acinclude.m4 ([GLIBCXX_CHECK_CLOCK_GETTIME]): Reinstate clock_gettime search, but...
[official-gcc.git] / gcc / bb-reorder.c
blobae24c0c3245c7c9b086d58aa0397e10eb50daa9d
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This (greedy) algorithm constructs traces in several rounds.
22 The construction starts from "seeds". The seed for the first round
23 is the entry point of function. When there are more than one seed
24 that one is selected first that has the lowest key in the heap
25 (see function bb_to_key). Then the algorithm repeatedly adds the most
26 probable successor to the end of a trace. Finally it connects the traces.
28 There are two parameters: Branch Threshold and Exec Threshold.
29 If the edge to a successor of the actual basic block is lower than
30 Branch Threshold or the frequency of the successor is lower than
31 Exec Threshold the successor will be the seed in one of the next rounds.
32 Each round has these parameters lower than the previous one.
33 The last round has to have these parameters set to zero
34 so that the remaining blocks are picked up.
36 The algorithm selects the most probable successor from all unvisited
37 successors and successors that have been added to this trace.
38 The other successors (that has not been "sent" to the next round) will be
39 other seeds for this round and the secondary traces will start in them.
40 If the successor has not been visited in this trace it is added to the trace
41 (however, there is some heuristic for simple branches).
42 If the successor has been visited in this trace the loop has been found.
43 If the loop has many iterations the loop is rotated so that the
44 source block of the most probable edge going out from the loop
45 is the last block of the trace.
46 If the loop has few iterations and there is no edge from the last block of
47 the loop going out from loop the loop header is duplicated.
48 Finally, the construction of the trace is terminated.
50 When connecting traces it first checks whether there is an edge from the
51 last block of one trace to the first block of another trace.
52 When there are still some unconnected traces it checks whether there exists
53 a basic block BB such that BB is a successor of the last bb of one trace
54 and BB is a predecessor of the first block of another trace. In this case,
55 BB is duplicated and the traces are connected through this duplicate.
56 The rest of traces are simply connected so there will be a jump to the
57 beginning of the rest of trace.
60 References:
62 "Software Trace Cache"
63 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
64 http://citeseer.nj.nec.com/15361.html
68 #include "config.h"
69 #include "system.h"
70 #include "coretypes.h"
71 #include "tm.h"
72 #include "rtl.h"
73 #include "regs.h"
74 #include "flags.h"
75 #include "timevar.h"
76 #include "output.h"
77 #include "cfglayout.h"
78 #include "fibheap.h"
79 #include "target.h"
80 #include "function.h"
81 #include "tm_p.h"
82 #include "obstack.h"
83 #include "expr.h"
84 #include "params.h"
85 #include "toplev.h"
86 #include "tree-pass.h"
87 #include "df.h"
89 #ifndef HAVE_conditional_execution
90 #define HAVE_conditional_execution 0
91 #endif
93 /* The number of rounds. In most cases there will only be 4 rounds, but
94 when partitioning hot and cold basic blocks into separate sections of
95 the .o file there will be an extra round.*/
96 #define N_ROUNDS 5
98 /* Stubs in case we don't have a return insn.
99 We have to check at runtime too, not only compiletime. */
101 #ifndef HAVE_return
102 #define HAVE_return 0
103 #define gen_return() NULL_RTX
104 #endif
107 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
108 static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
110 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
111 static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
113 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
114 block the edge destination is not duplicated while connecting traces. */
115 #define DUPLICATION_THRESHOLD 100
117 /* Length of unconditional jump instruction. */
118 static int uncond_jump_length;
120 /* Structure to hold needed information for each basic block. */
121 typedef struct bbro_basic_block_data_def
123 /* Which trace is the bb start of (-1 means it is not a start of a trace). */
124 int start_of_trace;
126 /* Which trace is the bb end of (-1 means it is not an end of a trace). */
127 int end_of_trace;
129 /* Which trace is the bb in? */
130 int in_trace;
132 /* Which heap is BB in (if any)? */
133 fibheap_t heap;
135 /* Which heap node is BB in (if any)? */
136 fibnode_t node;
137 } bbro_basic_block_data;
139 /* The current size of the following dynamic array. */
140 static int array_size;
142 /* The array which holds needed information for basic blocks. */
143 static bbro_basic_block_data *bbd;
145 /* To avoid frequent reallocation the size of arrays is greater than needed,
146 the number of elements is (not less than) 1.25 * size_wanted. */
147 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
149 /* Free the memory and set the pointer to NULL. */
150 #define FREE(P) (gcc_assert (P), free (P), P = 0)
152 /* Structure for holding information about a trace. */
153 struct trace
155 /* First and last basic block of the trace. */
156 basic_block first, last;
158 /* The round of the STC creation which this trace was found in. */
159 int round;
161 /* The length (i.e. the number of basic blocks) of the trace. */
162 int length;
165 /* Maximum frequency and count of one of the entry blocks. */
166 static int max_entry_frequency;
167 static gcov_type max_entry_count;
169 /* Local function prototypes. */
170 static void find_traces (int *, struct trace *);
171 static basic_block rotate_loop (edge, struct trace *, int);
172 static void mark_bb_visited (basic_block, int);
173 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
174 int, fibheap_t *, int);
175 static basic_block copy_bb (basic_block, edge, basic_block, int);
176 static fibheapkey_t bb_to_key (basic_block);
177 static bool better_edge_p (const_basic_block, const_edge, int, int, int, int, const_edge);
178 static void connect_traces (int, struct trace *);
179 static bool copy_bb_p (const_basic_block, int);
180 static int get_uncond_jump_length (void);
181 static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
182 static void find_rarely_executed_basic_blocks_and_crossing_edges (edge **,
183 int *,
184 int *);
185 static void add_labels_and_missing_jumps (edge *, int);
186 static void add_reg_crossing_jump_notes (void);
187 static void fix_up_fall_thru_edges (void);
188 static void fix_edges_for_rarely_executed_code (edge *, int);
189 static void fix_crossing_conditional_branches (void);
190 static void fix_crossing_unconditional_branches (void);
192 /* Check to see if bb should be pushed into the next round of trace
193 collections or not. Reasons for pushing the block forward are 1).
