[ree] PR rtl-optimization/78038: Handle global register dataflow definitions in ree
[official-gcc.git] / gcc / ira.c
blobcd640fce589faf018ec26cca45cf2c23633d46ae
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
396 struct target_ira default_target_ira;
397 struct target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
446 int i, m, hard_regno;
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
453 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
454 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
455 hard_regno + i);
460 #define no_unit_alloc_regs \
461 (this_target_ira_int->x_no_unit_alloc_regs)
463 /* The function sets up the three arrays declared above. */
464 static void
465 setup_class_hard_regs (void)
467 int cl, i, hard_regno, n;
468 HARD_REG_SET processed_hard_reg_set;
470 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
471 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
474 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 #ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485 #else
486 hard_regno = i;
487 #endif
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515 #endif
516 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
517 if (! use_hard_frame_p)
518 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
519 setup_class_hard_regs ();
524 #define alloc_reg_class_subclasses \
525 (this_target_ira_int->x_alloc_reg_class_subclasses)
527 /* Initialize the table of subclasses of each reg class. */
528 static void
529 setup_reg_subclasses (void)
531 int i, j;
532 HARD_REG_SET temp_hard_regset2;
534 for (i = 0; i < N_REG_CLASSES; i++)
535 for (j = 0; j < N_REG_CLASSES; j++)
536 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538 for (i = 0; i < N_REG_CLASSES; i++)
540 if (i == (int) NO_REGS)
541 continue;
543 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
544 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
545 if (hard_reg_set_empty_p (temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
550 enum reg_class *p;
552 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
553 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
554 if (! hard_reg_set_subset_p (temp_hard_regset,
555 temp_hard_regset2))
556 continue;
557 p = &alloc_reg_class_subclasses[j][0];
558 while (*p != LIM_REG_CLASSES) p++;
559 *p = (enum reg_class) i;
566 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
567 static void
568 setup_class_subset_and_memory_move_costs (void)
570 int cl, cl2, mode, cost;
571 HARD_REG_SET temp_hard_regset2;
573 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
574 ira_memory_move_cost[mode][NO_REGS][0]
575 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
576 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
578 if (cl != (int) NO_REGS)
579 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
581 ira_max_memory_move_cost[mode][cl][0]
582 = ira_memory_move_cost[mode][cl][0]
583 = memory_move_cost ((machine_mode) mode,
584 (reg_class_t) cl, false);
585 ira_max_memory_move_cost[mode][cl][1]
586 = ira_memory_move_cost[mode][cl][1]
587 = memory_move_cost ((machine_mode) mode,
588 (reg_class_t) cl, true);
589 /* Costs for NO_REGS are used in cost calculation on the
590 1st pass when the preferred register classes are not
591 known yet. In this case we take the best scenario. */
592 if (ira_memory_move_cost[mode][NO_REGS][0]
593 > ira_memory_move_cost[mode][cl][0])
594 ira_max_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][NO_REGS][0]
596 = ira_memory_move_cost[mode][cl][0];
597 if (ira_memory_move_cost[mode][NO_REGS][1]
598 > ira_memory_move_cost[mode][cl][1])
599 ira_max_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][NO_REGS][1]
601 = ira_memory_move_cost[mode][cl][1];
604 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
605 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
607 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
608 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
609 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
610 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
611 ira_class_subset_p[cl][cl2]
612 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
613 if (! hard_reg_set_empty_p (temp_hard_regset2)
614 && hard_reg_set_subset_p (reg_class_contents[cl2],
615 reg_class_contents[cl]))
616 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
618 cost = ira_memory_move_cost[mode][cl2][0];
619 if (cost > ira_max_memory_move_cost[mode][cl][0])
620 ira_max_memory_move_cost[mode][cl][0] = cost;
621 cost = ira_memory_move_cost[mode][cl2][1];
622 if (cost > ira_max_memory_move_cost[mode][cl][1])
623 ira_max_memory_move_cost[mode][cl][1] = cost;
626 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
627 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
629 ira_memory_move_cost[mode][cl][0]
630 = ira_max_memory_move_cost[mode][cl][0];
631 ira_memory_move_cost[mode][cl][1]
632 = ira_max_memory_move_cost[mode][cl][1];
634 setup_reg_subclasses ();
639 /* Define the following macro if allocation through malloc if
640 preferable. */
641 #define IRA_NO_OBSTACK
643 #ifndef IRA_NO_OBSTACK
644 /* Obstack used for storing all dynamic data (except bitmaps) of the
645 IRA. */
646 static struct obstack ira_obstack;
647 #endif
649 /* Obstack used for storing all bitmaps of the IRA. */
650 static struct bitmap_obstack ira_bitmap_obstack;
652 /* Allocate memory of size LEN for IRA data. */
653 void *
654 ira_allocate (size_t len)
656 void *res;
658 #ifndef IRA_NO_OBSTACK
659 res = obstack_alloc (&ira_obstack, len);
660 #else
661 res = xmalloc (len);
662 #endif
663 return res;
666 /* Free memory ADDR allocated for IRA data. */
667 void
668 ira_free (void *addr ATTRIBUTE_UNUSED)
670 #ifndef IRA_NO_OBSTACK
671 /* do nothing */
672 #else
673 free (addr);
674 #endif
678 /* Allocate and returns bitmap for IRA. */
679 bitmap
680 ira_allocate_bitmap (void)
682 return BITMAP_ALLOC (&ira_bitmap_obstack);
685 /* Free bitmap B allocated for IRA. */
686 void
687 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
689 /* do nothing */
694 /* Output information about allocation of all allocnos (except for
695 caps) into file F. */
696 void
697 ira_print_disposition (FILE *f)
699 int i, n, max_regno;
700 ira_allocno_t a;
701 basic_block bb;
703 fprintf (f, "Disposition:");
704 max_regno = max_reg_num ();
705 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
706 for (a = ira_regno_allocno_map[i];
707 a != NULL;
708 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
710 if (n % 4 == 0)
711 fprintf (f, "\n");
712 n++;
713 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
714 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
715 fprintf (f, "b%-3d", bb->index);
716 else
717 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
718 if (ALLOCNO_HARD_REGNO (a) >= 0)
719 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
720 else
721 fprintf (f, " mem");
723 fprintf (f, "\n");
726 /* Outputs information about allocation of all allocnos into
727 stderr. */
728 void
729 ira_debug_disposition (void)
731 ira_print_disposition (stderr);
736 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
737 register class containing stack registers or NO_REGS if there are
738 no stack registers. To find this class, we iterate through all
739 register pressure classes and choose the first register pressure
740 class containing all the stack registers and having the biggest
741 size. */
742 static void
743 setup_stack_reg_pressure_class (void)
745 ira_stack_reg_pressure_class = NO_REGS;
746 #ifdef STACK_REGS
748 int i, best, size;
749 enum reg_class cl;
750 HARD_REG_SET temp_hard_regset2;
752 CLEAR_HARD_REG_SET (temp_hard_regset);
753 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
754 SET_HARD_REG_BIT (temp_hard_regset, i);
755 best = 0;
756 for (i = 0; i < ira_pressure_classes_num; i++)
758 cl = ira_pressure_classes[i];
759 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
760 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
761 size = hard_reg_set_size (temp_hard_regset2);
762 if (best < size)
764 best = size;
765 ira_stack_reg_pressure_class = cl;
769 #endif
772 /* Find pressure classes which are register classes for which we
773 calculate register pressure in IRA, register pressure sensitive
774 insn scheduling, and register pressure sensitive loop invariant
775 motion.
777 To make register pressure calculation easy, we always use
778 non-intersected register pressure classes. A move of hard
779 registers from one register pressure class is not more expensive
780 than load and store of the hard registers. Most likely an allocno
781 class will be a subset of a register pressure class and in many
782 cases a register pressure class. That makes usage of register
783 pressure classes a good approximation to find a high register
784 pressure. */
785 static void
786 setup_pressure_classes (void)
788 int cost, i, n, curr;
789 int cl, cl2;
790 enum reg_class pressure_classes[N_REG_CLASSES];
791 int m;
792 HARD_REG_SET temp_hard_regset2;
793 bool insert_p;
795 n = 0;
796 for (cl = 0; cl < N_REG_CLASSES; cl++)
798 if (ira_class_hard_regs_num[cl] == 0)
799 continue;
800 if (ira_class_hard_regs_num[cl] != 1
801 /* A register class without subclasses may contain a few
802 hard registers and movement between them is costly
803 (e.g. SPARC FPCC registers). We still should consider it
804 as a candidate for a pressure class. */
805 && alloc_reg_class_subclasses[cl][0] < cl)
807 /* Check that the moves between any hard registers of the
808 current class are not more expensive for a legal mode
809 than load/store of the hard registers of the current
810 class. Such class is a potential candidate to be a
811 register pressure class. */
812 for (m = 0; m < NUM_MACHINE_MODES; m++)
814 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
816 AND_COMPL_HARD_REG_SET (temp_hard_regset,
817 ira_prohibited_class_mode_regs[cl][m]);
818 if (hard_reg_set_empty_p (temp_hard_regset))
819 continue;
820 ira_init_register_move_cost_if_necessary ((machine_mode) m);
821 cost = ira_register_move_cost[m][cl][cl];
822 if (cost <= ira_max_memory_move_cost[m][cl][1]
823 || cost <= ira_max_memory_move_cost[m][cl][0])
824 break;
826 if (m >= NUM_MACHINE_MODES)
827 continue;
829 curr = 0;
830 insert_p = true;
831 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
833 /* Remove so far added pressure classes which are subset of the
834 current candidate class. Prefer GENERAL_REGS as a pressure
835 register class to another class containing the same
836 allocatable hard registers. We do this because machine
837 dependent cost hooks might give wrong costs for the latter
838 class but always give the right cost for the former class
839 (GENERAL_REGS). */
840 for (i = 0; i < n; i++)
842 cl2 = pressure_classes[i];
843 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
844 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
845 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
846 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
847 || cl2 == (int) GENERAL_REGS))
849 pressure_classes[curr++] = (enum reg_class) cl2;
850 insert_p = false;
851 continue;
853 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
854 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
855 || cl == (int) GENERAL_REGS))
856 continue;
857 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
858 insert_p = false;
859 pressure_classes[curr++] = (enum reg_class) cl2;
861 /* If the current candidate is a subset of a so far added
862 pressure class, don't add it to the list of the pressure
863 classes. */
864 if (insert_p)
865 pressure_classes[curr++] = (enum reg_class) cl;
866 n = curr;
868 #ifdef ENABLE_IRA_CHECKING
870 HARD_REG_SET ignore_hard_regs;
872 /* Check pressure classes correctness: here we check that hard
873 registers from all register pressure classes contains all hard
874 registers available for the allocation. */
875 CLEAR_HARD_REG_SET (temp_hard_regset);
876 CLEAR_HARD_REG_SET (temp_hard_regset2);
877 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
878 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
880 /* For some targets (like MIPS with MD_REGS), there are some
881 classes with hard registers available for allocation but
882 not able to hold value of any mode. */
883 for (m = 0; m < NUM_MACHINE_MODES; m++)
884 if (contains_reg_of_mode[cl][m])
885 break;
886 if (m >= NUM_MACHINE_MODES)
888 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
889 continue;
891 for (i = 0; i < n; i++)
892 if ((int) pressure_classes[i] == cl)
893 break;
894 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
895 if (i < n)
896 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
898 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
899 /* Some targets (like SPARC with ICC reg) have allocatable regs
900 for which no reg class is defined. */
901 if (REGNO_REG_CLASS (i) == NO_REGS)
902 SET_HARD_REG_BIT (ignore_hard_regs, i);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
904 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
905 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
907 #endif
908 ira_pressure_classes_num = 0;
909 for (i = 0; i < n; i++)
911 cl = (int) pressure_classes[i];
912 ira_reg_pressure_class_p[cl] = true;
913 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
915 setup_stack_reg_pressure_class ();
918 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
919 whose register move cost between any registers of the class is the
920 same as for all its subclasses. We use the data to speed up the
921 2nd pass of calculations of allocno costs. */
922 static void
923 setup_uniform_class_p (void)
925 int i, cl, cl2, m;
927 for (cl = 0; cl < N_REG_CLASSES; cl++)
929 ira_uniform_class_p[cl] = false;
930 if (ira_class_hard_regs_num[cl] == 0)
931 continue;
932 /* We can not use alloc_reg_class_subclasses here because move
933 cost hooks does not take into account that some registers are
934 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
935 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 because SSE regs are unavailable. */
937 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
939 if (ira_class_hard_regs_num[cl2] == 0)
940 continue;
941 for (m = 0; m < NUM_MACHINE_MODES; m++)
942 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
944 ira_init_register_move_cost_if_necessary ((machine_mode) m);
945 if (ira_register_move_cost[m][cl][cl]
946 != ira_register_move_cost[m][cl2][cl2])
947 break;
949 if (m < NUM_MACHINE_MODES)
950 break;
952 if (cl2 == LIM_REG_CLASSES)
953 ira_uniform_class_p[cl] = true;
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
960 Target may have many subtargets and not all target hard registers can
961 be used for allocation, e.g. x86 port in 32-bit mode can not use
962 hard registers introduced in x86-64 like r8-r15). Some classes
963 might have the same allocatable hard registers, e.g. INDEX_REGS
964 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
965 calculations efforts we introduce allocno classes which contain
966 unique non-empty sets of allocatable hard-registers.
968 Pseudo class cost calculation in ira-costs.c is very expensive.
969 Therefore we are trying to decrease number of classes involved in
970 such calculation. Register classes used in the cost calculation
971 are called important classes. They are allocno classes and other
972 non-empty classes whose allocatable hard register sets are inside
973 of an allocno class hard register set. From the first sight, it
974 looks like that they are just allocno classes. It is not true. In
975 example of x86-port in 32-bit mode, allocno classes will contain
976 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977 registers are the same for the both classes). The important
978 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
979 because a machine description insn constraint may refers for
980 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
981 of the insn constraints. */
982 static void
983 setup_allocno_and_important_classes (void)
985 int i, j, n, cl;
986 bool set_p;
987 HARD_REG_SET temp_hard_regset2;
988 static enum reg_class classes[LIM_REG_CLASSES + 1];
990 n = 0;
991 /* Collect classes which contain unique sets of allocatable hard
992 registers. Prefer GENERAL_REGS to other classes containing the
993 same set of hard registers. */
994 for (i = 0; i < LIM_REG_CLASSES; i++)
996 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
997 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
998 for (j = 0; j < n; j++)
1000 cl = classes[j];
1001 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1002 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1003 no_unit_alloc_regs);
1004 if (hard_reg_set_equal_p (temp_hard_regset,
1005 temp_hard_regset2))
1006 break;
1008 if (j >= n)
1009 classes[n++] = (enum reg_class) i;
1010 else if (i == GENERAL_REGS)
1011 /* Prefer general regs. For i386 example, it means that
1012 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1013 (all of them consists of the same available hard
1014 registers). */
1015 classes[j] = (enum reg_class) i;
1017 classes[n] = LIM_REG_CLASSES;
1019 /* Set up classes which can be used for allocnos as classes
1020 containing non-empty unique sets of allocatable hard
1021 registers. */
1022 ira_allocno_classes_num = 0;
1023 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1024 if (ira_class_hard_regs_num[cl] > 0)
1025 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1026 ira_important_classes_num = 0;
1027 /* Add non-allocno classes containing to non-empty set of
1028 allocatable hard regs. */
1029 for (cl = 0; cl < N_REG_CLASSES; cl++)
1030 if (ira_class_hard_regs_num[cl] > 0)
1032 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1033 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1034 set_p = false;
1035 for (j = 0; j < ira_allocno_classes_num; j++)
1037 COPY_HARD_REG_SET (temp_hard_regset2,
1038 reg_class_contents[ira_allocno_classes[j]]);
1039 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1040 if ((enum reg_class) cl == ira_allocno_classes[j])
1041 break;
1042 else if (hard_reg_set_subset_p (temp_hard_regset,
1043 temp_hard_regset2))
1044 set_p = true;
1046 if (set_p && j >= ira_allocno_classes_num)
1047 ira_important_classes[ira_important_classes_num++]
1048 = (enum reg_class) cl;
1050 /* Now add allocno classes to the important classes. */
1051 for (j = 0; j < ira_allocno_classes_num; j++)
1052 ira_important_classes[ira_important_classes_num++]
1053 = ira_allocno_classes[j];
1054 for (cl = 0; cl < N_REG_CLASSES; cl++)
1056 ira_reg_allocno_class_p[cl] = false;
1057 ira_reg_pressure_class_p[cl] = false;
1059 for (j = 0; j < ira_allocno_classes_num; j++)
1060 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1061 setup_pressure_classes ();
1062 setup_uniform_class_p ();
1065 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1066 given by array CLASSES of length CLASSES_NUM. The function is used
1067 make translation any reg class to an allocno class or to an
1068 pressure class. This translation is necessary for some
1069 calculations when we can use only allocno or pressure classes and
1070 such translation represents an approximate representation of all
1071 classes.
