gcc/
[official-gcc.git] / gcc / dominance.c
blobfb61596a82b549f01ca0c5d1b9eff827cd0ec0d9
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
30 The algorithm computes this dominator tree implicitly by computing for
31 each block its immediate dominator. We use tree balancing and path
32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33 slowly growing functional inverse of the Ackerman function. */
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tm.h"
39 #include "rtl.h"
40 #include "hard-reg-set.h"
41 #include "obstack.h"
42 #include "predict.h"
43 #include "function.h"
44 #include "dominance.h"
45 #include "cfg.h"
46 #include "cfganal.h"
47 #include "basic-block.h"
48 #include "diagnostic-core.h"
49 #include "alloc-pool.h"
50 #include "et-forest.h"
51 #include "timevar.h"
52 #include "graphds.h"
53 #include "bitmap.h"
55 /* We name our nodes with integers, beginning with 1. Zero is reserved for
56 'undefined' or 'end of list'. The name of each node is given by the dfs
57 number of the corresponding basic block. Please note, that we include the
58 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
59 support multiple entry points. Its dfs number is of course 1. */
61 /* Type of Basic Block aka. TBB */
62 typedef unsigned int TBB;
64 /* We work in a poor-mans object oriented fashion, and carry an instance of
65 this structure through all our 'methods'. It holds various arrays
66 reflecting the (sub)structure of the flowgraph. Most of them are of type
67 TBB and are also indexed by TBB. */
69 struct dom_info
71 /* The parent of a node in the DFS tree. */
72 TBB *dfs_parent;
73 /* For a node x key[x] is roughly the node nearest to the root from which
74 exists a way to x only over nodes behind x. Such a node is also called
75 semidominator. */
76 TBB *key;
77 /* The value in path_min[x] is the node y on the path from x to the root of
78 the tree x is in with the smallest key[y]. */
79 TBB *path_min;
80 /* bucket[x] points to the first node of the set of nodes having x as key. */
81 TBB *bucket;
82 /* And next_bucket[x] points to the next node. */
83 TBB *next_bucket;
84 /* After the algorithm is done, dom[x] contains the immediate dominator
85 of x. */
86 TBB *dom;
88 /* The following few fields implement the structures needed for disjoint
89 sets. */
90 /* set_chain[x] is the next node on the path from x to the representative
91 of the set containing x. If set_chain[x]==0 then x is a root. */
92 TBB *set_chain;
93 /* set_size[x] is the number of elements in the set named by x. */
94 unsigned int *set_size;
95 /* set_child[x] is used for balancing the tree representing a set. It can
96 be understood as the next sibling of x. */
97 TBB *set_child;
99 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
100 number of that node in DFS order counted from 1. This is an index
101 into most of the other arrays in this structure. */
102 TBB *dfs_order;
103 /* If x is the DFS-index of a node which corresponds with a basic block,
104 dfs_to_bb[x] is that basic block. Note, that in our structure there are
105 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
106 is true for every basic block bb, but not the opposite. */
107 basic_block *dfs_to_bb;
109 /* This is the next free DFS number when creating the DFS tree. */
110 unsigned int dfsnum;
111 /* The number of nodes in the DFS tree (==dfsnum-1). */
112 unsigned int nodes;
114 /* Blocks with bits set here have a fake edge to EXIT. These are used
115 to turn a DFS forest into a proper tree. */
116 bitmap fake_exit_edge;
119 static void init_dom_info (struct dom_info *, enum cdi_direction);
120 static void free_dom_info (struct dom_info *);
121 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
122 static void calc_dfs_tree (struct dom_info *, bool);
123 static void compress (struct dom_info *, TBB);
124 static TBB eval (struct dom_info *, TBB);
125 static void link_roots (struct dom_info *, TBB, TBB);
126 static void calc_idoms (struct dom_info *, bool);
127 void debug_dominance_info (enum cdi_direction);
128 void debug_dominance_tree (enum cdi_direction, basic_block);
130 /* Helper macro for allocating and initializing an array,
131 for aesthetic reasons. */
132 #define init_ar(var, type, num, content) \
133 do \
135 unsigned int i = 1; /* Catch content == i. */ \
136 if (! (content)) \
137 (var) = XCNEWVEC (type, num); \
138 else \
140 (var) = XNEWVEC (type, (num)); \
141 for (i = 0; i < num; i++) \
142 (var)[i] = (content); \
145 while (0)
147 /* Allocate all needed memory in a pessimistic fashion (so we round up).
