1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
25 #include "coretypes.h"
33 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
45 #include "typeclass.h"
48 #include "langhooks.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "tree-flow.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
77 #define STACK_PUSH_CODE PRE_INC
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
90 /* This structure is used by move_by_pieces to describe the move to
101 int explicit_inc_from
;
102 unsigned HOST_WIDE_INT len
;
103 HOST_WIDE_INT offset
;
107 /* This structure is used by store_by_pieces to describe the clear to
110 struct store_by_pieces
116 unsigned HOST_WIDE_INT len
;
117 HOST_WIDE_INT offset
;
118 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
123 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
126 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
127 struct move_by_pieces
*);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
);
130 static tree
emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
132 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
133 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
136 struct store_by_pieces
*);
137 static tree
clear_storage_libcall_fn (int);
138 static rtx
compress_float_constant (rtx
, rtx
);
139 static rtx
get_subtarget (rtx
);
140 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
141 HOST_WIDE_INT
, enum machine_mode
,
142 tree
, tree
, int, int);
143 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
144 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
147 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (tree
, tree
);
149 static int is_aligning_offset (tree
, tree
);
150 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
151 enum expand_modifier
);
152 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
153 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
155 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
157 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
158 static rtx
const_vector_from_tree (tree
);
159 static void write_complex_part (rtx
, rtx
, bool);
161 /* Record for each mode whether we can move a register directly to or
162 from an object of that mode in memory. If we can't, we won't try
163 to use that mode directly when accessing a field of that mode. */
165 static char direct_load
[NUM_MACHINE_MODES
];
166 static char direct_store
[NUM_MACHINE_MODES
];
168 /* Record for each mode whether we can float-extend from memory. */
170 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
172 /* This macro is used to determine whether move_by_pieces should be called
173 to perform a structure copy. */
174 #ifndef MOVE_BY_PIECES_P
175 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
176 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
177 < (unsigned int) MOVE_RATIO)
180 /* This macro is used to determine whether clear_by_pieces should be
181 called to clear storage. */
182 #ifndef CLEAR_BY_PIECES_P
183 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
184 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
185 < (unsigned int) CLEAR_RATIO)
188 /* This macro is used to determine whether store_by_pieces should be
189 called to "memset" storage with byte values other than zero, or
190 to "memcpy" storage when the source is a constant string. */
191 #ifndef STORE_BY_PIECES_P
192 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
193 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
194 < (unsigned int) MOVE_RATIO)
197 /* This array records the insn_code of insns to perform block moves. */
198 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
200 /* This array records the insn_code of insns to perform block sets. */
201 enum insn_code setmem_optab
[NUM_MACHINE_MODES
];
203 /* These arrays record the insn_code of three different kinds of insns
204 to perform block compares. */
205 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
206 enum insn_code cmpstrn_optab
[NUM_MACHINE_MODES
];
207 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
209 /* Synchronization primitives. */
210 enum insn_code sync_add_optab
[NUM_MACHINE_MODES
];
211 enum insn_code sync_sub_optab
[NUM_MACHINE_MODES
];
212 enum insn_code sync_ior_optab
[NUM_MACHINE_MODES
];
213 enum insn_code sync_and_optab
[NUM_MACHINE_MODES
];
214 enum insn_code sync_xor_optab
[NUM_MACHINE_MODES
];
215 enum insn_code sync_nand_optab
[NUM_MACHINE_MODES
];
216 enum insn_code sync_old_add_optab
[NUM_MACHINE_MODES
];
217 enum insn_code sync_old_sub_optab
[NUM_MACHINE_MODES
];
218 enum insn_code sync_old_ior_optab
[NUM_MACHINE_MODES
];
219 enum insn_code sync_old_and_optab
[NUM_MACHINE_MODES
];
220 enum insn_code sync_old_xor_optab
[NUM_MACHINE_MODES
];
221 enum insn_code sync_old_nand_optab
[NUM_MACHINE_MODES
];
222 enum insn_code sync_new_add_optab
[NUM_MACHINE_MODES
];
223 enum insn_code sync_new_sub_optab
[NUM_MACHINE_MODES
];
224 enum insn_code sync_new_ior_optab
[NUM_MACHINE_MODES
];
225 enum insn_code sync_new_and_optab
[NUM_MACHINE_MODES
];
226 enum insn_code sync_new_xor_optab
[NUM_MACHINE_MODES
];
227 enum insn_code sync_new_nand_optab
[NUM_MACHINE_MODES
];
228 enum insn_code sync_compare_and_swap
[NUM_MACHINE_MODES
];
229 enum insn_code sync_compare_and_swap_cc
[NUM_MACHINE_MODES
];
230 enum insn_code sync_lock_test_and_set
[NUM_MACHINE_MODES
];
231 enum insn_code sync_lock_release
[NUM_MACHINE_MODES
];
233 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
235 #ifndef SLOW_UNALIGNED_ACCESS
236 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
239 /* This is run once per compilation to set up which modes can be used
240 directly in memory and to initialize the block move optab. */
243 init_expr_once (void)
246 enum machine_mode mode
;
251 /* Try indexing by frame ptr and try by stack ptr.
252 It is known that on the Convex the stack ptr isn't a valid index.
253 With luck, one or the other is valid on any machine. */
254 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
255 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
257 /* A scratch register we can modify in-place below to avoid
258 useless RTL allocations. */
259 reg
= gen_rtx_REG (VOIDmode
, -1);
261 insn
= rtx_alloc (INSN
);
262 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
263 PATTERN (insn
) = pat
;
265 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
266 mode
= (enum machine_mode
) ((int) mode
+ 1))
270 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
271 PUT_MODE (mem
, mode
);
272 PUT_MODE (mem1
, mode
);
273 PUT_MODE (reg
, mode
);
275 /* See if there is some register that can be used in this mode and
276 directly loaded or stored from memory. */
278 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
279 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
280 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
283 if (! HARD_REGNO_MODE_OK (regno
, mode
))
289 SET_DEST (pat
) = reg
;
290 if (recog (pat
, insn
, &num_clobbers
) >= 0)
291 direct_load
[(int) mode
] = 1;
293 SET_SRC (pat
) = mem1
;
294 SET_DEST (pat
) = reg
;
295 if (recog (pat
, insn
, &num_clobbers
) >= 0)
296 direct_load
[(int) mode
] = 1;
299 SET_DEST (pat
) = mem
;
300 if (recog (pat
, insn
, &num_clobbers
) >= 0)
301 direct_store
[(int) mode
] = 1;
304 SET_DEST (pat
) = mem1
;
305 if (recog (pat
, insn
, &num_clobbers
) >= 0)
306 direct_store
[(int) mode
] = 1;
310 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
312 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
313 mode
= GET_MODE_WIDER_MODE (mode
))
315 enum machine_mode srcmode
;
316 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
317 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
321 ic
= can_extend_p (mode
, srcmode
, 0);
322 if (ic
== CODE_FOR_nothing
)
325 PUT_MODE (mem
, srcmode
);
327 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
328 float_extend_from_mem
[mode
][srcmode
] = true;
333 /* This is run at the start of compiling a function. */
338 cfun
->expr
= ggc_alloc_cleared (sizeof (struct expr_status
));
341 /* Copy data from FROM to TO, where the machine modes are not the same.
342 Both modes may be integer, or both may be floating.
343 UNSIGNEDP should be nonzero if FROM is an unsigned type.
344 This causes zero-extension instead of sign-extension. */
347 convert_move (rtx to
, rtx from
, int unsignedp
)
349 enum machine_mode to_mode
= GET_MODE (to
);
350 enum machine_mode from_mode
= GET_MODE (from
);
351 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
352 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
356 /* rtx code for making an equivalent value. */
357 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
358 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
361 gcc_assert (to_real
== from_real
);
363 /* If the source and destination are already the same, then there's
368 /* If FROM is a SUBREG that indicates that we have already done at least
369 the required extension, strip it. We don't handle such SUBREGs as
372 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
373 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
374 >= GET_MODE_SIZE (to_mode
))
375 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
376 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
378 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
380 if (to_mode
== from_mode
381 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
383 emit_move_insn (to
, from
);
387 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
389 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
391 if (VECTOR_MODE_P (to_mode
))
392 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
394 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
396 emit_move_insn (to
, from
);
400 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
402 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
403 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
412 gcc_assert ((GET_MODE_PRECISION (from_mode
)
413 != GET_MODE_PRECISION (to_mode
))
414 || (DECIMAL_FLOAT_MODE_P (from_mode
)
415 != DECIMAL_FLOAT_MODE_P (to_mode
)));
417 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
418 /* Conversion between decimal float and binary float, same size. */
419 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
420 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
425 /* Try converting directly if the insn is supported. */
427 code
= tab
->handlers
[to_mode
][from_mode
].insn_code
;
428 if (code
!= CODE_FOR_nothing
)
430 emit_unop_insn (code
, to
, from
,
431 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
435 /* Otherwise use a libcall. */
436 libcall
= tab
->handlers
[to_mode
][from_mode
].libfunc
;
438 /* Is this conversion implemented yet? */
439 gcc_assert (libcall
);
442 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
444 insns
= get_insns ();
446 emit_libcall_block (insns
, to
, value
,
447 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
449 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
453 /* Handle pointer conversion. */ /* SPEE 900220. */
454 /* Targets are expected to provide conversion insns between PxImode and
455 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
456 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
458 enum machine_mode full_mode
459 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
461 gcc_assert (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
462 != CODE_FOR_nothing
);
464 if (full_mode
!= from_mode
)
465 from
= convert_to_mode (full_mode
, from
, unsignedp
);
466 emit_unop_insn (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
,
470 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
473 enum machine_mode full_mode
474 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
476 gcc_assert (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
477 != CODE_FOR_nothing
);
479 if (to_mode
== full_mode
)
481 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
486 new_from
= gen_reg_rtx (full_mode
);
487 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
488 new_from
, from
, UNKNOWN
);
490 /* else proceed to integer conversions below. */
491 from_mode
= full_mode
;
495 /* Now both modes are integers. */
497 /* Handle expanding beyond a word. */
498 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
499 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
506 enum machine_mode lowpart_mode
;
507 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
509 /* Try converting directly if the insn is supported. */
510 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
513 /* If FROM is a SUBREG, put it into a register. Do this
514 so that we always generate the same set of insns for
515 better cse'ing; if an intermediate assignment occurred,
516 we won't be doing the operation directly on the SUBREG. */
517 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
518 from
= force_reg (from_mode
, from
);
519 emit_unop_insn (code
, to
, from
, equiv_code
);
522 /* Next, try converting via full word. */
523 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
524 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
525 != CODE_FOR_nothing
))
529 if (reg_overlap_mentioned_p (to
, from
))
530 from
= force_reg (from_mode
, from
);
531 emit_insn (gen_rtx_CLOBBER (VOIDmode
, to
));
533 convert_move (gen_lowpart (word_mode
, to
), from
, unsignedp
);
534 emit_unop_insn (code
, to
,
535 gen_lowpart (word_mode
, to
), equiv_code
);
539 /* No special multiword conversion insn; do it by hand. */
542 /* Since we will turn this into a no conflict block, we must ensure
543 that the source does not overlap the target. */
545 if (reg_overlap_mentioned_p (to
, from
))
546 from
= force_reg (from_mode
, from
);
548 /* Get a copy of FROM widened to a word, if necessary. */
549 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
550 lowpart_mode
= word_mode
;
552 lowpart_mode
= from_mode
;
554 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
556 lowpart
= gen_lowpart (lowpart_mode
, to
);
557 emit_move_insn (lowpart
, lowfrom
);
559 /* Compute the value to put in each remaining word. */
561 fill_value
= const0_rtx
;
566 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
567 && STORE_FLAG_VALUE
== -1)
569 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
571 fill_value
= gen_reg_rtx (word_mode
);
572 emit_insn (gen_slt (fill_value
));
578 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
579 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
581 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
585 /* Fill the remaining words. */
586 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
588 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
589 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
591 gcc_assert (subword
);
593 if (fill_value
!= subword
)
594 emit_move_insn (subword
, fill_value
);
597 insns
= get_insns ();
600 emit_no_conflict_block (insns
, to
, from
, NULL_RTX
,
601 gen_rtx_fmt_e (equiv_code
, to_mode
, copy_rtx (from
)));
605 /* Truncating multi-word to a word or less. */
606 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
607 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
610 && ! MEM_VOLATILE_P (from
)
611 && direct_load
[(int) to_mode
]
612 && ! mode_dependent_address_p (XEXP (from
, 0)))
614 || GET_CODE (from
) == SUBREG
))
615 from
= force_reg (from_mode
, from
);
616 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
620 /* Now follow all the conversions between integers
621 no more than a word long. */
623 /* For truncation, usually we can just refer to FROM in a narrower mode. */
624 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
625 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
626 GET_MODE_BITSIZE (from_mode
)))
629 && ! MEM_VOLATILE_P (from
)
630 && direct_load
[(int) to_mode
]
631 && ! mode_dependent_address_p (XEXP (from
, 0)))
633 || GET_CODE (from
) == SUBREG
))
634 from
= force_reg (from_mode
, from
);
635 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
636 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
637 from
= copy_to_reg (from
);
638 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
642 /* Handle extension. */
643 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
645 /* Convert directly if that works. */
646 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
649 emit_unop_insn (code
, to
, from
, equiv_code
);
654 enum machine_mode intermediate
;
658 /* Search for a mode to convert via. */
659 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
660 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
661 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
663 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
664 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
665 GET_MODE_BITSIZE (intermediate
))))
666 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
667 != CODE_FOR_nothing
))
669 convert_move (to
, convert_to_mode (intermediate
, from
,
670 unsignedp
), unsignedp
);
674 /* No suitable intermediate mode.
675 Generate what we need with shifts. */
676 shift_amount
= build_int_cst (NULL_TREE
,
677 GET_MODE_BITSIZE (to_mode
)
678 - GET_MODE_BITSIZE (from_mode
));
679 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
680 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
682 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
685 emit_move_insn (to
, tmp
);
690 /* Support special truncate insns for certain modes. */
691 if (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
!= CODE_FOR_nothing
)
693 emit_unop_insn (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
,
698 /* Handle truncation of volatile memrefs, and so on;
699 the things that couldn't be truncated directly,
700 and for which there was no special instruction.
702 ??? Code above formerly short-circuited this, for most integer
703 mode pairs, with a force_reg in from_mode followed by a recursive
704 call to this routine. Appears always to have been wrong. */
705 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
707 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
708 emit_move_insn (to
, temp
);
712 /* Mode combination is not recognized. */
716 /* Return an rtx for a value that would result
717 from converting X to mode MODE.
718 Both X and MODE may be floating, or both integer.
719 UNSIGNEDP is nonzero if X is an unsigned value.
720 This can be done by referring to a part of X in place
721 or by copying to a new temporary with conversion. */
724 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
726 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
729 /* Return an rtx for a value that would result
730 from converting X from mode OLDMODE to mode MODE.
731 Both modes may be floating, or both integer.
732 UNSIGNEDP is nonzero if X is an unsigned value.
734 This can be done by referring to a part of X in place
735 or by copying to a new temporary with conversion.
737 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
740 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
744 /* If FROM is a SUBREG that indicates that we have already done at least
745 the required extension, strip it. */
747 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
748 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
749 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
750 x
= gen_lowpart (mode
, x
);
752 if (GET_MODE (x
) != VOIDmode
)
753 oldmode
= GET_MODE (x
);
758 /* There is one case that we must handle specially: If we are converting
759 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
760 we are to interpret the constant as unsigned, gen_lowpart will do
761 the wrong if the constant appears negative. What we want to do is
762 make the high-order word of the constant zero, not all ones. */
764 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
765 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
766 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
768 HOST_WIDE_INT val
= INTVAL (x
);
770 if (oldmode
!= VOIDmode
771 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
773 int width
= GET_MODE_BITSIZE (oldmode
);
775 /* We need to zero extend VAL. */
776 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
779 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
782 /* We can do this with a gen_lowpart if both desired and current modes
783 are integer, and this is either a constant integer, a register, or a
784 non-volatile MEM. Except for the constant case where MODE is no
785 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
787 if ((GET_CODE (x
) == CONST_INT
788 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
789 || (GET_MODE_CLASS (mode
) == MODE_INT
790 && GET_MODE_CLASS (oldmode
) == MODE_INT
791 && (GET_CODE (x
) == CONST_DOUBLE
792 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
793 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
794 && direct_load
[(int) mode
])
796 && (! HARD_REGISTER_P (x
)
797 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
798 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
799 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
801 /* ?? If we don't know OLDMODE, we have to assume here that
802 X does not need sign- or zero-extension. This may not be
803 the case, but it's the best we can do. */
804 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
805 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
807 HOST_WIDE_INT val
= INTVAL (x
);
808 int width
= GET_MODE_BITSIZE (oldmode
);
810 /* We must sign or zero-extend in this case. Start by
811 zero-extending, then sign extend if we need to. */
812 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
814 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
815 val
|= (HOST_WIDE_INT
) (-1) << width
;
817 return gen_int_mode (val
, mode
);
820 return gen_lowpart (mode
, x
);
823 /* Converting from integer constant into mode is always equivalent to an
825 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
827 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
828 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
831 temp
= gen_reg_rtx (mode
);
832 convert_move (temp
, x
, unsignedp
);
836 /* STORE_MAX_PIECES is the number of bytes at a time that we can
837 store efficiently. Due to internal GCC limitations, this is
838 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
839 for an immediate constant. */
841 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
843 /* Determine whether the LEN bytes can be moved by using several move
844 instructions. Return nonzero if a call to move_by_pieces should
848 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
849 unsigned int align ATTRIBUTE_UNUSED
)
851 return MOVE_BY_PIECES_P (len
, align
);
854 /* Generate several move instructions to copy LEN bytes from block FROM to
855 block TO. (These are MEM rtx's with BLKmode).
857 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
858 used to push FROM to the stack.
860 ALIGN is maximum stack alignment we can assume.
862 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
863 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
867 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
868 unsigned int align
, int endp
)
870 struct move_by_pieces data
;
871 rtx to_addr
, from_addr
= XEXP (from
, 0);
872 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
873 enum machine_mode mode
= VOIDmode
, tmode
;
874 enum insn_code icode
;
876 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
879 data
.from_addr
= from_addr
;
882 to_addr
= XEXP (to
, 0);
885 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
886 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
888 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
895 #ifdef STACK_GROWS_DOWNWARD
901 data
.to_addr
= to_addr
;
904 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
905 || GET_CODE (from_addr
) == POST_INC
906 || GET_CODE (from_addr
) == POST_DEC
);
908 data
.explicit_inc_from
= 0;
909 data
.explicit_inc_to
= 0;
910 if (data
.reverse
) data
.offset
= len
;
913 /* If copying requires more than two move insns,
914 copy addresses to registers (to make displacements shorter)
915 and use post-increment if available. */
916 if (!(data
.autinc_from
&& data
.autinc_to
)
917 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
919 /* Find the mode of the largest move... */
920 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
921 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
922 if (GET_MODE_SIZE (tmode
) < max_size
)
925 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
927 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
928 data
.autinc_from
= 1;
929 data
.explicit_inc_from
= -1;
931 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
933 data
.from_addr
= copy_addr_to_reg (from_addr
);
934 data
.autinc_from
= 1;
935 data
.explicit_inc_from
= 1;
937 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
938 data
.from_addr
= copy_addr_to_reg (from_addr
);
939 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
941 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
943 data
.explicit_inc_to
= -1;
945 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
947 data
.to_addr
= copy_addr_to_reg (to_addr
);
949 data
.explicit_inc_to
= 1;
951 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
952 data
.to_addr
= copy_addr_to_reg (to_addr
);
955 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
956 if (align
>= GET_MODE_ALIGNMENT (tmode
))
957 align
= GET_MODE_ALIGNMENT (tmode
);
960 enum machine_mode xmode
;
962 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
964 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
965 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
966 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
969 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
972 /* First move what we can in the largest integer mode, then go to
973 successively smaller modes. */
977 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
978 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
979 if (GET_MODE_SIZE (tmode
) < max_size
)
982 if (mode
== VOIDmode
)
985 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
986 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
987 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
989 max_size
= GET_MODE_SIZE (mode
);
992 /* The code above should have handled everything. */
993 gcc_assert (!data
.len
);
999 gcc_assert (!data
.reverse
);
1004 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
1005 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
1007 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
1010 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1017 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1025 /* Return number of insns required to move L bytes by pieces.
1026 ALIGN (in bits) is maximum alignment we can assume. */
1028 static unsigned HOST_WIDE_INT
1029 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1030 unsigned int max_size
)
1032 unsigned HOST_WIDE_INT n_insns
= 0;
1033 enum machine_mode tmode
;
1035 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1036 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1037 align
= GET_MODE_ALIGNMENT (tmode
);
1040 enum machine_mode tmode
, xmode
;
1042 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1044 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1045 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1046 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1049 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1052 while (max_size
> 1)
1054 enum machine_mode mode
= VOIDmode
;
1055 enum insn_code icode
;
1057 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1058 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1059 if (GET_MODE_SIZE (tmode
) < max_size
)
1062 if (mode
== VOIDmode
)
1065 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1066 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1067 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1069 max_size
= GET_MODE_SIZE (mode
);
1076 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1077 with move instructions for mode MODE. GENFUN is the gen_... function
1078 to make a move insn for that mode. DATA has all the other info. */
1081 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1082 struct move_by_pieces
*data
)
1084 unsigned int size
= GET_MODE_SIZE (mode
);
1085 rtx to1
= NULL_RTX
, from1
;
1087 while (data
->len
>= size
)
1090 data
->offset
-= size
;
1094 if (data
->autinc_to
)
1095 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1098 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1101 if (data
->autinc_from
)
1102 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1105 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1107 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1108 emit_insn (gen_add2_insn (data
->to_addr
,
1109 GEN_INT (-(HOST_WIDE_INT
)size
)));
1110 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1111 emit_insn (gen_add2_insn (data
->from_addr
,
1112 GEN_INT (-(HOST_WIDE_INT
)size
)));
1115 emit_insn ((*genfun
) (to1
, from1
));
1118 #ifdef PUSH_ROUNDING
1119 emit_single_push_insn (mode
, from1
, NULL
);
1125 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1126 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1127 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1128 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1130 if (! data
->reverse
)
1131 data
->offset
+= size
;
1137 /* Emit code to move a block Y to a block X. This may be done with
1138 string-move instructions, with multiple scalar move instructions,
1139 or with a library call.
1141 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1142 SIZE is an rtx that says how long they are.
1143 ALIGN is the maximum alignment we can assume they have.
1144 METHOD describes what kind of copy this is, and what mechanisms may be used.
1146 Return the address of the new block, if memcpy is called and returns it,
1150 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1151 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1159 case BLOCK_OP_NORMAL
:
1160 case BLOCK_OP_TAILCALL
:
1161 may_use_call
= true;
1164 case BLOCK_OP_CALL_PARM
:
1165 may_use_call
= block_move_libcall_safe_for_call_parm ();
1167 /* Make inhibit_defer_pop nonzero around the library call
1168 to force it to pop the arguments right away. */
1172 case BLOCK_OP_NO_LIBCALL
:
1173 may_use_call
= false;
1180 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1182 gcc_assert (MEM_P (x
));
1183 gcc_assert (MEM_P (y
));
1186 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1187 block copy is more efficient for other large modes, e.g. DCmode. */
1188 x
= adjust_address (x
, BLKmode
, 0);
1189 y
= adjust_address (y
, BLKmode
, 0);
1191 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1192 can be incorrect is coming from __builtin_memcpy. */
1193 if (GET_CODE (size
) == CONST_INT
)
1195 if (INTVAL (size
) == 0)
1198 x
= shallow_copy_rtx (x
);
1199 y
= shallow_copy_rtx (y
);
1200 set_mem_size (x
, size
);
1201 set_mem_size (y
, size
);
1204 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1205 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1206 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1207 expected_align
, expected_size
))
1209 else if (may_use_call
)
1210 retval
= emit_block_move_via_libcall (x
, y
, size
,
1211 method
== BLOCK_OP_TAILCALL
);
1213 emit_block_move_via_loop (x
, y
, size
, align
);
1215 if (method
== BLOCK_OP_CALL_PARM
)
1222 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1224 return emit_block_move_hints (x
, y
, size
, method
, 0, -1);
1227 /* A subroutine of emit_block_move. Returns true if calling the
1228 block move libcall will not clobber any parameters which may have
1229 already been placed on the stack. */
1232 block_move_libcall_safe_for_call_parm (void)
1234 /* If arguments are pushed on the stack, then they're safe. */
1238 /* If registers go on the stack anyway, any argument is sure to clobber
1239 an outgoing argument. */
1240 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1242 tree fn
= emit_block_move_libcall_fn (false);
1244 if (REG_PARM_STACK_SPACE (fn
) != 0)
1249 /* If any argument goes in memory, then it might clobber an outgoing
1252 CUMULATIVE_ARGS args_so_far
;
1255 fn
= emit_block_move_libcall_fn (false);
1256 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1258 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1259 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1261 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1262 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1263 if (!tmp
|| !REG_P (tmp
))
1265 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1267 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1273 /* A subroutine of emit_block_move. Expand a movmem pattern;
1274 return true if successful. */
1277 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1278 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1280 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1281 int save_volatile_ok
= volatile_ok
;
1282 enum machine_mode mode
;
1284 if (expected_align
< align
)
1285 expected_align
= align
;
1287 /* Since this is a move insn, we don't care about volatility. */
1290 /* Try the most limited insn first, because there's no point
1291 including more than one in the machine description unless
1292 the more limited one has some advantage. */
1294 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1295 mode
= GET_MODE_WIDER_MODE (mode
))
1297 enum insn_code code
= movmem_optab
[(int) mode
];
1298 insn_operand_predicate_fn pred
;
1300 if (code
!= CODE_FOR_nothing
1301 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1302 here because if SIZE is less than the mode mask, as it is
1303 returned by the macro, it will definitely be less than the
1304 actual mode mask. */
1305 && ((GET_CODE (size
) == CONST_INT
1306 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1307 <= (GET_MODE_MASK (mode
) >> 1)))
1308 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1309 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1310 || (*pred
) (x
, BLKmode
))
1311 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1312 || (*pred
) (y
, BLKmode
))
1313 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1314 || (*pred
) (opalign
, VOIDmode
)))
1317 rtx last
= get_last_insn ();
1320 op2
= convert_to_mode (mode
, size
, 1);
1321 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1322 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1323 op2
= copy_to_mode_reg (mode
, op2
);
1325 /* ??? When called via emit_block_move_for_call, it'd be
1326 nice if there were some way to inform the backend, so
1327 that it doesn't fail the expansion because it thinks
1328 emitting the libcall would be more efficient. */
1330 if (insn_data
[(int) code
].n_operands
== 4)
1331 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1333 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
,
1334 GEN_INT (expected_align
),
1335 GEN_INT (expected_size
));
1339 volatile_ok
= save_volatile_ok
;
1343 delete_insns_since (last
);
1347 volatile_ok
= save_volatile_ok
;
1351 /* A subroutine of emit_block_move. Expand a call to memcpy.