1073 The translation in case when allocatable hard register set of a
1074 given class is subset of allocatable hard register set of a class
1075 in CLASSES is pretty simple. We use smallest classes from CLASSES
1076 containing a given class. If allocatable hard register set of a
1077 given class is not a subset of any corresponding set of a class
1078 from CLASSES, we use the cheapest (with load/store point of view)
1079 class from CLASSES whose set intersects with given class set. */
1080 static void
1081 setup_class_translate_array (enum reg_class *class_translate,
1082 int classes_num, enum reg_class *classes)
1084 int cl, mode;
1085 enum reg_class aclass, best_class, *cl_ptr;
1086 int i, cost, min_cost, best_cost;
1088 for (cl = 0; cl < N_REG_CLASSES; cl++)
1089 class_translate[cl] = NO_REGS;
1091 for (i = 0; i < classes_num; i++)
1093 aclass = classes[i];
1094 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1095 (cl = *cl_ptr) != LIM_REG_CLASSES;
1096 cl_ptr++)
1097 if (class_translate[cl] == NO_REGS)
1098 class_translate[cl] = aclass;
1099 class_translate[aclass] = aclass;
1101 /* For classes which are not fully covered by one of given classes
1102 (in other words covered by more one given class), use the
1103 cheapest class. */
1104 for (cl = 0; cl < N_REG_CLASSES; cl++)
1106 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1107 continue;
1108 best_class = NO_REGS;
1109 best_cost = INT_MAX;
1110 for (i = 0; i < classes_num; i++)
1112 aclass = classes[i];
1113 COPY_HARD_REG_SET (temp_hard_regset,
1114 reg_class_contents[aclass]);
1115 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1116 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1117 if (! hard_reg_set_empty_p (temp_hard_regset))
1119 min_cost = INT_MAX;
1120 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1122 cost = (ira_memory_move_cost[mode][aclass][0]
1123 + ira_memory_move_cost[mode][aclass][1]);
1124 if (min_cost > cost)
1125 min_cost = cost;
1127 if (best_class == NO_REGS || best_cost > min_cost)
1129 best_class = aclass;
1130 best_cost = min_cost;
1134 class_translate[cl] = best_class;
1138 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1139 IRA_PRESSURE_CLASS_TRANSLATE. */
1140 static void
1141 setup_class_translate (void)
1143 setup_class_translate_array (ira_allocno_class_translate,
1144 ira_allocno_classes_num, ira_allocno_classes);
1145 setup_class_translate_array (ira_pressure_class_translate,
1146 ira_pressure_classes_num, ira_pressure_classes);
1149 /* Order numbers of allocno classes in original target allocno class
1150 array, -1 for non-allocno classes. */
1151 static int allocno_class_order[N_REG_CLASSES];
1153 /* The function used to sort the important classes. */
1154 static int
1155 comp_reg_classes_func (const void *v1p, const void *v2p)
1157 enum reg_class cl1 = *(const enum reg_class *) v1p;
1158 enum reg_class cl2 = *(const enum reg_class *) v2p;
1159 enum reg_class tcl1, tcl2;
1160 int diff;
1162 tcl1 = ira_allocno_class_translate[cl1];
1163 tcl2 = ira_allocno_class_translate[cl2];
1164 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1165 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1166 return diff;
1167 return (int) cl1 - (int) cl2;
1170 /* For correct work of function setup_reg_class_relation we need to
1171 reorder important classes according to the order of their allocno
1172 classes. It places important classes containing the same
1173 allocatable hard register set adjacent to each other and allocno
1174 class with the allocatable hard register set right after the other
1175 important classes with the same set.
1177 In example from comments of function
1178 setup_allocno_and_important_classes, it places LEGACY_REGS and
1179 GENERAL_REGS close to each other and GENERAL_REGS is after
1180 LEGACY_REGS. */
1181 static void
1182 reorder_important_classes (void)
1184 int i;
1186 for (i = 0; i < N_REG_CLASSES; i++)
1187 allocno_class_order[i] = -1;
1188 for (i = 0; i < ira_allocno_classes_num; i++)
1189 allocno_class_order[ira_allocno_classes[i]] = i;
1190 qsort (ira_important_classes, ira_important_classes_num,
1191 sizeof (enum reg_class), comp_reg_classes_func);
1192 for (i = 0; i < ira_important_classes_num; i++)
1193 ira_important_class_nums[ira_important_classes[i]] = i;
1196 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1197 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1198 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1199 please see corresponding comments in ira-int.h. */
1200 static void
1201 setup_reg_class_relations (void)
1203 int i, cl1, cl2, cl3;
1204 HARD_REG_SET intersection_set, union_set, temp_set2;
1205 bool important_class_p[N_REG_CLASSES];
1207 memset (important_class_p, 0, sizeof (important_class_p));
1208 for (i = 0; i < ira_important_classes_num; i++)
1209 important_class_p[ira_important_classes[i]] = true;
1210 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1212 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1213 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1215 ira_reg_classes_intersect_p[cl1][cl2] = false;
1216 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1217 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1218 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1219 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1220 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1221 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1222 if (hard_reg_set_empty_p (temp_hard_regset)
1223 && hard_reg_set_empty_p (temp_set2))
1225 /* The both classes have no allocatable hard registers
1226 -- take all class hard registers into account and use
1227 reg_class_subunion and reg_class_superunion. */
1228 for (i = 0;; i++)
1230 cl3 = reg_class_subclasses[cl1][i];
1231 if (cl3 == LIM_REG_CLASSES)
1232 break;
1233 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1234 (enum reg_class) cl3))
1235 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1237 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1238 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1239 continue;
1241 ira_reg_classes_intersect_p[cl1][cl2]
1242 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1243 if (important_class_p[cl1] && important_class_p[cl2]
1244 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1246 /* CL1 and CL2 are important classes and CL1 allocatable
1247 hard register set is inside of CL2 allocatable hard
1248 registers -- make CL1 a superset of CL2. */
1249 enum reg_class *p;
1251 p = &ira_reg_class_super_classes[cl1][0];
1252 while (*p != LIM_REG_CLASSES)
1253 p++;
1254 *p++ = (enum reg_class) cl2;
1255 *p = LIM_REG_CLASSES;
1257 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1258 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1259 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1260 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1261 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1262 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1263 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1264 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1265 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1267 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1268 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1269 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1271 /* CL3 allocatable hard register set is inside of
1272 intersection of allocatable hard register sets
1273 of CL1 and CL2. */
1274 if (important_class_p[cl3])
1276 COPY_HARD_REG_SET
1277 (temp_set2,
1278 reg_class_contents
1279 [(int) ira_reg_class_intersect[cl1][cl2]]);
1280 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1281 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1282 /* If the allocatable hard register sets are
1283 the same, prefer GENERAL_REGS or the
1284 smallest class for debugging
1285 purposes. */
1286 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1287 && (cl3 == GENERAL_REGS
1288 || ((ira_reg_class_intersect[cl1][cl2]
1289 != GENERAL_REGS)
1290 && hard_reg_set_subset_p
1291 (reg_class_contents[cl3],
1292 reg_class_contents
1293 [(int)
1294 ira_reg_class_intersect[cl1][cl2]])))))
1295 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1297 COPY_HARD_REG_SET
1298 (temp_set2,
1299 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1300 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1301 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1302 /* Ignore unavailable hard registers and prefer
1303 smallest class for debugging purposes. */
1304 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1305 && hard_reg_set_subset_p
1306 (reg_class_contents[cl3],
1307 reg_class_contents
1308 [(int) ira_reg_class_subset[cl1][cl2]])))
1309 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1311 if (important_class_p[cl3]
1312 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1314 /* CL3 allocatable hard register set is inside of
1315 union of allocatable hard register sets of CL1
1316 and CL2. */
1317 COPY_HARD_REG_SET
1318 (temp_set2,
1319 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1320 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1321 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1322 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1324 && (! hard_reg_set_equal_p (temp_set2,
1325 temp_hard_regset)
1326 || cl3 == GENERAL_REGS
1327 /* If the allocatable hard register sets are the
1328 same, prefer GENERAL_REGS or the smallest
1329 class for debugging purposes. */
1330 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1331 && hard_reg_set_subset_p
1332 (reg_class_contents[cl3],
1333 reg_class_contents
1334 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1335 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1337 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1339 /* CL3 allocatable hard register set contains union
1340 of allocatable hard register sets of CL1 and
1341 CL2. */
1342 COPY_HARD_REG_SET
1343 (temp_set2,
1344 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1345 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1346 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1347 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1349 && (! hard_reg_set_equal_p (temp_set2,
1350 temp_hard_regset)
1351 || cl3 == GENERAL_REGS
1352 /* If the allocatable hard register sets are the
1353 same, prefer GENERAL_REGS or the smallest
1354 class for debugging purposes. */
1355 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1356 && hard_reg_set_subset_p
1357 (reg_class_contents[cl3],
1358 reg_class_contents
1359 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1360 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1367 /* Output all uniform and important classes into file F. */
1368 static void
1369 print_uniform_and_important_classes (FILE *f)
1371 int i, cl;
1373 fprintf (f, "Uniform classes:\n");
1374 for (cl = 0; cl < N_REG_CLASSES; cl++)
1375 if (ira_uniform_class_p[cl])
1376 fprintf (f, " %s", reg_class_names[cl]);
1377 fprintf (f, "\nImportant classes:\n");
1378 for (i = 0; i < ira_important_classes_num; i++)
1379 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1380 fprintf (f, "\n");
1383 /* Output all possible allocno or pressure classes and their
1384 translation map into file F. */
1385 static void
1386 print_translated_classes (FILE *f, bool pressure_p)
1388 int classes_num = (pressure_p
1389 ? ira_pressure_classes_num : ira_allocno_classes_num);
1390 enum reg_class *classes = (pressure_p
1391 ? ira_pressure_classes : ira_allocno_classes);
1392 enum reg_class *class_translate = (pressure_p
1393 ? ira_pressure_class_translate
1394 : ira_allocno_class_translate);
1395 int i;
1397 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1398 for (i = 0; i < classes_num; i++)
1399 fprintf (f, " %s", reg_class_names[classes[i]]);
1400 fprintf (f, "\nClass translation:\n");
1401 for (i = 0; i < N_REG_CLASSES; i++)
1402 fprintf (f, " %s -> %s\n", reg_class_names[i],
1403 reg_class_names[class_translate[i]]);
1406 /* Output all possible allocno and translation classes and the
1407 translation maps into stderr. */
1408 void
1409 ira_debug_allocno_classes (void)
1411 print_uniform_and_important_classes (stderr);
1412 print_translated_classes (stderr, false);
1413 print_translated_classes (stderr, true);
1416 /* Set up different arrays concerning class subsets, allocno and
1417 important classes. */
1418 static void
1419 find_reg_classes (void)
1421 setup_allocno_and_important_classes ();
1422 setup_class_translate ();
1423 reorder_important_classes ();
1424 setup_reg_class_relations ();
1429 /* Set up the array above. */
1430 static void
1431 setup_hard_regno_aclass (void)
1433 int i;
1435 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1437 #if 1
1438 ira_hard_regno_allocno_class[i]
1439 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1440 ? NO_REGS
1441 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1442 #else
1443 int j;
1444 enum reg_class cl;
1445 ira_hard_regno_allocno_class[i] = NO_REGS;
1446 for (j = 0; j < ira_allocno_classes_num; j++)
1448 cl = ira_allocno_classes[j];
1449 if (ira_class_hard_reg_index[cl][i] >= 0)
1451 ira_hard_regno_allocno_class[i] = cl;
1452 break;
1455 #endif
1461 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1462 static void
1463 setup_reg_class_nregs (void)
1465 int i, cl, cl2, m;
1467 for (m = 0; m < MAX_MACHINE_MODE; m++)
1469 for (cl = 0; cl < N_REG_CLASSES; cl++)
1470 ira_reg_class_max_nregs[cl][m]
1471 = ira_reg_class_min_nregs[cl][m]
1472 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1473 for (cl = 0; cl < N_REG_CLASSES; cl++)
1474 for (i = 0;
1475 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1476 i++)
1477 if (ira_reg_class_min_nregs[cl2][m]
1478 < ira_reg_class_min_nregs[cl][m])
1479 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1485 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1486 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1487 static void
1488 setup_prohibited_class_mode_regs (void)
1490 int j, k, hard_regno, cl, last_hard_regno, count;
1492 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1494 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1495 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1496 for (j = 0; j < NUM_MACHINE_MODES; j++)
1498 count = 0;
1499 last_hard_regno = -1;
1500 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1501 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1503 hard_regno = ira_class_hard_regs[cl][k];
1504 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1505 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1506 hard_regno);
1507 else if (in_hard_reg_set_p (temp_hard_regset,
1508 (machine_mode) j, hard_regno))
1510 last_hard_regno = hard_regno;
1511 count++;
1514 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1519 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1520 spanning from one register pressure class to another one. It is
1521 called after defining the pressure classes. */
1522 static void
1523 clarify_prohibited_class_mode_regs (void)
1525 int j, k, hard_regno, cl, pclass, nregs;
1527 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1528 for (j = 0; j < NUM_MACHINE_MODES; j++)
1530 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1531 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1533 hard_regno = ira_class_hard_regs[cl][k];
1534 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1535 continue;
1536 nregs = hard_regno_nregs[hard_regno][j];
1537 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1539 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1540 hard_regno);
1541 continue;
1543 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1544 for (nregs-- ;nregs >= 0; nregs--)
1545 if (((enum reg_class) pclass
1546 != ira_pressure_class_translate[REGNO_REG_CLASS
1547 (hard_regno + nregs)]))
1549 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1550 hard_regno);
1551 break;
1553 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1554 hard_regno))
1555 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1556 (machine_mode) j, hard_regno);
1561 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1562 and IRA_MAY_MOVE_OUT_COST for MODE. */
1563 void
1564 ira_init_register_move_cost (machine_mode mode)
1566 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1567 bool all_match = true;
1568 unsigned int cl1, cl2;
1570 ira_assert (ira_register_move_cost[mode] == NULL
1571 && ira_may_move_in_cost[mode] == NULL
1572 && ira_may_move_out_cost[mode] == NULL);
1573 ira_assert (have_regs_of_mode[mode]);
1574 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1575 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1577 int cost;
1578 if (!contains_reg_of_mode[cl1][mode]
1579 || !contains_reg_of_mode[cl2][mode])
1581 if ((ira_reg_class_max_nregs[cl1][mode]
1582 > ira_class_hard_regs_num[cl1])
1583 || (ira_reg_class_max_nregs[cl2][mode]
1584 > ira_class_hard_regs_num[cl2]))
1585 cost = 65535;
1586 else
1587 cost = (ira_memory_move_cost[mode][cl1][0]
1588 + ira_memory_move_cost[mode][cl2][1]) * 2;
1590 else
1592 cost = register_move_cost (mode, (enum reg_class) cl1,
1593 (enum reg_class) cl2);
1594 ira_assert (cost < 65535);
1596 all_match &= (last_move_cost[cl1][cl2] == cost);
1597 last_move_cost[cl1][cl2] = cost;
1599 if (all_match && last_mode_for_init_move_cost != -1)
1601 ira_register_move_cost[mode]
1602 = ira_register_move_cost[last_mode_for_init_move_cost];
1603 ira_may_move_in_cost[mode]
1604 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1605 ira_may_move_out_cost[mode]
1606 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1607 return;
1609 last_mode_for_init_move_cost = mode;
1610 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1613 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1614 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1616 int cost;
1617 enum reg_class *p1, *p2;
1619 if (last_move_cost[cl1][cl2] == 65535)
1621 ira_register_move_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1623 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1625 else
1627 cost = last_move_cost[cl1][cl2];
1629 for (p2 = &reg_class_subclasses[cl2][0];
1630 *p2 != LIM_REG_CLASSES; p2++)
1631 if (ira_class_hard_regs_num[*p2] > 0
1632 && (ira_reg_class_max_nregs[*p2][mode]
1633 <= ira_class_hard_regs_num[*p2]))
1634 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1636 for (p1 = &reg_class_subclasses[cl1][0];
1637 *p1 != LIM_REG_CLASSES; p1++)
1638 if (ira_class_hard_regs_num[*p1] > 0
1639 && (ira_reg_class_max_nregs[*p1][mode]
1640 <= ira_class_hard_regs_num[*p1]))
1641 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1643 ira_assert (cost <= 65535);
1644 ira_register_move_cost[mode][cl1][cl2] = cost;
1646 if (ira_class_subset_p[cl1][cl2])
1647 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1648 else
