1 /* Conversion of SESE regions to Polyhedra.
2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 #include <isl/union_map.h>
27 #include <isl/constraint.h>
30 /* For C++ linkage of C functions.
31 Missing from isl/val_gmp.h in isl 0.12 versions.
32 Appearing in isl/val_gmp.h in isl 0.13.
33 To be removed when passing to isl 0.13. */
34 #if defined(__cplusplus)
37 #include <isl/val_gmp.h>
38 #if defined(__cplusplus)
42 #include <cloog/cloog.h>
43 #include <cloog/cloog.h>
44 #include <cloog/isl/domain.h>
49 #include "coretypes.h"
51 #include "basic-block.h"
52 #include "tree-ssa-alias.h"
53 #include "internal-fn.h"
54 #include "gimple-expr.h"
57 #include "gimple-iterator.h"
59 #include "gimplify-me.h"
60 #include "gimple-ssa.h"
62 #include "tree-phinodes.h"
63 #include "ssa-iterators.h"
64 #include "stringpool.h"
65 #include "tree-ssanames.h"
66 #include "tree-ssa-loop-manip.h"
67 #include "tree-ssa-loop-niter.h"
68 #include "tree-ssa-loop.h"
69 #include "tree-into-ssa.h"
70 #include "tree-pass.h"
72 #include "tree-chrec.h"
73 #include "tree-data-ref.h"
74 #include "tree-scalar-evolution.h"
77 #include "tree-ssa-propagate.h"
81 #include "graphite-poly.h"
82 #include "graphite-sese-to-poly.h"
85 /* Assigns to RES the value of the INTEGER_CST T. */
88 tree_int_to_gmp (tree t
, mpz_t res
)
90 wi::to_mpz (t
, res
, TYPE_SIGN (TREE_TYPE (t
)));
93 /* Returns the index of the PHI argument defined in the outermost
97 phi_arg_in_outermost_loop (gimple_phi phi
)
99 loop_p loop
= gimple_bb (phi
)->loop_father
;
102 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
103 if (!flow_bb_inside_loop_p (loop
, gimple_phi_arg_edge (phi
, i
)->src
))
105 loop
= gimple_phi_arg_edge (phi
, i
)->src
->loop_father
;
112 /* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
113 PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
116 remove_simple_copy_phi (gimple_phi_iterator
*psi
)
118 gimple_phi phi
= psi
->phi ();
119 tree res
= gimple_phi_result (phi
);
120 size_t entry
= phi_arg_in_outermost_loop (phi
);
121 tree init
= gimple_phi_arg_def (phi
, entry
);
122 gimple_assign stmt
= gimple_build_assign (res
, init
);
123 edge e
= gimple_phi_arg_edge (phi
, entry
);
125 remove_phi_node (psi
, false);
126 gsi_insert_on_edge_immediate (e
, stmt
);
129 /* Removes an invariant phi node at position PSI by inserting on the
130 loop ENTRY edge the assignment RES = INIT. */
133 remove_invariant_phi (sese region
, gimple_phi_iterator
*psi
)
135 gimple_phi phi
= psi
->phi ();
136 loop_p loop
= loop_containing_stmt (phi
);
137 tree res
= gimple_phi_result (phi
);
138 tree scev
= scalar_evolution_in_region (region
, loop
, res
);
139 size_t entry
= phi_arg_in_outermost_loop (phi
);
140 edge e
= gimple_phi_arg_edge (phi
, entry
);
143 gimple_seq stmts
= NULL
;
145 if (tree_contains_chrecs (scev
, NULL
))
146 scev
= gimple_phi_arg_def (phi
, entry
);
148 var
= force_gimple_operand (scev
, &stmts
, true, NULL_TREE
);
149 stmt
= gimple_build_assign (res
, var
);
150 remove_phi_node (psi
, false);
152 gimple_seq_add_stmt (&stmts
, stmt
);
153 gsi_insert_seq_on_edge (e
, stmts
);
154 gsi_commit_edge_inserts ();
155 SSA_NAME_DEF_STMT (res
) = stmt
;
158 /* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
161 simple_copy_phi_p (gimple_phi phi
)
165 if (gimple_phi_num_args (phi
) != 2)
168 res
= gimple_phi_result (phi
);
169 return (res
== gimple_phi_arg_def (phi
, 0)
170 || res
== gimple_phi_arg_def (phi
, 1));
173 /* Returns true when the phi node at position PSI is a reduction phi
174 node in REGION. Otherwise moves the pointer PSI to the next phi to
178 reduction_phi_p (sese region
, gimple_phi_iterator
*psi
)
181 gimple_phi phi
= psi
->phi ();
182 tree res
= gimple_phi_result (phi
);
184 loop
= loop_containing_stmt (phi
);
186 if (simple_copy_phi_p (phi
))
188 /* PRE introduces phi nodes like these, for an example,
189 see id-5.f in the fortran graphite testsuite:
191 # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
193 remove_simple_copy_phi (psi
);
197 if (scev_analyzable_p (res
, region
))
199 tree scev
= scalar_evolution_in_region (region
, loop
, res
);
201 if (evolution_function_is_invariant_p (scev
, loop
->num
))
202 remove_invariant_phi (region
, psi
);
209 /* All the other cases are considered reductions. */
213 /* Store the GRAPHITE representation of BB. */
216 new_gimple_bb (basic_block bb
, vec
<data_reference_p
> drs
)
218 struct gimple_bb
*gbb
;
220 gbb
= XNEW (struct gimple_bb
);
223 GBB_DATA_REFS (gbb
) = drs
;
224 GBB_CONDITIONS (gbb
).create (0);
225 GBB_CONDITION_CASES (gbb
).create (0);
231 free_data_refs_aux (vec
<data_reference_p
> datarefs
)
234 struct data_reference
*dr
;
236 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
239 base_alias_pair
*bap
= (base_alias_pair
*)(dr
->aux
);
241 free (bap
->alias_set
);
250 free_gimple_bb (struct gimple_bb
*gbb
)
252 free_data_refs_aux (GBB_DATA_REFS (gbb
));
253 free_data_refs (GBB_DATA_REFS (gbb
));
255 GBB_CONDITIONS (gbb
).release ();
256 GBB_CONDITION_CASES (gbb
).release ();
257 GBB_BB (gbb
)->aux
= 0;
261 /* Deletes all gimple bbs in SCOP. */
264 remove_gbbs_in_scop (scop_p scop
)
269 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
270 free_gimple_bb (PBB_BLACK_BOX (pbb
));
273 /* Deletes all scops in SCOPS. */
276 free_scops (vec
<scop_p
> scops
)
281 FOR_EACH_VEC_ELT (scops
, i
, scop
)
283 remove_gbbs_in_scop (scop
);
284 free_sese (SCOP_REGION (scop
));
291 /* Same as outermost_loop_in_sese, returns the outermost loop
292 containing BB in REGION, but makes sure that the returned loop
293 belongs to the REGION, and so this returns the first loop in the
294 REGION when the loop containing BB does not belong to REGION. */
297 outermost_loop_in_sese_1 (sese region
, basic_block bb
)
299 loop_p nest
= outermost_loop_in_sese (region
, bb
);
301 if (loop_in_sese_p (nest
, region
))
304 /* When the basic block BB does not belong to a loop in the region,
305 return the first loop in the region. */
308 if (loop_in_sese_p (nest
, region
))
317 /* Generates a polyhedral black box only if the bb contains interesting
321 try_generate_gimple_bb (scop_p scop
, basic_block bb
)
323 vec
<data_reference_p
> drs
;
325 sese region
= SCOP_REGION (scop
);
326 loop_p nest
= outermost_loop_in_sese_1 (region
, bb
);
327 gimple_stmt_iterator gsi
;
329 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
331 gimple stmt
= gsi_stmt (gsi
);
334 if (is_gimple_debug (stmt
))
337 loop
= loop_containing_stmt (stmt
);
338 if (!loop_in_sese_p (loop
, region
))
341 graphite_find_data_references_in_stmt (nest
, loop
, stmt
, &drs
);
344 return new_gimple_bb (bb
, drs
);
347 /* Returns true if all predecessors of BB, that are not dominated by BB, are
348 marked in MAP. The predecessors dominated by BB are loop latches and will
349 be handled after BB. */
352 all_non_dominated_preds_marked_p (basic_block bb
, sbitmap map
)
357 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
358 if (!bitmap_bit_p (map
, e
->src
->index
)
359 && !dominated_by_p (CDI_DOMINATORS
, e
->src
, bb
))
365 /* Compare the depth of two basic_block's P1 and P2. */
368 compare_bb_depths (const void *p1
, const void *p2
)
370 const_basic_block
const bb1
= *(const_basic_block
const*)p1
;
371 const_basic_block
const bb2
= *(const_basic_block
const*)p2
;
372 int d1
= loop_depth (bb1
->loop_father
);
373 int d2
= loop_depth (bb2
->loop_father
);
384 /* Sort the basic blocks from DOM such that the first are the ones at
385 a deepest loop level. */
388 graphite_sort_dominated_info (vec
<basic_block
> dom
)
390 dom
.qsort (compare_bb_depths
);
393 /* Recursive helper function for build_scops_bbs. */
396 build_scop_bbs_1 (scop_p scop
, sbitmap visited
, basic_block bb
)
398 sese region
= SCOP_REGION (scop
);
399 vec
<basic_block
> dom
;
402 if (bitmap_bit_p (visited
, bb
->index
)
403 || !bb_in_sese_p (bb
, region
))
406 pbb
= new_poly_bb (scop
, try_generate_gimple_bb (scop
, bb
));
407 SCOP_BBS (scop
).safe_push (pbb
);
408 bitmap_set_bit (visited
, bb
->index
);
410 dom
= get_dominated_by (CDI_DOMINATORS
, bb
);
415 graphite_sort_dominated_info (dom
);
417 while (!dom
.is_empty ())
422 FOR_EACH_VEC_ELT (dom
, i
, dom_bb
)
423 if (all_non_dominated_preds_marked_p (dom_bb
, visited
))
425 build_scop_bbs_1 (scop
, visited
, dom_bb
);
426 dom
.unordered_remove (i
);
434 /* Gather the basic blocks belonging to the SCOP. */
437 build_scop_bbs (scop_p scop
)
439 sbitmap visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
440 sese region
= SCOP_REGION (scop
);
442 bitmap_clear (visited
);
443 build_scop_bbs_1 (scop
, visited
, SESE_ENTRY_BB (region
));
444 sbitmap_free (visited
);
447 /* Return an ISL identifier for the polyhedral basic block PBB. */
450 isl_id_for_pbb (scop_p s
, poly_bb_p pbb
)
453 snprintf (name
, sizeof (name
), "S_%d", pbb_index (pbb
));
454 return isl_id_alloc (s
->ctx
, name
, pbb
);
457 /* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
458 We generate SCATTERING_DIMENSIONS scattering dimensions.
460 CLooG 0.15.0 and previous versions require, that all
461 scattering functions of one CloogProgram have the same number of
462 scattering dimensions, therefore we allow to specify it. This
463 should be removed in future versions of CLooG.
465 The scattering polyhedron consists of these dimensions: scattering,
466 loop_iterators, parameters.
