1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
35 #include "diagnostic-core.h"
36 #include "rtx-vector-builder.h"
38 /* Include insn-config.h before expr.h so that HAVE_conditional_move
39 is properly defined. */
40 #include "stor-layout.h"
45 #include "optabs-tree.h"
48 static void prepare_float_lib_cmp (rtx
, rtx
, enum rtx_code
, rtx
*,
50 static rtx
expand_unop_direct (machine_mode
, optab
, rtx
, rtx
, int);
51 static void emit_libcall_block_1 (rtx_insn
*, rtx
, rtx
, rtx
, bool);
53 /* Debug facility for use in GDB. */
54 void debug_optab_libfuncs (void);
56 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
57 the result of operation CODE applied to OP0 (and OP1 if it is a binary
60 If the last insn does not set TARGET, don't do anything, but return 1.
62 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
63 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
64 try again, ensuring that TARGET is not one of the operands. */
67 add_equal_note (rtx_insn
*insns
, rtx target
, enum rtx_code code
, rtx op0
, rtx op1
)
73 gcc_assert (insns
&& INSN_P (insns
) && NEXT_INSN (insns
));
75 if (GET_RTX_CLASS (code
) != RTX_COMM_ARITH
76 && GET_RTX_CLASS (code
) != RTX_BIN_ARITH
77 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
78 && GET_RTX_CLASS (code
) != RTX_COMPARE
79 && GET_RTX_CLASS (code
) != RTX_UNARY
)
82 if (GET_CODE (target
) == ZERO_EXTRACT
)
85 for (last_insn
= insns
;
86 NEXT_INSN (last_insn
) != NULL_RTX
;
87 last_insn
= NEXT_INSN (last_insn
))
90 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
91 a value changing in the insn, so the note would be invalid for CSE. */
92 if (reg_overlap_mentioned_p (target
, op0
)
93 || (op1
&& reg_overlap_mentioned_p (target
, op1
)))
96 && (rtx_equal_p (target
, op0
)
97 || (op1
&& rtx_equal_p (target
, op1
))))
99 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
100 over expanding it as temp = MEM op X, MEM = temp. If the target
101 supports MEM = MEM op X instructions, it is sometimes too hard
102 to reconstruct that form later, especially if X is also a memory,
103 and due to multiple occurrences of addresses the address might
104 be forced into register unnecessarily.
105 Note that not emitting the REG_EQUIV note might inhibit
106 CSE in some cases. */
107 set
= single_set (last_insn
);
109 && GET_CODE (SET_SRC (set
)) == code
110 && MEM_P (SET_DEST (set
))
111 && (rtx_equal_p (SET_DEST (set
), XEXP (SET_SRC (set
), 0))
112 || (op1
&& rtx_equal_p (SET_DEST (set
),
113 XEXP (SET_SRC (set
), 1)))))
119 set
= set_for_reg_notes (last_insn
);
123 if (! rtx_equal_p (SET_DEST (set
), target
)
124 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
125 && (GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
126 || ! rtx_equal_p (XEXP (SET_DEST (set
), 0), target
)))
129 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
139 if (GET_MODE (op0
) != VOIDmode
&& GET_MODE (target
) != GET_MODE (op0
))
141 note
= gen_rtx_fmt_e (code
, GET_MODE (op0
), copy_rtx (op0
));
142 if (GET_MODE_UNIT_SIZE (GET_MODE (op0
))
143 > GET_MODE_UNIT_SIZE (GET_MODE (target
)))
144 note
= simplify_gen_unary (TRUNCATE
, GET_MODE (target
),
145 note
, GET_MODE (op0
));
147 note
= simplify_gen_unary (ZERO_EXTEND
, GET_MODE (target
),
148 note
, GET_MODE (op0
));
153 note
= gen_rtx_fmt_e (code
, GET_MODE (target
), copy_rtx (op0
));
157 note
= gen_rtx_fmt_ee (code
, GET_MODE (target
), copy_rtx (op0
), copy_rtx (op1
));
159 set_unique_reg_note (last_insn
, REG_EQUAL
, note
);
164 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
165 for a widening operation would be. In most cases this would be OP0, but if
166 that's a constant it'll be VOIDmode, which isn't useful. */
169 widened_mode (machine_mode to_mode
, rtx op0
, rtx op1
)
171 machine_mode m0
= GET_MODE (op0
);
172 machine_mode m1
= GET_MODE (op1
);
175 if (m0
== VOIDmode
&& m1
== VOIDmode
)
177 else if (m0
== VOIDmode
|| GET_MODE_UNIT_SIZE (m0
) < GET_MODE_UNIT_SIZE (m1
))
182 if (GET_MODE_UNIT_SIZE (result
) > GET_MODE_UNIT_SIZE (to_mode
))
188 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
189 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
190 not actually do a sign-extend or zero-extend, but can leave the
191 higher-order bits of the result rtx undefined, for example, in the case
192 of logical operations, but not right shifts. */
195 widen_operand (rtx op
, machine_mode mode
, machine_mode oldmode
,
196 int unsignedp
, int no_extend
)
199 scalar_int_mode int_mode
;
201 /* If we don't have to extend and this is a constant, return it. */
202 if (no_extend
&& GET_MODE (op
) == VOIDmode
)
205 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
206 extend since it will be more efficient to do so unless the signedness of
207 a promoted object differs from our extension. */
209 || !is_a
<scalar_int_mode
> (mode
, &int_mode
)
210 || (GET_CODE (op
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op
)
211 && SUBREG_CHECK_PROMOTED_SIGN (op
, unsignedp
)))
212 return convert_modes (mode
, oldmode
, op
, unsignedp
);
214 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
216 if (GET_MODE_SIZE (int_mode
) <= UNITS_PER_WORD
)
217 return gen_lowpart (int_mode
, force_reg (GET_MODE (op
), op
));
219 /* Otherwise, get an object of MODE, clobber it, and set the low-order
222 result
= gen_reg_rtx (int_mode
);
223 emit_clobber (result
);
224 emit_move_insn (gen_lowpart (GET_MODE (op
), result
), op
);
228 /* Expand vector widening operations.
230 There are two different classes of operations handled here:
231 1) Operations whose result is wider than all the arguments to the operation.
232 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
233 In this case OP0 and optionally OP1 would be initialized,
234 but WIDE_OP wouldn't (not relevant for this case).
235 2) Operations whose result is of the same size as the last argument to the
236 operation, but wider than all the other arguments to the operation.
237 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
238 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
240 E.g, when called to expand the following operations, this is how
241 the arguments will be initialized:
243 widening-sum 2 oprnd0 - oprnd1
244 widening-dot-product 3 oprnd0 oprnd1 oprnd2
245 widening-mult 2 oprnd0 oprnd1 -
246 type-promotion (vec-unpack) 1 oprnd0 - - */
249 expand_widen_pattern_expr (sepops ops
, rtx op0
, rtx op1
, rtx wide_op
,
250 rtx target
, int unsignedp
)
252 struct expand_operand eops
[4];
253 tree oprnd0
, oprnd1
, oprnd2
;
254 machine_mode wmode
= VOIDmode
, tmode0
, tmode1
= VOIDmode
;
255 optab widen_pattern_optab
;
256 enum insn_code icode
;
257 int nops
= TREE_CODE_LENGTH (ops
->code
);
261 tmode0
= TYPE_MODE (TREE_TYPE (oprnd0
));
262 widen_pattern_optab
=
263 optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), optab_default
);
264 if (ops
->code
== WIDEN_MULT_PLUS_EXPR
265 || ops
->code
== WIDEN_MULT_MINUS_EXPR
)
266 icode
= find_widening_optab_handler (widen_pattern_optab
,
267 TYPE_MODE (TREE_TYPE (ops
->op2
)),
270 icode
= optab_handler (widen_pattern_optab
, tmode0
);
271 gcc_assert (icode
!= CODE_FOR_nothing
);
276 tmode1
= TYPE_MODE (TREE_TYPE (oprnd1
));
279 /* The last operand is of a wider mode than the rest of the operands. */
284 gcc_assert (tmode1
== tmode0
);
287 wmode
= TYPE_MODE (TREE_TYPE (oprnd2
));
291 create_output_operand (&eops
[op
++], target
, TYPE_MODE (ops
->type
));
292 create_convert_operand_from (&eops
[op
++], op0
, tmode0
, unsignedp
);
294 create_convert_operand_from (&eops
[op
++], op1
, tmode1
, unsignedp
);
296 create_convert_operand_from (&eops
[op
++], wide_op
, wmode
, unsignedp
);
297 expand_insn (icode
, op
, eops
);
298 return eops
[0].value
;
301 /* Generate code to perform an operation specified by TERNARY_OPTAB
302 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
304 UNSIGNEDP is for the case where we have to widen the operands
305 to perform the operation. It says to use zero-extension.
307 If TARGET is nonzero, the value
308 is generated there, if it is convenient to do so.
309 In all cases an rtx is returned for the locus of the value;
310 this may or may not be TARGET. */
313 expand_ternary_op (machine_mode mode
, optab ternary_optab
, rtx op0
,
314 rtx op1
, rtx op2
, rtx target
, int unsignedp
)
316 struct expand_operand ops
[4];
317 enum insn_code icode
= optab_handler (ternary_optab
, mode
);
319 gcc_assert (optab_handler (ternary_optab
, mode
) != CODE_FOR_nothing
);
321 create_output_operand (&ops
[0], target
, mode
);
322 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
323 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
324 create_convert_operand_from (&ops
[3], op2
, mode
, unsignedp
);
325 expand_insn (icode
, 4, ops
);
330 /* Like expand_binop, but return a constant rtx if the result can be
331 calculated at compile time. The arguments and return value are
332 otherwise the same as for expand_binop. */
335 simplify_expand_binop (machine_mode mode
, optab binoptab
,
336 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
337 enum optab_methods methods
)
339 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
341 rtx x
= simplify_binary_operation (optab_to_code (binoptab
),
347 return expand_binop (mode
, binoptab
, op0
, op1
, target
, unsignedp
, methods
);
350 /* Like simplify_expand_binop, but always put the result in TARGET.
351 Return true if the expansion succeeded. */
354 force_expand_binop (machine_mode mode
, optab binoptab
,
355 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
356 enum optab_methods methods
)
358 rtx x
= simplify_expand_binop (mode
, binoptab
, op0
, op1
,
359 target
, unsignedp
, methods
);
363 emit_move_insn (target
, x
);
367 /* Create a new vector value in VMODE with all elements set to OP. The
368 mode of OP must be the element mode of VMODE. If OP is a constant,
369 then the return value will be a constant. */
372 expand_vector_broadcast (machine_mode vmode
, rtx op
)
377 gcc_checking_assert (VECTOR_MODE_P (vmode
));
379 if (valid_for_const_vector_p (vmode
, op
))
380 return gen_const_vec_duplicate (vmode
, op
);
382 insn_code icode
= optab_handler (vec_duplicate_optab
, vmode
);
383 if (icode
!= CODE_FOR_nothing
)
385 struct expand_operand ops
[2];
386 create_output_operand (&ops
[0], NULL_RTX
, vmode
);
387 create_input_operand (&ops
[1], op
, GET_MODE (op
));
388 expand_insn (icode
, 2, ops
);
392 if (!GET_MODE_NUNITS (vmode
).is_constant (&n
))
395 /* ??? If the target doesn't have a vec_init, then we have no easy way
396 of performing this operation. Most of this sort of generic support
397 is hidden away in the vector lowering support in gimple. */
398 icode
= convert_optab_handler (vec_init_optab
, vmode
,
399 GET_MODE_INNER (vmode
));
400 if (icode
== CODE_FOR_nothing
)
403 vec
= rtvec_alloc (n
);
404 for (int i
= 0; i
< n
; ++i
)
405 RTVEC_ELT (vec
, i
) = op
;
406 rtx ret
= gen_reg_rtx (vmode
);
407 emit_insn (GEN_FCN (icode
) (ret
, gen_rtx_PARALLEL (vmode
, vec
)));
412 /* This subroutine of expand_doubleword_shift handles the cases in which
413 the effective shift value is >= BITS_PER_WORD. The arguments and return
414 value are the same as for the parent routine, except that SUPERWORD_OP1
415 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
416 INTO_TARGET may be null if the caller has decided to calculate it. */
419 expand_superword_shift (optab binoptab
, rtx outof_input
, rtx superword_op1
,
420 rtx outof_target
, rtx into_target
,
421 int unsignedp
, enum optab_methods methods
)
423 if (into_target
!= 0)
424 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, superword_op1
,
425 into_target
, unsignedp
, methods
))
428 if (outof_target
!= 0)
430 /* For a signed right shift, we must fill OUTOF_TARGET with copies
431 of the sign bit, otherwise we must fill it with zeros. */
432 if (binoptab
!= ashr_optab
)
433 emit_move_insn (outof_target
, CONST0_RTX (word_mode
));
435 if (!force_expand_binop (word_mode
, binoptab
, outof_input
,
436 gen_int_shift_amount (word_mode
,
438 outof_target
, unsignedp
, methods
))
444 /* This subroutine of expand_doubleword_shift handles the cases in which
445 the effective shift value is < BITS_PER_WORD. The arguments and return
446 value are the same as for the parent routine. */
449 expand_subword_shift (scalar_int_mode op1_mode
, optab binoptab
,
450 rtx outof_input
, rtx into_input
, rtx op1
,
451 rtx outof_target
, rtx into_target
,
452 int unsignedp
, enum optab_methods methods
,
453 unsigned HOST_WIDE_INT shift_mask
)
455 optab reverse_unsigned_shift
, unsigned_shift
;
458 reverse_unsigned_shift
= (binoptab
== ashl_optab
? lshr_optab
: ashl_optab
);
459 unsigned_shift
= (binoptab
== ashl_optab
? ashl_optab
: lshr_optab
);
461 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
462 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
463 the opposite direction to BINOPTAB. */
464 if (CONSTANT_P (op1
) || shift_mask
>= BITS_PER_WORD
)
466 carries
= outof_input
;
467 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
,
468 op1_mode
), op1_mode
);
469 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
474 /* We must avoid shifting by BITS_PER_WORD bits since that is either
475 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
476 has unknown behavior. Do a single shift first, then shift by the
477 remainder. It's OK to use ~OP1 as the remainder if shift counts
478 are truncated to the mode size. */
479 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
480 outof_input
, const1_rtx
, 0, unsignedp
, methods
);
481 if (shift_mask
== BITS_PER_WORD
- 1)
483 tmp
= immed_wide_int_const
484 (wi::minus_one (GET_MODE_PRECISION (op1_mode
)), op1_mode
);
485 tmp
= simplify_expand_binop (op1_mode
, xor_optab
, op1
, tmp
,
490 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
- 1,
491 op1_mode
), op1_mode
);
492 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
496 if (tmp
== 0 || carries
== 0)
498 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
499 carries
, tmp
, 0, unsignedp
, methods
);
503 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
504 so the result can go directly into INTO_TARGET if convenient. */
505 tmp
= expand_binop (word_mode
, unsigned_shift
, into_input
, op1
,
506 into_target
, unsignedp
, methods
);
510 /* Now OR in the bits carried over from OUTOF_INPUT. */
511 if (!force_expand_binop (word_mode
, ior_optab
, tmp
, carries
,
512 into_target
, unsignedp
, methods
))
515 /* Use a standard word_mode shift for the out-of half. */
516 if (outof_target
!= 0)
517 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
518 outof_target
, unsignedp
, methods
))
525 /* Try implementing expand_doubleword_shift using conditional moves.
526 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
527 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
528 are the shift counts to use in the former and latter case. All other
529 arguments are the same as the parent routine. */
532 expand_doubleword_shift_condmove (scalar_int_mode op1_mode
, optab binoptab
,
533 enum rtx_code cmp_code
, rtx cmp1
, rtx cmp2
,
534 rtx outof_input
, rtx into_input
,
535 rtx subword_op1
, rtx superword_op1
,
536 rtx outof_target
, rtx into_target
,
537 int unsignedp
, enum optab_methods methods
,
538 unsigned HOST_WIDE_INT shift_mask
)
540 rtx outof_superword
, into_superword
;
542 /* Put the superword version of the output into OUTOF_SUPERWORD and
544 outof_superword
= outof_target
!= 0 ? gen_reg_rtx (word_mode
) : 0;
545 if (outof_target
!= 0 && subword_op1
== superword_op1
)
547 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
548 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
549 into_superword
= outof_target
;
550 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
551 outof_superword
, 0, unsignedp
, methods
))
556 into_superword
= gen_reg_rtx (word_mode
);
557 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
558 outof_superword
, into_superword
,
563 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
564 if (!expand_subword_shift (op1_mode
, binoptab
,
565 outof_input
, into_input
, subword_op1
,
566 outof_target
, into_target
,
567 unsignedp
, methods
, shift_mask
))
570 /* Select between them. Do the INTO half first because INTO_SUPERWORD
571 might be the current value of OUTOF_TARGET. */
572 if (!emit_conditional_move (into_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
573 into_target
, into_superword
, word_mode
, false))
576 if (outof_target
!= 0)
577 if (!emit_conditional_move (outof_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
578 outof_target
, outof_superword
,
585 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
586 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
587 input operand; the shift moves bits in the direction OUTOF_INPUT->
588 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
589 of the target. OP1 is the shift count and OP1_MODE is its mode.
590 If OP1 is constant, it will have been truncated as appropriate
591 and is known to be nonzero.
593 If SHIFT_MASK is zero, the result of word shifts is undefined when the
594 shift count is outside the range [0, BITS_PER_WORD). This routine must
595 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
597 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
598 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
599 fill with zeros or sign bits as appropriate.
601 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
602 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
603 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
604 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
607 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
608 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
609 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
610 function wants to calculate it itself.
612 Return true if the shift could be successfully synthesized. */
615 expand_doubleword_shift (scalar_int_mode op1_mode
, optab binoptab
,
616 rtx outof_input
, rtx into_input
, rtx op1
,
617 rtx outof_target
, rtx into_target
,
618 int unsignedp
, enum optab_methods methods
,
619 unsigned HOST_WIDE_INT shift_mask
)
621 rtx superword_op1
, tmp
, cmp1
, cmp2
;
622 enum rtx_code cmp_code
;
624 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
625 fill the result with sign or zero bits as appropriate. If so, the value
626 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
627 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
628 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
630 This isn't worthwhile for constant shifts since the optimizers will
631 cope better with in-range shift counts. */
632 if (shift_mask
>= BITS_PER_WORD
634 && !CONSTANT_P (op1
))
636 if (!expand_doubleword_shift (op1_mode
, binoptab
,
637 outof_input
, into_input
, op1
,
639 unsignedp
, methods
, shift_mask
))
641 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
642 outof_target
, unsignedp
, methods
))
647 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
648 is true when the effective shift value is less than BITS_PER_WORD.
649 Set SUPERWORD_OP1 to the shift count that should be used to shift
650 OUTOF_INPUT into INTO_TARGET when the condition is false. */
651 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
, op1_mode
), op1_mode
);
652 if (!CONSTANT_P (op1
) && shift_mask
== BITS_PER_WORD
- 1)
654 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
655 is a subword shift count. */
656 cmp1
= simplify_expand_binop (op1_mode
, and_optab
, op1
, tmp
,
658 cmp2
= CONST0_RTX (op1_mode
);
664 /* Set CMP1 to OP1 - BITS_PER_WORD. */
665 cmp1
= simplify_expand_binop (op1_mode
, sub_optab
, op1
, tmp
,
667 cmp2
= CONST0_RTX (op1_mode
);
669 superword_op1
= cmp1
;
674 /* If we can compute the condition at compile time, pick the
675 appropriate subroutine. */
676 tmp
= simplify_relational_operation (cmp_code
, SImode
, op1_mode
, cmp1
, cmp2
);
677 if (tmp
!= 0 && CONST_INT_P (tmp
))
679 if (tmp
== const0_rtx
)
680 return expand_superword_shift (binoptab
, outof_input
, superword_op1
,
681 outof_target
, into_target
,
684 return expand_subword_shift (op1_mode
, binoptab
,
685 outof_input
, into_input
, op1
,
686 outof_target
, into_target
,
687 unsignedp
, methods
, shift_mask
);
690 /* Try using conditional moves to generate straight-line code. */
691 if (HAVE_conditional_move
)
693 rtx_insn
*start
= get_last_insn ();
694 if (expand_doubleword_shift_condmove (op1_mode
, binoptab
,
695 cmp_code
, cmp1
, cmp2
,
696 outof_input
, into_input
,
698 outof_target
, into_target
,
699 unsignedp
, methods
, shift_mask
))
701 delete_insns_since (start
);
704 /* As a last resort, use branches to select the correct alternative. */
705 rtx_code_label
*subword_label
= gen_label_rtx ();
706 rtx_code_label
*done_label
= gen_label_rtx ();
709 do_compare_rtx_and_jump (cmp1
, cmp2
, cmp_code
, false, op1_mode
,
711 profile_probability::uninitialized ());
714 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
715 outof_target
, into_target
,
719 emit_jump_insn (targetm
.gen_jump (done_label
));
721 emit_label (subword_label
);
723 if (!expand_subword_shift (op1_mode
, binoptab
,
724 outof_input
, into_input
, op1
,
725 outof_target
, into_target
,
726 unsignedp
, methods
, shift_mask
))
729 emit_label (done_label
);
733 /* Subroutine of expand_binop. Perform a double word multiplication of
734 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
735 as the target's word_mode. This function return NULL_RTX if anything
736 goes wrong, in which case it may have already emitted instructions
737 which need to be deleted.
739 If we want to multiply two two-word values and have normal and widening
740 multiplies of single-word values, we can do this with three smaller
743 The multiplication proceeds as follows:
744 _______________________
745 [__op0_high_|__op0_low__]
746 _______________________
747 * [__op1_high_|__op1_low__]
748 _______________________________________________
749 _______________________
750 (1) [__op0_low__*__op1_low__]
751 _______________________
752 (2a) [__op0_low__*__op1_high_]
753 _______________________
754 (2b) [__op0_high_*__op1_low__]
755 _______________________
756 (3) [__op0_high_*__op1_high_]
759 This gives a 4-word result. Since we are only interested in the
760 lower 2 words, partial result (3) and the upper words of (2a) and
761 (2b) don't need to be calculated. Hence (2a) and (2b) can be
762 calculated using non-widening multiplication.
764 (1), however, needs to be calculated with an unsigned widening
765 multiplication. If this operation is not directly supported we
766 try using a signed widening multiplication and adjust the result.
767 This adjustment works as follows:
769 If both operands are positive then no adjustment is needed.
771 If the operands have different signs, for example op0_low < 0 and
772 op1_low >= 0, the instruction treats the most significant bit of
773 op0_low as a sign bit instead of a bit with significance
774 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
775 with 2**BITS_PER_WORD - op0_low, and two's complements the
776 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
779 Similarly, if both operands are negative, we need to add
780 (op0_low + op1_low) * 2**BITS_PER_WORD.
782 We use a trick to adjust quickly. We logically shift op0_low right
783 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
784 op0_high (op1_high) before it is used to calculate 2b (2a). If no
785 logical shift exists, we do an arithmetic right shift and subtract
789 expand_doubleword_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
790 bool umulp
, enum optab_methods methods
)
792 int low
= (WORDS_BIG_ENDIAN
? 1 : 0);
793 int high
= (WORDS_BIG_ENDIAN
? 0 : 1);
794 rtx wordm1
= (umulp
? NULL_RTX
795 : gen_int_shift_amount (word_mode
, BITS_PER_WORD
- 1));
796 rtx product
, adjust
, product_high
, temp
;
798 rtx op0_high
= operand_subword_force (op0
, high
, mode
);
799 rtx op0_low
= operand_subword_force (op0
, low
, mode
);
800 rtx op1_high
= operand_subword_force (op1
, high
, mode
);
801 rtx op1_low
= operand_subword_force (op1
, low
, mode
);
803 /* If we're using an unsigned multiply to directly compute the product
804 of the low-order words of the operands and perform any required
805 adjustments of the operands, we begin by trying two more multiplications
806 and then computing the appropriate sum.
808 We have checked above that the required addition is provided.
809 Full-word addition will normally always succeed, especially if
810 it is provided at all, so we don't worry about its failure. The
811 multiplication may well fail, however, so we do handle that. */
815 /* ??? This could be done with emit_store_flag where available. */
816 temp
= expand_binop (word_mode
, lshr_optab
, op0_low
, wordm1
,
817 NULL_RTX
, 1, methods
);
819 op0_high
= expand_binop (word_mode
, add_optab
, op0_high
, temp
,
820 NULL_RTX
, 0, OPTAB_DIRECT
);
823 temp
= expand_binop (word_mode
, ashr_optab
, op0_low
, wordm1
,
824 NULL_RTX
, 0, methods
);
827 op0_high
= expand_binop (word_mode
, sub_optab
, op0_high
, temp
,
828 NULL_RTX
, 0, OPTAB_DIRECT
);
835 adjust
= expand_binop (word_mode
, smul_optab
, op0_high
, op1_low
,
836 NULL_RTX
, 0, OPTAB_DIRECT
);
840 /* OP0_HIGH should now be dead. */
844 /* ??? This could be done with emit_store_flag where available. */
845 temp
= expand_binop (word_mode
, lshr_optab
, op1_low
, wordm1
,
846 NULL_RTX
, 1, methods
);
848 op1_high
= expand_binop (word_mode
, add_optab
, op1_high
, temp
,
849 NULL_RTX
, 0, OPTAB_DIRECT
);
852 temp
= expand_binop (word_mode
, ashr_optab
, op1_low
, wordm1
,
853 NULL_RTX
, 0, methods
);
856 op1_high
= expand_binop (word_mode
, sub_optab
, op1_high
, temp
,
857 NULL_RTX
, 0, OPTAB_DIRECT
);
864 temp
= expand_binop (word_mode
, smul_optab
, op1_high
, op0_low
,
865 NULL_RTX
, 0, OPTAB_DIRECT
);
869 /* OP1_HIGH should now be dead. */
871 adjust
= expand_binop (word_mode
, add_optab
, adjust
, temp
,
872 NULL_RTX
, 0, OPTAB_DIRECT
);
874 if (target
&& !REG_P (target
))
877 /* *_widen_optab needs to determine operand mode, make sure at least
878 one operand has non-VOID mode. */
879 if (GET_MODE (op0_low
) == VOIDmode
&& GET_MODE (op1_low
) == VOIDmode
)
880 op0_low
= force_reg (word_mode
, op0_low
);
883 product
= expand_binop (mode
, umul_widen_optab
, op0_low
, op1_low
,
884 target
, 1, OPTAB_DIRECT
);
886 product
= expand_binop (mode
, smul_widen_optab
, op0_low
, op1_low
,
887 target
, 1, OPTAB_DIRECT
);
892 product_high
= operand_subword (product
, high
, 1, mode
);
893 adjust
= expand_binop (word_mode
, add_optab
, product_high
, adjust
,
894 NULL_RTX
, 0, OPTAB_DIRECT
);
895 emit_move_insn (product_high
, adjust
);
899 /* Wrapper around expand_binop which takes an rtx code to specify
900 the operation to perform, not an optab pointer. All other
901 arguments are the same. */
903 expand_simple_binop (machine_mode mode
, enum rtx_code code
, rtx op0
,
904 rtx op1
, rtx target
, int unsignedp
,
905 enum optab_methods methods
)
907 optab binop
= code_to_optab (code
);
910 return expand_binop (mode
, binop
, op0
, op1
, target
, unsignedp
, methods
);
913 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
914 binop. Order them according to commutative_operand_precedence and, if
915 possible, try to put TARGET or a pseudo first. */
917 swap_commutative_operands_with_target (rtx target
, rtx op0
, rtx op1
)
919 int op0_prec
= commutative_operand_precedence (op0
);
920 int op1_prec
= commutative_operand_precedence (op1
);
922 if (op0_prec
< op1_prec
)
925 if (op0_prec
> op1_prec
)
928 /* With equal precedence, both orders are ok, but it is better if the
929 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
930 if (target
== 0 || REG_P (target
))
931 return (REG_P (op1
) && !REG_P (op0
)) || target
== op1
;
933 return rtx_equal_p (op1
, target
);
936 /* Return true if BINOPTAB implements a shift operation. */
939 shift_optab_p (optab binoptab
)
941 switch (optab_to_code (binoptab
))
957 /* Return true if BINOPTAB implements a commutative binary operation. */
960 commutative_optab_p (optab binoptab
)
962 return (GET_RTX_CLASS (optab_to_code (binoptab
)) == RTX_COMM_ARITH
963 || binoptab
== smul_widen_optab
964 || binoptab
== umul_widen_optab
965 || binoptab
== smul_highpart_optab
966 || binoptab
== umul_highpart_optab
);
969 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
970 optimizing, and if the operand is a constant that costs more than
971 1 instruction, force the constant into a register and return that
972 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
975 avoid_expensive_constant (machine_mode mode
, optab binoptab
,
976 int opn
, rtx x
, bool unsignedp
)
978 bool speed
= optimize_insn_for_speed_p ();
983 && (rtx_cost (x
, mode
, optab_to_code (binoptab
), opn
, speed
)
984 > set_src_cost (x
, mode
, speed
)))
988 HOST_WIDE_INT intval
= trunc_int_for_mode (INTVAL (x
), mode
);
989 if (intval
!= INTVAL (x
))
990 x
= GEN_INT (intval
);
993 x
= convert_modes (mode
, VOIDmode
, x
, unsignedp
);
994 x
= force_reg (mode
, x
);
999 /* Helper function for expand_binop: handle the case where there
1000 is an insn ICODE that directly implements the indicated operation.
