[ree] PR rtl-optimization/78038: Handle global register dataflow definitions in ree
[official-gcc.git] / gcc / loop-unroll.c
blob91118a310d004ec4d1f9da731206a5a86dc30ea9
1 /* Loop unrolling.
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "memmodel.h"
29 #include "optabs.h"
30 #include "emit-rtl.h"
31 #include "recog.h"
32 #include "profile.h"
33 #include "cfgrtl.h"
34 #include "cfgloop.h"
35 #include "params.h"
36 #include "dojump.h"
37 #include "expr.h"
38 #include "dumpfile.h"
40 /* This pass performs loop unrolling. We only perform this
41 optimization on innermost loops (with single exception) because
42 the impact on performance is greatest here, and we want to avoid
43 unnecessary code size growth. The gain is caused by greater sequentiality
44 of code, better code to optimize for further passes and in some cases
45 by fewer testings of exit conditions. The main problem is code growth,
46 that impacts performance negatively due to effect of caches.
48 What we do:
50 -- unrolling of loops that roll constant times; this is almost always
51 win, as we get rid of exit condition tests.
52 -- unrolling of loops that roll number of times that we can compute
53 in runtime; we also get rid of exit condition tests here, but there
54 is the extra expense for calculating the number of iterations
55 -- simple unrolling of remaining loops; this is performed only if we
56 are asked to, as the gain is questionable in this case and often
57 it may even slow down the code
58 For more detailed descriptions of each of those, see comments at
59 appropriate function below.
61 There is a lot of parameters (defined and described in params.def) that
62 control how much we unroll.
64 ??? A great problem is that we don't have a good way how to determine
65 how many times we should unroll the loop; the experiments I have made
66 showed that this choice may affect performance in order of several %.
69 /* Information about induction variables to split. */
71 struct iv_to_split
73 rtx_insn *insn; /* The insn in that the induction variable occurs. */
74 rtx orig_var; /* The variable (register) for the IV before split. */
75 rtx base_var; /* The variable on that the values in the further
76 iterations are based. */
77 rtx step; /* Step of the induction variable. */
78 struct iv_to_split *next; /* Next entry in walking order. */
81 /* Information about accumulators to expand. */
83 struct var_to_expand
85 rtx_insn *insn; /* The insn in that the variable expansion occurs. */
86 rtx reg; /* The accumulator which is expanded. */
87 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
88 struct var_to_expand *next; /* Next entry in walking order. */
89 enum rtx_code op; /* The type of the accumulation - addition, subtraction
90 or multiplication. */
91 int expansion_count; /* Count the number of expansions generated so far. */
92 int reuse_expansion; /* The expansion we intend to reuse to expand
93 the accumulator. If REUSE_EXPANSION is 0 reuse
94 the original accumulator. Else use
95 var_expansions[REUSE_EXPANSION - 1]. */
98 /* Hashtable helper for iv_to_split. */
100 struct iv_split_hasher : free_ptr_hash <iv_to_split>
102 static inline hashval_t hash (const iv_to_split *);
103 static inline bool equal (const iv_to_split *, const iv_to_split *);
107 /* A hash function for information about insns to split. */
109 inline hashval_t
110 iv_split_hasher::hash (const iv_to_split *ivts)
112 return (hashval_t) INSN_UID (ivts->insn);
115 /* An equality functions for information about insns to split. */
117 inline bool
118 iv_split_hasher::equal (const iv_to_split *i1, const iv_to_split *i2)
120 return i1->insn == i2->insn;
123 /* Hashtable helper for iv_to_split. */
125 struct var_expand_hasher : free_ptr_hash <var_to_expand>
127 static inline hashval_t hash (const var_to_expand *);
128 static inline bool equal (const var_to_expand *, const var_to_expand *);
131 /* Return a hash for VES. */
133 inline hashval_t
134 var_expand_hasher::hash (const var_to_expand *ves)
136 return (hashval_t) INSN_UID (ves->insn);
139 /* Return true if I1 and I2 refer to the same instruction. */
141 inline bool
142 var_expand_hasher::equal (const var_to_expand *i1, const var_to_expand *i2)
144 return i1->insn == i2->insn;
147 /* Information about optimization applied in
148 the unrolled loop. */
150 struct opt_info
152 hash_table<iv_split_hasher> *insns_to_split; /* A hashtable of insns to
153 split. */
154 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
155 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
156 hash_table<var_expand_hasher> *insns_with_var_to_expand; /* A hashtable of
157 insns with accumulators to expand. */
158 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
159 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
160 unsigned first_new_block; /* The first basic block that was
161 duplicated. */
162 basic_block loop_exit; /* The loop exit basic block. */
163 basic_block loop_preheader; /* The loop preheader basic block. */
166 static void decide_unroll_stupid (struct loop *, int);
167 static void decide_unroll_constant_iterations (struct loop *, int);
168 static void decide_unroll_runtime_iterations (struct loop *, int);
169 static void unroll_loop_stupid (struct loop *);
170 static void decide_unrolling (int);
171 static void unroll_loop_constant_iterations (struct loop *);
172 static void unroll_loop_runtime_iterations (struct loop *);
173 static struct opt_info *analyze_insns_in_loop (struct loop *);
174 static void opt_info_start_duplication (struct opt_info *);
175 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
176 static void free_opt_info (struct opt_info *);
177 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx_insn *);
178 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
179 static struct iv_to_split *analyze_iv_to_split_insn (rtx_insn *);
180 static void expand_var_during_unrolling (struct var_to_expand *, rtx_insn *);
181 static void insert_var_expansion_initialization (struct var_to_expand *,
182 basic_block);
183 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
184 basic_block);
185 static rtx get_expansion (struct var_to_expand *);
187 /* Emit a message summarizing the unroll that will be
188 performed for LOOP, along with the loop's location LOCUS, if
189 appropriate given the dump or -fopt-info settings. */
191 static void
192 report_unroll (struct loop *loop, location_t locus)
194 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
196 if (loop->lpt_decision.decision == LPT_NONE)
197 return;
199 if (!dump_enabled_p ())
200 return;
202 dump_printf_loc (report_flags, locus,
203 "loop unrolled %d times",
204 loop->lpt_decision.times);
205 if (profile_info)
206 dump_printf (report_flags,
207 " (header execution count %d)",
208 (int)loop->header->count);
210 dump_printf (report_flags, "\n");
213 /* Decide whether unroll loops and how much. */
214 static void
215 decide_unrolling (int flags)
217 struct loop *loop;
219 /* Scan the loops, inner ones first. */
220 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
222 loop->lpt_decision.decision = LPT_NONE;
223 location_t locus = get_loop_location (loop);
225 if (dump_enabled_p ())
226 dump_printf_loc (TDF_RTL, locus,
227 ";; *** Considering loop %d at BB %d for "
228 "unrolling ***\n",
229 loop->num, loop->header->index);