470 | scattering_dimensions = 5
471 | used_scattering_dimensions = 3
479 | Scattering polyhedron:
481 | scattering: {s1, s2, s3, s4, s5}
482 | loop_iterators: {i}
483 | parameters: {p1, p2}
485 | s1 s2 s3 s4 s5 i p1 p2 1
486 | 1 0 0 0 0 0 0 0 -4 = 0
487 | 0 1 0 0 0 -1 0 0 0 = 0
488 | 0 0 1 0 0 0 0 0 -5 = 0 */
491 build_pbb_scattering_polyhedrons (isl_aff
*static_sched
,
492 poly_bb_p pbb
, int scattering_dimensions
)
495 int nb_iterators
= pbb_dim_iter_domain (pbb
);
496 int used_scattering_dimensions
= nb_iterators
* 2 + 1;
500 gcc_assert (scattering_dimensions
>= used_scattering_dimensions
);
502 dc
= isl_set_get_space (pbb
->domain
);
503 dm
= isl_space_add_dims (isl_space_from_domain (dc
),
504 isl_dim_out
, scattering_dimensions
);
505 pbb
->schedule
= isl_map_universe (dm
);
507 for (i
= 0; i
< scattering_dimensions
; i
++)
509 /* Textual order inside this loop. */
512 isl_constraint
*c
= isl_equality_alloc
513 (isl_local_space_from_space (isl_map_get_space (pbb
->schedule
)));
515 val
= isl_aff_get_coefficient_val (static_sched
, isl_dim_in
, i
/ 2);
517 val
= isl_val_neg (val
);
518 c
= isl_constraint_set_constant_val (c
, val
);
519 c
= isl_constraint_set_coefficient_si (c
, isl_dim_out
, i
, 1);
520 pbb
->schedule
= isl_map_add_constraint (pbb
->schedule
, c
);
523 /* Iterations of this loop. */
524 else /* if ((i % 2) == 1) */
526 int loop
= (i
- 1) / 2;
527 pbb
->schedule
= isl_map_equate (pbb
->schedule
, isl_dim_in
, loop
,
532 pbb
->transformed
= isl_map_copy (pbb
->schedule
);
535 /* Build for BB the static schedule.
537 The static schedule is a Dewey numbering of the abstract syntax
538 tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
540 The following example informally defines the static schedule:
559 Static schedules for A to F:
572 build_scop_scattering (scop_p scop
)
576 gimple_bb_p previous_gbb
= NULL
;
577 isl_space
*dc
= isl_set_get_space (scop
->context
);
578 isl_aff
*static_sched
;
580 dc
= isl_space_add_dims (dc
, isl_dim_set
, number_of_loops (cfun
));
581 static_sched
= isl_aff_zero_on_domain (isl_local_space_from_space (dc
));
583 /* We have to start schedules at 0 on the first component and
584 because we cannot compare_prefix_loops against a previous loop,
585 prefix will be equal to zero, and that index will be
586 incremented before copying. */
587 static_sched
= isl_aff_add_coefficient_si (static_sched
, isl_dim_in
, 0, -1);
589 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
591 gimple_bb_p gbb
= PBB_BLACK_BOX (pbb
);
593 int nb_scat_dims
= pbb_dim_iter_domain (pbb
) * 2 + 1;
596 prefix
= nb_common_loops (SCOP_REGION (scop
), previous_gbb
, gbb
);
602 static_sched
= isl_aff_add_coefficient_si (static_sched
, isl_dim_in
,
604 build_pbb_scattering_polyhedrons (static_sched
, pbb
, nb_scat_dims
);
607 isl_aff_free (static_sched
);
610 static isl_pw_aff
*extract_affine (scop_p
, tree
, __isl_take isl_space
*space
);
612 /* Extract an affine expression from the chain of recurrence E. */
615 extract_affine_chrec (scop_p s
, tree e
, __isl_take isl_space
*space
)
617 isl_pw_aff
*lhs
= extract_affine (s
, CHREC_LEFT (e
), isl_space_copy (space
));
618 isl_pw_aff
*rhs
= extract_affine (s
, CHREC_RIGHT (e
), isl_space_copy (space
));
619 isl_local_space
*ls
= isl_local_space_from_space (space
);
620 unsigned pos
= sese_loop_depth ((sese
) s
->region
, get_chrec_loop (e
)) - 1;
621 isl_aff
*loop
= isl_aff_set_coefficient_si
622 (isl_aff_zero_on_domain (ls
), isl_dim_in
, pos
, 1);
623 isl_pw_aff
*l
= isl_pw_aff_from_aff (loop
);
625 /* Before multiplying, make sure that the result is affine. */
626 gcc_assert (isl_pw_aff_is_cst (rhs
)
627 || isl_pw_aff_is_cst (l
));
629 return isl_pw_aff_add (lhs
, isl_pw_aff_mul (rhs
, l
));
632 /* Extract an affine expression from the mult_expr E. */
635 extract_affine_mul (scop_p s
, tree e
, __isl_take isl_space
*space
)
637 isl_pw_aff
*lhs
= extract_affine (s
, TREE_OPERAND (e
, 0),
638 isl_space_copy (space
));
639 isl_pw_aff
*rhs
= extract_affine (s
, TREE_OPERAND (e
, 1), space
);
641 if (!isl_pw_aff_is_cst (lhs
)
642 && !isl_pw_aff_is_cst (rhs
))
644 isl_pw_aff_free (lhs
);
645 isl_pw_aff_free (rhs
);
649 return isl_pw_aff_mul (lhs
, rhs
);
652 /* Return an ISL identifier from the name of the ssa_name E. */
655 isl_id_for_ssa_name (scop_p s
, tree e
)
657 const char *name
= get_name (e
);
661 id
= isl_id_alloc (s
->ctx
, name
, e
);
665 snprintf (name1
, sizeof (name1
), "P_%d", SSA_NAME_VERSION (e
));
666 id
= isl_id_alloc (s
->ctx
, name1
, e
);
672 /* Return an ISL identifier for the data reference DR. */
675 isl_id_for_dr (scop_p s
, data_reference_p dr ATTRIBUTE_UNUSED
)
677 /* Data references all get the same isl_id. They need to be comparable
678 and are distinguished through the first dimension, which contains the
680 return isl_id_alloc (s
->ctx
, "", 0);
683 /* Extract an affine expression from the ssa_name E. */
686 extract_affine_name (scop_p s
, tree e
, __isl_take isl_space
*space
)
693 id
= isl_id_for_ssa_name (s
, e
);
694 dimension
= isl_space_find_dim_by_id (space
, isl_dim_param
, id
);
696 dom
= isl_set_universe (isl_space_copy (space
));
697 aff
= isl_aff_zero_on_domain (isl_local_space_from_space (space
));
698 aff
= isl_aff_add_coefficient_si (aff
, isl_dim_param
, dimension
, 1);
699 return isl_pw_aff_alloc (dom
, aff
);
702 /* Extract an affine expression from the gmp constant G. */
705 extract_affine_gmp (mpz_t g
, __isl_take isl_space
*space
)
707 isl_local_space
*ls
= isl_local_space_from_space (isl_space_copy (space
));
708 isl_aff
*aff
= isl_aff_zero_on_domain (ls
);
709 isl_set
*dom
= isl_set_universe (space
);
713 ct
= isl_aff_get_ctx (aff
);
714 v
= isl_val_int_from_gmp (ct
, g
);
715 aff
= isl_aff_add_constant_val (aff
, v
);
717 return isl_pw_aff_alloc (dom
, aff
);
720 /* Extract an affine expression from the integer_cst E. */
723 extract_affine_int (tree e
, __isl_take isl_space
*space
)
729 tree_int_to_gmp (e
, g
);
730 res
= extract_affine_gmp (g
, space
);
736 /* Compute pwaff mod 2^width. */
738 extern isl_ctx
*the_isl_ctx
;
741 wrap (isl_pw_aff
*pwaff
, unsigned width
)
745 mod
= isl_val_int_from_ui(the_isl_ctx
, width
);
746 mod
= isl_val_2exp (mod
);
747 pwaff
= isl_pw_aff_mod_val (pwaff
, mod
);
752 /* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
753 Otherwise returns -1. */
756 parameter_index_in_region_1 (tree name
, sese region
)
761 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
763 FOR_EACH_VEC_ELT (SESE_PARAMS (region
), i
, p
)
770 /* When the parameter NAME is in REGION, returns its index in
771 SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
772 and returns the index of NAME. */
775 parameter_index_in_region (tree name
, sese region
)
779 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
781 i
= parameter_index_in_region_1 (name
, region
);
785 gcc_assert (SESE_ADD_PARAMS (region
));
787 i
= SESE_PARAMS (region
).length ();
788 SESE_PARAMS (region
).safe_push (name
);
792 /* Extract an affine expression from the tree E in the scop S. */
795 extract_affine (scop_p s
, tree e
, __isl_take isl_space
*space
)
797 isl_pw_aff
*lhs
, *rhs
, *res
;
800 if (e
== chrec_dont_know
) {
801 isl_space_free (space
);
805 switch (TREE_CODE (e
))
807 case POLYNOMIAL_CHREC
:
808 res
= extract_affine_chrec (s
, e
, space
);
812 res
= extract_affine_mul (s
, e
, space
);
816 case POINTER_PLUS_EXPR
:
817 lhs
= extract_affine (s
, TREE_OPERAND (e
, 0), isl_space_copy (space
));
818 rhs
= extract_affine (s
, TREE_OPERAND (e
, 1), space
);
819 res
= isl_pw_aff_add (lhs
, rhs
);
823 lhs
= extract_affine (s
, TREE_OPERAND (e
, 0), isl_space_copy (space
));
824 rhs
= extract_affine (s
, TREE_OPERAND (e
, 1), space
);
825 res
= isl_pw_aff_sub (lhs
, rhs
);
830 lhs
= extract_affine (s
, TREE_OPERAND (e
, 0), isl_space_copy (space
));
831 rhs
= extract_affine (s
, integer_minus_one_node
, space
);
832 res
= isl_pw_aff_mul (lhs
, rhs
);
836 gcc_assert (-1 != parameter_index_in_region_1 (e
, SCOP_REGION (s
)));
837 res
= extract_affine_name (s
, e
, space
);
841 res
= extract_affine_int (e
, space
);
842 /* No need to wrap a single integer. */
846 case NON_LVALUE_EXPR
:
847 res
= extract_affine (s
, TREE_OPERAND (e
, 0), space
);
855 type
= TREE_TYPE (e
);
856 if (TYPE_UNSIGNED (type
))
857 res
= wrap (res
, TYPE_PRECISION (type
));
862 /* In the context of sese S, scan the expression E and translate it to
863 a linear expression C. When parsing a symbolic multiplication, K
864 represents the constant multiplier of an expression containing
868 scan_tree_for_params (sese s
, tree e
)
870 if (e
== chrec_dont_know
)
873 switch (TREE_CODE (e
))
875 case POLYNOMIAL_CHREC
:
876 scan_tree_for_params (s
, CHREC_LEFT (e
));
880 if (chrec_contains_symbols (TREE_OPERAND (e
, 0)))
881 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
883 scan_tree_for_params (s
, TREE_OPERAND (e
, 1));
887 case POINTER_PLUS_EXPR
:
889 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
890 scan_tree_for_params (s
, TREE_OPERAND (e
, 1));
896 case NON_LVALUE_EXPR
:
897 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
901 parameter_index_in_region (e
, s
);
914 /* Find parameters with respect to REGION in BB. We are looking in memory
915 access functions, conditions and loop bounds. */
918 find_params_in_bb (sese region
, gimple_bb_p gbb
)
924 loop_p loop
= GBB_BB (gbb
)->loop_father
;
926 /* Find parameters in the access functions of data references. */
927 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb
), i
, dr
)
928 for (j
= 0; j
< DR_NUM_DIMENSIONS (dr
); j
++)
929 scan_tree_for_params (region
, DR_ACCESS_FN (dr
, j
));
931 /* Find parameters in conditional statements. */
932 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb
), i
, stmt
)
934 tree lhs
= scalar_evolution_in_region (region
, loop
,
935 gimple_cond_lhs (stmt
));
936 tree rhs
= scalar_evolution_in_region (region
, loop
,
937 gimple_cond_rhs (stmt
));
939 scan_tree_for_params (region
, lhs
);
940 scan_tree_for_params (region
, rhs
);
944 /* Record the parameters used in the SCOP. A variable is a parameter