1001 Returns null if this is not possible. */
1003 expand_binop_directly (enum insn_code icode
, machine_mode mode
, optab binoptab
,
1005 rtx target
, int unsignedp
, enum optab_methods methods
,
1008 machine_mode xmode0
= insn_data
[(int) icode
].operand
[1].mode
;
1009 machine_mode xmode1
= insn_data
[(int) icode
].operand
[2].mode
;
1010 machine_mode mode0
, mode1
, tmp_mode
;
1011 struct expand_operand ops
[3];
1014 rtx xop0
= op0
, xop1
= op1
;
1015 bool canonicalize_op1
= false;
1017 /* If it is a commutative operator and the modes would match
1018 if we would swap the operands, we can save the conversions. */
1019 commutative_p
= commutative_optab_p (binoptab
);
1021 && GET_MODE (xop0
) != xmode0
&& GET_MODE (xop1
) != xmode1
1022 && GET_MODE (xop0
) == xmode1
&& GET_MODE (xop1
) == xmode1
)
1023 std::swap (xop0
, xop1
);
1025 /* If we are optimizing, force expensive constants into a register. */
1026 xop0
= avoid_expensive_constant (xmode0
, binoptab
, 0, xop0
, unsignedp
);
1027 if (!shift_optab_p (binoptab
))
1028 xop1
= avoid_expensive_constant (xmode1
, binoptab
, 1, xop1
, unsignedp
);
1030 /* Shifts and rotates often use a different mode for op1 from op0;
1031 for VOIDmode constants we don't know the mode, so force it
1032 to be canonicalized using convert_modes. */
1033 canonicalize_op1
= true;
1035 /* In case the insn wants input operands in modes different from
1036 those of the actual operands, convert the operands. It would
1037 seem that we don't need to convert CONST_INTs, but we do, so
1038 that they're properly zero-extended, sign-extended or truncated
1041 mode0
= GET_MODE (xop0
) != VOIDmode
? GET_MODE (xop0
) : mode
;
1042 if (xmode0
!= VOIDmode
&& xmode0
!= mode0
)
1044 xop0
= convert_modes (xmode0
, mode0
, xop0
, unsignedp
);
1048 mode1
= ((GET_MODE (xop1
) != VOIDmode
|| canonicalize_op1
)
1049 ? GET_MODE (xop1
) : mode
);
1050 if (xmode1
!= VOIDmode
&& xmode1
!= mode1
)
1052 xop1
= convert_modes (xmode1
, mode1
, xop1
, unsignedp
);
1056 /* If operation is commutative,
1057 try to make the first operand a register.
1058 Even better, try to make it the same as the target.
1059 Also try to make the last operand a constant. */
1061 && swap_commutative_operands_with_target (target
, xop0
, xop1
))
1062 std::swap (xop0
, xop1
);
1064 /* Now, if insn's predicates don't allow our operands, put them into
1067 if (binoptab
== vec_pack_trunc_optab
1068 || binoptab
== vec_pack_usat_optab
1069 || binoptab
== vec_pack_ssat_optab
1070 || binoptab
== vec_pack_ufix_trunc_optab
1071 || binoptab
== vec_pack_sfix_trunc_optab
)
1073 /* The mode of the result is different then the mode of the
1075 tmp_mode
= insn_data
[(int) icode
].operand
[0].mode
;
1076 if (VECTOR_MODE_P (mode
)
1077 && maybe_ne (GET_MODE_NUNITS (tmp_mode
), 2 * GET_MODE_NUNITS (mode
)))
1079 delete_insns_since (last
);
1086 create_output_operand (&ops
[0], target
, tmp_mode
);
1087 create_input_operand (&ops
[1], xop0
, mode0
);
1088 create_input_operand (&ops
[2], xop1
, mode1
);
1089 pat
= maybe_gen_insn (icode
, 3, ops
);
1092 /* If PAT is composed of more than one insn, try to add an appropriate
1093 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1094 operand, call expand_binop again, this time without a target. */
1095 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
1096 && ! add_equal_note (pat
, ops
[0].value
,
1097 optab_to_code (binoptab
),
1098 ops
[1].value
, ops
[2].value
))
1100 delete_insns_since (last
);
1101 return expand_binop (mode
, binoptab
, op0
, op1
, NULL_RTX
,
1102 unsignedp
, methods
);
1106 return ops
[0].value
;
1108 delete_insns_since (last
);
1112 /* Generate code to perform an operation specified by BINOPTAB
1113 on operands OP0 and OP1, with result having machine-mode MODE.
1115 UNSIGNEDP is for the case where we have to widen the operands
1116 to perform the operation. It says to use zero-extension.
1118 If TARGET is nonzero, the value
1119 is generated there, if it is convenient to do so.
1120 In all cases an rtx is returned for the locus of the value;
1121 this may or may not be TARGET. */
1124 expand_binop (machine_mode mode
, optab binoptab
, rtx op0
, rtx op1
,
1125 rtx target
, int unsignedp
, enum optab_methods methods
)
1127 enum optab_methods next_methods
1128 = (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
1129 ? OPTAB_WIDEN
: methods
);
1130 enum mode_class mclass
;
1131 enum insn_code icode
;
1132 machine_mode wider_mode
;
1133 scalar_int_mode int_mode
;
1136 rtx_insn
*entry_last
= get_last_insn ();
1139 mclass
= GET_MODE_CLASS (mode
);
1141 /* If subtracting an integer constant, convert this into an addition of
1142 the negated constant. */
1144 if (binoptab
== sub_optab
&& CONST_INT_P (op1
))
1146 op1
= negate_rtx (mode
, op1
);
1147 binoptab
= add_optab
;
1149 /* For shifts, constant invalid op1 might be expanded from different
1150 mode than MODE. As those are invalid, force them to a register
1151 to avoid further problems during expansion. */
1152 else if (CONST_INT_P (op1
)
1153 && shift_optab_p (binoptab
)
1154 && UINTVAL (op1
) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode
)))
1156 op1
= gen_int_mode (INTVAL (op1
), GET_MODE_INNER (mode
));
1157 op1
= force_reg (GET_MODE_INNER (mode
), op1
);
1160 /* Record where to delete back to if we backtrack. */
1161 last
= get_last_insn ();
1163 /* If we can do it with a three-operand insn, do so. */
1165 if (methods
!= OPTAB_MUST_WIDEN
)
1167 if (convert_optab_p (binoptab
))
1169 machine_mode from_mode
= widened_mode (mode
, op0
, op1
);
1170 icode
= find_widening_optab_handler (binoptab
, mode
, from_mode
);
1173 icode
= optab_handler (binoptab
, mode
);
1174 if (icode
!= CODE_FOR_nothing
)
1176 temp
= expand_binop_directly (icode
, mode
, binoptab
, op0
, op1
,
1177 target
, unsignedp
, methods
, last
);
1183 /* If we were trying to rotate, and that didn't work, try rotating
1184 the other direction before falling back to shifts and bitwise-or. */
1185 if (((binoptab
== rotl_optab
1186 && (icode
= optab_handler (rotr_optab
, mode
)) != CODE_FOR_nothing
)
1187 || (binoptab
== rotr_optab
1188 && (icode
= optab_handler (rotl_optab
, mode
)) != CODE_FOR_nothing
))
1189 && is_int_mode (mode
, &int_mode
))
1191 optab otheroptab
= (binoptab
== rotl_optab
? rotr_optab
: rotl_optab
);
1193 unsigned int bits
= GET_MODE_PRECISION (int_mode
);
1195 if (CONST_INT_P (op1
))
1196 newop1
= gen_int_shift_amount (int_mode
, bits
- INTVAL (op1
));
1197 else if (targetm
.shift_truncation_mask (int_mode
) == bits
- 1)
1198 newop1
= negate_rtx (GET_MODE (op1
), op1
);
1200 newop1
= expand_binop (GET_MODE (op1
), sub_optab
,
1201 gen_int_mode (bits
, GET_MODE (op1
)), op1
,
1202 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1204 temp
= expand_binop_directly (icode
, int_mode
, otheroptab
, op0
, newop1
,
1205 target
, unsignedp
, methods
, last
);
1210 /* If this is a multiply, see if we can do a widening operation that
1211 takes operands of this mode and makes a wider mode. */
1213 if (binoptab
== smul_optab
1214 && GET_MODE_2XWIDER_MODE (mode
).exists (&wider_mode
)
1215 && (convert_optab_handler ((unsignedp
1217 : smul_widen_optab
),
1218 wider_mode
, mode
) != CODE_FOR_nothing
))
1220 /* *_widen_optab needs to determine operand mode, make sure at least
1221 one operand has non-VOID mode. */
1222 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
1223 op0
= force_reg (mode
, op0
);
1224 temp
= expand_binop (wider_mode
,
1225 unsignedp
? umul_widen_optab
: smul_widen_optab
,
1226 op0
, op1
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1230 if (GET_MODE_CLASS (mode
) == MODE_INT
1231 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (temp
)))
1232 return gen_lowpart (mode
, temp
);
1234 return convert_to_mode (mode
, temp
, unsignedp
);
1238 /* If this is a vector shift by a scalar, see if we can do a vector
1239 shift by a vector. If so, broadcast the scalar into a vector. */
1240 if (mclass
== MODE_VECTOR_INT
)
1242 optab otheroptab
= unknown_optab
;
1244 if (binoptab
== ashl_optab
)
1245 otheroptab
= vashl_optab
;
1246 else if (binoptab
== ashr_optab
)
1247 otheroptab
= vashr_optab
;
1248 else if (binoptab
== lshr_optab
)
1249 otheroptab
= vlshr_optab
;
1250 else if (binoptab
== rotl_optab
)
1251 otheroptab
= vrotl_optab
;
1252 else if (binoptab
== rotr_optab
)
1253 otheroptab
= vrotr_optab
;
1256 && (icode
= optab_handler (otheroptab
, mode
)) != CODE_FOR_nothing
)
1258 /* The scalar may have been extended to be too wide. Truncate
1259 it back to the proper size to fit in the broadcast vector. */
1260 scalar_mode inner_mode
= GET_MODE_INNER (mode
);
1261 if (!CONST_INT_P (op1
)
1262 && (GET_MODE_BITSIZE (as_a
<scalar_int_mode
> (GET_MODE (op1
)))
1263 > GET_MODE_BITSIZE (inner_mode
)))
1264 op1
= force_reg (inner_mode
,
1265 simplify_gen_unary (TRUNCATE
, inner_mode
, op1
,
1267 rtx vop1
= expand_vector_broadcast (mode
, op1
);
1270 temp
= expand_binop_directly (icode
, mode
, otheroptab
, op0
, vop1
,
1271 target
, unsignedp
, methods
, last
);
1278 /* Look for a wider mode of the same class for which we think we
1279 can open-code the operation. Check for a widening multiply at the
1280 wider mode as well. */
1282 if (CLASS_HAS_WIDER_MODES_P (mclass
)
1283 && methods
!= OPTAB_DIRECT
&& methods
!= OPTAB_LIB
)
1284 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
1286 machine_mode next_mode
;
1287 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
1288 || (binoptab
== smul_optab
1289 && GET_MODE_WIDER_MODE (wider_mode
).exists (&next_mode
)
1290 && (find_widening_optab_handler ((unsignedp
1292 : smul_widen_optab
),
1294 != CODE_FOR_nothing
)))
1296 rtx xop0
= op0
, xop1
= op1
;
1299 /* For certain integer operations, we need not actually extend
1300 the narrow operands, as long as we will truncate
1301 the results to the same narrowness. */
1303 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1304 || binoptab
== xor_optab
1305 || binoptab
== add_optab
|| binoptab
== sub_optab
1306 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1307 && mclass
== MODE_INT
)
1310 xop0
= avoid_expensive_constant (mode
, binoptab
, 0,
1312 if (binoptab
!= ashl_optab
)
1313 xop1
= avoid_expensive_constant (mode
, binoptab
, 1,
1317 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
, no_extend
);
1319 /* The second operand of a shift must always be extended. */
1320 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1321 no_extend
&& binoptab
!= ashl_optab
);
1323 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1324 unsignedp
, OPTAB_DIRECT
);
1327 if (mclass
!= MODE_INT
1328 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1331 target
= gen_reg_rtx (mode
);
1332 convert_move (target
, temp
, 0);
1336 return gen_lowpart (mode
, temp
);
1339 delete_insns_since (last
);
1343 /* If operation is commutative,
1344 try to make the first operand a register.
1345 Even better, try to make it the same as the target.
1346 Also try to make the last operand a constant. */
1347 if (commutative_optab_p (binoptab
)
1348 && swap_commutative_operands_with_target (target
, op0
, op1
))
1349 std::swap (op0
, op1
);
1351 /* These can be done a word at a time. */
1352 if ((binoptab
== and_optab
|| binoptab
== ior_optab
|| binoptab
== xor_optab
)
1353 && is_int_mode (mode
, &int_mode
)
1354 && GET_MODE_SIZE (int_mode
) > UNITS_PER_WORD
1355 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1360 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1361 won't be accurate, so use a new target. */
1365 || !valid_multiword_target_p (target
))
1366 target
= gen_reg_rtx (int_mode
);
1370 /* Do the actual arithmetic. */
1371 for (i
= 0; i
< GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
; i
++)
1373 rtx target_piece
= operand_subword (target
, i
, 1, int_mode
);
1374 rtx x
= expand_binop (word_mode
, binoptab
,
1375 operand_subword_force (op0
, i
, int_mode
),
1376 operand_subword_force (op1
, i
, int_mode
),
1377 target_piece
, unsignedp
, next_methods
);
1382 if (target_piece
!= x
)
1383 emit_move_insn (target_piece
, x
);
1386 insns
= get_insns ();
1389 if (i
== GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
)
1396 /* Synthesize double word shifts from single word shifts. */
1397 if ((binoptab
== lshr_optab
|| binoptab
== ashl_optab
1398 || binoptab
== ashr_optab
)
1399 && is_int_mode (mode
, &int_mode
)
1400 && (CONST_INT_P (op1
) || optimize_insn_for_speed_p ())
1401 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
1402 && GET_MODE_PRECISION (int_mode
) == GET_MODE_BITSIZE (int_mode
)
1403 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
1404 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1405 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1407 unsigned HOST_WIDE_INT shift_mask
, double_shift_mask
;
1408 scalar_int_mode op1_mode
;
1410 double_shift_mask
= targetm
.shift_truncation_mask (int_mode
);
1411 shift_mask
= targetm
.shift_truncation_mask (word_mode
);
1412 op1_mode
= (GET_MODE (op1
) != VOIDmode
1413 ? as_a
<scalar_int_mode
> (GET_MODE (op1
))
1416 /* Apply the truncation to constant shifts. */
1417 if (double_shift_mask
> 0 && CONST_INT_P (op1
))
1418 op1
= gen_int_mode (INTVAL (op1
) & double_shift_mask
, op1_mode
);
1420 if (op1
== CONST0_RTX (op1_mode
))
1423 /* Make sure that this is a combination that expand_doubleword_shift
1424 can handle. See the comments there for details. */
1425 if (double_shift_mask
== 0
1426 || (shift_mask
== BITS_PER_WORD
- 1
1427 && double_shift_mask
== BITS_PER_WORD
* 2 - 1))
1430 rtx into_target
, outof_target
;
1431 rtx into_input
, outof_input
;
1432 int left_shift
, outof_word
;
1434 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1435 won't be accurate, so use a new target. */
1439 || !valid_multiword_target_p (target
))
1440 target
= gen_reg_rtx (int_mode
);
1444 /* OUTOF_* is the word we are shifting bits away from, and
1445 INTO_* is the word that we are shifting bits towards, thus
1446 they differ depending on the direction of the shift and
1447 WORDS_BIG_ENDIAN. */
1449 left_shift
= binoptab
== ashl_optab
;
1450 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1452 outof_target
= operand_subword (target
, outof_word
, 1, int_mode
);
1453 into_target
= operand_subword (target
, 1 - outof_word
, 1, int_mode
);
1455 outof_input
= operand_subword_force (op0
, outof_word
, int_mode
);
1456 into_input
= operand_subword_force (op0
, 1 - outof_word
, int_mode
);
1458 if (expand_doubleword_shift (op1_mode
, binoptab
,
1459 outof_input
, into_input
, op1
,
1460 outof_target
, into_target
,
1461 unsignedp
, next_methods
, shift_mask
))
1463 insns
= get_insns ();
1473 /* Synthesize double word rotates from single word shifts. */
1474 if ((binoptab
== rotl_optab
|| binoptab
== rotr_optab
)
1475 && is_int_mode (mode
, &int_mode
)
1476 && CONST_INT_P (op1
)
1477 && GET_MODE_PRECISION (int_mode
) == 2 * BITS_PER_WORD
1478 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1479 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1482 rtx into_target
, outof_target
;
1483 rtx into_input
, outof_input
;
1485 int shift_count
, left_shift
, outof_word
;
1487 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1488 won't be accurate, so use a new target. Do this also if target is not
1489 a REG, first because having a register instead may open optimization
1490 opportunities, and second because if target and op0 happen to be MEMs
1491 designating the same location, we would risk clobbering it too early
1492 in the code sequence we generate below. */
1497 || !valid_multiword_target_p (target
))
1498 target
= gen_reg_rtx (int_mode
);
1502 shift_count
= INTVAL (op1
);
1504 /* OUTOF_* is the word we are shifting bits away from, and
1505 INTO_* is the word that we are shifting bits towards, thus
1506 they differ depending on the direction of the shift and
1507 WORDS_BIG_ENDIAN. */
1509 left_shift
= (binoptab
== rotl_optab
);
1510 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1512 outof_target
= operand_subword (target
, outof_word
, 1, int_mode
);
1513 into_target
= operand_subword (target
, 1 - outof_word
, 1, int_mode
);
1515 outof_input
= operand_subword_force (op0
, outof_word
, int_mode
);
1516 into_input
= operand_subword_force (op0
, 1 - outof_word
, int_mode
);
1518 if (shift_count
== BITS_PER_WORD
)
1520 /* This is just a word swap. */
1521 emit_move_insn (outof_target
, into_input
);
1522 emit_move_insn (into_target
, outof_input
);
1527 rtx into_temp1
, into_temp2
, outof_temp1
, outof_temp2
;
1528 HOST_WIDE_INT first_shift_count
, second_shift_count
;
1529 optab reverse_unsigned_shift
, unsigned_shift
;
1531 reverse_unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1532 ? lshr_optab
: ashl_optab
);
1534 unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1535 ? ashl_optab
: lshr_optab
);
1537 if (shift_count
> BITS_PER_WORD
)
1539 first_shift_count
= shift_count
- BITS_PER_WORD
;
1540 second_shift_count
= 2 * BITS_PER_WORD
- shift_count
;
1544 first_shift_count
= BITS_PER_WORD
- shift_count
;
1545 second_shift_count
= shift_count
;
1547 rtx first_shift_count_rtx
1548 = gen_int_shift_amount (word_mode
, first_shift_count
);
1549 rtx second_shift_count_rtx
1550 = gen_int_shift_amount (word_mode
, second_shift_count
);
1552 into_temp1
= expand_binop (word_mode
, unsigned_shift
,
1553 outof_input
, first_shift_count_rtx
,
1554 NULL_RTX
, unsignedp
, next_methods
);
1555 into_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1556 into_input
, second_shift_count_rtx
,
1557 NULL_RTX
, unsignedp
, next_methods
);
1559 if (into_temp1
!= 0 && into_temp2
!= 0)
1560 inter
= expand_binop (word_mode
, ior_optab
, into_temp1
, into_temp2
,
1561 into_target
, unsignedp
, next_methods
);
1565 if (inter
!= 0 && inter
!= into_target
)
1566 emit_move_insn (into_target
, inter
);
1568 outof_temp1
= expand_binop (word_mode
, unsigned_shift
,
1569 into_input
, first_shift_count_rtx
,
1570 NULL_RTX
, unsignedp
, next_methods
);
1571 outof_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1572 outof_input
, second_shift_count_rtx
,
1573 NULL_RTX
, unsignedp
, next_methods
);
1575 if (inter
!= 0 && outof_temp1
!= 0 && outof_temp2
!= 0)
1576 inter
= expand_binop (word_mode
, ior_optab
,
1577 outof_temp1
, outof_temp2
,
1578 outof_target
, unsignedp
, next_methods
);
1580 if (inter
!= 0 && inter
!= outof_target
)
1581 emit_move_insn (outof_target
, inter
);
1584 insns
= get_insns ();
1594 /* These can be done a word at a time by propagating carries. */
1595 if ((binoptab
== add_optab
|| binoptab
== sub_optab
)
1596 && is_int_mode (mode
, &int_mode
)
1597 && GET_MODE_SIZE (int_mode
) >= 2 * UNITS_PER_WORD
1598 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1601 optab otheroptab
= binoptab
== add_optab
? sub_optab
: add_optab
;
1602 const unsigned int nwords
= GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
;
1603 rtx carry_in
= NULL_RTX
, carry_out
= NULL_RTX
;
1604 rtx xop0
, xop1
, xtarget
;
1606 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1607 value is one of those, use it. Otherwise, use 1 since it is the
1608 one easiest to get. */
1609 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1610 int normalizep
= STORE_FLAG_VALUE
;
1615 /* Prepare the operands. */
1616 xop0
= force_reg (int_mode
, op0
);
1617 xop1
= force_reg (int_mode
, op1
);
1619 xtarget
= gen_reg_rtx (int_mode
);
1621 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1624 /* Indicate for flow that the entire target reg is being set. */
1626 emit_clobber (xtarget
);
1628 /* Do the actual arithmetic. */
1629 for (i
= 0; i
< nwords
; i
++)
1631 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
1632 rtx target_piece
= operand_subword (xtarget
, index
, 1, int_mode
);
1633 rtx op0_piece
= operand_subword_force (xop0
, index
, int_mode
);
1634 rtx op1_piece
= operand_subword_force (xop1
, index
, int_mode
);
1637 /* Main add/subtract of the input operands. */
1638 x
= expand_binop (word_mode
, binoptab
,
1639 op0_piece
, op1_piece
,
1640 target_piece
, unsignedp
, next_methods
);
1646 /* Store carry from main add/subtract. */
1647 carry_out
= gen_reg_rtx (word_mode
);
1648 carry_out
= emit_store_flag_force (carry_out
,
1649 (binoptab
== add_optab
1652 word_mode
, 1, normalizep
);
1659 /* Add/subtract previous carry to main result. */
1660 newx
= expand_binop (word_mode
,
1661 normalizep
== 1 ? binoptab
: otheroptab
,
1663 NULL_RTX
, 1, next_methods
);
1667 /* Get out carry from adding/subtracting carry in. */
1668 rtx carry_tmp
= gen_reg_rtx (word_mode
);
1669 carry_tmp
= emit_store_flag_force (carry_tmp
,
1670 (binoptab
== add_optab
1673 word_mode
, 1, normalizep
);
1675 /* Logical-ior the two poss. carry together. */
1676 carry_out
= expand_binop (word_mode
, ior_optab
,
1677 carry_out
, carry_tmp
,
1678 carry_out
, 0, next_methods
);
1682 emit_move_insn (target_piece
, newx
);
1686 if (x
!= target_piece
)
1687 emit_move_insn (target_piece
, x
);
1690 carry_in
= carry_out
;
1693 if (i
== GET_MODE_BITSIZE (int_mode
) / (unsigned) BITS_PER_WORD
)
1695 if (optab_handler (mov_optab
, int_mode
) != CODE_FOR_nothing
1696 || ! rtx_equal_p (target
, xtarget
))
1698 rtx_insn
*temp
= emit_move_insn (target
, xtarget
);
1700 set_dst_reg_note (temp
, REG_EQUAL
,
1701 gen_rtx_fmt_ee (optab_to_code (binoptab
),
1702 int_mode
, copy_rtx (xop0
),
1713 delete_insns_since (last
);
1716 /* Attempt to synthesize double word multiplies using a sequence of word
1717 mode multiplications. We first attempt to generate a sequence using a
1718 more efficient unsigned widening multiply, and if that fails we then
1719 try using a signed widening multiply. */
1721 if (binoptab
== smul_optab
1722 && is_int_mode (mode
, &int_mode
)
1723 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
1724 && optab_handler (smul_optab
, word_mode
) != CODE_FOR_nothing
1725 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
)
1727 rtx product
= NULL_RTX
;
1728 if (convert_optab_handler (umul_widen_optab
, int_mode
, word_mode
)
1729 != CODE_FOR_nothing
)
1731 product
= expand_doubleword_mult (int_mode
, op0
, op1
, target
,
1734 delete_insns_since (last
);
1737 if (product
== NULL_RTX
1738 && (convert_optab_handler (smul_widen_optab
, int_mode
, word_mode
)
1739 != CODE_FOR_nothing
))
1741 product
= expand_doubleword_mult (int_mode
, op0
, op1
, target
,
1744 delete_insns_since (last
);
1747 if (product
!= NULL_RTX
)
1749 if (optab_handler (mov_optab
, int_mode
) != CODE_FOR_nothing
)
1751 rtx_insn
*move
= emit_move_insn (target
? target
: product
,
1753 set_dst_reg_note (move
,
1755 gen_rtx_fmt_ee (MULT
, int_mode
,
1758 target
? target
: product
);
1764 /* It can't be open-coded in this mode.