1649 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1651 if (ira_class_subset_p[cl2][cl1])
1652 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1653 else
1654 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1661 /* This is called once during compiler work. It sets up
1662 different arrays whose values don't depend on the compiled
1663 function. */
1664 void
1665 ira_init_once (void)
1667 ira_init_costs_once ();
1668 lra_init_once ();
1670 ira_use_lra_p = targetm.lra_p ();
1673 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1674 ira_may_move_out_cost for each mode. */
1675 void
1676 target_ira_int::free_register_move_costs (void)
1678 int mode, i;
1680 /* Reset move_cost and friends, making sure we only free shared
1681 table entries once. */
1682 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1683 if (x_ira_register_move_cost[mode])
1685 for (i = 0;
1686 i < mode && (x_ira_register_move_cost[i]
1687 != x_ira_register_move_cost[mode]);
1688 i++)
1690 if (i == mode)
1692 free (x_ira_register_move_cost[mode]);
1693 free (x_ira_may_move_in_cost[mode]);
1694 free (x_ira_may_move_out_cost[mode]);
1697 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1698 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1699 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1700 last_mode_for_init_move_cost = -1;
1703 target_ira_int::~target_ira_int ()
1705 free_ira_costs ();
1706 free_register_move_costs ();
1709 /* This is called every time when register related information is
1710 changed. */
1711 void
1712 ira_init (void)
1714 this_target_ira_int->free_register_move_costs ();
1715 setup_reg_mode_hard_regset ();
1716 setup_alloc_regs (flag_omit_frame_pointer != 0);
1717 setup_class_subset_and_memory_move_costs ();
1718 setup_reg_class_nregs ();
1719 setup_prohibited_class_mode_regs ();
1720 find_reg_classes ();
1721 clarify_prohibited_class_mode_regs ();
1722 setup_hard_regno_aclass ();
1723 ira_init_costs ();
1727 #define ira_prohibited_mode_move_regs_initialized_p \
1728 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1730 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1731 static void
1732 setup_prohibited_mode_move_regs (void)
1734 int i, j;
1735 rtx test_reg1, test_reg2, move_pat;
1736 rtx_insn *move_insn;
1738 if (ira_prohibited_mode_move_regs_initialized_p)
1739 return;
1740 ira_prohibited_mode_move_regs_initialized_p = true;
1741 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1742 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1743 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1744 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1745 for (i = 0; i < NUM_MACHINE_MODES; i++)
1747 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1748 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1750 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1751 continue;
1752 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1753 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1754 INSN_CODE (move_insn) = -1;
1755 recog_memoized (move_insn);
1756 if (INSN_CODE (move_insn) < 0)
1757 continue;
1758 extract_insn (move_insn);
1759 /* We don't know whether the move will be in code that is optimized
1760 for size or speed, so consider all enabled alternatives. */
1761 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1762 continue;
1763 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1770 /* Setup possible alternatives in ALTS for INSN. */
1771 void
1772 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1774 /* MAP nalt * nop -> start of constraints for given operand and
1775 alternative. */
1776 static vec<const char *> insn_constraints;
1777 int nop, nalt;
1778 bool curr_swapped;
1779 const char *p;
1780 int commutative = -1;
1782 extract_insn (insn);
1783 alternative_mask preferred = get_preferred_alternatives (insn);
1784 CLEAR_HARD_REG_SET (alts);
1785 insn_constraints.release ();
1786 insn_constraints.safe_grow_cleared (recog_data.n_operands
1787 * recog_data.n_alternatives + 1);
1788 /* Check that the hard reg set is enough for holding all
1789 alternatives. It is hard to imagine the situation when the
1790 assertion is wrong. */
1791 ira_assert (recog_data.n_alternatives
1792 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1793 FIRST_PSEUDO_REGISTER));
1794 for (curr_swapped = false;; curr_swapped = true)
1796 /* Calculate some data common for all alternatives to speed up the
1797 function. */
1798 for (nop = 0; nop < recog_data.n_operands; nop++)
1800 for (nalt = 0, p = recog_data.constraints[nop];
1801 nalt < recog_data.n_alternatives;
1802 nalt++)
1804 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1805 while (*p && *p != ',')
1807 /* We only support one commutative marker, the first
1808 one. We already set commutative above. */
1809 if (*p == '%' && commutative < 0)
1810 commutative = nop;
1811 p++;
1813 if (*p)
1814 p++;
1817 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1819 if (!TEST_BIT (preferred, nalt)
1820 || TEST_HARD_REG_BIT (alts, nalt))
1821 continue;
1823 for (nop = 0; nop < recog_data.n_operands; nop++)
1825 int c, len;
1827 rtx op = recog_data.operand[nop];
1828 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1829 if (*p == 0 || *p == ',')
1830 continue;
1833 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1835 case '#':
1836 case ',':
1837 c = '\0';
1838 /* FALLTHRU */
1839 case '\0':
1840 len = 0;
1841 break;
1843 case '%':
1844 /* The commutative modifier is handled above. */
1845 break;
1847 case '0': case '1': case '2': case '3': case '4':
1848 case '5': case '6': case '7': case '8': case '9':
1849 goto op_success;
1850 break;
1852 case 'g':
1853 goto op_success;
1854 break;
1856 default:
1858 enum constraint_num cn = lookup_constraint (p);
1859 switch (get_constraint_type (cn))
1861 case CT_REGISTER:
1862 if (reg_class_for_constraint (cn) != NO_REGS)
1863 goto op_success;
1864 break;
1866 case CT_CONST_INT:
1867 if (CONST_INT_P (op)
1868 && (insn_const_int_ok_for_constraint
1869 (INTVAL (op), cn)))
1870 goto op_success;
1871 break;
1873 case CT_ADDRESS:
1874 case CT_MEMORY:
1875 case CT_SPECIAL_MEMORY:
1876 goto op_success;
1878 case CT_FIXED_FORM:
1879 if (constraint_satisfied_p (op, cn))
1880 goto op_success;
1881 break;
1883 break;
1886 while (p += len, c);
1887 break;
1888 op_success:
1891 if (nop >= recog_data.n_operands)
1892 SET_HARD_REG_BIT (alts, nalt);
1894 if (commutative < 0)
1895 break;
1896 /* Swap forth and back to avoid changing recog_data. */
1897 std::swap (recog_data.operand[commutative],
1898 recog_data.operand[commutative + 1]);
1899 if (curr_swapped)
1900 break;
1904 /* Return the number of the output non-early clobber operand which
1905 should be the same in any case as operand with number OP_NUM (or
1906 negative value if there is no such operand). The function takes
1907 only really possible alternatives into consideration. */
1909 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1911 int curr_alt, c, original, dup;
1912 bool ignore_p, use_commut_op_p;
1913 const char *str;
1915 if (op_num < 0 || recog_data.n_alternatives == 0)
1916 return -1;
1917 /* We should find duplications only for input operands. */
1918 if (recog_data.operand_type[op_num] != OP_IN)
1919 return -1;
1920 str = recog_data.constraints[op_num];
1921 use_commut_op_p = false;
1922 for (;;)
1924 rtx op = recog_data.operand[op_num];
1926 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1927 original = -1;;)
1929 c = *str;
1930 if (c == '\0')
1931 break;
1932 if (c == '#')
1933 ignore_p = true;
1934 else if (c == ',')
1936 curr_alt++;
1937 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1939 else if (! ignore_p)
1940 switch (c)
1942 case 'g':
1943 goto fail;
1944 default:
1946 enum constraint_num cn = lookup_constraint (str);
1947 enum reg_class cl = reg_class_for_constraint (cn);
1948 if (cl != NO_REGS
1949 && !targetm.class_likely_spilled_p (cl))
1950 goto fail;
1951 if (constraint_satisfied_p (op, cn))
1952 goto fail;
1953 break;
1956 case '0': case '1': case '2': case '3': case '4':
1957 case '5': case '6': case '7': case '8': case '9':
1958 if (original != -1 && original != c)
1959 goto fail;
1960 original = c;
1961 break;
1963 str += CONSTRAINT_LEN (c, str);
1965 if (original == -1)
1966 goto fail;
1967 dup = -1;
1968 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1969 *str != 0;
1970 str++)
1971 if (ignore_p)
1973 if (*str == ',')
1974 ignore_p = false;
1976 else if (*str == '#')
1977 ignore_p = true;
1978 else if (! ignore_p)
1980 if (*str == '=')
1981 dup = original - '0';
1982 /* It is better ignore an alternative with early clobber. */
1983 else if (*str == '&')
1984 goto fail;
1986 if (dup >= 0)
1987 return dup;
1988 fail:
1989 if (use_commut_op_p)
1990 break;
1991 use_commut_op_p = true;
1992 if (recog_data.constraints[op_num][0] == '%')
1993 str = recog_data.constraints[op_num + 1];
1994 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1995 str = recog_data.constraints[op_num - 1];
1996 else
1997 break;
1999 return -1;
2004 /* Search forward to see if the source register of a copy insn dies
2005 before either it or the destination register is modified, but don't
2006 scan past the end of the basic block. If so, we can replace the
2007 source with the destination and let the source die in the copy
2008 insn.
2010 This will reduce the number of registers live in that range and may
2011 enable the destination and the source coalescing, thus often saving
2012 one register in addition to a register-register copy. */
2014 static void
2015 decrease_live_ranges_number (void)
2017 basic_block bb;
2018 rtx_insn *insn;
2019 rtx set, src, dest, dest_death, note;
2020 rtx_insn *p, *q;
2021 int sregno, dregno;
2023 if (! flag_expensive_optimizations)
2024 return;
2026 if (ira_dump_file)
2027 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2029 FOR_EACH_BB_FN (bb, cfun)
2030 FOR_BB_INSNS (bb, insn)
2032 set = single_set (insn);
2033 if (! set)
2034 continue;
2035 src = SET_SRC (set);
2036 dest = SET_DEST (set);
2037 if (! REG_P (src) || ! REG_P (dest)
2038 || find_reg_note (insn, REG_DEAD, src))
2039 continue;
2040 sregno = REGNO (src);
2041 dregno = REGNO (dest);
2043 /* We don't want to mess with hard regs if register classes
2044 are small. */
2045 if (sregno == dregno
2046 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2047 && (sregno < FIRST_PSEUDO_REGISTER
2048 || dregno < FIRST_PSEUDO_REGISTER))
2049 /* We don't see all updates to SP if they are in an
2050 auto-inc memory reference, so we must disallow this
2051 optimization on them. */
2052 || sregno == STACK_POINTER_REGNUM
2053 || dregno == STACK_POINTER_REGNUM)
2054 continue;
2056 dest_death = NULL_RTX;
2058 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2060 if (! INSN_P (p))
2061 continue;
2062 if (BLOCK_FOR_INSN (p) != bb)
2063 break;
2065 if (reg_set_p (src, p) || reg_set_p (dest, p)
2066 /* If SRC is an asm-declared register, it must not be
2067 replaced in any asm. Unfortunately, the REG_EXPR
2068 tree for the asm variable may be absent in the SRC
2069 rtx, so we can't check the actual register
2070 declaration easily (the asm operand will have it,
2071 though). To avoid complicating the test for a rare
2072 case, we just don't perform register replacement
2073 for a hard reg mentioned in an asm. */
2074 || (sregno < FIRST_PSEUDO_REGISTER
2075 && asm_noperands (PATTERN (p)) >= 0
2076 && reg_overlap_mentioned_p (src, PATTERN (p)))
2077 /* Don't change hard registers used by a call. */
2078 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2079 && find_reg_fusage (p, USE, src))
2080 /* Don't change a USE of a register. */
2081 || (GET_CODE (PATTERN (p)) == USE
2082 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2083 break;
2085 /* See if all of SRC dies in P. This test is slightly
2086 more conservative than it needs to be. */
2087 if ((note = find_regno_note (p, REG_DEAD, sregno))
2088 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2090 int failed = 0;
2092 /* We can do the optimization. Scan forward from INSN
2093 again, replacing regs as we go. Set FAILED if a
2094 replacement can't be done. In that case, we can't
2095 move the death note for SRC. This should be
2096 rare. */
2098 /* Set to stop at next insn. */
2099 for (q = next_real_insn (insn);
2100 q != next_real_insn (p);
2101 q = next_real_insn (q))
2103 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2105 /* If SRC is a hard register, we might miss
2106 some overlapping registers with
2107 validate_replace_rtx, so we would have to
2108 undo it. We can't if DEST is present in
2109 the insn, so fail in that combination of
2110 cases. */
2111 if (sregno < FIRST_PSEUDO_REGISTER
2112 && reg_mentioned_p (dest, PATTERN (q)))
2113 failed = 1;
2115 /* Attempt to replace all uses. */
2116 else if (!validate_replace_rtx (src, dest, q))
2117 failed = 1;
2119 /* If this succeeded, but some part of the
2120 register is still present, undo the
2121 replacement. */
2122 else if (sregno < FIRST_PSEUDO_REGISTER
2123 && reg_overlap_mentioned_p (src, PATTERN (q)))
2125 validate_replace_rtx (dest, src, q);
2126 failed = 1;
2130 /* If DEST dies here, remove the death note and
2131 save it for later. Make sure ALL of DEST dies
2132 here; again, this is overly conservative. */
2133 if (! dest_death
2134 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2136 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2137 remove_note (q, dest_death);
2138 else
2140 failed = 1;
2141 dest_death = 0;
2146 if (! failed)
2148 /* Move death note of SRC from P to INSN. */
2149 remove_note (p, note);
2150 XEXP (note, 1) = REG_NOTES (insn);
2151 REG_NOTES (insn) = note;
2154 /* DEST is also dead if INSN has a REG_UNUSED note for
2155 DEST. */
2156 if (! dest_death
2157 && (dest_death
2158 = find_regno_note (insn, REG_UNUSED, dregno)))
2160 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2161 remove_note (insn, dest_death);
2164 /* Put death note of DEST on P if we saw it die. */
2165 if (dest_death)
2167 XEXP (dest_death, 1) = REG_NOTES (p);
2168 REG_NOTES (p) = dest_death;
2170 break;
2173 /* If SRC is a hard register which is set or killed in
2174 some other way, we can't do this optimization. */
2175 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2176 break;
2183 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2184 static bool
2185 ira_bad_reload_regno_1 (int regno, rtx x)
2187 int x_regno, n, i;
2188 ira_allocno_t a;
2189 enum reg_class pref;
2191 /* We only deal with pseudo regs. */
2192 if (! x || GET_CODE (x) != REG)
2193 return false;
2195 x_regno = REGNO (x);
2196 if (x_regno < FIRST_PSEUDO_REGISTER)
2197 return false;
2199 /* If the pseudo prefers REGNO explicitly, then do not consider
2200 REGNO a bad spill choice. */
2201 pref = reg_preferred_class (x_regno);
2202 if (reg_class_size[pref] == 1)
2203 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2205 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2206 poor choice for a reload regno. */
2207 a = ira_regno_allocno_map[x_regno];
2208 n = ALLOCNO_NUM_OBJECTS (a);
2209 for (i = 0; i < n; i++)
2211 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2212 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2213 return true;
2215 return false;
2218 /* Return nonzero if REGNO is a particularly bad choice for reloading
2219 IN or OUT. */
2220 bool
2221 ira_bad_reload_regno (int regno, rtx in, rtx out)
2223 return (ira_bad_reload_regno_1 (regno, in)
2224 || ira_bad_reload_regno_1 (regno, out));
2227 /* Add register clobbers from asm statements. */
2228 static void
2229 compute_regs_asm_clobbered (void)
2231 basic_block bb;
2233 FOR_EACH_BB_FN (bb, cfun)
2235 rtx_insn *insn;
2236 FOR_BB_INSNS_REVERSE (bb, insn)
2238 df_ref def;
2240 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2241 FOR_EACH_INSN_DEF (def, insn)
2243 unsigned int dregno = DF_REF_REGNO (def);
2244 if (HARD_REGISTER_NUM_P (dregno))
2245 add_to_hard_reg_set (&crtl->asm_clobbers,
2246 GET_MODE (DF_REF_REAL_REG (def)),
2247 dregno);
2254 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2255 REGS_EVER_LIVE. */
2256 void
2257 ira_setup_eliminable_regset (void)
2259 int i;
2260 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2262 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2263 sp for alloca. So we can't eliminate the frame pointer in that
2264 case. At some point, we should improve this by emitting the
2265 sp-adjusting insns for this case. */
2266 frame_pointer_needed
2267 = (! flag_omit_frame_pointer
2268 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2269 /* We need the frame pointer to catch stack overflow exceptions if
2270 the stack pointer is moving (as for the alloca case just above). */
2271 || (STACK_CHECK_MOVING_SP
2272 && flag_stack_check
2273 && flag_exceptions
2274 && cfun->can_throw_non_call_exceptions)
2275 || crtl->accesses_prior_frames
2276 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2277 /* We need a frame pointer for all Cilk Plus functions that use
2278 Cilk keywords. */
2279 || (flag_cilkplus && cfun->is_cilk_function)
2280 || targetm.frame_pointer_required ());
2282 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2283 RTL is very small. So if we use frame pointer for RA and RTL
2284 actually prevents this, we will spill pseudos assigned to the
2285 frame pointer in LRA. */
2287 if (frame_pointer_needed)
2288 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2290 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2291 CLEAR_HARD_REG_SET (eliminable_regset);
2293 compute_regs_asm_clobbered ();
2295 /* Build the regset of all eliminable registers and show we can't
2296 use those that we already know won't be eliminated. */
2297 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2299 bool cannot_elim
2300 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2301 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2303 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2305 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2307 if (cannot_elim)
2308 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2310 else if (cannot_elim)
2311 error ("%s cannot be used in asm here",
2312 reg_names[eliminables[i].from]);
2313 else
2314 df_set_regs_ever_live (eliminables[i].from, true);
2316 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2318 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2320 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2321 if (frame_pointer_needed)
2322 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2324 else if (frame_pointer_needed)
2325 error ("%s cannot be used in asm here",
2326 reg_names[HARD_FRAME_POINTER_REGNUM]);
2327 else
2328 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2334 /* Vector of substitutions of register numbers,
2335 used to map pseudo regs into hardware regs.
2336 This is set up as a result of register allocation.
2337 Element N is the hard reg assigned to pseudo reg N,
2338 or is -1 if no hard reg was assigned.
