1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Elists
; use Elists
;
31 with Einfo
; use Einfo
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Dist
; use Exp_Dist
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Exp_Util
; use Exp_Util
;
40 with Fname
; use Fname
;
41 with Freeze
; use Freeze
;
42 with Ghost
; use Ghost
;
43 with Itypes
; use Itypes
;
44 with Layout
; use Layout
;
46 with Lib
.Xref
; use Lib
.Xref
;
47 with Namet
; use Namet
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Case
; use Sem_Case
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch7
; use Sem_Ch7
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch10
; use Sem_Ch10
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Dim
; use Sem_Dim
;
63 with Sem_Disp
; use Sem_Disp
;
64 with Sem_Dist
; use Sem_Dist
;
65 with Sem_Elim
; use Sem_Elim
;
66 with Sem_Eval
; use Sem_Eval
;
67 with Sem_Mech
; use Sem_Mech
;
68 with Sem_Prag
; use Sem_Prag
;
69 with Sem_Res
; use Sem_Res
;
70 with Sem_Smem
; use Sem_Smem
;
71 with Sem_Type
; use Sem_Type
;
72 with Sem_Util
; use Sem_Util
;
73 with Sem_Warn
; use Sem_Warn
;
74 with Stand
; use Stand
;
75 with Sinfo
; use Sinfo
;
76 with Sinput
; use Sinput
;
77 with Snames
; use Snames
;
78 with Targparm
; use Targparm
;
79 with Tbuild
; use Tbuild
;
80 with Ttypes
; use Ttypes
;
81 with Uintp
; use Uintp
;
82 with Urealp
; use Urealp
;
84 package body Sem_Ch3
is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
91 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
92 -- abstract interface types implemented by a record type or a derived
95 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
);
96 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
97 -- if they appeared at the end of the declarative region. The pragmas to be
105 procedure Build_Derived_Type
107 Parent_Type
: Entity_Id
;
108 Derived_Type
: Entity_Id
;
109 Is_Completion
: Boolean;
110 Derive_Subps
: Boolean := True);
111 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
112 -- the N_Full_Type_Declaration node containing the derived type definition.
113 -- Parent_Type is the entity for the parent type in the derived type
114 -- definition and Derived_Type the actual derived type. Is_Completion must
115 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
116 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
117 -- completion of a private type declaration. If Is_Completion is set to
118 -- True, N is the completion of a private type declaration and Derived_Type
119 -- is different from the defining identifier inside N (i.e. Derived_Type /=
120 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
121 -- subprograms should be derived. The only case where this parameter is
122 -- False is when Build_Derived_Type is recursively called to process an
123 -- implicit derived full type for a type derived from a private type (in
124 -- that case the subprograms must only be derived for the private view of
127 -- ??? These flags need a bit of re-examination and re-documentation:
128 -- ??? are they both necessary (both seem related to the recursion)?
130 procedure Build_Derived_Access_Type
132 Parent_Type
: Entity_Id
;
133 Derived_Type
: Entity_Id
);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
135 -- create an implicit base if the parent type is constrained or if the
136 -- subtype indication has a constraint.
138 procedure Build_Derived_Array_Type
140 Parent_Type
: Entity_Id
;
141 Derived_Type
: Entity_Id
);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
143 -- create an implicit base if the parent type is constrained or if the
144 -- subtype indication has a constraint.
146 procedure Build_Derived_Concurrent_Type
148 Parent_Type
: Entity_Id
;
149 Derived_Type
: Entity_Id
);
150 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
151 -- protected type, inherit entries and protected subprograms, check
152 -- legality of discriminant constraints if any.
154 procedure Build_Derived_Enumeration_Type
156 Parent_Type
: Entity_Id
;
157 Derived_Type
: Entity_Id
);
158 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
159 -- type, we must create a new list of literals. Types derived from
160 -- Character and [Wide_]Wide_Character are special-cased.
162 procedure Build_Derived_Numeric_Type
164 Parent_Type
: Entity_Id
;
165 Derived_Type
: Entity_Id
);
166 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
167 -- an anonymous base type, and propagate constraint to subtype if needed.
169 procedure Build_Derived_Private_Type
171 Parent_Type
: Entity_Id
;
172 Derived_Type
: Entity_Id
;
173 Is_Completion
: Boolean;
174 Derive_Subps
: Boolean := True);
175 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
176 -- because the parent may or may not have a completion, and the derivation
177 -- may itself be a completion.
179 procedure Build_Derived_Record_Type
181 Parent_Type
: Entity_Id
;
182 Derived_Type
: Entity_Id
;
183 Derive_Subps
: Boolean := True);
184 -- Subsidiary procedure used for tagged and untagged record types
185 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
186 -- All parameters are as in Build_Derived_Type except that N, in
187 -- addition to being an N_Full_Type_Declaration node, can also be an
188 -- N_Private_Extension_Declaration node. See the definition of this routine
189 -- for much more info. Derive_Subps indicates whether subprograms should be
190 -- derived from the parent type. The only case where Derive_Subps is False
191 -- is for an implicit derived full type for a type derived from a private
192 -- type (see Build_Derived_Type).
194 procedure Build_Discriminal
(Discrim
: Entity_Id
);
195 -- Create the discriminal corresponding to discriminant Discrim, that is
196 -- the parameter corresponding to Discrim to be used in initialization
197 -- procedures for the type where Discrim is a discriminant. Discriminals
198 -- are not used during semantic analysis, and are not fully defined
199 -- entities until expansion. Thus they are not given a scope until
200 -- initialization procedures are built.
202 function Build_Discriminant_Constraints
205 Derived_Def
: Boolean := False) return Elist_Id
;
206 -- Validate discriminant constraints and return the list of the constraints
207 -- in order of discriminant declarations, where T is the discriminated
208 -- unconstrained type. Def is the N_Subtype_Indication node where the
209 -- discriminants constraints for T are specified. Derived_Def is True
210 -- when building the discriminant constraints in a derived type definition
211 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
212 -- type and Def is the constraint "(xxx)" on T and this routine sets the
213 -- Corresponding_Discriminant field of the discriminants in the derived
214 -- type D to point to the corresponding discriminants in the parent type T.
216 procedure Build_Discriminated_Subtype
220 Related_Nod
: Node_Id
;
221 For_Access
: Boolean := False);
222 -- Subsidiary procedure to Constrain_Discriminated_Type and to
223 -- Process_Incomplete_Dependents. Given
225 -- T (a possibly discriminated base type)
226 -- Def_Id (a very partially built subtype for T),
228 -- the call completes Def_Id to be the appropriate E_*_Subtype.
230 -- The Elist is the list of discriminant constraints if any (it is set
231 -- to No_Elist if T is not a discriminated type, and to an empty list if
232 -- T has discriminants but there are no discriminant constraints). The
233 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
234 -- The For_Access says whether or not this subtype is really constraining
235 -- an access type. That is its sole purpose is the designated type of an
236 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
237 -- is built to avoid freezing T when the access subtype is frozen.
239 function Build_Scalar_Bound
242 Der_T
: Entity_Id
) return Node_Id
;
243 -- The bounds of a derived scalar type are conversions of the bounds of
244 -- the parent type. Optimize the representation if the bounds are literals.
245 -- Needs a more complete spec--what are the parameters exactly, and what
246 -- exactly is the returned value, and how is Bound affected???
248 procedure Build_Underlying_Full_View
252 -- If the completion of a private type is itself derived from a private
253 -- type, or if the full view of a private subtype is itself private, the
254 -- back-end has no way to compute the actual size of this type. We build
255 -- an internal subtype declaration of the proper parent type to convey
256 -- this information. This extra mechanism is needed because a full
257 -- view cannot itself have a full view (it would get clobbered during
260 procedure Check_Access_Discriminant_Requires_Limited
263 -- Check the restriction that the type to which an access discriminant
264 -- belongs must be a concurrent type or a descendant of a type with
265 -- the reserved word 'limited' in its declaration.
267 procedure Check_Anonymous_Access_Components
271 Comp_List
: Node_Id
);
272 -- Ada 2005 AI-382: an access component in a record definition can refer to
273 -- the enclosing record, in which case it denotes the type itself, and not
274 -- the current instance of the type. We create an anonymous access type for
275 -- the component, and flag it as an access to a component, so accessibility
276 -- checks are properly performed on it. The declaration of the access type
277 -- is placed ahead of that of the record to prevent order-of-elaboration
278 -- circularity issues in Gigi. We create an incomplete type for the record
279 -- declaration, which is the designated type of the anonymous access.
281 procedure Check_Delta_Expression
(E
: Node_Id
);
282 -- Check that the expression represented by E is suitable for use as a
283 -- delta expression, i.e. it is of real type and is static.
285 procedure Check_Digits_Expression
(E
: Node_Id
);
286 -- Check that the expression represented by E is suitable for use as a
287 -- digits expression, i.e. it is of integer type, positive and static.
289 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
290 -- Validate the initialization of an object declaration. T is the required
291 -- type, and Exp is the initialization expression.
293 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
294 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
296 procedure Check_Or_Process_Discriminants
299 Prev
: Entity_Id
:= Empty
);
300 -- If N is the full declaration of the completion T of an incomplete or
301 -- private type, check its discriminants (which are already known to be
302 -- conformant with those of the partial view, see Find_Type_Name),
303 -- otherwise process them. Prev is the entity of the partial declaration,
306 procedure Check_Real_Bound
(Bound
: Node_Id
);
307 -- Check given bound for being of real type and static. If not, post an
308 -- appropriate message, and rewrite the bound with the real literal zero.
310 procedure Constant_Redeclaration
314 -- Various checks on legality of full declaration of deferred constant.
315 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
316 -- node. The caller has not yet set any attributes of this entity.
318 function Contain_Interface
320 Ifaces
: Elist_Id
) return Boolean;
321 -- Ada 2005: Determine whether Iface is present in the list Ifaces
323 procedure Convert_Scalar_Bounds
325 Parent_Type
: Entity_Id
;
326 Derived_Type
: Entity_Id
;
328 -- For derived scalar types, convert the bounds in the type definition to
329 -- the derived type, and complete their analysis. Given a constraint of the
330 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
331 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
332 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
333 -- subtype are conversions of those bounds to the derived_type, so that
334 -- their typing is consistent.
336 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
337 -- Copies attributes from array base type T2 to array base type T1. Copies
338 -- only attributes that apply to base types, but not subtypes.
340 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
341 -- Copies attributes from array subtype T2 to array subtype T1. Copies
342 -- attributes that apply to both subtypes and base types.
344 procedure Create_Constrained_Components
348 Constraints
: Elist_Id
);
349 -- Build the list of entities for a constrained discriminated record
350 -- subtype. If a component depends on a discriminant, replace its subtype
351 -- using the discriminant values in the discriminant constraint. Subt
352 -- is the defining identifier for the subtype whose list of constrained
353 -- entities we will create. Decl_Node is the type declaration node where
354 -- we will attach all the itypes created. Typ is the base discriminated
355 -- type for the subtype Subt. Constraints is the list of discriminant
356 -- constraints for Typ.
358 function Constrain_Component_Type
360 Constrained_Typ
: Entity_Id
;
361 Related_Node
: Node_Id
;
363 Constraints
: Elist_Id
) return Entity_Id
;
364 -- Given a discriminated base type Typ, a list of discriminant constraints,
365 -- Constraints, for Typ and a component Comp of Typ, create and return the
366 -- type corresponding to Etype (Comp) where all discriminant references
367 -- are replaced with the corresponding constraint. If Etype (Comp) contains
368 -- no discriminant references then it is returned as-is. Constrained_Typ
369 -- is the final constrained subtype to which the constrained component
370 -- belongs. Related_Node is the node where we attach all created itypes.
372 procedure Constrain_Access
373 (Def_Id
: in out Entity_Id
;
375 Related_Nod
: Node_Id
);
376 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
377 -- an anonymous type created for a subtype indication. In that case it is
378 -- created in the procedure and attached to Related_Nod.
380 procedure Constrain_Array
381 (Def_Id
: in out Entity_Id
;
383 Related_Nod
: Node_Id
;
384 Related_Id
: Entity_Id
;
386 -- Apply a list of index constraints to an unconstrained array type. The
387 -- first parameter is the entity for the resulting subtype. A value of
388 -- Empty for Def_Id indicates that an implicit type must be created, but
389 -- creation is delayed (and must be done by this procedure) because other
390 -- subsidiary implicit types must be created first (which is why Def_Id
391 -- is an in/out parameter). The second parameter is a subtype indication
392 -- node for the constrained array to be created (e.g. something of the
393 -- form string (1 .. 10)). Related_Nod gives the place where this type
394 -- has to be inserted in the tree. The Related_Id and Suffix parameters
395 -- are used to build the associated Implicit type name.
397 procedure Constrain_Concurrent
398 (Def_Id
: in out Entity_Id
;
400 Related_Nod
: Node_Id
;
401 Related_Id
: Entity_Id
;
403 -- Apply list of discriminant constraints to an unconstrained concurrent
406 -- SI is the N_Subtype_Indication node containing the constraint and
407 -- the unconstrained type to constrain.
409 -- Def_Id is the entity for the resulting constrained subtype. A value
410 -- of Empty for Def_Id indicates that an implicit type must be created,
411 -- but creation is delayed (and must be done by this procedure) because
412 -- other subsidiary implicit types must be created first (which is why
413 -- Def_Id is an in/out parameter).
415 -- Related_Nod gives the place where this type has to be inserted
418 -- The last two arguments are used to create its external name if needed.
420 function Constrain_Corresponding_Record
421 (Prot_Subt
: Entity_Id
;
422 Corr_Rec
: Entity_Id
;
423 Related_Nod
: Node_Id
) return Entity_Id
;
424 -- When constraining a protected type or task type with discriminants,
425 -- constrain the corresponding record with the same discriminant values.
427 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
428 -- Constrain a decimal fixed point type with a digits constraint and/or a
429 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
431 procedure Constrain_Discriminated_Type
434 Related_Nod
: Node_Id
;
435 For_Access
: Boolean := False);
436 -- Process discriminant constraints of composite type. Verify that values
437 -- have been provided for all discriminants, that the original type is
438 -- unconstrained, and that the types of the supplied expressions match
439 -- the discriminant types. The first three parameters are like in routine
440 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
443 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
444 -- Constrain an enumeration type with a range constraint. This is identical
445 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
447 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
448 -- Constrain a floating point type with either a digits constraint
449 -- and/or a range constraint, building a E_Floating_Point_Subtype.
451 procedure Constrain_Index
454 Related_Nod
: Node_Id
;
455 Related_Id
: Entity_Id
;
458 -- Process an index constraint S in a constrained array declaration. The
459 -- constraint can be a subtype name, or a range with or without an explicit
460 -- subtype mark. The index is the corresponding index of the unconstrained
461 -- array. The Related_Id and Suffix parameters are used to build the
462 -- associated Implicit type name.
464 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
465 -- Build subtype of a signed or modular integer type
467 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
468 -- Constrain an ordinary fixed point type with a range constraint, and
469 -- build an E_Ordinary_Fixed_Point_Subtype entity.
471 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
472 -- Copy the Priv entity into the entity of its full declaration then swap
473 -- the two entities in such a manner that the former private type is now
474 -- seen as a full type.
476 procedure Decimal_Fixed_Point_Type_Declaration
479 -- Create a new decimal fixed point type, and apply the constraint to
480 -- obtain a subtype of this new type.
482 procedure Complete_Private_Subtype
485 Full_Base
: Entity_Id
;
486 Related_Nod
: Node_Id
);
487 -- Complete the implicit full view of a private subtype by setting the
488 -- appropriate semantic fields. If the full view of the parent is a record
489 -- type, build constrained components of subtype.
491 procedure Derive_Progenitor_Subprograms
492 (Parent_Type
: Entity_Id
;
493 Tagged_Type
: Entity_Id
);
494 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
495 -- operations of progenitors of Tagged_Type, and replace the subsidiary
496 -- subtypes with Tagged_Type, to build the specs of the inherited interface
497 -- primitives. The derived primitives are aliased to those of the
498 -- interface. This routine takes care also of transferring to the full view
499 -- subprograms associated with the partial view of Tagged_Type that cover
500 -- interface primitives.
502 procedure Derived_Standard_Character
504 Parent_Type
: Entity_Id
;
505 Derived_Type
: Entity_Id
);
506 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
507 -- derivations from types Standard.Character and Standard.Wide_Character.
509 procedure Derived_Type_Declaration
512 Is_Completion
: Boolean);
513 -- Process a derived type declaration. Build_Derived_Type is invoked
514 -- to process the actual derived type definition. Parameters N and
515 -- Is_Completion have the same meaning as in Build_Derived_Type.
516 -- T is the N_Defining_Identifier for the entity defined in the
517 -- N_Full_Type_Declaration node N, that is T is the derived type.
519 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
520 -- Insert each literal in symbol table, as an overloadable identifier. Each
521 -- enumeration type is mapped into a sequence of integers, and each literal
522 -- is defined as a constant with integer value. If any of the literals are
523 -- character literals, the type is a character type, which means that
524 -- strings are legal aggregates for arrays of components of the type.
526 function Expand_To_Stored_Constraint
528 Constraint
: Elist_Id
) return Elist_Id
;
529 -- Given a constraint (i.e. a list of expressions) on the discriminants of
530 -- Typ, expand it into a constraint on the stored discriminants and return
531 -- the new list of expressions constraining the stored discriminants.
533 function Find_Type_Of_Object
535 Related_Nod
: Node_Id
) return Entity_Id
;
536 -- Get type entity for object referenced by Obj_Def, attaching the implicit
537 -- types generated to Related_Nod.
539 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
540 -- Create a new float and apply the constraint to obtain subtype of it
542 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
543 -- Given an N_Subtype_Indication node N, return True if a range constraint
544 -- is present, either directly, or as part of a digits or delta constraint.
545 -- In addition, a digits constraint in the decimal case returns True, since
546 -- it establishes a default range if no explicit range is present.
548 function Inherit_Components
550 Parent_Base
: Entity_Id
;
551 Derived_Base
: Entity_Id
;
553 Inherit_Discr
: Boolean;
554 Discs
: Elist_Id
) return Elist_Id
;
555 -- Called from Build_Derived_Record_Type to inherit the components of
556 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
557 -- For more information on derived types and component inheritance please
558 -- consult the comment above the body of Build_Derived_Record_Type.
560 -- N is the original derived type declaration
562 -- Is_Tagged is set if we are dealing with tagged types
564 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
565 -- Parent_Base, otherwise no discriminants are inherited.
567 -- Discs gives the list of constraints that apply to Parent_Base in the
568 -- derived type declaration. If Discs is set to No_Elist, then we have
569 -- the following situation:
571 -- type Parent (D1..Dn : ..) is [tagged] record ...;
572 -- type Derived is new Parent [with ...];
574 -- which gets treated as
576 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
578 -- For untagged types the returned value is an association list. The list
579 -- starts from the association (Parent_Base => Derived_Base), and then it
580 -- contains a sequence of the associations of the form
582 -- (Old_Component => New_Component),
584 -- where Old_Component is the Entity_Id of a component in Parent_Base and
585 -- New_Component is the Entity_Id of the corresponding component in
586 -- Derived_Base. For untagged records, this association list is needed when
587 -- copying the record declaration for the derived base. In the tagged case
588 -- the value returned is irrelevant.
590 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
591 -- Propagate static and dynamic predicate flags from a parent to the
592 -- subtype in a subtype declaration with and without constraints.
594 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
595 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
596 -- Determine whether subprogram Subp is a procedure subject to pragma
597 -- Extensions_Visible with value False and has at least one controlling
598 -- parameter of mode OUT.
600 function Is_Valid_Constraint_Kind
602 Constraint_Kind
: Node_Kind
) return Boolean;
603 -- Returns True if it is legal to apply the given kind of constraint to the
604 -- given kind of type (index constraint to an array type, for example).
606 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
607 -- Create new modular type. Verify that modulus is in bounds
609 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
610 -- Create an abbreviated declaration for an operator in order to
611 -- materialize concatenation on array types.
613 procedure Ordinary_Fixed_Point_Type_Declaration
616 -- Create a new ordinary fixed point type, and apply the constraint to
617 -- obtain subtype of it.
619 procedure Prepare_Private_Subtype_Completion
621 Related_Nod
: Node_Id
);
622 -- Id is a subtype of some private type. Creates the full declaration
623 -- associated with Id whenever possible, i.e. when the full declaration
624 -- of the base type is already known. Records each subtype into
625 -- Private_Dependents of the base type.
627 procedure Process_Incomplete_Dependents
631 -- Process all entities that depend on an incomplete type. There include
632 -- subtypes, subprogram types that mention the incomplete type in their
633 -- profiles, and subprogram with access parameters that designate the
636 -- Inc_T is the defining identifier of an incomplete type declaration, its
637 -- Ekind is E_Incomplete_Type.
639 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
641 -- Full_T is N's defining identifier.
643 -- Subtypes of incomplete types with discriminants are completed when the
644 -- parent type is. This is simpler than private subtypes, because they can
645 -- only appear in the same scope, and there is no need to exchange views.
646 -- Similarly, access_to_subprogram types may have a parameter or a return
647 -- type that is an incomplete type, and that must be replaced with the
650 -- If the full type is tagged, subprogram with access parameters that
651 -- designated the incomplete may be primitive operations of the full type,
652 -- and have to be processed accordingly.
654 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
655 -- Given the type definition for a real type, this procedure processes and
656 -- checks the real range specification of this type definition if one is
657 -- present. If errors are found, error messages are posted, and the
658 -- Real_Range_Specification of Def is reset to Empty.
660 procedure Propagate_Default_Init_Cond_Attributes
661 (From_Typ
: Entity_Id
;
663 Parent_To_Derivation
: Boolean := False;
664 Private_To_Full_View
: Boolean := False);
665 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
666 -- all attributes related to pragma Default_Initial_Condition from From_Typ
667 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
668 -- the creation of a derived type. Flag Private_To_Full_View should be set
669 -- when processing both views of a private type.
671 procedure Record_Type_Declaration
675 -- Process a record type declaration (for both untagged and tagged
676 -- records). Parameters T and N are exactly like in procedure
677 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
678 -- for this routine. If this is the completion of an incomplete type
679 -- declaration, Prev is the entity of the incomplete declaration, used for
680 -- cross-referencing. Otherwise Prev = T.
682 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
683 -- This routine is used to process the actual record type definition (both
684 -- for untagged and tagged records). Def is a record type definition node.