194 If the block is cold, we are doing partitioning, and there will be
195 another round (cold partition blocks are not supposed to be
196 collected into traces until the very last round); or 2). There will
197 be another round, and the basic block is not "hot enough" for the
198 current round of trace collection. */
200 static bool
201 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
202 int exec_th, gcov_type count_th)
204 bool there_exists_another_round;
205 bool block_not_hot_enough;
207 there_exists_another_round = round < number_of_rounds - 1;
209 block_not_hot_enough = (bb->frequency < exec_th
210 || bb->count < count_th
211 || probably_never_executed_bb_p (bb));
213 if (there_exists_another_round
214 && block_not_hot_enough)
215 return true;
216 else
217 return false;
220 /* Find the traces for Software Trace Cache. Chain each trace through
221 RBI()->next. Store the number of traces to N_TRACES and description of
222 traces to TRACES. */
224 static void
225 find_traces (int *n_traces, struct trace *traces)
227 int i;
228 int number_of_rounds;
229 edge e;
230 edge_iterator ei;
231 fibheap_t heap;
233 /* Add one extra round of trace collection when partitioning hot/cold
234 basic blocks into separate sections. The last round is for all the
235 cold blocks (and ONLY the cold blocks). */
237 number_of_rounds = N_ROUNDS - 1;
239 /* Insert entry points of function into heap. */
240 heap = fibheap_new ();
241 max_entry_frequency = 0;
242 max_entry_count = 0;
243 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
245 bbd[e->dest->index].heap = heap;
246 bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
247 e->dest);
248 if (e->dest->frequency > max_entry_frequency)
249 max_entry_frequency = e->dest->frequency;
250 if (e->dest->count > max_entry_count)
251 max_entry_count = e->dest->count;
254 /* Find the traces. */
255 for (i = 0; i < number_of_rounds; i++)
257 gcov_type count_threshold;
259 if (dump_file)
260 fprintf (dump_file, "STC - round %d\n", i + 1);
262 if (max_entry_count < INT_MAX / 1000)
263 count_threshold = max_entry_count * exec_threshold[i] / 1000;
264 else
265 count_threshold = max_entry_count / 1000 * exec_threshold[i];
267 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
268 max_entry_frequency * exec_threshold[i] / 1000,
269 count_threshold, traces, n_traces, i, &heap,
270 number_of_rounds);
272 fibheap_delete (heap);
274 if (dump_file)
276 for (i = 0; i < *n_traces; i++)
278 basic_block bb;
279 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
280 traces[i].round + 1);
281 for (bb = traces[i].first; bb != traces[i].last; bb = (basic_block) bb->aux)
282 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
283 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
285 fflush (dump_file);
289 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
290 (with sequential number TRACE_N). */
292 static basic_block
293 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
295 basic_block bb;
297 /* Information about the best end (end after rotation) of the loop. */
298 basic_block best_bb = NULL;
299 edge best_edge = NULL;
300 int best_freq = -1;
301 gcov_type best_count = -1;
302 /* The best edge is preferred when its destination is not visited yet
303 or is a start block of some trace. */
304 bool is_preferred = false;
306 /* Find the most frequent edge that goes out from current trace. */
307 bb = back_edge->dest;
310 edge e;
311 edge_iterator ei;
313 FOR_EACH_EDGE (e, ei, bb->succs)
314 if (e->dest != EXIT_BLOCK_PTR
315 && e->dest->il.rtl->visited != trace_n
316 && (e->flags & EDGE_CAN_FALLTHRU)
317 && !(e->flags & EDGE_COMPLEX))
319 if (is_preferred)
321 /* The best edge is preferred. */
322 if (!e->dest->il.rtl->visited
323 || bbd[e->dest->index].start_of_trace >= 0)
325 /* The current edge E is also preferred. */
326 int freq = EDGE_FREQUENCY (e);
327 if (freq > best_freq || e->count > best_count)
329 best_freq = freq;
330 best_count = e->count;
331 best_edge = e;
332 best_bb = bb;
336 else
338 if (!e->dest->il.rtl->visited
339 || bbd[e->dest->index].start_of_trace >= 0)
341 /* The current edge E is preferred. */
342 is_preferred = true;
343 best_freq = EDGE_FREQUENCY (e);
344 best_count = e->count;
345 best_edge = e;
346 best_bb = bb;
348 else
350 int freq = EDGE_FREQUENCY (e);
351 if (!best_edge || freq > best_freq || e->count > best_count)
353 best_freq = freq;
354 best_count = e->count;
355 best_edge = e;
356 best_bb = bb;
361 bb = (basic_block) bb->aux;
363 while (bb != back_edge->dest);
365 if (best_bb)
367 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
368 the trace. */
369 if (back_edge->dest == trace->first)
371 trace->first = (basic_block) best_bb->aux;
373 else
375 basic_block prev_bb;
377 for (prev_bb = trace->first;
378 prev_bb->aux != back_edge->dest;
379 prev_bb = (basic_block) prev_bb->aux)
381 prev_bb->aux = best_bb->aux;
383 /* Try to get rid of uncond jump to cond jump. */
384 if (single_succ_p (prev_bb))
386 basic_block header = single_succ (prev_bb);
388 /* Duplicate HEADER if it is a small block containing cond jump
389 in the end. */
390 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
391 && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
392 NULL_RTX))
393 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
397 else
399 /* We have not found suitable loop tail so do no rotation. */
400 best_bb = back_edge->src;
402 best_bb->aux = NULL;
403 return best_bb;
406 /* This function marks BB that it was visited in trace number TRACE. */
408 static void
409 mark_bb_visited (basic_block bb, int trace)
411 bb->il.rtl->visited = trace;
412 if (bbd[bb->index].heap)
414 fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
415 bbd[bb->index].heap = NULL;
416 bbd[bb->index].node = NULL;
420 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
421 not include basic blocks their probability is lower than BRANCH_TH or their
422 frequency is lower than EXEC_TH into traces (or count is lower than
423 COUNT_TH). It stores the new traces into TRACES and modifies the number of
424 traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
425 expects that starting basic blocks are in *HEAP and at the end it deletes
426 *HEAP and stores starting points for the next round into new *HEAP. */
428 static void
429 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
430 struct trace *traces, int *n_traces, int round,
431 fibheap_t *heap, int number_of_rounds)
433 /* Heap for discarded basic blocks which are possible starting points for
434 the next round. */
435 fibheap_t new_heap = fibheap_new ();
437 while (!fibheap_empty (*heap))
439 basic_block bb;
440 struct trace *trace;
441 edge best_edge, e;
442 fibheapkey_t key;
443 edge_iterator ei;
445 bb = (basic_block) fibheap_extract_min (*heap);
446 bbd[bb->index].heap = NULL;
447 bbd[bb->index].node = NULL;
449 if (dump_file)
450 fprintf (dump_file, "Getting bb %d\n", bb->index);
452 /* If the BB's frequency is too low send BB to the next round. When
453 partitioning hot/cold blocks into separate sections, make sure all
454 the cold blocks (and ONLY the cold blocks) go into the (extra) final
455 round. */
457 if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
458 count_th))
460 int key = bb_to_key (bb);
461 bbd[bb->index].heap = new_heap;
462 bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
464 if (dump_file)
465 fprintf (dump_file,
466 " Possible start point of next round: %d (key: %d)\n",
467 bb->index, key);
468 continue;
471 trace = traces + *n_traces;
472 trace->first = bb;
473 trace->round = round;
474 trace->length = 0;
475 bbd[bb->index].in_trace = *n_traces;
476 (*n_traces)++;
480 int prob, freq;
481 bool ends_in_call;
483 /* The probability and frequency of the best edge. */
484 int best_prob = INT_MIN / 2;
485 int best_freq = INT_MIN / 2;
487 best_edge = NULL;
488 mark_bb_visited (bb, *n_traces);
489 trace->length++;
491 if (dump_file)
492 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
493 bb->index, *n_traces - 1);
495 ends_in_call = block_ends_with_call_p (bb);
497 /* Select the successor that will be placed after BB. */
498 FOR_EACH_EDGE (e, ei, bb->succs)
500 gcc_assert (!(e->flags & EDGE_FAKE));
502 if (e->dest == EXIT_BLOCK_PTR)
503 continue;
505 if (e->dest->il.rtl->visited
506 && e->dest->il.rtl->visited != *n_traces)
507 continue;
509 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
510 continue;
512 prob = e->probability;
513 freq = e->dest->frequency;
515 /* The only sensible preference for a call instruction is the
516 fallthru edge. Don't bother selecting anything else. */
517 if (ends_in_call)
519 if (e->flags & EDGE_CAN_FALLTHRU)
521 best_edge = e;
522 best_prob = prob;
523 best_freq = freq;
525 continue;
528 /* Edge that cannot be fallthru or improbable or infrequent
529 successor (i.e. it is unsuitable successor). */
530 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
531 || prob < branch_th || EDGE_FREQUENCY (e) < exec_th
532 || e->count < count_th)
533 continue;
535 /* If partitioning hot/cold basic blocks, don't consider edges
536 that cross section boundaries. */
538 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
539 best_edge))
541 best_edge = e;
542 best_prob = prob;
543 best_freq = freq;
547 /* If the best destination has multiple predecessors, and can be
548 duplicated cheaper than a jump, don't allow it to be added
549 to a trace. We'll duplicate it when connecting traces. */
550 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
551 && copy_bb_p (best_edge->dest, 0))
552 best_edge = NULL;
554 /* Add all non-selected successors to the heaps. */
555 FOR_EACH_EDGE (e, ei, bb->succs)
557 if (e == best_edge
558 || e->dest == EXIT_BLOCK_PTR
559 || e->dest->il.rtl->visited)
560 continue;
562 key = bb_to_key (e->dest);
564 if (bbd[e->dest->index].heap)
566 /* E->DEST is already in some heap. */
567 if (key != bbd[e->dest->index].node->key)
569 if (dump_file)
571 fprintf (dump_file,
572 "Changing key for bb %d from %ld to %ld.\n",
573 e->dest->index,
574 (long) bbd[e->dest->index].node->key,
575 key);
577 fibheap_replace_key (bbd[e->dest->index].heap,
578 bbd[e->dest->index].node, key);
581 else
583 fibheap_t which_heap = *heap;
585 prob = e->probability;
586 freq = EDGE_FREQUENCY (e);
588 if (!(e->flags & EDGE_CAN_FALLTHRU)
589 || (e->flags & EDGE_COMPLEX)
590 || prob < branch_th || freq < exec_th
591 || e->count < count_th)
593 /* When partitioning hot/cold basic blocks, make sure
594 the cold blocks (and only the cold blocks) all get
595 pushed to the last round of trace collection. */
597 if (push_to_next_round_p (e->dest, round,
598 number_of_rounds,
599 exec_th, count_th))
600 which_heap = new_heap;
603 bbd[e->dest->index].heap = which_heap;
604 bbd[e->dest->index].node = fibheap_insert (which_heap,
605 key, e->dest);
607 if (dump_file)
609 fprintf (dump_file,
610 " Possible start of %s round: %d (key: %ld)\n",
611 (which_heap == new_heap) ? "next" : "this",
612 e->dest->index, (long) key);
618 if (best_edge) /* Suitable successor was found. */
620 if (best_edge->dest->il.rtl->visited == *n_traces)
622 /* We do nothing with one basic block loops. */
623 if (best_edge->dest != bb)
625 if (EDGE_FREQUENCY (best_edge)
626 > 4 * best_edge->dest->frequency / 5)
628 /* The loop has at least 4 iterations. If the loop
629 header is not the first block of the function
630 we can rotate the loop. */
632 if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
634 if (dump_file)
636 fprintf (dump_file,
637 "Rotating loop %d - %d\n",
638 best_edge->dest->index, bb->index);
640 bb->aux = best_edge->dest;
641 bbd[best_edge->dest->index].in_trace =
642 (*n_traces) - 1;
643 bb = rotate_loop (best_edge, trace, *n_traces);
646 else
648 /* The loop has less than 4 iterations. */
650 if (single_succ_p (bb)
651 && copy_bb_p (best_edge->dest, !optimize_size))
653 bb = copy_bb (best_edge->dest, best_edge, bb,
654 *n_traces);
655 trace->length++;
660 /* Terminate the trace. */
661 break;
663 else
665 /* Check for a situation
673 where
674 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
675 >= EDGE_FREQUENCY (AC).