2339 If N is a hard reg number, element N is N. */
2340 short *reg_renumber;
2342 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2343 the allocation found by IRA. */
2344 static void
2345 setup_reg_renumber (void)
2347 int regno, hard_regno;
2348 ira_allocno_t a;
2349 ira_allocno_iterator ai;
2351 caller_save_needed = 0;
2352 FOR_EACH_ALLOCNO (a, ai)
2354 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2355 continue;
2356 /* There are no caps at this point. */
2357 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2358 if (! ALLOCNO_ASSIGNED_P (a))
2359 /* It can happen if A is not referenced but partially anticipated
2360 somewhere in a region. */
2361 ALLOCNO_ASSIGNED_P (a) = true;
2362 ira_free_allocno_updated_costs (a);
2363 hard_regno = ALLOCNO_HARD_REGNO (a);
2364 regno = ALLOCNO_REGNO (a);
2365 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2366 if (hard_regno >= 0)
2368 int i, nwords;
2369 enum reg_class pclass;
2370 ira_object_t obj;
2372 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2373 nwords = ALLOCNO_NUM_OBJECTS (a);
2374 for (i = 0; i < nwords; i++)
2376 obj = ALLOCNO_OBJECT (a, i);
2377 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2378 reg_class_contents[pclass]);
2380 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2381 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2382 call_used_reg_set))
2384 ira_assert (!optimize || flag_caller_saves
2385 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2386 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2387 || regno >= ira_reg_equiv_len
2388 || ira_equiv_no_lvalue_p (regno));
2389 caller_save_needed = 1;
2395 /* Set up allocno assignment flags for further allocation
2396 improvements. */
2397 static void
2398 setup_allocno_assignment_flags (void)
2400 int hard_regno;
2401 ira_allocno_t a;
2402 ira_allocno_iterator ai;
2404 FOR_EACH_ALLOCNO (a, ai)
2406 if (! ALLOCNO_ASSIGNED_P (a))
2407 /* It can happen if A is not referenced but partially anticipated
2408 somewhere in a region. */
2409 ira_free_allocno_updated_costs (a);
2410 hard_regno = ALLOCNO_HARD_REGNO (a);
2411 /* Don't assign hard registers to allocnos which are destination
2412 of removed store at the end of loop. It has no sense to keep
2413 the same value in different hard registers. It is also
2414 impossible to assign hard registers correctly to such
2415 allocnos because the cost info and info about intersected
2416 calls are incorrect for them. */
2417 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2418 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2419 || (ALLOCNO_MEMORY_COST (a)
2420 - ALLOCNO_CLASS_COST (a)) < 0);
2421 ira_assert
2422 (hard_regno < 0
2423 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2424 reg_class_contents[ALLOCNO_CLASS (a)]));
2428 /* Evaluate overall allocation cost and the costs for using hard
2429 registers and memory for allocnos. */
2430 static void
2431 calculate_allocation_cost (void)
2433 int hard_regno, cost;
2434 ira_allocno_t a;
2435 ira_allocno_iterator ai;
2437 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2438 FOR_EACH_ALLOCNO (a, ai)
2440 hard_regno = ALLOCNO_HARD_REGNO (a);
2441 ira_assert (hard_regno < 0
2442 || (ira_hard_reg_in_set_p
2443 (hard_regno, ALLOCNO_MODE (a),
2444 reg_class_contents[ALLOCNO_CLASS (a)])));
2445 if (hard_regno < 0)
2447 cost = ALLOCNO_MEMORY_COST (a);
2448 ira_mem_cost += cost;
2450 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2452 cost = (ALLOCNO_HARD_REG_COSTS (a)
2453 [ira_class_hard_reg_index
2454 [ALLOCNO_CLASS (a)][hard_regno]]);
2455 ira_reg_cost += cost;
2457 else
2459 cost = ALLOCNO_CLASS_COST (a);
2460 ira_reg_cost += cost;
2462 ira_overall_cost += cost;
2465 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2467 fprintf (ira_dump_file,
2468 "+++Costs: overall %" PRId64
2469 ", reg %" PRId64
2470 ", mem %" PRId64
2471 ", ld %" PRId64
2472 ", st %" PRId64
2473 ", move %" PRId64,
2474 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2475 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2476 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2477 ira_move_loops_num, ira_additional_jumps_num);
2482 #ifdef ENABLE_IRA_CHECKING
2483 /* Check the correctness of the allocation. We do need this because
2484 of complicated code to transform more one region internal
2485 representation into one region representation. */
2486 static void
2487 check_allocation (void)
2489 ira_allocno_t a;
2490 int hard_regno, nregs, conflict_nregs;
2491 ira_allocno_iterator ai;
2493 FOR_EACH_ALLOCNO (a, ai)
2495 int n = ALLOCNO_NUM_OBJECTS (a);
2496 int i;
2498 if (ALLOCNO_CAP_MEMBER (a) != NULL
2499 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2500 continue;
2501 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2502 if (nregs == 1)
2503 /* We allocated a single hard register. */
2504 n = 1;
2505 else if (n > 1)
2506 /* We allocated multiple hard registers, and we will test
2507 conflicts in a granularity of single hard regs. */
2508 nregs = 1;
2510 for (i = 0; i < n; i++)
2512 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2513 ira_object_t conflict_obj;
2514 ira_object_conflict_iterator oci;
2515 int this_regno = hard_regno;
2516 if (n > 1)
2518 if (REG_WORDS_BIG_ENDIAN)
2519 this_regno += n - i - 1;
2520 else
2521 this_regno += i;
2523 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2525 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2526 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2527 if (conflict_hard_regno < 0)
2528 continue;
2530 conflict_nregs
2531 = (hard_regno_nregs
2532 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2534 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2535 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2537 if (REG_WORDS_BIG_ENDIAN)
2538 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2539 - OBJECT_SUBWORD (conflict_obj) - 1);
2540 else
2541 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2542 conflict_nregs = 1;
2545 if ((conflict_hard_regno <= this_regno
2546 && this_regno < conflict_hard_regno + conflict_nregs)
2547 || (this_regno <= conflict_hard_regno
2548 && conflict_hard_regno < this_regno + nregs))
2550 fprintf (stderr, "bad allocation for %d and %d\n",
2551 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2552 gcc_unreachable ();
2558 #endif
2560 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2561 be already calculated. */
2562 static void
2563 setup_reg_equiv_init (void)
2565 int i;
2566 int max_regno = max_reg_num ();
2568 for (i = 0; i < max_regno; i++)
2569 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2572 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2573 are insns which were generated for such movement. It is assumed
2574 that FROM_REGNO and TO_REGNO always have the same value at the
2575 point of any move containing such registers. This function is used
2576 to update equiv info for register shuffles on the region borders
2577 and for caller save/restore insns. */
2578 void
2579 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2581 rtx_insn *insn;
2582 rtx x, note;
2584 if (! ira_reg_equiv[from_regno].defined_p
2585 && (! ira_reg_equiv[to_regno].defined_p
2586 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2587 && ! MEM_READONLY_P (x))))
2588 return;
2589 insn = insns;
2590 if (NEXT_INSN (insn) != NULL_RTX)
2592 if (! ira_reg_equiv[to_regno].defined_p)
2594 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2595 return;
2597 ira_reg_equiv[to_regno].defined_p = false;
2598 ira_reg_equiv[to_regno].memory
2599 = ira_reg_equiv[to_regno].constant
2600 = ira_reg_equiv[to_regno].invariant
2601 = ira_reg_equiv[to_regno].init_insns = NULL;
2602 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2603 fprintf (ira_dump_file,
2604 " Invalidating equiv info for reg %d\n", to_regno);
2605 return;
2607 /* It is possible that FROM_REGNO still has no equivalence because
2608 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2609 insn was not processed yet. */
2610 if (ira_reg_equiv[from_regno].defined_p)
2612 ira_reg_equiv[to_regno].defined_p = true;
2613 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2615 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2616 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2617 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2618 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2619 ira_reg_equiv[to_regno].memory = x;
2620 if (! MEM_READONLY_P (x))
2621 /* We don't add the insn to insn init list because memory
2622 equivalence is just to say what memory is better to use
2623 when the pseudo is spilled. */
2624 return;
2626 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2628 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2629 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2630 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2631 ira_reg_equiv[to_regno].constant = x;
2633 else
2635 x = ira_reg_equiv[from_regno].invariant;
2636 ira_assert (x != NULL_RTX);
2637 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2638 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2639 ira_reg_equiv[to_regno].invariant = x;
2641 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2643 note = set_unique_reg_note (insn, REG_EQUIV, x);
2644 gcc_assert (note != NULL_RTX);
2645 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2647 fprintf (ira_dump_file,
2648 " Adding equiv note to insn %u for reg %d ",
2649 INSN_UID (insn), to_regno);
2650 dump_value_slim (ira_dump_file, x, 1);
2651 fprintf (ira_dump_file, "\n");
2655 ira_reg_equiv[to_regno].init_insns
2656 = gen_rtx_INSN_LIST (VOIDmode, insn,
2657 ira_reg_equiv[to_regno].init_insns);
2658 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2659 fprintf (ira_dump_file,
2660 " Adding equiv init move insn %u to reg %d\n",
2661 INSN_UID (insn), to_regno);
2664 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2665 by IRA. */
2666 static void
2667 fix_reg_equiv_init (void)
2669 int max_regno = max_reg_num ();
2670 int i, new_regno, max;
2671 rtx set;
2672 rtx_insn_list *x, *next, *prev;
2673 rtx_insn *insn;
2675 if (max_regno_before_ira < max_regno)
2677 max = vec_safe_length (reg_equivs);
2678 grow_reg_equivs ();
2679 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2680 for (prev = NULL, x = reg_equiv_init (i);
2681 x != NULL_RTX;
2682 x = next)
2684 next = x->next ();
2685 insn = x->insn ();
2686 set = single_set (insn);
2687 ira_assert (set != NULL_RTX
2688 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2689 if (REG_P (SET_DEST (set))
2690 && ((int) REGNO (SET_DEST (set)) == i
2691 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2692 new_regno = REGNO (SET_DEST (set));
2693 else if (REG_P (SET_SRC (set))
2694 && ((int) REGNO (SET_SRC (set)) == i
2695 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2696 new_regno = REGNO (SET_SRC (set));
2697 else
2698 gcc_unreachable ();
2699 if (new_regno == i)
2700 prev = x;
2701 else
2703 /* Remove the wrong list element. */
2704 if (prev == NULL_RTX)
2705 reg_equiv_init (i) = next;
2706 else
2707 XEXP (prev, 1) = next;
2708 XEXP (x, 1) = reg_equiv_init (new_regno);
2709 reg_equiv_init (new_regno) = x;
2715 #ifdef ENABLE_IRA_CHECKING
2716 /* Print redundant memory-memory copies. */
2717 static void
2718 print_redundant_copies (void)
2720 int hard_regno;
2721 ira_allocno_t a;
2722 ira_copy_t cp, next_cp;
2723 ira_allocno_iterator ai;
2725 FOR_EACH_ALLOCNO (a, ai)
2727 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2728 /* It is a cap. */
2729 continue;
2730 hard_regno = ALLOCNO_HARD_REGNO (a);
2731 if (hard_regno >= 0)
2732 continue;
2733 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2734 if (cp->first == a)
2735 next_cp = cp->next_first_allocno_copy;
2736 else
2738 next_cp = cp->next_second_allocno_copy;
2739 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2740 && cp->insn != NULL_RTX
2741 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2742 fprintf (ira_dump_file,
2743 " Redundant move from %d(freq %d):%d\n",
2744 INSN_UID (cp->insn), cp->freq, hard_regno);
2748 #endif
2750 /* Setup preferred and alternative classes for new pseudo-registers
2751 created by IRA starting with START. */
2752 static void
2753 setup_preferred_alternate_classes_for_new_pseudos (int start)
2755 int i, old_regno;
2756 int max_regno = max_reg_num ();
2758 for (i = start; i < max_regno; i++)
2760 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2761 ira_assert (i != old_regno);
2762 setup_reg_classes (i, reg_preferred_class (old_regno),
2763 reg_alternate_class (old_regno),
2764 reg_allocno_class (old_regno));
2765 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2766 fprintf (ira_dump_file,
2767 " New r%d: setting preferred %s, alternative %s\n",
2768 i, reg_class_names[reg_preferred_class (old_regno)],
2769 reg_class_names[reg_alternate_class (old_regno)]);
2774 /* The number of entries allocated in reg_info. */
2775 static int allocated_reg_info_size;
2777 /* Regional allocation can create new pseudo-registers. This function
2778 expands some arrays for pseudo-registers. */
2779 static void
2780 expand_reg_info (void)
2782 int i;
2783 int size = max_reg_num ();
2785 resize_reg_info ();
2786 for (i = allocated_reg_info_size; i < size; i++)
2787 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2788 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2789 allocated_reg_info_size = size;
2792 /* Return TRUE if there is too high register pressure in the function.
2793 It is used to decide when stack slot sharing is worth to do. */
2794 static bool
2795 too_high_register_pressure_p (void)
2797 int i;
2798 enum reg_class pclass;
2800 for (i = 0; i < ira_pressure_classes_num; i++)
2802 pclass = ira_pressure_classes[i];
2803 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2804 return true;
2806 return false;
2811 /* Indicate that hard register number FROM was eliminated and replaced with
2812 an offset from hard register number TO. The status of hard registers live
2813 at the start of a basic block is updated by replacing a use of FROM with
2814 a use of TO. */
2816 void
2817 mark_elimination (int from, int to)
2819 basic_block bb;
2820 bitmap r;
2822 FOR_EACH_BB_FN (bb, cfun)
2824 r = DF_LR_IN (bb);
2825 if (bitmap_bit_p (r, from))
2827 bitmap_clear_bit (r, from);
2828 bitmap_set_bit (r, to);
2830 if (! df_live)
2831 continue;
2832 r = DF_LIVE_IN (bb);
2833 if (bitmap_bit_p (r, from))
2835 bitmap_clear_bit (r, from);
2836 bitmap_set_bit (r, to);
2843 /* The length of the following array. */
2844 int ira_reg_equiv_len;
2846 /* Info about equiv. info for each register. */
2847 struct ira_reg_equiv_s *ira_reg_equiv;
2849 /* Expand ira_reg_equiv if necessary. */
2850 void
2851 ira_expand_reg_equiv (void)
2853 int old = ira_reg_equiv_len;
2855 if (ira_reg_equiv_len > max_reg_num ())
2856 return;
2857 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2858 ira_reg_equiv
2859 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2860 ira_reg_equiv_len
2861 * sizeof (struct ira_reg_equiv_s));
2862 gcc_assert (old < ira_reg_equiv_len);
2863 memset (ira_reg_equiv + old, 0,
2864 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2867 static void
2868 init_reg_equiv (void)
2870 ira_reg_equiv_len = 0;
2871 ira_reg_equiv = NULL;
2872 ira_expand_reg_equiv ();
2875 static void
2876 finish_reg_equiv (void)
2878 free (ira_reg_equiv);
2883 struct equivalence
2885 /* Set when a REG_EQUIV note is found or created. Use to
2886 keep track of what memory accesses might be created later,
2887 e.g. by reload. */
2888 rtx replacement;
2889 rtx *src_p;
2891 /* The list of each instruction which initializes this register.
2893 NULL indicates we know nothing about this register's equivalence
2894 properties.
2896 An INSN_LIST with a NULL insn indicates this pseudo is already
2897 known to not have a valid equivalence. */
2898 rtx_insn_list *init_insns;
2900 /* Loop depth is used to recognize equivalences which appear
2901 to be present within the same loop (or in an inner loop). */
2902 short loop_depth;
2903 /* Nonzero if this had a preexisting REG_EQUIV note. */
2904 unsigned char is_arg_equivalence : 1;
2905 /* Set when an attempt should be made to replace a register
2906 with the associated src_p entry. */
2907 unsigned char replace : 1;
2908 /* Set if this register has no known equivalence. */
2909 unsigned char no_equiv : 1;
2910 /* Set if this register is mentioned in a paradoxical subreg. */
2911 unsigned char pdx_subregs : 1;
2914 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2915 structure for that register. */
2916 static struct equivalence *reg_equiv;
2918 /* Used for communication between the following two functions. */
2919 struct equiv_mem_data
2921 /* A MEM that we wish to ensure remains unchanged. */
2922 rtx equiv_mem;
2924 /* Set true if EQUIV_MEM is modified. */
2925 bool equiv_mem_modified;
2928 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2929 Called via note_stores. */
2930 static void
2931 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2932 void *data)
2934 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2936 if ((REG_P (dest)
2937 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2938 || (MEM_P (dest)
2939 && anti_dependence (info->equiv_mem, dest)))
2940 info->equiv_mem_modified = true;
2943 enum valid_equiv { valid_none, valid_combine, valid_reload };
2945 /* Verify that no store between START and the death of REG invalidates
2946 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2947 by storing into an overlapping memory location, or with a non-const
