[RS6000] dg-do !compile and scan-assembler
[official-gcc.git] / gcc / recog.c
blobd3552ec63eb26c38817931468d8fbf7df4084470
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "cfgcleanup.h"
41 #include "reload.h"
42 #include "tree-pass.h"
43 #include "function-abi.h"
45 #ifndef STACK_POP_CODE
46 #if STACK_GROWS_DOWNWARD
47 #define STACK_POP_CODE POST_INC
48 #else
49 #define STACK_POP_CODE POST_DEC
50 #endif
51 #endif
53 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
54 static void validate_replace_src_1 (rtx *, void *);
55 static rtx_insn *split_insn (rtx_insn *);
57 struct target_recog default_target_recog;
58 #if SWITCHABLE_TARGET
59 struct target_recog *this_target_recog = &default_target_recog;
60 #endif
62 /* Nonzero means allow operands to be volatile.
63 This should be 0 if you are generating rtl, such as if you are calling
64 the functions in optabs.c and expmed.c (most of the time).
65 This should be 1 if all valid insns need to be recognized,
66 such as in reginfo.c and final.c and reload.c.
68 init_recog and init_recog_no_volatile are responsible for setting this. */
70 int volatile_ok;
72 struct recog_data_d recog_data;
74 /* Contains a vector of operand_alternative structures, such that
75 operand OP of alternative A is at index A * n_operands + OP.
76 Set up by preprocess_constraints. */
77 const operand_alternative *recog_op_alt;
79 /* Used to provide recog_op_alt for asms. */
80 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
81 * MAX_RECOG_ALTERNATIVES];
83 /* On return from `constrain_operands', indicate which alternative
84 was satisfied. */
86 int which_alternative;
88 /* Nonzero after end of reload pass.
89 Set to 1 or 0 by toplev.c.
90 Controls the significance of (SUBREG (MEM)). */
92 int reload_completed;
94 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
95 int epilogue_completed;
97 /* Initialize data used by the function `recog'.
98 This must be called once in the compilation of a function
99 before any insn recognition may be done in the function. */
101 void
102 init_recog_no_volatile (void)
104 volatile_ok = 0;
107 void
108 init_recog (void)
110 volatile_ok = 1;
114 /* Return true if labels in asm operands BODY are LABEL_REFs. */
116 static bool
117 asm_labels_ok (rtx body)
119 rtx asmop;
120 int i;
122 asmop = extract_asm_operands (body);
123 if (asmop == NULL_RTX)
124 return true;
126 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
127 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
128 return false;
130 return true;
133 /* Check that X is an insn-body for an `asm' with operands
134 and that the operands mentioned in it are legitimate. */
137 check_asm_operands (rtx x)
139 int noperands;
140 rtx *operands;
141 const char **constraints;
142 int i;
144 if (!asm_labels_ok (x))
145 return 0;
147 /* Post-reload, be more strict with things. */
148 if (reload_completed)
150 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
151 rtx_insn *insn = make_insn_raw (x);
152 extract_insn (insn);
153 constrain_operands (1, get_enabled_alternatives (insn));
154 return which_alternative >= 0;
157 noperands = asm_noperands (x);
158 if (noperands < 0)
159 return 0;
160 if (noperands == 0)
161 return 1;
163 operands = XALLOCAVEC (rtx, noperands);
164 constraints = XALLOCAVEC (const char *, noperands);
166 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
168 for (i = 0; i < noperands; i++)
170 const char *c = constraints[i];
171 if (c[0] == '%')
172 c++;
173 if (! asm_operand_ok (operands[i], c, constraints))
174 return 0;
177 return 1;
180 /* Static data for the next two routines. */
182 struct change_t
184 rtx object;
185 int old_code;
186 bool unshare;
187 rtx *loc;
188 rtx old;
191 static change_t *changes;
192 static int changes_allocated;
194 static int num_changes = 0;
196 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
197 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
198 the change is simply made.
200 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
201 will be called with the address and mode as parameters. If OBJECT is
202 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
203 the change in place.
205 IN_GROUP is nonzero if this is part of a group of changes that must be
206 performed as a group. In that case, the changes will be stored. The
207 function `apply_change_group' will validate and apply the changes.
209 If IN_GROUP is zero, this is a single change. Try to recognize the insn
210 or validate the memory reference with the change applied. If the result
211 is not valid for the machine, suppress the change and return zero.
212 Otherwise, perform the change and return 1. */
214 static bool
215 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
217 rtx old = *loc;
219 if (old == new_rtx || rtx_equal_p (old, new_rtx))
220 return 1;
222 gcc_assert (in_group != 0 || num_changes == 0);
224 *loc = new_rtx;
226 /* Save the information describing this change. */
227 if (num_changes >= changes_allocated)
229 if (changes_allocated == 0)
230 /* This value allows for repeated substitutions inside complex
231 indexed addresses, or changes in up to 5 insns. */
232 changes_allocated = MAX_RECOG_OPERANDS * 5;
233 else
234 changes_allocated *= 2;
236 changes = XRESIZEVEC (change_t, changes, changes_allocated);
239 changes[num_changes].object = object;
240 changes[num_changes].loc = loc;
241 changes[num_changes].old = old;
242 changes[num_changes].unshare = unshare;
244 if (object && !MEM_P (object))
246 /* Set INSN_CODE to force rerecognition of insn. Save old code in
247 case invalid. */
248 changes[num_changes].old_code = INSN_CODE (object);
249 INSN_CODE (object) = -1;
252 num_changes++;
254 /* If we are making a group of changes, return 1. Otherwise, validate the
255 change group we made. */
257 if (in_group)
258 return 1;
259 else
260 return apply_change_group ();
263 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
264 UNSHARE to false. */
266 bool
267 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
269 return validate_change_1 (object, loc, new_rtx, in_group, false);
272 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
273 UNSHARE to true. */
275 bool
276 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
278 return validate_change_1 (object, loc, new_rtx, in_group, true);
282 /* Keep X canonicalized if some changes have made it non-canonical; only
283 modifies the operands of X, not (for example) its code. Simplifications
284 are not the job of this routine.
286 Return true if anything was changed. */
287 bool
288 canonicalize_change_group (rtx_insn *insn, rtx x)
290 if (COMMUTATIVE_P (x)
291 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
293 /* Oops, the caller has made X no longer canonical.
294 Let's redo the changes in the correct order. */
295 rtx tem = XEXP (x, 0);
296 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
297 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
298 return true;
300 else
301 return false;
305 /* This subroutine of apply_change_group verifies whether the changes to INSN
306 were valid; i.e. whether INSN can still be recognized.
308 If IN_GROUP is true clobbers which have to be added in order to
309 match the instructions will be added to the current change group.
310 Otherwise the changes will take effect immediately. */
313 insn_invalid_p (rtx_insn *insn, bool in_group)
315 rtx pat = PATTERN (insn);
316 int num_clobbers = 0;
317 /* If we are before reload and the pattern is a SET, see if we can add
318 clobbers. */
319 int icode = recog (pat, insn,
320 (GET_CODE (pat) == SET
321 && ! reload_completed
322 && ! reload_in_progress)
323 ? &num_clobbers : 0);
324 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
327 /* If this is an asm and the operand aren't legal, then fail. Likewise if
328 this is not an asm and the insn wasn't recognized. */
329 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
330 || (!is_asm && icode < 0))
331 return 1;
333 /* If we have to add CLOBBERs, fail if we have to add ones that reference
334 hard registers since our callers can't know if they are live or not.
335 Otherwise, add them. */
336 if (num_clobbers > 0)
338 rtx newpat;
340 if (added_clobbers_hard_reg_p (icode))
341 return 1;
343 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
344 XVECEXP (newpat, 0, 0) = pat;
345 add_clobbers (newpat, icode);
346 if (in_group)
347 validate_change (insn, &PATTERN (insn), newpat, 1);
348 else
349 PATTERN (insn) = pat = newpat;
352 /* After reload, verify that all constraints are satisfied. */
353 if (reload_completed)
355 extract_insn (insn);
357 if (! constrain_operands (1, get_preferred_alternatives (insn)))
358 return 1;
361 INSN_CODE (insn) = icode;
362 return 0;
365 /* Return number of changes made and not validated yet. */
367 num_changes_pending (void)
369 return num_changes;
372 /* Tentatively apply the changes numbered NUM and up.
373 Return 1 if all changes are valid, zero otherwise. */
376 verify_changes (int num)
378 int i;
379 rtx last_validated = NULL_RTX;
381 /* The changes have been applied and all INSN_CODEs have been reset to force
382 rerecognition.
384 The changes are valid if we aren't given an object, or if we are
385 given a MEM and it still is a valid address, or if this is in insn
386 and it is recognized. In the latter case, if reload has completed,
387 we also require that the operands meet the constraints for
388 the insn. */
390 for (i = num; i < num_changes; i++)
392 rtx object = changes[i].object;
394 /* If there is no object to test or if it is the same as the one we
395 already tested, ignore it. */
396 if (object == 0 || object == last_validated)
397 continue;
399 if (MEM_P (object))
401 if (! memory_address_addr_space_p (GET_MODE (object),
402 XEXP (object, 0),
403 MEM_ADDR_SPACE (object)))
404 break;
406 else if (/* changes[i].old might be zero, e.g. when putting a
407 REG_FRAME_RELATED_EXPR into a previously empty list. */
408 changes[i].old
409 && REG_P (changes[i].old)
410 && asm_noperands (PATTERN (object)) > 0
411 && REG_EXPR (changes[i].old) != NULL_TREE
412 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (changes[i].old))
413 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
414 && DECL_REGISTER (REG_EXPR (changes[i].old)))
416 /* Don't allow changes of hard register operands to inline
417 assemblies if they have been defined as register asm ("x"). */
418 break;
420 else if (DEBUG_INSN_P (object))
421 continue;
422 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
424 rtx pat = PATTERN (object);
426 /* Perhaps we couldn't recognize the insn because there were
427 extra CLOBBERs at the end. If so, try to re-recognize
428 without the last CLOBBER (later iterations will cause each of
429 them to be eliminated, in turn). But don't do this if we
430 have an ASM_OPERAND. */
431 if (GET_CODE (pat) == PARALLEL
432 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
433 && asm_noperands (PATTERN (object)) < 0)
435 rtx newpat;
437 if (XVECLEN (pat, 0) == 2)
438 newpat = XVECEXP (pat, 0, 0);
439 else
441 int j;
443 newpat
444 = gen_rtx_PARALLEL (VOIDmode,
445 rtvec_alloc (XVECLEN (pat, 0) - 1));
446 for (j = 0; j < XVECLEN (newpat, 0); j++)
447 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
450 /* Add a new change to this group to replace the pattern
451 with this new pattern. Then consider this change
452 as having succeeded. The change we added will
453 cause the entire call to fail if things remain invalid.
455 Note that this can lose if a later change than the one
456 we are processing specified &XVECEXP (PATTERN (object), 0, X)
457 but this shouldn't occur. */
459 validate_change (object, &PATTERN (object), newpat, 1);
460 continue;
462 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
463 || GET_CODE (pat) == VAR_LOCATION)
464 /* If this insn is a CLOBBER or USE, it is always valid, but is
465 never recognized. */
466 continue;
467 else
468 break;
470 last_validated = object;
473 return (i == num_changes);
476 /* A group of changes has previously been issued with validate_change
477 and verified with verify_changes. Call df_insn_rescan for each of
478 the insn changed and clear num_changes. */
480 void
481 confirm_change_group (void)
483 int i;
484 rtx last_object = NULL;
486 for (i = 0; i < num_changes; i++)
488 rtx object = changes[i].object;
490 if (changes[i].unshare)
491 *changes[i].loc = copy_rtx (*changes[i].loc);
493 /* Avoid unnecessary rescanning when multiple changes to same instruction
494 are made. */
495 if (object)
497 if (object != last_object && last_object && INSN_P (last_object))
498 df_insn_rescan (as_a <rtx_insn *> (last_object));
499 last_object = object;
503 if (last_object && INSN_P (last_object))
504 df_insn_rescan (as_a <rtx_insn *> (last_object));
505 num_changes = 0;
508 /* Apply a group of changes previously issued with `validate_change'.
509 If all changes are valid, call confirm_change_group and return 1,
510 otherwise, call cancel_changes and return 0. */
513 apply_change_group (void)
515 if (verify_changes (0))
517 confirm_change_group ();
518 return 1;
520 else
522 cancel_changes (0);
523 return 0;
528 /* Return the number of changes so far in the current group. */
531 num_validated_changes (void)
533 return num_changes;
536 /* Retract the changes numbered NUM and up. */
538 void
539 cancel_changes (int num)
541 int i;
543 /* Back out all the changes. Do this in the opposite order in which
544 they were made. */
545 for (i = num_changes - 1; i >= num; i--)
547 *changes[i].loc = changes[i].old;
548 if (changes[i].object && !MEM_P (changes[i].object))
549 INSN_CODE (changes[i].object) = changes[i].old_code;
551 num_changes = num;
554 /* Reduce conditional compilation elsewhere. */
555 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
556 rtx. */
558 static void
559 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
560 machine_mode op0_mode)
562 rtx x = *loc;
563 enum rtx_code code = GET_CODE (x);
564 rtx new_rtx = NULL_RTX;
565 scalar_int_mode is_mode;
567 if (SWAPPABLE_OPERANDS_P (x)
568 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
570 validate_unshare_change (object, loc,
571 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
572 : swap_condition (code),
573 GET_MODE (x), XEXP (x, 1),
574 XEXP (x, 0)), 1);
575 x = *loc;
576 code = GET_CODE (x);
579 /* Canonicalize arithmetics with all constant operands. */
580 switch (GET_RTX_CLASS (code))
582 case RTX_UNARY:
583 if (CONSTANT_P (XEXP (x, 0)))
584 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
585 op0_mode);
586 break;
587 case RTX_COMM_ARITH:
588 case RTX_BIN_ARITH:
589 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
590 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
591 XEXP (x, 1));
592 break;
593 case RTX_COMPARE:
594 case RTX_COMM_COMPARE:
595 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
596 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
597 XEXP (x, 0), XEXP (x, 1));
598 break;
599 default:
600 break;
602 if (new_rtx)
604 validate_change (object, loc, new_rtx, 1);
605 return;
608 switch (code)
610 case PLUS:
611 /* If we have a PLUS whose second operand is now a CONST_INT, use
612 simplify_gen_binary to try to simplify it.