148 This initializes the contents of DI, which already must be allocated. */
150 static void
151 init_dom_info (struct dom_info *di, enum cdi_direction dir)
153 /* We need memory for n_basic_blocks nodes. */
154 unsigned int num = n_basic_blocks_for_fn (cfun);
155 init_ar (di->dfs_parent, TBB, num, 0);
156 init_ar (di->path_min, TBB, num, i);
157 init_ar (di->key, TBB, num, i);
158 init_ar (di->dom, TBB, num, 0);
160 init_ar (di->bucket, TBB, num, 0);
161 init_ar (di->next_bucket, TBB, num, 0);
163 init_ar (di->set_chain, TBB, num, 0);
164 init_ar (di->set_size, unsigned int, num, 1);
165 init_ar (di->set_child, TBB, num, 0);
167 init_ar (di->dfs_order, TBB,
168 (unsigned int) last_basic_block_for_fn (cfun) + 1, 0);
169 init_ar (di->dfs_to_bb, basic_block, num, 0);
171 di->dfsnum = 1;
172 di->nodes = 0;
174 switch (dir)
176 case CDI_DOMINATORS:
177 di->fake_exit_edge = NULL;
178 break;
179 case CDI_POST_DOMINATORS:
180 di->fake_exit_edge = BITMAP_ALLOC (NULL);
181 break;
182 default:
183 gcc_unreachable ();
184 break;
188 #undef init_ar
190 /* Map dominance calculation type to array index used for various
191 dominance information arrays. This version is simple -- it will need
192 to be modified, obviously, if additional values are added to
193 cdi_direction. */
195 static unsigned int
196 dom_convert_dir_to_idx (enum cdi_direction dir)
198 gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
199 return dir - 1;
202 /* Free all allocated memory in DI, but not DI itself. */
204 static void
205 free_dom_info (struct dom_info *di)
207 free (di->dfs_parent);
208 free (di->path_min);
209 free (di->key);
210 free (di->dom);
211 free (di->bucket);
212 free (di->next_bucket);
213 free (di->set_chain);
214 free (di->set_size);
215 free (di->set_child);
216 free (di->dfs_order);
217 free (di->dfs_to_bb);
218 BITMAP_FREE (di->fake_exit_edge);
221 /* The nonrecursive variant of creating a DFS tree. DI is our working
222 structure, BB the starting basic block for this tree and REVERSE
223 is true, if predecessors should be visited instead of successors of a
224 node. After this is done all nodes reachable from BB were visited, have
225 assigned their dfs number and are linked together to form a tree. */
227 static void
228 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
230 /* We call this _only_ if bb is not already visited. */
231 edge e;
232 TBB child_i, my_i = 0;
233 edge_iterator *stack;
234 edge_iterator ei, einext;
235 int sp;
236 /* Start block (the entry block for forward problem, exit block for backward
237 problem). */
238 basic_block en_block;
239 /* Ending block. */
240 basic_block ex_block;
242 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
243 sp = 0;
245 /* Initialize our border blocks, and the first edge. */
246 if (reverse)
248 ei = ei_start (bb->preds);
249 en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
250 ex_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
252 else
254 ei = ei_start (bb->succs);
255 en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
256 ex_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
259 /* When the stack is empty we break out of this loop. */
260 while (1)
262 basic_block bn;
264 /* This loop traverses edges e in depth first manner, and fills the
265 stack. */
266 while (!ei_end_p (ei))
268 e = ei_edge (ei);
270 /* Deduce from E the current and the next block (BB and BN), and the
271 next edge. */
272 if (reverse)
274 bn = e->src;
276 /* If the next node BN is either already visited or a border
277 block the current edge is useless, and simply overwritten
278 with the next edge out of the current node. */
279 if (bn == ex_block || di->dfs_order[bn->index])
281 ei_next (&ei);
282 continue;
284 bb = e->dest;
285 einext = ei_start (bn->preds);
287 else
289 bn = e->dest;
290 if (bn == ex_block || di->dfs_order[bn->index])
292 ei_next (&ei);
293 continue;
295 bb = e->src;
296 einext = ei_start (bn->succs);
299 gcc_assert (bn != en_block);
301 /* Fill the DFS tree info calculatable _before_ recursing. */
302 if (bb != en_block)
303 my_i = di->dfs_order[bb->index];
304 else
305 my_i = di->dfs_order[last_basic_block_for_fn (cfun)];
306 child_i = di->dfs_order[bn->index] = di->dfsnum++;
307 di->dfs_to_bb[child_i] = bn;
308 di->dfs_parent[child_i] = my_i;
310 /* Save the current point in the CFG on the stack, and recurse. */
311 stack[sp++] = ei;
312 ei = einext;
315 if (!sp)
316 break;
317 ei = stack[--sp];
319 /* OK. The edge-list was exhausted, meaning normally we would
320 end the recursion. After returning from the recursive call,
321 there were (may be) other statements which were run after a
322 child node was completely considered by DFS. Here is the
323 point to do it in the non-recursive variant.
324 E.g. The block just completed is in e->dest for forward DFS,
325 the block not yet completed (the parent of the one above)
326 in e->src. This could be used e.g. for computing the number of
327 descendants or the tree depth. */
328 ei_next (&ei);
330 free (stack);
333 /* The main entry for calculating the DFS tree or forest. DI is our working
334 structure and REVERSE is true, if we are interested in the reverse flow
335 graph. In that case the result is not necessarily a tree but a forest,
336 because there may be nodes from which the EXIT_BLOCK is unreachable. */
338 static void
339 calc_dfs_tree (struct dom_info *di, bool reverse)
341 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
342 basic_block begin = (reverse
343 ? EXIT_BLOCK_PTR_FOR_FN (cfun) : ENTRY_BLOCK_PTR_FOR_FN (cfun));
344 di->dfs_order[last_basic_block_for_fn (cfun)] = di->dfsnum;
345 di->dfs_to_bb[di->dfsnum] = begin;
346 di->dfsnum++;
348 calc_dfs_tree_nonrec (di, begin, reverse);
350 if (reverse)
352 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
353 They are reverse-unreachable. In the dom-case we disallow such
354 nodes, but in post-dom we have to deal with them.
