BBS into DEST_CFUN. */
7307 gcc_assert (bbs.length () >= 2);
7308 after = dest_cfun->cfg->x_entry_block_ptr;
7309 hash_map<tree, tree> vars_map;
7311 memset (&d, 0, sizeof (d));
7312 d.orig_block = orig_block;
7313 d.new_block = DECL_INITIAL (dest_cfun->decl);
7314 d.from_context = cfun->decl;
7315 d.to_context = dest_cfun->decl;
7316 d.vars_map = &vars_map;
7317 d.new_label_map = new_label_map;
7318 d.eh_map = eh_map;
7319 d.remap_decls_p = true;
7321 if (gimple_in_ssa_p (cfun))
7322 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7324 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7325 set_ssa_default_def (dest_cfun, arg, narg);
7326 vars_map.put (arg, narg);
7329 FOR_EACH_VEC_ELT (bbs, i, bb)
7331 /* No need to update edge counts on the last block. It has
7332 already been updated earlier when we detached the region from
7333 the original CFG. */
7334 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7335 after = bb;
7338 loop->aux = NULL;
7339 loop0->aux = NULL;
7340 /* Loop sizes are no longer correct, fix them up. */
7341 loop->num_nodes -= num_nodes;
7342 for (struct loop *outer = loop_outer (loop);
7343 outer; outer = loop_outer (outer))
7344 outer->num_nodes -= num_nodes;
7345 loop0->num_nodes -= bbs.length () - num_nodes;
7347 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7349 struct loop *aloop;
7350 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7351 if (aloop != NULL)
7353 if (aloop->simduid)
7355 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7356 d.to_context);
7357 dest_cfun->has_simduid_loops = true;
7359 if (aloop->force_vectorize)
7360 dest_cfun->has_force_vectorize_loops = true;
7364 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7365 if (orig_block)
7367 tree block;
7368 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7369 == NULL_TREE);
7370 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7371 = BLOCK_SUBBLOCKS (orig_block);
7372 for (block = BLOCK_SUBBLOCKS (orig_block);
7373 block; block = BLOCK_CHAIN (block))
7374 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7375 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7378 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7379 &vars_map, dest_cfun->decl);
7381 if (new_label_map)
7382 htab_delete (new_label_map);
7383 if (eh_map)
7384 delete eh_map;
7386 if (gimple_in_ssa_p (cfun))
7388 /* We need to release ssa-names in a defined order, so first find them,
7389 and then iterate in ascending version order. */
7390 bitmap release_names = BITMAP_ALLOC (NULL);
7391 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7392 bitmap_iterator bi;
7393 unsigned i;
7394 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7395 release_ssa_name (ssa_name (i));
7396 BITMAP_FREE (release_names);
7399 /* Rewire the entry and exit blocks. The successor to the entry
7400 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7401 the child function. Similarly, the predecessor of DEST_FN's
7402 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7403 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7404 various CFG manipulation function get to the right CFG.
7406 FIXME, this is silly. The CFG ought to become a parameter to
7407 these helpers. */
7408 push_cfun (dest_cfun);
7409 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7410 if (exit_bb)
7411 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7412 pop_cfun ();
7414 /* Back in the original function, the SESE region has disappeared,
7415 create a new basic block in its place. */
7416 bb = create_empty_bb (entry_pred[0]);
7417 if (current_loops)
7418 add_bb_to_loop (bb, loop);
7419 for (i = 0; i < num_entry_edges; i++)
7421 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7422 e->probability = entry_prob[i];
7425 for (i = 0; i < num_exit_edges; i++)
7427 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7428 e->probability = exit_prob[i];
7431 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7432 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7433 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7434 dom_bbs.release ();
7436 if (exit_bb)
7438 free (exit_prob);
7439 free (exit_flag);
7440 free (exit_succ);
7442 free (entry_prob);
7443 free (entry_flag);
7444 free (entry_pred);
7445 bbs.release ();
7447 return bb;
7450 /* Dump default def DEF to file FILE using FLAGS and indentation
7451 SPC. */
7453 static void
7454 dump_default_def (FILE *file, tree def, int spc, int flags)
7456 for (int i = 0; i < spc; ++i)
7457 fprintf (file, " ");
7458 dump_ssaname_info_to_file (file, def, spc);
7460 print_generic_expr (file, TREE_TYPE (def), flags);
7461 fprintf (file, " ");
7462 print_generic_expr (file, def, flags);
7463 fprintf (file, " = ");
7464 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7465 fprintf (file, ";\n");
7468 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7471 void
7472 dump_function_to_file (tree fndecl, FILE *file, int flags)
7474 tree arg, var, old_current_fndecl = current_function_decl;
7475 struct function *dsf;
7476 bool ignore_topmost_bind = false, any_var = false;
7477 basic_block bb;
7478 tree chain;
7479 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7480 && decl_is_tm_clone (fndecl));
7481 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7483 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7485 fprintf (file, "__attribute__((");
7487 bool first = true;
7488 tree chain;
7489 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7490 first = false, chain = TREE_CHAIN (chain))
7492 if (!first)
7493 fprintf (file, ", ");
7495 print_generic_expr (file, get_attribute_name (chain), dump_flags);
7496 if (TREE_VALUE (chain) != NULL_TREE)
7498 fprintf (file, " (");
7499 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7500 fprintf (file, ")");
7504 fprintf (file, "))\n");
7507 current_function_decl = fndecl;
7508 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7510 arg = DECL_ARGUMENTS (fndecl);
7511 while (arg)
7513 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7514 fprintf (file, " ");
7515 print_generic_expr (file, arg, dump_flags);
7516 if (flags & TDF_VERBOSE)
7517 print_node (file, "", arg, 4);
7518 if (DECL_CHAIN (arg))
