2014-02-12 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-vect-loop.c
blobab4d06fef33f735d42b2269df692fe1c9cb59237
1 /* Loop Vectorization
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-ssa-alias.h"
32 #include "internal-fn.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-ssa.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-pass.h"
48 #include "cfgloop.h"
49 #include "expr.h"
50 #include "recog.h"
51 #include "optabs.h"
52 #include "params.h"
53 #include "diagnostic-core.h"
54 #include "tree-chrec.h"
55 #include "tree-scalar-evolution.h"
56 #include "tree-vectorizer.h"
57 #include "target.h"
59 /* Loop Vectorization Pass.
61 This pass tries to vectorize loops.
63 For example, the vectorizer transforms the following simple loop:
65 short a[N]; short b[N]; short c[N]; int i;
67 for (i=0; i<N; i++){
68 a[i] = b[i] + c[i];
71 as if it was manually vectorized by rewriting the source code into:
73 typedef int __attribute__((mode(V8HI))) v8hi;
74 short a[N]; short b[N]; short c[N]; int i;
75 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
76 v8hi va, vb, vc;
78 for (i=0; i<N/8; i++){
79 vb = pb[i];
80 vc = pc[i];
81 va = vb + vc;
82 pa[i] = va;
85 The main entry to this pass is vectorize_loops(), in which
86 the vectorizer applies a set of analyses on a given set of loops,
87 followed by the actual vectorization transformation for the loops that
88 had successfully passed the analysis phase.
89 Throughout this pass we make a distinction between two types of
90 data: scalars (which are represented by SSA_NAMES), and memory references
91 ("data-refs"). These two types of data require different handling both
92 during analysis and transformation. The types of data-refs that the
93 vectorizer currently supports are ARRAY_REFS which base is an array DECL
94 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
95 accesses are required to have a simple (consecutive) access pattern.
97 Analysis phase:
98 ===============
99 The driver for the analysis phase is vect_analyze_loop().
100 It applies a set of analyses, some of which rely on the scalar evolution
101 analyzer (scev) developed by Sebastian Pop.
103 During the analysis phase the vectorizer records some information
104 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
105 loop, as well as general information about the loop as a whole, which is
106 recorded in a "loop_vec_info" struct attached to each loop.
108 Transformation phase:
109 =====================
110 The loop transformation phase scans all the stmts in the loop, and
111 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
112 the loop that needs to be vectorized. It inserts the vector code sequence
113 just before the scalar stmt S, and records a pointer to the vector code
114 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
115 attached to S). This pointer will be used for the vectorization of following
116 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
117 otherwise, we rely on dead code elimination for removing it.
119 For example, say stmt S1 was vectorized into stmt VS1:
121 VS1: vb = px[i];
122 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
123 S2: a = b;
125 To vectorize stmt S2, the vectorizer first finds the stmt that defines
126 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
127 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
128 resulting sequence would be:
130 VS1: vb = px[i];
131 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
132 VS2: va = vb;
133 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
135 Operands that are not SSA_NAMEs, are data-refs that appear in
136 load/store operations (like 'x[i]' in S1), and are handled differently.
138 Target modeling:
139 =================
140 Currently the only target specific information that is used is the
141 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
142 Targets that can support different sizes of vectors, for now will need
143 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
144 flexibility will be added in the future.
146 Since we only vectorize operations which vector form can be
147 expressed using existing tree codes, to verify that an operation is
148 supported, the vectorizer checks the relevant optab at the relevant
149 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
150 the value found is CODE_FOR_nothing, then there's no target support, and
151 we can't vectorize the stmt.
153 For additional information on this project see:
154 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
157 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
159 /* Function vect_determine_vectorization_factor
161 Determine the vectorization factor (VF). VF is the number of data elements
162 that are operated upon in parallel in a single iteration of the vectorized
163 loop. For example, when vectorizing a loop that operates on 4byte elements,
164 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
165 elements can fit in a single vector register.
167 We currently support vectorization of loops in which all types operated upon
168 are of the same size. Therefore this function currently sets VF according to
169 the size of the types operated upon, and fails if there are multiple sizes
170 in the loop.
172 VF is also the factor by which the loop iterations are strip-mined, e.g.:
173 original loop:
174 for (i=0; i<N; i++){
175 a[i] = b[i] + c[i];
178 vectorized loop:
179 for (i=0; i<N; i+=VF){
180 a[i:VF] = b[i:VF] + c[i:VF];
184 static bool
185 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
187 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
188 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
189 int nbbs = loop->num_nodes;
190 gimple_stmt_iterator si;
191 unsigned int vectorization_factor = 0;
192 tree scalar_type;
193 gimple phi;
194 tree vectype;
195 unsigned int nunits;
196 stmt_vec_info stmt_info;
197 int i;
198 HOST_WIDE_INT dummy;
199 gimple stmt, pattern_stmt = NULL;
200 gimple_seq pattern_def_seq = NULL;
201 gimple_stmt_iterator pattern_def_si = gsi_none ();
202 bool analyze_pattern_stmt = false;
204 if (dump_enabled_p ())
205 dump_printf_loc (MSG_NOTE, vect_location,
206 "=== vect_determine_vectorization_factor ===\n");
208 for (i = 0; i < nbbs; i++)
210 basic_block bb = bbs[i];
212 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
214 phi = gsi_stmt (si);
215 stmt_info = vinfo_for_stmt (phi);
216 if (dump_enabled_p ())
218 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
219 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
220 dump_printf (MSG_NOTE, "\n");
223 gcc_assert (stmt_info);
225 if (STMT_VINFO_RELEVANT_P (stmt_info))
227 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
228 scalar_type = TREE_TYPE (PHI_RESULT (phi));
230 if (dump_enabled_p ())
232 dump_printf_loc (MSG_NOTE, vect_location,
233 "get vectype for scalar type: ");
234 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
235 dump_printf (MSG_NOTE, "\n");
238 vectype = get_vectype_for_scalar_type (scalar_type);
239 if (!vectype)
241 if (dump_enabled_p ())
243 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
244 "not vectorized: unsupported "
245 "data-type ");
246 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
247 scalar_type);
248 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
250 return false;
252 STMT_VINFO_VECTYPE (stmt_info) = vectype;
254 if (dump_enabled_p ())
256 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
257 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
258 dump_printf (MSG_NOTE, "\n");
261 nunits = TYPE_VECTOR_SUBPARTS (vectype);
262 if (dump_enabled_p ())
263 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
264 nunits);
266 if (!vectorization_factor
267 || (nunits > vectorization_factor))
268 vectorization_factor = nunits;
272 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
274 tree vf_vectype;
276 if (analyze_pattern_stmt)
277 stmt = pattern_stmt;
278 else
279 stmt = gsi_stmt (si);
281 stmt_info = vinfo_for_stmt (stmt);
283 if (dump_enabled_p ())
285 dump_printf_loc (MSG_NOTE, vect_location,
286 "==> examining statement: ");
287 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 dump_printf (MSG_NOTE, "\n");
291 gcc_assert (stmt_info);
293 /* Skip stmts which do not need to be vectorized. */
294 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
295 && !STMT_VINFO_LIVE_P (stmt_info))
296 || gimple_clobber_p (stmt))
298 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
299 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
300 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
301 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
303 stmt = pattern_stmt;
304 stmt_info = vinfo_for_stmt (pattern_stmt);
305 if (dump_enabled_p ())
307 dump_printf_loc (MSG_NOTE, vect_location,
308 "==> examining pattern statement: ");
309 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
310 dump_printf (MSG_NOTE, "\n");
313 else
315 if (dump_enabled_p ())
316 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
317 gsi_next (&si);
318 continue;
321 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
322 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
323 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
324 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
325 analyze_pattern_stmt = true;
327 /* If a pattern statement has def stmts, analyze them too. */
328 if (is_pattern_stmt_p (stmt_info))
330 if (pattern_def_seq == NULL)
332 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
333 pattern_def_si = gsi_start (pattern_def_seq);
335 else if (!gsi_end_p (pattern_def_si))
336 gsi_next (&pattern_def_si);
337 if (pattern_def_seq != NULL)
339 gimple pattern_def_stmt = NULL;
340 stmt_vec_info pattern_def_stmt_info = NULL;
342 while (!gsi_end_p (pattern_def_si))
344 pattern_def_stmt = gsi_stmt (pattern_def_si);
345 pattern_def_stmt_info
346 = vinfo_for_stmt (pattern_def_stmt);
347 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
348 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
349 break;
350 gsi_next (&pattern_def_si);
353 if (!gsi_end_p (pattern_def_si))
355 if (dump_enabled_p ())
357 dump_printf_loc (MSG_NOTE, vect_location,
358 "==> examining pattern def stmt: ");
359 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
360 pattern_def_stmt, 0);
361 dump_printf (MSG_NOTE, "\n");
364 stmt = pattern_def_stmt;
365 stmt_info = pattern_def_stmt_info;
367 else
369 pattern_def_si = gsi_none ();
370 analyze_pattern_stmt = false;
373 else
374 analyze_pattern_stmt = false;
377 if (gimple_get_lhs (stmt) == NULL_TREE
378 /* MASK_STORE has no lhs, but is ok. */
379 && (!is_gimple_call (stmt)
380 || !gimple_call_internal_p (stmt)
381 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
383 if (is_gimple_call (stmt))
385 /* Ignore calls with no lhs. These must be calls to
386 #pragma omp simd functions, and what vectorization factor
387 it really needs can't be determined until
388 vectorizable_simd_clone_call. */
389 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
391 pattern_def_seq = NULL;
392 gsi_next (&si);
394 continue;
396 if (dump_enabled_p ())
398 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
399 "not vectorized: irregular stmt.");
400 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
402 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
404 return false;
407 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
409 if (dump_enabled_p ())
411 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
412 "not vectorized: vector stmt in loop:");
413 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
414 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
416 return false;
419 if (STMT_VINFO_VECTYPE (stmt_info))
421 /* The only case when a vectype had been already set is for stmts
422 that contain a dataref, or for "pattern-stmts" (stmts
423 generated by the vectorizer to represent/replace a certain
424 idiom). */
425 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
426 || is_pattern_stmt_p (stmt_info)
427 || !gsi_end_p (pattern_def_si));
428 vectype = STMT_VINFO_VECTYPE (stmt_info);
430 else
432 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
433 if (is_gimple_call (stmt)
434 && gimple_call_internal_p (stmt)
435 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
436 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
437 else
438 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
439 if (dump_enabled_p ())
441 dump_printf_loc (MSG_NOTE, vect_location,
442 "get vectype for scalar type: ");
443 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
444 dump_printf (MSG_NOTE, "\n");
446 vectype = get_vectype_for_scalar_type (scalar_type);
447 if (!vectype)
449 if (dump_enabled_p ())
451 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
452 "not vectorized: unsupported "
453 "data-type ");
454 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
455 scalar_type);
456 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
458 return false;
461 STMT_VINFO_VECTYPE (stmt_info) = vectype;
463 if (dump_enabled_p ())
465 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
466 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
467 dump_printf (MSG_NOTE, "\n");
471 /* The vectorization factor is according to the smallest
472 scalar type (or the largest vector size, but we only
473 support one vector size per loop). */
474 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
475 &dummy);
476 if (dump_enabled_p ())
478 dump_printf_loc (MSG_NOTE, vect_location,
479 "get vectype for scalar type: ");
480 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
481 dump_printf (MSG_NOTE, "\n");
483 vf_vectype = get_vectype_for_scalar_type (scalar_type);
484 if (!vf_vectype)
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
489 "not vectorized: unsupported data-type ");
490 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
491 scalar_type);
492 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
494 return false;
497 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
498 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
500 if (dump_enabled_p ())
502 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
503 "not vectorized: different sized vector "
504 "types in statement, ");
505 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
506 vectype);
507 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
508 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
509 vf_vectype);
510 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
512 return false;
515 if (dump_enabled_p ())
517 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
518 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
519 dump_printf (MSG_NOTE, "\n");
522 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
523 if (dump_enabled_p ())
524 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
525 if (!vectorization_factor
526 || (nunits > vectorization_factor))
527 vectorization_factor = nunits;
529 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
531 pattern_def_seq = NULL;
532 gsi_next (&si);
537 /* TODO: Analyze cost. Decide if worth while to vectorize. */
538 if (dump_enabled_p ())
539 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
540 vectorization_factor);
541 if (vectorization_factor <= 1)
543 if (dump_enabled_p ())
544 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
545 "not vectorized: unsupported data-type\n");
546 return false;
548 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
550 return true;
554 /* Function vect_is_simple_iv_evolution.
556 FORNOW: A simple evolution of an induction variables in the loop is
557 considered a polynomial evolution. */
559 static bool
560 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
561 tree * step)
563 tree init_expr;
564 tree step_expr;
565 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
566 basic_block bb;
568 /* When there is no evolution in this loop, the evolution function
569 is not "simple". */
570 if (evolution_part == NULL_TREE)
571 return false;
573 /* When the evolution is a polynomial of degree >= 2
574 the evolution function is not "simple". */
575 if (tree_is_chrec (evolution_part))
576 return false;
578 step_expr = evolution_part;
579 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
581 if (dump_enabled_p ())
583 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
584 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
585 dump_printf (MSG_NOTE, ", init: ");
586 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
587 dump_printf (MSG_NOTE, "\n");
590 *init = init_expr;
591 *step = step_expr;
593 if (TREE_CODE (step_expr) != INTEGER_CST
594 && (TREE_CODE (step_expr) != SSA_NAME
595 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
596 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
597 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
598 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
599 || !flag_associative_math)))
600 && (TREE_CODE (step_expr) != REAL_CST
601 || !flag_associative_math))
603 if (dump_enabled_p ())
604 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
605 "step unknown.\n");
606 return false;
609 return true;
612 /* Function vect_analyze_scalar_cycles_1.
614 Examine the cross iteration def-use cycles of scalar variables
615 in LOOP. LOOP_VINFO represents the loop that is now being
616 considered for vectorization (can be LOOP, or an outer-loop
617 enclosing LOOP). */
619 static void
620 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
622 basic_block bb = loop->header;
623 tree init, step;
624 auto_vec<gimple, 64> worklist;
625 gimple_stmt_iterator gsi;
626 bool double_reduc;
628 if (dump_enabled_p ())
629 dump_printf_loc (MSG_NOTE, vect_location,
630 "=== vect_analyze_scalar_cycles ===\n");
632 /* First - identify all inductions. Reduction detection assumes that all the
633 inductions have been identified, therefore, this order must not be
634 changed. */
635 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
637 gimple phi = gsi_stmt (gsi);
638 tree access_fn = NULL;
639 tree def = PHI_RESULT (phi);
640 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
642 if (dump_enabled_p ())
644 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
645 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
646 dump_printf (MSG_NOTE, "\n");
649 /* Skip virtual phi's. The data dependences that are associated with
650 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
651 if (virtual_operand_p (def))
652 continue;
654 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
656 /* Analyze the evolution function. */
657 access_fn = analyze_scalar_evolution (loop, def);
658 if (access_fn)
660 STRIP_NOPS (access_fn);
661 if (dump_enabled_p ())
663 dump_printf_loc (MSG_NOTE, vect_location,
664 "Access function of PHI: ");
665 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
666 dump_printf (MSG_NOTE, "\n");
668 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
669 = evolution_part_in_loop_num (access_fn, loop->num);
672 if (!access_fn
673 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
674 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
675 && TREE_CODE (step) != INTEGER_CST))
677 worklist.safe_push (phi);
678 continue;
681 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
683 if (dump_enabled_p ())
684 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
685 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
689 /* Second - identify all reductions and nested cycles. */
690 while (worklist.length () > 0)
692 gimple phi = worklist.pop ();
693 tree def = PHI_RESULT (phi);
694 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
695 gimple reduc_stmt;
696 bool nested_cycle;
698 if (dump_enabled_p ())
700 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
701 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
702 dump_printf (MSG_NOTE, "\n");
705 gcc_assert (!virtual_operand_p (def)
706 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
708 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
709 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
710 &double_reduc);
711 if (reduc_stmt)
713 if (double_reduc)
715 if (dump_enabled_p ())
716 dump_printf_loc (MSG_NOTE, vect_location,
717 "Detected double reduction.\n");
719 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
720 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
721 vect_double_reduction_def;
723 else
725 if (nested_cycle)
727 if (dump_enabled_p ())
728 dump_printf_loc (MSG_NOTE, vect_location,
729 "Detected vectorizable nested cycle.\n");
731 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
732 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
733 vect_nested_cycle;
735 else
737 if (dump_enabled_p ())
738 dump_printf_loc (MSG_NOTE, vect_location,
739 "Detected reduction.\n");
741 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
742 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
743 vect_reduction_def;
744 /* Store the reduction cycles for possible vectorization in
745 loop-aware SLP. */
746 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
750 else
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "Unknown def-use cycle pattern.\n");
758 /* Function vect_analyze_scalar_cycles.
760 Examine the cross iteration def-use cycles of scalar variables, by
761 analyzing the loop-header PHIs of scalar variables. Classify each
762 cycle as one of the following: invariant, induction, reduction, unknown.
763 We do that for the loop represented by LOOP_VINFO, and also to its
764 inner-loop, if exists.
765 Examples for scalar cycles:
767 Example1: reduction:
769 loop1:
770 for (i=0; i<N; i++)
771 sum += a[i];
773 Example2: induction:
775 loop2:
776 for (i=0; i<N; i++)
777 a[i] = i; */
779 static void
780 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
782 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
784 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
786 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
787 Reductions in such inner-loop therefore have different properties than
788 the reductions in the nest that gets vectorized:
789 1. When vectorized, they are executed in the same order as in the original
790 scalar loop, so we can't change the order of computation when
791 vectorizing them.
792 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
793 current checks are too strict. */
795 if (loop->inner)
796 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
800 /* Function vect_get_loop_niters.
802 Determine how many iterations the loop is executed and place it
803 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
804 in NUMBER_OF_ITERATIONSM1.
806 Return the loop exit condition. */
808 static gimple
809 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations,
810 tree *number_of_iterationsm1)
812 tree niters;
814 if (dump_enabled_p ())
815 dump_printf_loc (MSG_NOTE, vect_location,
816 "=== get_loop_niters ===\n");
818 niters = number_of_latch_executions (loop);
819 *number_of_iterationsm1 = niters;
821 /* We want the number of loop header executions which is the number
822 of latch executions plus one.
823 ??? For UINT_MAX latch executions this number overflows to zero
824 for loops like do { n++; } while (n != 0); */
825 if (niters && !chrec_contains_undetermined (niters))
826 niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters), unshare_expr (niters),
827 build_int_cst (TREE_TYPE (niters), 1));
828 *number_of_iterations = niters;
830 return get_loop_exit_condition (loop);
834 /* Function bb_in_loop_p
836 Used as predicate for dfs order traversal of the loop bbs. */
838 static bool
839 bb_in_loop_p (const_basic_block bb, const void *data)
841 const struct loop *const loop = (const struct loop *)data;
842 if (flow_bb_inside_loop_p (loop, bb))
843 return true;
844 return false;
848 /* Function new_loop_vec_info.
850 Create and initialize a new loop_vec_info struct for LOOP, as well as
851 stmt_vec_info structs for all the stmts in LOOP. */
853 static loop_vec_info
854 new_loop_vec_info (struct loop *loop)
856 loop_vec_info res;
857 basic_block *bbs;
858 gimple_stmt_iterator si;
859 unsigned int i, nbbs;
861 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
862 LOOP_VINFO_LOOP (res) = loop;
864 bbs = get_loop_body (loop);
866 /* Create/Update stmt_info for all stmts in the loop. */
867 for (i = 0; i < loop->num_nodes; i++)
869 basic_block bb = bbs[i];
871 /* BBs in a nested inner-loop will have been already processed (because
872 we will have called vect_analyze_loop_form for any nested inner-loop).
873 Therefore, for stmts in an inner-loop we just want to update the
874 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
875 loop_info of the outer-loop we are currently considering to vectorize
876 (instead of the loop_info of the inner-loop).