2948 CALL_INSN.
2950 Return VALID_RELOAD if MEMREF remains valid for both reload and
2951 combine_and_move insns, VALID_COMBINE if only valid for
2952 combine_and_move_insns, and VALID_NONE otherwise. */
2953 static enum valid_equiv
2954 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2956 rtx_insn *insn;
2957 rtx note;
2958 struct equiv_mem_data info = { memref, false };
2959 enum valid_equiv ret = valid_reload;
2961 /* If the memory reference has side effects or is volatile, it isn't a
2962 valid equivalence. */
2963 if (side_effects_p (memref))
2964 return valid_none;
2966 for (insn = start; insn; insn = NEXT_INSN (insn))
2968 if (!INSN_P (insn))
2969 continue;
2971 if (find_reg_note (insn, REG_DEAD, reg))
2972 return ret;
2974 if (CALL_P (insn))
2976 /* We can combine a reg def from one insn into a reg use in
2977 another over a call if the memory is readonly or the call
2978 const/pure. However, we can't set reg_equiv notes up for
2979 reload over any call. The problem is the equivalent form
2980 may reference a pseudo which gets assigned a call
2981 clobbered hard reg. When we later replace REG with its
2982 equivalent form, the value in the call-clobbered reg has
2983 been changed and all hell breaks loose. */
2984 ret = valid_combine;
2985 if (!MEM_READONLY_P (memref)
2986 && !RTL_CONST_OR_PURE_CALL_P (insn))
2987 return valid_none;
2990 note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
2991 if (info.equiv_mem_modified)
2992 return valid_none;
2994 /* If a register mentioned in MEMREF is modified via an
2995 auto-increment, we lose the equivalence. Do the same if one
2996 dies; although we could extend the life, it doesn't seem worth
2997 the trouble. */
2999 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3000 if ((REG_NOTE_KIND (note) == REG_INC
3001 || REG_NOTE_KIND (note) == REG_DEAD)
3002 && REG_P (XEXP (note, 0))
3003 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3004 return valid_none;
3007 return valid_none;
3010 /* Returns zero if X is known to be invariant. */
3011 static int
3012 equiv_init_varies_p (rtx x)
3014 RTX_CODE code = GET_CODE (x);
3015 int i;
3016 const char *fmt;
3018 switch (code)
3020 case MEM:
3021 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3023 case CONST:
3024 CASE_CONST_ANY:
3025 case SYMBOL_REF:
3026 case LABEL_REF:
3027 return 0;
3029 case REG:
3030 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3032 case ASM_OPERANDS:
3033 if (MEM_VOLATILE_P (x))
3034 return 1;
3036 /* Fall through. */
3038 default:
3039 break;
3042 fmt = GET_RTX_FORMAT (code);
3043 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3044 if (fmt[i] == 'e')
3046 if (equiv_init_varies_p (XEXP (x, i)))
3047 return 1;
3049 else if (fmt[i] == 'E')
3051 int j;
3052 for (j = 0; j < XVECLEN (x, i); j++)
3053 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3054 return 1;
3057 return 0;
3060 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3061 X is only movable if the registers it uses have equivalent initializations
3062 which appear to be within the same loop (or in an inner loop) and movable
3063 or if they are not candidates for local_alloc and don't vary. */
3064 static int
3065 equiv_init_movable_p (rtx x, int regno)
3067 int i, j;
3068 const char *fmt;
3069 enum rtx_code code = GET_CODE (x);
3071 switch (code)
3073 case SET:
3074 return equiv_init_movable_p (SET_SRC (x), regno);
3076 case CC0:
3077 case CLOBBER:
3078 return 0;
3080 case PRE_INC:
3081 case PRE_DEC:
3082 case POST_INC:
3083 case POST_DEC:
3084 case PRE_MODIFY:
3085 case POST_MODIFY:
3086 return 0;
3088 case REG:
3089 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3090 && reg_equiv[REGNO (x)].replace)
3091 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3092 && ! rtx_varies_p (x, 0)));
3094 case UNSPEC_VOLATILE:
3095 return 0;
3097 case ASM_OPERANDS:
3098 if (MEM_VOLATILE_P (x))
3099 return 0;
3101 /* Fall through. */
3103 default:
3104 break;
3107 fmt = GET_RTX_FORMAT (code);
3108 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3109 switch (fmt[i])
3111 case 'e':
3112 if (! equiv_init_movable_p (XEXP (x, i), regno))
3113 return 0;
3114 break;
3115 case 'E':
3116 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3117 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3118 return 0;
3119 break;
3122 return 1;
3125 /* TRUE if X references a memory location that would be affected by a store
3126 to MEMREF. */
3127 static int
3128 memref_referenced_p (rtx memref, rtx x)
3130 int i, j;
3131 const char *fmt;
3132 enum rtx_code code = GET_CODE (x);
3134 switch (code)
3136 case CONST:
3137 case LABEL_REF:
3138 case SYMBOL_REF:
3139 CASE_CONST_ANY:
3140 case PC:
3141 case CC0:
3142 case HIGH:
3143 case LO_SUM:
3144 return 0;
3146 case REG:
3147 return (reg_equiv[REGNO (x)].replacement
3148 && memref_referenced_p (memref,
3149 reg_equiv[REGNO (x)].replacement));
3151 case MEM:
3152 if (true_dependence (memref, VOIDmode, x))
3153 return 1;
3154 break;
3156 case SET:
3157 /* If we are setting a MEM, it doesn't count (its address does), but any
3158 other SET_DEST that has a MEM in it is referencing the MEM. */
3159 if (MEM_P (SET_DEST (x)))
3161 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3162 return 1;
3164 else if (memref_referenced_p (memref, SET_DEST (x)))
3165 return 1;
3167 return memref_referenced_p (memref, SET_SRC (x));
3169 default:
3170 break;
3173 fmt = GET_RTX_FORMAT (code);
3174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3175 switch (fmt[i])
3177 case 'e':
3178 if (memref_referenced_p (memref, XEXP (x, i)))
3179 return 1;
3180 break;
3181 case 'E':
3182 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3183 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3184 return 1;
3185 break;
3188 return 0;
3191 /* TRUE if some insn in the range (START, END] references a memory location
3192 that would be affected by a store to MEMREF.
3194 Callers should not call this routine if START is after END in the
3195 RTL chain. */
3197 static int
3198 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3200 rtx_insn *insn;
3202 for (insn = NEXT_INSN (start);
3203 insn && insn != NEXT_INSN (end);
3204 insn = NEXT_INSN (insn))
3206 if (!NONDEBUG_INSN_P (insn))
3207 continue;
3209 if (memref_referenced_p (memref, PATTERN (insn)))
3210 return 1;
3212 /* Nonconst functions may access memory. */
3213 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3214 return 1;
3217 gcc_assert (insn == NEXT_INSN (end));
3218 return 0;
3221 /* Mark REG as having no known equivalence.
3222 Some instructions might have been processed before and furnished
3223 with REG_EQUIV notes for this register; these notes will have to be
3224 removed.
3225 STORE is the piece of RTL that does the non-constant / conflicting
3226 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3227 but needs to be there because this function is called from note_stores. */
3228 static void
3229 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3230 void *data ATTRIBUTE_UNUSED)
3232 int regno;
3233 rtx_insn_list *list;
3235 if (!REG_P (reg))
3236 return;
3237 regno = REGNO (reg);
3238 reg_equiv[regno].no_equiv = 1;
3239 list = reg_equiv[regno].init_insns;
3240 if (list && list->insn () == NULL)
3241 return;
3242 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3243 reg_equiv[regno].replacement = NULL_RTX;
3244 /* This doesn't matter for equivalences made for argument registers, we
3245 should keep their initialization insns. */
3246 if (reg_equiv[regno].is_arg_equivalence)
3247 return;
3248 ira_reg_equiv[regno].defined_p = false;
3249 ira_reg_equiv[regno].init_insns = NULL;
3250 for (; list; list = list->next ())
3252 rtx_insn *insn = list->insn ();
3253 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3257 /* Check whether the SUBREG is a paradoxical subreg and set the result
3258 in PDX_SUBREGS. */
3260 static void
3261 set_paradoxical_subreg (rtx_insn *insn)
3263 subrtx_iterator::array_type array;
3264 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3266 const_rtx subreg = *iter;
3267 if (GET_CODE (subreg) == SUBREG)
3269 const_rtx reg = SUBREG_REG (subreg);
3270 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3271 reg_equiv[REGNO (reg)].pdx_subregs = true;
3276 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3277 equivalent replacement. */
3279 static rtx
3280 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3282 if (REG_P (loc))
3284 bitmap cleared_regs = (bitmap) data;
3285 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3286 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3287 NULL_RTX, adjust_cleared_regs, data);
3289 return NULL_RTX;
3292 /* Find registers that are equivalent to a single value throughout the
3293 compilation (either because they can be referenced in memory or are
3294 set once from a single constant). Lower their priority for a
3295 register.
3297 If such a register is only referenced once, try substituting its
3298 value into the using insn. If it succeeds, we can eliminate the
3299 register completely.
3301 Initialize init_insns in ira_reg_equiv array. */
3302 static void
3303 update_equiv_regs (void)
3305 rtx_insn *insn;
3306 basic_block bb;
3308 /* Scan insns and set pdx_subregs if the reg is used in a
3309 paradoxical subreg. Don't set such reg equivalent to a mem,
3310 because lra will not substitute such equiv memory in order to
3311 prevent access beyond allocated memory for paradoxical memory subreg. */
3312 FOR_EACH_BB_FN (bb, cfun)
3313 FOR_BB_INSNS (bb, insn)
3314 if (NONDEBUG_INSN_P (insn))
3315 set_paradoxical_subreg (insn);
3317 /* Scan the insns and find which registers have equivalences. Do this
3318 in a separate scan of the insns because (due to -fcse-follow-jumps)
3319 a register can be set below its use. */
3320 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3321 FOR_EACH_BB_FN (bb, cfun)
3323 int loop_depth = bb_loop_depth (bb);
3325 for (insn = BB_HEAD (bb);
3326 insn != NEXT_INSN (BB_END (bb));
3327 insn = NEXT_INSN (insn))
3329 rtx note;
3330 rtx set;
3331 rtx dest, src;
3332 int regno;
3334 if (! INSN_P (insn))
3335 continue;
3337 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3338 if (REG_NOTE_KIND (note) == REG_INC)
3339 no_equiv (XEXP (note, 0), note, NULL);
3341 set = single_set (insn);
3343 /* If this insn contains more (or less) than a single SET,
3344 only mark all destinations as having no known equivalence. */
3345 if (set == NULL_RTX
3346 || side_effects_p (SET_SRC (set)))
3348 note_stores (PATTERN (insn), no_equiv, NULL);
3349 continue;
3351 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3353 int i;
3355 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3357 rtx part = XVECEXP (PATTERN (insn), 0, i);
3358 if (part != set)
3359 note_stores (part, no_equiv, NULL);
3363 dest = SET_DEST (set);
3364 src = SET_SRC (set);
3366 /* See if this is setting up the equivalence between an argument
3367 register and its stack slot. */
3368 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3369 if (note)
3371 gcc_assert (REG_P (dest));
3372 regno = REGNO (dest);
3374 /* Note that we don't want to clear init_insns in
3375 ira_reg_equiv even if there are multiple sets of this
3376 register. */
3377 reg_equiv[regno].is_arg_equivalence = 1;
3379 /* The insn result can have equivalence memory although
3380 the equivalence is not set up by the insn. We add
3381 this insn to init insns as it is a flag for now that
3382 regno has an equivalence. We will remove the insn
3383 from init insn list later. */
3384 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3385 ira_reg_equiv[regno].init_insns
3386 = gen_rtx_INSN_LIST (VOIDmode, insn,
3387 ira_reg_equiv[regno].init_insns);
3389 /* Continue normally in case this is a candidate for
3390 replacements. */
3393 if (!optimize)
3394 continue;
3396 /* We only handle the case of a pseudo register being set
3397 once, or always to the same value. */
3398 /* ??? The mn10200 port breaks if we add equivalences for
3399 values that need an ADDRESS_REGS register and set them equivalent
3400 to a MEM of a pseudo. The actual problem is in the over-conservative
3401 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3402 calculate_needs, but we traditionally work around this problem
3403 here by rejecting equivalences when the destination is in a register
3404 that's likely spilled. This is fragile, of course, since the
3405 preferred class of a pseudo depends on all instructions that set
3406 or use it. */
3408 if (!REG_P (dest)
3409 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3410 || (reg_equiv[regno].init_insns
3411 && reg_equiv[regno].init_insns->insn () == NULL)
3412 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3413 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3415 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3416 also set somewhere else to a constant. */
3417 note_stores (set, no_equiv, NULL);
3418 continue;
3421 /* Don't set reg mentioned in a paradoxical subreg
3422 equivalent to a mem. */
3423 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3425 note_stores (set, no_equiv, NULL);
3426 continue;
3429 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3431 /* cse sometimes generates function invariants, but doesn't put a
3432 REG_EQUAL note on the insn. Since this note would be redundant,
3433 there's no point creating it earlier than here. */
3434 if (! note && ! rtx_varies_p (src, 0))
3435 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3437 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3438 since it represents a function call. */
3439 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3440 note = NULL_RTX;
3442 if (DF_REG_DEF_COUNT (regno) != 1)
3444 bool equal_p = true;
3445 rtx_insn_list *list;
3447 /* If we have already processed this pseudo and determined it
3448 can not have an equivalence, then honor that decision. */
3449 if (reg_equiv[regno].no_equiv)
3450 continue;
3452 if (! note
3453 || rtx_varies_p (XEXP (note, 0), 0)
3454 || (reg_equiv[regno].replacement
3455 && ! rtx_equal_p (XEXP (note, 0),
3456 reg_equiv[regno].replacement)))
3458 no_equiv (dest, set, NULL);
3459 continue;
3462 list = reg_equiv[regno].init_insns;
3463 for (; list; list = list->next ())
3465 rtx note_tmp;
3466 rtx_insn *insn_tmp;
3468 insn_tmp = list->insn ();
3469 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3470 gcc_assert (note_tmp);
3471 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3473 equal_p = false;
3474 break;
3478 if (! equal_p)
3480 no_equiv (dest, set, NULL);
3481 continue;
3485 /* Record this insn as initializing this register. */
3486 reg_equiv[regno].init_insns
3487 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3489 /* If this register is known to be equal to a constant, record that
3490 it is always equivalent to the constant. */
3491 if (DF_REG_DEF_COUNT (regno) == 1
3492 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3494 rtx note_value = XEXP (note, 0);
3495 remove_note (insn, note);
3496 set_unique_reg_note (insn, REG_EQUIV, note_value);
3499 /* If this insn introduces a "constant" register, decrease the priority
3500 of that register. Record this insn if the register is only used once
3501 more and the equivalence value is the same as our source.
3503 The latter condition is checked for two reasons: First, it is an
3504 indication that it may be more efficient to actually emit the insn
3505 as written (if no registers are available, reload will substitute
3506 the equivalence). Secondly, it avoids problems with any registers
3507 dying in this insn whose death notes would be missed.
3509 If we don't have a REG_EQUIV note, see if this insn is loading
3510 a register used only in one basic block from a MEM. If so, and the
3511 MEM remains unchanged for the life of the register, add a REG_EQUIV
3512 note. */
3513 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3515 rtx replacement = NULL_RTX;
3516 if (note)
3517 replacement = XEXP (note, 0);
3518 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3519 && MEM_P (SET_SRC (set)))
3521 enum valid_equiv validity;
3522 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3523 if (validity != valid_none)
3525 replacement = copy_rtx (SET_SRC (set));
3526 if (validity == valid_reload)
3527 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3531 /* If we haven't done so, record for reload that this is an
3532 equivalencing insn. */
3533 if (note && !reg_equiv[regno].is_arg_equivalence)
3534 ira_reg_equiv[regno].init_insns
3535 = gen_rtx_INSN_LIST (VOIDmode, insn,
3536 ira_reg_equiv[regno].init_insns);
3538 if (replacement)
3540 reg_equiv[regno].replacement = replacement;
3541 reg_equiv[regno].src_p = &SET_SRC (set);
3542 reg_equiv[regno].loop_depth = (short) loop_depth;
3544 /* Don't mess with things live during setjmp. */
3545 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3547 /* If the register is referenced exactly twice, meaning it is
3548 set once and used once, indicate that the reference may be
3549 replaced by the equivalence we computed above. Do this
3550 even if the register is only used in one block so that
3551 dependencies can be handled where the last register is
3552 used in a different block (i.e. HIGH / LO_SUM sequences)
3553 and to reduce the number of registers alive across
3554 calls. */
3556 if (REG_N_REFS (regno) == 2
3557 && (rtx_equal_p (replacement, src)
3558 || ! equiv_init_varies_p (src))
3559 && NONJUMP_INSN_P (insn)
3560 && equiv_init_movable_p (PATTERN (insn), regno))
3561 reg_equiv[regno].replace = 1;
3568 /* For insns that set a MEM to the contents of a REG that is only used
3569 in a single basic block, see if the register is always equivalent
3570 to that memory location and if moving the store from INSN to the
3571 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3572 initializing insn. */
3573 static void
3574 add_store_equivs (void)
3576 bitmap_head seen_insns;
3578 bitmap_initialize (&seen_insns, NULL);
3579 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3581 rtx set, src, dest;
3582 unsigned regno;
3583 rtx_insn *init_insn;
3585 bitmap_set_bit (&seen_insns, INSN_UID (insn));
3587 if (! INSN_P (insn))
3588 continue;
3590 set = single_set (insn);
3591 if (! set)
3592 continue;
3594 dest = SET_DEST (set);
3595 src = SET_SRC (set);
3597 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3598 REG_EQUIV is likely more useful than the one we are adding. */
3599 if (MEM_P (dest) && REG_P (src)
3600 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3601 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3602 && DF_REG_DEF_COUNT (regno) == 1
3603 && ! reg_equiv[regno].pdx_subregs
3604 && reg_equiv[regno].init_insns != NULL
3605 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3606 && bitmap_bit_p (&seen_insns, INSN_UID (init_insn))
3607 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3608 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3609 && ! memref_used_between_p (dest, init_insn, insn)
3610 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3611 multiple sets. */
3612 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3614 /* This insn makes the equivalence, not the one initializing
3615 the register. */
3616 ira_reg_equiv[regno].init_insns
3617 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3618 df_notes_rescan (init_insn);
3619 if (dump_file)
3620 fprintf (dump_file,
3621 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3622 INSN_UID (init_insn),
3623 INSN_UID (insn));
3626 bitmap_clear (&seen_insns);
3629 /* Scan all regs killed in an insn to see if any of them are registers
3630 only used that once. If so, see if we can replace the reference
3631 with the equivalent form. If we can, delete the initializing
3632 reference and this register will go away. If we can't replace the
3633 reference, and the initializing reference is within the same loop
3634 (or in an inner loop), then move the register initialization just
3635 before the use, so that they are in the same basic block. */
3636 static void
3637 combine_and_move_insns (void)
3639 bitmap cleared_regs = BITMAP_ALLOC (NULL);
3640 int max = max_reg_num ();
3642 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3644 if (!reg_equiv[regno].replace)
3645 continue;
3647 rtx_insn *use_insn = 0;
3648 for (df_ref use = DF_REG_USE_CHAIN (regno);
3649 use;
3650 use = DF_REF_NEXT_REG (use))
3651 if (DF_REF_INSN_INFO (use))
3653 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3654 continue;
3655 gcc_assert (!use_insn);
3656 use_insn = DF_REF_INSN (use);
3658 gcc_assert (use_insn);
3660 /* Don't substitute into jumps. indirect_jump_optimize does
3661 this for anything we are prepared to handle. */
3662 if (JUMP_P (use_insn))
3663 continue;
3665 df_ref def = DF_REG_DEF_CHAIN (regno);
3666 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3667 rtx_insn *def_insn = DF_REF_INSN (def);
3669 /* We may not move instructions that can throw, since that
3670 changes basic block boundaries and we are not prepared to
3671 adjust the CFG to match. */
3672 if (can_throw_internal (def_insn))
3673 continue;
3675 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3676 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3677 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3678 continue;
3680 if (asm_noperands (PATTERN (def_insn)) < 0
3681 && validate_replace_rtx (regno_reg_rtx[regno],
3682 *reg_equiv[regno].src_p, use_insn))
3684 rtx link;
3685 /* Append the REG_DEAD notes from def_insn. */
3686 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3688 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3690 *p = XEXP (link, 1);
3691 XEXP (link, 1) = REG_NOTES (use_insn);
3692 REG_NOTES (use_insn) = link;
3694 else
3695 p = &XEXP (link, 1);
3698 remove_death (regno, use_insn);
3699 SET_REG_N_REFS (regno, 0);
3700 REG_FREQ (regno) = 0;
3701 delete_insn (def_insn);
3703 reg_equiv[regno].init_insns = NULL;
3704 ira_reg_equiv[regno].init_insns = NULL;
3705 bitmap_set_bit (cleared_regs, regno);
3708 /* Move the initialization of the register to just before
3709 USE_INSN. Update the flow information. */
3710 else if (prev_nondebug_insn (use_insn) != def_insn)
3712 rtx_insn *new_insn;
3714 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3715 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3716 REG_NOTES (def_insn) = 0;
3717 /* Rescan it to process the notes. */
3718 df_insn_rescan (new_insn);
3720 /* Make sure this insn is recognized before reload begins,
3721 otherwise eliminate_regs_in_insn will die. */
3722 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3724 delete_insn (def_insn);
3726 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3728 REG_BASIC_BLOCK (regno) = use_bb->index;
3729 REG_N_CALLS_CROSSED (regno) = 0;
3731 if (use_insn == BB_HEAD (use_bb))
3732 BB_HEAD (use_bb) = new_insn;
3734 /* We know regno dies in use_insn, but inside a loop
3735 REG_DEAD notes might be missing when def_insn was in
3736 another basic block. However, when we move def_insn into
3737 this bb we'll definitely get a REG_DEAD note and reload
3738 will see the death. It's possible that update_equiv_regs
3739 set up an equivalence referencing regno for a reg set by
3740 use_insn, when regno was seen as non-local. Now that
3741 regno is local to this block, and dies, such an
3742 equivalence is invalid. */
3743 if (find_reg_note (use_insn, REG_EQUIV, NULL_RTX))
3745 rtx set = single_set (use_insn);
3746 if (set && REG_P (SET_DEST (set)))
3747 no_equiv (SET_DEST (set), set, NULL);
3750 ira_reg_equiv[regno].init_insns
3751 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3752 bitmap_set_bit (cleared_regs, regno);
3756 if (!bitmap_empty_p (cleared_regs))
3758 basic_block bb;
3760 FOR_EACH_BB_FN (bb, cfun)
3762 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3763 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3764 if (!df_live)
3765 continue;
3766 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3767 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3770 /* Last pass - adjust debug insns referencing cleared regs. */
3771 if (MAY_HAVE_DEBUG_INSNS)
3772 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3773 if (DEBUG_INSN_P (insn))
3775 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3776 INSN_VAR_LOCATION_LOC (insn)
3777 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3778 adjust_cleared_regs,
3779 (void *) cleared_regs);
3780 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3781 df_insn_rescan (insn);
3785 BITMAP_FREE (cleared_regs);
3788 /* A pass over indirect jumps, converting simple cases to direct jumps.