356 There are two situations in which this occurs. First, noreturn
357 functions. Second, infinite loops. In the first case we need to
358 pretend that there is an edge to the exit block. In the second
359 case, we wind up with a forest. We need to process all noreturn
360 blocks before we know if we've got any infinite loops. */
362 basic_block b;
363 bool saw_unconnected = false;
365 FOR_EACH_BB_REVERSE_FN (b, cfun)
367 if (EDGE_COUNT (b->succs) > 0)
369 if (di->dfs_order[b->index] == 0)
370 saw_unconnected = true;
371 continue;
373 bitmap_set_bit (di->fake_exit_edge, b->index);
374 di->dfs_order[b->index] = di->dfsnum;
375 di->dfs_to_bb[di->dfsnum] = b;
376 di->dfs_parent[di->dfsnum] =
377 di->dfs_order[last_basic_block_for_fn (cfun)];
378 di->dfsnum++;
379 calc_dfs_tree_nonrec (di, b, reverse);
382 if (saw_unconnected)
384 FOR_EACH_BB_REVERSE_FN (b, cfun)
386 basic_block b2;
387 if (di->dfs_order[b->index])
388 continue;
389 b2 = dfs_find_deadend (b);
390 gcc_checking_assert (di->dfs_order[b2->index] == 0);
391 bitmap_set_bit (di->fake_exit_edge, b2->index);
392 di->dfs_order[b2->index] = di->dfsnum;
393 di->dfs_to_bb[di->dfsnum] = b2;
394 di->dfs_parent[di->dfsnum] =
395 di->dfs_order[last_basic_block_for_fn (cfun)];
396 di->dfsnum++;
397 calc_dfs_tree_nonrec (di, b2, reverse);
398 gcc_checking_assert (di->dfs_order[b->index]);
403 di->nodes = di->dfsnum - 1;
405 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
406 gcc_assert (di->nodes == (unsigned int) n_basic_blocks_for_fn (cfun) - 1);
409 /* Compress the path from V to the root of its set and update path_min at the
410 same time. After compress(di, V) set_chain[V] is the root of the set V is
411 in and path_min[V] is the node with the smallest key[] value on the path
412 from V to that root. */
414 static void
415 compress (struct dom_info *di, TBB v)
417 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
418 greater than 5 even for huge graphs (I've not seen call depth > 4).
419 Also performance wise compress() ranges _far_ behind eval(). */
420 TBB parent = di->set_chain[v];
421 if (di->set_chain[parent])
423 compress (di, parent);
424 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
425 di->path_min[v] = di->path_min[parent];
426 di->set_chain[v] = di->set_chain[parent];
430 /* Compress the path from V to the set root of V if needed (when the root has
431 changed since the last call). Returns the node with the smallest key[]
432 value on the path from V to the root. */
434 static inline TBB
435 eval (struct dom_info *di, TBB v)
437 /* The representative of the set V is in, also called root (as the set
438 representation is a tree). */
439 TBB rep = di->set_chain[v];
441 /* V itself is the root. */
442 if (!rep)
443 return di->path_min[v];
445 /* Compress only if necessary. */
446 if (di->set_chain[rep])
448 compress (di, v);
449 rep = di->set_chain[v];
452 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
453 return di->path_min[v];
454 else
455 return di->path_min[rep];
458 /* This essentially merges the two sets of V and W, giving a single set with
459 the new root V. The internal representation of these disjoint sets is a
460 balanced tree. Currently link(V,W) is only used with V being the parent
461 of W. */
463 static void
464 link_roots (struct dom_info *di, TBB v, TBB w)
466 TBB s = w;
468 /* Rebalance the tree. */
469 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
471 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
472 >= 2 * di->set_size[di->set_child[s]])
474 di->set_chain[di->set_child[s]] = s;
475 di->set_child[s] = di->set_child[di->set_child[s]];
477 else
479 di->set_size[di->set_child[s]] = di->set_size[s];
480 s = di->set_chain[s] = di->set_child[s];
484 di->path_min[s] = di->path_min[w];
485 di->set_size[v] += di->set_size[w];
486 if (di->set_size[v] < 2 * di->set_size[w])
487 std::swap (di->set_child[v], s);
489 /* Merge all subtrees. */
490 while (s)
492 di->set_chain[s] = v;
493 s = di->set_child[s];
497 /* This calculates the immediate dominators (or post-dominators if REVERSE is
498 true). DI is our working structure and should hold the DFS forest.