877 For stmts in other BBs we need to create a stmt_info from scratch. */
878 if (bb->loop_father != loop)
880 /* Inner-loop bb. */
881 gcc_assert (loop->inner && bb->loop_father == loop->inner);
882 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
884 gimple phi = gsi_stmt (si);
885 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
886 loop_vec_info inner_loop_vinfo =
887 STMT_VINFO_LOOP_VINFO (stmt_info);
888 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
889 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
891 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
893 gimple stmt = gsi_stmt (si);
894 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
895 loop_vec_info inner_loop_vinfo =
896 STMT_VINFO_LOOP_VINFO (stmt_info);
897 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
898 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
901 else
903 /* bb in current nest. */
904 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
906 gimple phi = gsi_stmt (si);
907 gimple_set_uid (phi, 0);
908 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
911 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
913 gimple stmt = gsi_stmt (si);
914 gimple_set_uid (stmt, 0);
915 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
920 /* CHECKME: We want to visit all BBs before their successors (except for
921 latch blocks, for which this assertion wouldn't hold). In the simple
922 case of the loop forms we allow, a dfs order of the BBs would the same
923 as reversed postorder traversal, so we are safe. */
925 free (bbs);
926 bbs = XCNEWVEC (basic_block, loop->num_nodes);
927 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
928 bbs, loop->num_nodes, loop);
929 gcc_assert (nbbs == loop->num_nodes);
931 LOOP_VINFO_BBS (res) = bbs;
932 LOOP_VINFO_NITERSM1 (res) = NULL;
933 LOOP_VINFO_NITERS (res) = NULL;
934 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
935 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
936 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
937 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
938 LOOP_VINFO_VECT_FACTOR (res) = 0;
939 LOOP_VINFO_LOOP_NEST (res).create (3);
940 LOOP_VINFO_DATAREFS (res).create (10);
941 LOOP_VINFO_DDRS (res).create (10 * 10);
942 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
943 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
944 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
945 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
946 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
947 LOOP_VINFO_GROUPED_STORES (res).create (10);
948 LOOP_VINFO_REDUCTIONS (res).create (10);
949 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
950 LOOP_VINFO_SLP_INSTANCES (res).create (10);
951 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
952 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
953 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
954 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
955 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
957 return res;
961 /* Function destroy_loop_vec_info.
963 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
964 stmts in the loop. */
966 void
967 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
969 struct loop *loop;
970 basic_block *bbs;
971 int nbbs;
972 gimple_stmt_iterator si;
973 int j;
974 vec<slp_instance> slp_instances;
975 slp_instance instance;
976 bool swapped;
978 if (!loop_vinfo)
979 return;
981 loop = LOOP_VINFO_LOOP (loop_vinfo);
983 bbs = LOOP_VINFO_BBS (loop_vinfo);
984 nbbs = clean_stmts ? loop->num_nodes : 0;
985 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
987 for (j = 0; j < nbbs; j++)
989 basic_block bb = bbs[j];
990 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
991 free_stmt_vec_info (gsi_stmt (si));
993 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
995 gimple stmt = gsi_stmt (si);
997 /* We may have broken canonical form by moving a constant
998 into RHS1 of a commutative op. Fix such occurrences. */
999 if (swapped && is_gimple_assign (stmt))
1001 enum tree_code code = gimple_assign_rhs_code (stmt);
1003 if ((code == PLUS_EXPR
1004 || code == POINTER_PLUS_EXPR
1005 || code == MULT_EXPR)
1006 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1007 swap_ssa_operands (stmt,
1008 gimple_assign_rhs1_ptr (stmt),
1009 gimple_assign_rhs2_ptr (stmt));
1012 /* Free stmt_vec_info. */
1013 free_stmt_vec_info (stmt);
1014 gsi_next (&si);
1018 free (LOOP_VINFO_BBS (loop_vinfo));
1019 vect_destroy_datarefs (loop_vinfo, NULL);
1020 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1021 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1022 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1023 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1024 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1025 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1026 vect_free_slp_instance (instance);
1028 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1029 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1030 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1031 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1033 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo).is_created ())
1034 LOOP_VINFO_PEELING_HTAB (loop_vinfo).dispose ();
1036 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1038 free (loop_vinfo);
1039 loop->aux = NULL;
1043 /* Function vect_analyze_loop_1.
1045 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1046 for it. The different analyses will record information in the
1047 loop_vec_info struct. This is a subset of the analyses applied in
1048 vect_analyze_loop, to be applied on an inner-loop nested in the loop
1049 that is now considered for (outer-loop) vectorization. */
1051 static loop_vec_info
1052 vect_analyze_loop_1 (struct loop *loop)
1054 loop_vec_info loop_vinfo;
1056 if (dump_enabled_p ())
1057 dump_printf_loc (MSG_NOTE, vect_location,
1058 "===== analyze_loop_nest_1 =====\n");
1060 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1062 loop_vinfo = vect_analyze_loop_form (loop);
1063 if (!loop_vinfo)
1065 if (dump_enabled_p ())
1066 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1067 "bad inner-loop form.\n");
1068 return NULL;
1071 return loop_vinfo;
1075 /* Function vect_analyze_loop_form.
1077 Verify that certain CFG restrictions hold, including:
1078 - the loop has a pre-header
1079 - the loop has a single entry and exit
1080 - the loop exit condition is simple enough, and the number of iterations
1081 can be analyzed (a countable loop). */
1083 loop_vec_info
1084 vect_analyze_loop_form (struct loop *loop)
1086 loop_vec_info loop_vinfo;
1087 gimple loop_cond;
1088 tree number_of_iterations = NULL, number_of_iterationsm1 = NULL;
1089 loop_vec_info inner_loop_vinfo = NULL;
1091 if (dump_enabled_p ())
1092 dump_printf_loc (MSG_NOTE, vect_location,
1093 "=== vect_analyze_loop_form ===\n");
1095 /* Different restrictions apply when we are considering an inner-most loop,
1096 vs. an outer (nested) loop.
1097 (FORNOW. May want to relax some of these restrictions in the future). */
1099 if (!loop->inner)
1101 /* Inner-most loop. We currently require that the number of BBs is
1102 exactly 2 (the header and latch). Vectorizable inner-most loops
1103 look like this:
1105 (pre-header)
1107 header <--------+
1108 | | |
1109 | +--> latch --+
1111 (exit-bb) */
1113 if (loop->num_nodes != 2)
1115 if (dump_enabled_p ())
1116 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1117 "not vectorized: control flow in loop.\n");
1118 return NULL;
1121 if (empty_block_p (loop->header))
1123 if (dump_enabled_p ())
1124 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1125 "not vectorized: empty loop.\n");
1126 return NULL;
1129 else
1131 struct loop *innerloop = loop->inner;
1132 edge entryedge;
1134 /* Nested loop. We currently require that the loop is doubly-nested,
1135 contains a single inner loop, and the number of BBs is exactly 5.
1136 Vectorizable outer-loops look like this:
1138 (pre-header)
1140 header <---+
1142 inner-loop |
1144 tail ------+
1146 (exit-bb)
1148 The inner-loop has the properties expected of inner-most loops
1149 as described above. */
1151 if ((loop->inner)->inner || (loop->inner)->next)
1153 if (dump_enabled_p ())
1154 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1155 "not vectorized: multiple nested loops.\n");
1156 return NULL;
1159 /* Analyze the inner-loop. */
1160 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1161 if (!inner_loop_vinfo)
1163 if (dump_enabled_p ())
1164 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1165 "not vectorized: Bad inner loop.\n");
1166 return NULL;
1169 if (!expr_invariant_in_loop_p (loop,
1170 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1172 if (dump_enabled_p ())
1173 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1174 "not vectorized: inner-loop count not"
1175 " invariant.\n");
1176 destroy_loop_vec_info (inner_loop_vinfo, true);
1177 return NULL;
1180 if (loop->num_nodes != 5)
1182 if (dump_enabled_p ())
1183 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1184 "not vectorized: control flow in loop.\n");
1185 destroy_loop_vec_info (inner_loop_vinfo, true);
1186 return NULL;
1189 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1190 entryedge = EDGE_PRED (innerloop->header, 0);
1191 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1192 entryedge = EDGE_PRED (innerloop->header, 1);
1194 if (entryedge->src != loop->header
1195 || !single_exit (innerloop)
1196 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1198 if (dump_enabled_p ())
1199 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1200 "not vectorized: unsupported outerloop form.\n");
1201 destroy_loop_vec_info (inner_loop_vinfo, true);
1202 return NULL;
1205 if (dump_enabled_p ())
1206 dump_printf_loc (MSG_NOTE, vect_location,
1207 "Considering outer-loop vectorization.\n");
1210 if (!single_exit (loop)
1211 || EDGE_COUNT (loop->header->preds) != 2)
1213 if (dump_enabled_p ())
1215 if (!single_exit (loop))
1216 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1217 "not vectorized: multiple exits.\n");
1218 else if (EDGE_COUNT (loop->header->preds) != 2)
1219 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1220 "not vectorized: too many incoming edges.\n");
1222 if (inner_loop_vinfo)
1223 destroy_loop_vec_info (inner_loop_vinfo, true);
1224 return NULL;
1227 /* We assume that the loop exit condition is at the end of the loop. i.e,
1228 that the loop is represented as a do-while (with a proper if-guard
1229 before the loop if needed), where the loop header contains all the
1230 executable statements, and the latch is empty. */
1231 if (!empty_block_p (loop->latch)
1232 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1234 if (dump_enabled_p ())
1235 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1236 "not vectorized: latch block not empty.\n");
1237 if (inner_loop_vinfo)
1238 destroy_loop_vec_info (inner_loop_vinfo, true);
1239 return NULL;
1242 /* Make sure there exists a single-predecessor exit bb: */
1243 if (!single_pred_p (single_exit (loop)->dest))
1245 edge e = single_exit (loop);
1246 if (!(e->flags & EDGE_ABNORMAL))
1248 split_loop_exit_edge (e);
1249 if (dump_enabled_p ())
1250 dump_printf (MSG_NOTE, "split exit edge.\n");
1252 else
1254 if (dump_enabled_p ())
1255 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1256 "not vectorized: abnormal loop exit edge.\n");
1257 if (inner_loop_vinfo)
1258 destroy_loop_vec_info (inner_loop_vinfo, true);
1259 return NULL;
1263 loop_cond = vect_get_loop_niters (loop, &number_of_iterations,
1264 &number_of_iterationsm1);
1265 if (!loop_cond)
1267 if (dump_enabled_p ())
1268 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1269 "not vectorized: complicated exit condition.\n");
1270 if (inner_loop_vinfo)
1271 destroy_loop_vec_info (inner_loop_vinfo, true);
1272 return NULL;
1275 if (!number_of_iterations
1276 || chrec_contains_undetermined (number_of_iterations))
1278 if (dump_enabled_p ())
1279 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1280 "not vectorized: number of iterations cannot be "
1281 "computed.\n");
1282 if (inner_loop_vinfo)
1283 destroy_loop_vec_info (inner_loop_vinfo, true);
1284 return NULL;
1287 if (integer_zerop (number_of_iterations))
1289 if (dump_enabled_p ())
1290 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1291 "not vectorized: number of iterations = 0.\n");
1292 if (inner_loop_vinfo)
1293 destroy_loop_vec_info (inner_loop_vinfo, true);
1294 return NULL;
1297 loop_vinfo = new_loop_vec_info (loop);
1298 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1299 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1300 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1302 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1304 if (dump_enabled_p ())
1306 dump_printf_loc (MSG_NOTE, vect_location,
1307 "Symbolic number of iterations is ");
1308 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1309 dump_printf (MSG_NOTE, "\n");
1313 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1315 /* CHECKME: May want to keep it around it in the future. */
1316 if (inner_loop_vinfo)
1317 destroy_loop_vec_info (inner_loop_vinfo, false);
1319 gcc_assert (!loop->aux);
1320 loop->aux = loop_vinfo;
1321 return loop_vinfo;
1325 /* Function vect_analyze_loop_operations.
1327 Scan the loop stmts and make sure they are all vectorizable. */
1329 static bool
1330 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1332 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1333 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1334 int nbbs = loop->num_nodes;
1335 gimple_stmt_iterator si;
1336 unsigned int vectorization_factor = 0;
1337 int i;
1338 gimple phi;
1339 stmt_vec_info stmt_info;
1340 bool need_to_vectorize = false;
1341 int min_profitable_iters;
1342 int min_scalar_loop_bound;
1343 unsigned int th;
1344 bool only_slp_in_loop = true, ok;
1345 HOST_WIDE_INT max_niter;
1346 HOST_WIDE_INT estimated_niter;
1347 int min_profitable_estimate;
1349 if (dump_enabled_p ())
1350 dump_printf_loc (MSG_NOTE, vect_location,
1351 "=== vect_analyze_loop_operations ===\n");
1353 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1354 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1355 if (slp)
1357 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1358 vectorization factor of the loop is the unrolling factor required by
1359 the SLP instances. If that unrolling factor is 1, we say, that we
1360 perform pure SLP on loop - cross iteration parallelism is not
1361 exploited. */
1362 for (i = 0; i < nbbs; i++)
1364 basic_block bb = bbs[i];
1365 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1367 gimple stmt = gsi_stmt (si);
1368 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1369 gcc_assert (stmt_info);
1370 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1371 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1372 && !PURE_SLP_STMT (stmt_info))
1373 /* STMT needs both SLP and loop-based vectorization. */
1374 only_slp_in_loop = false;
1378 if (only_slp_in_loop)
1379 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1380 else
1381 vectorization_factor = least_common_multiple (vectorization_factor,
1382 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1384 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1385 if (dump_enabled_p ())
1386 dump_printf_loc (MSG_NOTE, vect_location,
1387 "Updating vectorization factor to %d\n",
1388 vectorization_factor);
1391 for (i = 0; i < nbbs; i++)
1393 basic_block bb = bbs[i];
1395 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1397 phi = gsi_stmt (si);
1398 ok = true;
1400 stmt_info = vinfo_for_stmt (phi);
1401 if (dump_enabled_p ())
1403 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1404 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1405 dump_printf (MSG_NOTE, "\n");
1408 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1409 (i.e., a phi in the tail of the outer-loop). */
1410 if (! is_loop_header_bb_p (bb))
1412 /* FORNOW: we currently don't support the case that these phis
1413 are not used in the outerloop (unless it is double reduction,
1414 i.e., this phi is vect_reduction_def), cause this case
1415 requires to actually do something here. */
1416 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1417 || STMT_VINFO_LIVE_P (stmt_info))
1418 && STMT_VINFO_DEF_TYPE (stmt_info)
1419 != vect_double_reduction_def)
1421 if (dump_enabled_p ())
1422 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1423 "Unsupported loop-closed phi in "
1424 "outer-loop.\n");
1425 return false;
1428 /* If PHI is used in the outer loop, we check that its operand
1429 is defined in the inner loop. */
1430 if (STMT_VINFO_RELEVANT_P (stmt_info))
1432 tree phi_op;
1433 gimple op_def_stmt;
1435 if (gimple_phi_num_args (phi) != 1)
1436 return false;
1438 phi_op = PHI_ARG_DEF (phi, 0);
1439 if (TREE_CODE (phi_op) != SSA_NAME)
1440 return false;
1442 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1443 if (gimple_nop_p (op_def_stmt)
1444 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1445 || !vinfo_for_stmt (op_def_stmt))
1446 return false;
1448 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1449 != vect_used_in_outer
1450 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1451 != vect_used_in_outer_by_reduction)
1452 return false;
1455 continue;
1458 gcc_assert (stmt_info);
1460 if (STMT_VINFO_LIVE_P (stmt_info))
1462 /* FORNOW: not yet supported. */
1463 if (dump_enabled_p ())
1464 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1465 "not vectorized: value used after loop.\n");
1466 return false;
1469 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1470 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1472 /* A scalar-dependence cycle that we don't support. */
1473 if (dump_enabled_p ())
1474 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1475 "not vectorized: scalar dependence cycle.\n");
1476 return false;
1479 if (STMT_VINFO_RELEVANT_P (stmt_info))
1481 need_to_vectorize = true;
1482 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1483 ok = vectorizable_induction (phi, NULL, NULL);
1486 if (!ok)
1488 if (dump_enabled_p ())
1490 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1491 "not vectorized: relevant phi not "
1492 "supported: ");
1493 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1494 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1496 return false;
1500 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1502 gimple stmt = gsi_stmt (si);
1503 if (!gimple_clobber_p (stmt)
1504 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1505 return false;
1507 } /* bbs */
1509 /* All operations in the loop are either irrelevant (deal with loop
1510 control, or dead), or only used outside the loop and can be moved
1511 out of the loop (e.g. invariants, inductions). The loop can be
1512 optimized away by scalar optimizations. We're better off not
1513 touching this loop. */
1514 if (!need_to_vectorize)
1516 if (dump_enabled_p ())
1517 dump_printf_loc (MSG_NOTE, vect_location,
1518 "All the computation can be taken out of the loop.\n");
1519 if (dump_enabled_p ())
1520 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1521 "not vectorized: redundant loop. no profit to "
1522 "vectorize.\n");
1523 return false;
1526 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1527 dump_printf_loc (MSG_NOTE, vect_location,
1528 "vectorization_factor = %d, niters = "
1529 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1530 LOOP_VINFO_INT_NITERS (loop_vinfo));
1532 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1533 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1534 || ((max_niter = max_stmt_executions_int (loop)) != -1
1535 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1537 if (dump_enabled_p ())
1538 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1539 "not vectorized: iteration count too small.\n");
1540 if (dump_enabled_p ())
1541 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1542 "not vectorized: iteration count smaller than "
1543 "vectorization factor.\n");
1544 return false;
1547 /* Analyze cost. Decide if worth while to vectorize. */
1549 /* Once VF is set, SLP costs should be updated since the number of created
1550 vector stmts depends on VF. */
1551 vect_update_slp_costs_according_to_vf (loop_vinfo);
1553 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1554 &min_profitable_estimate);
1555 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1557 if (min_profitable_iters < 0)
1559 if (dump_enabled_p ())
1560 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1561 "not vectorized: vectorization not profitable.\n");
1562 if (dump_enabled_p ())
1563 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1564 "not vectorized: vector version will never be "
1565 "profitable.\n");
1566 return false;
1569 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1570 * vectorization_factor) - 1);
1573 /* Use the cost model only if it is more conservative than user specified
1574 threshold. */
1576 th = (unsigned) min_scalar_loop_bound;
1577 if (min_profitable_iters
1578 && (!min_scalar_loop_bound
1579 || min_profitable_iters > min_scalar_loop_bound))
1580 th = (unsigned) min_profitable_iters;
1582 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1583 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1585 if (dump_enabled_p ())
1586 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1587 "not vectorized: vectorization not profitable.\n");
1588 if (dump_enabled_p ())
1589 dump_printf_loc (MSG_NOTE, vect_location,
1590 "not vectorized: iteration count smaller than user "
1591 "specified loop bound parameter or minimum profitable "
1592 "iterations (whichever is more conservative).\n");
1593 return false;
1596 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1597 && ((unsigned HOST_WIDE_INT) estimated_niter
1598 <= MAX (th, (unsigned)min_profitable_estimate)))
1600 if (dump_enabled_p ())
1601 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1602 "not vectorized: estimated iteration count too "
1603 "small.\n");
1604 if (dump_enabled_p ())
1605 dump_printf_loc (MSG_NOTE, vect_location,
1606 "not vectorized: estimated iteration count smaller "
1607 "than specified loop bound parameter or minimum "
1608 "profitable iterations (whichever is more "
1609 "conservative).\n");
1610 return false;
1613 return true;
1617 /* Function vect_analyze_loop_2.
1619 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1620 for it. The different analyses will record information in the
1621 loop_vec_info struct. */
1622 static bool
1623 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1625 bool ok, slp = false;
1626 int max_vf = MAX_VECTORIZATION_FACTOR;
1627 int min_vf = 2;
1629 /* Find all data references in the loop (which correspond to vdefs/vuses)
1630 and analyze their evolution in the loop. Also adjust the minimal
1631 vectorization factor according to the loads and stores.