7519 fprintf (file, ", ");
7520 arg = DECL_CHAIN (arg);
7522 fprintf (file, ")\n");
7524 if (flags & TDF_VERBOSE)
7525 print_node (file, "", fndecl, 2);
7527 dsf = DECL_STRUCT_FUNCTION (fndecl);
7528 if (dsf && (flags & TDF_EH))
7529 dump_eh_tree (file, dsf);
7531 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7533 dump_node (fndecl, TDF_SLIM | flags, file);
7534 current_function_decl = old_current_fndecl;
7535 return;
7538 /* When GIMPLE is lowered, the variables are no longer available in
7539 BIND_EXPRs, so display them separately. */
7540 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7542 unsigned ix;
7543 ignore_topmost_bind = true;
7545 fprintf (file, "{\n");
7546 if (gimple_in_ssa_p (fun)
7547 && (flags & TDF_ALIAS))
7549 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7550 arg = DECL_CHAIN (arg))
7552 tree def = ssa_default_def (fun, arg);
7553 if (def)
7554 dump_default_def (file, def, 2, flags);
7557 tree res = DECL_RESULT (fun->decl);
7558 if (res != NULL_TREE
7559 && DECL_BY_REFERENCE (res))
7561 tree def = ssa_default_def (fun, res);
7562 if (def)
7563 dump_default_def (file, def, 2, flags);
7566 tree static_chain = fun->static_chain_decl;
7567 if (static_chain != NULL_TREE)
7569 tree def = ssa_default_def (fun, static_chain);
7570 if (def)
7571 dump_default_def (file, def, 2, flags);
7575 if (!vec_safe_is_empty (fun->local_decls))
7576 FOR_EACH_LOCAL_DECL (fun, ix, var)
7578 print_generic_decl (file, var, flags);
7579 if (flags & TDF_VERBOSE)
7580 print_node (file, "", var, 4);
7581 fprintf (file, "\n");
7583 any_var = true;
7585 if (gimple_in_ssa_p (cfun))
7586 for (ix = 1; ix < num_ssa_names; ++ix)
7588 tree name = ssa_name (ix);
7589 if (name && !SSA_NAME_VAR (name))
7591 fprintf (file, " ");
7592 print_generic_expr (file, TREE_TYPE (name), flags);
7593 fprintf (file, " ");
7594 print_generic_expr (file, name, flags);
7595 fprintf (file, ";\n");
7597 any_var = true;
7602 if (fun && fun->decl == fndecl
7603 && fun->cfg
7604 && basic_block_info_for_fn (fun))
7606 /* If the CFG has been built, emit a CFG-based dump. */
7607 if (!ignore_topmost_bind)
7608 fprintf (file, "{\n");
7610 if (any_var && n_basic_blocks_for_fn (fun))
7611 fprintf (file, "\n");
7613 FOR_EACH_BB_FN (bb, fun)
7614 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7616 fprintf (file, "}\n");
7618 else if (DECL_SAVED_TREE (fndecl) == NULL)
7620 /* The function is now in GIMPLE form but the CFG has not been
7621 built yet. Emit the single sequence of GIMPLE statements
7622 that make up its body. */
7623 gimple_seq body = gimple_body (fndecl);
7625 if (gimple_seq_first_stmt (body)
7626 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7627 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7628 print_gimple_seq (file, body, 0, flags);
7629 else
7631 if (!ignore_topmost_bind)
7632 fprintf (file, "{\n");
7634 if (any_var)
7635 fprintf (file, "\n");
7637 print_gimple_seq (file, body, 2, flags);
7638 fprintf (file, "}\n");
7641 else
7643 int indent;
7645 /* Make a tree based dump. */
7646 chain = DECL_SAVED_TREE (fndecl);
7647 if (chain && TREE_CODE (chain) == BIND_EXPR)
7649 if (ignore_topmost_bind)
7651 chain = BIND_EXPR_BODY (chain);
7652 indent = 2;
7654 else
7655 indent = 0;
7657 else
7659 if (!ignore_topmost_bind)
7661 fprintf (file, "{\n");
7662 /* No topmost bind, pretend it's ignored for later. */
7663 ignore_topmost_bind = true;
7665 indent = 2;
7668 if (any_var)
7669 fprintf (file, "\n");
7671 print_generic_stmt_indented (file, chain, flags, indent);
7672 if (ignore_topmost_bind)
7673 fprintf (file, "}\n");
7676 if (flags & TDF_ENUMERATE_LOCALS)
7677 dump_enumerated_decls (file, flags);
7678 fprintf (file, "\n\n");
7680 current_function_decl = old_current_fndecl;
7683 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7685 DEBUG_FUNCTION void
7686 debug_function (tree fn, int flags)
7688 dump_function_to_file (fn, stderr, flags);
7692 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7694 static void
7695 print_pred_bbs (FILE *file, basic_block bb)
7697 edge e;
7698 edge_iterator ei;
7700 FOR_EACH_EDGE (e, ei, bb->preds)
7701 fprintf (file, "bb_%d ", e->src->index);
7705 /* Print on FILE the indexes for the successors of basic_block BB. */
7707 static void
7708 print_succ_bbs (FILE *file, basic_block bb)
7710 edge e;
7711 edge_iterator ei;
7713 FOR_EACH_EDGE (e, ei, bb->succs)
7714 fprintf (file, "bb_%d ", e->dest->index);
7717 /* Print to FILE the basic block BB following the VERBOSITY level. */
7719 void
7720 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7722 char *s_indent = (char *) alloca ((size_t) indent + 1);
7723 memset ((void *) s_indent, ' ', (size_t) indent);
7724 s_indent[indent] = '\0';
7726 /* Print basic_block's header. */
7727 if (verbosity >= 2)
7729 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7730 print_pred_bbs (file, bb);
7731 fprintf (file, "}, succs = {");
7732 print_succ_bbs (file, bb);
7733 fprintf (file, "})\n");
7736 /* Print basic_block's body. */
7737 if (verbosity >= 3)
7739 fprintf (file, "%s {\n", s_indent);
7740 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7741 fprintf (file, "%s }\n", s_indent);
7745 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7747 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7748 VERBOSITY level this outputs the contents of the loop, or just its
7749 structure. */
7751 static void
7752 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7754 char *s_indent;
7755 basic_block bb;
7757 if (loop == NULL)
7758 return;
7760 s_indent = (char *) alloca ((size_t) indent + 1);
7761 memset ((void *) s_indent, ' ', (size_t) indent);
7762 s_indent[indent] = '\0';
7764 /* Print loop's header. */
7765 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7766 if (loop->header)
7767 fprintf (file, "header = %d", loop->header->index);
7768 else
7770 fprintf (file, "deleted)\n");
7771 return;
7773 if (loop->latch)
7774 fprintf (file, ", latch = %d", loop->latch->index);
7775 else
7776 fprintf (file, ", multiple latches");
7777 fprintf (file, ", niter = ");
7778 print_generic_expr (file, loop->nb_iterations, 0);
7780 if (loop->any_upper_bound)
7782 fprintf (file, ", upper_bound = ");