685 -- This procedure analyzes the components in this record type definition.
686 -- Prev_T is the entity for the enclosing record type. It is provided so
687 -- that its Has_Task flag can be set if any of the component have Has_Task
688 -- set. If the declaration is the completion of an incomplete type
689 -- declaration, Prev_T is the original incomplete type, whose full view is
692 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
693 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
694 -- build a copy of the declaration tree of the parent, and we create
695 -- independently the list of components for the derived type. Semantic
696 -- information uses the component entities, but record representation
697 -- clauses are validated on the declaration tree. This procedure replaces
698 -- discriminants and components in the declaration with those that have
699 -- been created by Inherit_Components.
701 procedure Set_Fixed_Range
706 -- Build a range node with the given bounds and set it as the Scalar_Range
707 -- of the given fixed-point type entity. Loc is the source location used
708 -- for the constructed range. See body for further details.
710 procedure Set_Scalar_Range_For_Subtype
714 -- This routine is used to set the scalar range field for a subtype given
715 -- Def_Id, the entity for the subtype, and R, the range expression for the
716 -- scalar range. Subt provides the parent subtype to be used to analyze,
717 -- resolve, and check the given range.
719 procedure Set_Default_SSO
(T
: Entity_Id
);
720 -- T is the entity for an array or record being declared. This procedure
721 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
722 -- to the setting of Opt.Default_SSO.
724 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
725 -- Create a new signed integer entity, and apply the constraint to obtain
726 -- the required first named subtype of this type.
728 procedure Set_Stored_Constraint_From_Discriminant_Constraint
730 -- E is some record type. This routine computes E's Stored_Constraint
731 -- from its Discriminant_Constraint.
733 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
734 -- Check that an entity in a list of progenitors is an interface,
735 -- emit error otherwise.
737 -----------------------
738 -- Access_Definition --
739 -----------------------
741 function Access_Definition
742 (Related_Nod
: Node_Id
;
743 N
: Node_Id
) return Entity_Id
745 Anon_Type
: Entity_Id
;
746 Anon_Scope
: Entity_Id
;
747 Desig_Type
: Entity_Id
;
748 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
751 Check_SPARK_05_Restriction
("access type is not allowed", N
);
753 if Is_Entry
(Current_Scope
)
754 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
756 Error_Msg_N
("task entries cannot have access parameters", N
);
760 -- Ada 2005: For an object declaration the corresponding anonymous
761 -- type is declared in the current scope.
763 -- If the access definition is the return type of another access to
764 -- function, scope is the current one, because it is the one of the
765 -- current type declaration, except for the pathological case below.
767 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
768 N_Access_Function_Definition
)
770 Anon_Scope
:= Current_Scope
;
772 -- A pathological case: function returning access functions that
773 -- return access functions, etc. Each anonymous access type created
774 -- is in the enclosing scope of the outermost function.
781 while Nkind_In
(Par
, N_Access_Function_Definition
,
787 if Nkind
(Par
) = N_Function_Specification
then
788 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
792 -- For the anonymous function result case, retrieve the scope of the
793 -- function specification's associated entity rather than using the
794 -- current scope. The current scope will be the function itself if the
795 -- formal part is currently being analyzed, but will be the parent scope
796 -- in the case of a parameterless function, and we always want to use
797 -- the function's parent scope. Finally, if the function is a child
798 -- unit, we must traverse the tree to retrieve the proper entity.
800 elsif Nkind
(Related_Nod
) = N_Function_Specification
801 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
803 -- If the current scope is a protected type, the anonymous access
804 -- is associated with one of the protected operations, and must
805 -- be available in the scope that encloses the protected declaration.
806 -- Otherwise the type is in the scope enclosing the subprogram.
808 -- If the function has formals, The return type of a subprogram
809 -- declaration is analyzed in the scope of the subprogram (see
810 -- Process_Formals) and thus the protected type, if present, is
811 -- the scope of the current function scope.
813 if Ekind
(Current_Scope
) = E_Protected_Type
then
814 Enclosing_Prot_Type
:= Current_Scope
;
816 elsif Ekind
(Current_Scope
) = E_Function
817 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
819 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
822 if Present
(Enclosing_Prot_Type
) then
823 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
826 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
829 -- For an access type definition, if the current scope is a child
830 -- unit it is the scope of the type.
832 elsif Is_Compilation_Unit
(Current_Scope
) then
833 Anon_Scope
:= Current_Scope
;
835 -- For access formals, access components, and access discriminants, the
836 -- scope is that of the enclosing declaration,
839 Anon_Scope
:= Scope
(Current_Scope
);
844 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
847 and then Ada_Version
>= Ada_2005
849 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
852 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
853 -- the corresponding semantic routine
855 if Present
(Access_To_Subprogram_Definition
(N
)) then
857 -- Compiler runtime units are compiled in Ada 2005 mode when building
858 -- the runtime library but must also be compilable in Ada 95 mode
859 -- (when bootstrapping the compiler).
861 Check_Compiler_Unit
("anonymous access to subprogram", N
);
863 Access_Subprogram_Declaration
864 (T_Name
=> Anon_Type
,
865 T_Def
=> Access_To_Subprogram_Definition
(N
));
867 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
869 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
871 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
874 Set_Can_Use_Internal_Rep
875 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
877 -- If the anonymous access is associated with a protected operation,
878 -- create a reference to it after the enclosing protected definition
879 -- because the itype will be used in the subsequent bodies.
881 -- If the anonymous access itself is protected, a full type
882 -- declaratiton will be created for it, so that the equivalent
883 -- record type can be constructed. For further details, see
884 -- Replace_Anonymous_Access_To_Protected-Subprogram.
886 if Ekind
(Current_Scope
) = E_Protected_Type
887 and then not Protected_Present
(Access_To_Subprogram_Definition
(N
))
889 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
895 Find_Type
(Subtype_Mark
(N
));
896 Desig_Type
:= Entity
(Subtype_Mark
(N
));
898 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
899 Set_Etype
(Anon_Type
, Anon_Type
);
901 -- Make sure the anonymous access type has size and alignment fields
902 -- set, as required by gigi. This is necessary in the case of the
903 -- Task_Body_Procedure.
905 if not Has_Private_Component
(Desig_Type
) then
906 Layout_Type
(Anon_Type
);
909 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
910 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
911 -- the null value is allowed. In Ada 95 the null value is never allowed.
913 if Ada_Version
>= Ada_2005
then
914 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
916 Set_Can_Never_Be_Null
(Anon_Type
, True);
919 -- The anonymous access type is as public as the discriminated type or
920 -- subprogram that defines it. It is imported (for back-end purposes)
921 -- if the designated type is.
923 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
925 -- Ada 2005 (AI-231): Propagate the access-constant attribute
927 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
929 -- The context is either a subprogram declaration, object declaration,
930 -- or an access discriminant, in a private or a full type declaration.
931 -- In the case of a subprogram, if the designated type is incomplete,
932 -- the operation will be a primitive operation of the full type, to be
933 -- updated subsequently. If the type is imported through a limited_with
934 -- clause, the subprogram is not a primitive operation of the type
935 -- (which is declared elsewhere in some other scope).
937 if Ekind
(Desig_Type
) = E_Incomplete_Type
938 and then not From_Limited_With
(Desig_Type
)
939 and then Is_Overloadable
(Current_Scope
)
941 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
942 Set_Has_Delayed_Freeze
(Current_Scope
);
945 -- Ada 2005: If the designated type is an interface that may contain
946 -- tasks, create a Master entity for the declaration. This must be done
947 -- before expansion of the full declaration, because the declaration may
948 -- include an expression that is an allocator, whose expansion needs the
949 -- proper Master for the created tasks.
951 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
953 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
955 Build_Class_Wide_Master
(Anon_Type
);
957 -- Similarly, if the type is an anonymous access that designates
958 -- tasks, create a master entity for it in the current context.
960 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
962 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
963 Build_Master_Renaming
(Anon_Type
);
967 -- For a private component of a protected type, it is imperative that
968 -- the back-end elaborate the type immediately after the protected
969 -- declaration, because this type will be used in the declarations
970 -- created for the component within each protected body, so we must
971 -- create an itype reference for it now.
973 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
974 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
976 -- Similarly, if the access definition is the return result of a
977 -- function, create an itype reference for it because it will be used
978 -- within the function body. For a regular function that is not a
979 -- compilation unit, insert reference after the declaration. For a
980 -- protected operation, insert it after the enclosing protected type
981 -- declaration. In either case, do not create a reference for a type
982 -- obtained through a limited_with clause, because this would introduce
983 -- semantic dependencies.
985 -- Similarly, do not create a reference if the designated type is a
986 -- generic formal, because no use of it will reach the backend.
988 elsif Nkind
(Related_Nod
) = N_Function_Specification
989 and then not From_Limited_With
(Desig_Type
)
990 and then not Is_Generic_Type
(Desig_Type
)
992 if Present
(Enclosing_Prot_Type
) then
993 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
995 elsif Is_List_Member
(Parent
(Related_Nod
))
996 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
998 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
1001 -- Finally, create an itype reference for an object declaration of an
1002 -- anonymous access type. This is strictly necessary only for deferred
1003 -- constants, but in any case will avoid out-of-scope problems in the
1006 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
1007 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
1011 end Access_Definition
;
1013 -----------------------------------
1014 -- Access_Subprogram_Declaration --
1015 -----------------------------------
1017 procedure Access_Subprogram_Declaration
1018 (T_Name
: Entity_Id
;
1021 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
1022 -- Check that type T_Name is not used, directly or recursively, as a
1023 -- parameter or a return type in Def. Def is either a subtype, an
1024 -- access_definition, or an access_to_subprogram_definition.
1026 -------------------------------
1027 -- Check_For_Premature_Usage --
1028 -------------------------------
1030 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1034 -- Check for a subtype mark
1036 if Nkind
(Def
) in N_Has_Etype
then
1037 if Etype
(Def
) = T_Name
then
1039 ("type& cannot be used before end of its declaration", Def
);
1042 -- If this is not a subtype, then this is an access_definition
1044 elsif Nkind
(Def
) = N_Access_Definition
then
1045 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1046 Check_For_Premature_Usage
1047 (Access_To_Subprogram_Definition
(Def
));
1049 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1052 -- The only cases left are N_Access_Function_Definition and
1053 -- N_Access_Procedure_Definition.
1056 if Present
(Parameter_Specifications
(Def
)) then
1057 Param
:= First
(Parameter_Specifications
(Def
));
1058 while Present
(Param
) loop
1059 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1060 Param
:= Next
(Param
);
1064 if Nkind
(Def
) = N_Access_Function_Definition
then
1065 Check_For_Premature_Usage
(Result_Definition
(Def
));
1068 end Check_For_Premature_Usage
;
1072 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1075 Desig_Type
: constant Entity_Id
:=
1076 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1078 -- Start of processing for Access_Subprogram_Declaration
1081 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1083 -- Associate the Itype node with the inner full-type declaration or
1084 -- subprogram spec or entry body. This is required to handle nested
1085 -- anonymous declarations. For example:
1088 -- (X : access procedure
1089 -- (Y : access procedure
1092 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1093 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1094 N_Private_Type_Declaration
,
1095 N_Private_Extension_Declaration
,
1096 N_Procedure_Specification
,
1097 N_Function_Specification
,
1101 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1102 N_Object_Renaming_Declaration
,
1103 N_Formal_Object_Declaration
,
1104 N_Formal_Type_Declaration
,
1105 N_Task_Type_Declaration
,
1106 N_Protected_Type_Declaration
))
1108 D_Ityp
:= Parent
(D_Ityp
);
1109 pragma Assert
(D_Ityp
/= Empty
);
1112 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1114 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1115 N_Function_Specification
)
1117 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1119 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1120 N_Object_Declaration
,
1121 N_Object_Renaming_Declaration
,
1122 N_Formal_Type_Declaration
)
1124 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1127 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1128 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1130 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1133 if Present
(Access_To_Subprogram_Definition
(Acc
))
1135 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1139 Replace_Anonymous_Access_To_Protected_Subprogram
1145 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1150 Analyze
(Result_Definition
(T_Def
));
1153 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1156 -- If a null exclusion is imposed on the result type, then
1157 -- create a null-excluding itype (an access subtype) and use
1158 -- it as the function's Etype.
1160 if Is_Access_Type
(Typ
)
1161 and then Null_Exclusion_In_Return_Present
(T_Def
)
1163 Set_Etype
(Desig_Type
,
1164 Create_Null_Excluding_Itype
1166 Related_Nod
=> T_Def
,
1167 Scope_Id
=> Current_Scope
));
1170 if From_Limited_With
(Typ
) then
1172 -- AI05-151: Incomplete types are allowed in all basic
1173 -- declarations, including access to subprograms.
1175 if Ada_Version
>= Ada_2012
then
1180 ("illegal use of incomplete type&",
1181 Result_Definition
(T_Def
), Typ
);
1184 elsif Ekind
(Current_Scope
) = E_Package
1185 and then In_Private_Part
(Current_Scope
)
1187 if Ekind
(Typ
) = E_Incomplete_Type
then
1188 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1190 elsif Is_Class_Wide_Type
(Typ
)
1191 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1194 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1198 Set_Etype
(Desig_Type
, Typ
);
1203 if not (Is_Type
(Etype
(Desig_Type
))) then
1205 ("expect type in function specification",
1206 Result_Definition
(T_Def
));
1210 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1213 if Present
(Formals
) then
1214 Push_Scope
(Desig_Type
);
1216 -- Some special tests here. These special tests can be removed
1217 -- if and when Itypes always have proper parent pointers to their
1220 -- Special test 1) Link defining_identifier of formals. Required by
1221 -- First_Formal to provide its functionality.
1227 F
:= First
(Formals
);
1229 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1230 -- when it is part of an unconstrained type and subtype expansion
1231 -- is disabled. To avoid back-end problems with shared profiles,
1232 -- use previous subprogram type as the designated type, and then
1233 -- remove scope added above.
1235 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1237 Set_Etype
(T_Name
, T_Name
);
1238 Init_Size_Align
(T_Name
);
1239 Set_Directly_Designated_Type
(T_Name
,
1240 Scope
(Defining_Identifier
(F
)));
1245 while Present
(F
) loop
1246 if No
(Parent
(Defining_Identifier
(F
))) then
1247 Set_Parent
(Defining_Identifier
(F
), F
);
1254 Process_Formals
(Formals
, Parent
(T_Def
));
1256 -- Special test 2) End_Scope requires that the parent pointer be set
1257 -- to something reasonable, but Itypes don't have parent pointers. So
1258 -- we set it and then unset it ???
1260 Set_Parent
(Desig_Type
, T_Name
);
1262 Set_Parent
(Desig_Type
, Empty
);
1265 -- Check for premature usage of the type being defined
1267 Check_For_Premature_Usage
(T_Def
);
1269 -- The return type and/or any parameter type may be incomplete. Mark the
1270 -- subprogram_type as depending on the incomplete type, so that it can
1271 -- be updated when the full type declaration is seen. This only applies
1272 -- to incomplete types declared in some enclosing scope, not to limited
1273 -- views from other packages.
1275 -- Prior to Ada 2012, access to functions can only have in_parameters.
1277 if Present
(Formals
) then
1278 Formal
:= First_Formal
(Desig_Type
);
1279 while Present
(Formal
) loop
1280 if Ekind
(Formal
) /= E_In_Parameter
1281 and then Nkind
(T_Def
) = N_Access_Function_Definition
1282 and then Ada_Version
< Ada_2012
1284 Error_Msg_N
("functions can only have IN parameters", Formal
);
1287 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1288 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1290 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1291 Set_Has_Delayed_Freeze
(Desig_Type
);
1294 Next_Formal
(Formal
);
1298 -- Check whether an indirect call without actuals may be possible. This
1299 -- is used when resolving calls whose result is then indexed.
1301 May_Need_Actuals
(Desig_Type
);
1303 -- If the return type is incomplete, this is legal as long as the type
1304 -- is declared in the current scope and will be completed in it (rather
1305 -- than being part of limited view).
1307 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1308 and then not Has_Delayed_Freeze
(Desig_Type
)
1309 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1311 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1312 Set_Has_Delayed_Freeze
(Desig_Type
);
1315 Check_Delayed_Subprogram
(Desig_Type
);
1317 if Protected_Present
(T_Def
) then
1318 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1319 Set_Convention
(Desig_Type
, Convention_Protected
);
1321 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1324 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1326 Set_Etype
(T_Name
, T_Name
);
1327 Init_Size_Align
(T_Name
);
1328 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1330 Generate_Reference_To_Formals
(T_Name
);
1332 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1334 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1336 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1337 end Access_Subprogram_Declaration
;
1339 ----------------------------
1340 -- Access_Type_Declaration --
1341 ----------------------------
1343 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1344 P
: constant Node_Id
:= Parent
(Def
);
1345 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1347 Full_Desig
: Entity_Id
;
1350 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1352 -- Check for permissible use of incomplete type
1354 if Nkind
(S
) /= N_Subtype_Indication
then
1357 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1358 Set_Directly_Designated_Type
(T
, Entity
(S
));
1360 -- If the designated type is a limited view, we cannot tell if
1361 -- the full view contains tasks, and there is no way to handle
1362 -- that full view in a client. We create a master entity for the
1363 -- scope, which will be used when a client determines that one
1366 if From_Limited_With
(Entity
(S
))
1367 and then not Is_Class_Wide_Type
(Entity
(S
))
1369 Set_Ekind
(T
, E_Access_Type
);
1370 Build_Master_Entity
(T
);
1371 Build_Master_Renaming
(T
);
1375 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1378 -- If the access definition is of the form: ACCESS NOT NULL ..
1379 -- the subtype indication must be of an access type. Create
1380 -- a null-excluding subtype of it.
1382 if Null_Excluding_Subtype
(Def
) then
1383 if not Is_Access_Type
(Entity
(S
)) then
1384 Error_Msg_N
("null exclusion must apply to access type", Def
);
1388 Loc
: constant Source_Ptr
:= Sloc
(S
);
1390 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1394 Make_Subtype_Declaration
(Loc
,
1395 Defining_Identifier
=> Nam
,
1396 Subtype_Indication
=>
1397 New_Occurrence_Of
(Entity
(S
), Loc
));
1398 Set_Null_Exclusion_Present
(Decl
);
1399 Insert_Before
(Parent
(Def
), Decl
);
1401 Set_Entity
(S
, Nam
);
1407 Set_Directly_Designated_Type
(T
,
1408 Process_Subtype
(S
, P
, T
, 'P'));
1411 if All_Present
(Def
) or Constant_Present
(Def
) then
1412 Set_Ekind
(T
, E_General_Access_Type
);
1414 Set_Ekind
(T
, E_Access_Type
);
1417 Full_Desig
:= Designated_Type
(T
);
1419 if Base_Type
(Full_Desig
) = T
then
1420 Error_Msg_N
("access type cannot designate itself", S
);
1422 -- In Ada 2005, the type may have a limited view through some unit in
1423 -- its own context, allowing the following circularity that cannot be
1424 -- detected earlier.
1426 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1429 ("access type cannot designate its own classwide type", S
);
1431 -- Clean up indication of tagged status to prevent cascaded errors
1433 Set_Is_Tagged_Type
(T
, False);
1438 -- If the type has appeared already in a with_type clause, it is frozen
1439 -- and the pointer size is already set. Else, initialize.
1441 if not From_Limited_With
(T
) then
1442 Init_Size_Align
(T
);
1445 -- Note that Has_Task is always false, since the access type itself
1446 -- is not a task type. See Einfo for more description on this point.
1447 -- Exactly the same consideration applies to Has_Controlled_Component
1448 -- and to Has_Protected.
1450 Set_Has_Task
(T
, False);
1451 Set_Has_Controlled_Component
(T
, False);
1452 Set_Has_Protected
(T
, False);
1454 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1455 -- problems where an incomplete view of this entity has been previously
1456 -- established by a limited with and an overlaid version of this field
1457 -- (Stored_Constraint) was initialized for the incomplete view.
1459 -- This reset is performed in most cases except where the access type
1460 -- has been created for the purposes of allocating or deallocating a
1461 -- build-in-place object. Such access types have explicitly set pools
1462 -- and finalization masters.
1464 if No
(Associated_Storage_Pool
(T
)) then
1465 Set_Finalization_Master
(T
, Empty
);
1468 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1471 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1472 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1473 end Access_Type_Declaration
;
1475 ----------------------------------
1476 -- Add_Interface_Tag_Components --
1477 ----------------------------------
1479 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1480 Loc
: constant Source_Ptr
:= Sloc
(N
);
1484 procedure Add_Tag
(Iface
: Entity_Id
);
1485 -- Add tag for one of the progenitor interfaces
1491 procedure Add_Tag
(Iface
: Entity_Id
) is
1498 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1500 -- This is a reasonable place to propagate predicates
1502 if Has_Predicates
(Iface
) then
1503 Set_Has_Predicates
(Typ
);
1507 Make_Component_Definition
(Loc
,
1508 Aliased_Present
=> True,
1509 Subtype_Indication
=>
1510 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1512 Tag
:= Make_Temporary
(Loc
, 'V');
1515 Make_Component_Declaration
(Loc
,
1516 Defining_Identifier
=> Tag
,
1517 Component_Definition
=> Def
);
1519 Analyze_Component_Declaration
(Decl
);
1521 Set_Analyzed
(Decl
);
1522 Set_Ekind
(Tag
, E_Component
);
1524 Set_Is_Aliased
(Tag
);
1525 Set_Related_Type
(Tag
, Iface
);
1526 Init_Component_Location
(Tag
);
1528 pragma Assert
(Is_Frozen
(Iface
));
1530 Set_DT_Entry_Count
(Tag
,
1531 DT_Entry_Count
(First_Entity
(Iface
)));
1533 if No
(Last_Tag
) then
1536 Insert_After
(Last_Tag
, Decl
);
1541 -- If the ancestor has discriminants we need to give special support
1542 -- to store the offset_to_top value of the secondary dispatch tables.
1543 -- For this purpose we add a supplementary component just after the
1544 -- field that contains the tag associated with each secondary DT.