1633 FORNOW: Handle only simple, array references, which
1634 alignment can be forced, and aligned pointer-references. */
1636 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1637 if (!ok)
1639 if (dump_enabled_p ())
1640 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1641 "bad data references.\n");
1642 return false;
1645 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1646 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1648 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1649 if (!ok)
1651 if (dump_enabled_p ())
1652 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1653 "bad data access.\n");
1654 return false;
1657 /* Classify all cross-iteration scalar data-flow cycles.
1658 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1660 vect_analyze_scalar_cycles (loop_vinfo);
1662 vect_pattern_recog (loop_vinfo, NULL);
1664 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1666 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1667 if (!ok)
1669 if (dump_enabled_p ())
1670 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1671 "unexpected pattern.\n");
1672 return false;
1675 /* Analyze data dependences between the data-refs in the loop
1676 and adjust the maximum vectorization factor according to
1677 the dependences.
1678 FORNOW: fail at the first data dependence that we encounter. */
1680 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1681 if (!ok
1682 || max_vf < min_vf)
1684 if (dump_enabled_p ())
1685 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1686 "bad data dependence.\n");
1687 return false;
1690 ok = vect_determine_vectorization_factor (loop_vinfo);
1691 if (!ok)
1693 if (dump_enabled_p ())
1694 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1695 "can't determine vectorization factor.\n");
1696 return false;
1698 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1700 if (dump_enabled_p ())
1701 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1702 "bad data dependence.\n");
1703 return false;
1706 /* Analyze the alignment of the data-refs in the loop.
1707 Fail if a data reference is found that cannot be vectorized. */
1709 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1710 if (!ok)
1712 if (dump_enabled_p ())
1713 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1714 "bad data alignment.\n");
1715 return false;
1718 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1719 It is important to call pruning after vect_analyze_data_ref_accesses,
1720 since we use grouping information gathered by interleaving analysis. */
1721 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1722 if (!ok)
1724 if (dump_enabled_p ())
1725 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1726 "number of versioning for alias "
1727 "run-time tests exceeds %d "
1728 "(--param vect-max-version-for-alias-checks)\n",
1729 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
1730 return false;
1733 /* This pass will decide on using loop versioning and/or loop peeling in
1734 order to enhance the alignment of data references in the loop. */
1736 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1737 if (!ok)
1739 if (dump_enabled_p ())
1740 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1741 "bad data alignment.\n");
1742 return false;
1745 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1746 ok = vect_analyze_slp (loop_vinfo, NULL);
1747 if (ok)
1749 /* Decide which possible SLP instances to SLP. */
1750 slp = vect_make_slp_decision (loop_vinfo);
1752 /* Find stmts that need to be both vectorized and SLPed. */
1753 vect_detect_hybrid_slp (loop_vinfo);
1755 else
1756 return false;
1758 /* Scan all the operations in the loop and make sure they are
1759 vectorizable. */
1761 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1762 if (!ok)
1764 if (dump_enabled_p ())
1765 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1766 "bad operation or unsupported loop bound.\n");
1767 return false;
1770 /* Decide whether we need to create an epilogue loop to handle
1771 remaining scalar iterations. */
1772 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1773 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1775 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
1776 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
1777 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
1778 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1780 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1781 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
1782 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))))
1783 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1785 /* If an epilogue loop is required make sure we can create one. */
1786 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1787 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
1789 if (dump_enabled_p ())
1790 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
1791 if (!vect_can_advance_ivs_p (loop_vinfo)
1792 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
1793 single_exit (LOOP_VINFO_LOOP
1794 (loop_vinfo))))
1796 if (dump_enabled_p ())
1797 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1798 "not vectorized: can't create required "
1799 "epilog loop\n");
1800 return false;
1804 return true;
1807 /* Function vect_analyze_loop.
1809 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1810 for it. The different analyses will record information in the
1811 loop_vec_info struct. */
1812 loop_vec_info
1813 vect_analyze_loop (struct loop *loop)
1815 loop_vec_info loop_vinfo;
1816 unsigned int vector_sizes;
1818 /* Autodetect first vector size we try. */
1819 current_vector_size = 0;
1820 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1822 if (dump_enabled_p ())
1823 dump_printf_loc (MSG_NOTE, vect_location,
1824 "===== analyze_loop_nest =====\n");
1826 if (loop_outer (loop)
1827 && loop_vec_info_for_loop (loop_outer (loop))
1828 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1830 if (dump_enabled_p ())
1831 dump_printf_loc (MSG_NOTE, vect_location,
1832 "outer-loop already vectorized.\n");
1833 return NULL;
1836 while (1)
1838 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1839 loop_vinfo = vect_analyze_loop_form (loop);
1840 if (!loop_vinfo)
1842 if (dump_enabled_p ())
1843 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1844 "bad loop form.\n");
1845 return NULL;
1848 if (vect_analyze_loop_2 (loop_vinfo))
1850 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1852 return loop_vinfo;
1855 destroy_loop_vec_info (loop_vinfo, true);
1857 vector_sizes &= ~current_vector_size;
1858 if (vector_sizes == 0
1859 || current_vector_size == 0)
1860 return NULL;
1862 /* Try the next biggest vector size. */
1863 current_vector_size = 1 << floor_log2 (vector_sizes);
1864 if (dump_enabled_p ())
1865 dump_printf_loc (MSG_NOTE, vect_location,
1866 "***** Re-trying analysis with "
1867 "vector size %d\n", current_vector_size);
1872 /* Function reduction_code_for_scalar_code
1874 Input:
1875 CODE - tree_code of a reduction operations.
1877 Output:
1878 REDUC_CODE - the corresponding tree-code to be used to reduce the
1879 vector of partial results into a single scalar result (which
1880 will also reside in a vector) or ERROR_MARK if the operation is
1881 a supported reduction operation, but does not have such tree-code.
1883 Return FALSE if CODE currently cannot be vectorized as reduction. */
1885 static bool
1886 reduction_code_for_scalar_code (enum tree_code code,
1887 enum tree_code *reduc_code)
1889 switch (code)
1891 case MAX_EXPR:
1892 *reduc_code = REDUC_MAX_EXPR;
1893 return true;
1895 case MIN_EXPR:
1896 *reduc_code = REDUC_MIN_EXPR;
1897 return true;
1899 case PLUS_EXPR:
1900 *reduc_code = REDUC_PLUS_EXPR;
1901 return true;
1903 case MULT_EXPR:
1904 case MINUS_EXPR:
1905 case BIT_IOR_EXPR:
1906 case BIT_XOR_EXPR:
1907 case BIT_AND_EXPR:
1908 *reduc_code = ERROR_MARK;
1909 return true;
1911 default:
1912 return false;
1917 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1918 STMT is printed with a message MSG. */
1920 static void
1921 report_vect_op (int msg_type, gimple stmt, const char *msg)
1923 dump_printf_loc (msg_type, vect_location, "%s", msg);
1924 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
1925 dump_printf (msg_type, "\n");
1929 /* Detect SLP reduction of the form:
1931 #a1 = phi <a5, a0>
1932 a2 = operation (a1)
1933 a3 = operation (a2)
1934 a4 = operation (a3)
1935 a5 = operation (a4)
1937 #a = phi <a5>
1939 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1940 FIRST_STMT is the first reduction stmt in the chain
1941 (a2 = operation (a1)).
1943 Return TRUE if a reduction chain was detected. */
1945 static bool
1946 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1948 struct loop *loop = (gimple_bb (phi))->loop_father;
1949 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1950 enum tree_code code;
1951 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1952 stmt_vec_info use_stmt_info, current_stmt_info;
1953 tree lhs;
1954 imm_use_iterator imm_iter;
1955 use_operand_p use_p;
1956 int nloop_uses, size = 0, n_out_of_loop_uses;
1957 bool found = false;
1959 if (loop != vect_loop)
1960 return false;
1962 lhs = PHI_RESULT (phi);
1963 code = gimple_assign_rhs_code (first_stmt);
1964 while (1)
1966 nloop_uses = 0;
1967 n_out_of_loop_uses = 0;
1968 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1970 gimple use_stmt = USE_STMT (use_p);
1971 if (is_gimple_debug (use_stmt))
1972 continue;
1974 use_stmt = USE_STMT (use_p);
1976 /* Check if we got back to the reduction phi. */
1977 if (use_stmt == phi)
1979 loop_use_stmt = use_stmt;
1980 found = true;
1981 break;
1984 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1986 if (vinfo_for_stmt (use_stmt)
1987 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1989 loop_use_stmt = use_stmt;
1990 nloop_uses++;
1993 else
1994 n_out_of_loop_uses++;
1996 /* There are can be either a single use in the loop or two uses in
1997 phi nodes. */
1998 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
1999 return false;
2002 if (found)
2003 break;
2005 /* We reached a statement with no loop uses. */
2006 if (nloop_uses == 0)
2007 return false;
2009 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2010 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2011 return false;
2013 if (!is_gimple_assign (loop_use_stmt)
2014 || code != gimple_assign_rhs_code (loop_use_stmt)
2015 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2016 return false;
2018 /* Insert USE_STMT into reduction chain. */
2019 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2020 if (current_stmt)
2022 current_stmt_info = vinfo_for_stmt (current_stmt);
2023 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2024 GROUP_FIRST_ELEMENT (use_stmt_info)
2025 = GROUP_FIRST_ELEMENT (current_stmt_info);
2027 else
2028 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2030 lhs = gimple_assign_lhs (loop_use_stmt);
2031 current_stmt = loop_use_stmt;
2032 size++;
2035 if (!found || loop_use_stmt != phi || size < 2)
2036 return false;
2038 /* Swap the operands, if needed, to make the reduction operand be the second
2039 operand. */
2040 lhs = PHI_RESULT (phi);
2041 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2042 while (next_stmt)
2044 if (gimple_assign_rhs2 (next_stmt) == lhs)
2046 tree op = gimple_assign_rhs1 (next_stmt);
2047 gimple def_stmt = NULL;
2049 if (TREE_CODE (op) == SSA_NAME)
2050 def_stmt = SSA_NAME_DEF_STMT (op);
2052 /* Check that the other def is either defined in the loop
2053 ("vect_internal_def"), or it's an induction (defined by a
2054 loop-header phi-node). */
2055 if (def_stmt
2056 && gimple_bb (def_stmt)
2057 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2058 && (is_gimple_assign (def_stmt)
2059 || is_gimple_call (def_stmt)
2060 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2061 == vect_induction_def
2062 || (gimple_code (def_stmt) == GIMPLE_PHI
2063 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2064 == vect_internal_def
2065 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2067 lhs = gimple_assign_lhs (next_stmt);
2068 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2069 continue;
2072 return false;
2074 else
2076 tree op = gimple_assign_rhs2 (next_stmt);
2077 gimple def_stmt = NULL;
2079 if (TREE_CODE (op) == SSA_NAME)
2080 def_stmt = SSA_NAME_DEF_STMT (op);
2082 /* Check that the other def is either defined in the loop
2083 ("vect_internal_def"), or it's an induction (defined by a
2084 loop-header phi-node). */
2085 if (def_stmt
2086 && gimple_bb (def_stmt)
2087 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2088 && (is_gimple_assign (def_stmt)
2089 || is_gimple_call (def_stmt)
2090 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2091 == vect_induction_def
2092 || (gimple_code (def_stmt) == GIMPLE_PHI
2093 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2094 == vect_internal_def
2095 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2097 if (dump_enabled_p ())
2099 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2100 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2101 dump_printf (MSG_NOTE, "\n");
2104 swap_ssa_operands (next_stmt,
2105 gimple_assign_rhs1_ptr (next_stmt),
2106 gimple_assign_rhs2_ptr (next_stmt));
2107 update_stmt (next_stmt);
2109 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2110 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2112 else
2113 return false;
2116 lhs = gimple_assign_lhs (next_stmt);
2117 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2120 /* Save the chain for further analysis in SLP detection. */
2121 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2122 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2123 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2125 return true;
2129 /* Function vect_is_simple_reduction_1
2131 (1) Detect a cross-iteration def-use cycle that represents a simple
2132 reduction computation. We look for the following pattern:
2134 loop_header:
2135 a1 = phi < a0, a2 >
2136 a3 = ...
2137 a2 = operation (a3, a1)
2141 a3 = ...
2142 loop_header:
2143 a1 = phi < a0, a2 >
2144 a2 = operation (a3, a1)
2146 such that:
2147 1. operation is commutative and associative and it is safe to
2148 change the order of the computation (if CHECK_REDUCTION is true)
2149 2. no uses for a2 in the loop (a2 is used out of the loop)
2150 3. no uses of a1 in the loop besides the reduction operation
2151 4. no uses of a1 outside the loop.
2153 Conditions 1,4 are tested here.
2154 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2156 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2157 nested cycles, if CHECK_REDUCTION is false.
2159 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2160 reductions:
2162 a1 = phi < a0, a2 >
2163 inner loop (def of a3)
2164 a2 = phi < a3 >
2166 If MODIFY is true it tries also to rework the code in-place to enable
2167 detection of more reduction patterns. For the time being we rewrite
2168 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2171 static gimple
2172 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2173 bool check_reduction, bool *double_reduc,
2174 bool modify)
2176 struct loop *loop = (gimple_bb (phi))->loop_father;
2177 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2178 edge latch_e = loop_latch_edge (loop);
2179 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2180 gimple def_stmt, def1 = NULL, def2 = NULL;
2181 enum tree_code orig_code, code;
2182 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2183 tree type;
2184 int nloop_uses;
2185 tree name;
2186 imm_use_iterator imm_iter;
2187 use_operand_p use_p;
2188 bool phi_def;
2190 *double_reduc = false;
2192 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2193 otherwise, we assume outer loop vectorization. */
2194 gcc_assert ((check_reduction && loop == vect_loop)
2195 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2197 name = PHI_RESULT (phi);
2198 nloop_uses = 0;
2199 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2201 gimple use_stmt = USE_STMT (use_p);
2202 if (is_gimple_debug (use_stmt))
2203 continue;
2205 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2207 if (dump_enabled_p ())
2208 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2209 "intermediate value used outside loop.\n");
2211 return NULL;
2214 if (vinfo_for_stmt (use_stmt)
2215 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2216 nloop_uses++;
2217 if (nloop_uses > 1)
2219 if (dump_enabled_p ())
2220 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2221 "reduction used in loop.\n");
2222 return NULL;
2226 if (TREE_CODE (loop_arg) != SSA_NAME)
2228 if (dump_enabled_p ())
2230 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2231 "reduction: not ssa_name: ");
2232 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2233 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2235 return NULL;
2238 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2239 if (!def_stmt)
2241 if (dump_enabled_p ())
2242 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2243 "reduction: no def_stmt.\n");
2244 return NULL;
2247 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2249 if (dump_enabled_p ())
2251 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2252 dump_printf (MSG_NOTE, "\n");
2254 return NULL;
2257 if (is_gimple_assign (def_stmt))
2259 name = gimple_assign_lhs (def_stmt);
2260 phi_def = false;
2262 else
2264 name = PHI_RESULT (def_stmt);
2265 phi_def = true;
2268 nloop_uses = 0;
2269 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2271 gimple use_stmt = USE_STMT (use_p);
2272 if (is_gimple_debug (use_stmt))
2273 continue;
2274 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2275 && vinfo_for_stmt (use_stmt)
2276 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2277 nloop_uses++;
2278 if (nloop_uses > 1)
2280 if (dump_enabled_p ())
2281 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2282 "reduction used in loop.\n");
2283 return NULL;
2287 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2288 defined in the inner loop. */
2289 if (phi_def)
2291 op1 = PHI_ARG_DEF (def_stmt, 0);
2293 if (gimple_phi_num_args (def_stmt) != 1
2294 || TREE_CODE (op1) != SSA_NAME)
2296 if (dump_enabled_p ())
2297 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2298 "unsupported phi node definition.\n");
2300 return NULL;
2303 def1 = SSA_NAME_DEF_STMT (op1);
2304 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2305 && loop->inner
2306 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2307 && is_gimple_assign (def1))
2309 if (dump_enabled_p ())
2310 report_vect_op (MSG_NOTE, def_stmt,
2311 "detected double reduction: ");
2313 *double_reduc = true;
2314 return def_stmt;
2317 return NULL;
2320 code = orig_code = gimple_assign_rhs_code (def_stmt);
2322 /* We can handle "res -= x[i]", which is non-associative by
2323 simply rewriting this into "res += -x[i]". Avoid changing
2324 gimple instruction for the first simple tests and only do this
2325 if we're allowed to change code at all. */
2326 if (code == MINUS_EXPR
2327 && modify
2328 && (op1 = gimple_assign_rhs1 (def_stmt))
2329 && TREE_CODE (op1) == SSA_NAME
2330 && SSA_NAME_DEF_STMT (op1) == phi)
2331 code = PLUS_EXPR;
2333 if (check_reduction
2334 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2336 if (dump_enabled_p ())
2337 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2338 "reduction: not commutative/associative: ");
2339 return NULL;
2342 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2344 if (code != COND_EXPR)
2346 if (dump_enabled_p ())
2347 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2348 "reduction: not binary operation: ");
2350 return NULL;
2353 op3 = gimple_assign_rhs1 (def_stmt);
2354 if (COMPARISON_CLASS_P (op3))
2356 op4 = TREE_OPERAND (op3, 1);
2357 op3 = TREE_OPERAND (op3, 0);
2360 op1 = gimple_assign_rhs2 (def_stmt);
2361 op2 = gimple_assign_rhs3 (def_stmt);
2363 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2365 if (dump_enabled_p ())
2366 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2367 "reduction: uses not ssa_names: ");
2369 return NULL;
2372 else
2374 op1 = gimple_assign_rhs1 (def_stmt);
2375 op2 = gimple_assign_rhs2 (def_stmt);
2377 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2379 if (dump_enabled_p ())
2380 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2381 "reduction: uses not ssa_names: ");
2383 return NULL;
2387 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2388 if ((TREE_CODE (op1) == SSA_NAME
2389 && !types_compatible_p (type,TREE_TYPE (op1)))
2390 || (TREE_CODE (op2) == SSA_NAME
2391 && !types_compatible_p (type, TREE_TYPE (op2)))
2392 || (op3 && TREE_CODE (op3) == SSA_NAME
2393 && !types_compatible_p (type, TREE_TYPE (op3)))
2394 || (op4 && TREE_CODE (op4) == SSA_NAME
2395 && !types_compatible_p (type, TREE_TYPE (op4))))
2397 if (dump_enabled_p ())
2399 dump_printf_loc (MSG_NOTE, vect_location,
2400 "reduction: multiple types: operation type: ");
2401 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2402 dump_printf (MSG_NOTE, ", operands types: ");
2403 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2404 TREE_TYPE (op1));
2405 dump_printf (MSG_NOTE, ",");
2406 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2407 TREE_TYPE (op2));
2408 if (op3)
2410 dump_printf (MSG_NOTE, ",");
2411 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2412 TREE_TYPE (op3));
2415 if (op4)
2417 dump_printf (MSG_NOTE, ",");
2418 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2419 TREE_TYPE (op4));
2421 dump_printf (MSG_NOTE, "\n");
2424 return NULL;
2427 /* Check that it's ok to change the order of the computation.