1352 Return the return value from memcpy, 0 otherwise. */
1355 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1357 rtx dst_addr
, src_addr
;
1358 tree call_expr
, arg_list
, fn
, src_tree
, dst_tree
, size_tree
;
1359 enum machine_mode size_mode
;
1362 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1363 pseudos. We can then place those new pseudos into a VAR_DECL and
1366 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1367 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1369 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1370 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1372 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1373 src_tree
= make_tree (ptr_type_node
, src_addr
);
1375 size_mode
= TYPE_MODE (sizetype
);
1377 size
= convert_to_mode (size_mode
, size
, 1);
1378 size
= copy_to_mode_reg (size_mode
, size
);
1380 /* It is incorrect to use the libcall calling conventions to call
1381 memcpy in this context. This could be a user call to memcpy and
1382 the user may wish to examine the return value from memcpy. For
1383 targets where libcalls and normal calls have different conventions
1384 for returning pointers, we could end up generating incorrect code. */
1386 size_tree
= make_tree (sizetype
, size
);
1388 fn
= emit_block_move_libcall_fn (true);
1389 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
1390 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1391 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1393 /* Now we have to build up the CALL_EXPR itself. */
1394 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
1395 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
1396 call_expr
, arg_list
, NULL_TREE
);
1397 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1399 retval
= expand_normal (call_expr
);
1404 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1405 for the function we use for block copies. The first time FOR_CALL
1406 is true, we call assemble_external. */
1408 static GTY(()) tree block_move_fn
;
1411 init_block_move_fn (const char *asmspec
)
1417 fn
= get_identifier ("memcpy");
1418 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1419 const_ptr_type_node
, sizetype
,
1422 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1423 DECL_EXTERNAL (fn
) = 1;
1424 TREE_PUBLIC (fn
) = 1;
1425 DECL_ARTIFICIAL (fn
) = 1;
1426 TREE_NOTHROW (fn
) = 1;
1427 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1428 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1434 set_user_assembler_name (block_move_fn
, asmspec
);
1438 emit_block_move_libcall_fn (int for_call
)
1440 static bool emitted_extern
;
1443 init_block_move_fn (NULL
);
1445 if (for_call
&& !emitted_extern
)
1447 emitted_extern
= true;
1448 make_decl_rtl (block_move_fn
);
1449 assemble_external (block_move_fn
);
1452 return block_move_fn
;
1455 /* A subroutine of emit_block_move. Copy the data via an explicit
1456 loop. This is used only when libcalls are forbidden. */
1457 /* ??? It'd be nice to copy in hunks larger than QImode. */
1460 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1461 unsigned int align ATTRIBUTE_UNUSED
)
1463 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1464 enum machine_mode iter_mode
;
1466 iter_mode
= GET_MODE (size
);
1467 if (iter_mode
== VOIDmode
)
1468 iter_mode
= word_mode
;
1470 top_label
= gen_label_rtx ();
1471 cmp_label
= gen_label_rtx ();
1472 iter
= gen_reg_rtx (iter_mode
);
1474 emit_move_insn (iter
, const0_rtx
);
1476 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1477 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1478 do_pending_stack_adjust ();
1480 emit_jump (cmp_label
);
1481 emit_label (top_label
);
1483 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1484 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1485 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1486 x
= change_address (x
, QImode
, x_addr
);
1487 y
= change_address (y
, QImode
, y_addr
);
1489 emit_move_insn (x
, y
);
1491 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1492 true, OPTAB_LIB_WIDEN
);
1494 emit_move_insn (iter
, tmp
);
1496 emit_label (cmp_label
);
1498 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1502 /* Copy all or part of a value X into registers starting at REGNO.
1503 The number of registers to be filled is NREGS. */
1506 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1509 #ifdef HAVE_load_multiple
1517 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1518 x
= validize_mem (force_const_mem (mode
, x
));
1520 /* See if the machine can do this with a load multiple insn. */
1521 #ifdef HAVE_load_multiple
1522 if (HAVE_load_multiple
)
1524 last
= get_last_insn ();
1525 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1533 delete_insns_since (last
);
1537 for (i
= 0; i
< nregs
; i
++)
1538 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1539 operand_subword_force (x
, i
, mode
));
1542 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1543 The number of registers to be filled is NREGS. */
1546 move_block_from_reg (int regno
, rtx x
, int nregs
)
1553 /* See if the machine can do this with a store multiple insn. */
1554 #ifdef HAVE_store_multiple
1555 if (HAVE_store_multiple
)
1557 rtx last
= get_last_insn ();
1558 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1566 delete_insns_since (last
);
1570 for (i
= 0; i
< nregs
; i
++)
1572 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1576 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1580 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1581 ORIG, where ORIG is a non-consecutive group of registers represented by
1582 a PARALLEL. The clone is identical to the original except in that the
1583 original set of registers is replaced by a new set of pseudo registers.
1584 The new set has the same modes as the original set. */
1587 gen_group_rtx (rtx orig
)
1592 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1594 length
= XVECLEN (orig
, 0);
1595 tmps
= alloca (sizeof (rtx
) * length
);
1597 /* Skip a NULL entry in first slot. */
1598 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1603 for (; i
< length
; i
++)
1605 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1606 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1608 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1611 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1614 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1615 except that values are placed in TMPS[i], and must later be moved
1616 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1619 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1623 enum machine_mode m
= GET_MODE (orig_src
);
1625 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1628 && !SCALAR_INT_MODE_P (m
)
1629 && !MEM_P (orig_src
)
1630 && GET_CODE (orig_src
) != CONCAT
)
1632 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1633 if (imode
== BLKmode
)
1634 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1636 src
= gen_reg_rtx (imode
);
1637 if (imode
!= BLKmode
)
1638 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1639 emit_move_insn (src
, orig_src
);
1640 /* ...and back again. */
1641 if (imode
!= BLKmode
)
1642 src
= gen_lowpart (imode
, src
);
1643 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1647 /* Check for a NULL entry, used to indicate that the parameter goes
1648 both on the stack and in registers. */
1649 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1654 /* Process the pieces. */
1655 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1657 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1658 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1659 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1662 /* Handle trailing fragments that run over the size of the struct. */
1663 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1665 /* Arrange to shift the fragment to where it belongs.
1666 extract_bit_field loads to the lsb of the reg. */
1668 #ifdef BLOCK_REG_PADDING
1669 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1670 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1675 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1676 bytelen
= ssize
- bytepos
;
1677 gcc_assert (bytelen
> 0);
1680 /* If we won't be loading directly from memory, protect the real source
1681 from strange tricks we might play; but make sure that the source can
1682 be loaded directly into the destination. */
1684 if (!MEM_P (orig_src
)
1685 && (!CONSTANT_P (orig_src
)
1686 || (GET_MODE (orig_src
) != mode
1687 && GET_MODE (orig_src
) != VOIDmode
)))
1689 if (GET_MODE (orig_src
) == VOIDmode
)
1690 src
= gen_reg_rtx (mode
);
1692 src
= gen_reg_rtx (GET_MODE (orig_src
));
1694 emit_move_insn (src
, orig_src
);
1697 /* Optimize the access just a bit. */
1699 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1700 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1701 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1702 && bytelen
== GET_MODE_SIZE (mode
))
1704 tmps
[i
] = gen_reg_rtx (mode
);
1705 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1707 else if (COMPLEX_MODE_P (mode
)
1708 && GET_MODE (src
) == mode
1709 && bytelen
== GET_MODE_SIZE (mode
))
1710 /* Let emit_move_complex do the bulk of the work. */
1712 else if (GET_CODE (src
) == CONCAT
)
1714 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1715 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1717 if ((bytepos
== 0 && bytelen
== slen0
)
1718 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1720 /* The following assumes that the concatenated objects all
1721 have the same size. In this case, a simple calculation
1722 can be used to determine the object and the bit field
1724 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1725 if (! CONSTANT_P (tmps
[i
])
1726 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1727 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1728 (bytepos
% slen0
) * BITS_PER_UNIT
,
1729 1, NULL_RTX
, mode
, mode
);
1735 gcc_assert (!bytepos
);
1736 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1737 emit_move_insn (mem
, src
);
1738 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1739 0, 1, NULL_RTX
, mode
, mode
);
1742 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1743 SIMD register, which is currently broken. While we get GCC
1744 to emit proper RTL for these cases, let's dump to memory. */
1745 else if (VECTOR_MODE_P (GET_MODE (dst
))
1748 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1751 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1752 emit_move_insn (mem
, src
);
1753 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1755 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1756 && XVECLEN (dst
, 0) > 1)
1757 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1758 else if (CONSTANT_P (src
)
1759 || (REG_P (src
) && GET_MODE (src
) == mode
))
1762 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1763 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1767 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1768 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1772 /* Emit code to move a block SRC of type TYPE to a block DST,
1773 where DST is non-consecutive registers represented by a PARALLEL.
1774 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1778 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1783 tmps
= alloca (sizeof (rtx
) * XVECLEN (dst
, 0));
1784 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1786 /* Copy the extracted pieces into the proper (probable) hard regs. */
1787 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1789 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1792 emit_move_insn (d
, tmps
[i
]);
1796 /* Similar, but load SRC into new pseudos in a format that looks like
1797 PARALLEL. This can later be fed to emit_group_move to get things
1798 in the right place. */
1801 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1806 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1807 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1809 /* Convert the vector to look just like the original PARALLEL, except
1810 with the computed values. */
1811 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1813 rtx e
= XVECEXP (parallel
, 0, i
);
1814 rtx d
= XEXP (e
, 0);
1818 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1819 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1821 RTVEC_ELT (vec
, i
) = e
;
1824 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1827 /* Emit code to move a block SRC to block DST, where SRC and DST are
1828 non-consecutive groups of registers, each represented by a PARALLEL. */
1831 emit_group_move (rtx dst
, rtx src
)
1835 gcc_assert (GET_CODE (src
) == PARALLEL
1836 && GET_CODE (dst
) == PARALLEL
1837 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1839 /* Skip first entry if NULL. */
1840 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1841 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1842 XEXP (XVECEXP (src
, 0, i
), 0));
1845 /* Move a group of registers represented by a PARALLEL into pseudos. */
1848 emit_group_move_into_temps (rtx src
)
1850 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1853 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1855 rtx e
= XVECEXP (src
, 0, i
);
1856 rtx d
= XEXP (e
, 0);
1859 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1860 RTVEC_ELT (vec
, i
) = e
;
1863 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1866 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1867 where SRC is non-consecutive registers represented by a PARALLEL.
1868 SSIZE represents the total size of block ORIG_DST, or -1 if not
1872 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1875 int start
, finish
, i
;
1876 enum machine_mode m
= GET_MODE (orig_dst
);
1878 gcc_assert (GET_CODE (src
) == PARALLEL
);
1880 if (!SCALAR_INT_MODE_P (m
)
1881 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1883 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1884 if (imode
== BLKmode
)
1885 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1887 dst
= gen_reg_rtx (imode
);
1888 emit_group_store (dst
, src
, type
, ssize
);
1889 if (imode
!= BLKmode
)
1890 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1891 emit_move_insn (orig_dst
, dst
);
1895 /* Check for a NULL entry, used to indicate that the parameter goes
1896 both on the stack and in registers. */
1897 if (XEXP (XVECEXP (src
, 0, 0), 0))
1901 finish
= XVECLEN (src
, 0);
1903 tmps
= alloca (sizeof (rtx
) * finish
);
1905 /* Copy the (probable) hard regs into pseudos. */
1906 for (i
= start
; i
< finish
; i
++)
1908 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1909 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1911 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1912 emit_move_insn (tmps
[i
], reg
);
1918 /* If we won't be storing directly into memory, protect the real destination
1919 from strange tricks we might play. */
1921 if (GET_CODE (dst
) == PARALLEL
)
1925 /* We can get a PARALLEL dst if there is a conditional expression in
1926 a return statement. In that case, the dst and src are the same,
1927 so no action is necessary. */
1928 if (rtx_equal_p (dst
, src
))
1931 /* It is unclear if we can ever reach here, but we may as well handle
1932 it. Allocate a temporary, and split this into a store/load to/from
1935 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1936 emit_group_store (temp
, src
, type
, ssize
);
1937 emit_group_load (dst
, temp
, type
, ssize
);
1940 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1942 enum machine_mode outer
= GET_MODE (dst
);
1943 enum machine_mode inner
;
1944 HOST_WIDE_INT bytepos
;
1948 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1949 dst
= gen_reg_rtx (outer
);
1951 /* Make life a bit easier for combine. */
1952 /* If the first element of the vector is the low part
1953 of the destination mode, use a paradoxical subreg to
1954 initialize the destination. */
1957 inner
= GET_MODE (tmps
[start
]);
1958 bytepos
= subreg_lowpart_offset (inner
, outer
);
1959 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1961 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1965 emit_move_insn (dst
, temp
);
1972 /* If the first element wasn't the low part, try the last. */
1974 && start
< finish
- 1)
1976 inner
= GET_MODE (tmps
[finish
- 1]);
1977 bytepos
= subreg_lowpart_offset (inner
, outer
);
1978 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
1980 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
1984 emit_move_insn (dst
, temp
);
1991 /* Otherwise, simply initialize the result to zero. */
1993 emit_move_insn (dst
, CONST0_RTX (outer
));
1996 /* Process the pieces. */
1997 for (i
= start
; i
< finish
; i
++)
1999 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2000 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2001 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2004 /* Handle trailing fragments that run over the size of the struct. */
2005 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2007 /* store_bit_field always takes its value from the lsb.
2008 Move the fragment to the lsb if it's not already there. */
2010 #ifdef BLOCK_REG_PADDING
2011 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2012 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2018 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2019 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2020 build_int_cst (NULL_TREE
, shift
),
2023 bytelen
= ssize
- bytepos
;
2026 if (GET_CODE (dst
) == CONCAT
)
2028 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2029 dest
= XEXP (dst
, 0);
2030 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2032 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2033 dest
= XEXP (dst
, 1);
2037 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2038 dest
= assign_stack_temp (GET_MODE (dest
),
2039 GET_MODE_SIZE (GET_MODE (dest
)), 0);
2040 emit_move_insn (adjust_address (dest
, GET_MODE (tmps
[i
]), bytepos
),
2047 /* Optimize the access just a bit. */
2049 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2050 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2051 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2052 && bytelen
== GET_MODE_SIZE (mode
))
2053 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2055 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2059 /* Copy from the pseudo into the (probable) hard reg. */
2060 if (orig_dst
!= dst
)
2061 emit_move_insn (orig_dst
, dst
);
2064 /* Generate code to copy a BLKmode object of TYPE out of a
2065 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2066 is null, a stack temporary is created. TGTBLK is returned.
2068 The purpose of this routine is to handle functions that return
2069 BLKmode structures in registers. Some machines (the PA for example)
2070 want to return all small structures in registers regardless of the
2071 structure's alignment. */
2074 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
2076 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2077 rtx src
= NULL
, dst
= NULL
;
2078 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2079 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2083 tgtblk
= assign_temp (build_qualified_type (type
,
2085 | TYPE_QUAL_CONST
)),
2087 preserve_temp_slots (tgtblk
);
2090 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2091 into a new pseudo which is a full word. */
2093 if (GET_MODE (srcreg
) != BLKmode
2094 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2095 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2097 /* If the structure doesn't take up a whole number of words, see whether
2098 SRCREG is padded on the left or on the right. If it's on the left,
2099 set PADDING_CORRECTION to the number of bits to skip.
2101 In most ABIs, the structure will be returned at the least end of
2102 the register, which translates to right padding on little-endian
2103 targets and left padding on big-endian targets. The opposite
2104 holds if the structure is returned at the most significant
2105 end of the register. */
2106 if (bytes
% UNITS_PER_WORD
!= 0
2107 && (targetm
.calls
.return_in_msb (type
)
2109 : BYTES_BIG_ENDIAN
))
2111 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2113 /* Copy the structure BITSIZE bites at a time.
2115 We could probably emit more efficient code for machines which do not use
2116 strict alignment, but it doesn't seem worth the effort at the current
2118 for (bitpos
= 0, xbitpos
= padding_correction
;
2119 bitpos
< bytes
* BITS_PER_UNIT
;
2120 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2122 /* We need a new source operand each time xbitpos is on a
2123 word boundary and when xbitpos == padding_correction
2124 (the first time through). */
2125 if (xbitpos
% BITS_PER_WORD
== 0
2126 || xbitpos
== padding_correction
)
2127 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2130 /* We need a new destination operand each time bitpos is on
2132 if (bitpos
% BITS_PER_WORD
== 0)
2133 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2135 /* Use xbitpos for the source extraction (right justified) and
2136 xbitpos for the destination store (left justified). */
2137 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, word_mode
,
2138 extract_bit_field (src
, bitsize
,
2139 xbitpos
% BITS_PER_WORD
, 1,
2140 NULL_RTX
, word_mode
, word_mode
));
2146 /* Add a USE expression for REG to the (possibly empty) list pointed
2147 to by CALL_FUSAGE. REG must denote a hard register. */
2150 use_reg (rtx
*call_fusage
, rtx reg
)
2152 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2155 = gen_rtx_EXPR_LIST (VOIDmode
,
2156 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2159 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2160 starting at REGNO. All of these registers must be hard registers. */
2163 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2167 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2169 for (i
= 0; i
< nregs
; i
++)
2170 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2173 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2174 PARALLEL REGS. This is for calls that pass values in multiple
2175 non-contiguous locations. The Irix 6 ABI has examples of this. */
2178 use_group_regs (rtx
*call_fusage
, rtx regs
)
2182 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2184 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2186 /* A NULL entry means the parameter goes both on the stack and in
2187 registers. This can also be a MEM for targets that pass values
2188 partially on the stack and partially in registers. */
2189 if (reg
!= 0 && REG_P (reg
))
2190 use_reg (call_fusage
, reg
);
2195 /* Determine whether the LEN bytes generated by CONSTFUN can be
2196 stored to memory using several move instructions. CONSTFUNDATA is
2197 a pointer which will be passed as argument in every CONSTFUN call.
2198 ALIGN is maximum alignment we can assume. Return nonzero if a
2199 call to store_by_pieces should succeed. */
2202 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2203 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2204 void *constfundata
, unsigned int align
)
2206 unsigned HOST_WIDE_INT l
;
2207 unsigned int max_size
;
2208 HOST_WIDE_INT offset
= 0;
2209 enum machine_mode mode
, tmode
;
2210 enum insn_code icode
;
2217 if (! STORE_BY_PIECES_P (len
, align
))
2220 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2221 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2222 align
= GET_MODE_ALIGNMENT (tmode
);
2225 enum machine_mode xmode
;
2227 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2229 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2230 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2231 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2234 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2237 /* We would first store what we can in the largest integer mode, then go to
2238 successively smaller modes. */
2241 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2246 max_size
= STORE_MAX_PIECES
+ 1;
2247 while (max_size
> 1)
2249 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2250 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2251 if (GET_MODE_SIZE (tmode
) < max_size
)
2254 if (mode
== VOIDmode
)
2257 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2258 if (icode
!= CODE_FOR_nothing
2259 && align
>= GET_MODE_ALIGNMENT (mode
))
2261 unsigned int size
= GET_MODE_SIZE (mode
);
2268 cst
= (*constfun
) (constfundata
, offset
, mode
);
2269 if (!LEGITIMATE_CONSTANT_P (cst
))
2279 max_size
= GET_MODE_SIZE (mode
);
2282 /* The code above should have handled everything. */
2289 /* Generate several move instructions to store LEN bytes generated by
2290 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2291 pointer which will be passed as argument in every CONSTFUN call.
2292 ALIGN is maximum alignment we can assume.
2293 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2294 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2298 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2299 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2300 void *constfundata
, unsigned int align
, int endp
)
2302 struct store_by_pieces data
;
2306 gcc_assert (endp
!= 2);
2310 gcc_assert (STORE_BY_PIECES_P (len
, align
));
2311 data
.constfun
= constfun
;
2312 data
.constfundata
= constfundata
;
2315 store_by_pieces_1 (&data
, align
);
2320 gcc_assert (!data
.reverse
);
2325 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2326 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2328 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2331 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2338 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2346 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2347 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2350 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2352 struct store_by_pieces data
;
2357 data
.constfun
= clear_by_pieces_1
;
2358 data
.constfundata
= NULL
;
2361 store_by_pieces_1 (&data
, align
);
2364 /* Callback routine for clear_by_pieces.
2365 Return const0_rtx unconditionally. */
2368 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2369 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2370 enum machine_mode mode ATTRIBUTE_UNUSED
)
2375 /* Subroutine of clear_by_pieces and store_by_pieces.
2376 Generate several move instructions to store LEN bytes of block TO. (A MEM
2377 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2380 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2381 unsigned int align ATTRIBUTE_UNUSED
)
2383 rtx to_addr
= XEXP (data
->to
, 0);
2384 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2385 enum machine_mode mode
= VOIDmode
, tmode
;
2386 enum insn_code icode
;
2389 data
->to_addr
= to_addr
;
2391 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2392 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2394 data
->explicit_inc_to
= 0;
2396 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2398 data
->offset
= data
->len
;
2400 /* If storing requires more than two move insns,
2401 copy addresses to registers (to make displacements shorter)
2402 and use post-increment if available. */
2403 if (!data
->autinc_to
2404 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2406 /* Determine the main mode we'll be using. */
2407 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2408 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2409 if (GET_MODE_SIZE (tmode
) < max_size
)
2412 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2414 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2415 data
->autinc_to
= 1;
2416 data
->explicit_inc_to
= -1;
2419 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2420 && ! data
->autinc_to
)
2422 data
->to_addr
= copy_addr_to_reg (to_addr
);
2423 data
->autinc_to
= 1;
2424 data
->explicit_inc_to
= 1;
2427 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2428 data
->to_addr
= copy_addr_to_reg (to_addr
);
2431 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2432 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2433 align
= GET_MODE_ALIGNMENT (tmode
);
2436 enum machine_mode xmode
;
2438 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2440 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2441 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2442 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2445 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2448 /* First store what we can in the largest integer mode, then go to
2449 successively smaller modes. */
2451 while (max_size
> 1)
2453 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2454 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2455 if (GET_MODE_SIZE (tmode
) < max_size
)
2458 if (mode
== VOIDmode
)
2461 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2462 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2463 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2465 max_size
= GET_MODE_SIZE (mode
);
2468 /* The code above should have handled everything. */
2469 gcc_assert (!data
->len
);
2472 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2473 with move instructions for mode MODE. GENFUN is the gen_... function
2474 to make a move insn for that mode. DATA has all the other info. */
2477 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2478 struct store_by_pieces
*data
)
2480 unsigned int size
= GET_MODE_SIZE (mode
);
2483 while (data
->len
>= size
)
2486 data
->offset
-= size
;
2488 if (data
->autinc_to
)
2489 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2492 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2494 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2495 emit_insn (gen_add2_insn (data
->to_addr
,
2496 GEN_INT (-(HOST_WIDE_INT
) size
)));
2498 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2499 emit_insn ((*genfun
) (to1
, cst
));
2501 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2502 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2504 if (! data
->reverse
)
2505 data
->offset
+= size
;
2511 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2512 its length in bytes. */
2515 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2516 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2518 enum machine_mode mode
= GET_MODE (object
);
2521 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2523 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2524 just move a zero. Otherwise, do this a piece at a time. */
2526 && GET_CODE (size
) == CONST_INT
2527 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2529 rtx zero
= CONST0_RTX (mode
);
2532 emit_move_insn (object
, zero
);
2536 if (COMPLEX_MODE_P (mode
))
2538 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2541 write_complex_part (object
, zero
, 0);
2542 write_complex_part (object
, zero
, 1);
2548 if (size
== const0_rtx
)
2551 align
= MEM_ALIGN (object
);
2553 if (GET_CODE (size
) == CONST_INT
2554 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2555 clear_by_pieces (object
, INTVAL (size
), align
);
2556 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2557 expected_align
, expected_size
))
2560 return set_storage_via_libcall (object
, size
, const0_rtx
,
2561 method
== BLOCK_OP_TAILCALL
);
2567 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2569 return clear_storage_hints (object
, size
, method
, 0, -1);
2573 /* A subroutine of clear_storage. Expand a call to memset.
2574 Return the return value of memset, 0 otherwise. */
2577 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2579 tree call_expr
, arg_list
, fn
, object_tree
, size_tree
, val_tree
;
2580 enum machine_mode size_mode
;
2583 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2584 place those into new pseudos into a VAR_DECL and use them later. */
2586 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2588 size_mode
= TYPE_MODE (sizetype
);
2589 size
= convert_to_mode (size_mode
, size
, 1);
2590 size
= copy_to_mode_reg (size_mode
, size
);
2592 /* It is incorrect to use the libcall calling conventions to call
2593 memset in this context. This could be a user call to memset and
2594 the user may wish to examine the return value from memset. For
2595 targets where libcalls and normal calls have different conventions
2596 for returning pointers, we could end up generating incorrect code. */
2598 object_tree
= make_tree (ptr_type_node
, object
);
2599 if (GET_CODE (val
) != CONST_INT
)
2600 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2601 size_tree
= make_tree (sizetype
, size
);
2602 val_tree
= make_tree (integer_type_node
, val
);
2604 fn
= clear_storage_libcall_fn (true);
2605 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
2606 arg_list
= tree_cons (NULL_TREE
, val_tree
, arg_list
);
2607 arg_list
= tree_cons (NULL_TREE
, object_tree
, arg_list
);
2609 /* Now we have to build up the CALL_EXPR itself. */
2610 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
2611 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
2612 call_expr
, arg_list
, NULL_TREE
);
2613 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2615 retval
= expand_normal (call_expr
);
2620 /* A subroutine of set_storage_via_libcall. Create the tree node
2621 for the function we use for block clears. The first time FOR_CALL
2622 is true, we call assemble_external. */
2624 static GTY(()) tree block_clear_fn
;
2627 init_block_clear_fn (const char *asmspec
)
2629 if (!block_clear_fn
)
2633 fn
= get_identifier ("memset");
2634 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2635 integer_type_node
, sizetype
,
2638 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2639 DECL_EXTERNAL (fn
) = 1;
2640 TREE_PUBLIC (fn
) = 1;
2641 DECL_ARTIFICIAL (fn
) = 1;
2642 TREE_NOTHROW (fn
) = 1;
2643 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2644 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2646 block_clear_fn
= fn
;
2650 set_user_assembler_name (block_clear_fn
, asmspec
);
2654 clear_storage_libcall_fn (int for_call
)
2656 static bool emitted_extern
;
2658 if (!block_clear_fn
)
2659 init_block_clear_fn (NULL
);
2661 if (for_call
&& !emitted_extern
)
2663 emitted_extern
= true;
2664 make_decl_rtl (block_clear_fn
);
2665 assemble_external (block_clear_fn
);
2668 return block_clear_fn
;
2671 /* Expand a setmem pattern; return true if successful. */
2674 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2675 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2677 /* Try the most limited insn first, because there's no point
2678 including more than one in the machine description unless
2679 the more limited one has some advantage. */
2681 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2682 enum machine_mode mode
;
2684 if (expected_align
< align
)
2685 expected_align
= align
;
2687 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2688 mode
= GET_MODE_WIDER_MODE (mode
))
2690 enum insn_code code
= setmem_optab
[(int) mode
];
2691 insn_operand_predicate_fn pred
;
2693 if (code
!= CODE_FOR_nothing
2694 /* We don't need MODE to be narrower than
2695 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2696 the mode mask, as it is returned by the macro, it will
2697 definitely be less than the actual mode mask. */
2698 && ((GET_CODE (size
) == CONST_INT
2699 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2700 <= (GET_MODE_MASK (mode
) >> 1)))
2701 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2702 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2703 || (*pred
) (object
, BLKmode
))
2704 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
2705 || (*pred
) (opalign
, VOIDmode
)))
2708 enum machine_mode char_mode
;
2709 rtx last
= get_last_insn ();
2712 opsize
= convert_to_mode (mode
, size
, 1);
2713 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2714 if (pred
!= 0 && ! (*pred
) (opsize
, mode
))
2715 opsize
= copy_to_mode_reg (mode
, opsize
);
2718 char_mode
= insn_data
[(int) code
].operand
[2].mode
;
2719 if (char_mode
!= VOIDmode
)
2721 opchar
= convert_to_mode (char_mode
, opchar
, 1);
2722 pred
= insn_data
[(int) code
].operand
[2].predicate
;
2723 if (pred
!= 0 && ! (*pred
) (opchar
, char_mode
))
2724 opchar
= copy_to_mode_reg (char_mode
, opchar
);
2727 if (insn_data
[(int) code
].n_operands
== 4)
2728 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
);
2730 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
,
2731 GEN_INT (expected_align
),
2732 GEN_INT (expected_size
));
2739 delete_insns_since (last
);
2747 /* Write to one of the components of the complex value CPLX. Write VAL to
2748 the real part if IMAG_P is false, and the imaginary part if its true. */
2751 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2753 enum machine_mode cmode
;
2754 enum machine_mode imode
;
2757 if (GET_CODE (cplx
) == CONCAT
)
2759 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2763 cmode
= GET_MODE (cplx
);
2764 imode
= GET_MODE_INNER (cmode
);
2765 ibitsize
= GET_MODE_BITSIZE (imode
);
2767 /* For MEMs simplify_gen_subreg may generate an invalid new address
2768 because, e.g., the original address is considered mode-dependent
2769 by the target, which restricts simplify_subreg from invoking
2770 adjust_address_nv. Instead of preparing fallback support for an
2771 invalid address, we call adjust_address_nv directly. */
2774 emit_move_insn (adjust_address_nv (cplx
, imode
,
2775 imag_p
? GET_MODE_SIZE (imode
) : 0),
2780 /* If the sub-object is at least word sized, then we know that subregging
2781 will work. This special case is important, since store_bit_field
2782 wants to operate on integer modes, and there's rarely an OImode to
2783 correspond to TCmode. */
2784 if (ibitsize
>= BITS_PER_WORD
2785 /* For hard regs we have exact predicates. Assume we can split
2786 the original object if it spans an even number of hard regs.