3789 Combine does this optimization too, but only within a basic block. */
3790 static void
3791 indirect_jump_optimize (void)
3793 basic_block bb;
3794 bool rebuild_p = false;
3796 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3798 rtx_insn *insn = BB_END (bb);
3799 if (!JUMP_P (insn)
3800 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3801 continue;
3803 rtx x = pc_set (insn);
3804 if (!x || !REG_P (SET_SRC (x)))
3805 continue;
3807 int regno = REGNO (SET_SRC (x));
3808 if (DF_REG_DEF_COUNT (regno) == 1)
3810 df_ref def = DF_REG_DEF_CHAIN (regno);
3811 if (!DF_REF_IS_ARTIFICIAL (def))
3813 rtx_insn *def_insn = DF_REF_INSN (def);
3814 rtx lab = NULL_RTX;
3815 rtx set = single_set (def_insn);
3816 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3817 lab = SET_SRC (set);
3818 else
3820 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3821 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3822 lab = XEXP (eqnote, 0);
3824 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3825 rebuild_p = true;
3830 if (rebuild_p)
3832 timevar_push (TV_JUMP);
3833 rebuild_jump_labels (get_insns ());
3834 if (purge_all_dead_edges ())
3835 delete_unreachable_blocks ();
3836 timevar_pop (TV_JUMP);
3840 /* Set up fields memory, constant, and invariant from init_insns in
3841 the structures of array ira_reg_equiv. */
3842 static void
3843 setup_reg_equiv (void)
3845 int i;
3846 rtx_insn_list *elem, *prev_elem, *next_elem;
3847 rtx_insn *insn;
3848 rtx set, x;
3850 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3851 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3852 elem;
3853 prev_elem = elem, elem = next_elem)
3855 next_elem = elem->next ();
3856 insn = elem->insn ();
3857 set = single_set (insn);
3859 /* Init insns can set up equivalence when the reg is a destination or
3860 a source (in this case the destination is memory). */
3861 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3863 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3865 x = XEXP (x, 0);
3866 if (REG_P (SET_DEST (set))
3867 && REGNO (SET_DEST (set)) == (unsigned int) i
3868 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3870 /* This insn reporting the equivalence but
3871 actually not setting it. Remove it from the
3872 list. */
3873 if (prev_elem == NULL)
3874 ira_reg_equiv[i].init_insns = next_elem;
3875 else
3876 XEXP (prev_elem, 1) = next_elem;
3877 elem = prev_elem;
3880 else if (REG_P (SET_DEST (set))
3881 && REGNO (SET_DEST (set)) == (unsigned int) i)
3882 x = SET_SRC (set);
3883 else
3885 gcc_assert (REG_P (SET_SRC (set))
3886 && REGNO (SET_SRC (set)) == (unsigned int) i);
3887 x = SET_DEST (set);
3889 if (! function_invariant_p (x)
3890 || ! flag_pic
3891 /* A function invariant is often CONSTANT_P but may
3892 include a register. We promise to only pass
3893 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3894 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3896 /* It can happen that a REG_EQUIV note contains a MEM
3897 that is not a legitimate memory operand. As later
3898 stages of reload assume that all addresses found in
3899 the lra_regno_equiv_* arrays were originally
3900 legitimate, we ignore such REG_EQUIV notes. */
3901 if (memory_operand (x, VOIDmode))
3903 ira_reg_equiv[i].defined_p = true;
3904 ira_reg_equiv[i].memory = x;
3905 continue;
3907 else if (function_invariant_p (x))
3909 machine_mode mode;
3911 mode = GET_MODE (SET_DEST (set));
3912 if (GET_CODE (x) == PLUS
3913 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3914 /* This is PLUS of frame pointer and a constant,
3915 or fp, or argp. */
3916 ira_reg_equiv[i].invariant = x;
3917 else if (targetm.legitimate_constant_p (mode, x))
3918 ira_reg_equiv[i].constant = x;
3919 else
3921 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3922 if (ira_reg_equiv[i].memory == NULL_RTX)
3924 ira_reg_equiv[i].defined_p = false;
3925 ira_reg_equiv[i].init_insns = NULL;
3926 break;
3929 ira_reg_equiv[i].defined_p = true;
3930 continue;
3934 ira_reg_equiv[i].defined_p = false;
3935 ira_reg_equiv[i].init_insns = NULL;
3936 break;
3942 /* Print chain C to FILE. */
3943 static void
3944 print_insn_chain (FILE *file, struct insn_chain *c)
3946 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3947 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3948 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3952 /* Print all reload_insn_chains to FILE. */
3953 static void
3954 print_insn_chains (FILE *file)
3956 struct insn_chain *c;
3957 for (c = reload_insn_chain; c ; c = c->next)
3958 print_insn_chain (file, c);
3961 /* Return true if pseudo REGNO should be added to set live_throughout
3962 or dead_or_set of the insn chains for reload consideration. */
3963 static bool
3964 pseudo_for_reload_consideration_p (int regno)
3966 /* Consider spilled pseudos too for IRA because they still have a
3967 chance to get hard-registers in the reload when IRA is used. */
3968 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3971 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3972 REG to the number of nregs, and INIT_VALUE to get the
3973 initialization. ALLOCNUM need not be the regno of REG. */
3974 static void
3975 init_live_subregs (bool init_value, sbitmap *live_subregs,
3976 bitmap live_subregs_used, int allocnum, rtx reg)
3978 unsigned int regno = REGNO (SUBREG_REG (reg));
3979 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3981 gcc_assert (size > 0);
3983 /* Been there, done that. */
3984 if (bitmap_bit_p (live_subregs_used, allocnum))
3985 return;
3987 /* Create a new one. */
3988 if (live_subregs[allocnum] == NULL)
3989 live_subregs[allocnum] = sbitmap_alloc (size);
3991 /* If the entire reg was live before blasting into subregs, we need
3992 to init all of the subregs to ones else init to 0. */
3993 if (init_value)
3994 bitmap_ones (live_subregs[allocnum]);
3995 else
3996 bitmap_clear (live_subregs[allocnum]);
3998 bitmap_set_bit (live_subregs_used, allocnum);
4001 /* Walk the insns of the current function and build reload_insn_chain,
4002 and record register life information. */
4003 static void
4004 build_insn_chain (void)
4006 unsigned int i;
4007 struct insn_chain **p = &reload_insn_chain;
4008 basic_block bb;
4009 struct insn_chain *c = NULL;
4010 struct insn_chain *next = NULL;
4011 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4012 bitmap elim_regset = BITMAP_ALLOC (NULL);
4013 /* live_subregs is a vector used to keep accurate information about
4014 which hardregs are live in multiword pseudos. live_subregs and
4015 live_subregs_used are indexed by pseudo number. The live_subreg
4016 entry for a particular pseudo is only used if the corresponding
4017 element is non zero in live_subregs_used. The sbitmap size of
4018 live_subreg[allocno] is number of bytes that the pseudo can
4019 occupy. */
4020 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4021 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4023 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4024 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4025 bitmap_set_bit (elim_regset, i);
4026 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4028 bitmap_iterator bi;
4029 rtx_insn *insn;
4031 CLEAR_REG_SET (live_relevant_regs);
4032 bitmap_clear (live_subregs_used);
4034 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4036 if (i >= FIRST_PSEUDO_REGISTER)
4037 break;
4038 bitmap_set_bit (live_relevant_regs, i);
4041 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4042 FIRST_PSEUDO_REGISTER, i, bi)
4044 if (pseudo_for_reload_consideration_p (i))
4045 bitmap_set_bit (live_relevant_regs, i);
4048 FOR_BB_INSNS_REVERSE (bb, insn)
4050 if (!NOTE_P (insn) && !BARRIER_P (insn))
4052 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4053 df_ref def, use;
4055 c = new_insn_chain ();
4056 c->next = next;
4057 next = c;
4058 *p = c;
4059 p = &c->prev;
4061 c->insn = insn;
4062 c->block = bb->index;
4064 if (NONDEBUG_INSN_P (insn))
4065 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4067 unsigned int regno = DF_REF_REGNO (def);
4069 /* Ignore may clobbers because these are generated
4070 from calls. However, every other kind of def is
4071 added to dead_or_set. */
4072 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4074 if (regno < FIRST_PSEUDO_REGISTER)
4076 if (!fixed_regs[regno])
4077 bitmap_set_bit (&c->dead_or_set, regno);
4079 else if (pseudo_for_reload_consideration_p (regno))
4080 bitmap_set_bit (&c->dead_or_set, regno);
4083 if ((regno < FIRST_PSEUDO_REGISTER
4084 || reg_renumber[regno] >= 0
4085 || ira_conflicts_p)
4086 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4088 rtx reg = DF_REF_REG (def);
4090 /* We can model subregs, but not if they are
4091 wrapped in ZERO_EXTRACTS. */
4092 if (GET_CODE (reg) == SUBREG
4093 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4095 unsigned int start = SUBREG_BYTE (reg);
4096 unsigned int last = start
4097 + GET_MODE_SIZE (GET_MODE (reg));
4099 init_live_subregs
4100 (bitmap_bit_p (live_relevant_regs, regno),
4101 live_subregs, live_subregs_used, regno, reg);
4103 if (!DF_REF_FLAGS_IS_SET
4104 (def, DF_REF_STRICT_LOW_PART))
4106 /* Expand the range to cover entire words.
4107 Bytes added here are "don't care". */
4108 start
4109 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4110 last = ((last + UNITS_PER_WORD - 1)
4111 / UNITS_PER_WORD * UNITS_PER_WORD);
4114 /* Ignore the paradoxical bits. */
4115 if (last > SBITMAP_SIZE (live_subregs[regno]))
4116 last = SBITMAP_SIZE (live_subregs[regno]);
4118 while (start < last)
4120 bitmap_clear_bit (live_subregs[regno], start);
4121 start++;
4124 if (bitmap_empty_p (live_subregs[regno]))
4126 bitmap_clear_bit (live_subregs_used, regno);
4127 bitmap_clear_bit (live_relevant_regs, regno);
4129 else
4130 /* Set live_relevant_regs here because
4131 that bit has to be true to get us to
4132 look at the live_subregs fields. */
4133 bitmap_set_bit (live_relevant_regs, regno);
4135 else
4137 /* DF_REF_PARTIAL is generated for
4138 subregs, STRICT_LOW_PART, and
4139 ZERO_EXTRACT. We handle the subreg
4140 case above so here we have to keep from
4141 modeling the def as a killing def. */
4142 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4144 bitmap_clear_bit (live_subregs_used, regno);
4145 bitmap_clear_bit (live_relevant_regs, regno);
4151 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4152 bitmap_copy (&c->live_throughout, live_relevant_regs);
4154 if (NONDEBUG_INSN_P (insn))
4155 FOR_EACH_INSN_INFO_USE (use, insn_info)
4157 unsigned int regno = DF_REF_REGNO (use);
4158 rtx reg = DF_REF_REG (use);
4160 /* DF_REF_READ_WRITE on a use means that this use
4161 is fabricated from a def that is a partial set
4162 to a multiword reg. Here, we only model the
4163 subreg case that is not wrapped in ZERO_EXTRACT
4164 precisely so we do not need to look at the
4165 fabricated use. */
4166 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4167 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4168 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4169 continue;
4171 /* Add the last use of each var to dead_or_set. */
4172 if (!bitmap_bit_p (live_relevant_regs, regno))
4174 if (regno < FIRST_PSEUDO_REGISTER)
4176 if (!fixed_regs[regno])
4177 bitmap_set_bit (&c->dead_or_set, regno);
4179 else if (pseudo_for_reload_consideration_p (regno))
4180 bitmap_set_bit (&c->dead_or_set, regno);
4183 if (regno < FIRST_PSEUDO_REGISTER
4184 || pseudo_for_reload_consideration_p (regno))
4186 if (GET_CODE (reg) == SUBREG
4187 && !DF_REF_FLAGS_IS_SET (use,
4188 DF_REF_SIGN_EXTRACT
4189 | DF_REF_ZERO_EXTRACT))
4191 unsigned int start = SUBREG_BYTE (reg);
4192 unsigned int last = start
4193 + GET_MODE_SIZE (GET_MODE (reg));
4195 init_live_subregs
4196 (bitmap_bit_p (live_relevant_regs, regno),
4197 live_subregs, live_subregs_used, regno, reg);
4199 /* Ignore the paradoxical bits. */
4200 if (last > SBITMAP_SIZE (live_subregs[regno]))
4201 last = SBITMAP_SIZE (live_subregs[regno]);
4203 while (start < last)
4205 bitmap_set_bit (live_subregs[regno], start);
4206 start++;
4209 else
4210 /* Resetting the live_subregs_used is
4211 effectively saying do not use the subregs
4212 because we are reading the whole
4213 pseudo. */
4214 bitmap_clear_bit (live_subregs_used, regno);
4215 bitmap_set_bit (live_relevant_regs, regno);
4221 /* FIXME!! The following code is a disaster. Reload needs to see the
4222 labels and jump tables that are just hanging out in between
4223 the basic blocks. See pr33676. */
4224 insn = BB_HEAD (bb);
4226 /* Skip over the barriers and cruft. */
4227 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4228 || BLOCK_FOR_INSN (insn) == bb))
4229 insn = PREV_INSN (insn);
4231 /* While we add anything except barriers and notes, the focus is
4232 to get the labels and jump tables into the
4233 reload_insn_chain. */
4234 while (insn)
4236 if (!NOTE_P (insn) && !BARRIER_P (insn))
4238 if (BLOCK_FOR_INSN (insn))
4239 break;
4241 c = new_insn_chain ();
4242 c->next = next;
4243 next = c;
4244 *p = c;
4245 p = &c->prev;
4247 /* The block makes no sense here, but it is what the old
4248 code did. */
4249 c->block = bb->index;
4250 c->insn = insn;
4251 bitmap_copy (&c->live_throughout, live_relevant_regs);
4253 insn = PREV_INSN (insn);
4257 reload_insn_chain = c;
4258 *p = NULL;
4260 for (i = 0; i < (unsigned int) max_regno; i++)
4261 if (live_subregs[i] != NULL)
4262 sbitmap_free (live_subregs[i]);
4263 free (live_subregs);
4264 BITMAP_FREE (live_subregs_used);
4265 BITMAP_FREE (live_relevant_regs);
4266 BITMAP_FREE (elim_regset);
4268 if (dump_file)
4269 print_insn_chains (dump_file);
4272 /* Examine the rtx found in *LOC, which is read or written to as determined
4273 by TYPE. Return false if we find a reason why an insn containing this
4274 rtx should not be moved (such as accesses to non-constant memory), true
4275 otherwise. */
4276 static bool
4277 rtx_moveable_p (rtx *loc, enum op_type type)
4279 const char *fmt;
4280 rtx x = *loc;
4281 enum rtx_code code = GET_CODE (x);
4282 int i, j;
4284 code = GET_CODE (x);
4285 switch (code)
4287 case CONST:
4288 CASE_CONST_ANY:
4289 case SYMBOL_REF:
4290 case LABEL_REF:
4291 return true;
4293 case PC:
4294 return type == OP_IN;
4296 case CC0:
4297 return false;
4299 case REG:
4300 if (x == frame_pointer_rtx)
4301 return true;
4302 if (HARD_REGISTER_P (x))
4303 return false;
4305 return true;
4307 case MEM:
4308 if (type == OP_IN && MEM_READONLY_P (x))
4309 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4310 return false;
4312 case SET:
4313 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4314 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4316 case STRICT_LOW_PART:
4317 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4319 case ZERO_EXTRACT:
4320 case SIGN_EXTRACT:
4321 return (rtx_moveable_p (&XEXP (x, 0), type)
4322 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4323 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4325 case CLOBBER:
4326 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4328 case UNSPEC_VOLATILE:
4329 /* It is a bad idea to consider insns with such rtl
4330 as moveable ones. The insn scheduler also considers them as barrier
4331 for a reason. */
4332 return false;
4334 default:
4335 break;
4338 fmt = GET_RTX_FORMAT (code);
4339 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4341 if (fmt[i] == 'e')
4343 if (!rtx_moveable_p (&XEXP (x, i), type))
4344 return false;
4346 else if (fmt[i] == 'E')
4347 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4349 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4350 return false;
4353 return true;
4356 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4357 to give dominance relationships between two insns I1 and I2. */
4358 static bool
4359 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4361 basic_block bb1 = BLOCK_FOR_INSN (i1);
4362 basic_block bb2 = BLOCK_FOR_INSN (i2);
4364 if (bb1 == bb2)
4365 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4366 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4369 /* Record the range of register numbers added by find_moveable_pseudos. */
4370 int first_moveable_pseudo, last_moveable_pseudo;
4372 /* These two vectors hold data for every register added by
4373 find_movable_pseudos, with index 0 holding data for the
4374 first_moveable_pseudo. */
4375 /* The original home register. */
4376 static vec<rtx> pseudo_replaced_reg;
4378 /* Look for instances where we have an instruction that is known to increase
4379 register pressure, and whose result is not used immediately. If it is
4380 possible to move the instruction downwards to just before its first use,
4381 split its lifetime into two ranges. We create a new pseudo to compute the
4382 value, and emit a move instruction just before the first use. If, after
4383 register allocation, the new pseudo remains unallocated, the function
4384 move_unallocated_pseudos then deletes the move instruction and places
4385 the computation just before the first use.