231 /* Do not peel cold areas. */
232 if (optimize_loop_for_size_p (loop))
234 if (dump_file)
235 fprintf (dump_file, ";; Not considering loop, cold area\n");
236 continue;
239 /* Can the loop be manipulated? */
240 if (!can_duplicate_loop_p (loop))
242 if (dump_file)
243 fprintf (dump_file,
244 ";; Not considering loop, cannot duplicate\n");
245 continue;
248 /* Skip non-innermost loops. */
249 if (loop->inner)
251 if (dump_file)
252 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
253 continue;
256 loop->ninsns = num_loop_insns (loop);
257 loop->av_ninsns = average_num_loop_insns (loop);
259 /* Try transformations one by one in decreasing order of
260 priority. */
262 decide_unroll_constant_iterations (loop, flags);
263 if (loop->lpt_decision.decision == LPT_NONE)
264 decide_unroll_runtime_iterations (loop, flags);
265 if (loop->lpt_decision.decision == LPT_NONE)
266 decide_unroll_stupid (loop, flags);
268 report_unroll (loop, locus);
272 /* Unroll LOOPS. */
273 void
274 unroll_loops (int flags)
276 struct loop *loop;
277 bool changed = false;
279 /* Now decide rest of unrolling. */
280 decide_unrolling (flags);
282 /* Scan the loops, inner ones first. */
283 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
285 /* And perform the appropriate transformations. */
286 switch (loop->lpt_decision.decision)
288 case LPT_UNROLL_CONSTANT:
289 unroll_loop_constant_iterations (loop);
290 changed = true;
291 break;
292 case LPT_UNROLL_RUNTIME:
293 unroll_loop_runtime_iterations (loop);
294 changed = true;
295 break;
296 case LPT_UNROLL_STUPID:
297 unroll_loop_stupid (loop);
298 changed = true;
299 break;
300 case LPT_NONE:
301 break;
302 default:
303 gcc_unreachable ();
307 if (changed)
309 calculate_dominance_info (CDI_DOMINATORS);
310 fix_loop_structure (NULL);
313 iv_analysis_done ();
316 /* Check whether exit of the LOOP is at the end of loop body. */
318 static bool
319 loop_exit_at_end_p (struct loop *loop)
321 struct niter_desc *desc = get_simple_loop_desc (loop);
322 rtx_insn *insn;
324 /* We should never have conditional in latch block. */
325 gcc_assert (desc->in_edge->dest != loop->header);
327 if (desc->in_edge->dest != loop->latch)
328 return false;
330 /* Check that the latch is empty. */
331 FOR_BB_INSNS (loop->latch, insn)
333 if (INSN_P (insn) && active_insn_p (insn))
334 return false;
337 return true;
340 /* Decide whether to unroll LOOP iterating constant number of times
341 and how much. */
343 static void
344 decide_unroll_constant_iterations (struct loop *loop, int flags)
346 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
347 struct niter_desc *desc;
348 widest_int iterations;
350 if (!(flags & UAP_UNROLL))
352 /* We were not asked to, just return back silently. */
353 return;
356 if (dump_file)
357 fprintf (dump_file,
358 "\n;; Considering unrolling loop with constant "
359 "number of iterations\n");
361 /* nunroll = total number of copies of the original loop body in
362 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
363 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
364 nunroll_by_av
365 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
366 if (nunroll > nunroll_by_av)
367 nunroll = nunroll_by_av;
368 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
369 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
371 if (targetm.loop_unroll_adjust)
372 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
374 /* Skip big loops. */
375 if (nunroll <= 1)
377 if (dump_file)
378 fprintf (dump_file, ";; Not considering loop, is too big\n");
379 return;
382 /* Check for simple loops. */
383 desc = get_simple_loop_desc (loop);
385 /* Check number of iterations. */
386 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
388 if (dump_file)
389 fprintf (dump_file,
390 ";; Unable to prove that the loop iterates constant times\n");
391 return;
394 /* Check whether the loop rolls enough to consider.
395 Consult also loop bounds and profile; in the case the loop has more
396 than one exit it may well loop less than determined maximal number
397 of iterations. */
398 if (desc->niter < 2 * nunroll
399 || ((get_estimated_loop_iterations (loop, &iterations)
400 || get_likely_max_loop_iterations (loop, &iterations))
401 && wi::ltu_p (iterations, 2 * nunroll)))
403 if (dump_file)
404 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
405 return;
408 /* Success; now compute number of iterations to unroll. We alter
409 nunroll so that as few as possible copies of loop body are
410 necessary, while still not decreasing the number of unrollings
411 too much (at most by 1). */
412 best_copies = 2 * nunroll + 10;
414 i = 2 * nunroll + 2;
415 if (i - 1 >= desc->niter)
416 i = desc->niter - 2;
418 for (; i >= nunroll - 1; i--)
420 unsigned exit_mod = desc->niter % (i + 1);
422 if (!loop_exit_at_end_p (loop))
423 n_copies = exit_mod + i + 1;
424 else if (exit_mod != (unsigned) i
425 || desc->noloop_assumptions != NULL_RTX)
426 n_copies = exit_mod + i + 2;
427 else
428 n_copies = i + 1;
430 if (n_copies < best_copies)
432 best_copies = n_copies;
433 best_unroll = i;
437 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
438 loop->lpt_decision.times = best_unroll;
441 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
442 The transformation does this:
444 for (i = 0; i < 102; i++)
445 body;
447 ==> (LOOP->LPT_DECISION.TIMES == 3)
449 i = 0;
450 body; i++;
451 body; i++;
452 while (i < 102)
454 body; i++;
455 body; i++;
456 body; i++;
457 body; i++;
460 static void
461 unroll_loop_constant_iterations (struct loop *loop)
463 unsigned HOST_WIDE_INT niter;
464 unsigned exit_mod;
465 unsigned i;
466 edge e;
467 unsigned max_unroll = loop->lpt_decision.times;
468 struct niter_desc *desc = get_simple_loop_desc (loop);
469 bool exit_at_end = loop_exit_at_end_p (loop);
470 struct opt_info *opt_info = NULL;
471 bool ok;
473 niter = desc->niter;
475 /* Should not get here (such loop should be peeled instead). */
476 gcc_assert (niter > max_unroll + 1);
478 exit_mod = niter % (max_unroll + 1);
480 auto_sbitmap wont_exit (max_unroll + 1);
481 bitmap_ones (wont_exit);
483 auto_vec<edge> remove_edges;
484 if (flag_split_ivs_in_unroller
485 || flag_variable_expansion_in_unroller)
486 opt_info = analyze_insns_in_loop (loop);
488 if (!exit_at_end)
490 /* The exit is not at the end of the loop; leave exit test
491 in the first copy, so that the loops that start with test
492 of exit condition have continuous body after unrolling. */
494 if (dump_file)
495 fprintf (dump_file, ";; Condition at beginning of loop.\n");
497 /* Peel exit_mod iterations. */
498 bitmap_clear_bit (wont_exit, 0);
499 if (desc->noloop_assumptions)
500 bitmap_clear_bit (wont_exit, 1);
502 if (exit_mod)
504 opt_info_start_duplication (opt_info);
505 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
506 exit_mod,
507 wont_exit, desc->out_edge,
508 &remove_edges,
509 DLTHE_FLAG_UPDATE_FREQ
510 | (opt_info && exit_mod > 1
511 ? DLTHE_RECORD_COPY_NUMBER
512 : 0));
513 gcc_assert (ok);
515 if (opt_info && exit_mod > 1)
516 apply_opt_in_copies (opt_info, exit_mod, false, false);
518 desc->noloop_assumptions = NULL_RTX;
519 desc->niter -= exit_mod;
520 loop->nb_iterations_upper_bound -= exit_mod;
521 if (loop->any_estimate
522 && wi::leu_p (exit_mod, loop->nb_iterations_estimate))
523 loop->nb_iterations_estimate -= exit_mod;