1546 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1548 Make_Component_Definition
(Loc
,
1549 Subtype_Indication
=>
1550 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1552 Offset
:= Make_Temporary
(Loc
, 'V');
1555 Make_Component_Declaration
(Loc
,
1556 Defining_Identifier
=> Offset
,
1557 Component_Definition
=> Def
);
1559 Analyze_Component_Declaration
(Decl
);
1561 Set_Analyzed
(Decl
);
1562 Set_Ekind
(Offset
, E_Component
);
1563 Set_Is_Aliased
(Offset
);
1564 Set_Related_Type
(Offset
, Iface
);
1565 Init_Component_Location
(Offset
);
1566 Insert_After
(Last_Tag
, Decl
);
1577 -- Start of processing for Add_Interface_Tag_Components
1580 if not RTE_Available
(RE_Interface_Tag
) then
1582 ("(Ada 2005) interface types not supported by this run-time!",
1587 if Ekind
(Typ
) /= E_Record_Type
1588 or else (Is_Concurrent_Record_Type
(Typ
)
1589 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1590 or else (not Is_Concurrent_Record_Type
(Typ
)
1591 and then No
(Interfaces
(Typ
))
1592 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1597 -- Find the current last tag
1599 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1600 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1602 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1603 Ext
:= Type_Definition
(N
);
1608 if not (Present
(Component_List
(Ext
))) then
1609 Set_Null_Present
(Ext
, False);
1611 Set_Component_List
(Ext
,
1612 Make_Component_List
(Loc
,
1613 Component_Items
=> L
,
1614 Null_Present
=> False));
1616 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1617 L
:= Component_Items
1619 (Record_Extension_Part
1620 (Type_Definition
(N
))));
1622 L
:= Component_Items
1624 (Type_Definition
(N
)));
1627 -- Find the last tag component
1630 while Present
(Comp
) loop
1631 if Nkind
(Comp
) = N_Component_Declaration
1632 and then Is_Tag
(Defining_Identifier
(Comp
))
1641 -- At this point L references the list of components and Last_Tag
1642 -- references the current last tag (if any). Now we add the tag
1643 -- corresponding with all the interfaces that are not implemented
1646 if Present
(Interfaces
(Typ
)) then
1647 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1648 while Present
(Elmt
) loop
1649 Add_Tag
(Node
(Elmt
));
1653 end Add_Interface_Tag_Components
;
1655 -------------------------------------
1656 -- Add_Internal_Interface_Entities --
1657 -------------------------------------
1659 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1662 Iface_Elmt
: Elmt_Id
;
1663 Iface_Prim
: Entity_Id
;
1664 Ifaces_List
: Elist_Id
;
1665 New_Subp
: Entity_Id
:= Empty
;
1667 Restore_Scope
: Boolean := False;
1670 pragma Assert
(Ada_Version
>= Ada_2005
1671 and then Is_Record_Type
(Tagged_Type
)
1672 and then Is_Tagged_Type
(Tagged_Type
)
1673 and then Has_Interfaces
(Tagged_Type
)
1674 and then not Is_Interface
(Tagged_Type
));
1676 -- Ensure that the internal entities are added to the scope of the type
1678 if Scope
(Tagged_Type
) /= Current_Scope
then
1679 Push_Scope
(Scope
(Tagged_Type
));
1680 Restore_Scope
:= True;
1683 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1685 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1686 while Present
(Iface_Elmt
) loop
1687 Iface
:= Node
(Iface_Elmt
);
1689 -- Originally we excluded here from this processing interfaces that
1690 -- are parents of Tagged_Type because their primitives are located
1691 -- in the primary dispatch table (and hence no auxiliary internal
1692 -- entities are required to handle secondary dispatch tables in such
1693 -- case). However, these auxiliary entities are also required to
1694 -- handle derivations of interfaces in formals of generics (see
1695 -- Derive_Subprograms).
1697 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1698 while Present
(Elmt
) loop
1699 Iface_Prim
:= Node
(Elmt
);
1701 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1703 Find_Primitive_Covering_Interface
1704 (Tagged_Type
=> Tagged_Type
,
1705 Iface_Prim
=> Iface_Prim
);
1707 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1711 pragma Assert
(Present
(Prim
));
1713 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1714 -- differs from the name of the interface primitive then it is
1715 -- a private primitive inherited from a parent type. In such
1716 -- case, given that Tagged_Type covers the interface, the
1717 -- inherited private primitive becomes visible. For such
1718 -- purpose we add a new entity that renames the inherited
1719 -- private primitive.
1721 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1722 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1724 (New_Subp
=> New_Subp
,
1725 Parent_Subp
=> Iface_Prim
,
1726 Derived_Type
=> Tagged_Type
,
1727 Parent_Type
=> Iface
);
1728 Set_Alias
(New_Subp
, Prim
);
1729 Set_Is_Abstract_Subprogram
1730 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1734 (New_Subp
=> New_Subp
,
1735 Parent_Subp
=> Iface_Prim
,
1736 Derived_Type
=> Tagged_Type
,
1737 Parent_Type
=> Iface
);
1739 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1740 -- associated with interface types. These entities are
1741 -- only registered in the list of primitives of its
1742 -- corresponding tagged type because they are only used
1743 -- to fill the contents of the secondary dispatch tables.
1744 -- Therefore they are removed from the homonym chains.
1746 Set_Is_Hidden
(New_Subp
);
1747 Set_Is_Internal
(New_Subp
);
1748 Set_Alias
(New_Subp
, Prim
);
1749 Set_Is_Abstract_Subprogram
1750 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1751 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1753 -- If the returned type is an interface then propagate it to
1754 -- the returned type. Needed by the thunk to generate the code
1755 -- which displaces "this" to reference the corresponding
1756 -- secondary dispatch table in the returned object.
1758 if Is_Interface
(Etype
(Iface_Prim
)) then
1759 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1762 -- Internal entities associated with interface types are
1763 -- only registered in the list of primitives of the tagged
1764 -- type. They are only used to fill the contents of the
1765 -- secondary dispatch tables. Therefore they are not needed
1766 -- in the homonym chains.
1768 Remove_Homonym
(New_Subp
);
1770 -- Hidden entities associated with interfaces must have set
1771 -- the Has_Delay_Freeze attribute to ensure that, in case of
1772 -- locally defined tagged types (or compiling with static
1773 -- dispatch tables generation disabled) the corresponding
1774 -- entry of the secondary dispatch table is filled when
1775 -- such an entity is frozen. This is an expansion activity
1776 -- that must be suppressed for ASIS because it leads to
1777 -- gigi elaboration issues in annotate mode.
1779 if not ASIS_Mode
then
1780 Set_Has_Delayed_Freeze
(New_Subp
);
1788 Next_Elmt
(Iface_Elmt
);
1791 if Restore_Scope
then
1794 end Add_Internal_Interface_Entities
;
1796 -----------------------------------
1797 -- Analyze_Component_Declaration --
1798 -----------------------------------
1800 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1801 Loc
: constant Source_Ptr
:= Sloc
(Component_Definition
(N
));
1802 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1803 E
: constant Node_Id
:= Expression
(N
);
1804 Typ
: constant Node_Id
:=
1805 Subtype_Indication
(Component_Definition
(N
));
1809 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1810 -- Determines whether a constraint uses the discriminant of a record
1811 -- type thus becoming a per-object constraint (POC).
1813 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1814 -- Typ is the type of the current component, check whether this type is
1815 -- a limited type. Used to validate declaration against that of
1816 -- enclosing record.
1822 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1824 -- Prevent cascaded errors
1826 if Error_Posted
(Constr
) then
1830 case Nkind
(Constr
) is
1831 when N_Attribute_Reference
=>
1832 return Attribute_Name
(Constr
) = Name_Access
1833 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1835 when N_Discriminant_Association
=>
1836 return Denotes_Discriminant
(Expression
(Constr
));
1838 when N_Identifier
=>
1839 return Denotes_Discriminant
(Constr
);
1841 when N_Index_Or_Discriminant_Constraint
=>
1846 IDC
:= First
(Constraints
(Constr
));
1847 while Present
(IDC
) loop
1849 -- One per-object constraint is sufficient
1851 if Contains_POC
(IDC
) then
1862 return Denotes_Discriminant
(Low_Bound
(Constr
))
1864 Denotes_Discriminant
(High_Bound
(Constr
));
1866 when N_Range_Constraint
=>
1867 return Denotes_Discriminant
(Range_Expression
(Constr
));
1875 ----------------------
1876 -- Is_Known_Limited --
1877 ----------------------
1879 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1880 P
: constant Entity_Id
:= Etype
(Typ
);
1881 R
: constant Entity_Id
:= Root_Type
(Typ
);
1884 if Is_Limited_Record
(Typ
) then
1887 -- If the root type is limited (and not a limited interface)
1888 -- so is the current type
1890 elsif Is_Limited_Record
(R
)
1891 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1895 -- Else the type may have a limited interface progenitor, but a
1896 -- limited record parent.
1898 elsif R
/= P
and then Is_Limited_Record
(P
) then
1904 end Is_Known_Limited
;
1906 -- Start of processing for Analyze_Component_Declaration
1909 Generate_Definition
(Id
);
1912 if Present
(Typ
) then
1913 T
:= Find_Type_Of_Object
1914 (Subtype_Indication
(Component_Definition
(N
)), N
);
1916 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1917 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1920 -- Ada 2005 (AI-230): Access Definition case
1923 pragma Assert
(Present
1924 (Access_Definition
(Component_Definition
(N
))));
1926 T
:= Access_Definition
1928 N
=> Access_Definition
(Component_Definition
(N
)));
1929 Set_Is_Local_Anonymous_Access
(T
);
1931 -- Ada 2005 (AI-254)
1933 if Present
(Access_To_Subprogram_Definition
1934 (Access_Definition
(Component_Definition
(N
))))
1935 and then Protected_Present
(Access_To_Subprogram_Definition
1937 (Component_Definition
(N
))))
1939 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1943 -- If the subtype is a constrained subtype of the enclosing record,
1944 -- (which must have a partial view) the back-end does not properly
1945 -- handle the recursion. Rewrite the component declaration with an
1946 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1947 -- the tree directly because side effects have already been removed from
1948 -- discriminant constraints.
1950 if Ekind
(T
) = E_Access_Subtype
1951 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1952 and then Comes_From_Source
(T
)
1953 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1954 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1957 (Subtype_Indication
(Component_Definition
(N
)),
1958 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1959 T
:= Find_Type_Of_Object
1960 (Subtype_Indication
(Component_Definition
(N
)), N
);
1963 -- If the component declaration includes a default expression, then we
1964 -- check that the component is not of a limited type (RM 3.7(5)),
1965 -- and do the special preanalysis of the expression (see section on
1966 -- "Handling of Default and Per-Object Expressions" in the spec of
1970 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1971 Preanalyze_Default_Expression
(E
, T
);
1972 Check_Initialization
(T
, E
);
1974 if Ada_Version
>= Ada_2005
1975 and then Ekind
(T
) = E_Anonymous_Access_Type
1976 and then Etype
(E
) /= Any_Type
1978 -- Check RM 3.9.2(9): "if the expected type for an expression is
1979 -- an anonymous access-to-specific tagged type, then the object
1980 -- designated by the expression shall not be dynamically tagged
1981 -- unless it is a controlling operand in a call on a dispatching
1984 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1986 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1988 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1992 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1995 -- (Ada 2005: AI-230): Accessibility check for anonymous
1998 if Type_Access_Level
(Etype
(E
)) >
1999 Deepest_Type_Access_Level
(T
)
2002 ("expression has deeper access level than component " &
2003 "(RM 3.10.2 (12.2))", E
);
2006 -- The initialization expression is a reference to an access
2007 -- discriminant. The type of the discriminant is always deeper
2008 -- than any access type.
2010 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
2011 and then Is_Entity_Name
(E
)
2012 and then Ekind
(Entity
(E
)) = E_In_Parameter
2013 and then Present
(Discriminal_Link
(Entity
(E
)))
2016 ("discriminant has deeper accessibility level than target",
2022 -- The parent type may be a private view with unknown discriminants,
2023 -- and thus unconstrained. Regular components must be constrained.
2025 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2026 if Is_Class_Wide_Type
(T
) then
2028 ("class-wide subtype with unknown discriminants" &
2029 " in component declaration",
2030 Subtype_Indication
(Component_Definition
(N
)));
2033 ("unconstrained subtype in component declaration",
2034 Subtype_Indication
(Component_Definition
(N
)));
2037 -- Components cannot be abstract, except for the special case of
2038 -- the _Parent field (case of extending an abstract tagged type)
2040 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2041 Error_Msg_N
("type of a component cannot be abstract", N
);
2045 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2047 -- The component declaration may have a per-object constraint, set
2048 -- the appropriate flag in the defining identifier of the subtype.
2050 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2052 Sindic
: constant Node_Id
:=
2053 Subtype_Indication
(Component_Definition
(N
));
2055 if Nkind
(Sindic
) = N_Subtype_Indication
2056 and then Present
(Constraint
(Sindic
))
2057 and then Contains_POC
(Constraint
(Sindic
))
2059 Set_Has_Per_Object_Constraint
(Id
);
2064 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2065 -- out some static checks.
2067 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2068 Null_Exclusion_Static_Checks
(N
);
2071 -- If this component is private (or depends on a private type), flag the
2072 -- record type to indicate that some operations are not available.
2074 P
:= Private_Component
(T
);
2078 -- Check for circular definitions
2080 if P
= Any_Type
then
2081 Set_Etype
(Id
, Any_Type
);
2083 -- There is a gap in the visibility of operations only if the
2084 -- component type is not defined in the scope of the record type.
2086 elsif Scope
(P
) = Scope
(Current_Scope
) then
2089 elsif Is_Limited_Type
(P
) then
2090 Set_Is_Limited_Composite
(Current_Scope
);
2093 Set_Is_Private_Composite
(Current_Scope
);
2098 and then Is_Limited_Type
(T
)
2099 and then Chars
(Id
) /= Name_uParent
2100 and then Is_Tagged_Type
(Current_Scope
)
2102 if Is_Derived_Type
(Current_Scope
)
2103 and then not Is_Known_Limited
(Current_Scope
)
2106 ("extension of nonlimited type cannot have limited components",
2109 if Is_Interface
(Root_Type
(Current_Scope
)) then
2111 ("\limitedness is not inherited from limited interface", N
);
2112 Error_Msg_N
("\add LIMITED to type indication", N
);
2115 Explain_Limited_Type
(T
, N
);
2116 Set_Etype
(Id
, Any_Type
);
2117 Set_Is_Limited_Composite
(Current_Scope
, False);
2119 elsif not Is_Derived_Type
(Current_Scope
)
2120 and then not Is_Limited_Record
(Current_Scope
)
2121 and then not Is_Concurrent_Type
(Current_Scope
)
2124 ("nonlimited tagged type cannot have limited components", N
);
2125 Explain_Limited_Type
(T
, N
);
2126 Set_Etype
(Id
, Any_Type
);
2127 Set_Is_Limited_Composite
(Current_Scope
, False);
2131 -- If the component is an unconstrained task or protected type with
2132 -- discriminants, the component and the enclosing record are limited
2133 -- and the component is constrained by its default values. Compute
2134 -- its actual subtype, else it may be allocated the maximum size by
2135 -- the backend, and possibly overflow.
2137 if Is_Concurrent_Type
(T
)
2138 and then not Is_Constrained
(T
)
2139 and then Has_Discriminants
(T
)
2140 and then not Has_Discriminants
(Current_Scope
)
2143 Act_T
: constant Entity_Id
:= Build_Default_Subtype
(T
, N
);
2146 Set_Etype
(Id
, Act_T
);
2148 -- Rewrite the component definition to use the constrained
2151 Rewrite
(Component_Definition
(N
),
2152 Make_Component_Definition
(Loc
,
2153 Subtype_Indication
=> New_Occurrence_Of
(Act_T
, Loc
)));
2157 Set_Original_Record_Component
(Id
, Id
);
2159 if Has_Aspects
(N
) then
2160 Analyze_Aspect_Specifications
(N
, Id
);
2163 Analyze_Dimension
(N
);
2164 end Analyze_Component_Declaration
;
2166 --------------------------
2167 -- Analyze_Declarations --
2168 --------------------------
2170 procedure Analyze_Declarations
(L
: List_Id
) is
2173 procedure Adjust_Decl
;
2174 -- Adjust Decl not to include implicit label declarations, since these
2175 -- have strange Sloc values that result in elaboration check problems.
2176 -- (They have the sloc of the label as found in the source, and that
2177 -- is ahead of the current declarative part).
2179 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2180 -- Determine whether Body_Decl denotes the body of a late controlled
2181 -- primitive (either Initialize, Adjust or Finalize). If this is the
2182 -- case, add a proper spec if the body lacks one. The spec is inserted
2183 -- before Body_Decl and immedately analyzed.
2185 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2186 -- Spec_Id is the entity of a package that may define abstract states.
2187 -- If the states have visible refinement, remove the visibility of each
2188 -- constituent at the end of the package body declarations.
2194 procedure Adjust_Decl
is
2196 while Present
(Prev
(Decl
))
2197 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2203 --------------------------------------
2204 -- Handle_Late_Controlled_Primitive --
2205 --------------------------------------
2207 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2208 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2209 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2210 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2211 Params
: constant List_Id
:=
2212 Parameter_Specifications
(Body_Spec
);
2214 Spec_Id
: Entity_Id
;
2218 -- Consider only procedure bodies whose name matches one of the three
2219 -- controlled primitives.
2221 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2222 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2228 -- A controlled primitive must have exactly one formal which is not
2229 -- an anonymous access type.
2231 elsif List_Length
(Params
) /= 1 then
2235 Typ
:= Parameter_Type
(First
(Params
));
2237 if Nkind
(Typ
) = N_Access_Definition
then
2243 -- The type of the formal must be derived from [Limited_]Controlled
2245 if not Is_Controlled
(Entity
(Typ
)) then
2249 -- Check whether a specification exists for this body. We do not
2250 -- analyze the spec of the body in full, because it will be analyzed
2251 -- again when the body is properly analyzed, and we cannot create
2252 -- duplicate entries in the formals chain. We look for an explicit
2253 -- specification because the body may be an overriding operation and
2254 -- an inherited spec may be present.
2256 Spec_Id
:= Current_Entity
(Body_Id
);
2258 while Present
(Spec_Id
) loop
2259 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2260 and then Scope
(Spec_Id
) = Current_Scope
2261 and then Present
(First_Formal
(Spec_Id
))
2262 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2263 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2264 and then Comes_From_Source
(Spec_Id
)
2269 Spec_Id
:= Homonym
(Spec_Id
);
2272 -- At this point the body is known to be a late controlled primitive.
2273 -- Generate a matching spec and insert it before the body. Note the
2274 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2275 -- tree in this case.
2277 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2279 -- Ensure that the subprogram declaration does not inherit the null
2280 -- indicator from the body as we now have a proper spec/body pair.
2282 Set_Null_Present
(Spec
, False);
2284 Insert_Before_And_Analyze
(Body_Decl
,
2285 Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
2286 end Handle_Late_Controlled_Primitive
;
2288 --------------------------------
2289 -- Remove_Visible_Refinements --
2290 --------------------------------
2292 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2293 State_Elmt
: Elmt_Id
;
2295 if Present
(Abstract_States
(Spec_Id
)) then
2296 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2297 while Present
(State_Elmt
) loop
2298 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2299 Next_Elmt
(State_Elmt
);
2302 end Remove_Visible_Refinements
;
2307 Freeze_From
: Entity_Id
:= Empty
;
2308 Next_Decl
: Node_Id
;
2309 Spec_Id
: Entity_Id
;
2311 Body_Seen
: Boolean := False;
2312 -- Flag set when the first body [stub] is encountered
2314 In_Package_Body
: Boolean := False;
2315 -- Flag set when the current declaration list belongs to a package body
2317 -- Start of processing for Analyze_Declarations
2320 if Restriction_Check_Required
(SPARK_05
) then
2321 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2325 while Present
(Decl
) loop
2327 -- Package spec cannot contain a package declaration in SPARK
2329 if Nkind
(Decl
) = N_Package_Declaration
2330 and then Nkind
(Parent
(L
)) = N_Package_Specification
2332 Check_SPARK_05_Restriction
2333 ("package specification cannot contain a package declaration",
2337 -- Complete analysis of declaration
2340 Next_Decl
:= Next
(Decl
);
2342 if No
(Freeze_From
) then
2343 Freeze_From
:= First_Entity
(Current_Scope
);
2346 -- At the end of a declarative part, freeze remaining entities
2347 -- declared in it. The end of the visible declarations of package
2348 -- specification is not the end of a declarative part if private
2349 -- declarations are present. The end of a package declaration is a
2350 -- freezing point only if it a library package. A task definition or
2351 -- protected type definition is not a freeze point either. Finally,
2352 -- we do not freeze entities in generic scopes, because there is no
2353 -- code generated for them and freeze nodes will be generated for
2356 -- The end of a package instantiation is not a freeze point, but
2357 -- for now we make it one, because the generic body is inserted
2358 -- (currently) immediately after. Generic instantiations will not
2359 -- be a freeze point once delayed freezing of bodies is implemented.
2360 -- (This is needed in any case for early instantiations ???).
2362 if No
(Next_Decl
) then
2363 if Nkind_In
(Parent
(L
), N_Component_List
,
2365 N_Protected_Definition
)
2369 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2370 if Nkind
(Parent
(L
)) = N_Package_Body
then
2371 Freeze_From
:= First_Entity
(Current_Scope
);
2374 -- There may have been several freezing points previously,
2375 -- for example object declarations or subprogram bodies, but
2376 -- at the end of a declarative part we check freezing from
2377 -- the beginning, even though entities may already be frozen,
2378 -- in order to perform visibility checks on delayed aspects.
2381 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2382 Freeze_From
:= Last_Entity
(Current_Scope
);
2384 elsif Scope
(Current_Scope
) /= Standard_Standard
2385 and then not Is_Child_Unit
(Current_Scope
)
2386 and then No
(Generic_Parent
(Parent
(L
)))
2390 elsif L
/= Visible_Declarations
(Parent
(L
))
2391 or else No
(Private_Declarations
(Parent
(L
)))
2392 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2395 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2396 Freeze_From
:= Last_Entity
(Current_Scope
);
2399 -- If next node is a body then freeze all types before the body.
2400 -- An exception occurs for some expander-generated bodies. If these
2401 -- are generated at places where in general language rules would not
2402 -- allow a freeze point, then we assume that the expander has
2403 -- explicitly checked that all required types are properly frozen,
2404 -- and we do not cause general freezing here. This special circuit
2405 -- is used when the encountered body is marked as having already
2408 -- In all other cases (bodies that come from source, and expander
2409 -- generated bodies that have not been analyzed yet), freeze all
2410 -- types now. Note that in the latter case, the expander must take
2411 -- care to attach the bodies at a proper place in the tree so as to
2412 -- not cause unwanted freezing at that point.