2787 This special case is important for SCmode on 64-bit platforms
2788 where the natural size of floating-point regs is 32-bit. */
2790 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2791 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2793 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2794 imag_p
? GET_MODE_SIZE (imode
) : 0);
2797 emit_move_insn (part
, val
);
2801 /* simplify_gen_subreg may fail for sub-word MEMs. */
2802 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2805 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2808 /* Extract one of the components of the complex value CPLX. Extract the
2809 real part if IMAG_P is false, and the imaginary part if it's true. */
2812 read_complex_part (rtx cplx
, bool imag_p
)
2814 enum machine_mode cmode
, imode
;
2817 if (GET_CODE (cplx
) == CONCAT
)
2818 return XEXP (cplx
, imag_p
);
2820 cmode
= GET_MODE (cplx
);
2821 imode
= GET_MODE_INNER (cmode
);
2822 ibitsize
= GET_MODE_BITSIZE (imode
);
2824 /* Special case reads from complex constants that got spilled to memory. */
2825 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2827 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2828 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2830 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2831 if (CONSTANT_CLASS_P (part
))
2832 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2836 /* For MEMs simplify_gen_subreg may generate an invalid new address
2837 because, e.g., the original address is considered mode-dependent
2838 by the target, which restricts simplify_subreg from invoking
2839 adjust_address_nv. Instead of preparing fallback support for an
2840 invalid address, we call adjust_address_nv directly. */
2842 return adjust_address_nv (cplx
, imode
,
2843 imag_p
? GET_MODE_SIZE (imode
) : 0);
2845 /* If the sub-object is at least word sized, then we know that subregging
2846 will work. This special case is important, since extract_bit_field
2847 wants to operate on integer modes, and there's rarely an OImode to
2848 correspond to TCmode. */
2849 if (ibitsize
>= BITS_PER_WORD
2850 /* For hard regs we have exact predicates. Assume we can split
2851 the original object if it spans an even number of hard regs.
2852 This special case is important for SCmode on 64-bit platforms
2853 where the natural size of floating-point regs is 32-bit. */
2855 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2856 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2858 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2859 imag_p
? GET_MODE_SIZE (imode
) : 0);
2863 /* simplify_gen_subreg may fail for sub-word MEMs. */
2864 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2867 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2868 true, NULL_RTX
, imode
, imode
);
2871 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2872 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2873 represented in NEW_MODE. If FORCE is true, this will never happen, as
2874 we'll force-create a SUBREG if needed. */
2877 emit_move_change_mode (enum machine_mode new_mode
,
2878 enum machine_mode old_mode
, rtx x
, bool force
)
2884 /* We don't have to worry about changing the address since the
2885 size in bytes is supposed to be the same. */
2886 if (reload_in_progress
)
2888 /* Copy the MEM to change the mode and move any
2889 substitutions from the old MEM to the new one. */
2890 ret
= adjust_address_nv (x
, new_mode
, 0);
2891 copy_replacements (x
, ret
);
2894 ret
= adjust_address (x
, new_mode
, 0);
2898 /* Note that we do want simplify_subreg's behavior of validating
2899 that the new mode is ok for a hard register. If we were to use
2900 simplify_gen_subreg, we would create the subreg, but would
2901 probably run into the target not being able to implement it. */
2902 /* Except, of course, when FORCE is true, when this is exactly what
2903 we want. Which is needed for CCmodes on some targets. */
2905 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2907 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2913 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2914 an integer mode of the same size as MODE. Returns the instruction
2915 emitted, or NULL if such a move could not be generated. */
2918 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
2920 enum machine_mode imode
;
2921 enum insn_code code
;
2923 /* There must exist a mode of the exact size we require. */
2924 imode
= int_mode_for_mode (mode
);
2925 if (imode
== BLKmode
)
2928 /* The target must support moves in this mode. */
2929 code
= mov_optab
->handlers
[imode
].insn_code
;
2930 if (code
== CODE_FOR_nothing
)
2933 x
= emit_move_change_mode (imode
, mode
, x
, force
);
2936 y
= emit_move_change_mode (imode
, mode
, y
, force
);
2939 return emit_insn (GEN_FCN (code
) (x
, y
));
2942 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2943 Return an equivalent MEM that does not use an auto-increment. */
2946 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
2948 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
2949 HOST_WIDE_INT adjust
;
2952 adjust
= GET_MODE_SIZE (mode
);
2953 #ifdef PUSH_ROUNDING
2954 adjust
= PUSH_ROUNDING (adjust
);
2956 if (code
== PRE_DEC
|| code
== POST_DEC
)
2958 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
2960 rtx expr
= XEXP (XEXP (x
, 0), 1);
2963 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
2964 gcc_assert (GET_CODE (XEXP (expr
, 1)) == CONST_INT
);
2965 val
= INTVAL (XEXP (expr
, 1));
2966 if (GET_CODE (expr
) == MINUS
)
2968 gcc_assert (adjust
== val
|| adjust
== -val
);
2972 /* Do not use anti_adjust_stack, since we don't want to update
2973 stack_pointer_delta. */
2974 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
2975 GEN_INT (adjust
), stack_pointer_rtx
,
2976 0, OPTAB_LIB_WIDEN
);
2977 if (temp
!= stack_pointer_rtx
)
2978 emit_move_insn (stack_pointer_rtx
, temp
);
2985 temp
= stack_pointer_rtx
;
2990 temp
= plus_constant (stack_pointer_rtx
, -adjust
);
2996 return replace_equiv_address (x
, temp
);
2999 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3000 X is known to satisfy push_operand, and MODE is known to be complex.
3001 Returns the last instruction emitted. */
3004 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3006 enum machine_mode submode
= GET_MODE_INNER (mode
);
3009 #ifdef PUSH_ROUNDING
3010 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3012 /* In case we output to the stack, but the size is smaller than the
3013 machine can push exactly, we need to use move instructions. */
3014 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3016 x
= emit_move_resolve_push (mode
, x
);
3017 return emit_move_insn (x
, y
);
3021 /* Note that the real part always precedes the imag part in memory
3022 regardless of machine's endianness. */
3023 switch (GET_CODE (XEXP (x
, 0)))
3037 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3038 read_complex_part (y
, imag_first
));
3039 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3040 read_complex_part (y
, !imag_first
));
3043 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3044 MODE is known to be complex. Returns the last instruction emitted. */
3047 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3051 /* Need to take special care for pushes, to maintain proper ordering
3052 of the data, and possibly extra padding. */
3053 if (push_operand (x
, mode
))
3054 return emit_move_complex_push (mode
, x
, y
);
3056 /* See if we can coerce the target into moving both values at once. */
3058 /* Move floating point as parts. */
3059 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3060 && mov_optab
->handlers
[GET_MODE_INNER (mode
)].insn_code
!= CODE_FOR_nothing
)
3062 /* Not possible if the values are inherently not adjacent. */
3063 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3065 /* Is possible if both are registers (or subregs of registers). */
3066 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3068 /* If one of the operands is a memory, and alignment constraints
3069 are friendly enough, we may be able to do combined memory operations.
3070 We do not attempt this if Y is a constant because that combination is
3071 usually better with the by-parts thing below. */
3072 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3073 && (!STRICT_ALIGNMENT
3074 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3083 /* For memory to memory moves, optimal behavior can be had with the
3084 existing block move logic. */
3085 if (MEM_P (x
) && MEM_P (y
))
3087 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3088 BLOCK_OP_NO_LIBCALL
);
3089 return get_last_insn ();
3092 ret
= emit_move_via_integer (mode
, x
, y
, true);
3097 /* Show the output dies here. This is necessary for SUBREGs
3098 of pseudos since we cannot track their lifetimes correctly;
3099 hard regs shouldn't appear here except as return values. */
3100 if (!reload_completed
&& !reload_in_progress
3101 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3102 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3104 write_complex_part (x
, read_complex_part (y
, false), false);
3105 write_complex_part (x
, read_complex_part (y
, true), true);
3106 return get_last_insn ();
3109 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3110 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3113 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3117 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3120 enum insn_code code
= mov_optab
->handlers
[CCmode
].insn_code
;
3121 if (code
!= CODE_FOR_nothing
)
3123 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3124 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3125 return emit_insn (GEN_FCN (code
) (x
, y
));
3129 /* Otherwise, find the MODE_INT mode of the same width. */
3130 ret
= emit_move_via_integer (mode
, x
, y
, false);
3131 gcc_assert (ret
!= NULL
);
3135 /* Return true if word I of OP lies entirely in the
3136 undefined bits of a paradoxical subreg. */
3139 undefined_operand_subword_p (rtx op
, int i
)
3141 enum machine_mode innermode
, innermostmode
;
3143 if (GET_CODE (op
) != SUBREG
)
3145 innermode
= GET_MODE (op
);
3146 innermostmode
= GET_MODE (SUBREG_REG (op
));
3147 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3148 /* The SUBREG_BYTE represents offset, as if the value were stored in
3149 memory, except for a paradoxical subreg where we define
3150 SUBREG_BYTE to be 0; undo this exception as in
3152 if (SUBREG_BYTE (op
) == 0
3153 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3155 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3156 if (WORDS_BIG_ENDIAN
)
3157 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3158 if (BYTES_BIG_ENDIAN
)
3159 offset
+= difference
% UNITS_PER_WORD
;
3161 if (offset
>= GET_MODE_SIZE (innermostmode
)
3162 || offset
<= -GET_MODE_SIZE (word_mode
))
3167 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3168 MODE is any multi-word or full-word mode that lacks a move_insn
3169 pattern. Note that you will get better code if you define such
3170 patterns, even if they must turn into multiple assembler instructions. */
3173 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3180 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3182 /* If X is a push on the stack, do the push now and replace
3183 X with a reference to the stack pointer. */
3184 if (push_operand (x
, mode
))
3185 x
= emit_move_resolve_push (mode
, x
);
3187 /* If we are in reload, see if either operand is a MEM whose address
3188 is scheduled for replacement. */
3189 if (reload_in_progress
&& MEM_P (x
)
3190 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3191 x
= replace_equiv_address_nv (x
, inner
);
3192 if (reload_in_progress
&& MEM_P (y
)
3193 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3194 y
= replace_equiv_address_nv (y
, inner
);
3198 need_clobber
= false;
3200 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3203 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3206 /* Do not generate code for a move if it would come entirely
3207 from the undefined bits of a paradoxical subreg. */
3208 if (undefined_operand_subword_p (y
, i
))
3211 ypart
= operand_subword (y
, i
, 1, mode
);
3213 /* If we can't get a part of Y, put Y into memory if it is a
3214 constant. Otherwise, force it into a register. Then we must
3215 be able to get a part of Y. */
3216 if (ypart
== 0 && CONSTANT_P (y
))
3218 y
= use_anchored_address (force_const_mem (mode
, y
));
3219 ypart
= operand_subword (y
, i
, 1, mode
);
3221 else if (ypart
== 0)
3222 ypart
= operand_subword_force (y
, i
, mode
);
3224 gcc_assert (xpart
&& ypart
);
3226 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3228 last_insn
= emit_move_insn (xpart
, ypart
);
3234 /* Show the output dies here. This is necessary for SUBREGs
3235 of pseudos since we cannot track their lifetimes correctly;
3236 hard regs shouldn't appear here except as return values.
3237 We never want to emit such a clobber after reload. */
3239 && ! (reload_in_progress
|| reload_completed
)
3240 && need_clobber
!= 0)
3241 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3248 /* Low level part of emit_move_insn.
3249 Called just like emit_move_insn, but assumes X and Y
3250 are basically valid. */
3253 emit_move_insn_1 (rtx x
, rtx y
)
3255 enum machine_mode mode
= GET_MODE (x
);
3256 enum insn_code code
;
3258 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3260 code
= mov_optab
->handlers
[mode
].insn_code
;
3261 if (code
!= CODE_FOR_nothing
)
3262 return emit_insn (GEN_FCN (code
) (x
, y
));
3264 /* Expand complex moves by moving real part and imag part. */
3265 if (COMPLEX_MODE_P (mode
))
3266 return emit_move_complex (mode
, x
, y
);
3268 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
)
3270 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3272 /* If we can't find an integer mode, use multi words. */
3276 return emit_move_multi_word (mode
, x
, y
);
3279 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3280 return emit_move_ccmode (mode
, x
, y
);
3282 /* Try using a move pattern for the corresponding integer mode. This is
3283 only safe when simplify_subreg can convert MODE constants into integer
3284 constants. At present, it can only do this reliably if the value
3285 fits within a HOST_WIDE_INT. */
3286 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3288 rtx ret
= emit_move_via_integer (mode
, x
, y
, false);
3293 return emit_move_multi_word (mode
, x
, y
);
3296 /* Generate code to copy Y into X.
3297 Both Y and X must have the same mode, except that
3298 Y can be a constant with VOIDmode.
3299 This mode cannot be BLKmode; use emit_block_move for that.
3301 Return the last instruction emitted. */
3304 emit_move_insn (rtx x
, rtx y
)
3306 enum machine_mode mode
= GET_MODE (x
);
3307 rtx y_cst
= NULL_RTX
;
3310 gcc_assert (mode
!= BLKmode
3311 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3316 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3317 && (last_insn
= compress_float_constant (x
, y
)))
3322 if (!LEGITIMATE_CONSTANT_P (y
))
3324 y
= force_const_mem (mode
, y
);
3326 /* If the target's cannot_force_const_mem prevented the spill,
3327 assume that the target's move expanders will also take care
3328 of the non-legitimate constant. */
3332 y
= use_anchored_address (y
);
3336 /* If X or Y are memory references, verify that their addresses are valid
3339 && ((! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3340 && ! push_operand (x
, GET_MODE (x
)))
3342 && CONSTANT_ADDRESS_P (XEXP (x
, 0)))))
3343 x
= validize_mem (x
);
3346 && (! memory_address_p (GET_MODE (y
), XEXP (y
, 0))
3348 && CONSTANT_ADDRESS_P (XEXP (y
, 0)))))
3349 y
= validize_mem (y
);
3351 gcc_assert (mode
!= BLKmode
);
3353 last_insn
= emit_move_insn_1 (x
, y
);
3355 if (y_cst
&& REG_P (x
)
3356 && (set
= single_set (last_insn
)) != NULL_RTX
3357 && SET_DEST (set
) == x
3358 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3359 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3364 /* If Y is representable exactly in a narrower mode, and the target can
3365 perform the extension directly from constant or memory, then emit the
3366 move as an extension. */
3369 compress_float_constant (rtx x
, rtx y
)
3371 enum machine_mode dstmode
= GET_MODE (x
);
3372 enum machine_mode orig_srcmode
= GET_MODE (y
);
3373 enum machine_mode srcmode
;
3375 int oldcost
, newcost
;
3377 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3379 if (LEGITIMATE_CONSTANT_P (y
))
3380 oldcost
= rtx_cost (y
, SET
);
3382 oldcost
= rtx_cost (force_const_mem (dstmode
, y
), SET
);
3384 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3385 srcmode
!= orig_srcmode
;
3386 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3389 rtx trunc_y
, last_insn
;
3391 /* Skip if the target can't extend this way. */
3392 ic
= can_extend_p (dstmode
, srcmode
, 0);
3393 if (ic
== CODE_FOR_nothing
)
3396 /* Skip if the narrowed value isn't exact. */
3397 if (! exact_real_truncate (srcmode
, &r
))
3400 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3402 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3404 /* Skip if the target needs extra instructions to perform
3406 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3408 /* This is valid, but may not be cheaper than the original. */
3409 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
);
3410 if (oldcost
< newcost
)
3413 else if (float_extend_from_mem
[dstmode
][srcmode
])
3415 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3416 /* This is valid, but may not be cheaper than the original. */
3417 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
);
3418 if (oldcost
< newcost
)
3420 trunc_y
= validize_mem (trunc_y
);
3425 /* For CSE's benefit, force the compressed constant pool entry
3426 into a new pseudo. This constant may be used in different modes,
3427 and if not, combine will put things back together for us. */
3428 trunc_y
= force_reg (srcmode
, trunc_y
);
3429 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3430 last_insn
= get_last_insn ();
3433 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3441 /* Pushing data onto the stack. */
3443 /* Push a block of length SIZE (perhaps variable)
3444 and return an rtx to address the beginning of the block.
3445 The value may be virtual_outgoing_args_rtx.
3447 EXTRA is the number of bytes of padding to push in addition to SIZE.
3448 BELOW nonzero means this padding comes at low addresses;
3449 otherwise, the padding comes at high addresses. */
3452 push_block (rtx size
, int extra
, int below
)
3456 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3457 if (CONSTANT_P (size
))
3458 anti_adjust_stack (plus_constant (size
, extra
));
3459 else if (REG_P (size
) && extra
== 0)
3460 anti_adjust_stack (size
);
3463 temp
= copy_to_mode_reg (Pmode
, size
);
3465 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3466 temp
, 0, OPTAB_LIB_WIDEN
);
3467 anti_adjust_stack (temp
);
3470 #ifndef STACK_GROWS_DOWNWARD
3476 temp
= virtual_outgoing_args_rtx
;
3477 if (extra
!= 0 && below
)
3478 temp
= plus_constant (temp
, extra
);
3482 if (GET_CODE (size
) == CONST_INT
)
3483 temp
= plus_constant (virtual_outgoing_args_rtx
,
3484 -INTVAL (size
) - (below
? 0 : extra
));
3485 else if (extra
!= 0 && !below
)
3486 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3487 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3489 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3490 negate_rtx (Pmode
, size
));
3493 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3496 #ifdef PUSH_ROUNDING
3498 /* Emit single push insn. */
3501 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3504 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3506 enum insn_code icode
;
3507 insn_operand_predicate_fn pred
;
3509 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3510 /* If there is push pattern, use it. Otherwise try old way of throwing
3511 MEM representing push operation to move expander. */
3512 icode
= push_optab
->handlers
[(int) mode
].insn_code
;
3513 if (icode
!= CODE_FOR_nothing
)
3515 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3516 && !((*pred
) (x
, mode
))))
3517 x
= force_reg (mode
, x
);
3518 emit_insn (GEN_FCN (icode
) (x
));
3521 if (GET_MODE_SIZE (mode
) == rounded_size
)
3522 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3523 /* If we are to pad downward, adjust the stack pointer first and
3524 then store X into the stack location using an offset. This is
3525 because emit_move_insn does not know how to pad; it does not have
3527 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3529 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3530 HOST_WIDE_INT offset
;
3532 emit_move_insn (stack_pointer_rtx
,
3533 expand_binop (Pmode
,
3534 #ifdef STACK_GROWS_DOWNWARD
3540 GEN_INT (rounded_size
),
3541 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3543 offset
= (HOST_WIDE_INT
) padding_size
;
3544 #ifdef STACK_GROWS_DOWNWARD
3545 if (STACK_PUSH_CODE
== POST_DEC
)
3546 /* We have already decremented the stack pointer, so get the
3548 offset
+= (HOST_WIDE_INT
) rounded_size
;
3550 if (STACK_PUSH_CODE
== POST_INC
)
3551 /* We have already incremented the stack pointer, so get the
3553 offset
-= (HOST_WIDE_INT
) rounded_size
;
3555 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3559 #ifdef STACK_GROWS_DOWNWARD
3560 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3561 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3562 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3564 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3565 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3566 GEN_INT (rounded_size
));
3568 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3571 dest
= gen_rtx_MEM (mode
, dest_addr
);
3575 set_mem_attributes (dest
, type
, 1);
3577 if (flag_optimize_sibling_calls
)
3578 /* Function incoming arguments may overlap with sibling call
3579 outgoing arguments and we cannot allow reordering of reads
3580 from function arguments with stores to outgoing arguments
3581 of sibling calls. */
3582 set_mem_alias_set (dest
, 0);
3584 emit_move_insn (dest
, x
);
3588 /* Generate code to push X onto the stack, assuming it has mode MODE and
3590 MODE is redundant except when X is a CONST_INT (since they don't
3592 SIZE is an rtx for the size of data to be copied (in bytes),
3593 needed only if X is BLKmode.
3595 ALIGN (in bits) is maximum alignment we can assume.
3597 If PARTIAL and REG are both nonzero, then copy that many of the first
3598 bytes of X into registers starting with REG, and push the rest of X.
3599 The amount of space pushed is decreased by PARTIAL bytes.
3600 REG must be a hard register in this case.
3601 If REG is zero but PARTIAL is not, take any all others actions for an
3602 argument partially in registers, but do not actually load any
3605 EXTRA is the amount in bytes of extra space to leave next to this arg.
3606 This is ignored if an argument block has already been allocated.
3608 On a machine that lacks real push insns, ARGS_ADDR is the address of
3609 the bottom of the argument block for this call. We use indexing off there
3610 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3611 argument block has not been preallocated.
3613 ARGS_SO_FAR is the size of args previously pushed for this call.
3615 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3616 for arguments passed in registers. If nonzero, it will be the number
3617 of bytes required. */
3620 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3621 unsigned int align
, int partial
, rtx reg
, int extra
,
3622 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3626 enum direction stack_direction
3627 #ifdef STACK_GROWS_DOWNWARD
3633 /* Decide where to pad the argument: `downward' for below,
3634 `upward' for above, or `none' for don't pad it.
3635 Default is below for small data on big-endian machines; else above. */
3636 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3638 /* Invert direction if stack is post-decrement.
3640 if (STACK_PUSH_CODE
== POST_DEC
)
3641 if (where_pad
!= none
)
3642 where_pad
= (where_pad
== downward
? upward
: downward
);
3647 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
3649 /* Copy a block into the stack, entirely or partially. */
3656 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3657 used
= partial
- offset
;
3659 if (mode
!= BLKmode
)
3661 /* A value is to be stored in an insufficiently aligned
3662 stack slot; copy via a suitably aligned slot if
3664 size
= GEN_INT (GET_MODE_SIZE (mode
));
3665 if (!MEM_P (xinner
))
3667 temp
= assign_temp (type
, 0, 1, 1);
3668 emit_move_insn (temp
, xinner
);
3675 /* USED is now the # of bytes we need not copy to the stack
3676 because registers will take care of them. */
3679 xinner
= adjust_address (xinner
, BLKmode
, used
);
3681 /* If the partial register-part of the arg counts in its stack size,
3682 skip the part of stack space corresponding to the registers.
3683 Otherwise, start copying to the beginning of the stack space,
3684 by setting SKIP to 0. */
3685 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3687 #ifdef PUSH_ROUNDING
3688 /* Do it with several push insns if that doesn't take lots of insns
3689 and if there is no difficulty with push insns that skip bytes
3690 on the stack for alignment purposes. */
3693 && GET_CODE (size
) == CONST_INT
3695 && MEM_ALIGN (xinner
) >= align
3696 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3697 /* Here we avoid the case of a structure whose weak alignment
3698 forces many pushes of a small amount of data,
3699 and such small pushes do rounding that causes trouble. */
3700 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3701 || align
>= BIGGEST_ALIGNMENT
3702 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3703 == (align
/ BITS_PER_UNIT
)))
3704 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3706 /* Push padding now if padding above and stack grows down,
3707 or if padding below and stack grows up.
3708 But if space already allocated, this has already been done. */
3709 if (extra
&& args_addr
== 0
3710 && where_pad
!= none
&& where_pad
!= stack_direction
)
3711 anti_adjust_stack (GEN_INT (extra
));
3713 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3716 #endif /* PUSH_ROUNDING */
3720 /* Otherwise make space on the stack and copy the data
3721 to the address of that space. */
3723 /* Deduct words put into registers from the size we must copy. */
3726 if (GET_CODE (size
) == CONST_INT
)
3727 size
= GEN_INT (INTVAL (size
) - used
);
3729 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3730 GEN_INT (used
), NULL_RTX
, 0,
3734 /* Get the address of the stack space.
3735 In this case, we do not deal with EXTRA separately.
3736 A single stack adjust will do. */
3739 temp
= push_block (size
, extra
, where_pad
== downward
);
3742 else if (GET_CODE (args_so_far
) == CONST_INT
)
3743 temp
= memory_address (BLKmode
,
3744 plus_constant (args_addr
,
3745 skip
+ INTVAL (args_so_far
)));
3747 temp
= memory_address (BLKmode
,
3748 plus_constant (gen_rtx_PLUS (Pmode
,
3753 if (!ACCUMULATE_OUTGOING_ARGS
)
3755 /* If the source is referenced relative to the stack pointer,
3756 copy it to another register to stabilize it. We do not need
3757 to do this if we know that we won't be changing sp. */
3759 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3760 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3761 temp
= copy_to_reg (temp
);
3764 target
= gen_rtx_MEM (BLKmode
, temp
);
3766 /* We do *not* set_mem_attributes here, because incoming arguments
3767 may overlap with sibling call outgoing arguments and we cannot
3768 allow reordering of reads from function arguments with stores
3769 to outgoing arguments of sibling calls. We do, however, want
3770 to record the alignment of the stack slot. */
3771 /* ALIGN may well be better aligned than TYPE, e.g. due to
3772 PARM_BOUNDARY. Assume the caller isn't lying. */
3773 set_mem_align (target
, align
);
3775 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3778 else if (partial
> 0)
3780 /* Scalar partly in registers. */
3782 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3785 /* # bytes of start of argument
3786 that we must make space for but need not store. */
3787 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3788 int args_offset
= INTVAL (args_so_far
);
3791 /* Push padding now if padding above and stack grows down,
3792 or if padding below and stack grows up.
3793 But if space already allocated, this has already been done. */
3794 if (extra
&& args_addr
== 0
3795 && where_pad
!= none
&& where_pad
!= stack_direction
)
3796 anti_adjust_stack (GEN_INT (extra
));
3798 /* If we make space by pushing it, we might as well push
3799 the real data. Otherwise, we can leave OFFSET nonzero
3800 and leave the space uninitialized. */
3804 /* Now NOT_STACK gets the number of words that we don't need to
3805 allocate on the stack. Convert OFFSET to words too. */
3806 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3807 offset
/= UNITS_PER_WORD
;
3809 /* If the partial register-part of the arg counts in its stack size,
3810 skip the part of stack space corresponding to the registers.
3811 Otherwise, start copying to the beginning of the stack space,
3812 by setting SKIP to 0. */
3813 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3815 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3816 x
= validize_mem (force_const_mem (mode
, x
));
3818 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3819 SUBREGs of such registers are not allowed. */
3820 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3821 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3822 x
= copy_to_reg (x
);
3824 /* Loop over all the words allocated on the stack for this arg. */
3825 /* We can do it by words, because any scalar bigger than a word
3826 has a size a multiple of a word. */
3827 #ifndef PUSH_ARGS_REVERSED
3828 for (i
= not_stack
; i
< size
; i
++)
3830 for (i
= size
- 1; i
>= not_stack
; i
--)
3832 if (i
>= not_stack
+ offset
)
3833 emit_push_insn (operand_subword_force (x
, i
, mode
),
3834 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3836 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3838 reg_parm_stack_space
, alignment_pad
);
3845 /* Push padding now if padding above and stack grows down,
3846 or if padding below and stack grows up.
3847 But if space already allocated, this has already been done. */
3848 if (extra
&& args_addr
== 0
3849 && where_pad
!= none
&& where_pad
!= stack_direction
)
3850 anti_adjust_stack (GEN_INT (extra
));
3852 #ifdef PUSH_ROUNDING
3853 if (args_addr
== 0 && PUSH_ARGS
)
3854 emit_single_push_insn (mode
, x
, type
);
3858 if (GET_CODE (args_so_far
) == CONST_INT
)
3860 = memory_address (mode
,
3861 plus_constant (args_addr
,
3862 INTVAL (args_so_far
)));
3864 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3866 dest
= gen_rtx_MEM (mode
, addr
);
3868 /* We do *not* set_mem_attributes here, because incoming arguments
3869 may overlap with sibling call outgoing arguments and we cannot
3870 allow reordering of reads from function arguments with stores
3871 to outgoing arguments of sibling calls. We do, however, want
3872 to record the alignment of the stack slot. */
3873 /* ALIGN may well be better aligned than TYPE, e.g. due to
3874 PARM_BOUNDARY. Assume the caller isn't lying. */
3875 set_mem_align (dest
, align
);
3877 emit_move_insn (dest
, x
);
3881 /* If part should go in registers, copy that part
3882 into the appropriate registers. Do this now, at the end,
3883 since mem-to-mem copies above may do function calls. */
3884 if (partial
> 0 && reg
!= 0)
3886 /* Handle calls that pass values in multiple non-contiguous locations.