945 in a scop if it does not vary during the execution of that scop. */
948 find_scop_parameters (scop_p scop
)
952 sese region
= SCOP_REGION (scop
);
956 /* Find the parameters used in the loop bounds. */
957 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region
), i
, loop
)
959 tree nb_iters
= number_of_latch_executions (loop
);
961 if (!chrec_contains_symbols (nb_iters
))
964 nb_iters
= scalar_evolution_in_region (region
, loop
, nb_iters
);
965 scan_tree_for_params (region
, nb_iters
);
968 /* Find the parameters used in data accesses. */
969 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
970 find_params_in_bb (region
, PBB_BLACK_BOX (pbb
));
972 nbp
= sese_nb_params (region
);
973 scop_set_nb_params (scop
, nbp
);
974 SESE_ADD_PARAMS (region
) = false;
978 isl_space
*space
= isl_space_set_alloc (scop
->ctx
, nbp
, 0);
980 FOR_EACH_VEC_ELT (SESE_PARAMS (region
), i
, e
)
981 space
= isl_space_set_dim_id (space
, isl_dim_param
, i
,
982 isl_id_for_ssa_name (scop
, e
));
984 scop
->context
= isl_set_universe (space
);
988 /* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
989 the constraints for the surrounding loops. */
992 build_loop_iteration_domains (scop_p scop
, struct loop
*loop
,
994 isl_set
*outer
, isl_set
**doms
)
996 tree nb_iters
= number_of_latch_executions (loop
);
997 sese region
= SCOP_REGION (scop
);
999 isl_set
*inner
= isl_set_copy (outer
);
1002 int pos
= isl_set_dim (outer
, isl_dim_set
);
1008 inner
= isl_set_add_dims (inner
, isl_dim_set
, 1);
1009 space
= isl_set_get_space (inner
);
1012 c
= isl_inequality_alloc
1013 (isl_local_space_from_space (isl_space_copy (space
)));
1014 c
= isl_constraint_set_coefficient_si (c
, isl_dim_set
, pos
, 1);
1015 inner
= isl_set_add_constraint (inner
, c
);
1017 /* loop_i <= cst_nb_iters */
1018 if (TREE_CODE (nb_iters
) == INTEGER_CST
)
1020 c
= isl_inequality_alloc
1021 (isl_local_space_from_space (isl_space_copy (space
)));
1022 c
= isl_constraint_set_coefficient_si (c
, isl_dim_set
, pos
, -1);
1023 tree_int_to_gmp (nb_iters
, g
);
1024 v
= isl_val_int_from_gmp (the_isl_ctx
, g
);
1025 c
= isl_constraint_set_constant_val (c
, v
);
1026 inner
= isl_set_add_constraint (inner
, c
);
1029 /* loop_i <= expr_nb_iters */
1030 else if (!chrec_contains_undetermined (nb_iters
))
1035 isl_local_space
*ls
;
1039 nb_iters
= scalar_evolution_in_region (region
, loop
, nb_iters
);
1041 aff
= extract_affine (scop
, nb_iters
, isl_set_get_space (inner
));
1042 valid
= isl_pw_aff_nonneg_set (isl_pw_aff_copy (aff
));
1043 valid
= isl_set_project_out (valid
, isl_dim_set
, 0,
1044 isl_set_dim (valid
, isl_dim_set
));
1045 scop
->context
= isl_set_intersect (scop
->context
, valid
);
1047 ls
= isl_local_space_from_space (isl_space_copy (space
));
1048 al
= isl_aff_set_coefficient_si (isl_aff_zero_on_domain (ls
),
1049 isl_dim_in
, pos
, 1);
1050 le
= isl_pw_aff_le_set (isl_pw_aff_from_aff (al
),
1051 isl_pw_aff_copy (aff
));
1052 inner
= isl_set_intersect (inner
, le
);
1054 if (max_stmt_executions (loop
, &nit
))
1056 /* Insert in the context the constraints from the
1057 estimation of the number of iterations NIT and the
1058 symbolic number of iterations (involving parameter
1059 names) NB_ITERS. First, build the affine expression
1060 "NIT - NB_ITERS" and then say that it is positive,
1061 i.e., NIT approximates NB_ITERS: "NIT >= NB_ITERS". */
1068 wi::to_mpz (nit
, g
, SIGNED
);
1069 mpz_sub_ui (g
, g
, 1);
1070 approx
= extract_affine_gmp (g
, isl_set_get_space (inner
));
1071 x
= isl_pw_aff_ge_set (approx
, aff
);
1072 x
= isl_set_project_out (x
, isl_dim_set
, 0,
1073 isl_set_dim (x
, isl_dim_set
));
1074 scop
->context
= isl_set_intersect (scop
->context
, x
);
1076 c
= isl_inequality_alloc
1077 (isl_local_space_from_space (isl_space_copy (space
)));
1078 c
= isl_constraint_set_coefficient_si (c
, isl_dim_set
, pos
, -1);
1079 v
= isl_val_int_from_gmp (the_isl_ctx
, g
);
1081 c
= isl_constraint_set_constant_val (c
, v
);
1082 inner
= isl_set_add_constraint (inner
, c
);
1085 isl_pw_aff_free (aff
);
1090 if (loop
->inner
&& loop_in_sese_p (loop
->inner
, region
))
1091 build_loop_iteration_domains (scop
, loop
->inner
, nb
+ 1,
1092 isl_set_copy (inner
), doms
);
1096 && loop_in_sese_p (loop
->next
, region
))
1097 build_loop_iteration_domains (scop
, loop
->next
, nb
,
1098 isl_set_copy (outer
), doms
);
1100 doms
[loop
->num
] = inner
;
1102 isl_set_free (outer
);
1103 isl_space_free (space
);
1107 /* Returns a linear expression for tree T evaluated in PBB. */
1110 create_pw_aff_from_tree (poly_bb_p pbb
, tree t
)
1112 scop_p scop
= PBB_SCOP (pbb
);
1114 t
= scalar_evolution_in_region (SCOP_REGION (scop
), pbb_loop (pbb
), t
);
1115 gcc_assert (!automatically_generated_chrec_p (t
));
1117 return extract_affine (scop
, t
, isl_set_get_space (pbb
->domain
));
1120 /* Add conditional statement STMT to pbb. CODE is used as the comparison
1121 operator. This allows us to invert the condition or to handle
1125 add_condition_to_pbb (poly_bb_p pbb
, gimple_cond stmt
, enum tree_code code
)
1127 isl_pw_aff
*lhs
= create_pw_aff_from_tree (pbb
, gimple_cond_lhs (stmt
));
1128 isl_pw_aff
*rhs
= create_pw_aff_from_tree (pbb
, gimple_cond_rhs (stmt
));
1134 cond
= isl_pw_aff_lt_set (lhs
, rhs
);
1138 cond
= isl_pw_aff_gt_set (lhs
, rhs
);
1142 cond
= isl_pw_aff_le_set (lhs
, rhs
);
1146 cond
= isl_pw_aff_ge_set (lhs
, rhs
);
1150 cond
= isl_pw_aff_eq_set (lhs
, rhs
);
1154 cond
= isl_pw_aff_ne_set (lhs
, rhs
);
1158 isl_pw_aff_free (lhs
);
1159 isl_pw_aff_free (rhs
);
1163 cond
= isl_set_coalesce (cond
);
1164 cond
= isl_set_set_tuple_id (cond
, isl_set_get_tuple_id (pbb
->domain
));
1165 pbb
->domain
= isl_set_intersect (pbb
->domain
, cond
);
1168 /* Add conditions to the domain of PBB. */
1171 add_conditions_to_domain (poly_bb_p pbb
)
1175 gimple_bb_p gbb
= PBB_BLACK_BOX (pbb
);
1177 if (GBB_CONDITIONS (gbb
).is_empty ())
1180 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb
), i
, stmt
)
1181 switch (gimple_code (stmt
))
1185 gimple_cond cond_stmt
= as_a
<gimple_cond
> (stmt
);
1186 enum tree_code code
= gimple_cond_code (cond_stmt
);
1188 /* The conditions for ELSE-branches are inverted. */
1189 if (!GBB_CONDITION_CASES (gbb
)[i
])
1190 code
= invert_tree_comparison (code
, false);
1192 add_condition_to_pbb (pbb
, cond_stmt
, code
);
1197 /* Switch statements are not supported right now - fall through. */
1205 /* Traverses all the GBBs of the SCOP and add their constraints to the
1206 iteration domains. */
1209 add_conditions_to_constraints (scop_p scop
)
1214 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
1215 add_conditions_to_domain (pbb
);
1218 /* Returns a COND_EXPR statement when BB has a single predecessor, the
1219 edge between BB and its predecessor is not a loop exit edge, and
1220 the last statement of the single predecessor is a COND_EXPR. */
1223 single_pred_cond_non_loop_exit (basic_block bb
)
1225 if (single_pred_p (bb
))
1227 edge e
= single_pred_edge (bb
);
1228 basic_block pred
= e
->src
;
1231 if (loop_depth (pred
->loop_father
) > loop_depth (bb
->loop_father
))
1234 stmt
= last_stmt (pred
);
1236 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
1237 return as_a
<gimple_cond
> (stmt
);
1243 class sese_dom_walker
: public dom_walker
1246 sese_dom_walker (cdi_direction
, sese
);
1248 virtual void before_dom_children (basic_block
);
1249 virtual void after_dom_children (basic_block
);
1252 auto_vec
<gimple
, 3> m_conditions
, m_cases
;
1256 sese_dom_walker::sese_dom_walker (cdi_direction direction
, sese region
)
1257 : dom_walker (direction
), m_region (region
)
1261 /* Call-back for dom_walk executed before visiting the dominated
1265 sese_dom_walker::before_dom_children (basic_block bb
)
1270 if (!bb_in_sese_p (bb
, m_region
))
1273 stmt
= single_pred_cond_non_loop_exit (bb
);
1277 edge e
= single_pred_edge (bb
);
1279 m_conditions
.safe_push (stmt
);
1281 if (e
->flags
& EDGE_TRUE_VALUE
)
1282 m_cases
.safe_push (stmt
);
1284 m_cases
.safe_push (NULL
);
1287 gbb
= gbb_from_bb (bb
);
1291 GBB_CONDITIONS (gbb
) = m_conditions
.copy ();
1292 GBB_CONDITION_CASES (gbb
) = m_cases
.copy ();
1296 /* Call-back for dom_walk executed after visiting the dominated
1300 sese_dom_walker::after_dom_children (basic_block bb
)
1302 if (!bb_in_sese_p (bb
, m_region
))
1305 if (single_pred_cond_non_loop_exit (bb
))
1307 m_conditions
.pop ();
1312 /* Add constraints on the possible values of parameter P from the type
1316 add_param_constraints (scop_p scop
, graphite_dim_t p
)
1318 tree parameter
= SESE_PARAMS (SCOP_REGION (scop
))[p
];
1319 tree type
= TREE_TYPE (parameter
);
1320 tree lb
= NULL_TREE
;
1321 tree ub
= NULL_TREE
;
1323 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
1324 lb
= lower_bound_in_type (type
, type
);
1326 lb
= TYPE_MIN_VALUE (type
);
1328 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
1329 ub
= upper_bound_in_type (type
, type
);
1331 ub
= TYPE_MAX_VALUE (type
);
1335 isl_space
*space
= isl_set_get_space (scop
->context
);
1340 c
= isl_inequality_alloc (isl_local_space_from_space (space
));
1342 tree_int_to_gmp (lb
, g
);
1343 v
= isl_val_int_from_gmp (the_isl_ctx
, g
);
1344 v
= isl_val_neg (v
);
1346 c
= isl_constraint_set_constant_val (c
, v
);
1347 c
= isl_constraint_set_coefficient_si (c
, isl_dim_param
, p
, 1);
1349 scop
->context
= isl_set_add_constraint (scop
->context
, c
);
1354 isl_space
*space
= isl_set_get_space (scop
->context
);
1359 c
= isl_inequality_alloc (isl_local_space_from_space (space
));
1362 tree_int_to_gmp (ub
, g
);
1363 v
= isl_val_int_from_gmp (the_isl_ctx
, g
);
1365 c
= isl_constraint_set_constant_val (c
, v
);
1366 c
= isl_constraint_set_coefficient_si (c
, isl_dim_param
, p
, -1);
1368 scop
->context
= isl_set_add_constraint (scop
->context
, c
);
1372 /* Build the context of the SCOP. The context usually contains extra
1373 constraints that are added to the iteration domains that constrain
1377 build_scop_context (scop_p scop
)
1379 graphite_dim_t p
, n
= scop_nb_params (scop
);
1381 for (p
= 0; p
< n
; p
++)
1382 add_param_constraints (scop
, p
);