524 else
525 loop->any_estimate = false;
526 if (loop->any_likely_upper_bound
527 && wi::leu_p (exit_mod, loop->nb_iterations_likely_upper_bound))
528 loop->nb_iterations_likely_upper_bound -= exit_mod;
529 else
530 loop->any_likely_upper_bound = false;
533 bitmap_set_bit (wont_exit, 1);
535 else
537 /* Leave exit test in last copy, for the same reason as above if
538 the loop tests the condition at the end of loop body. */
540 if (dump_file)
541 fprintf (dump_file, ";; Condition at end of loop.\n");
543 /* We know that niter >= max_unroll + 2; so we do not need to care of
544 case when we would exit before reaching the loop. So just peel
545 exit_mod + 1 iterations. */
546 if (exit_mod != max_unroll
547 || desc->noloop_assumptions)
549 bitmap_clear_bit (wont_exit, 0);
550 if (desc->noloop_assumptions)
551 bitmap_clear_bit (wont_exit, 1);
553 opt_info_start_duplication (opt_info);
554 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
555 exit_mod + 1,
556 wont_exit, desc->out_edge,
557 &remove_edges,
558 DLTHE_FLAG_UPDATE_FREQ
559 | (opt_info && exit_mod > 0
560 ? DLTHE_RECORD_COPY_NUMBER
561 : 0));
562 gcc_assert (ok);
564 if (opt_info && exit_mod > 0)
565 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
567 desc->niter -= exit_mod + 1;
568 loop->nb_iterations_upper_bound -= exit_mod + 1;
569 if (loop->any_estimate
570 && wi::leu_p (exit_mod + 1, loop->nb_iterations_estimate))
571 loop->nb_iterations_estimate -= exit_mod + 1;
572 else
573 loop->any_estimate = false;
574 if (loop->any_likely_upper_bound
575 && wi::leu_p (exit_mod + 1, loop->nb_iterations_likely_upper_bound))
576 loop->nb_iterations_likely_upper_bound -= exit_mod + 1;
577 else
578 loop->any_likely_upper_bound = false;
579 desc->noloop_assumptions = NULL_RTX;
581 bitmap_set_bit (wont_exit, 0);
582 bitmap_set_bit (wont_exit, 1);
585 bitmap_clear_bit (wont_exit, max_unroll);
588 /* Now unroll the loop. */
590 opt_info_start_duplication (opt_info);
591 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
592 max_unroll,
593 wont_exit, desc->out_edge,
594 &remove_edges,
595 DLTHE_FLAG_UPDATE_FREQ
596 | (opt_info
597 ? DLTHE_RECORD_COPY_NUMBER
598 : 0));
599 gcc_assert (ok);
601 if (opt_info)
603 apply_opt_in_copies (opt_info, max_unroll, true, true);
604 free_opt_info (opt_info);
607 if (exit_at_end)
609 basic_block exit_block = get_bb_copy (desc->in_edge->src);
610 /* Find a new in and out edge; they are in the last copy we have made. */
612 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
614 desc->out_edge = EDGE_SUCC (exit_block, 0);
615 desc->in_edge = EDGE_SUCC (exit_block, 1);
617 else
619 desc->out_edge = EDGE_SUCC (exit_block, 1);
620 desc->in_edge = EDGE_SUCC (exit_block, 0);
624 desc->niter /= max_unroll + 1;
625 loop->nb_iterations_upper_bound
626 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
627 if (loop->any_estimate)
628 loop->nb_iterations_estimate
629 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
630 if (loop->any_likely_upper_bound)
631 loop->nb_iterations_likely_upper_bound
632 = wi::udiv_trunc (loop->nb_iterations_likely_upper_bound, max_unroll + 1);
633 desc->niter_expr = GEN_INT (desc->niter);
635 /* Remove the edges. */
636 FOR_EACH_VEC_ELT (remove_edges, i, e)
637 remove_path (e);
639 if (dump_file)
640 fprintf (dump_file,
641 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
642 max_unroll, num_loop_insns (loop));
645 /* Decide whether to unroll LOOP iterating runtime computable number of times
646 and how much. */
647 static void
648 decide_unroll_runtime_iterations (struct loop *loop, int flags)
650 unsigned nunroll, nunroll_by_av, i;
651 struct niter_desc *desc;
652 widest_int iterations;
654 if (!(flags & UAP_UNROLL))
656 /* We were not asked to, just return back silently. */
657 return;
660 if (dump_file)
661 fprintf (dump_file,
662 "\n;; Considering unrolling loop with runtime "
663 "computable number of iterations\n");
665 /* nunroll = total number of copies of the original loop body in
666 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
667 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
668 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
669 if (nunroll > nunroll_by_av)
670 nunroll = nunroll_by_av;
671 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
672 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
674 if (targetm.loop_unroll_adjust)
675 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
677 /* Skip big loops. */
678 if (nunroll <= 1)
680 if (dump_file)
681 fprintf (dump_file, ";; Not considering loop, is too big\n");
682 return;
685 /* Check for simple loops. */
686 desc = get_simple_loop_desc (loop);
688 /* Check simpleness. */
689 if (!desc->simple_p || desc->assumptions)
691 if (dump_file)
692 fprintf (dump_file,
693 ";; Unable to prove that the number of iterations "
694 "can be counted in runtime\n");
695 return;
698 if (desc->const_iter)
700 if (dump_file)
701 fprintf (dump_file, ";; Loop iterates constant times\n");
702 return;
705 /* Check whether the loop rolls. */
706 if ((get_estimated_loop_iterations (loop, &iterations)
707 || get_likely_max_loop_iterations (loop, &iterations))
708 && wi::ltu_p (iterations, 2 * nunroll))
710 if (dump_file)
711 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
712 return;
715 /* Success; now force nunroll to be power of 2, as we are unable to
716 cope with overflows in computation of number of iterations. */
717 for (i = 1; 2 * i <= nunroll; i *= 2)
718 continue;
720 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
721 loop->lpt_decision.times = i - 1;
724 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
725 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
726 and NULL is returned instead. */
728 basic_block
729 split_edge_and_insert (edge e, rtx_insn *insns)
731 basic_block bb;
733 if (!insns)
734 return NULL;
735 bb = split_edge (e);
736 emit_insn_after (insns, BB_END (bb));
738 /* ??? We used to assume that INSNS can contain control flow insns, and
739 that we had to try to find sub basic blocks in BB to maintain a valid
740 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
741 and call break_superblocks when going out of cfglayout mode. But it
742 turns out that this never happens; and that if it does ever happen,
743 the verify_flow_info at the end of the RTL loop passes would fail.
745 There are two reasons why we expected we could have control flow insns
746 in INSNS. The first is when a comparison has to be done in parts, and
747 the second is when the number of iterations is computed for loops with
748 the number of iterations known at runtime. In both cases, test cases
749 to get control flow in INSNS appear to be impossible to construct:
751 * If do_compare_rtx_and_jump needs several branches to do comparison
752 in a mode that needs comparison by parts, we cannot analyze the
753 number of iterations of the loop, and we never get to unrolling it.
755 * The code in expand_divmod that was suspected to cause creation of
756 branching code seems to be only accessed for signed division. The
757 divisions used by # of iterations analysis are always unsigned.
758 Problems might arise on architectures that emits branching code
759 for some operations that may appear in the unroller (especially
760 for division), but we have no such architectures.