4387 Such a move is safe and profitable if all the input registers remain live
4388 and unchanged between the original computation and its first use. In such
4389 a situation, the computation is known to increase register pressure, and
4390 moving it is known to at least not worsen it.
4392 We restrict moves to only those cases where a register remains unallocated,
4393 in order to avoid interfering too much with the instruction schedule. As
4394 an exception, we may move insns which only modify their input register
4395 (typically induction variables), as this increases the freedom for our
4396 intended transformation, and does not limit the second instruction
4397 scheduler pass. */
4399 static void
4400 find_moveable_pseudos (void)
4402 unsigned i;
4403 int max_regs = max_reg_num ();
4404 int max_uid = get_max_uid ();
4405 basic_block bb;
4406 int *uid_luid = XNEWVEC (int, max_uid);
4407 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4408 /* A set of registers which are live but not modified throughout a block. */
4409 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4410 last_basic_block_for_fn (cfun));
4411 /* A set of registers which only exist in a given basic block. */
4412 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4413 last_basic_block_for_fn (cfun));
4414 /* A set of registers which are set once, in an instruction that can be
4415 moved freely downwards, but are otherwise transparent to a block. */
4416 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4417 last_basic_block_for_fn (cfun));
4418 bitmap_head live, used, set, interesting, unusable_as_input;
4419 bitmap_iterator bi;
4420 bitmap_initialize (&interesting, 0);
4422 first_moveable_pseudo = max_regs;
4423 pseudo_replaced_reg.release ();
4424 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4426 df_analyze ();
4427 calculate_dominance_info (CDI_DOMINATORS);
4429 i = 0;
4430 bitmap_initialize (&live, 0);
4431 bitmap_initialize (&used, 0);
4432 bitmap_initialize (&set, 0);
4433 bitmap_initialize (&unusable_as_input, 0);
4434 FOR_EACH_BB_FN (bb, cfun)
4436 rtx_insn *insn;
4437 bitmap transp = bb_transp_live + bb->index;
4438 bitmap moveable = bb_moveable_reg_sets + bb->index;
4439 bitmap local = bb_local + bb->index;
4441 bitmap_initialize (local, 0);
4442 bitmap_initialize (transp, 0);
4443 bitmap_initialize (moveable, 0);
4444 bitmap_copy (&live, df_get_live_out (bb));
4445 bitmap_and_into (&live, df_get_live_in (bb));
4446 bitmap_copy (transp, &live);
4447 bitmap_clear (moveable);
4448 bitmap_clear (&live);
4449 bitmap_clear (&used);
4450 bitmap_clear (&set);
4451 FOR_BB_INSNS (bb, insn)
4452 if (NONDEBUG_INSN_P (insn))
4454 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4455 df_ref def, use;
4457 uid_luid[INSN_UID (insn)] = i++;
4459 def = df_single_def (insn_info);
4460 use = df_single_use (insn_info);
4461 if (use
4462 && def
4463 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4464 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4465 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4467 unsigned regno = DF_REF_REGNO (use);
4468 bitmap_set_bit (moveable, regno);
4469 bitmap_set_bit (&set, regno);
4470 bitmap_set_bit (&used, regno);
4471 bitmap_clear_bit (transp, regno);
4472 continue;
4474 FOR_EACH_INSN_INFO_USE (use, insn_info)
4476 unsigned regno = DF_REF_REGNO (use);
4477 bitmap_set_bit (&used, regno);
4478 if (bitmap_clear_bit (moveable, regno))
4479 bitmap_clear_bit (transp, regno);
4482 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4484 unsigned regno = DF_REF_REGNO (def);
4485 bitmap_set_bit (&set, regno);
4486 bitmap_clear_bit (transp, regno);
4487 bitmap_clear_bit (moveable, regno);
4492 bitmap_clear (&live);
4493 bitmap_clear (&used);
4494 bitmap_clear (&set);
4496 FOR_EACH_BB_FN (bb, cfun)
4498 bitmap local = bb_local + bb->index;
4499 rtx_insn *insn;
4501 FOR_BB_INSNS (bb, insn)
4502 if (NONDEBUG_INSN_P (insn))
4504 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4505 rtx_insn *def_insn;
4506 rtx closest_use, note;
4507 df_ref def, use;
4508 unsigned regno;
4509 bool all_dominated, all_local;
4510 machine_mode mode;
4512 def = df_single_def (insn_info);
4513 /* There must be exactly one def in this insn. */
4514 if (!def || !single_set (insn))
4515 continue;
4516 /* This must be the only definition of the reg. We also limit
4517 which modes we deal with so that we can assume we can generate
4518 move instructions. */
4519 regno = DF_REF_REGNO (def);
4520 mode = GET_MODE (DF_REF_REG (def));
4521 if (DF_REG_DEF_COUNT (regno) != 1
4522 || !DF_REF_INSN_INFO (def)
4523 || HARD_REGISTER_NUM_P (regno)
4524 || DF_REG_EQ_USE_COUNT (regno) > 0
4525 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4526 continue;
4527 def_insn = DF_REF_INSN (def);
4529 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4530 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4531 break;
4533 if (note)
4535 if (dump_file)
4536 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4537 regno);
4538 bitmap_set_bit (&unusable_as_input, regno);
4539 continue;
4542 use = DF_REG_USE_CHAIN (regno);
4543 all_dominated = true;
4544 all_local = true;
4545 closest_use = NULL_RTX;
4546 for (; use; use = DF_REF_NEXT_REG (use))
4548 rtx_insn *insn;
4549 if (!DF_REF_INSN_INFO (use))
4551 all_dominated = false;
4552 all_local = false;
4553 break;
4555 insn = DF_REF_INSN (use);
4556 if (DEBUG_INSN_P (insn))
4557 continue;
4558 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4559 all_local = false;
4560 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4561 all_dominated = false;
4562 if (closest_use != insn && closest_use != const0_rtx)
4564 if (closest_use == NULL_RTX)
4565 closest_use = insn;
4566 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4567 closest_use = insn;
4568 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4569 closest_use = const0_rtx;
4572 if (!all_dominated)
4574 if (dump_file)
4575 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4576 regno);
4577 continue;
4579 if (all_local)
4580 bitmap_set_bit (local, regno);
4581 if (closest_use == const0_rtx || closest_use == NULL
4582 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4584 if (dump_file)
4585 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4586 closest_use == const0_rtx || closest_use == NULL
4587 ? " (no unique first use)" : "");
4588 continue;
4590 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4592 if (dump_file)
4593 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4594 regno);
4595 continue;
4598 bitmap_set_bit (&interesting, regno);
4599 /* If we get here, we know closest_use is a non-NULL insn
4600 (as opposed to const_0_rtx). */
4601 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4603 if (dump_file && (all_local || all_dominated))
4605 fprintf (dump_file, "Reg %u:", regno);
4606 if (all_local)
4607 fprintf (dump_file, " local to bb %d", bb->index);
4608 if (all_dominated)
4609 fprintf (dump_file, " def dominates all uses");
4610 if (closest_use != const0_rtx)
4611 fprintf (dump_file, " has unique first use");
4612 fputs ("\n", dump_file);
4617 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4619 df_ref def = DF_REG_DEF_CHAIN (i);
4620 rtx_insn *def_insn = DF_REF_INSN (def);
4621 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4622 bitmap def_bb_local = bb_local + def_block->index;
4623 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4624 bitmap def_bb_transp = bb_transp_live + def_block->index;
4625 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4626 rtx_insn *use_insn = closest_uses[i];
4627 df_ref use;
4628 bool all_ok = true;
4629 bool all_transp = true;
4631 if (!REG_P (DF_REF_REG (def)))
4632 continue;
4634 if (!local_to_bb_p)
4636 if (dump_file)
4637 fprintf (dump_file, "Reg %u not local to one basic block\n",
4639 continue;
4641 if (reg_equiv_init (i) != NULL_RTX)
4643 if (dump_file)
4644 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4646 continue;
4648 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4650 if (dump_file)
4651 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4652 INSN_UID (def_insn), i);
4653 continue;
4655 if (dump_file)
4656 fprintf (dump_file, "Examining insn %d, def for %d\n",
4657 INSN_UID (def_insn), i);
4658 FOR_EACH_INSN_USE (use, def_insn)
4660 unsigned regno = DF_REF_REGNO (use);
4661 if (bitmap_bit_p (&unusable_as_input, regno))
4663 all_ok = false;
4664 if (dump_file)
4665 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4666 break;
4668 if (!bitmap_bit_p (def_bb_transp, regno))
4670 if (bitmap_bit_p (def_bb_moveable, regno)
4671 && !control_flow_insn_p (use_insn)
4672 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4674 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4676 rtx_insn *x = NEXT_INSN (def_insn);
4677 while (!modified_in_p (DF_REF_REG (use), x))
4679 gcc_assert (x != use_insn);
4680 x = NEXT_INSN (x);
4682 if (dump_file)
4683 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4684 regno, INSN_UID (x));
4685 emit_insn_after (PATTERN (x), use_insn);
4686 set_insn_deleted (x);
4688 else
4690 if (dump_file)
4691 fprintf (dump_file, " input reg %u modified between def and use\n",
4692 regno);
4693 all_transp = false;
4696 else
4697 all_transp = false;
4700 if (!all_ok)
4701 continue;
4702 if (!dbg_cnt (ira_move))
4703 break;
4704 if (dump_file)
4705 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4707 if (all_transp)
4709 rtx def_reg = DF_REF_REG (def);
4710 rtx newreg = ira_create_new_reg (def_reg);
4711 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4713 unsigned nregno = REGNO (newreg);
4714 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4715 nregno -= max_regs;
4716 pseudo_replaced_reg[nregno] = def_reg;
4721 FOR_EACH_BB_FN (bb, cfun)
4723 bitmap_clear (bb_local + bb->index);
4724 bitmap_clear (bb_transp_live + bb->index);
4725 bitmap_clear (bb_moveable_reg_sets + bb->index);
4727 bitmap_clear (&interesting);
4728 bitmap_clear (&unusable_as_input);
4729 free (uid_luid);
4730 free (closest_uses);
4731 free (bb_local);
4732 free (bb_transp_live);
4733 free (bb_moveable_reg_sets);
4735 last_moveable_pseudo = max_reg_num ();
4737 fix_reg_equiv_init ();
4738 expand_reg_info ();
4739 regstat_free_n_sets_and_refs ();
4740 regstat_free_ri ();
4741 regstat_init_n_sets_and_refs ();
4742 regstat_compute_ri ();
4743 free_dominance_info (CDI_DOMINATORS);
4746 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4747 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4748 the destination. Otherwise return NULL. */
4750 static rtx
4751 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4753 rtx src = SET_SRC (set);
4754 rtx dest = SET_DEST (set);
4755 if (!REG_P (src) || !HARD_REGISTER_P (src)
4756 || !REG_P (dest) || HARD_REGISTER_P (dest)
4757 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4758 return NULL;
4759 return dest;
4762 /* If insn is interesting for parameter range-splitting shrink-wrapping
4763 preparation, i.e. it is a single set from a hard register to a pseudo, which
4764 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4765 parallel statement with only one such statement, return the destination.