1385 /* Build the iteration domains: the loops belonging to the current
1386 SCOP, and that vary for the execution of the current basic block.
1387 Returns false if there is no loop in SCOP. */
1390 build_scop_iteration_domain (scop_p scop
)
1393 sese region
= SCOP_REGION (scop
);
1396 int nb_loops
= number_of_loops (cfun
);
1397 isl_set
**doms
= XCNEWVEC (isl_set
*, nb_loops
);
1399 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region
), i
, loop
)
1400 if (!loop_in_sese_p (loop_outer (loop
), region
))
1401 build_loop_iteration_domains (scop
, loop
, 0,
1402 isl_set_copy (scop
->context
), doms
);
1404 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
1406 loop
= pbb_loop (pbb
);
1408 if (doms
[loop
->num
])
1409 pbb
->domain
= isl_set_copy (doms
[loop
->num
]);
1411 pbb
->domain
= isl_set_copy (scop
->context
);
1413 pbb
->domain
= isl_set_set_tuple_id (pbb
->domain
,
1414 isl_id_for_pbb (scop
, pbb
));
1417 for (i
= 0; i
< nb_loops
; i
++)
1419 isl_set_free (doms
[i
]);
1424 /* Add a constrain to the ACCESSES polyhedron for the alias set of
1425 data reference DR. ACCESSP_NB_DIMS is the dimension of the
1426 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1430 pdr_add_alias_set (isl_map
*acc
, data_reference_p dr
)
1433 int alias_set_num
= 0;
1434 base_alias_pair
*bap
= (base_alias_pair
*)(dr
->aux
);
1436 if (bap
&& bap
->alias_set
)
1437 alias_set_num
= *(bap
->alias_set
);
1439 c
= isl_equality_alloc
1440 (isl_local_space_from_space (isl_map_get_space (acc
)));
1441 c
= isl_constraint_set_constant_si (c
, -alias_set_num
);
1442 c
= isl_constraint_set_coefficient_si (c
, isl_dim_out
, 0, 1);
1444 return isl_map_add_constraint (acc
, c
);
1447 /* Assign the affine expression INDEX to the output dimension POS of
1448 MAP and return the result. */
1451 set_index (isl_map
*map
, int pos
, isl_pw_aff
*index
)
1454 int len
= isl_map_dim (map
, isl_dim_out
);
1457 index_map
= isl_map_from_pw_aff (index
);
1458 index_map
= isl_map_insert_dims (index_map
, isl_dim_out
, 0, pos
);
1459 index_map
= isl_map_add_dims (index_map
, isl_dim_out
, len
- pos
- 1);
1461 id
= isl_map_get_tuple_id (map
, isl_dim_out
);
1462 index_map
= isl_map_set_tuple_id (index_map
, isl_dim_out
, id
);
1463 id
= isl_map_get_tuple_id (map
, isl_dim_in
);
1464 index_map
= isl_map_set_tuple_id (index_map
, isl_dim_in
, id
);
1466 return isl_map_intersect (map
, index_map
);
1469 /* Add to ACCESSES polyhedron equalities defining the access functions
1470 to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
1471 polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
1472 PBB is the poly_bb_p that contains the data reference DR. */
1475 pdr_add_memory_accesses (isl_map
*acc
, data_reference_p dr
, poly_bb_p pbb
)
1477 int i
, nb_subscripts
= DR_NUM_DIMENSIONS (dr
);
1478 scop_p scop
= PBB_SCOP (pbb
);
1480 for (i
= 0; i
< nb_subscripts
; i
++)
1483 tree afn
= DR_ACCESS_FN (dr
, nb_subscripts
- 1 - i
);
1485 aff
= extract_affine (scop
, afn
,
1486 isl_space_domain (isl_map_get_space (acc
)));
1487 acc
= set_index (acc
, i
+ 1, aff
);
1493 /* Add constrains representing the size of the accessed data to the
1494 ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
1495 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1499 pdr_add_data_dimensions (isl_set
*extent
, scop_p scop
, data_reference_p dr
)
1501 tree ref
= DR_REF (dr
);
1502 int i
, nb_subscripts
= DR_NUM_DIMENSIONS (dr
);
1504 for (i
= nb_subscripts
- 1; i
>= 0; i
--, ref
= TREE_OPERAND (ref
, 0))
1508 if (TREE_CODE (ref
) != ARRAY_REF
)
1511 low
= array_ref_low_bound (ref
);
1512 high
= array_ref_up_bound (ref
);
1514 /* XXX The PPL code dealt separately with
1515 subscript - low >= 0 and high - subscript >= 0 in case one of
1516 the two bounds isn't known. Do the same here? */
1518 if (tree_fits_shwi_p (low
)
1520 && tree_fits_shwi_p (high
)
1521 /* 1-element arrays at end of structures may extend over
1522 their declared size. */
1523 && !(array_at_struct_end_p (ref
)
1524 && operand_equal_p (low
, high
, 0)))
1528 isl_set
*univ
, *lbs
, *ubs
;
1532 isl_pw_aff
*lb
= extract_affine_int (low
, isl_set_get_space (extent
));
1533 isl_pw_aff
*ub
= extract_affine_int (high
, isl_set_get_space (extent
));
1536 valid
= isl_pw_aff_nonneg_set (isl_pw_aff_copy (ub
));
1537 valid
= isl_set_project_out (valid
, isl_dim_set
, 0,
1538 isl_set_dim (valid
, isl_dim_set
));
1539 scop
->context
= isl_set_intersect (scop
->context
, valid
);
1541 space
= isl_set_get_space (extent
);
1542 aff
= isl_aff_zero_on_domain (isl_local_space_from_space (space
));
1543 aff
= isl_aff_add_coefficient_si (aff
, isl_dim_in
, i
+ 1, 1);
1544 univ
= isl_set_universe (isl_space_domain (isl_aff_get_space (aff
)));
1545 index
= isl_pw_aff_alloc (univ
, aff
);
1547 id
= isl_set_get_tuple_id (extent
);
1548 lb
= isl_pw_aff_set_tuple_id (lb
, isl_dim_in
, isl_id_copy (id
));
1549 ub
= isl_pw_aff_set_tuple_id (ub
, isl_dim_in
, id
);
1551 /* low <= sub_i <= high */
1552 lbs
= isl_pw_aff_ge_set (isl_pw_aff_copy (index
), lb
);
1553 ubs
= isl_pw_aff_le_set (index
, ub
);
1554 extent
= isl_set_intersect (extent
, lbs
);
1555 extent
= isl_set_intersect (extent
, ubs
);
1562 /* Build data accesses for DR in PBB. */
1565 build_poly_dr (data_reference_p dr
, poly_bb_p pbb
)
1567 int dr_base_object_set
;
1570 scop_p scop
= PBB_SCOP (pbb
);
1573 isl_space
*dc
= isl_set_get_space (pbb
->domain
);
1574 int nb_out
= 1 + DR_NUM_DIMENSIONS (dr
);
1575 isl_space
*space
= isl_space_add_dims (isl_space_from_domain (dc
),
1576 isl_dim_out
, nb_out
);
1578 acc
= isl_map_universe (space
);
1579 acc
= isl_map_set_tuple_id (acc
, isl_dim_out
, isl_id_for_dr (scop
, dr
));
1582 acc
= pdr_add_alias_set (acc
, dr
);
1583 acc
= pdr_add_memory_accesses (acc
, dr
, pbb
);
1586 isl_id
*id
= isl_id_for_dr (scop
, dr
);
1587 int nb
= 1 + DR_NUM_DIMENSIONS (dr
);
1588 isl_space
*space
= isl_space_set_alloc (scop
->ctx
, 0, nb
);
1589 int alias_set_num
= 0;
1590 base_alias_pair
*bap
= (base_alias_pair
*)(dr
->aux
);
1592 if (bap
&& bap
->alias_set
)
1593 alias_set_num
= *(bap
->alias_set
);
1595 space
= isl_space_set_tuple_id (space
, isl_dim_set
, id
);
1596 extent
= isl_set_nat_universe (space
);
1597 extent
= isl_set_fix_si (extent
, isl_dim_set
, 0, alias_set_num
);
1598 extent
= pdr_add_data_dimensions (extent
, scop
, dr
);
1601 gcc_assert (dr
->aux
);
1602 dr_base_object_set
= ((base_alias_pair
*)(dr
->aux
))->base_obj_set
;
1604 new_poly_dr (pbb
, dr_base_object_set
,
1605 DR_IS_READ (dr
) ? PDR_READ
: PDR_WRITE
,
1606 dr
, DR_NUM_DIMENSIONS (dr
), acc
, extent
);
1609 /* Write to FILE the alias graph of data references in DIMACS format. */
1612 write_alias_graph_to_ascii_dimacs (FILE *file
, char *comment
,
1613 vec
<data_reference_p
> drs
)
1615 int num_vertex
= drs
.length ();
1617 data_reference_p dr1
, dr2
;
1620 if (num_vertex
== 0)
1623 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1624 for (j
= i
+ 1; drs
.iterate (j
, &dr2
); j
++)
1625 if (dr_may_alias_p (dr1
, dr2
, true))
1628 fprintf (file
, "$\n");
1631 fprintf (file
, "c %s\n", comment
);
1633 fprintf (file
, "p edge %d %d\n", num_vertex
, edge_num
);
1635 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1636 for (j
= i
+ 1; drs
.iterate (j
, &dr2
); j
++)
1637 if (dr_may_alias_p (dr1
, dr2
, true))
1638 fprintf (file
, "e %d %d\n", i
+ 1, j
+ 1);
1643 /* Write to FILE the alias graph of data references in DOT format. */
1646 write_alias_graph_to_ascii_dot (FILE *file
, char *comment
,
1647 vec
<data_reference_p
> drs
)
1649 int num_vertex
= drs
.length ();
1650 data_reference_p dr1
, dr2
;
1653 if (num_vertex
== 0)
1656 fprintf (file
, "$\n");
1659 fprintf (file
, "c %s\n", comment
);
1661 /* First print all the vertices. */
1662 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1663 fprintf (file
, "n%d;\n", i
);
1665 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1666 for (j
= i
+ 1; drs
.iterate (j
, &dr2
); j
++)
1667 if (dr_may_alias_p (dr1
, dr2
, true))
1668 fprintf (file
, "n%d n%d\n", i
, j
);
1673 /* Write to FILE the alias graph of data references in ECC format. */
1676 write_alias_graph_to_ascii_ecc (FILE *file
, char *comment
,
1677 vec
<data_reference_p
> drs
)
1679 int num_vertex
= drs
.length ();
1680 data_reference_p dr1
, dr2
;
1683 if (num_vertex
== 0)
1686 fprintf (file
, "$\n");
1689 fprintf (file
, "c %s\n", comment
);
1691 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1692 for (j
= i
+ 1; drs
.iterate (j
, &dr2
); j
++)
1693 if (dr_may_alias_p (dr1
, dr2
, true))
1694 fprintf (file
, "%d %d\n", i
, j
);
1699 /* Check if DR1 and DR2 are in the same object set. */
1702 dr_same_base_object_p (const struct data_reference
*dr1
,
1703 const struct data_reference
*dr2
)
1705 return operand_equal_p (DR_BASE_OBJECT (dr1
), DR_BASE_OBJECT (dr2
), 0);