499 On return the immediate dominator to node V is in di->dom[V]. */
501 static void
502 calc_idoms (struct dom_info *di, bool reverse)
504 TBB v, w, k, par;
505 basic_block en_block;
506 edge_iterator ei, einext;
508 if (reverse)
509 en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
510 else
511 en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
513 /* Go backwards in DFS order, to first look at the leafs. */
514 v = di->nodes;
515 while (v > 1)
517 basic_block bb = di->dfs_to_bb[v];
518 edge e;
520 par = di->dfs_parent[v];
521 k = v;
523 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
525 if (reverse)
527 /* If this block has a fake edge to exit, process that first. */
528 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
530 einext = ei;
531 einext.index = 0;
532 goto do_fake_exit_edge;
536 /* Search all direct predecessors for the smallest node with a path
537 to them. That way we have the smallest node with also a path to
538 us only over nodes behind us. In effect we search for our
539 semidominator. */
540 while (!ei_end_p (ei))
542 TBB k1;
543 basic_block b;
545 e = ei_edge (ei);
546 b = (reverse) ? e->dest : e->src;
547 einext = ei;
548 ei_next (&einext);
550 if (b == en_block)
552 do_fake_exit_edge:
553 k1 = di->dfs_order[last_basic_block_for_fn (cfun)];
555 else
556 k1 = di->dfs_order[b->index];
558 /* Call eval() only if really needed. If k1 is above V in DFS tree,
559 then we know, that eval(k1) == k1 and key[k1] == k1. */
560 if (k1 > v)
561 k1 = di->key[eval (di, k1)];
562 if (k1 < k)
563 k = k1;
565 ei = einext;
568 di->key[v] = k;
569 link_roots (di, par, v);
570 di->next_bucket[v] = di->bucket[k];
571 di->bucket[k] = v;
573 /* Transform semidominators into dominators. */
574 for (w = di->bucket[par]; w; w = di->next_bucket[w])
576 k = eval (di, w);
577 if (di->key[k] < di->key[w])
578 di->dom[w] = k;
579 else
580 di->dom[w] = par;
582 /* We don't need to cleanup next_bucket[]. */
583 di->bucket[par] = 0;
584 v--;
587 /* Explicitly define the dominators. */
588 di->dom[1] = 0;
589 for (v = 2; v <= di->nodes; v++)
590 if (di->dom[v] != di->key[v])
591 di->dom[v] = di->dom[di->dom[v]];
594 /* Assign dfs numbers starting from NUM to NODE and its sons. */
596 static void
597 assign_dfs_numbers (struct et_node *node, int *num)
599 struct et_node *son;
601 node->dfs_num_in = (*num)++;
603 if (node->son)
605 assign_dfs_numbers (node->son, num);
606 for (son = node->son->right; son != node->son; son = son->right)
607 assign_dfs_numbers (son, num);
610 node->dfs_num_out = (*num)++;
613 /* Compute the data necessary for fast resolving of dominator queries in a
614 static dominator tree. */
616 static void
617 compute_dom_fast_query (enum cdi_direction dir)
619 int num = 0;
620 basic_block bb;
621 unsigned int dir_index = dom_convert_dir_to_idx (dir);
623 gcc_checking_assert (dom_info_available_p (dir));
625 if (dom_computed[dir_index] == DOM_OK)
626 return;
628 FOR_ALL_BB_FN (bb, cfun)
630 if (!bb->dom[dir_index]->father)
631 assign_dfs_numbers (bb->dom[dir_index], &num);
634 dom_computed[dir_index] = DOM_OK;
637 /* The main entry point into this module. DIR is set depending on whether
638 we want to compute dominators or postdominators. */
640 void
641 calculate_dominance_info (enum cdi_direction dir)
643 struct dom_info di;
644 basic_block b;
645 unsigned int dir_index = dom_convert_dir_to_idx (dir);
646 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
648 if (dom_computed[dir_index] == DOM_OK)
650 #if ENABLE_CHECKING
651 verify_dominators (dir);
652 #endif
653 return;
656 timevar_push (TV_DOMINANCE);
657 if (!dom_info_available_p (dir))
659 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
661 FOR_ALL_BB_FN (b, cfun)
663 b->dom[dir_index] = et_new_tree (b);
665 n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
667 init_dom_info (&di, dir);
668 calc_dfs_tree (&di, reverse);
669 calc_idoms (&di, reverse);
671 FOR_EACH_BB_FN (b, cfun)
673 TBB d = di.dom[di.dfs_order[b->index]];
675 if (di.dfs_to_bb[d])
676 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
679 free_dom_info (&di);
680 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
682 else
684 #if ENABLE_CHECKING
685 verify_dominators (dir);
686 #endif
689 compute_dom_fast_query (dir);
691 timevar_pop (TV_DOMINANCE);
694 /* Free dominance information for direction DIR. */
695 void
696 free_dominance_info (function *fn, enum cdi_direction dir)
698 basic_block bb;
699 unsigned int dir_index = dom_convert_dir_to_idx (dir);
701 if (!dom_info_available_p (fn, dir))
702 return;
704 FOR_ALL_BB_FN (bb, fn)
706 et_free_tree_force (bb->dom[dir_index]);
707 bb->dom[dir_index] = NULL;
709 et_free_pools ();
711 fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
713 fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
716 void
717 free_dominance_info (enum cdi_direction dir)
719 free_dominance_info (cfun, dir);
722 /* Return the immediate dominator of basic block BB. */
723 basic_block
724 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
726 unsigned int dir_index = dom_convert_dir_to_idx (dir);
727 struct et_node *node = bb->dom[dir_index];
729 gcc_checking_assert (dom_computed[dir_index]);
731 if (!node->father)
732 return NULL;
734 return (basic_block) node->father->data;
737 /* Set the immediate dominator of the block possibly removing
738 existing edge. NULL can be used to remove any edge. */
739 void
740 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
741 basic_block dominated_by)
743 unsigned int dir_index = dom_convert_dir_to_idx (dir);
744 struct et_node *node = bb->dom[dir_index];
746 gcc_checking_assert (dom_computed[dir_index]);
748 if (node->father)
750 if (node->father->data == dominated_by)
751 return;
752 et_split (node);
755 if (dominated_by)
756 et_set_father (node, dominated_by->dom[dir_index]);