2414 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
) then
2416 -- When a controlled type is frozen, the expander generates stream
2417 -- and controlled type support routines. If the freeze is caused
2418 -- by the stand alone body of Initialize, Adjust and Finalize, the
2419 -- expander will end up using the wrong version of these routines
2420 -- as the body has not been processed yet. To remedy this, detect
2421 -- a late controlled primitive and create a proper spec for it.
2422 -- This ensures that the primitive will override its inherited
2423 -- counterpart before the freeze takes place.
2425 -- If the declaration we just processed is a body, do not attempt
2426 -- to examine Next_Decl as the late primitive idiom can only apply
2427 -- to the first encountered body.
2429 -- The spec of the late primitive is not generated in ASIS mode to
2430 -- ensure a consistent list of primitives that indicates the true
2431 -- semantic structure of the program (which is not relevant when
2432 -- generating executable code.
2434 -- ??? a cleaner approach may be possible and/or this solution
2435 -- could be extended to general-purpose late primitives, TBD.
2437 if not ASIS_Mode
and then not Body_Seen
and then not Is_Body
(Decl
)
2441 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2442 Handle_Late_Controlled_Primitive
(Next_Decl
);
2447 Freeze_All
(Freeze_From
, Decl
);
2448 Freeze_From
:= Last_Entity
(Current_Scope
);
2454 -- Analyze the contracts of packages and their bodies
2457 Context
:= Parent
(L
);
2459 if Nkind
(Context
) = N_Package_Specification
then
2461 -- When a package has private declarations, its contract must be
2462 -- analyzed at the end of the said declarations. This way both the
2463 -- analysis and freeze actions are properly synchronized in case
2464 -- of private type use within the contract.
2466 if L
= Private_Declarations
(Context
) then
2467 Analyze_Package_Contract
(Defining_Entity
(Context
));
2469 -- Build the bodies of the default initial condition procedures
2470 -- for all types subject to pragma Default_Initial_Condition.
2471 -- From a purely Ada stand point, this is a freezing activity,
2472 -- however freezing is not available under GNATprove_Mode. To
2473 -- accomodate both scenarios, the bodies are build at the end
2474 -- of private declaration analysis.
2476 Build_Default_Init_Cond_Procedure_Bodies
(L
);
2478 -- Otherwise the contract is analyzed at the end of the visible
2481 elsif L
= Visible_Declarations
(Context
)
2482 and then No
(Private_Declarations
(Context
))
2484 Analyze_Package_Contract
(Defining_Entity
(Context
));
2487 elsif Nkind
(Context
) = N_Package_Body
then
2488 In_Package_Body
:= True;
2489 Spec_Id
:= Corresponding_Spec
(Context
);
2491 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2495 -- Analyze the contracts of subprogram declarations, subprogram bodies
2496 -- and variables now due to the delayed visibility requirements of their
2500 while Present
(Decl
) loop
2501 if Nkind
(Decl
) = N_Object_Declaration
then
2502 Analyze_Object_Contract
(Defining_Entity
(Decl
));
2504 elsif Nkind_In
(Decl
, N_Abstract_Subprogram_Declaration
,
2505 N_Generic_Subprogram_Declaration
,
2506 N_Subprogram_Declaration
)
2508 Analyze_Subprogram_Contract
(Defining_Entity
(Decl
));
2510 elsif Nkind
(Decl
) = N_Subprogram_Body
then
2511 Analyze_Subprogram_Body_Contract
(Defining_Entity
(Decl
));
2513 elsif Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2514 Analyze_Subprogram_Body_Stub_Contract
(Defining_Entity
(Decl
));
2520 -- State refinements are visible upto the end the of the package body
2521 -- declarations. Hide the refinements from visibility to restore the
2522 -- original state conditions.
2524 if In_Package_Body
then
2525 Remove_Visible_Refinements
(Spec_Id
);
2527 end Analyze_Declarations
;
2529 -----------------------------------
2530 -- Analyze_Full_Type_Declaration --
2531 -----------------------------------
2533 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2534 Def
: constant Node_Id
:= Type_Definition
(N
);
2535 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2539 Is_Remote
: constant Boolean :=
2540 (Is_Remote_Types
(Current_Scope
)
2541 or else Is_Remote_Call_Interface
(Current_Scope
))
2542 and then not (In_Private_Part
(Current_Scope
)
2543 or else In_Package_Body
(Current_Scope
));
2545 procedure Check_Ops_From_Incomplete_Type
;
2546 -- If there is a tagged incomplete partial view of the type, traverse
2547 -- the primitives of the incomplete view and change the type of any
2548 -- controlling formals and result to indicate the full view. The
2549 -- primitives will be added to the full type's primitive operations
2550 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2551 -- is called from Process_Incomplete_Dependents).
2553 ------------------------------------
2554 -- Check_Ops_From_Incomplete_Type --
2555 ------------------------------------
2557 procedure Check_Ops_From_Incomplete_Type
is
2564 and then Ekind
(Prev
) = E_Incomplete_Type
2565 and then Is_Tagged_Type
(Prev
)
2566 and then Is_Tagged_Type
(T
)
2568 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2569 while Present
(Elmt
) loop
2572 Formal
:= First_Formal
(Op
);
2573 while Present
(Formal
) loop
2574 if Etype
(Formal
) = Prev
then
2575 Set_Etype
(Formal
, T
);
2578 Next_Formal
(Formal
);
2581 if Etype
(Op
) = Prev
then
2588 end Check_Ops_From_Incomplete_Type
;
2590 -- Start of processing for Analyze_Full_Type_Declaration
2593 Prev
:= Find_Type_Name
(N
);
2595 -- The type declaration may be subject to pragma Ghost with policy
2596 -- Ignore. Set the mode now to ensure that any nodes generated during
2597 -- analysis and expansion are properly flagged as ignored Ghost.
2599 Set_Ghost_Mode
(N
, Prev
);
2601 -- The full view, if present, now points to the current type. If there
2602 -- is an incomplete partial view, set a link to it, to simplify the
2603 -- retrieval of primitive operations of the type.
2605 -- Ada 2005 (AI-50217): If the type was previously decorated when
2606 -- imported through a LIMITED WITH clause, it appears as incomplete
2607 -- but has no full view.
2609 if Ekind
(Prev
) = E_Incomplete_Type
2610 and then Present
(Full_View
(Prev
))
2612 T
:= Full_View
(Prev
);
2613 Set_Incomplete_View
(N
, Parent
(Prev
));
2618 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2620 -- We set the flag Is_First_Subtype here. It is needed to set the
2621 -- corresponding flag for the Implicit class-wide-type created
2622 -- during tagged types processing.
2624 Set_Is_First_Subtype
(T
, True);
2626 -- Only composite types other than array types are allowed to have
2631 -- For derived types, the rule will be checked once we've figured
2632 -- out the parent type.
2634 when N_Derived_Type_Definition
=>
2637 -- For record types, discriminants are allowed, unless we are in
2640 when N_Record_Definition
=>
2641 if Present
(Discriminant_Specifications
(N
)) then
2642 Check_SPARK_05_Restriction
2643 ("discriminant type is not allowed",
2645 (First
(Discriminant_Specifications
(N
))));
2649 if Present
(Discriminant_Specifications
(N
)) then
2651 ("elementary or array type cannot have discriminants",
2653 (First
(Discriminant_Specifications
(N
))));
2657 -- Elaborate the type definition according to kind, and generate
2658 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2659 -- already done (this happens during the reanalysis that follows a call
2660 -- to the high level optimizer).
2662 if not Analyzed
(T
) then
2666 when N_Access_To_Subprogram_Definition
=>
2667 Access_Subprogram_Declaration
(T
, Def
);
2669 -- If this is a remote access to subprogram, we must create the
2670 -- equivalent fat pointer type, and related subprograms.
2673 Process_Remote_AST_Declaration
(N
);
2676 -- Validate categorization rule against access type declaration
2677 -- usually a violation in Pure unit, Shared_Passive unit.
2679 Validate_Access_Type_Declaration
(T
, N
);
2681 when N_Access_To_Object_Definition
=>
2682 Access_Type_Declaration
(T
, Def
);
2684 -- Validate categorization rule against access type declaration
2685 -- usually a violation in Pure unit, Shared_Passive unit.
2687 Validate_Access_Type_Declaration
(T
, N
);
2689 -- If we are in a Remote_Call_Interface package and define a
2690 -- RACW, then calling stubs and specific stream attributes
2694 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2696 Add_RACW_Features
(Def_Id
);
2699 when N_Array_Type_Definition
=>
2700 Array_Type_Declaration
(T
, Def
);
2702 when N_Derived_Type_Definition
=>
2703 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2705 when N_Enumeration_Type_Definition
=>
2706 Enumeration_Type_Declaration
(T
, Def
);
2708 when N_Floating_Point_Definition
=>
2709 Floating_Point_Type_Declaration
(T
, Def
);
2711 when N_Decimal_Fixed_Point_Definition
=>
2712 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2714 when N_Ordinary_Fixed_Point_Definition
=>
2715 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2717 when N_Signed_Integer_Type_Definition
=>
2718 Signed_Integer_Type_Declaration
(T
, Def
);
2720 when N_Modular_Type_Definition
=>
2721 Modular_Type_Declaration
(T
, Def
);
2723 when N_Record_Definition
=>
2724 Record_Type_Declaration
(T
, N
, Prev
);
2726 -- If declaration has a parse error, nothing to elaborate.
2732 raise Program_Error
;
2737 if Etype
(T
) = Any_Type
then
2741 -- Controlled type is not allowed in SPARK
2743 if Is_Visibly_Controlled
(T
) then
2744 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
2747 -- A type declared within a Ghost region is automatically Ghost
2748 -- (SPARK RM 6.9(2)).
2750 if Comes_From_Source
(T
) and then Ghost_Mode
> None
then
2751 Set_Is_Ghost_Entity
(T
);
2754 -- Some common processing for all types
2756 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2757 Check_Ops_From_Incomplete_Type
;
2759 -- Both the declared entity, and its anonymous base type if one was
2760 -- created, need freeze nodes allocated.
2763 B
: constant Entity_Id
:= Base_Type
(T
);
2766 -- In the case where the base type differs from the first subtype, we
2767 -- pre-allocate a freeze node, and set the proper link to the first
2768 -- subtype. Freeze_Entity will use this preallocated freeze node when
2769 -- it freezes the entity.
2771 -- This does not apply if the base type is a generic type, whose
2772 -- declaration is independent of the current derived definition.
2774 if B
/= T
and then not Is_Generic_Type
(B
) then
2775 Ensure_Freeze_Node
(B
);
2776 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2779 -- A type that is imported through a limited_with clause cannot
2780 -- generate any code, and thus need not be frozen. However, an access
2781 -- type with an imported designated type needs a finalization list,
2782 -- which may be referenced in some other package that has non-limited
2783 -- visibility on the designated type. Thus we must create the
2784 -- finalization list at the point the access type is frozen, to
2785 -- prevent unsatisfied references at link time.
2787 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
2788 Set_Has_Delayed_Freeze
(T
);
2792 -- Case where T is the full declaration of some private type which has
2793 -- been swapped in Defining_Identifier (N).
2795 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2796 Process_Full_View
(N
, T
, Def_Id
);
2798 -- Record the reference. The form of this is a little strange, since
2799 -- the full declaration has been swapped in. So the first parameter
2800 -- here represents the entity to which a reference is made which is
2801 -- the "real" entity, i.e. the one swapped in, and the second
2802 -- parameter provides the reference location.
2804 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2805 -- since we don't want a complaint about the full type being an
2806 -- unwanted reference to the private type
2809 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2811 Set_Has_Pragma_Unreferenced
(T
, False);
2812 Generate_Reference
(T
, T
, 'c');
2813 Set_Has_Pragma_Unreferenced
(T
, B
);
2816 Set_Completion_Referenced
(Def_Id
);
2818 -- For completion of incomplete type, process incomplete dependents
2819 -- and always mark the full type as referenced (it is the incomplete
2820 -- type that we get for any real reference).
2822 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2823 Process_Incomplete_Dependents
(N
, T
, Prev
);
2824 Generate_Reference
(Prev
, Def_Id
, 'c');
2825 Set_Completion_Referenced
(Def_Id
);
2827 -- If not private type or incomplete type completion, this is a real
2828 -- definition of a new entity, so record it.
2831 Generate_Definition
(Def_Id
);
2834 -- Propagate any pending access types whose finalization masters need to
2835 -- be fully initialized from the partial to the full view. Guard against
2836 -- an illegal full view that remains unanalyzed.
2838 if Is_Type
(Def_Id
) and then Is_Incomplete_Or_Private_Type
(Prev
) then
2839 Set_Pending_Access_Types
(Def_Id
, Pending_Access_Types
(Prev
));
2842 if Chars
(Scope
(Def_Id
)) = Name_System
2843 and then Chars
(Def_Id
) = Name_Address
2844 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2846 Set_Is_Descendent_Of_Address
(Def_Id
);
2847 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2848 Set_Is_Descendent_Of_Address
(Prev
);
2851 Set_Optimize_Alignment_Flags
(Def_Id
);
2852 Check_Eliminated
(Def_Id
);
2854 -- If the declaration is a completion and aspects are present, apply
2855 -- them to the entity for the type which is currently the partial
2856 -- view, but which is the one that will be frozen.
2858 if Has_Aspects
(N
) then
2860 -- In most cases the partial view is a private type, and both views
2861 -- appear in different declarative parts. In the unusual case where
2862 -- the partial view is incomplete, perform the analysis on the
2863 -- full view, to prevent freezing anomalies with the corresponding
2864 -- class-wide type, which otherwise might be frozen before the
2865 -- dispatch table is built.
2868 and then Ekind
(Prev
) /= E_Incomplete_Type
2870 Analyze_Aspect_Specifications
(N
, Prev
);
2875 Analyze_Aspect_Specifications
(N
, Def_Id
);
2878 end Analyze_Full_Type_Declaration
;
2880 ----------------------------------
2881 -- Analyze_Incomplete_Type_Decl --
2882 ----------------------------------
2884 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2885 F
: constant Boolean := Is_Pure
(Current_Scope
);
2889 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
2891 Generate_Definition
(Defining_Identifier
(N
));
2893 -- Process an incomplete declaration. The identifier must not have been
2894 -- declared already in the scope. However, an incomplete declaration may
2895 -- appear in the private part of a package, for a private type that has
2896 -- already been declared.
2898 -- In this case, the discriminants (if any) must match
2900 T
:= Find_Type_Name
(N
);
2902 Set_Ekind
(T
, E_Incomplete_Type
);
2903 Init_Size_Align
(T
);
2904 Set_Is_First_Subtype
(T
, True);
2907 -- An incomplete type declared within a Ghost region is automatically
2908 -- Ghost (SPARK RM 6.9(2)).
2910 if Ghost_Mode
> None
then
2911 Set_Is_Ghost_Entity
(T
);
2914 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2915 -- incomplete types.
2917 if Tagged_Present
(N
) then
2918 Set_Is_Tagged_Type
(T
, True);
2919 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2920 Make_Class_Wide_Type
(T
);
2921 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2926 Set_Stored_Constraint
(T
, No_Elist
);
2928 if Present
(Discriminant_Specifications
(N
)) then
2929 Process_Discriminants
(N
);
2934 -- If the type has discriminants, non-trivial subtypes may be
2935 -- declared before the full view of the type. The full views of those
2936 -- subtypes will be built after the full view of the type.
2938 Set_Private_Dependents
(T
, New_Elmt_List
);
2940 end Analyze_Incomplete_Type_Decl
;
2942 -----------------------------------
2943 -- Analyze_Interface_Declaration --
2944 -----------------------------------
2946 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2947 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2950 Set_Is_Tagged_Type
(T
);
2951 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2953 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2954 or else Task_Present
(Def
)
2955 or else Protected_Present
(Def
)
2956 or else Synchronized_Present
(Def
));
2958 -- Type is abstract if full declaration carries keyword, or if previous
2959 -- partial view did.
2961 Set_Is_Abstract_Type
(T
);
2962 Set_Is_Interface
(T
);
2964 -- Type is a limited interface if it includes the keyword limited, task,
2965 -- protected, or synchronized.
2967 Set_Is_Limited_Interface
2968 (T
, Limited_Present
(Def
)
2969 or else Protected_Present
(Def
)
2970 or else Synchronized_Present
(Def
)
2971 or else Task_Present
(Def
));
2973 Set_Interfaces
(T
, New_Elmt_List
);
2974 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2976 -- Complete the decoration of the class-wide entity if it was already
2977 -- built (i.e. during the creation of the limited view)
2979 if Present
(CW
) then
2980 Set_Is_Interface
(CW
);
2981 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2984 -- Check runtime support for synchronized interfaces
2986 if VM_Target
= No_VM
2987 and then (Is_Task_Interface
(T
)
2988 or else Is_Protected_Interface
(T
)
2989 or else Is_Synchronized_Interface
(T
))
2990 and then not RTE_Available
(RE_Select_Specific_Data
)
2992 Error_Msg_CRT
("synchronized interfaces", T
);
2994 end Analyze_Interface_Declaration
;
2996 -----------------------------
2997 -- Analyze_Itype_Reference --
2998 -----------------------------
3000 -- Nothing to do. This node is placed in the tree only for the benefit of
3001 -- back end processing, and has no effect on the semantic processing.
3003 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
3005 pragma Assert
(Is_Itype
(Itype
(N
)));
3007 end Analyze_Itype_Reference
;
3009 --------------------------------
3010 -- Analyze_Number_Declaration --
3011 --------------------------------
3013 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
3014 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3015 E
: constant Node_Id
:= Expression
(N
);
3017 Index
: Interp_Index
;
3021 -- The number declaration may be subject to pragma Ghost with policy
3022 -- Ignore. Set the mode now to ensure that any nodes generated during
3023 -- analysis and expansion are properly flagged as ignored Ghost.
3027 Generate_Definition
(Id
);
3030 -- A number declared within a Ghost region is automatically Ghost
3031 -- (SPARK RM 6.9(2)).
3033 if Ghost_Mode
> None
then
3034 Set_Is_Ghost_Entity
(Id
);
3037 -- This is an optimization of a common case of an integer literal
3039 if Nkind
(E
) = N_Integer_Literal
then
3040 Set_Is_Static_Expression
(E
, True);
3041 Set_Etype
(E
, Universal_Integer
);
3043 Set_Etype
(Id
, Universal_Integer
);
3044 Set_Ekind
(Id
, E_Named_Integer
);
3045 Set_Is_Frozen
(Id
, True);
3049 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3051 -- Process expression, replacing error by integer zero, to avoid
3052 -- cascaded errors or aborts further along in the processing
3054 -- Replace Error by integer zero, which seems least likely to cause
3058 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
3059 Set_Error_Posted
(E
);
3064 -- Verify that the expression is static and numeric. If
3065 -- the expression is overloaded, we apply the preference
3066 -- rule that favors root numeric types.
3068 if not Is_Overloaded
(E
) then
3070 if Has_Dynamic_Predicate_Aspect
(T
) then
3072 ("subtype has dynamic predicate, "
3073 & "not allowed in number declaration", N
);
3079 Get_First_Interp
(E
, Index
, It
);
3080 while Present
(It
.Typ
) loop
3081 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3082 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3084 if T
= Any_Type
then
3087 elsif It
.Typ
= Universal_Real
3089 It
.Typ
= Universal_Integer
3091 -- Choose universal interpretation over any other
3098 Get_Next_Interp
(Index
, It
);
3102 if Is_Integer_Type
(T
) then
3104 Set_Etype
(Id
, Universal_Integer
);
3105 Set_Ekind
(Id
, E_Named_Integer
);
3107 elsif Is_Real_Type
(T
) then
3109 -- Because the real value is converted to universal_real, this is a
3110 -- legal context for a universal fixed expression.
3112 if T
= Universal_Fixed
then
3114 Loc
: constant Source_Ptr
:= Sloc
(N
);
3115 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3117 New_Occurrence_Of
(Universal_Real
, Loc
),
3118 Expression
=> Relocate_Node
(E
));
3125 elsif T
= Any_Fixed
then
3126 Error_Msg_N
("illegal context for mixed mode operation", E
);
3128 -- Expression is of the form : universal_fixed * integer. Try to
3129 -- resolve as universal_real.
3131 T
:= Universal_Real
;
3136 Set_Etype
(Id
, Universal_Real
);
3137 Set_Ekind
(Id
, E_Named_Real
);
3140 Wrong_Type
(E
, Any_Numeric
);
3144 Set_Ekind
(Id
, E_Constant
);
3145 Set_Never_Set_In_Source
(Id
, True);
3146 Set_Is_True_Constant
(Id
, True);
3150 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3151 Set_Etype
(E
, Etype
(Id
));
3154 if not Is_OK_Static_Expression
(E
) then
3155 Flag_Non_Static_Expr
3156 ("non-static expression used in number declaration!", E
);
3157 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3158 Set_Etype
(E
, Any_Type
);
3160 end Analyze_Number_Declaration
;
3162 -----------------------------
3163 -- Analyze_Object_Contract --
3164 -----------------------------
3166 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
) is
3167 Obj_Typ
: constant Entity_Id
:= Etype
(Obj_Id
);
3168 AR_Val
: Boolean := False;
3169 AW_Val
: Boolean := False;
3170 ER_Val
: Boolean := False;
3171 EW_Val
: Boolean := False;
3173 Seen
: Boolean := False;
3176 -- The loop parameter in an element iterator over a formal container
3177 -- is declared with an object declaration but no contracts apply.
3179 if Ekind
(Obj_Id
) = E_Loop_Parameter
then
3183 if Ekind
(Obj_Id
) = E_Constant
then
3185 -- A constant cannot be effectively volatile. This check is only
3186 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3187 -- rule. Do not flag internally-generated constants that map generic
3188 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3191 and then Is_Effectively_Volatile
(Obj_Id
)
3192 and then No
(Corresponding_Generic_Association
(Parent
(Obj_Id
)))
3194 -- Don't give this for internally generated entities (such as the
3195 -- FIRST and LAST temporaries generated for bounds).