762 Considering all this, it was decided that we should for now assume
763 that INSNS can in theory contain control flow insns, but in practice
764 it never does. So we don't handle the theoretical case, and should
765 a real failure ever show up, we have a pretty good clue for how to
766 fix it. */
768 return bb;
771 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
772 true, with probability PROB. If CINSN is not NULL, it is the insn to copy
773 in order to create a jump. */
775 static rtx_insn *
776 compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp,
777 rtx_code_label *label, int prob, rtx_insn *cinsn)
779 rtx_insn *seq;
780 rtx_jump_insn *jump;
781 rtx cond;
782 machine_mode mode;
784 mode = GET_MODE (op0);
785 if (mode == VOIDmode)
786 mode = GET_MODE (op1);
788 start_sequence ();
789 if (GET_MODE_CLASS (mode) == MODE_CC)
791 /* A hack -- there seems to be no easy generic way how to make a
792 conditional jump from a ccmode comparison. */
793 gcc_assert (cinsn);
794 cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
795 gcc_assert (GET_CODE (cond) == comp);
796 gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
797 gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
798 emit_jump_insn (copy_insn (PATTERN (cinsn)));
799 jump = as_a <rtx_jump_insn *> (get_last_insn ());
800 JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
801 LABEL_NUSES (JUMP_LABEL (jump))++;
802 redirect_jump (jump, label, 0);
804 else
806 gcc_assert (!cinsn);
808 op0 = force_operand (op0, NULL_RTX);
809 op1 = force_operand (op1, NULL_RTX);
810 do_compare_rtx_and_jump (op0, op1, comp, 0,
811 mode, NULL_RTX, NULL, label, -1);
812 jump = as_a <rtx_jump_insn *> (get_last_insn ());
813 jump->set_jump_target (label);
814 LABEL_NUSES (label)++;
816 add_int_reg_note (jump, REG_BR_PROB, prob);
818 seq = get_insns ();
819 end_sequence ();
821 return seq;
824 /* Unroll LOOP for which we are able to count number of iterations in runtime
825 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
826 extra care for case n < 0):
828 for (i = 0; i < n; i++)
829 body;
831 ==> (LOOP->LPT_DECISION.TIMES == 3)
833 i = 0;
834 mod = n % 4;
836 switch (mod)
838 case 3:
839 body; i++;
840 case 2:
841 body; i++;
842 case 1:
843 body; i++;
844 case 0: ;
847 while (i < n)
849 body; i++;
850 body; i++;
851 body; i++;
852 body; i++;
855 static void
856 unroll_loop_runtime_iterations (struct loop *loop)
858 rtx old_niter, niter, tmp;
859 rtx_insn *init_code, *branch_code;
860 unsigned i, j, p;
861 basic_block preheader, *body, swtch, ezc_swtch = NULL;
862 int may_exit_copy, iter_freq, new_freq;
863 gcov_type iter_count, new_count;
864 unsigned n_peel;
865 edge e;
866 bool extra_zero_check, last_may_exit;
867 unsigned max_unroll = loop->lpt_decision.times;
868 struct niter_desc *desc = get_simple_loop_desc (loop);
869 bool exit_at_end = loop_exit_at_end_p (loop);
870 struct opt_info *opt_info = NULL;
871 bool ok;
873 if (flag_split_ivs_in_unroller
874 || flag_variable_expansion_in_unroller)
875 opt_info = analyze_insns_in_loop (loop);
877 /* Remember blocks whose dominators will have to be updated. */
878 auto_vec<basic_block> dom_bbs;
880 body = get_loop_body (loop);
881 for (i = 0; i < loop->num_nodes; i++)
883 vec<basic_block> ldom;
884 basic_block bb;
886 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
887 FOR_EACH_VEC_ELT (ldom, j, bb)
888 if (!flow_bb_inside_loop_p (loop, bb))
889 dom_bbs.safe_push (bb);
891 ldom.release ();
893 free (body);
895 if (!exit_at_end)
897 /* Leave exit in first copy (for explanation why see comment in
898 unroll_loop_constant_iterations). */
899 may_exit_copy = 0;
900 n_peel = max_unroll - 1;
901 extra_zero_check = true;
902 last_may_exit = false;
904 else
906 /* Leave exit in last copy (for explanation why see comment in
907 unroll_loop_constant_iterations). */
908 may_exit_copy = max_unroll;
909 n_peel = max_unroll;
910 extra_zero_check = false;
911 last_may_exit = true;
914 /* Get expression for number of iterations. */
915 start_sequence ();
916 old_niter = niter = gen_reg_rtx (desc->mode);
917 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
918 if (tmp != niter)
919 emit_move_insn (niter, tmp);
921 /* For loops that exit at end, add one to niter to account for first pass
922 through loop body before reaching exit test. */
923 if (exit_at_end)
925 niter = expand_simple_binop (desc->mode, PLUS,
926 niter, const1_rtx,
927 NULL_RTX, 0, OPTAB_LIB_WIDEN);
928 old_niter = niter;
931 /* Count modulo by ANDing it with max_unroll; we use the fact that
932 the number of unrollings is a power of two, and thus this is correct
933 even if there is overflow in the computation. */
934 niter = expand_simple_binop (desc->mode, AND,
935 niter, gen_int_mode (max_unroll, desc->mode),
936 NULL_RTX, 0, OPTAB_LIB_WIDEN);
938 init_code = get_insns ();
939 end_sequence ();
940 unshare_all_rtl_in_chain (init_code);
942 /* Precondition the loop. */
943 split_edge_and_insert (loop_preheader_edge (loop), init_code);
945 auto_vec<edge> remove_edges;
947 auto_sbitmap wont_exit (max_unroll + 2);
949 if (extra_zero_check)
951 /* Peel the first copy of loop body. Leave the exit test if the number
952 of iterations is not reliable. Also record the place of the extra zero
953 check. */
954 bitmap_clear (wont_exit);
955 if (!desc->noloop_assumptions)
956 bitmap_set_bit (wont_exit, 1);
957 ezc_swtch = loop_preheader_edge (loop)->src;
958 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
959 1, wont_exit, desc->out_edge,
960 &remove_edges,
961 DLTHE_FLAG_UPDATE_FREQ);
962 gcc_assert (ok);
965 /* Record the place where switch will be built for preconditioning. */
966 swtch = split_edge (loop_preheader_edge (loop));
968 /* Compute frequency/count increments for each switch block and initialize
969 innermost switch block. Switch blocks and peeled loop copies are built
970 from innermost outward. */
971 iter_freq = new_freq = swtch->frequency / (max_unroll + 1);
972 iter_count = new_count = swtch->count / (max_unroll + 1);
973 swtch->frequency = new_freq;
974 swtch->count = new_count;
975 single_succ_edge (swtch)->count = new_count;
977 for (i = 0; i < n_peel; i++)
979 /* Peel the copy. */
980 bitmap_clear (wont_exit);
981 if (i != n_peel - 1 || !last_may_exit)
982 bitmap_set_bit (wont_exit, 1);
983 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
984 1, wont_exit, desc->out_edge,
985 &remove_edges,
986 DLTHE_FLAG_UPDATE_FREQ);
987 gcc_assert (ok);
989 /* Create item for switch. */
990 j = n_peel - i - (extra_zero_check ? 0 : 1);
991 p = REG_BR_PROB_BASE / (i + 2);
993 preheader = split_edge (loop_preheader_edge (loop));
994 /* Add in frequency/count of edge from switch block. */
995 preheader->frequency += iter_freq;
996 preheader->count += iter_count;
997 single_succ_edge (preheader)->count = preheader->count;
998 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
999 block_label (preheader), p,
1000 NULL);
1002 /* We rely on the fact that the compare and jump cannot be optimized out,
1003 and hence the cfg we create is correct. */
1004 gcc_assert (branch_code != NULL_RTX);
1006 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1007 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1008 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1009 single_succ_edge (swtch)->count = new_count;
1010 new_freq += iter_freq;
1011 new_count += iter_count;
1012 swtch->frequency = new_freq;
1013 swtch->count = new_count;
1014 e = make_edge (swtch, preheader,
1015 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1016 e->count = iter_count;
1017 e->probability = p;
1020 if (extra_zero_check)
1022 /* Add branch for zero iterations. */
1023 p = REG_BR_PROB_BASE / (max_unroll + 1);
1024 swtch = ezc_swtch;
1025 preheader = split_edge (loop_preheader_edge (loop));
1026 /* Recompute frequency/count adjustments since initial peel copy may
1027 have exited and reduced those values that were computed above. */
1028 iter_freq = swtch->frequency / (max_unroll + 1);
1029 iter_count = swtch->count / (max_unroll + 1);
1030 /* Add in frequency/count of edge from switch block. */
1031 preheader->frequency += iter_freq;
1032 preheader->count += iter_count;
1033 single_succ_edge (preheader)->count = preheader->count;
1034 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1035 block_label (preheader), p,
1036 NULL);
