1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
52 #include "coretypes.h"
57 #include "diagnostic-core.h"
63 /* Possible return values of iv_get_reaching_def. */
67 /* More than one reaching def, or reaching def that does not
71 /* The use is trivial invariant of the loop, i.e. is not changed
75 /* The use is reached by initial value and a value from the
76 previous iteration. */
79 /* The use has single dominating def. */
83 /* Information about a biv. */
87 unsigned regno
; /* The register of the biv. */
88 struct rtx_iv iv
; /* Value of the biv. */
91 static bool clean_slate
= true;
93 static unsigned int iv_ref_table_size
= 0;
95 /* Table of rtx_ivs indexed by the df_ref uid field. */
96 static struct rtx_iv
** iv_ref_table
;
98 /* Induction variable stored at the reference. */
99 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
100 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
102 /* The current loop. */
104 static struct loop
*current_loop
;
106 /* Hashtable helper. */
108 struct biv_entry_hasher
: free_ptr_hash
<biv_entry
>
110 typedef rtx_def
*compare_type
;
111 static inline hashval_t
hash (const biv_entry
*);
112 static inline bool equal (const biv_entry
*, const rtx_def
*);
115 /* Returns hash value for biv B. */
118 biv_entry_hasher::hash (const biv_entry
*b
)
123 /* Compares biv B and register R. */
126 biv_entry_hasher::equal (const biv_entry
*b
, const rtx_def
*r
)
128 return b
->regno
== REGNO (r
);
131 /* Bivs of the current loop. */
133 static hash_table
<biv_entry_hasher
> *bivs
;
135 static bool iv_analyze_op (rtx_insn
*, rtx
, struct rtx_iv
*);
137 /* Return the RTX code corresponding to the IV extend code EXTEND. */
138 static inline enum rtx_code
139 iv_extend_to_rtx_code (enum iv_extend_code extend
)
147 case IV_UNKNOWN_EXTEND
:
153 /* Dumps information about IV to FILE. */
155 extern void dump_iv_info (FILE *, struct rtx_iv
*);
157 dump_iv_info (FILE *file
, struct rtx_iv
*iv
)
161 fprintf (file
, "not simple");
165 if (iv
->step
== const0_rtx
166 && !iv
->first_special
)
167 fprintf (file
, "invariant ");
169 print_rtl (file
, iv
->base
);
170 if (iv
->step
!= const0_rtx
)
172 fprintf (file
, " + ");
173 print_rtl (file
, iv
->step
);
174 fprintf (file
, " * iteration");
176 fprintf (file
, " (in %s)", GET_MODE_NAME (iv
->mode
));
178 if (iv
->mode
!= iv
->extend_mode
)
179 fprintf (file
, " %s to %s",
180 rtx_name
[iv_extend_to_rtx_code (iv
->extend
)],
181 GET_MODE_NAME (iv
->extend_mode
));
183 if (iv
->mult
!= const1_rtx
)
185 fprintf (file
, " * ");
186 print_rtl (file
, iv
->mult
);
188 if (iv
->delta
!= const0_rtx
)
190 fprintf (file
, " + ");
191 print_rtl (file
, iv
->delta
);
193 if (iv
->first_special
)
194 fprintf (file
, " (first special)");
198 check_iv_ref_table_size (void)
200 if (iv_ref_table_size
< DF_DEFS_TABLE_SIZE ())
202 unsigned int new_size
= DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
203 iv_ref_table
= XRESIZEVEC (struct rtx_iv
*, iv_ref_table
, new_size
);
204 memset (&iv_ref_table
[iv_ref_table_size
], 0,
205 (new_size
- iv_ref_table_size
) * sizeof (struct rtx_iv
*));
206 iv_ref_table_size
= new_size
;
211 /* Checks whether REG is a well-behaved register. */
214 simple_reg_p (rtx reg
)
218 if (GET_CODE (reg
) == SUBREG
)
220 if (!subreg_lowpart_p (reg
))
222 reg
= SUBREG_REG (reg
);
229 if (HARD_REGISTER_NUM_P (r
))
232 if (GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
238 /* Clears the information about ivs stored in df. */
243 unsigned i
, n_defs
= DF_DEFS_TABLE_SIZE ();
246 check_iv_ref_table_size ();
247 for (i
= 0; i
< n_defs
; i
++)
249 iv
= iv_ref_table
[i
];
253 iv_ref_table
[i
] = NULL
;
261 /* Prepare the data for an induction variable analysis of a LOOP. */
264 iv_analysis_loop_init (struct loop
*loop
)
268 /* Clear the information from the analysis of the previous loop. */
271 df_set_flags (DF_EQ_NOTES
+ DF_DEFER_INSN_RESCAN
);
272 bivs
= new hash_table
<biv_entry_hasher
> (10);
278 /* Get rid of the ud chains before processing the rescans. Then add
280 df_remove_problem (df_chain
);
281 df_process_deferred_rescans ();
282 df_set_flags (DF_RD_PRUNE_DEAD_DEFS
);
283 df_chain_add_problem (DF_UD_CHAIN
);
284 df_note_add_problem ();
285 df_analyze_loop (loop
);
287 df_dump_region (dump_file
);
289 check_iv_ref_table_size ();
292 /* Finds the definition of REG that dominates loop latch and stores
293 it to DEF. Returns false if there is not a single definition
294 dominating the latch. If REG has no definition in loop, DEF
295 is set to NULL and true is returned. */
298 latch_dominating_def (rtx reg
, df_ref
*def
)
300 df_ref single_rd
= NULL
, adef
;
301 unsigned regno
= REGNO (reg
);
302 struct df_rd_bb_info
*bb_info
= DF_RD_BB_INFO (current_loop
->latch
);
304 for (adef
= DF_REG_DEF_CHAIN (regno
); adef
; adef
= DF_REF_NEXT_REG (adef
))
306 if (!bitmap_bit_p (df
->blocks_to_analyze
, DF_REF_BBNO (adef
))
307 || !bitmap_bit_p (&bb_info
->out
, DF_REF_ID (adef
)))
310 /* More than one reaching definition. */
314 if (!just_once_each_iteration_p (current_loop
, DF_REF_BB (adef
)))
324 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
326 static enum iv_grd_result
327 iv_get_reaching_def (rtx_insn
*insn
, rtx reg
, df_ref
*def
)
330 basic_block def_bb
, use_bb
;
335 if (!simple_reg_p (reg
))
337 if (GET_CODE (reg
) == SUBREG
)
338 reg
= SUBREG_REG (reg
);
339 gcc_assert (REG_P (reg
));
341 use
= df_find_use (insn
, reg
);
342 gcc_assert (use
!= NULL
);
344 if (!DF_REF_CHAIN (use
))
345 return GRD_INVARIANT
;
347 /* More than one reaching def. */
348 if (DF_REF_CHAIN (use
)->next
)
351 adef
= DF_REF_CHAIN (use
)->ref
;
353 /* We do not handle setting only part of the register. */
354 if (DF_REF_FLAGS (adef
) & DF_REF_READ_WRITE
)
357 def_insn
= DF_REF_INSN (adef
);
358 def_bb
= DF_REF_BB (adef
);
359 use_bb
= BLOCK_FOR_INSN (insn
);
361 if (use_bb
== def_bb
)
362 dom_p
= (DF_INSN_LUID (def_insn
) < DF_INSN_LUID (insn
));
364 dom_p
= dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
);
369 return GRD_SINGLE_DOM
;
372 /* The definition does not dominate the use. This is still OK if
373 this may be a use of a biv, i.e. if the def_bb dominates loop
375 if (just_once_each_iteration_p (current_loop
, def_bb
))
376 return GRD_MAYBE_BIV
;
381 /* Sets IV to invariant CST in MODE. Always returns true (just for
382 consistency with other iv manipulation functions that may fail). */
385 iv_constant (struct rtx_iv
*iv
, rtx cst
, machine_mode mode
)
387 if (mode
== VOIDmode
)
388 mode
= GET_MODE (cst
);
392 iv
->step
= const0_rtx
;
393 iv
->first_special
= false;
394 iv
->extend
= IV_UNKNOWN_EXTEND
;
395 iv
->extend_mode
= iv
->mode
;
396 iv
->delta
= const0_rtx
;
397 iv
->mult
= const1_rtx
;
402 /* Evaluates application of subreg to MODE on IV. */
405 iv_subreg (struct rtx_iv
*iv
, machine_mode mode
)
407 /* If iv is invariant, just calculate the new value. */
408 if (iv
->step
== const0_rtx
409 && !iv
->first_special
)
411 rtx val
= get_iv_value (iv
, const0_rtx
);
412 val