3197 and then Comes_From_Source
(Obj_Id
)
3199 Error_Msg_N
("constant cannot be volatile", Obj_Id
);
3202 else pragma Assert
(Ekind
(Obj_Id
) = E_Variable
);
3204 -- The following checks are only relevant when SPARK_Mode is on as
3205 -- they are not standard Ada legality rules. Internally generated
3206 -- temporaries are ignored.
3208 if SPARK_Mode
= On
and then Comes_From_Source
(Obj_Id
) then
3209 if Is_Effectively_Volatile
(Obj_Id
) then
3211 -- The declaration of an effectively volatile object must
3212 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3214 if not Is_Library_Level_Entity
(Obj_Id
) then
3216 ("volatile variable & must be declared at library level",
3219 -- An object of a discriminated type cannot be effectively
3220 -- volatile (SPARK RM C.6(4)).
3222 elsif Has_Discriminants
(Obj_Typ
) then
3224 ("discriminated object & cannot be volatile", Obj_Id
);
3226 -- An object of a tagged type cannot be effectively volatile
3227 -- (SPARK RM C.6(5)).
3229 elsif Is_Tagged_Type
(Obj_Typ
) then
3230 Error_Msg_N
("tagged object & cannot be volatile", Obj_Id
);
3233 -- The object is not effectively volatile
3236 -- A non-effectively volatile object cannot have effectively
3237 -- volatile components (SPARK RM 7.1.3(7)).
3239 if not Is_Effectively_Volatile
(Obj_Id
)
3240 and then Has_Volatile_Component
(Obj_Typ
)
3243 ("non-volatile object & cannot have volatile components",
3249 if Is_Ghost_Entity
(Obj_Id
) then
3251 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3253 if Is_Effectively_Volatile
(Obj_Id
) then
3254 Error_Msg_N
("ghost variable & cannot be volatile", Obj_Id
);
3256 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3258 elsif Is_Imported
(Obj_Id
) then
3259 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3261 elsif Is_Exported
(Obj_Id
) then
3262 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3266 -- Analyze all external properties
3268 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Readers
);
3270 if Present
(Prag
) then
3271 Analyze_External_Property_In_Decl_Part
(Prag
, AR_Val
);
3275 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Writers
);
3277 if Present
(Prag
) then
3278 Analyze_External_Property_In_Decl_Part
(Prag
, AW_Val
);
3282 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Reads
);
3284 if Present
(Prag
) then
3285 Analyze_External_Property_In_Decl_Part
(Prag
, ER_Val
);
3289 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Writes
);
3291 if Present
(Prag
) then
3292 Analyze_External_Property_In_Decl_Part
(Prag
, EW_Val
);
3296 -- Verify the mutual interaction of the various external properties
3299 Check_External_Properties
(Obj_Id
, AR_Val
, AW_Val
, ER_Val
, EW_Val
);
3302 -- Check whether the lack of indicator Part_Of agrees with the
3303 -- placement of the variable with respect to the state space.
3305 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Part_Of
);
3308 Check_Missing_Part_Of
(Obj_Id
);
3312 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3314 if Is_Ghost_Entity
(Obj_Id
) then
3315 if Is_Exported
(Obj_Id
) then
3316 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3318 elsif Is_Imported
(Obj_Id
) then
3319 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3322 end Analyze_Object_Contract
;
3324 --------------------------------
3325 -- Analyze_Object_Declaration --
3326 --------------------------------
3328 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3329 Loc
: constant Source_Ptr
:= Sloc
(N
);
3330 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3334 E
: Node_Id
:= Expression
(N
);
3335 -- E is set to Expression (N) throughout this routine. When
3336 -- Expression (N) is modified, E is changed accordingly.
3338 Prev_Entity
: Entity_Id
:= Empty
;
3340 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3341 -- This function is called when a non-generic library level object of a
3342 -- task type is declared. Its function is to count the static number of
3343 -- tasks declared within the type (it is only called if Has_Tasks is set
3344 -- for T). As a side effect, if an array of tasks with non-static bounds
3345 -- or a variant record type is encountered, Check_Restrictions is called
3346 -- indicating the count is unknown.
3348 function Delayed_Aspect_Present
return Boolean;
3349 -- If the declaration has an expression that is an aggregate, and it
3350 -- has aspects that require delayed analysis, the resolution of the
3351 -- aggregate must be deferred to the freeze point of the objet. This
3352 -- special processing was created for address clauses, but it must
3353 -- also apply to Alignment. This must be done before the aspect
3354 -- specifications are analyzed because we must handle the aggregate
3355 -- before the analysis of the object declaration is complete.
3357 -- Any other relevant delayed aspects on object declarations ???
3363 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3369 if Is_Task_Type
(T
) then
3372 elsif Is_Record_Type
(T
) then
3373 if Has_Discriminants
(T
) then
3374 Check_Restriction
(Max_Tasks
, N
);
3379 C
:= First_Component
(T
);
3380 while Present
(C
) loop
3381 V
:= V
+ Count_Tasks
(Etype
(C
));
3388 elsif Is_Array_Type
(T
) then
3389 X
:= First_Index
(T
);
3390 V
:= Count_Tasks
(Component_Type
(T
));
3391 while Present
(X
) loop
3394 if not Is_OK_Static_Subtype
(C
) then
3395 Check_Restriction
(Max_Tasks
, N
);
3398 V
:= V
* (UI_Max
(Uint_0
,
3399 Expr_Value
(Type_High_Bound
(C
)) -
3400 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3413 ----------------------------
3414 -- Delayed_Aspect_Present --
3415 ----------------------------
3417 function Delayed_Aspect_Present
return Boolean is
3422 if Present
(Aspect_Specifications
(N
)) then
3423 A
:= First
(Aspect_Specifications
(N
));
3424 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3425 while Present
(A
) loop
3426 if A_Id
= Aspect_Alignment
or else A_Id
= Aspect_Address
then
3435 end Delayed_Aspect_Present
;
3437 -- Start of processing for Analyze_Object_Declaration
3440 -- There are three kinds of implicit types generated by an
3441 -- object declaration:
3443 -- 1. Those generated by the original Object Definition
3445 -- 2. Those generated by the Expression
3447 -- 3. Those used to constrain the Object Definition with the
3448 -- expression constraints when the definition is unconstrained.
3450 -- They must be generated in this order to avoid order of elaboration
3451 -- issues. Thus the first step (after entering the name) is to analyze
3452 -- the object definition.
3454 if Constant_Present
(N
) then
3455 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3457 if Present
(Prev_Entity
)
3459 -- If the homograph is an implicit subprogram, it is overridden
3460 -- by the current declaration.
3462 ((Is_Overloadable
(Prev_Entity
)
3463 and then Is_Inherited_Operation
(Prev_Entity
))
3465 -- The current object is a discriminal generated for an entry
3466 -- family index. Even though the index is a constant, in this
3467 -- particular context there is no true constant redeclaration.
3468 -- Enter_Name will handle the visibility.
3471 (Is_Discriminal
(Id
)
3472 and then Ekind
(Discriminal_Link
(Id
)) =
3473 E_Entry_Index_Parameter
)
3475 -- The current object is the renaming for a generic declared
3476 -- within the instance.
3479 (Ekind
(Prev_Entity
) = E_Package
3480 and then Nkind
(Parent
(Prev_Entity
)) =
3481 N_Package_Renaming_Declaration
3482 and then not Comes_From_Source
(Prev_Entity
)
3484 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
3486 Prev_Entity
:= Empty
;
3490 -- The object declaration may be subject to pragma Ghost with policy
3491 -- Ignore. Set the mode now to ensure that any nodes generated during
3492 -- analysis and expansion are properly flagged as ignored Ghost.
3494 Set_Ghost_Mode
(N
, Prev_Entity
);
3496 if Present
(Prev_Entity
) then
3497 Constant_Redeclaration
(Id
, N
, T
);
3499 Generate_Reference
(Prev_Entity
, Id
, 'c');
3500 Set_Completion_Referenced
(Id
);
3502 if Error_Posted
(N
) then
3504 -- Type mismatch or illegal redeclaration, Do not analyze
3505 -- expression to avoid cascaded errors.
3507 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3509 Set_Ekind
(Id
, E_Variable
);
3513 -- In the normal case, enter identifier at the start to catch premature
3514 -- usage in the initialization expression.
3517 Generate_Definition
(Id
);
3520 Mark_Coextensions
(N
, Object_Definition
(N
));
3522 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3524 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
3526 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3527 and then Protected_Present
3528 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3530 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
3533 if Error_Posted
(Id
) then
3535 Set_Ekind
(Id
, E_Variable
);
3540 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3541 -- out some static checks
3543 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
3545 -- In case of aggregates we must also take care of the correct
3546 -- initialization of nested aggregates bug this is done at the
3547 -- point of the analysis of the aggregate (see sem_aggr.adb).
3549 if Present
(Expression
(N
))
3550 and then Nkind
(Expression
(N
)) = N_Aggregate
3556 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
3558 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
3559 Null_Exclusion_Static_Checks
(N
);
3560 Set_Etype
(Id
, Save_Typ
);
3565 -- Object is marked pure if it is in a pure scope
3567 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3569 -- If deferred constant, make sure context is appropriate. We detect
3570 -- a deferred constant as a constant declaration with no expression.
3571 -- A deferred constant can appear in a package body if its completion
3572 -- is by means of an interface pragma.
3574 if Constant_Present
(N
) and then No
(E
) then
3576 -- A deferred constant may appear in the declarative part of the
3577 -- following constructs:
3581 -- extended return statements
3584 -- subprogram bodies
3587 -- When declared inside a package spec, a deferred constant must be
3588 -- completed by a full constant declaration or pragma Import. In all
3589 -- other cases, the only proper completion is pragma Import. Extended
3590 -- return statements are flagged as invalid contexts because they do
3591 -- not have a declarative part and so cannot accommodate the pragma.
3593 if Ekind
(Current_Scope
) = E_Return_Statement
then
3595 ("invalid context for deferred constant declaration (RM 7.4)",
3598 ("\declaration requires an initialization expression",
3600 Set_Constant_Present
(N
, False);
3602 -- In Ada 83, deferred constant must be of private type
3604 elsif not Is_Private_Type
(T
) then
3605 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3607 ("(Ada 83) deferred constant must be private type", N
);
3611 -- If not a deferred constant, then the object declaration freezes
3612 -- its type, unless the object is of an anonymous type and has delayed
3613 -- aspects. In that case the type is frozen when the object itself is.
3616 Check_Fully_Declared
(T
, N
);
3618 if Has_Delayed_Aspects
(Id
)
3619 and then Is_Array_Type
(T
)
3620 and then Is_Itype
(T
)
3622 Set_Has_Delayed_Freeze
(T
);
3624 Freeze_Before
(N
, T
);
3628 -- If the object was created by a constrained array definition, then
3629 -- set the link in both the anonymous base type and anonymous subtype
3630 -- that are built to represent the array type to point to the object.
3632 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3633 N_Constrained_Array_Definition
3635 Set_Related_Array_Object
(T
, Id
);
3636 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3639 -- Special checks for protected objects not at library level
3641 if Is_Protected_Type
(T
)
3642 and then not Is_Library_Level_Entity
(Id
)
3644 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3646 -- Protected objects with interrupt handlers must be at library level
3648 -- Ada 2005: This test is not needed (and the corresponding clause
3649 -- in the RM is removed) because accessibility checks are sufficient
3650 -- to make handlers not at the library level illegal.
3652 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3653 -- applies to the '95 version of the language as well.
3655 if Has_Interrupt_Handler
(T
) and then Ada_Version
< Ada_95
then
3657 ("interrupt object can only be declared at library level", Id
);
3661 -- The actual subtype of the object is the nominal subtype, unless
3662 -- the nominal one is unconstrained and obtained from the expression.
3666 -- These checks should be performed before the initialization expression
3667 -- is considered, so that the Object_Definition node is still the same
3668 -- as in source code.
3670 -- In SPARK, the nominal subtype is always given by a subtype mark
3671 -- and must not be unconstrained. (The only exception to this is the
3672 -- acceptance of declarations of constants of type String.)
3674 if not Nkind_In
(Object_Definition
(N
), N_Expanded_Name
, N_Identifier
)
3676 Check_SPARK_05_Restriction
3677 ("subtype mark required", Object_Definition
(N
));
3679 elsif Is_Array_Type
(T
)
3680 and then not Is_Constrained
(T
)
3681 and then T
/= Standard_String
3683 Check_SPARK_05_Restriction
3684 ("subtype mark of constrained type expected",
3685 Object_Definition
(N
));
3688 -- There are no aliased objects in SPARK
3690 if Aliased_Present
(N
) then
3691 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
3694 -- Process initialization expression if present and not in error
3696 if Present
(E
) and then E
/= Error
then
3698 -- Generate an error in case of CPP class-wide object initialization.
3699 -- Required because otherwise the expansion of the class-wide
3700 -- assignment would try to use 'size to initialize the object
3701 -- (primitive that is not available in CPP tagged types).
3703 if Is_Class_Wide_Type
(Act_T
)
3705 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3707 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3709 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3712 ("predefined assignment not available for 'C'P'P tagged types",
3716 Mark_Coextensions
(N
, E
);
3719 -- In case of errors detected in the analysis of the expression,
3720 -- decorate it with the expected type to avoid cascaded errors
3722 if No
(Etype
(E
)) then
3726 -- If an initialization expression is present, then we set the
3727 -- Is_True_Constant flag. It will be reset if this is a variable
3728 -- and it is indeed modified.
3730 Set_Is_True_Constant
(Id
, True);
3732 -- If we are analyzing a constant declaration, set its completion
3733 -- flag after analyzing and resolving the expression.
3735 if Constant_Present
(N
) then
3736 Set_Has_Completion
(Id
);
3739 -- Set type and resolve (type may be overridden later on). Note:
3740 -- Ekind (Id) must still be E_Void at this point so that incorrect
3741 -- early usage within E is properly diagnosed.
3745 -- If the expression is an aggregate we must look ahead to detect
3746 -- the possible presence of an address clause, and defer resolution
3747 -- and expansion of the aggregate to the freeze point of the entity.
3749 if Comes_From_Source
(N
)
3750 and then Expander_Active
3751 and then Nkind
(E
) = N_Aggregate
3752 and then (Present
(Following_Address_Clause
(N
))
3753 or else Delayed_Aspect_Present
)
3761 -- No further action needed if E is a call to an inlined function
3762 -- which returns an unconstrained type and it has been expanded into
3763 -- a procedure call. In that case N has been replaced by an object
3764 -- declaration without initializing expression and it has been
3765 -- analyzed (see Expand_Inlined_Call).
3767 if Back_End_Inlining
3768 and then Expander_Active
3769 and then Nkind
(E
) = N_Function_Call
3770 and then Nkind
(Name
(E
)) in N_Has_Entity
3771 and then Is_Inlined
(Entity
(Name
(E
)))
3772 and then not Is_Constrained
(Etype
(E
))
3773 and then Analyzed
(N
)
3774 and then No
(Expression
(N
))
3779 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3780 -- node (which was marked already-analyzed), we need to set the type
3781 -- to something other than Any_Access in order to keep gigi happy.
3783 if Etype
(E
) = Any_Access
then
3787 -- If the object is an access to variable, the initialization
3788 -- expression cannot be an access to constant.
3790 if Is_Access_Type
(T
)
3791 and then not Is_Access_Constant
(T
)
3792 and then Is_Access_Type
(Etype
(E
))
3793 and then Is_Access_Constant
(Etype
(E
))
3796 ("access to variable cannot be initialized with an "
3797 & "access-to-constant expression", E
);
3800 if not Assignment_OK
(N
) then
3801 Check_Initialization
(T
, E
);
3804 Check_Unset_Reference
(E
);
3806 -- If this is a variable, then set current value. If this is a
3807 -- declared constant of a scalar type with a static expression,
3808 -- indicate that it is always valid.
3810 if not Constant_Present
(N
) then
3811 if Compile_Time_Known_Value
(E
) then
3812 Set_Current_Value
(Id
, E
);
3815 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
3816 Set_Is_Known_Valid
(Id
);
3819 -- Deal with setting of null flags
3821 if Is_Access_Type
(T
) then
3822 if Known_Non_Null
(E
) then
3823 Set_Is_Known_Non_Null
(Id
, True);
3824 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
3825 Set_Is_Known_Null
(Id
, True);
3829 -- Check incorrect use of dynamically tagged expressions
3831 if Is_Tagged_Type
(T
) then
3832 Check_Dynamically_Tagged_Expression
3838 Apply_Scalar_Range_Check
(E
, T
);
3839 Apply_Static_Length_Check
(E
, T
);
3841 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3842 and then Comes_From_Source
(Original_Node
(N
))
3844 -- Only call test if needed
3846 and then Restriction_Check_Required
(SPARK_05
)
3847 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
3849 Check_SPARK_05_Restriction
3850 ("initialization expression is not appropriate", E
);
3853 -- A formal parameter of a specific tagged type whose related
3854 -- subprogram is subject to pragma Extensions_Visible with value
3855 -- "False" cannot be implicitly converted to a class-wide type by
3856 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3858 if Is_Class_Wide_Type
(T
) and then Is_EVF_Expression
(E
) then
3860 ("formal parameter with Extensions_Visible False cannot be "
3861 & "implicitly converted to class-wide type", E
);
3865 -- If the No_Streams restriction is set, check that the type of the
3866 -- object is not, and does not contain, any subtype derived from
3867 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3868 -- Has_Stream just for efficiency reasons. There is no point in
3869 -- spending time on a Has_Stream check if the restriction is not set.
3871 if Restriction_Check_Required
(No_Streams
) then
3872 if Has_Stream
(T
) then
3873 Check_Restriction
(No_Streams
, N
);
3877 -- Deal with predicate check before we start to do major rewriting. It
3878 -- is OK to initialize and then check the initialized value, since the
3879 -- object goes out of scope if we get a predicate failure. Note that we
3880 -- do this in the analyzer and not the expander because the analyzer
3881 -- does some substantial rewriting in some cases.
3883 -- We need a predicate check if the type has predicates, and if either
3884 -- there is an initializing expression, or for default initialization
3885 -- when we have at least one case of an explicit default initial value
3886 -- and then this is not an internal declaration whose initialization
3887 -- comes later (as for an aggregate expansion).
3889 if not Suppress_Assignment_Checks
(N
)
3890 and then Present
(Predicate_Function
(T
))
3891 and then not No_Initialization
(N
)
3895 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3897 -- If the type has a static predicate and the expression is known at
3898 -- compile time, see if the expression satisfies the predicate.
3901 Check_Expression_Against_Static_Predicate
(E
, T
);
3905 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3908 -- Case of unconstrained type
3910 if Is_Indefinite_Subtype
(T
) then
3912 -- In SPARK, a declaration of unconstrained type is allowed
3913 -- only for constants of type string.
3915 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3916 Check_SPARK_05_Restriction
3917 ("declaration of object of unconstrained type not allowed", N
);
3920 -- Nothing to do in deferred constant case
3922 if Constant_Present
(N
) and then No
(E
) then
3925 -- Case of no initialization present
3928 if No_Initialization
(N
) then
3931 elsif Is_Class_Wide_Type
(T
) then
3933 ("initialization required in class-wide declaration ", N
);
3937 ("unconstrained subtype not allowed (need initialization)",
3938 Object_Definition
(N
));
3940 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3942 ("\provide initial value or explicit discriminant values",
3943 Object_Definition
(N
));
3946 ("\or give default discriminant values for type&",
3947 Object_Definition
(N
), T
);
3949 elsif Is_Array_Type
(T
) then
3951 ("\provide initial value or explicit array bounds",
3952 Object_Definition
(N
));
3956 -- Case of initialization present but in error. Set initial
3957 -- expression as absent (but do not make above complaints)
3959 elsif E
= Error
then
3960 Set_Expression
(N
, Empty
);
3963 -- Case of initialization present
3966 -- Check restrictions in Ada 83
3968 if not Constant_Present
(N
) then
3970 -- Unconstrained variables not allowed in Ada 83 mode
3972 if Ada_Version
= Ada_83
3973 and then Comes_From_Source
(Object_Definition
(N
))
3976 ("(Ada 83) unconstrained variable not allowed",
3977 Object_Definition
(N
));
3981 -- Now we constrain the variable from the initializing expression
3983 -- If the expression is an aggregate, it has been expanded into
3984 -- individual assignments. Retrieve the actual type from the
3985 -- expanded construct.
3987 if Is_Array_Type
(T
)
3988 and then No_Initialization
(N
)
3989 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3993 -- In case of class-wide interface object declarations we delay
3994 -- the generation of the equivalent record type declarations until
3995 -- its expansion because there are cases in they are not required.
3997 elsif Is_Interface
(T
) then
4000 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4001 -- we should prevent the generation of another Itype with the
4002 -- same name as the one already generated, or we end up with
4003 -- two identical types in GNATprove.
4005 elsif GNATprove_Mode
then
4008 -- If the type is an unchecked union, no subtype can be built from
4009 -- the expression. Rewrite declaration as a renaming, which the
4010 -- back-end can handle properly. This is a rather unusual case,
4011 -- because most unchecked_union declarations have default values
4012 -- for discriminants and are thus not indefinite.
4014 elsif Is_Unchecked_Union
(T
) then
4015 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
4016 Set_Ekind
(Id
, E_Constant
);
4018 Set_Ekind
(Id
, E_Variable
);
4021 -- An object declared within a Ghost region is automatically
4022 -- Ghost (SPARK RM 6.9(2)).
4024 if Comes_From_Source
(Id
) and then Ghost_Mode
> None
then
4025 Set_Is_Ghost_Entity
(Id
);
4027 -- The Ghost policy in effect at the point of declaration
4028 -- and at the point of completion must match
4029 -- (SPARK RM 6.9(15)).
4031 if Present
(Prev_Entity
)
4032 and then Is_Ghost_Entity
(Prev_Entity
)
4034 Check_Ghost_Completion
(Prev_Entity
, Id
);
4039 Make_Object_Renaming_Declaration
(Loc
,
4040 Defining_Identifier
=> Id
,
4041 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4044 Set_Renamed_Object
(Id
, E
);
4045 Freeze_Before
(N
, T
);
4050 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
4051 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
4054 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
4056 if Aliased_Present
(N
) then
4057 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4060 Freeze_Before
(N
, Act_T
);
4061 Freeze_Before
(N
, T
);
4064 elsif Is_Array_Type
(T
)
4065 and then No_Initialization
(N
)
4066 and then Nkind
(Original_Node
(E
)) = N_Aggregate
4068 if not Is_Entity_Name
(Object_Definition
(N
)) then
4070 Check_Compile_Time_Size
(Act_T
);
4072 if Aliased_Present
(N
) then
4073 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4077 -- When the given object definition and the aggregate are specified
4078 -- independently, and their lengths might differ do a length check.