676 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
677 Best ordering is then A B C.
679 This situation is created for example by:
681 if (A) B;
686 FOR_EACH_EDGE (e, ei, bb->succs)
687 if (e != best_edge
688 && (e->flags & EDGE_CAN_FALLTHRU)
689 && !(e->flags & EDGE_COMPLEX)
690 && !e->dest->il.rtl->visited
691 && single_pred_p (e->dest)
692 && !(e->flags & EDGE_CROSSING)
693 && single_succ_p (e->dest)
694 && (single_succ_edge (e->dest)->flags
695 & EDGE_CAN_FALLTHRU)
696 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
697 && single_succ (e->dest) == best_edge->dest
698 && 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
700 best_edge = e;
701 if (dump_file)
702 fprintf (dump_file, "Selecting BB %d\n",
703 best_edge->dest->index);
704 break;
707 bb->aux = best_edge->dest;
708 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
709 bb = best_edge->dest;
713 while (best_edge);
714 trace->last = bb;
715 bbd[trace->first->index].start_of_trace = *n_traces - 1;
716 bbd[trace->last->index].end_of_trace = *n_traces - 1;
718 /* The trace is terminated so we have to recount the keys in heap
719 (some block can have a lower key because now one of its predecessors
720 is an end of the trace). */
721 FOR_EACH_EDGE (e, ei, bb->succs)
723 if (e->dest == EXIT_BLOCK_PTR
724 || e->dest->il.rtl->visited)
725 continue;
727 if (bbd[e->dest->index].heap)
729 key = bb_to_key (e->dest);
730 if (key != bbd[e->dest->index].node->key)
732 if (dump_file)
734 fprintf (dump_file,
735 "Changing key for bb %d from %ld to %ld.\n",
736 e->dest->index,
737 (long) bbd[e->dest->index].node->key, key);
739 fibheap_replace_key (bbd[e->dest->index].heap,
740 bbd[e->dest->index].node,
741 key);
747 fibheap_delete (*heap);
749 /* "Return" the new heap. */
750 *heap = new_heap;
753 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
754 it to trace after BB, mark OLD_BB visited and update pass' data structures
755 (TRACE is a number of trace which OLD_BB is duplicated to). */
757 static basic_block
758 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
760 basic_block new_bb;
762 new_bb = duplicate_block (old_bb, e, bb);
763 BB_COPY_PARTITION (new_bb, old_bb);
765 gcc_assert (e->dest == new_bb);
766 gcc_assert (!e->dest->il.rtl->visited);
768 if (dump_file)
769 fprintf (dump_file,
770 "Duplicated bb %d (created bb %d)\n",
771 old_bb->index, new_bb->index);
772 new_bb->il.rtl->visited = trace;
773 new_bb->aux = bb->aux;
774 bb->aux = new_bb;
776 if (new_bb->index >= array_size || last_basic_block > array_size)
778 int i;
779 int new_size;
781 new_size = MAX (last_basic_block, new_bb->index + 1);
782 new_size = GET_ARRAY_SIZE (new_size);
783 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
784 for (i = array_size; i < new_size; i++)
786 bbd[i].start_of_trace = -1;
787 bbd[i].in_trace = -1;
788 bbd[i].end_of_trace = -1;
789 bbd[i].heap = NULL;
790 bbd[i].node = NULL;
792 array_size = new_size;
794 if (dump_file)
796 fprintf (dump_file,
797 "Growing the dynamic array to %d elements.\n",
798 array_size);
802 bbd[new_bb->index].in_trace = trace;
804 return new_bb;
807 /* Compute and return the key (for the heap) of the basic block BB. */
809 static fibheapkey_t
810 bb_to_key (basic_block bb)
812 edge e;
813 edge_iterator ei;
814 int priority = 0;
816 /* Do not start in probably never executed blocks. */
818 if (BB_PARTITION (bb) == BB_COLD_PARTITION
819 || probably_never_executed_bb_p (bb))
820 return BB_FREQ_MAX;
822 /* Prefer blocks whose predecessor is an end of some trace
823 or whose predecessor edge is EDGE_DFS_BACK. */
824 FOR_EACH_EDGE (e, ei, bb->preds)
826 if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
827 || (e->flags & EDGE_DFS_BACK))
829 int edge_freq = EDGE_FREQUENCY (e);
831 if (edge_freq > priority)
832 priority = edge_freq;
836 if (priority)
837 /* The block with priority should have significantly lower key. */
838 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
839 return -bb->frequency;
842 /* Return true when the edge E from basic block BB is better than the temporary
843 best edge (details are in function). The probability of edge E is PROB. The
844 frequency of the successor is FREQ. The current best probability is
845 BEST_PROB, the best frequency is BEST_FREQ.
846 The edge is considered to be equivalent when PROB does not differ much from
847 BEST_PROB; similarly for frequency. */
849 static bool
850 better_edge_p (const_basic_block bb, const_edge e, int prob, int freq, int best_prob,
851 int best_freq, const_edge cur_best_edge)
853 bool is_better_edge;
855 /* The BEST_* values do not have to be best, but can be a bit smaller than
856 maximum values. */
857 int diff_prob = best_prob / 10;
858 int diff_freq = best_freq / 10;
860 if (prob > best_prob + diff_prob)
861 /* The edge has higher probability than the temporary best edge. */
862 is_better_edge = true;
863 else if (prob < best_prob - diff_prob)
864 /* The edge has lower probability than the temporary best edge. */
865 is_better_edge = false;
866 else if (freq < best_freq - diff_freq)
867 /* The edge and the temporary best edge have almost equivalent
868 probabilities. The higher frequency of a successor now means
869 that there is another edge going into that successor.