1708 /* Uses DFS component number as representative of alias-sets. Also tests for
1709 optimality by verifying if every connected component is a clique. Returns
1710 true (1) if the above test is true, and false (0) otherwise. */
1713 build_alias_set_optimal_p (vec
<data_reference_p
> drs
)
1715 int num_vertices
= drs
.length ();
1716 struct graph
*g
= new_graph (num_vertices
);
1717 data_reference_p dr1
, dr2
;
1719 int num_connected_components
;
1720 int v_indx1
, v_indx2
, num_vertices_in_component
;
1723 struct graph_edge
*e
;
1724 int this_component_is_clique
;
1725 int all_components_are_cliques
= 1;
1727 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1728 for (j
= i
+1; drs
.iterate (j
, &dr2
); j
++)
1729 if (dr_may_alias_p (dr1
, dr2
, true))
1735 all_vertices
= XNEWVEC (int, num_vertices
);
1736 vertices
= XNEWVEC (int, num_vertices
);
1737 for (i
= 0; i
< num_vertices
; i
++)
1738 all_vertices
[i
] = i
;
1740 num_connected_components
= graphds_dfs (g
, all_vertices
, num_vertices
,
1742 for (i
= 0; i
< g
->n_vertices
; i
++)
1744 data_reference_p dr
= drs
[i
];
1745 base_alias_pair
*bap
;
1747 gcc_assert (dr
->aux
);
1748 bap
= (base_alias_pair
*)(dr
->aux
);
1750 bap
->alias_set
= XNEW (int);
1751 *(bap
->alias_set
) = g
->vertices
[i
].component
+ 1;
1754 /* Verify if the DFS numbering results in optimal solution. */
1755 for (i
= 0; i
< num_connected_components
; i
++)
1757 num_vertices_in_component
= 0;
1758 /* Get all vertices whose DFS component number is the same as i. */
1759 for (j
= 0; j
< num_vertices
; j
++)
1760 if (g
->vertices
[j
].component
== i
)
1761 vertices
[num_vertices_in_component
++] = j
;
1763 /* Now test if the vertices in 'vertices' form a clique, by testing
1764 for edges among each pair. */
1765 this_component_is_clique
= 1;
1766 for (v_indx1
= 0; v_indx1
< num_vertices_in_component
; v_indx1
++)
1768 for (v_indx2
= v_indx1
+1; v_indx2
< num_vertices_in_component
; v_indx2
++)
1770 /* Check if the two vertices are connected by iterating
1771 through all the edges which have one of these are source. */
1772 e
= g
->vertices
[vertices
[v_indx2
]].pred
;
1775 if (e
->src
== vertices
[v_indx1
])
1781 this_component_is_clique
= 0;
1785 if (!this_component_is_clique
)
1786 all_components_are_cliques
= 0;
1790 free (all_vertices
);
1793 return all_components_are_cliques
;
1796 /* Group each data reference in DRS with its base object set num. */
1799 build_base_obj_set_for_drs (vec
<data_reference_p
> drs
)
1801 int num_vertex
= drs
.length ();
1802 struct graph
*g
= new_graph (num_vertex
);
1803 data_reference_p dr1
, dr2
;
1807 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1808 for (j
= i
+ 1; drs
.iterate (j
, &dr2
); j
++)
1809 if (dr_same_base_object_p (dr1
, dr2
))
1815 queue
= XNEWVEC (int, num_vertex
);
1816 for (i
= 0; i
< num_vertex
; i
++)
1819 graphds_dfs (g
, queue
, num_vertex
, NULL
, true, NULL
);
1821 for (i
= 0; i
< g
->n_vertices
; i
++)
1823 data_reference_p dr
= drs
[i
];
1824 base_alias_pair
*bap
;
1826 gcc_assert (dr
->aux
);
1827 bap
= (base_alias_pair
*)(dr
->aux
);
1829 bap
->base_obj_set
= g
->vertices
[i
].component
+ 1;
1836 /* Build the data references for PBB. */
1839 build_pbb_drs (poly_bb_p pbb
)
1842 data_reference_p dr
;
1843 vec
<data_reference_p
> gbb_drs
= GBB_DATA_REFS (PBB_BLACK_BOX (pbb
));
1845 FOR_EACH_VEC_ELT (gbb_drs
, j
, dr
)
1846 build_poly_dr (dr
, pbb
);
1849 /* Dump to file the alias graphs for the data references in DRS. */
1852 dump_alias_graphs (vec
<data_reference_p
> drs
)
1855 FILE *file_dimacs
, *file_ecc
, *file_dot
;
1857 file_dimacs
= fopen ("/tmp/dr_alias_graph_dimacs", "ab");
1860 snprintf (comment
, sizeof (comment
), "%s %s", main_input_filename
,
1861 current_function_name ());
1862 write_alias_graph_to_ascii_dimacs (file_dimacs
, comment
, drs
);
1863 fclose (file_dimacs
);
1866 file_ecc
= fopen ("/tmp/dr_alias_graph_ecc", "ab");
1869 snprintf (comment
, sizeof (comment
), "%s %s", main_input_filename
,
1870 current_function_name ());
1871 write_alias_graph_to_ascii_ecc (file_ecc
, comment
, drs
);
1875 file_dot
= fopen ("/tmp/dr_alias_graph_dot", "ab");
1878 snprintf (comment
, sizeof (comment
), "%s %s", main_input_filename
,
1879 current_function_name ());
1880 write_alias_graph_to_ascii_dot (file_dot
, comment
, drs
);
1885 /* Build data references in SCOP. */
1888 build_scop_drs (scop_p scop
)
1892 data_reference_p dr
;
1893 auto_vec
<data_reference_p
, 3> drs
;
1895 /* Remove all the PBBs that do not have data references: these basic
1896 blocks are not handled in the polyhedral representation. */
1897 for (i
= 0; SCOP_BBS (scop
).iterate (i
, &pbb
); i
++)
1898 if (GBB_DATA_REFS (PBB_BLACK_BOX (pbb
)).is_empty ())
1900 free_gimple_bb (PBB_BLACK_BOX (pbb
));
1902 SCOP_BBS (scop
).ordered_remove (i
);
1906 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
1907 for (j
= 0; GBB_DATA_REFS (PBB_BLACK_BOX (pbb
)).iterate (j
, &dr
); j
++)
1910 FOR_EACH_VEC_ELT (drs
, i
, dr
)
1911 dr
->aux
= XNEW (base_alias_pair
);
1913 if (!build_alias_set_optimal_p (drs
))
1915 /* TODO: Add support when building alias set is not optimal. */
1919 build_base_obj_set_for_drs (drs
);
1921 /* When debugging, enable the following code. This cannot be used
1922 in production compilers. */
1924 dump_alias_graphs (drs
);
1928 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
1929 build_pbb_drs (pbb
);
1932 /* Return a gsi at the position of the phi node STMT. */
1934 static gimple_phi_iterator
1935 gsi_for_phi_node (gimple_phi stmt
)
1937 gimple_phi_iterator psi
;
1938 basic_block bb
= gimple_bb (stmt
);
1940 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1941 if (stmt
== gsi_stmt (psi
))
1948 /* Analyze all the data references of STMTS and add them to the
1949 GBB_DATA_REFS vector of BB. */
1952 analyze_drs_in_stmts (scop_p scop
, basic_block bb
, vec
<gimple
> stmts
)
1958 sese region
= SCOP_REGION (scop
);
1960 if (!bb_in_sese_p (bb
, region
))
1963 nest
= outermost_loop_in_sese_1 (region
, bb
);
1964 gbb
= gbb_from_bb (bb
);
1966 FOR_EACH_VEC_ELT (stmts
, i
, stmt
)
1970 if (is_gimple_debug (stmt
))
1973 loop
= loop_containing_stmt (stmt
);
1974 if (!loop_in_sese_p (loop
, region
))
1977 graphite_find_data_references_in_stmt (nest
, loop
, stmt
,
1978 &GBB_DATA_REFS (gbb
));
1982 /* Insert STMT at the end of the STMTS sequence and then insert the
1983 statements from STMTS at INSERT_GSI and call analyze_drs_in_stmts
1987 insert_stmts (scop_p scop
, gimple stmt
, gimple_seq stmts
,
1988 gimple_stmt_iterator insert_gsi
)
1990 gimple_stmt_iterator gsi
;
1991 auto_vec
<gimple
, 3> x
;
1993 gimple_seq_add_stmt (&stmts
, stmt
);
1994 for (gsi
= gsi_start (stmts
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1995 x
.safe_push (gsi_stmt (gsi
));
1997 gsi_insert_seq_before (&insert_gsi
, stmts
, GSI_SAME_STMT
);
1998 analyze_drs_in_stmts (scop
, gsi_bb (insert_gsi
), x
);
2001 /* Insert the assignment "RES := EXPR" just after AFTER_STMT. */
2004 insert_out_of_ssa_copy (scop_p scop
, tree res
, tree expr
, gimple after_stmt
)
2007 gimple_stmt_iterator gsi
;
2008 tree var
= force_gimple_operand (expr
, &stmts
, true, NULL_TREE
);
2009 gimple_assign stmt
= gimple_build_assign (unshare_expr (res
), var
);
2010 auto_vec
<gimple
, 3> x
;
2012 gimple_seq_add_stmt (&stmts
, stmt
);
2013 for (gsi
= gsi_start (stmts
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2014 x
.safe_push (gsi_stmt (gsi
));
2016 if (gimple_code (after_stmt
) == GIMPLE_PHI
)
2018 gsi
= gsi_after_labels (gimple_bb (after_stmt
));
2019 gsi_insert_seq_before (&gsi
, stmts
, GSI_NEW_STMT
);
2023 gsi
= gsi_for_stmt (after_stmt
);
2024 gsi_insert_seq_after (&gsi
, stmts
, GSI_NEW_STMT
);
2027 analyze_drs_in_stmts (scop
, gimple_bb (after_stmt
), x
);
2030 /* Creates a poly_bb_p for basic_block BB from the existing PBB. */
2033 new_pbb_from_pbb (scop_p scop
, poly_bb_p pbb
, basic_block bb
)
2035 vec
<data_reference_p
> drs
;
2037 gimple_bb_p gbb
= PBB_BLACK_BOX (pbb
);
2038 gimple_bb_p gbb1
= new_gimple_bb (bb
, drs
);
2039 poly_bb_p pbb1
= new_poly_bb (scop
, gbb1
);
2040 int index
, n
= SCOP_BBS (scop
).length ();
2042 /* The INDEX of PBB in SCOP_BBS. */
2043 for (index
= 0; index
< n
; index
++)
2044 if (SCOP_BBS (scop
)[index
] == pbb
)
2047 pbb1
->domain
= isl_set_copy (pbb
->domain
);
2048 pbb1
->domain
= isl_set_set_tuple_id (pbb1
->domain
,
2049 isl_id_for_pbb (scop
, pbb1
));
2051 GBB_PBB (gbb1
) = pbb1
;
2052 GBB_CONDITIONS (gbb1
) = GBB_CONDITIONS (gbb
).copy ();
2053 GBB_CONDITION_CASES (gbb1
) = GBB_CONDITION_CASES (gbb
).copy ();
2054 SCOP_BBS (scop
).safe_insert (index
+ 1, pbb1
);
2057 /* Insert on edge E the assignment "RES := EXPR". */
2060 insert_out_of_ssa_copy_on_edge (scop_p scop
, edge e
, tree res
, tree expr
)
2062 gimple_stmt_iterator gsi
;
2063 gimple_seq stmts
= NULL
;