= lowpart_subreg (mode
, val
,
413 iv
->extend
== IV_UNKNOWN_EXTEND
414 ? iv
->mode
: iv
->extend_mode
);
417 iv
->extend
= IV_UNKNOWN_EXTEND
;
418 iv
->mode
= iv
->extend_mode
= mode
;
419 iv
->delta
= const0_rtx
;
420 iv
->mult
= const1_rtx
;
424 if (iv
->extend_mode
== mode
)
427 if (GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (iv
->mode
))
430 iv
->extend
= IV_UNKNOWN_EXTEND
;
433 iv
->base
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
434 simplify_gen_binary (MULT
, iv
->extend_mode
,
435 iv
->base
, iv
->mult
));
436 iv
->step
= simplify_gen_binary (MULT
, iv
->extend_mode
, iv
->step
, iv
->mult
);
437 iv
->mult
= const1_rtx
;
438 iv
->delta
= const0_rtx
;
439 iv
->first_special
= false;
444 /* Evaluates application of EXTEND to MODE on IV. */
447 iv_extend (struct rtx_iv
*iv
, enum iv_extend_code extend
, machine_mode mode
)
449 /* If iv is invariant, just calculate the new value. */
450 if (iv
->step
== const0_rtx
451 && !iv
->first_special
)
453 rtx val
= get_iv_value (iv
, const0_rtx
);
454 if (iv
->extend_mode
!= iv
->mode
455 && iv
->extend
!= IV_UNKNOWN_EXTEND
456 && iv
->extend
!= extend
)
457 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
458 val
= simplify_gen_unary (iv_extend_to_rtx_code (extend
), mode
,
461 ? iv
->extend_mode
: iv
->mode
);
463 iv
->extend
= IV_UNKNOWN_EXTEND
;
464 iv
->mode
= iv
->extend_mode
= mode
;
465 iv
->delta
= const0_rtx
;
466 iv
->mult
= const1_rtx
;
470 if (mode
!= iv
->extend_mode
)
473 if (iv
->extend
!= IV_UNKNOWN_EXTEND
474 && iv
->extend
!= extend
)
482 /* Evaluates negation of IV. */
485 iv_neg (struct rtx_iv
*iv
)
487 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
489 iv
->base
= simplify_gen_unary (NEG
, iv
->extend_mode
,
490 iv
->base
, iv
->extend_mode
);
491 iv
->step
= simplify_gen_unary (NEG
, iv
->extend_mode
,
492 iv
->step
, iv
->extend_mode
);
496 iv
->delta
= simplify_gen_unary (NEG
, iv
->extend_mode
,
497 iv
->delta
, iv
->extend_mode
);
498 iv
->mult
= simplify_gen_unary (NEG
, iv
->extend_mode
,
499 iv
->mult
, iv
->extend_mode
);
505 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
508 iv_add (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
, enum rtx_code op
)
513 /* Extend the constant to extend_mode of the other operand if necessary. */
514 if (iv0
->extend
== IV_UNKNOWN_EXTEND
515 && iv0
->mode
== iv0
->extend_mode
516 && iv0
->step
== const0_rtx
517 && GET_MODE_SIZE (iv0
->extend_mode
) < GET_MODE_SIZE (iv1
->extend_mode
))
519 iv0
->extend_mode
= iv1
->extend_mode
;
520 iv0
->base
= simplify_gen_unary (ZERO_EXTEND
, iv0
->extend_mode
,
521 iv0
->base
, iv0
->mode
);
523 if (iv1
->extend
== IV_UNKNOWN_EXTEND
524 && iv1
->mode
== iv1
->extend_mode
525 && iv1
->step
== const0_rtx
526 && GET_MODE_SIZE (iv1
->extend_mode
) < GET_MODE_SIZE (iv0
->extend_mode
))
528 iv1
->extend_mode
= iv0
->extend_mode
;
529 iv1
->base
= simplify_gen_unary (ZERO_EXTEND
, iv1
->extend_mode
,
530 iv1
->base
, iv1
->mode
);
533 mode
= iv0
->extend_mode
;
534 if (mode
!= iv1
->extend_mode
)
537 if (iv0
->extend
== IV_UNKNOWN_EXTEND
538 && iv1
->extend
== IV_UNKNOWN_EXTEND
)
540 if (iv0
->mode
!= iv1
->mode
)
543 iv0
->base
= simplify_gen_binary (op
, mode
, iv0
->base
, iv1
->base
);
544 iv0
->step
= simplify_gen_binary (op
, mode
, iv0
->step
, iv1
->step
);
549 /* Handle addition of constant. */
550 if (iv1
->extend
== IV_UNKNOWN_EXTEND
552 && iv1
->step
== const0_rtx
)
554 iv0
->delta
= simplify_gen_binary (op
, mode
, iv0
->delta
, iv1
->base
);
558 if (iv0
->extend
== IV_UNKNOWN_EXTEND
560 && iv0
->step
== const0_rtx
)
568 iv0
->delta
= simplify_gen_binary (PLUS
, mode
, iv0
->delta
, arg
);
575 /* Evaluates multiplication of IV by constant CST. */
578 iv_mult (struct rtx_iv
*iv
, rtx mby
)
580 machine_mode mode
= iv
->extend_mode
;
582 if (GET_MODE (mby
) != VOIDmode
583 && GET_MODE (mby
) != mode
)
586 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
588 iv
->base
= simplify_gen_binary (MULT
, mode
, iv
->base
, mby
);
589 iv
->step
= simplify_gen_binary (MULT
, mode
, iv
->step
, mby
);
593 iv
->delta
= simplify_gen_binary (MULT
, mode
, iv
->delta
, mby
);
594 iv
->mult
= simplify_gen_binary (MULT
, mode
, iv
->mult
, mby
);
600 /* Evaluates shift of IV by constant CST. */
603 iv_shift (struct rtx_iv
*iv
, rtx mby
)
605 machine_mode mode
= iv
->extend_mode
;
607 if (GET_MODE (mby
) != VOIDmode
608 && GET_MODE (mby
) != mode
)
611 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
613 iv
->base
= simplify_gen_binary (ASHIFT
, mode
, iv
->base
, mby
);
614 iv
->step
= simplify_gen_binary (ASHIFT
, mode
, iv
->step
, mby
);
618 iv
->delta
= simplify_gen_binary (ASHIFT
, mode
, iv
->delta
, mby
);
619 iv
->mult
= simplify_gen_binary (ASHIFT
, mode
, iv
->mult
, mby
);
625 /* The recursive part of get_biv_step. Gets the value of the single value
626 defined by DEF wrto initial value of REG inside loop, in shape described
630 get_biv_step_1 (df_ref def
, rtx reg
,
631 rtx
*inner_step
, machine_mode
*inner_mode
,
632 enum iv_extend_code
*extend
, machine_mode outer_mode
,
635 rtx set
, rhs
, op0
= NULL_RTX
, op1
= NULL_RTX
;
638 rtx_insn
*insn
= DF_REF_INSN (def
);
640 enum iv_grd_result res
;
642 set
= single_set (insn
);
646 rhs
= find_reg_equal_equiv_note (insn
);
652 code
= GET_CODE (rhs
);
665 if (code
== PLUS
&& CONSTANT_P (op0
))
666 std::swap (op0
, op1
);
668 if (!simple_reg_p (op0
)
669 || !CONSTANT_P (op1
))
672 if (GET_MODE (rhs
) != outer_mode
)
674 /* ppc64 uses expressions like
676 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
678 this is equivalent to
680 (set x':DI (plus:DI y:DI 1))
681 (set x:SI (subreg:SI (x':DI)). */
682 if (GET_CODE (op0
) != SUBREG
)
684 if (GET_MODE (SUBREG_REG (op0
)) != outer_mode
)
693 if (GET_MODE (rhs
) != outer_mode
)
697 if (!simple_reg_p (op0
))
707 if (GET_CODE (next
) == SUBREG
)
709 if (!subreg_lowpart_p (next
))
712 nextr
= SUBREG_REG (next
);
713 if (GET_MODE (nextr
) != outer_mode
)
719 res
= iv_get_reaching_def (insn
, nextr
, &next_def
);
721 if (res
== GRD_INVALID
|| res
== GRD_INVARIANT
)
724 if (res
== GRD_MAYBE_BIV
)
726 if (!rtx_equal_p (nextr
, reg
))
729 *inner_step
= const0_rtx
;
730 *extend
= IV_UNKNOWN_EXTEND
;
731 *inner_mode
= outer_mode
;
732 *outer_step
= const0_rtx
;
734 else if (!get_biv_step_1 (next_def
, reg
,
735 inner_step
, inner_mode
, extend
, outer_mode
,
739 if (GET_CODE (next
) == SUBREG
)
741 machine_mode amode
= GET_MODE (next
);
743 if (GET_MODE_SIZE (amode
) > GET_MODE_SIZE (*inner_mode
))
747 *inner_step
= simplify_gen_binary (PLUS
, outer_mode
,
748 *inner_step
, *outer_step
);
749 *outer_step
= const0_rtx
;
750 *extend
= IV_UNKNOWN_EXTEND
;
761 if (*inner_mode
== outer_mode
762 /* See comment in previous switch. */
763 || GET_MODE (rhs
) != outer_mode
)
764 *inner_step
= simplify_gen_binary (code
, outer_mode
,
767 *outer_step
= simplify_gen_binary (code
, outer_mode
,
773 gcc_assert (GET_MODE (op0
) == *inner_mode
774 && *extend
== IV_UNKNOWN_EXTEND
775 && *outer_step
== const0_rtx
);