758 if (dom_computed[dir_index] == DOM_OK)
759 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
762 /* Returns the list of basic blocks immediately dominated by BB, in the
763 direction DIR. */
764 vec<basic_block>
765 get_dominated_by (enum cdi_direction dir, basic_block bb)
767 unsigned int dir_index = dom_convert_dir_to_idx (dir);
768 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
769 vec<basic_block> bbs = vNULL;
771 gcc_checking_assert (dom_computed[dir_index]);
773 if (!son)
774 return vNULL;
776 bbs.safe_push ((basic_block) son->data);
777 for (ason = son->right; ason != son; ason = ason->right)
778 bbs.safe_push ((basic_block) ason->data);
780 return bbs;
783 /* Returns the list of basic blocks that are immediately dominated (in
784 direction DIR) by some block between N_REGION ones stored in REGION,
785 except for blocks in the REGION itself. */
787 vec<basic_block>
788 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
789 unsigned n_region)
791 unsigned i;
792 basic_block dom;
793 vec<basic_block> doms = vNULL;
795 for (i = 0; i < n_region; i++)
796 region[i]->flags |= BB_DUPLICATED;
797 for (i = 0; i < n_region; i++)
798 for (dom = first_dom_son (dir, region[i]);
799 dom;
800 dom = next_dom_son (dir, dom))
801 if (!(dom->flags & BB_DUPLICATED))
802 doms.safe_push (dom);
803 for (i = 0; i < n_region; i++)
804 region[i]->flags &= ~BB_DUPLICATED;
806 return doms;
809 /* Returns the list of basic blocks including BB dominated by BB, in the
810 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
811 produce a vector containing all dominated blocks. The vector will be sorted
812 in preorder. */
814 vec<basic_block>
815 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
817 vec<basic_block> bbs = vNULL;
818 unsigned i;
819 unsigned next_level_start;
821 i = 0;
822 bbs.safe_push (bb);
823 next_level_start = 1; /* = bbs.length (); */
827 basic_block son;
829 bb = bbs[i++];
830 for (son = first_dom_son (dir, bb);
831 son;
832 son = next_dom_son (dir, son))
833 bbs.safe_push (son);
835 if (i == next_level_start && --depth)
836 next_level_start = bbs.length ();
838 while (i < next_level_start);
840 return bbs;
843 /* Returns the list of basic blocks including BB dominated by BB, in the
844 direction DIR. The vector will be sorted in preorder. */
846 vec<basic_block>
847 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
849 return get_dominated_to_depth (dir, bb, 0);
852 /* Redirect all edges pointing to BB to TO. */
853 void
854 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
855 basic_block to)
857 unsigned int dir_index = dom_convert_dir_to_idx (dir);
858 struct et_node *bb_node, *to_node, *son;
860 bb_node = bb->dom[dir_index];
861 to_node = to->dom[dir_index];
863 gcc_checking_assert (dom_computed[dir_index]);
865 if (!bb_node->son)
866 return;
868 while (bb_node->son)
870 son = bb_node->son;
872 et_split (son);
873 et_set_father (son, to_node);
876 if (dom_computed[dir_index] == DOM_OK)
877 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
880 /* Find first basic block in the tree dominating both BB1 and BB2. */
881 basic_block
882 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
884 unsigned int dir_index = dom_convert_dir_to_idx (dir);
886 gcc_checking_assert (dom_computed[dir_index]);
888 if (!bb1)
889 return bb2;
890 if (!bb2)
891 return bb1;
893 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
897 /* Find the nearest common dominator for the basic blocks in BLOCKS,
898 using dominance direction DIR. */
900 basic_block
901 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
903 unsigned i, first;
904 bitmap_iterator bi;
905 basic_block dom;
907 first = bitmap_first_set_bit (blocks);
908 dom = BASIC_BLOCK_FOR_FN (cfun, first);
909 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
910 if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
911 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
913 return dom;
916 /* Given a dominator tree, we can determine whether one thing
917 dominates another in constant time by using two DFS numbers:
919 1. The number for when we visit a node on the way down the tree
920 2. The number for when we visit a node on the way back up the tree
922 You can view these as bounds for the range of dfs numbers the
923 nodes in the subtree of the dominator tree rooted at that node
924 will contain.
926 The dominator tree is always a simple acyclic tree, so there are
927 only three possible relations two nodes in the dominator tree have
928 to each other:
930 1. Node A is above Node B (and thus, Node A dominates node B)
939 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
940 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
941 because we must hit A in the dominator tree *before* B on the walk
942 down, and we will hit A *after* B on the walk back up
944 2. Node A is below node B (and thus, node B dominates node A)
953 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
954 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
956 This is because we must hit A in the dominator tree *after* B on
957 the walk down, and we will hit A *before* B on the walk back up
959 3. Node A and B are siblings (and thus, neither dominates the other)
967 In the above case, DFS_Number_In of A will *always* be <=
968 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
969 DFS_Number_Out of B. This is because we will always finish the dfs
970 walk of one of the subtrees before the other, and thus, the dfs
971 numbers for one subtree can't intersect with the range of dfs
972 numbers for the other subtree. If you swap A and B's position in
973 the dominator tree, the comparison changes direction, but the point
974 is that both comparisons will always go the same way if there is no
975 dominance relationship.