1037 gcc_assert (branch_code != NULL_RTX);
1039 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1040 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1041 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1042 single_succ_edge (swtch)->count -= iter_count;
1043 e = make_edge (swtch, preheader,
1044 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1045 e->count = iter_count;
1046 e->probability = p;
1049 /* Recount dominators for outer blocks. */
1050 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1052 /* And unroll loop. */
1054 bitmap_ones (wont_exit);
1055 bitmap_clear_bit (wont_exit, may_exit_copy);
1056 opt_info_start_duplication (opt_info);
1058 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1059 max_unroll,
1060 wont_exit, desc->out_edge,
1061 &remove_edges,
1062 DLTHE_FLAG_UPDATE_FREQ
1063 | (opt_info
1064 ? DLTHE_RECORD_COPY_NUMBER
1065 : 0));
1066 gcc_assert (ok);
1068 if (opt_info)
1070 apply_opt_in_copies (opt_info, max_unroll, true, true);
1071 free_opt_info (opt_info);
1074 if (exit_at_end)
1076 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1077 /* Find a new in and out edge; they are in the last copy we have
1078 made. */
1080 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1082 desc->out_edge = EDGE_SUCC (exit_block, 0);
1083 desc->in_edge = EDGE_SUCC (exit_block, 1);
1085 else
1087 desc->out_edge = EDGE_SUCC (exit_block, 1);
1088 desc->in_edge = EDGE_SUCC (exit_block, 0);
1092 /* Remove the edges. */
1093 FOR_EACH_VEC_ELT (remove_edges, i, e)
1094 remove_path (e);
1096 /* We must be careful when updating the number of iterations due to
1097 preconditioning and the fact that the value must be valid at entry
1098 of the loop. After passing through the above code, we see that
1099 the correct new number of iterations is this: */
1100 gcc_assert (!desc->const_iter);
1101 desc->niter_expr =
1102 simplify_gen_binary (UDIV, desc->mode, old_niter,
1103 gen_int_mode (max_unroll + 1, desc->mode));
1104 loop->nb_iterations_upper_bound
1105 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
1106 if (loop->any_estimate)
1107 loop->nb_iterations_estimate
1108 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
1109 if (loop->any_likely_upper_bound)
1110 loop->nb_iterations_likely_upper_bound
1111 = wi::udiv_trunc (loop->nb_iterations_likely_upper_bound, max_unroll + 1);
1112 if (exit_at_end)
1114 desc->niter_expr =
1115 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1116 desc->noloop_assumptions = NULL_RTX;
1117 --loop->nb_iterations_upper_bound;
1118 if (loop->any_estimate
1119 && loop->nb_iterations_estimate != 0)
1120 --loop->nb_iterations_estimate;
1121 else
1122 loop->any_estimate = false;
1123 if (loop->any_likely_upper_bound
1124 && loop->nb_iterations_likely_upper_bound != 0)
1125 --loop->nb_iterations_likely_upper_bound;
1126 else
1127 loop->any_likely_upper_bound = false;
1130 if (dump_file)
1131 fprintf (dump_file,
1132 ";; Unrolled loop %d times, counting # of iterations "
1133 "in runtime, %i insns\n",
1134 max_unroll, num_loop_insns (loop));
1137 /* Decide whether to unroll LOOP stupidly and how much. */
1138 static void
1139 decide_unroll_stupid (struct loop *loop, int flags)
1141 unsigned nunroll, nunroll_by_av, i;
1142 struct niter_desc *desc;
1143 widest_int iterations;
1145 if (!(flags & UAP_UNROLL_ALL))
1147 /* We were not asked to, just return back silently. */
1148 return;
1151 if (dump_file)
1152 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1154 /* nunroll = total number of copies of the original loop body in
1155 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1156 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1157 nunroll_by_av
1158 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1159 if (nunroll > nunroll_by_av)
1160 nunroll = nunroll_by_av;
1161 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1162 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1164 if (targetm.loop_unroll_adjust)
1165 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1167 /* Skip big loops. */
1168 if (nunroll <= 1)
1170 if (dump_file)
1171 fprintf (dump_file, ";; Not considering loop, is too big\n");
1172 return;
1175 /* Check for simple loops. */
1176 desc = get_simple_loop_desc (loop);
1178 /* Check simpleness. */
1179 if (desc->simple_p && !desc->assumptions)
1181 if (dump_file)
1182 fprintf (dump_file, ";; The loop is simple\n");
1183 return;
1186 /* Do not unroll loops with branches inside -- it increases number
1187 of mispredicts.
1188 TODO: this heuristic needs tunning; call inside the loop body
1189 is also relatively good reason to not unroll. */
1190 if (num_loop_branches (loop) > 1)
1192 if (dump_file)
1193 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1194 return;
1197 /* Check whether the loop rolls. */
1198 if ((get_estimated_loop_iterations (loop, &iterations)
1199 || get_likely_max_loop_iterations (loop, &iterations))
1200 && wi::ltu_p (iterations, 2 * nunroll))
1202 if (dump_file)
1203 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1204 return;
1207 /* Success. Now force nunroll to be power of 2, as it seems that this
1208 improves results (partially because of better alignments, partially
1209 because of some dark magic). */
1210 for (i = 1; 2 * i <= nunroll; i *= 2)
1211 continue;
1213 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1214 loop->lpt_decision.times = i - 1;
1217 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1219 while (cond)
1220 body;
1222 ==> (LOOP->LPT_DECISION.TIMES == 3)
1224 while (cond)
1226 body;
1227 if (!cond) break;
1228 body;
1229 if (!cond) break;
1230 body;
1231 if (!cond) break;
1232 body;
1235 static void
1236 unroll_loop_stupid (struct loop *loop)
1238 unsigned nunroll = loop->lpt_decision.times;
1239 struct niter_desc *desc = get_simple_loop_desc (loop);
1240 struct opt_info *opt_info = NULL;
1241 bool ok;
1243 if (flag_split_ivs_in_unroller
1244 || flag_variable_expansion_in_unroller)
1245 opt_info = analyze_insns_in_loop (loop);
1247 auto_sbitmap wont_exit (nunroll + 1);
1248 bitmap_clear (wont_exit);
1249 opt_info_start_duplication (opt_info);
1251 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1252 nunroll, wont_exit,
1253 NULL, NULL,
1254 DLTHE_FLAG_UPDATE_FREQ
1255 | (opt_info
1256 ? DLTHE_RECORD_COPY_NUMBER
1257 : 0));
1258 gcc_assert (ok);
1260 if (opt_info)
1262 apply_opt_in_copies (opt_info, nunroll, true, true);
1263 free_opt_info (opt_info);
1266 if (desc->simple_p)
1268 /* We indeed may get here provided that there are nontrivial assumptions
1269 for a loop to be really simple. We could update the counts, but the
1270 problem is that we are unable to decide which exit will be taken
1271 (not really true in case the number of iterations is constant,
1272 but no one will do anything with this information, so we do not
1273 worry about it). */
1274 desc->simple_p = false;
1277 if (dump_file)
1278 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1279 nunroll, num_loop_insns (loop));
1282 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1283 Set *DEBUG_USES to the number of debug insns that reference the
1284 variable. */
1286 static bool
1287 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1288 int *debug_uses)
1290 basic_block *body, bb;
1291 unsigned i;
1292 int count_ref = 0;
1293 rtx_insn *insn;
1295 body = get_loop_body (loop);
1296 for (i = 0; i < loop->num_nodes; i++)
1298 bb = body[i];
1300 FOR_BB_INSNS (bb, insn)
1301 if (!rtx_referenced_p (reg, insn))
1302 continue;
1303 else if (DEBUG_INSN_P (insn))
1304 ++*debug_uses;
1305 else if (++count_ref > 1)
1306 break;
1308 free (body);
1309 return (count_ref == 1);
1312 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1314 static void
1315 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1317 basic_block *body, bb;
1318 unsigned i;
1319 rtx_insn *insn;
1321 body = get_loop_body (loop);
1322 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1324 bb = body[i];
1326 FOR_BB_INSNS (bb, insn)
1327 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1328 continue;
1329 else
1331 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1332 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1333 if (!--debug_uses)
1334 break;
1337 free (body);
1340 /* Determine whether INSN contains an accumulator
1341 which can be expanded into separate copies,
1342 one for each copy of the LOOP body.