777 *extend
= (code
== SIGN_EXTEND
) ? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
787 /* Gets the operation on register REG inside loop, in shape
789 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
791 If the operation cannot be described in this shape, return false.
792 LAST_DEF is the definition of REG that dominates loop latch. */
795 get_biv_step (df_ref last_def
, rtx reg
, rtx
*inner_step
,
796 machine_mode
*inner_mode
, enum iv_extend_code
*extend
,
797 machine_mode
*outer_mode
, rtx
*outer_step
)
799 *outer_mode
= GET_MODE (reg
);
801 if (!get_biv_step_1 (last_def
, reg
,
802 inner_step
, inner_mode
, extend
, *outer_mode
,
806 gcc_assert ((*inner_mode
== *outer_mode
) != (*extend
!= IV_UNKNOWN_EXTEND
));
807 gcc_assert (*inner_mode
!= *outer_mode
|| *outer_step
== const0_rtx
);
812 /* Records information that DEF is induction variable IV. */
815 record_iv (df_ref def
, struct rtx_iv
*iv
)
817 struct rtx_iv
*recorded_iv
= XNEW (struct rtx_iv
);
820 check_iv_ref_table_size ();
821 DF_REF_IV_SET (def
, recorded_iv
);
824 /* If DEF was already analyzed for bivness, store the description of the biv to
825 IV and return true. Otherwise return false. */
828 analyzed_for_bivness_p (rtx def
, struct rtx_iv
*iv
)
830 struct biv_entry
*biv
= bivs
->find_with_hash (def
, REGNO (def
));
840 record_biv (rtx def
, struct rtx_iv
*iv
)
842 struct biv_entry
*biv
= XNEW (struct biv_entry
);
843 biv_entry
**slot
= bivs
->find_slot_with_hash (def
, REGNO (def
), INSERT
);
845 biv
->regno
= REGNO (def
);
851 /* Determines whether DEF is a biv and if so, stores its description
855 iv_analyze_biv (rtx def
, struct rtx_iv
*iv
)
857 rtx inner_step
, outer_step
;
858 machine_mode inner_mode
, outer_mode
;
859 enum iv_extend_code extend
;
864 fprintf (dump_file
, "Analyzing ");
865 print_rtl (dump_file
, def
);
866 fprintf (dump_file
, " for bivness.\n");
871 if (!CONSTANT_P (def
))
874 return iv_constant (iv
, def
, VOIDmode
);
877 if (!latch_dominating_def (def
, &last_def
))
880 fprintf (dump_file
, " not simple.\n");
885 return iv_constant (iv
, def
, VOIDmode
);
887 if (analyzed_for_bivness_p (def
, iv
))
890 fprintf (dump_file
, " already analysed.\n");
891 return iv
->base
!= NULL_RTX
;
894 if (!get_biv_step (last_def
, def
, &inner_step
, &inner_mode
, &extend
,
895 &outer_mode
, &outer_step
))
901 /* Loop transforms base to es (base + inner_step) + outer_step,
902 where es means extend of subreg between inner_mode and outer_mode.
903 The corresponding induction variable is
905 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
907 iv
->base
= simplify_gen_binary (MINUS
, outer_mode
, def
, outer_step
);
908 iv
->step
= simplify_gen_binary (PLUS
, outer_mode
, inner_step
, outer_step
);
909 iv
->mode
= inner_mode
;
910 iv
->extend_mode
= outer_mode
;
912 iv
->mult
= const1_rtx
;
913 iv
->delta
= outer_step
;
914 iv
->first_special
= inner_mode
!= outer_mode
;
919 fprintf (dump_file
, " ");
920 dump_iv_info (dump_file
, iv
);
921 fprintf (dump_file
, "\n");
924 record_biv (def
, iv
);
925 return iv
->base
!= NULL_RTX
;
928 /* Analyzes expression RHS used at INSN and stores the result to *IV.
929 The mode of the induction variable is MODE. */
932 iv_analyze_expr (rtx_insn
*insn
, rtx rhs
, machine_mode mode
,
936 rtx op0
= NULL_RTX
, op1
= NULL_RTX
;
937 struct rtx_iv iv0
, iv1
;
938 enum rtx_code code
= GET_CODE (rhs
);
939 machine_mode omode
= mode
;
945 gcc_assert (GET_MODE (rhs
) == mode
|| GET_MODE (rhs
) == VOIDmode
);
951 if (!iv_analyze_op (insn
, rhs
, iv
))
954 if (iv
->mode
== VOIDmode
)
957 iv
->extend_mode
= mode
;
973 omode
= GET_MODE (op0
);
985 if (!CONSTANT_P (mby
))
986 std::swap (op0
, mby
);
987 if (!CONSTANT_P (mby
))
994 if (!CONSTANT_P (mby
))
1003 && !iv_analyze_expr (insn
, op0
, omode
, &iv0
))
1007 && !iv_analyze_expr (insn
, op1
, omode
, &iv1
))
1013 if (!iv_extend (&iv0
, IV_SIGN_EXTEND
, mode
))
1018 if (!iv_extend (&iv0
, IV_ZERO_EXTEND
, mode
))
1029 if (!iv_add (&iv0
, &iv1
, code
))
1034 if (!iv_mult (&iv0
, mby
))
1039 if (!iv_shift (&iv0
, mby
))
1048 return iv
->base
!= NULL_RTX
;
1051 /* Analyzes iv DEF and stores the result to *IV. */
1054 iv_analyze_def (df_ref def
, struct rtx_iv
*iv
)
1056 rtx_insn
*insn
= DF_REF_INSN (def
);
1057 rtx reg
= DF_REF_REG (def
);
1062 fprintf (dump_file
, "Analyzing def of ");
1063 print_rtl (dump_file
, reg
);
1064 fprintf (dump_file
, " in insn ");
1065 print_rtl_single (dump_file
, insn
);
1068 check_iv_ref_table_size ();
1069 if (DF_REF_IV (def
))
1072 fprintf (dump_file
, " already analysed.\n");
1073 *iv
= *DF_REF_IV (def
);
1074 return iv
->base
!= NULL_RTX
;
1077 iv
->mode
= VOIDmode
;
1078 iv
->base
= NULL_RTX
;
1079 iv
->step
= NULL_RTX
;
1084 set
= single_set (insn
);
1088 if (!REG_P (SET_DEST (set
)))
1091 gcc_assert (SET_DEST (set
) == reg
);
1092 rhs
= find_reg_equal_equiv_note (insn
);
1094 rhs
= XEXP (rhs
, 0);
1096 rhs
= SET_SRC (set
);
1098 iv_analyze_expr (insn
, rhs
, GET_MODE (reg
), iv
);
1099 record_iv (def
, iv
);
1103 print_rtl (dump_file
, reg
);
1104 fprintf (dump_file
, " in insn ");
1105 print_rtl_single (dump_file
, insn
);
1106 fprintf (dump_file
, " is ");
1107 dump_iv_info (dump_file
, iv
);
1108 fprintf (dump_file
, "\n");
1111 return iv
->base
!= NULL_RTX
;
1114 /* Analyzes operand OP of INSN and stores the result to *IV. */
1117 iv_analyze_op (rtx_insn
*insn
, rtx op
, struct rtx_iv
*iv
)
1120 enum iv_grd_result res
;
1124 fprintf (dump_file
, "Analyzing operand ");
1125 print_rtl (dump_file
, op
);
1126 fprintf (dump_file
, " of insn ");
1127 print_rtl_single (dump_file
, insn
);
1130 if (function_invariant_p (op
))
1131 res
= GRD_INVARIANT
;
1132 else if (GET_CODE (op
) == SUBREG
)
1134 if (!subreg_lowpart_p (op
))
1137 if (!iv_analyze_op (insn
, SUBREG_REG (op
), iv
))
1140 return iv_subreg (iv
, GET_MODE (op
));
1144 res
= iv_get_reaching_def (insn
, op
, &def
);
1145 if (res
== GRD_INVALID
)
1148 fprintf (dump_file
, " not simple.\n");
1153 if (res
== GRD_INVARIANT
)
1155 iv_constant (iv
, op
, VOIDmode
);
1159 fprintf (dump_file
, " ");
1160 dump_iv_info (dump_file
, iv
);
1161 fprintf (dump_file
, "\n");
1166 if (res
== GRD_MAYBE_BIV
)
1167 return iv_analyze_biv (op
, iv
);
1169 return iv_analyze_def (def
, iv
);
1172 /* Analyzes value VAL at INSN and stores the result to *IV. */
1175 iv_analyze (rtx_insn
*insn
, rtx val
, struct rtx_iv
*iv
)
1179 /* We must find the insn in that val is used, so that we get to UD chains.