3887 The Irix 6 ABI has examples of this. */
3888 if (GET_CODE (reg
) == PARALLEL
)
3889 emit_group_load (reg
, x
, type
, -1);
3892 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3893 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3897 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3898 anti_adjust_stack (GEN_INT (extra
));
3900 if (alignment_pad
&& args_addr
== 0)
3901 anti_adjust_stack (alignment_pad
);
3904 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3908 get_subtarget (rtx x
)
3912 /* Only registers can be subtargets. */
3914 /* Don't use hard regs to avoid extending their life. */
3915 || REGNO (x
) < FIRST_PSEUDO_REGISTER
3919 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3920 FIELD is a bitfield. Returns true if the optimization was successful,
3921 and there's nothing else to do. */
3924 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
3925 unsigned HOST_WIDE_INT bitpos
,
3926 enum machine_mode mode1
, rtx str_rtx
,
3929 enum machine_mode str_mode
= GET_MODE (str_rtx
);
3930 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3935 if (mode1
!= VOIDmode
3936 || bitsize
>= BITS_PER_WORD
3937 || str_bitsize
> BITS_PER_WORD
3938 || TREE_SIDE_EFFECTS (to
)
3939 || TREE_THIS_VOLATILE (to
))
3943 if (!BINARY_CLASS_P (src
)
3944 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
3947 op0
= TREE_OPERAND (src
, 0);
3948 op1
= TREE_OPERAND (src
, 1);
3951 if (!operand_equal_p (to
, op0
, 0))
3954 if (MEM_P (str_rtx
))
3956 unsigned HOST_WIDE_INT offset1
;
3958 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
3959 str_mode
= word_mode
;
3960 str_mode
= get_best_mode (bitsize
, bitpos
,
3961 MEM_ALIGN (str_rtx
), str_mode
, 0);
3962 if (str_mode
== VOIDmode
)
3964 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3967 bitpos
%= str_bitsize
;
3968 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
3969 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
3971 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
3974 /* If the bit field covers the whole REG/MEM, store_field
3975 will likely generate better code. */
3976 if (bitsize
>= str_bitsize
)
3979 /* We can't handle fields split across multiple entities. */
3980 if (bitpos
+ bitsize
> str_bitsize
)
3983 if (BYTES_BIG_ENDIAN
)
3984 bitpos
= str_bitsize
- bitpos
- bitsize
;
3986 switch (TREE_CODE (src
))
3990 /* For now, just optimize the case of the topmost bitfield
3991 where we don't need to do any masking and also
3992 1 bit bitfields where xor can be used.
3993 We might win by one instruction for the other bitfields
3994 too if insv/extv instructions aren't used, so that
3995 can be added later. */
3996 if (bitpos
+ bitsize
!= str_bitsize
3997 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4000 value
= expand_expr (op1
, NULL_RTX
, str_mode
, 0);
4001 value
= convert_modes (str_mode
,
4002 TYPE_MODE (TREE_TYPE (op1
)), value
,
4003 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4005 /* We may be accessing data outside the field, which means
4006 we can alias adjacent data. */
4007 if (MEM_P (str_rtx
))
4009 str_rtx
= shallow_copy_rtx (str_rtx
);
4010 set_mem_alias_set (str_rtx
, 0);
4011 set_mem_expr (str_rtx
, 0);
4014 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
4015 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4017 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4020 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
4021 build_int_cst (NULL_TREE
, bitpos
),
4023 result
= expand_binop (str_mode
, binop
, str_rtx
,
4024 value
, str_rtx
, 1, OPTAB_WIDEN
);
4025 if (result
!= str_rtx
)
4026 emit_move_insn (str_rtx
, result
);
4031 if (TREE_CODE (op1
) != INTEGER_CST
)
4033 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), 0);
4034 value
= convert_modes (GET_MODE (str_rtx
),
4035 TYPE_MODE (TREE_TYPE (op1
)), value
,
4036 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4038 /* We may be accessing data outside the field, which means
4039 we can alias adjacent data. */
4040 if (MEM_P (str_rtx
))
4042 str_rtx
= shallow_copy_rtx (str_rtx
);
4043 set_mem_alias_set (str_rtx
, 0);
4044 set_mem_expr (str_rtx
, 0);
4047 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4048 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
4050 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
4052 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
4055 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
4056 build_int_cst (NULL_TREE
, bitpos
),
4058 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
4059 value
, str_rtx
, 1, OPTAB_WIDEN
);
4060 if (result
!= str_rtx
)
4061 emit_move_insn (str_rtx
, result
);
4072 /* Expand an assignment that stores the value of FROM into TO. */
4075 expand_assignment (tree to
, tree from
)
4080 /* Don't crash if the lhs of the assignment was erroneous. */
4081 if (TREE_CODE (to
) == ERROR_MARK
)
4083 result
= expand_normal (from
);
4087 /* Optimize away no-op moves without side-effects. */
4088 if (operand_equal_p (to
, from
, 0))
4091 /* Assignment of a structure component needs special treatment
4092 if the structure component's rtx is not simply a MEM.
4093 Assignment of an array element at a constant index, and assignment of
4094 an array element in an unaligned packed structure field, has the same
4096 if (handled_component_p (to
)
4097 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4099 enum machine_mode mode1
;
4100 HOST_WIDE_INT bitsize
, bitpos
;
4107 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4108 &unsignedp
, &volatilep
, true);
4110 /* If we are going to use store_bit_field and extract_bit_field,
4111 make sure to_rtx will be safe for multiple use. */
4113 to_rtx
= expand_normal (tem
);
4119 if (!MEM_P (to_rtx
))
4121 /* We can get constant negative offsets into arrays with broken
4122 user code. Translate this to a trap instead of ICEing. */
4123 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4124 expand_builtin_trap ();
4125 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4128 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4129 #ifdef POINTERS_EXTEND_UNSIGNED
4130 if (GET_MODE (offset_rtx
) != Pmode
)
4131 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4133 if (GET_MODE (offset_rtx
) != ptr_mode
)
4134 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4137 /* A constant address in TO_RTX can have VOIDmode, we must not try
4138 to call force_reg for that case. Avoid that case. */
4140 && GET_MODE (to_rtx
) == BLKmode
4141 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4143 && (bitpos
% bitsize
) == 0
4144 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4145 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4147 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4151 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4152 highest_pow2_factor_for_target (to
,
4156 /* Handle expand_expr of a complex value returning a CONCAT. */
4157 if (GET_CODE (to_rtx
) == CONCAT
)
4159 if (TREE_CODE (TREE_TYPE (from
)) == COMPLEX_TYPE
)
4161 gcc_assert (bitpos
== 0);
4162 result
= store_expr (from
, to_rtx
, false);
4166 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
4167 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false);
4174 /* If the field is at offset zero, we could have been given the
4175 DECL_RTX of the parent struct. Don't munge it. */
4176 to_rtx
= shallow_copy_rtx (to_rtx
);
4178 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4180 /* Deal with volatile and readonly fields. The former is only
4181 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4183 MEM_VOLATILE_P (to_rtx
) = 1;
4184 if (component_uses_parent_alias_set (to
))
4185 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4188 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
4192 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
4193 TREE_TYPE (tem
), get_alias_set (to
));
4197 preserve_temp_slots (result
);
4203 /* If the rhs is a function call and its value is not an aggregate,
4204 call the function before we start to compute the lhs.
4205 This is needed for correct code for cases such as
4206 val = setjmp (buf) on machines where reference to val
4207 requires loading up part of an address in a separate insn.
4209 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4210 since it might be a promoted variable where the zero- or sign- extension
4211 needs to be done. Handling this in the normal way is safe because no
4212 computation is done before the call. */
4213 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4214 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4215 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
4216 && REG_P (DECL_RTL (to
))))
4221 value
= expand_normal (from
);
4223 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4225 /* Handle calls that return values in multiple non-contiguous locations.
4226 The Irix 6 ABI has examples of this. */
4227 if (GET_CODE (to_rtx
) == PARALLEL
)
4228 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4229 int_size_in_bytes (TREE_TYPE (from
)));
4230 else if (GET_MODE (to_rtx
) == BLKmode
)
4231 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4234 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4235 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
4236 emit_move_insn (to_rtx
, value
);
4238 preserve_temp_slots (to_rtx
);
4244 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4245 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4248 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4250 /* Don't move directly into a return register. */
4251 if (TREE_CODE (to
) == RESULT_DECL
4252 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4257 temp
= expand_expr (from
, 0, GET_MODE (to_rtx
), 0);
4259 if (GET_CODE (to_rtx
) == PARALLEL
)
4260 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4261 int_size_in_bytes (TREE_TYPE (from
)));
4263 emit_move_insn (to_rtx
, temp
);
4265 preserve_temp_slots (to_rtx
);
4271 /* In case we are returning the contents of an object which overlaps
4272 the place the value is being stored, use a safe function when copying
4273 a value through a pointer into a structure value return block. */
4274 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
4275 && current_function_returns_struct
4276 && !current_function_returns_pcc_struct
)
4281 size
= expr_size (from
);
4282 from_rtx
= expand_normal (from
);
4284 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4285 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4286 XEXP (from_rtx
, 0), Pmode
,
4287 convert_to_mode (TYPE_MODE (sizetype
),
4288 size
, TYPE_UNSIGNED (sizetype
)),
4289 TYPE_MODE (sizetype
));
4291 preserve_temp_slots (to_rtx
);
4297 /* Compute FROM and store the value in the rtx we got. */
4300 result
= store_expr (from
, to_rtx
, 0);
4301 preserve_temp_slots (result
);
4307 /* Generate code for computing expression EXP,
4308 and storing the value into TARGET.
4310 If the mode is BLKmode then we may return TARGET itself.
4311 It turns out that in BLKmode it doesn't cause a problem.
4312 because C has no operators that could combine two different
4313 assignments into the same BLKmode object with different values
4314 with no sequence point. Will other languages need this to
4317 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4318 stack, and block moves may need to be treated specially. */
4321 store_expr (tree exp
, rtx target
, int call_param_p
)
4324 rtx alt_rtl
= NULL_RTX
;
4325 int dont_return_target
= 0;
4327 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4329 /* C++ can generate ?: expressions with a throw expression in one
4330 branch and an rvalue in the other. Here, we resolve attempts to
4331 store the throw expression's nonexistent result. */
4332 gcc_assert (!call_param_p
);
4333 expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
4336 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4338 /* Perform first part of compound expression, then assign from second
4340 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4341 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4342 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4344 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4346 /* For conditional expression, get safe form of the target. Then
4347 test the condition, doing the appropriate assignment on either
4348 side. This avoids the creation of unnecessary temporaries.
4349 For non-BLKmode, it is more efficient not to do this. */
4351 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4353 do_pending_stack_adjust ();
4355 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4356 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4357 emit_jump_insn (gen_jump (lab2
));
4360 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
);
4366 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4367 /* If this is a scalar in a register that is stored in a wider mode
4368 than the declared mode, compute the result into its declared mode
4369 and then convert to the wider mode. Our value is the computed
4372 rtx inner_target
= 0;
4374 /* We can do the conversion inside EXP, which will often result
4375 in some optimizations. Do the conversion in two steps: first
4376 change the signedness, if needed, then the extend. But don't
4377 do this if the type of EXP is a subtype of something else
4378 since then the conversion might involve more than just
4379 converting modes. */
4380 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4381 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4382 && (!lang_hooks
.reduce_bit_field_operations
4383 || (GET_MODE_PRECISION (GET_MODE (target
))
4384 == TYPE_PRECISION (TREE_TYPE (exp
)))))
4386 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4387 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4389 (lang_hooks
.types
.signed_or_unsigned_type
4390 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)), exp
);
4392 exp
= fold_convert (lang_hooks
.types
.type_for_mode
4393 (GET_MODE (SUBREG_REG (target
)),
4394 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4397 inner_target
= SUBREG_REG (target
);
4400 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4401 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4403 /* If TEMP is a VOIDmode constant, use convert_modes to make
4404 sure that we properly convert it. */
4405 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4407 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4408 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4409 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4410 GET_MODE (target
), temp
,
4411 SUBREG_PROMOTED_UNSIGNED_P (target
));
4414 convert_move (SUBREG_REG (target
), temp
,
4415 SUBREG_PROMOTED_UNSIGNED_P (target
));
4421 temp
= expand_expr_real (exp
, target
, GET_MODE (target
),
4423 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4425 /* Return TARGET if it's a specified hardware register.
4426 If TARGET is a volatile mem ref, either return TARGET
4427 or return a reg copied *from* TARGET; ANSI requires this.
4429 Otherwise, if TEMP is not TARGET, return TEMP
4430 if it is constant (for efficiency),
4431 or if we really want the correct value. */
4432 if (!(target
&& REG_P (target
)
4433 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4434 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4435 && ! rtx_equal_p (temp
, target
)
4436 && CONSTANT_P (temp
))
4437 dont_return_target
= 1;
4440 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4441 the same as that of TARGET, adjust the constant. This is needed, for
4442 example, in case it is a CONST_DOUBLE and we want only a word-sized
4444 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4445 && TREE_CODE (exp
) != ERROR_MARK
4446 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4447 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4448 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4450 /* If value was not generated in the target, store it there.
4451 Convert the value to TARGET's type first if necessary and emit the
4452 pending incrementations that have been queued when expanding EXP.
4453 Note that we cannot emit the whole queue blindly because this will
4454 effectively disable the POST_INC optimization later.
4456 If TEMP and TARGET compare equal according to rtx_equal_p, but
4457 one or both of them are volatile memory refs, we have to distinguish
4459 - expand_expr has used TARGET. In this case, we must not generate
4460 another copy. This can be detected by TARGET being equal according
4462 - expand_expr has not used TARGET - that means that the source just
4463 happens to have the same RTX form. Since temp will have been created
4464 by expand_expr, it will compare unequal according to == .
4465 We must generate a copy in this case, to reach the correct number
4466 of volatile memory references. */
4468 if ((! rtx_equal_p (temp
, target
)
4469 || (temp
!= target
&& (side_effects_p (temp
)
4470 || side_effects_p (target
))))
4471 && TREE_CODE (exp
) != ERROR_MARK
4472 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4473 but TARGET is not valid memory reference, TEMP will differ
4474 from TARGET although it is really the same location. */
4475 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4476 /* If there's nothing to copy, don't bother. Don't call
4477 expr_size unless necessary, because some front-ends (C++)
4478 expr_size-hook must not be given objects that are not
4479 supposed to be bit-copied or bit-initialized. */
4480 && expr_size (exp
) != const0_rtx
)
4482 if (GET_MODE (temp
) != GET_MODE (target
)
4483 && GET_MODE (temp
) != VOIDmode
)
4485 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4486 if (dont_return_target
)
4488 /* In this case, we will return TEMP,
4489 so make sure it has the proper mode.
4490 But don't forget to store the value into TARGET. */
4491 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4492 emit_move_insn (target
, temp
);
4495 convert_move (target
, temp
, unsignedp
);
4498 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4500 /* Handle copying a string constant into an array. The string
4501 constant may be shorter than the array. So copy just the string's
4502 actual length, and clear the rest. First get the size of the data
4503 type of the string, which is actually the size of the target. */
4504 rtx size
= expr_size (exp
);
4506 if (GET_CODE (size
) == CONST_INT
4507 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4508 emit_block_move (target
, temp
, size
,
4510 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4513 /* Compute the size of the data to copy from the string. */
4515 = size_binop (MIN_EXPR
,
4516 make_tree (sizetype
, size
),
4517 size_int (TREE_STRING_LENGTH (exp
)));
4519 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4521 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4524 /* Copy that much. */
4525 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4526 TYPE_UNSIGNED (sizetype
));
4527 emit_block_move (target
, temp
, copy_size_rtx
,
4529 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4531 /* Figure out how much is left in TARGET that we have to clear.
4532 Do all calculations in ptr_mode. */
4533 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4535 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4536 target
= adjust_address (target
, BLKmode
,
4537 INTVAL (copy_size_rtx
));
4541 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4542 copy_size_rtx
, NULL_RTX
, 0,
4545 #ifdef POINTERS_EXTEND_UNSIGNED
4546 if (GET_MODE (copy_size_rtx
) != Pmode
)
4547 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4548 TYPE_UNSIGNED (sizetype
));
4551 target
= offset_address (target
, copy_size_rtx
,
4552 highest_pow2_factor (copy_size
));
4553 label
= gen_label_rtx ();
4554 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4555 GET_MODE (size
), 0, label
);
4558 if (size
!= const0_rtx
)
4559 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
4565 /* Handle calls that return values in multiple non-contiguous locations.
4566 The Irix 6 ABI has examples of this. */
4567 else if (GET_CODE (target
) == PARALLEL
)
4568 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4569 int_size_in_bytes (TREE_TYPE (exp
)));
4570 else if (GET_MODE (temp
) == BLKmode
)
4571 emit_block_move (target
, temp
, expr_size (exp
),
4573 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4576 temp
= force_operand (temp
, target
);
4578 emit_move_insn (target
, temp
);
4585 /* Helper for categorize_ctor_elements. Identical interface. */
4588 categorize_ctor_elements_1 (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4589 HOST_WIDE_INT
*p_elt_count
,
4592 unsigned HOST_WIDE_INT idx
;
4593 HOST_WIDE_INT nz_elts
, elt_count
;
4594 tree value
, purpose
;
4596 /* Whether CTOR is a valid constant initializer, in accordance with what
4597 initializer_constant_valid_p does. If inferred from the constructor
4598 elements, true until proven otherwise. */
4599 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
4600 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
4605 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
4610 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4612 tree lo_index
= TREE_OPERAND (purpose
, 0);
4613 tree hi_index
= TREE_OPERAND (purpose
, 1);
4615 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4616 mult
= (tree_low_cst (hi_index
, 1)
4617 - tree_low_cst (lo_index
, 1) + 1);
4620 switch (TREE_CODE (value
))
4624 HOST_WIDE_INT nz
= 0, ic
= 0;
4627 = categorize_ctor_elements_1 (value
, &nz
, &ic
, p_must_clear
);
4629 nz_elts
+= mult
* nz
;
4630 elt_count
+= mult
* ic
;
4632 if (const_from_elts_p
&& const_p
)
4633 const_p
= const_elt_p
;
4639 if (!initializer_zerop (value
))
4645 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4646 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4650 if (!initializer_zerop (TREE_REALPART (value
)))
4652 if (!initializer_zerop (TREE_IMAGPART (value
)))
4660 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4662 if (!initializer_zerop (TREE_VALUE (v
)))
4673 if (const_from_elts_p
&& const_p
)
4674 const_p
= initializer_constant_valid_p (value
, TREE_TYPE (value
))
4681 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4682 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4685 bool clear_this
= true;
4687 if (!VEC_empty (constructor_elt
, CONSTRUCTOR_ELTS (ctor
)))
4689 /* We don't expect more than one element of the union to be
4690 initialized. Not sure what we should do otherwise... */
4691 gcc_assert (VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (ctor
))
4694 init_sub_type
= TREE_TYPE (VEC_index (constructor_elt
,
4695 CONSTRUCTOR_ELTS (ctor
),
4698 /* ??? We could look at each element of the union, and find the
4699 largest element. Which would avoid comparing the size of the
4700 initialized element against any tail padding in the union.
4701 Doesn't seem worth the effort... */
4702 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4703 TYPE_SIZE (init_sub_type
)) == 1)
4705 /* And now we have to find out if the element itself is fully
4706 constructed. E.g. for union { struct { int a, b; } s; } u
4707 = { .s = { .a = 1 } }. */
4708 if (elt_count
== count_type_elements (init_sub_type
, false))
4713 *p_must_clear
= clear_this
;
4716 *p_nz_elts
+= nz_elts
;
4717 *p_elt_count
+= elt_count
;
4722 /* Examine CTOR to discover:
4723 * how many scalar fields are set to nonzero values,
4724 and place it in *P_NZ_ELTS;
4725 * how many scalar fields in total are in CTOR,
4726 and place it in *P_ELT_COUNT.
4727 * if a type is a union, and the initializer from the constructor
4728 is not the largest element in the union, then set *p_must_clear.
4730 Return whether or not CTOR is a valid static constant initializer, the same
4731 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4734 categorize_ctor_elements (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4735 HOST_WIDE_INT
*p_elt_count
,
4740 *p_must_clear
= false;
4743 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_elt_count
, p_must_clear
);
4746 /* Count the number of scalars in TYPE. Return -1 on overflow or
4747 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4748 array member at the end of the structure. */
4751 count_type_elements (tree type
, bool allow_flexarr
)
4753 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4754 switch (TREE_CODE (type
))
4758 tree telts
= array_type_nelts (type
);
4759 if (telts
&& host_integerp (telts
, 1))
4761 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4762 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
), false);
4765 else if (max
/ n
> m
)
4773 HOST_WIDE_INT n
= 0, t
;
4776 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4777 if (TREE_CODE (f
) == FIELD_DECL
)
4779 t
= count_type_elements (TREE_TYPE (f
), false);
4782 /* Check for structures with flexible array member. */
4783 tree tf
= TREE_TYPE (f
);
4785 && TREE_CHAIN (f
) == NULL
4786 && TREE_CODE (tf
) == ARRAY_TYPE
4788 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
4789 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
4790 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
4791 && int_size_in_bytes (type
) >= 0)
4803 case QUAL_UNION_TYPE
:
4805 /* Ho hum. How in the world do we guess here? Clearly it isn't
4806 right to count the fields. Guess based on the number of words. */
4807 HOST_WIDE_INT n
= int_size_in_bytes (type
);
4810 return n
/ UNITS_PER_WORD
;
4817 return TYPE_VECTOR_SUBPARTS (type
);
4825 case REFERENCE_TYPE
:
4837 /* Return 1 if EXP contains mostly (3/4) zeros. */
4840 mostly_zeros_p (tree exp
)
4842 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4845 HOST_WIDE_INT nz_elts
, count
, elts
;
4848 categorize_ctor_elements (exp
, &nz_elts
, &count
, &must_clear
);
4852 elts
= count_type_elements (TREE_TYPE (exp
), false);
4854 return nz_elts
< elts
/ 4;
4857 return initializer_zerop (exp
);
4860 /* Return 1 if EXP contains all zeros. */
4863 all_zeros_p (tree exp
)
4865 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4868 HOST_WIDE_INT nz_elts
, count
;
4871 categorize_ctor_elements (exp
, &nz_elts
, &count
, &must_clear
);
4872 return nz_elts
== 0;
4875 return initializer_zerop (exp
);
4878 /* Helper function for store_constructor.
4879 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4880 TYPE is the type of the CONSTRUCTOR, not the element type.
4881 CLEARED is as for store_constructor.
4882 ALIAS_SET is the alias set to use for any stores.
4884 This provides a recursive shortcut back to store_constructor when it isn't
4885 necessary to go through store_field. This is so that we can pass through
4886 the cleared field to let store_constructor know that we may not have to
4887 clear a substructure if the outer structure has already been cleared. */
4890 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
4891 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
4892 tree exp
, tree type
, int cleared
, int alias_set
)
4894 if (TREE_CODE (exp
) == CONSTRUCTOR
4895 /* We can only call store_constructor recursively if the size and
4896 bit position are on a byte boundary. */
4897 && bitpos
% BITS_PER_UNIT
== 0
4898 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
4899 /* If we have a nonzero bitpos for a register target, then we just
4900 let store_field do the bitfield handling. This is unlikely to
4901 generate unnecessary clear instructions anyways. */
4902 && (bitpos
== 0 || MEM_P (target
)))
4906 = adjust_address (target
,
4907 GET_MODE (target
) == BLKmode
4909 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
4910 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
4913 /* Update the alias set, if required. */
4914 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
4915 && MEM_ALIAS_SET (target
) != 0)
4917 target
= copy_rtx (target
);
4918 set_mem_alias_set (target
, alias_set
);
4921 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
4924 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
4927 /* Store the value of constructor EXP into the rtx TARGET.
4928 TARGET is either a REG or a MEM; we know it cannot conflict, since
4929 safe_from_p has been called.