2428 Generally, when vectorizing a reduction we change the order of the
2429 computation. This may change the behavior of the program in some
2430 cases, so we need to check that this is ok. One exception is when
2431 vectorizing an outer-loop: the inner-loop is executed sequentially,
2432 and therefore vectorizing reductions in the inner-loop during
2433 outer-loop vectorization is safe. */
2435 /* CHECKME: check for !flag_finite_math_only too? */
2436 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2437 && check_reduction)
2439 /* Changing the order of operations changes the semantics. */
2440 if (dump_enabled_p ())
2441 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2442 "reduction: unsafe fp math optimization: ");
2443 return NULL;
2445 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2446 && check_reduction)
2448 /* Changing the order of operations changes the semantics. */
2449 if (dump_enabled_p ())
2450 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2451 "reduction: unsafe int math optimization: ");
2452 return NULL;
2454 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2456 /* Changing the order of operations changes the semantics. */
2457 if (dump_enabled_p ())
2458 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2459 "reduction: unsafe fixed-point math optimization: ");
2460 return NULL;
2463 /* If we detected "res -= x[i]" earlier, rewrite it into
2464 "res += -x[i]" now. If this turns out to be useless reassoc
2465 will clean it up again. */
2466 if (orig_code == MINUS_EXPR)
2468 tree rhs = gimple_assign_rhs2 (def_stmt);
2469 tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
2470 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2471 rhs, NULL);
2472 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2473 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2474 loop_info, NULL));
2475 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2476 gimple_assign_set_rhs2 (def_stmt, negrhs);
2477 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2478 update_stmt (def_stmt);
2481 /* Reduction is safe. We're dealing with one of the following:
2482 1) integer arithmetic and no trapv
2483 2) floating point arithmetic, and special flags permit this optimization
2484 3) nested cycle (i.e., outer loop vectorization). */
2485 if (TREE_CODE (op1) == SSA_NAME)
2486 def1 = SSA_NAME_DEF_STMT (op1);
2488 if (TREE_CODE (op2) == SSA_NAME)
2489 def2 = SSA_NAME_DEF_STMT (op2);
2491 if (code != COND_EXPR
2492 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2494 if (dump_enabled_p ())
2495 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2496 return NULL;
2499 /* Check that one def is the reduction def, defined by PHI,
2500 the other def is either defined in the loop ("vect_internal_def"),
2501 or it's an induction (defined by a loop-header phi-node). */
2503 if (def2 && def2 == phi
2504 && (code == COND_EXPR
2505 || !def1 || gimple_nop_p (def1)
2506 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
2507 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2508 && (is_gimple_assign (def1)
2509 || is_gimple_call (def1)
2510 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2511 == vect_induction_def
2512 || (gimple_code (def1) == GIMPLE_PHI
2513 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2514 == vect_internal_def
2515 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2517 if (dump_enabled_p ())
2518 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2519 return def_stmt;
2522 if (def1 && def1 == phi
2523 && (code == COND_EXPR
2524 || !def2 || gimple_nop_p (def2)
2525 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
2526 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2527 && (is_gimple_assign (def2)
2528 || is_gimple_call (def2)
2529 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2530 == vect_induction_def
2531 || (gimple_code (def2) == GIMPLE_PHI
2532 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2533 == vect_internal_def
2534 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2536 if (check_reduction)
2538 /* Swap operands (just for simplicity - so that the rest of the code
2539 can assume that the reduction variable is always the last (second)
2540 argument). */
2541 if (dump_enabled_p ())
2542 report_vect_op (MSG_NOTE, def_stmt,
2543 "detected reduction: need to swap operands: ");
2545 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2546 gimple_assign_rhs2_ptr (def_stmt));
2548 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2549 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2551 else
2553 if (dump_enabled_p ())
2554 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2557 return def_stmt;
2560 /* Try to find SLP reduction chain. */
2561 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2563 if (dump_enabled_p ())
2564 report_vect_op (MSG_NOTE, def_stmt,
2565 "reduction: detected reduction chain: ");
2567 return def_stmt;
2570 if (dump_enabled_p ())
2571 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2572 "reduction: unknown pattern: ");
2574 return NULL;
2577 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2578 in-place. Arguments as there. */
2580 static gimple
2581 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2582 bool check_reduction, bool *double_reduc)
2584 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2585 double_reduc, false);
2588 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2589 in-place if it enables detection of more reductions. Arguments
2590 as there. */
2592 gimple
2593 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2594 bool check_reduction, bool *double_reduc)
2596 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2597 double_reduc, true);
2600 /* Calculate the cost of one scalar iteration of the loop. */
2602 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
2604 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2605 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2606 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2607 int innerloop_iters, i, stmt_cost;
2609 /* Count statements in scalar loop. Using this as scalar cost for a single
2610 iteration for now.
2612 TODO: Add outer loop support.
2614 TODO: Consider assigning different costs to different scalar
2615 statements. */
2617 /* FORNOW. */
2618 innerloop_iters = 1;
2619 if (loop->inner)
2620 innerloop_iters = 50; /* FIXME */
2622 for (i = 0; i < nbbs; i++)
2624 gimple_stmt_iterator si;
2625 basic_block bb = bbs[i];
2627 if (bb->loop_father == loop->inner)
2628 factor = innerloop_iters;
2629 else
2630 factor = 1;
2632 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2634 gimple stmt = gsi_stmt (si);
2635 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2637 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2638 continue;
2640 /* Skip stmts that are not vectorized inside the loop. */
2641 if (stmt_info
2642 && !STMT_VINFO_RELEVANT_P (stmt_info)
2643 && (!STMT_VINFO_LIVE_P (stmt_info)
2644 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2645 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2646 continue;
2648 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2650 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2651 stmt_cost = vect_get_stmt_cost (scalar_load);
2652 else
2653 stmt_cost = vect_get_stmt_cost (scalar_store);
2655 else
2656 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2658 scalar_single_iter_cost += stmt_cost * factor;
2661 return scalar_single_iter_cost;
2664 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2666 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2667 int *peel_iters_epilogue,
2668 int scalar_single_iter_cost,
2669 stmt_vector_for_cost *prologue_cost_vec,
2670 stmt_vector_for_cost *epilogue_cost_vec)
2672 int retval = 0;
2673 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2675 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2677 *peel_iters_epilogue = vf/2;
2678 if (dump_enabled_p ())
2679 dump_printf_loc (MSG_NOTE, vect_location,
2680 "cost model: epilogue peel iters set to vf/2 "
2681 "because loop iterations are unknown .\n");
2683 /* If peeled iterations are known but number of scalar loop
2684 iterations are unknown, count a taken branch per peeled loop. */
2685 retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
2686 NULL, 0, vect_prologue);
2688 else
2690 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2691 peel_iters_prologue = niters < peel_iters_prologue ?
2692 niters : peel_iters_prologue;
2693 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2694 /* If we need to peel for gaps, but no peeling is required, we have to
2695 peel VF iterations. */
2696 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2697 *peel_iters_epilogue = vf;
2700 if (peel_iters_prologue)
2701 retval += record_stmt_cost (prologue_cost_vec,
2702 peel_iters_prologue * scalar_single_iter_cost,
2703 scalar_stmt, NULL, 0, vect_prologue);
2704 if (*peel_iters_epilogue)
2705 retval += record_stmt_cost (epilogue_cost_vec,
2706 *peel_iters_epilogue * scalar_single_iter_cost,
2707 scalar_stmt, NULL, 0, vect_epilogue);
2708 return retval;
2711 /* Function vect_estimate_min_profitable_iters
2713 Return the number of iterations required for the vector version of the
2714 loop to be profitable relative to the cost of the scalar version of the
2715 loop. */
2717 static void
2718 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2719 int *ret_min_profitable_niters,
2720 int *ret_min_profitable_estimate)
2722 int min_profitable_iters;
2723 int min_profitable_estimate;
2724 int peel_iters_prologue;
2725 int peel_iters_epilogue;
2726 unsigned vec_inside_cost = 0;
2727 int vec_outside_cost = 0;
2728 unsigned vec_prologue_cost = 0;
2729 unsigned vec_epilogue_cost = 0;
2730 int scalar_single_iter_cost = 0;
2731 int scalar_outside_cost = 0;
2732 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2733 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2734 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2736 /* Cost model disabled. */
2737 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
2739 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
2740 *ret_min_profitable_niters = 0;
2741 *ret_min_profitable_estimate = 0;
2742 return;
2745 /* Requires loop versioning tests to handle misalignment. */
2746 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2748 /* FIXME: Make cost depend on complexity of individual check. */
2749 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2750 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2751 vect_prologue);
2752 dump_printf (MSG_NOTE,
2753 "cost model: Adding cost of checks for loop "
2754 "versioning to treat misalignment.\n");
2757 /* Requires loop versioning with alias checks. */
2758 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2760 /* FIXME: Make cost depend on complexity of individual check. */
2761 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2762 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2763 vect_prologue);
2764 dump_printf (MSG_NOTE,
2765 "cost model: Adding cost of checks for loop "
2766 "versioning aliasing.\n");
2769 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2770 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2771 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2772 vect_prologue);
2774 /* Count statements in scalar loop. Using this as scalar cost for a single
2775 iteration for now.
2777 TODO: Add outer loop support.
2779 TODO: Consider assigning different costs to different scalar
2780 statements. */
2782 scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
2784 /* Add additional cost for the peeled instructions in prologue and epilogue
2785 loop.
2787 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2788 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2790 TODO: Build an expression that represents peel_iters for prologue and
2791 epilogue to be used in a run-time test. */
2793 if (npeel < 0)
2795 peel_iters_prologue = vf/2;
2796 dump_printf (MSG_NOTE, "cost model: "
2797 "prologue peel iters set to vf/2.\n");
2799 /* If peeling for alignment is unknown, loop bound of main loop becomes
2800 unknown. */
2801 peel_iters_epilogue = vf/2;
2802 dump_printf (MSG_NOTE, "cost model: "
2803 "epilogue peel iters set to vf/2 because "
2804 "peeling for alignment is unknown.\n");
2806 /* If peeled iterations are unknown, count a taken branch and a not taken
2807 branch per peeled loop. Even if scalar loop iterations are known,
2808 vector iterations are not known since peeled prologue iterations are
2809 not known. Hence guards remain the same. */
2810 (void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
2811 NULL, 0, vect_prologue);
2812 (void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
2813 NULL, 0, vect_prologue);
2814 /* FORNOW: Don't attempt to pass individual scalar instructions to
2815 the model; just assume linear cost for scalar iterations. */
2816 (void) add_stmt_cost (target_cost_data,
2817 peel_iters_prologue * scalar_single_iter_cost,
2818 scalar_stmt, NULL, 0, vect_prologue);
2819 (void) add_stmt_cost (target_cost_data,
2820 peel_iters_epilogue * scalar_single_iter_cost,
2821 scalar_stmt, NULL, 0, vect_epilogue);
2823 else
2825 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2826 stmt_info_for_cost *si;
2827 int j;
2828 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2830 prologue_cost_vec.create (2);
2831 epilogue_cost_vec.create (2);
2832 peel_iters_prologue = npeel;
2834 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2835 &peel_iters_epilogue,
2836 scalar_single_iter_cost,
2837 &prologue_cost_vec,
2838 &epilogue_cost_vec);
2840 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2842 struct _stmt_vec_info *stmt_info
2843 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2844 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2845 si->misalign, vect_prologue);
2848 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2850 struct _stmt_vec_info *stmt_info
2851 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2852 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2853 si->misalign, vect_epilogue);
2856 prologue_cost_vec.release ();
2857 epilogue_cost_vec.release ();
2860 /* FORNOW: The scalar outside cost is incremented in one of the
2861 following ways:
2863 1. The vectorizer checks for alignment and aliasing and generates
2864 a condition that allows dynamic vectorization. A cost model
2865 check is ANDED with the versioning condition. Hence scalar code
2866 path now has the added cost of the versioning check.
2868 if (cost > th & versioning_check)
2869 jmp to vector code
2871 Hence run-time scalar is incremented by not-taken branch cost.
2873 2. The vectorizer then checks if a prologue is required. If the
2874 cost model check was not done before during versioning, it has to
2875 be done before the prologue check.
2877 if (cost <= th)
2878 prologue = scalar_iters
2879 if (prologue == 0)
2880 jmp to vector code
2881 else
2882 execute prologue
2883 if (prologue == num_iters)
2884 go to exit
2886 Hence the run-time scalar cost is incremented by a taken branch,
2887 plus a not-taken branch, plus a taken branch cost.
2889 3. The vectorizer then checks if an epilogue is required. If the
2890 cost model check was not done before during prologue check, it
2891 has to be done with the epilogue check.
2893 if (prologue == 0)
2894 jmp to vector code
2895 else
2896 execute prologue
2897 if (prologue == num_iters)
2898 go to exit
2899 vector code:
2900 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2901 jmp to epilogue
2903 Hence the run-time scalar cost should be incremented by 2 taken
2904 branches.
2906 TODO: The back end may reorder the BBS's differently and reverse
2907 conditions/branch directions. Change the estimates below to
2908 something more reasonable. */
2910 /* If the number of iterations is known and we do not do versioning, we can
2911 decide whether to vectorize at compile time. Hence the scalar version
2912 do not carry cost model guard costs. */
2913 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2914 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2915 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2917 /* Cost model check occurs at versioning. */
2918 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2919 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2920 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
2921 else
2923 /* Cost model check occurs at prologue generation. */
2924 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2925 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
2926 + vect_get_stmt_cost (cond_branch_not_taken);
2927 /* Cost model check occurs at epilogue generation. */
2928 else
2929 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
2933 /* Complete the target-specific cost calculations. */
2934 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
2935 &vec_inside_cost, &vec_epilogue_cost);
2937 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
2939 /* Calculate number of iterations required to make the vector version
2940 profitable, relative to the loop bodies only. The following condition
2941 must hold true:
2942 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2943 where
2944 SIC = scalar iteration cost, VIC = vector iteration cost,
2945 VOC = vector outside cost, VF = vectorization factor,
2946 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2947 SOC = scalar outside cost for run time cost model check. */
2949 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
2951 if (vec_outside_cost <= 0)
2952 min_profitable_iters = 1;
2953 else
2955 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2956 - vec_inside_cost * peel_iters_prologue
2957 - vec_inside_cost * peel_iters_epilogue)
2958 / ((scalar_single_iter_cost * vf)
2959 - vec_inside_cost);
2961 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2962 <= (((int) vec_inside_cost * min_profitable_iters)
2963 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
2964 min_profitable_iters++;
2967 /* vector version will never be profitable. */
2968 else
2970 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vect)
2971 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
2972 "did not happen for a simd loop");
2974 if (dump_enabled_p ())
2975 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2976 "cost model: the vector iteration cost = %d "
2977 "divided by the scalar iteration cost = %d "
2978 "is greater or equal to the vectorization factor = %d"
2979 ".\n",
2980 vec_inside_cost, scalar_single_iter_cost, vf);
2981 *ret_min_profitable_niters = -1;
2982 *ret_min_profitable_estimate = -1;
2983 return;
2986 if (dump_enabled_p ())
2988 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
2989 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
2990 vec_inside_cost);
2991 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
2992 vec_prologue_cost);
2993 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
2994 vec_epilogue_cost);
2995 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
2996 scalar_single_iter_cost);
2997 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
2998 scalar_outside_cost);
2999 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3000 vec_outside_cost);
3001 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3002 peel_iters_prologue);
3003 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3004 peel_iters_epilogue);
3005 dump_printf (MSG_NOTE,
3006 " Calculated minimum iters for profitability: %d\n",
3007 min_profitable_iters);
3008 dump_printf (MSG_NOTE, "\n");
3011 min_profitable_iters =
3012 min_profitable_iters < vf ? vf : min_profitable_iters;
3014 /* Because the condition we create is:
3015 if (niters <= min_profitable_iters)
3016 then skip the vectorized loop. */
3017 min_profitable_iters--;
3019 if (dump_enabled_p ())
3020 dump_printf_loc (MSG_NOTE, vect_location,
3021 " Runtime profitability threshold = %d\n",
3022 min_profitable_iters);
3024 *ret_min_profitable_niters = min_profitable_iters;
3026 /* Calculate number of iterations required to make the vector version
3027 profitable, relative to the loop bodies only.
3029 Non-vectorized variant is SIC * niters and it must win over vector
3030 variant on the expected loop trip count. The following condition must hold true:
3031 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3033 if (vec_outside_cost <= 0)
3034 min_profitable_estimate = 1;
3035 else
3037 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3038 - vec_inside_cost * peel_iters_prologue
3039 - vec_inside_cost * peel_iters_epilogue)
3040 / ((scalar_single_iter_cost * vf)
3041 - vec_inside_cost);
3043 min_profitable_estimate --;
3044 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3045 if (dump_enabled_p ())
3046 dump_printf_loc (MSG_NOTE, vect_location,
3047 " Static estimate profitability threshold = %d\n",
3048 min_profitable_iters);
3050 *ret_min_profitable_estimate = min_profitable_estimate;
3054 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3055 functions. Design better to avoid maintenance issues. */
3057 /* Function vect_model_reduction_cost.
3059 Models cost for a reduction operation, including the vector ops
3060 generated within the strip-mine loop, the initial definition before
3061 the loop, and the epilogue code that must be generated. */
3063 static bool
3064 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3065 int ncopies)
3067 int prologue_cost = 0, epilogue_cost = 0;
3068 enum tree_code code;
3069 optab optab;
3070 tree vectype;
3071 gimple stmt, orig_stmt;
3072 tree reduction_op;
3073 enum machine_mode mode;
3074 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3075 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3076 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3078 /* Cost of reduction op inside loop. */
3079 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3080 stmt_info, 0, vect_body);
3081 stmt = STMT_VINFO_STMT (stmt_info);
3083 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3085 case GIMPLE_SINGLE_RHS:
3086 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
3087 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
3088 break;
3089 case GIMPLE_UNARY_RHS:
3090 reduction_op = gimple_assign_rhs1 (stmt);
3091 break;
3092 case GIMPLE_BINARY_RHS:
3093 reduction_op = gimple_assign_rhs2 (stmt);
3094 break;
3095 case GIMPLE_TERNARY_RHS:
3096 reduction_op = gimple_assign_rhs3 (stmt);
3097 break;
3098 default:
3099 gcc_unreachable ();
3102 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3103 if (!vectype)
3105 if (dump_enabled_p ())
3107 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3108 "unsupported data-type ");
3109 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3110 TREE_TYPE (reduction_op));
3111 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3113 return false;
3116 mode = TYPE_MODE (vectype);
3117 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3119 if (!orig_stmt)
3120 orig_stmt = STMT_VINFO_STMT (stmt_info);
3122 code = gimple_assign_rhs_code (orig_stmt);
3124 /* Add in cost for initial definition. */
3125 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3126 stmt_info, 0, vect_prologue);
3128 /* Determine cost of epilogue code.
3130 We have a reduction operator that will reduce the vector in one statement.
3131 Also requires scalar extract. */
3133 if (!nested_in_vect_loop_p (loop, orig_stmt))
3135 if (reduc_code != ERROR_MARK)
3137 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3138 stmt_info, 0, vect_epilogue);
3139 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3140 stmt_info, 0, vect_epilogue);
3142 else
3144 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3145 tree bitsize =
3146 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3147 int element_bitsize = tree_to_uhwi (bitsize);
3148 int nelements = vec_size_in_bits / element_bitsize;
3150 optab = optab_for_tree_code (code, vectype, optab_default);
3152 /* We have a whole vector shift available. */
3153 if (VECTOR_MODE_P (mode)
3154 && optab_handler (optab, mode) != CODE_FOR_nothing
3155 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3157 /* Final reduction via vector shifts and the reduction operator.
3158 Also requires scalar extract. */
3159 epilogue_cost += add_stmt_cost (target_cost_data,
3160 exact_log2 (nelements) * 2,
3161 vector_stmt, stmt_info, 0,
3162 vect_epilogue);
3163 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3164 vec_to_scalar, stmt_info, 0,
3165 vect_epilogue);
3167 else
3168 /* Use extracts and reduction op for final reduction. For N
3169 elements, we have N extracts and N-1 reduction ops. */
3170 epilogue_cost += add_stmt_cost (target_cost_data,
3171 nelements + nelements - 1,
3172 vector_stmt, stmt_info, 0,
3173 vect_epilogue);
3177 if (dump_enabled_p ())
3178 dump_printf (MSG_NOTE,
3179 "vect_model_reduction_cost: inside_cost = %d, "
3180 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3181 prologue_cost, epilogue_cost);
3183 return true;
3187 /* Function vect_model_induction_cost.