7783 print_decu (loop->nb_iterations_upper_bound, file);
7786 if (loop->any_estimate)
7788 fprintf (file, ", estimate = ");
7789 print_decu (loop->nb_iterations_estimate, file);
7791 fprintf (file, ")\n");
7793 /* Print loop's body. */
7794 if (verbosity >= 1)
7796 fprintf (file, "%s{\n", s_indent);
7797 FOR_EACH_BB_FN (bb, cfun)
7798 if (bb->loop_father == loop)
7799 print_loops_bb (file, bb, indent, verbosity);
7801 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7802 fprintf (file, "%s}\n", s_indent);
7806 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7807 spaces. Following VERBOSITY level this outputs the contents of the
7808 loop, or just its structure. */
7810 static void
7811 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7812 int verbosity)
7814 if (loop == NULL)
7815 return;
7817 print_loop (file, loop, indent, verbosity);
7818 print_loop_and_siblings (file, loop->next, indent, verbosity);
7821 /* Follow a CFG edge from the entry point of the program, and on entry
7822 of a loop, pretty print the loop structure on FILE. */
7824 void
7825 print_loops (FILE *file, int verbosity)
7827 basic_block bb;
7829 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7830 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
7831 if (bb && bb->loop_father)
7832 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7835 /* Dump a loop. */
7837 DEBUG_FUNCTION void
7838 debug (struct loop &ref)
7840 print_loop (stderr, &ref, 0, /*verbosity*/0);
7843 DEBUG_FUNCTION void
7844 debug (struct loop *ptr)
7846 if (ptr)
7847 debug (*ptr);
7848 else
7849 fprintf (stderr, "<nil>\n");
7852 /* Dump a loop verbosely. */
7854 DEBUG_FUNCTION void
7855 debug_verbose (struct loop &ref)
7857 print_loop (stderr, &ref, 0, /*verbosity*/3);
7860 DEBUG_FUNCTION void
7861 debug_verbose (struct loop *ptr)
7863 if (ptr)
7864 debug (*ptr);
7865 else
7866 fprintf (stderr, "<nil>\n");
7870 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7872 DEBUG_FUNCTION void
7873 debug_loops (int verbosity)
7875 print_loops (stderr, verbosity);
7878 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7880 DEBUG_FUNCTION void
7881 debug_loop (struct loop *loop, int verbosity)
7883 print_loop (stderr, loop, 0, verbosity);
7886 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7887 level. */
7889 DEBUG_FUNCTION void
7890 debug_loop_num (unsigned num, int verbosity)
7892 debug_loop (get_loop (cfun, num), verbosity);
7895 /* Return true if BB ends with a call, possibly followed by some
7896 instructions that must stay with the call. Return false,
7897 otherwise. */
7899 static bool
7900 gimple_block_ends_with_call_p (basic_block bb)
7902 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7903 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7907 /* Return true if BB ends with a conditional branch. Return false,
7908 otherwise. */
7910 static bool
7911 gimple_block_ends_with_condjump_p (const_basic_block bb)
7913 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
7914 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7918 /* Return true if we need to add fake edge to exit at statement T.
7919 Helper function for gimple_flow_call_edges_add. */
7921 static bool
7922 need_fake_edge_p (gimple *t)
7924 tree fndecl = NULL_TREE;
7925 int call_flags = 0;
7927 /* NORETURN and LONGJMP calls already have an edge to exit.
7928 CONST and PURE calls do not need one.
7929 We don't currently check for CONST and PURE here, although
7930 it would be a good idea, because those attributes are
7931 figured out from the RTL in mark_constant_function, and
7932 the counter incrementation code from -fprofile-arcs
7933 leads to different results from -fbranch-probabilities. */
7934 if (is_gimple_call (t))
7936 fndecl = gimple_call_fndecl (t);
7937 call_flags = gimple_call_flags (t);
7940 if (is_gimple_call (t)
7941 && fndecl
7942 && DECL_BUILT_IN (fndecl)
7943 && (call_flags & ECF_NOTHROW)
7944 && !(call_flags & ECF_RETURNS_TWICE)
7945 /* fork() doesn't really return twice, but the effect of
7946 wrapping it in __gcov_fork() which calls __gcov_flush()
7947 and clears the counters before forking has the same
7948 effect as returning twice. Force a fake edge. */
7949 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7950 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7951 return false;
7953 if (is_gimple_call (t))
7955 edge_iterator ei;
7956 edge e;
7957 basic_block bb;
7959 if (!(call_flags & ECF_NORETURN))
7960 return true;
7962 bb = gimple_bb (t);
7963 FOR_EACH_EDGE (e, ei, bb->succs)
7964 if ((e->flags & EDGE_FAKE) == 0)
7965 return true;
7968 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
7969 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
7970 return true;
7972 return false;
7976 /* Add fake edges to the function exit for any non constant and non
7977 noreturn calls (or noreturn calls with EH/abnormal edges),
7978 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7979 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7980 that were split.
7982 The goal is to expose cases in which entering a basic block does
7983 not imply that all subsequent instructions must be executed. */
7985 static int
7986 gimple_flow_call_edges_add (sbitmap blocks)
7988 int i;
7989 int blocks_split = 0;
7990 int last_bb = last_basic_block_for_fn (cfun);
7991 bool check_last_block = false;
7993 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7994 return 0;
7996 if (! blocks)
7997 check_last_block = true;
7998 else
7999 check_last_block = bitmap_bit_p (blocks,
8000 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8002 /* In the last basic block, before epilogue generation, there will be
8003 a fallthru edge to EXIT. Special care is required if the last insn
8004 of the last basic block is a call because make_edge folds duplicate
8005 edges, which would result in the fallthru edge also being marked
8006 fake, which would result in the fallthru edge being removed by
8007 remove_fake_edges, which would result in an invalid CFG.
8009 Moreover, we can't elide the outgoing fake edge, since the block
8010 profiler needs to take this into account in order to solve the minimal
8011 spanning tree in the case that the call doesn't return.