977 Thus, it is sufficient to write
979 A_Dominates_B (node A, node B)
981 return DFS_Number_In(A) <= DFS_Number_In(B)
982 && DFS_Number_Out (A) >= DFS_Number_Out(B);
985 A_Dominated_by_B (node A, node B)
987 return DFS_Number_In(A) >= DFS_Number_In(B)
988 && DFS_Number_Out (A) <= DFS_Number_Out(B);
989 } */
991 /* Return TRUE in case BB1 is dominated by BB2. */
992 bool
993 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
995 unsigned int dir_index = dom_convert_dir_to_idx (dir);
996 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
998 gcc_checking_assert (dom_computed[dir_index]);
1000 if (dom_computed[dir_index] == DOM_OK)
1001 return (n1->dfs_num_in >= n2->dfs_num_in
1002 && n1->dfs_num_out <= n2->dfs_num_out);
1004 return et_below (n1, n2);
1007 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
1009 unsigned
1010 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
1012 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1013 struct et_node *n = bb->dom[dir_index];
1015 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1016 return n->dfs_num_in;
1019 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
1021 unsigned
1022 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1024 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1025 struct et_node *n = bb->dom[dir_index];
1027 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1028 return n->dfs_num_out;
1031 /* Verify invariants of dominator structure. */
1032 DEBUG_FUNCTION void
1033 verify_dominators (enum cdi_direction dir)
1035 int err = 0;
1036 basic_block bb, imm_bb, imm_bb_correct;
1037 struct dom_info di;
1038 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
1040 gcc_assert (dom_info_available_p (dir));
1042 init_dom_info (&di, dir);
1043 calc_dfs_tree (&di, reverse);
1044 calc_idoms (&di, reverse);
1046 FOR_EACH_BB_FN (bb, cfun)
1048 imm_bb = get_immediate_dominator (dir, bb);
1049 if (!imm_bb)
1051 error ("dominator of %d status unknown", bb->index);
1052 err = 1;
1055 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
1056 if (imm_bb != imm_bb_correct)
1058 error ("dominator of %d should be %d, not %d",
1059 bb->index, imm_bb_correct->index, imm_bb->index);
1060 err = 1;
1064 free_dom_info (&di);
1065 gcc_assert (!err);
1068 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1069 assuming that dominators of other blocks are correct. We also use it to
1070 recompute the dominators in a restricted area, by iterating it until it
1071 reaches a fixed point. */
1073 basic_block
1074 recompute_dominator (enum cdi_direction dir, basic_block bb)
1076 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1077 basic_block dom_bb = NULL;
1078 edge e;
1079 edge_iterator ei;
1081 gcc_checking_assert (dom_computed[dir_index]);
1083 if (dir == CDI_DOMINATORS)
1085 FOR_EACH_EDGE (e, ei, bb->preds)
1087 if (!dominated_by_p (dir, e->src, bb))
1088 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1091 else
1093 FOR_EACH_EDGE (e, ei, bb->succs)
1095 if (!dominated_by_p (dir, e->dest, bb))
1096 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1100 return dom_bb;
1103 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1104 of BBS. We assume that all the immediate dominators except for those of the
1105 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1106 currently recorded immediate dominators of blocks in BBS really dominate the
1107 blocks. The basic blocks for that we determine the dominator are removed
1108 from BBS. */
1110 static void
1111 prune_bbs_to_update_dominators (vec<basic_block> bbs,
1112 bool conservative)
1114 unsigned i;
1115 bool single;
1116 basic_block bb, dom = NULL;
1117 edge_iterator ei;
1118 edge e;
1120 for (i = 0; bbs.iterate (i, &bb);)
1122 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1123 goto succeed;
1125 if (single_pred_p (bb))
1127 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1128 goto succeed;
1131 if (!conservative)
1132 goto fail;
1134 single = true;
1135 dom = NULL;
1136 FOR_EACH_EDGE (e, ei, bb->preds)
1138 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1139 continue;
1141 if (!dom)
1142 dom = e->src;
1143 else
1145 single = false;
1146 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1150 gcc_assert (dom != NULL);
1151 if (single
1152 || find_edge (dom, bb))
1154 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1155 goto succeed;
1158 fail:
1159 i++;
1160 continue;
1162 succeed:
1163 bbs.unordered_remove (i);
1167 /* Returns root of the dominance tree in the direction DIR that contains
1168 BB. */
1170 static basic_block
1171 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1173 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1176 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1177 for the sons of Y, found using the SON and BROTHER arrays representing
1178 the dominance tree of graph G. BBS maps the vertices of G to the basic
1179 blocks. */
1181 static void
1182 determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
1183 int y, int *son, int *brother)
1185 bitmap gprime;
1186 int i, a, nc;
1187 vec<int> *sccs;
1188 basic_block bb, dom, ybb;
1189 unsigned si;
1190 edge e;
1191 edge_iterator ei;
1193 if (son[y] == -1)