3189 Models cost for induction operations. */
3191 static void
3192 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3194 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3195 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3196 unsigned inside_cost, prologue_cost;
3198 /* loop cost for vec_loop. */
3199 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3200 stmt_info, 0, vect_body);
3202 /* prologue cost for vec_init and vec_step. */
3203 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3204 stmt_info, 0, vect_prologue);
3206 if (dump_enabled_p ())
3207 dump_printf_loc (MSG_NOTE, vect_location,
3208 "vect_model_induction_cost: inside_cost = %d, "
3209 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3213 /* Function get_initial_def_for_induction
3215 Input:
3216 STMT - a stmt that performs an induction operation in the loop.
3217 IV_PHI - the initial value of the induction variable
3219 Output:
3220 Return a vector variable, initialized with the first VF values of
3221 the induction variable. E.g., for an iv with IV_PHI='X' and
3222 evolution S, for a vector of 4 units, we want to return:
3223 [X, X + S, X + 2*S, X + 3*S]. */
3225 static tree
3226 get_initial_def_for_induction (gimple iv_phi)
3228 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3229 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3230 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3231 tree vectype;
3232 int nunits;
3233 edge pe = loop_preheader_edge (loop);
3234 struct loop *iv_loop;
3235 basic_block new_bb;
3236 tree new_vec, vec_init, vec_step, t;
3237 tree new_var;
3238 tree new_name;
3239 gimple init_stmt, induction_phi, new_stmt;
3240 tree induc_def, vec_def, vec_dest;
3241 tree init_expr, step_expr;
3242 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3243 int i;
3244 int ncopies;
3245 tree expr;
3246 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3247 bool nested_in_vect_loop = false;
3248 gimple_seq stmts = NULL;
3249 imm_use_iterator imm_iter;
3250 use_operand_p use_p;
3251 gimple exit_phi;
3252 edge latch_e;
3253 tree loop_arg;
3254 gimple_stmt_iterator si;
3255 basic_block bb = gimple_bb (iv_phi);
3256 tree stepvectype;
3257 tree resvectype;
3259 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3260 if (nested_in_vect_loop_p (loop, iv_phi))
3262 nested_in_vect_loop = true;
3263 iv_loop = loop->inner;
3265 else
3266 iv_loop = loop;
3267 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3269 latch_e = loop_latch_edge (iv_loop);
3270 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3272 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3273 gcc_assert (step_expr != NULL_TREE);
3275 pe = loop_preheader_edge (iv_loop);
3276 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3277 loop_preheader_edge (iv_loop));
3279 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3280 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3281 gcc_assert (vectype);
3282 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3283 ncopies = vf / nunits;
3285 gcc_assert (phi_info);
3286 gcc_assert (ncopies >= 1);
3288 /* Convert the step to the desired type. */
3289 step_expr = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3290 step_expr),
3291 &stmts, true, NULL_TREE);
3292 if (stmts)
3294 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3295 gcc_assert (!new_bb);
3298 /* Find the first insertion point in the BB. */
3299 si = gsi_after_labels (bb);
3301 /* Create the vector that holds the initial_value of the induction. */
3302 if (nested_in_vect_loop)
3304 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3305 been created during vectorization of previous stmts. We obtain it
3306 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3307 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi, NULL);
3308 /* If the initial value is not of proper type, convert it. */
3309 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3311 new_stmt = gimple_build_assign_with_ops
3312 (VIEW_CONVERT_EXPR,
3313 vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
3314 build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
3315 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3316 gimple_assign_set_lhs (new_stmt, vec_init);
3317 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3318 new_stmt);
3319 gcc_assert (!new_bb);
3320 set_vinfo_for_stmt (new_stmt,
3321 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3324 else
3326 vec<constructor_elt, va_gc> *v;
3328 /* iv_loop is the loop to be vectorized. Create:
3329 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3330 new_var = vect_get_new_vect_var (TREE_TYPE (vectype),
3331 vect_scalar_var, "var_");
3332 new_name = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3333 init_expr),
3334 &stmts, false, new_var);
3335 if (stmts)
3337 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3338 gcc_assert (!new_bb);
3341 vec_alloc (v, nunits);
3342 bool constant_p = is_gimple_min_invariant (new_name);
3343 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3344 for (i = 1; i < nunits; i++)
3346 /* Create: new_name_i = new_name + step_expr */
3347 new_name = fold_build2 (PLUS_EXPR, TREE_TYPE (new_name),
3348 new_name, step_expr);
3349 if (!is_gimple_min_invariant (new_name))
3351 init_stmt = gimple_build_assign (new_var, new_name);
3352 new_name = make_ssa_name (new_var, init_stmt);
3353 gimple_assign_set_lhs (init_stmt, new_name);
3354 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3355 gcc_assert (!new_bb);
3356 if (dump_enabled_p ())
3358 dump_printf_loc (MSG_NOTE, vect_location,
3359 "created new init_stmt: ");
3360 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3361 dump_printf (MSG_NOTE, "\n");
3363 constant_p = false;
3365 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3367 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3368 if (constant_p)
3369 new_vec = build_vector_from_ctor (vectype, v);
3370 else
3371 new_vec = build_constructor (vectype, v);
3372 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3376 /* Create the vector that holds the step of the induction. */
3377 if (nested_in_vect_loop)
3378 /* iv_loop is nested in the loop to be vectorized. Generate:
3379 vec_step = [S, S, S, S] */
3380 new_name = step_expr;
3381 else
3383 /* iv_loop is the loop to be vectorized. Generate:
3384 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3385 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3387 expr = build_int_cst (integer_type_node, vf);
3388 expr = fold_convert (TREE_TYPE (step_expr), expr);
3390 else
3391 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3392 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3393 expr, step_expr);
3394 if (TREE_CODE (step_expr) == SSA_NAME)
3395 new_name = vect_init_vector (iv_phi, new_name,
3396 TREE_TYPE (step_expr), NULL);
3399 t = unshare_expr (new_name);
3400 gcc_assert (CONSTANT_CLASS_P (new_name)
3401 || TREE_CODE (new_name) == SSA_NAME);
3402 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3403 gcc_assert (stepvectype);
3404 new_vec = build_vector_from_val (stepvectype, t);
3405 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3408 /* Create the following def-use cycle:
3409 loop prolog:
3410 vec_init = ...
3411 vec_step = ...
3412 loop:
3413 vec_iv = PHI <vec_init, vec_loop>
3415 STMT
3417 vec_loop = vec_iv + vec_step; */
3419 /* Create the induction-phi that defines the induction-operand. */
3420 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3421 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3422 set_vinfo_for_stmt (induction_phi,
3423 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3424 induc_def = PHI_RESULT (induction_phi);
3426 /* Create the iv update inside the loop */
3427 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3428 induc_def, vec_step);
3429 vec_def = make_ssa_name (vec_dest, new_stmt);
3430 gimple_assign_set_lhs (new_stmt, vec_def);
3431 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3432 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3433 NULL));
3435 /* Set the arguments of the phi node: */
3436 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3437 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3438 UNKNOWN_LOCATION);
3441 /* In case that vectorization factor (VF) is bigger than the number
3442 of elements that we can fit in a vectype (nunits), we have to generate
3443 more than one vector stmt - i.e - we need to "unroll" the
3444 vector stmt by a factor VF/nunits. For more details see documentation
3445 in vectorizable_operation. */
3447 if (ncopies > 1)
3449 stmt_vec_info prev_stmt_vinfo;
3450 /* FORNOW. This restriction should be relaxed. */
3451 gcc_assert (!nested_in_vect_loop);
3453 /* Create the vector that holds the step of the induction. */
3454 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3456 expr = build_int_cst (integer_type_node, nunits);
3457 expr = fold_convert (TREE_TYPE (step_expr), expr);
3459 else
3460 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3461 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3462 expr, step_expr);
3463 if (TREE_CODE (step_expr) == SSA_NAME)
3464 new_name = vect_init_vector (iv_phi, new_name,
3465 TREE_TYPE (step_expr), NULL);
3466 t = unshare_expr (new_name);
3467 gcc_assert (CONSTANT_CLASS_P (new_name)
3468 || TREE_CODE (new_name) == SSA_NAME);
3469 new_vec = build_vector_from_val (stepvectype, t);
3470 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3472 vec_def = induc_def;
3473 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3474 for (i = 1; i < ncopies; i++)
3476 /* vec_i = vec_prev + vec_step */
3477 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3478 vec_def, vec_step);
3479 vec_def = make_ssa_name (vec_dest, new_stmt);
3480 gimple_assign_set_lhs (new_stmt, vec_def);
3482 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3483 if (!useless_type_conversion_p (resvectype, vectype))
3485 new_stmt = gimple_build_assign_with_ops
3486 (VIEW_CONVERT_EXPR,
3487 vect_get_new_vect_var (resvectype, vect_simple_var,
3488 "vec_iv_"),
3489 build1 (VIEW_CONVERT_EXPR, resvectype,
3490 gimple_assign_lhs (new_stmt)), NULL_TREE);
3491 gimple_assign_set_lhs (new_stmt,
3492 make_ssa_name
3493 (gimple_assign_lhs (new_stmt), new_stmt));
3494 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3496 set_vinfo_for_stmt (new_stmt,
3497 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3498 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3499 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3503 if (nested_in_vect_loop)
3505 /* Find the loop-closed exit-phi of the induction, and record
3506 the final vector of induction results: */
3507 exit_phi = NULL;
3508 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3510 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
3512 exit_phi = USE_STMT (use_p);
3513 break;
3516 if (exit_phi)
3518 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3519 /* FORNOW. Currently not supporting the case that an inner-loop induction
3520 is not used in the outer-loop (i.e. only outside the outer-loop). */
3521 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3522 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3524 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3525 if (dump_enabled_p ())
3527 dump_printf_loc (MSG_NOTE, vect_location,
3528 "vector of inductions after inner-loop:");
3529 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3530 dump_printf (MSG_NOTE, "\n");
3536 if (dump_enabled_p ())
3538 dump_printf_loc (MSG_NOTE, vect_location,
3539 "transform induction: created def-use cycle: ");
3540 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3541 dump_printf (MSG_NOTE, "\n");
3542 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3543 SSA_NAME_DEF_STMT (vec_def), 0);
3544 dump_printf (MSG_NOTE, "\n");
3547 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3548 if (!useless_type_conversion_p (resvectype, vectype))
3550 new_stmt = gimple_build_assign_with_ops
3551 (VIEW_CONVERT_EXPR,
3552 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3553 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3554 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3555 gimple_assign_set_lhs (new_stmt, induc_def);
3556 si = gsi_after_labels (bb);
3557 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3558 set_vinfo_for_stmt (new_stmt,
3559 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3560 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3561 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3564 return induc_def;
3568 /* Function get_initial_def_for_reduction
3570 Input:
3571 STMT - a stmt that performs a reduction operation in the loop.
3572 INIT_VAL - the initial value of the reduction variable
3574 Output:
3575 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3576 of the reduction (used for adjusting the epilog - see below).
3577 Return a vector variable, initialized according to the operation that STMT
3578 performs. This vector will be used as the initial value of the
3579 vector of partial results.
3581 Option1 (adjust in epilog): Initialize the vector as follows:
3582 add/bit or/xor: [0,0,...,0,0]
3583 mult/bit and: [1,1,...,1,1]
3584 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3585 and when necessary (e.g. add/mult case) let the caller know
3586 that it needs to adjust the result by init_val.
3588 Option2: Initialize the vector as follows:
3589 add/bit or/xor: [init_val,0,0,...,0]
3590 mult/bit and: [init_val,1,1,...,1]
3591 min/max/cond_expr: [init_val,init_val,...,init_val]
3592 and no adjustments are needed.
3594 For example, for the following code:
3596 s = init_val;
3597 for (i=0;i<n;i++)
3598 s = s + a[i];
3600 STMT is 's = s + a[i]', and the reduction variable is 's'.
3601 For a vector of 4 units, we want to return either [0,0,0,init_val],
3602 or [0,0,0,0] and let the caller know that it needs to adjust
3603 the result at the end by 'init_val'.
3605 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3606 initialization vector is simpler (same element in all entries), if
3607 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3609 A cost model should help decide between these two schemes. */
3611 tree
3612 get_initial_def_for_reduction (gimple stmt, tree init_val,
3613 tree *adjustment_def)
3615 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3616 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3617 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3618 tree scalar_type = TREE_TYPE (init_val);
3619 tree vectype = get_vectype_for_scalar_type (scalar_type);
3620 int nunits;
3621 enum tree_code code = gimple_assign_rhs_code (stmt);
3622 tree def_for_init;
3623 tree init_def;
3624 tree *elts;
3625 int i;
3626 bool nested_in_vect_loop = false;
3627 tree init_value;
3628 REAL_VALUE_TYPE real_init_val = dconst0;
3629 int int_init_val = 0;
3630 gimple def_stmt = NULL;
3632 gcc_assert (vectype);
3633 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3635 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3636 || SCALAR_FLOAT_TYPE_P (scalar_type));
3638 if (nested_in_vect_loop_p (loop, stmt))
3639 nested_in_vect_loop = true;
3640 else
3641 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3643 /* In case of double reduction we only create a vector variable to be put
3644 in the reduction phi node. The actual statement creation is done in
3645 vect_create_epilog_for_reduction. */
3646 if (adjustment_def && nested_in_vect_loop
3647 && TREE_CODE (init_val) == SSA_NAME
3648 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3649 && gimple_code (def_stmt) == GIMPLE_PHI
3650 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3651 && vinfo_for_stmt (def_stmt)
3652 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3653 == vect_double_reduction_def)
3655 *adjustment_def = NULL;
3656 return vect_create_destination_var (init_val, vectype);
3659 if (TREE_CONSTANT (init_val))
3661 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3662 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3663 else
3664 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3666 else
3667 init_value = init_val;
3669 switch (code)
3671 case WIDEN_SUM_EXPR:
3672 case DOT_PROD_EXPR:
3673 case PLUS_EXPR:
3674 case MINUS_EXPR:
3675 case BIT_IOR_EXPR:
3676 case BIT_XOR_EXPR:
3677 case MULT_EXPR:
3678 case BIT_AND_EXPR:
3679 /* ADJUSMENT_DEF is NULL when called from
3680 vect_create_epilog_for_reduction to vectorize double reduction. */
3681 if (adjustment_def)
3683 if (nested_in_vect_loop)
3684 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3685 NULL);
3686 else
3687 *adjustment_def = init_val;
3690 if (code == MULT_EXPR)
3692 real_init_val = dconst1;
3693 int_init_val = 1;
3696 if (code == BIT_AND_EXPR)
3697 int_init_val = -1;
3699 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3700 def_for_init = build_real (scalar_type, real_init_val);
3701 else
3702 def_for_init = build_int_cst (scalar_type, int_init_val);
3704 /* Create a vector of '0' or '1' except the first element. */
3705 elts = XALLOCAVEC (tree, nunits);
3706 for (i = nunits - 2; i >= 0; --i)
3707 elts[i + 1] = def_for_init;
3709 /* Option1: the first element is '0' or '1' as well. */
3710 if (adjustment_def)
3712 elts[0] = def_for_init;
3713 init_def = build_vector (vectype, elts);
3714 break;
3717 /* Option2: the first element is INIT_VAL. */
3718 elts[0] = init_val;
3719 if (TREE_CONSTANT (init_val))
3720 init_def = build_vector (vectype, elts);
3721 else
3723 vec<constructor_elt, va_gc> *v;
3724 vec_alloc (v, nunits);
3725 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3726 for (i = 1; i < nunits; ++i)
3727 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3728 init_def = build_constructor (vectype, v);
3731 break;
3733 case MIN_EXPR:
3734 case MAX_EXPR:
3735 case COND_EXPR:
3736 if (adjustment_def)
3738 *adjustment_def = NULL_TREE;
3739 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3740 break;
3743 init_def = build_vector_from_val (vectype, init_value);
3744 break;
3746 default:
3747 gcc_unreachable ();
3750 return init_def;
3754 /* Function vect_create_epilog_for_reduction
3756 Create code at the loop-epilog to finalize the result of a reduction
3757 computation.
3759 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3760 reduction statements.
3761 STMT is the scalar reduction stmt that is being vectorized.
3762 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3763 number of elements that we can fit in a vectype (nunits). In this case
3764 we have to generate more than one vector stmt - i.e - we need to "unroll"
3765 the vector stmt by a factor VF/nunits. For more details see documentation
3766 in vectorizable_operation.
3767 REDUC_CODE is the tree-code for the epilog reduction.
3768 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3769 computation.
3770 REDUC_INDEX is the index of the operand in the right hand side of the
3771 statement that is defined by REDUCTION_PHI.
3772 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3773 SLP_NODE is an SLP node containing a group of reduction statements. The
3774 first one in this group is STMT.
3776 This function:
3777 1. Creates the reduction def-use cycles: sets the arguments for
3778 REDUCTION_PHIS:
3779 The loop-entry argument is the vectorized initial-value of the reduction.
3780 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3781 sums.
3782 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3783 by applying the operation specified by REDUC_CODE if available, or by
3784 other means (whole-vector shifts or a scalar loop).
3785 The function also creates a new phi node at the loop exit to preserve
3786 loop-closed form, as illustrated below.
3788 The flow at the entry to this function:
3790 loop:
3791 vec_def = phi <null, null> # REDUCTION_PHI
3792 VECT_DEF = vector_stmt # vectorized form of STMT
3793 s_loop = scalar_stmt # (scalar) STMT
3794 loop_exit:
3795 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3796 use <s_out0>
3797 use <s_out0>
3799 The above is transformed by this function into:
3801 loop:
3802 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3803 VECT_DEF = vector_stmt # vectorized form of STMT
3804 s_loop = scalar_stmt # (scalar) STMT
3805 loop_exit:
3806 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3807 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3808 v_out2 = reduce <v_out1>
3809 s_out3 = extract_field <v_out2, 0>
3810 s_out4 = adjust_result <s_out3>
3811 use <s_out4>
3812 use <s_out4>
3815 static void
3816 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3817 int ncopies, enum tree_code reduc_code,
3818 vec<gimple> reduction_phis,
3819 int reduc_index, bool double_reduc,
3820 slp_tree slp_node)
3822 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3823 stmt_vec_info prev_phi_info;
3824 tree vectype;
3825 enum machine_mode mode;
3826 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3827 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3828 basic_block exit_bb;
3829 tree scalar_dest;
3830 tree scalar_type;
3831 gimple new_phi = NULL, phi;
3832 gimple_stmt_iterator exit_gsi;
3833 tree vec_dest;
3834 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3835 gimple epilog_stmt = NULL;
3836 enum tree_code code = gimple_assign_rhs_code (stmt);
3837 gimple exit_phi;
3838 tree bitsize, bitpos;
3839 tree adjustment_def = NULL;
3840 tree vec_initial_def = NULL;
3841 tree reduction_op, expr, def;
3842 tree orig_name, scalar_result;
3843 imm_use_iterator imm_iter, phi_imm_iter;
3844 use_operand_p use_p, phi_use_p;
3845 bool extract_scalar_result = false;
3846 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3847 bool nested_in_vect_loop = false;
3848 auto_vec<gimple> new_phis;
3849 auto_vec<gimple> inner_phis;
3850 enum vect_def_type dt = vect_unknown_def_type;
3851 int j, i;
3852 auto_vec<tree> scalar_results;
3853 unsigned int group_size = 1, k, ratio;
3854 auto_vec<tree> vec_initial_defs;
3855 auto_vec<gimple> phis;
3856 bool slp_reduc = false;
3857 tree new_phi_result;
3858 gimple inner_phi = NULL;
3860 if (slp_node)
3861 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
3863 if (nested_in_vect_loop_p (loop, stmt))
3865 outer_loop = loop;
3866 loop = loop->inner;
3867 nested_in_vect_loop = true;
3868 gcc_assert (!slp_node);
3871 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3873 case GIMPLE_SINGLE_RHS:
3874 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3875 == ternary_op);
3876 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3877 break;
3878 case GIMPLE_UNARY_RHS:
3879 reduction_op = gimple_assign_rhs1 (stmt);
3880 break;
3881 case GIMPLE_BINARY_RHS:
3882 reduction_op = reduc_index ?