2064 tree var
= force_gimple_operand (expr
, &stmts
, true, NULL_TREE
);
2065 gimple stmt
= gimple_build_assign (unshare_expr (res
), var
);
2067 auto_vec
<gimple
, 3> x
;
2069 gimple_seq_add_stmt (&stmts
, stmt
);
2070 for (gsi
= gsi_start (stmts
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2071 x
.safe_push (gsi_stmt (gsi
));
2073 gsi_insert_seq_on_edge (e
, stmts
);
2074 gsi_commit_edge_inserts ();
2075 bb
= gimple_bb (stmt
);
2077 if (!bb_in_sese_p (bb
, SCOP_REGION (scop
)))
2080 if (!gbb_from_bb (bb
))
2081 new_pbb_from_pbb (scop
, pbb_from_bb (e
->src
), bb
);
2083 analyze_drs_in_stmts (scop
, bb
, x
);
2086 /* Creates a zero dimension array of the same type as VAR. */
2089 create_zero_dim_array (tree var
, const char *base_name
)
2091 tree index_type
= build_index_type (integer_zero_node
);
2092 tree elt_type
= TREE_TYPE (var
);
2093 tree array_type
= build_array_type (elt_type
, index_type
);
2094 tree base
= create_tmp_var (array_type
, base_name
);
2096 return build4 (ARRAY_REF
, elt_type
, base
, integer_zero_node
, NULL_TREE
,
2100 /* Returns true when PHI is a loop close phi node. */
2103 scalar_close_phi_node_p (gimple phi
)
2105 if (gimple_code (phi
) != GIMPLE_PHI
2106 || virtual_operand_p (gimple_phi_result (phi
)))
2109 /* Note that loop close phi nodes should have a single argument
2110 because we translated the representation into a canonical form
2111 before Graphite: see canonicalize_loop_closed_ssa_form. */
2112 return (gimple_phi_num_args (phi
) == 1);
2115 /* For a definition DEF in REGION, propagates the expression EXPR in
2116 all the uses of DEF outside REGION. */
2119 propagate_expr_outside_region (tree def
, tree expr
, sese region
)
2121 imm_use_iterator imm_iter
;
2124 bool replaced_once
= false;
2126 gcc_assert (TREE_CODE (def
) == SSA_NAME
);
2128 expr
= force_gimple_operand (unshare_expr (expr
), &stmts
, true,
2131 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
2132 if (!is_gimple_debug (use_stmt
)
2133 && !bb_in_sese_p (gimple_bb (use_stmt
), region
))
2136 use_operand_p use_p
;
2138 FOR_EACH_PHI_OR_STMT_USE (use_p
, use_stmt
, iter
, SSA_OP_ALL_USES
)
2139 if (operand_equal_p (def
, USE_FROM_PTR (use_p
), 0)
2140 && (replaced_once
= true))
2141 replace_exp (use_p
, expr
);
2143 update_stmt (use_stmt
);
2148 gsi_insert_seq_on_edge (SESE_ENTRY (region
), stmts
);
2149 gsi_commit_edge_inserts ();
2153 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2154 dimension array for it. */
2157 rewrite_close_phi_out_of_ssa (scop_p scop
, gimple_stmt_iterator
*psi
)
2159 sese region
= SCOP_REGION (scop
);
2160 gimple phi
= gsi_stmt (*psi
);
2161 tree res
= gimple_phi_result (phi
);
2162 basic_block bb
= gimple_bb (phi
);
2163 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
2164 tree arg
= gimple_phi_arg_def (phi
, 0);
2167 /* Note that loop close phi nodes should have a single argument
2168 because we translated the representation into a canonical form
2169 before Graphite: see canonicalize_loop_closed_ssa_form. */
2170 gcc_assert (gimple_phi_num_args (phi
) == 1);
2172 /* The phi node can be a non close phi node, when its argument is
2173 invariant, or a default definition. */
2174 if (is_gimple_min_invariant (arg
)
2175 || SSA_NAME_IS_DEFAULT_DEF (arg
))
2177 propagate_expr_outside_region (res
, arg
, region
);
2182 else if (gimple_bb (SSA_NAME_DEF_STMT (arg
))->loop_father
== bb
->loop_father
)
2184 propagate_expr_outside_region (res
, arg
, region
);
2185 stmt
= gimple_build_assign (res
, arg
);
2186 remove_phi_node (psi
, false);
2187 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
2191 /* If res is scev analyzable and is not a scalar value, it is safe
2192 to ignore the close phi node: it will be code generated in the
2193 out of Graphite pass. */
2194 else if (scev_analyzable_p (res
, region
))
2196 loop_p loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (res
));
2199 if (!loop_in_sese_p (loop
, region
))
2201 loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (arg
));
2202 scev
= scalar_evolution_in_region (region
, loop
, arg
);
2203 scev
= compute_overall_effect_of_inner_loop (loop
, scev
);
2206 scev
= scalar_evolution_in_region (region
, loop
, res
);
2208 if (tree_does_not_contain_chrecs (scev
))
2209 propagate_expr_outside_region (res
, scev
, region
);
2216 tree zero_dim_array
= create_zero_dim_array (res
, "Close_Phi");
2218 stmt
= gimple_build_assign (res
, unshare_expr (zero_dim_array
));
2220 if (TREE_CODE (arg
) == SSA_NAME
)
2221 insert_out_of_ssa_copy (scop
, zero_dim_array
, arg
,
2222 SSA_NAME_DEF_STMT (arg
));
2224 insert_out_of_ssa_copy_on_edge (scop
, single_pred_edge (bb
),
2225 zero_dim_array
, arg
);
2228 remove_phi_node (psi
, false);
2229 SSA_NAME_DEF_STMT (res
) = stmt
;
2231 insert_stmts (scop
, stmt
, NULL
, gsi_after_labels (bb
));
2234 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2235 dimension array for it. */
2238 rewrite_phi_out_of_ssa (scop_p scop
, gimple_phi_iterator
*psi
)
2241 gimple_phi phi
= psi
->phi ();
2242 basic_block bb
= gimple_bb (phi
);
2243 tree res
= gimple_phi_result (phi
);
2244 tree zero_dim_array
= create_zero_dim_array (res
, "phi_out_of_ssa");
2247 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2249 tree arg
= gimple_phi_arg_def (phi
, i
);
2250 edge e
= gimple_phi_arg_edge (phi
, i
);
2252 /* Avoid the insertion of code in the loop latch to please the
2253 pattern matching of the vectorizer. */
2254 if (TREE_CODE (arg
) == SSA_NAME
2255 && !SSA_NAME_IS_DEFAULT_DEF (arg
)
2256 && e
->src
== bb
->loop_father
->latch
)
2257 insert_out_of_ssa_copy (scop
, zero_dim_array
, arg
,
2258 SSA_NAME_DEF_STMT (arg
));
2260 insert_out_of_ssa_copy_on_edge (scop
, e
, zero_dim_array
, arg
);
2263 stmt
= gimple_build_assign (res
, unshare_expr (zero_dim_array
));
2264 remove_phi_node (psi
, false);
2265 insert_stmts (scop
, stmt
, NULL
, gsi_after_labels (bb
));
2268 /* Rewrite the degenerate phi node at position PSI from the degenerate
2269 form "x = phi (y, y, ..., y)" to "x = y". */
2272 rewrite_degenerate_phi (gimple_stmt_iterator
*psi
)
2276 gimple_stmt_iterator gsi
;
2277 gimple phi
= gsi_stmt (*psi
);
2278 tree res
= gimple_phi_result (phi
);
2281 bb
= gimple_bb (phi
);
2282 rhs
= degenerate_phi_result (phi
);
2285 stmt
= gimple_build_assign (res
, rhs
);
2286 remove_phi_node (psi
, false);
2288 gsi
= gsi_after_labels (bb
);
2289 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
2292 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2295 rewrite_reductions_out_of_ssa (scop_p scop
)
2298 gimple_phi_iterator psi
;
2299 sese region
= SCOP_REGION (scop
);
2301 FOR_EACH_BB_FN (bb
, cfun
)
2302 if (bb_in_sese_p (bb
, region
))
2303 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
);)
2305 gimple_phi phi
= psi
.phi ();
2307 if (virtual_operand_p (gimple_phi_result (phi
)))
2313 if (gimple_phi_num_args (phi
) > 1
2314 && degenerate_phi_result (phi
))
2315 rewrite_degenerate_phi (&psi
);
2317 else if (scalar_close_phi_node_p (phi
))
2318 rewrite_close_phi_out_of_ssa (scop
, &psi
);
2320 else if (reduction_phi_p (region
, &psi
))
2321 rewrite_phi_out_of_ssa (scop
, &psi
);
2324 update_ssa (TODO_update_ssa
);
2325 #ifdef ENABLE_CHECKING
2326 verify_loop_closed_ssa (true);
2330 /* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
2331 read from ZERO_DIM_ARRAY. */
2334 rewrite_cross_bb_scalar_dependence (scop_p scop
, tree zero_dim_array
,
2335 tree def
, gimple use_stmt
)
2340 use_operand_p use_p
;
2342 gcc_assert (gimple_code (use_stmt
) != GIMPLE_PHI
);
2344 name
= copy_ssa_name (def
, NULL
);
2345 name_stmt
= gimple_build_assign (name
, zero_dim_array
);
2347 gimple_assign_set_lhs (name_stmt
, name
);
2348 insert_stmts (scop
, name_stmt
, NULL
, gsi_for_stmt (use_stmt
));
2350 FOR_EACH_SSA_USE_OPERAND (use_p
, use_stmt
, iter
, SSA_OP_ALL_USES
)
2351 if (operand_equal_p (def
, USE_FROM_PTR (use_p
), 0))
2352 replace_exp (use_p
, name
);
2354 update_stmt (use_stmt
);
2357 /* For every definition DEF in the SCOP that is used outside the scop,
2358 insert a closing-scop definition in the basic block just after this
2362 handle_scalar_deps_crossing_scop_limits (scop_p scop
, tree def
, gimple stmt
)
2364 tree var
= create_tmp_reg (TREE_TYPE (def
), NULL
);
2365 tree new_name
= make_ssa_name (var
, stmt
);
2366 bool needs_copy
= false;
2367 use_operand_p use_p
;
2368 imm_use_iterator imm_iter
;
2370 sese region
= SCOP_REGION (scop
);
2372 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
2374 if (!bb_in_sese_p (gimple_bb (use_stmt
), region
))
2376 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
2378 SET_USE (use_p
, new_name
);
2380 update_stmt (use_stmt
);
2385 /* Insert in the empty BB just after the scop a use of DEF such
2386 that the rewrite of cross_bb_scalar_dependences won't insert
2387 arrays everywhere else. */