1765 Use a library call if one is available and caller says that's ok. */
1767 libfunc
= optab_libfunc (binoptab
, mode
);
1769 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
1773 machine_mode op1_mode
= mode
;
1778 if (shift_optab_p (binoptab
))
1780 op1_mode
= targetm
.libgcc_shift_count_mode ();
1781 /* Specify unsigned here,
1782 since negative shift counts are meaningless. */
1783 op1x
= convert_to_mode (op1_mode
, op1
, 1);
1786 if (GET_MODE (op0
) != VOIDmode
1787 && GET_MODE (op0
) != mode
)
1788 op0
= convert_to_mode (mode
, op0
, unsignedp
);
1790 /* Pass 1 for NO_QUEUE so we don't lose any increments
1791 if the libcall is cse'd or moved. */
1792 value
= emit_library_call_value (libfunc
,
1793 NULL_RTX
, LCT_CONST
, mode
,
1794 op0
, mode
, op1x
, op1_mode
);
1796 insns
= get_insns ();
1799 bool trapv
= trapv_binoptab_p (binoptab
);
1800 target
= gen_reg_rtx (mode
);
1801 emit_libcall_block_1 (insns
, target
, value
,
1803 : gen_rtx_fmt_ee (optab_to_code (binoptab
),
1804 mode
, op0
, op1
), trapv
);
1809 delete_insns_since (last
);
1811 /* It can't be done in this mode. Can we do it in a wider mode? */
1813 if (! (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
1814 || methods
== OPTAB_MUST_WIDEN
))
1816 /* Caller says, don't even try. */
1817 delete_insns_since (entry_last
);
1821 /* Compute the value of METHODS to pass to recursive calls.
1822 Don't allow widening to be tried recursively. */
1824 methods
= (methods
== OPTAB_LIB_WIDEN
? OPTAB_LIB
: OPTAB_DIRECT
);
1826 /* Look for a wider mode of the same class for which it appears we can do
1829 if (CLASS_HAS_WIDER_MODES_P (mclass
))
1831 /* This code doesn't make sense for conversion optabs, since we
1832 wouldn't then want to extend the operands to be the same size
1834 gcc_assert (!convert_optab_p (binoptab
));
1835 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
1837 if (optab_handler (binoptab
, wider_mode
)
1838 || (methods
== OPTAB_LIB
1839 && optab_libfunc (binoptab
, wider_mode
)))
1841 rtx xop0
= op0
, xop1
= op1
;
1844 /* For certain integer operations, we need not actually extend
1845 the narrow operands, as long as we will truncate
1846 the results to the same narrowness. */
1848 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1849 || binoptab
== xor_optab
1850 || binoptab
== add_optab
|| binoptab
== sub_optab
1851 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1852 && mclass
== MODE_INT
)
1855 xop0
= widen_operand (xop0
, wider_mode
, mode
,
1856 unsignedp
, no_extend
);
1858 /* The second operand of a shift must always be extended. */
1859 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1860 no_extend
&& binoptab
!= ashl_optab
);
1862 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1863 unsignedp
, methods
);
1866 if (mclass
!= MODE_INT
1867 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1870 target
= gen_reg_rtx (mode
);
1871 convert_move (target
, temp
, 0);
1875 return gen_lowpart (mode
, temp
);
1878 delete_insns_since (last
);
1883 delete_insns_since (entry_last
);
1887 /* Expand a binary operator which has both signed and unsigned forms.
1888 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1891 If we widen unsigned operands, we may use a signed wider operation instead
1892 of an unsigned wider operation, since the result would be the same. */
1895 sign_expand_binop (machine_mode mode
, optab uoptab
, optab soptab
,
1896 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
1897 enum optab_methods methods
)
1900 optab direct_optab
= unsignedp
? uoptab
: soptab
;
1903 /* Do it without widening, if possible. */
1904 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
1905 unsignedp
, OPTAB_DIRECT
);
1906 if (temp
|| methods
== OPTAB_DIRECT
)
1909 /* Try widening to a signed int. Disable any direct use of any
1910 signed insn in the current mode. */
1911 save_enable
= swap_optab_enable (soptab
, mode
, false);
1913 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
1914 unsignedp
, OPTAB_WIDEN
);
1916 /* For unsigned operands, try widening to an unsigned int. */
1917 if (!temp
&& unsignedp
)
1918 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
1919 unsignedp
, OPTAB_WIDEN
);
1920 if (temp
|| methods
== OPTAB_WIDEN
)
1923 /* Use the right width libcall if that exists. */
1924 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
1925 unsignedp
, OPTAB_LIB
);
1926 if (temp
|| methods
== OPTAB_LIB
)
1929 /* Must widen and use a libcall, use either signed or unsigned. */
1930 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
1931 unsignedp
, methods
);
1932 if (!temp
&& unsignedp
)
1933 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
1934 unsignedp
, methods
);
1937 /* Undo the fiddling above. */
1939 swap_optab_enable (soptab
, mode
, true);
1943 /* Generate code to perform an operation specified by UNOPPTAB
1944 on operand OP0, with two results to TARG0 and TARG1.
1945 We assume that the order of the operands for the instruction
1946 is TARG0, TARG1, OP0.
1948 Either TARG0 or TARG1 may be zero, but what that means is that
1949 the result is not actually wanted. We will generate it into
1950 a dummy pseudo-reg and discard it. They may not both be zero.
1952 Returns 1 if this operation can be performed; 0 if not. */
1955 expand_twoval_unop (optab unoptab
, rtx op0
, rtx targ0
, rtx targ1
,
1958 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
1959 enum mode_class mclass
;
1960 machine_mode wider_mode
;
1961 rtx_insn
*entry_last
= get_last_insn ();
1964 mclass
= GET_MODE_CLASS (mode
);
1967 targ0
= gen_reg_rtx (mode
);
1969 targ1
= gen_reg_rtx (mode
);
1971 /* Record where to go back to if we fail. */
1972 last
= get_last_insn ();
1974 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
1976 struct expand_operand ops
[3];
1977 enum insn_code icode
= optab_handler (unoptab
, mode
);
1979 create_fixed_operand (&ops
[0], targ0
);
1980 create_fixed_operand (&ops
[1], targ1
);
1981 create_convert_operand_from (&ops
[2], op0
, mode
, unsignedp
);
1982 if (maybe_expand_insn (icode
, 3, ops
))
1986 /* It can't be done in this mode. Can we do it in a wider mode? */
1988 if (CLASS_HAS_WIDER_MODES_P (mclass
))
1990 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
1992 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
1994 rtx t0
= gen_reg_rtx (wider_mode
);
1995 rtx t1
= gen_reg_rtx (wider_mode
);
1996 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
1998 if (expand_twoval_unop (unoptab
, cop0
, t0
, t1
, unsignedp
))
2000 convert_move (targ0
, t0
, unsignedp
);
2001 convert_move (targ1
, t1
, unsignedp
);
2005 delete_insns_since (last
);
2010 delete_insns_since (entry_last
);
2014 /* Generate code to perform an operation specified by BINOPTAB
2015 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2016 We assume that the order of the operands for the instruction
2017 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2018 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2020 Either TARG0 or TARG1 may be zero, but what that means is that
2021 the result is not actually wanted. We will generate it into
2022 a dummy pseudo-reg and discard it. They may not both be zero.
2024 Returns 1 if this operation can be performed; 0 if not. */
2027 expand_twoval_binop (optab binoptab
, rtx op0
, rtx op1
, rtx targ0
, rtx targ1
,
2030 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2031 enum mode_class mclass
;
2032 machine_mode wider_mode
;
2033 rtx_insn
*entry_last
= get_last_insn ();
2036 mclass
= GET_MODE_CLASS (mode
);
2039 targ0
= gen_reg_rtx (mode
);
2041 targ1
= gen_reg_rtx (mode
);
2043 /* Record where to go back to if we fail. */
2044 last
= get_last_insn ();
2046 if (optab_handler (binoptab
, mode
) != CODE_FOR_nothing
)
2048 struct expand_operand ops
[4];
2049 enum insn_code icode
= optab_handler (binoptab
, mode
);
2050 machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2051 machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
2052 rtx xop0
= op0
, xop1
= op1
;
2054 /* If we are optimizing, force expensive constants into a register. */
2055 xop0
= avoid_expensive_constant (mode0
, binoptab
, 0, xop0
, unsignedp
);
2056 xop1
= avoid_expensive_constant (mode1
, binoptab
, 1, xop1
, unsignedp
);
2058 create_fixed_operand (&ops
[0], targ0
);
2059 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2060 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
2061 create_fixed_operand (&ops
[3], targ1
);
2062 if (maybe_expand_insn (icode
, 4, ops
))
2064 delete_insns_since (last
);
2067 /* It can't be done in this mode. Can we do it in a wider mode? */
2069 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2071 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2073 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
)
2075 rtx t0
= gen_reg_rtx (wider_mode
);
2076 rtx t1
= gen_reg_rtx (wider_mode
);
2077 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2078 rtx cop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
2080 if (expand_twoval_binop (binoptab
, cop0
, cop1
,
2083 convert_move (targ0
, t0
, unsignedp
);
2084 convert_move (targ1
, t1
, unsignedp
);
2088 delete_insns_since (last
);
2093 delete_insns_since (entry_last
);
2097 /* Expand the two-valued library call indicated by BINOPTAB, but
2098 preserve only one of the values. If TARG0 is non-NULL, the first
2099 value is placed into TARG0; otherwise the second value is placed
2100 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2101 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2102 This routine assumes that the value returned by the library call is
2103 as if the return value was of an integral mode twice as wide as the
2104 mode of OP0. Returns 1 if the call was successful. */
2107 expand_twoval_binop_libfunc (optab binoptab
, rtx op0
, rtx op1
,
2108 rtx targ0
, rtx targ1
, enum rtx_code code
)
2111 machine_mode libval_mode
;
2116 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2117 gcc_assert (!targ0
!= !targ1
);
2119 mode
= GET_MODE (op0
);
2120 libfunc
= optab_libfunc (binoptab
, mode
);
2124 /* The value returned by the library function will have twice as
2125 many bits as the nominal MODE. */
2126 libval_mode
= smallest_int_mode_for_size (2 * GET_MODE_BITSIZE (mode
));
2128 libval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
2132 /* Get the part of VAL containing the value that we want. */
2133 libval
= simplify_gen_subreg (mode
, libval
, libval_mode
,
2134 targ0
? 0 : GET_MODE_SIZE (mode
));
2135 insns
= get_insns ();
2137 /* Move the into the desired location. */
2138 emit_libcall_block (insns
, targ0
? targ0
: targ1
, libval
,
2139 gen_rtx_fmt_ee (code
, mode
, op0
, op1
));
2145 /* Wrapper around expand_unop which takes an rtx code to specify
2146 the operation to perform, not an optab pointer. All other
2147 arguments are the same. */
2149 expand_simple_unop (machine_mode mode
, enum rtx_code code
, rtx op0
,
2150 rtx target
, int unsignedp
)
2152 optab unop
= code_to_optab (code
);
2155 return expand_unop (mode
, unop
, op0
, target
, unsignedp
);
2161 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2163 A similar operation can be used for clrsb. UNOPTAB says which operation
2164 we are trying to expand. */
2166 widen_leading (scalar_int_mode mode
, rtx op0
, rtx target
, optab unoptab
)
2168 opt_scalar_int_mode wider_mode_iter
;
2169 FOR_EACH_WIDER_MODE (wider_mode_iter
, mode
)
2171 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2172 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2177 last
= get_last_insn ();
2180 target
= gen_reg_rtx (mode
);
2181 xop0
= widen_operand (op0
, wider_mode
, mode
,
2182 unoptab
!= clrsb_optab
, false);
2183 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2184 unoptab
!= clrsb_optab
);
2187 (wider_mode
, sub_optab
, temp
,
2188 gen_int_mode (GET_MODE_PRECISION (wider_mode
)
2189 - GET_MODE_PRECISION (mode
),
2191 target
, true, OPTAB_DIRECT
);
2193 delete_insns_since (last
);
2201 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2202 quantities, choosing which based on whether the high word is nonzero. */
2204 expand_doubleword_clz (scalar_int_mode mode
, rtx op0
, rtx target
)
2206 rtx xop0
= force_reg (mode
, op0
);
2207 rtx subhi
= gen_highpart (word_mode
, xop0
);
2208 rtx sublo
= gen_lowpart (word_mode
, xop0
);
2209 rtx_code_label
*hi0_label
= gen_label_rtx ();
2210 rtx_code_label
*after_label
= gen_label_rtx ();
2214 /* If we were not given a target, use a word_mode register, not a
2215 'mode' register. The result will fit, and nobody is expecting
2216 anything bigger (the return type of __builtin_clz* is int). */
2218 target
= gen_reg_rtx (word_mode
);
2220 /* In any case, write to a word_mode scratch in both branches of the
2221 conditional, so we can ensure there is a single move insn setting
2222 'target' to tag a REG_EQUAL note on. */
2223 result
= gen_reg_rtx (word_mode
);
2227 /* If the high word is not equal to zero,
2228 then clz of the full value is clz of the high word. */
2229 emit_cmp_and_jump_insns (subhi
, CONST0_RTX (word_mode
), EQ
, 0,
2230 word_mode
, true, hi0_label
);
2232 temp
= expand_unop_direct (word_mode
, clz_optab
, subhi
, result
, true);
2237 convert_move (result
, temp
, true);
2239 emit_jump_insn (targetm
.gen_jump (after_label
));
2242 /* Else clz of the full value is clz of the low word plus the number
2243 of bits in the high word. */
2244 emit_label (hi0_label
);
2246 temp
= expand_unop_direct (word_mode
, clz_optab
, sublo
, 0, true);
2249 temp
= expand_binop (word_mode
, add_optab
, temp
,
2250 gen_int_mode (GET_MODE_BITSIZE (word_mode
), word_mode
),
2251 result
, true, OPTAB_DIRECT
);
2255 convert_move (result
, temp
, true);
2257 emit_label (after_label
);
2258 convert_move (target
, result
, true);
2263 add_equal_note (seq
, target
, CLZ
, xop0
, 0);
2272 /* Try calculating popcount of a double-word quantity as two popcount's of
2273 word-sized quantities and summing up the results. */
2275 expand_doubleword_popcount (scalar_int_mode mode
, rtx op0
, rtx target
)
2282 t0
= expand_unop_direct (word_mode
, popcount_optab
,
2283 operand_subword_force (op0
, 0, mode
), NULL_RTX
,
2285 t1
= expand_unop_direct (word_mode
, popcount_optab
,
2286 operand_subword_force (op0
, 1, mode
), NULL_RTX
,
2294 /* If we were not given a target, use a word_mode register, not a
2295 'mode' register. The result will fit, and nobody is expecting
2296 anything bigger (the return type of __builtin_popcount* is int). */
2298 target
= gen_reg_rtx (word_mode
);
2300 t
= expand_binop (word_mode
, add_optab
, t0
, t1
, target
, 0, OPTAB_DIRECT
);
2305 add_equal_note (seq
, t
, POPCOUNT
, op0
, 0);
2313 (parity:narrow (low (x) ^ high (x))) */
2315 expand_doubleword_parity (scalar_int_mode mode
, rtx op0
, rtx target
)
2317 rtx t
= expand_binop (word_mode
, xor_optab
,
2318 operand_subword_force (op0
, 0, mode
),
2319 operand_subword_force (op0
, 1, mode
),
2320 NULL_RTX
, 0, OPTAB_DIRECT
);
2321 return expand_unop (word_mode
, parity_optab
, t
, target
, true);
2327 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2329 widen_bswap (scalar_int_mode mode
, rtx op0
, rtx target
)
2333 opt_scalar_int_mode wider_mode_iter
;
2335 FOR_EACH_WIDER_MODE (wider_mode_iter
, mode
)
2336 if (optab_handler (bswap_optab
, wider_mode_iter
.require ())
2337 != CODE_FOR_nothing
)
2340 if (!wider_mode_iter
.exists ())
2343 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2344 last
= get_last_insn ();
2346 x
= widen_operand (op0
, wider_mode
, mode
, true, true);
2347 x
= expand_unop (wider_mode
, bswap_optab
, x
, NULL_RTX
, true);
2349 gcc_assert (GET_MODE_PRECISION (wider_mode
) == GET_MODE_BITSIZE (wider_mode
)
2350 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
));
2352 x
= expand_shift (RSHIFT_EXPR
, wider_mode
, x
,
2353 GET_MODE_BITSIZE (wider_mode
)
2354 - GET_MODE_BITSIZE (mode
),
2360 target
= gen_reg_rtx (mode
);
2361 emit_move_insn (target
, gen_lowpart (mode
, x
));
2364 delete_insns_since (last
);
2369 /* Try calculating bswap as two bswaps of two word-sized operands. */
2372 expand_doubleword_bswap (machine_mode mode
, rtx op
, rtx target
)
2376 t1
= expand_unop (word_mode
, bswap_optab
,
2377 operand_subword_force (op
, 0, mode
), NULL_RTX
, true);
2378 t0
= expand_unop (word_mode
, bswap_optab
,
2379 operand_subword_force (op
, 1, mode
), NULL_RTX
, true);
2381 if (target
== 0 || !valid_multiword_target_p (target
))
2382 target
= gen_reg_rtx (mode
);
2384 emit_clobber (target
);
2385 emit_move_insn (operand_subword (target
, 0, 1, mode
), t0
);
2386 emit_move_insn (operand_subword (target
, 1, 1, mode
), t1
);
2391 /* Try calculating (parity x) as (and (popcount x) 1), where
2392 popcount can also be done in a wider mode. */
2394 expand_parity (scalar_int_mode mode
, rtx op0
, rtx target
)
2396 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2397 opt_scalar_int_mode wider_mode_iter
;
2398 FOR_EACH_MODE_FROM (wider_mode_iter
, mode
)
2400 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2401 if (optab_handler (popcount_optab
, wider_mode
) != CODE_FOR_nothing
)
2406 last
= get_last_insn ();
2408 if (target
== 0 || GET_MODE (target
) != wider_mode
)
2409 target
= gen_reg_rtx (wider_mode
);
2411 xop0
= widen_operand (op0
, wider_mode
, mode
, true, false);
2412 temp
= expand_unop (wider_mode
, popcount_optab
, xop0
, NULL_RTX
,
2415 temp
= expand_binop (wider_mode
, and_optab
, temp
, const1_rtx
,
2416 target
, true, OPTAB_DIRECT
);
2420 if (mclass
!= MODE_INT
2421 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2422 return convert_to_mode (mode
, temp
, 0);
2424 return gen_lowpart (mode
, temp
);
2427 delete_insns_since (last
);
2433 /* Try calculating ctz(x) as K - clz(x & -x) ,
2434 where K is GET_MODE_PRECISION(mode) - 1.
2436 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2437 don't have to worry about what the hardware does in that case. (If
2438 the clz instruction produces the usual value at 0, which is K, the
2439 result of this code sequence will be -1; expand_ffs, below, relies
2440 on this. It might be nice to have it be K instead, for consistency
2441 with the (very few) processors that provide a ctz with a defined
2442 value, but that would take one more instruction, and it would be
2443 less convenient for expand_ffs anyway. */
2446 expand_ctz (scalar_int_mode mode
, rtx op0
, rtx target
)
2451 if (optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2456 temp
= expand_unop_direct (mode
, neg_optab
, op0
, NULL_RTX
, true);
2458 temp
= expand_binop (mode
, and_optab
, op0
, temp
, NULL_RTX
,
2459 true, OPTAB_DIRECT
);
2461 temp
= expand_unop_direct (mode
, clz_optab
, temp
, NULL_RTX
, true);
2463 temp
= expand_binop (mode
, sub_optab
,
2464 gen_int_mode (GET_MODE_PRECISION (mode
) - 1, mode
),
2466 true, OPTAB_DIRECT
);
2476 add_equal_note (seq
, temp
, CTZ
, op0
, 0);
2482 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2483 else with the sequence used by expand_clz.
2485 The ffs builtin promises to return zero for a zero value and ctz/clz
2486 may have an undefined value in that case. If they do not give us a
2487 convenient value, we have to generate a test and branch. */
2489 expand_ffs (scalar_int_mode mode
, rtx op0
, rtx target
)
2491 HOST_WIDE_INT val
= 0;
2492 bool defined_at_zero
= false;
2496 if (optab_handler (ctz_optab
, mode
) != CODE_FOR_nothing
)
2500 temp
= expand_unop_direct (mode
, ctz_optab
, op0
, 0, true);
2504 defined_at_zero
= (CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2);
2506 else if (optab_handler (clz_optab
, mode
) != CODE_FOR_nothing
)
2509 temp
= expand_ctz (mode
, op0
, 0);
2513 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2)
2515 defined_at_zero
= true;
2516 val
= (GET_MODE_PRECISION (mode
) - 1) - val
;
2522 if (defined_at_zero
&& val
== -1)
2523 /* No correction needed at zero. */;
2526 /* We don't try to do anything clever with the situation found
2527 on some processors (eg Alpha) where ctz(0:mode) ==
2528 bitsize(mode). If someone can think of a way to send N to -1
2529 and leave alone all values in the range 0..N-1 (where N is a
2530 power of two), cheaper than this test-and-branch, please add it.
2532 The test-and-branch is done after the operation itself, in case
2533 the operation sets condition codes that can be recycled for this.
2534 (This is true on i386, for instance.) */
2536 rtx_code_label
*nonzero_label
= gen_label_rtx ();
2537 emit_cmp_and_jump_insns (op0
, CONST0_RTX (mode
), NE
, 0,
2538 mode
, true, nonzero_label
);
2540 convert_move (temp
, GEN_INT (-1), false);
2541 emit_label (nonzero_label
);
2544 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2545 to produce a value in the range 0..bitsize. */
2546 temp
= expand_binop (mode
, add_optab
, temp
, gen_int_mode (1, mode
),
2547 target
, false, OPTAB_DIRECT
);
2554 add_equal_note (seq
, temp
, FFS
, op0
, 0);
2563 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2564 conditions, VAL may already be a SUBREG against which we cannot generate
2565 a further SUBREG. In this case, we expect forcing the value into a
2566 register will work around the situation. */
2569 lowpart_subreg_maybe_copy (machine_mode omode
, rtx val
,
2573 ret
= lowpart_subreg (omode
, val
, imode
);
2576 val
= force_reg (imode
, val
);
2577 ret
= lowpart_subreg (omode
, val
, imode
);
2578 gcc_assert (ret
!= NULL
);
2583 /* Expand a floating point absolute value or negation operation via a
2584 logical operation on the sign bit. */
2587 expand_absneg_bit (enum rtx_code code
, scalar_float_mode mode
,
2588 rtx op0
, rtx target
)
2590 const struct real_format
*fmt
;
2591 int bitpos
, word
, nwords
, i
;
2592 scalar_int_mode imode
;
2596 /* The format has to have a simple sign bit. */
2597 fmt
= REAL_MODE_FORMAT (mode
);
2601 bitpos
= fmt
->signbit_rw
;
2605 /* Don't create negative zeros if the format doesn't support them. */
2606 if (code
== NEG
&& !fmt
->has_signed_zero
)
2609 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
2611 if (!int_mode_for_mode (mode
).exists (&imode
))
2620 if (FLOAT_WORDS_BIG_ENDIAN
)
2621 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
2623 word
= bitpos
/ BITS_PER_WORD
;
2624 bitpos
= bitpos
% BITS_PER_WORD
;
2625 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
2628 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
2634 || (nwords
> 1 && !valid_multiword_target_p (target
)))
2635 target
= gen_reg_rtx (mode
);
2641 for (i
= 0; i
< nwords
; ++i
)
2643 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
2644 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
2648 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2650 immed_wide_int_const (mask
, imode
),
2651 targ_piece
, 1, OPTAB_LIB_WIDEN
);
2652 if (temp
!= targ_piece
)
2653 emit_move_insn (targ_piece
, temp
);
2656 emit_move_insn (targ_piece
, op0_piece
);
2659 insns
= get_insns ();
2666 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2667 gen_lowpart (imode
, op0
),
2668 immed_wide_int_const (mask
, imode
),
2669 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
2670 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
2672 set_dst_reg_note (get_last_insn (), REG_EQUAL
,
2673 gen_rtx_fmt_e (code
, mode
, copy_rtx (op0
)),
2680 /* As expand_unop, but will fail rather than attempt the operation in a
2681 different mode or with a libcall. */
2683 expand_unop_direct (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2686 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2688 struct expand_operand ops
[2];
2689 enum insn_code icode
= optab_handler (unoptab
, mode
);
2690 rtx_insn
*last
= get_last_insn ();
2693 create_output_operand (&ops
[0], target
, mode
);
2694 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2695 pat
= maybe_gen_insn (icode
, 2, ops
);
2698 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
2699 && ! add_equal_note (pat
, ops
[0].value
,
2700 optab_to_code (unoptab
),
2701 ops
[1].value
, NULL_RTX
))
2703 delete_insns_since (last
);
2704 return expand_unop (mode
, unoptab
, op0
, NULL_RTX
, unsignedp
);
2709 return ops
[0].value
;
2715 /* Generate code to perform an operation specified by UNOPTAB
2716 on operand OP0, with result having machine-mode MODE.
2718 UNSIGNEDP is for the case where we have to widen the operands
2719 to perform the operation. It says to use zero-extension.
2721 If TARGET is nonzero, the value
2722 is generated there, if it is convenient to do so.