3883 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3884 break;
3885 case GIMPLE_TERNARY_RHS:
3886 reduction_op = gimple_op (stmt, reduc_index + 1);
3887 break;
3888 default:
3889 gcc_unreachable ();
3892 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3893 gcc_assert (vectype);
3894 mode = TYPE_MODE (vectype);
3896 /* 1. Create the reduction def-use cycle:
3897 Set the arguments of REDUCTION_PHIS, i.e., transform
3899 loop:
3900 vec_def = phi <null, null> # REDUCTION_PHI
3901 VECT_DEF = vector_stmt # vectorized form of STMT
3904 into:
3906 loop:
3907 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3908 VECT_DEF = vector_stmt # vectorized form of STMT
3911 (in case of SLP, do it for all the phis). */
3913 /* Get the loop-entry arguments. */
3914 if (slp_node)
3915 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3916 NULL, slp_node, reduc_index);
3917 else
3919 vec_initial_defs.create (1);
3920 /* For the case of reduction, vect_get_vec_def_for_operand returns
3921 the scalar def before the loop, that defines the initial value
3922 of the reduction variable. */
3923 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3924 &adjustment_def);
3925 vec_initial_defs.quick_push (vec_initial_def);
3928 /* Set phi nodes arguments. */
3929 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
3931 tree vec_init_def = vec_initial_defs[i];
3932 tree def = vect_defs[i];
3933 for (j = 0; j < ncopies; j++)
3935 /* Set the loop-entry arg of the reduction-phi. */
3936 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3937 UNKNOWN_LOCATION);
3939 /* Set the loop-latch arg for the reduction-phi. */
3940 if (j > 0)
3941 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3943 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3945 if (dump_enabled_p ())
3947 dump_printf_loc (MSG_NOTE, vect_location,
3948 "transform reduction: created def-use cycle: ");
3949 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
3950 dump_printf (MSG_NOTE, "\n");
3951 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
3952 dump_printf (MSG_NOTE, "\n");
3955 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3959 /* 2. Create epilog code.
3960 The reduction epilog code operates across the elements of the vector
3961 of partial results computed by the vectorized loop.
3962 The reduction epilog code consists of:
3964 step 1: compute the scalar result in a vector (v_out2)
3965 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3966 step 3: adjust the scalar result (s_out3) if needed.
3968 Step 1 can be accomplished using one the following three schemes:
3969 (scheme 1) using reduc_code, if available.
3970 (scheme 2) using whole-vector shifts, if available.
3971 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3972 combined.
3974 The overall epilog code looks like this:
3976 s_out0 = phi <s_loop> # original EXIT_PHI
3977 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3978 v_out2 = reduce <v_out1> # step 1
3979 s_out3 = extract_field <v_out2, 0> # step 2
3980 s_out4 = adjust_result <s_out3> # step 3
3982 (step 3 is optional, and steps 1 and 2 may be combined).
3983 Lastly, the uses of s_out0 are replaced by s_out4. */
3986 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3987 v_out1 = phi <VECT_DEF>
3988 Store them in NEW_PHIS. */
3990 exit_bb = single_exit (loop)->dest;
3991 prev_phi_info = NULL;
3992 new_phis.create (vect_defs.length ());
3993 FOR_EACH_VEC_ELT (vect_defs, i, def)
3995 for (j = 0; j < ncopies; j++)
3997 tree new_def = copy_ssa_name (def, NULL);
3998 phi = create_phi_node (new_def, exit_bb);
3999 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
4000 if (j == 0)
4001 new_phis.quick_push (phi);
4002 else
4004 def = vect_get_vec_def_for_stmt_copy (dt, def);
4005 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4008 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4009 prev_phi_info = vinfo_for_stmt (phi);
4013 /* The epilogue is created for the outer-loop, i.e., for the loop being
4014 vectorized. Create exit phis for the outer loop. */
4015 if (double_reduc)
4017 loop = outer_loop;
4018 exit_bb = single_exit (loop)->dest;
4019 inner_phis.create (vect_defs.length ());
4020 FOR_EACH_VEC_ELT (new_phis, i, phi)
4022 tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
4023 gimple outer_phi = create_phi_node (new_result, exit_bb);
4024 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4025 PHI_RESULT (phi));
4026 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4027 loop_vinfo, NULL));
4028 inner_phis.quick_push (phi);
4029 new_phis[i] = outer_phi;
4030 prev_phi_info = vinfo_for_stmt (outer_phi);
4031 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4033 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4034 new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
4035 outer_phi = create_phi_node (new_result, exit_bb);
4036 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4037 PHI_RESULT (phi));
4038 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4039 loop_vinfo, NULL));
4040 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4041 prev_phi_info = vinfo_for_stmt (outer_phi);
4046 exit_gsi = gsi_after_labels (exit_bb);
4048 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4049 (i.e. when reduc_code is not available) and in the final adjustment
4050 code (if needed). Also get the original scalar reduction variable as
4051 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4052 represents a reduction pattern), the tree-code and scalar-def are
4053 taken from the original stmt that the pattern-stmt (STMT) replaces.
4054 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4055 are taken from STMT. */
4057 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4058 if (!orig_stmt)
4060 /* Regular reduction */
4061 orig_stmt = stmt;
4063 else
4065 /* Reduction pattern */
4066 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4067 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4068 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4071 code = gimple_assign_rhs_code (orig_stmt);
4072 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4073 partial results are added and not subtracted. */
4074 if (code == MINUS_EXPR)
4075 code = PLUS_EXPR;
4077 scalar_dest = gimple_assign_lhs (orig_stmt);
4078 scalar_type = TREE_TYPE (scalar_dest);
4079 scalar_results.create (group_size);
4080 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4081 bitsize = TYPE_SIZE (scalar_type);
4083 /* In case this is a reduction in an inner-loop while vectorizing an outer
4084 loop - we don't need to extract a single scalar result at the end of the
4085 inner-loop (unless it is double reduction, i.e., the use of reduction is
4086 outside the outer-loop). The final vector of partial results will be used
4087 in the vectorized outer-loop, or reduced to a scalar result at the end of
4088 the outer-loop. */
4089 if (nested_in_vect_loop && !double_reduc)
4090 goto vect_finalize_reduction;
4092 /* SLP reduction without reduction chain, e.g.,
4093 # a1 = phi <a2, a0>
4094 # b1 = phi <b2, b0>
4095 a2 = operation (a1)
4096 b2 = operation (b1) */
4097 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4099 /* In case of reduction chain, e.g.,
4100 # a1 = phi <a3, a0>
4101 a2 = operation (a1)
4102 a3 = operation (a2),
4104 we may end up with more than one vector result. Here we reduce them to
4105 one vector. */
4106 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4108 tree first_vect = PHI_RESULT (new_phis[0]);
4109 tree tmp;
4110 gimple new_vec_stmt = NULL;
4112 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4113 for (k = 1; k < new_phis.length (); k++)
4115 gimple next_phi = new_phis[k];
4116 tree second_vect = PHI_RESULT (next_phi);
4118 tmp = build2 (code, vectype, first_vect, second_vect);
4119 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4120 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4121 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4122 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4125 new_phi_result = first_vect;
4126 if (new_vec_stmt)
4128 new_phis.truncate (0);
4129 new_phis.safe_push (new_vec_stmt);
4132 else
4133 new_phi_result = PHI_RESULT (new_phis[0]);
4135 /* 2.3 Create the reduction code, using one of the three schemes described
4136 above. In SLP we simply need to extract all the elements from the
4137 vector (without reducing them), so we use scalar shifts. */
4138 if (reduc_code != ERROR_MARK && !slp_reduc)
4140 tree tmp;
4142 /*** Case 1: Create:
4143 v_out2 = reduc_expr <v_out1> */
4145 if (dump_enabled_p ())
4146 dump_printf_loc (MSG_NOTE, vect_location,
4147 "Reduce using direct vector reduction.\n");
4149 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4150 tmp = build1 (reduc_code, vectype, new_phi_result);
4151 epilog_stmt = gimple_build_assign (vec_dest, tmp);
4152 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4153 gimple_assign_set_lhs (epilog_stmt, new_temp);
4154 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4156 extract_scalar_result = true;
4158 else
4160 enum tree_code shift_code = ERROR_MARK;
4161 bool have_whole_vector_shift = true;
4162 int bit_offset;
4163 int element_bitsize = tree_to_uhwi (bitsize);
4164 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4165 tree vec_temp;
4167 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
4168 shift_code = VEC_RSHIFT_EXPR;
4169 else
4170 have_whole_vector_shift = false;
4172 /* Regardless of whether we have a whole vector shift, if we're
4173 emulating the operation via tree-vect-generic, we don't want
4174 to use it. Only the first round of the reduction is likely
4175 to still be profitable via emulation. */
4176 /* ??? It might be better to emit a reduction tree code here, so that
4177 tree-vect-generic can expand the first round via bit tricks. */
4178 if (!VECTOR_MODE_P (mode))
4179 have_whole_vector_shift = false;
4180 else
4182 optab optab = optab_for_tree_code (code, vectype, optab_default);
4183 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4184 have_whole_vector_shift = false;
4187 if (have_whole_vector_shift && !slp_reduc)
4189 /*** Case 2: Create:
4190 for (offset = VS/2; offset >= element_size; offset/=2)
4192 Create: va' = vec_shift <va, offset>
4193 Create: va = vop <va, va'>
4194 } */
4196 if (dump_enabled_p ())
4197 dump_printf_loc (MSG_NOTE, vect_location,
4198 "Reduce using vector shifts\n");
4200 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4201 new_temp = new_phi_result;
4202 for (bit_offset = vec_size_in_bits/2;
4203 bit_offset >= element_bitsize;
4204 bit_offset /= 2)
4206 tree bitpos = size_int (bit_offset);
4208 epilog_stmt = gimple_build_assign_with_ops (shift_code,
4209 vec_dest, new_temp, bitpos);
4210 new_name = make_ssa_name (vec_dest, epilog_stmt);
4211 gimple_assign_set_lhs (epilog_stmt, new_name);
4212 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4214 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
4215 new_name, new_temp);
4216 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4217 gimple_assign_set_lhs (epilog_stmt, new_temp);
4218 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4221 extract_scalar_result = true;
4223 else
4225 tree rhs;
4227 /*** Case 3: Create:
4228 s = extract_field <v_out2, 0>
4229 for (offset = element_size;
4230 offset < vector_size;
4231 offset += element_size;)
4233 Create: s' = extract_field <v_out2, offset>
4234 Create: s = op <s, s'> // For non SLP cases
4235 } */
4237 if (dump_enabled_p ())
4238 dump_printf_loc (MSG_NOTE, vect_location,
4239 "Reduce using scalar code.\n");
4241 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4242 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4244 if (gimple_code (new_phi) == GIMPLE_PHI)
4245 vec_temp = PHI_RESULT (new_phi);
4246 else
4247 vec_temp = gimple_assign_lhs (new_phi);
4248 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4249 bitsize_zero_node);
4250 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4251 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4252 gimple_assign_set_lhs (epilog_stmt, new_temp);
4253 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4255 /* In SLP we don't need to apply reduction operation, so we just
4256 collect s' values in SCALAR_RESULTS. */
4257 if (slp_reduc)
4258 scalar_results.safe_push (new_temp);
4260 for (bit_offset = element_bitsize;
4261 bit_offset < vec_size_in_bits;
4262 bit_offset += element_bitsize)
4264 tree bitpos = bitsize_int (bit_offset);
4265 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4266 bitsize, bitpos);
4268 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4269 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4270 gimple_assign_set_lhs (epilog_stmt, new_name);
4271 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4273 if (slp_reduc)
4275 /* In SLP we don't need to apply reduction operation, so
4276 we just collect s' values in SCALAR_RESULTS. */
4277 new_temp = new_name;
4278 scalar_results.safe_push (new_name);
4280 else
4282 epilog_stmt = gimple_build_assign_with_ops (code,
4283 new_scalar_dest, new_name, new_temp);
4284 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4285 gimple_assign_set_lhs (epilog_stmt, new_temp);
4286 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4291 /* The only case where we need to reduce scalar results in SLP, is
4292 unrolling. If the size of SCALAR_RESULTS is greater than
4293 GROUP_SIZE, we reduce them combining elements modulo
4294 GROUP_SIZE. */
4295 if (slp_reduc)
4297 tree res, first_res, new_res;
4298 gimple new_stmt;
4300 /* Reduce multiple scalar results in case of SLP unrolling. */
4301 for (j = group_size; scalar_results.iterate (j, &res);
4302 j++)
4304 first_res = scalar_results[j % group_size];
4305 new_stmt = gimple_build_assign_with_ops (code,
4306 new_scalar_dest, first_res, res);
4307 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4308 gimple_assign_set_lhs (new_stmt, new_res);
4309 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4310 scalar_results[j % group_size] = new_res;
4313 else
4314 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4315 scalar_results.safe_push (new_temp);
4317 extract_scalar_result = false;
4321 /* 2.4 Extract the final scalar result. Create:
4322 s_out3 = extract_field <v_out2, bitpos> */
4324 if (extract_scalar_result)
4326 tree rhs;
4328 if (dump_enabled_p ())
4329 dump_printf_loc (MSG_NOTE, vect_location,
4330 "extract scalar result\n");
4332 if (BYTES_BIG_ENDIAN)
4333 bitpos = size_binop (MULT_EXPR,
4334 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
4335 TYPE_SIZE (scalar_type));
4336 else
4337 bitpos = bitsize_zero_node;
4339 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
4340 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4341 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4342 gimple_assign_set_lhs (epilog_stmt, new_temp);
4343 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4344 scalar_results.safe_push (new_temp);
4347 vect_finalize_reduction:
4349 if (double_reduc)
4350 loop = loop->inner;
4352 /* 2.5 Adjust the final result by the initial value of the reduction
4353 variable. (When such adjustment is not needed, then
4354 'adjustment_def' is zero). For example, if code is PLUS we create:
4355 new_temp = loop_exit_def + adjustment_def */
4357 if (adjustment_def)
4359 gcc_assert (!slp_reduc);
4360 if (nested_in_vect_loop)
4362 new_phi = new_phis[0];
4363 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4364 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4365 new_dest = vect_create_destination_var (scalar_dest, vectype);
4367 else
4369 new_temp = scalar_results[0];
4370 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4371 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4372 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4375 epilog_stmt = gimple_build_assign (new_dest, expr);
4376 new_temp = make_ssa_name (new_dest, epilog_stmt);
4377 gimple_assign_set_lhs (epilog_stmt, new_temp);
4378 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4379 if (nested_in_vect_loop)
4381 set_vinfo_for_stmt (epilog_stmt,
4382 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4383 NULL));
4384 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4385 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4387 if (!double_reduc)
4388 scalar_results.quick_push (new_temp);
4389 else
4390 scalar_results[0] = new_temp;
4392 else
4393 scalar_results[0] = new_temp;
4395 new_phis[0] = epilog_stmt;
4398 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4399 phis with new adjusted scalar results, i.e., replace use <s_out0>
4400 with use <s_out4>.
4402 Transform:
4403 loop_exit:
4404 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4405 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4406 v_out2 = reduce <v_out1>
4407 s_out3 = extract_field <v_out2, 0>
4408 s_out4 = adjust_result <s_out3>
4409 use <s_out0>
4410 use <s_out0>
4412 into:
4414 loop_exit:
4415 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4416 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4417 v_out2 = reduce <v_out1>
4418 s_out3 = extract_field <v_out2, 0>
4419 s_out4 = adjust_result <s_out3>
4420 use <s_out4>
4421 use <s_out4> */
4424 /* In SLP reduction chain we reduce vector results into one vector if
4425 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4426 the last stmt in the reduction chain, since we are looking for the loop
4427 exit phi node. */
4428 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4430 scalar_dest = gimple_assign_lhs (
4431 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4432 group_size = 1;
4435 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4436 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4437 need to match SCALAR_RESULTS with corresponding statements. The first
4438 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4439 the first vector stmt, etc.
4440 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4441 if (group_size > new_phis.length ())
4443 ratio = group_size / new_phis.length ();
4444 gcc_assert (!(group_size % new_phis.length ()));
4446 else
4447 ratio = 1;
4449 for (k = 0; k < group_size; k++)
4451 if (k % ratio == 0)
4453 epilog_stmt = new_phis[k / ratio];
4454 reduction_phi = reduction_phis[k / ratio];
4455 if (double_reduc)
4456 inner_phi = inner_phis[k / ratio];
4459 if (slp_reduc)
4461 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4463 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4464 /* SLP statements can't participate in patterns. */
4465 gcc_assert (!orig_stmt);
4466 scalar_dest = gimple_assign_lhs (current_stmt);
4469 phis.create (3);
4470 /* Find the loop-closed-use at the loop exit of the original scalar
4471 result. (The reduction result is expected to have two immediate uses -
4472 one at the latch block, and one at the loop exit). */
4473 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4474 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
4475 && !is_gimple_debug (USE_STMT (use_p)))
4476 phis.safe_push (USE_STMT (use_p));
4478 /* While we expect to have found an exit_phi because of loop-closed-ssa
4479 form we can end up without one if the scalar cycle is dead. */
4481 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4483 if (outer_loop)
4485 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4486 gimple vect_phi;
4488 /* FORNOW. Currently not supporting the case that an inner-loop
4489 reduction is not used in the outer-loop (but only outside the
4490 outer-loop), unless it is double reduction. */
4491 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4492 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4493 || double_reduc);
4495 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4496 if (!double_reduc
4497 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4498 != vect_double_reduction_def)
4499 continue;
4501 /* Handle double reduction:
4503 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4504 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4505 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4506 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4508 At that point the regular reduction (stmt2 and stmt3) is
4509 already vectorized, as well as the exit phi node, stmt4.
4510 Here we vectorize the phi node of double reduction, stmt1, and
4511 update all relevant statements. */
4513 /* Go through all the uses of s2 to find double reduction phi
4514 node, i.e., stmt1 above. */
4515 orig_name = PHI_RESULT (exit_phi);
4516 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4518 stmt_vec_info use_stmt_vinfo;
4519 stmt_vec_info new_phi_vinfo;
4520 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4521 basic_block bb = gimple_bb (use_stmt);
4522 gimple use;
4524 /* Check that USE_STMT is really double reduction phi
4525 node. */
4526 if (gimple_code (use_stmt) != GIMPLE_PHI
4527 || gimple_phi_num_args (use_stmt) != 2
4528 || bb->loop_father != outer_loop)
4529 continue;
4530 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4531 if (!use_stmt_vinfo
4532 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4533 != vect_double_reduction_def)
4534 continue;
4536 /* Create vector phi node for double reduction:
4537 vs1 = phi <vs0, vs2>
4538 vs1 was created previously in this function by a call to
4539 vect_get_vec_def_for_operand and is stored in
4540 vec_initial_def;
4541 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4542 vs0 is created here. */
4544 /* Create vector phi node. */
4545 vect_phi = create_phi_node (vec_initial_def, bb);
4546 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4547 loop_vec_info_for_loop (outer_loop), NULL);
4548 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4550 /* Create vs0 - initial def of the double reduction phi. */
4551 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4552 loop_preheader_edge (outer_loop));
4553 init_def = get_initial_def_for_reduction (stmt,
4554 preheader_arg, NULL);
4555 vect_phi_init = vect_init_vector (use_stmt, init_def,
4556 vectype, NULL);
4558 /* Update phi node arguments with vs0 and vs2. */
4559 add_phi_arg (vect_phi, vect_phi_init,
4560 loop_preheader_edge (outer_loop),
4561 UNKNOWN_LOCATION);
4562 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4563 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4564 if (dump_enabled_p ())
4566 dump_printf_loc (MSG_NOTE, vect_location,
4567 "created double reduction phi node: ");
4568 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4569 dump_printf (MSG_NOTE, "\n");
4572 vect_phi_res = PHI_RESULT (vect_phi);
4574 /* Replace the use, i.e., set the correct vs1 in the regular
4575 reduction phi node. FORNOW, NCOPIES is always 1, so the
4576 loop is redundant. */
4577 use = reduction_phi;
4578 for (j = 0; j < ncopies; j++)
4580 edge pr_edge = loop_preheader_edge (loop);
4581 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4582 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4588 phis.release ();
4589 if (nested_in_vect_loop)
4591 if (double_reduc)
4592 loop = outer_loop;
4593 else
4594 continue;
4597 phis.create (3);
4598 /* Find the loop-closed-use at the loop exit of the original scalar
4599 result. (The reduction result is expected to have two immediate uses,
4600 one at the latch block, and one at the loop exit). For double
4601 reductions we are looking for exit phis of the outer loop. */
4602 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4604 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4606 if (!is_gimple_debug (USE_STMT (use_p)))
4607 phis.safe_push (USE_STMT (use_p));
4609 else
4611 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4613 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4615 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4617 if (!flow_bb_inside_loop_p (loop,
4618 gimple_bb (USE_STMT (phi_use_p)))
4619 && !is_gimple_debug (USE_STMT (phi_use_p)))
4620 phis.safe_push (USE_STMT (phi_use_p));
4626 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4628 /* Replace the uses: */
4629 orig_name = PHI_RESULT (exit_phi);
4630 scalar_result = scalar_results[k];
4631 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4632 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4633 SET_USE (use_p, scalar_result);
4636 phis.release ();
4641 /* Function vectorizable_reduction.