1180 Since the function is sometimes called on result of get_condition,
1181 this does not necessarily have to be directly INSN; scan also the
1183 if (simple_reg_p (val
))
1185 if (GET_CODE (val
) == SUBREG
)
1186 reg
= SUBREG_REG (val
);
1190 while (!df_find_use (insn
, reg
))
1191 insn
= NEXT_INSN (insn
);
1194 return iv_analyze_op (insn
, val
, iv
);
1197 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1200 iv_analyze_result (rtx_insn
*insn
, rtx def
, struct rtx_iv
*iv
)
1204 adef
= df_find_def (insn
, def
);
1208 return iv_analyze_def (adef
, iv
);
1211 /* Checks whether definition of register REG in INSN is a basic induction
1212 variable. IV analysis must have been initialized (via a call to
1213 iv_analysis_loop_init) for this function to produce a result. */
1216 biv_p (rtx_insn
*insn
, rtx reg
)
1219 df_ref def
, last_def
;
1221 if (!simple_reg_p (reg
))
1224 def
= df_find_def (insn
, reg
);
1225 gcc_assert (def
!= NULL
);
1226 if (!latch_dominating_def (reg
, &last_def
))
1228 if (last_def
!= def
)
1231 if (!iv_analyze_biv (reg
, &iv
))
1234 return iv
.step
!= const0_rtx
;
1237 /* Calculates value of IV at ITERATION-th iteration. */
1240 get_iv_value (struct rtx_iv
*iv
, rtx iteration
)
1244 /* We would need to generate some if_then_else patterns, and so far
1245 it is not needed anywhere. */
1246 gcc_assert (!iv
->first_special
);
1248 if (iv
->step
!= const0_rtx
&& iteration
!= const0_rtx
)
1249 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->base
,
1250 simplify_gen_binary (MULT
, iv
->extend_mode
,
1251 iv
->step
, iteration
));
1255 if (iv
->extend_mode
== iv
->mode
)
1258 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
1260 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
1263 val
= simplify_gen_unary (iv_extend_to_rtx_code (iv
->extend
),
1264 iv
->extend_mode
, val
, iv
->mode
);
1265 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
1266 simplify_gen_binary (MULT
, iv
->extend_mode
,
1272 /* Free the data for an induction variable analysis. */
1275 iv_analysis_done (void)
1281 df_finish_pass (true);
1284 free (iv_ref_table
);
1285 iv_ref_table
= NULL
;
1286 iv_ref_table_size
= 0;
1290 /* Computes inverse to X modulo (1 << MOD). */
1293 inverse (uint64_t x
, int mod
)
1296 ((uint64_t) 1 << (mod
- 1) << 1) - 1;
1300 for (i
= 0; i
< mod
- 1; i
++)
1302 rslt
= (rslt
* x
) & mask
;
1309 /* Checks whether any register in X is in set ALT. */
1312 altered_reg_used (const_rtx x
, bitmap alt
)
1314 subrtx_iterator::array_type array
;
1315 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
1317 const_rtx x
= *iter
;
1318 if (REG_P (x
) && REGNO_REG_SET_P (alt
, REGNO (x
)))
1324 /* Marks registers altered by EXPR in set ALT. */
1327 mark_altered (rtx expr
, const_rtx by ATTRIBUTE_UNUSED
, void *alt
)
1329 if (GET_CODE (expr
) == SUBREG
)
1330 expr
= SUBREG_REG (expr
);
1334 SET_REGNO_REG_SET ((bitmap
) alt
, REGNO (expr
));
1337 /* Checks whether RHS is simple enough to process. */
1340 simple_rhs_p (rtx rhs
)
1344 if (function_invariant_p (rhs
)
1345 || (REG_P (rhs
) && !HARD_REGISTER_P (rhs
)))
1348 switch (GET_CODE (rhs
))
1353 op0
= XEXP (rhs
, 0);
1354 op1
= XEXP (rhs
, 1);
1355 /* Allow reg OP const and reg OP reg. */
1356 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
))
1357 && !function_invariant_p (op0
))
1359 if (!(REG_P (op1
) && !HARD_REGISTER_P (op1
))
1360 && !function_invariant_p (op1
))
1369 op0
= XEXP (rhs
, 0);
1370 op1
= XEXP (rhs
, 1);
1371 /* Allow reg OP const. */
1372 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
)))
1374 if (!function_invariant_p (op1
))
1384 /* If REGNO has a single definition, return its known value, otherwise return
1388 find_single_def_src (unsigned int regno
)
1396 adef
= DF_REG_DEF_CHAIN (regno
);
1397 if (adef
== NULL
|| DF_REF_NEXT_REG (adef
) != NULL
1398 || DF_REF_IS_ARTIFICIAL (adef
))
1401 set
= single_set (DF_REF_INSN (adef
));
1402 if (set
== NULL
|| !REG_P (SET_DEST (set
))
1403 || REGNO (SET_DEST (set
)) != regno
)
1406 note
= find_reg_equal_equiv_note (DF_REF_INSN (adef
));
1408 if (note
&& function_invariant_p (XEXP (note
, 0)))
1410 src
= XEXP (note
, 0);
1413 src
= SET_SRC (set
);
1417 regno
= REGNO (src
);
1422 if (!function_invariant_p (src
))
1428 /* If any registers in *EXPR that have a single definition, try to replace
1429 them with the known-equivalent values. */
1432 replace_single_def_regs (rtx
*expr
)
1434 subrtx_var_iterator::array_type array
;
1436 FOR_EACH_SUBRTX_VAR (iter
, array
, *expr
, NONCONST
)
1440 if (rtx new_x
= find_single_def_src (REGNO (x
)))
1442 *expr
= simplify_replace_rtx (*expr
, x
, new_x
);
1448 /* A subroutine of simplify_using_initial_values, this function examines INSN
1449 to see if it contains a suitable set that we can use to make a replacement.
1450 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1451 the set; return false otherwise. */
1454 suitable_set_for_replacement (rtx_insn
*insn
, rtx
*dest
, rtx
*src
)
1456 rtx set
= single_set (insn
);
1457 rtx lhs
= NULL_RTX
, rhs
;
1462 lhs
= SET_DEST (set
);
1466 rhs
= find_reg_equal_equiv_note (insn
);
1468 rhs
= XEXP (rhs
, 0);
1470 rhs
= SET_SRC (set
);
1472 if (!simple_rhs_p (rhs
))
1480 /* Using the data returned by suitable_set_for_replacement, replace DEST
1481 with SRC in *EXPR and return the new expression. Also call
1482 replace_single_def_regs if the replacement changed something. */
1484 replace_in_expr (rtx
*expr
, rtx dest
, rtx src
)
1487 *expr
= simplify_replace_rtx (*expr
, dest
, src
);
1490 replace_single_def_regs (expr
);
1493 /* Checks whether A implies B. */
1496 implies_p (rtx a
, rtx b
)
1498 rtx op0
, op1
, opb0
, opb1
;
1501 if (rtx_equal_p (a
, b
))
1504 if (GET_CODE (a
) == EQ
)
1510 || (GET_CODE (op0
) == SUBREG
1511 && REG_P (SUBREG_REG (op0
))))
1513 rtx r
= simplify_replace_rtx (b
, op0
, op1
);
1514 if (r
== const_true_rtx
)
1519 || (GET_CODE (op1
) == SUBREG
1520 && REG_P (SUBREG_REG (op1
))))
1522 rtx r
= simplify_replace_rtx (b
, op1
, op0
);
1523 if (r
== const_true_rtx
)
1528 if (b
== const_true_rtx
)
1531 if ((GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMM_COMPARE
1532 && GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMPARE
)
1533 || (GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMM_COMPARE
1534 && GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMPARE
))
1542 mode
= GET_MODE (op0
);
1543 if (mode
!= GET_MODE (opb0
))
1545 else if (mode
== VOIDmode
)
1547 mode
= GET_MODE (op1
);
1548 if (mode
!= GET_MODE (opb1
))
1552 /* A < B implies A + 1 <= B. */
1553 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == LT
)
1554 && (GET_CODE (b
) == GE
|| GET_CODE (b
) == LE
))
1557 if (GET_CODE (a
) == GT
)
1558 std::swap (op0
, op1
);
1560 if (GET_CODE (b
) == GE
)
1561 std::swap (opb0
, opb1
);
1563 if (SCALAR_INT_MODE_P (mode
)
1564 && rtx_equal_p (op1
, opb1
)
1565 && simplify_gen_binary (MINUS
, mode
, opb0
, op0
) == const1_rtx
)
1570 /* A < B or A > B imply A != B. TODO: Likewise
1571 A + n < B implies A != B + n if neither wraps. */
1572 if (GET_CODE (b
) == NE
1573 && (GET_CODE (a
) == GT
|| GET_CODE (a
) == GTU
1574 || GET_CODE (a
) == LT
|| GET_CODE (a
) == LTU
))
1576 if (rtx_equal_p (op0
, opb0
)
1577 && rtx_equal_p (op1
, opb1
))
1581 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1582 if (GET_CODE (a
) == NE
1583 && op1
== const0_rtx
)
1585 if ((GET_CODE (b
) == GTU
1586 && opb1
== const0_rtx
)
1587 || (GET_CODE (b
) == GEU
1588 && opb1
== const1_rtx
))
1589 return rtx_equal_p (op0
, opb0
);
1592 /* A != N is equivalent to A - (N + 1) <u -1. */
1593 if (GET_CODE (a
) == NE
1594 && CONST_INT_P (op1
)
1595 && GET_CODE (b
) == LTU
1596 && opb1
== constm1_rtx
1597 && GET_CODE (opb0
) == PLUS
1598 && CONST_INT_P (XEXP (opb0
, 1))
1599 /* Avoid overflows. */
1600 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1601 != ((unsigned HOST_WIDE_INT
)1
1602 << (HOST_BITS_PER_WIDE_INT
- 1)) - 1)
1603 && INTVAL (XEXP (opb0
, 1)) + 1 == -INTVAL (op1
))
1604 return rtx_equal_p (op0
, XEXP (opb0
, 0));
1606 /* Likewise, A != N implies A - N > 0. */
1607 if (GET_CODE (a
) == NE
1608 && CONST_INT_P (op1
))
1610 if (GET_CODE (b
) == GTU
1611 && GET_CODE (opb0
) == PLUS
1612 && opb1
== const0_rtx
1613 && CONST_INT_P (XEXP (opb0
, 1))
1614 /* Avoid overflows. */
1615 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1616 != (HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1)))
1617 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1618 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1619 if (GET_CODE (b
) == GEU
1620 && GET_CODE (opb0
) == PLUS
1621 && opb1
== const1_rtx
1622 && CONST_INT_P (XEXP (opb0
, 1))
1623 /* Avoid overflows. */
1624 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1625 != (HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1)))
1626 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1627 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1630 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1631 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == GE
)
1632 && CONST_INT_P (op1
)
1633 && ((GET_CODE (a
) == GT
&& op1
== constm1_rtx
)
1634 || INTVAL (op1
) >= 0)
1635 && GET_CODE (b
) == LTU
1636 && CONST_INT_P (opb1
)
1637 && rtx_equal_p (op0
, opb0
))
1638 return INTVAL (opb1
) < 0;
1643 /* Canonicalizes COND so that
1645 (1) Ensure that operands are ordered according to
1646 swap_commutative_operands_p.