870 This successor has lower frequency so it is better. */
871 is_better_edge = true;
872 else if (freq > best_freq + diff_freq)
873 /* This successor has higher frequency so it is worse. */
874 is_better_edge = false;
875 else if (e->dest->prev_bb == bb)
876 /* The edges have equivalent probabilities and the successors
877 have equivalent frequencies. Select the previous successor. */
878 is_better_edge = true;
879 else
880 is_better_edge = false;
882 /* If we are doing hot/cold partitioning, make sure that we always favor
883 non-crossing edges over crossing edges. */
885 if (!is_better_edge
886 && flag_reorder_blocks_and_partition
887 && cur_best_edge
888 && (cur_best_edge->flags & EDGE_CROSSING)
889 && !(e->flags & EDGE_CROSSING))
890 is_better_edge = true;
892 return is_better_edge;
895 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
897 static void
898 connect_traces (int n_traces, struct trace *traces)
900 int i;
901 bool *connected;
902 bool two_passes;
903 int last_trace;
904 int current_pass;
905 int current_partition;
906 int freq_threshold;
907 gcov_type count_threshold;
909 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
910 if (max_entry_count < INT_MAX / 1000)
911 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
912 else
913 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
915 connected = XCNEWVEC (bool, n_traces);
916 last_trace = -1;
917 current_pass = 1;
918 current_partition = BB_PARTITION (traces[0].first);
919 two_passes = false;
921 if (flag_reorder_blocks_and_partition)
922 for (i = 0; i < n_traces && !two_passes; i++)
923 if (BB_PARTITION (traces[0].first)
924 != BB_PARTITION (traces[i].first))
925 two_passes = true;
927 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
929 int t = i;
930 int t2;
931 edge e, best;
932 int best_len;
934 if (i >= n_traces)
936 gcc_assert (two_passes && current_pass == 1);
937 i = 0;
938 t = i;
939 current_pass = 2;
940 if (current_partition == BB_HOT_PARTITION)
941 current_partition = BB_COLD_PARTITION;
942 else
943 current_partition = BB_HOT_PARTITION;
946 if (connected[t])
947 continue;
949 if (two_passes
950 && BB_PARTITION (traces[t].first) != current_partition)
951 continue;
953 connected[t] = true;
955 /* Find the predecessor traces. */
956 for (t2 = t; t2 > 0;)
958 edge_iterator ei;
959 best = NULL;
960 best_len = 0;
961 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
963 int si = e->src->index;
965 if (e->src != ENTRY_BLOCK_PTR
966 && (e->flags & EDGE_CAN_FALLTHRU)
967 && !(e->flags & EDGE_COMPLEX)
968 && bbd[si].end_of_trace >= 0
969 && !connected[bbd[si].end_of_trace]
970 && (BB_PARTITION (e->src) == current_partition)
971 && (!best
972 || e->probability > best->probability
973 || (e->probability == best->probability
974 && traces[bbd[si].end_of_trace].length > best_len)))
976 best = e;
977 best_len = traces[bbd[si].end_of_trace].length;
980 if (best)
982 best->src->aux = best->dest;
983 t2 = bbd[best->src->index].end_of_trace;
984 connected[t2] = true;
986 if (dump_file)
988 fprintf (dump_file, "Connection: %d %d\n",
989 best->src->index, best->dest->index);
992 else
993 break;
996 if (last_trace >= 0)
997 traces[last_trace].last->aux = traces[t2].first;
998 last_trace = t;
1000 /* Find the successor traces. */
1001 while (1)
1003 /* Find the continuation of the chain. */
1004 edge_iterator ei;
1005 best = NULL;
1006 best_len = 0;
1007 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1009 int di = e->dest->index;
1011 if (e->dest != EXIT_BLOCK_PTR
1012 && (e->flags & EDGE_CAN_FALLTHRU)
1013 && !(e->flags & EDGE_COMPLEX)
1014 && bbd[di].start_of_trace >= 0
1015 && !connected[bbd[di].start_of_trace]
1016 && (BB_PARTITION (e->dest) == current_partition)
1017 && (!best
1018 || e->probability > best->probability
1019 || (e->probability == best->probability
1020 && traces[bbd[di].start_of_trace].length > best_len)))
1022 best = e;
1023 best_len = traces[bbd[di].start_of_trace].length;
1027 if (best)
1029 if (dump_file)
1031 fprintf (dump_file, "Connection: %d %d\n",
1032 best->src->index, best->dest->index);
1034 t = bbd[best->dest->index].start_of_trace;
1035 traces[last_trace].last->aux = traces[t].first;
1036 connected[t] = true;
1037 last_trace = t;
1039 else
1041 /* Try to connect the traces by duplication of 1 block. */
1042 edge e2;
1043 basic_block next_bb = NULL;
1044 bool try_copy = false;
1046 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1047 if (e->dest != EXIT_BLOCK_PTR
1048 && (e->flags & EDGE_CAN_FALLTHRU)
1049 && !(e->flags & EDGE_COMPLEX)
1050 && (!best || e->probability > best->probability))
1052 edge_iterator ei;
1053 edge best2 = NULL;
1054 int best2_len = 0;
1056 /* If the destination is a start of a trace which is only
1057 one block long, then no need to search the successor
1058 blocks of the trace. Accept it. */
1059 if (bbd[e->dest->index].start_of_trace >= 0
1060 && traces[bbd[e->dest->index].start_of_trace].length
1061 == 1)
1063 best = e;
1064 try_copy = true;
1065 continue;
1068 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1070 int di = e2->dest->index;
1072 if (e2->dest == EXIT_BLOCK_PTR
1073 || ((e2->flags & EDGE_CAN_FALLTHRU)
1074 && !(e2->flags & EDGE_COMPLEX)
1075 && bbd[di].start_of_trace >= 0
1076 && !connected[bbd[di].start_of_trace]
1077 && (BB_PARTITION (e2->dest) == current_partition)
1078 && (EDGE_FREQUENCY (e2) >= freq_threshold)
1079 && (e2->count >= count_threshold)
1080 && (!best2
1081 || e2->probability > best2->probability
1082 || (e2->probability == best2->probability
1083 && traces[bbd[di].start_of_trace].length
1084 > best2_len))))
1086 best = e;
1087 best2 = e2;
1088 if (e2->dest != EXIT_BLOCK_PTR)
1089 best2_len = traces[bbd[di].start_of_trace].length;
1090 else
1091 best2_len = INT_MAX;
1092 next_bb = e2->dest;
1093 try_copy = true;
1098 if (flag_reorder_blocks_and_partition)
1099 try_copy = false;
1101 /* Copy tiny blocks always; copy larger blocks only when the
1102 edge is traversed frequently enough. */
1103 if (try_copy
1104 && copy_bb_p (best->dest,
1105 !optimize_size
1106 && EDGE_FREQUENCY (best) >= freq_threshold
1107 && best->count >= count_threshold))
1109 basic_block new_bb;
1111 if (dump_file)
1113 fprintf (dump_file, "Connection: %d %d ",
1114 traces[t].last->index, best->dest->index);
1115 if (!next_bb)
1116 fputc ('\n', dump_file);
1117 else if (next_bb == EXIT_BLOCK_PTR)
1118 fprintf (dump_file, "exit\n");
1119 else
1120 fprintf (dump_file, "%d\n", next_bb->index);
1123 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1124 traces[t].last = new_bb;
1125 if (next_bb && next_bb != EXIT_BLOCK_PTR)
1127 t = bbd[next_bb->index].start_of_trace;
1128 traces[last_trace].last->aux = traces[t].first;
1129 connected[t] = true;
1130 last_trace = t;
1132 else
1133 break; /* Stop finding the successor traces. */
1135 else
1136 break; /* Stop finding the successor traces. */
1141 if (dump_file)
1143 basic_block bb;
1145 fprintf (dump_file, "Final order:\n");
1146 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1147 fprintf (dump_file, "%d ", bb->index);
1148 fprintf (dump_file, "\n");
1149 fflush (dump_file);
1152 FREE (connected);
1155 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1156 when code size is allowed to grow by duplication. */
1158 static bool
1159 copy_bb_p (const_basic_block bb, int code_may_grow)
1161 int size = 0;
1162 int max_size = uncond_jump_length;
1163 rtx insn;
1165 if (!bb->frequency)
1166 return false;
1167 if (EDGE_COUNT (bb->preds) < 2)
1168 return false;
1169 if (!can_duplicate_block_p (bb))
1170 return false;
1172 /* Avoid duplicating blocks which have many successors (PR/13430). */
1173 if (EDGE_COUNT (bb->succs) > 8)
1174 return false;
1176 if (code_may_grow && maybe_hot_bb_p (bb))
1177 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1179 FOR_BB_INSNS (bb, insn)
1181 if (INSN_P (insn))
1182 size += get_attr_min_length (insn);
1185 if (size <= max_size)
1186 return true;
1188 if (dump_file)
1190 fprintf (dump_file,
1191 "Block %d can't be copied because its size = %d.\n",
1192 bb->index, size);
1195 return false;
1198 /* Return the length of unconditional jump instruction. */
1200 static int
1201 get_uncond_jump_length (void)
1203 rtx label, jump;
1204 int length;