4930 CLEARED is true if TARGET is known to have been zero'd.
4931 SIZE is the number of bytes of TARGET we are allowed to modify: this
4932 may not be the same as the size of EXP if we are assigning to a field
4933 which has been packed to exclude padding bits. */
4936 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
4938 tree type
= TREE_TYPE (exp
);
4939 #ifdef WORD_REGISTER_OPERATIONS
4940 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
4943 switch (TREE_CODE (type
))
4947 case QUAL_UNION_TYPE
:
4949 unsigned HOST_WIDE_INT idx
;
4952 /* If size is zero or the target is already cleared, do nothing. */
4953 if (size
== 0 || cleared
)
4955 /* We either clear the aggregate or indicate the value is dead. */
4956 else if ((TREE_CODE (type
) == UNION_TYPE
4957 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4958 && ! CONSTRUCTOR_ELTS (exp
))
4959 /* If the constructor is empty, clear the union. */
4961 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
4965 /* If we are building a static constructor into a register,
4966 set the initial value as zero so we can fold the value into
4967 a constant. But if more than one register is involved,
4968 this probably loses. */
4969 else if (REG_P (target
) && TREE_STATIC (exp
)
4970 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
4972 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4976 /* If the constructor has fewer fields than the structure or
4977 if we are initializing the structure to mostly zeros, clear
4978 the whole structure first. Don't do this if TARGET is a
4979 register whose mode size isn't equal to SIZE since
4980 clear_storage can't handle this case. */
4982 && (((int)VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (exp
))
4983 != fields_length (type
))
4984 || mostly_zeros_p (exp
))
4986 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
4989 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
4994 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4996 /* Store each element of the constructor into the
4997 corresponding field of TARGET. */
4998 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5000 enum machine_mode mode
;
5001 HOST_WIDE_INT bitsize
;
5002 HOST_WIDE_INT bitpos
= 0;
5004 rtx to_rtx
= target
;
5006 /* Just ignore missing fields. We cleared the whole
5007 structure, above, if any fields are missing. */
5011 if (cleared
&& initializer_zerop (value
))
5014 if (host_integerp (DECL_SIZE (field
), 1))
5015 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
5019 mode
= DECL_MODE (field
);
5020 if (DECL_BIT_FIELD (field
))
5023 offset
= DECL_FIELD_OFFSET (field
);
5024 if (host_integerp (offset
, 0)
5025 && host_integerp (bit_position (field
), 0))
5027 bitpos
= int_bit_position (field
);
5031 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
5038 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5039 make_tree (TREE_TYPE (exp
),
5042 offset_rtx
= expand_normal (offset
);
5043 gcc_assert (MEM_P (to_rtx
));
5045 #ifdef POINTERS_EXTEND_UNSIGNED
5046 if (GET_MODE (offset_rtx
) != Pmode
)
5047 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
5049 if (GET_MODE (offset_rtx
) != ptr_mode
)
5050 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
5053 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5054 highest_pow2_factor (offset
));
5057 #ifdef WORD_REGISTER_OPERATIONS
5058 /* If this initializes a field that is smaller than a
5059 word, at the start of a word, try to widen it to a full
5060 word. This special case allows us to output C++ member
5061 function initializations in a form that the optimizers
5064 && bitsize
< BITS_PER_WORD
5065 && bitpos
% BITS_PER_WORD
== 0
5066 && GET_MODE_CLASS (mode
) == MODE_INT
5067 && TREE_CODE (value
) == INTEGER_CST
5069 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5071 tree type
= TREE_TYPE (value
);
5073 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5075 type
= lang_hooks
.types
.type_for_size
5076 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
5077 value
= fold_convert (type
, value
);
5080 if (BYTES_BIG_ENDIAN
)
5082 = fold_build2 (LSHIFT_EXPR
, type
, value
,
5083 build_int_cst (type
,
5084 BITS_PER_WORD
- bitsize
));
5085 bitsize
= BITS_PER_WORD
;
5090 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5091 && DECL_NONADDRESSABLE_P (field
))
5093 to_rtx
= copy_rtx (to_rtx
);
5094 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5097 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5098 value
, type
, cleared
,
5099 get_alias_set (TREE_TYPE (field
)));
5106 unsigned HOST_WIDE_INT i
;
5109 tree elttype
= TREE_TYPE (type
);
5111 HOST_WIDE_INT minelt
= 0;
5112 HOST_WIDE_INT maxelt
= 0;
5114 domain
= TYPE_DOMAIN (type
);
5115 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5116 && TYPE_MAX_VALUE (domain
)
5117 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5118 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5120 /* If we have constant bounds for the range of the type, get them. */
5123 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5124 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5127 /* If the constructor has fewer elements than the array, clear
5128 the whole array first. Similarly if this is static
5129 constructor of a non-BLKmode object. */
5132 else if (REG_P (target
) && TREE_STATIC (exp
))
5136 unsigned HOST_WIDE_INT idx
;
5138 HOST_WIDE_INT count
= 0, zero_count
= 0;
5139 need_to_clear
= ! const_bounds_p
;
5141 /* This loop is a more accurate version of the loop in
5142 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5143 is also needed to check for missing elements. */
5144 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
5146 HOST_WIDE_INT this_node_count
;
5151 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5153 tree lo_index
= TREE_OPERAND (index
, 0);
5154 tree hi_index
= TREE_OPERAND (index
, 1);
5156 if (! host_integerp (lo_index
, 1)
5157 || ! host_integerp (hi_index
, 1))
5163 this_node_count
= (tree_low_cst (hi_index
, 1)
5164 - tree_low_cst (lo_index
, 1) + 1);
5167 this_node_count
= 1;
5169 count
+= this_node_count
;
5170 if (mostly_zeros_p (value
))
5171 zero_count
+= this_node_count
;
5174 /* Clear the entire array first if there are any missing
5175 elements, or if the incidence of zero elements is >=
5178 && (count
< maxelt
- minelt
+ 1
5179 || 4 * zero_count
>= 3 * count
))
5183 if (need_to_clear
&& size
> 0)
5186 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5188 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5192 if (!cleared
&& REG_P (target
))
5193 /* Inform later passes that the old value is dead. */
5194 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
5196 /* Store each element of the constructor into the
5197 corresponding element of TARGET, determined by counting the
5199 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
5201 enum machine_mode mode
;
5202 HOST_WIDE_INT bitsize
;
5203 HOST_WIDE_INT bitpos
;
5205 rtx xtarget
= target
;
5207 if (cleared
&& initializer_zerop (value
))
5210 unsignedp
= TYPE_UNSIGNED (elttype
);
5211 mode
= TYPE_MODE (elttype
);
5212 if (mode
== BLKmode
)
5213 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
5214 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
5217 bitsize
= GET_MODE_BITSIZE (mode
);
5219 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5221 tree lo_index
= TREE_OPERAND (index
, 0);
5222 tree hi_index
= TREE_OPERAND (index
, 1);
5223 rtx index_r
, pos_rtx
;
5224 HOST_WIDE_INT lo
, hi
, count
;
5227 /* If the range is constant and "small", unroll the loop. */
5229 && host_integerp (lo_index
, 0)
5230 && host_integerp (hi_index
, 0)
5231 && (lo
= tree_low_cst (lo_index
, 0),
5232 hi
= tree_low_cst (hi_index
, 0),
5233 count
= hi
- lo
+ 1,
5236 || (host_integerp (TYPE_SIZE (elttype
), 1)
5237 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
5240 lo
-= minelt
; hi
-= minelt
;
5241 for (; lo
<= hi
; lo
++)
5243 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
5246 && !MEM_KEEP_ALIAS_SET_P (target
)
5247 && TREE_CODE (type
) == ARRAY_TYPE
5248 && TYPE_NONALIASED_COMPONENT (type
))
5250 target
= copy_rtx (target
);
5251 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5254 store_constructor_field
5255 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
5256 get_alias_set (elttype
));
5261 rtx loop_start
= gen_label_rtx ();
5262 rtx loop_end
= gen_label_rtx ();
5265 expand_normal (hi_index
);
5266 unsignedp
= TYPE_UNSIGNED (domain
);
5268 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
5271 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
5273 SET_DECL_RTL (index
, index_r
);
5274 store_expr (lo_index
, index_r
, 0);
5276 /* Build the head of the loop. */
5277 do_pending_stack_adjust ();
5278 emit_label (loop_start
);
5280 /* Assign value to element index. */
5282 fold_convert (ssizetype
,
5283 fold_build2 (MINUS_EXPR
,
5286 TYPE_MIN_VALUE (domain
)));
5289 size_binop (MULT_EXPR
, position
,
5290 fold_convert (ssizetype
,
5291 TYPE_SIZE_UNIT (elttype
)));
5293 pos_rtx
= expand_normal (position
);
5294 xtarget
= offset_address (target
, pos_rtx
,
5295 highest_pow2_factor (position
));
5296 xtarget
= adjust_address (xtarget
, mode
, 0);
5297 if (TREE_CODE (value
) == CONSTRUCTOR
)
5298 store_constructor (value
, xtarget
, cleared
,
5299 bitsize
/ BITS_PER_UNIT
);
5301 store_expr (value
, xtarget
, 0);
5303 /* Generate a conditional jump to exit the loop. */
5304 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
5306 jumpif (exit_cond
, loop_end
);
5308 /* Update the loop counter, and jump to the head of
5310 expand_assignment (index
,
5311 build2 (PLUS_EXPR
, TREE_TYPE (index
),
5312 index
, integer_one_node
));
5314 emit_jump (loop_start
);
5316 /* Build the end of the loop. */
5317 emit_label (loop_end
);
5320 else if ((index
!= 0 && ! host_integerp (index
, 0))
5321 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5326 index
= ssize_int (1);
5329 index
= fold_convert (ssizetype
,
5330 fold_build2 (MINUS_EXPR
,
5333 TYPE_MIN_VALUE (domain
)));
5336 size_binop (MULT_EXPR
, index
,
5337 fold_convert (ssizetype
,
5338 TYPE_SIZE_UNIT (elttype
)));
5339 xtarget
= offset_address (target
,
5340 expand_normal (position
),
5341 highest_pow2_factor (position
));
5342 xtarget
= adjust_address (xtarget
, mode
, 0);
5343 store_expr (value
, xtarget
, 0);
5348 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5349 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5351 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5353 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5354 && TREE_CODE (type
) == ARRAY_TYPE
5355 && TYPE_NONALIASED_COMPONENT (type
))
5357 target
= copy_rtx (target
);
5358 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5360 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5361 type
, cleared
, get_alias_set (elttype
));
5369 unsigned HOST_WIDE_INT idx
;
5370 constructor_elt
*ce
;
5374 tree elttype
= TREE_TYPE (type
);
5375 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5376 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5377 HOST_WIDE_INT bitsize
;
5378 HOST_WIDE_INT bitpos
;
5379 rtvec vector
= NULL
;
5382 gcc_assert (eltmode
!= BLKmode
);
5384 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5385 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5387 enum machine_mode mode
= GET_MODE (target
);
5389 icode
= (int) vec_init_optab
->handlers
[mode
].insn_code
;
5390 if (icode
!= CODE_FOR_nothing
)
5394 vector
= rtvec_alloc (n_elts
);
5395 for (i
= 0; i
< n_elts
; i
++)
5396 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5400 /* If the constructor has fewer elements than the vector,
5401 clear the whole array first. Similarly if this is static
5402 constructor of a non-BLKmode object. */
5405 else if (REG_P (target
) && TREE_STATIC (exp
))
5409 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5412 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
5414 int n_elts_here
= tree_low_cst
5415 (int_const_binop (TRUNC_DIV_EXPR
,
5416 TYPE_SIZE (TREE_TYPE (value
)),
5417 TYPE_SIZE (elttype
), 0), 1);
5419 count
+= n_elts_here
;
5420 if (mostly_zeros_p (value
))
5421 zero_count
+= n_elts_here
;
5424 /* Clear the entire vector first if there are any missing elements,
5425 or if the incidence of zero elements is >= 75%. */
5426 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5429 if (need_to_clear
&& size
> 0 && !vector
)
5432 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5434 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5438 /* Inform later passes that the old value is dead. */
5439 if (!cleared
&& !vector
&& REG_P (target
))
5440 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5442 /* Store each element of the constructor into the corresponding
5443 element of TARGET, determined by counting the elements. */
5444 for (idx
= 0, i
= 0;
5445 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
5446 idx
++, i
+= bitsize
/ elt_size
)
5448 HOST_WIDE_INT eltpos
;
5449 tree value
= ce
->value
;
5451 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5452 if (cleared
&& initializer_zerop (value
))
5456 eltpos
= tree_low_cst (ce
->index
, 1);
5462 /* Vector CONSTRUCTORs should only be built from smaller
5463 vectors in the case of BLKmode vectors. */
5464 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5465 RTVEC_ELT (vector
, eltpos
)
5466 = expand_normal (value
);
5470 enum machine_mode value_mode
=
5471 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5472 ? TYPE_MODE (TREE_TYPE (value
))
5474 bitpos
= eltpos
* elt_size
;
5475 store_constructor_field (target
, bitsize
, bitpos
,
5476 value_mode
, value
, type
,
5477 cleared
, get_alias_set (elttype
));
5482 emit_insn (GEN_FCN (icode
)
5484 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5493 /* Store the value of EXP (an expression tree)
5494 into a subfield of TARGET which has mode MODE and occupies
5495 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5496 If MODE is VOIDmode, it means that we are storing into a bit-field.
5498 Always return const0_rtx unless we have something particular to
5501 TYPE is the type of the underlying object,
5503 ALIAS_SET is the alias set for the destination. This value will
5504 (in general) be different from that for TARGET, since TARGET is a
5505 reference to the containing structure. */
5508 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5509 enum machine_mode mode
, tree exp
, tree type
, int alias_set
)
5511 HOST_WIDE_INT width_mask
= 0;
5513 if (TREE_CODE (exp
) == ERROR_MARK
)
5516 /* If we have nothing to store, do nothing unless the expression has
5519 return expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
5520 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5521 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5523 /* If we are storing into an unaligned field of an aligned union that is
5524 in a register, we may have the mode of TARGET being an integer mode but
5525 MODE == BLKmode. In that case, get an aligned object whose size and
5526 alignment are the same as TARGET and store TARGET into it (we can avoid
5527 the store if the field being stored is the entire width of TARGET). Then
5528 call ourselves recursively to store the field into a BLKmode version of
5529 that object. Finally, load from the object into TARGET. This is not
5530 very efficient in general, but should only be slightly more expensive
5531 than the otherwise-required unaligned accesses. Perhaps this can be
5532 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5533 twice, once with emit_move_insn and once via store_field. */
5536 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5538 rtx object
= assign_temp (type
, 0, 1, 1);
5539 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5541 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5542 emit_move_insn (object
, target
);
5544 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
5546 emit_move_insn (target
, object
);
5548 /* We want to return the BLKmode version of the data. */
5552 if (GET_CODE (target
) == CONCAT
)
5554 /* We're storing into a struct containing a single __complex. */
5556 gcc_assert (!bitpos
);
5557 return store_expr (exp
, target
, 0);
5560 /* If the structure is in a register or if the component
5561 is a bit field, we cannot use addressing to access it.
5562 Use bit-field techniques or SUBREG to store in it. */
5564 if (mode
== VOIDmode
5565 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5566 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5567 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5569 || GET_CODE (target
) == SUBREG
5570 /* If the field isn't aligned enough to store as an ordinary memref,
5571 store it as a bit field. */
5573 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5574 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5575 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5576 || (bitpos
% BITS_PER_UNIT
!= 0)))
5577 /* If the RHS and field are a constant size and the size of the
5578 RHS isn't the same size as the bitfield, we must use bitfield
5581 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5582 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5586 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5587 implies a mask operation. If the precision is the same size as
5588 the field we're storing into, that mask is redundant. This is
5589 particularly common with bit field assignments generated by the
5591 if (TREE_CODE (exp
) == NOP_EXPR
)
5593 tree type
= TREE_TYPE (exp
);
5594 if (INTEGRAL_TYPE_P (type
)
5595 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5596 && bitsize
== TYPE_PRECISION (type
))
5598 type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
5599 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5600 exp
= TREE_OPERAND (exp
, 0);
5604 temp
= expand_normal (exp
);
5606 /* If BITSIZE is narrower than the size of the type of EXP
5607 we will be narrowing TEMP. Normally, what's wanted are the
5608 low-order bits. However, if EXP's type is a record and this is
5609 big-endian machine, we want the upper BITSIZE bits. */
5610 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5611 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5612 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5613 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5614 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5618 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5620 if (mode
!= VOIDmode
&& mode
!= BLKmode
5621 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5622 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5624 /* If the modes of TARGET and TEMP are both BLKmode, both
5625 must be in memory and BITPOS must be aligned on a byte
5626 boundary. If so, we simply do a block copy. */
5627 if (GET_MODE (target
) == BLKmode
&& GET_MODE (temp
) == BLKmode
)
5629 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5630 && !(bitpos
% BITS_PER_UNIT
));
5632 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5633 emit_block_move (target
, temp
,
5634 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5641 /* Store the value in the bitfield. */
5642 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5648 /* Now build a reference to just the desired component. */
5649 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5651 if (to_rtx
== target
)
5652 to_rtx
= copy_rtx (to_rtx
);
5654 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5655 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5656 set_mem_alias_set (to_rtx
, alias_set
);
5658 return store_expr (exp
, to_rtx
, 0);
5662 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5663 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5664 codes and find the ultimate containing object, which we return.
5666 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5667 bit position, and *PUNSIGNEDP to the signedness of the field.
5668 If the position of the field is variable, we store a tree
5669 giving the variable offset (in units) in *POFFSET.
5670 This offset is in addition to the bit position.
5671 If the position is not variable, we store 0 in *POFFSET.
5673 If any of the extraction expressions is volatile,
5674 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5676 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5677 is a mode that can be used to access the field. In that case, *PBITSIZE
5680 If the field describes a variable-sized object, *PMODE is set to
5681 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5682 this case, but the address of the object can be found.
5684 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5685 look through nodes that serve as markers of a greater alignment than
5686 the one that can be deduced from the expression. These nodes make it
5687 possible for front-ends to prevent temporaries from being created by
5688 the middle-end on alignment considerations. For that purpose, the
5689 normal operating mode at high-level is to always pass FALSE so that
5690 the ultimate containing object is really returned; moreover, the
5691 associated predicate handled_component_p will always return TRUE
5692 on these nodes, thus indicating that they are essentially handled
5693 by get_inner_reference. TRUE should only be passed when the caller
5694 is scanning the expression in order to build another representation
5695 and specifically knows how to handle these nodes; as such, this is
5696 the normal operating mode in the RTL expanders. */
5699 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5700 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5701 enum machine_mode
*pmode
, int *punsignedp
,
5702 int *pvolatilep
, bool keep_aligning
)
5705 enum machine_mode mode
= VOIDmode
;
5706 tree offset
= size_zero_node
;
5707 tree bit_offset
= bitsize_zero_node
;
5710 /* First get the mode, signedness, and size. We do this from just the
5711 outermost expression. */
5712 if (TREE_CODE (exp
) == COMPONENT_REF
)
5714 size_tree
= DECL_SIZE (TREE_OPERAND (exp
, 1));
5715 if (! DECL_BIT_FIELD (TREE_OPERAND (exp
, 1)))
5716 mode
= DECL_MODE (TREE_OPERAND (exp
, 1));
5718 *punsignedp
= DECL_UNSIGNED (TREE_OPERAND (exp
, 1));
5720 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5722 size_tree
= TREE_OPERAND (exp
, 1);
5723 *punsignedp
= BIT_FIELD_REF_UNSIGNED (exp
);
5725 /* For vector types, with the correct size of access, use the mode of
5727 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
5728 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5729 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
5730 mode
= TYPE_MODE (TREE_TYPE (exp
));
5734 mode
= TYPE_MODE (TREE_TYPE (exp
));
5735 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5737 if (mode
== BLKmode
)
5738 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5740 *pbitsize
= GET_MODE_BITSIZE (mode
);
5745 if (! host_integerp (size_tree
, 1))
5746 mode
= BLKmode
, *pbitsize
= -1;
5748 *pbitsize
= tree_low_cst (size_tree
, 1);
5751 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5752 and find the ultimate containing object. */
5755 switch (TREE_CODE (exp
))
5758 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5759 TREE_OPERAND (exp
, 2));
5764 tree field
= TREE_OPERAND (exp
, 1);
5765 tree this_offset
= component_ref_field_offset (exp
);
5767 /* If this field hasn't been filled in yet, don't go past it.
5768 This should only happen when folding expressions made during
5769 type construction. */
5770 if (this_offset
== 0)
5773 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5774 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5775 DECL_FIELD_BIT_OFFSET (field
));
5777 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5782 case ARRAY_RANGE_REF
:
5784 tree index
= TREE_OPERAND (exp
, 1);
5785 tree low_bound
= array_ref_low_bound (exp
);
5786 tree unit_size
= array_ref_element_size (exp
);
5788 /* We assume all arrays have sizes that are a multiple of a byte.
5789 First subtract the lower bound, if any, in the type of the
5790 index, then convert to sizetype and multiply by the size of
5791 the array element. */
5792 if (! integer_zerop (low_bound
))
5793 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
5796 offset
= size_binop (PLUS_EXPR
, offset
,
5797 size_binop (MULT_EXPR
,
5798 fold_convert (sizetype
, index
),
5807 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5808 bitsize_int (*pbitsize
));
5811 case VIEW_CONVERT_EXPR
:
5812 if (keep_aligning
&& STRICT_ALIGNMENT
5813 && (TYPE_ALIGN (TREE_TYPE (exp
))
5814 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
5815 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5816 < BIGGEST_ALIGNMENT
)
5817 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
5818 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
5826 /* If any reference in the chain is volatile, the effect is volatile. */
5827 if (TREE_THIS_VOLATILE (exp
))
5830 exp
= TREE_OPERAND (exp
, 0);
5834 /* If OFFSET is constant, see if we can return the whole thing as a
5835 constant bit position. Otherwise, split it up. */
5836 if (host_integerp (offset
, 0)
5837 && 0 != (tem
= size_binop (MULT_EXPR
,
5838 fold_convert (bitsizetype
, offset
),
5840 && 0 != (tem
= size_binop (PLUS_EXPR
, tem
, bit_offset
))
5841 && host_integerp (tem
, 0))
5842 *pbitpos
= tree_low_cst (tem
, 0), *poffset
= 0;
5844 *pbitpos
= tree_low_cst (bit_offset
, 0), *poffset
= offset
;
5850 /* Return a tree of sizetype representing the size, in bytes, of the element
5851 of EXP, an ARRAY_REF. */
5854 array_ref_element_size (tree exp
)
5856 tree aligned_size
= TREE_OPERAND (exp
, 3);
5857 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5859 /* If a size was specified in the ARRAY_REF, it's the size measured
5860 in alignment units of the element type. So multiply by that value. */
5863 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5864 sizetype from another type of the same width and signedness. */
5865 if (TREE_TYPE (aligned_size
) != sizetype
)
5866 aligned_size
= fold_convert (sizetype
, aligned_size
);
5867 return size_binop (MULT_EXPR
, aligned_size
,
5868 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
5871 /* Otherwise, take the size from that of the element type. Substitute
5872 any PLACEHOLDER_EXPR that we have. */
5874 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
5877 /* Return a tree representing the lower bound of the array mentioned in
5878 EXP, an ARRAY_REF. */
5881 array_ref_low_bound (tree exp
)
5883 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5885 /* If a lower bound is specified in EXP, use it. */
5886 if (TREE_OPERAND (exp
, 2))
5887 return TREE_OPERAND (exp
, 2);
5889 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5890 substituting for a PLACEHOLDER_EXPR as needed. */
5891 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
5892 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
5894 /* Otherwise, return a zero of the appropriate type. */
5895 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
5898 /* Return a tree representing the upper bound of the array mentioned in
5899 EXP, an ARRAY_REF. */
5902 array_ref_up_bound (tree exp
)
5904 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5906 /* If there is a domain type and it has an upper bound, use it, substituting
5907 for a PLACEHOLDER_EXPR as needed. */
5908 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
5909 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
5911 /* Otherwise fail. */
5915 /* Return a tree representing the offset, in bytes, of the field referenced
5916 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5919 component_ref_field_offset (tree exp
)
5921 tree aligned_offset
= TREE_OPERAND (exp
, 2);
5922 tree field
= TREE_OPERAND (exp
, 1);
5924 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5925 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5929 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5930 sizetype from another type of the same width and signedness. */
5931 if (TREE_TYPE (aligned_offset
) != sizetype
)
5932 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
5933 return size_binop (MULT_EXPR
, aligned_offset
,
5934 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
5937 /* Otherwise, take the offset from that of the field. Substitute
5938 any PLACEHOLDER_EXPR that we have. */
5940 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
5943 /* Return 1 if T is an expression that get_inner_reference handles. */
5946 handled_component_p (tree t
)
5948 switch (TREE_CODE (t
))
5953 case ARRAY_RANGE_REF
:
5954 case VIEW_CONVERT_EXPR
:
5964 /* Given an rtx VALUE that may contain additions and multiplications, return
5965 an equivalent value that just refers to a register, memory, or constant.
5966 This is done by generating instructions to perform the arithmetic and
5967 returning a pseudo-register containing the value.
5969 The returned value may be a REG, SUBREG, MEM or constant. */
5972 force_operand (rtx value
, rtx target
)
5975 /* Use subtarget as the target for operand 0 of a binary operation. */
5976 rtx subtarget
= get_subtarget (target
);
5977 enum rtx_code code
= GET_CODE (value
);
5979 /* Check for subreg applied to an expression produced by loop optimizer. */
5981 && !REG_P (SUBREG_REG (value
))
5982 && !MEM_P (SUBREG_REG (value
)))
5984 value
= simplify_gen_subreg (GET_MODE (value
),
5985 force_reg (GET_MODE (SUBREG_REG (value
)),
5986 force_operand (SUBREG_REG (value
),
5988 GET_MODE (SUBREG_REG (value
)),
5989 SUBREG_BYTE (value
));
5990 code
= GET_CODE (value
);
5993 /* Check for a PIC address load. */
5994 if ((code
== PLUS
|| code
== MINUS
)
5995 && XEXP (value
, 0) == pic_offset_table_rtx
5996 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
5997 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
5998 || GET_CODE (XEXP (value
, 1)) == CONST
))
6001 subtarget
= gen_reg_rtx (GET_MODE (value
));
6002 emit_move_insn (subtarget
, value
);
6006 if (ARITHMETIC_P (value
))
6008 op2
= XEXP (value
, 1);
6009 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
6011 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
6014 op2
= negate_rtx (GET_MODE (value
), op2
);
6017 /* Check for an addition with OP2 a constant integer and our first
6018 operand a PLUS of a virtual register and something else. In that
6019 case, we want to emit the sum of the virtual register and the
6020 constant first and then add the other value. This allows virtual
6021 register instantiation to simply modify the constant rather than
6022 creating another one around this addition. */
6023 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
6024 && GET_CODE (XEXP (value
, 0)) == PLUS
6025 && REG_P (XEXP (XEXP (value
, 0), 0))
6026 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6027 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
6029 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
6030 XEXP (XEXP (value
, 0), 0), op2
,
6031 subtarget
, 0, OPTAB_LIB_WIDEN
);
6032 return expand_simple_binop (GET_MODE (value
), code
, temp
,
6033 force_operand (XEXP (XEXP (value
,
6035 target
, 0, OPTAB_LIB_WIDEN
);
6038 op1
= force_operand (XEXP (value
, 0), subtarget
);
6039 op2
= force_operand (op2
, NULL_RTX
);
6043 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
6045 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
6046 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6047 target
, 1, OPTAB_LIB_WIDEN
);
6049 return expand_divmod (0,
6050 FLOAT_MODE_P (GET_MODE (value
))
6051 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
6052 GET_MODE (value
), op1
, op2
, target
, 0);
6055 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6059 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
6063 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6067 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6068 target
, 0, OPTAB_LIB_WIDEN
);
6071 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6072 target
, 1, OPTAB_LIB_WIDEN
);
6075 if (UNARY_P (value
))
6078 target
= gen_reg_rtx (GET_MODE (value
));
6079 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
6086 case FLOAT_TRUNCATE
:
6087 convert_move (target
, op1
, code
== ZERO_EXTEND
);
6092 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
6096 case UNSIGNED_FLOAT
:
6097 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
6101 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
6105 #ifdef INSN_SCHEDULING
6106 /* On machines that have insn scheduling, we want all memory reference to be
6107 explicit, so we need to deal with such paradoxical SUBREGs. */
6108 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
6109 && (GET_MODE_SIZE (GET_MODE (value
))
6110 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
6112 = simplify_gen_subreg (GET_MODE (value
),
6113 force_reg (GET_MODE (SUBREG_REG (value
)),
6114 force_operand (SUBREG_REG (value
),
6116 GET_MODE (SUBREG_REG (value
)),
6117 SUBREG_BYTE (value
));
6123 /* Subroutine of expand_expr: return nonzero iff there is no way that
6124 EXP can reference X, which is being modified. TOP_P is nonzero if this
6125 call is going to be used to determine whether we need a temporary
6126 for EXP, as opposed to a recursive call to this function.
6128 It is always safe for this routine to return zero since it merely
6129 searches for optimization opportunities. */
6132 safe_from_p (rtx x
, tree exp
, int top_p
)
6138 /* If EXP has varying size, we MUST use a target since we currently
6139 have no way of allocating temporaries of variable size
6140 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6141 So we assume here that something at a higher level has prevented a
6142 clash. This is somewhat bogus, but the best we can do. Only
6143 do this when X is BLKmode and when we are at the top level. */
6144 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
6145 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
6146 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
6147 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
6148 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
6150 && GET_MODE (x
) == BLKmode
)
6151 /* If X is in the outgoing argument area, it is always safe. */
6153 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
6154 || (GET_CODE (XEXP (x
, 0)) == PLUS
6155 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
6158 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6159 find the underlying pseudo. */
6160 if (GET_CODE (x
) == SUBREG
)
6163 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6167 /* Now look at our tree code and possibly recurse. */
6168 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
6170 case tcc_declaration
:
6171 exp_rtl
= DECL_RTL_IF_SET (exp
);
6177 case tcc_exceptional
:
6178 if (TREE_CODE (exp
) == TREE_LIST
)
6182 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
6184 exp
= TREE_CHAIN (exp
);
6187 if (TREE_CODE (exp
) != TREE_LIST
)
6188 return safe_from_p (x
, exp
, 0);
6191 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
6193 constructor_elt
*ce
;
6194 unsigned HOST_WIDE_INT idx
;
6197 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
6199 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
6200 || !safe_from_p (x
, ce
->value
, 0))
6204 else if (TREE_CODE (exp
) == ERROR_MARK
)
6205 return 1; /* An already-visited SAVE_EXPR? */
6210 /* The only case we look at here is the DECL_INITIAL inside a
6212 return (TREE_CODE (exp
) != DECL_EXPR
6213 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
6214 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
6215 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
6218 case tcc_comparison
:
6219 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
6224 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6226 case tcc_expression
:
6228 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6229 the expression. If it is set, we conflict iff we are that rtx or
6230 both are in memory. Otherwise, we check all operands of the
6231 expression recursively. */
6233 switch (TREE_CODE (exp
))
6236 /* If the operand is static or we are static, we can't conflict.
6237 Likewise if we don't conflict with the operand at all. */
6238 if (staticp (TREE_OPERAND (exp
, 0))
6239 || TREE_STATIC (exp
)
6240 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
6243 /* Otherwise, the only way this can conflict is if we are taking
6244 the address of a DECL a that address if part of X, which is
6246 exp
= TREE_OPERAND (exp
, 0);
6249 if (!DECL_RTL_SET_P (exp
)
6250 || !MEM_P (DECL_RTL (exp
)))
6253 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
6257 case MISALIGNED_INDIRECT_REF
:
6258 case ALIGN_INDIRECT_REF
:
6261 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
6262 get_alias_set (exp
)))
6267 /* Assume that the call will clobber all hard registers and
6269 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6274 case WITH_CLEANUP_EXPR
:
6275 case CLEANUP_POINT_EXPR
:
6276 /* Lowered by gimplify.c. */
6280 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6286 /* If we have an rtx, we do not need to scan our operands. */
6290 nops
= TREE_CODE_LENGTH (TREE_CODE (exp
));
6291 for (i
= 0; i
< nops
; i
++)
6292 if (TREE_OPERAND (exp
, i
) != 0
6293 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
6296 /* If this is a language-specific tree code, it may require
6297 special handling. */
6298 if ((unsigned int) TREE_CODE (exp
)
6299 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6300 && !lang_hooks
.safe_from_p (x
, exp
))
6305 /* Should never get a type here. */
6308 case tcc_gimple_stmt
:
6312 /* If we have an rtl, find any enclosed object. Then see if we conflict
6316 if (GET_CODE (exp_rtl
) == SUBREG
)
6318 exp_rtl
= SUBREG_REG (exp_rtl
);
6320 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
6324 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6325 are memory and they conflict. */
6326 return ! (rtx_equal_p (x
, exp_rtl
)
6327 || (MEM_P (x
) && MEM_P (exp_rtl
)
6328 && true_dependence (exp_rtl
, VOIDmode
, x
,
6329 rtx_addr_varies_p
)));
6332 /* If we reach here, it is safe. */
6337 /* Return the highest power of two that EXP is known to be a multiple of.