613 ??? We may want later to remove this, once simplification is
614 separated from this function. */
615 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
616 validate_change (object, loc,
617 simplify_gen_binary
618 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
619 break;
620 case MINUS:
621 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
622 validate_change (object, loc,
623 simplify_gen_binary
624 (PLUS, GET_MODE (x), XEXP (x, 0),
625 simplify_gen_unary (NEG,
626 GET_MODE (x), XEXP (x, 1),
627 GET_MODE (x))), 1);
628 break;
629 case ZERO_EXTEND:
630 case SIGN_EXTEND:
631 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
633 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
634 op0_mode);
635 /* If any of the above failed, substitute in something that
636 we know won't be recognized. */
637 if (!new_rtx)
638 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
639 validate_change (object, loc, new_rtx, 1);
641 break;
642 case SUBREG:
643 /* All subregs possible to simplify should be simplified. */
644 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
645 SUBREG_BYTE (x));
647 /* Subregs of VOIDmode operands are incorrect. */
648 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
649 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
650 if (new_rtx)
651 validate_change (object, loc, new_rtx, 1);
652 break;
653 case ZERO_EXTRACT:
654 case SIGN_EXTRACT:
655 /* If we are replacing a register with memory, try to change the memory
656 to be the mode required for memory in extract operations (this isn't
657 likely to be an insertion operation; if it was, nothing bad will
658 happen, we might just fail in some cases). */
660 if (MEM_P (XEXP (x, 0))
661 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &is_mode)
662 && CONST_INT_P (XEXP (x, 1))
663 && CONST_INT_P (XEXP (x, 2))
664 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
665 MEM_ADDR_SPACE (XEXP (x, 0)))
666 && !MEM_VOLATILE_P (XEXP (x, 0)))
668 int pos = INTVAL (XEXP (x, 2));
669 machine_mode new_mode = is_mode;
670 if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
671 new_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
672 else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
673 new_mode = insn_data[targetm.code_for_extv].operand[1].mode;
674 scalar_int_mode wanted_mode = (new_mode == VOIDmode
675 ? word_mode
676 : as_a <scalar_int_mode> (new_mode));
678 /* If we have a narrower mode, we can do something. */
679 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
681 int offset = pos / BITS_PER_UNIT;
682 rtx newmem;
684 /* If the bytes and bits are counted differently, we
685 must adjust the offset. */
686 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
687 offset =
688 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
689 offset);
691 gcc_assert (GET_MODE_PRECISION (wanted_mode)
692 == GET_MODE_BITSIZE (wanted_mode));
693 pos %= GET_MODE_BITSIZE (wanted_mode);
695 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
697 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
698 validate_change (object, &XEXP (x, 0), newmem, 1);
702 break;
704 default:
705 break;
709 /* Replace every occurrence of FROM in X with TO. Mark each change with
710 validate_change passing OBJECT. */
712 static void
713 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
714 bool simplify)
716 int i, j;
717 const char *fmt;
718 rtx x = *loc;
719 enum rtx_code code;
720 machine_mode op0_mode = VOIDmode;
721 int prev_changes = num_changes;
723 if (!x)
724 return;
726 code = GET_CODE (x);
727 fmt = GET_RTX_FORMAT (code);
728 if (fmt[0] == 'e')
729 op0_mode = GET_MODE (XEXP (x, 0));
731 /* X matches FROM if it is the same rtx or they are both referring to the
732 same register in the same mode. Avoid calling rtx_equal_p unless the
733 operands look similar. */
735 if (x == from
736 || (REG_P (x) && REG_P (from)
737 && GET_MODE (x) == GET_MODE (from)
738 && REGNO (x) == REGNO (from))
739 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
740 && rtx_equal_p (x, from)))
742 validate_unshare_change (object, loc, to, 1);
743 return;
746 /* Call ourself recursively to perform the replacements.
747 We must not replace inside already replaced expression, otherwise we
748 get infinite recursion for replacements like (reg X)->(subreg (reg X))
749 so we must special case shared ASM_OPERANDS. */
751 if (GET_CODE (x) == PARALLEL)
753 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
755 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
756 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
758 /* Verify that operands are really shared. */
759 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
760 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
761 (x, 0, j))));
762 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
763 from, to, object, simplify);
765 else
766 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
767 simplify);
770 else
771 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
773 if (fmt[i] == 'e')
774 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
775 else if (fmt[i] == 'E')
776 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
777 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
778 simplify);
781 /* If we didn't substitute, there is nothing more to do. */
782 if (num_changes == prev_changes)
783 return;
785 /* ??? The regmove is no more, so is this aberration still necessary? */
786 /* Allow substituted expression to have different mode. This is used by
787 regmove to change mode of pseudo register. */
788 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
789 op0_mode = GET_MODE (XEXP (x, 0));
791 /* Do changes needed to keep rtx consistent. Don't do any other
792 simplifications, as it is not our job. */
793 if (simplify)
794 simplify_while_replacing (loc, to, object, op0_mode);
797 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
798 with TO. After all changes have been made, validate by seeing
799 if INSN is still valid. */
802 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
804 validate_replace_rtx_1 (loc, from, to, insn, true);
805 return apply_change_group ();
808 /* Try replacing every occurrence of FROM in INSN with TO. After all
809 changes have been made, validate by seeing if INSN is still valid. */
812 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
814 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
815 return apply_change_group ();
818 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
819 is a part of INSN. After all changes have been made, validate by seeing if
820 INSN is still valid.
821 validate_replace_rtx (from, to, insn) is equivalent to
822 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
825 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
827 validate_replace_rtx_1 (where, from, to, insn, true);
828 return apply_change_group ();
831 /* Same as above, but do not simplify rtx afterwards. */
833 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
834 rtx_insn *insn)
836 validate_replace_rtx_1 (where, from, to, insn, false);
837 return apply_change_group ();
841 /* Try replacing every occurrence of FROM in INSN with TO. This also
842 will replace in REG_EQUAL and REG_EQUIV notes. */
844 void
845 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
847 rtx note;
848 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
849 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
850 if (REG_NOTE_KIND (note) == REG_EQUAL
851 || REG_NOTE_KIND (note) == REG_EQUIV)
852 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
855 /* Function called by note_uses to replace used subexpressions. */
856 struct validate_replace_src_data
858 rtx from; /* Old RTX */
859 rtx to; /* New RTX */
860 rtx_insn *insn; /* Insn in which substitution is occurring. */
863 static void
864 validate_replace_src_1 (rtx *x, void *data)
866 struct validate_replace_src_data *d
867 = (struct validate_replace_src_data *) data;
869 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
872 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
873 SET_DESTs. */
875 void
876 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
878 struct validate_replace_src_data d;
880 d.from = from;
881 d.to = to;
882 d.insn = insn;
883 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
886 /* Try simplify INSN.
887 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
888 pattern and return true if something was simplified. */
890 bool
891 validate_simplify_insn (rtx_insn *insn)
893 int i;
894 rtx pat = NULL;
895 rtx newpat = NULL;
897 pat = PATTERN (insn);
899 if (GET_CODE (pat) == SET)
901 newpat = simplify_rtx (SET_SRC (pat));
902 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
903 validate_change (insn, &SET_SRC (pat), newpat, 1);
904 newpat = simplify_rtx (SET_DEST (pat));
905 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
906 validate_change (insn, &SET_DEST (pat), newpat, 1);
908 else if (GET_CODE (pat) == PARALLEL)
909 for (i = 0; i < XVECLEN (pat, 0); i++)
911 rtx s = XVECEXP (pat, 0, i);
913 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
915 newpat = simplify_rtx (SET_SRC (s));
916 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
917 validate_change (insn, &SET_SRC (s), newpat, 1);
918 newpat = simplify_rtx (SET_DEST (s));
919 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
920 validate_change (insn, &SET_DEST (s), newpat, 1);
923 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
926 /* Return 1 if OP is a valid general operand for machine mode MODE.
927 This is either a register reference, a memory reference,
928 or a constant. In the case of a memory reference, the address
929 is checked for general validity for the target machine.
931 Register and memory references must have mode MODE in order to be valid,
932 but some constants have no machine mode and are valid for any mode.
934 If MODE is VOIDmode, OP is checked for validity for whatever mode
935 it has.
937 The main use of this function is as a predicate in match_operand
938 expressions in the machine description. */
941 general_operand (rtx op, machine_mode mode)
943 enum rtx_code code = GET_CODE (op);
945 if (mode == VOIDmode)
946 mode = GET_MODE (op);
948 /* Don't accept CONST_INT or anything similar
949 if the caller wants something floating. */
950 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
951 && GET_MODE_CLASS (mode) != MODE_INT
952 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
953 return 0;
955 if (CONST_INT_P (op)
956 && mode != VOIDmode
957 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
958 return 0;
960 if (CONSTANT_P (op))
961 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
962 || mode == VOIDmode)
963 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
964 && targetm.legitimate_constant_p (mode == VOIDmode
965 ? GET_MODE (op)
966 : mode, op));
968 /* Except for certain constants with VOIDmode, already checked for,
969 OP's mode must match MODE if MODE specifies a mode. */
971 if (GET_MODE (op) != mode)
972 return 0;
974 if (code == SUBREG)
976 rtx sub = SUBREG_REG (op);
978 #ifdef INSN_SCHEDULING
979 /* On machines that have insn scheduling, we want all memory
980 reference to be explicit, so outlaw paradoxical SUBREGs.
981 However, we must allow them after reload so that they can
982 get cleaned up by cleanup_subreg_operands. */
983 if (!reload_completed && MEM_P (sub)
984 && paradoxical_subreg_p (op))
985 return 0;
986 #endif
987 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
988 may result in incorrect reference. We should simplify all valid
989 subregs of MEM anyway. But allow this after reload because we
990 might be called from cleanup_subreg_operands.
992 ??? This is a kludge. */
993 if (!reload_completed
994 && maybe_ne (SUBREG_BYTE (op), 0)
995 && MEM_P (sub))
996 return 0;
998 if (REG_P (sub)
999 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1000 && !REG_CAN_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1001 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1002 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1003 /* LRA can generate some invalid SUBREGS just for matched
1004 operand reload presentation. LRA needs to treat them as
1005 valid. */
1006 && ! LRA_SUBREG_P (op))
1007 return 0;
1009 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1010 create such rtl, and we must reject it. */
1011 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1012 /* LRA can use subreg to store a floating point value in an
1013 integer mode. Although the floating point and the
1014 integer modes need the same number of hard registers, the
1015 size of floating point mode can be less than the integer
1016 mode. */
1017 && ! lra_in_progress
1018 && paradoxical_subreg_p (op))
1019 return 0;
1021 op = sub;
1022 code = GET_CODE (op);
1025 if (code == REG)
1026 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1027 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1029 if (code == MEM)
1031 rtx y = XEXP (op, 0);
1033 if (! volatile_ok && MEM_VOLATILE_P (op))
1034 return 0;
1036 /* Use the mem's mode, since it will be reloaded thus. LRA can
1037 generate move insn with invalid addresses which is made valid
1038 and efficiently calculated by LRA through further numerous
1039 transformations. */
1040 if (lra_in_progress
1041 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1042 return 1;
1045 return 0;
1048 /* Return 1 if OP is a valid memory address for a memory reference
1049 of mode MODE.
1051 The main use of this function is as a predicate in match_operand
1052 expressions in the machine description. */
1055 address_operand (rtx op, machine_mode mode)
1057 /* Wrong mode for an address expr. */
1058 if (GET_MODE (op) != VOIDmode
1059 && ! SCALAR_INT_MODE_P (GET_MODE (op)))
1060 return false;
1062 return memory_address_p (mode, op);
1065 /* Return 1 if OP is a register reference of mode MODE.
1066 If MODE is VOIDmode, accept a register in any mode.
1068 The main use of this function is as a predicate in match_operand
1069 expressions in the machine description. */
1072 register_operand (rtx op, machine_mode mode)
1074 if (GET_CODE (op) == SUBREG)
1076 rtx sub = SUBREG_REG (op);
1078 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1079 because it is guaranteed to be reloaded into one.
1080 Just make sure the MEM is valid in itself.
1081 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1082 but currently it does result from (SUBREG (REG)...) where the
1083 reg went on the stack.) */
1084 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1085 return 0;
1087 else if (!REG_P (op))
1088 return 0;
1089 return general_operand (op, mode);
1092 /* Return 1 for a register in Pmode; ignore the tested mode. */
1095 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1097 return register_operand (op, Pmode);
1100 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1101 or a hard register. */
1104 scratch_operand (rtx op, machine_mode mode)
1106 if (GET_MODE (op) != mode && mode != VOIDmode)
1107 return 0;
1109 return (GET_CODE (op) == SCRATCH
1110 || (REG_P (op)
1111 && (lra_in_progress
1112 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1113 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1116 /* Return 1 if OP is a valid immediate operand for mode MODE.