2390 gimple assign
= gimple_build_assign (new_name
, def
);
2391 gimple_stmt_iterator psi
= gsi_after_labels (SESE_EXIT (region
)->dest
);
2393 update_stmt (assign
);
2394 gsi_insert_before (&psi
, assign
, GSI_SAME_STMT
);
2398 /* Rewrite the scalar dependences crossing the boundary of the BB
2399 containing STMT with an array. Return true when something has been
2403 rewrite_cross_bb_scalar_deps (scop_p scop
, gimple_stmt_iterator
*gsi
)
2405 sese region
= SCOP_REGION (scop
);
2406 gimple stmt
= gsi_stmt (*gsi
);
2407 imm_use_iterator imm_iter
;
2410 tree zero_dim_array
= NULL_TREE
;
2414 switch (gimple_code (stmt
))
2417 def
= gimple_assign_lhs (stmt
);
2421 def
= gimple_call_lhs (stmt
);
2429 || !is_gimple_reg (def
))
2432 if (scev_analyzable_p (def
, region
))
2434 loop_p loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (def
));
2435 tree scev
= scalar_evolution_in_region (region
, loop
, def
);
2437 if (tree_contains_chrecs (scev
, NULL
))
2440 propagate_expr_outside_region (def
, scev
, region
);
2444 def_bb
= gimple_bb (stmt
);
2446 handle_scalar_deps_crossing_scop_limits (scop
, def
, stmt
);
2448 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
2449 if (gimple_code (use_stmt
) == GIMPLE_PHI
2452 gimple_phi_iterator psi
= gsi_start_phis (gimple_bb (use_stmt
));
2454 if (scalar_close_phi_node_p (gsi_stmt (psi
)))
2455 rewrite_close_phi_out_of_ssa (scop
, &psi
);
2457 rewrite_phi_out_of_ssa (scop
, &psi
);
2460 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
2461 if (gimple_code (use_stmt
) != GIMPLE_PHI
2462 && def_bb
!= gimple_bb (use_stmt
)
2463 && !is_gimple_debug (use_stmt
)
2466 if (!zero_dim_array
)
2468 zero_dim_array
= create_zero_dim_array
2469 (def
, "Cross_BB_scalar_dependence");
2470 insert_out_of_ssa_copy (scop
, zero_dim_array
, def
,
2471 SSA_NAME_DEF_STMT (def
));
2475 rewrite_cross_bb_scalar_dependence (scop
, unshare_expr (zero_dim_array
),
2482 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2485 rewrite_cross_bb_scalar_deps_out_of_ssa (scop_p scop
)
2488 gimple_stmt_iterator psi
;
2489 sese region
= SCOP_REGION (scop
);
2490 bool changed
= false;
2492 /* Create an extra empty BB after the scop. */
2493 split_edge (SESE_EXIT (region
));
2495 FOR_EACH_BB_FN (bb
, cfun
)
2496 if (bb_in_sese_p (bb
, region
))
2497 for (psi
= gsi_start_bb (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
2498 changed
|= rewrite_cross_bb_scalar_deps (scop
, &psi
);
2503 update_ssa (TODO_update_ssa
);
2504 #ifdef ENABLE_CHECKING
2505 verify_loop_closed_ssa (true);
2510 /* Returns the number of pbbs that are in loops contained in SCOP. */
2513 nb_pbbs_in_loops (scop_p scop
)
2519 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
2520 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb
)), SCOP_REGION (scop
)))
2526 /* Return the number of data references in BB that write in
2530 nb_data_writes_in_bb (basic_block bb
)
2533 gimple_stmt_iterator gsi
;
2535 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2536 if (gimple_vdef (gsi_stmt (gsi
)))
2542 /* Splits at STMT the basic block BB represented as PBB in the
2546 split_pbb (scop_p scop
, poly_bb_p pbb
, basic_block bb
, gimple stmt
)
2548 edge e1
= split_block (bb
, stmt
);
2549 new_pbb_from_pbb (scop
, pbb
, e1
->dest
);
2553 /* Splits STMT out of its current BB. This is done for reduction
2554 statements for which we want to ignore data dependences. */
2557 split_reduction_stmt (scop_p scop
, gimple stmt
)
2559 basic_block bb
= gimple_bb (stmt
);
2560 poly_bb_p pbb
= pbb_from_bb (bb
);
2561 gimple_bb_p gbb
= gbb_from_bb (bb
);
2564 data_reference_p dr
;
2566 /* Do not split basic blocks with no writes to memory: the reduction
2567 will be the only write to memory. */
2568 if (nb_data_writes_in_bb (bb
) == 0
2569 /* Or if we have already marked BB as a reduction. */
2570 || PBB_IS_REDUCTION (pbb_from_bb (bb
)))
2573 e1
= split_pbb (scop
, pbb
, bb
, stmt
);
2575 /* Split once more only when the reduction stmt is not the only one
2576 left in the original BB. */
2577 if (!gsi_one_before_end_p (gsi_start_nondebug_bb (bb
)))
2579 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
2581 e1
= split_pbb (scop
, pbb
, bb
, gsi_stmt (gsi
));
2584 /* A part of the data references will end in a different basic block
2585 after the split: move the DRs from the original GBB to the newly
2587 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb
), i
, dr
)
2589 basic_block bb1
= gimple_bb (DR_STMT (dr
));
2593 gimple_bb_p gbb1
= gbb_from_bb (bb1
);
2594 GBB_DATA_REFS (gbb1
).safe_push (dr
);
2595 GBB_DATA_REFS (gbb
).ordered_remove (i
);
2603 /* Return true when stmt is a reduction operation. */
2606 is_reduction_operation_p (gimple stmt
)
2608 enum tree_code code
;
2610 gcc_assert (is_gimple_assign (stmt
));
2611 code
= gimple_assign_rhs_code (stmt
);
2613 return flag_associative_math
2614 && commutative_tree_code (code
)
2615 && associative_tree_code (code
);
2618 /* Returns true when PHI contains an argument ARG. */
2621 phi_contains_arg (gimple_phi phi
, tree arg
)
2625 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2626 if (operand_equal_p (arg
, gimple_phi_arg_def (phi
, i
), 0))
2632 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2635 follow_ssa_with_commutative_ops (tree arg
, tree lhs
)
2639 if (TREE_CODE (arg
) != SSA_NAME
)
2642 stmt
= SSA_NAME_DEF_STMT (arg
);
2644 if (gimple_code (stmt
) == GIMPLE_NOP
2645 || gimple_code (stmt
) == GIMPLE_CALL
)
2648 if (gimple_phi phi
= dyn_cast
<gimple_phi
> (stmt
))
2650 if (phi_contains_arg (phi
, lhs
))
2655 if (!is_gimple_assign (stmt
))
2658 if (gimple_num_ops (stmt
) == 2)
2659 return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt
), lhs
);
2661 if (is_reduction_operation_p (stmt
))
2664 follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt
), lhs
);
2667 follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt
), lhs
);
2673 /* Detect commutative and associative scalar reductions starting at
2674 the STMT. Return the phi node of the reduction cycle, or NULL. */
2677 detect_commutative_reduction_arg (tree lhs
, gimple stmt
, tree arg
,
2681 gimple_phi phi
= follow_ssa_with_commutative_ops (arg
, lhs
);
2686 in
->safe_push (stmt
);
2687 out
->safe_push (stmt
);
2691 /* Detect commutative and associative scalar reductions starting at
2692 STMT. Return the phi node of the reduction cycle, or NULL. */
2695 detect_commutative_reduction_assign (gimple stmt
, vec
<gimple
> *in
,
2698 tree lhs
= gimple_assign_lhs (stmt
);
2700 if (gimple_num_ops (stmt
) == 2)
2701 return detect_commutative_reduction_arg (lhs
, stmt
,
2702 gimple_assign_rhs1 (stmt
),
2705 if (is_reduction_operation_p (stmt
))
2708 detect_commutative_reduction_arg (lhs
, stmt
,
2709 gimple_assign_rhs1 (stmt
),
2712 : detect_commutative_reduction_arg (lhs
, stmt
,
2713 gimple_assign_rhs2 (stmt
),
2720 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2723 follow_inital_value_to_phi (tree arg
, tree lhs
)
2727 if (!arg
|| TREE_CODE (arg
) != SSA_NAME
)
2730 stmt
= SSA_NAME_DEF_STMT (arg
);
2732 if (gimple_phi phi
= dyn_cast
<gimple_phi
> (stmt
))
2733 if (phi_contains_arg (phi
, lhs
))
2740 /* Return the argument of the loop PHI that is the initial value coming
2741 from outside the loop. */
2744 edge_initial_value_for_loop_phi (gimple_phi phi
)
2748 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2750 edge e
= gimple_phi_arg_edge (phi
, i
);
2752 if (loop_depth (e
->src
->loop_father
)
2753 < loop_depth (e
->dest
->loop_father
))
2760 /* Return the argument of the loop PHI that is the initial value coming
2761 from outside the loop. */
2764 initial_value_for_loop_phi (gimple_phi phi
)
2768 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2770 edge e
= gimple_phi_arg_edge (phi
, i
);
2772 if (loop_depth (e
->src
->loop_father
)
2773 < loop_depth (e
->dest
->loop_father
))
2774 return gimple_phi_arg_def (phi
, i
);
2780 /* Returns true when DEF is used outside the reduction cycle of
2784 used_outside_reduction (tree def
, gimple loop_phi
)
2786 use_operand_p use_p
;
2787 imm_use_iterator imm_iter
;
2788 loop_p loop
= loop_containing_stmt (loop_phi
);
2790 /* In LOOP, DEF should be used only in LOOP_PHI. */
2791 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, def
)
2793 gimple stmt
= USE_STMT (use_p
);
2795 if (stmt
!= loop_phi
2796 && !is_gimple_debug (stmt
)
2797 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
2804 /* Detect commutative and associative scalar reductions belonging to
2805 the SCOP starting at the loop closed phi node STMT. Return the phi
2806 node of the reduction cycle, or NULL. */
2809 detect_commutative_reduction (scop_p scop
, gimple stmt
, vec
<gimple
> *in
,
2812 if (scalar_close_phi_node_p (stmt
))
2815 gimple_phi loop_phi
, phi
, close_phi
= as_a
<gimple_phi
> (stmt
);
2816 tree init