6338 This is used in updating alignment of MEMs in array references. */
6340 unsigned HOST_WIDE_INT
6341 highest_pow2_factor (tree exp
)
6343 unsigned HOST_WIDE_INT c0
, c1
;
6345 switch (TREE_CODE (exp
))
6348 /* We can find the lowest bit that's a one. If the low
6349 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6350 We need to handle this case since we can find it in a COND_EXPR,
6351 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6352 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6354 if (TREE_OVERFLOW (exp
))
6355 return BIGGEST_ALIGNMENT
;
6358 /* Note: tree_low_cst is intentionally not used here,
6359 we don't care about the upper bits. */
6360 c0
= TREE_INT_CST_LOW (exp
);
6362 return c0
? c0
: BIGGEST_ALIGNMENT
;
6366 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6367 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6368 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6369 return MIN (c0
, c1
);
6372 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6373 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6376 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6378 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6379 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6381 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6382 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6383 return MAX (1, c0
/ c1
);
6387 case NON_LVALUE_EXPR
: case NOP_EXPR
: case CONVERT_EXPR
:
6389 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6392 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6395 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6396 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6397 return MIN (c0
, c1
);
6406 /* Similar, except that the alignment requirements of TARGET are
6407 taken into account. Assume it is at least as aligned as its
6408 type, unless it is a COMPONENT_REF in which case the layout of
6409 the structure gives the alignment. */
6411 static unsigned HOST_WIDE_INT
6412 highest_pow2_factor_for_target (tree target
, tree exp
)
6414 unsigned HOST_WIDE_INT target_align
, factor
;
6416 factor
= highest_pow2_factor (exp
);
6417 if (TREE_CODE (target
) == COMPONENT_REF
)
6418 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
6420 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
6421 return MAX (factor
, target_align
);
6424 /* Return &VAR expression for emulated thread local VAR. */
6427 emutls_var_address (tree var
)
6429 tree emuvar
= emutls_decl (var
);
6430 tree fn
= built_in_decls
[BUILT_IN_EMUTLS_GET_ADDRESS
];
6431 tree arg
= build_fold_addr_expr_with_type (emuvar
, ptr_type_node
);
6432 tree arglist
= build_tree_list (NULL_TREE
, arg
);
6433 tree call
= build_function_call_expr (fn
, arglist
);
6434 return fold_convert (build_pointer_type (TREE_TYPE (var
)), call
);
6437 /* Expands variable VAR. */
6440 expand_var (tree var
)
6442 if (DECL_EXTERNAL (var
))
6445 if (TREE_STATIC (var
))
6446 /* If this is an inlined copy of a static local variable,
6447 look up the original decl. */
6448 var
= DECL_ORIGIN (var
);
6450 if (TREE_STATIC (var
)
6451 ? !TREE_ASM_WRITTEN (var
)
6452 : !DECL_RTL_SET_P (var
))
6454 if (TREE_CODE (var
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (var
))
6455 /* Should be ignored. */;
6456 else if (lang_hooks
.expand_decl (var
))
6458 else if (TREE_CODE (var
) == VAR_DECL
&& !TREE_STATIC (var
))
6460 else if (TREE_CODE (var
) == VAR_DECL
&& TREE_STATIC (var
))
6461 rest_of_decl_compilation (var
, 0, 0);
6463 /* No expansion needed. */
6464 gcc_assert (TREE_CODE (var
) == TYPE_DECL
6465 || TREE_CODE (var
) == CONST_DECL
6466 || TREE_CODE (var
) == FUNCTION_DECL
6467 || TREE_CODE (var
) == LABEL_DECL
);
6471 /* Subroutine of expand_expr. Expand the two operands of a binary
6472 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6473 The value may be stored in TARGET if TARGET is nonzero. The
6474 MODIFIER argument is as documented by expand_expr. */
6477 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6478 enum expand_modifier modifier
)
6480 if (! safe_from_p (target
, exp1
, 1))
6482 if (operand_equal_p (exp0
, exp1
, 0))
6484 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6485 *op1
= copy_rtx (*op0
);
6489 /* If we need to preserve evaluation order, copy exp0 into its own
6490 temporary variable so that it can't be clobbered by exp1. */
6491 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6492 exp0
= save_expr (exp0
);
6493 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6494 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6499 /* Return a MEM that contains constant EXP. DEFER is as for
6500 output_constant_def and MODIFIER is as for expand_expr. */
6503 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
6507 mem
= output_constant_def (exp
, defer
);
6508 if (modifier
!= EXPAND_INITIALIZER
)
6509 mem
= use_anchored_address (mem
);
6513 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6514 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6517 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6518 enum expand_modifier modifier
)
6520 rtx result
, subtarget
;
6522 HOST_WIDE_INT bitsize
, bitpos
;
6523 int volatilep
, unsignedp
;
6524 enum machine_mode mode1
;
6526 /* If we are taking the address of a constant and are at the top level,
6527 we have to use output_constant_def since we can't call force_const_mem
6529 /* ??? This should be considered a front-end bug. We should not be
6530 generating ADDR_EXPR of something that isn't an LVALUE. The only
6531 exception here is STRING_CST. */
6532 if (TREE_CODE (exp
) == CONSTRUCTOR
6533 || CONSTANT_CLASS_P (exp
))
6534 return XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
6536 /* Everything must be something allowed by is_gimple_addressable. */
6537 switch (TREE_CODE (exp
))
6540 /* This case will happen via recursion for &a->b. */
6541 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
6544 /* Recurse and make the output_constant_def clause above handle this. */
6545 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6549 /* The real part of the complex number is always first, therefore
6550 the address is the same as the address of the parent object. */
6553 inner
= TREE_OPERAND (exp
, 0);
6557 /* The imaginary part of the complex number is always second.
6558 The expression is therefore always offset by the size of the
6561 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6562 inner
= TREE_OPERAND (exp
, 0);
6566 /* TLS emulation hook - replace __thread VAR's &VAR with
6567 __emutls_get_address (&_emutls.VAR). */
6568 if (! targetm
.have_tls
6569 && TREE_CODE (exp
) == VAR_DECL
6570 && DECL_THREAD_LOCAL_P (exp
))
6572 exp
= emutls_var_address (exp
);
6573 return expand_expr (exp
, target
, tmode
, modifier
);
6578 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6579 expand_expr, as that can have various side effects; LABEL_DECLs for
6580 example, may not have their DECL_RTL set yet. Assume language
6581 specific tree nodes can be expanded in some interesting way. */
6583 || TREE_CODE (exp
) >= LAST_AND_UNUSED_TREE_CODE
)
6585 result
= expand_expr (exp
, target
, tmode
,
6586 modifier
== EXPAND_INITIALIZER
6587 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6589 /* If the DECL isn't in memory, then the DECL wasn't properly
6590 marked TREE_ADDRESSABLE, which will be either a front-end
6591 or a tree optimizer bug. */
6592 gcc_assert (MEM_P (result
));
6593 result
= XEXP (result
, 0);
6595 /* ??? Is this needed anymore? */
6596 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6598 assemble_external (exp
);
6599 TREE_USED (exp
) = 1;
6602 if (modifier
!= EXPAND_INITIALIZER
6603 && modifier
!= EXPAND_CONST_ADDRESS
)
6604 result
= force_operand (result
, target
);
6608 /* Pass FALSE as the last argument to get_inner_reference although
6609 we are expanding to RTL. The rationale is that we know how to
6610 handle "aligning nodes" here: we can just bypass them because
6611 they won't change the final object whose address will be returned
6612 (they actually exist only for that purpose). */
6613 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6614 &mode1
, &unsignedp
, &volatilep
, false);
6618 /* We must have made progress. */
6619 gcc_assert (inner
!= exp
);
6621 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6622 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6628 if (modifier
!= EXPAND_NORMAL
)
6629 result
= force_operand (result
, NULL
);
6630 tmp
= expand_expr (offset
, NULL
, tmode
, EXPAND_NORMAL
);
6632 result
= convert_memory_address (tmode
, result
);
6633 tmp
= convert_memory_address (tmode
, tmp
);
6635 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
6636 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6639 subtarget
= bitpos
? NULL_RTX
: target
;
6640 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6641 1, OPTAB_LIB_WIDEN
);
6647 /* Someone beforehand should have rejected taking the address
6648 of such an object. */
6649 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6651 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6652 if (modifier
< EXPAND_SUM
)
6653 result
= force_operand (result
, target
);
6659 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6660 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6663 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6664 enum expand_modifier modifier
)
6666 enum machine_mode rmode
;
6669 /* Target mode of VOIDmode says "whatever's natural". */
6670 if (tmode
== VOIDmode
)
6671 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6673 /* We can get called with some Weird Things if the user does silliness
6674 like "(short) &a". In that case, convert_memory_address won't do
6675 the right thing, so ignore the given target mode. */
6676 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6679 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6682 /* Despite expand_expr claims concerning ignoring TMODE when not
6683 strictly convenient, stuff breaks if we don't honor it. Note
6684 that combined with the above, we only do this for pointer modes. */
6685 rmode
= GET_MODE (result
);
6686 if (rmode
== VOIDmode
)
6689 result
= convert_memory_address (tmode
, result
);
6695 /* expand_expr: generate code for computing expression EXP.
6696 An rtx for the computed value is returned. The value is never null.
6697 In the case of a void EXP, const0_rtx is returned.
6699 The value may be stored in TARGET if TARGET is nonzero.
6700 TARGET is just a suggestion; callers must assume that
6701 the rtx returned may not be the same as TARGET.
6703 If TARGET is CONST0_RTX, it means that the value will be ignored.
6705 If TMODE is not VOIDmode, it suggests generating the
6706 result in mode TMODE. But this is done only when convenient.
6707 Otherwise, TMODE is ignored and the value generated in its natural mode.
6708 TMODE is just a suggestion; callers must assume that
6709 the rtx returned may not have mode TMODE.
6711 Note that TARGET may have neither TMODE nor MODE. In that case, it
6712 probably will not be used.
6714 If MODIFIER is EXPAND_SUM then when EXP is an addition
6715 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6716 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6717 products as above, or REG or MEM, or constant.
6718 Ordinarily in such cases we would output mul or add instructions
6719 and then return a pseudo reg containing the sum.
6721 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6722 it also marks a label as absolutely required (it can't be dead).
6723 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6724 This is used for outputting expressions used in initializers.
6726 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6727 with a constant address even if that address is not normally legitimate.
6728 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6730 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6731 a call parameter. Such targets require special care as we haven't yet
6732 marked TARGET so that it's safe from being trashed by libcalls. We
6733 don't want to use TARGET for anything but the final result;
6734 Intermediate values must go elsewhere. Additionally, calls to
6735 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6737 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6738 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6739 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6740 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6743 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
6744 enum expand_modifier
, rtx
*);
6747 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
6748 enum expand_modifier modifier
, rtx
*alt_rtl
)
6751 rtx ret
, last
= NULL
;
6753 /* Handle ERROR_MARK before anybody tries to access its type. */
6754 if (TREE_CODE (exp
) == ERROR_MARK
6755 || (!GIMPLE_TUPLE_P (exp
) && TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
6757 ret
= CONST0_RTX (tmode
);
6758 return ret
? ret
: const0_rtx
;
6761 if (flag_non_call_exceptions
)
6763 rn
= lookup_stmt_eh_region (exp
);
6764 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6766 last
= get_last_insn ();
6769 /* If this is an expression of some kind and it has an associated line
6770 number, then emit the line number before expanding the expression.
6772 We need to save and restore the file and line information so that
6773 errors discovered during expansion are emitted with the right
6774 information. It would be better of the diagnostic routines
6775 used the file/line information embedded in the tree nodes rather
6777 if (cfun
&& cfun
->ib_boundaries_block
&& EXPR_HAS_LOCATION (exp
))
6779 location_t saved_location
= input_location
;
6780 input_location
= EXPR_LOCATION (exp
);
6781 emit_line_note (input_location
);
6783 /* Record where the insns produced belong. */
6784 record_block_change (TREE_BLOCK (exp
));
6786 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6788 input_location
= saved_location
;
6792 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6795 /* If using non-call exceptions, mark all insns that may trap.
6796 expand_call() will mark CALL_INSNs before we get to this code,
6797 but it doesn't handle libcalls, and these may trap. */
6801 for (insn
= next_real_insn (last
); insn
;
6802 insn
= next_real_insn (insn
))
6804 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
6805 /* If we want exceptions for non-call insns, any
6806 may_trap_p instruction may throw. */
6807 && GET_CODE (PATTERN (insn
)) != CLOBBER
6808 && GET_CODE (PATTERN (insn
)) != USE
6809 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
6811 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_EH_REGION
, GEN_INT (rn
),
6821 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6822 enum expand_modifier modifier
, rtx
*alt_rtl
)
6824 rtx op0
, op1
, temp
, decl_rtl
;
6827 enum machine_mode mode
;
6828 enum tree_code code
= TREE_CODE (exp
);
6830 rtx subtarget
, original_target
;
6832 tree context
, subexp0
, subexp1
;
6833 bool reduce_bit_field
= false;
6834 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6835 ? reduce_to_bit_field_precision ((expr), \
6840 if (GIMPLE_STMT_P (exp
))
6842 type
= void_type_node
;
6848 type
= TREE_TYPE (exp
);
6849 mode
= TYPE_MODE (type
);
6850 unsignedp
= TYPE_UNSIGNED (type
);
6852 if (lang_hooks
.reduce_bit_field_operations
6853 && TREE_CODE (type
) == INTEGER_TYPE
6854 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
))
6856 /* An operation in what may be a bit-field type needs the
6857 result to be reduced to the precision of the bit-field type,
6858 which is narrower than that of the type's mode. */
6859 reduce_bit_field
= true;
6860 if (modifier
== EXPAND_STACK_PARM
)
6864 /* Use subtarget as the target for operand 0 of a binary operation. */
6865 subtarget
= get_subtarget (target
);
6866 original_target
= target
;
6867 ignore
= (target
== const0_rtx
6868 || ((code
== NON_LVALUE_EXPR
|| code
== NOP_EXPR
6869 || code
== CONVERT_EXPR
|| code
== COND_EXPR
6870 || code
== VIEW_CONVERT_EXPR
)
6871 && TREE_CODE (type
) == VOID_TYPE
));
6873 /* If we are going to ignore this result, we need only do something
6874 if there is a side-effect somewhere in the expression. If there
6875 is, short-circuit the most common cases here. Note that we must
6876 not call expand_expr with anything but const0_rtx in case this
6877 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6881 if (! TREE_SIDE_EFFECTS (exp
))
6884 /* Ensure we reference a volatile object even if value is ignored, but
6885 don't do this if all we are doing is taking its address. */
6886 if (TREE_THIS_VOLATILE (exp
)
6887 && TREE_CODE (exp
) != FUNCTION_DECL
6888 && mode
!= VOIDmode
&& mode
!= BLKmode
6889 && modifier
!= EXPAND_CONST_ADDRESS
)
6891 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
6893 temp
= copy_to_reg (temp
);
6897 if (TREE_CODE_CLASS (code
) == tcc_unary
6898 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
6899 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6902 else if (TREE_CODE_CLASS (code
) == tcc_binary
6903 || TREE_CODE_CLASS (code
) == tcc_comparison
6904 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
6906 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6907 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6910 else if (code
== BIT_FIELD_REF
)
6912 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6913 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6914 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
6926 tree function
= decl_function_context (exp
);
6928 temp
= label_rtx (exp
);
6929 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
6931 if (function
!= current_function_decl
6933 LABEL_REF_NONLOCAL_P (temp
) = 1;
6935 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
6940 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
6945 /* If a static var's type was incomplete when the decl was written,
6946 but the type is complete now, lay out the decl now. */
6947 if (DECL_SIZE (exp
) == 0
6948 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
6949 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
6950 layout_decl (exp
, 0);
6952 /* TLS emulation hook - replace __thread vars with
6953 *__emutls_get_address (&_emutls.var). */
6954 if (! targetm
.have_tls
6955 && TREE_CODE (exp
) == VAR_DECL
6956 && DECL_THREAD_LOCAL_P (exp
))
6958 exp
= build_fold_indirect_ref (emutls_var_address (exp
));
6959 return expand_expr_real_1 (exp
, target
, tmode
, modifier
, NULL
);
6962 /* ... fall through ... */
6966 decl_rtl
= DECL_RTL (exp
);
6967 gcc_assert (decl_rtl
);
6969 /* Ensure variable marked as used even if it doesn't go through
6970 a parser. If it hasn't be used yet, write out an external
6972 if (! TREE_USED (exp
))
6974 assemble_external (exp
);
6975 TREE_USED (exp
) = 1;
6978 /* Show we haven't gotten RTL for this yet. */
6981 /* Variables inherited from containing functions should have
6982 been lowered by this point. */
6983 context
= decl_function_context (exp
);
6984 gcc_assert (!context
6985 || context
== current_function_decl
6986 || TREE_STATIC (exp
)
6987 /* ??? C++ creates functions that are not TREE_STATIC. */
6988 || TREE_CODE (exp
) == FUNCTION_DECL
);
6990 /* This is the case of an array whose size is to be determined
6991 from its initializer, while the initializer is still being parsed.
6994 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
6995 temp
= validize_mem (decl_rtl
);
6997 /* If DECL_RTL is memory, we are in the normal case and either
6998 the address is not valid or it is not a register and -fforce-addr
6999 is specified, get the address into a register. */
7001 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
7004 *alt_rtl
= decl_rtl
;
7005 decl_rtl
= use_anchored_address (decl_rtl
);
7006 if (modifier
!= EXPAND_CONST_ADDRESS
7007 && modifier
!= EXPAND_SUM
7008 && (!memory_address_p (DECL_MODE (exp
), XEXP (decl_rtl
, 0))
7009 || (flag_force_addr
&& !REG_P (XEXP (decl_rtl
, 0)))))
7010 temp
= replace_equiv_address (decl_rtl
,
7011 copy_rtx (XEXP (decl_rtl
, 0)));
7014 /* If we got something, return it. But first, set the alignment
7015 if the address is a register. */
7018 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
7019 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
7024 /* If the mode of DECL_RTL does not match that of the decl, it
7025 must be a promoted value. We return a SUBREG of the wanted mode,
7026 but mark it so that we know that it was already extended. */
7028 if (REG_P (decl_rtl
)
7029 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
7031 enum machine_mode pmode
;
7033 /* Get the signedness used for this variable. Ensure we get the
7034 same mode we got when the variable was declared. */
7035 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
7036 (TREE_CODE (exp
) == RESULT_DECL
7037 || TREE_CODE (exp
) == PARM_DECL
) ? 1 : 0);
7038 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
7040 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
7041 SUBREG_PROMOTED_VAR_P (temp
) = 1;
7042 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
7049 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
7050 TREE_INT_CST_HIGH (exp
), mode
);
7052 /* ??? If overflow is set, fold will have done an incomplete job,
7053 which can result in (plus xx (const_int 0)), which can get
7054 simplified by validate_replace_rtx during virtual register
7055 instantiation, which can result in unrecognizable insns.
7056 Avoid this by forcing all overflows into registers. */
7057 if (TREE_OVERFLOW (exp
)
7058 && modifier
!= EXPAND_INITIALIZER
)
7059 temp
= force_reg (mode
, temp
);
7065 tree tmp
= NULL_TREE
;
7066 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
7067 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
)
7068 return const_vector_from_tree (exp
);
7069 if (GET_MODE_CLASS (mode
) == MODE_INT
)
7071 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
7073 tmp
= fold_unary (VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
7076 tmp
= build_constructor_from_list (type
,
7077 TREE_VECTOR_CST_ELTS (exp
));
7078 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
7083 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
7086 /* If optimized, generate immediate CONST_DOUBLE
7087 which will be turned into memory by reload if necessary.
7089 We used to force a register so that loop.c could see it. But
7090 this does not allow gen_* patterns to perform optimizations with
7091 the constants. It also produces two insns in cases like "x = 1.0;".
7092 On most machines, floating-point constants are not permitted in
7093 many insns, so we'd end up copying it to a register in any case.
7095 Now, we do the copying in expand_binop, if appropriate. */
7096 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
7097 TYPE_MODE (TREE_TYPE (exp
)));
7100 /* Handle evaluating a complex constant in a CONCAT target. */
7101 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
7103 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
7106 rtarg
= XEXP (original_target
, 0);
7107 itarg
= XEXP (original_target
, 1);
7109 /* Move the real and imaginary parts separately. */
7110 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, 0);
7111 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, 0);
7114 emit_move_insn (rtarg
, op0
);
7116 emit_move_insn (itarg
, op1
);
7118 return original_target
;
7121 /* ... fall through ... */
7124 temp
= expand_expr_constant (exp
, 1, modifier
);
7126 /* temp contains a constant address.
7127 On RISC machines where a constant address isn't valid,
7128 make some insns to get that address into a register. */
7129 if (modifier
!= EXPAND_CONST_ADDRESS
7130 && modifier
!= EXPAND_INITIALIZER
7131 && modifier
!= EXPAND_SUM
7132 && (! memory_address_p (mode
, XEXP (temp
, 0))
7133 || flag_force_addr
))
7134 return replace_equiv_address (temp
,
7135 copy_rtx (XEXP (temp
, 0)));
7140 tree val
= TREE_OPERAND (exp
, 0);
7141 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
7143 if (!SAVE_EXPR_RESOLVED_P (exp
))
7145 /* We can indeed still hit this case, typically via builtin
7146 expanders calling save_expr immediately before expanding
7147 something. Assume this means that we only have to deal
7148 with non-BLKmode values. */
7149 gcc_assert (GET_MODE (ret
) != BLKmode
);
7151 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
7152 DECL_ARTIFICIAL (val
) = 1;
7153 DECL_IGNORED_P (val
) = 1;
7154 TREE_OPERAND (exp
, 0) = val
;
7155 SAVE_EXPR_RESOLVED_P (exp
) = 1;
7157 if (!CONSTANT_P (ret
))
7158 ret
= copy_to_reg (ret
);
7159 SET_DECL_RTL (val
, ret
);
7166 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
7167 expand_goto (TREE_OPERAND (exp
, 0));
7169 expand_computed_goto (TREE_OPERAND (exp
, 0));
7173 /* If we don't need the result, just ensure we evaluate any
7177 unsigned HOST_WIDE_INT idx
;
7180 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
7181 expand_expr (value
, const0_rtx
, VOIDmode
, 0);
7186 /* Try to avoid creating a temporary at all. This is possible
7187 if all of the initializer is zero.
7188 FIXME: try to handle all [0..255] initializers we can handle
7190 else if (TREE_STATIC (exp
)
7191 && !TREE_ADDRESSABLE (exp
)
7192 && target
!= 0 && mode
== BLKmode
7193 && all_zeros_p (exp
))
7195 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7199 /* All elts simple constants => refer to a constant in memory. But
7200 if this is a non-BLKmode mode, let it store a field at a time
7201 since that should make a CONST_INT or CONST_DOUBLE when we
7202 fold. Likewise, if we have a target we can use, it is best to
7203 store directly into the target unless the type is large enough
7204 that memcpy will be used. If we are making an initializer and
7205 all operands are constant, put it in memory as well.
7207 FIXME: Avoid trying to fill vector constructors piece-meal.
7208 Output them with output_constant_def below unless we're sure
7209 they're zeros. This should go away when vector initializers
7210 are treated like VECTOR_CST instead of arrays.
7212 else if ((TREE_STATIC (exp
)
7213 && ((mode
== BLKmode
7214 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7215 || TREE_ADDRESSABLE (exp
)
7216 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
7217 && (! MOVE_BY_PIECES_P
7218 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
7220 && ! mostly_zeros_p (exp
))))
7221 || ((modifier
== EXPAND_INITIALIZER
7222 || modifier
== EXPAND_CONST_ADDRESS
)
7223 && TREE_CONSTANT (exp
)))
7225 rtx constructor
= expand_expr_constant (exp
, 1, modifier
);
7227 if (modifier
!= EXPAND_CONST_ADDRESS
7228 && modifier
!= EXPAND_INITIALIZER
7229 && modifier
!= EXPAND_SUM
)
7230 constructor
= validize_mem (constructor
);
7236 /* Handle calls that pass values in multiple non-contiguous
7237 locations. The Irix 6 ABI has examples of this. */
7238 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7239 || GET_CODE (target
) == PARALLEL
7240 || modifier
== EXPAND_STACK_PARM
)
7242 = assign_temp (build_qualified_type (type
,
7244 | (TREE_READONLY (exp
)
7245 * TYPE_QUAL_CONST
))),
7246 0, TREE_ADDRESSABLE (exp
), 1);
7248 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7252 case MISALIGNED_INDIRECT_REF
:
7253 case ALIGN_INDIRECT_REF
:
7256 tree exp1
= TREE_OPERAND (exp
, 0);
7258 if (modifier
!= EXPAND_WRITE
)
7262 t
= fold_read_from_constant_string (exp
);
7264 return expand_expr (t
, target
, tmode
, modifier
);
7267 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
7268 op0
= memory_address (mode
, op0
);
7270 if (code
== ALIGN_INDIRECT_REF
)
7272 int align
= TYPE_ALIGN_UNIT (type
);
7273 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
7274 op0
= memory_address (mode
, op0
);
7277 temp
= gen_rtx_MEM (mode
, op0
);
7279 set_mem_attributes (temp
, exp
, 0);
7281 /* Resolve the misalignment now, so that we don't have to remember
7282 to resolve it later. Of course, this only works for reads. */
7283 /* ??? When we get around to supporting writes, we'll have to handle
7284 this in store_expr directly. The vectorizer isn't generating
7285 those yet, however. */
7286 if (code
== MISALIGNED_INDIRECT_REF
)
7291 gcc_assert (modifier
== EXPAND_NORMAL
7292 || modifier
== EXPAND_STACK_PARM
);
7294 /* The vectorizer should have already checked the mode. */
7295 icode
= movmisalign_optab
->handlers
[mode
].insn_code
;
7296 gcc_assert (icode
!= CODE_FOR_nothing
);
7298 /* We've already validated the memory, and we're creating a
7299 new pseudo destination. The predicates really can't fail. */
7300 reg
= gen_reg_rtx (mode
);
7302 /* Nor can the insn generator. */
7303 insn
= GEN_FCN (icode
) (reg
, temp
);
7312 case TARGET_MEM_REF
:
7314 struct mem_address addr
;
7316 get_address_description (exp
, &addr
);
7317 op0
= addr_for_mem_ref (&addr
, true);
7318 op0
= memory_address (mode
, op0
);
7319 temp
= gen_rtx_MEM (mode
, op0
);
7320 set_mem_attributes (temp
, TMR_ORIGINAL (exp
), 0);
7327 tree array
= TREE_OPERAND (exp
, 0);
7328 tree index
= TREE_OPERAND (exp
, 1);
7330 /* Fold an expression like: "foo"[2].
7331 This is not done in fold so it won't happen inside &.
7332 Don't fold if this is for wide characters since it's too
7333 difficult to do correctly and this is a very rare case. */
7335 if (modifier
!= EXPAND_CONST_ADDRESS
7336 && modifier
!= EXPAND_INITIALIZER
7337 && modifier
!= EXPAND_MEMORY
)
7339 tree t
= fold_read_from_constant_string (exp
);
7342 return expand_expr (t
, target
, tmode
, modifier
);
7345 /* If this is a constant index into a constant array,
7346 just get the value from the array. Handle both the cases when
7347 we have an explicit constructor and when our operand is a variable
7348 that was declared const. */
7350 if (modifier
!= EXPAND_CONST_ADDRESS
7351 && modifier
!= EXPAND_INITIALIZER
7352 && modifier
!= EXPAND_MEMORY
7353 && TREE_CODE (array
) == CONSTRUCTOR
7354 && ! TREE_SIDE_EFFECTS (array
)
7355 && TREE_CODE (index
) == INTEGER_CST
)
7357 unsigned HOST_WIDE_INT ix
;
7360 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
7362 if (tree_int_cst_equal (field
, index
))
7364 if (!TREE_SIDE_EFFECTS (value
))
7365 return expand_expr (fold (value
), target
, tmode
, modifier
);
7370 else if (optimize
>= 1
7371 && modifier
!= EXPAND_CONST_ADDRESS
7372 && modifier
!= EXPAND_INITIALIZER
7373 && modifier
!= EXPAND_MEMORY
7374 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
7375 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
7376 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
7377 && targetm
.binds_local_p (array
))
7379 if (TREE_CODE (index
) == INTEGER_CST
)
7381 tree init
= DECL_INITIAL (array
);
7383 if (TREE_CODE (init
) == CONSTRUCTOR
)
7385 unsigned HOST_WIDE_INT ix
;
7388 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
7390 if (tree_int_cst_equal (field
, index
))
7392 if (!TREE_SIDE_EFFECTS (value
))
7393 return expand_expr (fold (value
), target
, tmode
,
7398 else if(TREE_CODE (init
) == STRING_CST
)
7400 tree index1
= index
;
7401 tree low_bound
= array_ref_low_bound (exp
);
7402 index1
= fold_convert (sizetype
, TREE_OPERAND (exp
, 1));
7404 /* Optimize the special-case of a zero lower bound.