4643 Check if STMT performs a reduction operation that can be vectorized.
4644 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4645 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4646 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4648 This function also handles reduction idioms (patterns) that have been
4649 recognized in advance during vect_pattern_recog. In this case, STMT may be
4650 of this form:
4651 X = pattern_expr (arg0, arg1, ..., X)
4652 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4653 sequence that had been detected and replaced by the pattern-stmt (STMT).
4655 In some cases of reduction patterns, the type of the reduction variable X is
4656 different than the type of the other arguments of STMT.
4657 In such cases, the vectype that is used when transforming STMT into a vector
4658 stmt is different than the vectype that is used to determine the
4659 vectorization factor, because it consists of a different number of elements
4660 than the actual number of elements that are being operated upon in parallel.
4662 For example, consider an accumulation of shorts into an int accumulator.
4663 On some targets it's possible to vectorize this pattern operating on 8
4664 shorts at a time (hence, the vectype for purposes of determining the
4665 vectorization factor should be V8HI); on the other hand, the vectype that
4666 is used to create the vector form is actually V4SI (the type of the result).
4668 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4669 indicates what is the actual level of parallelism (V8HI in the example), so
4670 that the right vectorization factor would be derived. This vectype
4671 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4672 be used to create the vectorized stmt. The right vectype for the vectorized
4673 stmt is obtained from the type of the result X:
4674 get_vectype_for_scalar_type (TREE_TYPE (X))
4676 This means that, contrary to "regular" reductions (or "regular" stmts in
4677 general), the following equation:
4678 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4679 does *NOT* necessarily hold for reduction patterns. */
4681 bool
4682 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4683 gimple *vec_stmt, slp_tree slp_node)
4685 tree vec_dest;
4686 tree scalar_dest;
4687 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4688 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4689 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4690 tree vectype_in = NULL_TREE;
4691 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4692 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4693 enum tree_code code, orig_code, epilog_reduc_code;
4694 enum machine_mode vec_mode;
4695 int op_type;
4696 optab optab, reduc_optab;
4697 tree new_temp = NULL_TREE;
4698 tree def;
4699 gimple def_stmt;
4700 enum vect_def_type dt;
4701 gimple new_phi = NULL;
4702 tree scalar_type;
4703 bool is_simple_use;
4704 gimple orig_stmt;
4705 stmt_vec_info orig_stmt_info;
4706 tree expr = NULL_TREE;
4707 int i;
4708 int ncopies;
4709 int epilog_copies;
4710 stmt_vec_info prev_stmt_info, prev_phi_info;
4711 bool single_defuse_cycle = false;
4712 tree reduc_def = NULL_TREE;
4713 gimple new_stmt = NULL;
4714 int j;
4715 tree ops[3];
4716 bool nested_cycle = false, found_nested_cycle_def = false;
4717 gimple reduc_def_stmt = NULL;
4718 /* The default is that the reduction variable is the last in statement. */
4719 int reduc_index = 2;
4720 bool double_reduc = false, dummy;
4721 basic_block def_bb;
4722 struct loop * def_stmt_loop, *outer_loop = NULL;
4723 tree def_arg;
4724 gimple def_arg_stmt;
4725 auto_vec<tree> vec_oprnds0;
4726 auto_vec<tree> vec_oprnds1;
4727 auto_vec<tree> vect_defs;
4728 auto_vec<gimple> phis;
4729 int vec_num;
4730 tree def0, def1, tem, op0, op1 = NULL_TREE;
4732 /* In case of reduction chain we switch to the first stmt in the chain, but
4733 we don't update STMT_INFO, since only the last stmt is marked as reduction
4734 and has reduction properties. */
4735 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4736 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4738 if (nested_in_vect_loop_p (loop, stmt))
4740 outer_loop = loop;
4741 loop = loop->inner;
4742 nested_cycle = true;
4745 /* 1. Is vectorizable reduction? */
4746 /* Not supportable if the reduction variable is used in the loop, unless
4747 it's a reduction chain. */
4748 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4749 && !GROUP_FIRST_ELEMENT (stmt_info))
4750 return false;
4752 /* Reductions that are not used even in an enclosing outer-loop,
4753 are expected to be "live" (used out of the loop). */
4754 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4755 && !STMT_VINFO_LIVE_P (stmt_info))
4756 return false;
4758 /* Make sure it was already recognized as a reduction computation. */
4759 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4760 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4761 return false;
4763 /* 2. Has this been recognized as a reduction pattern?
4765 Check if STMT represents a pattern that has been recognized
4766 in earlier analysis stages. For stmts that represent a pattern,
4767 the STMT_VINFO_RELATED_STMT field records the last stmt in
4768 the original sequence that constitutes the pattern. */
4770 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4771 if (orig_stmt)
4773 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4774 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4775 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4778 /* 3. Check the operands of the operation. The first operands are defined
4779 inside the loop body. The last operand is the reduction variable,
4780 which is defined by the loop-header-phi. */
4782 gcc_assert (is_gimple_assign (stmt));
4784 /* Flatten RHS. */
4785 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4787 case GIMPLE_SINGLE_RHS:
4788 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4789 if (op_type == ternary_op)
4791 tree rhs = gimple_assign_rhs1 (stmt);
4792 ops[0] = TREE_OPERAND (rhs, 0);
4793 ops[1] = TREE_OPERAND (rhs, 1);
4794 ops[2] = TREE_OPERAND (rhs, 2);
4795 code = TREE_CODE (rhs);
4797 else
4798 return false;
4799 break;
4801 case GIMPLE_BINARY_RHS:
4802 code = gimple_assign_rhs_code (stmt);
4803 op_type = TREE_CODE_LENGTH (code);
4804 gcc_assert (op_type == binary_op);
4805 ops[0] = gimple_assign_rhs1 (stmt);
4806 ops[1] = gimple_assign_rhs2 (stmt);
4807 break;
4809 case GIMPLE_TERNARY_RHS:
4810 code = gimple_assign_rhs_code (stmt);
4811 op_type = TREE_CODE_LENGTH (code);
4812 gcc_assert (op_type == ternary_op);
4813 ops[0] = gimple_assign_rhs1 (stmt);
4814 ops[1] = gimple_assign_rhs2 (stmt);
4815 ops[2] = gimple_assign_rhs3 (stmt);
4816 break;
4818 case GIMPLE_UNARY_RHS:
4819 return false;
4821 default:
4822 gcc_unreachable ();
4825 if (code == COND_EXPR && slp_node)
4826 return false;
4828 scalar_dest = gimple_assign_lhs (stmt);
4829 scalar_type = TREE_TYPE (scalar_dest);
4830 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4831 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4832 return false;
4834 /* Do not try to vectorize bit-precision reductions. */
4835 if ((TYPE_PRECISION (scalar_type)
4836 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4837 return false;
4839 /* All uses but the last are expected to be defined in the loop.
4840 The last use is the reduction variable. In case of nested cycle this
4841 assumption is not true: we use reduc_index to record the index of the
4842 reduction variable. */
4843 for (i = 0; i < op_type - 1; i++)
4845 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4846 if (i == 0 && code == COND_EXPR)
4847 continue;
4849 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4850 &def_stmt, &def, &dt, &tem);
4851 if (!vectype_in)
4852 vectype_in = tem;
4853 gcc_assert (is_simple_use);
4855 if (dt != vect_internal_def
4856 && dt != vect_external_def
4857 && dt != vect_constant_def
4858 && dt != vect_induction_def
4859 && !(dt == vect_nested_cycle && nested_cycle))
4860 return false;
4862 if (dt == vect_nested_cycle)
4864 found_nested_cycle_def = true;
4865 reduc_def_stmt = def_stmt;
4866 reduc_index = i;
4870 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4871 &def_stmt, &def, &dt, &tem);
4872 if (!vectype_in)
4873 vectype_in = tem;
4874 gcc_assert (is_simple_use);
4875 if (!(dt == vect_reduction_def
4876 || dt == vect_nested_cycle
4877 || ((dt == vect_internal_def || dt == vect_external_def
4878 || dt == vect_constant_def || dt == vect_induction_def)
4879 && nested_cycle && found_nested_cycle_def)))
4881 /* For pattern recognized stmts, orig_stmt might be a reduction,
4882 but some helper statements for the pattern might not, or
4883 might be COND_EXPRs with reduction uses in the condition. */
4884 gcc_assert (orig_stmt);
4885 return false;
4887 if (!found_nested_cycle_def)
4888 reduc_def_stmt = def_stmt;
4890 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4891 if (orig_stmt)
4892 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4893 reduc_def_stmt,
4894 !nested_cycle,
4895 &dummy));
4896 else
4898 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4899 !nested_cycle, &dummy);
4900 /* We changed STMT to be the first stmt in reduction chain, hence we
4901 check that in this case the first element in the chain is STMT. */
4902 gcc_assert (stmt == tmp
4903 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4906 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4907 return false;
4909 if (slp_node || PURE_SLP_STMT (stmt_info))
4910 ncopies = 1;
4911 else
4912 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4913 / TYPE_VECTOR_SUBPARTS (vectype_in));
4915 gcc_assert (ncopies >= 1);
4917 vec_mode = TYPE_MODE (vectype_in);
4919 if (code == COND_EXPR)
4921 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4923 if (dump_enabled_p ())
4924 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4925 "unsupported condition in reduction\n");
4927 return false;
4930 else
4932 /* 4. Supportable by target? */
4934 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
4935 || code == LROTATE_EXPR || code == RROTATE_EXPR)
4937 /* Shifts and rotates are only supported by vectorizable_shifts,
4938 not vectorizable_reduction. */
4939 if (dump_enabled_p ())
4940 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4941 "unsupported shift or rotation.\n");
4942 return false;
4945 /* 4.1. check support for the operation in the loop */
4946 optab = optab_for_tree_code (code, vectype_in, optab_default);
4947 if (!optab)
4949 if (dump_enabled_p ())
4950 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4951 "no optab.\n");
4953 return false;
4956 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4958 if (dump_enabled_p ())
4959 dump_printf (MSG_NOTE, "op not supported by target.\n");
4961 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4962 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4963 < vect_min_worthwhile_factor (code))
4964 return false;
4966 if (dump_enabled_p ())
4967 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
4970 /* Worthwhile without SIMD support? */
4971 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4972 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4973 < vect_min_worthwhile_factor (code))
4975 if (dump_enabled_p ())
4976 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4977 "not worthwhile without SIMD support.\n");
4979 return false;
4983 /* 4.2. Check support for the epilog operation.
4985 If STMT represents a reduction pattern, then the type of the
4986 reduction variable may be different than the type of the rest
4987 of the arguments. For example, consider the case of accumulation
4988 of shorts into an int accumulator; The original code:
4989 S1: int_a = (int) short_a;
4990 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4992 was replaced with:
4993 STMT: int_acc = widen_sum <short_a, int_acc>
4995 This means that:
4996 1. The tree-code that is used to create the vector operation in the
4997 epilog code (that reduces the partial results) is not the
4998 tree-code of STMT, but is rather the tree-code of the original
4999 stmt from the pattern that STMT is replacing. I.e, in the example
5000 above we want to use 'widen_sum' in the loop, but 'plus' in the
5001 epilog.
5002 2. The type (mode) we use to check available target support
5003 for the vector operation to be created in the *epilog*, is
5004 determined by the type of the reduction variable (in the example
5005 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5006 However the type (mode) we use to check available target support
5007 for the vector operation to be created *inside the loop*, is
5008 determined by the type of the other arguments to STMT (in the
5009 example we'd check this: optab_handler (widen_sum_optab,
5010 vect_short_mode)).
5012 This is contrary to "regular" reductions, in which the types of all
5013 the arguments are the same as the type of the reduction variable.
5014 For "regular" reductions we can therefore use the same vector type
5015 (and also the same tree-code) when generating the epilog code and
5016 when generating the code inside the loop. */
5018 if (orig_stmt)
5020 /* This is a reduction pattern: get the vectype from the type of the
5021 reduction variable, and get the tree-code from orig_stmt. */
5022 orig_code = gimple_assign_rhs_code (orig_stmt);
5023 gcc_assert (vectype_out);
5024 vec_mode = TYPE_MODE (vectype_out);
5026 else
5028 /* Regular reduction: use the same vectype and tree-code as used for
5029 the vector code inside the loop can be used for the epilog code. */
5030 orig_code = code;
5033 if (nested_cycle)
5035 def_bb = gimple_bb (reduc_def_stmt);
5036 def_stmt_loop = def_bb->loop_father;
5037 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5038 loop_preheader_edge (def_stmt_loop));
5039 if (TREE_CODE (def_arg) == SSA_NAME
5040 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5041 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5042 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5043 && vinfo_for_stmt (def_arg_stmt)
5044 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5045 == vect_double_reduction_def)
5046 double_reduc = true;
5049 epilog_reduc_code = ERROR_MARK;
5050 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5052 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5053 optab_default);
5054 if (!reduc_optab)
5056 if (dump_enabled_p ())
5057 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5058 "no optab for reduction.\n");
5060 epilog_reduc_code = ERROR_MARK;
5063 if (reduc_optab
5064 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5066 if (dump_enabled_p ())
5067 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5068 "reduc op not supported by target.\n");
5070 epilog_reduc_code = ERROR_MARK;
5073 else
5075 if (!nested_cycle || double_reduc)
5077 if (dump_enabled_p ())
5078 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5079 "no reduc code for scalar code.\n");
5081 return false;
5085 if (double_reduc && ncopies > 1)
5087 if (dump_enabled_p ())
5088 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5089 "multiple types in double reduction\n");
5091 return false;
5094 /* In case of widenning multiplication by a constant, we update the type
5095 of the constant to be the type of the other operand. We check that the
5096 constant fits the type in the pattern recognition pass. */
5097 if (code == DOT_PROD_EXPR
5098 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5100 if (TREE_CODE (ops[0]) == INTEGER_CST)
5101 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5102 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5103 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5104 else
5106 if (dump_enabled_p ())
5107 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5108 "invalid types in dot-prod\n");
5110 return false;
5114 if (!vec_stmt) /* transformation not required. */
5116 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
5117 return false;
5118 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5119 return true;
5122 /** Transform. **/
5124 if (dump_enabled_p ())
5125 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5127 /* FORNOW: Multiple types are not supported for condition. */
5128 if (code == COND_EXPR)
5129 gcc_assert (ncopies == 1);
5131 /* Create the destination vector */
5132 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5134 /* In case the vectorization factor (VF) is bigger than the number
5135 of elements that we can fit in a vectype (nunits), we have to generate
5136 more than one vector stmt - i.e - we need to "unroll" the
5137 vector stmt by a factor VF/nunits. For more details see documentation
5138 in vectorizable_operation. */
5140 /* If the reduction is used in an outer loop we need to generate
5141 VF intermediate results, like so (e.g. for ncopies=2):
5142 r0 = phi (init, r0)
5143 r1 = phi (init, r1)
5144 r0 = x0 + r0;
5145 r1 = x1 + r1;
5146 (i.e. we generate VF results in 2 registers).
5147 In this case we have a separate def-use cycle for each copy, and therefore
5148 for each copy we get the vector def for the reduction variable from the
5149 respective phi node created for this copy.
5151 Otherwise (the reduction is unused in the loop nest), we can combine
5152 together intermediate results, like so (e.g. for ncopies=2):
5153 r = phi (init, r)
5154 r = x0 + r;
5155 r = x1 + r;
5156 (i.e. we generate VF/2 results in a single register).
5157 In this case for each copy we get the vector def for the reduction variable
5158 from the vectorized reduction operation generated in the previous iteration.
5161 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5163 single_defuse_cycle = true;
5164 epilog_copies = 1;
5166 else
5167 epilog_copies = ncopies;
5169 prev_stmt_info = NULL;
5170 prev_phi_info = NULL;
5171 if (slp_node)
5173 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5174 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5175 == TYPE_VECTOR_SUBPARTS (vectype_in));
5177 else
5179 vec_num = 1;
5180 vec_oprnds0.create (1);
5181 if (op_type == ternary_op)
5182 vec_oprnds1.create (1);
5185 phis.create (vec_num);
5186 vect_defs.create (vec_num);
5187 if (!slp_node)
5188 vect_defs.quick_push (NULL_TREE);
5190 for (j = 0; j < ncopies; j++)
5192 if (j == 0 || !single_defuse_cycle)
5194 for (i = 0; i < vec_num; i++)
5196 /* Create the reduction-phi that defines the reduction
5197 operand. */
5198 new_phi = create_phi_node (vec_dest, loop->header);
5199 set_vinfo_for_stmt (new_phi,
5200 new_stmt_vec_info (new_phi, loop_vinfo,
5201 NULL));
5202 if (j == 0 || slp_node)
5203 phis.quick_push (new_phi);
5207 if (code == COND_EXPR)
5209 gcc_assert (!slp_node);
5210 vectorizable_condition (stmt, gsi, vec_stmt,
5211 PHI_RESULT (phis[0]),
5212 reduc_index, NULL);
5213 /* Multiple types are not supported for condition. */
5214 break;
5217 /* Handle uses. */
5218 if (j == 0)
5220 op0 = ops[!reduc_index];
5221 if (op_type == ternary_op)
5223 if (reduc_index == 0)
5224 op1 = ops[2];
5225 else
5226 op1 = ops[1];
5229 if (slp_node)
5230 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5231 slp_node, -1);
5232 else
5234 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5235 stmt, NULL);
5236 vec_oprnds0.quick_push (loop_vec_def0);
5237 if (op_type == ternary_op)
5239 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5240 NULL);
5241 vec_oprnds1.quick_push (loop_vec_def1);
5245 else
5247 if (!slp_node)
5249 enum vect_def_type dt;
5250 gimple dummy_stmt;
5251 tree dummy;
5253 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5254 &dummy_stmt, &dummy, &dt);
5255 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5256 loop_vec_def0);
5257 vec_oprnds0[0] = loop_vec_def0;
5258 if (op_type == ternary_op)
5260 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5261 &dummy, &dt);
5262 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5263 loop_vec_def1);
5264 vec_oprnds1[0] = loop_vec_def1;
5268 if (single_defuse_cycle)
5269 reduc_def = gimple_assign_lhs (new_stmt);
5271 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5274 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5276 if (slp_node)
5277 reduc_def = PHI_RESULT (phis[i]);
5278 else
5280 if (!single_defuse_cycle || j == 0)
5281 reduc_def = PHI_RESULT (new_phi);
5284 def1 = ((op_type == ternary_op)
5285 ? vec_oprnds1[i] : NULL);
5286 if (op_type == binary_op)
5288 if (reduc_index == 0)
5289 expr = build2 (code, vectype_out, reduc_def, def0);
5290 else
5291 expr = build2 (code, vectype_out, def0, reduc_def);
5293 else
5295 if (reduc_index == 0)
5296 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5297 else
5299 if (reduc_index == 1)
5300 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5301 else
5302 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5306 new_stmt = gimple_build_assign (vec_dest, expr);
5307 new_temp = make_ssa_name (vec_dest, new_stmt);
5308 gimple_assign_set_lhs (new_stmt, new_temp);
5309 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5311 if (slp_node)
5313 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5314 vect_defs.quick_push (new_temp);
5316 else
5317 vect_defs[0] = new_temp;
5320 if (slp_node)
5321 continue;
5323 if (j == 0)
5324 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5325 else
5326 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5328 prev_stmt_info = vinfo_for_stmt (new_stmt);
5329 prev_phi_info = vinfo_for_stmt (new_phi);
5332 /* Finalize the reduction-phi (set its arguments) and create the
5333 epilog reduction code. */
5334 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5336 new_temp = gimple_assign_lhs (*vec_stmt);
5337 vect_defs[0] = new_temp;
5340 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5341 epilog_reduc_code, phis, reduc_index,
5342 double_reduc, slp_node);
5344 return true;
5347 /* Function vect_min_worthwhile_factor.