1647 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1648 for GE, GEU, and LEU. */
1651 canon_condition (rtx cond
)
1657 code
= GET_CODE (cond
);
1658 op0
= XEXP (cond
, 0);
1659 op1
= XEXP (cond
, 1);
1661 if (swap_commutative_operands_p (op0
, op1
))
1663 code
= swap_condition (code
);
1664 std::swap (op0
, op1
);
1667 mode
= GET_MODE (op0
);
1668 if (mode
== VOIDmode
)
1669 mode
= GET_MODE (op1
);
1670 gcc_assert (mode
!= VOIDmode
);
1672 if (CONST_SCALAR_INT_P (op1
) && GET_MODE_CLASS (mode
) != MODE_CC
)
1674 rtx_mode_t
const_val (op1
, mode
);
1679 if (wi::ne_p (const_val
, wi::max_value (mode
, SIGNED
)))
1682 op1
= immed_wide_int_const (wi::add (const_val
, 1), mode
);
1687 if (wi::ne_p (const_val
, wi::min_value (mode
, SIGNED
)))
1690 op1
= immed_wide_int_const (wi::sub (const_val
, 1), mode
);
1695 if (wi::ne_p (const_val
, -1))
1698 op1
= immed_wide_int_const (wi::add (const_val
, 1), mode
);
1703 if (wi::ne_p (const_val
, 0))
1706 op1
= immed_wide_int_const (wi::sub (const_val
, 1), mode
);
1715 if (op0
!= XEXP (cond
, 0)
1716 || op1
!= XEXP (cond
, 1)
1717 || code
!= GET_CODE (cond
)
1718 || GET_MODE (cond
) != SImode
)
1719 cond
= gen_rtx_fmt_ee (code
, SImode
, op0
, op1
);
1724 /* Reverses CONDition; returns NULL if we cannot. */
1727 reversed_condition (rtx cond
)
1729 enum rtx_code reversed
;
1730 reversed
= reversed_comparison_code (cond
, NULL
);
1731 if (reversed
== UNKNOWN
)
1734 return gen_rtx_fmt_ee (reversed
,
1735 GET_MODE (cond
), XEXP (cond
, 0),
1739 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1740 set of altered regs. */
1743 simplify_using_condition (rtx cond
, rtx
*expr
, regset altered
)
1745 rtx rev
, reve
, exp
= *expr
;
1747 /* If some register gets altered later, we do not really speak about its
1748 value at the time of comparison. */
1749 if (altered
&& altered_reg_used (cond
, altered
))
1752 if (GET_CODE (cond
) == EQ
1753 && REG_P (XEXP (cond
, 0)) && CONSTANT_P (XEXP (cond
, 1)))
1755 *expr
= simplify_replace_rtx (*expr
, XEXP (cond
, 0), XEXP (cond
, 1));
1759 if (!COMPARISON_P (exp
))
1762 rev
= reversed_condition (cond
);
1763 reve
= reversed_condition (exp
);
1765 cond
= canon_condition (cond
);
1766 exp
= canon_condition (exp
);
1768 rev
= canon_condition (rev
);
1770 reve
= canon_condition (reve
);
1772 if (rtx_equal_p (exp
, cond
))
1774 *expr
= const_true_rtx
;
1778 if (rev
&& rtx_equal_p (exp
, rev
))
1784 if (implies_p (cond
, exp
))
1786 *expr
= const_true_rtx
;
1790 if (reve
&& implies_p (cond
, reve
))
1796 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1798 if (rev
&& implies_p (exp
, rev
))
1804 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1805 if (rev
&& reve
&& implies_p (reve
, rev
))
1807 *expr
= const_true_rtx
;
1811 /* We would like to have some other tests here. TODO. */
1816 /* Use relationship between A and *B to eventually eliminate *B.
1817 OP is the operation we consider. */
1820 eliminate_implied_condition (enum rtx_code op
, rtx a
, rtx
*b
)
1825 /* If A implies *B, we may replace *B by true. */
1826 if (implies_p (a
, *b
))
1827 *b
= const_true_rtx
;
1831 /* If *B implies A, we may replace *B by false. */
1832 if (implies_p (*b
, a
))
1841 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1842 operation we consider. */
1845 eliminate_implied_conditions (enum rtx_code op
, rtx
*head
, rtx tail
)
1849 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1850 eliminate_implied_condition (op
, *head
, &XEXP (elt
, 0));
1851 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1852 eliminate_implied_condition (op
, XEXP (elt
, 0), head
);
1855 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1856 is a list, its elements are assumed to be combined using OP. */
1859 simplify_using_initial_values (struct loop
*loop
, enum rtx_code op
, rtx
*expr
)
1861 bool expression_valid
;
1862 rtx head
, tail
, last_valid_expr
;
1863 rtx_expr_list
*cond_list
;
1866 regset altered
, this_altered
;
1872 if (CONSTANT_P (*expr
))
1875 if (GET_CODE (*expr
) == EXPR_LIST
)
1877 head
= XEXP (*expr
, 0);
1878 tail
= XEXP (*expr
, 1);
1880 eliminate_implied_conditions (op
, &head
, tail
);
1885 neutral
= const_true_rtx
;
1890 neutral
= const0_rtx
;
1891 aggr
= const_true_rtx
;
1898 simplify_using_initial_values (loop
, UNKNOWN
, &head
);
1901 XEXP (*expr
, 0) = aggr
;
1902 XEXP (*expr
, 1) = NULL_RTX
;
1905 else if (head
== neutral
)
1908 simplify_using_initial_values (loop
, op
, expr
);
1911 simplify_using_initial_values (loop
, op
, &tail
);
1913 if (tail
&& XEXP (tail
, 0) == aggr
)
1919 XEXP (*expr
, 0) = head
;
1920 XEXP (*expr
, 1) = tail
;
1924 gcc_assert (op
== UNKNOWN
);
1926 replace_single_def_regs (expr
);
1927 if (CONSTANT_P (*expr
))
1930 e
= loop_preheader_edge (loop
);
1931 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1934 altered
= ALLOC_REG_SET (®_obstack
);
1935 this_altered
= ALLOC_REG_SET (®_obstack
);
1937 expression_valid
= true;
1938 last_valid_expr
= *expr
;
1942 insn
= BB_END (e
->src
);
1943 if (any_condjump_p (insn
))
1945 rtx cond
= get_condition (BB_END (e
->src
), NULL
, false, true);
1947 if (cond
&& (e
->flags
& EDGE_FALLTHRU
))
1948 cond
= reversed_condition (cond
);
1952 simplify_using_condition (cond
, expr
, altered
);
1956 if (CONSTANT_P (*expr
))
1958 for (note
= cond_list
; note
; note
= XEXP (note
, 1))
1960 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
1961 if (CONSTANT_P (*expr
))
1965 cond_list
= alloc_EXPR_LIST (0, cond
, cond_list
);
1969 FOR_BB_INSNS_REVERSE (e
->src
, insn
)
1977 CLEAR_REG_SET (this_altered
);
1978 note_stores (PATTERN (insn
), mark_altered
, this_altered
);
1981 /* Kill all call clobbered registers. */
1983 hard_reg_set_iterator hrsi
;
1984 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
,
1986 SET_REGNO_REG_SET (this_altered
, i
);
1989 if (suitable_set_for_replacement (insn
, &dest
, &src
))
1991 rtx_expr_list
**pnote
, **pnote_next
;
1993 replace_in_expr (expr
, dest
, src
);
1994 if (CONSTANT_P (*expr
))
1997 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
1999 rtx_expr_list
*note
= *pnote
;
2000 rtx old_cond
= XEXP (note
, 0);
2002 pnote_next
= (rtx_expr_list
**)&XEXP (note
, 1);
2003 replace_in_expr (&XEXP (note
, 0), dest
, src
);
2005 /* We can no longer use a condition that has been simplified
2006 to a constant, and simplify_using_condition will abort if
2008 if (CONSTANT_P (XEXP (note
, 0)))
2010 *pnote
= *pnote_next
;
2012 free_EXPR_LIST_node (note
);
2014 /* Retry simplifications with this condition if either the
2015 expression or the condition changed. */
2016 else if (old_cond
!= XEXP (note
, 0) || old
!= *expr
)
2017 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
2022 rtx_expr_list
**pnote
, **pnote_next
;
2024 /* If we did not use this insn to make a replacement, any overlap
2025 between stores in this insn and our expression will cause the
2026 expression to become invalid. */
2027 if (altered_reg_used (*expr
, this_altered
))
2030 /* Likewise for the conditions. */
2031 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2033 rtx_expr_list
*note
= *pnote
;
2034 rtx old_cond
= XEXP (note
, 0);
2036 pnote_next
= (rtx_expr_list
**)&XEXP (note
, 1);
2037 if (altered_reg_used (old_cond
, this_altered
))
2039 *pnote
= *pnote_next
;
2041 free_EXPR_LIST_node (note
);
2046 if (CONSTANT_P (*expr
))
2049 IOR_REG_SET (altered
, this_altered
);
2051 /* If the expression now contains regs that have been altered, we
2052 can't return it to the caller. However, it is still valid for
2053 further simplification, so keep searching to see if we can
2054 eventually turn it into a constant. */
2055 if (altered_reg_used (*expr
, altered
))
2056 expression_valid
= false;
2057 if (expression_valid
)
2058 last_valid_expr
= *expr
;
2061 if (!single_pred_p (e
->src
)
2062 || single_pred (e
->src
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2064 e
= single_pred_edge (e
->src
);
2068 free_EXPR_LIST_list (&cond_list
);
2069 if (!CONSTANT_P (*expr
))
2070 *expr
= last_valid_expr
;
2071 FREE_REG_SET (altered
);
2072 FREE_REG_SET (this_altered
);
2075 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2076 that IV occurs as left operands of comparison COND and its signedness
2077 is SIGNED_P to DESC. */
2080 shorten_into_mode (struct rtx_iv
*iv
, machine_mode mode
,
2081 enum rtx_code cond
, bool signed_p
, struct niter_desc
*desc
)
2083 rtx mmin
, mmax
, cond_over
, cond_under
;
2085 get_mode_bounds (mode
, signed_p
, iv
->extend_mode
, &mmin
, &mmax
);
2086 cond_under
= simplify_gen_relational (LT
, SImode
, iv
->extend_mode
,
2088 cond_over