1118 The main use of this function is as a predicate in match_operand
1119 expressions in the machine description. */
1122 immediate_operand (rtx op, machine_mode mode)
1124 /* Don't accept CONST_INT or anything similar
1125 if the caller wants something floating. */
1126 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1127 && GET_MODE_CLASS (mode) != MODE_INT
1128 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1129 return 0;
1131 if (CONST_INT_P (op)
1132 && mode != VOIDmode
1133 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1134 return 0;
1136 return (CONSTANT_P (op)
1137 && (GET_MODE (op) == mode || mode == VOIDmode
1138 || GET_MODE (op) == VOIDmode)
1139 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1140 && targetm.legitimate_constant_p (mode == VOIDmode
1141 ? GET_MODE (op)
1142 : mode, op));
1145 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1148 const_int_operand (rtx op, machine_mode mode)
1150 if (!CONST_INT_P (op))
1151 return 0;
1153 if (mode != VOIDmode
1154 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1155 return 0;
1157 return 1;
1160 #if TARGET_SUPPORTS_WIDE_INT
1161 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1162 of mode MODE. */
1164 const_scalar_int_operand (rtx op, machine_mode mode)
1166 if (!CONST_SCALAR_INT_P (op))
1167 return 0;
1169 if (CONST_INT_P (op))
1170 return const_int_operand (op, mode);
1172 if (mode != VOIDmode)
1174 scalar_int_mode int_mode = as_a <scalar_int_mode> (mode);
1175 int prec = GET_MODE_PRECISION (int_mode);
1176 int bitsize = GET_MODE_BITSIZE (int_mode);
1178 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1179 return 0;
1181 if (prec == bitsize)
1182 return 1;
1183 else
1185 /* Multiword partial int. */
1186 HOST_WIDE_INT x
1187 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1188 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1191 return 1;
1194 /* Returns 1 if OP is an operand that is a constant integer or constant
1195 floating-point number of MODE. */
1198 const_double_operand (rtx op, machine_mode mode)
1200 return (GET_CODE (op) == CONST_DOUBLE)
1201 && (GET_MODE (op) == mode || mode == VOIDmode);
1203 #else
1204 /* Returns 1 if OP is an operand that is a constant integer or constant
1205 floating-point number of MODE. */
1208 const_double_operand (rtx op, machine_mode mode)
1210 /* Don't accept CONST_INT or anything similar
1211 if the caller wants something floating. */
1212 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1213 && GET_MODE_CLASS (mode) != MODE_INT
1214 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1215 return 0;
1217 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1218 && (mode == VOIDmode || GET_MODE (op) == mode
1219 || GET_MODE (op) == VOIDmode));
1221 #endif
1222 /* Return 1 if OP is a general operand that is not an immediate
1223 operand of mode MODE. */
1226 nonimmediate_operand (rtx op, machine_mode mode)
1228 return (general_operand (op, mode) && ! CONSTANT_P (op));
1231 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1234 nonmemory_operand (rtx op, machine_mode mode)
1236 if (CONSTANT_P (op))
1237 return immediate_operand (op, mode);
1238 return register_operand (op, mode);
1241 /* Return 1 if OP is a valid operand that stands for pushing a
1242 value of mode MODE onto the stack.
1244 The main use of this function is as a predicate in match_operand
1245 expressions in the machine description. */
1248 push_operand (rtx op, machine_mode mode)
1250 if (!MEM_P (op))
1251 return 0;
1253 if (mode != VOIDmode && GET_MODE (op) != mode)
1254 return 0;
1256 poly_int64 rounded_size = GET_MODE_SIZE (mode);
1258 #ifdef PUSH_ROUNDING
1259 rounded_size = PUSH_ROUNDING (MACRO_INT (rounded_size));
1260 #endif
1262 op = XEXP (op, 0);
1264 if (known_eq (rounded_size, GET_MODE_SIZE (mode)))
1266 if (GET_CODE (op) != STACK_PUSH_CODE)
1267 return 0;
1269 else
1271 poly_int64 offset;
1272 if (GET_CODE (op) != PRE_MODIFY
1273 || GET_CODE (XEXP (op, 1)) != PLUS
1274 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1275 || !poly_int_rtx_p (XEXP (XEXP (op, 1), 1), &offset)
1276 || (STACK_GROWS_DOWNWARD
1277 ? maybe_ne (offset, -rounded_size)
1278 : maybe_ne (offset, rounded_size)))
1279 return 0;
1282 return XEXP (op, 0) == stack_pointer_rtx;
1285 /* Return 1 if OP is a valid operand that stands for popping a
1286 value of mode MODE off the stack.
1288 The main use of this function is as a predicate in match_operand
1289 expressions in the machine description. */
1292 pop_operand (rtx op, machine_mode mode)
1294 if (!MEM_P (op))
1295 return 0;
1297 if (mode != VOIDmode && GET_MODE (op) != mode)
1298 return 0;
1300 op = XEXP (op, 0);
1302 if (GET_CODE (op) != STACK_POP_CODE)
1303 return 0;
1305 return XEXP (op, 0) == stack_pointer_rtx;
1308 /* Return 1 if ADDR is a valid memory address
1309 for mode MODE in address space AS. */
1312 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1313 rtx addr, addr_space_t as)
1315 #ifdef GO_IF_LEGITIMATE_ADDRESS
1316 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1317 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1318 return 0;
1320 win:
1321 return 1;
1322 #else
1323 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1324 #endif
1327 /* Return 1 if OP is a valid memory reference with mode MODE,
1328 including a valid address.
1330 The main use of this function is as a predicate in match_operand
1331 expressions in the machine description. */
1334 memory_operand (rtx op, machine_mode mode)
1336 rtx inner;
1338 if (! reload_completed)
1339 /* Note that no SUBREG is a memory operand before end of reload pass,
1340 because (SUBREG (MEM...)) forces reloading into a register. */
1341 return MEM_P (op) && general_operand (op, mode);
1343 if (mode != VOIDmode && GET_MODE (op) != mode)
1344 return 0;
1346 inner = op;
1347 if (GET_CODE (inner) == SUBREG)
1348 inner = SUBREG_REG (inner);
1350 return (MEM_P (inner) && general_operand (op, mode));
1353 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1354 that is, a memory reference whose address is a general_operand. */
1357 indirect_operand (rtx op, machine_mode mode)
1359 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1360 if (! reload_completed
1361 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1363 if (mode != VOIDmode && GET_MODE (op) != mode)
1364 return 0;
1366 /* The only way that we can have a general_operand as the resulting
1367 address is if OFFSET is zero and the address already is an operand
1368 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1369 operand. */
1370 poly_int64 offset;
1371 rtx addr = strip_offset (XEXP (SUBREG_REG (op), 0), &offset);
1372 return (known_eq (offset + SUBREG_BYTE (op), 0)
1373 && general_operand (addr, Pmode));
1376 return (MEM_P (op)
1377 && memory_operand (op, mode)
1378 && general_operand (XEXP (op, 0), Pmode));
1381 /* Return 1 if this is an ordered comparison operator (not including
1382 ORDERED and UNORDERED). */
1385 ordered_comparison_operator (rtx op, machine_mode mode)
1387 if (mode != VOIDmode && GET_MODE (op) != mode)
1388 return false;
1389 switch (GET_CODE (op))
1391 case EQ:
1392 case NE:
1393 case LT:
1394 case LTU:
1395 case LE:
1396 case LEU:
1397 case GT:
1398 case GTU:
1399 case GE:
1400 case GEU:
1401 return true;
1402 default:
1403 return false;
1407 /* Return 1 if this is a comparison operator. This allows the use of
1408 MATCH_OPERATOR to recognize all the branch insns. */
1411 comparison_operator (rtx op, machine_mode mode)
1413 return ((mode == VOIDmode || GET_MODE (op) == mode)
1414 && COMPARISON_P (op));
1417 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1420 extract_asm_operands (rtx body)
1422 rtx tmp;
1423 switch (GET_CODE (body))
1425 case ASM_OPERANDS:
1426 return body;
1428 case SET:
1429 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1430 tmp = SET_SRC (body);
1431 if (GET_CODE (tmp) == ASM_OPERANDS)
1432 return tmp;
1433 break;
1435 case PARALLEL:
1436 tmp = XVECEXP (body, 0, 0);
1437 if (GET_CODE (tmp) == ASM_OPERANDS)
1438 return tmp;
1439 if (GET_CODE (tmp) == SET)
1441 tmp = SET_SRC (tmp);
1442 if (GET_CODE (tmp) == ASM_OPERANDS)
1443 return tmp;
1445 break;
1447 default:
1448 break;
1450 return NULL;
1453 /* If BODY is an insn body that uses ASM_OPERANDS,
1454 return the number of operands (both input and output) in the insn.
1455 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1456 return 0.
1457 Otherwise return -1. */
1460 asm_noperands (const_rtx body)
1462 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1463 int i, n_sets = 0;
1465 if (asm_op == NULL)
1467 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1468 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1470 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1471 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1472 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1473 return -1;
1474 return 0;
1476 return -1;
1479 if (GET_CODE (body) == SET)
1480 n_sets = 1;
1481 else if (GET_CODE (body) == PARALLEL)
1483 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1485 /* Multiple output operands, or 1 output plus some clobbers:
1486 body is
1487 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1488 /* Count backwards through CLOBBERs to determine number of SETs. */
1489 for (i = XVECLEN (body, 0); i > 0; i--)
1491 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1492 break;
1493 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1494 return -1;
1497 /* N_SETS is now number of output operands. */
1498 n_sets = i;
1500 /* Verify that all the SETs we have
1501 came from a single original asm_operands insn
1502 (so that invalid combinations are blocked). */
1503 for (i = 0; i < n_sets; i++)
1505 rtx elt = XVECEXP (body, 0, i);
1506 if (GET_CODE (elt) != SET)
1507 return -1;
1508 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1509 return -1;
1510 /* If these ASM_OPERANDS rtx's came from different original insns
1511 then they aren't allowed together. */
1512 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1513 != ASM_OPERANDS_INPUT_VEC (asm_op))
1514 return -1;
1517 else
1519 /* 0 outputs, but some clobbers:
1520 body is [(asm_operands ...) (clobber (reg ...))...]. */
1521 /* Make sure all the other parallel things really are clobbers. */
1522 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1523 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1524 return -1;
1528 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1529 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1532 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1533 copy its operands (both input and output) into the vector OPERANDS,
1534 the locations of the operands within the insn into the vector OPERAND_LOCS,
1535 and the constraints for the operands into CONSTRAINTS.
1536 Write the modes of the operands into MODES.
1537 Write the location info into LOC.
1538 Return the assembler-template.
1539 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1540 return the basic assembly string.
1542 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1543 we don't store that info. */
1545 const char *
1546 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1547 const char **constraints, machine_mode *modes,
1548 location_t *loc)
1550 int nbase = 0, n, i;
1551 rtx asmop;
1553 switch (GET_CODE (body))
1555 case ASM_OPERANDS:
1556 /* Zero output asm: BODY is (asm_operands ...). */
1557 asmop = body;
1558 break;
1560 case SET:
1561 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1562 asmop = SET_SRC (body);
1564 /* The output is in the SET.
1565 Its constraint is in the ASM_OPERANDS itself. */
1566 if (operands)
1567 operands[0] = SET_DEST (body);
1568 if (operand_locs)
1569 operand_locs[0] = &SET_DEST (body);
1570 if (constraints)
1571 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1572 if (modes)
1573 modes[0] = GET_MODE (SET_DEST (body));
1574 nbase = 1;
1575 break;
1577 case PARALLEL:
1579 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1581 asmop = XVECEXP (body, 0, 0);
1582 if (GET_CODE (asmop) == SET)
1584 asmop = SET_SRC (asmop);
1586 /* At least one output, plus some CLOBBERs. The outputs are in
1587 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1588 for (i = 0; i < nparallel; i++)
1590 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1591 break; /* Past last SET */
1592 gcc_assert (GET_CODE (XVECEXP (body, 0, i)) == SET);
1593 if (operands)
1594 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1595 if (operand_locs)
1596 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1597 if (constraints)
1598 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1599 if (modes)
1600 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1602 nbase = i;
1604 else if (GET_CODE (asmop) == ASM_INPUT)
1606 if (loc)
1607 *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1608 return XSTR (asmop, 0);
1610 break;
1613 default:
1614 gcc_unreachable ();
1617 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1618 for (i = 0; i < n; i++)
1620 if (operand_locs)
1621 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1622 if (operands)
1623 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1624 if (constraints)
1625 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1626 if (modes)
1627 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1629 nbase += n;
1631 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1632 for (i = 0; i < n; i++)
1634 if (operand_locs)
1635 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1636 if (operands)
1637 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1638 if (constraints)
1639 constraints[nbase + i] = "";
1640 if (modes)
1641 modes[nbase + i] = Pmode;
1644 if (loc)
1645 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1647 return ASM_OPERANDS_TEMPLATE (asmop);
1650 /* Parse inline assembly string STRING and determine which operands are
1651 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1652 to true if operand I is referenced.