5349 For a loop where we could vectorize the operation indicated by CODE,
5350 return the minimum vectorization factor that makes it worthwhile
5351 to use generic vectors. */
5353 vect_min_worthwhile_factor (enum tree_code code)
5355 switch (code)
5357 case PLUS_EXPR:
5358 case MINUS_EXPR:
5359 case NEGATE_EXPR:
5360 return 4;
5362 case BIT_AND_EXPR:
5363 case BIT_IOR_EXPR:
5364 case BIT_XOR_EXPR:
5365 case BIT_NOT_EXPR:
5366 return 2;
5368 default:
5369 return INT_MAX;
5374 /* Function vectorizable_induction
5376 Check if PHI performs an induction computation that can be vectorized.
5377 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5378 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5379 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5381 bool
5382 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5383 gimple *vec_stmt)
5385 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5386 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5387 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5388 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5389 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5390 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5391 tree vec_def;
5393 gcc_assert (ncopies >= 1);
5394 /* FORNOW. These restrictions should be relaxed. */
5395 if (nested_in_vect_loop_p (loop, phi))
5397 imm_use_iterator imm_iter;
5398 use_operand_p use_p;
5399 gimple exit_phi;
5400 edge latch_e;
5401 tree loop_arg;
5403 if (ncopies > 1)
5405 if (dump_enabled_p ())
5406 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5407 "multiple types in nested loop.\n");
5408 return false;
5411 exit_phi = NULL;
5412 latch_e = loop_latch_edge (loop->inner);
5413 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5414 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5416 if (!flow_bb_inside_loop_p (loop->inner,
5417 gimple_bb (USE_STMT (use_p))))
5419 exit_phi = USE_STMT (use_p);
5420 break;
5423 if (exit_phi)
5425 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5426 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5427 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5429 if (dump_enabled_p ())
5430 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5431 "inner-loop induction only used outside "
5432 "of the outer vectorized loop.\n");
5433 return false;
5438 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5439 return false;
5441 /* FORNOW: SLP not supported. */
5442 if (STMT_SLP_TYPE (stmt_info))
5443 return false;
5445 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5447 if (gimple_code (phi) != GIMPLE_PHI)
5448 return false;
5450 if (!vec_stmt) /* transformation not required. */
5452 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5453 if (dump_enabled_p ())
5454 dump_printf_loc (MSG_NOTE, vect_location,
5455 "=== vectorizable_induction ===\n");
5456 vect_model_induction_cost (stmt_info, ncopies);
5457 return true;
5460 /** Transform. **/
5462 if (dump_enabled_p ())
5463 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
5465 vec_def = get_initial_def_for_induction (phi);
5466 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5467 return true;
5470 /* Function vectorizable_live_operation.
5472 STMT computes a value that is used outside the loop. Check if
5473 it can be supported. */
5475 bool
5476 vectorizable_live_operation (gimple stmt,
5477 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5478 gimple *vec_stmt)
5480 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5481 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5482 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5483 int i;
5484 int op_type;
5485 tree op;
5486 tree def;
5487 gimple def_stmt;
5488 enum vect_def_type dt;
5489 enum tree_code code;
5490 enum gimple_rhs_class rhs_class;
5492 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5494 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5495 return false;
5497 if (!is_gimple_assign (stmt))
5499 if (gimple_call_internal_p (stmt)
5500 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
5501 && gimple_call_lhs (stmt)
5502 && loop->simduid
5503 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
5504 && loop->simduid
5505 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
5507 edge e = single_exit (loop);
5508 basic_block merge_bb = e->dest;
5509 imm_use_iterator imm_iter;
5510 use_operand_p use_p;
5511 tree lhs = gimple_call_lhs (stmt);
5513 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
5515 gimple use_stmt = USE_STMT (use_p);
5516 if (gimple_code (use_stmt) == GIMPLE_PHI
5517 || gimple_bb (use_stmt) == merge_bb)
5519 if (vec_stmt)
5521 tree vfm1
5522 = build_int_cst (unsigned_type_node,
5523 loop_vinfo->vectorization_factor - 1);
5524 SET_PHI_ARG_DEF (use_stmt, e->dest_idx, vfm1);
5526 return true;
5531 return false;
5534 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5535 return false;
5537 /* FORNOW. CHECKME. */
5538 if (nested_in_vect_loop_p (loop, stmt))
5539 return false;
5541 code = gimple_assign_rhs_code (stmt);
5542 op_type = TREE_CODE_LENGTH (code);
5543 rhs_class = get_gimple_rhs_class (code);
5544 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5545 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5547 /* FORNOW: support only if all uses are invariant. This means
5548 that the scalar operations can remain in place, unvectorized.
5549 The original last scalar value that they compute will be used. */
5551 for (i = 0; i < op_type; i++)
5553 if (rhs_class == GIMPLE_SINGLE_RHS)
5554 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5555 else
5556 op = gimple_op (stmt, i + 1);
5557 if (op
5558 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5559 &dt))
5561 if (dump_enabled_p ())
5562 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5563 "use not simple.\n");
5564 return false;
5567 if (dt != vect_external_def && dt != vect_constant_def)
5568 return false;
5571 /* No transformation is required for the cases we currently support. */
5572 return true;
5575 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5577 static void
5578 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5580 ssa_op_iter op_iter;
5581 imm_use_iterator imm_iter;
5582 def_operand_p def_p;
5583 gimple ustmt;
5585 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5587 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5589 basic_block bb;
5591 if (!is_gimple_debug (ustmt))
5592 continue;
5594 bb = gimple_bb (ustmt);
5596 if (!flow_bb_inside_loop_p (loop, bb))
5598 if (gimple_debug_bind_p (ustmt))
5600 if (dump_enabled_p ())
5601 dump_printf_loc (MSG_NOTE, vect_location,
5602 "killing debug use\n");
5604 gimple_debug_bind_reset_value (ustmt);
5605 update_stmt (ustmt);
5607 else
5608 gcc_unreachable ();
5615 /* This function builds ni_name = number of iterations. Statements
5616 are emitted on the loop preheader edge. */
5618 static tree
5619 vect_build_loop_niters (loop_vec_info loop_vinfo)
5621 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
5622 if (TREE_CODE (ni) == INTEGER_CST)
5623 return ni;
5624 else
5626 tree ni_name, var;
5627 gimple_seq stmts = NULL;
5628 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5630 var = create_tmp_var (TREE_TYPE (ni), "niters");
5631 ni_name = force_gimple_operand (ni, &stmts, false, var);
5632 if (stmts)
5633 gsi_insert_seq_on_edge_immediate (pe, stmts);
5635 return ni_name;
5640 /* This function generates the following statements:
5642 ni_name = number of iterations loop executes
5643 ratio = ni_name / vf
5644 ratio_mult_vf_name = ratio * vf
5646 and places them on the loop preheader edge. */
5648 static void
5649 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
5650 tree ni_name,
5651 tree *ratio_mult_vf_name_ptr,
5652 tree *ratio_name_ptr)
5654 tree ni_minus_gap_name;
5655 tree var;
5656 tree ratio_name;
5657 tree ratio_mult_vf_name;
5658 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5659 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5660 tree log_vf;
5662 log_vf = build_int_cst (TREE_TYPE (ni_name), exact_log2 (vf));
5664 /* If epilogue loop is required because of data accesses with gaps, we
5665 subtract one iteration from the total number of iterations here for
5666 correct calculation of RATIO. */
5667 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5669 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5670 ni_name,
5671 build_one_cst (TREE_TYPE (ni_name)));
5672 if (!is_gimple_val (ni_minus_gap_name))
5674 var = create_tmp_var (TREE_TYPE (ni_name), "ni_gap");
5675 gimple stmts = NULL;
5676 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
5677 true, var);
5678 gsi_insert_seq_on_edge_immediate (pe, stmts);
5681 else
5682 ni_minus_gap_name = ni_name;
5684 /* Create: ratio = ni >> log2(vf) */
5685 /* ??? As we have ni == number of latch executions + 1, ni could
5686 have overflown to zero. So avoid computing ratio based on ni
5687 but compute it using the fact that we know ratio will be at least
5688 one, thus via (ni - vf) >> log2(vf) + 1. */
5689 ratio_name
5690 = fold_build2 (PLUS_EXPR, TREE_TYPE (ni_name),
5691 fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name),
5692 fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5693 ni_minus_gap_name,
5694 build_int_cst
5695 (TREE_TYPE (ni_name), vf)),
5696 log_vf),
5697 build_int_cst (TREE_TYPE (ni_name), 1));
5698 if (!is_gimple_val (ratio_name))
5700 var = create_tmp_var (TREE_TYPE (ni_name), "bnd");
5701 gimple stmts = NULL;
5702 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
5703 gsi_insert_seq_on_edge_immediate (pe, stmts);
5705 *ratio_name_ptr = ratio_name;
5707 /* Create: ratio_mult_vf = ratio << log2 (vf). */
5709 if (ratio_mult_vf_name_ptr)
5711 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
5712 ratio_name, log_vf);
5713 if (!is_gimple_val (ratio_mult_vf_name))
5715 var = create_tmp_var (TREE_TYPE (ni_name), "ratio_mult_vf");
5716 gimple stmts = NULL;
5717 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
5718 true, var);
5719 gsi_insert_seq_on_edge_immediate (pe, stmts);
5721 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
5724 return;
5728 /* Function vect_transform_loop.
5730 The analysis phase has determined that the loop is vectorizable.
5731 Vectorize the loop - created vectorized stmts to replace the scalar
5732 stmts in the loop, and update the loop exit condition. */
5734 void
5735 vect_transform_loop (loop_vec_info loop_vinfo)
5737 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5738 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5739 int nbbs = loop->num_nodes;
5740 gimple_stmt_iterator si;
5741 int i;
5742 tree ratio = NULL;
5743 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5744 bool grouped_store;
5745 bool slp_scheduled = false;
5746 gimple stmt, pattern_stmt;
5747 gimple_seq pattern_def_seq = NULL;
5748 gimple_stmt_iterator pattern_def_si = gsi_none ();
5749 bool transform_pattern_stmt = false;
5750 bool check_profitability = false;
5751 int th;
5752 /* Record number of iterations before we started tampering with the profile. */
5753 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5755 if (dump_enabled_p ())
5756 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
5758 /* If profile is inprecise, we have chance to fix it up. */
5759 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5760 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5762 /* Use the more conservative vectorization threshold. If the number
5763 of iterations is constant assume the cost check has been performed
5764 by our caller. If the threshold makes all loops profitable that
5765 run at least the vectorization factor number of times checking
5766 is pointless, too. */
5767 th = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
5768 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
5769 th = MAX (th, LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo));
5770 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5771 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5773 if (dump_enabled_p ())
5774 dump_printf_loc (MSG_NOTE, vect_location,
5775 "Profitability threshold is %d loop iterations.\n",
5776 th);
5777 check_profitability = true;
5780 /* Version the loop first, if required, so the profitability check
5781 comes first. */
5783 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5784 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5786 vect_loop_versioning (loop_vinfo, th, check_profitability);
5787 check_profitability = false;
5790 tree ni_name = vect_build_loop_niters (loop_vinfo);
5791 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = ni_name;
5793 /* Peel the loop if there are data refs with unknown alignment.
5794 Only one data ref with unknown store is allowed. */
5796 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
5798 vect_do_peeling_for_alignment (loop_vinfo, ni_name,
5799 th, check_profitability);
5800 check_profitability = false;
5801 /* The above adjusts LOOP_VINFO_NITERS, so cause ni_name to
5802 be re-computed. */
5803 ni_name = NULL_TREE;
5806 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5807 compile time constant), or it is a constant that doesn't divide by the
5808 vectorization factor, then an epilog loop needs to be created.
5809 We therefore duplicate the loop: the original loop will be vectorized,
5810 and will compute the first (n/VF) iterations. The second copy of the loop
5811 will remain scalar and will compute the remaining (n%VF) iterations.
5812 (VF is the vectorization factor). */
5814 if (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
5815 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5817 tree ratio_mult_vf;
5818 if (!ni_name)
5819 ni_name = vect_build_loop_niters (loop_vinfo);
5820 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, &ratio_mult_vf,
5821 &ratio);
5822 vect_do_peeling_for_loop_bound (loop_vinfo, ni_name, ratio_mult_vf,
5823 th, check_profitability);
5825 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5826 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5827 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5828 else
5830 if (!ni_name)
5831 ni_name = vect_build_loop_niters (loop_vinfo);
5832 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, NULL, &ratio);
5835 /* 1) Make sure the loop header has exactly two entries
5836 2) Make sure we have a preheader basic block. */
5838 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5840 split_edge (loop_preheader_edge (loop));
5842 /* FORNOW: the vectorizer supports only loops which body consist
5843 of one basic block (header + empty latch). When the vectorizer will
5844 support more involved loop forms, the order by which the BBs are
5845 traversed need to be reconsidered. */
5847 for (i = 0; i < nbbs; i++)
5849 basic_block bb = bbs[i];
5850 stmt_vec_info stmt_info;
5851 gimple phi;
5853 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5855 phi = gsi_stmt (si);
5856 if (dump_enabled_p ())
5858 dump_printf_loc (MSG_NOTE, vect_location,
5859 "------>vectorizing phi: ");
5860 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
5861 dump_printf (MSG_NOTE, "\n");
5863 stmt_info = vinfo_for_stmt (phi);
5864 if (!stmt_info)
5865 continue;
5867 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5868 vect_loop_kill_debug_uses (loop, phi);
5870 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5871 && !STMT_VINFO_LIVE_P (stmt_info))
5872 continue;
5874 if (STMT_VINFO_VECTYPE (stmt_info)
5875 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5876 != (unsigned HOST_WIDE_INT) vectorization_factor)
5877 && dump_enabled_p ())
5878 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
5880 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5882 if (dump_enabled_p ())
5883 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
5884 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5888 pattern_stmt = NULL;
5889 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5891 bool is_store;
5893 if (transform_pattern_stmt)
5894 stmt = pattern_stmt;
5895 else
5897 stmt = gsi_stmt (si);
5898 /* During vectorization remove existing clobber stmts. */
5899 if (gimple_clobber_p (stmt))
5901 unlink_stmt_vdef (stmt);
5902 gsi_remove (&si, true);
5903 release_defs (stmt);
5904 continue;
5908 if (dump_enabled_p ())
5910 dump_printf_loc (MSG_NOTE, vect_location,
5911 "------>vectorizing statement: ");
5912 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5913 dump_printf (MSG_NOTE, "\n");
5916 stmt_info = vinfo_for_stmt (stmt);
5918 /* vector stmts created in the outer-loop during vectorization of
5919 stmts in an inner-loop may not have a stmt_info, and do not
5920 need to be vectorized. */
5921 if (!stmt_info)
5923 gsi_next (&si);
5924 continue;
5927 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5928 vect_loop_kill_debug_uses (loop, stmt);
5930 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5931 && !STMT_VINFO_LIVE_P (stmt_info))
5933 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5934 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5935 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5936 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5938 stmt = pattern_stmt;
5939 stmt_info = vinfo_for_stmt (stmt);
5941 else
5943 gsi_next (&si);
5944 continue;
5947 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5948 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5949 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5950 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5951 transform_pattern_stmt = true;
5953 /* If pattern statement has def stmts, vectorize them too. */
5954 if (is_pattern_stmt_p (stmt_info))
5956 if (pattern_def_seq == NULL)
5958 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
5959 pattern_def_si = gsi_start (pattern_def_seq);
5961 else if (!gsi_end_p (pattern_def_si))
5962 gsi_next (&pattern_def_si);
5963 if (pattern_def_seq != NULL)
5965 gimple pattern_def_stmt = NULL;
5966 stmt_vec_info pattern_def_stmt_info = NULL;
5968 while (!gsi_end_p (pattern_def_si))
5970 pattern_def_stmt = gsi_stmt (pattern_def_si);
5971 pattern_def_stmt_info
5972 = vinfo_for_stmt (pattern_def_stmt);
5973 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
5974 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
5975 break;
5976 gsi_next (&pattern_def_si);
5979 if (!gsi_end_p (pattern_def_si))
5981 if (dump_enabled_p ())
5983 dump_printf_loc (MSG_NOTE, vect_location,
5984 "==> vectorizing pattern def "
5985 "stmt: ");
5986 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
5987 pattern_def_stmt, 0);
5988 dump_printf (MSG_NOTE, "\n");
5991 stmt = pattern_def_stmt;
5992 stmt_info = pattern_def_stmt_info;
5994 else
5996 pattern_def_si = gsi_none ();
5997 transform_pattern_stmt = false;
6000 else
6001 transform_pattern_stmt = false;
6004 if (STMT_VINFO_VECTYPE (stmt_info))
6006 unsigned int nunits
6007 = (unsigned int)
6008 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
6009 if (!STMT_SLP_TYPE (stmt_info)
6010 && nunits != (unsigned int) vectorization_factor
6011 && dump_enabled_p ())
6012 /* For SLP VF is set according to unrolling factor, and not
6013 to vector size, hence for SLP this print is not valid. */
6014 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6017 /* SLP. Schedule all the SLP instances when the first SLP stmt is
6018 reached. */
6019 if (STMT_SLP_TYPE (stmt_info))
6021 if (!slp_scheduled)
6023 slp_scheduled = true;
6025 if (dump_enabled_p ())
6026 dump_printf_loc (MSG_NOTE, vect_location,
6027 "=== scheduling SLP instances ===\n");
6029 vect_schedule_slp (loop_vinfo, NULL);
6032 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
6033 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
6035 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6037 pattern_def_seq = NULL;
6038 gsi_next (&si);
6040 continue;
6044 /* -------- vectorize statement ------------ */
6045 if (dump_enabled_p ())
6046 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
6048 grouped_store = false;
6049 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
6050 if (is_store)
6052 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6054 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
6055 interleaving chain was completed - free all the stores in
6056 the chain. */
6057 gsi_next (&si);
6058 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
6060 else
6062 /* Free the attached stmt_vec_info and remove the stmt. */
6063 gimple store = gsi_stmt (si);
6064 free_stmt_vec_info (store);
6065 unlink_stmt_vdef (store);
6066 gsi_remove (&si, true);
6067 release_defs (store);
6070 /* Stores can only appear at the end of pattern statements. */
6071 gcc_assert (!transform_pattern_stmt);
6072 pattern_def_seq = NULL;
6074 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6076 pattern_def_seq = NULL;
6077 gsi_next (&si);
6079 } /* stmts in BB */
6080 } /* BBs in loop */
6082 slpeel_make_loop_iterate_ntimes (loop, ratio);
6084 /* Reduce loop iterations by the vectorization factor. */
6085 scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
6086 expected_iterations / vectorization_factor);
6087 loop->nb_iterations_upper_bound
6088 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (vectorization_factor),
6089 FLOOR_DIV_EXPR);
6090 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6091 && loop->nb_iterations_upper_bound != double_int_zero)
6092 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - double_int_one;
6093 if (loop->any_estimate)
6095 loop->nb_iterations_estimate
6096 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (vectorization_factor),
6097 FLOOR_DIV_EXPR);
6098 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6099 && loop->nb_iterations_estimate != double_int_zero)
6100 loop->nb_iterations_estimate = loop->nb_iterations_estimate - double_int_one;
6103 if (dump_enabled_p ())
6105 dump_printf_loc (MSG_NOTE, vect_location,
6106 "LOOP VECTORIZED\n");
6107 if (loop->inner)
6108 dump_printf_loc (MSG_NOTE, vect_location,
6109 "OUTER LOOP VECTORIZED\n");
6110 dump_printf (MSG_NOTE, "\n");