8013 Handle this by adding a dummy instruction in a new last basic block. */
8014 if (check_last_block)
8016 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8017 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8018 gimple *t = NULL;
8020 if (!gsi_end_p (gsi))
8021 t = gsi_stmt (gsi);
8023 if (t && need_fake_edge_p (t))
8025 edge e;
8027 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8028 if (e)
8030 gsi_insert_on_edge (e, gimple_build_nop ());
8031 gsi_commit_edge_inserts ();
8036 /* Now add fake edges to the function exit for any non constant
8037 calls since there is no way that we can determine if they will
8038 return or not... */
8039 for (i = 0; i < last_bb; i++)
8041 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8042 gimple_stmt_iterator gsi;
8043 gimple *stmt, *last_stmt;
8045 if (!bb)
8046 continue;
8048 if (blocks && !bitmap_bit_p (blocks, i))
8049 continue;
8051 gsi = gsi_last_nondebug_bb (bb);
8052 if (!gsi_end_p (gsi))
8054 last_stmt = gsi_stmt (gsi);
8057 stmt = gsi_stmt (gsi);
8058 if (need_fake_edge_p (stmt))
8060 edge e;
8062 /* The handling above of the final block before the
8063 epilogue should be enough to verify that there is
8064 no edge to the exit block in CFG already.
8065 Calling make_edge in such case would cause us to
8066 mark that edge as fake and remove it later. */
8067 if (flag_checking && stmt == last_stmt)
8069 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8070 gcc_assert (e == NULL);
8073 /* Note that the following may create a new basic block
8074 and renumber the existing basic blocks. */
8075 if (stmt != last_stmt)
8077 e = split_block (bb, stmt);
8078 if (e)
8079 blocks_split++;
8081 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8083 gsi_prev (&gsi);
8085 while (!gsi_end_p (gsi));
8089 if (blocks_split)
8090 verify_flow_info ();
8092 return blocks_split;
8095 /* Removes edge E and all the blocks dominated by it, and updates dominance
8096 information. The IL in E->src needs to be updated separately.
8097 If dominance info is not available, only the edge E is removed.*/
8099 void
8100 remove_edge_and_dominated_blocks (edge e)
8102 vec<basic_block> bbs_to_remove = vNULL;
8103 vec<basic_block> bbs_to_fix_dom = vNULL;
8104 bitmap df, df_idom;
8105 edge f;
8106 edge_iterator ei;
8107 bool none_removed = false;
8108 unsigned i;
8109 basic_block bb, dbb;
8110 bitmap_iterator bi;
8112 /* If we are removing a path inside a non-root loop that may change
8113 loop ownership of blocks or remove loops. Mark loops for fixup. */
8114 if (current_loops
8115 && loop_outer (e->src->loop_father) != NULL
8116 && e->src->loop_father == e->dest->loop_father)
8117 loops_state_set (LOOPS_NEED_FIXUP);
8119 if (!dom_info_available_p (CDI_DOMINATORS))
8121 remove_edge (e);
8122 return;
8125 /* No updating is needed for edges to exit. */
8126 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8128 if (cfgcleanup_altered_bbs)
8129 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8130 remove_edge (e);
8131 return;
8134 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8135 that is not dominated by E->dest, then this set is empty. Otherwise,
8136 all the basic blocks dominated by E->dest are removed.
8138 Also, to DF_IDOM we store the immediate dominators of the blocks in
8139 the dominance frontier of E (i.e., of the successors of the
8140 removed blocks, if there are any, and of E->dest otherwise). */
8141 FOR_EACH_EDGE (f, ei, e->dest->preds)
8143 if (f == e)
8144 continue;
8146 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8148 none_removed = true;
8149 break;
8153 df = BITMAP_ALLOC (NULL);
8154 df_idom = BITMAP_ALLOC (NULL);
8156 if (none_removed)
8157 bitmap_set_bit (df_idom,
8158 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8159 else
8161 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8162 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8164 FOR_EACH_EDGE (f, ei, bb->succs)
8166 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8167 bitmap_set_bit (df, f->dest->index);
8170 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8171 bitmap_clear_bit (df, bb->index);
8173 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8175 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8176 bitmap_set_bit (df_idom,
8177 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8181 if (cfgcleanup_altered_bbs)
8183 /* Record the set of the altered basic blocks. */
8184 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8185 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8188 /* Remove E and the cancelled blocks. */
8189 if (none_removed)
8190 remove_edge (e);
8191 else
8193 /* Walk backwards so as to get a chance to substitute all
8194 released DEFs into debug stmts. See
8195 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8196 details. */
8197 for (i = bbs_to_remove.length (); i-- > 0; )
8198 delete_basic_block (bbs_to_remove[i]);
8201 /* Update the dominance information. The immediate dominator may change only
8202 for blocks whose immediate dominator belongs to DF_IDOM:
8204 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8205 removal. Let Z the arbitrary block such that idom(Z) = Y and
8206 Z dominates X after the removal. Before removal, there exists a path P
8207 from Y to X that avoids Z. Let F be the last edge on P that is
8208 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8209 dominates W, and because of P, Z does not dominate W), and W belongs to
8210 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8211 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8213 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8214 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8215 dbb;
8216 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8217 bbs_to_fix_dom.safe_push (dbb);
8220 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8222 BITMAP_FREE (df);
8223 BITMAP_FREE (df_idom);
8224 bbs_to_remove.release ();
8225 bbs_to_fix_dom.release ();
8228 /* Purge dead EH edges from basic block BB. */
8230 bool
8231 gimple_purge_dead_eh_edges (basic_block bb)
8233 bool changed = false;
8234 edge e;
8235 edge_iterator ei;
8236 gimple *stmt = last_stmt (bb);
8238 if (stmt && stmt_can_throw_internal (stmt))
8239 return false;
8241 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8243 if (e->flags & EDGE_EH)
8245 remove_edge_and_dominated_blocks (e);
8246 changed = true;
8248 else
8249 ei_next (&ei);
8252 return changed;
8255 /* Purge dead EH edges from basic block listed in BLOCKS. */
8257 bool
8258 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8260 bool changed = false;
8261 unsigned i;
8262 bitmap_iterator bi;
8264 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8266 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8268 /* Earlier gimple_purge_dead_eh_edges could have removed
8269 this basic block already. */
8270 gcc_assert (bb || changed);
8271 if (bb != NULL)
8272 changed |= gimple_purge_dead_eh_edges (bb);
8275 return changed;
8278 /* Purge dead abnormal call edges from basic block BB. */
8280 bool
8281 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8283 bool changed = false;
8284 edge e;
8285 edge_iterator ei;
8286 gimple *stmt = last_stmt (bb);
8288 if (!cfun->has_nonlocal_label