1194 return;
1195 if (y == (int) bbs.length ())
1196 ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1197 else
1198 ybb = bbs[y];
1200 if (brother[son[y]] == -1)
1202 /* Handle the common case Y has just one son specially. */
1203 bb = bbs[son[y]];
1204 set_immediate_dominator (CDI_DOMINATORS, bb,
1205 recompute_dominator (CDI_DOMINATORS, bb));
1206 identify_vertices (g, y, son[y]);
1207 return;
1210 gprime = BITMAP_ALLOC (NULL);
1211 for (a = son[y]; a != -1; a = brother[a])
1212 bitmap_set_bit (gprime, a);
1214 nc = graphds_scc (g, gprime);
1215 BITMAP_FREE (gprime);
1217 /* ??? Needed to work around the pre-processor confusion with
1218 using a multi-argument template type as macro argument. */
1219 typedef vec<int> vec_int_heap;
1220 sccs = XCNEWVEC (vec_int_heap, nc);
1221 for (a = son[y]; a != -1; a = brother[a])
1222 sccs[g->vertices[a].component].safe_push (a);
1224 for (i = nc - 1; i >= 0; i--)
1226 dom = NULL;
1227 FOR_EACH_VEC_ELT (sccs[i], si, a)
1229 bb = bbs[a];
1230 FOR_EACH_EDGE (e, ei, bb->preds)
1232 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1233 continue;
1235 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1239 gcc_assert (dom != NULL);
1240 FOR_EACH_VEC_ELT (sccs[i], si, a)
1242 bb = bbs[a];
1243 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1247 for (i = 0; i < nc; i++)
1248 sccs[i].release ();
1249 free (sccs);
1251 for (a = son[y]; a != -1; a = brother[a])
1252 identify_vertices (g, y, a);
1255 /* Recompute dominance information for basic blocks in the set BBS. The
1256 function assumes that the immediate dominators of all the other blocks
1257 in CFG are correct, and that there are no unreachable blocks.
1259 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1260 a block of BBS in the current dominance tree dominate it. */
1262 void
1263 iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
1264 bool conservative)
1266 unsigned i;
1267 basic_block bb, dom;
1268 struct graph *g;
1269 int n, y;
1270 size_t dom_i;
1271 edge e;
1272 edge_iterator ei;
1273 int *parent, *son, *brother;
1274 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1276 /* We only support updating dominators. There are some problems with
1277 updating postdominators (need to add fake edges from infinite loops
1278 and noreturn functions), and since we do not currently use
1279 iterate_fix_dominators for postdominators, any attempt to handle these
1280 problems would be unused, untested, and almost surely buggy. We keep
1281 the DIR argument for consistency with the rest of the dominator analysis
1282 interface. */
1283 gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
1285 /* The algorithm we use takes inspiration from the following papers, although
1286 the details are quite different from any of them:
1288 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1289 Dominator Tree of a Reducible Flowgraph
1290 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1291 dominator trees
1292 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1293 Algorithm
1295 First, we use the following heuristics to decrease the size of the BBS
1296 set:
1297 a) if BB has a single predecessor, then its immediate dominator is this
1298 predecessor
1299 additionally, if CONSERVATIVE is true:
1300 b) if all the predecessors of BB except for one (X) are dominated by BB,
1301 then X is the immediate dominator of BB
1302 c) if the nearest common ancestor of the predecessors of BB is X and
1303 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1305 Then, we need to establish the dominance relation among the basic blocks
1306 in BBS. We split the dominance tree by removing the immediate dominator
1307 edges from BBS, creating a forest F. We form a graph G whose vertices
1308 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1309 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1310 whose root is X. We then determine dominance tree of G. Note that
1311 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1312 In this step, we can use arbitrary algorithm to determine dominators.
1313 We decided to prefer the algorithm [3] to the algorithm of
1314 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1315 10 during gcc bootstrap), and [3] should perform better in this case.
1317 Finally, we need to determine the immediate dominators for the basic
1318 blocks of BBS. If the immediate dominator of X in G is Y, then
1319 the immediate dominator of X in CFG belongs to the tree of F rooted in
1320 Y. We process the dominator tree T of G recursively, starting from leaves.
1321 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1322 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1323 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1324 the following observations:
1325 (i) the immediate dominator of all blocks in a strongly connected
1326 component of G' is the same
1327 (ii) if X has no predecessors in G', then the immediate dominator of X
1328 is the nearest common ancestor of the predecessors of X in the
1329 subtree of F rooted in Y
1330 Therefore, it suffices to find the topological ordering of G', and
1331 process the nodes X_i in this order using the rules (i) and (ii).