, lhs
, arg
= gimple_phi_arg_def (close_phi
, 0);
2818 if (TREE_CODE (arg
) != SSA_NAME
)
2821 /* Note that loop close phi nodes should have a single argument
2822 because we translated the representation into a canonical form
2823 before Graphite: see canonicalize_loop_closed_ssa_form. */
2824 gcc_assert (gimple_phi_num_args (close_phi
) == 1);
2826 def
= SSA_NAME_DEF_STMT (arg
);
2827 if (!stmt_in_sese_p (def
, SCOP_REGION (scop
))
2828 || !(loop_phi
= detect_commutative_reduction (scop
, def
, in
, out
)))
2831 lhs
= gimple_phi_result (close_phi
);
2832 init
= initial_value_for_loop_phi (loop_phi
);
2833 phi
= follow_inital_value_to_phi (init
, lhs
);
2835 if (phi
&& (used_outside_reduction (lhs
, phi
)
2836 || !has_single_use (gimple_phi_result (phi
))))
2839 in
->safe_push (loop_phi
);
2840 out
->safe_push (close_phi
);
2844 if (gimple_code (stmt
) == GIMPLE_ASSIGN
)
2845 return detect_commutative_reduction_assign (stmt
, in
, out
);
2850 /* Translate the scalar reduction statement STMT to an array RED
2851 knowing that its recursive phi node is LOOP_PHI. */
2854 translate_scalar_reduction_to_array_for_stmt (scop_p scop
, tree red
,
2855 gimple stmt
, gimple_phi loop_phi
)
2857 tree res
= gimple_phi_result (loop_phi
);
2858 gimple_assign assign
= gimple_build_assign (res
, unshare_expr (red
));
2859 gimple_stmt_iterator gsi
;
2861 insert_stmts (scop
, assign
, NULL
, gsi_after_labels (gimple_bb (loop_phi
)));
2863 assign
= gimple_build_assign (unshare_expr (red
), gimple_assign_lhs (stmt
));
2864 gsi
= gsi_for_stmt (stmt
);
2866 insert_stmts (scop
, assign
, NULL
, gsi
);
2869 /* Removes the PHI node and resets all the debug stmts that are using
2873 remove_phi (gimple_phi phi
)
2875 imm_use_iterator imm_iter
;
2877 use_operand_p use_p
;
2878 gimple_stmt_iterator gsi
;
2879 auto_vec
<gimple
, 3> update
;
2883 def
= PHI_RESULT (phi
);
2884 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, def
)
2886 stmt
= USE_STMT (use_p
);
2888 if (is_gimple_debug (stmt
))
2890 gimple_debug_bind_reset_value (stmt
);
2891 update
.safe_push (stmt
);
2895 FOR_EACH_VEC_ELT (update
, i
, stmt
)
2898 gsi
= gsi_for_phi_node (phi
);
2899 remove_phi_node (&gsi
, false);
2902 /* Helper function for for_each_index. For each INDEX of the data
2903 reference REF, returns true when its indices are valid in the loop
2904 nest LOOP passed in as DATA. */
2907 dr_indices_valid_in_loop (tree ref ATTRIBUTE_UNUSED
, tree
*index
, void *data
)
2910 basic_block header
, def_bb
;
2913 if (TREE_CODE (*index
) != SSA_NAME
)
2916 loop
= *((loop_p
*) data
);
2917 header
= loop
->header
;
2918 stmt
= SSA_NAME_DEF_STMT (*index
);
2923 def_bb
= gimple_bb (stmt
);
2928 return dominated_by_p (CDI_DOMINATORS
, header
, def_bb
);
2931 /* When the result of a CLOSE_PHI is written to a memory location,
2932 return a pointer to that memory reference, otherwise return
2936 close_phi_written_to_memory (gimple_phi close_phi
)
2938 imm_use_iterator imm_iter
;
2939 use_operand_p use_p
;
2941 tree res
, def
= gimple_phi_result (close_phi
);
2943 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, def
)
2944 if ((stmt
= USE_STMT (use_p
))
2945 && gimple_code (stmt
) == GIMPLE_ASSIGN
2946 && (res
= gimple_assign_lhs (stmt
)))
2948 switch (TREE_CODE (res
))
2958 tree arg
= gimple_phi_arg_def (close_phi
, 0);
2959 loop_p nest
= loop_containing_stmt (SSA_NAME_DEF_STMT (arg
));
2961 /* FIXME: this restriction is for id-{24,25}.f and
2962 could be handled by duplicating the computation of
2963 array indices before the loop of the close_phi. */
2964 if (for_each_index (&res
, dr_indices_valid_in_loop
, &nest
))
2976 /* Rewrite out of SSA the reduction described by the loop phi nodes
2977 IN, and the close phi nodes OUT. IN and OUT are structured by loop
2980 IN: stmt, loop_n, ..., loop_0
2981 OUT: stmt, close_n, ..., close_0
2983 the first element is the reduction statement, and the next elements
2984 are the loop and close phi nodes of each of the outer loops. */
2987 translate_scalar_reduction_to_array (scop_p scop
,
2992 unsigned int i
= out
.length () - 1;
2993 tree red
= close_phi_written_to_memory (as_a
<gimple_phi
> (out
[i
]));
2995 FOR_EACH_VEC_ELT (in
, i
, loop_stmt
)
2997 gimple close_stmt
= out
[i
];
3001 basic_block bb
= split_reduction_stmt (scop
, loop_stmt
);
3002 poly_bb_p pbb
= pbb_from_bb (bb
);
3003 PBB_IS_REDUCTION (pbb
) = true;
3004 gcc_assert (close_stmt
== loop_stmt
);
3007 red
= create_zero_dim_array
3008 (gimple_assign_lhs (loop_stmt
), "Commutative_Associative_Reduction");
3010 translate_scalar_reduction_to_array_for_stmt (scop
, red
, loop_stmt
,
3011 as_a
<gimple_phi
> (in
[1]));
3015 gimple_phi loop_phi
= as_a
<gimple_phi
> (loop_stmt
);
3016 gimple_phi close_phi
= as_a
<gimple_phi
> (close_stmt
);
3018 if (i
== in
.length () - 1)
3020 insert_out_of_ssa_copy (scop
, gimple_phi_result (close_phi
),
3021 unshare_expr (red
), close_phi
);
3022 insert_out_of_ssa_copy_on_edge
3023 (scop
, edge_initial_value_for_loop_phi (loop_phi
),
3024 unshare_expr (red
), initial_value_for_loop_phi (loop_phi
));
3027 remove_phi (loop_phi
);
3028 remove_phi (close_phi
);
3032 /* Rewrites out of SSA a commutative reduction at CLOSE_PHI. Returns
3033 true when something has been changed. */
3036 rewrite_commutative_reductions_out_of_ssa_close_phi (scop_p scop
,
3037 gimple_phi close_phi
)
3040 auto_vec
<gimple
, 10> in
;
3041 auto_vec
<gimple
, 10> out
;
3043 detect_commutative_reduction (scop
, close_phi
, &in
, &out
);
3044 res
= in
.length () > 1;
3046 translate_scalar_reduction_to_array (scop
, in
, out
);
3051 /* Rewrites all the commutative reductions from LOOP out of SSA.
3052 Returns true when something has been changed. */
3055 rewrite_commutative_reductions_out_of_ssa_loop (scop_p scop
,
3058 gimple_phi_iterator gsi
;
3059 edge exit
= single_exit (loop
);
3061 bool changed
= false;
3066 for (gsi
= gsi_start_phis (exit
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3067 if ((res
= gimple_phi_result (gsi
.phi ()))
3068 && !virtual_operand_p (res
)
3069 && !scev_analyzable_p (res
, SCOP_REGION (scop
)))
3070 changed
|= rewrite_commutative_reductions_out_of_ssa_close_phi
3076 /* Rewrites all the commutative reductions from SCOP out of SSA. */
3079 rewrite_commutative_reductions_out_of_ssa (scop_p scop
)
3082 bool changed
= false;
3083 sese region
= SCOP_REGION (scop
);
3085 FOR_EACH_LOOP (loop
, 0)
3086 if (loop_in_sese_p (loop
, region
))
3087 changed
|= rewrite_commutative_reductions_out_of_ssa_loop (scop
, loop
);
3092 gsi_commit_edge_inserts ();
3093 update_ssa (TODO_update_ssa
);
3094 #ifdef ENABLE_CHECKING
3095 verify_loop_closed_ssa (true);
3100 /* Can all ivs be represented by a signed integer?
3101 As CLooG might generate negative values in its expressions, signed loop ivs
3102 are required in the backend. */
3105 scop_ivs_can_be_represented (scop_p scop
)
3108 gimple_phi_iterator psi
;
3111 FOR_EACH_LOOP (loop
, 0)
3113 if (!loop_in_sese_p (loop
, SCOP_REGION (scop
)))
3116 for (psi
= gsi_start_phis (loop
->header
);
3117 !gsi_end_p (psi
); gsi_next (&psi
))
3119 gimple_phi phi
= psi
.phi ();
3120 tree res
= PHI_RESULT (phi
);
3121 tree type
= TREE_TYPE (res
);
3123 if (TYPE_UNSIGNED (type
)
3124 && TYPE_PRECISION (type
) >= TYPE_PRECISION (long_long_integer_type_node
))
3137 /* Builds the polyhedral representation for a SESE region. */
3140 build_poly_scop (scop_p scop
)
3142 sese region
= SCOP_REGION (scop
);
3143 graphite_dim_t max_dim
;
3145 build_scop_bbs (scop
);
3147 /* FIXME: This restriction is needed to avoid a problem in CLooG.
3148 Once CLooG is fixed, remove this guard. Anyways, it makes no
3149 sense to optimize a scop containing only PBBs that do not belong
3151 if (nb_pbbs_in_loops (scop
) == 0)
3154 if (!scop_ivs_can_be_represented (scop
))
3157 if (flag_associative_math
)
3158 rewrite_commutative_reductions_out_of_ssa (scop
);
3160 build_sese_loop_nests (region
);
3161 /* Record all conditions in REGION. */
3162 sese_dom_walker (CDI_DOMINATORS
, region
).walk (cfun
->cfg
->x_entry_block_ptr
);
3163 find_scop_parameters (scop
);
3165 max_dim
= PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS
);
3166 if (scop_nb_params (scop
) > max_dim
)
3169 build_scop_iteration_domain (scop
);
3170 build_scop_context (scop
);
3171 add_conditions_to_constraints (scop
);
3173 /* Rewrite out of SSA only after having translated the
3174 representation to the polyhedral representation to avoid scev
3175 analysis failures. That means that these functions will insert
3176 new data references that they create in the right place. */
3177 rewrite_reductions_out_of_ssa (scop
);
3178 rewrite_cross_bb_scalar_deps_out_of_ssa (scop
);
3180 build_scop_drs (scop
);
3182 build_scop_scattering (scop
);
3184 /* This SCoP has been translated to the polyhedral
3186 POLY_SCOP_P (scop
) = true;