= simplify_gen_relational (GT
, SImode
, iv
->extend_mode
,
2097 if (cond_under
!= const0_rtx
)
2099 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2100 if (cond_over
!= const0_rtx
)
2101 desc
->noloop_assumptions
=
2102 alloc_EXPR_LIST (0, cond_over
, desc
->noloop_assumptions
);
2109 if (cond_over
!= const0_rtx
)
2111 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2112 if (cond_under
!= const0_rtx
)
2113 desc
->noloop_assumptions
=
2114 alloc_EXPR_LIST (0, cond_under
, desc
->noloop_assumptions
);
2118 if (cond_over
!= const0_rtx
)
2120 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2121 if (cond_under
!= const0_rtx
)
2123 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2131 iv
->extend
= signed_p
? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
2134 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2135 subregs of the same mode if possible (sometimes it is necessary to add
2136 some assumptions to DESC). */
2139 canonicalize_iv_subregs (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
,
2140 enum rtx_code cond
, struct niter_desc
*desc
)
2142 machine_mode comp_mode
;
2145 /* If the ivs behave specially in the first iteration, or are
2146 added/multiplied after extending, we ignore them. */
2147 if (iv0
->first_special
|| iv0
->mult
!= const1_rtx
|| iv0
->delta
!= const0_rtx
)
2149 if (iv1
->first_special
|| iv1
->mult
!= const1_rtx
|| iv1
->delta
!= const0_rtx
)
2152 /* If there is some extend, it must match signedness of the comparison. */
2157 if (iv0
->extend
== IV_ZERO_EXTEND
2158 || iv1
->extend
== IV_ZERO_EXTEND
)
2165 if (iv0
->extend
== IV_SIGN_EXTEND
2166 || iv1
->extend
== IV_SIGN_EXTEND
)
2172 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
2173 && iv1
->extend
!= IV_UNKNOWN_EXTEND
2174 && iv0
->extend
!= iv1
->extend
)
2178 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
)
2179 signed_p
= iv0
->extend
== IV_SIGN_EXTEND
;
2180 if (iv1
->extend
!= IV_UNKNOWN_EXTEND
)
2181 signed_p
= iv1
->extend
== IV_SIGN_EXTEND
;
2188 /* Values of both variables should be computed in the same mode. These
2189 might indeed be different, if we have comparison like
2191 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2193 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2194 in different modes. This does not seem impossible to handle, but
2195 it hardly ever occurs in practice.
2197 The only exception is the case when one of operands is invariant.
2198 For example pentium 3 generates comparisons like
2199 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2200 definitely do not want this prevent the optimization. */
2201 comp_mode
= iv0
->extend_mode
;
2202 if (GET_MODE_BITSIZE (comp_mode
) < GET_MODE_BITSIZE (iv1
->extend_mode
))
2203 comp_mode
= iv1
->extend_mode
;
2205 if (iv0
->extend_mode
!= comp_mode
)
2207 if (iv0
->mode
!= iv0
->extend_mode
2208 || iv0
->step
!= const0_rtx
)
2211 iv0
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2212 comp_mode
, iv0
->base
, iv0
->mode
);
2213 iv0
->extend_mode
= comp_mode
;
2216 if (iv1
->extend_mode
!= comp_mode
)
2218 if (iv1
->mode
!= iv1
->extend_mode
2219 || iv1
->step
!= const0_rtx
)
2222 iv1
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2223 comp_mode
, iv1
->base
, iv1
->mode
);
2224 iv1
->extend_mode
= comp_mode
;
2227 /* Check that both ivs belong to a range of a single mode. If one of the
2228 operands is an invariant, we may need to shorten it into the common
2230 if (iv0
->mode
== iv0
->extend_mode
2231 && iv0
->step
== const0_rtx
2232 && iv0
->mode
!= iv1
->mode
)
2233 shorten_into_mode (iv0
, iv1
->mode
, cond
, signed_p
, desc
);
2235 if (iv1
->mode
== iv1
->extend_mode
2236 && iv1
->step
== const0_rtx
2237 && iv0
->mode
!= iv1
->mode
)
2238 shorten_into_mode (iv1
, iv0
->mode
, swap_condition (cond
), signed_p
, desc
);
2240 if (iv0
->mode
!= iv1
->mode
)
2243 desc
->mode
= iv0
->mode
;
2244 desc
->signed_p
= signed_p
;
2249 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2250 result. This function is called from iv_number_of_iterations with
2251 a number of fields in DESC already filled in. OLD_NITER is the original
2252 expression for the number of iterations, before we tried to simplify it. */
2255 determine_max_iter (struct loop
*loop
, struct niter_desc
*desc
, rtx old_niter
)
2257 rtx niter
= desc
->niter_expr
;
2258 rtx mmin
, mmax
, cmp
;
2260 uint64_t andmax
= 0;
2262 /* We used to look for constant operand 0 of AND,
2263 but canonicalization should always make this impossible. */
2264 gcc_checking_assert (GET_CODE (niter
) != AND
2265 || !CONST_INT_P (XEXP (niter
, 0)));
2267 if (GET_CODE (niter
) == AND
2268 && CONST_INT_P (XEXP (niter
, 1)))
2270 andmax
= UINTVAL (XEXP (niter
, 1));
2271 niter
= XEXP (niter
, 0);
2274 get_mode_bounds (desc
->mode
, desc
->signed_p
, desc
->mode
, &mmin
, &mmax
);
2275 nmax
= UINTVAL (mmax
) - UINTVAL (mmin
);
2277 if (GET_CODE (niter
) == UDIV
)
2279 if (!CONST_INT_P (XEXP (niter
, 1)))
2281 inc
= INTVAL (XEXP (niter
, 1));
2282 niter
= XEXP (niter
, 0);
2287 /* We could use a binary search here, but for now improving the upper
2288 bound by just one eliminates one important corner case. */
2289 cmp
= simplify_gen_relational (desc
->signed_p
? LT
: LTU
, VOIDmode
,
2290 desc
->mode
, old_niter
, mmax
);
2291 simplify_using_initial_values (loop
, UNKNOWN
, &cmp
);
2292 if (cmp
== const_true_rtx
)
2297 fprintf (dump_file
, ";; improved upper bound by one.\n");
2301 nmax
= MIN (nmax
, andmax
);
2303 fprintf (dump_file
, ";; Determined upper bound %" PRId64
".\n",
2308 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2309 the result into DESC. Very similar to determine_number_of_iterations
2310 (basically its rtl version), complicated by things like subregs. */
2313 iv_number_of_iterations (struct loop
*loop
, rtx_insn
*insn
, rtx condition
,
2314 struct niter_desc
*desc
)
2316 rtx op0
, op1
, delta
, step
, bound
, may_xform
, tmp
, tmp0
, tmp1
;
2317 struct rtx_iv iv0
, iv1
;
2318 rtx assumption
, may_not_xform
;
2320 machine_mode mode
, comp_mode
;
2321 rtx mmin
, mmax
, mode_mmin
, mode_mmax
;
2322 uint64_t s
, size
, d
, inv
, max
, up
, down
;
2323 int64_t inc
, step_val
;
2324 int was_sharp
= false;
2328 /* The meaning of these assumptions is this:
2330 then the rest of information does not have to be valid
2331 if noloop_assumptions then the loop does not roll
2332 if infinite then this exit is never used */
2334 desc
->assumptions
= NULL_RTX
;
2335 desc
->noloop_assumptions
= NULL_RTX
;
2336 desc
->infinite
= NULL_RTX
;
2337 desc
->simple_p
= true;
2339 desc
->const_iter
= false;
2340 desc
->niter_expr
= NULL_RTX
;
2342 cond
= GET_CODE (condition
);
2343 gcc_assert (COMPARISON_P (condition
));
2345 mode
= GET_MODE (XEXP (condition
, 0));
2346 if (mode
== VOIDmode
)
2347 mode
= GET_MODE (XEXP (condition
, 1));
2348 /* The constant comparisons should be folded. */
2349 gcc_assert (mode
!= VOIDmode
);
2351 /* We only handle integers or pointers. */
2352 if (GET_MODE_CLASS (mode
) != MODE_INT
2353 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
2356 op0
= XEXP (condition
, 0);
2357 if (!iv_analyze (insn
, op0
, &iv0
))
2359 if (iv0
.extend_mode
== VOIDmode
)
2360 iv0
.mode
= iv0
.extend_mode
= mode
;
2362 op1
= XEXP (condition
, 1);
2363 if (!iv_analyze (insn
, op1
, &iv1
))
2365 if (iv1
.extend_mode
== VOIDmode
)
2366 iv1
.mode
= iv1
.extend_mode
= mode
;
2368 if (GET_MODE_BITSIZE (iv0
.extend_mode
) > HOST_BITS_PER_WIDE_INT
2369 || GET_MODE_BITSIZE (iv1
.extend_mode
) > HOST_BITS_PER_WIDE_INT
)
2372 /* Check condition and normalize it. */
2380 std::swap (iv0
, iv1
);
2381 cond
= swap_condition (cond
);
2393 /* Handle extends. This is relatively nontrivial, so we only try in some
2394 easy cases, when we can canonicalize the ivs (possibly by adding some
2395 assumptions) to shape subreg (base + i * step). This function also fills
2396 in desc->mode and desc->signed_p. */
2398 if (!canonicalize_iv_subregs (&iv0
, &iv1
, cond
, desc
))
2401 comp_mode
= iv0
.extend_mode
;
2403 size
= GET_MODE_PRECISION (mode
);
2404 get_mode_bounds (mode
, (cond
== LE
|| cond
== LT
), comp_mode
, &mmin
, &mmax
);
2405 mode_mmin
= lowpart_subreg (mode
, mmin
, comp_mode
);
2406 mode_mmax
= lowpart_subreg (mode
, mmax
, comp_mode
);
2408 if (!CONST_INT_P (iv0
.step
) || !CONST_INT_P (iv1
.step
))
2411 /* We can take care of the case of two induction variables chasing each other
2412 if the test is NE. I have never seen a loop using it, but still it is
2414 if (iv0
.step
!= const0_rtx
&& iv1
.step
!= const0_rtx
)
2419 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2420 iv1