4079 -- This cannot happen if the aggregate is of the form (others =>...)
4081 if not Is_Constrained
(T
) then
4084 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
4086 -- Aggregate is statically illegal. Place back in declaration
4088 Set_Expression
(N
, E
);
4089 Set_No_Initialization
(N
, False);
4091 elsif T
= Etype
(E
) then
4094 elsif Nkind
(E
) = N_Aggregate
4095 and then Present
(Component_Associations
(E
))
4096 and then Present
(Choices
(First
(Component_Associations
(E
))))
4097 and then Nkind
(First
4098 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
4103 Apply_Length_Check
(E
, T
);
4106 -- If the type is limited unconstrained with defaulted discriminants and
4107 -- there is no expression, then the object is constrained by the
4108 -- defaults, so it is worthwhile building the corresponding subtype.
4110 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
4111 and then not Is_Constrained
(T
)
4112 and then Has_Discriminants
(T
)
4115 Act_T
:= Build_Default_Subtype
(T
, N
);
4117 -- Ada 2005: A limited object may be initialized by means of an
4118 -- aggregate. If the type has default discriminants it has an
4119 -- unconstrained nominal type, Its actual subtype will be obtained
4120 -- from the aggregate, and not from the default discriminants.
4125 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
4127 elsif Nkind
(E
) = N_Function_Call
4128 and then Constant_Present
(N
)
4129 and then Has_Unconstrained_Elements
(Etype
(E
))
4131 -- The back-end has problems with constants of a discriminated type
4132 -- with defaults, if the initial value is a function call. We
4133 -- generate an intermediate temporary that will receive a reference
4134 -- to the result of the call. The initialization expression then
4135 -- becomes a dereference of that temporary.
4137 Remove_Side_Effects
(E
);
4139 -- If this is a constant declaration of an unconstrained type and
4140 -- the initialization is an aggregate, we can use the subtype of the
4141 -- aggregate for the declared entity because it is immutable.
4143 elsif not Is_Constrained
(T
)
4144 and then Has_Discriminants
(T
)
4145 and then Constant_Present
(N
)
4146 and then not Has_Unchecked_Union
(T
)
4147 and then Nkind
(E
) = N_Aggregate
4152 -- Check No_Wide_Characters restriction
4154 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
4156 -- Indicate this is not set in source. Certainly true for constants, and
4157 -- true for variables so far (will be reset for a variable if and when
4158 -- we encounter a modification in the source).
4160 Set_Never_Set_In_Source
(Id
);
4162 -- Now establish the proper kind and type of the object
4164 if Constant_Present
(N
) then
4165 Set_Ekind
(Id
, E_Constant
);
4166 Set_Is_True_Constant
(Id
);
4169 Set_Ekind
(Id
, E_Variable
);
4171 -- A variable is set as shared passive if it appears in a shared
4172 -- passive package, and is at the outer level. This is not done for
4173 -- entities generated during expansion, because those are always
4174 -- manipulated locally.
4176 if Is_Shared_Passive
(Current_Scope
)
4177 and then Is_Library_Level_Entity
(Id
)
4178 and then Comes_From_Source
(Id
)
4180 Set_Is_Shared_Passive
(Id
);
4181 Check_Shared_Var
(Id
, T
, N
);
4184 -- Set Has_Initial_Value if initializing expression present. Note
4185 -- that if there is no initializing expression, we leave the state
4186 -- of this flag unchanged (usually it will be False, but notably in
4187 -- the case of exception choice variables, it will already be true).
4190 Set_Has_Initial_Value
(Id
);
4194 -- Initialize alignment and size and capture alignment setting
4196 Init_Alignment
(Id
);
4198 Set_Optimize_Alignment_Flags
(Id
);
4200 -- An object declared within a Ghost region is automatically Ghost
4201 -- (SPARK RM 6.9(2)).
4203 if Comes_From_Source
(Id
)
4204 and then (Ghost_Mode
> None
4205 or else (Present
(Prev_Entity
)
4206 and then Is_Ghost_Entity
(Prev_Entity
)))
4208 Set_Is_Ghost_Entity
(Id
);
4210 -- The Ghost policy in effect at the point of declaration and at the
4211 -- point of completion must match (SPARK RM 6.9(16)).
4213 if Present
(Prev_Entity
) and then Is_Ghost_Entity
(Prev_Entity
) then
4214 Check_Ghost_Completion
(Prev_Entity
, Id
);
4218 -- Deal with aliased case
4220 if Aliased_Present
(N
) then
4221 Set_Is_Aliased
(Id
);
4223 -- If the object is aliased and the type is unconstrained with
4224 -- defaulted discriminants and there is no expression, then the
4225 -- object is constrained by the defaults, so it is worthwhile
4226 -- building the corresponding subtype.
4228 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4229 -- unconstrained, then only establish an actual subtype if the
4230 -- nominal subtype is indefinite. In definite cases the object is
4231 -- unconstrained in Ada 2005.
4234 and then Is_Record_Type
(T
)
4235 and then not Is_Constrained
(T
)
4236 and then Has_Discriminants
(T
)
4237 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
4239 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4243 -- Now we can set the type of the object
4245 Set_Etype
(Id
, Act_T
);
4247 -- Non-constant object is marked to be treated as volatile if type is
4248 -- volatile and we clear the Current_Value setting that may have been
4249 -- set above. Doing so for constants isn't required and might interfere
4250 -- with possible uses of the object as a static expression in contexts
4251 -- incompatible with volatility (e.g. as a case-statement alternative).
4253 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4254 Set_Treat_As_Volatile
(Id
);
4255 Set_Current_Value
(Id
, Empty
);
4258 -- Deal with controlled types
4260 if Has_Controlled_Component
(Etype
(Id
))
4261 or else Is_Controlled
(Etype
(Id
))
4263 if not Is_Library_Level_Entity
(Id
) then
4264 Check_Restriction
(No_Nested_Finalization
, N
);
4266 Validate_Controlled_Object
(Id
);
4270 if Has_Task
(Etype
(Id
)) then
4271 Check_Restriction
(No_Tasking
, N
);
4273 -- Deal with counting max tasks
4275 -- Nothing to do if inside a generic
4277 if Inside_A_Generic
then
4280 -- If library level entity, then count tasks
4282 elsif Is_Library_Level_Entity
(Id
) then
4283 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4285 -- If not library level entity, then indicate we don't know max
4286 -- tasks and also check task hierarchy restriction and blocking
4287 -- operation (since starting a task is definitely blocking).
4290 Check_Restriction
(Max_Tasks
, N
);
4291 Check_Restriction
(No_Task_Hierarchy
, N
);
4292 Check_Potentially_Blocking_Operation
(N
);
4295 -- A rather specialized test. If we see two tasks being declared
4296 -- of the same type in the same object declaration, and the task
4297 -- has an entry with an address clause, we know that program error
4298 -- will be raised at run time since we can't have two tasks with
4299 -- entries at the same address.
4301 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4306 E
:= First_Entity
(Etype
(Id
));
4307 while Present
(E
) loop
4308 if Ekind
(E
) = E_Entry
4309 and then Present
(Get_Attribute_Definition_Clause
4310 (E
, Attribute_Address
))
4312 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4314 ("more than one task with same entry address<<", N
);
4315 Error_Msg_N
("\Program_Error [<<", N
);
4317 Make_Raise_Program_Error
(Loc
,
4318 Reason
=> PE_Duplicated_Entry_Address
));
4328 -- Some simple constant-propagation: if the expression is a constant
4329 -- string initialized with a literal, share the literal. This avoids
4333 and then Is_Entity_Name
(E
)
4334 and then Ekind
(Entity
(E
)) = E_Constant
4335 and then Base_Type
(Etype
(E
)) = Standard_String
4338 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4340 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4341 Rewrite
(E
, New_Copy
(Val
));
4346 -- Another optimization: if the nominal subtype is unconstrained and
4347 -- the expression is a function call that returns an unconstrained
4348 -- type, rewrite the declaration as a renaming of the result of the
4349 -- call. The exceptions below are cases where the copy is expected,
4350 -- either by the back end (Aliased case) or by the semantics, as for
4351 -- initializing controlled types or copying tags for classwide types.
4354 and then Nkind
(E
) = N_Explicit_Dereference
4355 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4356 and then not Is_Library_Level_Entity
(Id
)
4357 and then not Is_Constrained
(Underlying_Type
(T
))
4358 and then not Is_Aliased
(Id
)
4359 and then not Is_Class_Wide_Type
(T
)
4360 and then not Is_Controlled
(T
)
4361 and then not Has_Controlled_Component
(Base_Type
(T
))
4362 and then Expander_Active
4365 Make_Object_Renaming_Declaration
(Loc
,
4366 Defining_Identifier
=> Id
,
4367 Access_Definition
=> Empty
,
4368 Subtype_Mark
=> New_Occurrence_Of
4369 (Base_Type
(Etype
(Id
)), Loc
),
4372 Set_Renamed_Object
(Id
, E
);
4374 -- Force generation of debugging information for the constant and for
4375 -- the renamed function call.
4377 Set_Debug_Info_Needed
(Id
);
4378 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4381 if Present
(Prev_Entity
)
4382 and then Is_Frozen
(Prev_Entity
)
4383 and then not Error_Posted
(Id
)
4385 Error_Msg_N
("full constant declaration appears too late", N
);
4388 Check_Eliminated
(Id
);
4390 -- Deal with setting In_Private_Part flag if in private part
4392 if Ekind
(Scope
(Id
)) = E_Package
and then In_Private_Part
(Scope
(Id
))
4394 Set_In_Private_Part
(Id
);
4397 -- Check for violation of No_Local_Timing_Events
4399 if Restriction_Check_Required
(No_Local_Timing_Events
)
4400 and then not Is_Library_Level_Entity
(Id
)
4401 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
4403 Check_Restriction
(No_Local_Timing_Events
, N
);
4407 -- Initialize the refined state of a variable here because this is a
4408 -- common destination for legal and illegal object declarations.
4410 if Ekind
(Id
) = E_Variable
then
4411 Set_Encapsulating_State
(Id
, Empty
);
4414 if Has_Aspects
(N
) then
4415 Analyze_Aspect_Specifications
(N
, Id
);
4418 Analyze_Dimension
(N
);
4420 -- Verify whether the object declaration introduces an illegal hidden
4421 -- state within a package subject to a null abstract state.
4423 if Ekind
(Id
) = E_Variable
then
4424 Check_No_Hidden_State
(Id
);
4426 end Analyze_Object_Declaration
;
4428 ---------------------------
4429 -- Analyze_Others_Choice --
4430 ---------------------------
4432 -- Nothing to do for the others choice node itself, the semantic analysis
4433 -- of the others choice will occur as part of the processing of the parent
4435 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4436 pragma Warnings
(Off
, N
);
4439 end Analyze_Others_Choice
;
4441 -------------------------------------------
4442 -- Analyze_Private_Extension_Declaration --
4443 -------------------------------------------
4445 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4446 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4447 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4448 Parent_Type
: Entity_Id
;
4449 Parent_Base
: Entity_Id
;
4452 -- The private extension declaration may be subject to pragma Ghost with
4453 -- policy Ignore. Set the mode now to ensure that any nodes generated
4454 -- during analysis and expansion are properly flagged as ignored Ghost.
4458 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4460 if Is_Non_Empty_List
(Interface_List
(N
)) then
4466 Intf
:= First
(Interface_List
(N
));
4467 while Present
(Intf
) loop
4468 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4470 Diagnose_Interface
(Intf
, T
);
4476 Generate_Definition
(T
);
4478 -- For other than Ada 2012, just enter the name in the current scope
4480 if Ada_Version
< Ada_2012
then
4483 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4484 -- case of private type that completes an incomplete type.
4491 Prev
:= Find_Type_Name
(N
);
4493 pragma Assert
(Prev
= T
4494 or else (Ekind
(Prev
) = E_Incomplete_Type
4495 and then Present
(Full_View
(Prev
))
4496 and then Full_View
(Prev
) = T
));
4500 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
4501 Parent_Base
:= Base_Type
(Parent_Type
);
4503 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
4504 Set_Ekind
(T
, Ekind
(Parent_Type
));
4505 Set_Etype
(T
, Any_Type
);
4508 elsif not Is_Tagged_Type
(Parent_Type
) then
4510 ("parent of type extension must be a tagged type ", Indic
);
4513 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
4514 Error_Msg_N
("premature derivation of incomplete type", Indic
);
4517 elsif Is_Concurrent_Type
(Parent_Type
) then
4519 ("parent type of a private extension cannot be "
4520 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
4522 Set_Etype
(T
, Any_Type
);
4523 Set_Ekind
(T
, E_Limited_Private_Type
);
4524 Set_Private_Dependents
(T
, New_Elmt_List
);
4525 Set_Error_Posted
(T
);
4529 -- Perhaps the parent type should be changed to the class-wide type's
4530 -- specific type in this case to prevent cascading errors ???
4532 if Is_Class_Wide_Type
(Parent_Type
) then
4534 ("parent of type extension must not be a class-wide type", Indic
);
4538 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
4539 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
4540 or else In_Private_Part
(Current_Scope
)
4543 Error_Msg_N
("invalid context for private extension", N
);
4546 -- Set common attributes
4548 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
4549 Set_Scope
(T
, Current_Scope
);
4550 Set_Ekind
(T
, E_Record_Type_With_Private
);
4551 Init_Size_Align
(T
);
4552 Set_Default_SSO
(T
);
4554 Set_Etype
(T
, Parent_Base
);
4555 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
4556 Set_Has_Protected
(T
, Has_Task
(Parent_Base
));
4558 Set_Convention
(T
, Convention
(Parent_Type
));
4559 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
4560 Set_Is_First_Subtype
(T
);
4561 Make_Class_Wide_Type
(T
);
4563 if Unknown_Discriminants_Present
(N
) then
4564 Set_Discriminant_Constraint
(T
, No_Elist
);
4567 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
4569 -- Propagate inherited invariant information. The new type has
4570 -- invariants, if the parent type has inheritable invariants,
4571 -- and these invariants can in turn be inherited.
4573 if Has_Inheritable_Invariants
(Parent_Type
) then
4574 Set_Has_Inheritable_Invariants
(T
);
4575 Set_Has_Invariants
(T
);
4578 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4579 -- synchronized formal derived type.
4581 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
4582 Set_Is_Limited_Record
(T
);
4584 -- Formal derived type case
4586 if Is_Generic_Type
(T
) then
4588 -- The parent must be a tagged limited type or a synchronized
4591 if (not Is_Tagged_Type
(Parent_Type
)
4592 or else not Is_Limited_Type
(Parent_Type
))
4594 (not Is_Interface
(Parent_Type
)
4595 or else not Is_Synchronized_Interface
(Parent_Type
))
4597 Error_Msg_NE
("parent type of & must be tagged limited " &
4598 "or synchronized", N
, T
);
4601 -- The progenitors (if any) must be limited or synchronized
4604 if Present
(Interfaces
(T
)) then
4607 Iface_Elmt
: Elmt_Id
;
4610 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
4611 while Present
(Iface_Elmt
) loop
4612 Iface
:= Node
(Iface_Elmt
);
4614 if not Is_Limited_Interface
(Iface
)
4615 and then not Is_Synchronized_Interface
(Iface
)
4617 Error_Msg_NE
("progenitor & must be limited " &
4618 "or synchronized", N
, Iface
);
4621 Next_Elmt
(Iface_Elmt
);
4626 -- Regular derived extension, the parent must be a limited or
4627 -- synchronized interface.
4630 if not Is_Interface
(Parent_Type
)
4631 or else (not Is_Limited_Interface
(Parent_Type
)
4632 and then not Is_Synchronized_Interface
(Parent_Type
))
4635 ("parent type of & must be limited interface", N
, T
);
4639 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4640 -- extension with a synchronized parent must be explicitly declared
4641 -- synchronized, because the full view will be a synchronized type.
4642 -- This must be checked before the check for limited types below,
4643 -- to ensure that types declared limited are not allowed to extend
4644 -- synchronized interfaces.
4646 elsif Is_Interface
(Parent_Type
)
4647 and then Is_Synchronized_Interface
(Parent_Type
)
4648 and then not Synchronized_Present
(N
)
4651 ("private extension of& must be explicitly synchronized",
4654 elsif Limited_Present
(N
) then
4655 Set_Is_Limited_Record
(T
);
4657 if not Is_Limited_Type
(Parent_Type
)
4659 (not Is_Interface
(Parent_Type
)
4660 or else not Is_Limited_Interface
(Parent_Type
))
4662 Error_Msg_NE
("parent type& of limited extension must be limited",
4668 if Has_Aspects
(N
) then
4669 Analyze_Aspect_Specifications
(N
, T
);
4671 end Analyze_Private_Extension_Declaration
;
4673 ---------------------------------
4674 -- Analyze_Subtype_Declaration --
4675 ---------------------------------
4677 procedure Analyze_Subtype_Declaration
4679 Skip
: Boolean := False)
4681 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4683 R_Checks
: Check_Result
;
4686 -- The subtype declaration may be subject to pragma Ghost with policy
4687 -- Ignore. Set the mode now to ensure that any nodes generated during
4688 -- analysis and expansion are properly flagged as ignored Ghost.
4692 Generate_Definition
(Id
);
4693 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4694 Init_Size_Align
(Id
);
4696 -- The following guard condition on Enter_Name is to handle cases where
4697 -- the defining identifier has already been entered into the scope but
4698 -- the declaration as a whole needs to be analyzed.
4700 -- This case in particular happens for derived enumeration types. The
4701 -- derived enumeration type is processed as an inserted enumeration type
4702 -- declaration followed by a rewritten subtype declaration. The defining
4703 -- identifier, however, is entered into the name scope very early in the
4704 -- processing of the original type declaration and therefore needs to be
4705 -- avoided here, when the created subtype declaration is analyzed. (See
4706 -- Build_Derived_Types)
4708 -- This also happens when the full view of a private type is derived
4709 -- type with constraints. In this case the entity has been introduced
4710 -- in the private declaration.
4712 -- Finally this happens in some complex cases when validity checks are
4713 -- enabled, where the same subtype declaration may be analyzed twice.
4714 -- This can happen if the subtype is created by the pre-analysis of
4715 -- an attribute tht gives the range of a loop statement, and the loop
4716 -- itself appears within an if_statement that will be rewritten during
4720 or else (Present
(Etype
(Id
))
4721 and then (Is_Private_Type
(Etype
(Id
))
4722 or else Is_Task_Type
(Etype
(Id
))
4723 or else Is_Rewrite_Substitution
(N
)))
4727 elsif Current_Entity
(Id
) = Id
then
4734 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4736 -- Class-wide equivalent types of records with unknown discriminants
4737 -- involve the generation of an itype which serves as the private view
4738 -- of a constrained record subtype. In such cases the base type of the
4739 -- current subtype we are processing is the private itype. Use the full
4740 -- of the private itype when decorating various attributes.
4743 and then Is_Private_Type
(T
)
4744 and then Present
(Full_View
(T
))
4749 -- Inherit common attributes
4751 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4752 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4753 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4754 Set_Convention
(Id
, Convention
(T
));
4756 -- If ancestor has predicates then so does the subtype, and in addition
4757 -- we must delay the freeze to properly arrange predicate inheritance.
4759 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4760 -- in which T = ID, so the above tests and assignments do nothing???
4762 if Has_Predicates
(T
)
4763 or else (Present
(Ancestor_Subtype
(T
))
4764 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4766 Set_Has_Predicates
(Id
);
4767 Set_Has_Delayed_Freeze
(Id
);
4770 -- Subtype of Boolean cannot have a constraint in SPARK
4772 if Is_Boolean_Type
(T
)
4773 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4775 Check_SPARK_05_Restriction
4776 ("subtype of Boolean cannot have constraint", N
);
4779 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4781 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4787 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4788 One_Cstr
:= First
(Constraints
(Cstr
));
4789 while Present
(One_Cstr
) loop
4791 -- Index or discriminant constraint in SPARK must be a
4795 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4797 Check_SPARK_05_Restriction
4798 ("subtype mark required", One_Cstr
);
4800 -- String subtype must have a lower bound of 1 in SPARK.
4801 -- Note that we do not need to test for the non-static case
4802 -- here, since that was already taken care of in
4803 -- Process_Range_Expr_In_Decl.
4805 elsif Base_Type
(T
) = Standard_String
then
4806 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4808 if Is_OK_Static_Expression
(Low
)
4809 and then Expr_Value
(Low
) /= 1
4811 Check_SPARK_05_Restriction
4812 ("String subtype must have lower bound of 1", N
);
4822 -- In the case where there is no constraint given in the subtype
4823 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4824 -- semantic attributes must be established here.