8289 && !cfun->calls_setjmp)
8290 return false;
8292 if (stmt && stmt_can_make_abnormal_goto (stmt))
8293 return false;
8295 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8297 if (e->flags & EDGE_ABNORMAL)
8299 if (e->flags & EDGE_FALLTHRU)
8300 e->flags &= ~EDGE_ABNORMAL;
8301 else
8302 remove_edge_and_dominated_blocks (e);
8303 changed = true;
8305 else
8306 ei_next (&ei);
8309 return changed;
8312 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8314 bool
8315 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8317 bool changed = false;
8318 unsigned i;
8319 bitmap_iterator bi;
8321 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8323 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8325 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8326 this basic block already. */
8327 gcc_assert (bb || changed);
8328 if (bb != NULL)
8329 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8332 return changed;
8335 /* This function is called whenever a new edge is created or
8336 redirected. */
8338 static void
8339 gimple_execute_on_growing_pred (edge e)
8341 basic_block bb = e->dest;
8343 if (!gimple_seq_empty_p (phi_nodes (bb)))
8344 reserve_phi_args_for_new_edge (bb);
8347 /* This function is called immediately before edge E is removed from
8348 the edge vector E->dest->preds. */
8350 static void
8351 gimple_execute_on_shrinking_pred (edge e)
8353 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8354 remove_phi_args (e);
8357 /*---------------------------------------------------------------------------
8358 Helper functions for Loop versioning
8359 ---------------------------------------------------------------------------*/
8361 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8362 of 'first'. Both of them are dominated by 'new_head' basic block. When
8363 'new_head' was created by 'second's incoming edge it received phi arguments
8364 on the edge by split_edge(). Later, additional edge 'e' was created to
8365 connect 'new_head' and 'first'. Now this routine adds phi args on this
8366 additional edge 'e' that new_head to second edge received as part of edge
8367 splitting. */
8369 static void
8370 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8371 basic_block new_head, edge e)
8373 gphi *phi1, *phi2;
8374 gphi_iterator psi1, psi2;
8375 tree def;
8376 edge e2 = find_edge (new_head, second);
8378 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8379 edge, we should always have an edge from NEW_HEAD to SECOND. */
8380 gcc_assert (e2 != NULL);
8382 /* Browse all 'second' basic block phi nodes and add phi args to
8383 edge 'e' for 'first' head. PHI args are always in correct order. */
8385 for (psi2 = gsi_start_phis (second),
8386 psi1 = gsi_start_phis (first);
8387 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8388 gsi_next (&psi2), gsi_next (&psi1))
8390 phi1 = psi1.phi ();
8391 phi2 = psi2.phi ();
8392 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8393 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8398 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8399 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8400 the destination of the ELSE part. */
8402 static void
8403 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8404 basic_block second_head ATTRIBUTE_UNUSED,
8405 basic_block cond_bb, void *cond_e)
8407 gimple_stmt_iterator gsi;
8408 gimple *new_cond_expr;
8409 tree cond_expr = (tree) cond_e;
8410 edge e0;
8412 /* Build new conditional expr */
8413 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8414 NULL_TREE, NULL_TREE);
8416 /* Add new cond in cond_bb. */
8417 gsi = gsi_last_bb (cond_bb);
8418 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8420 /* Adjust edges appropriately to connect new head with first head
8421 as well as second head. */
8422 e0 = single_succ_edge (cond_bb);
8423 e0->flags &= ~EDGE_FALLTHRU;
8424 e0->flags |= EDGE_FALSE_VALUE;
8428 /* Do book-keeping of basic block BB for the profile consistency checker.
8429 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8430 then do post-pass accounting. Store the counting in RECORD. */
8431 static void
8432 gimple_account_profile_record (basic_block bb, int after_pass,
8433 struct profile_record *record)
8435 gimple_stmt_iterator i;
8436 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8438 record->size[after_pass]
8439 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8440 if (profile_status_for_fn (cfun) == PROFILE_READ)
8441 record->time[after_pass]
8442 += estimate_num_insns (gsi_stmt (i),
8443 &eni_time_weights) * bb->count;
8444 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8445 record->time[after_pass]
8446 += estimate_num_insns (gsi_stmt (i),
8447 &eni_time_weights) * bb->frequency;
8451 struct cfg_hooks gimple_cfg_hooks = {
8452 "gimple",
8453 gimple_verify_flow_info,
8454 gimple_dump_bb, /* dump_bb */
8455 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8456 create_bb, /* create_basic_block */
8457 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8458 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8459 gimple_can_remove_branch_p, /* can_remove_branch_p */
8460 remove_bb, /* delete_basic_block */
8461 gimple_split_block, /* split_block */
8462 gimple_move_block_after, /* move_block_after */
8463 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8464 gimple_merge_blocks, /* merge_blocks */
8465 gimple_predict_edge, /* predict_edge */
8466 gimple_predicted_by_p, /* predicted_by_p */
8467 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8468 gimple_duplicate_bb, /* duplicate_block */
8469 gimple_split_edge, /* split_edge */
8470 gimple_make_forwarder_block, /* make_forward_block */
8471 NULL, /* tidy_fallthru_edge */
8472 NULL, /* force_nonfallthru */
8473 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8474 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8475 gimple_flow_call_edges_add, /* flow_call_edges_add */
8476 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8477 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8478 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8479 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8480 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8481 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8482 flush_pending_stmts, /* flush_pending_stmts */
8483 gimple_empty_block_p, /* block_empty_p */
8484 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8485 gimple_account_profile_record,
8489 /* Split all critical edges. */
8491 unsigned int
8492 split_critical_edges (void)
8494 basic_block bb;
8495 edge e;
8496 edge_iterator ei;
8498 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8499 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8500 mappings around the calls to split_edge. */
8501 start_recording_case_labels ();
8502 FOR_ALL_BB_FN (bb, cfun)
8504 FOR_EACH_EDGE (e, ei, bb->succs)
8506 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8507 split_edge (e);
8508 /* PRE inserts statements to edges and expects that
8509 since split_critical_edges was done beforehand, committing edge
8510 insertions will not split more edges. In addition to critical
8511 edges we must split edges that have multiple successors and
8512 end by control flow statements, such as RESX.