2723 In all cases an rtx is returned for the locus of the value;
2724 this may or may not be TARGET. */
2727 expand_unop (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2730 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2731 machine_mode wider_mode
;
2732 scalar_int_mode int_mode
;
2733 scalar_float_mode float_mode
;
2737 temp
= expand_unop_direct (mode
, unoptab
, op0
, target
, unsignedp
);
2741 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2743 /* Widening (or narrowing) clz needs special treatment. */
2744 if (unoptab
== clz_optab
)
2746 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
2748 temp
= widen_leading (int_mode
, op0
, target
, unoptab
);
2752 if (GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2753 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2755 temp
= expand_doubleword_clz (int_mode
, op0
, target
);
2764 if (unoptab
== clrsb_optab
)
2766 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
2768 temp
= widen_leading (int_mode
, op0
, target
, unoptab
);
2775 if (unoptab
== popcount_optab
2776 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
2777 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2778 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
2779 && optimize_insn_for_speed_p ())
2781 temp
= expand_doubleword_popcount (int_mode
, op0
, target
);
2786 if (unoptab
== parity_optab
2787 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
2788 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2789 && (optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
2790 || optab_handler (popcount_optab
, word_mode
) != CODE_FOR_nothing
)
2791 && optimize_insn_for_speed_p ())
2793 temp
= expand_doubleword_parity (int_mode
, op0
, target
);
2798 /* Widening (or narrowing) bswap needs special treatment. */
2799 if (unoptab
== bswap_optab
)
2801 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
2802 or ROTATERT. First try these directly; if this fails, then try the
2803 obvious pair of shifts with allowed widening, as this will probably
2804 be always more efficient than the other fallback methods. */
2810 if (optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
)
2812 temp
= expand_binop (mode
, rotl_optab
, op0
,
2813 gen_int_shift_amount (mode
, 8),
2814 target
, unsignedp
, OPTAB_DIRECT
);
2819 if (optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
2821 temp
= expand_binop (mode
, rotr_optab
, op0
,
2822 gen_int_shift_amount (mode
, 8),
2823 target
, unsignedp
, OPTAB_DIRECT
);
2828 last
= get_last_insn ();
2830 temp1
= expand_binop (mode
, ashl_optab
, op0
,
2831 gen_int_shift_amount (mode
, 8), NULL_RTX
,
2832 unsignedp
, OPTAB_WIDEN
);
2833 temp2
= expand_binop (mode
, lshr_optab
, op0
,
2834 gen_int_shift_amount (mode
, 8), NULL_RTX
,
2835 unsignedp
, OPTAB_WIDEN
);
2838 temp
= expand_binop (mode
, ior_optab
, temp1
, temp2
, target
,
2839 unsignedp
, OPTAB_WIDEN
);
2844 delete_insns_since (last
);
2847 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
2849 temp
= widen_bswap (int_mode
, op0
, target
);
2853 if (GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2854 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2856 temp
= expand_doubleword_bswap (mode
, op0
, target
);
2865 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2866 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2868 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2871 rtx_insn
*last
= get_last_insn ();
2873 /* For certain operations, we need not actually extend
2874 the narrow operand, as long as we will truncate the
2875 results to the same narrowness. */
2877 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
2878 (unoptab
== neg_optab
2879 || unoptab
== one_cmpl_optab
)
2880 && mclass
== MODE_INT
);
2882 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2887 if (mclass
!= MODE_INT
2888 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2891 target
= gen_reg_rtx (mode
);
2892 convert_move (target
, temp
, 0);
2896 return gen_lowpart (mode
, temp
);
2899 delete_insns_since (last
);
2903 /* These can be done a word at a time. */
2904 if (unoptab
== one_cmpl_optab
2905 && is_int_mode (mode
, &int_mode
)
2906 && GET_MODE_SIZE (int_mode
) > UNITS_PER_WORD
2907 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2912 if (target
== 0 || target
== op0
|| !valid_multiword_target_p (target
))
2913 target
= gen_reg_rtx (int_mode
);
2917 /* Do the actual arithmetic. */
2918 for (i
= 0; i
< GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
; i
++)
2920 rtx target_piece
= operand_subword (target
, i
, 1, int_mode
);
2921 rtx x
= expand_unop (word_mode
, unoptab
,
2922 operand_subword_force (op0
, i
, int_mode
),
2923 target_piece
, unsignedp
);
2925 if (target_piece
!= x
)
2926 emit_move_insn (target_piece
, x
);
2929 insns
= get_insns ();
2936 if (optab_to_code (unoptab
) == NEG
)
2938 /* Try negating floating point values by flipping the sign bit. */
2939 if (is_a
<scalar_float_mode
> (mode
, &float_mode
))
2941 temp
= expand_absneg_bit (NEG
, float_mode
, op0
, target
);
2946 /* If there is no negation pattern, and we have no negative zero,
2947 try subtracting from zero. */
2948 if (!HONOR_SIGNED_ZEROS (mode
))
2950 temp
= expand_binop (mode
, (unoptab
== negv_optab
2951 ? subv_optab
: sub_optab
),
2952 CONST0_RTX (mode
), op0
, target
,
2953 unsignedp
, OPTAB_DIRECT
);
2959 /* Try calculating parity (x) as popcount (x) % 2. */
2960 if (unoptab
== parity_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
2962 temp
= expand_parity (int_mode
, op0
, target
);
2967 /* Try implementing ffs (x) in terms of clz (x). */
2968 if (unoptab
== ffs_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
2970 temp
= expand_ffs (int_mode
, op0
, target
);
2975 /* Try implementing ctz (x) in terms of clz (x). */
2976 if (unoptab
== ctz_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
2978 temp
= expand_ctz (int_mode
, op0
, target
);
2984 /* Now try a library call in this mode. */
2985 libfunc
= optab_libfunc (unoptab
, mode
);
2991 machine_mode outmode
= mode
;
2993 /* All of these functions return small values. Thus we choose to
2994 have them return something that isn't a double-word. */
2995 if (unoptab
== ffs_optab
|| unoptab
== clz_optab
|| unoptab
== ctz_optab
2996 || unoptab
== clrsb_optab
|| unoptab
== popcount_optab
2997 || unoptab
== parity_optab
)
2999 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node
),
3000 optab_libfunc (unoptab
, mode
)));
3004 /* Pass 1 for NO_QUEUE so we don't lose any increments
3005 if the libcall is cse'd or moved. */
3006 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, outmode
,
3008 insns
= get_insns ();
3011 target
= gen_reg_rtx (outmode
);
3012 bool trapv
= trapv_unoptab_p (unoptab
);
3014 eq_value
= NULL_RTX
;
3017 eq_value
= gen_rtx_fmt_e (optab_to_code (unoptab
), mode
, op0
);
3018 if (GET_MODE_UNIT_SIZE (outmode
) < GET_MODE_UNIT_SIZE (mode
))
3019 eq_value
= simplify_gen_unary (TRUNCATE
, outmode
, eq_value
, mode
);
3020 else if (GET_MODE_UNIT_SIZE (outmode
) > GET_MODE_UNIT_SIZE (mode
))
3021 eq_value
= simplify_gen_unary (ZERO_EXTEND
,
3022 outmode
, eq_value
, mode
);
3024 emit_libcall_block_1 (insns
, target
, value
, eq_value
, trapv
);
3029 /* It can't be done in this mode. Can we do it in a wider mode? */
3031 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3033 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
3035 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
3036 || optab_libfunc (unoptab
, wider_mode
))
3039 rtx_insn
*last
= get_last_insn ();
3041 /* For certain operations, we need not actually extend
3042 the narrow operand, as long as we will truncate the
3043 results to the same narrowness. */
3044 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3045 (unoptab
== neg_optab
3046 || unoptab
== one_cmpl_optab
3047 || unoptab
== bswap_optab
)
3048 && mclass
== MODE_INT
);
3050 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3053 /* If we are generating clz using wider mode, adjust the
3054 result. Similarly for clrsb. */
3055 if ((unoptab
== clz_optab
|| unoptab
== clrsb_optab
)
3058 scalar_int_mode wider_int_mode
3059 = as_a
<scalar_int_mode
> (wider_mode
);
3060 int_mode
= as_a
<scalar_int_mode
> (mode
);
3062 (wider_mode
, sub_optab
, temp
,
3063 gen_int_mode (GET_MODE_PRECISION (wider_int_mode
)
3064 - GET_MODE_PRECISION (int_mode
),
3066 target
, true, OPTAB_DIRECT
);
3069 /* Likewise for bswap. */
3070 if (unoptab
== bswap_optab
&& temp
!= 0)
3072 scalar_int_mode wider_int_mode
3073 = as_a
<scalar_int_mode
> (wider_mode
);
3074 int_mode
= as_a
<scalar_int_mode
> (mode
);
3075 gcc_assert (GET_MODE_PRECISION (wider_int_mode
)
3076 == GET_MODE_BITSIZE (wider_int_mode
)
3077 && GET_MODE_PRECISION (int_mode
)
3078 == GET_MODE_BITSIZE (int_mode
));
3080 temp
= expand_shift (RSHIFT_EXPR
, wider_int_mode
, temp
,
3081 GET_MODE_BITSIZE (wider_int_mode
)
3082 - GET_MODE_BITSIZE (int_mode
),
3088 if (mclass
!= MODE_INT
)
3091 target
= gen_reg_rtx (mode
);
3092 convert_move (target
, temp
, 0);
3096 return gen_lowpart (mode
, temp
);
3099 delete_insns_since (last
);
3104 /* One final attempt at implementing negation via subtraction,
3105 this time allowing widening of the operand. */
3106 if (optab_to_code (unoptab
) == NEG
&& !HONOR_SIGNED_ZEROS (mode
))
3109 temp
= expand_binop (mode
,
3110 unoptab
== negv_optab
? subv_optab
: sub_optab
,
3111 CONST0_RTX (mode
), op0
,
3112 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3120 /* Emit code to compute the absolute value of OP0, with result to
3121 TARGET if convenient. (TARGET may be 0.) The return value says
3122 where the result actually is to be found.
3124 MODE is the mode of the operand; the mode of the result is
3125 different but can be deduced from MODE.
3130 expand_abs_nojump (machine_mode mode
, rtx op0
, rtx target
,
3131 int result_unsignedp
)
3135 if (GET_MODE_CLASS (mode
) != MODE_INT
3137 result_unsignedp
= 1;
3139 /* First try to do it with a special abs instruction. */
3140 temp
= expand_unop (mode
, result_unsignedp
? abs_optab
: absv_optab
,
3145 /* For floating point modes, try clearing the sign bit. */
3146 scalar_float_mode float_mode
;
3147 if (is_a
<scalar_float_mode
> (mode
, &float_mode
))
3149 temp
= expand_absneg_bit (ABS
, float_mode
, op0
, target
);
3154 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3155 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
3156 && !HONOR_SIGNED_ZEROS (mode
))
3158 rtx_insn
*last
= get_last_insn ();
3160 temp
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3163 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3169 delete_insns_since (last
);
3172 /* If this machine has expensive jumps, we can do integer absolute
3173 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3174 where W is the width of MODE. */
3176 scalar_int_mode int_mode
;
3177 if (is_int_mode (mode
, &int_mode
)
3178 && BRANCH_COST (optimize_insn_for_speed_p (),
3181 rtx extended
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
3182 GET_MODE_PRECISION (int_mode
) - 1,
3185 temp
= expand_binop (int_mode
, xor_optab
, extended
, op0
, target
, 0,
3188 temp
= expand_binop (int_mode
,
3189 result_unsignedp
? sub_optab
: subv_optab
,
3190 temp
, extended
, target
, 0, OPTAB_LIB_WIDEN
);
3200 expand_abs (machine_mode mode
, rtx op0
, rtx target
,
3201 int result_unsignedp
, int safe
)
3204 rtx_code_label
*op1
;
3206 if (GET_MODE_CLASS (mode
) != MODE_INT
3208 result_unsignedp
= 1;
3210 temp
= expand_abs_nojump (mode
, op0
, target
, result_unsignedp
);
3214 /* If that does not win, use conditional jump and negate. */
3216 /* It is safe to use the target if it is the same
3217 as the source if this is also a pseudo register */
3218 if (op0
== target
&& REG_P (op0
)
3219 && REGNO (op0
) >= FIRST_PSEUDO_REGISTER
)
3222 op1
= gen_label_rtx ();
3223 if (target
== 0 || ! safe
3224 || GET_MODE (target
) != mode
3225 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
3227 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
3228 target
= gen_reg_rtx (mode
);
3230 emit_move_insn (target
, op0
);
3233 do_compare_rtx_and_jump (target
, CONST0_RTX (mode
), GE
, 0, mode
,
3234 NULL_RTX
, NULL
, op1
,
3235 profile_probability::uninitialized ());
3237 op0
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3240 emit_move_insn (target
, op0
);
3246 /* Emit code to compute the one's complement absolute value of OP0
3247 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3248 (TARGET may be NULL_RTX.) The return value says where the result
3249 actually is to be found.
3251 MODE is the mode of the operand; the mode of the result is
3252 different but can be deduced from MODE. */
3255 expand_one_cmpl_abs_nojump (machine_mode mode
, rtx op0
, rtx target
)
3259 /* Not applicable for floating point modes. */
3260 if (FLOAT_MODE_P (mode
))
3263 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3264 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
)
3266 rtx_insn
*last
= get_last_insn ();
3268 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, NULL_RTX
, 0);
3270 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3276 delete_insns_since (last
);
3279 /* If this machine has expensive jumps, we can do one's complement
3280 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3282 scalar_int_mode int_mode
;
3283 if (is_int_mode (mode
, &int_mode
)
3284 && BRANCH_COST (optimize_insn_for_speed_p (),
3287 rtx extended
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
3288 GET_MODE_PRECISION (int_mode
) - 1,
3291 temp
= expand_binop (int_mode
, xor_optab
, extended
, op0
, target
, 0,
3301 /* A subroutine of expand_copysign, perform the copysign operation using the
3302 abs and neg primitives advertised to exist on the target. The assumption
3303 is that we have a split register file, and leaving op0 in fp registers,
3304 and not playing with subregs so much, will help the register allocator. */
3307 expand_copysign_absneg (scalar_float_mode mode
, rtx op0
, rtx op1
, rtx target
,
3308 int bitpos
, bool op0_is_abs
)
3310 scalar_int_mode imode
;
3311 enum insn_code icode
;
3313 rtx_code_label
*label
;
3318 /* Check if the back end provides an insn that handles signbit for the
3320 icode
= optab_handler (signbit_optab
, mode
);
3321 if (icode
!= CODE_FOR_nothing
)
3323 imode
= as_a
<scalar_int_mode
> (insn_data
[(int) icode
].operand
[0].mode
);
3324 sign
= gen_reg_rtx (imode
);
3325 emit_unop_insn (icode
, sign
, op1
, UNKNOWN
);
3329 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3331 if (!int_mode_for_mode (mode
).exists (&imode
))
3333 op1
= gen_lowpart (imode
, op1
);
3340 if (FLOAT_WORDS_BIG_ENDIAN
)
3341 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3343 word
= bitpos
/ BITS_PER_WORD
;
3344 bitpos
= bitpos
% BITS_PER_WORD
;
3345 op1
= operand_subword_force (op1
, word
, mode
);
3348 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3349 sign
= expand_binop (imode
, and_optab
, op1
,
3350 immed_wide_int_const (mask
, imode
),
3351 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3356 op0
= expand_unop (mode
, abs_optab
, op0
, target
, 0);
3363 if (target
== NULL_RTX
)
3364 target
= copy_to_reg (op0
);
3366 emit_move_insn (target
, op0
);
3369 label
= gen_label_rtx ();
3370 emit_cmp_and_jump_insns (sign
, const0_rtx
, EQ
, NULL_RTX
, imode
, 1, label
);
3372 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3373 op0
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3375 op0
= expand_unop (mode
, neg_optab
, op0
, target
, 0);
3377 emit_move_insn (target
, op0
);
3385 /* A subroutine of expand_copysign, perform the entire copysign operation
3386 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3387 is true if op0 is known to have its sign bit clear. */
3390 expand_copysign_bit (scalar_float_mode mode
, rtx op0
, rtx op1
, rtx target
,
3391 int bitpos
, bool op0_is_abs
)
3393 scalar_int_mode imode
;
3394 int word
, nwords
, i
;
3398 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3400 if (!int_mode_for_mode (mode
).exists (&imode
))
3409 if (FLOAT_WORDS_BIG_ENDIAN
)
3410 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3412 word
= bitpos
/ BITS_PER_WORD
;
3413 bitpos
= bitpos
% BITS_PER_WORD
;
3414 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3417 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3422 || (nwords
> 1 && !valid_multiword_target_p (target
)))
3423 target
= gen_reg_rtx (mode
);
3429 for (i
= 0; i
< nwords
; ++i
)
3431 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3432 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3438 = expand_binop (imode
, and_optab
, op0_piece
,
3439 immed_wide_int_const (~mask
, imode
),
3440 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3441 op1
= expand_binop (imode
, and_optab
,
3442 operand_subword_force (op1
, i
, mode
),
3443 immed_wide_int_const (mask
, imode
),
3444 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3446 temp
= expand_binop (imode
, ior_optab
, op0_piece
, op1
,
3447 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3448 if (temp
!= targ_piece
)
3449 emit_move_insn (targ_piece
, temp
);
3452 emit_move_insn (targ_piece
, op0_piece
);
3455 insns
= get_insns ();
3462 op1
= expand_binop (imode
, and_optab
, gen_lowpart (imode
, op1
),
3463 immed_wide_int_const (mask
, imode
),
3464 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3466 op0
= gen_lowpart (imode
, op0
);
3468 op0
= expand_binop (imode
, and_optab
, op0
,
3469 immed_wide_int_const (~mask
, imode
),
3470 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3472 temp
= expand_binop (imode
, ior_optab
, op0
, op1
,
3473 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
3474 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
3480 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3481 scalar floating point mode. Return NULL if we do not know how to
3482 expand the operation inline. */
3485 expand_copysign (rtx op0
, rtx op1
, rtx target
)
3487 scalar_float_mode mode
;
3488 const struct real_format
*fmt
;
3492 mode
= as_a
<scalar_float_mode
> (GET_MODE (op0
));
3493 gcc_assert (GET_MODE (op1
) == mode
);
3495 /* First try to do it with a special instruction. */
3496 temp
= expand_binop (mode
, copysign_optab
, op0
, op1
,
3497 target
, 0, OPTAB_DIRECT
);
3501 fmt
= REAL_MODE_FORMAT (mode
);
3502 if (fmt
== NULL
|| !fmt
->has_signed_zero
)
3506 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3508 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0
)))
3509 op0
= simplify_unary_operation (ABS
, mode
, op0
, mode
);
3513 if (fmt
->signbit_ro
>= 0
3514 && (CONST_DOUBLE_AS_FLOAT_P (op0
)
3515 || (optab_handler (neg_optab
, mode
) != CODE_FOR_nothing
3516 && optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)))
3518 temp
= expand_copysign_absneg (mode
, op0
, op1
, target
,
3519 fmt
->signbit_ro
, op0_is_abs
);
3524 if (fmt
->signbit_rw
< 0)
3526 return expand_copysign_bit (mode
, op0
, op1
, target
,
3527 fmt
->signbit_rw
, op0_is_abs
);
3530 /* Generate an instruction whose insn-code is INSN_CODE,
3531 with two operands: an output TARGET and an input OP0.
3532 TARGET *must* be nonzero, and the output is always stored there.
3533 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3534 the value that is stored into TARGET.
3536 Return false if expansion failed. */
3539 maybe_emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
,
3542 struct expand_operand ops
[2];
3545 create_output_operand (&ops
[0], target
, GET_MODE (target
));
3546 create_input_operand (&ops
[1], op0
, GET_MODE (op0
));
3547 pat
= maybe_gen_insn (icode
, 2, ops
);
3551 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
3553 add_equal_note (pat
, ops
[0].value
, code
, ops
[1].value
, NULL_RTX
);
3557 if (ops
[0].value
!= target
)
3558 emit_move_insn (target
, ops
[0].value
);
3561 /* Generate an instruction whose insn-code is INSN_CODE,
3562 with two operands: an output TARGET and an input OP0.
3563 TARGET *must* be nonzero, and the output is always stored there.
3564 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3565 the value that is stored into TARGET. */
3568 emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
, enum rtx_code code
)
3570 bool ok
= maybe_emit_unop_insn (icode
, target
, op0
, code
);
3574 struct no_conflict_data
3577 rtx_insn
*first
, *insn
;
3581 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3582 the currently examined clobber / store has to stay in the list of
3583 insns that constitute the actual libcall block. */
3585 no_conflict_move_test (rtx dest
, const_rtx set
, void *p0
)
3587 struct no_conflict_data
*p
= (struct no_conflict_data
*) p0
;
3589 /* If this inns directly contributes to setting the target, it must stay. */
3590 if (reg_overlap_mentioned_p (p
->target
, dest
))
3591 p
->must_stay
= true;
3592 /* If we haven't committed to keeping any other insns in the list yet,
3593 there is nothing more to check. */
3594 else if (p
->insn
== p
->first
)
3596 /* If this insn sets / clobbers a register that feeds one of the insns
3597 already in the list, this insn has to stay too. */
3598 else if (reg_overlap_mentioned_p (dest
, PATTERN (p
->first
))
3599 || (CALL_P (p
->first
) && (find_reg_fusage (p
->first
, USE
, dest
)))
3600 || reg_used_between_p (dest
, p
->first
, p
->insn
)
3601 /* Likewise if this insn depends on a register set by a previous
3602 insn in the list, or if it sets a result (presumably a hard
3603 register) that is set or clobbered by a previous insn.
3604 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3605 SET_DEST perform the former check on the address, and the latter
3606 check on the MEM. */
3607 || (GET_CODE (set
) == SET
3608 && (modified_in_p (SET_SRC (set
), p
->first
)
3609 || modified_in_p (SET_DEST (set
), p
->first
)
3610 || modified_between_p (SET_SRC (set
), p
->first
, p
->insn
)
3611 || modified_between_p (SET_DEST (set
), p
->first
, p
->insn
))))
3612 p
->must_stay
= true;
3616 /* Emit code to make a call to a constant function or a library call.
3618 INSNS is a list containing all insns emitted in the call.
3619 These insns leave the result in RESULT. Our block is to copy RESULT
3620 to TARGET, which is logically equivalent to EQUIV.
3622 We first emit any insns that set a pseudo on the assumption that these are
3623 loading constants into registers; doing so allows them to be safely cse'ed
3624 between blocks. Then we emit all the other insns in the block, followed by
3625 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3626 note with an operand of EQUIV. */
3629 emit_libcall_block_1 (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
,
3630 bool equiv_may_trap
)
3632 rtx final_dest
= target
;
3633 rtx_insn
*next
, *last
, *insn
;
3635 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3636 into a MEM later. Protect the libcall block from this change. */
3637 if (! REG_P (target
) || REG_USERVAR_P (target
))
3638 target
= gen_reg_rtx (GET_MODE (target
));
3640 /* If we're using non-call exceptions, a libcall corresponding to an
3641 operation that may trap may also trap. */
3642 /* ??? See the comment in front of make_reg_eh_region_note. */
3643 if (cfun
->can_throw_non_call_exceptions
3644 && (equiv_may_trap
|| may_trap_p (equiv
)))
3646 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3649 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
3652 int lp_nr
= INTVAL (XEXP (note
, 0));
3653 if (lp_nr
== 0 || lp_nr
== INT_MIN
)
3654 remove_note (insn
, note
);
3660 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3661 reg note to indicate that this call cannot throw or execute a nonlocal
3662 goto (unless there is already a REG_EH_REGION note, in which case
3664 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3666 make_reg_eh_region_note_nothrow_nononlocal (insn
);
3669 /* First emit all insns that set pseudos. Remove them from the list as
3670 we go. Avoid insns that set pseudos which were referenced in previous
3671 insns. These can be generated by move_by_pieces, for example,
3672 to update an address. Similarly, avoid insns that reference things
3673 set in previous insns. */
3675 for (insn
= insns
; insn
; insn
= next
)
3677 rtx set
= single_set (insn
);
3679 next
= NEXT_INSN (insn
);
3681 if (set
!= 0 && REG_P (SET_DEST (set
))
3682 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3684 struct no_conflict_data data
;
3686 data
.target
= const0_rtx
;
3690 note_stores (PATTERN (insn
), no_conflict_move_test
, &data
);
3691 if (! data
.must_stay
)
3693 if (PREV_INSN (insn
))
3694 SET_NEXT_INSN (PREV_INSN (insn
)) = next
;
3699 SET_PREV_INSN (next
) = PREV_INSN (insn
);
3705 /* Some ports use a loop to copy large arguments onto the stack.
3706 Don't move anything outside such a loop. */
3711 /* Write the remaining insns followed by the final copy. */
3712 for (insn
= insns
; insn
; insn
= next
)
3714 next
= NEXT_INSN (insn
);
3719 last
= emit_move_insn (target
, result
);
3721 set_dst_reg_note (last
, REG_EQUAL
, copy_rtx (equiv
), target
);
3723 if (final_dest
!= target
)
3724 emit_move_insn (final_dest
, target
);
3728 emit_libcall_block (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
)
3730 emit_libcall_block_1 (insns
, target
, result
, equiv
, false);
3733 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3734 PURPOSE describes how this comparison will be used. CODE is the rtx
3735 comparison code we will be using.
3737 ??? Actually, CODE is slightly weaker than that. A target is still
3738 required to implement all of the normal bcc operations, but not
3739 required to implement all (or any) of the unordered bcc operations. */
3742 can_compare_p (enum rtx_code code
, machine_mode mode
,
3743 enum can_compare_purpose purpose
)
3746 test
= gen_rtx_fmt_ee (code
, mode
, const0_rtx
, const0_rtx
);
3749 enum insn_code icode
;
3751 if (purpose
== ccp_jump
3752 && (icode
= optab_handler (cbranch_optab
, mode
)) != CODE_FOR_nothing
3753 && insn_operand_matches (icode
, 0, test
))
3755 if (purpose
== ccp_store_flag
3756 && (icode
= optab_handler (cstore_optab
, mode
)) != CODE_FOR_nothing
3757 && insn_operand_matches (icode
, 1, test
))
3759 if (purpose
== ccp_cmov
3760 && optab_handler (cmov_optab
, mode
) != CODE_FOR_nothing
)
3763 mode
= GET_MODE_WIDER_MODE (mode
).else_void ();
3764 PUT_MODE (test
, mode
);
3766 while (mode
!= VOIDmode
);
3771 /* This function is called when we are going to emit a compare instruction that
3772 compares the values found in X and Y, using the rtl operator COMPARISON.
3774 If they have mode BLKmode, then SIZE specifies the size of both operands.
3776 UNSIGNEDP nonzero says that the operands are unsigned;
3777 this matters if they need to be widened (as given by METHODS).
3779 *PTEST is where the resulting comparison RTX is returned or NULL_RTX
3780 if we failed to produce one.
3782 *PMODE is the mode of the inputs (in case they are const_int).
3784 This function performs all the setup necessary so that the caller only has
3785 to emit a single comparison insn. This setup can involve doing a BLKmode
3786 comparison or emitting a library call to perform the comparison if no insn
3787 is available to handle it.