4826 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4827 Set_Etype
(Id
, Base_Type
(T
));
4829 -- Subtype of unconstrained array without constraint is not allowed
4832 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
4833 Check_SPARK_05_Restriction
4834 ("subtype of unconstrained array must have constraint", N
);
4839 Set_Ekind
(Id
, E_Array_Subtype
);
4840 Copy_Array_Subtype_Attributes
(Id
, T
);
4842 when Decimal_Fixed_Point_Kind
=>
4843 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4844 Set_Digits_Value
(Id
, Digits_Value
(T
));
4845 Set_Delta_Value
(Id
, Delta_Value
(T
));
4846 Set_Scale_Value
(Id
, Scale_Value
(T
));
4847 Set_Small_Value
(Id
, Small_Value
(T
));
4848 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4849 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4850 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4851 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4852 Set_RM_Size
(Id
, RM_Size
(T
));
4854 when Enumeration_Kind
=>
4855 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4856 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4857 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4858 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4859 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4860 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4861 Set_RM_Size
(Id
, RM_Size
(T
));
4862 Inherit_Predicate_Flags
(Id
, T
);
4864 when Ordinary_Fixed_Point_Kind
=>
4865 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4866 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4867 Set_Small_Value
(Id
, Small_Value
(T
));
4868 Set_Delta_Value
(Id
, Delta_Value
(T
));
4869 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4870 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4871 Set_RM_Size
(Id
, RM_Size
(T
));
4874 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4875 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4876 Set_Digits_Value
(Id
, Digits_Value
(T
));
4877 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4879 when Signed_Integer_Kind
=>
4880 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4881 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4882 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4883 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4884 Set_RM_Size
(Id
, RM_Size
(T
));
4885 Inherit_Predicate_Flags
(Id
, T
);
4887 when Modular_Integer_Kind
=>
4888 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4889 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4890 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4891 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4892 Set_RM_Size
(Id
, RM_Size
(T
));
4893 Inherit_Predicate_Flags
(Id
, T
);
4895 when Class_Wide_Kind
=>
4896 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4897 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4898 Set_Cloned_Subtype
(Id
, T
);
4899 Set_Is_Tagged_Type
(Id
, True);
4900 Set_Has_Unknown_Discriminants
4902 Set_No_Tagged_Streams_Pragma
4903 (Id
, No_Tagged_Streams_Pragma
(T
));
4905 if Ekind
(T
) = E_Class_Wide_Subtype
then
4906 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4909 when E_Record_Type | E_Record_Subtype
=>
4910 Set_Ekind
(Id
, E_Record_Subtype
);
4912 if Ekind
(T
) = E_Record_Subtype
4913 and then Present
(Cloned_Subtype
(T
))
4915 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4917 Set_Cloned_Subtype
(Id
, T
);
4920 Set_First_Entity
(Id
, First_Entity
(T
));
4921 Set_Last_Entity
(Id
, Last_Entity
(T
));
4922 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4923 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4924 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4925 Set_Has_Implicit_Dereference
4926 (Id
, Has_Implicit_Dereference
(T
));
4927 Set_Has_Unknown_Discriminants
4928 (Id
, Has_Unknown_Discriminants
(T
));
4930 if Has_Discriminants
(T
) then
4931 Set_Discriminant_Constraint
4932 (Id
, Discriminant_Constraint
(T
));
4933 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4935 elsif Has_Unknown_Discriminants
(Id
) then
4936 Set_Discriminant_Constraint
(Id
, No_Elist
);
4939 if Is_Tagged_Type
(T
) then
4940 Set_Is_Tagged_Type
(Id
, True);
4941 Set_No_Tagged_Streams_Pragma
4942 (Id
, No_Tagged_Streams_Pragma
(T
));
4943 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4944 Set_Direct_Primitive_Operations
4945 (Id
, Direct_Primitive_Operations
(T
));
4946 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4948 if Is_Interface
(T
) then
4949 Set_Is_Interface
(Id
);
4950 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4954 when Private_Kind
=>
4955 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4956 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4957 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4958 Set_First_Entity
(Id
, First_Entity
(T
));
4959 Set_Last_Entity
(Id
, Last_Entity
(T
));
4960 Set_Private_Dependents
(Id
, New_Elmt_List
);
4961 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4962 Set_Has_Implicit_Dereference
4963 (Id
, Has_Implicit_Dereference
(T
));
4964 Set_Has_Unknown_Discriminants
4965 (Id
, Has_Unknown_Discriminants
(T
));
4966 Set_Known_To_Have_Preelab_Init
4967 (Id
, Known_To_Have_Preelab_Init
(T
));
4969 if Is_Tagged_Type
(T
) then
4970 Set_Is_Tagged_Type
(Id
);
4971 Set_No_Tagged_Streams_Pragma
(Id
,
4972 No_Tagged_Streams_Pragma
(T
));
4973 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4974 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4975 Set_Direct_Primitive_Operations
(Id
,
4976 Direct_Primitive_Operations
(T
));
4979 -- In general the attributes of the subtype of a private type
4980 -- are the attributes of the partial view of parent. However,
4981 -- the full view may be a discriminated type, and the subtype
4982 -- must share the discriminant constraint to generate correct
4983 -- calls to initialization procedures.
4985 if Has_Discriminants
(T
) then
4986 Set_Discriminant_Constraint
4987 (Id
, Discriminant_Constraint
(T
));
4988 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4990 elsif Present
(Full_View
(T
))
4991 and then Has_Discriminants
(Full_View
(T
))
4993 Set_Discriminant_Constraint
4994 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4995 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4997 -- This would seem semantically correct, but apparently
4998 -- generates spurious errors about missing components ???
5000 -- Set_Has_Discriminants (Id);
5003 Prepare_Private_Subtype_Completion
(Id
, N
);
5005 -- If this is the subtype of a constrained private type with
5006 -- discriminants that has got a full view and we also have
5007 -- built a completion just above, show that the completion
5008 -- is a clone of the full view to the back-end.
5010 if Has_Discriminants
(T
)
5011 and then not Has_Unknown_Discriminants
(T
)
5012 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
5013 and then Present
(Full_View
(T
))
5014 and then Present
(Full_View
(Id
))
5016 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
5020 Set_Ekind
(Id
, E_Access_Subtype
);
5021 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5022 Set_Is_Access_Constant
5023 (Id
, Is_Access_Constant
(T
));
5024 Set_Directly_Designated_Type
5025 (Id
, Designated_Type
(T
));
5026 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
5028 -- A Pure library_item must not contain the declaration of a
5029 -- named access type, except within a subprogram, generic
5030 -- subprogram, task unit, or protected unit, or if it has
5031 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5033 if Comes_From_Source
(Id
)
5034 and then In_Pure_Unit
5035 and then not In_Subprogram_Task_Protected_Unit
5036 and then not No_Pool_Assigned
(Id
)
5039 ("named access types not allowed in pure unit", N
);
5042 when Concurrent_Kind
=>
5043 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
5044 Set_Corresponding_Record_Type
(Id
,
5045 Corresponding_Record_Type
(T
));
5046 Set_First_Entity
(Id
, First_Entity
(T
));
5047 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
5048 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5049 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5050 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5051 Set_Last_Entity
(Id
, Last_Entity
(T
));
5053 if Is_Tagged_Type
(T
) then
5054 Set_No_Tagged_Streams_Pragma
5055 (Id
, No_Tagged_Streams_Pragma
(T
));
5058 if Has_Discriminants
(T
) then
5059 Set_Discriminant_Constraint
5060 (Id
, Discriminant_Constraint
(T
));
5061 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5064 when Incomplete_Kind
=>
5065 if Ada_Version
>= Ada_2005
then
5067 -- In Ada 2005 an incomplete type can be explicitly tagged:
5068 -- propagate indication. Note that we also have to include
5069 -- subtypes for Ada 2012 extended use of incomplete types.
5071 Set_Ekind
(Id
, E_Incomplete_Subtype
);
5072 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5073 Set_Private_Dependents
(Id
, New_Elmt_List
);
5075 if Is_Tagged_Type
(Id
) then
5076 Set_No_Tagged_Streams_Pragma
5077 (Id
, No_Tagged_Streams_Pragma
(T
));
5078 Set_Direct_Primitive_Operations
(Id
, New_Elmt_List
);
5081 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5082 -- incomplete type visible through a limited with clause.
5084 if From_Limited_With
(T
)
5085 and then Present
(Non_Limited_View
(T
))
5087 Set_From_Limited_With
(Id
);
5088 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
5090 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5091 -- to the private dependents of the original incomplete
5092 -- type for future transformation.
5095 Append_Elmt
(Id
, Private_Dependents
(T
));
5098 -- If the subtype name denotes an incomplete type an error
5099 -- was already reported by Process_Subtype.
5102 Set_Etype
(Id
, Any_Type
);
5106 raise Program_Error
;
5110 if Etype
(Id
) = Any_Type
then
5114 -- Some common processing on all types
5116 Set_Size_Info
(Id
, T
);
5117 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
5119 -- If the parent type is a generic actual, so is the subtype. This may
5120 -- happen in a nested instance. Why Comes_From_Source test???
5122 if not Comes_From_Source
(N
) then
5123 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
5128 Set_Is_Immediately_Visible
(Id
, True);
5129 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
5130 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
5132 if Is_Interface
(T
) then
5133 Set_Is_Interface
(Id
);
5136 if Present
(Generic_Parent_Type
(N
))
5138 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
5139 N_Formal_Type_Declaration
5140 or else Nkind
(Formal_Type_Definition
5141 (Parent
(Generic_Parent_Type
(N
)))) /=
5142 N_Formal_Private_Type_Definition
)
5144 if Is_Tagged_Type
(Id
) then
5146 -- If this is a generic actual subtype for a synchronized type,
5147 -- the primitive operations are those of the corresponding record
5148 -- for which there is a separate subtype declaration.
5150 if Is_Concurrent_Type
(Id
) then
5152 elsif Is_Class_Wide_Type
(Id
) then
5153 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
5155 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
5158 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
5159 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
5163 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
5164 Conditional_Delay
(Id
, Full_View
(T
));
5166 -- The subtypes of components or subcomponents of protected types
5167 -- do not need freeze nodes, which would otherwise appear in the
5168 -- wrong scope (before the freeze node for the protected type). The
5169 -- proper subtypes are those of the subcomponents of the corresponding
5172 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
5173 and then Present
(Scope
(Scope
(Id
))) -- error defense
5174 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
5176 Conditional_Delay
(Id
, T
);
5179 -- Check that Constraint_Error is raised for a scalar subtype indication
5180 -- when the lower or upper bound of a non-null range lies outside the
5181 -- range of the type mark.
5183 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5184 if Is_Scalar_Type
(Etype
(Id
))
5185 and then Scalar_Range
(Id
) /=
5186 Scalar_Range
(Etype
(Subtype_Mark
5187 (Subtype_Indication
(N
))))
5191 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
5193 -- In the array case, check compatibility for each index
5195 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5197 -- This really should be a subprogram that finds the indications
5201 Subt_Index
: Node_Id
:= First_Index
(Id
);
5202 Target_Index
: Node_Id
:=
5204 (Subtype_Mark
(Subtype_Indication
(N
))));
5205 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5208 while Present
(Subt_Index
) loop
5209 if ((Nkind
(Subt_Index
) = N_Identifier
5210 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5211 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5213 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5216 Target_Typ
: constant Entity_Id
:=
5217 Etype
(Target_Index
);
5221 (Scalar_Range
(Etype
(Subt_Index
)),
5224 Defining_Identifier
(N
));
5226 -- Reset Has_Dynamic_Range_Check on the subtype to
5227 -- prevent elision of the index check due to a dynamic
5228 -- check generated for a preceding index (needed since
5229 -- Insert_Range_Checks tries to avoid generating
5230 -- redundant checks on a given declaration).
5232 Set_Has_Dynamic_Range_Check
(N
, False);
5238 Sloc
(Defining_Identifier
(N
)));
5240 -- Record whether this index involved a dynamic check
5243 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5247 Next_Index
(Subt_Index
);
5248 Next_Index
(Target_Index
);
5251 -- Finally, mark whether the subtype involves dynamic checks
5253 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5258 -- A type invariant applies to any subtype in its scope, in particular
5259 -- to a generic actual.
5261 if Has_Invariants
(T
) and then In_Open_Scopes
(Scope
(T
)) then
5262 Set_Has_Invariants
(Id
);
5263 Set_Invariant_Procedure
(Id
, Invariant_Procedure
(T
));
5266 -- Make sure that generic actual types are properly frozen. The subtype
5267 -- is marked as a generic actual type when the enclosing instance is
5268 -- analyzed, so here we identify the subtype from the tree structure.
5271 and then Is_Generic_Actual_Type
(Id
)
5272 and then In_Instance
5273 and then not Comes_From_Source
(N
)
5274 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
5275 and then Is_Frozen
(T
)
5277 Freeze_Before
(N
, Id
);
5280 Set_Optimize_Alignment_Flags
(Id
);
5281 Check_Eliminated
(Id
);
5284 if Has_Aspects
(N
) then
5285 Analyze_Aspect_Specifications
(N
, Id
);
5288 Analyze_Dimension
(N
);
5289 end Analyze_Subtype_Declaration
;
5291 --------------------------------
5292 -- Analyze_Subtype_Indication --
5293 --------------------------------
5295 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5296 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5297 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5304 Set_Etype
(N
, Etype
(R
));
5305 Resolve
(R
, Entity
(T
));
5307 Set_Error_Posted
(R
);
5308 Set_Error_Posted
(T
);
5310 end Analyze_Subtype_Indication
;
5312 --------------------------
5313 -- Analyze_Variant_Part --
5314 --------------------------
5316 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5317 Discr_Name
: Node_Id
;
5318 Discr_Type
: Entity_Id
;
5320 procedure Process_Variant
(A
: Node_Id
);
5321 -- Analyze declarations for a single variant
5323 package Analyze_Variant_Choices
is
5324 new Generic_Analyze_Choices
(Process_Variant
);
5325 use Analyze_Variant_Choices
;
5327 ---------------------
5328 -- Process_Variant --
5329 ---------------------
5331 procedure Process_Variant
(A
: Node_Id
) is
5332 CL
: constant Node_Id
:= Component_List
(A
);
5334 if not Null_Present
(CL
) then
5335 Analyze_Declarations
(Component_Items
(CL
));
5337 if Present
(Variant_Part
(CL
)) then
5338 Analyze
(Variant_Part
(CL
));
5341 end Process_Variant
;
5343 -- Start of processing for Analyze_Variant_Part
5346 Discr_Name
:= Name
(N
);
5347 Analyze
(Discr_Name
);
5349 -- If Discr_Name bad, get out (prevent cascaded errors)
5351 if Etype
(Discr_Name
) = Any_Type
then
5355 -- Check invalid discriminant in variant part
5357 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5358 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5361 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5363 if not Is_Discrete_Type
(Discr_Type
) then
5365 ("discriminant in a variant part must be of a discrete type",
5370 -- Now analyze the choices, which also analyzes the declarations that
5371 -- are associated with each choice.
5373 Analyze_Choices
(Variants
(N
), Discr_Type
);
5375 -- Note: we used to instantiate and call Check_Choices here to check
5376 -- that the choices covered the discriminant, but it's too early to do
5377 -- that because of statically predicated subtypes, whose analysis may
5378 -- be deferred to their freeze point which may be as late as the freeze
5379 -- point of the containing record. So this call is now to be found in
5380 -- Freeze_Record_Declaration.
5382 end Analyze_Variant_Part
;
5384 ----------------------------
5385 -- Array_Type_Declaration --
5386 ----------------------------
5388 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
5389 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
5390 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
5391 Element_Type
: Entity_Id
;
5392 Implicit_Base
: Entity_Id
;
5394 Related_Id
: Entity_Id
:= Empty
;
5396 P
: constant Node_Id
:= Parent
(Def
);
5400 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5401 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
5403 Index
:= First
(Subtype_Marks
(Def
));
5406 -- Find proper names for the implicit types which may be public. In case
5407 -- of anonymous arrays we use the name of the first object of that type
5411 Related_Id
:= Defining_Identifier
(P
);
5417 while Present
(Index
) loop
5420 -- Test for odd case of trying to index a type by the type itself
5422 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
5423 Error_Msg_N
("type& cannot be indexed by itself", Index
);
5424 Set_Entity
(Index
, Standard_Boolean
);
5425 Set_Etype
(Index
, Standard_Boolean
);
5428 -- Check SPARK restriction requiring a subtype mark
5430 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
5431 Check_SPARK_05_Restriction
("subtype mark required", Index
);
5434 -- Add a subtype declaration for each index of private array type
5435 -- declaration whose etype is also private. For example:
5438 -- type Index is private;
5440 -- type Table is array (Index) of ...
5443 -- This is currently required by the expander for the internally
5444 -- generated equality subprogram of records with variant parts in
5445 -- which the etype of some component is such private type.
5447 if Ekind
(Current_Scope
) = E_Package
5448 and then In_Private_Part
(Current_Scope
)
5449 and then Has_Private_Declaration
(Etype
(Index
))
5452 Loc
: constant Source_Ptr
:= Sloc
(Def
);
5457 New_E
:= Make_Temporary
(Loc
, 'T');
5458 Set_Is_Internal
(New_E
);
5461 Make_Subtype_Declaration
(Loc
,
5462 Defining_Identifier
=> New_E
,
5463 Subtype_Indication
=>
5464 New_Occurrence_Of
(Etype
(Index
), Loc
));
5466 Insert_Before
(Parent
(Def
), Decl
);
5468 Set_Etype
(Index
, New_E
);
5470 -- If the index is a range the Entity attribute is not
5471 -- available. Example:
5474 -- type T is private;
5476 -- type T is new Natural;
5477 -- Table : array (T(1) .. T(10)) of Boolean;
5480 if Nkind
(Index
) /= N_Range
then
5481 Set_Entity
(Index
, New_E
);
5486 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
5488 -- Check error of subtype with predicate for index type
5490 Bad_Predicated_Subtype_Use
5491 ("subtype& has predicate, not allowed as index subtype",
5492 Index
, Etype
(Index
));
5494 -- Move to next index
5497 Nb_Index
:= Nb_Index
+ 1;
5500 -- Process subtype indication if one is present
5502 if Present
(Component_Typ
) then
5503 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
5505 Set_Etype
(Component_Typ
, Element_Type
);
5507 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
5508 Check_SPARK_05_Restriction
5509 ("subtype mark required", Component_Typ
);
5512 -- Ada 2005 (AI-230): Access Definition case
5514 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
5516 -- Indicate that the anonymous access type is created by the
5517 -- array type declaration.
5519 Element_Type
:= Access_Definition
5521 N
=> Access_Definition
(Component_Def
));
5522 Set_Is_Local_Anonymous_Access
(Element_Type
);
5524 -- Propagate the parent. This field is needed if we have to generate
5525 -- the master_id associated with an anonymous access to task type
5526 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5528 Set_Parent
(Element_Type
, Parent
(T
));
5530 -- Ada 2005 (AI-230): In case of components that are anonymous access
5531 -- types the level of accessibility depends on the enclosing type
5534 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
5536 -- Ada 2005 (AI-254)
5539 CD
: constant Node_Id
:=
5540 Access_To_Subprogram_Definition
5541 (Access_Definition
(Component_Def
));
5543 if Present
(CD
) and then Protected_Present
(CD
) then
5545 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
5550 -- Constrained array case
5553 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
5556 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5558 -- Establish Implicit_Base as unconstrained base type
5560 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
5562 Set_Etype
(Implicit_Base
, Implicit_Base
);
5563 Set_Scope
(Implicit_Base
, Current_Scope
);
5564 Set_Has_Delayed_Freeze
(Implicit_Base
);
5565 Set_Default_SSO
(Implicit_Base
);
5567 -- The constrained array type is a subtype of the unconstrained one
5569 Set_Ekind
(T
, E_Array_Subtype
);
5570 Init_Size_Align
(T
);
5571 Set_Etype
(T
, Implicit_Base
);
5572 Set_Scope
(T
, Current_Scope
);
5573 Set_Is_Constrained
(T
);
5575 First
(Discrete_Subtype_Definitions
(Def
)));
5576 Set_Has_Delayed_Freeze
(T
);
5578 -- Complete setup of implicit base type
5580 Set_First_Index
(Implicit_Base
, First_Index
(T
));
5581 Set_Component_Type
(Implicit_Base
, Element_Type
);
5582 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
5583 Set_Has_Protected
(Implicit_Base
, Has_Protected
(Element_Type
));
5584 Set_Component_Size
(Implicit_Base
, Uint_0
);
5585 Set_Packed_Array_Impl_Type
(Implicit_Base
, Empty
);
5586 Set_Has_Controlled_Component
(Implicit_Base
,
5587 Has_Controlled_Component
(Element_Type
)
5588 or else Is_Controlled
(Element_Type
));
5589 Set_Finalize_Storage_Only
(Implicit_Base
,
5590 Finalize_Storage_Only
(Element_Type
));
5592 -- Inherit the "ghostness" from the constrained array type
5594 if Is_Ghost_Entity
(T
) or else Ghost_Mode
> None
then
5595 Set_Is_Ghost_Entity
(Implicit_Base
);
5598 -- Unconstrained array case
5601 Set_Ekind
(T
, E_Array_Type
);
5602 Init_Size_Align
(T
);
5604 Set_Scope
(T
, Current_Scope
);
5605 Set_Component_Size
(T
, Uint_0
);
5606 Set_Is_Constrained
(T
, False);
5607 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
5608 Set_Has_Delayed_Freeze
(T
, True);
5609 Set_Has_Task
(T
, Has_Task
(Element_Type
));
5610 Set_Has_Protected
(T
, Has_Protected
(Element_Type
));
5611 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
5614 Is_Controlled
(Element_Type
));
5615 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
5617 Set_Default_SSO
(T
);
5620 -- Common attributes for both cases
5622 Set_Component_Type
(Base_Type
(T
), Element_Type
);
5623 Set_Packed_Array_Impl_Type
(T
, Empty
);
5625 if Aliased_Present
(Component_Definition
(Def
)) then
5626 Check_SPARK_05_Restriction
5627 ("aliased is not allowed", Component_Definition
(Def
));
5628 Set_Has_Aliased_Components
(Etype
(T
));
5631 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5632 -- array type to ensure that objects of this type are initialized.
5634 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
5635 Set_Can_Never_Be_Null
(T
);
5637 if Null_Exclusion_Present
(Component_Definition
(Def
))
5639 -- No need to check itypes because in their case this check was
5640 -- done at their point of creation
5642 and then not Is_Itype
(Element_Type
)
5645 ("`NOT NULL` not allowed (null already excluded)",
5646 Subtype_Indication
(Component_Definition
(Def
)));
5650 Priv
:= Private_Component
(Element_Type
);
5652 if Present
(Priv
) then
5654 -- Check for circular definitions
5656 if Priv
= Any_Type
then
5657 Set_Component_Type
(Etype
(T
), Any_Type
);
5659 -- There is a gap in the visibility of operations on the composite
5660 -- type only if the component type is defined in a different scope.
5662 elsif Scope
(Priv
) = Current_Scope
then
5665 elsif Is_Limited_Type
(Priv
) then
5666 Set_Is_Limited_Composite
(Etype
(T
));
5667 Set_Is_Limited_Composite
(T
);
5669 Set_Is_Private_Composite
(Etype
(T
));
5670 Set_Is_Private_Composite
(T
);
5674 -- A syntax error in the declaration itself may lead to an empty index
5675 -- list, in which case do a minimal patch.
5677 if No
(First_Index
(T
)) then
5678 Error_Msg_N
("missing index definition in array type declaration", T
);
5681 Indexes
: constant List_Id
:=
5682 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
5684 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
5685 Set_First_Index
(T
, First
(Indexes
));
5690 -- Create a concatenation operator for the new type. Internal array
5691 -- types created for packed entities do not need such, they are
5692 -- compatible with the user-defined type.