1206 label = emit_label_before (gen_label_rtx (), get_insns ());
1207 jump = emit_jump_insn (gen_jump (label));
1209 length = get_attr_min_length (jump);
1211 delete_insn (jump);
1212 delete_insn (label);
1213 return length;
1216 /* Find the basic blocks that are rarely executed and need to be moved to
1217 a separate section of the .o file (to cut down on paging and improve
1218 cache locality). */
1220 static void
1221 find_rarely_executed_basic_blocks_and_crossing_edges (edge **crossing_edges,
1222 int *n_crossing_edges,
1223 int *max_idx)
1225 basic_block bb;
1226 edge e;
1227 int i;
1228 edge_iterator ei;
1230 /* Mark which partition (hot/cold) each basic block belongs in. */
1232 FOR_EACH_BB (bb)
1234 if (probably_never_executed_bb_p (bb))
1235 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1236 else
1237 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1240 /* Mark every edge that crosses between sections. */
1242 i = 0;
1243 FOR_EACH_BB (bb)
1244 FOR_EACH_EDGE (e, ei, bb->succs)
1246 if (e->src != ENTRY_BLOCK_PTR
1247 && e->dest != EXIT_BLOCK_PTR
1248 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1250 e->flags |= EDGE_CROSSING;
1251 if (i == *max_idx)
1253 *max_idx *= 2;
1254 *crossing_edges = XRESIZEVEC (edge, *crossing_edges, *max_idx);
1256 (*crossing_edges)[i++] = e;
1258 else
1259 e->flags &= ~EDGE_CROSSING;
1261 *n_crossing_edges = i;
1264 /* If any destination of a crossing edge does not have a label, add label;
1265 Convert any fall-through crossing edges (for blocks that do not contain
1266 a jump) to unconditional jumps. */
1268 static void
1269 add_labels_and_missing_jumps (edge *crossing_edges, int n_crossing_edges)
1271 int i;
1272 basic_block src;
1273 basic_block dest;
1274 rtx label;
1275 rtx barrier;
1276 rtx new_jump;
1278 for (i=0; i < n_crossing_edges; i++)
1280 if (crossing_edges[i])
1282 src = crossing_edges[i]->src;
1283 dest = crossing_edges[i]->dest;
1285 /* Make sure dest has a label. */
1287 if (dest && (dest != EXIT_BLOCK_PTR))
1289 label = block_label (dest);
1291 /* Make sure source block ends with a jump. If the
1292 source block does not end with a jump it might end
1293 with a call_insn; this case will be handled in
1294 fix_up_fall_thru_edges function. */
1296 if (src && (src != ENTRY_BLOCK_PTR))
1298 if (!JUMP_P (BB_END (src)) && !block_ends_with_call_p (src))
1299 /* bb just falls through. */
1301 /* make sure there's only one successor */
1302 gcc_assert (single_succ_p (src));
1304 /* Find label in dest block. */
1305 label = block_label (dest);
1307 new_jump = emit_jump_insn_after (gen_jump (label),
1308 BB_END (src));
1309 barrier = emit_barrier_after (new_jump);
1310 JUMP_LABEL (new_jump) = label;
1311 LABEL_NUSES (label) += 1;
1312 src->il.rtl->footer = unlink_insn_chain (barrier, barrier);
1313 /* Mark edge as non-fallthru. */
1314 crossing_edges[i]->flags &= ~EDGE_FALLTHRU;
1315 } /* end: 'if (GET_CODE ... ' */
1316 } /* end: 'if (src && src->index...' */
1317 } /* end: 'if (dest && dest->index...' */
1318 } /* end: 'if (crossing_edges[i]...' */
1319 } /* end for loop */
1322 /* Find any bb's where the fall-through edge is a crossing edge (note that
1323 these bb's must also contain a conditional jump or end with a call
1324 instruction; we've already dealt with fall-through edges for blocks
1325 that didn't have a conditional jump or didn't end with call instruction
1326 in the call to add_labels_and_missing_jumps). Convert the fall-through
1327 edge to non-crossing edge by inserting a new bb to fall-through into.
1328 The new bb will contain an unconditional jump (crossing edge) to the
1329 original fall through destination. */
1331 static void
1332 fix_up_fall_thru_edges (void)
1334 basic_block cur_bb;
1335 basic_block new_bb;
1336 edge succ1;
1337 edge succ2;
1338 edge fall_thru;
1339 edge cond_jump = NULL;
1340 edge e;
1341 bool cond_jump_crosses;
1342 int invert_worked;
1343 rtx old_jump;
1344 rtx fall_thru_label;
1345 rtx barrier;
1347 FOR_EACH_BB (cur_bb)
1349 fall_thru = NULL;
1350 if (EDGE_COUNT (cur_bb->succs) > 0)
1351 succ1 = EDGE_SUCC (cur_bb, 0);
1352 else
1353 succ1 = NULL;
1355 if (EDGE_COUNT (cur_bb->succs) > 1)
1356 succ2 = EDGE_SUCC (cur_bb, 1);
1357 else
1358 succ2 = NULL;
1360 /* Find the fall-through edge. */
1362 if (succ1
1363 && (succ1->flags & EDGE_FALLTHRU))
1365 fall_thru = succ1;
1366 cond_jump = succ2;
1368 else if (succ2
1369 && (succ2->flags & EDGE_FALLTHRU))
1371 fall_thru = succ2;
1372 cond_jump = succ1;
1374 else if (!fall_thru && succ1 && block_ends_with_call_p (cur_bb))
1376 edge e;
1377 edge_iterator ei;
1379 /* Find EDGE_CAN_FALLTHRU edge. */
1380 FOR_EACH_EDGE (e, ei, cur_bb->succs)
1381 if (e->flags & EDGE_CAN_FALLTHRU)
1383 fall_thru = e;
1384 break;
1388 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
1390 /* Check to see if the fall-thru edge is a crossing edge. */
1392 if (fall_thru->flags & EDGE_CROSSING)
1394 /* The fall_thru edge crosses; now check the cond jump edge, if
1395 it exists. */
1397 cond_jump_crosses = true;
1398 invert_worked = 0;
1399 old_jump = BB_END (cur_bb);
1401 /* Find the jump instruction, if there is one. */
1403 if (cond_jump)
1405 if (!(cond_jump->flags & EDGE_CROSSING))
1406 cond_jump_crosses = false;
1408 /* We know the fall-thru edge crosses; if the cond
1409 jump edge does NOT cross, and its destination is the
1410 next block in the bb order, invert the jump
1411 (i.e. fix it so the fall thru does not cross and
1412 the cond jump does). */
1414 if (!cond_jump_crosses
1415 && cur_bb->aux == cond_jump->dest)
1417 /* Find label in fall_thru block. We've already added
1418 any missing labels, so there must be one. */
1420 fall_thru_label = block_label (fall_thru->dest);
1422 if (old_jump && fall_thru_label)
1423 invert_worked = invert_jump (old_jump,
1424 fall_thru_label,0);
1425 if (invert_worked)
1427 fall_thru->flags &= ~EDGE_FALLTHRU;
1428 cond_jump->flags |= EDGE_FALLTHRU;
1429 update_br_prob_note (cur_bb);
1430 e = fall_thru;
1431 fall_thru = cond_jump;
1432 cond_jump = e;
1433 cond_jump->flags |= EDGE_CROSSING;
1434 fall_thru->flags &= ~EDGE_CROSSING;
1439 if (cond_jump_crosses || !invert_worked)
1441 /* This is the case where both edges out of the basic
1442 block are crossing edges. Here we will fix up the
1443 fall through edge. The jump edge will be taken care
1444 of later. The EDGE_CROSSING flag of fall_thru edge
1445 is unset before the call to force_nonfallthru
1446 function because if a new basic-block is created
1447 this edge remains in the current section boundary
1448 while the edge between new_bb and the fall_thru->dest
1449 becomes EDGE_CROSSING. */
1451 fall_thru->flags &= ~EDGE_CROSSING;
1452 new_bb = force_nonfallthru (fall_thru);
1454 if (new_bb)
1456 new_bb->aux = cur_bb->aux;
1457 cur_bb->aux = new_bb;
1459 /* Make sure new fall-through bb is in same
1460 partition as bb it's falling through from. */
1462 BB_COPY_PARTITION (new_bb, cur_bb);
1463 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1465 else
1467 /* If a new basic-block was not created; restore
1468 the EDGE_CROSSING flag. */
1469 fall_thru->flags |= EDGE_CROSSING;
1472 /* Add barrier after new jump */
1474 if (new_bb)
1476 barrier = emit_barrier_after (BB_END (new_bb));
1477 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1478 barrier);
1480 else
1482 barrier = emit_barrier_after (BB_END (cur_bb));
1483 cur_bb->il.rtl->footer = unlink_insn_chain (barrier,
1484 barrier);
1492 /* This function checks the destination block of a "crossing jump" to
1493 see if it has any crossing predecessors that begin with a code label
1494 and end with an unconditional jump. If so, it returns that predecessor
1495 block. (This is to avoid creating lots of new basic blocks that all
1496 contain unconditional jumps to the same destination). */
1498 static basic_block
1499 find_jump_block (basic_block jump_dest)
1501 basic_block source_bb = NULL;
1502 edge e;
1503 rtx insn;
1504 edge_iterator ei;
1506 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1507 if (e->flags & EDGE_CROSSING)
1509 basic_block src = e->src;
1511 /* Check each predecessor to see if it has a label, and contains
1512 only one executable instruction, which is an unconditional jump.