8513 Go ahead and split them too. This matches the logic in
8514 gimple_find_edge_insert_loc. */
8515 else if ((!single_pred_p (e->dest)
8516 || !gimple_seq_empty_p (phi_nodes (e->dest))
8517 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8518 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8519 && !(e->flags & EDGE_ABNORMAL))
8521 gimple_stmt_iterator gsi;
8523 gsi = gsi_last_bb (e->src);
8524 if (!gsi_end_p (gsi)
8525 && stmt_ends_bb_p (gsi_stmt (gsi))
8526 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8527 && !gimple_call_builtin_p (gsi_stmt (gsi),
8528 BUILT_IN_RETURN)))
8529 split_edge (e);
8533 end_recording_case_labels ();
8534 return 0;
8537 namespace {
8539 const pass_data pass_data_split_crit_edges =
8541 GIMPLE_PASS, /* type */
8542 "crited", /* name */
8543 OPTGROUP_NONE, /* optinfo_flags */
8544 TV_TREE_SPLIT_EDGES, /* tv_id */
8545 PROP_cfg, /* properties_required */
8546 PROP_no_crit_edges, /* properties_provided */
8547 0, /* properties_destroyed */
8548 0, /* todo_flags_start */
8549 0, /* todo_flags_finish */
8552 class pass_split_crit_edges : public gimple_opt_pass
8554 public:
8555 pass_split_crit_edges (gcc::context *ctxt)
8556 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8559 /* opt_pass methods: */
8560 virtual unsigned int execute (function *) { return split_critical_edges (); }
8562 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8563 }; // class pass_split_crit_edges
8565 } // anon namespace
8567 gimple_opt_pass *
8568 make_pass_split_crit_edges (gcc::context *ctxt)
8570 return new pass_split_crit_edges (ctxt);
8574 /* Insert COND expression which is GIMPLE_COND after STMT
8575 in basic block BB with appropriate basic block split
8576 and creation of a new conditionally executed basic block.
8577 Return created basic block. */
8578 basic_block
8579 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond)
8581 edge fall = split_block (bb, stmt);
8582 gimple_stmt_iterator iter = gsi_last_bb (bb);
8583 basic_block new_bb;
8585 /* Insert cond statement. */
8586 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8587 if (gsi_end_p (iter))
8588 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8589 else
8590 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8592 /* Create conditionally executed block. */
8593 new_bb = create_empty_bb (bb);
8594 make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8595 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8597 /* Fix edge for split bb. */
8598 fall->flags = EDGE_FALSE_VALUE;
8600 /* Update dominance info. */
8601 if (dom_info_available_p (CDI_DOMINATORS))
8603 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8604 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8607 /* Update loop info. */
8608 if (current_loops)
8609 add_bb_to_loop (new_bb, bb->loop_father);
8611 return new_bb;
8614 /* Build a ternary operation and gimplify it. Emit code before GSI.
8615 Return the gimple_val holding the result. */
8617 tree
8618 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8619 tree type, tree a, tree b, tree c)
8621 tree ret;
8622 location_t loc = gimple_location (gsi_stmt (*gsi));
8624 ret = fold_build3_loc (loc, code, type, a, b, c);
8625 STRIP_NOPS (ret);
8627 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8628 GSI_SAME_STMT);
8631 /* Build a binary operation and gimplify it. Emit code before GSI.
8632 Return the gimple_val holding the result. */
8634 tree
8635 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8636 tree type, tree a, tree b)
8638 tree ret;
8640 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8641 STRIP_NOPS (ret);
8643 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8644 GSI_SAME_STMT);
8647 /* Build a unary operation and gimplify it. Emit code before GSI.
8648 Return the gimple_val holding the result. */
8650 tree
8651 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8652 tree a)
8654 tree ret;
8656 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8657 STRIP_NOPS (ret);
8659 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8660 GSI_SAME_STMT);
8665 /* Given a basic block B which ends with a conditional and has
8666 precisely two successors, determine which of the edges is taken if
8667 the conditional is true and which is taken if the conditional is
8668 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8670 void
8671 extract_true_false_edges_from_block (basic_block b,
8672 edge *true_edge,
8673 edge *false_edge)
8675 edge e = EDGE_SUCC (b, 0);
8677 if (e->flags & EDGE_TRUE_VALUE)
8679 *true_edge = e;
8680 *false_edge = EDGE_SUCC (b, 1);
8682 else
8684 *false_edge = e;
8685 *true_edge = EDGE_SUCC (b, 1);
8690 /* From a controlling predicate in the immediate dominator DOM of
8691 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8692 predicate evaluates to true and false and store them to
8693 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8694 they are non-NULL. Returns true if the edges can be determined,
8695 else return false. */
8697 bool
8698 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
8699 edge *true_controlled_edge,
8700 edge *false_controlled_edge)
8702 basic_block bb = phiblock;
8703 edge true_edge, false_edge, tem;
8704 edge e0 = NULL, e1 = NULL;
8706 /* We have to verify that one edge into the PHI node is dominated
8707 by the true edge of the predicate block and the other edge
8708 dominated by the false edge. This ensures that the PHI argument
8709 we are going to take is completely determined by the path we
8710 take from the predicate block.