1654 This is intended to distinguish barrier-like asms such as:
1656 asm ("" : "=m" (...));
1658 from real references such as:
1660 asm ("sw\t$0, %0" : "=m" (...)); */
1662 void
1663 get_referenced_operands (const char *string, bool *used,
1664 unsigned int noperands)
1666 memset (used, 0, sizeof (bool) * noperands);
1667 const char *p = string;
1668 while (*p)
1669 switch (*p)
1671 case '%':
1672 p += 1;
1673 /* A letter followed by a digit indicates an operand number. */
1674 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1675 p += 1;
1676 if (ISDIGIT (*p))
1678 char *endptr;
1679 unsigned long opnum = strtoul (p, &endptr, 10);
1680 if (endptr != p && opnum < noperands)
1681 used[opnum] = true;
1682 p = endptr;
1684 else
1685 p += 1;
1686 break;
1688 default:
1689 p++;
1690 break;
1694 /* Check if an asm_operand matches its constraints.
1695 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1698 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1700 int result = 0;
1701 bool incdec_ok = false;
1703 /* Use constrain_operands after reload. */
1704 gcc_assert (!reload_completed);
1706 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1707 many alternatives as required to match the other operands. */
1708 if (*constraint == '\0')
1709 result = 1;
1711 while (*constraint)
1713 enum constraint_num cn;
1714 char c = *constraint;
1715 int len;
1716 switch (c)
1718 case ',':
1719 constraint++;
1720 continue;
1722 case '0': case '1': case '2': case '3': case '4':
1723 case '5': case '6': case '7': case '8': case '9':
1724 /* If caller provided constraints pointer, look up
1725 the matching constraint. Otherwise, our caller should have
1726 given us the proper matching constraint, but we can't
1727 actually fail the check if they didn't. Indicate that
1728 results are inconclusive. */
1729 if (constraints)
1731 char *end;
1732 unsigned long match;
1734 match = strtoul (constraint, &end, 10);
1735 if (!result)
1736 result = asm_operand_ok (op, constraints[match], NULL);
1737 constraint = (const char *) end;
1739 else
1742 constraint++;
1743 while (ISDIGIT (*constraint));
1744 if (! result)
1745 result = -1;
1747 continue;
1749 /* The rest of the compiler assumes that reloading the address
1750 of a MEM into a register will make it fit an 'o' constraint.
1751 That is, if it sees a MEM operand for an 'o' constraint,
1752 it assumes that (mem (base-reg)) will fit.
1754 That assumption fails on targets that don't have offsettable
1755 addresses at all. We therefore need to treat 'o' asm
1756 constraints as a special case and only accept operands that
1757 are already offsettable, thus proving that at least one
1758 offsettable address exists. */
1759 case 'o': /* offsettable */
1760 if (offsettable_nonstrict_memref_p (op))
1761 result = 1;
1762 break;
1764 case 'g':
1765 if (general_operand (op, VOIDmode))
1766 result = 1;
1767 break;
1769 case '<':
1770 case '>':
1771 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1772 to exist, excepting those that expand_call created. Further,
1773 on some machines which do not have generalized auto inc/dec,
1774 an inc/dec is not a memory_operand.
1776 Match any memory and hope things are resolved after reload. */
1777 incdec_ok = true;
1778 /* FALLTHRU */
1779 default:
1780 cn = lookup_constraint (constraint);
1781 switch (get_constraint_type (cn))
1783 case CT_REGISTER:
1784 if (!result
1785 && reg_class_for_constraint (cn) != NO_REGS
1786 && GET_MODE (op) != BLKmode
1787 && register_operand (op, VOIDmode))
1788 result = 1;
1789 break;
1791 case CT_CONST_INT:
1792 if (!result
1793 && CONST_INT_P (op)
1794 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1795 result = 1;
1796 break;
1798 case CT_MEMORY:
1799 case CT_SPECIAL_MEMORY:
1800 /* Every memory operand can be reloaded to fit. */
1801 result = result || memory_operand (extract_mem_from_operand (op),
1802 VOIDmode);
1803 break;
1805 case CT_ADDRESS:
1806 /* Every address operand can be reloaded to fit. */
1807 result = result || address_operand (op, VOIDmode);
1808 break;
1810 case CT_FIXED_FORM:
1811 result = result || constraint_satisfied_p (op, cn);
1812 break;
1814 break;
1816 len = CONSTRAINT_LEN (c, constraint);
1818 constraint++;
1819 while (--len && *constraint && *constraint != ',');
1820 if (len)
1821 return 0;
1824 /* For operands without < or > constraints reject side-effects. */
1825 if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1826 switch (GET_CODE (XEXP (op, 0)))
1828 case PRE_INC:
1829 case POST_INC:
1830 case PRE_DEC:
1831 case POST_DEC:
1832 case PRE_MODIFY:
1833 case POST_MODIFY:
1834 return 0;
1835 default:
1836 break;
1839 return result;
1842 /* Given an rtx *P, if it is a sum containing an integer constant term,
1843 return the location (type rtx *) of the pointer to that constant term.
1844 Otherwise, return a null pointer. */
1846 rtx *
1847 find_constant_term_loc (rtx *p)
1849 rtx *tem;
1850 enum rtx_code code = GET_CODE (*p);
1852 /* If *P IS such a constant term, P is its location. */
1854 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1855 || code == CONST)
1856 return p;
1858 /* Otherwise, if not a sum, it has no constant term. */
1860 if (GET_CODE (*p) != PLUS)
1861 return 0;
1863 /* If one of the summands is constant, return its location. */
1865 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1866 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1867 return p;
1869 /* Otherwise, check each summand for containing a constant term. */
1871 if (XEXP (*p, 0) != 0)
1873 tem = find_constant_term_loc (&XEXP (*p, 0));
1874 if (tem != 0)
1875 return tem;
1878 if (XEXP (*p, 1) != 0)
1880 tem = find_constant_term_loc (&XEXP (*p, 1));
1881 if (tem != 0)
1882 return tem;
1885 return 0;
1888 /* Return 1 if OP is a memory reference
1889 whose address contains no side effects
1890 and remains valid after the addition
1891 of a positive integer less than the
1892 size of the object being referenced.
1894 We assume that the original address is valid and do not check it.
1896 This uses strict_memory_address_p as a subroutine, so
1897 don't use it before reload. */
1900 offsettable_memref_p (rtx op)
1902 return ((MEM_P (op))
1903 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1904 MEM_ADDR_SPACE (op)));
1907 /* Similar, but don't require a strictly valid mem ref:
1908 consider pseudo-regs valid as index or base regs. */
1911 offsettable_nonstrict_memref_p (rtx op)
1913 return ((MEM_P (op))
1914 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1915 MEM_ADDR_SPACE (op)));
1918 /* Return 1 if Y is a memory address which contains no side effects
1919 and would remain valid for address space AS after the addition of
1920 a positive integer less than the size of that mode.
1922 We assume that the original address is valid and do not check it.
1923 We do check that it is valid for narrower modes.
1925 If STRICTP is nonzero, we require a strictly valid address,
1926 for the sake of use in reload.c. */
1929 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1930 addr_space_t as)
1932 enum rtx_code ycode = GET_CODE (y);
1933 rtx z;
1934 rtx y1 = y;
1935 rtx *y2;
1936 int (*addressp) (machine_mode, rtx, addr_space_t) =
1937 (strictp ? strict_memory_address_addr_space_p
1938 : memory_address_addr_space_p);
1939 poly_int64 mode_sz = GET_MODE_SIZE (mode);
1941 if (CONSTANT_ADDRESS_P (y))
1942 return 1;
1944 /* Adjusting an offsettable address involves changing to a narrower mode.
1945 Make sure that's OK. */
1947 if (mode_dependent_address_p (y, as))
1948 return 0;
1950 machine_mode address_mode = GET_MODE (y);
1951 if (address_mode == VOIDmode)
1952 address_mode = targetm.addr_space.address_mode (as);
1953 #ifdef POINTERS_EXTEND_UNSIGNED
1954 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1955 #endif
1957 /* ??? How much offset does an offsettable BLKmode reference need?
1958 Clearly that depends on the situation in which it's being used.
1959 However, the current situation in which we test 0xffffffff is
1960 less than ideal. Caveat user. */
1961 if (known_eq (mode_sz, 0))
1962 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1964 /* If the expression contains a constant term,
1965 see if it remains valid when max possible offset is added. */
1967 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1969 int good;
1971 y1 = *y2;
1972 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1973 /* Use QImode because an odd displacement may be automatically invalid
1974 for any wider mode. But it should be valid for a single byte. */
1975 good = (*addressp) (QImode, y, as);
1977 /* In any case, restore old contents of memory. */
1978 *y2 = y1;
1979 return good;
1982 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1983 return 0;
1985 /* The offset added here is chosen as the maximum offset that
1986 any instruction could need to add when operating on something
1987 of the specified mode. We assume that if Y and Y+c are
1988 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1989 go inside a LO_SUM here, so we do so as well. */
1990 if (GET_CODE (y) == LO_SUM
1991 && mode != BLKmode
1992 && known_le (mode_sz, GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT))
1993 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
1994 plus_constant (address_mode, XEXP (y, 1),
1995 mode_sz - 1));
1996 #ifdef POINTERS_EXTEND_UNSIGNED
1997 /* Likewise for a ZERO_EXTEND from pointer_mode. */
1998 else if (POINTERS_EXTEND_UNSIGNED > 0
1999 && GET_CODE (y) == ZERO_EXTEND
2000 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2001 z = gen_rtx_ZERO_EXTEND (address_mode,
2002 plus_constant (pointer_mode, XEXP (y, 0),
2003 mode_sz - 1));
2004 #endif
2005 else
2006 z = plus_constant (address_mode, y, mode_sz - 1);
2008 /* Use QImode because an odd displacement may be automatically invalid
2009 for any wider mode. But it should be valid for a single byte. */
2010 return (*addressp) (QImode, z, as);
2013 /* Return 1 if ADDR is an address-expression whose effect depends
2014 on the mode of the memory reference it is used in.
2016 ADDRSPACE is the address space associated with the address.
2018 Autoincrement addressing is a typical example of mode-dependence
2019 because the amount of the increment depends on the mode. */
2021 bool
2022 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2024 /* Auto-increment addressing with anything other than post_modify
2025 or pre_modify always introduces a mode dependency. Catch such
2026 cases now instead of deferring to the target. */
2027 if (GET_CODE (addr) == PRE_INC
2028 || GET_CODE (addr) == POST_INC
2029 || GET_CODE (addr) == PRE_DEC
2030 || GET_CODE (addr) == POST_DEC)
2031 return true;
2033 return targetm.mode_dependent_address_p (addr, addrspace);
2036 /* Return true if boolean attribute ATTR is supported. */
2038 static bool
2039 have_bool_attr (bool_attr attr)
2041 switch (attr)
2043 case BA_ENABLED:
2044 return HAVE_ATTR_enabled;
2045 case BA_PREFERRED_FOR_SIZE:
2046 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2047 case BA_PREFERRED_FOR_SPEED:
2048 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2050 gcc_unreachable ();
2053 /* Return the value of ATTR for instruction INSN. */
2055 static bool
2056 get_bool_attr (rtx_insn *insn, bool_attr attr)
2058 switch (attr)
2060 case BA_ENABLED:
2061 return get_attr_enabled (insn);
2062 case BA_PREFERRED_FOR_SIZE:
2063 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2064 case BA_PREFERRED_FOR_SPEED:
2065 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2067 gcc_unreachable ();
2070 /* Like get_bool_attr_mask, but don't use the cache. */
2072 static alternative_mask
2073 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2075 /* Temporarily install enough information for get_attr_<foo> to assume
2076 that the insn operands are already cached. As above, the attribute
2077 mustn't depend on the values of operands, so we don't provide their
2078 real values here. */
2079 rtx_insn *old_insn = recog_data.insn;
2080 int old_alternative = which_alternative;
2082 recog_data.insn = insn;
2083 alternative_mask mask = ALL_ALTERNATIVES;
2084 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2085 for (int i = 0; i < n_alternatives; i++)
2087 which_alternative = i;
2088 if (!get_bool_attr (insn, attr))
2089 mask &= ~ALTERNATIVE_BIT (i);
2092 recog_data.insn = old_insn;
2093 which_alternative = old_alternative;
2094 return mask;
2097 /* Return the mask of operand alternatives that are allowed for INSN
2098 by boolean attribute ATTR. This mask depends only on INSN and on
2099 the current target; it does not depend on things like the values of
2100 operands. */
2102 static alternative_mask
2103 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2105 /* Quick exit for asms and for targets that don't use these attributes. */
2106 int code = INSN_CODE (insn);
2107 if (code < 0 || !have_bool_attr (attr))
2108 return ALL_ALTERNATIVES;
2110 /* Calling get_attr_<foo> can be expensive, so cache the mask
2111 for speed. */
2112 if (!this_target_recog->x_bool_attr_masks[code][attr])
2113 this_target_recog->x_bool_attr_masks[code][attr]
2114 = get_bool_attr_mask_uncached (insn, attr);
2115 return this_target_recog->x_bool_attr_masks[code][attr];
2118 /* Return the set of alternatives of INSN that are allowed by the current
2119 target. */
2121 alternative_mask
2122 get_enabled_alternatives (rtx_insn *insn)
2124 return get_bool_attr_mask (insn, BA_ENABLED);
2127 /* Return the set of alternatives of INSN that are allowed by the current
2128 target and are preferred for the current size/speed optimization
2129 choice. */
2131 alternative_mask
2132 get_preferred_alternatives (rtx_insn *insn)
2134 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2135 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2136 else
2137 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2140 /* Return the set of alternatives of INSN that are allowed by the current
2141 target and are preferred for the size/speed optimization choice
2142 associated with BB. Passing a separate BB is useful if INSN has not
2143 been emitted yet or if we are considering moving it to a different
2144 block. */
2146 alternative_mask
2147 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2149 if (optimize_bb_for_speed_p (bb))
2150 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2151 else
2152 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2155 /* Assert that the cached boolean attributes for INSN are still accurate.
2156 The backend is required to define these attributes in a way that only
2157 depends on the current target (rather than operands, compiler phase,
2158 etc.). */
2160 bool
2161 check_bool_attrs (rtx_insn *insn)
2163 int code = INSN_CODE (insn);
2164 if (code >= 0)
2165 for (int i = 0; i <= BA_LAST; ++i)
2167 enum bool_attr attr = (enum bool_attr) i;
2168 if (this_target_recog->x_bool_attr_masks[code][attr])
2169 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2170 == get_bool_attr_mask_uncached (insn, attr));
2172 return true;
2175 /* Like extract_insn, but save insn extracted and don't extract again, when
2176 called again for the same insn expecting that recog_data still contain the
2177 valid information. This is used primary by gen_attr infrastructure that
2178 often does extract insn again and again. */
2179 void
2180 extract_insn_cached (rtx_insn *insn)
2182 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2183 return;
2184 extract_insn (insn);
2185 recog_data.insn = insn;
2188 /* Do uncached extract_insn, constrain_operands and complain about failures.
2189 This should be used when extracting a pre-existing constrained instruction
2190 if the caller wants to know which alternative was chosen. */
2191 void
2192 extract_constrain_insn (rtx_insn *insn)
2194 extract_insn (insn);
2195 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2196 fatal_insn_not_found (insn);
2199 /* Do cached extract_insn, constrain_operands and complain about failures.
2200 Used by insn_attrtab. */
2201 void
2202 extract_constrain_insn_cached (rtx_insn *insn)
2204 extract_insn_cached (insn);
2205 if (which_alternative == -1
2206 && !constrain_operands (reload_completed,
2207 get_enabled_alternatives (insn)))
2208 fatal_insn_not_found (insn);
2211 /* Do cached constrain_operands on INSN and complain about failures. */
2213 constrain_operands_cached (rtx_insn *insn, int strict)
2215 if (which_alternative == -1)
2216 return constrain_operands (strict, get_enabled_alternatives (insn));
2217 else
2218 return 1;
2221 /* Analyze INSN and fill in recog_data. */
2223 void
2224 extract_insn (rtx_insn *insn)
2226 int i;
2227 int icode;
2228 int noperands;
2229 rtx body = PATTERN (insn);
2231 recog_data.n_operands = 0;
2232 recog_data.n_alternatives = 0;
2233 recog_data.n_dups = 0;
2234 recog_data.is_asm = false;
2236 switch (GET_CODE (body))
2238 case USE:
2239 case CLOBBER:
2240 case ASM_INPUT:
2241 case ADDR_VEC:
2242 case ADDR_DIFF_VEC:
2243 case VAR_LOCATION:
2244 case DEBUG_MARKER:
2245 return;
2247 case SET:
2248 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2249 goto asm_insn;
2250 else
2251 goto normal_insn;
2252 case PARALLEL:
2253 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2254 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2255 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2256 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2257 goto asm_insn;
2258 else
2259 goto normal_insn;
2260 case ASM_OPERANDS:
2261 asm_insn:
2262 recog_data.n_operands = noperands = asm_noperands (body);
2263 if (noperands >= 0)
2265 /* This insn is an `asm' with operands. */
2267 /* expand_asm_operands makes sure there aren't too many operands. */
2268 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2270 /* Now get the operand values and constraints out of the insn. */
2271 decode_asm_operands (body, recog_data.operand,
2272 recog_data.operand_loc,
2273 recog_data.constraints,
2274 recog_data.operand_mode, NULL);
2275 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2276 if (noperands > 0)
2278 const char *p = recog_data.constraints[0];
2279 recog_data.n_alternatives = 1;
2280 while (*p)
2281 recog_data.n_alternatives += (*p++ == ',');
2283 recog_data.is_asm = true;
2284 break;
2286 fatal_insn_not_found (insn);
2288 default:
2289 normal_insn:
2290 /* Ordinary insn: recognize it, get the operands via insn_extract
2291 and get the constraints. */
2293 icode = recog_memoized (insn);
2294 if (icode < 0)
2295 fatal_insn_not_found (insn);
2297 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2298 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2299 recog_data.n_dups = insn_data[icode].n_dups;
2301 insn_extract (insn);
2303 for (i = 0; i < noperands; i++)
2305 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2306 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2307 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2308 /* VOIDmode match_operands gets mode from their real operand. */
2309 if (recog_data.operand_mode[i] == VOIDmode)
2310 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2313 for (i = 0; i < noperands; i++)
2314 recog_data.operand_type[i]
2315 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2316 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2317 : OP_IN);
2319 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2321 recog_data.insn = NULL;
2322 which_alternative = -1;
2325 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2326 operands, N_ALTERNATIVES alternatives and constraint strings
2327 CONSTRAINTS. OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2328 and CONSTRAINTS has N_OPERANDS entries. OPLOC should be passed in
2329 if the insn is an asm statement and preprocessing should take the
2330 asm operands into account, e.g. to determine whether they could be
2331 addresses in constraints that require addresses; it should then
2332 point to an array of pointers to each operand. */
2334 void
2335 preprocess_constraints (int n_operands, int n_alternatives,
2336 const char **constraints,
2337 operand_alternative *op_alt_base,
2338 rtx **oploc)
2340 for (int i = 0; i < n_operands; i++)
2342 int j;
2343 struct operand_alternative *op_alt;
2344 const char *p = constraints[i];
2346 op_alt = op_alt_base;
2348 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2350 op_alt[i].cl = NO_REGS;
2351 op_alt[i].constraint = p;
2352 op_alt[i].matches = -1;
2353 op_alt[i].matched = -1;
2355 if (*p == '\0' || *p == ',')
2357 op_alt[i].anything_ok = 1;
2358 continue;
2361 for (;;)
2363 char c = *p;
2364 if (c == '#')
2366 c = *++p;
2367 while (c != ',' && c != '\0');
2368 if (c == ',' || c == '\0')
2370 p++;
2371 break;
2374 switch (c)
2376 case '?':
2377 op_alt[i].reject += 6;
2378 break;
2379 case '!':
2380 op_alt[i].reject += 600;
2381 break;
2382 case '&':
2383 op_alt[i].earlyclobber = 1;
2384 break;
2386 case '0': case '1': case '2': case '3': case '4':
2387 case '5': case '6': case '7': case '8': case '9':
2389 char *end;
2390 op_alt[i].matches = strtoul (p, &end, 10);
2391 op_alt[op_alt[i].matches].matched = i;
2392 p = end;
2394 continue;
2396 case 'X':
2397 op_alt[i].anything_ok = 1;
2398 break;
2400 case 'g':
2401 op_alt[i].cl =
2402 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2403 break;
2405 default:
2406 enum constraint_num cn = lookup_constraint (p);
2407 enum reg_class cl;
2408 switch (get_constraint_type (cn))
2410 case CT_REGISTER:
2411 cl = reg_class_for_constraint (cn);
2412 if (cl != NO_REGS)
2413 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2414 break;
2416 case CT_CONST_INT:
2417 break;
2419 case CT_MEMORY:
2420 case CT_SPECIAL_MEMORY:
2421 op_alt[i].memory_ok = 1;
2422 break;
2424 case CT_ADDRESS:
2425 if (oploc && !address_operand (*oploc[i], VOIDmode))
2426 break;
2428 op_alt[i].is_address = 1;
2429 op_alt[i].cl
2430 = (reg_class_subunion
2431 [(int) op_alt[i].cl]
2432 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2433 ADDRESS, SCRATCH)]);
2434 break;
2436 case CT_FIXED_FORM:
2437 break;
2439 break;
2441 p += CONSTRAINT_LEN (c, p);
2447 /* Return an array of operand_alternative instructions for
2448 instruction ICODE. */
2450 const operand_alternative *
2451 preprocess_insn_constraints (unsigned int icode)
2453 gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2454 if (this_target_recog->x_op_alt[icode])
2455 return this_target_recog->x_op_alt[icode];
2457 int n_operands = insn_data[icode].n_operands;
2458 if (n_operands == 0)
2459 return 0;
2460 /* Always provide at least one alternative so that which_op_alt ()
2461 works correctly. If the instruction has 0 alternatives (i.e. all
2462 constraint strings are empty) then each operand in this alternative
2463 will have anything_ok set. */
2464 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2465 int n_entries = n_operands * n_alternatives;
2467 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2468 const char **constraints = XALLOCAVEC (const char *, n_operands);
2470 for (int i = 0; i < n_operands; ++i)
2471 constraints[i] = insn_data[icode].operand[i].constraint;
2472 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt,
2473 NULL);
2475 this_target_recog->x_op_alt[icode] = op_alt;
2476 return op_alt;
2479 /* After calling extract_insn, you can use this function to extract some
2480 information from the constraint strings into a more usable form.
2481 The collected data is stored in recog_op_alt. */
2483 void
2484 preprocess_constraints (rtx_insn *insn)
2486 int icode = INSN_CODE (insn);
2487 if (icode >= 0)
2488 recog_op_alt = preprocess_insn_constraints (icode);
2489 else
2491 int n_operands = recog_data.n_operands;
2492 int n_alternatives = recog_data.n_alternatives;
2493 int n_entries = n_operands * n_alternatives;
2494 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2495 preprocess_constraints (n_operands, n_alternatives,
2496 recog_data.constraints, asm_op_alt,
2497 NULL);
2498 recog_op_alt = asm_op_alt;
2502 /* Check the operands of an insn against the insn's operand constraints
2503 and return 1 if they match any of the alternatives in ALTERNATIVES.
2505 The information about the insn's operands, constraints, operand modes
2506 etc. is obtained from the global variables set up by extract_insn.
2508 WHICH_ALTERNATIVE is set to a number which indicates which
2509 alternative of constraints was matched: 0 for the first alternative,
2510 1 for the next, etc.
2512 In addition, when two operands are required to match
2513 and it happens that the output operand is (reg) while the
2514 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2515 make the output operand look like the input.
2516 This is because the output operand is the one the template will print.
2518 This is used in final, just before printing the assembler code and by
2519 the routines that determine an insn's attribute.
2521 If STRICT is a positive nonzero value, it means that we have been
2522 called after reload has been completed. In that case, we must
2523 do all checks strictly. If it is zero, it means that we have been called
2524 before reload has completed. In that case, we first try to see if we can
2525 find an alternative that matches strictly. If not, we try again, this
2526 time assuming that reload will fix up the insn. This provides a "best
2527 guess" for the alternative and is used to compute attributes of insns prior
2528 to reload. A negative value of STRICT is used for this internal call. */
2530 struct funny_match
2532 int this_op, other;
2536 constrain_operands (int strict, alternative_mask alternatives)
2538 const char *constraints[MAX_RECOG_OPERANDS];
2539 int matching_operands[MAX_RECOG_OPERANDS];
2540 int earlyclobber[MAX_RECOG_OPERANDS];
2541 int c;
2543 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2544 int funny_match_index;
2546 which_alternative = 0;
2547 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2548 return 1;
2550 for (c = 0; c < recog_data.n_operands; c++)
2552 constraints[c] = recog_data.constraints[c];
2553 matching_operands[c] = -1;
2558 int seen_earlyclobber_at = -1;
2559 int opno;
2560 int lose = 0;
2561 funny_match_index = 0;
2563 if (!TEST_BIT (alternatives, which_alternative))
2565 int i;
2567 for (i = 0; i < recog_data.n_operands; i++)
2568 constraints[i] = skip_alternative (constraints[i]);
2570 which_alternative++;
2571 continue;
2574 for (opno = 0; opno < recog_data.n_operands; opno++)
2576 rtx op = recog_data.operand[opno];
2577 machine_mode mode = GET_MODE (op);
2578 const char *p = constraints[opno];
2579 int offset = 0;
2580 int win = 0;
2581 int val;
2582 int len;
2584 earlyclobber[opno] = 0;
2586 /* A unary operator may be accepted by the predicate, but it
2587 is irrelevant for matching constraints. */
2588 /* For special_memory_operand, there could be a memory operand inside,
2589 and it would cause a mismatch for constraint_satisfied_p. */
2590 if (UNARY_P (op) && op == extract_mem_from_operand (op))
2591 op = XEXP (op, 0);
2593 if (GET_CODE (op) == SUBREG)
2595 if (REG_P (SUBREG_REG (op))
2596 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2597 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2598 GET_MODE (SUBREG_REG (op)),
2599 SUBREG_BYTE (op),
2600 GET_MODE (op));
2601 op = SUBREG_REG (op);
2604 /* An empty constraint or empty alternative
2605 allows anything which matched the pattern. */
2606 if (*p == 0 || *p == ',')
2607 win = 1;
2610 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2612 case '\0':
2613 len = 0;
2614 break;
2615 case ',':
2616 c = '\0';
2617 break;
2619 case '#':
2620 /* Ignore rest of this alternative as far as
2621 constraint checking is concerned. */
2623 p++;
2624 while (*p && *p != ',');
2625 len = 0;
2626 break;
2628 case '&':
2629 earlyclobber[opno] = 1;
2630 if (seen_earlyclobber_at < 0)
2631 seen_earlyclobber_at = opno;
2632 break;
2634 case '0': case '1': case '2': case '3': case '4':
2635 case '5': case '6': case '7': case '8': case '9':
2637 /* This operand must be the same as a previous one.
2638 This kind of constraint is used for instructions such
2639 as add when they take only two operands.
2641 Note that the lower-numbered operand is passed first.
2643 If we are not testing strictly, assume that this
2644 constraint will be satisfied. */
2646 char *end;
2647 int match;
2649 match = strtoul (p, &end, 10);
2650 p = end;
2652 if (strict < 0)
2653 val = 1;
2654 else
2656 rtx op1 = recog_data.operand[match];
2657 rtx op2 = recog_data.operand[opno];
2659 /* A unary operator may be accepted by the predicate,
2660 but it is irrelevant for matching constraints. */
2661 if (UNARY_P (op1))
2662 op1 = XEXP (op1, 0);
2663 if (UNARY_P (op2))
2664 op2 = XEXP (op2, 0);
2666 val = operands_match_p (op1, op2);
2669 matching_operands[opno] = match;
2670 matching_operands[match] = opno;
2672 if (val != 0)
2673 win = 1;
2675 /* If output is *x and input is *--x, arrange later
2676 to change the output to *--x as well, since the
2677 output op is the one that will be printed. */
2678 if (val == 2 && strict > 0)
2680 funny_match[funny_match_index].this_op = opno;
2681 funny_match[funny_match_index++].other = match;
2684 len = 0;
2685 break;
2687 case 'p':
2688 /* p is used for address_operands. When we are called by
2689 gen_reload, no one will have checked that the address is
2690 strictly valid, i.e., that all pseudos requiring hard regs
2691 have gotten them. We also want to make sure we have a
2692 valid mode. */
2693 if ((GET_MODE (op) == VOIDmode
2694 || SCALAR_INT_MODE_P (GET_MODE (op)))
2695 && (strict <= 0
2696 || (strict_memory_address_p
2697 (recog_data.operand_mode[opno], op))))
2698 win = 1;
2699 break;
2701 /* No need to check general_operand again;
2702 it was done in insn-recog.c. Well, except that reload
2703 doesn't check the validity of its replacements, but
2704 that should only matter when there's a bug. */
2705 case 'g':
2706 /* Anything goes unless it is a REG and really has a hard reg
2707 but the hard reg is not in the class GENERAL_REGS. */
2708 if (REG_P (op))
2710 if (strict < 0
2711 || GENERAL_REGS == ALL_REGS
2712 || (reload_in_progress
2713 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2714 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2715 win = 1;
2717 else if (strict < 0 || general_operand (op, mode))
2718 win = 1;
2719 break;
2721 default:
2723 enum constraint_num cn = lookup_constraint (p);
2724 enum reg_class cl = reg_class_for_constraint (cn);
2725 if (cl != NO_REGS)
2727 if (strict < 0
2728 || (strict == 0
2729 && REG_P (op)
2730 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2731 || (strict == 0 && GET_CODE (op) == SCRATCH)
2732 || (REG_P (op)
2733 && reg_fits_class_p (op, cl, offset, mode)))
2734 win = 1;
2737 else if (constraint_satisfied_p (op, cn))
2738 win = 1;
2740 else if (insn_extra_memory_constraint (cn)
2741 /* Every memory operand can be reloaded to fit. */
2742 && ((strict < 0 && MEM_P (op))
2743 /* Before reload, accept what reload can turn
2744 into a mem. */
2745 || (strict < 0 && CONSTANT_P (op))
2746 /* Before reload, accept a pseudo or hard register,
2747 since LRA can turn it into a mem. */
2748 || (strict < 0 && targetm.lra_p () && REG_P (op))
2749 /* During reload, accept a pseudo */
2750 || (reload_in_progress && REG_P (op)
2751 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2752 win = 1;
2753 else if (insn_extra_address_constraint (cn)
2754 /* Every address operand can be reloaded to fit. */
2755 && strict < 0)
2756 win = 1;
2757 /* Cater to architectures like IA-64 that define extra memory
2758 constraints without using define_memory_constraint. */
2759 else if (reload_in_progress
2760 && REG_P (op)
2761 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2762 && reg_renumber[REGNO (op)] < 0
2763 && reg_equiv_mem (REGNO (op)) != 0
2764 && constraint_satisfied_p
2765 (reg_equiv_mem (REGNO (op)), cn))
2766 win = 1;
2767 break;
2770 while (p += len, c);
2772 constraints[opno] = p;
2773 /* If this operand did not win somehow,
2774 this alternative loses. */
2775 if (! win)
2776 lose = 1;
2778 /* This alternative won; the operands are ok.
2779 Change whichever operands this alternative says to change. */
2780 if (! lose)
2782 int opno, eopno;
2784 /* See if any earlyclobber operand conflicts with some other
2785 operand. */
2787 if (strict > 0 && seen_earlyclobber_at >= 0)
2788 for (eopno = seen_earlyclobber_at;
2789 eopno < recog_data.n_operands;
2790 eopno++)
2791 /* Ignore earlyclobber operands now in memory,
2792 because we would often report failure when we have
2793 two memory operands, one of which was formerly a REG. */
2794 if (earlyclobber[eopno]
2795 && REG_P (recog_data.operand[eopno]))
2796 for (opno = 0; opno < recog_data.n_operands; opno++)
2797 if ((MEM_P (recog_data.operand[opno])
2798 || recog_data.operand_type[opno] != OP_OUT)
2799 && opno != eopno
2800 /* Ignore things like match_operator operands. */
2801 && *recog_data.constraints[opno] != 0
2802 && ! (matching_operands[opno] == eopno
2803 && operands_match_p (recog_data.operand[opno],
2804 recog_data.operand[eopno]))
2805 && ! safe_from_earlyclobber (recog_data.operand[opno],
2806 recog_data.operand[eopno]))
2807 lose = 1;
2809 if (! lose)
2811 while (--funny_match_index >= 0)
2813 recog_data.operand[funny_match[funny_match_index].other]
2814 = recog_data.operand[funny_match[funny_match_index].this_op];
2817 /* For operands without < or > constraints reject side-effects. */
2818 if (AUTO_INC_DEC && recog_data.is_asm)
2820 for (opno = 0; opno < recog_data.n_operands; opno++)
2821 if (MEM_P (recog_data.operand[opno]))
2822 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2824 case PRE_INC:
2825 case POST_INC:
2826 case PRE_DEC:
2827 case POST_DEC:
2828 case PRE_MODIFY:
2829 case POST_MODIFY:
2830 if (strchr (recog_data.constraints[opno], '<') == NULL
2831 && strchr (recog_data.constraints[opno], '>')
2832 == NULL)
2833 return 0;
2834 break;
2835 default:
2836 break;
2840 return 1;
2844 which_alternative++;
2846 while (which_alternative < recog_data.n_alternatives);
2848 which_alternative = -1;
2849 /* If we are about to reject this, but we are not to test strictly,
2850 try a very loose test. Only return failure if it fails also. */
2851 if (strict == 0)
2852 return constrain_operands (-1, alternatives);
2853 else
2854 return 0;
2857 /* Return true iff OPERAND (assumed to be a REG rtx)
2858 is a hard reg in class CLASS when its regno is offset by OFFSET
2859 and changed to mode MODE.
2860 If REG occupies multiple hard regs, all of them must be in CLASS. */
2862 bool
2863 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2864 machine_mode mode)
2866 unsigned int regno = REGNO (operand);
2868 if (cl == NO_REGS)
2869 return false;
2871 /* Regno must not be a pseudo register. Offset may be negative. */
2872 return (HARD_REGISTER_NUM_P (regno)
2873 && HARD_REGISTER_NUM_P (regno + offset)
2874 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2875 regno + offset));
2878 /* Split single instruction. Helper function for split_all_insns and
2879 split_all_insns_noflow. Return last insn in the sequence if successful,
2880 or NULL if unsuccessful. */
2882 static rtx_insn *
2883 split_insn (rtx_insn *insn)
2885 /* Split insns here to get max fine-grain parallelism. */
2886 rtx_insn *first = PREV_INSN (insn);
2887 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2888 rtx insn_set, last_set, note;
2890 if (last == insn)
2891 return NULL;
2893 /* If the original instruction was a single set that was known to be
2894 equivalent to a constant, see if we can say the same about the last
2895 instruction in the split sequence. The two instructions must set
2896 the same destination. */
2897 insn_set = single_set (insn);
2898 if (insn_set)
2900 last_set = single_set (last);
2901 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2903 note = find_reg_equal_equiv_note (insn);
2904 if (note && CONSTANT_P (XEXP (note, 0)))
2905 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2906 else if (CONSTANT_P (SET_SRC (insn_set)))
2907 set_unique_reg_note (last, REG_EQUAL,
2908 copy_rtx (SET_SRC (insn_set)));
2912 /* try_split returns the NOTE that INSN became. */
2913 SET_INSN_DELETED (insn);
2915 /* ??? Coddle to md files that generate subregs in post-reload
2916 splitters instead of computing the proper hard register. */
2917 if (reload_completed && first != last)
2919 first = NEXT_INSN (first);
2920 for (;;)
2922 if (INSN_P (first))
2923 cleanup_subreg_operands (first);
2924 if (first == last)
2925 break;
2926 first = NEXT_INSN (first);
2930 return last;
2933 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2935 void
2936 split_all_insns (void)
2938 bool changed;
2939 bool need_cfg_cleanup = false;
2940 basic_block bb;
2942 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2943 bitmap_clear (blocks);
2944 changed = false;
2946 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2948 rtx_insn *insn, *next;
2949 bool finish = false;
2951 rtl_profile_for_bb (bb);
2952 for (insn = BB_HEAD (bb); !finish ; insn = next)
2954 /* Can't use `next_real_insn' because that might go across
2955 CODE_LABELS and short-out basic blocks. */
2956 next = NEXT_INSN (insn);
2957 finish = (insn == BB_END (bb));
2959 /* If INSN has a REG_EH_REGION note and we split INSN, the
2960 resulting split may not have/need REG_EH_REGION notes.
2962 If that happens and INSN was the last reference to the
2963 given EH region, then the EH region will become unreachable.
2964 We cannot leave the unreachable blocks in the CFG as that
2965 will trigger a checking failure.
2967 So track if INSN has a REG_EH_REGION note. If so and we
2968 split INSN, then trigger a CFG cleanup. */
2969 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2970 if (INSN_P (insn))
2972 rtx set = single_set (insn);
2974 /* Don't split no-op move insns. These should silently
2975 disappear later in final. Splitting such insns would
2976 break the code that handles LIBCALL blocks. */
2977 if (set && set_noop_p (set))
2979 /* Nops get in the way while scheduling, so delete them
2980 now if register allocation has already been done. It
2981 is too risky to try to do this before register
2982 allocation, and there are unlikely to be very many
2983 nops then anyways. */
2984 if (reload_completed)
2985 delete_insn_and_edges (insn);
2986 if (note)
2987 need_cfg_cleanup = true;
2989 else
2991 if (split_insn (insn))
2993 bitmap_set_bit (blocks, bb->index);
2994 changed = true;
2995 if (note)
2996 need_cfg_cleanup = true;
3003 default_rtl_profile ();
3004 if (changed)
3006 find_many_sub_basic_blocks (blocks);
3008 /* Splitting could drop an REG_EH_REGION if it potentially
3009 trapped in its original form, but does not in its split
3010 form. Consider a FLOAT_TRUNCATE which splits into a memory
3011 store/load pair and -fnon-call-exceptions. */
3012 if (need_cfg_cleanup)
3013 cleanup_cfg (0);
3016 checking_verify_flow_info ();
3019 /* Same as split_all_insns, but do not expect CFG to be available.
3020 Used by machine dependent reorg passes. */
3022 unsigned int
3023 split_all_insns_noflow (void)
3025 rtx_insn *next, *insn;
3027 for (insn = get_insns (); insn; insn = next)
3029 next = NEXT_INSN (insn);
3030 if (INSN_P (insn))
3032 /* Don't split no-op move insns. These should silently
3033 disappear later in final. Splitting such insns would
3034 break the code that handles LIBCALL blocks. */
3035 rtx set = single_set (insn);
3036 if (set && set_noop_p (set))
3038 /* Nops get in the way while scheduling, so delete them
3039 now if register allocation has already been done. It
3040 is too risky to try to do this before register
3041 allocation, and there are unlikely to be very many
3042 nops then anyways.
3044 ??? Should we use delete_insn when the CFG isn't valid? */
3045 if (reload_completed)
3046 delete_insn_and_edges (insn);
3048 else
3049 split_insn (insn);
3052 return 0;
3055 struct peep2_insn_data
3057 rtx_insn *insn;
3058 regset live_before;
3061 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3062 static int peep2_current;
3064 static bool peep2_do_rebuild_jump_labels;
3065 static bool peep2_do_cleanup_cfg;
3067 /* The number of instructions available to match a peep2. */
3068 int peep2_current_count;
3070 /* A marker indicating the last insn of the block. The live_before regset
3071 for this element is correct, indicating DF_LIVE_OUT for the block. */
3072 #define PEEP2_EOB invalid_insn_rtx
3074 /* Wrap N to fit into the peep2_insn_data buffer. */
3076 static int
3077 peep2_buf_position (int n)
3079 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3080 n -= MAX_INSNS_PER_PEEP2 + 1;
3081 return n;
3084 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3085 does not exist. Used by the recognizer to find the next insn to match
3086 in a multi-insn pattern. */
3088 rtx_insn *
3089 peep2_next_insn (int n)
3091 gcc_assert (n <= peep2_current_count);
3093 n = peep2_buf_position (peep2_current + n);
3095 return peep2_insn_data[n].insn;
3098 /* Return true if REGNO is dead before the Nth non-note insn
3099 after `current'. */
3102 peep2_regno_dead_p (int ofs, int regno)
3104 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3106 ofs = peep2_buf_position (peep2_current + ofs);
3108 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3110 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3113 /* Similarly for a REG. */
3116 peep2_reg_dead_p (int ofs, rtx reg)
3118 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3120 ofs = peep2_buf_position (peep2_current + ofs);
3122 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3124 unsigned int end_regno = END_REGNO (reg);
3125 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3126 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3127 return 0;
3128 return 1;
3131 /* Regno offset to be used in the register search. */
3132 static int search_ofs;
3134 /* Try to find a hard register of mode MODE, matching the register class in
3135 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3136 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3137 in which case the only condition is that the register must be available
3138 before CURRENT_INSN.
3139 Registers that already have bits set in REG_SET will not be considered.
3141 If an appropriate register is available, it will be returned and the
3142 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3143 returned. */
3146 peep2_find_free_register (int from, int to, const char *class_str,
3147 machine_mode mode, HARD_REG_SET *reg_set)
3149 enum reg_class cl;
3150 HARD_REG_SET live;
3151 df_ref def;
3152 int i;
3154 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3155 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3157 from = peep2_buf_position (peep2_current + from);
3158 to = peep2_buf_position (peep2_current + to);
3160 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3161 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3163 while (from != to)
3165 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3167 /* Don't use registers set or clobbered by the insn. */
3168 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3169 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3171 from = peep2_buf_position (from + 1);
3174 cl = reg_class_for_constraint (lookup_constraint (class_str));
3176 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3178 int raw_regno, regno, success, j;
3180 /* Distribute the free registers as much as possible. */
3181 raw_regno = search_ofs + i;
3182 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3183 raw_regno -= FIRST_PSEUDO_REGISTER;
3184 #ifdef REG_ALLOC_ORDER
3185 regno = reg_alloc_order[raw_regno];
3186 #else
3187 regno = raw_regno;
3188 #endif
3190 /* Can it support the mode we need? */
3191 if (!targetm.hard_regno_mode_ok (regno, mode))
3192 continue;
3194 success = 1;
3195 for (j = 0; success && j < hard_regno_nregs (regno, mode); j++)
3197 /* Don't allocate fixed registers. */
3198 if (fixed_regs[regno + j])
3200 success = 0;
3201 break;
3203 /* Don't allocate global registers. */
3204 if (global_regs[regno + j])
3206 success = 0;
3207 break;
3209 /* Make sure the register is of the right class. */
3210 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3212 success = 0;
3213 break;
3215 /* And that we don't create an extra save/restore. */
3216 if (! crtl->abi->clobbers_full_reg_p (regno + j)
3217 && ! df_regs_ever_live_p (regno + j))
3219 success = 0;
3220 break;
3223 if (! targetm.hard_regno_scratch_ok (regno + j))
3225 success = 0;
3226 break;
3229 /* And we don't clobber traceback for noreturn functions. */
3230 if ((regno + j == FRAME_POINTER_REGNUM
3231 || regno + j == HARD_FRAME_POINTER_REGNUM)
3232 && (! reload_completed || frame_pointer_needed))
3234 success = 0;
3235 break;
3238 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3239 || TEST_HARD_REG_BIT (live, regno + j))
3241 success = 0;
3242 break;
3246 if (success)
3248 add_to_hard_reg_set (reg_set, mode, regno);
3250 /* Start the next search with the next register. */
3251 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3252 raw_regno = 0;
3253 search_ofs = raw_regno;
3255 return gen_rtx_REG (mode, regno);
3259 search_ofs = 0;
3260 return NULL_RTX;
3263 /* Forget all currently tracked instructions, only remember current
3264 LIVE regset. */
3266 static void
3267 peep2_reinit_state (regset live)
3269 int i;
3271 /* Indicate that all slots except the last holds invalid data. */
3272 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3273 peep2_insn_data[i].insn = NULL;
3274 peep2_current_count = 0;
3276 /* Indicate that the last slot contains live_after data. */
3277 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3278 peep2_current = MAX_INSNS_PER_PEEP2;
3280 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3283 /* Copies frame related info of an insn (OLD_INSN) to the single
3284 insn (NEW_INSN) that was obtained by splitting OLD_INSN. */
3286 void
3287 copy_frame_info_to_split_insn (rtx_insn *old_insn, rtx_insn *new_insn)
3289 bool any_note = false;
3290 rtx note;
3292 if (!RTX_FRAME_RELATED_P (old_insn))
3293 return;
3295 RTX_FRAME_RELATED_P (new_insn) = 1;
3297 /* Allow the backend to fill in a note during the split. */
3298 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3299 switch (REG_NOTE_KIND (note))
3301 case REG_FRAME_RELATED_EXPR:
3302 case REG_CFA_DEF_CFA:
3303 case REG_CFA_ADJUST_CFA:
3304 case REG_CFA_OFFSET:
3305 case REG_CFA_REGISTER:
3306 case REG_CFA_EXPRESSION:
3307 case REG_CFA_RESTORE:
3308 case REG_CFA_SET_VDRAP:
3309 any_note = true;
3310 break;
3311 default:
3312 break;
3315 /* If the backend didn't supply a note, copy one over. */
3316 if (!any_note)
3317 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3318 switch (REG_NOTE_KIND (note))
3320 case REG_FRAME_RELATED_EXPR:
3321 case REG_CFA_DEF_CFA:
3322 case REG_CFA_ADJUST_CFA:
3323 case REG_CFA_OFFSET:
3324 case REG_CFA_REGISTER:
3325 case REG_CFA_EXPRESSION:
3326 case REG_CFA_RESTORE:
3327 case REG_CFA_SET_VDRAP:
3328 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3329 any_note = true;
3330 break;
3331 default:
3332 break;
3335 /* If there still isn't a note, make sure the unwind info sees the
3336 same expression as before the split. */
3337 if (!any_note)
3339 rtx old_set, new_set;
3341 /* The old insn had better have been simple, or annotated. */
3342 old_set = single_set (old_insn);
3343 gcc_assert (old_set != NULL);
3345 new_set = single_set (new_insn);
3346 if (!new_set || !rtx_equal_p (new_set, old_set))
3347 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3350 /* Copy prologue/epilogue status. This is required in order to keep
3351 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3352 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3355 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3356 starting at INSN. Perform the replacement, removing the old insns and
3357 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3358 if the replacement is rejected. */
3360 static rtx_insn *
3361 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3363 int i;
3364 rtx_insn *last, *before_try, *x;
3365 rtx eh_note, as_note;
3366 rtx_insn *old_insn;
3367 rtx_insn *new_insn;
3368 bool was_call = false;
3370 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3371 match more than one insn, or to be split into more than one insn. */
3372 old_insn = peep2_insn_data[peep2_current].insn;
3373 if (RTX_FRAME_RELATED_P (old_insn))
3375 if (match_len != 0)
3376 return NULL;
3378 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3379 may be in the stream for the purpose of register allocation. */
3380 if (active_insn_p (attempt))
3381 new_insn = attempt;
3382 else
3383 new_insn = next_active_insn (attempt);
3384 if (next_active_insn (new_insn))
3385 return NULL;
3387 /* We have a 1-1 replacement. Copy over any frame-related info. */
3388 copy_frame_info_to_split_insn (old_insn, new_insn);
3391 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3392 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3393 cfg-related call notes. */
3394 for (i = 0; i <= match_len; ++i)
3396 int j;
3397 rtx note;
3399 j = peep2_buf_position (peep2_current + i);
3400 old_insn = peep2_insn_data[j].insn;
3401 if (!CALL_P (old_insn))
3402 continue;
3403 was_call = true;
3405 new_insn = attempt;
3406 while (new_insn != NULL_RTX)
3408 if (CALL_P (new_insn))
3409 break;
3410 new_insn = NEXT_INSN (new_insn);
3413 gcc_assert (new_insn != NULL_RTX);
3415 CALL_INSN_FUNCTION_USAGE (new_insn)
3416 = CALL_INSN_FUNCTION_USAGE (old_insn);
3417 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3419 for (note = REG_NOTES (old_insn);
3420 note;
3421 note = XEXP (note, 1))
3422 switch (REG_NOTE_KIND (note))
3424 case REG_NORETURN:
3425 case REG_SETJMP:
3426 case REG_TM:
3427 case REG_CALL_NOCF_CHECK:
3428 add_reg_note (new_insn, REG_NOTE_KIND (note),
3429 XEXP (note, 0));
3430 break;
3431 default:
3432 /* Discard all other reg notes. */
3433 break;
3436 /* Croak if there is another call in the sequence. */
3437 while (++i <= match_len)
3439 j = peep2_buf_position (peep2_current + i);
3440 old_insn = peep2_insn_data[j].insn;
3441 gcc_assert (!CALL_P (old_insn));
3443 break;
3446 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3447 move those notes over to the new sequence. */
3448 as_note = NULL;
3449 for (i = match_len; i >= 0; --i)
3451 int j = peep2_buf_position (peep2_current + i);
3452 old_insn = peep2_insn_data[j].insn;
3454 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3455 if (as_note)
3456 break;
3459 i = peep2_buf_position (peep2_current + match_len);
3460 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3462 /* Replace the old sequence with the new. */
3463 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3464 last = emit_insn_after_setloc (attempt,
3465 peep2_insn_data[i].insn,
3466 INSN_LOCATION (peepinsn));
3467 if (JUMP_P (peepinsn) && JUMP_P (last))
3468 CROSSING_JUMP_P (last) = CROSSING_JUMP_P (peepinsn);
3469 before_try = PREV_INSN (insn);
3470 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3472 /* Re-insert the EH_REGION notes. */
3473 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3475 edge eh_edge;
3476 edge_iterator ei;
3478 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3479 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3480 break;
3482 if (eh_note)
3483 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3485 if (eh_edge)
3486 for (x = last; x != before_try; x = PREV_INSN (x))
3487 if (x != BB_END (bb)
3488 && (can_throw_internal (x)
3489 || can_nonlocal_goto (x)))
3491 edge nfte, nehe;
3492 int flags;
3494 nfte = split_block (bb, x);
3495 flags = (eh_edge->flags
3496 & (EDGE_EH | EDGE_ABNORMAL));
3497 if (CALL_P (x))
3498 flags |= EDGE_ABNORMAL_CALL;
3499 nehe = make_edge (nfte->src, eh_edge->dest,
3500 flags);
3502 nehe->probability = eh_edge->probability;
3503 nfte->probability = nehe->probability.invert ();
3505 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3506 bb = nfte->src;
3507 eh_edge = nehe;
3510 /* Converting possibly trapping insn to non-trapping is
3511 possible. Zap dummy outgoing edges. */
3512 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3515 /* Re-insert the ARGS_SIZE notes. */
3516 if (as_note)
3517 fixup_args_size_notes (before_try, last, get_args_size (as_note));
3519 /* Scan the new insns for embedded side effects and add appropriate
3520 REG_INC notes. */
3521 if (AUTO_INC_DEC)
3522 for (x = last; x != before_try; x = PREV_INSN (x))
3523 if (NONDEBUG_INSN_P (x))
3524 add_auto_inc_notes (x, PATTERN (x));
3526 /* If we generated a jump instruction, it won't have
3527 JUMP_LABEL set. Recompute after we're done. */
3528 for (x = last; x != before_try; x = PREV_INSN (x))
3529 if (JUMP_P (x))
3531 peep2_do_rebuild_jump_labels = true;
3532 break;
3535 return last;
3538 /* After performing a replacement in basic block BB, fix up the life
3539 information in our buffer. LAST is the last of the insns that we
3540 emitted as a replacement. PREV is the insn before the start of
3541 the replacement. MATCH_LEN is the number of instructions that were
3542 matched, and which now need to be replaced in the buffer. */
3544 static void
3545 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3546 rtx_insn *prev)
3548 int i = peep2_buf_position (peep2_current + match_len + 1);
3549 rtx_insn *x;
3550 regset_head live;
3552 INIT_REG_SET (&live);
3553 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3555 gcc_assert (peep2_current_count >= match_len + 1);
3556 peep2_current_count -= match_len + 1;
3558 x = last;
3561 if (INSN_P (x))
3563 df_insn_rescan (x);
3564 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3566 peep2_current_count++;
3567 if (--i < 0)
3568 i = MAX_INSNS_PER_PEEP2;
3569 peep2_insn_data[i].insn = x;
3570 df_simulate_one_insn_backwards (bb, x, &live);
3571 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3574 x = PREV_INSN (x);
3576 while (x != prev);
3577 CLEAR_REG_SET (&live);
3579 peep2_current = i;
3582 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3583 Return true if we added it, false otherwise. The caller will try to match
3584 peepholes against the buffer if we return false; otherwise it will try to
3585 add more instructions to the buffer. */
3587 static bool
3588 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3590 int pos;
3592 /* Once we have filled the maximum number of insns the buffer can hold,
3593 allow the caller to match the insns against peepholes. We wait until
3594 the buffer is full in case the target has similar peepholes of different
3595 length; we always want to match the longest if possible. */
3596 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3597 return false;
3599 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3600 any other pattern, lest it change the semantics of the frame info. */
3601 if (RTX_FRAME_RELATED_P (insn))
3603 /* Let the buffer drain first. */
3604 if (peep2_current_count > 0)
3605 return false;
3606 /* Now the insn will be the only thing in the buffer. */
3609 pos = peep2_buf_position (peep2_current + peep2_current_count);
3610 peep2_insn_data[pos].insn = insn;
3611 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3612 peep2_current_count++;
3614 df_simulate_one_insn_forwards (bb, insn, live);
3615 return true;
3618 /* Perform the peephole2 optimization pass. */
3620 static void
3621 peephole2_optimize (void)
3623 rtx_insn *insn;
3624 bitmap live;
3625 int i;
3626 basic_block bb;
3628 peep2_do_cleanup_cfg = false;
3629 peep2_do_rebuild_jump_labels = false;
3631 df_set_flags (DF_LR_RUN_DCE);
3632 df_note_add_problem ();
3633 df_analyze ();
3635 /* Initialize the regsets we're going to use. */
3636 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3637 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3638 search_ofs = 0;
3639 live = BITMAP_ALLOC (&reg_obstack);
3641 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3643 bool past_end = false;
3644 int pos;
3646 rtl_profile_for_bb (bb);
3648 /* Start up propagation. */
3649 bitmap_copy (live, DF_LR_IN (bb));
3650 df_simulate_initialize_forwards (bb, live);
3651 peep2_reinit_state (live);
3653 insn = BB_HEAD (bb);
3654 for (;;)
3656 rtx_insn *attempt, *head;
3657 int match_len;
3659 if (!past_end && !NONDEBUG_INSN_P (insn))
3661 next_insn:
3662 insn = NEXT_INSN (insn);
3663 if (insn == NEXT_INSN (BB_END (bb)))
3664 past_end = true;
3665 continue;
3667 if (!past_end && peep2_fill_buffer (bb, insn, live))
3668 goto next_insn;
3670 /* If we did not fill an empty buffer, it signals the end of the
3671 block. */
3672 if (peep2_current_count == 0)
3673 break;
3675 /* The buffer filled to the current maximum, so try to match. */
3677 pos = peep2_buf_position (peep2_current + peep2_current_count);
3678 peep2_insn_data[pos].insn = PEEP2_EOB;
3679 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3681 /* Match the peephole. */
3682 head = peep2_insn_data[peep2_current].insn;
3683 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3684 if (attempt != NULL)
3686 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3687 if (last)
3689 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3690 continue;
3694 /* No match: advance the buffer by one insn. */
3695 peep2_current = peep2_buf_position (peep2_current + 1);
3696 peep2_current_count--;
3700 default_rtl_profile ();
3701 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3702 BITMAP_FREE (peep2_insn_data[i].live_before);
3703 BITMAP_FREE (live);
3704 if (peep2_do_rebuild_jump_labels)
3705 rebuild_jump_labels (get_insns ());
3706 if (peep2_do_cleanup_cfg)
3707 cleanup_cfg (CLEANUP_CFG_CHANGED);
3710 /* Common predicates for use with define_bypass. */
3712 /* Helper function for store_data_bypass_p, handle just a single SET
3713 IN_SET. */
3715 static bool
3716 store_data_bypass_p_1 (rtx_insn *out_insn, rtx in_set)
3718 if (!MEM_P (SET_DEST (in_set)))
3719 return false;
3721 rtx out_set = single_set (out_insn);
3722 if (out_set)
3723 return !reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set));
3725 rtx out_pat = PATTERN (out_insn);
3726 if (GET_CODE (out_pat) != PARALLEL)
3727 return false;
3729 for (int i = 0; i < XVECLEN (out_pat, 0); i++)
3731 rtx out_exp = XVECEXP (out_pat, 0, i);
3733 if (GET_CODE (out_exp) == CLOBBER || GET_CODE (out_exp) == USE)
3734 continue;
3736 gcc_assert (GET_CODE (out_exp) == SET);
3738 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3739 return false;
3742 return true;
3745 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3746 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3747 must be either a single_set or a PARALLEL with SETs inside. */
3750 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3752 rtx in_set = single_set (in_insn);
3753 if (in_set)
3754 return store_data_bypass_p_1 (out_insn, in_set);
3756 rtx in_pat = PATTERN (in_insn);
3757 if (GET_CODE (in_pat) != PARALLEL)
3758 return false;
3760 for (int i = 0; i < XVECLEN (in_pat, 0); i++)
3762 rtx in_exp = XVECEXP (in_pat, 0, i);
3764 if (GET_CODE (in_exp) == CLOBBER || GET_CODE (in_exp) == USE)
3765 continue;
3767 gcc_assert (GET_CODE (in_exp) == SET);
3769 if (!store_data_bypass_p_1 (out_insn, in_exp))
3770 return false;
3773 return true;
3776 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3777 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3778 or multiple set; IN_INSN should be single_set for truth, but for convenience
3779 of insn categorization may be any JUMP or CALL insn. */
3782 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3784 rtx out_set, in_set;
3786 in_set = single_set (in_insn);
3787 if (! in_set)
3789 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3790 return false;
3793 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3794 return false;
3795 in_set = SET_SRC (in_set);
3797 out_set = single_set (out_insn);
3798 if (out_set)
3800 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3801 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3802 return false;
3804 else
3806 rtx out_pat;
3807 int i;
3809 out_pat = PATTERN (out_insn);
3810 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3812 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3814 rtx exp = XVECEXP (out_pat, 0, i);
3816 if (GET_CODE (exp) == CLOBBER)
3817 continue;
3819 gcc_assert (GET_CODE (exp) == SET);
3821 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3822 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3823 return false;
3827 return true;
3830 static unsigned int
3831 rest_of_handle_peephole2 (void)
3833 if (HAVE_peephole2)
3834 peephole2_optimize ();
3836 return 0;
3839 namespace {
3841 const pass_data pass_data_peephole2 =
3843 RTL_PASS, /* type */
3844 "peephole2", /* name */
3845 OPTGROUP_NONE, /* optinfo_flags */
3846 TV_PEEPHOLE2, /* tv_id */
3847 0, /* properties_required */
3848 0, /* properties_provided */
3849 0, /* properties_destroyed */
3850 0, /* todo_flags_start */
3851 TODO_df_finish, /* todo_flags_finish */
3854 class pass_peephole2 : public rtl_opt_pass
3856 public:
3857 pass_peephole2 (gcc::context *ctxt)
3858 : rtl_opt_pass (pass_data_peephole2, ctxt)
3861 /* opt_pass methods: */
3862 /* The epiphany backend creates a second instance of this pass, so we need
3863 a clone method. */
3864 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3865 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3866 virtual unsigned int execute (function *)
3868 return rest_of_handle_peephole2 ();
3871 }; // class pass_peephole2
3873 } // anon namespace
3875 rtl_opt_pass *
3876 make_pass_peephole2 (gcc::context *ctxt)
3878 return new pass_peephole2 (ctxt);
3881 namespace {
3883 const pass_data pass_data_split_all_insns =
3885 RTL_PASS, /* type */
3886 "split1", /* name */
3887 OPTGROUP_NONE, /* optinfo_flags */
3888 TV_NONE, /* tv_id */
3889 0, /* properties_required */
3890 PROP_rtl_split_insns, /* properties_provided */
3891 0, /* properties_destroyed */
3892 0, /* todo_flags_start */
3893 0, /* todo_flags_finish */
3896 class pass_split_all_insns : public rtl_opt_pass
3898 public:
3899 pass_split_all_insns (gcc::context *ctxt)
3900 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3903 /* opt_pass methods: */
3904 /* The epiphany backend creates a second instance of this pass, so
3905 we need a clone method. */
3906 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3907 virtual unsigned int execute (function *)
3909 split_all_insns ();
3910 return 0;
3913 }; // class pass_split_all_insns
3915 } // anon namespace
3917 rtl_opt_pass *
3918 make_pass_split_all_insns (gcc::context *ctxt)
3920 return new pass_split_all_insns (ctxt);
3923 namespace {
3925 const pass_data pass_data_split_after_reload =
3927 RTL_PASS, /* type */
3928 "split2", /* name */
3929 OPTGROUP_NONE, /* optinfo_flags */
3930 TV_NONE, /* tv_id */
3931 0, /* properties_required */
3932 0, /* properties_provided */
3933 0, /* properties_destroyed */
3934 0, /* todo_flags_start */
3935 0, /* todo_flags_finish */
3938 class pass_split_after_reload : public rtl_opt_pass
3940 public:
3941 pass_split_after_reload (gcc::context *ctxt)
3942 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3945 /* opt_pass methods: */
3946 virtual bool gate (function *)
3948 /* If optimizing, then go ahead and split insns now. */
3949 return optimize > 0;
3952 virtual unsigned int execute (function *)
3954 split_all_insns ();
3955 return 0;
3958 }; // class pass_split_after_reload
3960 } // anon namespace
3962 rtl_opt_pass *
3963 make_pass_split_after_reload (gcc::context *ctxt)
3965 return new pass_split_after_reload (ctxt);
3968 static bool
3969 enable_split_before_sched2 (void)
3971 #ifdef INSN_SCHEDULING
3972 return optimize > 0 && flag_schedule_insns_after_reload;
3973 #else
3974 return false;
3975 #endif
3978 namespace {
3980 const pass_data pass_data_split_before_sched2 =
3982 RTL_PASS, /* type */
3983 "split3", /* name */
3984 OPTGROUP_NONE, /* optinfo_flags */
3985 TV_NONE, /* tv_id */
3986 0, /* properties_required */
3987 0, /* properties_provided */
3988 0, /* properties_destroyed */
3989 0, /* todo_flags_start */
3990 0, /* todo_flags_finish */
3993 class pass_split_before_sched2 : public rtl_opt_pass
3995 public:
3996 pass_split_before_sched2 (gcc::context *ctxt)
3997 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4000 /* opt_pass methods: */
4001 virtual bool gate (function *)
4003 return enable_split_before_sched2 ();
4006 virtual unsigned int execute (function *)
4008 split_all_insns ();
4009 return 0;
4012 }; // class pass_split_before_sched2
4014 } // anon namespace
4016 rtl_opt_pass *
4017 make_pass_split_before_sched2 (gcc::context *ctxt)
4019 return new pass_split_before_sched2 (ctxt);
4022 namespace {
4024 const pass_data pass_data_split_before_regstack =
4026 RTL_PASS, /* type */
4027 "split4", /* name */
4028 OPTGROUP_NONE, /* optinfo_flags */
4029 TV_NONE, /* tv_id */
4030 0, /* properties_required */
4031 0, /* properties_provided */
4032 0, /* properties_destroyed */
4033 0, /* todo_flags_start */
4034 0, /* todo_flags_finish */
4037 class pass_split_before_regstack : public rtl_opt_pass
4039 public:
4040 pass_split_before_regstack (gcc::context *ctxt)
4041 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
4044 /* opt_pass methods: */
4045 virtual bool gate (function *);
4046 virtual unsigned int execute (function *)
4048 split_all_insns ();
4049 return 0;
4052 }; // class pass_split_before_regstack
4054 bool
4055 pass_split_before_regstack::gate (function *)
4057 #if HAVE_ATTR_length && defined (STACK_REGS)
4058 /* If flow2 creates new instructions which need splitting
4059 and scheduling after reload is not done, they might not be
4060 split until final which doesn't allow splitting
4061 if HAVE_ATTR_length. */
4062 return !enable_split_before_sched2 ();
4063 #else
4064 return false;
4065 #endif
4068 } // anon namespace
4070 rtl_opt_pass *
4071 make_pass_split_before_regstack (gcc::context *ctxt)
4073 return new pass_split_before_regstack (ctxt);
4076 namespace {
4078 const pass_data pass_data_split_for_shorten_branches =
4080 RTL_PASS, /* type */
4081 "split5", /* name */
4082 OPTGROUP_NONE, /* optinfo_flags */
4083 TV_NONE, /* tv_id */
4084 0, /* properties_required */
4085 0, /* properties_provided */
4086 0, /* properties_destroyed */
4087 0, /* todo_flags_start */
4088 0, /* todo_flags_finish */
4091 class pass_split_for_shorten_branches : public rtl_opt_pass
4093 public:
4094 pass_split_for_shorten_branches (gcc::context *ctxt)
4095 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4098 /* opt_pass methods: */
4099 virtual bool gate (function *)
4101 /* The placement of the splitting that we do for shorten_branches
4102 depends on whether regstack is used by the target or not. */
4103 #if HAVE_ATTR_length && !defined (STACK_REGS)
4104 return true;
4105 #else
4106 return false;
4107 #endif
4110 virtual unsigned int execute (function *)
4112 return split_all_insns_noflow ();
4115 }; // class pass_split_for_shorten_branches
4117 } // anon namespace
4119 rtl_opt_pass *
4120 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4122 return new pass_split_for_shorten_branches (ctxt);
4125 /* (Re)initialize the target information after a change in target. */
4127 void
4128 recog_init ()
4130 /* The information is zero-initialized, so we don't need to do anything
4131 first time round. */
4132 if (!this_target_recog->x_initialized)
4134 this_target_recog->x_initialized = true;
4135 return;
4137 memset (this_target_recog->x_bool_attr_masks, 0,
4138 sizeof (this_target_recog->x_bool_attr_masks));
4139 for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4140 if (this_target_recog->x_op_alt[i])
4142 free (this_target_recog->x_op_alt[i]);
4143 this_target_recog->x_op_alt[i] = 0;