1344 for (i = 0 ; i < n; i++)
1345 sum += a[i];
1349 sum += a[i]
1350 ....
1351 i = i+1;
1352 sum1 += a[i]
1353 ....
1354 i = i+1
1355 sum2 += a[i];
1356 ....
1358 Return NULL if INSN contains no opportunity for expansion of accumulator.
1359 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1360 information and return a pointer to it.
1363 static struct var_to_expand *
1364 analyze_insn_to_expand_var (struct loop *loop, rtx_insn *insn)
1366 rtx set, dest, src;
1367 struct var_to_expand *ves;
1368 unsigned accum_pos;
1369 enum rtx_code code;
1370 int debug_uses = 0;
1372 set = single_set (insn);
1373 if (!set)
1374 return NULL;
1376 dest = SET_DEST (set);
1377 src = SET_SRC (set);
1378 code = GET_CODE (src);
1380 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1381 return NULL;
1383 if (FLOAT_MODE_P (GET_MODE (dest)))
1385 if (!flag_associative_math)
1386 return NULL;
1387 /* In the case of FMA, we're also changing the rounding. */
1388 if (code == FMA && !flag_unsafe_math_optimizations)
1389 return NULL;
1392 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1393 in MD. But if there is no optab to generate the insn, we can not
1394 perform the variable expansion. This can happen if an MD provides
1395 an insn but not a named pattern to generate it, for example to avoid
1396 producing code that needs additional mode switches like for x87/mmx.
1398 So we check have_insn_for which looks for an optab for the operation
1399 in SRC. If it doesn't exist, we can't perform the expansion even
1400 though INSN is valid. */
1401 if (!have_insn_for (code, GET_MODE (src)))
1402 return NULL;
1404 if (!REG_P (dest)
1405 && !(GET_CODE (dest) == SUBREG
1406 && REG_P (SUBREG_REG (dest))))
1407 return NULL;
1409 /* Find the accumulator use within the operation. */
1410 if (code == FMA)
1412 /* We only support accumulation via FMA in the ADD position. */
1413 if (!rtx_equal_p (dest, XEXP (src, 2)))
1414 return NULL;
1415 accum_pos = 2;
1417 else if (rtx_equal_p (dest, XEXP (src, 0)))
1418 accum_pos = 0;
1419 else if (rtx_equal_p (dest, XEXP (src, 1)))
1421 /* The method of expansion that we are using; which includes the
1422 initialization of the expansions with zero and the summation of
1423 the expansions at the end of the computation will yield wrong
1424 results for (x = something - x) thus avoid using it in that case. */
1425 if (code == MINUS)
1426 return NULL;
1427 accum_pos = 1;
1429 else
1430 return NULL;
1432 /* It must not otherwise be used. */
1433 if (code == FMA)
1435 if (rtx_referenced_p (dest, XEXP (src, 0))
1436 || rtx_referenced_p (dest, XEXP (src, 1)))
1437 return NULL;
1439 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1440 return NULL;
1442 /* It must be used in exactly one insn. */
1443 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1444 return NULL;
1446 if (dump_file)
1448 fprintf (dump_file, "\n;; Expanding Accumulator ");
1449 print_rtl (dump_file, dest);
1450 fprintf (dump_file, "\n");
1453 if (debug_uses)
1454 /* Instead of resetting the debug insns, we could replace each
1455 debug use in the loop with the sum or product of all expanded
1456 accummulators. Since we'll only know of all expansions at the
1457 end, we'd have to keep track of which vars_to_expand a debug
1458 insn in the loop references, take note of each copy of the
1459 debug insn during unrolling, and when it's all done, compute
1460 the sum or product of each variable and adjust the original
1461 debug insn and each copy thereof. What a pain! */
1462 reset_debug_uses_in_loop (loop, dest, debug_uses);
1464 /* Record the accumulator to expand. */
1465 ves = XNEW (struct var_to_expand);
1466 ves->insn = insn;
1467 ves->reg = copy_rtx (dest);
1468 ves->var_expansions.create (1);
1469 ves->next = NULL;
1470 ves->op = GET_CODE (src);
1471 ves->expansion_count = 0;
1472 ves->reuse_expansion = 0;
1473 return ves;
1476 /* Determine whether there is an induction variable in INSN that
1477 we would like to split during unrolling.
1479 I.e. replace
1481 i = i + 1;
1483 i = i + 1;
1485 i = i + 1;
1488 type chains by
1490 i0 = i + 1
1492 i = i0 + 1
1494 i = i0 + 2
1497 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1498 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1499 pointer to it. */
1501 static struct iv_to_split *
1502 analyze_iv_to_split_insn (rtx_insn *insn)
1504 rtx set, dest;
1505 struct rtx_iv iv;
1506 struct iv_to_split *ivts;
1507 bool ok;
1509 /* For now we just split the basic induction variables. Later this may be
1510 extended for example by selecting also addresses of memory references. */
1511 set = single_set (insn);
1512 if (!set)
1513 return NULL;
1515 dest = SET_DEST (set);
1516 if (!REG_P (dest))
1517 return NULL;
1519 if (!biv_p (insn, dest))
1520 return NULL;
1522 ok = iv_analyze_result (insn, dest, &iv);
1524 /* This used to be an assert under the assumption that if biv_p returns
1525 true that iv_analyze_result must also return true. However, that
1526 assumption is not strictly correct as evidenced by pr25569.
1528 Returning NULL when iv_analyze_result returns false is safe and
1529 avoids the problems in pr25569 until the iv_analyze_* routines
1530 can be fixed, which is apparently hard and time consuming
1531 according to their author. */
1532 if (! ok)
1533 return NULL;
1535 if (iv.step == const0_rtx
1536 || iv.mode != iv.extend_mode)
1537 return NULL;
1539 /* Record the insn to split. */
1540 ivts = XNEW (struct iv_to_split);
1541 ivts->insn = insn;
1542 ivts->orig_var = dest;
1543 ivts->base_var = NULL_RTX;
1544 ivts->step = iv.step;
1545 ivts->next = NULL;
1547 return ivts;
1550 /* Determines which of insns in LOOP can be optimized.