7406 We convert the low_bound to sizetype to avoid some problems
7407 with constant folding. (E.g. suppose the lower bound is 1,
7408 and its mode is QI. Without the conversion,l (ARRAY
7409 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7410 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7412 if (! integer_zerop (low_bound
))
7413 index1
= size_diffop (index1
, fold_convert (sizetype
,
7416 if (0 > compare_tree_int (index1
,
7417 TREE_STRING_LENGTH (init
)))
7419 tree type
= TREE_TYPE (TREE_TYPE (init
));
7420 enum machine_mode mode
= TYPE_MODE (type
);
7422 if (GET_MODE_CLASS (mode
) == MODE_INT
7423 && GET_MODE_SIZE (mode
) == 1)
7424 return gen_int_mode (TREE_STRING_POINTER (init
)
7425 [TREE_INT_CST_LOW (index1
)],
7432 goto normal_inner_ref
;
7435 /* If the operand is a CONSTRUCTOR, we can just extract the
7436 appropriate field if it is present. */
7437 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
7439 unsigned HOST_WIDE_INT idx
;
7442 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)),
7444 if (field
== TREE_OPERAND (exp
, 1)
7445 /* We can normally use the value of the field in the
7446 CONSTRUCTOR. However, if this is a bitfield in
7447 an integral mode that we can fit in a HOST_WIDE_INT,
7448 we must mask only the number of bits in the bitfield,
7449 since this is done implicitly by the constructor. If
7450 the bitfield does not meet either of those conditions,
7451 we can't do this optimization. */
7452 && (! DECL_BIT_FIELD (field
)
7453 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
7454 && (GET_MODE_BITSIZE (DECL_MODE (field
))
7455 <= HOST_BITS_PER_WIDE_INT
))))
7457 if (DECL_BIT_FIELD (field
)
7458 && modifier
== EXPAND_STACK_PARM
)
7460 op0
= expand_expr (value
, target
, tmode
, modifier
);
7461 if (DECL_BIT_FIELD (field
))
7463 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
7464 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
7466 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
7468 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7469 op0
= expand_and (imode
, op0
, op1
, target
);
7474 = build_int_cst (NULL_TREE
,
7475 GET_MODE_BITSIZE (imode
) - bitsize
);
7477 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7479 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7487 goto normal_inner_ref
;
7490 case ARRAY_RANGE_REF
:
7493 enum machine_mode mode1
;
7494 HOST_WIDE_INT bitsize
, bitpos
;
7497 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7498 &mode1
, &unsignedp
, &volatilep
, true);
7501 /* If we got back the original object, something is wrong. Perhaps
7502 we are evaluating an expression too early. In any event, don't
7503 infinitely recurse. */
7504 gcc_assert (tem
!= exp
);
7506 /* If TEM's type is a union of variable size, pass TARGET to the inner
7507 computation, since it will need a temporary and TARGET is known
7508 to have to do. This occurs in unchecked conversion in Ada. */
7512 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7513 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7515 && modifier
!= EXPAND_STACK_PARM
7516 ? target
: NULL_RTX
),
7518 (modifier
== EXPAND_INITIALIZER
7519 || modifier
== EXPAND_CONST_ADDRESS
7520 || modifier
== EXPAND_STACK_PARM
)
7521 ? modifier
: EXPAND_NORMAL
);
7523 /* If this is a constant, put it into a register if it is a legitimate
7524 constant, OFFSET is 0, and we won't try to extract outside the
7525 register (in case we were passed a partially uninitialized object
7526 or a view_conversion to a larger size). Force the constant to
7527 memory otherwise. */
7528 if (CONSTANT_P (op0
))
7530 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
7531 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7533 && bitpos
+ bitsize
<= GET_MODE_BITSIZE (mode
))
7534 op0
= force_reg (mode
, op0
);
7536 op0
= validize_mem (force_const_mem (mode
, op0
));
7539 /* Otherwise, if this object not in memory and we either have an
7540 offset, a BLKmode result, or a reference outside the object, put it
7541 there. Such cases can occur in Ada if we have unchecked conversion
7542 of an expression from a scalar type to an array or record type or
7543 for an ARRAY_RANGE_REF whose type is BLKmode. */
7544 else if (!MEM_P (op0
)
7546 || (bitpos
+ bitsize
> GET_MODE_BITSIZE (GET_MODE (op0
)))
7547 || (code
== ARRAY_RANGE_REF
&& mode
== BLKmode
)))
7549 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7550 (TYPE_QUALS (TREE_TYPE (tem
))
7551 | TYPE_QUAL_CONST
));
7552 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7554 emit_move_insn (memloc
, op0
);
7560 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7563 gcc_assert (MEM_P (op0
));
7565 #ifdef POINTERS_EXTEND_UNSIGNED
7566 if (GET_MODE (offset_rtx
) != Pmode
)
7567 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7569 if (GET_MODE (offset_rtx
) != ptr_mode
)
7570 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7573 if (GET_MODE (op0
) == BLKmode
7574 /* A constant address in OP0 can have VOIDmode, we must
7575 not try to call force_reg in that case. */
7576 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7578 && (bitpos
% bitsize
) == 0
7579 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7580 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7582 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7586 op0
= offset_address (op0
, offset_rtx
,
7587 highest_pow2_factor (offset
));
7590 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7591 record its alignment as BIGGEST_ALIGNMENT. */
7592 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7593 && is_aligning_offset (offset
, tem
))
7594 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7596 /* Don't forget about volatility even if this is a bitfield. */
7597 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7599 if (op0
== orig_op0
)
7600 op0
= copy_rtx (op0
);
7602 MEM_VOLATILE_P (op0
) = 1;
7605 /* The following code doesn't handle CONCAT.
7606 Assume only bitpos == 0 can be used for CONCAT, due to
7607 one element arrays having the same mode as its element. */
7608 if (GET_CODE (op0
) == CONCAT
)
7610 gcc_assert (bitpos
== 0
7611 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7615 /* In cases where an aligned union has an unaligned object
7616 as a field, we might be extracting a BLKmode value from
7617 an integer-mode (e.g., SImode) object. Handle this case
7618 by doing the extract into an object as wide as the field
7619 (which we know to be the width of a basic mode), then
7620 storing into memory, and changing the mode to BLKmode. */
7621 if (mode1
== VOIDmode
7622 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7623 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7624 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7625 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7626 && modifier
!= EXPAND_CONST_ADDRESS
7627 && modifier
!= EXPAND_INITIALIZER
)
7628 /* If the field isn't aligned enough to fetch as a memref,
7629 fetch it as a bit field. */
7630 || (mode1
!= BLKmode
7631 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7632 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7634 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7635 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7636 && ((modifier
== EXPAND_CONST_ADDRESS
7637 || modifier
== EXPAND_INITIALIZER
)
7639 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7640 || (bitpos
% BITS_PER_UNIT
!= 0)))
7641 /* If the type and the field are a constant size and the
7642 size of the type isn't the same size as the bitfield,
7643 we must use bitfield operations. */
7645 && TYPE_SIZE (TREE_TYPE (exp
))
7646 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7647 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7650 enum machine_mode ext_mode
= mode
;
7652 if (ext_mode
== BLKmode
7653 && ! (target
!= 0 && MEM_P (op0
)
7655 && bitpos
% BITS_PER_UNIT
== 0))
7656 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7658 if (ext_mode
== BLKmode
)
7661 target
= assign_temp (type
, 0, 1, 1);
7666 /* In this case, BITPOS must start at a byte boundary and
7667 TARGET, if specified, must be a MEM. */
7668 gcc_assert (MEM_P (op0
)
7669 && (!target
|| MEM_P (target
))
7670 && !(bitpos
% BITS_PER_UNIT
));
7672 emit_block_move (target
,
7673 adjust_address (op0
, VOIDmode
,
7674 bitpos
/ BITS_PER_UNIT
),
7675 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7677 (modifier
== EXPAND_STACK_PARM
7678 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7683 op0
= validize_mem (op0
);
7685 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7686 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7688 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7689 (modifier
== EXPAND_STACK_PARM
7690 ? NULL_RTX
: target
),
7691 ext_mode
, ext_mode
);
7693 /* If the result is a record type and BITSIZE is narrower than
7694 the mode of OP0, an integral mode, and this is a big endian
7695 machine, we must put the field into the high-order bits. */
7696 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7697 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7698 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7699 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7700 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7704 /* If the result type is BLKmode, store the data into a temporary
7705 of the appropriate type, but with the mode corresponding to the
7706 mode for the data we have (op0's mode). It's tempting to make
7707 this a constant type, since we know it's only being stored once,
7708 but that can cause problems if we are taking the address of this
7709 COMPONENT_REF because the MEM of any reference via that address
7710 will have flags corresponding to the type, which will not
7711 necessarily be constant. */
7712 if (mode
== BLKmode
)
7715 = assign_stack_temp_for_type
7716 (ext_mode
, GET_MODE_BITSIZE (ext_mode
), 0, type
);
7718 emit_move_insn (new, op0
);
7719 op0
= copy_rtx (new);
7720 PUT_MODE (op0
, BLKmode
);
7721 set_mem_attributes (op0
, exp
, 1);
7727 /* If the result is BLKmode, use that to access the object
7729 if (mode
== BLKmode
)
7732 /* Get a reference to just this component. */
7733 if (modifier
== EXPAND_CONST_ADDRESS
7734 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7735 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7737 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7739 if (op0
== orig_op0
)
7740 op0
= copy_rtx (op0
);
7742 set_mem_attributes (op0
, exp
, 0);
7743 if (REG_P (XEXP (op0
, 0)))
7744 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7746 MEM_VOLATILE_P (op0
) |= volatilep
;
7747 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
7748 || modifier
== EXPAND_CONST_ADDRESS
7749 || modifier
== EXPAND_INITIALIZER
)
7751 else if (target
== 0)
7752 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7754 convert_move (target
, op0
, unsignedp
);
7759 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
7762 /* Check for a built-in function. */
7763 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7764 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7766 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7768 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7769 == BUILT_IN_FRONTEND
)
7770 return lang_hooks
.expand_expr (exp
, original_target
,
7774 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
7777 return expand_call (exp
, target
, ignore
);
7779 case NON_LVALUE_EXPR
:
7782 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
7785 if (TREE_CODE (type
) == UNION_TYPE
)
7787 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7789 /* If both input and output are BLKmode, this conversion isn't doing
7790 anything except possibly changing memory attribute. */
7791 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
7793 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
7796 result
= copy_rtx (result
);
7797 set_mem_attributes (result
, exp
, 0);
7803 if (TYPE_MODE (type
) != BLKmode
)
7804 target
= gen_reg_rtx (TYPE_MODE (type
));
7806 target
= assign_temp (type
, 0, 1, 1);
7810 /* Store data into beginning of memory target. */
7811 store_expr (TREE_OPERAND (exp
, 0),
7812 adjust_address (target
, TYPE_MODE (valtype
), 0),
7813 modifier
== EXPAND_STACK_PARM
);
7817 gcc_assert (REG_P (target
));
7819 /* Store this field into a union of the proper type. */
7820 store_field (target
,
7821 MIN ((int_size_in_bytes (TREE_TYPE
7822 (TREE_OPERAND (exp
, 0)))
7824 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
7825 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
7829 /* Return the entire union. */
7833 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7835 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
7838 /* If the signedness of the conversion differs and OP0 is
7839 a promoted SUBREG, clear that indication since we now
7840 have to do the proper extension. */
7841 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
7842 && GET_CODE (op0
) == SUBREG
)
7843 SUBREG_PROMOTED_VAR_P (op0
) = 0;
7845 return REDUCE_BIT_FIELD (op0
);
7848 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
,
7849 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
7850 if (GET_MODE (op0
) == mode
)
7853 /* If OP0 is a constant, just convert it into the proper mode. */
7854 else if (CONSTANT_P (op0
))
7856 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7857 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
7859 if (modifier
== EXPAND_INITIALIZER
)
7860 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
7861 subreg_lowpart_offset (mode
,
7864 op0
= convert_modes (mode
, inner_mode
, op0
,
7865 TYPE_UNSIGNED (inner_type
));
7868 else if (modifier
== EXPAND_INITIALIZER
)
7869 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
7871 else if (target
== 0)
7872 op0
= convert_to_mode (mode
, op0
,
7873 TYPE_UNSIGNED (TREE_TYPE
7874 (TREE_OPERAND (exp
, 0))));
7877 convert_move (target
, op0
,
7878 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7882 return REDUCE_BIT_FIELD (op0
);
7884 case VIEW_CONVERT_EXPR
:
7885 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7887 /* If the input and output modes are both the same, we are done. */
7888 if (TYPE_MODE (type
) == GET_MODE (op0
))
7890 /* If neither mode is BLKmode, and both modes are the same size
7891 then we can use gen_lowpart. */
7892 else if (TYPE_MODE (type
) != BLKmode
&& GET_MODE (op0
) != BLKmode
7893 && GET_MODE_SIZE (TYPE_MODE (type
))
7894 == GET_MODE_SIZE (GET_MODE (op0
)))
7896 if (GET_CODE (op0
) == SUBREG
)
7897 op0
= force_reg (GET_MODE (op0
), op0
);
7898 op0
= gen_lowpart (TYPE_MODE (type
), op0
);
7900 /* If both modes are integral, then we can convert from one to the
7902 else if (SCALAR_INT_MODE_P (GET_MODE (op0
))
7903 && SCALAR_INT_MODE_P (TYPE_MODE (type
)))
7904 op0
= convert_modes (TYPE_MODE (type
), GET_MODE (op0
), op0
,
7905 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7906 /* As a last resort, spill op0 to memory, and reload it in a
7908 else if (!MEM_P (op0
))
7910 /* If the operand is not a MEM, force it into memory. Since we
7911 are going to be changing the mode of the MEM, don't call
7912 force_const_mem for constants because we don't allow pool
7913 constants to change mode. */
7914 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7916 gcc_assert (!TREE_ADDRESSABLE (exp
));
7918 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
7920 = assign_stack_temp_for_type
7921 (TYPE_MODE (inner_type
),
7922 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
7924 emit_move_insn (target
, op0
);
7928 /* At this point, OP0 is in the correct mode. If the output type is such
7929 that the operand is known to be aligned, indicate that it is.
7930 Otherwise, we need only be concerned about alignment for non-BLKmode
7934 op0
= copy_rtx (op0
);
7936 if (TYPE_ALIGN_OK (type
))
7937 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
7938 else if (TYPE_MODE (type
) != BLKmode
&& STRICT_ALIGNMENT
7939 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
7941 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7942 HOST_WIDE_INT temp_size
7943 = MAX (int_size_in_bytes (inner_type
),
7944 (HOST_WIDE_INT
) GET_MODE_SIZE (TYPE_MODE (type
)));
7945 rtx
new = assign_stack_temp_for_type (TYPE_MODE (type
),
7946 temp_size
, 0, type
);
7947 rtx new_with_op0_mode
= adjust_address (new, GET_MODE (op0
), 0);
7949 gcc_assert (!TREE_ADDRESSABLE (exp
));
7951 if (GET_MODE (op0
) == BLKmode
)
7952 emit_block_move (new_with_op0_mode
, op0
,
7953 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type
))),
7954 (modifier
== EXPAND_STACK_PARM
7955 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7957 emit_move_insn (new_with_op0_mode
, op0
);
7962 op0
= adjust_address (op0
, TYPE_MODE (type
), 0);
7968 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7969 something else, make sure we add the register to the constant and
7970 then to the other thing. This case can occur during strength
7971 reduction and doing it this way will produce better code if the
7972 frame pointer or argument pointer is eliminated.
7974 fold-const.c will ensure that the constant is always in the inner
7975 PLUS_EXPR, so the only case we need to do anything about is if
7976 sp, ap, or fp is our second argument, in which case we must swap
7977 the innermost first argument and our second argument. */
7979 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
7980 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
7981 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
7982 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
7983 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
7984 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
7986 tree t
= TREE_OPERAND (exp
, 1);
7988 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7989 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
7992 /* If the result is to be ptr_mode and we are adding an integer to
7993 something, we might be forming a constant. So try to use
7994 plus_constant. If it produces a sum and we can't accept it,
7995 use force_operand. This allows P = &ARR[const] to generate
7996 efficient code on machines where a SYMBOL_REF is not a valid
7999 If this is an EXPAND_SUM call, always return the sum. */
8000 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8001 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8003 if (modifier
== EXPAND_STACK_PARM
)
8005 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
8006 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8007 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
8011 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
8013 /* Use immed_double_const to ensure that the constant is
8014 truncated according to the mode of OP1, then sign extended
8015 to a HOST_WIDE_INT. Using the constant directly can result
8016 in non-canonical RTL in a 64x32 cross compile. */
8018 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
8020 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
8021 op1
= plus_constant (op1
, INTVAL (constant_part
));
8022 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8023 op1
= force_operand (op1
, target
);
8024 return REDUCE_BIT_FIELD (op1
);
8027 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
8028 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8029 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
8033 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8034 (modifier
== EXPAND_INITIALIZER
8035 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8036 if (! CONSTANT_P (op0
))
8038 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
8039 VOIDmode
, modifier
);
8040 /* Return a PLUS if modifier says it's OK. */
8041 if (modifier
== EXPAND_SUM
8042 || modifier
== EXPAND_INITIALIZER
)
8043 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8046 /* Use immed_double_const to ensure that the constant is
8047 truncated according to the mode of OP1, then sign extended
8048 to a HOST_WIDE_INT. Using the constant directly can result
8049 in non-canonical RTL in a 64x32 cross compile. */
8051 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
8053 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8054 op0
= plus_constant (op0
, INTVAL (constant_part
));
8055 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8056 op0
= force_operand (op0
, target
);
8057 return REDUCE_BIT_FIELD (op0
);
8061 /* No sense saving up arithmetic to be done
8062 if it's all in the wrong mode to form part of an address.
8063 And force_operand won't know whether to sign-extend or
8065 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8066 || mode
!= ptr_mode
)
8068 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8069 subtarget
, &op0
, &op1
, 0);
8070 if (op0
== const0_rtx
)
8072 if (op1
== const0_rtx
)
8077 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8078 subtarget
, &op0
, &op1
, modifier
);
8079 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8082 /* For initializers, we are allowed to return a MINUS of two
8083 symbolic constants. Here we handle all cases when both operands
8085 /* Handle difference of two symbolic constants,
8086 for the sake of an initializer. */
8087 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8088 && really_constant_p (TREE_OPERAND (exp
, 0))
8089 && really_constant_p (TREE_OPERAND (exp
, 1)))
8091 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8092 NULL_RTX
, &op0
, &op1
, modifier
);
8094 /* If the last operand is a CONST_INT, use plus_constant of
8095 the negated constant. Else make the MINUS. */
8096 if (GET_CODE (op1
) == CONST_INT
)
8097 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
8099 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8102 /* No sense saving up arithmetic to be done
8103 if it's all in the wrong mode to form part of an address.
8104 And force_operand won't know whether to sign-extend or
8106 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8107 || mode
!= ptr_mode
)
8110 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8111 subtarget
, &op0
, &op1
, modifier
);
8113 /* Convert A - const to A + (-const). */
8114 if (GET_CODE (op1
) == CONST_INT
)
8116 op1
= negate_rtx (mode
, op1
);
8117 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8123 /* If first operand is constant, swap them.
8124 Thus the following special case checks need only
8125 check the second operand. */
8126 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
8128 tree t1
= TREE_OPERAND (exp
, 0);
8129 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
8130 TREE_OPERAND (exp
, 1) = t1
;
8133 /* Attempt to return something suitable for generating an
8134 indexed address, for machines that support that. */
8136 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8137 && host_integerp (TREE_OPERAND (exp
, 1), 0))
8139 tree exp1
= TREE_OPERAND (exp
, 1);
8141 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8145 op0
= force_operand (op0
, NULL_RTX
);
8147 op0
= copy_to_mode_reg (mode
, op0
);
8149 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8150 gen_int_mode (tree_low_cst (exp1
, 0),
8151 TYPE_MODE (TREE_TYPE (exp1
)))));
8154 if (modifier
== EXPAND_STACK_PARM
)
8157 /* Check for multiplying things that have been extended
8158 from a narrower type. If this machine supports multiplying
8159 in that narrower type with a result in the desired type,
8160 do it that way, and avoid the explicit type-conversion. */
8162 subexp0
= TREE_OPERAND (exp
, 0);
8163 subexp1
= TREE_OPERAND (exp
, 1);
8164 /* First, check if we have a multiplication of one signed and one
8165 unsigned operand. */
8166 if (TREE_CODE (subexp0
) == NOP_EXPR
8167 && TREE_CODE (subexp1
) == NOP_EXPR
8168 && TREE_CODE (type
) == INTEGER_TYPE
8169 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8170 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8171 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8172 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1
, 0))))
8173 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8174 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1
, 0)))))
8176 enum machine_mode innermode
8177 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0
, 0)));
8178 this_optab
= usmul_widen_optab
;
8179 if (mode
== GET_MODE_WIDER_MODE (innermode
))
8181 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
8183 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0
, 0))))
8184 expand_operands (TREE_OPERAND (subexp0
, 0),
8185 TREE_OPERAND (subexp1
, 0),
8186 NULL_RTX
, &op0
, &op1
, 0);
8188 expand_operands (TREE_OPERAND (subexp0
, 0),
8189 TREE_OPERAND (subexp1
, 0),
8190 NULL_RTX
, &op1
, &op0
, 0);
8196 /* Check for a multiplication with matching signedness. */
8197 else if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
8198 && TREE_CODE (type
) == INTEGER_TYPE
8199 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8200 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8201 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
8202 && int_fits_type_p (TREE_OPERAND (exp
, 1),
8203 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8204 /* Don't use a widening multiply if a shift will do. */
8205 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8206 > HOST_BITS_PER_WIDE_INT
)
8207 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
8209 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
8210 && (TYPE_PRECISION (TREE_TYPE
8211 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
8212 == TYPE_PRECISION (TREE_TYPE
8214 (TREE_OPERAND (exp
, 0), 0))))
8215 /* If both operands are extended, they must either both
8216 be zero-extended or both be sign-extended. */
8217 && (TYPE_UNSIGNED (TREE_TYPE
8218 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
8219 == TYPE_UNSIGNED (TREE_TYPE
8221 (TREE_OPERAND (exp
, 0), 0)))))))
8223 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
8224 enum machine_mode innermode
= TYPE_MODE (op0type
);
8225 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8226 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8227 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8229 if (mode
== GET_MODE_2XWIDER_MODE (innermode
))
8231 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
8233 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
8234 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8235 TREE_OPERAND (exp
, 1),
8236 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8238 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8239 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
8240 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8243 else if (other_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
8244 && innermode
== word_mode
)
8247 op0
= expand_normal (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
8248 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
8249 op1
= convert_modes (innermode
, mode
,
8250 expand_normal (TREE_OPERAND (exp
, 1)),
8253 op1
= expand_normal (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0));
8254 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8255 unsignedp
, OPTAB_LIB_WIDEN
);
8256 hipart
= gen_highpart (innermode
, temp
);
8257 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8261 emit_move_insn (hipart
, htem
);
8262 return REDUCE_BIT_FIELD (temp
);
8266 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8267 subtarget
, &op0
, &op1
, 0);
8268 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8270 case TRUNC_DIV_EXPR
:
8271 case FLOOR_DIV_EXPR
:
8273 case ROUND_DIV_EXPR
:
8274 case EXACT_DIV_EXPR
:
8275 if (modifier
== EXPAND_STACK_PARM
)
8277 /* Possible optimization: compute the dividend with EXPAND_SUM
8278 then if the divisor is constant can optimize the case
8279 where some terms of the dividend have coeffs divisible by it. */
8280 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8281 subtarget
, &op0
, &op1
, 0);
8282 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8287 case TRUNC_MOD_EXPR
:
8288 case FLOOR_MOD_EXPR
:
8290 case ROUND_MOD_EXPR
:
8291 if (modifier
== EXPAND_STACK_PARM
)
8293 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8294 subtarget
, &op0
, &op1
, 0);
8295 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8297 case FIX_TRUNC_EXPR
:
8298 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8299 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8300 target
= gen_reg_rtx (mode
);
8301 expand_fix (target
, op0
, unsignedp
);
8305 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8306 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8307 target
= gen_reg_rtx (mode
);
8308 /* expand_float can't figure out what to do if FROM has VOIDmode.
8309 So give it the correct mode. With -O, cse will optimize this. */
8310 if (GET_MODE (op0
) == VOIDmode
)
8311 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
8313 expand_float (target
, op0
,
8314 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8318 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8319 if (modifier
== EXPAND_STACK_PARM
)
8321 temp
= expand_unop (mode
,
8322 optab_for_tree_code (NEGATE_EXPR
, type
),
8325 return REDUCE_BIT_FIELD (temp
);
8328 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8329 if (modifier
== EXPAND_STACK_PARM
)
8332 /* ABS_EXPR is not valid for complex arguments. */
8333 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8334 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8336 /* Unsigned abs is simply the operand. Testing here means we don't
8337 risk generating incorrect code below. */
8338 if (TYPE_UNSIGNED (type
))
8341 return expand_abs (mode
, op0
, target
, unsignedp
,
8342 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
8346 target
= original_target
;
8348 || modifier
== EXPAND_STACK_PARM
8349 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8350 || GET_MODE (target
) != mode
8352 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8353 target
= gen_reg_rtx (mode
);
8354 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8355 target
, &op0
, &op1
, 0);
8357 /* First try to do it with a special MIN or MAX instruction.
8358 If that does not win, use a conditional jump to select the proper
8360 this_optab
= optab_for_tree_code (code
, type
);
8361 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8366 /* At this point, a MEM target is no longer useful; we will get better
8369 if (! REG_P (target
))
8370 target
= gen_reg_rtx (mode
);
8372 /* If op1 was placed in target, swap op0 and op1. */
8373 if (target
!= op0
&& target
== op1
)
8380 /* We generate better code and avoid problems with op1 mentioning
8381 target by forcing op1 into a pseudo if it isn't a constant. */
8382 if (! CONSTANT_P (op1
))
8383 op1
= force_reg (mode
, op1
);
8386 enum rtx_code comparison_code
;
8389 if (code
== MAX_EXPR
)
8390 comparison_code
= unsignedp
? GEU
: GE
;
8392 comparison_code
= unsignedp
? LEU
: LE
;
8394 /* Canonicalize to comparisons against 0. */
8395 if (op1
== const1_rtx
)
8397 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8398 or (a != 0 ? a : 1) for unsigned.
8399 For MIN we are safe converting (a <= 1 ? a : 1)
8400 into (a <= 0 ? a : 1) */
8401 cmpop1
= const0_rtx
;
8402 if (code
== MAX_EXPR
)
8403 comparison_code
= unsignedp
? NE
: GT
;
8405 if (op1
== constm1_rtx
&& !unsignedp
)
8407 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8408 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8409 cmpop1
= const0_rtx
;
8410 if (code
== MIN_EXPR
)
8411 comparison_code
= LT
;
8413 #ifdef HAVE_conditional_move
8414 /* Use a conditional move if possible. */
8415 if (can_conditionally_move_p (mode
))
8419 /* ??? Same problem as in expmed.c: emit_conditional_move
8420 forces a stack adjustment via compare_from_rtx, and we
8421 lose the stack adjustment if the sequence we are about
8422 to create is discarded. */
8423 do_pending_stack_adjust ();
8427 /* Try to emit the conditional move. */
8428 insn
= emit_conditional_move (target
, comparison_code
,
8433 /* If we could do the conditional move, emit the sequence,
8437 rtx seq
= get_insns ();
8443 /* Otherwise discard the sequence and fall back to code with
8449 emit_move_insn (target
, op0
);
8451 temp
= gen_label_rtx ();
8452 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8453 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
8455 emit_move_insn (target
, op1
);
8460 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8461 if (modifier
== EXPAND_STACK_PARM
)
8463 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8467 /* ??? Can optimize bitwise operations with one arg constant.