8711 We can only use BB dominance checks below if the destination of
8712 the true/false edges are dominated by their edge, thus only
8713 have a single predecessor. */
8714 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
8715 tem = EDGE_PRED (bb, 0);
8716 if (tem == true_edge
8717 || (single_pred_p (true_edge->dest)
8718 && (tem->src == true_edge->dest
8719 || dominated_by_p (CDI_DOMINATORS,
8720 tem->src, true_edge->dest))))
8721 e0 = tem;
8722 else if (tem == false_edge
8723 || (single_pred_p (false_edge->dest)
8724 && (tem->src == false_edge->dest
8725 || dominated_by_p (CDI_DOMINATORS,
8726 tem->src, false_edge->dest))))
8727 e1 = tem;
8728 else
8729 return false;
8730 tem = EDGE_PRED (bb, 1);
8731 if (tem == true_edge
8732 || (single_pred_p (true_edge->dest)
8733 && (tem->src == true_edge->dest
8734 || dominated_by_p (CDI_DOMINATORS,
8735 tem->src, true_edge->dest))))
8736 e0 = tem;
8737 else if (tem == false_edge
8738 || (single_pred_p (false_edge->dest)
8739 && (tem->src == false_edge->dest
8740 || dominated_by_p (CDI_DOMINATORS,
8741 tem->src, false_edge->dest))))
8742 e1 = tem;
8743 else
8744 return false;
8745 if (!e0 || !e1)
8746 return false;
8748 if (true_controlled_edge)
8749 *true_controlled_edge = e0;
8750 if (false_controlled_edge)
8751 *false_controlled_edge = e1;
8753 return true;
8758 /* Emit return warnings. */
8760 namespace {
8762 const pass_data pass_data_warn_function_return =
8764 GIMPLE_PASS, /* type */
8765 "*warn_function_return", /* name */
8766 OPTGROUP_NONE, /* optinfo_flags */
8767 TV_NONE, /* tv_id */
8768 PROP_cfg, /* properties_required */
8769 0, /* properties_provided */
8770 0, /* properties_destroyed */
8771 0, /* todo_flags_start */
8772 0, /* todo_flags_finish */
8775 class pass_warn_function_return : public gimple_opt_pass
8777 public:
8778 pass_warn_function_return (gcc::context *ctxt)
8779 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8782 /* opt_pass methods: */
8783 virtual unsigned int execute (function *);
8785 }; // class pass_warn_function_return
8787 unsigned int
8788 pass_warn_function_return::execute (function *fun)
8790 source_location location;
8791 gimple *last;
8792 edge e;
8793 edge_iterator ei;
8795 if (!targetm.warn_func_return (fun->decl))
8796 return 0;
8798 /* If we have a path to EXIT, then we do return. */
8799 if (TREE_THIS_VOLATILE (fun->decl)
8800 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
8802 location = UNKNOWN_LOCATION;
8803 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8805 last = last_stmt (e->src);
8806 if ((gimple_code (last) == GIMPLE_RETURN
8807 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8808 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8809 break;
8811 if (location == UNKNOWN_LOCATION)
8812 location = cfun->function_end_locus;
8813 warning_at (location, 0, "%<noreturn%> function does return");
8816 /* If we see "return;" in some basic block, then we do reach the end
8817 without returning a value. */
8818 else if (warn_return_type
8819 && !TREE_NO_WARNING (fun->decl)
8820 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0
8821 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
8823 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8825 gimple *last = last_stmt (e->src);
8826 greturn *return_stmt = dyn_cast <greturn *> (last);
8827 if (return_stmt
8828 && gimple_return_retval (return_stmt) == NULL
8829 && !gimple_no_warning_p (last))
8831 location = gimple_location (last);
8832 if (location == UNKNOWN_LOCATION)
8833 location = fun->function_end_locus;
8834 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8835 TREE_NO_WARNING (fun->decl) = 1;
8836 break;
8840 return 0;
8843 } // anon namespace
8845 gimple_opt_pass *
8846 make_pass_warn_function_return (gcc::context *ctxt)
8848 return new pass_warn_function_return (ctxt);
8851 /* Walk a gimplified function and warn for functions whose return value is
8852 ignored and attribute((warn_unused_result)) is set. This is done before
8853 inlining, so we don't have to worry about that. */
8855 static void
8856 do_warn_unused_result (gimple_seq seq)
8858 tree fdecl, ftype;
8859 gimple_stmt_iterator i;
8861 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8863 gimple *g = gsi_stmt (i);
8865 switch (gimple_code (g))
8867 case GIMPLE_BIND:
8868 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
8869 break;
8870 case GIMPLE_TRY:
8871 do_warn_unused_result (gimple_try_eval (g));
8872 do_warn_unused_result (gimple_try_cleanup (g));
8873 break;
8874 case GIMPLE_CATCH:
8875 do_warn_unused_result (gimple_catch_handler (
8876 as_a <gcatch *> (g)));
8877 break;
8878 case GIMPLE_EH_FILTER:
8879 do_warn_unused_result (gimple_eh_filter_failure (g));
8880 break;
8882 case GIMPLE_CALL:
8883 if (gimple_call_lhs (g))
8884 break;
8885 if (gimple_call_internal_p (g))
8886 break;
8888 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8889 LHS. All calls whose value is ignored should be
8890 represented like this. Look for the attribute. */
8891 fdecl = gimple_call_fndecl (g);
8892 ftype = gimple_call_fntype (g);
8894 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8896 location_t loc = gimple_location (g);
8898 if (fdecl)
8899 warning_at (loc, OPT_Wunused_result,
8900 "ignoring return value of %qD, "
8901 "declared with attribute warn_unused_result",
8902 fdecl);
8903 else
8904 warning_at (loc, OPT_Wunused_result,
8905 "ignoring return value of function "
8906 "declared with attribute warn_unused_result");
8908 break;
8910 default:
8911 /* Not a container, not a call, or a call whose value is used. */
8912 break;
8917 namespace {
8919 const pass_data pass_data_warn_unused_result =
8921 GIMPLE_PASS, /* type */
8922 "*warn_unused_result", /* name */
8923 OPTGROUP_NONE, /* optinfo_flags */
8924 TV_NONE, /* tv_id */
8925 PROP_gimple_any, /* properties_required */
8926 0, /* properties_provided */
8927 0, /* properties_destroyed */
8928 0, /* todo_flags_start */
8929 0, /* todo_flags_finish */
8932 class pass_warn_unused_result : public gimple_opt_pass
8934 public:
8935 pass_warn_unused_result (gcc::context *ctxt)
8936 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8939 /* opt_pass methods: */
8940 virtual bool gate (function *) { return flag_warn_unused_result; }
8941 virtual unsigned int execute (function *)
8943 do_warn_unused_result (gimple_body (current_function_decl));
8944 return 0;
8947 }; // class pass_warn_unused_result
8949 } // anon namespace
8951 gimple_opt_pass *
8952 make_pass_warn_unused_result (gcc::context *ctxt)
8954 return new pass_warn_unused_result (ctxt);
8957 /* IPA passes, compilation of earlier functions or inlining
8958 might have changed some properties, such as marked functions nothrow,
8959 pure, const or noreturn.