3788 The values which are passed in through pointers can be modified; the caller
3789 should perform the comparison on the modified values. Constant
3790 comparisons must have already been folded. */
3793 prepare_cmp_insn (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
3794 int unsignedp
, enum optab_methods methods
,
3795 rtx
*ptest
, machine_mode
*pmode
)
3797 machine_mode mode
= *pmode
;
3799 machine_mode cmp_mode
;
3800 enum mode_class mclass
;
3802 /* The other methods are not needed. */
3803 gcc_assert (methods
== OPTAB_DIRECT
|| methods
== OPTAB_WIDEN
3804 || methods
== OPTAB_LIB_WIDEN
);
3806 /* If we are optimizing, force expensive constants into a register. */
3807 if (CONSTANT_P (x
) && optimize
3808 && (rtx_cost (x
, mode
, COMPARE
, 0, optimize_insn_for_speed_p ())
3809 > COSTS_N_INSNS (1)))
3810 x
= force_reg (mode
, x
);
3812 if (CONSTANT_P (y
) && optimize
3813 && (rtx_cost (y
, mode
, COMPARE
, 1, optimize_insn_for_speed_p ())
3814 > COSTS_N_INSNS (1)))
3815 y
= force_reg (mode
, y
);
3818 /* Make sure if we have a canonical comparison. The RTL
3819 documentation states that canonical comparisons are required only
3820 for targets which have cc0. */
3821 gcc_assert (!CONSTANT_P (x
) || CONSTANT_P (y
));
3824 /* Don't let both operands fail to indicate the mode. */
3825 if (GET_MODE (x
) == VOIDmode
&& GET_MODE (y
) == VOIDmode
)
3826 x
= force_reg (mode
, x
);
3827 if (mode
== VOIDmode
)
3828 mode
= GET_MODE (x
) != VOIDmode
? GET_MODE (x
) : GET_MODE (y
);
3830 /* Handle all BLKmode compares. */
3832 if (mode
== BLKmode
)
3834 machine_mode result_mode
;
3835 enum insn_code cmp_code
;
3838 = GEN_INT (MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)) / BITS_PER_UNIT
);
3842 /* Try to use a memory block compare insn - either cmpstr
3843 or cmpmem will do. */
3844 opt_scalar_int_mode cmp_mode_iter
;
3845 FOR_EACH_MODE_IN_CLASS (cmp_mode_iter
, MODE_INT
)
3847 scalar_int_mode cmp_mode
= cmp_mode_iter
.require ();
3848 cmp_code
= direct_optab_handler (cmpmem_optab
, cmp_mode
);
3849 if (cmp_code
== CODE_FOR_nothing
)
3850 cmp_code
= direct_optab_handler (cmpstr_optab
, cmp_mode
);
3851 if (cmp_code
== CODE_FOR_nothing
)
3852 cmp_code
= direct_optab_handler (cmpstrn_optab
, cmp_mode
);
3853 if (cmp_code
== CODE_FOR_nothing
)
3856 /* Must make sure the size fits the insn's mode. */
3857 if (CONST_INT_P (size
)
3858 ? INTVAL (size
) >= (1 << GET_MODE_BITSIZE (cmp_mode
))
3859 : (GET_MODE_BITSIZE (as_a
<scalar_int_mode
> (GET_MODE (size
)))
3860 > GET_MODE_BITSIZE (cmp_mode
)))
3863 result_mode
= insn_data
[cmp_code
].operand
[0].mode
;
3864 result
= gen_reg_rtx (result_mode
);
3865 size
= convert_to_mode (cmp_mode
, size
, 1);
3866 emit_insn (GEN_FCN (cmp_code
) (result
, x
, y
, size
, opalign
));
3868 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
3869 *pmode
= result_mode
;
3873 if (methods
!= OPTAB_LIB
&& methods
!= OPTAB_LIB_WIDEN
)
3876 /* Otherwise call a library function. */
3877 result
= emit_block_comp_via_libcall (XEXP (x
, 0), XEXP (y
, 0), size
);
3881 mode
= TYPE_MODE (integer_type_node
);
3882 methods
= OPTAB_LIB_WIDEN
;
3886 /* Don't allow operands to the compare to trap, as that can put the
3887 compare and branch in different basic blocks. */
3888 if (cfun
->can_throw_non_call_exceptions
)
3891 x
= copy_to_reg (x
);
3893 y
= copy_to_reg (y
);
3896 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3898 enum insn_code icode
= optab_handler (cbranch_optab
, CCmode
);
3899 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
3900 gcc_assert (icode
!= CODE_FOR_nothing
3901 && insn_operand_matches (icode
, 0, test
));
3906 mclass
= GET_MODE_CLASS (mode
);
3907 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
3908 FOR_EACH_MODE_FROM (cmp_mode
, mode
)
3910 enum insn_code icode
;
3911 icode
= optab_handler (cbranch_optab
, cmp_mode
);
3912 if (icode
!= CODE_FOR_nothing
3913 && insn_operand_matches (icode
, 0, test
))
3915 rtx_insn
*last
= get_last_insn ();
3916 rtx op0
= prepare_operand (icode
, x
, 1, mode
, cmp_mode
, unsignedp
);
3917 rtx op1
= prepare_operand (icode
, y
, 2, mode
, cmp_mode
, unsignedp
);
3919 && insn_operand_matches (icode
, 1, op0
)
3920 && insn_operand_matches (icode
, 2, op1
))
3922 XEXP (test
, 0) = op0
;
3923 XEXP (test
, 1) = op1
;
3928 delete_insns_since (last
);
3931 if (methods
== OPTAB_DIRECT
|| !CLASS_HAS_WIDER_MODES_P (mclass
))
3935 if (methods
!= OPTAB_LIB_WIDEN
)
3938 if (SCALAR_FLOAT_MODE_P (mode
))
3940 /* Small trick if UNORDERED isn't implemented by the hardware. */
3941 if (comparison
== UNORDERED
&& rtx_equal_p (x
, y
))
3943 prepare_cmp_insn (x
, y
, UNLT
, NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
3949 prepare_float_lib_cmp (x
, y
, comparison
, ptest
, pmode
);
3954 machine_mode ret_mode
;
3956 /* Handle a libcall just for the mode we are using. */
3957 libfunc
= optab_libfunc (cmp_optab
, mode
);
3958 gcc_assert (libfunc
);
3960 /* If we want unsigned, and this mode has a distinct unsigned
3961 comparison routine, use that. */
3964 rtx ulibfunc
= optab_libfunc (ucmp_optab
, mode
);
3969 ret_mode
= targetm
.libgcc_cmp_return_mode ();
3970 result
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
3971 ret_mode
, x
, mode
, y
, mode
);
3973 /* There are two kinds of comparison routines. Biased routines
3974 return 0/1/2, and unbiased routines return -1/0/1. Other parts
3975 of gcc expect that the comparison operation is equivalent
3976 to the modified comparison. For signed comparisons compare the
3977 result against 1 in the biased case, and zero in the unbiased
3978 case. For unsigned comparisons always compare against 1 after
3979 biasing the unbiased result by adding 1. This gives us a way to
3981 The comparisons in the fixed-point helper library are always
3986 if (!TARGET_LIB_INT_CMP_BIASED
&& !ALL_FIXED_POINT_MODE_P (mode
))
3989 x
= plus_constant (ret_mode
, result
, 1);
3995 prepare_cmp_insn (x
, y
, comparison
, NULL_RTX
, unsignedp
, methods
,
4005 /* Before emitting an insn with code ICODE, make sure that X, which is going
4006 to be used for operand OPNUM of the insn, is converted from mode MODE to
4007 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4008 that it is accepted by the operand predicate. Return the new value. */
4011 prepare_operand (enum insn_code icode
, rtx x
, int opnum
, machine_mode mode
,
4012 machine_mode wider_mode
, int unsignedp
)
4014 if (mode
!= wider_mode
)
4015 x
= convert_modes (wider_mode
, mode
, x
, unsignedp
);
4017 if (!insn_operand_matches (icode
, opnum
, x
))
4019 machine_mode op_mode
= insn_data
[(int) icode
].operand
[opnum
].mode
;
4020 if (reload_completed
)
4022 if (GET_MODE (x
) != op_mode
&& GET_MODE (x
) != VOIDmode
)
4024 x
= copy_to_mode_reg (op_mode
, x
);
4030 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4031 we can do the branch. */
4034 emit_cmp_and_jump_insn_1 (rtx test
, machine_mode mode
, rtx label
,
4035 profile_probability prob
)
4037 machine_mode optab_mode
;
4038 enum mode_class mclass
;
4039 enum insn_code icode
;
4042 mclass
= GET_MODE_CLASS (mode
);
4043 optab_mode
= (mclass
== MODE_CC
) ? CCmode
: mode
;
4044 icode
= optab_handler (cbranch_optab
, optab_mode
);
4046 gcc_assert (icode
!= CODE_FOR_nothing
);
4047 gcc_assert (insn_operand_matches (icode
, 0, test
));
4048 insn
= emit_jump_insn (GEN_FCN (icode
) (test
, XEXP (test
, 0),
4049 XEXP (test
, 1), label
));
4050 if (prob
.initialized_p ()
4051 && profile_status_for_fn (cfun
) != PROFILE_ABSENT
4054 && any_condjump_p (insn
)
4055 && !find_reg_note (insn
, REG_BR_PROB
, 0))
4056 add_reg_br_prob_note (insn
, prob
);
4059 /* Generate code to compare X with Y so that the condition codes are
4060 set and to jump to LABEL if the condition is true. If X is a
4061 constant and Y is not a constant, then the comparison is swapped to
4062 ensure that the comparison RTL has the canonical form.
4064 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4065 need to be widened. UNSIGNEDP is also used to select the proper
4066 branch condition code.
4068 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4070 MODE is the mode of the inputs (in case they are const_int).
4072 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4073 It will be potentially converted into an unsigned variant based on
4074 UNSIGNEDP to select a proper jump instruction.
4076 PROB is the probability of jumping to LABEL. */
4079 emit_cmp_and_jump_insns (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4080 machine_mode mode
, int unsignedp
, rtx label
,
4081 profile_probability prob
)
4083 rtx op0
= x
, op1
= y
;
4086 /* Swap operands and condition to ensure canonical RTL. */
4087 if (swap_commutative_operands_p (x
, y
)
4088 && can_compare_p (swap_condition (comparison
), mode
, ccp_jump
))
4091 comparison
= swap_condition (comparison
);
4094 /* If OP0 is still a constant, then both X and Y must be constants
4095 or the opposite comparison is not supported. Force X into a register
4096 to create canonical RTL. */
4097 if (CONSTANT_P (op0
))
4098 op0
= force_reg (mode
, op0
);
4101 comparison
= unsigned_condition (comparison
);
4103 prepare_cmp_insn (op0
, op1
, comparison
, size
, unsignedp
, OPTAB_LIB_WIDEN
,
4105 emit_cmp_and_jump_insn_1 (test
, mode
, label
, prob
);
4109 /* Emit a library call comparison between floating point X and Y.
4110 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4113 prepare_float_lib_cmp (rtx x
, rtx y
, enum rtx_code comparison
,
4114 rtx
*ptest
, machine_mode
*pmode
)
4116 enum rtx_code swapped
= swap_condition (comparison
);
4117 enum rtx_code reversed
= reverse_condition_maybe_unordered (comparison
);
4118 machine_mode orig_mode
= GET_MODE (x
);
4120 rtx true_rtx
, false_rtx
;
4121 rtx value
, target
, equiv
;
4124 bool reversed_p
= false;
4125 scalar_int_mode cmp_mode
= targetm
.libgcc_cmp_return_mode ();
4127 FOR_EACH_MODE_FROM (mode
, orig_mode
)
4129 if (code_to_optab (comparison
)
4130 && (libfunc
= optab_libfunc (code_to_optab (comparison
), mode
)))
4133 if (code_to_optab (swapped
)
4134 && (libfunc
= optab_libfunc (code_to_optab (swapped
), mode
)))
4137 comparison
= swapped
;
4141 if (code_to_optab (reversed
)
4142 && (libfunc
= optab_libfunc (code_to_optab (reversed
), mode
)))
4144 comparison
= reversed
;
4150 gcc_assert (mode
!= VOIDmode
);
4152 if (mode
!= orig_mode
)
4154 x
= convert_to_mode (mode
, x
, 0);
4155 y
= convert_to_mode (mode
, y
, 0);
4158 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4159 the RTL. The allows the RTL optimizers to delete the libcall if the
4160 condition can be determined at compile-time. */
4161 if (comparison
== UNORDERED
4162 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4164 true_rtx
= const_true_rtx
;
4165 false_rtx
= const0_rtx
;
4172 true_rtx
= const0_rtx
;
4173 false_rtx
= const_true_rtx
;
4177 true_rtx
= const_true_rtx
;
4178 false_rtx
= const0_rtx
;
4182 true_rtx
= const1_rtx
;
4183 false_rtx
= const0_rtx
;
4187 true_rtx
= const0_rtx
;
4188 false_rtx
= constm1_rtx
;
4192 true_rtx
= constm1_rtx
;
4193 false_rtx
= const0_rtx
;
4197 true_rtx
= const0_rtx
;
4198 false_rtx
= const1_rtx
;
4206 if (comparison
== UNORDERED
)
4208 rtx temp
= simplify_gen_relational (NE
, cmp_mode
, mode
, x
, x
);
4209 equiv
= simplify_gen_relational (NE
, cmp_mode
, mode
, y
, y
);
4210 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4211 temp
, const_true_rtx
, equiv
);
4215 equiv
= simplify_gen_relational (comparison
, cmp_mode
, mode
, x
, y
);
4216 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4217 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4218 equiv
, true_rtx
, false_rtx
);
4222 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4223 cmp_mode
, x
, mode
, y
, mode
);
4224 insns
= get_insns ();
4227 target
= gen_reg_rtx (cmp_mode
);
4228 emit_libcall_block (insns
, target
, value
, equiv
);
4230 if (comparison
== UNORDERED
4231 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
)
4233 *ptest
= gen_rtx_fmt_ee (reversed_p
? EQ
: NE
, VOIDmode
, target
, false_rtx
);
4235 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, target
, const0_rtx
);
4240 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4243 emit_indirect_jump (rtx loc
)
4245 if (!targetm
.have_indirect_jump ())
4246 sorry ("indirect jumps are not available on this target");
4249 struct expand_operand ops
[1];
4250 create_address_operand (&ops
[0], loc
);
4251 expand_jump_insn (targetm
.code_for_indirect_jump
, 1, ops
);
4257 /* Emit a conditional move instruction if the machine supports one for that
4258 condition and machine mode.
4260 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4261 the mode to use should they be constants. If it is VOIDmode, they cannot
4264 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4265 should be stored there. MODE is the mode to use should they be constants.
4266 If it is VOIDmode, they cannot both be constants.
4268 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4269 is not supported. */
4272 emit_conditional_move (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4273 machine_mode cmode
, rtx op2
, rtx op3
,
4274 machine_mode mode
, int unsignedp
)
4278 enum insn_code icode
;
4279 enum rtx_code reversed
;
4281 /* If the two source operands are identical, that's just a move. */
4283 if (rtx_equal_p (op2
, op3
))
4286 target
= gen_reg_rtx (mode
);
4288 emit_move_insn (target
, op3
);
4292 /* If one operand is constant, make it the second one. Only do this
4293 if the other operand is not constant as well. */
4295 if (swap_commutative_operands_p (op0
, op1
))
4297 std::swap (op0
, op1
);
4298 code
= swap_condition (code
);
4301 /* get_condition will prefer to generate LT and GT even if the old
4302 comparison was against zero, so undo that canonicalization here since
4303 comparisons against zero are cheaper. */
4304 if (code
== LT
&& op1
== const1_rtx
)
4305 code
= LE
, op1
= const0_rtx
;
4306 else if (code
== GT
&& op1
== constm1_rtx
)
4307 code
= GE
, op1
= const0_rtx
;
4309 if (cmode
== VOIDmode
)
4310 cmode
= GET_MODE (op0
);
4312 enum rtx_code orig_code
= code
;
4313 bool swapped
= false;
4314 if (swap_commutative_operands_p (op2
, op3
)
4315 && ((reversed
= reversed_comparison_code_parts (code
, op0
, op1
, NULL
))
4318 std::swap (op2
, op3
);
4323 if (mode
== VOIDmode
)
4324 mode
= GET_MODE (op2
);
4326 icode
= direct_optab_handler (movcc_optab
, mode
);
4328 if (icode
== CODE_FOR_nothing
)
4332 target
= gen_reg_rtx (mode
);
4334 for (int pass
= 0; ; pass
++)
4336 code
= unsignedp
? unsigned_condition (code
) : code
;
4337 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4339 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4340 punt and let the caller figure out how best to deal with this
4342 if (COMPARISON_P (comparison
))
4344 saved_pending_stack_adjust save
;
4345 save_pending_stack_adjust (&save
);
4346 last
= get_last_insn ();
4347 do_pending_stack_adjust ();
4348 machine_mode cmpmode
= cmode
;
4349 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4350 GET_CODE (comparison
), NULL_RTX
, unsignedp
,
4351 OPTAB_WIDEN
, &comparison
, &cmpmode
);
4354 struct expand_operand ops
[4];
4356 create_output_operand (&ops
[0], target
, mode
);
4357 create_fixed_operand (&ops
[1], comparison
);
4358 create_input_operand (&ops
[2], op2
, mode
);
4359 create_input_operand (&ops
[3], op3
, mode
);
4360 if (maybe_expand_insn (icode
, 4, ops
))
4362 if (ops
[0].value
!= target
)
4363 convert_move (target
, ops
[0].value
, false);
4367 delete_insns_since (last
);
4368 restore_pending_stack_adjust (&save
);
4374 /* If the preferred op2/op3 order is not usable, retry with other
4375 operand order, perhaps it will expand successfully. */
4378 else if ((reversed
= reversed_comparison_code_parts (orig_code
, op0
, op1
,
4384 std::swap (op2
, op3
);
4389 /* Emit a conditional negate or bitwise complement using the
4390 negcc or notcc optabs if available. Return NULL_RTX if such operations
4391 are not available. Otherwise return the RTX holding the result.
4392 TARGET is the desired destination of the result. COMP is the comparison
4393 on which to negate. If COND is true move into TARGET the negation
4394 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
4395 CODE is either NEG or NOT. MODE is the machine mode in which the
4396 operation is performed. */
4399 emit_conditional_neg_or_complement (rtx target
, rtx_code code
,
4400 machine_mode mode
, rtx cond
, rtx op1
,
4403 optab op
= unknown_optab
;
4406 else if (code
== NOT
)
4411 insn_code icode
= direct_optab_handler (op
, mode
);
4413 if (icode
== CODE_FOR_nothing
)
4417 target
= gen_reg_rtx (mode
);
4419 rtx_insn
*last
= get_last_insn ();
4420 struct expand_operand ops
[4];
4422 create_output_operand (&ops
[0], target
, mode
);
4423 create_fixed_operand (&ops
[1], cond
);
4424 create_input_operand (&ops
[2], op1
, mode
);
4425 create_input_operand (&ops
[3], op2
, mode
);
4427 if (maybe_expand_insn (icode
, 4, ops
))
4429 if (ops
[0].value
!= target
)
4430 convert_move (target
, ops
[0].value
, false);
4434 delete_insns_since (last
);
4438 /* Emit a conditional addition instruction if the machine supports one for that
4439 condition and machine mode.
4441 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4442 the mode to use should they be constants. If it is VOIDmode, they cannot
4445 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4446 should be stored there. MODE is the mode to use should they be constants.
4447 If it is VOIDmode, they cannot both be constants.
4449 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4450 is not supported. */
4453 emit_conditional_add (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4454 machine_mode cmode
, rtx op2
, rtx op3
,
4455 machine_mode mode
, int unsignedp
)
4459 enum insn_code icode
;
4461 /* If one operand is constant, make it the second one. Only do this
4462 if the other operand is not constant as well. */
4464 if (swap_commutative_operands_p (op0
, op1
))
4466 std::swap (op0
, op1
);
4467 code
= swap_condition (code
);
4470 /* get_condition will prefer to generate LT and GT even if the old
4471 comparison was against zero, so undo that canonicalization here since
4472 comparisons against zero are cheaper. */
4473 if (code
== LT
&& op1
== const1_rtx
)
4474 code
= LE
, op1
= const0_rtx
;
4475 else if (code
== GT
&& op1
== constm1_rtx
)
4476 code
= GE
, op1
= const0_rtx
;
4478 if (cmode
== VOIDmode
)
4479 cmode
= GET_MODE (op0
);
4481 if (mode
== VOIDmode
)
4482 mode
= GET_MODE (op2
);
4484 icode
= optab_handler (addcc_optab
, mode
);
4486 if (icode
== CODE_FOR_nothing
)
4490 target
= gen_reg_rtx (mode
);
4492 code
= unsignedp
? unsigned_condition (code
) : code
;
4493 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4495 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4496 return NULL and let the caller figure out how best to deal with this
4498 if (!COMPARISON_P (comparison
))
4501 do_pending_stack_adjust ();
4502 last
= get_last_insn ();
4503 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4504 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4505 &comparison
, &cmode
);
4508 struct expand_operand ops
[4];
4510 create_output_operand (&ops
[0], target
, mode
);
4511 create_fixed_operand (&ops
[1], comparison
);
4512 create_input_operand (&ops
[2], op2
, mode
);
4513 create_input_operand (&ops
[3], op3
, mode
);
4514 if (maybe_expand_insn (icode
, 4, ops
))
4516 if (ops
[0].value
!= target
)
4517 convert_move (target
, ops
[0].value
, false);
4521 delete_insns_since (last
);
4525 /* These functions attempt to generate an insn body, rather than
4526 emitting the insn, but if the gen function already emits them, we
4527 make no attempt to turn them back into naked patterns. */
4529 /* Generate and return an insn body to add Y to X. */
4532 gen_add2_insn (rtx x
, rtx y
)
4534 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (x
));
4536 gcc_assert (insn_operand_matches (icode
, 0, x
));
4537 gcc_assert (insn_operand_matches (icode
, 1, x
));
4538 gcc_assert (insn_operand_matches (icode
, 2, y
));
4540 return GEN_FCN (icode
) (x
, x
, y
);
4543 /* Generate and return an insn body to add r1 and c,
4544 storing the result in r0. */
4547 gen_add3_insn (rtx r0
, rtx r1
, rtx c
)
4549 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (r0
));
4551 if (icode
== CODE_FOR_nothing
4552 || !insn_operand_matches (icode
, 0, r0
)
4553 || !insn_operand_matches (icode
, 1, r1
)
4554 || !insn_operand_matches (icode
, 2, c
))
4557 return GEN_FCN (icode
) (r0
, r1
, c
);
4561 have_add2_insn (rtx x
, rtx y
)
4563 enum insn_code icode
;
4565 gcc_assert (GET_MODE (x
) != VOIDmode
);
4567 icode
= optab_handler (add_optab
, GET_MODE (x
));
4569 if (icode
== CODE_FOR_nothing
)
4572 if (!insn_operand_matches (icode
, 0, x
)
4573 || !insn_operand_matches (icode
, 1, x
)
4574 || !insn_operand_matches (icode
, 2, y
))
4580 /* Generate and return an insn body to add Y to X. */
4583 gen_addptr3_insn (rtx x
, rtx y
, rtx z
)
4585 enum insn_code icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
4587 gcc_assert (insn_operand_matches (icode
, 0, x
));
4588 gcc_assert (insn_operand_matches (icode
, 1, y
));
4589 gcc_assert (insn_operand_matches (icode
, 2, z
));
4591 return GEN_FCN (icode
) (x
, y
, z
);
4594 /* Return true if the target implements an addptr pattern and X, Y,
4595 and Z are valid for the pattern predicates. */
4598 have_addptr3_insn (rtx x
, rtx y
, rtx z
)
4600 enum insn_code icode
;
4602 gcc_assert (GET_MODE (x
) != VOIDmode
);
4604 icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
4606 if (icode
== CODE_FOR_nothing
)
4609 if (!insn_operand_matches (icode
, 0, x
)
4610 || !insn_operand_matches (icode
, 1, y
)
4611 || !insn_operand_matches (icode
, 2, z
))
4617 /* Generate and return an insn body to subtract Y from X. */
4620 gen_sub2_insn (rtx x
, rtx y
)
4622 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (x
));
4624 gcc_assert (insn_operand_matches (icode
, 0, x
));
4625 gcc_assert (insn_operand_matches (icode
, 1, x
));
4626 gcc_assert (insn_operand_matches (icode
, 2, y
));
4628 return GEN_FCN (icode
) (x
, x
, y
);
4631 /* Generate and return an insn body to subtract r1 and c,
4632 storing the result in r0. */
4635 gen_sub3_insn (rtx r0
, rtx r1
, rtx c
)
4637 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (r0
));
4639 if (icode
== CODE_FOR_nothing
4640 || !insn_operand_matches (icode
, 0, r0
)
4641 || !insn_operand_matches (icode
, 1, r1
)
4642 || !insn_operand_matches (icode
, 2, c
))
4645 return GEN_FCN (icode
) (r0
, r1
, c
);
4649 have_sub2_insn (rtx x
, rtx y
)
4651 enum insn_code icode
;
4653 gcc_assert (GET_MODE (x
) != VOIDmode
);
4655 icode
= optab_handler (sub_optab
, GET_MODE (x
));
4657 if (icode
== CODE_FOR_nothing
)
4660 if (!insn_operand_matches (icode
, 0, x
)
4661 || !insn_operand_matches (icode
, 1, x
)
4662 || !insn_operand_matches (icode
, 2, y
))
4668 /* Generate the body of an insn to extend Y (with mode MFROM)
4669 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4672 gen_extend_insn (rtx x
, rtx y
, machine_mode mto
,
4673 machine_mode mfrom
, int unsignedp
)
4675 enum insn_code icode
= can_extend_p (mto
, mfrom
, unsignedp
);
4676 return GEN_FCN (icode
) (x
, y
);
4679 /* Generate code to convert FROM to floating point
4680 and store in TO. FROM must be fixed point and not VOIDmode.