1551 Return a OPT_INFO struct with the relevant hash tables filled
1552 with all insns to be optimized. The FIRST_NEW_BLOCK field
1553 is undefined for the return value. */
1555 static struct opt_info *
1556 analyze_insns_in_loop (struct loop *loop)
1558 basic_block *body, bb;
1559 unsigned i;
1560 struct opt_info *opt_info = XCNEW (struct opt_info);
1561 rtx_insn *insn;
1562 struct iv_to_split *ivts = NULL;
1563 struct var_to_expand *ves = NULL;
1564 iv_to_split **slot1;
1565 var_to_expand **slot2;
1566 vec<edge> edges = get_loop_exit_edges (loop);
1567 edge exit;
1568 bool can_apply = false;
1570 iv_analysis_loop_init (loop);
1572 body = get_loop_body (loop);
1574 if (flag_split_ivs_in_unroller)
1576 opt_info->insns_to_split
1577 = new hash_table<iv_split_hasher> (5 * loop->num_nodes);
1578 opt_info->iv_to_split_head = NULL;
1579 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1582 /* Record the loop exit bb and loop preheader before the unrolling. */
1583 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1585 if (edges.length () == 1)
1587 exit = edges[0];
1588 if (!(exit->flags & EDGE_COMPLEX))
1590 opt_info->loop_exit = split_edge (exit);
1591 can_apply = true;
1595 if (flag_variable_expansion_in_unroller
1596 && can_apply)
1598 opt_info->insns_with_var_to_expand
1599 = new hash_table<var_expand_hasher> (5 * loop->num_nodes);
1600 opt_info->var_to_expand_head = NULL;
1601 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1604 for (i = 0; i < loop->num_nodes; i++)
1606 bb = body[i];
1607 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1608 continue;
1610 FOR_BB_INSNS (bb, insn)
1612 if (!INSN_P (insn))
1613 continue;
1615 if (opt_info->insns_to_split)
1616 ivts = analyze_iv_to_split_insn (insn);
1618 if (ivts)
1620 slot1 = opt_info->insns_to_split->find_slot (ivts, INSERT);
1621 gcc_assert (*slot1 == NULL);
1622 *slot1 = ivts;
1623 *opt_info->iv_to_split_tail = ivts;
1624 opt_info->iv_to_split_tail = &ivts->next;
1625 continue;
1628 if (opt_info->insns_with_var_to_expand)
1629 ves = analyze_insn_to_expand_var (loop, insn);
1631 if (ves)
1633 slot2 = opt_info->insns_with_var_to_expand->find_slot (ves, INSERT);
1634 gcc_assert (*slot2 == NULL);
1635 *slot2 = ves;
1636 *opt_info->var_to_expand_tail = ves;
1637 opt_info->var_to_expand_tail = &ves->next;
1642 edges.release ();
1643 free (body);
1644 return opt_info;
1647 /* Called just before loop duplication. Records start of duplicated area
1648 to OPT_INFO. */
1650 static void
1651 opt_info_start_duplication (struct opt_info *opt_info)
1653 if (opt_info)
1654 opt_info->first_new_block = last_basic_block_for_fn (cfun);
1657 /* Determine the number of iterations between initialization of the base
1658 variable and the current copy (N_COPY). N_COPIES is the total number
1659 of newly created copies. UNROLLING is true if we are unrolling
1660 (not peeling) the loop. */
1662 static unsigned
1663 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1665 if (unrolling)
1667 /* If we are unrolling, initialization is done in the original loop
1668 body (number 0). */
1669 return n_copy;
1671 else
1673 /* If we are peeling, the copy in that the initialization occurs has
1674 number 1. The original loop (number 0) is the last. */
1675 if (n_copy)
1676 return n_copy - 1;
1677 else
1678 return n_copies;
1682 /* Allocate basic variable for the induction variable chain. */
1684 static void
1685 allocate_basic_variable (struct iv_to_split *ivts)
1687 rtx expr = SET_SRC (single_set (ivts->insn));
1689 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1692 /* Insert initialization of basic variable of IVTS before INSN, taking
1693 the initial value from INSN. */
1695 static void
1696 insert_base_initialization (struct iv_to_split *ivts, rtx_insn *insn)
1698 rtx expr = copy_rtx (SET_SRC (single_set (insn)));
1699 rtx_insn *seq;
1701 start_sequence ();
1702 expr = force_operand (expr, ivts->base_var);
1703 if (expr != ivts->base_var)
1704 emit_move_insn (ivts->base_var, expr);
1705 seq = get_insns ();
1706 end_sequence ();
1708 emit_insn_before (seq, insn);
1711 /* Replace the use of induction variable described in IVTS in INSN
1712 by base variable + DELTA * step. */
1714 static void
1715 split_iv (struct iv_to_split *ivts, rtx_insn *insn, unsigned delta)
1717 rtx expr, *loc, incr, var;
1718 rtx_insn *seq;
1719 machine_mode mode = GET_MODE (ivts->base_var);
1720 rtx src, dest, set;
1722 /* Construct base + DELTA * step. */
1723 if (!delta)
1724 expr = ivts->base_var;
1725 else
1727 incr = simplify_gen_binary (MULT, mode,
1728 ivts->step, gen_int_mode (delta, mode));
1729 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1730 ivts->base_var, incr);
1733 /* Figure out where to do the replacement. */
1734 loc = &SET_SRC (single_set (insn));
1736 /* If we can make the replacement right away, we're done. */
1737 if (validate_change (insn, loc, expr, 0))
1738 return;
1740 /* Otherwise, force EXPR into a register and try again. */
1741 start_sequence ();
1742 var = gen_reg_rtx (mode);
1743 expr = force_operand (expr, var);
1744 if (expr != var)
1745 emit_move_insn (var, expr);
1746 seq = get_insns ();
1747 end_sequence ();
1748 emit_insn_before (seq, insn);
1750 if (validate_change (insn, loc, var, 0))
1751 return;
1753 /* The last chance. Try recreating the assignment in insn
1754 completely from scratch. */
1755 set = single_set (insn);
1756 gcc_assert (set);
1758 start_sequence ();
1759 *loc = var;
1760 src = copy_rtx (SET_SRC (set));
1761 dest = copy_rtx (SET_DEST (set));
1762 src = force_operand (src, dest);
1763 if (src != dest)
1764 emit_move_insn (dest, src);
1765 seq = get_insns ();
1766 end_sequence ();
1768 emit_insn_before (seq, insn);
1769 delete_insn (insn);
1773 /* Return one expansion of the accumulator recorded in struct VE. */
1775 static rtx
1776 get_expansion (struct var_to_expand *ve)
1778 rtx reg;
1780 if (ve->reuse_expansion == 0)
1781 reg = ve->reg;
1782 else
1783 reg = ve->var_expansions[ve->reuse_expansion - 1];
1785 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
1786 ve->reuse_expansion = 0;
1787 else
1788 ve->reuse_expansion++;
1790 return reg;
1794 /* Given INSN replace the uses of the accumulator recorded in VE
1795 with a new register. */
1797 static void
1798 expand_var_during_unrolling (struct var_to_expand *ve, rtx_insn *insn)
1800 rtx new_reg, set;
1801 bool really_new_expansion = false;
1803 set = single_set (insn);
1804 gcc_assert (set);
1806 /* Generate a new register only if the expansion limit has not been
1807 reached. Else reuse an already existing expansion. */
1808 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1810 really_new_expansion = true;
1811 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1813 else
1814 new_reg = get_expansion (ve);
1816 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
1817 if (apply_change_group ())
1818 if (really_new_expansion)
1820 ve->var_expansions.safe_push (new_reg);
1821 ve->expansion_count++;
1825 /* Initialize the variable expansions in loop preheader. PLACE is the
1826 loop-preheader basic block where the initialization of the
1827 expansions should take place. The expansions are initialized with
1828 (-0) when the operation is plus or minus to honor sign zero. This
1829 way we can prevent cases where the sign of the final result is
1830 effected by the sign of the expansion. Here is an example to
1831 demonstrate this:
1833 for (i = 0 ; i < n; i++)
1834 sum += something;
1838 sum += something
1839 ....
1840 i = i+1;
1841 sum1 += something
1842 ....
1843 i = i+1
1844 sum2 += something;
1845 ....