8960 Remove redundant edges and basic blocks, and create new ones if necessary.
8962 This pass can't be executed as stand alone pass from pass manager, because
8963 in between inlining and this fixup the verify_flow_info would fail. */
8965 unsigned int
8966 execute_fixup_cfg (void)
8968 basic_block bb;
8969 gimple_stmt_iterator gsi;
8970 int todo = 0;
8971 gcov_type count_scale;
8972 edge e;
8973 edge_iterator ei;
8975 count_scale
8976 = GCOV_COMPUTE_SCALE (cgraph_node::get (current_function_decl)->count,
8977 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8979 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8980 cgraph_node::get (current_function_decl)->count;
8981 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8982 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8983 count_scale);
8985 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8986 e->count = apply_scale (e->count, count_scale);
8988 FOR_EACH_BB_FN (bb, cfun)
8990 bb->count = apply_scale (bb->count, count_scale);
8991 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
8993 gimple *stmt = gsi_stmt (gsi);
8994 tree decl = is_gimple_call (stmt)
8995 ? gimple_call_fndecl (stmt)
8996 : NULL;
8997 if (decl)
8999 int flags = gimple_call_flags (stmt);
9000 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9002 if (gimple_purge_dead_abnormal_call_edges (bb))
9003 todo |= TODO_cleanup_cfg;
9005 if (gimple_in_ssa_p (cfun))
9007 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9008 update_stmt (stmt);
9012 if (flags & ECF_NORETURN
9013 && fixup_noreturn_call (stmt))
9014 todo |= TODO_cleanup_cfg;
9017 /* Remove stores to variables we marked write-only.
9018 Keep access when store has side effect, i.e. in case when source
9019 is volatile. */
9020 if (gimple_store_p (stmt)
9021 && !gimple_has_side_effects (stmt))
9023 tree lhs = get_base_address (gimple_get_lhs (stmt));
9025 if (TREE_CODE (lhs) == VAR_DECL
9026 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9027 && varpool_node::get (lhs)->writeonly)
9029 unlink_stmt_vdef (stmt);
9030 gsi_remove (&gsi, true);
9031 release_defs (stmt);
9032 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9033 continue;
9036 /* For calls we can simply remove LHS when it is known
9037 to be write-only. */
9038 if (is_gimple_call (stmt)
9039 && gimple_get_lhs (stmt))
9041 tree lhs = get_base_address (gimple_get_lhs (stmt));
9043 if (TREE_CODE (lhs) == VAR_DECL
9044 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9045 && varpool_node::get (lhs)->writeonly)
9047 gimple_call_set_lhs (stmt, NULL);
9048 update_stmt (stmt);
9049 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9053 if (maybe_clean_eh_stmt (stmt)
9054 && gimple_purge_dead_eh_edges (bb))
9055 todo |= TODO_cleanup_cfg;
9056 gsi_next (&gsi);
9059 FOR_EACH_EDGE (e, ei, bb->succs)
9060 e->count = apply_scale (e->count, count_scale);
9062 /* If we have a basic block with no successors that does not
9063 end with a control statement or a noreturn call end it with
9064 a call to __builtin_unreachable. This situation can occur
9065 when inlining a noreturn call that does in fact return. */
9066 if (EDGE_COUNT (bb->succs) == 0)
9068 gimple *stmt = last_stmt (bb);
9069 if (!stmt
9070 || (!is_ctrl_stmt (stmt)
9071 && (!is_gimple_call (stmt)
9072 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
9074 if (stmt && is_gimple_call (stmt))
9075 gimple_call_set_ctrl_altering (stmt, false);
9076 stmt = gimple_build_call
9077 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
9078 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9079 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9083 if (count_scale != REG_BR_PROB_BASE)
9084 compute_function_frequency ();
9086 if (current_loops
9087 && (todo & TODO_cleanup_cfg))
9088 loops_state_set (LOOPS_NEED_FIXUP);
9090 return todo;
9093 namespace {
9095 const pass_data pass_data_fixup_cfg =
9097 GIMPLE_PASS, /* type */
9098 "fixup_cfg", /* name */
9099 OPTGROUP_NONE, /* optinfo_flags */
9100 TV_NONE, /* tv_id */
9101 PROP_cfg, /* properties_required */
9102 0, /* properties_provided */
9103 0, /* properties_destroyed */
9104 0, /* todo_flags_start */
9105 0, /* todo_flags_finish */
9108 class pass_fixup_cfg : public gimple_opt_pass
9110 public:
9111 pass_fixup_cfg (gcc::context *ctxt)
9112 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9115 /* opt_pass methods: */
9116 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9117 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9119 }; // class pass_fixup_cfg
9121 } // anon namespace
9123 gimple_opt_pass *
9124 make_pass_fixup_cfg (gcc::context *ctxt)
9126 return new pass_fixup_cfg (ctxt);
9129 /* Garbage collection support for edge_def. */
9131 extern void gt_ggc_mx (tree&);
9132 extern void gt_ggc_mx (gimple *&);
9133 extern void gt_ggc_mx (rtx&);
9134 extern void gt_ggc_mx (basic_block&);
9136 static void
9137 gt_ggc_mx (rtx_insn *& x)
9139 if (x)
9140 gt_ggc_mx_rtx_def ((void *) x);
9143 void
9144 gt_ggc_mx (edge_def *e)
9146 tree block = LOCATION_BLOCK (e->goto_locus);
9147 gt_ggc_mx (e->src);
9148 gt_ggc_mx (e->dest);
9149 if (current_ir_type () == IR_GIMPLE)
9150 gt_ggc_mx (e->insns.g);
9151 else
9152 gt_ggc_mx (e->insns.r);
9153 gt_ggc_mx (block);
9156 /* PCH support for edge_def. */
9158 extern void gt_pch_nx (tree&);
9159 extern void gt_pch_nx (gimple *&);
9160 extern void gt_pch_nx (rtx&);
9161 extern void gt_pch_nx (basic_block&);
9163 static void
9164 gt_pch_nx (rtx_insn *& x)
9166 if (x)
9167 gt_pch_nx_rtx_def ((void *) x);
9170 void
9171 gt_pch_nx (edge_def *e)
9173 tree block = LOCATION_BLOCK (e->goto_locus);
9174 gt_pch_nx (e->src);
9175 gt_pch_nx (e->dest);
9176 if (current_ir_type () == IR_GIMPLE)
9177 gt_pch_nx (e->insns.g);
9178 else
9179 gt_pch_nx (e->insns.r);
9180 gt_pch_nx (block);
9183 void
9184 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9186 tree block = LOCATION_BLOCK (e->goto_locus);
9187 op (&(e->src), cookie);
9188 op (&(e->dest), cookie);
9189 if (current_ir_type () == IR_GIMPLE)
9190 op (&(e->insns.g), cookie);
9191 else
9192 op (&(e->insns.r), cookie);
9193 op (&(block), cookie);