1332 Then, we contract all the nodes X_i with Y in G, so that the further
1333 steps work correctly. */
1335 if (!conservative)
1337 /* Split the tree now. If the idoms of blocks in BBS are not
1338 conservatively correct, setting the dominators using the
1339 heuristics in prune_bbs_to_update_dominators could
1340 create cycles in the dominance "tree", and cause ICE. */
1341 FOR_EACH_VEC_ELT (bbs, i, bb)
1342 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1345 prune_bbs_to_update_dominators (bbs, conservative);
1346 n = bbs.length ();
1348 if (n == 0)
1349 return;
1351 if (n == 1)
1353 bb = bbs[0];
1354 set_immediate_dominator (CDI_DOMINATORS, bb,
1355 recompute_dominator (CDI_DOMINATORS, bb));
1356 return;
1359 /* Construct the graph G. */
1360 hash_map<basic_block, int> map (251);
1361 FOR_EACH_VEC_ELT (bbs, i, bb)
1363 /* If the dominance tree is conservatively correct, split it now. */
1364 if (conservative)
1365 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1366 map.put (bb, i);
1368 map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);
1370 g = new_graph (n + 1);
1371 for (y = 0; y < g->n_vertices; y++)
1372 g->vertices[y].data = BITMAP_ALLOC (NULL);
1373 FOR_EACH_VEC_ELT (bbs, i, bb)
1375 FOR_EACH_EDGE (e, ei, bb->preds)
1377 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1378 if (dom == bb)
1379 continue;
1381 dom_i = *map.get (dom);
1383 /* Do not include parallel edges to G. */
1384 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1385 continue;
1387 add_edge (g, dom_i, i);
1390 for (y = 0; y < g->n_vertices; y++)
1391 BITMAP_FREE (g->vertices[y].data);
1393 /* Find the dominator tree of G. */
1394 son = XNEWVEC (int, n + 1);
1395 brother = XNEWVEC (int, n + 1);
1396 parent = XNEWVEC (int, n + 1);
1397 graphds_domtree (g, n, parent, son, brother);
1399 /* Finally, traverse the tree and find the immediate dominators. */
1400 for (y = n; son[y] != -1; y = son[y])
1401 continue;
1402 while (y != -1)
1404 determine_dominators_for_sons (g, bbs, y, son, brother);
1406 if (brother[y] != -1)
1408 y = brother[y];
1409 while (son[y] != -1)
1410 y = son[y];
1412 else
1413 y = parent[y];
1416 free (son);
1417 free (brother);
1418 free (parent);
1420 free_graph (g);
1423 void
1424 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1426 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1428 gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
1430 n_bbs_in_dom_tree[dir_index]++;
1432 bb->dom[dir_index] = et_new_tree (bb);
1434 if (dom_computed[dir_index] == DOM_OK)
1435 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1438 void
1439 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1441 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1443 gcc_checking_assert (dom_computed[dir_index]);
1445 et_free_tree (bb->dom[dir_index]);
1446 bb->dom[dir_index] = NULL;
1447 n_bbs_in_dom_tree[dir_index]--;
1449 if (dom_computed[dir_index] == DOM_OK)
1450 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1453 /* Returns the first son of BB in the dominator or postdominator tree
1454 as determined by DIR. */
1456 basic_block
1457 first_dom_son (enum cdi_direction dir, basic_block bb)
1459 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1460 struct et_node *son = bb->dom[dir_index]->son;
1462 return (basic_block) (son ? son->data : NULL);
1465 /* Returns the next dominance son after BB in the dominator or postdominator
1466 tree as determined by DIR, or NULL if it was the last one. */
1468 basic_block
1469 next_dom_son (enum cdi_direction dir, basic_block bb)
1471 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1472 struct et_node *next = bb->dom[dir_index]->right;
1474 return (basic_block) (next->father->son == next ? NULL : next->data);
1477 /* Return dominance availability for dominance info DIR. */
1479 enum dom_state
1480 dom_info_state (function *fn, enum cdi_direction dir)
1482 if (!fn->cfg)
1483 return DOM_NONE;
1485 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1486 return fn->cfg->x_dom_computed[dir_index];
1489 enum dom_state
1490 dom_info_state (enum cdi_direction dir)
1492 return dom_info_state (cfun, dir);
1495 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1497 void
1498 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1500 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1502 dom_computed[dir_index] = new_state;
1505 /* Returns true if dominance information for direction DIR is available. */
1507 bool
1508 dom_info_available_p (function *fn, enum cdi_direction dir)
1510 return dom_info_state (fn, dir) != DOM_NONE;
1513 bool
1514 dom_info_available_p (enum cdi_direction dir)
1516 return dom_info_available_p (cfun, dir);
1519 DEBUG_FUNCTION void
1520 debug_dominance_info (enum cdi_direction dir)
1522 basic_block bb, bb2;
1523 FOR_EACH_BB_FN (bb, cfun)
1524 if ((bb2 = get_immediate_dominator (dir, bb)))
1525 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1528 /* Prints to stderr representation of the dominance tree (for direction DIR)
1529 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1530 the first line of the output is not indented. */
1532 static void
1533 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1534 unsigned indent, bool indent_first)
1536 basic_block son;
1537 unsigned i;
1538 bool first = true;
1540 if (indent_first)
1541 for (i = 0; i < indent; i++)
1542 fprintf (stderr, "\t");
1543 fprintf (stderr, "%d\t", root->index);
1545 for (son = first_dom_son (dir, root);
1546 son;
1547 son = next_dom_son (dir, son))
1549 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1550 first = false;
1553 if (first)
1554 fprintf (stderr, "\n");
1557 /* Prints to stderr representation of the dominance tree (for direction DIR)
1558 rooted in ROOT. */
1560 DEBUG_FUNCTION void
1561 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1563 debug_dominance_tree_1 (dir, root, 0, false);