4766 Otherwise return NULL. */
4768 static rtx
4769 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4771 if (!INSN_P (insn))
4772 return NULL;
4773 rtx pat = PATTERN (insn);
4774 if (GET_CODE (pat) == SET)
4775 return interesting_dest_for_shprep_1 (pat, call_dom);
4777 if (GET_CODE (pat) != PARALLEL)
4778 return NULL;
4779 rtx ret = NULL;
4780 for (int i = 0; i < XVECLEN (pat, 0); i++)
4782 rtx sub = XVECEXP (pat, 0, i);
4783 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4784 continue;
4785 if (GET_CODE (sub) != SET
4786 || side_effects_p (sub))
4787 return NULL;
4788 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4789 if (dest && ret)
4790 return NULL;
4791 if (dest)
4792 ret = dest;
4794 return ret;
4797 /* Split live ranges of pseudos that are loaded from hard registers in the
4798 first BB in a BB that dominates all non-sibling call if such a BB can be
4799 found and is not in a loop. Return true if the function has made any
4800 changes. */
4802 static bool
4803 split_live_ranges_for_shrink_wrap (void)
4805 basic_block bb, call_dom = NULL;
4806 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4807 rtx_insn *insn, *last_interesting_insn = NULL;
4808 bitmap_head need_new, reachable;
4809 vec<basic_block> queue;
4811 if (!SHRINK_WRAPPING_ENABLED)
4812 return false;
4814 bitmap_initialize (&need_new, 0);
4815 bitmap_initialize (&reachable, 0);
4816 queue.create (n_basic_blocks_for_fn (cfun));
4818 FOR_EACH_BB_FN (bb, cfun)
4819 FOR_BB_INSNS (bb, insn)
4820 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4822 if (bb == first)
4824 bitmap_clear (&need_new);
4825 bitmap_clear (&reachable);
4826 queue.release ();
4827 return false;
4830 bitmap_set_bit (&need_new, bb->index);
4831 bitmap_set_bit (&reachable, bb->index);
4832 queue.quick_push (bb);
4833 break;
4836 if (queue.is_empty ())
4838 bitmap_clear (&need_new);
4839 bitmap_clear (&reachable);
4840 queue.release ();
4841 return false;
4844 while (!queue.is_empty ())
4846 edge e;
4847 edge_iterator ei;
4849 bb = queue.pop ();
4850 FOR_EACH_EDGE (e, ei, bb->succs)
4851 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4852 && bitmap_set_bit (&reachable, e->dest->index))
4853 queue.quick_push (e->dest);
4855 queue.release ();
4857 FOR_BB_INSNS (first, insn)
4859 rtx dest = interesting_dest_for_shprep (insn, NULL);
4860 if (!dest)
4861 continue;
4863 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4865 bitmap_clear (&need_new);
4866 bitmap_clear (&reachable);
4867 return false;
4870 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4871 use;
4872 use = DF_REF_NEXT_REG (use))
4874 int ubbi = DF_REF_BB (use)->index;
4875 if (bitmap_bit_p (&reachable, ubbi))
4876 bitmap_set_bit (&need_new, ubbi);
4878 last_interesting_insn = insn;
4881 bitmap_clear (&reachable);
4882 if (!last_interesting_insn)
4884 bitmap_clear (&need_new);
4885 return false;
4888 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4889 bitmap_clear (&need_new);
4890 if (call_dom == first)
4891 return false;
4893 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4894 while (bb_loop_depth (call_dom) > 0)
4895 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4896 loop_optimizer_finalize ();
4898 if (call_dom == first)
4899 return false;
4901 calculate_dominance_info (CDI_POST_DOMINATORS);
4902 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4904 free_dominance_info (CDI_POST_DOMINATORS);
4905 return false;
4907 free_dominance_info (CDI_POST_DOMINATORS);
4909 if (dump_file)
4910 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4911 call_dom->index);
4913 bool ret = false;
4914 FOR_BB_INSNS (first, insn)
4916 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4917 if (!dest || dest == pic_offset_table_rtx)
4918 continue;
4920 rtx newreg = NULL_RTX;
4921 df_ref use, next;
4922 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4924 rtx_insn *uin = DF_REF_INSN (use);
4925 next = DF_REF_NEXT_REG (use);
4927 basic_block ubb = BLOCK_FOR_INSN (uin);
4928 if (ubb == call_dom
4929 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4931 if (!newreg)
4932 newreg = ira_create_new_reg (dest);
4933 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4937 if (newreg)
4939 rtx_insn *new_move = gen_move_insn (newreg, dest);
4940 emit_insn_after (new_move, bb_note (call_dom));
4941 if (dump_file)
4943 fprintf (dump_file, "Split live-range of register ");
4944 print_rtl_single (dump_file, dest);
4946 ret = true;
4949 if (insn == last_interesting_insn)
4950 break;
4952 apply_change_group ();
4953 return ret;
4956 /* Perform the second half of the transformation started in
4957 find_moveable_pseudos. We look for instances where the newly introduced
4958 pseudo remains unallocated, and remove it by moving the definition to
4959 just before its use, replacing the move instruction generated by
4960 find_moveable_pseudos. */
4961 static void
4962 move_unallocated_pseudos (void)
4964 int i;
4965 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4966 if (reg_renumber[i] < 0)
4968 int idx = i - first_moveable_pseudo;
4969 rtx other_reg = pseudo_replaced_reg[idx];
4970 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4971 /* The use must follow all definitions of OTHER_REG, so we can
4972 insert the new definition immediately after any of them. */
4973 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4974 rtx_insn *move_insn = DF_REF_INSN (other_def);
4975 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4976 rtx set;
4977 int success;
4979 if (dump_file)
4980 fprintf (dump_file, "moving def of %d (insn %d now) ",
4981 REGNO (other_reg), INSN_UID (def_insn));
4983 delete_insn (move_insn);
4984 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4985 delete_insn (DF_REF_INSN (other_def));
4986 delete_insn (def_insn);
4988 set = single_set (newinsn);
4989 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4990 gcc_assert (success);
4991 if (dump_file)
4992 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
4993 INSN_UID (newinsn), i);
4994 SET_REG_N_REFS (i, 0);
4998 /* If the backend knows where to allocate pseudos for hard
4999 register initial values, register these allocations now. */
5000 static void
5001 allocate_initial_values (void)
5003 if (targetm.allocate_initial_value)
5005 rtx hreg, preg, x;
5006 int i, regno;
5008 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5010 if (! initial_value_entry (i, &hreg, &preg))
5011 break;
5013 x = targetm.allocate_initial_value (hreg);
5014 regno = REGNO (preg);
5015 if (x && REG_N_SETS (regno) <= 1)
5017 if (MEM_P (x))
5018 reg_equiv_memory_loc (regno) = x;
5019 else
5021 basic_block bb;
5022 int new_regno;
5024 gcc_assert (REG_P (x));
5025 new_regno = REGNO (x);
5026 reg_renumber[regno] = new_regno;
5027 /* Poke the regno right into regno_reg_rtx so that even
5028 fixed regs are accepted. */
5029 SET_REGNO (preg, new_regno);
5030 /* Update global register liveness information. */
5031 FOR_EACH_BB_FN (bb, cfun)
5033 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5034 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5035 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5036 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5042 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5043 &hreg, &preg));
5048 /* True when we use LRA instead of reload pass for the current
5049 function. */
5050 bool ira_use_lra_p;
5052 /* True if we have allocno conflicts. It is false for non-optimized
5053 mode or when the conflict table is too big. */
5054 bool ira_conflicts_p;
5056 /* Saved between IRA and reload. */
5057 static int saved_flag_ira_share_spill_slots;
5059 /* This is the main entry of IRA. */
5060 static void
5061 ira (FILE *f)
5063 bool loops_p;
5064 int ira_max_point_before_emit;
5065 bool saved_flag_caller_saves = flag_caller_saves;
5066 enum ira_region saved_flag_ira_region = flag_ira_region;
5068 clear_bb_flags ();
5070 /* Perform target specific PIC register initialization. */
5071 targetm.init_pic_reg ();
5073 ira_conflicts_p = optimize > 0;
5075 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5076 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5077 use simplified and faster algorithms in LRA. */
5078 lra_simple_p
5079 = (ira_use_lra_p
5080 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5081 if (lra_simple_p)
5083 /* It permits to skip live range splitting in LRA. */
5084 flag_caller_saves = false;
5085 /* There is no sense to do regional allocation when we use
5086 simplified LRA. */
5087 flag_ira_region = IRA_REGION_ONE;
5088 ira_conflicts_p = false;
5091 #ifndef IRA_NO_OBSTACK
5092 gcc_obstack_init (&ira_obstack);
5093 #endif
5094 bitmap_obstack_initialize (&ira_bitmap_obstack);
5096 /* LRA uses its own infrastructure to handle caller save registers. */
5097 if (flag_caller_saves && !ira_use_lra_p)
5098 init_caller_save ();
5100 if (flag_ira_verbose < 10)
5102 internal_flag_ira_verbose = flag_ira_verbose;
5103 ira_dump_file = f;
5105 else
5107 internal_flag_ira_verbose = flag_ira_verbose - 10;
5108 ira_dump_file = stderr;
5111 setup_prohibited_mode_move_regs ();
5112 decrease_live_ranges_number ();
5113 df_note_add_problem ();
5115 /* DF_LIVE can't be used in the register allocator, too many other
5116 parts of the compiler depend on using the "classic" liveness
5117 interpretation of the DF_LR problem. See PR38711.
5118 Remove the problem, so that we don't spend time updating it in
5119 any of the df_analyze() calls during IRA/LRA. */
5120 if (optimize > 1)
5121 df_remove_problem (df_live);
5122 gcc_checking_assert (df_live == NULL);
5124 if (flag_checking)
5125 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5127 df_analyze ();
5129 init_reg_equiv ();
5130 if (ira_conflicts_p)
5132 calculate_dominance_info (CDI_DOMINATORS);
5134 if (split_live_ranges_for_shrink_wrap ())
5135 df_analyze ();
5137 free_dominance_info (CDI_DOMINATORS);
5140 df_clear_flags (DF_NO_INSN_RESCAN);
5142 indirect_jump_optimize ();
5143 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5144 df_analyze ();
5146 regstat_init_n_sets_and_refs ();
5147 regstat_compute_ri ();
5149 /* If we are not optimizing, then this is the only place before
5150 register allocation where dataflow is done. And that is needed
5151 to generate these warnings. */
5152 if (warn_clobbered)
5153 generate_setjmp_warnings ();
5155 /* Determine if the current function is a leaf before running IRA
5156 since this can impact optimizations done by the prologue and
5157 epilogue thus changing register elimination offsets. */
5158 crtl->is_leaf = leaf_function_p ();
5160 if (resize_reg_info () && flag_ira_loop_pressure)
5161 ira_set_pseudo_classes (true, ira_dump_file);
5163 init_alias_analysis ();
5164 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5165 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5166 update_equiv_regs ();
5168 /* Don't move insns if live range shrinkage or register
5169 pressure-sensitive scheduling were done because it will not
5170 improve allocation but likely worsen insn scheduling. */
5171 if (optimize
5172 && !flag_live_range_shrinkage
5173 && !(flag_sched_pressure && flag_schedule_insns))
5174 combine_and_move_insns ();
5176 /* Gather additional equivalences with memory. */
5177 if (optimize)
5178 add_store_equivs ();
5180 loop_optimizer_finalize ();
5181 free_dominance_info (CDI_DOMINATORS);
5182 end_alias_analysis ();
5183 free (reg_equiv);
5185 setup_reg_equiv ();
5186 grow_reg_equivs ();
5187 setup_reg_equiv_init ();
5189 allocated_reg_info_size = max_reg_num ();
5191 /* It is not worth to do such improvement when we use a simple
5192 allocation because of -O0 usage or because the function is too
5193 big. */
5194 if (ira_conflicts_p)
5195 find_moveable_pseudos ();
5197 max_regno_before_ira = max_reg_num ();
5198 ira_setup_eliminable_regset ();
5200 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5201 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5202 ira_move_loops_num = ira_additional_jumps_num = 0;
5204 ira_assert (current_loops == NULL);
5205 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5206 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5208 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5209 fprintf (ira_dump_file, "Building IRA IR\n");
5210 loops_p = ira_build ();
5212 ira_assert (ira_conflicts_p || !loops_p);
5214 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5215 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5216 /* It is just wasting compiler's time to pack spilled pseudos into
5217 stack slots in this case -- prohibit it. We also do this if
5218 there is setjmp call because a variable not modified between
5219 setjmp and longjmp the compiler is required to preserve its
5220 value and sharing slots does not guarantee it. */
5221 flag_ira_share_spill_slots = FALSE;
5223 ira_color ();
5225 ira_max_point_before_emit = ira_max_point;
5227 ira_initiate_emit_data ();
5229 ira_emit (loops_p);
5231 max_regno = max_reg_num ();
5232 if (ira_conflicts_p)
5234 if (! loops_p)
5236 if (! ira_use_lra_p)
5237 ira_initiate_assign ();
5239 else
5241 expand_reg_info ();
5243 if (ira_use_lra_p)
5245 ira_allocno_t a;
5246 ira_allocno_iterator ai;
5248 FOR_EACH_ALLOCNO (a, ai)
5250 int old_regno = ALLOCNO_REGNO (a);
5251 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5253 ALLOCNO_REGNO (a) = new_regno;
5255 if (old_regno != new_regno)
5256 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5257 reg_alternate_class (old_regno),
5258 reg_allocno_class (old_regno));
5262 else
5264 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5265 fprintf (ira_dump_file, "Flattening IR\n");
5266 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5268 /* New insns were generated: add notes and recalculate live
5269 info. */
5270 df_analyze ();
5272 /* ??? Rebuild the loop tree, but why? Does the loop tree
5273 change if new insns were generated? Can that be handled
5274 by updating the loop tree incrementally? */
5275 loop_optimizer_finalize ();
5276 free_dominance_info (CDI_DOMINATORS);
5277 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5278 | LOOPS_HAVE_RECORDED_EXITS);
5280 if (! ira_use_lra_p)
5282 setup_allocno_assignment_flags ();
5283 ira_initiate_assign ();
5284 ira_reassign_conflict_allocnos (max_regno);
5289 ira_finish_emit_data ();
5291 setup_reg_renumber ();
5293 calculate_allocation_cost ();
5295 #ifdef ENABLE_IRA_CHECKING
5296 if (ira_conflicts_p)
5297 check_allocation ();
5298 #endif
5300 if (max_regno != max_regno_before_ira)
5302 regstat_free_n_sets_and_refs ();
5303 regstat_free_ri ();
5304 regstat_init_n_sets_and_refs ();
5305 regstat_compute_ri ();
5308 overall_cost_before = ira_overall_cost;
5309 if (! ira_conflicts_p)
5310 grow_reg_equivs ();
5311 else
5313 fix_reg_equiv_init ();
5315 #ifdef ENABLE_IRA_CHECKING
5316 print_redundant_copies ();
5317 #endif
5318 if (! ira_use_lra_p)
5320 ira_spilled_reg_stack_slots_num = 0;
5321 ira_spilled_reg_stack_slots
5322 = ((struct ira_spilled_reg_stack_slot *)
5323 ira_allocate (max_regno
5324 * sizeof (struct ira_spilled_reg_stack_slot)));
5325 memset (ira_spilled_reg_stack_slots, 0,
5326 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5329 allocate_initial_values ();
5331 /* See comment for find_moveable_pseudos call. */
5332 if (ira_conflicts_p)
5333 move_unallocated_pseudos ();
5335 /* Restore original values. */
5336 if (lra_simple_p)
5338 flag_caller_saves = saved_flag_caller_saves;
5339 flag_ira_region = saved_flag_ira_region;
5343 static void
5344 do_reload (void)
5346 basic_block bb;
5347 bool need_dce;
5348 unsigned pic_offset_table_regno = INVALID_REGNUM;
5350 if (flag_ira_verbose < 10)
5351 ira_dump_file = dump_file;
5353 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5354 after reload to avoid possible wrong usages of hard reg assigned
5355 to it. */
5356 if (pic_offset_table_rtx
5357 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5358 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5360 timevar_push (TV_RELOAD);
5361 if (ira_use_lra_p)
5363 if (current_loops != NULL)
5365 loop_optimizer_finalize ();
5366 free_dominance_info (CDI_DOMINATORS);
5368 FOR_ALL_BB_FN (bb, cfun)
5369 bb->loop_father = NULL;
5370 current_loops = NULL;
5372 ira_destroy ();
5374 lra (ira_dump_file);
5375 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5376 LRA. */
5377 vec_free (reg_equivs);
5378 reg_equivs = NULL;
5379 need_dce = false;
5381 else
5383 df_set_flags (DF_NO_INSN_RESCAN);
5384 build_insn_chain ();
5386 need_dce = reload (get_insns (), ira_conflicts_p);
5389 timevar_pop (TV_RELOAD);
5391 timevar_push (TV_IRA);
5393 if (ira_conflicts_p && ! ira_use_lra_p)
5395 ira_free (ira_spilled_reg_stack_slots);
5396 ira_finish_assign ();
5399 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5400 && overall_cost_before != ira_overall_cost)
5401 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5402 ira_overall_cost);
5404 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5406 if (! ira_use_lra_p)
5408 ira_destroy ();
5409 if (current_loops != NULL)
5411 loop_optimizer_finalize ();
5412 free_dominance_info (CDI_DOMINATORS);
5414 FOR_ALL_BB_FN (bb, cfun)
5415 bb->loop_father = NULL;
5416 current_loops = NULL;
5418 regstat_free_ri ();
5419 regstat_free_n_sets_and_refs ();
5422 if (optimize)
5423 cleanup_cfg (CLEANUP_EXPENSIVE);
5425 finish_reg_equiv ();
5427 bitmap_obstack_release (&ira_bitmap_obstack);
5428 #ifndef IRA_NO_OBSTACK
5429 obstack_free (&ira_obstack, NULL);
5430 #endif
5432 /* The code after the reload has changed so much that at this point
5433 we might as well just rescan everything. Note that
5434 df_rescan_all_insns is not going to help here because it does not
5435 touch the artificial uses and defs. */
5436 df_finish_pass (true);
5437 df_scan_alloc (NULL);
5438 df_scan_blocks ();
5440 if (optimize > 1)
5442 df_live_add_problem ();
5443 df_live_set_all_dirty ();
5446 if (optimize)
5447 df_analyze ();
5449 if (need_dce && optimize)
5450 run_fast_dce ();
5452 /* Diagnose uses of the hard frame pointer when it is used as a global
5453 register. Often we can get away with letting the user appropriate
5454 the frame pointer, but we should let them know when code generation
5455 makes that impossible. */
5456 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5458 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5459 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5460 "frame pointer required, but reserved");
5461 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5464 /* If we are doing generic stack checking, give a warning if this
5465 function's frame size is larger than we expect. */
5466 if (flag_stack_check == GENERIC_STACK_CHECK)
5468 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5470 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5471 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5472 size += UNITS_PER_WORD;
5474 if (size > STACK_CHECK_MAX_FRAME_SIZE)
5475 warning (0, "frame size too large for reliable stack checking");
5478 if (pic_offset_table_regno != INVALID_REGNUM)
5479 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5481 timevar_pop (TV_IRA);
5484 /* Run the integrated register allocator. */
5486 namespace {
5488 const pass_data pass_data_ira =
5490 RTL_PASS, /* type */
5491 "ira", /* name */
5492 OPTGROUP_NONE, /* optinfo_flags */
5493 TV_IRA, /* tv_id */
5494 0, /* properties_required */
5495 0, /* properties_provided */
5496 0, /* properties_destroyed */
5497 0, /* todo_flags_start */
5498 TODO_do_not_ggc_collect, /* todo_flags_finish */
5501 class pass_ira : public rtl_opt_pass
5503 public:
5504 pass_ira (gcc::context *ctxt)
5505 : rtl_opt_pass (pass_data_ira, ctxt)
5508 /* opt_pass methods: */
5509 virtual bool gate (function *)
5511 return !targetm.no_register_allocation;
5513 virtual unsigned int execute (function *)
5515 ira (dump_file);
5516 return 0;
5519 }; // class pass_ira
5521 } // anon namespace
5523 rtl_opt_pass *
5524 make_pass_ira (gcc::context *ctxt)
5526 return new pass_ira (ctxt);
5529 namespace {
5531 const pass_data pass_data_reload =
5533 RTL_PASS, /* type */
5534 "reload", /* name */
5535 OPTGROUP_NONE, /* optinfo_flags */
5536 TV_RELOAD, /* tv_id */
5537 0, /* properties_required */
5538 0, /* properties_provided */
5539 0, /* properties_destroyed */
5540 0, /* todo_flags_start */
5541 0, /* todo_flags_finish */
5544 class pass_reload : public rtl_opt_pass
5546 public:
5547 pass_reload (gcc::context *ctxt)
5548 : rtl_opt_pass (pass_data_reload, ctxt)
5551 /* opt_pass methods: */
5552 virtual bool gate (function *)
5554 return !targetm.no_register_allocation;
5556 virtual unsigned int execute (function *)
5558 do_reload ();
5559 return 0;
5562 }; // class pass_reload
5564 } // anon namespace
5566 rtl_opt_pass *
5567 make_pass_reload (gcc::context *ctxt)
5569 return new pass_reload (ctxt);