.step
= const0_rtx
;
2423 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2424 iv1
.step
= lowpart_subreg (mode
, iv1
.step
, comp_mode
);
2426 /* This is either infinite loop or the one that ends immediately, depending
2427 on initial values. Unswitching should remove this kind of conditions. */
2428 if (iv0
.step
== const0_rtx
&& iv1
.step
== const0_rtx
)
2433 if (iv0
.step
== const0_rtx
)
2434 step_val
= -INTVAL (iv1
.step
);
2436 step_val
= INTVAL (iv0
.step
);
2438 /* Ignore loops of while (i-- < 10) type. */
2442 step_is_pow2
= !(step_val
& (step_val
- 1));
2446 /* We do not care about whether the step is power of two in this
2448 step_is_pow2
= false;
2452 /* Some more condition normalization. We must record some assumptions
2453 due to overflows. */
2458 /* We want to take care only of non-sharp relationals; this is easy,
2459 as in cases the overflow would make the transformation unsafe
2460 the loop does not roll. Seemingly it would make more sense to want
2461 to take care of sharp relationals instead, as NE is more similar to
2462 them, but the problem is that here the transformation would be more
2463 difficult due to possibly infinite loops. */
2464 if (iv0
.step
== const0_rtx
)
2466 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2467 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2469 if (assumption
== const_true_rtx
)
2470 goto zero_iter_simplify
;
2471 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2472 iv0
.base
, const1_rtx
);
2476 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2477 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2479 if (assumption
== const_true_rtx
)
2480 goto zero_iter_simplify
;
2481 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2482 iv1
.base
, constm1_rtx
);
2485 if (assumption
!= const0_rtx
)
2486 desc
->noloop_assumptions
=
2487 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2488 cond
= (cond
== LT
) ? LE
: LEU
;
2490 /* It will be useful to be able to tell the difference once more in
2491 LE -> NE reduction. */
2497 /* Take care of trivially infinite loops. */
2500 if (iv0
.step
== const0_rtx
)
2502 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2503 if (rtx_equal_p (tmp
, mode_mmin
))
2506 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2507 /* Fill in the remaining fields somehow. */
2508 goto zero_iter_simplify
;
2513 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2514 if (rtx_equal_p (tmp
, mode_mmax
))
2517 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2518 /* Fill in the remaining fields somehow. */
2519 goto zero_iter_simplify
;
2524 /* If we can we want to take care of NE conditions instead of size
2525 comparisons, as they are much more friendly (most importantly
2526 this takes care of special handling of loops with step 1). We can
2527 do it if we first check that upper bound is greater or equal to
2528 lower bound, their difference is constant c modulo step and that
2529 there is not an overflow. */
2532 if (iv0
.step
== const0_rtx
)
2533 step
= simplify_gen_unary (NEG
, comp_mode
, iv1
.step
, comp_mode
);
2536 step
= lowpart_subreg (mode
, step
, comp_mode
);
2537 delta
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2538 delta
= lowpart_subreg (mode
, delta
, comp_mode
);
2539 delta
= simplify_gen_binary (UMOD
, mode
, delta
, step
);
2540 may_xform
= const0_rtx
;
2541 may_not_xform
= const_true_rtx
;
2543 if (CONST_INT_P (delta
))
2545 if (was_sharp
&& INTVAL (delta
) == INTVAL (step
) - 1)
2547 /* A special case. We have transformed condition of type
2548 for (i = 0; i < 4; i += 4)
2550 for (i = 0; i <= 3; i += 4)
2551 obviously if the test for overflow during that transformation
2552 passed, we cannot overflow here. Most importantly any
2553 loop with sharp end condition and step 1 falls into this
2554 category, so handling this case specially is definitely
2555 worth the troubles. */
2556 may_xform
= const_true_rtx
;
2558 else if (iv0
.step
== const0_rtx
)
2560 bound
= simplify_gen_binary (PLUS
, comp_mode
, mmin
, step
);
2561 bound
= simplify_gen_binary (MINUS
, comp_mode
, bound
, delta
);
2562 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2563 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2564 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2566 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2572 bound
= simplify_gen_binary (MINUS
, comp_mode
, mmax
, step
);
2573 bound
= simplify_gen_binary (PLUS
, comp_mode
, bound
, delta
);
2574 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2575 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2576 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2578 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2584 if (may_xform
!= const0_rtx
)
2586 /* We perform the transformation always provided that it is not
2587 completely senseless. This is OK, as we would need this assumption
2588 to determine the number of iterations anyway. */
2589 if (may_xform
!= const_true_rtx
)
2591 /* If the step is a power of two and the final value we have
2592 computed overflows, the cycle is infinite. Otherwise it
2593 is nontrivial to compute the number of iterations. */
2595 desc
->infinite
= alloc_EXPR_LIST (0, may_not_xform
,
2598 desc
->assumptions
= alloc_EXPR_LIST (0, may_xform
,
2602 /* We are going to lose some information about upper bound on
2603 number of iterations in this step, so record the information
2605 inc
= INTVAL (iv0
.step
) - INTVAL (iv1
.step
);
2606 if (CONST_INT_P (iv1
.base
))
2607 up
= INTVAL (iv1
.base
);
2609 up
= INTVAL (mode_mmax
) - inc
;
2610 down
= INTVAL (CONST_INT_P (iv0
.base
)
2613 max
= (up
- down
) / inc
+ 1;
2615 && !desc
->assumptions
)
2616 record_niter_bound (loop
, max
, false, true);
2618 if (iv0
.step
== const0_rtx
)
2620 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, delta
);
2621 iv0
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.base
, step
);
2625 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, delta
);
2626 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, step
);
2629 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2630 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2631 assumption
= simplify_gen_relational (reverse_condition (cond
),
2632 SImode
, mode
, tmp0
, tmp1
);
2633 if (assumption
== const_true_rtx
)
2634 goto zero_iter_simplify
;
2635 else if (assumption
!= const0_rtx
)
2636 desc
->noloop_assumptions
=
2637 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2642 /* Count the number of iterations. */
2645 /* Everything we do here is just arithmetics modulo size of mode. This
2646 makes us able to do more involved computations of number of iterations
2647 than in other cases. First transform the condition into shape
2648 s * i <> c, with s positive. */
2649 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2650 iv0
.base
= const0_rtx
;
2651 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2652 iv1
.step
= const0_rtx
;
2653 if (INTVAL (iv0
.step
) < 0)
2655 iv0
.step
= simplify_gen_unary (NEG
, comp_mode
, iv0
.step
, comp_mode
);
2656 iv1
.base
= simplify_gen_unary (NEG
, comp_mode
, iv1
.base
, comp_mode
);
2658 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2660 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2661 is infinite. Otherwise, the number of iterations is
2662 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2663 s
= INTVAL (iv0
.step
); d
= 1;
2670 bound
= GEN_INT (((uint64_t) 1 << (size
- 1 ) << 1) - 1);
2672 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2673 tmp
= simplify_gen_binary (UMOD
, mode
, tmp1
, gen_int_mode (d
, mode
));
2674 assumption
= simplify_gen_relational (NE
, SImode
, mode
, tmp
, const0_rtx
);
2675 desc
->infinite
= alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2677 tmp
= simplify_gen_binary (UDIV
, mode
, tmp1
, gen_int_mode (d
, mode
));
2678 inv
= inverse (s
, size
);
2679 tmp
= simplify_gen_binary (MULT
, mode
, tmp
, gen_int_mode (inv
, mode
));
2680 desc
->niter_expr
= simplify_gen_binary (AND
, mode
, tmp
, bound
);
2684 if (iv1
.step
== const0_rtx
)
2685 /* Condition in shape a + s * i <= b
2686 We must know that b + s does not overflow and a <= b + s and then we
2687 can compute number of iterations as (b + s - a) / s. (It might
2688 seem that we in fact could be more clever about testing the b + s
2689 overflow condition using some information about b - a mod s,
2690 but it was already taken into account during LE -> NE transform). */
2693 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2694 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2696 bound