1513 If so, we can use it. */
1515 if (LABEL_P (BB_HEAD (src)))
1516 for (insn = BB_HEAD (src);
1517 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1518 insn = NEXT_INSN (insn))
1520 if (INSN_P (insn)
1521 && insn == BB_END (src)
1522 && JUMP_P (insn)
1523 && !any_condjump_p (insn))
1525 source_bb = src;
1526 break;
1530 if (source_bb)
1531 break;
1534 return source_bb;
1537 /* Find all BB's with conditional jumps that are crossing edges;
1538 insert a new bb and make the conditional jump branch to the new
1539 bb instead (make the new bb same color so conditional branch won't
1540 be a 'crossing' edge). Insert an unconditional jump from the
1541 new bb to the original destination of the conditional jump. */
1543 static void
1544 fix_crossing_conditional_branches (void)
1546 basic_block cur_bb;
1547 basic_block new_bb;
1548 basic_block last_bb;
1549 basic_block dest;
1550 edge succ1;
1551 edge succ2;
1552 edge crossing_edge;
1553 edge new_edge;
1554 rtx old_jump;
1555 rtx set_src;
1556 rtx old_label = NULL_RTX;
1557 rtx new_label;
1558 rtx new_jump;
1559 rtx barrier;
1561 last_bb = EXIT_BLOCK_PTR->prev_bb;
1563 FOR_EACH_BB (cur_bb)
1565 crossing_edge = NULL;
1566 if (EDGE_COUNT (cur_bb->succs) > 0)
1567 succ1 = EDGE_SUCC (cur_bb, 0);
1568 else
1569 succ1 = NULL;
1571 if (EDGE_COUNT (cur_bb->succs) > 1)
1572 succ2 = EDGE_SUCC (cur_bb, 1);
1573 else
1574 succ2 = NULL;
1576 /* We already took care of fall-through edges, so only one successor
1577 can be a crossing edge. */
1579 if (succ1 && (succ1->flags & EDGE_CROSSING))
1580 crossing_edge = succ1;
1581 else if (succ2 && (succ2->flags & EDGE_CROSSING))
1582 crossing_edge = succ2;
1584 if (crossing_edge)
1586 old_jump = BB_END (cur_bb);
1588 /* Check to make sure the jump instruction is a
1589 conditional jump. */
1591 set_src = NULL_RTX;
1593 if (any_condjump_p (old_jump))
1595 if (GET_CODE (PATTERN (old_jump)) == SET)
1596 set_src = SET_SRC (PATTERN (old_jump));
1597 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
1599 set_src = XVECEXP (PATTERN (old_jump), 0,0);
1600 if (GET_CODE (set_src) == SET)
1601 set_src = SET_SRC (set_src);
1602 else
1603 set_src = NULL_RTX;
1607 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
1609 if (GET_CODE (XEXP (set_src, 1)) == PC)
1610 old_label = XEXP (set_src, 2);
1611 else if (GET_CODE (XEXP (set_src, 2)) == PC)
1612 old_label = XEXP (set_src, 1);
1614 /* Check to see if new bb for jumping to that dest has
1615 already been created; if so, use it; if not, create
1616 a new one. */
1618 new_bb = find_jump_block (crossing_edge->dest);
1620 if (new_bb)
1621 new_label = block_label (new_bb);
1622 else
1624 /* Create new basic block to be dest for
1625 conditional jump. */
1627 new_bb = create_basic_block (NULL, NULL, last_bb);
1628 new_bb->aux = last_bb->aux;
1629 last_bb->aux = new_bb;
1630 last_bb = new_bb;
1631 /* Put appropriate instructions in new bb. */
1633 new_label = gen_label_rtx ();
1634 emit_label_before (new_label, BB_HEAD (new_bb));
1635 BB_HEAD (new_bb) = new_label;
1637 if (GET_CODE (old_label) == LABEL_REF)
1639 old_label = JUMP_LABEL (old_jump);
1640 new_jump = emit_jump_insn_after (gen_jump
1641 (old_label),
1642 BB_END (new_bb));
1644 else
1646 gcc_assert (HAVE_return
1647 && GET_CODE (old_label) == RETURN);
1648 new_jump = emit_jump_insn_after (gen_return (),
1649 BB_END (new_bb));
1652 barrier = emit_barrier_after (new_jump);
1653 JUMP_LABEL (new_jump) = old_label;
1654 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1655 barrier);
1657 /* Make sure new bb is in same partition as source
1658 of conditional branch. */
1659 BB_COPY_PARTITION (new_bb, cur_bb);
1662 /* Make old jump branch to new bb. */
1664 redirect_jump (old_jump, new_label, 0);
1666 /* Remove crossing_edge as predecessor of 'dest'. */
1668 dest = crossing_edge->dest;
1670 redirect_edge_succ (crossing_edge, new_bb);
1672 /* Make a new edge from new_bb to old dest; new edge
1673 will be a successor for new_bb and a predecessor
1674 for 'dest'. */
1676 if (EDGE_COUNT (new_bb->succs) == 0)
1677 new_edge = make_edge (new_bb, dest, 0);
1678 else
1679 new_edge = EDGE_SUCC (new_bb, 0);
1681 crossing_edge->flags &= ~EDGE_CROSSING;
1682 new_edge->flags |= EDGE_CROSSING;
1688 /* Find any unconditional branches that cross between hot and cold
1689 sections. Convert them into indirect jumps instead. */
1691 static void
1692 fix_crossing_unconditional_branches (void)
1694 basic_block cur_bb;
1695 rtx last_insn;
1696 rtx label;
1697 rtx label_addr;
1698 rtx indirect_jump_sequence;
1699 rtx jump_insn = NULL_RTX;
1700 rtx new_reg;
1701 rtx cur_insn;
1702 edge succ;
1704 FOR_EACH_BB (cur_bb)
1706 last_insn = BB_END (cur_bb);
1708 if (EDGE_COUNT (cur_bb->succs) < 1)
1709 continue;
1711 succ = EDGE_SUCC (cur_bb, 0);
1713 /* Check to see if bb ends in a crossing (unconditional) jump. At
1714 this point, no crossing jumps should be conditional. */
1716 if (JUMP_P (last_insn)
1717 && (succ->flags & EDGE_CROSSING))
1719 rtx label2, table;
1721 gcc_assert (!any_condjump_p (last_insn));
1723 /* Make sure the jump is not already an indirect or table jump. */
1725 if (!computed_jump_p (last_insn)
1726 && !tablejump_p (last_insn, &label2, &table))
1728 /* We have found a "crossing" unconditional branch. Now
1729 we must convert it to an indirect jump. First create
1730 reference of label, as target for jump. */
1732 label = JUMP_LABEL (last_insn);
1733 label_addr = gen_rtx_LABEL_REF (Pmode, label);
1734 LABEL_NUSES (label) += 1;
1736 /* Get a register to use for the indirect jump. */
1738 new_reg = gen_reg_rtx (Pmode);
1740 /* Generate indirect the jump sequence. */
1742 start_sequence ();
1743 emit_move_insn (new_reg, label_addr);
1744 emit_indirect_jump (new_reg);
1745 indirect_jump_sequence = get_insns ();
1746 end_sequence ();
1748 /* Make sure every instruction in the new jump sequence has
1749 its basic block set to be cur_bb. */
1751 for (cur_insn = indirect_jump_sequence; cur_insn;
1752 cur_insn = NEXT_INSN (cur_insn))
1754 if (!BARRIER_P (cur_insn))
1755 BLOCK_FOR_INSN (cur_insn) = cur_bb;
1756 if (JUMP_P (cur_insn))
1757 jump_insn = cur_insn;
1760 /* Insert the new (indirect) jump sequence immediately before
1761 the unconditional jump, then delete the unconditional jump. */
1763 emit_insn_before (indirect_jump_sequence, last_insn);
1764 delete_insn (last_insn);
1766 /* Make BB_END for cur_bb be the jump instruction (NOT the
1767 barrier instruction at the end of the sequence...). */
1769 BB_END (cur_bb) = jump_insn;
1775 /* Add REG_CROSSING_JUMP note to all crossing jump insns. */
1777 static void
1778 add_reg_crossing_jump_notes (void)
1780 basic_block bb;
1781 edge e;
1782 edge_iterator ei;
1784 FOR_EACH_BB (bb)
1785 FOR_EACH_EDGE (e, ei, bb->succs)
1786 if ((e->flags & EDGE_CROSSING)
1787 && JUMP_P (BB_END (e->src)))
1788 add_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
1791 /* Hot and cold basic blocks are partitioned and put in separate
1792 sections of the .o file, to reduce paging and improve cache
1793 performance (hopefully). This can result in bits of code from the
1794 same function being widely separated in the .o file. However this
1795 is not obvious to the current bb structure. Therefore we must take
1796 care to ensure that: 1). There are no fall_thru edges that cross
1797 between sections; 2). For those architectures which have "short"
1798 conditional branches, all conditional branches that attempt to
1799 cross between sections are converted to unconditional branches;
1800 and, 3). For those architectures which have "short" unconditional
1801 branches, all unconditional branches that attempt to cross between
1802 sections are converted to indirect jumps.