4681 UNSIGNEDP nonzero means regard FROM as unsigned.
4682 Normally this is done by correcting the final value
4683 if it is negative. */
4686 expand_float (rtx to
, rtx from
, int unsignedp
)
4688 enum insn_code icode
;
4690 scalar_mode from_mode
, to_mode
;
4691 machine_mode fmode
, imode
;
4692 bool can_do_signed
= false;
4694 /* Crash now, because we won't be able to decide which mode to use. */
4695 gcc_assert (GET_MODE (from
) != VOIDmode
);
4697 /* Look for an insn to do the conversion. Do it in the specified
4698 modes if possible; otherwise convert either input, output or both to
4699 wider mode. If the integer mode is wider than the mode of FROM,
4700 we can do the conversion signed even if the input is unsigned. */
4702 FOR_EACH_MODE_FROM (fmode
, GET_MODE (to
))
4703 FOR_EACH_MODE_FROM (imode
, GET_MODE (from
))
4705 int doing_unsigned
= unsignedp
;
4707 if (fmode
!= GET_MODE (to
)
4708 && (significand_size (fmode
)
4709 < GET_MODE_UNIT_PRECISION (GET_MODE (from
))))
4712 icode
= can_float_p (fmode
, imode
, unsignedp
);
4713 if (icode
== CODE_FOR_nothing
&& unsignedp
)
4715 enum insn_code scode
= can_float_p (fmode
, imode
, 0);
4716 if (scode
!= CODE_FOR_nothing
)
4717 can_do_signed
= true;
4718 if (imode
!= GET_MODE (from
))
4719 icode
= scode
, doing_unsigned
= 0;
4722 if (icode
!= CODE_FOR_nothing
)
4724 if (imode
!= GET_MODE (from
))
4725 from
= convert_to_mode (imode
, from
, unsignedp
);
4727 if (fmode
!= GET_MODE (to
))
4728 target
= gen_reg_rtx (fmode
);
4730 emit_unop_insn (icode
, target
, from
,
4731 doing_unsigned
? UNSIGNED_FLOAT
: FLOAT
);
4734 convert_move (to
, target
, 0);
4739 /* Unsigned integer, and no way to convert directly. Convert as signed,
4740 then unconditionally adjust the result. */
4743 && is_a
<scalar_mode
> (GET_MODE (to
), &to_mode
)
4744 && is_a
<scalar_mode
> (GET_MODE (from
), &from_mode
))
4746 opt_scalar_mode fmode_iter
;
4747 rtx_code_label
*label
= gen_label_rtx ();
4749 REAL_VALUE_TYPE offset
;
4751 /* Look for a usable floating mode FMODE wider than the source and at
4752 least as wide as the target. Using FMODE will avoid rounding woes
4753 with unsigned values greater than the signed maximum value. */
4755 FOR_EACH_MODE_FROM (fmode_iter
, to_mode
)
4757 scalar_mode fmode
= fmode_iter
.require ();
4758 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_BITSIZE (fmode
)
4759 && can_float_p (fmode
, from_mode
, 0) != CODE_FOR_nothing
)
4763 if (!fmode_iter
.exists (&fmode
))
4765 /* There is no such mode. Pretend the target is wide enough. */
4768 /* Avoid double-rounding when TO is narrower than FROM. */
4769 if ((significand_size (fmode
) + 1)
4770 < GET_MODE_PRECISION (from_mode
))
4773 rtx_code_label
*neglabel
= gen_label_rtx ();
4775 /* Don't use TARGET if it isn't a register, is a hard register,
4776 or is the wrong mode. */
4778 || REGNO (target
) < FIRST_PSEUDO_REGISTER
4779 || GET_MODE (target
) != fmode
)
4780 target
= gen_reg_rtx (fmode
);
4783 do_pending_stack_adjust ();
4785 /* Test whether the sign bit is set. */
4786 emit_cmp_and_jump_insns (from
, const0_rtx
, LT
, NULL_RTX
, imode
,
4789 /* The sign bit is not set. Convert as signed. */
4790 expand_float (target
, from
, 0);
4791 emit_jump_insn (targetm
.gen_jump (label
));
4794 /* The sign bit is set.
4795 Convert to a usable (positive signed) value by shifting right
4796 one bit, while remembering if a nonzero bit was shifted
4797 out; i.e., compute (from & 1) | (from >> 1). */
4799 emit_label (neglabel
);
4800 temp
= expand_binop (imode
, and_optab
, from
, const1_rtx
,
4801 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4802 temp1
= expand_shift (RSHIFT_EXPR
, imode
, from
, 1, NULL_RTX
, 1);
4803 temp
= expand_binop (imode
, ior_optab
, temp
, temp1
, temp
, 1,
4805 expand_float (target
, temp
, 0);
4807 /* Multiply by 2 to undo the shift above. */
4808 temp
= expand_binop (fmode
, add_optab
, target
, target
,
4809 target
, 0, OPTAB_LIB_WIDEN
);
4811 emit_move_insn (target
, temp
);
4813 do_pending_stack_adjust ();
4819 /* If we are about to do some arithmetic to correct for an
4820 unsigned operand, do it in a pseudo-register. */
4822 if (to_mode
!= fmode
4823 || !REG_P (to
) || REGNO (to
) < FIRST_PSEUDO_REGISTER
)
4824 target
= gen_reg_rtx (fmode
);
4826 /* Convert as signed integer to floating. */
4827 expand_float (target
, from
, 0);
4829 /* If FROM is negative (and therefore TO is negative),
4830 correct its value by 2**bitwidth. */
4832 do_pending_stack_adjust ();
4833 emit_cmp_and_jump_insns (from
, const0_rtx
, GE
, NULL_RTX
, from_mode
,
4837 real_2expN (&offset
, GET_MODE_PRECISION (from_mode
), fmode
);
4838 temp
= expand_binop (fmode
, add_optab
, target
,
4839 const_double_from_real_value (offset
, fmode
),
4840 target
, 0, OPTAB_LIB_WIDEN
);
4842 emit_move_insn (target
, temp
);
4844 do_pending_stack_adjust ();
4849 /* No hardware instruction available; call a library routine. */
4854 convert_optab tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
4856 if (is_narrower_int_mode (GET_MODE (from
), SImode
))
4857 from
= convert_to_mode (SImode
, from
, unsignedp
);
4859 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
4860 gcc_assert (libfunc
);
4864 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4865 GET_MODE (to
), from
, GET_MODE (from
));
4866 insns
= get_insns ();
4869 emit_libcall_block (insns
, target
, value
,
4870 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FLOAT
: FLOAT
,
4871 GET_MODE (to
), from
));
4876 /* Copy result to requested destination
4877 if we have been computing in a temp location. */
4881 if (GET_MODE (target
) == GET_MODE (to
))
4882 emit_move_insn (to
, target
);
4884 convert_move (to
, target
, 0);
4888 /* Generate code to convert FROM to fixed point and store in TO. FROM
4889 must be floating point. */
4892 expand_fix (rtx to
, rtx from
, int unsignedp
)
4894 enum insn_code icode
;
4896 machine_mode fmode
, imode
;
4897 opt_scalar_mode fmode_iter
;
4898 bool must_trunc
= false;
4900 /* We first try to find a pair of modes, one real and one integer, at
4901 least as wide as FROM and TO, respectively, in which we can open-code
4902 this conversion. If the integer mode is wider than the mode of TO,
4903 we can do the conversion either signed or unsigned. */
4905 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
4906 FOR_EACH_MODE_FROM (imode
, GET_MODE (to
))
4908 int doing_unsigned
= unsignedp
;
4910 icode
= can_fix_p (imode
, fmode
, unsignedp
, &must_trunc
);
4911 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (to
) && unsignedp
)
4912 icode
= can_fix_p (imode
, fmode
, 0, &must_trunc
), doing_unsigned
= 0;
4914 if (icode
!= CODE_FOR_nothing
)
4916 rtx_insn
*last
= get_last_insn ();
4917 if (fmode
!= GET_MODE (from
))
4918 from
= convert_to_mode (fmode
, from
, 0);
4922 rtx temp
= gen_reg_rtx (GET_MODE (from
));
4923 from
= expand_unop (GET_MODE (from
), ftrunc_optab
, from
,
4927 if (imode
!= GET_MODE (to
))
4928 target
= gen_reg_rtx (imode
);
4930 if (maybe_emit_unop_insn (icode
, target
, from
,
4931 doing_unsigned
? UNSIGNED_FIX
: FIX
))
4934 convert_move (to
, target
, unsignedp
);
4937 delete_insns_since (last
);
4941 /* For an unsigned conversion, there is one more way to do it.
4942 If we have a signed conversion, we generate code that compares
4943 the real value to the largest representable positive number. If if
4944 is smaller, the conversion is done normally. Otherwise, subtract
4945 one plus the highest signed number, convert, and add it back.
4947 We only need to check all real modes, since we know we didn't find
4948 anything with a wider integer mode.
4950 This code used to extend FP value into mode wider than the destination.
4951 This is needed for decimal float modes which cannot accurately
4952 represent one plus the highest signed number of the same size, but
4953 not for binary modes. Consider, for instance conversion from SFmode
4956 The hot path through the code is dealing with inputs smaller than 2^63
4957 and doing just the conversion, so there is no bits to lose.
4959 In the other path we know the value is positive in the range 2^63..2^64-1
4960 inclusive. (as for other input overflow happens and result is undefined)
4961 So we know that the most important bit set in mantissa corresponds to
4962 2^63. The subtraction of 2^63 should not generate any rounding as it
4963 simply clears out that bit. The rest is trivial. */
4965 scalar_int_mode to_mode
;
4967 && is_a
<scalar_int_mode
> (GET_MODE (to
), &to_mode
)
4968 && HWI_COMPUTABLE_MODE_P (to_mode
))
4969 FOR_EACH_MODE_FROM (fmode_iter
, as_a
<scalar_mode
> (GET_MODE (from
)))
4971 scalar_mode fmode
= fmode_iter
.require ();
4972 if (CODE_FOR_nothing
!= can_fix_p (to_mode
, fmode
,
4974 && (!DECIMAL_FLOAT_MODE_P (fmode
)
4975 || (GET_MODE_BITSIZE (fmode
) > GET_MODE_PRECISION (to_mode
))))
4978 REAL_VALUE_TYPE offset
;
4980 rtx_code_label
*lab1
, *lab2
;
4983 bitsize
= GET_MODE_PRECISION (to_mode
);
4984 real_2expN (&offset
, bitsize
- 1, fmode
);
4985 limit
= const_double_from_real_value (offset
, fmode
);
4986 lab1
= gen_label_rtx ();
4987 lab2
= gen_label_rtx ();
4989 if (fmode
!= GET_MODE (from
))
4990 from
= convert_to_mode (fmode
, from
, 0);
4992 /* See if we need to do the subtraction. */
4993 do_pending_stack_adjust ();
4994 emit_cmp_and_jump_insns (from
, limit
, GE
, NULL_RTX
,
4995 GET_MODE (from
), 0, lab1
);
4997 /* If not, do the signed "fix" and branch around fixup code. */
4998 expand_fix (to
, from
, 0);
4999 emit_jump_insn (targetm
.gen_jump (lab2
));
5002 /* Otherwise, subtract 2**(N-1), convert to signed number,
5003 then add 2**(N-1). Do the addition using XOR since this
5004 will often generate better code. */
5006 target
= expand_binop (GET_MODE (from
), sub_optab
, from
, limit
,
5007 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
5008 expand_fix (to
, target
, 0);
5009 target
= expand_binop (to_mode
, xor_optab
, to
,
5011 (HOST_WIDE_INT_1
<< (bitsize
- 1),
5013 to
, 1, OPTAB_LIB_WIDEN
);
5016 emit_move_insn (to
, target
);
5020 if (optab_handler (mov_optab
, to_mode
) != CODE_FOR_nothing
)
5022 /* Make a place for a REG_NOTE and add it. */
5023 insn
= emit_move_insn (to
, to
);
5024 set_dst_reg_note (insn
, REG_EQUAL
,
5025 gen_rtx_fmt_e (UNSIGNED_FIX
, to_mode
,
5034 /* We can't do it with an insn, so use a library call. But first ensure
5035 that the mode of TO is at least as wide as SImode, since those are the
5036 only library calls we know about. */
5038 if (is_narrower_int_mode (GET_MODE (to
), SImode
))
5040 target
= gen_reg_rtx (SImode
);
5042 expand_fix (target
, from
, unsignedp
);
5050 convert_optab tab
= unsignedp
? ufix_optab
: sfix_optab
;
5051 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
5052 gcc_assert (libfunc
);
5056 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
5057 GET_MODE (to
), from
, GET_MODE (from
));
5058 insns
= get_insns ();
5061 emit_libcall_block (insns
, target
, value
,
5062 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FIX
: FIX
,
5063 GET_MODE (to
), from
));
5068 if (GET_MODE (to
) == GET_MODE (target
))
5069 emit_move_insn (to
, target
);
5071 convert_move (to
, target
, 0);
5076 /* Promote integer arguments for a libcall if necessary.
5077 emit_library_call_value cannot do the promotion because it does not
5078 know if it should do a signed or unsigned promotion. This is because
5079 there are no tree types defined for libcalls. */
5082 prepare_libcall_arg (rtx arg
, int uintp
)
5084 scalar_int_mode mode
;
5085 machine_mode arg_mode
;
5086 if (is_a
<scalar_int_mode
> (GET_MODE (arg
), &mode
))
5088 /* If we need to promote the integer function argument we need to do
5089 it here instead of inside emit_library_call_value because in
5090 emit_library_call_value we don't know if we should do a signed or
5091 unsigned promotion. */
5094 arg_mode
= promote_function_mode (NULL_TREE
, mode
,
5095 &unsigned_p
, NULL_TREE
, 0);
5096 if (arg_mode
!= mode
)
5097 return convert_to_mode (arg_mode
, arg
, uintp
);
5102 /* Generate code to convert FROM or TO a fixed-point.
5103 If UINTP is true, either TO or FROM is an unsigned integer.
5104 If SATP is true, we need to saturate the result. */
5107 expand_fixed_convert (rtx to
, rtx from
, int uintp
, int satp
)
5109 machine_mode to_mode
= GET_MODE (to
);
5110 machine_mode from_mode
= GET_MODE (from
);
5112 enum rtx_code this_code
;
5113 enum insn_code code
;
5118 if (to_mode
== from_mode
)
5120 emit_move_insn (to
, from
);
5126 tab
= satp
? satfractuns_optab
: fractuns_optab
;
5127 this_code
= satp
? UNSIGNED_SAT_FRACT
: UNSIGNED_FRACT_CONVERT
;
5131 tab
= satp
? satfract_optab
: fract_optab
;
5132 this_code
= satp
? SAT_FRACT
: FRACT_CONVERT
;
5134 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
5135 if (code
!= CODE_FOR_nothing
)
5137 emit_unop_insn (code
, to
, from
, this_code
);
5141 libfunc
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
5142 gcc_assert (libfunc
);
5144 from
= prepare_libcall_arg (from
, uintp
);
5145 from_mode
= GET_MODE (from
);
5148 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, to_mode
,
5150 insns
= get_insns ();
5153 emit_libcall_block (insns
, to
, value
,
5154 gen_rtx_fmt_e (optab_to_code (tab
), to_mode
, from
));
5157 /* Generate code to convert FROM to fixed point and store in TO. FROM
5158 must be floating point, TO must be signed. Use the conversion optab
5159 TAB to do the conversion. */
5162 expand_sfix_optab (rtx to
, rtx from
, convert_optab tab
)
5164 enum insn_code icode
;
5166 machine_mode fmode
, imode
;
5168 /* We first try to find a pair of modes, one real and one integer, at
5169 least as wide as FROM and TO, respectively, in which we can open-code
5170 this conversion. If the integer mode is wider than the mode of TO,
5171 we can do the conversion either signed or unsigned. */
5173 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
5174 FOR_EACH_MODE_FROM (imode
, GET_MODE (to
))
5176 icode
= convert_optab_handler (tab
, imode
, fmode
);
5177 if (icode
!= CODE_FOR_nothing
)
5179 rtx_insn
*last
= get_last_insn ();
5180 if (fmode
!= GET_MODE (from
))
5181 from
= convert_to_mode (fmode
, from
, 0);
5183 if (imode
!= GET_MODE (to
))
5184 target
= gen_reg_rtx (imode
);
5186 if (!maybe_emit_unop_insn (icode
, target
, from
, UNKNOWN
))
5188 delete_insns_since (last
);
5192 convert_move (to
, target
, 0);
5200 /* Report whether we have an instruction to perform the operation
5201 specified by CODE on operands of mode MODE. */
5203 have_insn_for (enum rtx_code code
, machine_mode mode
)
5205 return (code_to_optab (code
)
5206 && (optab_handler (code_to_optab (code
), mode
)
5207 != CODE_FOR_nothing
));
5210 /* Print information about the current contents of the optabs on
5214 debug_optab_libfuncs (void)
5218 /* Dump the arithmetic optabs. */
5219 for (i
= FIRST_NORM_OPTAB
; i
<= LAST_NORMLIB_OPTAB
; ++i
)
5220 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
5222 rtx l
= optab_libfunc ((optab
) i
, (machine_mode
) j
);
5225 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
5226 fprintf (stderr
, "%s\t%s:\t%s\n",
5227 GET_RTX_NAME (optab_to_code ((optab
) i
)),
5233 /* Dump the conversion optabs. */
5234 for (i
= FIRST_CONV_OPTAB
; i
<= LAST_CONVLIB_OPTAB
; ++i
)
5235 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
5236 for (k
= 0; k
< NUM_MACHINE_MODES
; ++k
)
5238 rtx l
= convert_optab_libfunc ((optab
) i
, (machine_mode
) j
,
5242 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
5243 fprintf (stderr
, "%s\t%s\t%s:\t%s\n",
5244 GET_RTX_NAME (optab_to_code ((optab
) i
)),
5252 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5253 CODE. Return 0 on failure. */
5256 gen_cond_trap (enum rtx_code code
, rtx op1
, rtx op2
, rtx tcode
)
5258 machine_mode mode
= GET_MODE (op1
);
5259 enum insn_code icode
;
5263 if (mode
== VOIDmode
)
5266 icode
= optab_handler (ctrap_optab
, mode
);
5267 if (icode
== CODE_FOR_nothing
)
5270 /* Some targets only accept a zero trap code. */
5271 if (!insn_operand_matches (icode
, 3, tcode
))
5274 do_pending_stack_adjust ();
5276 prepare_cmp_insn (op1
, op2
, code
, NULL_RTX
, false, OPTAB_DIRECT
,
5281 insn
= GEN_FCN (icode
) (trap_rtx
, XEXP (trap_rtx
, 0), XEXP (trap_rtx
, 1),
5284 /* If that failed, then give up. */
5292 insn
= get_insns ();
5297 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
5298 or unsigned operation code. */
5301 get_rtx_code (enum tree_code tcode
, bool unsignedp
)
5313 code
= unsignedp
? LTU
: LT
;
5316 code
= unsignedp
? LEU
: LE
;
5319 code
= unsignedp
? GTU
: GT
;
5322 code
= unsignedp
? GEU
: GE
;
5325 case UNORDERED_EXPR
:
5364 /* Return a comparison rtx of mode CMP_MODE for COND. Use UNSIGNEDP to
5365 select signed or unsigned operators. OPNO holds the index of the
5366 first comparison operand for insn ICODE. Do not generate the
5367 compare instruction itself. */
5370 vector_compare_rtx (machine_mode cmp_mode
, enum tree_code tcode
,
5371 tree t_op0
, tree t_op1
, bool unsignedp
,
5372 enum insn_code icode
, unsigned int opno
)
5374 struct expand_operand ops
[2];
5375 rtx rtx_op0
, rtx_op1
;
5376 machine_mode m0
, m1
;
5377 enum rtx_code rcode
= get_rtx_code (tcode
, unsignedp
);
5379 gcc_assert (TREE_CODE_CLASS (tcode
) == tcc_comparison
);
5381 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
5382 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
5383 cases, use the original mode. */
5384 rtx_op0
= expand_expr (t_op0
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op0
)),
5386 m0
= GET_MODE (rtx_op0
);
5388 m0
= TYPE_MODE (TREE_TYPE (t_op0
));
5390 rtx_op1
= expand_expr (t_op1
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op1
)),
5392 m1
= GET_MODE (rtx_op1
);
5394 m1
= TYPE_MODE (TREE_TYPE (t_op1
));
5396 create_input_operand (&ops
[0], rtx_op0
, m0
);
5397 create_input_operand (&ops
[1], rtx_op1
, m1
);
5398 if (!maybe_legitimize_operands (icode
, opno
, 2, ops
))
5400 return gen_rtx_fmt_ee (rcode
, cmp_mode
, ops
[0].value
, ops
[1].value
);
5403 /* Check if vec_perm mask SEL is a constant equivalent to a shift of
5404 the first vec_perm operand, assuming the second operand is a constant
5405 vector of zeros. Return the shift distance in bits if so, or NULL_RTX
5406 if the vec_perm is not a shift. MODE is the mode of the value being
5409 shift_amt_for_vec_perm_mask (machine_mode mode
, const vec_perm_indices
&sel
)
5411 unsigned int bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
5412 poly_int64 first
= sel
[0];
5413 if (maybe_ge (sel
[0], GET_MODE_NUNITS (mode
)))
5416 if (!sel
.series_p (0, 1, first
, 1))
5419 if (!GET_MODE_NUNITS (mode
).is_constant (&nelt
))
5421 for (unsigned int i
= 1; i
< nelt
; i
++)
5423 poly_int64 expected
= i
+ first
;
5424 /* Indices into the second vector are all equivalent. */
5425 if (maybe_lt (sel
[i
], nelt
)
5426 ? maybe_ne (sel
[i
], expected
)
5427 : maybe_lt (expected
, nelt
))
5432 return gen_int_shift_amount (mode
, first
* bitsize
);
5435 /* A subroutine of expand_vec_perm_var for expanding one vec_perm insn. */
5438 expand_vec_perm_1 (enum insn_code icode
, rtx target
,
5439 rtx v0
, rtx v1
, rtx sel
)
5441 machine_mode tmode
= GET_MODE (target
);
5442 machine_mode smode
= GET_MODE (sel
);
5443 struct expand_operand ops
[4];
5445 gcc_assert (GET_MODE_CLASS (smode
) == MODE_VECTOR_INT
5446 || mode_for_int_vector (tmode
).require () == smode
);
5447 create_output_operand (&ops
[0], target
, tmode
);
5448 create_input_operand (&ops
[3], sel
, smode
);
5450 /* Make an effort to preserve v0 == v1. The target expander is able to
5451 rely on this to determine if we're permuting a single input operand. */
5452 if (rtx_equal_p (v0
, v1
))
5454 if (!insn_operand_matches (icode
, 1, v0
))
5455 v0
= force_reg (tmode
, v0
);
5456 gcc_checking_assert (insn_operand_matches (icode
, 1, v0
));
5457 gcc_checking_assert (insn_operand_matches (icode
, 2, v0
));
5459 create_fixed_operand (&ops
[1], v0
);
5460 create_fixed_operand (&ops
[2], v0
);
5464 create_input_operand (&ops
[1], v0
, tmode
);
5465 create_input_operand (&ops
[2], v1
, tmode
);
5468 if (maybe_expand_insn (icode
, 4, ops
))
5469 return ops
[0].value
;
5473 /* Implement a permutation of vectors v0 and v1 using the permutation
5474 vector in SEL and return the result. Use TARGET to hold the result
5475 if nonnull and convenient.
5477 MODE is the mode of the vectors being permuted (V0 and V1). SEL_MODE
5478 is the TYPE_MODE associated with SEL, or BLKmode if SEL isn't known
5479 to have a particular mode. */
5482 expand_vec_perm_const (machine_mode mode
, rtx v0
, rtx v1
,
5483 const vec_perm_builder
&sel
, machine_mode sel_mode
,
5486 if (!target
|| !register_operand (target
, mode
))
5487 target
= gen_reg_rtx (mode
);
5489 /* Set QIMODE to a different vector mode with byte elements.
5490 If no such mode, or if MODE already has byte elements, use VOIDmode. */
5491 machine_mode qimode
;
5492 if (!qimode_for_vec_perm (mode
).exists (&qimode
))
5495 rtx_insn
*last
= get_last_insn ();
5497 bool single_arg_p
= rtx_equal_p (v0
, v1
);
5498 /* Always specify two input vectors here and leave the target to handle
5499 cases in which the inputs are equal. Not all backends can cope with
5500 the single-input representation when testing for a double-input
5501 target instruction. */
5502 vec_perm_indices
indices (sel
, 2, GET_MODE_NUNITS (mode
));
5504 /* See if this can be handled with a vec_shr. We only do this if the
5505 second vector is all zeroes. */
5506 insn_code shift_code
= optab_handler (vec_shr_optab
, mode
);
5507 insn_code shift_code_qi
= ((qimode
!= VOIDmode
&& qimode
!= mode
)
5508 ? optab_handler (vec_shr_optab
, qimode
)
5509 : CODE_FOR_nothing
);
5511 if (v1
== CONST0_RTX (GET_MODE (v1
))
5512 && (shift_code
!= CODE_FOR_nothing
5513 || shift_code_qi
!= CODE_FOR_nothing
))
5515 rtx shift_amt
= shift_amt_for_vec_perm_mask (mode
, indices
);
5518 struct expand_operand ops
[3];
5519 if (shift_code
!= CODE_FOR_nothing
)
5521 create_output_operand (&ops
[0], target
, mode
);
5522 create_input_operand (&ops
[1], v0
, mode
);
5523 create_convert_operand_from_type (&ops
[2], shift_amt
, sizetype
);
5524 if (maybe_expand_insn (shift_code
, 3, ops
))
5525 return ops
[0].value
;
5527 if (shift_code_qi
!= CODE_FOR_nothing
)
5529 rtx tmp
= gen_reg_rtx (qimode
);
5530 create_output_operand (&ops
[0], tmp
, qimode
);
5531 create_input_operand (&ops
[1], gen_lowpart (qimode
, v0
), qimode
);
5532 create_convert_operand_from_type (&ops
[2], shift_amt
, sizetype
);
5533 if (maybe_expand_insn (shift_code_qi
, 3, ops
))
5534 return gen_lowpart (mode
, ops
[0].value
);
5539 if (targetm
.vectorize
.vec_perm_const
!= NULL
)
5541 v0
= force_reg (mode
, v0
);
5545 v1
= force_reg (mode
, v1
);
5547 if (targetm
.vectorize
.vec_perm_const (mode
, target
, v0
, v1
, indices
))
5551 /* Fall back to a constant byte-based permutation. */
5552 vec_perm_indices qimode_indices
;
5553 rtx target_qi
= NULL_RTX
, v0_qi
= NULL_RTX
, v1_qi
= NULL_RTX
;
5554 if (qimode
!= VOIDmode
)
5556 qimode_indices
.new_expanded_vector (indices
, GET_MODE_UNIT_SIZE (mode
));
5557 target_qi
= gen_reg_rtx (qimode
);
5558 v0_qi
= gen_lowpart (qimode
, v0
);
5559 v1_qi
= gen_lowpart (qimode
, v1
);
5560 if (targetm
.vectorize
.vec_perm_const
!= NULL
5561 && targetm
.vectorize
.vec_perm_const (qimode
, target_qi
, v0_qi
,
5562 v1_qi
, qimode_indices
))
5563 return gen_lowpart (mode
, target_qi
);
5566 /* Otherwise expand as a fully variable permuation. */
5568 /* The optabs are only defined for selectors with the same width
5569 as the values being permuted. */
5570 machine_mode required_sel_mode
;
5571 if (!mode_for_int_vector (mode
).exists (&required_sel_mode
)
5572 || !VECTOR_MODE_P (required_sel_mode
))
5574 delete_insns_since (last
);
5578 /* We know that it is semantically valid to treat SEL as having SEL_MODE.