8468 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8469 and (a bitwise1 b) bitwise2 b (etc)
8470 but that is probably not worth while. */
8472 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8473 boolean values when we want in all cases to compute both of them. In
8474 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8475 as actual zero-or-1 values and then bitwise anding. In cases where
8476 there cannot be any side effects, better code would be made by
8477 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8478 how to recognize those cases. */
8480 case TRUTH_AND_EXPR
:
8481 code
= BIT_AND_EXPR
;
8486 code
= BIT_IOR_EXPR
;
8490 case TRUTH_XOR_EXPR
:
8491 code
= BIT_XOR_EXPR
;
8499 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8501 if (modifier
== EXPAND_STACK_PARM
)
8503 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8504 return expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
8507 /* Could determine the answer when only additive constants differ. Also,
8508 the addition of one can be handled by changing the condition. */
8515 case UNORDERED_EXPR
:
8523 temp
= do_store_flag (exp
,
8524 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8525 tmode
!= VOIDmode
? tmode
: mode
, 0);
8529 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8530 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
8532 && REG_P (original_target
)
8533 && (GET_MODE (original_target
)
8534 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
8536 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
8539 /* If temp is constant, we can just compute the result. */
8540 if (GET_CODE (temp
) == CONST_INT
)
8542 if (INTVAL (temp
) != 0)
8543 emit_move_insn (target
, const1_rtx
);
8545 emit_move_insn (target
, const0_rtx
);
8550 if (temp
!= original_target
)
8552 enum machine_mode mode1
= GET_MODE (temp
);
8553 if (mode1
== VOIDmode
)
8554 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
8556 temp
= copy_to_mode_reg (mode1
, temp
);
8559 op1
= gen_label_rtx ();
8560 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
8561 GET_MODE (temp
), unsignedp
, op1
);
8562 emit_move_insn (temp
, const1_rtx
);
8567 /* If no set-flag instruction, must generate a conditional store
8568 into a temporary variable. Drop through and handle this
8573 || modifier
== EXPAND_STACK_PARM
8574 || ! safe_from_p (target
, exp
, 1)
8575 /* Make sure we don't have a hard reg (such as function's return
8576 value) live across basic blocks, if not optimizing. */
8577 || (!optimize
&& REG_P (target
)
8578 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8579 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8582 emit_move_insn (target
, const0_rtx
);
8584 op1
= gen_label_rtx ();
8585 jumpifnot (exp
, op1
);
8588 emit_move_insn (target
, const1_rtx
);
8591 return ignore
? const0_rtx
: target
;
8593 case TRUTH_NOT_EXPR
:
8594 if (modifier
== EXPAND_STACK_PARM
)
8596 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
8597 /* The parser is careful to generate TRUTH_NOT_EXPR
8598 only with operands that are always zero or one. */
8599 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
8600 target
, 1, OPTAB_LIB_WIDEN
);
8604 case STATEMENT_LIST
:
8606 tree_stmt_iterator iter
;
8608 gcc_assert (ignore
);
8610 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
8611 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
8616 /* A COND_EXPR with its type being VOID_TYPE represents a
8617 conditional jump and is handled in
8618 expand_gimple_cond_expr. */
8619 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
8621 /* Note that COND_EXPRs whose type is a structure or union
8622 are required to be constructed to contain assignments of
8623 a temporary variable, so that we can evaluate them here
8624 for side effect only. If type is void, we must do likewise. */
8626 gcc_assert (!TREE_ADDRESSABLE (type
)
8628 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
8629 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
8631 /* If we are not to produce a result, we have no target. Otherwise,
8632 if a target was specified use it; it will not be used as an
8633 intermediate target unless it is safe. If no target, use a
8636 if (modifier
!= EXPAND_STACK_PARM
8638 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
8639 && GET_MODE (original_target
) == mode
8640 #ifdef HAVE_conditional_move
8641 && (! can_conditionally_move_p (mode
)
8642 || REG_P (original_target
))
8644 && !MEM_P (original_target
))
8645 temp
= original_target
;
8647 temp
= assign_temp (type
, 0, 0, 1);
8649 do_pending_stack_adjust ();
8651 op0
= gen_label_rtx ();
8652 op1
= gen_label_rtx ();
8653 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8654 store_expr (TREE_OPERAND (exp
, 1), temp
,
8655 modifier
== EXPAND_STACK_PARM
);
8657 emit_jump_insn (gen_jump (op1
));
8660 store_expr (TREE_OPERAND (exp
, 2), temp
,
8661 modifier
== EXPAND_STACK_PARM
);
8668 target
= expand_vec_cond_expr (exp
, target
);
8671 case GIMPLE_MODIFY_STMT
:
8673 tree lhs
= GIMPLE_STMT_OPERAND (exp
, 0);
8674 tree rhs
= GIMPLE_STMT_OPERAND (exp
, 1);
8676 gcc_assert (ignore
);
8678 /* Check for |= or &= of a bitfield of size one into another bitfield
8679 of size 1. In this case, (unless we need the result of the
8680 assignment) we can do this more efficiently with a
8681 test followed by an assignment, if necessary.
8683 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8684 things change so we do, this code should be enhanced to
8686 if (TREE_CODE (lhs
) == COMPONENT_REF
8687 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
8688 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
8689 && TREE_OPERAND (rhs
, 0) == lhs
8690 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
8691 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
8692 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
8694 rtx label
= gen_label_rtx ();
8695 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
8696 do_jump (TREE_OPERAND (rhs
, 1),
8699 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
));
8700 do_pending_stack_adjust ();
8705 expand_assignment (lhs
, rhs
);
8711 if (!TREE_OPERAND (exp
, 0))
8712 expand_null_return ();
8714 expand_return (TREE_OPERAND (exp
, 0));
8718 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
8721 /* Get the rtx code of the operands. */
8722 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8723 op1
= expand_normal (TREE_OPERAND (exp
, 1));
8726 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
8728 /* Move the real (op0) and imaginary (op1) parts to their location. */
8729 write_complex_part (target
, op0
, false);
8730 write_complex_part (target
, op1
, true);
8735 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8736 return read_complex_part (op0
, false);
8739 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8740 return read_complex_part (op0
, true);
8743 expand_resx_expr (exp
);
8746 case TRY_CATCH_EXPR
:
8748 case EH_FILTER_EXPR
:
8749 case TRY_FINALLY_EXPR
:
8750 /* Lowered by tree-eh.c. */
8753 case WITH_CLEANUP_EXPR
:
8754 case CLEANUP_POINT_EXPR
:
8756 case CASE_LABEL_EXPR
:
8762 case PREINCREMENT_EXPR
:
8763 case PREDECREMENT_EXPR
:
8764 case POSTINCREMENT_EXPR
:
8765 case POSTDECREMENT_EXPR
:
8768 case TRUTH_ANDIF_EXPR
:
8769 case TRUTH_ORIF_EXPR
:
8770 /* Lowered by gimplify.c. */
8774 return get_exception_pointer (cfun
);
8777 return get_exception_filter (cfun
);
8780 /* Function descriptors are not valid except for as
8781 initialization constants, and should not be expanded. */
8789 expand_label (TREE_OPERAND (exp
, 0));
8793 expand_asm_expr (exp
);
8796 case WITH_SIZE_EXPR
:
8797 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8798 have pulled out the size to use in whatever context it needed. */
8799 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
8802 case REALIGN_LOAD_EXPR
:
8804 tree oprnd0
= TREE_OPERAND (exp
, 0);
8805 tree oprnd1
= TREE_OPERAND (exp
, 1);
8806 tree oprnd2
= TREE_OPERAND (exp
, 2);
8809 this_optab
= optab_for_tree_code (code
, type
);
8810 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8811 op2
= expand_normal (oprnd2
);
8812 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8820 tree oprnd0
= TREE_OPERAND (exp
, 0);
8821 tree oprnd1
= TREE_OPERAND (exp
, 1);
8822 tree oprnd2
= TREE_OPERAND (exp
, 2);
8825 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8826 op2
= expand_normal (oprnd2
);
8827 target
= expand_widen_pattern_expr (exp
, op0
, op1
, op2
,
8832 case WIDEN_SUM_EXPR
:
8834 tree oprnd0
= TREE_OPERAND (exp
, 0);
8835 tree oprnd1
= TREE_OPERAND (exp
, 1);
8837 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
8838 target
= expand_widen_pattern_expr (exp
, op0
, NULL_RTX
, op1
,
8843 case REDUC_MAX_EXPR
:
8844 case REDUC_MIN_EXPR
:
8845 case REDUC_PLUS_EXPR
:
8847 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8848 this_optab
= optab_for_tree_code (code
, type
);
8849 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
8854 case VEC_EXTRACT_EVEN_EXPR
:
8855 case VEC_EXTRACT_ODD_EXPR
:
8857 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8858 NULL_RTX
, &op0
, &op1
, 0);
8859 this_optab
= optab_for_tree_code (code
, type
);
8860 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8866 case VEC_INTERLEAVE_HIGH_EXPR
:
8867 case VEC_INTERLEAVE_LOW_EXPR
:
8869 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8870 NULL_RTX
, &op0
, &op1
, 0);
8871 this_optab
= optab_for_tree_code (code
, type
);
8872 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8878 case VEC_LSHIFT_EXPR
:
8879 case VEC_RSHIFT_EXPR
:
8881 target
= expand_vec_shift_expr (exp
, target
);
8885 case VEC_UNPACK_HI_EXPR
:
8886 case VEC_UNPACK_LO_EXPR
:
8888 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
8889 this_optab
= optab_for_tree_code (code
, type
);
8890 temp
= expand_widen_pattern_expr (exp
, op0
, NULL_RTX
, NULL_RTX
,
8896 case VEC_WIDEN_MULT_HI_EXPR
:
8897 case VEC_WIDEN_MULT_LO_EXPR
:
8899 tree oprnd0
= TREE_OPERAND (exp
, 0);
8900 tree oprnd1
= TREE_OPERAND (exp
, 1);
8902 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
8903 target
= expand_widen_pattern_expr (exp
, op0
, op1
, NULL_RTX
,
8905 gcc_assert (target
);
8909 case VEC_PACK_MOD_EXPR
:
8910 case VEC_PACK_SAT_EXPR
:
8912 mode
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
8917 return lang_hooks
.expand_expr (exp
, original_target
, tmode
,
8921 /* Here to do an ordinary binary operator. */
8923 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8924 subtarget
, &op0
, &op1
, 0);
8926 this_optab
= optab_for_tree_code (code
, type
);
8928 if (modifier
== EXPAND_STACK_PARM
)
8930 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
8931 unsignedp
, OPTAB_LIB_WIDEN
);
8933 return REDUCE_BIT_FIELD (temp
);
8935 #undef REDUCE_BIT_FIELD
8937 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8938 signedness of TYPE), possibly returning the result in TARGET. */
8940 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
8942 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
8943 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
8945 if (TYPE_UNSIGNED (type
))
8948 if (prec
< HOST_BITS_PER_WIDE_INT
)
8949 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
8952 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
8953 ((unsigned HOST_WIDE_INT
) 1
8954 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
8956 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
8960 tree count
= build_int_cst (NULL_TREE
,
8961 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
8962 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8963 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8967 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8968 when applied to the address of EXP produces an address known to be
8969 aligned more than BIGGEST_ALIGNMENT. */
8972 is_aligning_offset (tree offset
, tree exp
)
8974 /* Strip off any conversions. */
8975 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8976 || TREE_CODE (offset
) == NOP_EXPR
8977 || TREE_CODE (offset
) == CONVERT_EXPR
)
8978 offset
= TREE_OPERAND (offset
, 0);
8980 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8981 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8982 if (TREE_CODE (offset
) != BIT_AND_EXPR
8983 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
8984 || compare_tree_int (TREE_OPERAND (offset
, 1),
8985 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
8986 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
8989 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8990 It must be NEGATE_EXPR. Then strip any more conversions. */
8991 offset
= TREE_OPERAND (offset
, 0);
8992 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8993 || TREE_CODE (offset
) == NOP_EXPR
8994 || TREE_CODE (offset
) == CONVERT_EXPR
)
8995 offset
= TREE_OPERAND (offset
, 0);
8997 if (TREE_CODE (offset
) != NEGATE_EXPR
)
9000 offset
= TREE_OPERAND (offset
, 0);
9001 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
9002 || TREE_CODE (offset
) == NOP_EXPR
9003 || TREE_CODE (offset
) == CONVERT_EXPR
)
9004 offset
= TREE_OPERAND (offset
, 0);
9006 /* This must now be the address of EXP. */
9007 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
9010 /* Return the tree node if an ARG corresponds to a string constant or zero
9011 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9012 in bytes within the string that ARG is accessing. The type of the
9013 offset will be `sizetype'. */
9016 string_constant (tree arg
, tree
*ptr_offset
)
9018 tree array
, offset
, lower_bound
;
9021 if (TREE_CODE (arg
) == ADDR_EXPR
)
9023 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
9025 *ptr_offset
= size_zero_node
;
9026 return TREE_OPERAND (arg
, 0);
9028 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
9030 array
= TREE_OPERAND (arg
, 0);
9031 offset
= size_zero_node
;
9033 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
9035 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
9036 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
9037 if (TREE_CODE (array
) != STRING_CST
9038 && TREE_CODE (array
) != VAR_DECL
)
9041 /* Check if the array has a nonzero lower bound. */
9042 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
9043 if (!integer_zerop (lower_bound
))
9045 /* If the offset and base aren't both constants, return 0. */
9046 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
9048 if (TREE_CODE (offset
) != INTEGER_CST
)
9050 /* Adjust offset by the lower bound. */
9051 offset
= size_diffop (fold_convert (sizetype
, offset
),
9052 fold_convert (sizetype
, lower_bound
));
9058 else if (TREE_CODE (arg
) == PLUS_EXPR
)
9060 tree arg0
= TREE_OPERAND (arg
, 0);
9061 tree arg1
= TREE_OPERAND (arg
, 1);
9066 if (TREE_CODE (arg0
) == ADDR_EXPR
9067 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
9068 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
9070 array
= TREE_OPERAND (arg0
, 0);
9073 else if (TREE_CODE (arg1
) == ADDR_EXPR
9074 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
9075 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
9077 array
= TREE_OPERAND (arg1
, 0);
9086 if (TREE_CODE (array
) == STRING_CST
)
9088 *ptr_offset
= fold_convert (sizetype
, offset
);
9091 else if (TREE_CODE (array
) == VAR_DECL
)
9095 /* Variables initialized to string literals can be handled too. */
9096 if (DECL_INITIAL (array
) == NULL_TREE
9097 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
9100 /* If they are read-only, non-volatile and bind locally. */
9101 if (! TREE_READONLY (array
)
9102 || TREE_SIDE_EFFECTS (array
)
9103 || ! targetm
.binds_local_p (array
))
9106 /* Avoid const char foo[4] = "abcde"; */
9107 if (DECL_SIZE_UNIT (array
) == NULL_TREE
9108 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
9109 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
9110 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
9113 /* If variable is bigger than the string literal, OFFSET must be constant
9114 and inside of the bounds of the string literal. */
9115 offset
= fold_convert (sizetype
, offset
);
9116 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
9117 && (! host_integerp (offset
, 1)
9118 || compare_tree_int (offset
, length
) >= 0))
9121 *ptr_offset
= offset
;
9122 return DECL_INITIAL (array
);
9128 /* Generate code to calculate EXP using a store-flag instruction
9129 and return an rtx for the result. EXP is either a comparison
9130 or a TRUTH_NOT_EXPR whose operand is a comparison.
9132 If TARGET is nonzero, store the result there if convenient.
9134 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9137 Return zero if there is no suitable set-flag instruction
9138 available on this machine.
9140 Once expand_expr has been called on the arguments of the comparison,
9141 we are committed to doing the store flag, since it is not safe to
9142 re-evaluate the expression. We emit the store-flag insn by calling
9143 emit_store_flag, but only expand the arguments if we have a reason
9144 to believe that emit_store_flag will be successful. If we think that
9145 it will, but it isn't, we have to simulate the store-flag with a
9146 set/jump/set sequence. */
9149 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
9152 tree arg0
, arg1
, type
;
9154 enum machine_mode operand_mode
;
9158 enum insn_code icode
;
9159 rtx subtarget
= target
;
9162 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9163 result at the end. We can't simply invert the test since it would
9164 have already been inverted if it were valid. This case occurs for
9165 some floating-point comparisons. */
9167 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
9168 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
9170 arg0
= TREE_OPERAND (exp
, 0);
9171 arg1
= TREE_OPERAND (exp
, 1);
9173 /* Don't crash if the comparison was erroneous. */
9174 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
9177 type
= TREE_TYPE (arg0
);
9178 operand_mode
= TYPE_MODE (type
);
9179 unsignedp
= TYPE_UNSIGNED (type
);
9181 /* We won't bother with BLKmode store-flag operations because it would mean
9182 passing a lot of information to emit_store_flag. */
9183 if (operand_mode
== BLKmode
)
9186 /* We won't bother with store-flag operations involving function pointers
9187 when function pointers must be canonicalized before comparisons. */
9188 #ifdef HAVE_canonicalize_funcptr_for_compare
9189 if (HAVE_canonicalize_funcptr_for_compare
9190 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
9191 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
9193 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
9194 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
9195 == FUNCTION_TYPE
))))
9202 /* Get the rtx comparison code to use. We know that EXP is a comparison
9203 operation of some type. Some comparisons against 1 and -1 can be
9204 converted to comparisons with zero. Do so here so that the tests
9205 below will be aware that we have a comparison with zero. These
9206 tests will not catch constants in the first operand, but constants
9207 are rarely passed as the first operand. */
9209 switch (TREE_CODE (exp
))
9218 if (integer_onep (arg1
))
9219 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
9221 code
= unsignedp
? LTU
: LT
;
9224 if (! unsignedp
&& integer_all_onesp (arg1
))
9225 arg1
= integer_zero_node
, code
= LT
;
9227 code
= unsignedp
? LEU
: LE
;
9230 if (! unsignedp
&& integer_all_onesp (arg1
))
9231 arg1
= integer_zero_node
, code
= GE
;
9233 code
= unsignedp
? GTU
: GT
;
9236 if (integer_onep (arg1
))
9237 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
9239 code
= unsignedp
? GEU
: GE
;
9242 case UNORDERED_EXPR
:
9271 /* Put a constant second. */
9272 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
)
9274 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
9275 code
= swap_condition (code
);
9278 /* If this is an equality or inequality test of a single bit, we can
9279 do this by shifting the bit being tested to the low-order bit and
9280 masking the result with the constant 1. If the condition was EQ,
9281 we xor it with 1. This does not require an scc insn and is faster
9282 than an scc insn even if we have it.
9284 The code to make this transformation was moved into fold_single_bit_test,
9285 so we just call into the folder and expand its result. */
9287 if ((code
== NE
|| code
== EQ
)
9288 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
9289 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
9291 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
9292 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
9294 target
, VOIDmode
, EXPAND_NORMAL
);
9297 /* Now see if we are likely to be able to do this. Return if not. */
9298 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
9301 icode
= setcc_gen_code
[(int) code
];
9303 if (icode
== CODE_FOR_nothing
)
9305 enum machine_mode wmode
;
9307 for (wmode
= operand_mode
;
9308 icode
== CODE_FOR_nothing
&& wmode
!= VOIDmode
;
9309 wmode
= GET_MODE_WIDER_MODE (wmode
))
9310 icode
= cstore_optab
->handlers
[(int) wmode
].insn_code
;
9313 if (icode
== CODE_FOR_nothing
9314 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
9316 /* We can only do this if it is one of the special cases that
9317 can be handled without an scc insn. */
9318 if ((code
== LT
&& integer_zerop (arg1
))
9319 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
9321 else if (! only_cheap
&& (code
== NE
|| code
== EQ
)
9322 && TREE_CODE (type
) != REAL_TYPE
9323 && ((abs_optab
->handlers
[(int) operand_mode
].insn_code
9324 != CODE_FOR_nothing
)
9325 || (ffs_optab
->handlers
[(int) operand_mode
].insn_code
9326 != CODE_FOR_nothing
)))
9332 if (! get_subtarget (target
)
9333 || GET_MODE (subtarget
) != operand_mode
)
9336 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
9339 target
= gen_reg_rtx (mode
);
9341 result
= emit_store_flag (target
, code
, op0
, op1
,
9342 operand_mode
, unsignedp
, 1);
9347 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
9348 result
, 0, OPTAB_LIB_WIDEN
);
9352 /* If this failed, we have to do this with set/compare/jump/set code. */
9354 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
9355 target
= gen_reg_rtx (GET_MODE (target
));
9357 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
9358 label
= gen_label_rtx ();
9359 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, operand_mode
, NULL_RTX
,
9362 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
9369 /* Stubs in case we haven't got a casesi insn. */
9371 # define HAVE_casesi 0
9372 # define gen_casesi(a, b, c, d, e) (0)
9373 # define CODE_FOR_casesi CODE_FOR_nothing
9376 /* If the machine does not have a case insn that compares the bounds,
9377 this means extra overhead for dispatch tables, which raises the
9378 threshold for using them. */
9379 #ifndef CASE_VALUES_THRESHOLD
9380 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9381 #endif /* CASE_VALUES_THRESHOLD */
9384 case_values_threshold (void)
9386 return CASE_VALUES_THRESHOLD
;
9389 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9390 0 otherwise (i.e. if there is no casesi instruction). */
9392 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
9393 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
)
9395 enum machine_mode index_mode
= SImode
;
9396 int index_bits
= GET_MODE_BITSIZE (index_mode
);
9397 rtx op1
, op2
, index
;
9398 enum machine_mode op_mode
;
9403 /* Convert the index to SImode. */
9404 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
9406 enum machine_mode omode
= TYPE_MODE (index_type
);
9407 rtx rangertx
= expand_normal (range
);
9409 /* We must handle the endpoints in the original mode. */
9410 index_expr
= build2 (MINUS_EXPR
, index_type
,
9411 index_expr
, minval
);
9412 minval
= integer_zero_node
;
9413 index
= expand_normal (index_expr
);
9414 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
9415 omode
, 1, default_label
);
9416 /* Now we can safely truncate. */
9417 index
= convert_to_mode (index_mode
, index
, 0);
9421 if (TYPE_MODE (index_type
) != index_mode
)
9423 index_type
= lang_hooks
.types
.type_for_size (index_bits
, 0);
9424 index_expr
= fold_convert (index_type
, index_expr
);
9427 index
= expand_normal (index_expr
);
9430 do_pending_stack_adjust ();
9432 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
9433 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
9435 index
= copy_to_mode_reg (op_mode
, index
);
9437 op1
= expand_normal (minval
);
9439 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
9440 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
9441 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
9442 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
9444 op1
= copy_to_mode_reg (op_mode
, op1
);
9446 op2
= expand_normal (range
);
9448 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
9449 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
9450 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
9451 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
9453 op2
= copy_to_mode_reg (op_mode
, op2
);
9455 emit_jump_insn (gen_casesi (index
, op1
, op2
,
9456 table_label
, default_label
));
9460 /* Attempt to generate a tablejump instruction; same concept. */
9461 #ifndef HAVE_tablejump
9462 #define HAVE_tablejump 0
9463 #define gen_tablejump(x, y) (0)
9466 /* Subroutine of the next function.
9468 INDEX is the value being switched on, with the lowest value
9469 in the table already subtracted.
9470 MODE is its expected mode (needed if INDEX is constant).
9471 RANGE is the length of the jump table.
9472 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9474 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9475 index value is out of range. */
9478 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
9483 if (INTVAL (range
) > cfun
->max_jumptable_ents
)
9484 cfun
->max_jumptable_ents
= INTVAL (range
);
9486 /* Do an unsigned comparison (in the proper mode) between the index
9487 expression and the value which represents the length of the range.
9488 Since we just finished subtracting the lower bound of the range
9489 from the index expression, this comparison allows us to simultaneously
9490 check that the original index expression value is both greater than
9491 or equal to the minimum value of the range and less than or equal to
9492 the maximum value of the range. */
9494 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
9497 /* If index is in range, it must fit in Pmode.
9498 Convert to Pmode so we can index with it. */
9500 index
= convert_to_mode (Pmode
, index
, 1);
9502 /* Don't let a MEM slip through, because then INDEX that comes
9503 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9504 and break_out_memory_refs will go to work on it and mess it up. */
9505 #ifdef PIC_CASE_VECTOR_ADDRESS
9506 if (flag_pic
&& !REG_P (index
))
9507 index
= copy_to_mode_reg (Pmode
, index
);
9510 /* If flag_force_addr were to affect this address
9511 it could interfere with the tricky assumptions made
9512 about addresses that contain label-refs,
9513 which may be valid only very near the tablejump itself. */
9514 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9515 GET_MODE_SIZE, because this indicates how large insns are. The other
9516 uses should all be Pmode, because they are addresses. This code
9517 could fail if addresses and insns are not the same size. */
9518 index
= gen_rtx_PLUS (Pmode
,
9519 gen_rtx_MULT (Pmode
, index
,
9520 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
9521 gen_rtx_LABEL_REF (Pmode
, table_label
));
9522 #ifdef PIC_CASE_VECTOR_ADDRESS
9524 index
= PIC_CASE_VECTOR_ADDRESS (index
);
9527 index
= memory_address_noforce (CASE_VECTOR_MODE
, index
);
9528 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
9529 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
9530 convert_move (temp
, vector
, 0);
9532 emit_jump_insn (gen_tablejump (temp
, table_label
));
9534 /* If we are generating PIC code or if the table is PC-relative, the
9535 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9536 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
9541 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
9542 rtx table_label
, rtx default_label
)
9546 if (! HAVE_tablejump
)
9549 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
9550 fold_convert (index_type
, index_expr
),
9551 fold_convert (index_type
, minval
));
9552 index
= expand_normal (index_expr
);
9553 do_pending_stack_adjust ();
9555 do_tablejump (index
, TYPE_MODE (index_type
),
9556 convert_modes (TYPE_MODE (index_type
),
9557 TYPE_MODE (TREE_TYPE (range
)),
9558 expand_normal (range
),
9559 TYPE_UNSIGNED (TREE_TYPE (range
))),
9560 table_label
, default_label
);
9564 /* Nonzero if the mode is a valid vector mode for this architecture.
9565 This returns nonzero even if there is no hardware support for the
9566 vector mode, but we can emulate with narrower modes. */
9569 vector_mode_valid_p (enum machine_mode mode
)
9571 enum mode_class
class = GET_MODE_CLASS (mode
);
9572 enum machine_mode innermode
;
9574 /* Doh! What's going on? */
9575 if (class != MODE_VECTOR_INT
9576 && class != MODE_VECTOR_FLOAT
)
9579 /* Hardware support. Woo hoo! */
9580 if (targetm
.vector_mode_supported_p (mode
))
9583 innermode
= GET_MODE_INNER (mode
);
9585 /* We should probably return 1 if requesting V4DI and we have no DI,
9586 but we have V2DI, but this is probably very unlikely. */
9588 /* If we have support for the inner mode, we can safely emulate it.
9589 We may not have V2DI, but me can emulate with a pair of DIs. */
9590 return targetm
.scalar_mode_supported_p (innermode
);
9593 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9595 const_vector_from_tree (tree exp
)
9600 enum machine_mode inner
, mode
;
9602 mode
= TYPE_MODE (TREE_TYPE (exp
));
9604 if (initializer_zerop (exp
))
9605 return CONST0_RTX (mode
);
9607 units
= GET_MODE_NUNITS (mode
);
9608 inner
= GET_MODE_INNER (mode
);
9610 v
= rtvec_alloc (units
);
9612 link
= TREE_VECTOR_CST_ELTS (exp
);
9613 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
9615 elt
= TREE_VALUE (link
);
9617 if (TREE_CODE (elt
) == REAL_CST
)
9618 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
9621 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
9622 TREE_INT_CST_HIGH (elt
),
9626 /* Initialize remaining elements to 0. */
9627 for (; i
< units
; ++i
)
9628 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
9630 return gen_rtx_CONST_VECTOR (mode
, v
);
9632 #include "gt-expr.h"