1804 The code for fixing up fall_thru edges that cross between hot and
1805 cold basic blocks does so by creating new basic blocks containing
1806 unconditional branches to the appropriate label in the "other"
1807 section. The new basic block is then put in the same (hot or cold)
1808 section as the original conditional branch, and the fall_thru edge
1809 is modified to fall into the new basic block instead. By adding
1810 this level of indirection we end up with only unconditional branches
1811 crossing between hot and cold sections.
1813 Conditional branches are dealt with by adding a level of indirection.
1814 A new basic block is added in the same (hot/cold) section as the
1815 conditional branch, and the conditional branch is retargeted to the
1816 new basic block. The new basic block contains an unconditional branch
1817 to the original target of the conditional branch (in the other section).
1819 Unconditional branches are dealt with by converting them into
1820 indirect jumps. */
1822 static void
1823 fix_edges_for_rarely_executed_code (edge *crossing_edges,
1824 int n_crossing_edges)
1826 /* Make sure the source of any crossing edge ends in a jump and the
1827 destination of any crossing edge has a label. */
1829 add_labels_and_missing_jumps (crossing_edges, n_crossing_edges);
1831 /* Convert all crossing fall_thru edges to non-crossing fall
1832 thrus to unconditional jumps (that jump to the original fall
1833 thru dest). */
1835 fix_up_fall_thru_edges ();
1837 /* If the architecture does not have conditional branches that can
1838 span all of memory, convert crossing conditional branches into
1839 crossing unconditional branches. */
1841 if (!HAS_LONG_COND_BRANCH)
1842 fix_crossing_conditional_branches ();
1844 /* If the architecture does not have unconditional branches that
1845 can span all of memory, convert crossing unconditional branches
1846 into indirect jumps. Since adding an indirect jump also adds
1847 a new register usage, update the register usage information as
1848 well. */
1850 if (!HAS_LONG_UNCOND_BRANCH)
1851 fix_crossing_unconditional_branches ();
1853 add_reg_crossing_jump_notes ();
1856 /* Verify, in the basic block chain, that there is at most one switch
1857 between hot/cold partitions. This is modelled on
1858 rtl_verify_flow_info_1, but it cannot go inside that function
1859 because this condition will not be true until after
1860 reorder_basic_blocks is called. */
1862 static void
1863 verify_hot_cold_block_grouping (void)
1865 basic_block bb;
1866 int err = 0;
1867 bool switched_sections = false;
1868 int current_partition = 0;
1870 FOR_EACH_BB (bb)
1872 if (!current_partition)
1873 current_partition = BB_PARTITION (bb);
1874 if (BB_PARTITION (bb) != current_partition)
1876 if (switched_sections)
1878 error ("multiple hot/cold transitions found (bb %i)",
1879 bb->index);
1880 err = 1;
1882 else
1884 switched_sections = true;
1885 current_partition = BB_PARTITION (bb);
1890 gcc_assert(!err);
1893 /* Reorder basic blocks. The main entry point to this file. FLAGS is
1894 the set of flags to pass to cfg_layout_initialize(). */
1896 void
1897 reorder_basic_blocks (void)
1899 int n_traces;
1900 int i;
1901 struct trace *traces;
1903 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
1905 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1906 return;
1908 set_edge_can_fallthru_flag ();
1909 mark_dfs_back_edges ();
1911 /* We are estimating the length of uncond jump insn only once since the code
1912 for getting the insn length always returns the minimal length now. */
1913 if (uncond_jump_length == 0)
1914 uncond_jump_length = get_uncond_jump_length ();
1916 /* We need to know some information for each basic block. */
1917 array_size = GET_ARRAY_SIZE (last_basic_block);
1918 bbd = XNEWVEC (bbro_basic_block_data, array_size);
1919 for (i = 0; i < array_size; i++)
1921 bbd[i].start_of_trace = -1;
1922 bbd[i].in_trace = -1;
1923 bbd[i].end_of_trace = -1;
1924 bbd[i].heap = NULL;
1925 bbd[i].node = NULL;
1928 traces = XNEWVEC (struct trace, n_basic_blocks);
1929 n_traces = 0;
1930 find_traces (&n_traces, traces);
1931 connect_traces (n_traces, traces);
1932 FREE (traces);
1933 FREE (bbd);
1935 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
1937 if (dump_file)
1938 dump_flow_info (dump_file, dump_flags);
1940 if (flag_reorder_blocks_and_partition)
1941 verify_hot_cold_block_grouping ();
1944 /* Determine which partition the first basic block in the function
1945 belongs to, then find the first basic block in the current function
1946 that belongs to a different section, and insert a
1947 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
1948 instruction stream. When writing out the assembly code,
1949 encountering this note will make the compiler switch between the
1950 hot and cold text sections. */
1952 static void
1953 insert_section_boundary_note (void)
1955 basic_block bb;
1956 rtx new_note;
1957 int first_partition = 0;
1959 if (flag_reorder_blocks_and_partition)
1960 FOR_EACH_BB (bb)
1962 if (!first_partition)
1963 first_partition = BB_PARTITION (bb);
1964 if (BB_PARTITION (bb) != first_partition)
1966 new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
1967 BB_HEAD (bb));
1968 /* ??? This kind of note always lives between basic blocks,
1969 but add_insn_before will set BLOCK_FOR_INSN anyway. */
1970 BLOCK_FOR_INSN (new_note) = NULL;
1971 break;
1976 /* Duplicate the blocks containing computed gotos. This basically unfactors
1977 computed gotos that were factored early on in the compilation process to
1978 speed up edge based data flow. We used to not unfactoring them again,
1979 which can seriously pessimize code with many computed jumps in the source
1980 code, such as interpreters. See e.g. PR15242. */
1982 static bool
1983 gate_duplicate_computed_gotos (void)
1985 if (targetm.cannot_modify_jumps_p ())
1986 return false;
1987 return (optimize > 0 && flag_expensive_optimizations && !optimize_size);
1991 static unsigned int
1992 duplicate_computed_gotos (void)
1994 basic_block bb, new_bb;
1995 bitmap candidates;
1996 int max_size;
1998 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1999 return 0;
2001 cfg_layout_initialize (0);
2003 /* We are estimating the length of uncond jump insn only once
2004 since the code for getting the insn length always returns
2005 the minimal length now. */
2006 if (uncond_jump_length == 0)
2007 uncond_jump_length = get_uncond_jump_length ();
2009 max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2010 candidates = BITMAP_ALLOC (NULL);
2012 /* Look for blocks that end in a computed jump, and see if such blocks
2013 are suitable for unfactoring. If a block is a candidate for unfactoring,
2014 mark it in the candidates. */
2015 FOR_EACH_BB (bb)
2017 rtx insn;
2018 edge e;
2019 edge_iterator ei;
2020 int size, all_flags;
2022 /* Build the reorder chain for the original order of blocks. */
2023 if (bb->next_bb != EXIT_BLOCK_PTR)
2024 bb->aux = bb->next_bb;
2026 /* Obviously the block has to end in a computed jump. */
2027 if (!computed_jump_p (BB_END (bb)))
2028 continue;
2030 /* Only consider blocks that can be duplicated. */
2031 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2032 || !can_duplicate_block_p (bb))
2033 continue;
2035 /* Make sure that the block is small enough. */
2036 size = 0;
2037 FOR_BB_INSNS (bb, insn)
2038 if (INSN_P (insn))
2040 size += get_attr_min_length (insn);
2041 if (size > max_size)
2042 break;
2044 if (size > max_size)
2045 continue;
2047 /* Final check: there must not be any incoming abnormal edges. */
2048 all_flags = 0;
2049 FOR_EACH_EDGE (e, ei, bb->preds)
2050 all_flags |= e->flags;
2051 if (all_flags & EDGE_COMPLEX)
2052 continue;
2054 bitmap_set_bit (candidates, bb->index);
2057 /* Nothing to do if there is no computed jump here. */
2058 if (bitmap_empty_p (candidates))
2059 goto done;
2061 /* Duplicate computed gotos. */
2062 FOR_EACH_BB (bb)
2064 if (bb->il.rtl->visited)
2065 continue;
2067 bb->il.rtl->visited = 1;
2069 /* BB must have one outgoing edge. That edge must not lead to
2070 the exit block or the next block.