5579 If that isn't the mode we want then we need to prove that using
5580 REQUIRED_SEL_MODE is OK. */
5581 if (sel_mode
!= required_sel_mode
)
5583 if (!selector_fits_mode_p (required_sel_mode
, indices
))
5585 delete_insns_since (last
);
5588 sel_mode
= required_sel_mode
;
5591 insn_code icode
= direct_optab_handler (vec_perm_optab
, mode
);
5592 if (icode
!= CODE_FOR_nothing
)
5594 rtx sel_rtx
= vec_perm_indices_to_rtx (sel_mode
, indices
);
5595 rtx tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel_rtx
);
5600 if (qimode
!= VOIDmode
5601 && selector_fits_mode_p (qimode
, qimode_indices
))
5603 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
5604 if (icode
!= CODE_FOR_nothing
)
5606 rtx sel_qi
= vec_perm_indices_to_rtx (qimode
, qimode_indices
);
5607 rtx tmp
= expand_vec_perm_1 (icode
, target_qi
, v0_qi
, v1_qi
, sel_qi
);
5609 return gen_lowpart (mode
, tmp
);
5613 delete_insns_since (last
);
5617 /* Implement a permutation of vectors v0 and v1 using the permutation
5618 vector in SEL and return the result. Use TARGET to hold the result
5619 if nonnull and convenient.
5621 MODE is the mode of the vectors being permuted (V0 and V1).
5622 SEL must have the integer equivalent of MODE and is known to be
5623 unsuitable for permutes with a constant permutation vector. */
5626 expand_vec_perm_var (machine_mode mode
, rtx v0
, rtx v1
, rtx sel
, rtx target
)
5628 enum insn_code icode
;
5632 u
= GET_MODE_UNIT_SIZE (mode
);
5634 if (!target
|| GET_MODE (target
) != mode
)
5635 target
= gen_reg_rtx (mode
);
5637 icode
= direct_optab_handler (vec_perm_optab
, mode
);
5638 if (icode
!= CODE_FOR_nothing
)
5640 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
5645 /* As a special case to aid several targets, lower the element-based
5646 permutation to a byte-based permutation and try again. */
5647 machine_mode qimode
;
5648 if (!qimode_for_vec_perm (mode
).exists (&qimode
)
5649 || maybe_gt (GET_MODE_NUNITS (qimode
), GET_MODE_MASK (QImode
) + 1))
5651 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
5652 if (icode
== CODE_FOR_nothing
)
5655 /* Multiply each element by its byte size. */
5656 machine_mode selmode
= GET_MODE (sel
);
5658 sel
= expand_simple_binop (selmode
, PLUS
, sel
, sel
,
5659 NULL
, 0, OPTAB_DIRECT
);
5661 sel
= expand_simple_binop (selmode
, ASHIFT
, sel
,
5662 gen_int_shift_amount (selmode
, exact_log2 (u
)),
5663 NULL
, 0, OPTAB_DIRECT
);
5664 gcc_assert (sel
!= NULL
);
5666 /* Broadcast the low byte each element into each of its bytes.
5667 The encoding has U interleaved stepped patterns, one for each
5668 byte of an element. */
5669 vec_perm_builder
const_sel (GET_MODE_SIZE (mode
), u
, 3);
5670 unsigned int low_byte_in_u
= BYTES_BIG_ENDIAN
? u
- 1 : 0;
5671 for (i
= 0; i
< 3; ++i
)
5672 for (unsigned int j
= 0; j
< u
; ++j
)
5673 const_sel
.quick_push (i
* u
+ low_byte_in_u
);
5674 sel
= gen_lowpart (qimode
, sel
);
5675 sel
= expand_vec_perm_const (qimode
, sel
, sel
, const_sel
, qimode
, NULL
);
5676 gcc_assert (sel
!= NULL
);
5678 /* Add the byte offset to each byte element. */
5679 /* Note that the definition of the indicies here is memory ordering,
5680 so there should be no difference between big and little endian. */
5681 rtx_vector_builder
byte_indices (qimode
, u
, 1);
5682 for (i
= 0; i
< u
; ++i
)
5683 byte_indices
.quick_push (GEN_INT (i
));
5684 tmp
= byte_indices
.build ();
5685 sel_qi
= expand_simple_binop (qimode
, PLUS
, sel
, tmp
,
5686 sel
, 0, OPTAB_DIRECT
);
5687 gcc_assert (sel_qi
!= NULL
);
5689 tmp
= mode
!= qimode
? gen_reg_rtx (qimode
) : target
;
5690 tmp
= expand_vec_perm_1 (icode
, tmp
, gen_lowpart (qimode
, v0
),
5691 gen_lowpart (qimode
, v1
), sel_qi
);
5693 tmp
= gen_lowpart (mode
, tmp
);
5697 /* Generate insns for a VEC_COND_EXPR with mask, given its TYPE and its
5701 expand_vec_cond_mask_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
5704 struct expand_operand ops
[4];
5705 machine_mode mode
= TYPE_MODE (vec_cond_type
);
5706 machine_mode mask_mode
= TYPE_MODE (TREE_TYPE (op0
));
5707 enum insn_code icode
= get_vcond_mask_icode (mode
, mask_mode
);
5708 rtx mask
, rtx_op1
, rtx_op2
;
5710 if (icode
== CODE_FOR_nothing
)
5713 mask
= expand_normal (op0
);
5714 rtx_op1
= expand_normal (op1
);
5715 rtx_op2
= expand_normal (op2
);
5717 mask
= force_reg (mask_mode
, mask
);
5718 rtx_op1
= force_reg (GET_MODE (rtx_op1
), rtx_op1
);
5720 create_output_operand (&ops
[0], target
, mode
);
5721 create_input_operand (&ops
[1], rtx_op1
, mode
);
5722 create_input_operand (&ops
[2], rtx_op2
, mode
);
5723 create_input_operand (&ops
[3], mask
, mask_mode
);
5724 expand_insn (icode
, 4, ops
);
5726 return ops
[0].value
;
5729 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
5733 expand_vec_cond_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
5736 struct expand_operand ops
[6];
5737 enum insn_code icode
;
5738 rtx comparison
, rtx_op1
, rtx_op2
;
5739 machine_mode mode
= TYPE_MODE (vec_cond_type
);
5740 machine_mode cmp_op_mode
;
5743 enum tree_code tcode
;
5745 if (COMPARISON_CLASS_P (op0
))
5747 op0a
= TREE_OPERAND (op0
, 0);
5748 op0b
= TREE_OPERAND (op0
, 1);
5749 tcode
= TREE_CODE (op0
);
5753 gcc_assert (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (op0
)));
5754 if (get_vcond_mask_icode (mode
, TYPE_MODE (TREE_TYPE (op0
)))
5755 != CODE_FOR_nothing
)
5756 return expand_vec_cond_mask_expr (vec_cond_type
, op0
, op1
,
5761 gcc_assert (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (op0
)))
5762 == MODE_VECTOR_INT
);
5764 op0b
= build_zero_cst (TREE_TYPE (op0
));
5768 cmp_op_mode
= TYPE_MODE (TREE_TYPE (op0a
));
5769 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
5772 gcc_assert (known_eq (GET_MODE_SIZE (mode
), GET_MODE_SIZE (cmp_op_mode
))
5773 && known_eq (GET_MODE_NUNITS (mode
),
5774 GET_MODE_NUNITS (cmp_op_mode
)));
5776 icode
= get_vcond_icode (mode
, cmp_op_mode
, unsignedp
);
5777 if (icode
== CODE_FOR_nothing
)
5779 if (tcode
== EQ_EXPR
|| tcode
== NE_EXPR
)
5780 icode
= get_vcond_eq_icode (mode
, cmp_op_mode
);
5781 if (icode
== CODE_FOR_nothing
)
5785 comparison
= vector_compare_rtx (VOIDmode
, tcode
, op0a
, op0b
, unsignedp
,
5787 rtx_op1
= expand_normal (op1
);
5788 rtx_op2
= expand_normal (op2
);
5790 create_output_operand (&ops
[0], target
, mode
);
5791 create_input_operand (&ops
[1], rtx_op1
, mode
);
5792 create_input_operand (&ops
[2], rtx_op2
, mode
);
5793 create_fixed_operand (&ops
[3], comparison
);
5794 create_fixed_operand (&ops
[4], XEXP (comparison
, 0));
5795 create_fixed_operand (&ops
[5], XEXP (comparison
, 1));
5796 expand_insn (icode
, 6, ops
);
5797 return ops
[0].value
;
5800 /* Generate VEC_SERIES_EXPR <OP0, OP1>, returning a value of mode VMODE.
5801 Use TARGET for the result if nonnull and convenient. */
5804 expand_vec_series_expr (machine_mode vmode
, rtx op0
, rtx op1
, rtx target
)
5806 struct expand_operand ops
[3];
5807 enum insn_code icode
;
5808 machine_mode emode
= GET_MODE_INNER (vmode
);
5810 icode
= direct_optab_handler (vec_series_optab
, vmode
);
5811 gcc_assert (icode
!= CODE_FOR_nothing
);
5813 create_output_operand (&ops
[0], target
, vmode
);
5814 create_input_operand (&ops
[1], op0
, emode
);
5815 create_input_operand (&ops
[2], op1
, emode
);
5817 expand_insn (icode
, 3, ops
);
5818 return ops
[0].value
;
5821 /* Generate insns for a vector comparison into a mask. */
5824 expand_vec_cmp_expr (tree type
, tree exp
, rtx target
)
5826 struct expand_operand ops
[4];
5827 enum insn_code icode
;
5829 machine_mode mask_mode
= TYPE_MODE (type
);
5833 enum tree_code tcode
;
5835 op0a
= TREE_OPERAND (exp
, 0);
5836 op0b
= TREE_OPERAND (exp
, 1);
5837 tcode
= TREE_CODE (exp
);
5839 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
5840 vmode
= TYPE_MODE (TREE_TYPE (op0a
));
5842 icode
= get_vec_cmp_icode (vmode
, mask_mode
, unsignedp
);
5843 if (icode
== CODE_FOR_nothing
)
5845 if (tcode
== EQ_EXPR
|| tcode
== NE_EXPR
)
5846 icode
= get_vec_cmp_eq_icode (vmode
, mask_mode
);
5847 if (icode
== CODE_FOR_nothing
)
5851 comparison
= vector_compare_rtx (mask_mode
, tcode
, op0a
, op0b
,
5852 unsignedp
, icode
, 2);
5853 create_output_operand (&ops
[0], target
, mask_mode
);
5854 create_fixed_operand (&ops
[1], comparison
);
5855 create_fixed_operand (&ops
[2], XEXP (comparison
, 0));
5856 create_fixed_operand (&ops
[3], XEXP (comparison
, 1));
5857 expand_insn (icode
, 4, ops
);
5858 return ops
[0].value
;
5861 /* Expand a highpart multiply. */
5864 expand_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
5865 rtx target
, bool uns_p
)
5867 struct expand_operand eops
[3];
5868 enum insn_code icode
;
5874 method
= can_mult_highpart_p (mode
, uns_p
);
5880 tab1
= uns_p
? umul_highpart_optab
: smul_highpart_optab
;
5881 return expand_binop (mode
, tab1
, op0
, op1
, target
, uns_p
,
5884 tab1
= uns_p
? vec_widen_umult_even_optab
: vec_widen_smult_even_optab
;
5885 tab2
= uns_p
? vec_widen_umult_odd_optab
: vec_widen_smult_odd_optab
;
5888 tab1
= uns_p
? vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
5889 tab2
= uns_p
? vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
5890 if (BYTES_BIG_ENDIAN
)
5891 std::swap (tab1
, tab2
);
5897 icode
= optab_handler (tab1
, mode
);
5898 wmode
= insn_data
[icode
].operand
[0].mode
;
5899 gcc_checking_assert (known_eq (2 * GET_MODE_NUNITS (wmode
),
5900 GET_MODE_NUNITS (mode
)));
5901 gcc_checking_assert (known_eq (GET_MODE_SIZE (wmode
), GET_MODE_SIZE (mode
)));
5903 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
5904 create_input_operand (&eops
[1], op0
, mode
);
5905 create_input_operand (&eops
[2], op1
, mode
);
5906 expand_insn (icode
, 3, eops
);
5907 m1
= gen_lowpart (mode
, eops
[0].value
);
5909 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
5910 create_input_operand (&eops
[1], op0
, mode
);
5911 create_input_operand (&eops
[2], op1
, mode
);
5912 expand_insn (optab_handler (tab2
, mode
), 3, eops
);
5913 m2
= gen_lowpart (mode
, eops
[0].value
);
5915 vec_perm_builder sel
;
5918 /* The encoding has 2 interleaved stepped patterns. */
5919 sel
.new_vector (GET_MODE_NUNITS (mode
), 2, 3);
5920 for (i
= 0; i
< 6; ++i
)
5921 sel
.quick_push (!BYTES_BIG_ENDIAN
+ (i
& ~1)
5922 + ((i
& 1) ? GET_MODE_NUNITS (mode
) : 0));
5926 /* The encoding has a single interleaved stepped pattern. */
5927 sel
.new_vector (GET_MODE_NUNITS (mode
), 1, 3);
5928 for (i
= 0; i
< 3; ++i
)
5929 sel
.quick_push (2 * i
+ (BYTES_BIG_ENDIAN
? 0 : 1));
5932 return expand_vec_perm_const (mode
, m1
, m2
, sel
, BLKmode
, target
);
5935 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
5939 find_cc_set (rtx x
, const_rtx pat
, void *data
)
5941 if (REG_P (x
) && GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
5942 && GET_CODE (pat
) == SET
)
5944 rtx
*p_cc_reg
= (rtx
*) data
;
5945 gcc_assert (!*p_cc_reg
);
5950 /* This is a helper function for the other atomic operations. This function
5951 emits a loop that contains SEQ that iterates until a compare-and-swap
5952 operation at the end succeeds. MEM is the memory to be modified. SEQ is
5953 a set of instructions that takes a value from OLD_REG as an input and
5954 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
5955 set to the current contents of MEM. After SEQ, a compare-and-swap will
5956 attempt to update MEM with NEW_REG. The function returns true when the
5957 loop was generated successfully. */
5960 expand_compare_and_swap_loop (rtx mem
, rtx old_reg
, rtx new_reg
, rtx seq
)
5962 machine_mode mode
= GET_MODE (mem
);
5963 rtx_code_label
*label
;
5964 rtx cmp_reg
, success
, oldval
;
5966 /* The loop we want to generate looks like
5972 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
5976 Note that we only do the plain load from memory once. Subsequent
5977 iterations use the value loaded by the compare-and-swap pattern. */
5979 label
= gen_label_rtx ();
5980 cmp_reg
= gen_reg_rtx (mode
);
5982 emit_move_insn (cmp_reg
, mem
);
5984 emit_move_insn (old_reg
, cmp_reg
);
5990 if (!expand_atomic_compare_and_swap (&success
, &oldval
, mem
, old_reg
,
5991 new_reg
, false, MEMMODEL_SYNC_SEQ_CST
,
5995 if (oldval
!= cmp_reg
)
5996 emit_move_insn (cmp_reg
, oldval
);
5998 /* Mark this jump predicted not taken. */
5999 emit_cmp_and_jump_insns (success
, const0_rtx
, EQ
, const0_rtx
,
6000 GET_MODE (success
), 1, label
,
6001 profile_probability::guessed_never ());
6006 /* This function tries to emit an atomic_exchange intruction. VAL is written
6007 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6008 using TARGET if possible. */
6011 maybe_emit_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
6013 machine_mode mode
= GET_MODE (mem
);
6014 enum insn_code icode
;
6016 /* If the target supports the exchange directly, great. */
6017 icode
= direct_optab_handler (atomic_exchange_optab
, mode
);
6018 if (icode
!= CODE_FOR_nothing
)
6020 struct expand_operand ops
[4];
6022 create_output_operand (&ops
[0], target
, mode
);
6023 create_fixed_operand (&ops
[1], mem
);
6024 create_input_operand (&ops
[2], val
, mode
);
6025 create_integer_operand (&ops
[3], model
);
6026 if (maybe_expand_insn (icode
, 4, ops
))
6027 return ops
[0].value
;
6033 /* This function tries to implement an atomic exchange operation using
6034 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
6035 The previous contents of *MEM are returned, using TARGET if possible.
6036 Since this instructionn is an acquire barrier only, stronger memory
6037 models may require additional barriers to be emitted. */
6040 maybe_emit_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
,
6041 enum memmodel model
)
6043 machine_mode mode
= GET_MODE (mem
);
6044 enum insn_code icode
;
6045 rtx_insn
*last_insn
= get_last_insn ();
6047 icode
= optab_handler (sync_lock_test_and_set_optab
, mode
);
6049 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
6050 exists, and the memory model is stronger than acquire, add a release
6051 barrier before the instruction. */
6053 if (is_mm_seq_cst (model
) || is_mm_release (model
) || is_mm_acq_rel (model
))
6054 expand_mem_thread_fence (model
);
6056 if (icode
!= CODE_FOR_nothing
)
6058 struct expand_operand ops
[3];
6059 create_output_operand (&ops
[0], target
, mode
);
6060 create_fixed_operand (&ops
[1], mem
);
6061 create_input_operand (&ops
[2], val
, mode
);
6062 if (maybe_expand_insn (icode
, 3, ops
))
6063 return ops
[0].value
;
6066 /* If an external test-and-set libcall is provided, use that instead of
6067 any external compare-and-swap that we might get from the compare-and-
6068 swap-loop expansion later. */
6069 if (!can_compare_and_swap_p (mode
, false))
6071 rtx libfunc
= optab_libfunc (sync_lock_test_and_set_optab
, mode
);
6072 if (libfunc
!= NULL
)
6076 addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6077 return emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
6078 mode
, addr
, ptr_mode
,
6083 /* If the test_and_set can't be emitted, eliminate any barrier that might
6084 have been emitted. */
6085 delete_insns_since (last_insn
);
6089 /* This function tries to implement an atomic exchange operation using a
6090 compare_and_swap loop. VAL is written to *MEM. The previous contents of
6091 *MEM are returned, using TARGET if possible. No memory model is required
6092 since a compare_and_swap loop is seq-cst. */
6095 maybe_emit_compare_and_swap_exchange_loop (rtx target
, rtx mem
, rtx val
)
6097 machine_mode mode
= GET_MODE (mem
);
6099 if (can_compare_and_swap_p (mode
, true))
6101 if (!target
|| !register_operand (target
, mode
))
6102 target
= gen_reg_rtx (mode
);
6103 if (expand_compare_and_swap_loop (mem
, target
, val
, NULL_RTX
))
6110 /* This function tries to implement an atomic test-and-set operation
6111 using the atomic_test_and_set instruction pattern. A boolean value
6112 is returned from the operation, using TARGET if possible. */
6115 maybe_emit_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
6117 machine_mode pat_bool_mode
;
6118 struct expand_operand ops
[3];
6120 if (!targetm
.have_atomic_test_and_set ())
6123 /* While we always get QImode from __atomic_test_and_set, we get
6124 other memory modes from __sync_lock_test_and_set. Note that we
6125 use no endian adjustment here. This matches the 4.6 behavior
6126 in the Sparc backend. */
6127 enum insn_code icode
= targetm
.code_for_atomic_test_and_set
;
6128 gcc_checking_assert (insn_data
[icode
].operand
[1].mode
== QImode
);
6129 if (GET_MODE (mem
) != QImode
)
6130 mem
= adjust_address_nv (mem
, QImode
, 0);
6132 pat_bool_mode
= insn_data
[icode
].operand
[0].mode
;
6133 create_output_operand (&ops
[0], target
, pat_bool_mode
);
6134 create_fixed_operand (&ops
[1], mem
);
6135 create_integer_operand (&ops
[2], model
);
6137 if (maybe_expand_insn (icode
, 3, ops
))
6138 return ops
[0].value
;
6142 /* This function expands the legacy _sync_lock test_and_set operation which is
6143 generally an atomic exchange. Some limited targets only allow the
6144 constant 1 to be stored. This is an ACQUIRE operation.
6146 TARGET is an optional place to stick the return value.
6147 MEM is where VAL is stored. */
6150 expand_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
)
6154 /* Try an atomic_exchange first. */
6155 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, MEMMODEL_SYNC_ACQUIRE
);
6159 ret
= maybe_emit_sync_lock_test_and_set (target
, mem
, val
,
6160 MEMMODEL_SYNC_ACQUIRE
);
6164 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
6168 /* If there are no other options, try atomic_test_and_set if the value
6169 being stored is 1. */
6170 if (val
== const1_rtx
)
6171 ret
= maybe_emit_atomic_test_and_set (target
, mem
, MEMMODEL_SYNC_ACQUIRE
);
6176 /* This function expands the atomic test_and_set operation:
6177 atomically store a boolean TRUE into MEM and return the previous value.
6179 MEMMODEL is the memory model variant to use.
6180 TARGET is an optional place to stick the return value. */
6183 expand_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
6185 machine_mode mode
= GET_MODE (mem
);
6186 rtx ret
, trueval
, subtarget
;
6188 ret
= maybe_emit_atomic_test_and_set (target
, mem
, model
);
6192 /* Be binary compatible with non-default settings of trueval, and different
6193 cpu revisions. E.g. one revision may have atomic-test-and-set, but
6194 another only has atomic-exchange. */
6195 if (targetm
.atomic_test_and_set_trueval
== 1)
6197 trueval
= const1_rtx
;
6198 subtarget
= target
? target
: gen_reg_rtx (mode
);
6202 trueval
= gen_int_mode (targetm
.atomic_test_and_set_trueval
, mode
);
6203 subtarget
= gen_reg_rtx (mode
);
6206 /* Try the atomic-exchange optab... */
6207 ret
= maybe_emit_atomic_exchange (subtarget
, mem
, trueval
, model
);
6209 /* ... then an atomic-compare-and-swap loop ... */
6211 ret
= maybe_emit_compare_and_swap_exchange_loop (subtarget
, mem
, trueval
);
6213 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6215 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, trueval
, model
);
6217 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6218 things with the value 1. Thus we try again without trueval. */
6219 if (!ret
&& targetm
.atomic_test_and_set_trueval
!= 1)
6220 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, const1_rtx
, model
);
6222 /* Failing all else, assume a single threaded environment and simply
6223 perform the operation. */
6226 /* If the result is ignored skip the move to target. */
6227 if (subtarget
!= const0_rtx
)
6228 emit_move_insn (subtarget
, mem
);
6230 emit_move_insn (mem
, trueval
);
6234 /* Recall that have to return a boolean value; rectify if trueval
6235 is not exactly one. */
6236 if (targetm
.atomic_test_and_set_trueval
!= 1)
6237 ret
= emit_store_flag_force (target
, NE
, ret
, const0_rtx
, mode
, 0, 1);
6242 /* This function expands the atomic exchange operation:
6243 atomically store VAL in MEM and return the previous value in MEM.
6245 MEMMODEL is the memory model variant to use.
6246 TARGET is an optional place to stick the return value. */
6249 expand_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
6251 machine_mode mode
= GET_MODE (mem
);
6254 /* If loads are not atomic for the required size and we are not called to
6255 provide a __sync builtin, do not do anything so that we stay consistent
6256 with atomic loads of the same size. */
6257 if (!can_atomic_load_p (mode
) && !is_mm_sync (model
))
6260 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6262 /* Next try a compare-and-swap loop for the exchange. */
6264 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
6269 /* This function expands the atomic compare exchange operation:
6271 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6272 *PTARGET_OVAL is an optional place to store the old value from memory.
6273 Both target parameters may be NULL or const0_rtx to indicate that we do
6274 not care about that return value. Both target parameters are updated on
6275 success to the actual location of the corresponding result.
6277 MEMMODEL is the memory model variant to use.
6279 The return value of the function is true for success. */
6282 expand_atomic_compare_and_swap (rtx
*ptarget_bool
, rtx
*ptarget_oval
,
6283 rtx mem
, rtx expected
, rtx desired
,
6284 bool is_weak
, enum memmodel succ_model
,
6285 enum memmodel fail_model
)
6287 machine_mode mode
= GET_MODE (mem
);
6288 struct expand_operand ops
[8];
6289 enum insn_code icode
;
6290 rtx target_oval
, target_bool
= NULL_RTX
;
6293 /* If loads are not atomic for the required size and we are not called to
6294 provide a __sync builtin, do not do anything so that we stay consistent
6295 with atomic loads of the same size. */
6296 if (!can_atomic_load_p (mode
) && !is_mm_sync (succ_model
))
6299 /* Load expected into a register for the compare and swap. */
6300 if (MEM_P (expected
))
6301 expected
= copy_to_reg (expected
);
6303 /* Make sure we always have some place to put the return oldval.