1847 When SUM is initialized with -zero and SOMETHING is also -zero; the
1848 final result of sum should be -zero thus the expansions sum1 and sum2
1849 should be initialized with -zero as well (otherwise we will get +zero
1850 as the final result). */
1852 static void
1853 insert_var_expansion_initialization (struct var_to_expand *ve,
1854 basic_block place)
1856 rtx_insn *seq;
1857 rtx var, zero_init;
1858 unsigned i;
1859 machine_mode mode = GET_MODE (ve->reg);
1860 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
1862 if (ve->var_expansions.length () == 0)
1863 return;
1865 start_sequence ();
1866 switch (ve->op)
1868 case FMA:
1869 /* Note that we only accumulate FMA via the ADD operand. */
1870 case PLUS:
1871 case MINUS:
1872 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1874 if (honor_signed_zero_p)
1875 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
1876 else
1877 zero_init = CONST0_RTX (mode);
1878 emit_move_insn (var, zero_init);
1880 break;
1882 case MULT:
1883 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1885 zero_init = CONST1_RTX (GET_MODE (var));
1886 emit_move_insn (var, zero_init);
1888 break;
1890 default:
1891 gcc_unreachable ();
1894 seq = get_insns ();
1895 end_sequence ();
1897 emit_insn_after (seq, BB_END (place));
1900 /* Combine the variable expansions at the loop exit. PLACE is the
1901 loop exit basic block where the summation of the expansions should
1902 take place. */
1904 static void
1905 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
1907 rtx sum = ve->reg;
1908 rtx expr, var;
1909 rtx_insn *seq, *insn;
1910 unsigned i;
1912 if (ve->var_expansions.length () == 0)
1913 return;
1915 start_sequence ();
1916 switch (ve->op)
1918 case FMA:
1919 /* Note that we only accumulate FMA via the ADD operand. */
1920 case PLUS:
1921 case MINUS:
1922 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1923 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
1924 break;
1926 case MULT:
1927 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1928 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
1929 break;
1931 default:
1932 gcc_unreachable ();
1935 expr = force_operand (sum, ve->reg);
1936 if (expr != ve->reg)
1937 emit_move_insn (ve->reg, expr);
1938 seq = get_insns ();
1939 end_sequence ();
1941 insn = BB_HEAD (place);
1942 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
1943 insn = NEXT_INSN (insn);
1945 emit_insn_after (seq, insn);
1948 /* Strip away REG_EQUAL notes for IVs we're splitting.
1950 Updating REG_EQUAL notes for IVs we split is tricky: We
1951 cannot tell until after unrolling, DF-rescanning, and liveness
1952 updating, whether an EQ_USE is reached by the split IV while
1953 the IV reg is still live. See PR55006.
1955 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
1956 because RTL loop-iv requires us to defer rescanning insns and
1957 any notes attached to them. So resort to old techniques... */
1959 static void
1960 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx_insn *insn)
1962 struct iv_to_split *ivts;
1963 rtx note = find_reg_equal_equiv_note (insn);
1964 if (! note)
1965 return;
1966 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
1967 if (reg_mentioned_p (ivts->orig_var, note))
1969 remove_note (insn, note);
1970 return;
1974 /* Apply loop optimizations in loop copies using the
1975 data which gathered during the unrolling. Structure
1976 OPT_INFO record that data.
1978 UNROLLING is true if we unrolled (not peeled) the loop.
1979 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
1980 the loop (as it should happen in complete unrolling, but not in ordinary
1981 peeling of the loop). */
1983 static void
1984 apply_opt_in_copies (struct opt_info *opt_info,
1985 unsigned n_copies, bool unrolling,
1986 bool rewrite_original_loop)
1988 unsigned i, delta;
1989 basic_block bb, orig_bb;
1990 rtx_insn *insn, *orig_insn, *next;
1991 struct iv_to_split ivts_templ, *ivts;
1992 struct var_to_expand ve_templ, *ves;
1994 /* Sanity check -- we need to put initialization in the original loop
1995 body. */
1996 gcc_assert (!unrolling || rewrite_original_loop);
1998 /* Allocate the basic variables (i0). */
1999 if (opt_info->insns_to_split)
2000 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2001 allocate_basic_variable (ivts);
2003 for (i = opt_info->first_new_block;
2004 i < (unsigned) last_basic_block_for_fn (cfun);
2005 i++)
2007 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2008 orig_bb = get_bb_original (bb);
2010 /* bb->aux holds position in copy sequence initialized by
2011 duplicate_loop_to_header_edge. */
2012 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2013 unrolling);
2014 bb->aux = 0;
2015 orig_insn = BB_HEAD (orig_bb);
2016 FOR_BB_INSNS_SAFE (bb, insn, next)
2018 if (!INSN_P (insn)
2019 || (DEBUG_INSN_P (insn)
2020 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2021 continue;
2023 while (!INSN_P (orig_insn)
2024 || (DEBUG_INSN_P (orig_insn)
2025 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2026 == LABEL_DECL)))
2027 orig_insn = NEXT_INSN (orig_insn);
2029 ivts_templ.insn = orig_insn;
2030 ve_templ.insn = orig_insn;
2032 /* Apply splitting iv optimization. */
2033 if (opt_info->insns_to_split)
2035 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2037 ivts = opt_info->insns_to_split->find (&ivts_templ);
2039 if (ivts)
2041 gcc_assert (GET_CODE (PATTERN (insn))
2042 == GET_CODE (PATTERN (orig_insn)));
2044 if (!delta)
2045 insert_base_initialization (ivts, insn);
2046 split_iv (ivts, insn, delta);
2049 /* Apply variable expansion optimization. */
2050 if (unrolling && opt_info->insns_with_var_to_expand)
2052 ves = (struct var_to_expand *)
2053 opt_info->insns_with_var_to_expand->find (&ve_templ);
2054 if (ves)
2056 gcc_assert (GET_CODE (PATTERN (insn))
2057 == GET_CODE (PATTERN (orig_insn)));
2058 expand_var_during_unrolling (ves, insn);
2061 orig_insn = NEXT_INSN (orig_insn);
2065 if (!rewrite_original_loop)
2066 return;
2068 /* Initialize the variable expansions in the loop preheader
2069 and take care of combining them at the loop exit. */
2070 if (opt_info->insns_with_var_to_expand)
2072 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2073 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2074 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2075 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2078 /* Rewrite also the original loop body. Find them as originals of the blocks
2079 in the last copied iteration, i.e. those that have
2080 get_bb_copy (get_bb_original (bb)) == bb. */
2081 for (i = opt_info->first_new_block;
2082 i < (unsigned) last_basic_block_for_fn (cfun);
2083 i++)
2085 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2086 orig_bb = get_bb_original (bb);
2087 if (get_bb_copy (orig_bb) != bb)
2088 continue;
2090 delta = determine_split_iv_delta (0, n_copies, unrolling);
2091 for (orig_insn = BB_HEAD (orig_bb);
2092 orig_insn != NEXT_INSN (BB_END (bb));
2093 orig_insn = next)
2095 next = NEXT_INSN (orig_insn);
2097 if (!INSN_P (orig_insn))
2098 continue;
2100 ivts_templ.insn = orig_insn;
2101 if (opt_info->insns_to_split)
2103 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2105 ivts = (struct iv_to_split *)
2106 opt_info->insns_to_split->find (&ivts_templ);
2107 if (ivts)
2109 if (!delta)
2110 insert_base_initialization (ivts, orig_insn);
2111 split_iv (ivts, orig_insn, delta);
2112 continue;
2120 /* Release OPT_INFO. */
2122 static void
2123 free_opt_info (struct opt_info *opt_info)
2125 delete opt_info->insns_to_split;
2126 opt_info->insns_to_split = NULL;
2127 if (opt_info->insns_with_var_to_expand)
2129 struct var_to_expand *ves;
2131 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2132 ves->var_expansions.release ();
2133 delete opt_info->insns_with_var_to_expand;
2134 opt_info->insns_with_var_to_expand = NULL;
2136 free (opt_info);