2071 The destination must have more than one predecessor. */
2072 if (!single_succ_p (bb)
2073 || single_succ (bb) == EXIT_BLOCK_PTR
2074 || single_succ (bb) == bb->next_bb
2075 || single_pred_p (single_succ (bb)))
2076 continue;
2078 /* The successor block has to be a duplication candidate. */
2079 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2080 continue;
2082 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2083 new_bb->aux = bb->aux;
2084 bb->aux = new_bb;
2085 new_bb->il.rtl->visited = 1;
2088 done:
2089 cfg_layout_finalize ();
2091 BITMAP_FREE (candidates);
2092 return 0;
2095 struct rtl_opt_pass pass_duplicate_computed_gotos =
2098 RTL_PASS,
2099 "compgotos", /* name */
2100 gate_duplicate_computed_gotos, /* gate */
2101 duplicate_computed_gotos, /* execute */
2102 NULL, /* sub */
2103 NULL, /* next */
2104 0, /* static_pass_number */
2105 TV_REORDER_BLOCKS, /* tv_id */
2106 0, /* properties_required */
2107 0, /* properties_provided */
2108 0, /* properties_destroyed */
2109 0, /* todo_flags_start */
2110 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2115 /* This function is the main 'entrance' for the optimization that
2116 partitions hot and cold basic blocks into separate sections of the
2117 .o file (to improve performance and cache locality). Ideally it
2118 would be called after all optimizations that rearrange the CFG have
2119 been called. However part of this optimization may introduce new
2120 register usage, so it must be called before register allocation has
2121 occurred. This means that this optimization is actually called
2122 well before the optimization that reorders basic blocks (see
2123 function above).
2125 This optimization checks the feedback information to determine
2126 which basic blocks are hot/cold, updates flags on the basic blocks
2127 to indicate which section they belong in. This information is
2128 later used for writing out sections in the .o file. Because hot
2129 and cold sections can be arbitrarily large (within the bounds of
2130 memory), far beyond the size of a single function, it is necessary
2131 to fix up all edges that cross section boundaries, to make sure the
2132 instructions used can actually span the required distance. The
2133 fixes are described below.
2135 Fall-through edges must be changed into jumps; it is not safe or
2136 legal to fall through across a section boundary. Whenever a
2137 fall-through edge crossing a section boundary is encountered, a new
2138 basic block is inserted (in the same section as the fall-through
2139 source), and the fall through edge is redirected to the new basic
2140 block. The new basic block contains an unconditional jump to the
2141 original fall-through target. (If the unconditional jump is
2142 insufficient to cross section boundaries, that is dealt with a
2143 little later, see below).
2145 In order to deal with architectures that have short conditional
2146 branches (which cannot span all of memory) we take any conditional
2147 jump that attempts to cross a section boundary and add a level of
2148 indirection: it becomes a conditional jump to a new basic block, in
2149 the same section. The new basic block contains an unconditional
2150 jump to the original target, in the other section.
2152 For those architectures whose unconditional branch is also
2153 incapable of reaching all of memory, those unconditional jumps are
2154 converted into indirect jumps, through a register.
2156 IMPORTANT NOTE: This optimization causes some messy interactions
2157 with the cfg cleanup optimizations; those optimizations want to
2158 merge blocks wherever possible, and to collapse indirect jump
2159 sequences (change "A jumps to B jumps to C" directly into "A jumps
2160 to C"). Those optimizations can undo the jump fixes that
2161 partitioning is required to make (see above), in order to ensure
2162 that jumps attempting to cross section boundaries are really able
2163 to cover whatever distance the jump requires (on many architectures
2164 conditional or unconditional jumps are not able to reach all of
2165 memory). Therefore tests have to be inserted into each such
2166 optimization to make sure that it does not undo stuff necessary to
2167 cross partition boundaries. This would be much less of a problem
2168 if we could perform this optimization later in the compilation, but
2169 unfortunately the fact that we may need to create indirect jumps
2170 (through registers) requires that this optimization be performed
2171 before register allocation. */
2173 static void
2174 partition_hot_cold_basic_blocks (void)
2176 basic_block cur_bb;
2177 edge *crossing_edges;
2178 int n_crossing_edges;
2179 int max_edges = 2 * last_basic_block;
2181 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2182 return;
2184 crossing_edges = XCNEWVEC (edge, max_edges);
2186 cfg_layout_initialize (0);
2188 FOR_EACH_BB (cur_bb)
2189 if (cur_bb->index >= NUM_FIXED_BLOCKS
2190 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
2191 cur_bb->aux = cur_bb->next_bb;
2193 find_rarely_executed_basic_blocks_and_crossing_edges (&crossing_edges,
2194 &n_crossing_edges,
2195 &max_edges);
2197 if (n_crossing_edges > 0)
2198 fix_edges_for_rarely_executed_code (crossing_edges, n_crossing_edges);
2200 free (crossing_edges);
2202 cfg_layout_finalize ();
2205 static bool
2206 gate_handle_reorder_blocks (void)
2208 if (targetm.cannot_modify_jumps_p ())
2209 return false;
2210 return (optimize > 0);
2214 /* Reorder basic blocks. */
2215 static unsigned int
2216 rest_of_handle_reorder_blocks (void)
2218 basic_block bb;
2220 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2221 splitting possibly introduced more crossjumping opportunities. */
2222 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2224 if (flag_reorder_blocks || flag_reorder_blocks_and_partition)
2226 reorder_basic_blocks ();
2227 cleanup_cfg (CLEANUP_EXPENSIVE);
2230 FOR_EACH_BB (bb)
2231 if (bb->next_bb != EXIT_BLOCK_PTR)
2232 bb->aux = bb->next_bb;
2233 cfg_layout_finalize ();
2235 /* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes. */
2236 insert_section_boundary_note ();
2237 return 0;
2240 struct rtl_opt_pass pass_reorder_blocks =
2243 RTL_PASS,
2244 "bbro", /* name */
2245 gate_handle_reorder_blocks, /* gate */
2246 rest_of_handle_reorder_blocks, /* execute */
2247 NULL, /* sub */
2248 NULL, /* next */
2249 0, /* static_pass_number */
2250 TV_REORDER_BLOCKS, /* tv_id */
2251 0, /* properties_required */
2252 0, /* properties_provided */
2253 0, /* properties_destroyed */
2254 0, /* todo_flags_start */
2255 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2259 static bool
2260 gate_handle_partition_blocks (void)
2262 /* The optimization to partition hot/cold basic blocks into separate
2263 sections of the .o file does not work well with linkonce or with
2264 user defined section attributes. Don't call it if either case
2265 arises. */
2267 return (flag_reorder_blocks_and_partition
2268 && !DECL_ONE_ONLY (current_function_decl)
2269 && !user_defined_section_attribute);
2272 /* Partition hot and cold basic blocks. */
2273 static unsigned int
2274 rest_of_handle_partition_blocks (void)
2276 partition_hot_cold_basic_blocks ();
2277 return 0;
2280 struct rtl_opt_pass pass_partition_blocks =
2283 RTL_PASS,
2284 "bbpart", /* name */
2285 gate_handle_partition_blocks, /* gate */
2286 rest_of_handle_partition_blocks, /* execute */
2287 NULL, /* sub */
2288 NULL, /* next */
2289 0, /* static_pass_number */
2290 TV_REORDER_BLOCKS, /* tv_id */
2291 0, /* properties_required */
2292 0, /* properties_provided */
2293 0, /* properties_destroyed */
2294 0, /* todo_flags_start */
2295 TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */