[39/46] Change STMT_VINFO_UNALIGNED_DR to a dr_vec_info
[official-gcc.git] / gcc / tree-vectorizer.h
bloba9c9805c51f70c376698ff206714e96d55d63bb3
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 class stmt_vec_info {
25 public:
26 stmt_vec_info () {}
27 stmt_vec_info (struct _stmt_vec_info *ptr) : m_ptr (ptr) {}
28 struct _stmt_vec_info *operator-> () const { return m_ptr; }
29 struct _stmt_vec_info &operator* () const;
30 operator struct _stmt_vec_info * () const { return m_ptr; }
31 operator gimple * () const;
32 operator void * () const { return m_ptr; }
33 operator bool () const { return m_ptr; }
34 bool operator == (const stmt_vec_info &x) { return x.m_ptr == m_ptr; }
35 bool operator == (_stmt_vec_info *x) { return x == m_ptr; }
36 bool operator != (const stmt_vec_info &x) { return x.m_ptr != m_ptr; }
37 bool operator != (_stmt_vec_info *x) { return x != m_ptr; }
39 private:
40 struct _stmt_vec_info *m_ptr;
43 #define NULL_STMT_VEC_INFO (stmt_vec_info (NULL))
45 #include "tree-data-ref.h"
46 #include "tree-hash-traits.h"
47 #include "target.h"
49 /* Used for naming of new temporaries. */
50 enum vect_var_kind {
51 vect_simple_var,
52 vect_pointer_var,
53 vect_scalar_var,
54 vect_mask_var
57 /* Defines type of operation. */
58 enum operation_type {
59 unary_op = 1,
60 binary_op,
61 ternary_op
64 /* Define type of available alignment support. */
65 enum dr_alignment_support {
66 dr_unaligned_unsupported,
67 dr_unaligned_supported,
68 dr_explicit_realign,
69 dr_explicit_realign_optimized,
70 dr_aligned
73 /* Define type of def-use cross-iteration cycle. */
74 enum vect_def_type {
75 vect_uninitialized_def = 0,
76 vect_constant_def = 1,
77 vect_external_def,
78 vect_internal_def,
79 vect_induction_def,
80 vect_reduction_def,
81 vect_double_reduction_def,
82 vect_nested_cycle,
83 vect_unknown_def_type
86 /* Define type of reduction. */
87 enum vect_reduction_type {
88 TREE_CODE_REDUCTION,
89 COND_REDUCTION,
90 INTEGER_INDUC_COND_REDUCTION,
91 CONST_COND_REDUCTION,
93 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
94 to implement:
96 for (int i = 0; i < VF; ++i)
97 res = cond[i] ? val[i] : res; */
98 EXTRACT_LAST_REDUCTION,
100 /* Use a folding reduction within the loop to implement:
102 for (int i = 0; i < VF; ++i)
103 res = res OP val[i];
105 (with no reassocation). */
106 FOLD_LEFT_REDUCTION
109 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
110 || ((D) == vect_double_reduction_def) \
111 || ((D) == vect_nested_cycle))
113 /* Structure to encapsulate information about a group of like
114 instructions to be presented to the target cost model. */
115 struct stmt_info_for_cost {
116 int count;
117 enum vect_cost_for_stmt kind;
118 enum vect_cost_model_location where;
119 stmt_vec_info stmt_info;
120 int misalign;
123 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
125 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
126 known alignment for that base. */
127 typedef hash_map<tree_operand_hash,
128 innermost_loop_behavior *> vec_base_alignments;
130 /************************************************************************
132 ************************************************************************/
133 typedef struct _slp_tree *slp_tree;
135 /* A computation tree of an SLP instance. Each node corresponds to a group of
136 stmts to be packed in a SIMD stmt. */
137 struct _slp_tree {
138 /* Nodes that contain def-stmts of this node statements operands. */
139 vec<slp_tree> children;
140 /* A group of scalar stmts to be vectorized together. */
141 vec<stmt_vec_info> stmts;
142 /* Load permutation relative to the stores, NULL if there is no
143 permutation. */
144 vec<unsigned> load_permutation;
145 /* Vectorized stmt/s. */
146 vec<stmt_vec_info> vec_stmts;
147 /* Number of vector stmts that are created to replace the group of scalar
148 stmts. It is calculated during the transformation phase as the number of
149 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
150 divided by vector size. */
151 unsigned int vec_stmts_size;
152 /* Whether the scalar computations use two different operators. */
153 bool two_operators;
154 /* The DEF type of this node. */
155 enum vect_def_type def_type;
159 /* SLP instance is a sequence of stmts in a loop that can be packed into
160 SIMD stmts. */
161 typedef struct _slp_instance {
162 /* The root of SLP tree. */
163 slp_tree root;
165 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
166 unsigned int group_size;
168 /* The unrolling factor required to vectorized this SLP instance. */
169 poly_uint64 unrolling_factor;
171 /* The group of nodes that contain loads of this SLP instance. */
172 vec<slp_tree> loads;
174 /* The SLP node containing the reduction PHIs. */
175 slp_tree reduc_phis;
176 } *slp_instance;
179 /* Access Functions. */
180 #define SLP_INSTANCE_TREE(S) (S)->root
181 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
182 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
183 #define SLP_INSTANCE_LOADS(S) (S)->loads
185 #define SLP_TREE_CHILDREN(S) (S)->children
186 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
187 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
188 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
189 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
190 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
191 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
195 /* Describes two objects whose addresses must be unequal for the vectorized
196 loop to be valid. */
197 typedef std::pair<tree, tree> vec_object_pair;
199 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
200 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
201 struct vec_lower_bound {
202 vec_lower_bound () {}
203 vec_lower_bound (tree e, bool u, poly_uint64 m)
204 : expr (e), unsigned_p (u), min_value (m) {}
206 tree expr;
207 bool unsigned_p;
208 poly_uint64 min_value;
211 /* Vectorizer state shared between different analyses like vector sizes
212 of the same CFG region. */
213 struct vec_info_shared {
214 vec_info_shared();
215 ~vec_info_shared();
217 void save_datarefs();
218 void check_datarefs();
220 /* All data references. Freed by free_data_refs, so not an auto_vec. */
221 vec<data_reference_p> datarefs;
222 vec<data_reference> datarefs_copy;
224 /* The loop nest in which the data dependences are computed. */
225 auto_vec<loop_p> loop_nest;
227 /* All data dependences. Freed by free_dependence_relations, so not
228 an auto_vec. */
229 vec<ddr_p> ddrs;
232 /* Vectorizer state common between loop and basic-block vectorization. */
233 struct vec_info {
234 enum vec_kind { bb, loop };
236 vec_info (vec_kind, void *, vec_info_shared *);
237 ~vec_info ();
239 stmt_vec_info add_stmt (gimple *);
240 stmt_vec_info lookup_stmt (gimple *);
241 stmt_vec_info lookup_def (tree);
242 stmt_vec_info lookup_single_use (tree);
243 void move_dr (stmt_vec_info, stmt_vec_info);
245 /* The type of vectorization. */
246 vec_kind kind;
248 /* Shared vectorizer state. */
249 vec_info_shared *shared;
251 /* The mapping of GIMPLE UID to stmt_vec_info. */
252 vec<stmt_vec_info> stmt_vec_infos;
254 /* All SLP instances. */
255 auto_vec<slp_instance> slp_instances;
257 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
258 known alignment for that base. */
259 vec_base_alignments base_alignments;
261 /* All interleaving chains of stores, represented by the first
262 stmt in the chain. */
263 auto_vec<stmt_vec_info> grouped_stores;
265 /* Cost data used by the target cost model. */
266 void *target_cost_data;
269 struct _loop_vec_info;
270 struct _bb_vec_info;
272 template<>
273 template<>
274 inline bool
275 is_a_helper <_loop_vec_info *>::test (vec_info *i)
277 return i->kind == vec_info::loop;
280 template<>
281 template<>
282 inline bool
283 is_a_helper <_bb_vec_info *>::test (vec_info *i)
285 return i->kind == vec_info::bb;
289 /* In general, we can divide the vector statements in a vectorized loop
290 into related groups ("rgroups") and say that for each rgroup there is
291 some nS such that the rgroup operates on nS values from one scalar
292 iteration followed by nS values from the next. That is, if VF is the
293 vectorization factor of the loop, the rgroup operates on a sequence:
295 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
297 where (i,j) represents a scalar value with index j in a scalar
298 iteration with index i.
300 [ We use the term "rgroup" to emphasise that this grouping isn't
301 necessarily the same as the grouping of statements used elsewhere.
302 For example, if we implement a group of scalar loads using gather
303 loads, we'll use a separate gather load for each scalar load, and
304 thus each gather load will belong to its own rgroup. ]
306 In general this sequence will occupy nV vectors concatenated
307 together. If these vectors have nL lanes each, the total number
308 of scalar values N is given by:
310 N = nS * VF = nV * nL
312 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
313 are compile-time constants but VF and nL can be variable (if the target
314 supports variable-length vectors).
316 In classical vectorization, each iteration of the vector loop would
317 handle exactly VF iterations of the original scalar loop. However,
318 in a fully-masked loop, a particular iteration of the vector loop
319 might handle fewer than VF iterations of the scalar loop. The vector
320 lanes that correspond to iterations of the scalar loop are said to be
321 "active" and the other lanes are said to be "inactive".
323 In a fully-masked loop, many rgroups need to be masked to ensure that
324 they have no effect for the inactive lanes. Each such rgroup needs a
325 sequence of booleans in the same order as above, but with each (i,j)
326 replaced by a boolean that indicates whether iteration i is active.
327 This sequence occupies nV vector masks that again have nL lanes each.
328 Thus the mask sequence as a whole consists of VF independent booleans
329 that are each repeated nS times.
331 We make the simplifying assumption that if a sequence of nV masks is
332 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
333 VIEW_CONVERTing it. This holds for all current targets that support
334 fully-masked loops. For example, suppose the scalar loop is:
336 float *f;
337 double *d;
338 for (int i = 0; i < n; ++i)
340 f[i * 2 + 0] += 1.0f;
341 f[i * 2 + 1] += 2.0f;
342 d[i] += 3.0;
345 and suppose that vectors have 256 bits. The vectorized f accesses
346 will belong to one rgroup and the vectorized d access to another:
348 f rgroup: nS = 2, nV = 1, nL = 8
349 d rgroup: nS = 1, nV = 1, nL = 4
350 VF = 4
352 [ In this simple example the rgroups do correspond to the normal
353 SLP grouping scheme. ]
355 If only the first three lanes are active, the masks we need are:
357 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
358 d rgroup: 1 | 1 | 1 | 0
360 Here we can use a mask calculated for f's rgroup for d's, but not
361 vice versa.
363 Thus for each value of nV, it is enough to provide nV masks, with the
364 mask being calculated based on the highest nL (or, equivalently, based
365 on the highest nS) required by any rgroup with that nV. We therefore
366 represent the entire collection of masks as a two-level table, with the
367 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
368 the second being indexed by the mask index 0 <= i < nV. */
370 /* The masks needed by rgroups with nV vectors, according to the
371 description above. */
372 struct rgroup_masks {
373 /* The largest nS for all rgroups that use these masks. */
374 unsigned int max_nscalars_per_iter;
376 /* The type of mask to use, based on the highest nS recorded above. */
377 tree mask_type;
379 /* A vector of nV masks, in iteration order. */
380 vec<tree> masks;
383 typedef auto_vec<rgroup_masks> vec_loop_masks;
385 /*-----------------------------------------------------------------*/
386 /* Info on vectorized loops. */
387 /*-----------------------------------------------------------------*/
388 typedef struct _loop_vec_info : public vec_info {
389 _loop_vec_info (struct loop *, vec_info_shared *);
390 ~_loop_vec_info ();
392 /* The loop to which this info struct refers to. */
393 struct loop *loop;
395 /* The loop basic blocks. */
396 basic_block *bbs;
398 /* Number of latch executions. */
399 tree num_itersm1;
400 /* Number of iterations. */
401 tree num_iters;
402 /* Number of iterations of the original loop. */
403 tree num_iters_unchanged;
404 /* Condition under which this loop is analyzed and versioned. */
405 tree num_iters_assumptions;
407 /* Threshold of number of iterations below which vectorzation will not be
408 performed. It is calculated from MIN_PROFITABLE_ITERS and
409 PARAM_MIN_VECT_LOOP_BOUND. */
410 unsigned int th;
412 /* When applying loop versioning, the vector form should only be used
413 if the number of scalar iterations is >= this value, on top of all
414 the other requirements. Ignored when loop versioning is not being
415 used. */
416 poly_uint64 versioning_threshold;
418 /* Unrolling factor */
419 poly_uint64 vectorization_factor;
421 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
422 if there is no particular limit. */
423 unsigned HOST_WIDE_INT max_vectorization_factor;
425 /* The masks that a fully-masked loop should use to avoid operating
426 on inactive scalars. */
427 vec_loop_masks masks;
429 /* If we are using a loop mask to align memory addresses, this variable
430 contains the number of vector elements that we should skip in the
431 first iteration of the vector loop (i.e. the number of leading
432 elements that should be false in the first mask). */
433 tree mask_skip_niters;
435 /* Type of the variables to use in the WHILE_ULT call for fully-masked
436 loops. */
437 tree mask_compare_type;
439 /* Unknown DRs according to which loop was peeled. */
440 struct dr_vec_info *unaligned_dr;
442 /* peeling_for_alignment indicates whether peeling for alignment will take
443 place, and what the peeling factor should be:
444 peeling_for_alignment = X means:
445 If X=0: Peeling for alignment will not be applied.
446 If X>0: Peel first X iterations.
447 If X=-1: Generate a runtime test to calculate the number of iterations
448 to be peeled, using the dataref recorded in the field
449 unaligned_dr. */
450 int peeling_for_alignment;
452 /* The mask used to check the alignment of pointers or arrays. */
453 int ptr_mask;
455 /* Data Dependence Relations defining address ranges that are candidates
456 for a run-time aliasing check. */
457 auto_vec<ddr_p> may_alias_ddrs;
459 /* Data Dependence Relations defining address ranges together with segment
460 lengths from which the run-time aliasing check is built. */
461 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
463 /* Check that the addresses of each pair of objects is unequal. */
464 auto_vec<vec_object_pair> check_unequal_addrs;
466 /* List of values that are required to be nonzero. This is used to check
467 whether things like "x[i * n] += 1;" are safe and eventually gets added
468 to the checks for lower bounds below. */
469 auto_vec<tree> check_nonzero;
471 /* List of values that need to be checked for a minimum value. */
472 auto_vec<vec_lower_bound> lower_bounds;
474 /* Statements in the loop that have data references that are candidates for a
475 runtime (loop versioning) misalignment check. */
476 auto_vec<stmt_vec_info> may_misalign_stmts;
478 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
479 auto_vec<stmt_vec_info> reductions;
481 /* All reduction chains in the loop, represented by the first
482 stmt in the chain. */
483 auto_vec<stmt_vec_info> reduction_chains;
485 /* Cost vector for a single scalar iteration. */
486 auto_vec<stmt_info_for_cost> scalar_cost_vec;
488 /* Map of IV base/step expressions to inserted name in the preheader. */
489 hash_map<tree_operand_hash, tree> *ivexpr_map;
491 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
492 applied to the loop, i.e., no unrolling is needed, this is 1. */
493 poly_uint64 slp_unrolling_factor;
495 /* Cost of a single scalar iteration. */
496 int single_scalar_iteration_cost;
498 /* Is the loop vectorizable? */
499 bool vectorizable;
501 /* Records whether we still have the option of using a fully-masked loop. */
502 bool can_fully_mask_p;
504 /* True if have decided to use a fully-masked loop. */
505 bool fully_masked_p;
507 /* When we have grouped data accesses with gaps, we may introduce invalid
508 memory accesses. We peel the last iteration of the loop to prevent
509 this. */
510 bool peeling_for_gaps;
512 /* When the number of iterations is not a multiple of the vector size
513 we need to peel off iterations at the end to form an epilogue loop. */
514 bool peeling_for_niter;
516 /* Reductions are canonicalized so that the last operand is the reduction
517 operand. If this places a constant into RHS1, this decanonicalizes
518 GIMPLE for other phases, so we must track when this has occurred and
519 fix it up. */
520 bool operands_swapped;
522 /* True if there are no loop carried data dependencies in the loop.
523 If loop->safelen <= 1, then this is always true, either the loop
524 didn't have any loop carried data dependencies, or the loop is being
525 vectorized guarded with some runtime alias checks, or couldn't
526 be vectorized at all, but then this field shouldn't be used.
527 For loop->safelen >= 2, the user has asserted that there are no
528 backward dependencies, but there still could be loop carried forward
529 dependencies in such loops. This flag will be false if normal
530 vectorizer data dependency analysis would fail or require versioning
531 for alias, but because of loop->safelen >= 2 it has been vectorized
532 even without versioning for alias. E.g. in:
533 #pragma omp simd
534 for (int i = 0; i < m; i++)
535 a[i] = a[i + k] * c;
536 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
537 DTRT even for k > 0 && k < m, but without safelen we would not
538 vectorize this, so this field would be false. */
539 bool no_data_dependencies;
541 /* Mark loops having masked stores. */
542 bool has_mask_store;
544 /* If if-conversion versioned this loop before conversion, this is the
545 loop version without if-conversion. */
546 struct loop *scalar_loop;
548 /* For loops being epilogues of already vectorized loops
549 this points to the original vectorized loop. Otherwise NULL. */
550 _loop_vec_info *orig_loop_info;
552 } *loop_vec_info;
554 /* Access Functions. */
555 #define LOOP_VINFO_LOOP(L) (L)->loop
556 #define LOOP_VINFO_BBS(L) (L)->bbs
557 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
558 #define LOOP_VINFO_NITERS(L) (L)->num_iters
559 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
560 prologue peeling retain total unchanged scalar loop iterations for
561 cost model. */
562 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
563 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
564 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
565 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
566 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
567 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
568 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
569 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
570 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
571 #define LOOP_VINFO_MASKS(L) (L)->masks
572 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
573 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
574 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
575 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
576 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
577 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
578 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
579 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
580 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
581 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
582 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
583 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
584 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
585 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
586 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
587 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
588 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
589 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
590 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
591 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
592 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
593 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
594 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
595 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
596 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
597 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
598 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
599 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
600 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
601 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
603 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
604 ((L)->may_misalign_stmts.length () > 0)
605 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
606 ((L)->comp_alias_ddrs.length () > 0 \
607 || (L)->check_unequal_addrs.length () > 0 \
608 || (L)->lower_bounds.length () > 0)
609 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
610 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
611 #define LOOP_REQUIRES_VERSIONING(L) \
612 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
613 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
614 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
616 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
617 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
619 #define LOOP_VINFO_EPILOGUE_P(L) \
620 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
622 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
623 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
625 static inline loop_vec_info
626 loop_vec_info_for_loop (struct loop *loop)
628 return (loop_vec_info) loop->aux;
631 typedef struct _bb_vec_info : public vec_info
633 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
634 ~_bb_vec_info ();
636 basic_block bb;
637 gimple_stmt_iterator region_begin;
638 gimple_stmt_iterator region_end;
639 } *bb_vec_info;
641 #define BB_VINFO_BB(B) (B)->bb
642 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
643 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
644 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
645 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
646 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
648 static inline bb_vec_info
649 vec_info_for_bb (basic_block bb)
651 return (bb_vec_info) bb->aux;
654 /*-----------------------------------------------------------------*/
655 /* Info on vectorized defs. */
656 /*-----------------------------------------------------------------*/
657 enum stmt_vec_info_type {
658 undef_vec_info_type = 0,
659 load_vec_info_type,
660 store_vec_info_type,
661 shift_vec_info_type,
662 op_vec_info_type,
663 call_vec_info_type,
664 call_simd_clone_vec_info_type,
665 assignment_vec_info_type,
666 condition_vec_info_type,
667 comparison_vec_info_type,
668 reduc_vec_info_type,
669 induc_vec_info_type,
670 type_promotion_vec_info_type,
671 type_demotion_vec_info_type,
672 type_conversion_vec_info_type,
673 loop_exit_ctrl_vec_info_type
676 /* Indicates whether/how a variable is used in the scope of loop/basic
677 block. */
678 enum vect_relevant {
679 vect_unused_in_scope = 0,
681 /* The def is only used outside the loop. */
682 vect_used_only_live,
683 /* The def is in the inner loop, and the use is in the outer loop, and the
684 use is a reduction stmt. */
685 vect_used_in_outer_by_reduction,
686 /* The def is in the inner loop, and the use is in the outer loop (and is
687 not part of reduction). */
688 vect_used_in_outer,
690 /* defs that feed computations that end up (only) in a reduction. These
691 defs may be used by non-reduction stmts, but eventually, any
692 computations/values that are affected by these defs are used to compute
693 a reduction (i.e. don't get stored to memory, for example). We use this
694 to identify computations that we can change the order in which they are
695 computed. */
696 vect_used_by_reduction,
698 vect_used_in_scope
701 /* The type of vectorization that can be applied to the stmt: regular loop-based
702 vectorization; pure SLP - the stmt is a part of SLP instances and does not
703 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
704 a part of SLP instance and also must be loop-based vectorized, since it has
705 uses outside SLP sequences.
707 In the loop context the meanings of pure and hybrid SLP are slightly
708 different. By saying that pure SLP is applied to the loop, we mean that we
709 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
710 vectorized without doing any conceptual unrolling, cause we don't pack
711 together stmts from different iterations, only within a single iteration.
712 Loop hybrid SLP means that we exploit both intra-iteration and
713 inter-iteration parallelism (e.g., number of elements in the vector is 4
714 and the slp-group-size is 2, in which case we don't have enough parallelism
715 within an iteration, so we obtain the rest of the parallelism from subsequent
716 iterations by unrolling the loop by 2). */
717 enum slp_vect_type {
718 loop_vect = 0,
719 pure_slp,
720 hybrid
723 /* Says whether a statement is a load, a store of a vectorized statement
724 result, or a store of an invariant value. */
725 enum vec_load_store_type {
726 VLS_LOAD,
727 VLS_STORE,
728 VLS_STORE_INVARIANT
731 /* Describes how we're going to vectorize an individual load or store,
732 or a group of loads or stores. */
733 enum vect_memory_access_type {
734 /* An access to an invariant address. This is used only for loads. */
735 VMAT_INVARIANT,
737 /* A simple contiguous access. */
738 VMAT_CONTIGUOUS,
740 /* A contiguous access that goes down in memory rather than up,
741 with no additional permutation. This is used only for stores
742 of invariants. */
743 VMAT_CONTIGUOUS_DOWN,
745 /* A simple contiguous access in which the elements need to be permuted
746 after loading or before storing. Only used for loop vectorization;
747 SLP uses separate permutes. */
748 VMAT_CONTIGUOUS_PERMUTE,
750 /* A simple contiguous access in which the elements need to be reversed
751 after loading or before storing. */
752 VMAT_CONTIGUOUS_REVERSE,
754 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
755 VMAT_LOAD_STORE_LANES,
757 /* An access in which each scalar element is loaded or stored
758 individually. */
759 VMAT_ELEMENTWISE,
761 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
762 SLP accesses. Each unrolled iteration uses a contiguous load
763 or store for the whole group, but the groups from separate iterations
764 are combined in the same way as for VMAT_ELEMENTWISE. */
765 VMAT_STRIDED_SLP,
767 /* The access uses gather loads or scatter stores. */
768 VMAT_GATHER_SCATTER
771 struct dr_vec_info {
772 /* The data reference itself. */
773 data_reference *dr;
774 /* The statement that contains the data reference. */
775 stmt_vec_info stmt;
776 /* The misalignment in bytes of the reference, or -1 if not known. */
777 int misalignment;
778 /* The byte alignment that we'd ideally like the reference to have,
779 and the value that misalignment is measured against. */
780 int target_alignment;
781 /* If true the alignment of base_decl needs to be increased. */
782 bool base_misaligned;
783 tree base_decl;
786 typedef struct data_reference *dr_p;
788 struct _stmt_vec_info {
790 enum stmt_vec_info_type type;
792 /* Indicates whether this stmts is part of a computation whose result is
793 used outside the loop. */
794 bool live;
796 /* Stmt is part of some pattern (computation idiom) */
797 bool in_pattern_p;
799 /* True if the statement was created during pattern recognition as
800 part of the replacement for RELATED_STMT. This implies that the
801 statement isn't part of any basic block, although for convenience
802 its gimple_bb is the same as for RELATED_STMT. */
803 bool pattern_stmt_p;
805 /* Is this statement vectorizable or should it be skipped in (partial)
806 vectorization. */
807 bool vectorizable;
809 /* The stmt to which this info struct refers to. */
810 gimple *stmt;
812 /* The vec_info with respect to which STMT is vectorized. */
813 vec_info *vinfo;
815 /* The vector type to be used for the LHS of this statement. */
816 tree vectype;
818 /* The vectorized version of the stmt. */
819 stmt_vec_info vectorized_stmt;
822 /* The following is relevant only for stmts that contain a non-scalar
823 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
824 at most one such data-ref. */
826 dr_vec_info dr_aux;
828 /* Information about the data-ref relative to this loop
829 nest (the loop that is being considered for vectorization). */
830 innermost_loop_behavior dr_wrt_vec_loop;
832 /* For loop PHI nodes, the base and evolution part of it. This makes sure
833 this information is still available in vect_update_ivs_after_vectorizer
834 where we may not be able to re-analyze the PHI nodes evolution as
835 peeling for the prologue loop can make it unanalyzable. The evolution
836 part is still correct after peeling, but the base may have changed from
837 the version here. */
838 tree loop_phi_evolution_base_unchanged;
839 tree loop_phi_evolution_part;
841 /* Used for various bookkeeping purposes, generally holding a pointer to
842 some other stmt S that is in some way "related" to this stmt.
843 Current use of this field is:
844 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
845 true): S is the "pattern stmt" that represents (and replaces) the
846 sequence of stmts that constitutes the pattern. Similarly, the
847 related_stmt of the "pattern stmt" points back to this stmt (which is
848 the last stmt in the original sequence of stmts that constitutes the
849 pattern). */
850 stmt_vec_info related_stmt;
852 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
853 The sequence is attached to the original statement rather than the
854 pattern statement. */
855 gimple_seq pattern_def_seq;
857 /* List of datarefs that are known to have the same alignment as the dataref
858 of this stmt. */
859 vec<dr_p> same_align_refs;
861 /* Selected SIMD clone's function info. First vector element
862 is SIMD clone's function decl, followed by a pair of trees (base + step)
863 for linear arguments (pair of NULLs for other arguments). */
864 vec<tree> simd_clone_info;
866 /* Classify the def of this stmt. */
867 enum vect_def_type def_type;
869 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
870 enum slp_vect_type slp_type;
872 /* Interleaving and reduction chains info. */
873 /* First element in the group. */
874 stmt_vec_info first_element;
875 /* Pointer to the next element in the group. */
876 stmt_vec_info next_element;
877 /* For data-refs, in case that two or more stmts share data-ref, this is the
878 pointer to the previously detected stmt with the same dr. */
879 stmt_vec_info same_dr_stmt;
880 /* The size of the group. */
881 unsigned int size;
882 /* For stores, number of stores from this group seen. We vectorize the last
883 one. */
884 unsigned int store_count;
885 /* For loads only, the gap from the previous load. For consecutive loads, GAP
886 is 1. */
887 unsigned int gap;
889 /* The minimum negative dependence distance this stmt participates in
890 or zero if none. */
891 unsigned int min_neg_dist;
893 /* Not all stmts in the loop need to be vectorized. e.g, the increment
894 of the loop induction variable and computation of array indexes. relevant
895 indicates whether the stmt needs to be vectorized. */
896 enum vect_relevant relevant;
898 /* For loads if this is a gather, for stores if this is a scatter. */
899 bool gather_scatter_p;
901 /* True if this is an access with loop-invariant stride. */
902 bool strided_p;
904 /* For both loads and stores. */
905 bool simd_lane_access_p;
907 /* Classifies how the load or store is going to be implemented
908 for loop vectorization. */
909 vect_memory_access_type memory_access_type;
911 /* For reduction loops, this is the type of reduction. */
912 enum vect_reduction_type v_reduc_type;
914 /* For CONST_COND_REDUCTION, record the reduc code. */
915 enum tree_code const_cond_reduc_code;
917 /* On a reduction PHI the reduction type as detected by
918 vect_force_simple_reduction. */
919 enum vect_reduction_type reduc_type;
921 /* On a reduction PHI the def returned by vect_force_simple_reduction.
922 On the def returned by vect_force_simple_reduction the
923 corresponding PHI. */
924 stmt_vec_info reduc_def;
926 /* The number of scalar stmt references from active SLP instances. */
927 unsigned int num_slp_uses;
929 /* If nonzero, the lhs of the statement could be truncated to this
930 many bits without affecting any users of the result. */
931 unsigned int min_output_precision;
933 /* If nonzero, all non-boolean input operands have the same precision,
934 and they could each be truncated to this many bits without changing
935 the result. */
936 unsigned int min_input_precision;
938 /* If OPERATION_BITS is nonzero, the statement could be performed on
939 an integer with the sign and number of bits given by OPERATION_SIGN
940 and OPERATION_BITS without changing the result. */
941 unsigned int operation_precision;
942 signop operation_sign;
945 /* Information about a gather/scatter call. */
946 struct gather_scatter_info {
947 /* The internal function to use for the gather/scatter operation,
948 or IFN_LAST if a built-in function should be used instead. */
949 internal_fn ifn;
951 /* The FUNCTION_DECL for the built-in gather/scatter function,
952 or null if an internal function should be used instead. */
953 tree decl;
955 /* The loop-invariant base value. */
956 tree base;
958 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
959 tree offset;
961 /* Each offset element should be multiplied by this amount before
962 being added to the base. */
963 int scale;
965 /* The definition type for the vectorized offset. */
966 enum vect_def_type offset_dt;
968 /* The type of the vectorized offset. */
969 tree offset_vectype;
971 /* The type of the scalar elements after loading or before storing. */
972 tree element_type;
974 /* The type of the scalar elements being loaded or stored. */
975 tree memory_type;
978 /* Access Functions. */
979 #define STMT_VINFO_TYPE(S) (S)->type
980 #define STMT_VINFO_STMT(S) (S)->stmt
981 inline loop_vec_info
982 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
984 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
985 return loop_vinfo;
986 return NULL;
988 inline bb_vec_info
989 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
991 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
992 return bb_vinfo;
993 return NULL;
995 #define STMT_VINFO_RELEVANT(S) (S)->relevant
996 #define STMT_VINFO_LIVE_P(S) (S)->live
997 #define STMT_VINFO_VECTYPE(S) (S)->vectype
998 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
999 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1000 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1001 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1002 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1003 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1004 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1005 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
1006 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
1008 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1009 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1010 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1011 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1012 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1013 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1014 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1015 (S)->dr_wrt_vec_loop.base_misalignment
1016 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1017 (S)->dr_wrt_vec_loop.offset_alignment
1018 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1019 (S)->dr_wrt_vec_loop.step_alignment
1021 #define STMT_VINFO_DR_INFO(S) \
1022 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1024 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1025 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1026 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1027 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1028 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1029 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1030 #define STMT_VINFO_GROUPED_ACCESS(S) \
1031 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1032 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1033 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1034 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1035 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1036 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1037 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1039 #define DR_GROUP_FIRST_ELEMENT(S) \
1040 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1041 #define DR_GROUP_NEXT_ELEMENT(S) \
1042 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1043 #define DR_GROUP_SIZE(S) \
1044 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1045 #define DR_GROUP_STORE_COUNT(S) \
1046 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1047 #define DR_GROUP_GAP(S) \
1048 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1049 #define DR_GROUP_SAME_DR_STMT(S) \
1050 (gcc_checking_assert ((S)->dr_aux.dr), (S)->same_dr_stmt)
1052 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1053 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1054 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1055 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1056 #define REDUC_GROUP_SIZE(S) \
1057 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1059 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1061 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1062 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1063 #define STMT_SLP_TYPE(S) (S)->slp_type
1065 #define DR_VECT_AUX(dr) (STMT_VINFO_DR_INFO (vect_dr_stmt (dr)))
1067 #define VECT_MAX_COST 1000
1069 /* The maximum number of intermediate steps required in multi-step type
1070 conversion. */
1071 #define MAX_INTERM_CVT_STEPS 3
1073 #define MAX_VECTORIZATION_FACTOR INT_MAX
1075 /* Nonzero if TYPE represents a (scalar) boolean type or type
1076 in the middle-end compatible with it (unsigned precision 1 integral
1077 types). Used to determine which types should be vectorized as
1078 VECTOR_BOOLEAN_TYPE_P. */
1080 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1081 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1082 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1083 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1084 && TYPE_PRECISION (TYPE) == 1 \
1085 && TYPE_UNSIGNED (TYPE)))
1087 inline _stmt_vec_info &
1088 stmt_vec_info::operator* () const
1090 return *m_ptr;
1093 inline stmt_vec_info::operator gimple * () const
1095 return m_ptr ? m_ptr->stmt : NULL;
1098 extern vec<stmt_vec_info> *stmt_vec_info_vec;
1100 void set_stmt_vec_info_vec (vec<stmt_vec_info> *);
1101 void free_stmt_vec_infos (vec<stmt_vec_info> *);
1103 /* Return a stmt_vec_info corresponding to STMT. */
1105 static inline stmt_vec_info
1106 vinfo_for_stmt (gimple *stmt)
1108 int uid = gimple_uid (stmt);
1109 if (uid <= 0)
1110 return NULL;
1112 return (*stmt_vec_info_vec)[uid - 1];
1115 /* Set vectorizer information INFO for STMT. */
1117 static inline void
1118 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1120 unsigned int uid = gimple_uid (stmt);
1121 if (uid == 0)
1123 gcc_checking_assert (info);
1124 uid = stmt_vec_info_vec->length () + 1;
1125 gimple_set_uid (stmt, uid);
1126 stmt_vec_info_vec->safe_push (info);
1128 else
1130 gcc_checking_assert (info == NULL_STMT_VEC_INFO);
1131 (*stmt_vec_info_vec)[uid - 1] = info;
1135 static inline bool
1136 nested_in_vect_loop_p (struct loop *loop, stmt_vec_info stmt_info)
1138 return (loop->inner
1139 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1142 /* Return the earlier statement between STMT1_INFO and STMT2_INFO. */
1144 static inline stmt_vec_info
1145 get_earlier_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1147 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (stmt1_info)
1148 || !STMT_VINFO_RELATED_STMT (stmt1_info))
1149 && (STMT_VINFO_IN_PATTERN_P (stmt2_info)
1150 || !STMT_VINFO_RELATED_STMT (stmt2_info)));
1152 if (gimple_uid (stmt1_info->stmt) < gimple_uid (stmt2_info->stmt))
1153 return stmt1_info;
1154 else
1155 return stmt2_info;
1158 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1160 static inline stmt_vec_info
1161 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1163 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (stmt1_info)
1164 || !STMT_VINFO_RELATED_STMT (stmt1_info))
1165 && (STMT_VINFO_IN_PATTERN_P (stmt2_info)
1166 || !STMT_VINFO_RELATED_STMT (stmt2_info)));
1168 if (gimple_uid (stmt1_info->stmt) > gimple_uid (stmt2_info->stmt))
1169 return stmt1_info;
1170 else
1171 return stmt2_info;
1174 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1175 pattern. */
1177 static inline bool
1178 is_pattern_stmt_p (stmt_vec_info stmt_info)
1180 return stmt_info->pattern_stmt_p;
1183 /* Return true if BB is a loop header. */
1185 static inline bool
1186 is_loop_header_bb_p (basic_block bb)
1188 if (bb == (bb->loop_father)->header)
1189 return true;
1190 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1191 return false;
1194 /* Return pow2 (X). */
1196 static inline int
1197 vect_pow2 (int x)
1199 int i, res = 1;
1201 for (i = 0; i < x; i++)
1202 res *= 2;
1204 return res;
1207 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1209 static inline int
1210 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1211 tree vectype, int misalign)
1213 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1214 vectype, misalign);
1217 /* Get cost by calling cost target builtin. */
1219 static inline
1220 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1222 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1225 /* Alias targetm.vectorize.init_cost. */
1227 static inline void *
1228 init_cost (struct loop *loop_info)
1230 return targetm.vectorize.init_cost (loop_info);
1233 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1234 stmt_vec_info, int, enum vect_cost_model_location);
1236 /* Alias targetm.vectorize.add_stmt_cost. */
1238 static inline unsigned
1239 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1240 stmt_vec_info stmt_info, int misalign,
1241 enum vect_cost_model_location where)
1243 if (dump_file && (dump_flags & TDF_DETAILS))
1244 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign, where);
1245 return targetm.vectorize.add_stmt_cost (data, count, kind,
1246 stmt_info, misalign, where);
1249 /* Alias targetm.vectorize.finish_cost. */
1251 static inline void
1252 finish_cost (void *data, unsigned *prologue_cost,
1253 unsigned *body_cost, unsigned *epilogue_cost)
1255 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1258 /* Alias targetm.vectorize.destroy_cost_data. */
1260 static inline void
1261 destroy_cost_data (void *data)
1263 targetm.vectorize.destroy_cost_data (data);
1266 inline void
1267 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1269 stmt_info_for_cost *cost;
1270 unsigned i;
1271 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1272 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1273 cost->misalign, cost->where);
1276 /* Return the stmt DR is in. For DR_STMT that have been replaced by
1277 a pattern this returns the corresponding pattern stmt. Otherwise
1278 DR_STMT is returned. */
1280 inline stmt_vec_info
1281 vect_dr_stmt (data_reference *dr)
1283 gimple *stmt = DR_STMT (dr);
1284 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1285 /* DR_STMT should never refer to a stmt in a pattern replacement. */
1286 gcc_checking_assert (!is_pattern_stmt_p (stmt_info));
1287 return stmt_info->dr_aux.stmt;
1290 /*-----------------------------------------------------------------*/
1291 /* Info on data references alignment. */
1292 /*-----------------------------------------------------------------*/
1293 #define DR_MISALIGNMENT_UNKNOWN (-1)
1294 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1296 inline void
1297 set_dr_misalignment (dr_vec_info *dr_info, int val)
1299 dr_info->misalignment = val;
1302 inline int
1303 dr_misalignment (dr_vec_info *dr_info)
1305 int misalign = dr_info->misalignment;
1306 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1307 return misalign;
1310 /* Reflects actual alignment of first access in the vectorized loop,
1311 taking into account peeling/versioning if applied. */
1312 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1313 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1315 /* Only defined once DR_MISALIGNMENT is defined. */
1316 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1318 /* Return true if data access DR_INFO is aligned to its target alignment
1319 (which may be less than a full vector). */
1321 static inline bool
1322 aligned_access_p (dr_vec_info *dr_info)
1324 return (DR_MISALIGNMENT (dr_info) == 0);
1327 /* Return TRUE if the alignment of the data access is known, and FALSE
1328 otherwise. */
1330 static inline bool
1331 known_alignment_for_access_p (dr_vec_info *dr_info)
1333 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1336 /* Return the minimum alignment in bytes that the vectorized version
1337 of DR_INFO is guaranteed to have. */
1339 static inline unsigned int
1340 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1342 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1343 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1344 if (DR_MISALIGNMENT (dr_info) == 0)
1345 return DR_TARGET_ALIGNMENT (dr_info);
1346 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1349 /* Return the behavior of DR_INFO with respect to the vectorization context
1350 (which for outer loop vectorization might not be the behavior recorded
1351 in DR_INFO itself). */
1353 static inline innermost_loop_behavior *
1354 vect_dr_behavior (dr_vec_info *dr_info)
1356 stmt_vec_info stmt_info = dr_info->stmt;
1357 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1358 if (loop_vinfo == NULL
1359 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1360 return &DR_INNERMOST (dr_info->dr);
1361 else
1362 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1365 /* Return true if the vect cost model is unlimited. */
1366 static inline bool
1367 unlimited_cost_model (loop_p loop)
1369 if (loop != NULL && loop->force_vectorize
1370 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1371 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1372 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1375 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1376 if the first iteration should use a partial mask in order to achieve
1377 alignment. */
1379 static inline bool
1380 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1382 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1383 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1386 /* Return the number of vectors of type VECTYPE that are needed to get
1387 NUNITS elements. NUNITS should be based on the vectorization factor,
1388 so it is always a known multiple of the number of elements in VECTYPE. */
1390 static inline unsigned int
1391 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1393 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1396 /* Return the number of copies needed for loop vectorization when
1397 a statement operates on vectors of type VECTYPE. This is the
1398 vectorization factor divided by the number of elements in
1399 VECTYPE and is always known at compile time. */
1401 static inline unsigned int
1402 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1404 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1407 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1408 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1409 if we haven't yet recorded any vector types. */
1411 static inline void
1412 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1414 /* All unit counts have the form current_vector_size * X for some
1415 rational X, so two unit sizes must have a common multiple.
1416 Everything is a multiple of the initial value of 1. */
1417 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1418 *max_nunits = force_common_multiple (*max_nunits, nunits);
1421 /* Return the vectorization factor that should be used for costing
1422 purposes while vectorizing the loop described by LOOP_VINFO.
1423 Pick a reasonable estimate if the vectorization factor isn't
1424 known at compile time. */
1426 static inline unsigned int
1427 vect_vf_for_cost (loop_vec_info loop_vinfo)
1429 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1432 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1433 Pick a reasonable estimate if the exact number isn't known at
1434 compile time. */
1436 static inline unsigned int
1437 vect_nunits_for_cost (tree vec_type)
1439 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1442 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1444 static inline unsigned HOST_WIDE_INT
1445 vect_max_vf (loop_vec_info loop_vinfo)
1447 unsigned HOST_WIDE_INT vf;
1448 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1449 return vf;
1450 return MAX_VECTORIZATION_FACTOR;
1453 /* Return the size of the value accessed by unvectorized data reference
1454 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1455 for the associated gimple statement, since that guarantees that DR_INFO
1456 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1457 here includes things like V1SI, which can be vectorized in the same way
1458 as a plain SI.) */
1460 inline unsigned int
1461 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1463 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1466 /* Source location + hotness information. */
1467 extern dump_user_location_t vect_location;
1469 /* A macro for calling:
1470 dump_begin_scope (MSG, vect_location);
1471 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1472 and then calling
1473 dump_end_scope ();
1474 once the object goes out of scope, thus capturing the nesting of
1475 the scopes. */
1477 #define DUMP_VECT_SCOPE(MSG) \
1478 AUTO_DUMP_SCOPE (MSG, vect_location)
1480 /*-----------------------------------------------------------------*/
1481 /* Function prototypes. */
1482 /*-----------------------------------------------------------------*/
1484 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1485 in tree-vect-loop-manip.c. */
1486 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1487 tree, tree, tree, bool);
1488 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1489 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1490 struct loop *, edge);
1491 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1492 poly_uint64);
1493 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1494 tree *, tree *, tree *, int, bool, bool);
1495 extern void vect_prepare_for_masked_peels (loop_vec_info);
1496 extern dump_user_location_t find_loop_location (struct loop *);
1497 extern bool vect_can_advance_ivs_p (loop_vec_info);
1499 /* In tree-vect-stmts.c. */
1500 extern poly_uint64 current_vector_size;
1501 extern tree get_vectype_for_scalar_type (tree);
1502 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1503 extern tree get_mask_type_for_scalar_type (tree);
1504 extern tree get_same_sized_vectype (tree, tree);
1505 extern bool vect_get_loop_mask_type (loop_vec_info);
1506 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1507 stmt_vec_info * = NULL, gimple ** = NULL);
1508 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1509 tree *, stmt_vec_info * = NULL,
1510 gimple ** = NULL);
1511 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1512 tree, tree, enum tree_code *,
1513 enum tree_code *, int *,
1514 vec<tree> *);
1515 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1516 enum tree_code *,
1517 int *, vec<tree> *);
1518 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1519 extern void free_stmt_vec_info (gimple *stmt);
1520 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1521 enum vect_cost_for_stmt, stmt_vec_info,
1522 int, enum vect_cost_model_location);
1523 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1524 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1525 gimple_stmt_iterator *);
1526 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1527 extern tree vect_get_store_rhs (stmt_vec_info);
1528 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1529 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1530 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1531 vec<tree> *, slp_tree);
1532 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1533 vec<tree> *, vec<tree> *);
1534 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1535 gimple_stmt_iterator *);
1536 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1537 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1538 bool *, slp_tree, slp_instance);
1539 extern void vect_remove_stores (stmt_vec_info);
1540 extern bool vect_analyze_stmt (stmt_vec_info, bool *, slp_tree, slp_instance,
1541 stmt_vector_for_cost *);
1542 extern bool vectorizable_condition (stmt_vec_info, gimple_stmt_iterator *,
1543 stmt_vec_info *, tree, int, slp_tree,
1544 stmt_vector_for_cost *);
1545 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1546 unsigned int *, unsigned int *,
1547 stmt_vector_for_cost *,
1548 stmt_vector_for_cost *, bool);
1549 extern void vect_get_store_cost (stmt_vec_info, int,
1550 unsigned int *, stmt_vector_for_cost *);
1551 extern bool vect_supportable_shift (enum tree_code, tree);
1552 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1553 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1554 extern void optimize_mask_stores (struct loop*);
1555 extern gcall *vect_gen_while (tree, tree, tree);
1556 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1557 extern bool vect_get_vector_types_for_stmt (stmt_vec_info, tree *, tree *);
1558 extern tree vect_get_mask_type_for_stmt (stmt_vec_info);
1560 /* In tree-vect-data-refs.c. */
1561 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1562 extern enum dr_alignment_support vect_supportable_dr_alignment
1563 (dr_vec_info *, bool);
1564 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1565 HOST_WIDE_INT *);
1566 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1567 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1568 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1569 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1570 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1571 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1572 extern bool vect_analyze_data_ref_accesses (vec_info *);
1573 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1574 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1575 signop, int, internal_fn *, tree *);
1576 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1577 gather_scatter_info *);
1578 extern bool vect_find_stmt_data_reference (loop_p, gimple *,
1579 vec<data_reference_p> *);
1580 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1581 extern void vect_record_base_alignments (vec_info *);
1582 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, struct loop *, tree,
1583 tree *, gimple_stmt_iterator *,
1584 gimple **, bool, bool *,
1585 tree = NULL_TREE, tree = NULL_TREE);
1586 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1587 stmt_vec_info, tree);
1588 extern void vect_copy_ref_info (tree, tree);
1589 extern tree vect_create_destination_var (tree, tree);
1590 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1591 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1592 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1593 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1594 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1595 gimple_stmt_iterator *, vec<tree> *);
1596 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1597 tree *, enum dr_alignment_support, tree,
1598 struct loop **);
1599 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1600 gimple_stmt_iterator *);
1601 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1602 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1603 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1604 const char * = NULL);
1605 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1606 tree, tree = NULL_TREE);
1608 /* In tree-vect-loop.c. */
1609 /* FORNOW: Used in tree-parloops.c. */
1610 extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info,
1611 bool *, bool);
1612 /* Used in gimple-loop-interchange.c. */
1613 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1614 enum tree_code);
1615 /* Drive for loop analysis stage. */
1616 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info,
1617 vec_info_shared *);
1618 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1619 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1620 tree *, bool);
1621 extern tree vect_halve_mask_nunits (tree);
1622 extern tree vect_double_mask_nunits (tree);
1623 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1624 unsigned int, tree);
1625 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1626 unsigned int, tree, unsigned int);
1628 /* Drive for loop transformation stage. */
1629 extern struct loop *vect_transform_loop (loop_vec_info);
1630 extern loop_vec_info vect_analyze_loop_form (struct loop *, vec_info_shared *);
1631 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1632 slp_tree, int, stmt_vec_info *,
1633 stmt_vector_for_cost *);
1634 extern bool vectorizable_reduction (stmt_vec_info, gimple_stmt_iterator *,
1635 stmt_vec_info *, slp_tree, slp_instance,
1636 stmt_vector_for_cost *);
1637 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1638 stmt_vec_info *, slp_tree,
1639 stmt_vector_for_cost *);
1640 extern tree get_initial_def_for_reduction (stmt_vec_info, tree, tree *);
1641 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1642 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1643 stmt_vector_for_cost *,
1644 stmt_vector_for_cost *,
1645 stmt_vector_for_cost *);
1646 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1648 /* In tree-vect-slp.c. */
1649 extern void vect_free_slp_instance (slp_instance, bool);
1650 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1651 gimple_stmt_iterator *, poly_uint64,
1652 slp_instance, bool, unsigned *);
1653 extern bool vect_slp_analyze_operations (vec_info *);
1654 extern bool vect_schedule_slp (vec_info *);
1655 extern bool vect_analyze_slp (vec_info *, unsigned);
1656 extern bool vect_make_slp_decision (loop_vec_info);
1657 extern void vect_detect_hybrid_slp (loop_vec_info);
1658 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1659 extern bool vect_slp_bb (basic_block);
1660 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1661 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1662 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1663 unsigned int * = NULL,
1664 tree * = NULL, tree * = NULL);
1665 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1666 unsigned int, vec<tree> &);
1667 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1669 /* In tree-vect-patterns.c. */
1670 /* Pattern recognition functions.
1671 Additional pattern recognition functions can (and will) be added
1672 in the future. */
1673 void vect_pattern_recog (vec_info *);
1675 /* In tree-vectorizer.c. */
1676 unsigned vectorize_loops (void);
1677 bool vect_stmt_in_region_p (vec_info *, gimple *);
1678 void vect_free_loop_info_assumptions (struct loop *);
1680 #endif /* GCC_TREE_VECTORIZER_H */