6304 Further, make sure that place is distinct from the input expected,
6305 just in case we need that path down below. */
6306 if (ptarget_oval
&& *ptarget_oval
== const0_rtx
)
6307 ptarget_oval
= NULL
;
6309 if (ptarget_oval
== NULL
6310 || (target_oval
= *ptarget_oval
) == NULL
6311 || reg_overlap_mentioned_p (expected
, target_oval
))
6312 target_oval
= gen_reg_rtx (mode
);
6314 icode
= direct_optab_handler (atomic_compare_and_swap_optab
, mode
);
6315 if (icode
!= CODE_FOR_nothing
)
6317 machine_mode bool_mode
= insn_data
[icode
].operand
[0].mode
;
6319 if (ptarget_bool
&& *ptarget_bool
== const0_rtx
)
6320 ptarget_bool
= NULL
;
6322 /* Make sure we always have a place for the bool operand. */
6323 if (ptarget_bool
== NULL
6324 || (target_bool
= *ptarget_bool
) == NULL
6325 || GET_MODE (target_bool
) != bool_mode
)
6326 target_bool
= gen_reg_rtx (bool_mode
);
6328 /* Emit the compare_and_swap. */
6329 create_output_operand (&ops
[0], target_bool
, bool_mode
);
6330 create_output_operand (&ops
[1], target_oval
, mode
);
6331 create_fixed_operand (&ops
[2], mem
);
6332 create_input_operand (&ops
[3], expected
, mode
);
6333 create_input_operand (&ops
[4], desired
, mode
);
6334 create_integer_operand (&ops
[5], is_weak
);
6335 create_integer_operand (&ops
[6], succ_model
);
6336 create_integer_operand (&ops
[7], fail_model
);
6337 if (maybe_expand_insn (icode
, 8, ops
))
6339 /* Return success/failure. */
6340 target_bool
= ops
[0].value
;
6341 target_oval
= ops
[1].value
;
6346 /* Otherwise fall back to the original __sync_val_compare_and_swap
6347 which is always seq-cst. */
6348 icode
= optab_handler (sync_compare_and_swap_optab
, mode
);
6349 if (icode
!= CODE_FOR_nothing
)
6353 create_output_operand (&ops
[0], target_oval
, mode
);
6354 create_fixed_operand (&ops
[1], mem
);
6355 create_input_operand (&ops
[2], expected
, mode
);
6356 create_input_operand (&ops
[3], desired
, mode
);
6357 if (!maybe_expand_insn (icode
, 4, ops
))
6360 target_oval
= ops
[0].value
;
6362 /* If the caller isn't interested in the boolean return value,
6363 skip the computation of it. */
6364 if (ptarget_bool
== NULL
)
6367 /* Otherwise, work out if the compare-and-swap succeeded. */
6369 if (have_insn_for (COMPARE
, CCmode
))
6370 note_stores (PATTERN (get_last_insn ()), find_cc_set
, &cc_reg
);
6373 target_bool
= emit_store_flag_force (target_bool
, EQ
, cc_reg
,
6374 const0_rtx
, VOIDmode
, 0, 1);
6377 goto success_bool_from_val
;
6380 /* Also check for library support for __sync_val_compare_and_swap. */
6381 libfunc
= optab_libfunc (sync_compare_and_swap_optab
, mode
);
6382 if (libfunc
!= NULL
)
6384 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6385 rtx target
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
6386 mode
, addr
, ptr_mode
,
6387 expected
, mode
, desired
, mode
);
6388 emit_move_insn (target_oval
, target
);
6390 /* Compute the boolean return value only if requested. */
6392 goto success_bool_from_val
;
6400 success_bool_from_val
:
6401 target_bool
= emit_store_flag_force (target_bool
, EQ
, target_oval
,
6402 expected
, VOIDmode
, 1, 1);
6404 /* Make sure that the oval output winds up where the caller asked. */
6406 *ptarget_oval
= target_oval
;
6408 *ptarget_bool
= target_bool
;
6412 /* Generate asm volatile("" : : : "memory") as the memory blockage. */
6415 expand_asm_memory_blockage (void)
6419 asm_op
= gen_rtx_ASM_OPERANDS (VOIDmode
, "", "", 0,
6420 rtvec_alloc (0), rtvec_alloc (0),
6421 rtvec_alloc (0), UNKNOWN_LOCATION
);
6422 MEM_VOLATILE_P (asm_op
) = 1;
6424 clob
= gen_rtx_SCRATCH (VOIDmode
);
6425 clob
= gen_rtx_MEM (BLKmode
, clob
);
6426 clob
= gen_rtx_CLOBBER (VOIDmode
, clob
);
6428 emit_insn (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, asm_op
, clob
)));
6431 /* Do not propagate memory accesses across this point. */
6434 expand_memory_blockage (void)
6436 if (targetm
.have_memory_blockage ())
6437 emit_insn (targetm
.gen_memory_blockage ());
6439 expand_asm_memory_blockage ();
6442 /* This routine will either emit the mem_thread_fence pattern or issue a
6443 sync_synchronize to generate a fence for memory model MEMMODEL. */
6446 expand_mem_thread_fence (enum memmodel model
)
6448 if (is_mm_relaxed (model
))
6450 if (targetm
.have_mem_thread_fence ())
6452 emit_insn (targetm
.gen_mem_thread_fence (GEN_INT (model
)));
6453 expand_memory_blockage ();
6455 else if (targetm
.have_memory_barrier ())
6456 emit_insn (targetm
.gen_memory_barrier ());
6457 else if (synchronize_libfunc
!= NULL_RTX
)
6458 emit_library_call (synchronize_libfunc
, LCT_NORMAL
, VOIDmode
);
6460 expand_memory_blockage ();
6463 /* Emit a signal fence with given memory model. */
6466 expand_mem_signal_fence (enum memmodel model
)
6468 /* No machine barrier is required to implement a signal fence, but
6469 a compiler memory barrier must be issued, except for relaxed MM. */
6470 if (!is_mm_relaxed (model
))
6471 expand_memory_blockage ();
6474 /* This function expands the atomic load operation:
6475 return the atomically loaded value in MEM.
6477 MEMMODEL is the memory model variant to use.
6478 TARGET is an option place to stick the return value. */
6481 expand_atomic_load (rtx target
, rtx mem
, enum memmodel model
)
6483 machine_mode mode
= GET_MODE (mem
);
6484 enum insn_code icode
;
6486 /* If the target supports the load directly, great. */
6487 icode
= direct_optab_handler (atomic_load_optab
, mode
);
6488 if (icode
!= CODE_FOR_nothing
)
6490 struct expand_operand ops
[3];
6491 rtx_insn
*last
= get_last_insn ();
6492 if (is_mm_seq_cst (model
))
6493 expand_memory_blockage ();
6495 create_output_operand (&ops
[0], target
, mode
);
6496 create_fixed_operand (&ops
[1], mem
);
6497 create_integer_operand (&ops
[2], model
);
6498 if (maybe_expand_insn (icode
, 3, ops
))
6500 if (!is_mm_relaxed (model
))
6501 expand_memory_blockage ();
6502 return ops
[0].value
;
6504 delete_insns_since (last
);
6507 /* If the size of the object is greater than word size on this target,
6508 then we assume that a load will not be atomic. We could try to
6509 emulate a load with a compare-and-swap operation, but the store that
6510 doing this could result in would be incorrect if this is a volatile
6511 atomic load or targetting read-only-mapped memory. */
6512 if (maybe_gt (GET_MODE_PRECISION (mode
), BITS_PER_WORD
))
6513 /* If there is no atomic load, leave the library call. */
6516 /* Otherwise assume loads are atomic, and emit the proper barriers. */
6517 if (!target
|| target
== const0_rtx
)
6518 target
= gen_reg_rtx (mode
);
6520 /* For SEQ_CST, emit a barrier before the load. */
6521 if (is_mm_seq_cst (model
))
6522 expand_mem_thread_fence (model
);
6524 emit_move_insn (target
, mem
);
6526 /* Emit the appropriate barrier after the load. */
6527 expand_mem_thread_fence (model
);
6532 /* This function expands the atomic store operation:
6533 Atomically store VAL in MEM.
6534 MEMMODEL is the memory model variant to use.
6535 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
6536 function returns const0_rtx if a pattern was emitted. */
6539 expand_atomic_store (rtx mem
, rtx val
, enum memmodel model
, bool use_release
)
6541 machine_mode mode
= GET_MODE (mem
);
6542 enum insn_code icode
;
6543 struct expand_operand ops
[3];
6545 /* If the target supports the store directly, great. */
6546 icode
= direct_optab_handler (atomic_store_optab
, mode
);
6547 if (icode
!= CODE_FOR_nothing
)
6549 rtx_insn
*last
= get_last_insn ();
6550 if (!is_mm_relaxed (model
))
6551 expand_memory_blockage ();
6552 create_fixed_operand (&ops
[0], mem
);
6553 create_input_operand (&ops
[1], val
, mode
);
6554 create_integer_operand (&ops
[2], model
);
6555 if (maybe_expand_insn (icode
, 3, ops
))
6557 if (is_mm_seq_cst (model
))
6558 expand_memory_blockage ();
6561 delete_insns_since (last
);
6564 /* If using __sync_lock_release is a viable alternative, try it.
6565 Note that this will not be set to true if we are expanding a generic
6566 __atomic_store_n. */
6569 icode
= direct_optab_handler (sync_lock_release_optab
, mode
);
6570 if (icode
!= CODE_FOR_nothing
)
6572 create_fixed_operand (&ops
[0], mem
);
6573 create_input_operand (&ops
[1], const0_rtx
, mode
);
6574 if (maybe_expand_insn (icode
, 2, ops
))
6576 /* lock_release is only a release barrier. */
6577 if (is_mm_seq_cst (model
))
6578 expand_mem_thread_fence (model
);
6584 /* If the size of the object is greater than word size on this target,
6585 a default store will not be atomic. */
6586 if (maybe_gt (GET_MODE_PRECISION (mode
), BITS_PER_WORD
))
6588 /* If loads are atomic or we are called to provide a __sync builtin,
6589 we can try a atomic_exchange and throw away the result. Otherwise,
6590 don't do anything so that we do not create an inconsistency between
6591 loads and stores. */
6592 if (can_atomic_load_p (mode
) || is_mm_sync (model
))
6594 rtx target
= maybe_emit_atomic_exchange (NULL_RTX
, mem
, val
, model
);
6596 target
= maybe_emit_compare_and_swap_exchange_loop (NULL_RTX
, mem
,
6604 /* Otherwise assume stores are atomic, and emit the proper barriers. */
6605 expand_mem_thread_fence (model
);
6607 emit_move_insn (mem
, val
);
6609 /* For SEQ_CST, also emit a barrier after the store. */
6610 if (is_mm_seq_cst (model
))
6611 expand_mem_thread_fence (model
);
6617 /* Structure containing the pointers and values required to process the
6618 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
6620 struct atomic_op_functions
6622 direct_optab mem_fetch_before
;
6623 direct_optab mem_fetch_after
;
6624 direct_optab mem_no_result
;
6627 direct_optab no_result
;
6628 enum rtx_code reverse_code
;
6632 /* Fill in structure pointed to by OP with the various optab entries for an
6633 operation of type CODE. */
6636 get_atomic_op_for_code (struct atomic_op_functions
*op
, enum rtx_code code
)
6638 gcc_assert (op
!= NULL
);
6640 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
6641 in the source code during compilation, and the optab entries are not
6642 computable until runtime. Fill in the values at runtime. */
6646 op
->mem_fetch_before
= atomic_fetch_add_optab
;
6647 op
->mem_fetch_after
= atomic_add_fetch_optab
;
6648 op
->mem_no_result
= atomic_add_optab
;
6649 op
->fetch_before
= sync_old_add_optab
;
6650 op
->fetch_after
= sync_new_add_optab
;
6651 op
->no_result
= sync_add_optab
;
6652 op
->reverse_code
= MINUS
;
6655 op
->mem_fetch_before
= atomic_fetch_sub_optab
;
6656 op
->mem_fetch_after
= atomic_sub_fetch_optab
;
6657 op
->mem_no_result
= atomic_sub_optab
;
6658 op
->fetch_before
= sync_old_sub_optab
;
6659 op
->fetch_after
= sync_new_sub_optab
;
6660 op
->no_result
= sync_sub_optab
;
6661 op
->reverse_code
= PLUS
;
6664 op
->mem_fetch_before
= atomic_fetch_xor_optab
;
6665 op
->mem_fetch_after
= atomic_xor_fetch_optab
;
6666 op
->mem_no_result
= atomic_xor_optab
;
6667 op
->fetch_before
= sync_old_xor_optab
;
6668 op
->fetch_after
= sync_new_xor_optab
;
6669 op
->no_result
= sync_xor_optab
;
6670 op
->reverse_code
= XOR
;
6673 op
->mem_fetch_before
= atomic_fetch_and_optab
;
6674 op
->mem_fetch_after
= atomic_and_fetch_optab
;
6675 op
->mem_no_result
= atomic_and_optab
;
6676 op
->fetch_before
= sync_old_and_optab
;
6677 op
->fetch_after
= sync_new_and_optab
;
6678 op
->no_result
= sync_and_optab
;
6679 op
->reverse_code
= UNKNOWN
;
6682 op
->mem_fetch_before
= atomic_fetch_or_optab
;
6683 op
->mem_fetch_after
= atomic_or_fetch_optab
;
6684 op
->mem_no_result
= atomic_or_optab
;
6685 op
->fetch_before
= sync_old_ior_optab
;
6686 op
->fetch_after
= sync_new_ior_optab
;
6687 op
->no_result
= sync_ior_optab
;
6688 op
->reverse_code
= UNKNOWN
;
6691 op
->mem_fetch_before
= atomic_fetch_nand_optab
;
6692 op
->mem_fetch_after
= atomic_nand_fetch_optab
;
6693 op
->mem_no_result
= atomic_nand_optab
;
6694 op
->fetch_before
= sync_old_nand_optab
;
6695 op
->fetch_after
= sync_new_nand_optab
;
6696 op
->no_result
= sync_nand_optab
;
6697 op
->reverse_code
= UNKNOWN
;
6704 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
6705 using memory order MODEL. If AFTER is true the operation needs to return
6706 the value of *MEM after the operation, otherwise the previous value.
6707 TARGET is an optional place to place the result. The result is unused if
6709 Return the result if there is a better sequence, otherwise NULL_RTX. */
6712 maybe_optimize_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
6713 enum memmodel model
, bool after
)
6715 /* If the value is prefetched, or not used, it may be possible to replace
6716 the sequence with a native exchange operation. */
6717 if (!after
|| target
== const0_rtx
)
6719 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
6720 if (code
== AND
&& val
== const0_rtx
)
6722 if (target
== const0_rtx
)
6723 target
= gen_reg_rtx (GET_MODE (mem
));
6724 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6727 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
6728 if (code
== IOR
&& val
== constm1_rtx
)
6730 if (target
== const0_rtx
)
6731 target
= gen_reg_rtx (GET_MODE (mem
));
6732 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6739 /* Try to emit an instruction for a specific operation varaition.
6740 OPTAB contains the OP functions.
6741 TARGET is an optional place to return the result. const0_rtx means unused.
6742 MEM is the memory location to operate on.
6743 VAL is the value to use in the operation.
6744 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
6745 MODEL is the memory model, if used.
6746 AFTER is true if the returned result is the value after the operation. */
6749 maybe_emit_op (const struct atomic_op_functions
*optab
, rtx target
, rtx mem
,
6750 rtx val
, bool use_memmodel
, enum memmodel model
, bool after
)
6752 machine_mode mode
= GET_MODE (mem
);
6753 struct expand_operand ops
[4];
6754 enum insn_code icode
;
6758 /* Check to see if there is a result returned. */
6759 if (target
== const0_rtx
)
6763 icode
= direct_optab_handler (optab
->mem_no_result
, mode
);
6764 create_integer_operand (&ops
[2], model
);
6769 icode
= direct_optab_handler (optab
->no_result
, mode
);
6773 /* Otherwise, we need to generate a result. */
6778 icode
= direct_optab_handler (after
? optab
->mem_fetch_after
6779 : optab
->mem_fetch_before
, mode
);
6780 create_integer_operand (&ops
[3], model
);
6785 icode
= optab_handler (after
? optab
->fetch_after
6786 : optab
->fetch_before
, mode
);
6789 create_output_operand (&ops
[op_counter
++], target
, mode
);
6791 if (icode
== CODE_FOR_nothing
)
6794 create_fixed_operand (&ops
[op_counter
++], mem
);
6795 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6796 create_convert_operand_to (&ops
[op_counter
++], val
, mode
, true);
6798 if (maybe_expand_insn (icode
, num_ops
, ops
))
6799 return (target
== const0_rtx
? const0_rtx
: ops
[0].value
);
6805 /* This function expands an atomic fetch_OP or OP_fetch operation:
6806 TARGET is an option place to stick the return value. const0_rtx indicates
6807 the result is unused.
6808 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6809 CODE is the operation being performed (OP)
6810 MEMMODEL is the memory model variant to use.
6811 AFTER is true to return the result of the operation (OP_fetch).
6812 AFTER is false to return the value before the operation (fetch_OP).
6814 This function will *only* generate instructions if there is a direct
6815 optab. No compare and swap loops or libcalls will be generated. */
6818 expand_atomic_fetch_op_no_fallback (rtx target
, rtx mem
, rtx val
,
6819 enum rtx_code code
, enum memmodel model
,
6822 machine_mode mode
= GET_MODE (mem
);
6823 struct atomic_op_functions optab
;
6825 bool unused_result
= (target
== const0_rtx
);
6827 get_atomic_op_for_code (&optab
, code
);
6829 /* Check to see if there are any better instructions. */
6830 result
= maybe_optimize_fetch_op (target
, mem
, val
, code
, model
, after
);
6834 /* Check for the case where the result isn't used and try those patterns. */
6837 /* Try the memory model variant first. */
6838 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, true);
6842 /* Next try the old style withuot a memory model. */
6843 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, true);
6847 /* There is no no-result pattern, so try patterns with a result. */
6851 /* Try the __atomic version. */
6852 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, after
);
6856 /* Try the older __sync version. */
6857 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, after
);
6861 /* If the fetch value can be calculated from the other variation of fetch,
6862 try that operation. */
6863 if (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
)
6865 /* Try the __atomic version, then the older __sync version. */
6866 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, !after
);
6868 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, !after
);
6872 /* If the result isn't used, no need to do compensation code. */
6876 /* Issue compensation code. Fetch_after == fetch_before OP val.
6877 Fetch_before == after REVERSE_OP val. */
6879 code
= optab
.reverse_code
;
6882 result
= expand_simple_binop (mode
, AND
, result
, val
, NULL_RTX
,
6883 true, OPTAB_LIB_WIDEN
);
6884 result
= expand_simple_unop (mode
, NOT
, result
, target
, true);
6887 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
6888 true, OPTAB_LIB_WIDEN
);
6893 /* No direct opcode can be generated. */
6899 /* This function expands an atomic fetch_OP or OP_fetch operation:
6900 TARGET is an option place to stick the return value. const0_rtx indicates
6901 the result is unused.
6902 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6903 CODE is the operation being performed (OP)
6904 MEMMODEL is the memory model variant to use.
6905 AFTER is true to return the result of the operation (OP_fetch).
6906 AFTER is false to return the value before the operation (fetch_OP). */
6908 expand_atomic_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
6909 enum memmodel model
, bool after
)
6911 machine_mode mode
= GET_MODE (mem
);
6913 bool unused_result
= (target
== const0_rtx
);
6915 /* If loads are not atomic for the required size and we are not called to
6916 provide a __sync builtin, do not do anything so that we stay consistent
6917 with atomic loads of the same size. */
6918 if (!can_atomic_load_p (mode
) && !is_mm_sync (model
))
6921 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, val
, code
, model
,
6927 /* Add/sub can be implemented by doing the reverse operation with -(val). */
6928 if (code
== PLUS
|| code
== MINUS
)
6931 enum rtx_code reverse
= (code
== PLUS
? MINUS
: PLUS
);
6934 tmp
= expand_simple_unop (mode
, NEG
, val
, NULL_RTX
, true);
6935 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, tmp
, reverse
,
6939 /* PLUS worked so emit the insns and return. */
6946 /* PLUS did not work, so throw away the negation code and continue. */
6950 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
6951 if (!can_compare_and_swap_p (mode
, false))
6955 enum rtx_code orig_code
= code
;
6956 struct atomic_op_functions optab
;
6958 get_atomic_op_for_code (&optab
, code
);
6959 libfunc
= optab_libfunc (after
? optab
.fetch_after
6960 : optab
.fetch_before
, mode
);
6962 && (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
))
6966 code
= optab
.reverse_code
;
6967 libfunc
= optab_libfunc (after
? optab
.fetch_before
6968 : optab
.fetch_after
, mode
);
6970 if (libfunc
!= NULL
)
6972 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6973 result
= emit_library_call_value (libfunc
, NULL
, LCT_NORMAL
, mode
,
6974 addr
, ptr_mode
, val
, mode
);
6976 if (!unused_result
&& fixup
)
6977 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
6978 true, OPTAB_LIB_WIDEN
);
6982 /* We need the original code for any further attempts. */
6986 /* If nothing else has succeeded, default to a compare and swap loop. */
6987 if (can_compare_and_swap_p (mode
, true))
6990 rtx t0
= gen_reg_rtx (mode
), t1
;
6994 /* If the result is used, get a register for it. */
6997 if (!target
|| !register_operand (target
, mode
))
6998 target
= gen_reg_rtx (mode
);
6999 /* If fetch_before, copy the value now. */
7001 emit_move_insn (target
, t0
);
7004 target
= const0_rtx
;
7009 t1
= expand_simple_binop (mode
, AND
, t1
, val
, NULL_RTX
,
7010 true, OPTAB_LIB_WIDEN
);
7011 t1
= expand_simple_unop (mode
, code
, t1
, NULL_RTX
, true);
7014 t1
= expand_simple_binop (mode
, code
, t1
, val
, NULL_RTX
, true,
7017 /* For after, copy the value now. */
7018 if (!unused_result
&& after
)
7019 emit_move_insn (target
, t1
);
7020 insn
= get_insns ();
7023 if (t1
!= NULL
&& expand_compare_and_swap_loop (mem
, t0
, t1
, insn
))
7030 /* Return true if OPERAND is suitable for operand number OPNO of
7031 instruction ICODE. */
7034 insn_operand_matches (enum insn_code icode
, unsigned int opno
, rtx operand
)
7036 return (!insn_data
[(int) icode
].operand
[opno
].predicate
7037 || (insn_data
[(int) icode
].operand
[opno
].predicate
7038 (operand
, insn_data
[(int) icode
].operand
[opno
].mode
)));
7041 /* TARGET is a target of a multiword operation that we are going to
7042 implement as a series of word-mode operations. Return true if
7043 TARGET is suitable for this purpose. */
7046 valid_multiword_target_p (rtx target
)
7051 mode
= GET_MODE (target
);
7052 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
7054 for (i
= 0; i
< size
; i
+= UNITS_PER_WORD
)
7055 if (!validate_subreg (word_mode
, mode
, target
, i
))
7060 /* Make OP describe an input operand that has value INTVAL and that has
7061 no inherent mode. This function should only be used for operands that
7062 are always expand-time constants. The backend may request that INTVAL
7063 be copied into a different kind of rtx, but it must specify the mode
7064 of that rtx if so. */
7067 create_integer_operand (struct expand_operand
*op
, poly_int64 intval
)
7069 create_expand_operand (op
, EXPAND_INTEGER
,
7070 gen_int_mode (intval
, MAX_MODE_INT
),
7071 VOIDmode
, false, intval
);
7074 /* Like maybe_legitimize_operand, but do not change the code of the
7075 current rtx value. */
7078 maybe_legitimize_operand_same_code (enum insn_code icode
, unsigned int opno
,
7079 struct expand_operand
*op
)
7081 /* See if the operand matches in its current form. */
7082 if (insn_operand_matches (icode
, opno
, op
->value
))
7085 /* If the operand is a memory whose address has no side effects,
7086 try forcing the address into a non-virtual pseudo register.
7087 The check for side effects is important because copy_to_mode_reg
7088 cannot handle things like auto-modified addresses. */
7089 if (insn_data
[(int) icode
].operand
[opno
].allows_mem
&& MEM_P (op
->value
))
7094 addr
= XEXP (mem
, 0);
7095 if (!(REG_P (addr
) && REGNO (addr
) > LAST_VIRTUAL_REGISTER
)
7096 && !side_effects_p (addr
))
7101 last
= get_last_insn ();
7102 mode
= get_address_mode (mem
);
7103 mem
= replace_equiv_address (mem
, copy_to_mode_reg (mode
, addr
));
7104 if (insn_operand_matches (icode
, opno
, mem
))
7109 delete_insns_since (last
);
7116 /* Try to make OP match operand OPNO of instruction ICODE. Return true
7117 on success, storing the new operand value back in OP. */
7120 maybe_legitimize_operand (enum insn_code icode
, unsigned int opno
,
7121 struct expand_operand
*op
)
7123 machine_mode mode
, imode
;
7124 bool old_volatile_ok
, result
;
7130 old_volatile_ok
= volatile_ok
;
7132 result
= maybe_legitimize_operand_same_code (icode
, opno
, op
);
7133 volatile_ok
= old_volatile_ok
;
7137 gcc_assert (mode
!= VOIDmode
);
7139 && op
->value
!= const0_rtx
7140 && GET_MODE (op
->value
) == mode
7141 && maybe_legitimize_operand_same_code (icode
, opno
, op
))
7144 op
->value
= gen_reg_rtx (mode
);
7150 gcc_assert (mode
!= VOIDmode
);
7151 gcc_assert (GET_MODE (op
->value
) == VOIDmode
7152 || GET_MODE (op
->value
) == mode
);
7153 if (maybe_legitimize_operand_same_code (icode
, opno
, op
))
7156 op
->value
= copy_to_mode_reg (mode
, op
->value
);
7159 case EXPAND_CONVERT_TO
:
7160 gcc_assert (mode
!= VOIDmode
);
7161 op
->value
= convert_to_mode (mode
, op
->value
, op
->unsigned_p
);
7164 case EXPAND_CONVERT_FROM
:
7165 if (GET_MODE (op
->value
) != VOIDmode
)
7166 mode
= GET_MODE (op
->value
);
7168 /* The caller must tell us what mode this value has. */
7169 gcc_assert (mode
!= VOIDmode
);
7171 imode
= insn_data
[(int) icode
].operand
[opno
].mode
;
7172 if (imode
!= VOIDmode
&& imode
!= mode
)
7174 op
->value
= convert_modes (imode
, mode
, op
->value
, op
->unsigned_p
);
7179 case EXPAND_ADDRESS
:
7180 op
->value
= convert_memory_address (as_a
<scalar_int_mode
> (mode
),
7184 case EXPAND_INTEGER
:
7185 mode
= insn_data
[(int) icode
].operand
[opno
].mode
;
7186 if (mode
!= VOIDmode
7187 && known_eq (trunc_int_for_mode (op
->int_value
, mode
),
7190 op
->value
= gen_int_mode (op
->int_value
, mode
);
7195 return insn_operand_matches (icode
, opno
, op
->value
);
7198 /* Make OP describe an input operand that should have the same value
7199 as VALUE, after any mode conversion that the target might request.
7200 TYPE is the type of VALUE. */
7203 create_convert_operand_from_type (struct expand_operand
*op
,
7204 rtx value
, tree type
)
7206 create_convert_operand_from (op
, value
, TYPE_MODE (type
),
7207 TYPE_UNSIGNED (type
));
7210 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
7211 of instruction ICODE. Return true on success, leaving the new operand
7212 values in the OPS themselves. Emit no code on failure. */
7215 maybe_legitimize_operands (enum insn_code icode
, unsigned int opno
,
7216 unsigned int nops
, struct expand_operand
*ops
)
7221 last
= get_last_insn ();
7222 for (i
= 0; i
< nops
; i
++)
7223 if (!maybe_legitimize_operand (icode
, opno
+ i
, &ops
[i
]))
7225 delete_insns_since (last
);
7231 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7232 as its operands. Return the instruction pattern on success,
7233 and emit any necessary set-up code. Return null and emit no
7237 maybe_gen_insn (enum insn_code icode
, unsigned int nops
,
7238 struct expand_operand
*ops
)
7240 gcc_assert (nops
== (unsigned int) insn_data
[(int) icode
].n_generator_args
);
7241 if (!maybe_legitimize_operands (icode
, 0, nops
, ops
))
7247 return GEN_FCN (icode
) (ops
[0].value
);
7249 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
);
7251 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
);
7253 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7256 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7257 ops
[3].value
, ops
[4].value
);
7259 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7260 ops
[3].value
, ops
[4].value
, ops
[5].value
);
7262 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7263 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7266 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7267 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7268 ops
[6].value
, ops
[7].value
);
7270 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7271 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7272 ops
[6].value
, ops
[7].value
, ops
[8].value
);
7277 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7278 as its operands. Return true on success and emit no code on failure. */
7281 maybe_expand_insn (enum insn_code icode
, unsigned int nops
,
7282 struct expand_operand
*ops
)
7284 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
7293 /* Like maybe_expand_insn, but for jumps. */
7296 maybe_expand_jump_insn (enum insn_code icode
, unsigned int nops
,
7297 struct expand_operand
*ops
)
7299 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
7302 emit_jump_insn (pat
);
7308 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7312 expand_insn (enum insn_code icode
, unsigned int nops
,
7313 struct expand_operand
*ops
)
7315 if (!maybe_expand_insn (icode
, nops
, ops
))
7319 /* Like expand_insn, but for jumps. */
7322 expand_jump_insn (enum insn_code icode
, unsigned int nops
,
7323 struct expand_operand
*ops
)
7325 if (!maybe_expand_jump_insn (icode
, nops
, ops
))