= simplify_gen_binary (MINUS
, mode
, mode_mmax
,
2697 lowpart_subreg (mode
, step
,
2703 /* If s is power of 2, we know that the loop is infinite if
2704 a % s <= b % s and b + s overflows. */
2705 assumption
= simplify_gen_relational (reverse_condition (cond
),
2709 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2710 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2711 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2712 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2714 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2718 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2721 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2724 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, iv0
.step
);
2725 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2726 assumption
= simplify_gen_relational (reverse_condition (cond
),
2727 SImode
, mode
, tmp0
, tmp
);
2729 delta
= simplify_gen_binary (PLUS
, mode
, tmp1
, step
);
2730 delta
= simplify_gen_binary (MINUS
, mode
, delta
, tmp0
);
2734 /* Condition in shape a <= b - s * i
2735 We must know that a - s does not overflow and a - s <= b and then
2736 we can again compute number of iterations as (b - (a - s)) / s. */
2737 step
= simplify_gen_unary (NEG
, mode
, iv1
.step
, mode
);
2738 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2739 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2741 bound
= simplify_gen_binary (PLUS
, mode
, mode_mmin
,
2742 lowpart_subreg (mode
, step
, comp_mode
));
2747 /* If s is power of 2, we know that the loop is infinite if
2748 a % s <= b % s and a - s overflows. */
2749 assumption
= simplify_gen_relational (reverse_condition (cond
),
2753 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2754 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2755 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2756 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2758 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2762 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2765 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2768 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, iv1
.step
);
2769 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2770 assumption
= simplify_gen_relational (reverse_condition (cond
),
2773 delta
= simplify_gen_binary (MINUS
, mode
, tmp0
, step
);
2774 delta
= simplify_gen_binary (MINUS
, mode
, tmp1
, delta
);
2776 if (assumption
== const_true_rtx
)
2777 goto zero_iter_simplify
;
2778 else if (assumption
!= const0_rtx
)
2779 desc
->noloop_assumptions
=
2780 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2781 delta
= simplify_gen_binary (UDIV
, mode
, delta
, step
);
2782 desc
->niter_expr
= delta
;
2785 old_niter
= desc
->niter_expr
;
2787 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2788 if (desc
->assumptions
2789 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2791 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2792 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2793 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2795 /* Rerun the simplification. Consider code (created by copying loop headers)
2807 The first pass determines that i = 0, the second pass uses it to eliminate
2808 noloop assumption. */
2810 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2811 if (desc
->assumptions
2812 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2814 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2815 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2816 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2818 if (desc
->noloop_assumptions
2819 && XEXP (desc
->noloop_assumptions
, 0) == const_true_rtx
)
2822 if (CONST_INT_P (desc
->niter_expr
))
2824 uint64_t val
= INTVAL (desc
->niter_expr
);
2826 desc
->const_iter
= true;
2827 desc
->niter
= val
& GET_MODE_MASK (desc
->mode
);
2829 && !desc
->assumptions
)
2830 record_niter_bound (loop
, desc
->niter
, false, true);
2834 max
= determine_max_iter (loop
, desc
, old_niter
);
2836 goto zero_iter_simplify
;
2838 && !desc
->assumptions
)
2839 record_niter_bound (loop
, max
, false, true);
2841 /* simplify_using_initial_values does a copy propagation on the registers
2842 in the expression for the number of iterations. This prolongs life
2843 ranges of registers and increases register pressure, and usually
2844 brings no gain (and if it happens to do, the cse pass will take care
2845 of it anyway). So prevent this behavior, unless it enabled us to
2846 derive that the number of iterations is a constant. */
2847 desc
->niter_expr
= old_niter
;
2853 /* Simplify the assumptions. */
2854 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2855 if (desc
->assumptions
2856 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2858 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2862 desc
->const_iter
= true;
2864 record_niter_bound (loop
, 0, true, true);
2865 desc
->noloop_assumptions
= NULL_RTX
;
2866 desc
->niter_expr
= const0_rtx
;
2870 desc
->simple_p
= false;
2874 /* Checks whether E is a simple exit from LOOP and stores its description
2878 check_simple_exit (struct loop
*loop
, edge e
, struct niter_desc
*desc
)
2880 basic_block exit_bb
;
2886 desc
->simple_p
= false;
2888 /* It must belong directly to the loop. */
2889 if (exit_bb
->loop_father
!= loop
)
2892 /* It must be tested (at least) once during any iteration. */
2893 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit_bb
))
2896 /* It must end in a simple conditional jump. */
2897 if (!any_condjump_p (BB_END (exit_bb
)))
2900 ein
= EDGE_SUCC (exit_bb
, 0);
2902 ein
= EDGE_SUCC (exit_bb
, 1);
2905 desc
->in_edge
= ein
;
2907 /* Test whether the condition is suitable. */
2908 if (!(condition
= get_condition (BB_END (ein
->src
), &at
, false, false)))
2911 if (ein
->flags
& EDGE_FALLTHRU
)
2913 condition
= reversed_condition (condition
);
2918 /* Check that we are able to determine number of iterations and fill
2919 in information about it. */
2920 iv_number_of_iterations (loop
, at
, condition
, desc
);
2923 /* Finds a simple exit of LOOP and stores its description into DESC. */
2926 find_simple_exit (struct loop
*loop
, struct niter_desc
*desc
)
2931 struct niter_desc act
;
2935 desc
->simple_p
= false;
2936 body
= get_loop_body (loop
);
2938 for (i
= 0; i
< loop
->num_nodes
; i
++)
2940 FOR_EACH_EDGE (e
, ei
, body
[i
]->succs
)
2942 if (flow_bb_inside_loop_p (loop
, e
->dest
))
2945 check_simple_exit (loop
, e
, &act
);
2953 /* Prefer constant iterations; the less the better. */
2955 || (desc
->const_iter
&& act
.niter
>= desc
->niter
))
2958 /* Also if the actual exit may be infinite, while the old one
2959 not, prefer the old one. */
2960 if (act
.infinite
&& !desc
->infinite
)
2972 fprintf (dump_file
, "Loop %d is simple:\n", loop
->num
);
2973 fprintf (dump_file
, " simple exit %d -> %d\n",
2974 desc
->out_edge
->src
->index
,
2975 desc
->out_edge
->dest
->index
);
2976 if (desc
->assumptions
)
2978 fprintf (dump_file
, " assumptions: ");
2979 print_rtl (dump_file
, desc
->assumptions
);
2980 fprintf (dump_file
, "\n");
2982 if (desc
->noloop_assumptions
)
2984 fprintf (dump_file
, " does not roll if: ");
2985 print_rtl (dump_file
, desc
->noloop_assumptions
);
2986 fprintf (dump_file
, "\n");
2990 fprintf (dump_file
, " infinite if: ");
2991 print_rtl (dump_file
, desc
->infinite
);
2992 fprintf (dump_file
, "\n");
2995 fprintf (dump_file
, " number of iterations: ");
2996 print_rtl (dump_file
, desc
->niter_expr
);
2997 fprintf (dump_file
, "\n");
2999 fprintf (dump_file
, " upper bound: %li\n",
3000 (long)get_max_loop_iterations_int (loop
));
3001 fprintf (dump_file
, " likely upper bound: %li\n",
3002 (long)get_likely_max_loop_iterations_int (loop
));
3003 fprintf (dump_file
, " realistic bound: %li\n",
3004 (long)get_estimated_loop_iterations_int (loop
));
3007 fprintf (dump_file
, "Loop %d is not simple.\n", loop
->num
);
3013 /* Creates a simple loop description of LOOP if it was not computed
3017 get_simple_loop_desc (struct loop
*loop
)
3019 struct niter_desc
*desc
= simple_loop_desc (loop
);
3024 /* At least desc->infinite is not always initialized by
3025 find_simple_loop_exit. */
3026 desc
= ggc_cleared_alloc
<niter_desc
> ();
3027 iv_analysis_loop_init (loop
);
3028 find_simple_exit (loop
, desc
);
3029 loop
->simple_loop_desc
= desc
;
3033 /* Releases simple loop description for LOOP. */
3036 free_simple_loop_desc (struct loop
*loop
)
3038 struct niter_desc
*desc
= simple_loop_desc (loop
);
3044 loop
->simple_loop_desc
= NULL
;