5694 if Number_Dimensions
(T
) = 1
5695 and then not Is_Packed_Array_Impl_Type
(T
)
5697 New_Concatenation_Op
(T
);
5700 -- In the case of an unconstrained array the parser has already verified
5701 -- that all the indexes are unconstrained but we still need to make sure
5702 -- that the element type is constrained.
5704 if Is_Indefinite_Subtype
(Element_Type
) then
5706 ("unconstrained element type in array declaration",
5707 Subtype_Indication
(Component_Def
));
5709 elsif Is_Abstract_Type
(Element_Type
) then
5711 ("the type of a component cannot be abstract",
5712 Subtype_Indication
(Component_Def
));
5715 -- There may be an invariant declared for the component type, but
5716 -- the construction of the component invariant checking procedure
5717 -- takes place during expansion.
5718 end Array_Type_Declaration
;
5720 ------------------------------------------------------
5721 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5722 ------------------------------------------------------
5724 function Replace_Anonymous_Access_To_Protected_Subprogram
5725 (N
: Node_Id
) return Entity_Id
5727 Loc
: constant Source_Ptr
:= Sloc
(N
);
5729 Curr_Scope
: constant Scope_Stack_Entry
:=
5730 Scope_Stack
.Table
(Scope_Stack
.Last
);
5732 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5735 -- Access definition in declaration
5738 -- Object definition or formal definition with an access definition
5741 -- Declaration of anonymous access to subprogram type
5744 -- Original specification in access to subprogram
5749 Set_Is_Internal
(Anon
);
5752 when N_Component_Declaration |
5753 N_Unconstrained_Array_Definition |
5754 N_Constrained_Array_Definition
=>
5755 Comp
:= Component_Definition
(N
);
5756 Acc
:= Access_Definition
(Comp
);
5758 when N_Discriminant_Specification
=>
5759 Comp
:= Discriminant_Type
(N
);
5762 when N_Parameter_Specification
=>
5763 Comp
:= Parameter_Type
(N
);
5766 when N_Access_Function_Definition
=>
5767 Comp
:= Result_Definition
(N
);
5770 when N_Object_Declaration
=>
5771 Comp
:= Object_Definition
(N
);
5774 when N_Function_Specification
=>
5775 Comp
:= Result_Definition
(N
);
5779 raise Program_Error
;
5782 Spec
:= Access_To_Subprogram_Definition
(Acc
);
5785 Make_Full_Type_Declaration
(Loc
,
5786 Defining_Identifier
=> Anon
,
5787 Type_Definition
=> Copy_Separate_Tree
(Spec
));
5789 Mark_Rewrite_Insertion
(Decl
);
5791 -- In ASIS mode, analyze the profile on the original node, because
5792 -- the separate copy does not provide enough links to recover the
5793 -- original tree. Analysis is limited to type annotations, within
5794 -- a temporary scope that serves as an anonymous subprogram to collect
5795 -- otherwise useless temporaries and itypes.
5799 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5802 if Nkind
(Spec
) = N_Access_Function_Definition
then
5803 Set_Ekind
(Typ
, E_Function
);
5805 Set_Ekind
(Typ
, E_Procedure
);
5808 Set_Parent
(Typ
, N
);
5809 Set_Scope
(Typ
, Current_Scope
);
5812 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
5814 if Nkind
(Spec
) = N_Access_Function_Definition
then
5816 Def
: constant Node_Id
:= Result_Definition
(Spec
);
5819 -- The result might itself be an anonymous access type, so
5822 if Nkind
(Def
) = N_Access_Definition
then
5823 if Present
(Access_To_Subprogram_Definition
(Def
)) then
5826 Replace_Anonymous_Access_To_Protected_Subprogram
5829 Find_Type
(Subtype_Mark
(Def
));
5842 -- Insert the new declaration in the nearest enclosing scope. If the
5843 -- node is a body and N is its return type, the declaration belongs in
5844 -- the enclosing scope.
5848 if Nkind
(P
) = N_Subprogram_Body
5849 and then Nkind
(N
) = N_Function_Specification
5854 while Present
(P
) and then not Has_Declarations
(P
) loop
5858 pragma Assert
(Present
(P
));
5860 if Nkind
(P
) = N_Package_Specification
then
5861 Prepend
(Decl
, Visible_Declarations
(P
));
5863 Prepend
(Decl
, Declarations
(P
));
5866 -- Replace the anonymous type with an occurrence of the new declaration.
5867 -- In all cases the rewritten node does not have the null-exclusion
5868 -- attribute because (if present) it was already inherited by the
5869 -- anonymous entity (Anon). Thus, in case of components we do not
5870 -- inherit this attribute.
5872 if Nkind
(N
) = N_Parameter_Specification
then
5873 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5874 Set_Etype
(Defining_Identifier
(N
), Anon
);
5875 Set_Null_Exclusion_Present
(N
, False);
5877 elsif Nkind
(N
) = N_Object_Declaration
then
5878 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5879 Set_Etype
(Defining_Identifier
(N
), Anon
);
5881 elsif Nkind
(N
) = N_Access_Function_Definition
then
5882 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5884 elsif Nkind
(N
) = N_Function_Specification
then
5885 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5886 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5890 Make_Component_Definition
(Loc
,
5891 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5894 Mark_Rewrite_Insertion
(Comp
);
5896 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5900 -- Temporarily remove the current scope (record or subprogram) from
5901 -- the stack to add the new declarations to the enclosing scope.
5903 Scope_Stack
.Decrement_Last
;
5905 Set_Is_Itype
(Anon
);
5906 Scope_Stack
.Append
(Curr_Scope
);
5909 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5910 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5912 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5914 -------------------------------
5915 -- Build_Derived_Access_Type --
5916 -------------------------------
5918 procedure Build_Derived_Access_Type
5920 Parent_Type
: Entity_Id
;
5921 Derived_Type
: Entity_Id
)
5923 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5925 Desig_Type
: Entity_Id
;
5927 Discr_Con_Elist
: Elist_Id
;
5928 Discr_Con_El
: Elmt_Id
;
5932 -- Set the designated type so it is available in case this is an access
5933 -- to a self-referential type, e.g. a standard list type with a next
5934 -- pointer. Will be reset after subtype is built.
5936 Set_Directly_Designated_Type
5937 (Derived_Type
, Designated_Type
(Parent_Type
));
5939 Subt
:= Process_Subtype
(S
, N
);
5941 if Nkind
(S
) /= N_Subtype_Indication
5942 and then Subt
/= Base_Type
(Subt
)
5944 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5947 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5949 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5950 Ibase
: constant Entity_Id
:=
5951 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5952 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5953 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5956 Copy_Node
(Pbase
, Ibase
);
5958 Set_Chars
(Ibase
, Svg_Chars
);
5959 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5960 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5961 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5962 Set_Freeze_Node
(Ibase
, Empty
);
5963 Set_Is_Frozen
(Ibase
, False);
5964 Set_Comes_From_Source
(Ibase
, False);
5965 Set_Is_First_Subtype
(Ibase
, False);
5967 Set_Etype
(Ibase
, Pbase
);
5968 Set_Etype
(Derived_Type
, Ibase
);
5972 Set_Directly_Designated_Type
5973 (Derived_Type
, Designated_Type
(Subt
));
5975 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5976 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5977 Set_Size_Info
(Derived_Type
, Parent_Type
);
5978 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5979 Set_Depends_On_Private
(Derived_Type
,
5980 Has_Private_Component
(Derived_Type
));
5981 Conditional_Delay
(Derived_Type
, Subt
);
5983 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5984 -- that it is not redundant.
5986 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5987 Set_Can_Never_Be_Null
(Derived_Type
);
5989 -- What is with the "AND THEN FALSE" here ???
5991 if Can_Never_Be_Null
(Parent_Type
)
5995 ("`NOT NULL` not allowed (& already excludes null)",
5999 elsif Can_Never_Be_Null
(Parent_Type
) then
6000 Set_Can_Never_Be_Null
(Derived_Type
);
6003 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6004 -- the root type for this information.
6006 -- Apply range checks to discriminants for derived record case
6007 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6009 Desig_Type
:= Designated_Type
(Derived_Type
);
6010 if Is_Composite_Type
(Desig_Type
)
6011 and then (not Is_Array_Type
(Desig_Type
))
6012 and then Has_Discriminants
(Desig_Type
)
6013 and then Base_Type
(Desig_Type
) /= Desig_Type
6015 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
6016 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
6018 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
6019 while Present
(Discr_Con_El
) loop
6020 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
6021 Next_Elmt
(Discr_Con_El
);
6022 Next_Discriminant
(Discr
);
6025 end Build_Derived_Access_Type
;
6027 ------------------------------
6028 -- Build_Derived_Array_Type --
6029 ------------------------------
6031 procedure Build_Derived_Array_Type
6033 Parent_Type
: Entity_Id
;
6034 Derived_Type
: Entity_Id
)
6036 Loc
: constant Source_Ptr
:= Sloc
(N
);
6037 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6038 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6039 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6040 Implicit_Base
: Entity_Id
;
6041 New_Indic
: Node_Id
;
6043 procedure Make_Implicit_Base
;
6044 -- If the parent subtype is constrained, the derived type is a subtype
6045 -- of an implicit base type derived from the parent base.
6047 ------------------------
6048 -- Make_Implicit_Base --
6049 ------------------------
6051 procedure Make_Implicit_Base
is
6054 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6056 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6057 Set_Etype
(Implicit_Base
, Parent_Base
);
6059 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
6060 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
6062 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
6064 -- Inherit the "ghostness" from the parent base type
6066 if Is_Ghost_Entity
(Parent_Base
) or else Ghost_Mode
> None
then
6067 Set_Is_Ghost_Entity
(Implicit_Base
);
6069 end Make_Implicit_Base
;
6071 -- Start of processing for Build_Derived_Array_Type
6074 if not Is_Constrained
(Parent_Type
) then
6075 if Nkind
(Indic
) /= N_Subtype_Indication
then
6076 Set_Ekind
(Derived_Type
, E_Array_Type
);
6078 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6079 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
6081 Set_Has_Delayed_Freeze
(Derived_Type
, True);
6085 Set_Etype
(Derived_Type
, Implicit_Base
);
6088 Make_Subtype_Declaration
(Loc
,
6089 Defining_Identifier
=> Derived_Type
,
6090 Subtype_Indication
=>
6091 Make_Subtype_Indication
(Loc
,
6092 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6093 Constraint
=> Constraint
(Indic
)));
6095 Rewrite
(N
, New_Indic
);
6100 if Nkind
(Indic
) /= N_Subtype_Indication
then
6103 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
6104 Set_Etype
(Derived_Type
, Implicit_Base
);
6105 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6108 Error_Msg_N
("illegal constraint on constrained type", Indic
);
6112 -- If parent type is not a derived type itself, and is declared in
6113 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6114 -- the new type's concatenation operator since Derive_Subprograms
6115 -- will not inherit the parent's operator. If the parent type is
6116 -- unconstrained, the operator is of the unconstrained base type.
6118 if Number_Dimensions
(Parent_Type
) = 1
6119 and then not Is_Limited_Type
(Parent_Type
)
6120 and then not Is_Derived_Type
(Parent_Type
)
6121 and then not Is_Package_Or_Generic_Package
6122 (Scope
(Base_Type
(Parent_Type
)))
6124 if not Is_Constrained
(Parent_Type
)
6125 and then Is_Constrained
(Derived_Type
)
6127 New_Concatenation_Op
(Implicit_Base
);
6129 New_Concatenation_Op
(Derived_Type
);
6132 end Build_Derived_Array_Type
;
6134 -----------------------------------
6135 -- Build_Derived_Concurrent_Type --
6136 -----------------------------------
6138 procedure Build_Derived_Concurrent_Type
6140 Parent_Type
: Entity_Id
;
6141 Derived_Type
: Entity_Id
)
6143 Loc
: constant Source_Ptr
:= Sloc
(N
);
6145 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
6146 Corr_Decl
: Node_Id
;
6147 Corr_Decl_Needed
: Boolean;
6148 -- If the derived type has fewer discriminants than its parent, the
6149 -- corresponding record is also a derived type, in order to account for
6150 -- the bound discriminants. We create a full type declaration for it in
6153 Constraint_Present
: constant Boolean :=
6154 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6155 N_Subtype_Indication
;
6157 D_Constraint
: Node_Id
;
6158 New_Constraint
: Elist_Id
;
6159 Old_Disc
: Entity_Id
;
6160 New_Disc
: Entity_Id
;
6164 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6165 Corr_Decl_Needed
:= False;
6168 if Present
(Discriminant_Specifications
(N
))
6169 and then Constraint_Present
6171 Old_Disc
:= First_Discriminant
(Parent_Type
);
6172 New_Disc
:= First
(Discriminant_Specifications
(N
));
6173 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
6174 Next_Discriminant
(Old_Disc
);
6179 if Present
(Old_Disc
) and then Expander_Active
then
6181 -- The new type has fewer discriminants, so we need to create a new
6182 -- corresponding record, which is derived from the corresponding
6183 -- record of the parent, and has a stored constraint that captures
6184 -- the values of the discriminant constraints. The corresponding
6185 -- record is needed only if expander is active and code generation is
6188 -- The type declaration for the derived corresponding record has the
6189 -- same discriminant part and constraints as the current declaration.
6190 -- Copy the unanalyzed tree to build declaration.
6192 Corr_Decl_Needed
:= True;
6193 New_N
:= Copy_Separate_Tree
(N
);
6196 Make_Full_Type_Declaration
(Loc
,
6197 Defining_Identifier
=> Corr_Record
,
6198 Discriminant_Specifications
=>
6199 Discriminant_Specifications
(New_N
),
6201 Make_Derived_Type_Definition
(Loc
,
6202 Subtype_Indication
=>
6203 Make_Subtype_Indication
(Loc
,
6206 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6209 (Subtype_Indication
(Type_Definition
(New_N
))))));
6212 -- Copy Storage_Size and Relative_Deadline variables if task case
6214 if Is_Task_Type
(Parent_Type
) then
6215 Set_Storage_Size_Variable
(Derived_Type
,
6216 Storage_Size_Variable
(Parent_Type
));
6217 Set_Relative_Deadline_Variable
(Derived_Type
,
6218 Relative_Deadline_Variable
(Parent_Type
));
6221 if Present
(Discriminant_Specifications
(N
)) then
6222 Push_Scope
(Derived_Type
);
6223 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6225 if Constraint_Present
then
6227 Expand_To_Stored_Constraint
6229 Build_Discriminant_Constraints
6231 Subtype_Indication
(Type_Definition
(N
)), True));
6236 elsif Constraint_Present
then
6238 -- Build constrained subtype, copying the constraint, and derive
6239 -- from it to create a derived constrained type.
6242 Loc
: constant Source_Ptr
:= Sloc
(N
);
6243 Anon
: constant Entity_Id
:=
6244 Make_Defining_Identifier
(Loc
,
6245 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6250 Make_Subtype_Declaration
(Loc
,
6251 Defining_Identifier
=> Anon
,
6252 Subtype_Indication
=>
6253 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6254 Insert_Before
(N
, Decl
);
6257 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6258 New_Occurrence_Of
(Anon
, Loc
));
6259 Set_Analyzed
(Derived_Type
, False);
6265 -- By default, operations and private data are inherited from parent.
6266 -- However, in the presence of bound discriminants, a new corresponding
6267 -- record will be created, see below.
6269 Set_Has_Discriminants
6270 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6271 Set_Corresponding_Record_Type
6272 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6274 -- Is_Constrained is set according the parent subtype, but is set to
6275 -- False if the derived type is declared with new discriminants.
6279 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6280 and then not Present
(Discriminant_Specifications
(N
)));
6282 if Constraint_Present
then
6283 if not Has_Discriminants
(Parent_Type
) then
6284 Error_Msg_N
("untagged parent must have discriminants", N
);
6286 elsif Present
(Discriminant_Specifications
(N
)) then
6288 -- Verify that new discriminants are used to constrain old ones
6293 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6295 Old_Disc
:= First_Discriminant
(Parent_Type
);
6297 while Present
(D_Constraint
) loop
6298 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6300 -- Positional constraint. If it is a reference to a new
6301 -- discriminant, it constrains the corresponding old one.
6303 if Nkind
(D_Constraint
) = N_Identifier
then
6304 New_Disc
:= First_Discriminant
(Derived_Type
);
6305 while Present
(New_Disc
) loop
6306 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6307 Next_Discriminant
(New_Disc
);
6310 if Present
(New_Disc
) then
6311 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6315 Next_Discriminant
(Old_Disc
);
6317 -- if this is a named constraint, search by name for the old
6318 -- discriminants constrained by the new one.
6320 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6322 -- Find new discriminant with that name
6324 New_Disc
:= First_Discriminant
(Derived_Type
);
6325 while Present
(New_Disc
) loop
6327 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6328 Next_Discriminant
(New_Disc
);
6331 if Present
(New_Disc
) then
6333 -- Verify that new discriminant renames some discriminant
6334 -- of the parent type, and associate the new discriminant
6335 -- with one or more old ones that it renames.
6341 Selector
:= First
(Selector_Names
(D_Constraint
));
6342 while Present
(Selector
) loop
6343 Old_Disc
:= First_Discriminant
(Parent_Type
);
6344 while Present
(Old_Disc
) loop
6345 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6346 Next_Discriminant
(Old_Disc
);
6349 if Present
(Old_Disc
) then
6350 Set_Corresponding_Discriminant
6351 (New_Disc
, Old_Disc
);
6360 Next
(D_Constraint
);
6363 New_Disc
:= First_Discriminant
(Derived_Type
);
6364 while Present
(New_Disc
) loop
6365 if No
(Corresponding_Discriminant
(New_Disc
)) then
6367 ("new discriminant& must constrain old one", N
, New_Disc
);
6370 Subtypes_Statically_Compatible
6372 Etype
(Corresponding_Discriminant
(New_Disc
)))
6375 ("& not statically compatible with parent discriminant",
6379 Next_Discriminant
(New_Disc
);
6383 elsif Present
(Discriminant_Specifications
(N
)) then
6385 ("missing discriminant constraint in untagged derivation", N
);
6388 -- The entity chain of the derived type includes the new discriminants
6389 -- but shares operations with the parent.
6391 if Present
(Discriminant_Specifications
(N
)) then
6392 Old_Disc
:= First_Discriminant
(Parent_Type
);
6393 while Present
(Old_Disc
) loop
6394 if No
(Next_Entity
(Old_Disc
))
6395 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
6398 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
6402 Next_Discriminant
(Old_Disc
);
6406 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
6407 if Has_Discriminants
(Parent_Type
) then
6408 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6409 Set_Discriminant_Constraint
(
6410 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
6414 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
6416 Set_Has_Completion
(Derived_Type
);
6418 if Corr_Decl_Needed
then
6419 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
6420 Insert_After
(N
, Corr_Decl
);
6421 Analyze
(Corr_Decl
);
6422 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
6424 end Build_Derived_Concurrent_Type
;
6426 ------------------------------------
6427 -- Build_Derived_Enumeration_Type --
6428 ------------------------------------
6430 procedure Build_Derived_Enumeration_Type
6432 Parent_Type
: Entity_Id
;
6433 Derived_Type
: Entity_Id
)
6435 Loc
: constant Source_Ptr
:= Sloc
(N
);
6436 Def
: constant Node_Id
:= Type_Definition
(N
);
6437 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6438 Implicit_Base
: Entity_Id
;
6439 Literal
: Entity_Id
;
6440 New_Lit
: Entity_Id
;
6441 Literals_List
: List_Id
;
6442 Type_Decl
: Node_Id
;
6444 Rang_Expr
: Node_Id
;
6447 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6448 -- not have explicit literals lists we need to process types derived
6449 -- from them specially. This is handled by Derived_Standard_Character.
6450 -- If the parent type is a generic type, there are no literals either,
6451 -- and we construct the same skeletal representation as for the generic
6454 if Is_Standard_Character_Type
(Parent_Type
) then
6455 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
6457 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
6463 if Nkind
(Indic
) /= N_Subtype_Indication
then
6465 Make_Attribute_Reference
(Loc
,
6466 Attribute_Name
=> Name_First
,
6467 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6468 Set_Etype
(Lo
, Derived_Type
);
6471 Make_Attribute_Reference
(Loc
,
6472 Attribute_Name
=> Name_Last
,
6473 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6474 Set_Etype
(Hi
, Derived_Type
);
6476 Set_Scalar_Range
(Derived_Type
,
6482 -- Analyze subtype indication and verify compatibility
6483 -- with parent type.
6485 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
6486 Base_Type
(Parent_Type
)
6489 ("illegal constraint for formal discrete type", N
);
6495 -- If a constraint is present, analyze the bounds to catch
6496 -- premature usage of the derived literals.
6498 if Nkind
(Indic
) = N_Subtype_Indication
6499 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
6501 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
6502 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
6505 -- Introduce an implicit base type for the derived type even if there
6506 -- is no constraint attached to it, since this seems closer to the
6507 -- Ada semantics. Build a full type declaration tree for the derived
6508 -- type using the implicit base type as the defining identifier. The
6509 -- build a subtype declaration tree which applies the constraint (if
6510 -- any) have it replace the derived type declaration.
6512 Literal
:= First_Literal
(Parent_Type
);
6513 Literals_List
:= New_List
;
6514 while Present
(Literal
)
6515 and then Ekind
(Literal
) = E_Enumeration_Literal
6517 -- Literals of the derived type have the same representation as
6518 -- those of the parent type, but this representation can be
6519 -- overridden by an explicit representation clause. Indicate
6520 -- that there is no explicit representation given yet. These
6521 -- derived literals are implicit operations of the new type,
6522 -- and can be overridden by explicit ones.
6524 if Nkind
(Literal
) = N_Defining_Character_Literal
then
6526 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
6528 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
6531 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
6532 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
6533 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
6534 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
6535 Set_Alias
(New_Lit
, Literal
);
6536 Set_Is_Known_Valid
(New_Lit
, True);
6538 Append
(New_Lit
, Literals_List
);
6539 Next_Literal
(Literal
);
6543 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6544 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
6546 -- Indicate the proper nature of the derived type. This must be done
6547 -- before analysis of the literals, to recognize cases when a literal
6548 -- may be hidden by a previous explicit function definition (cf.
6551 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
6552 Set_Etype
(Derived_Type
, Implicit_Base
);
6555 Make_Full_Type_Declaration
(Loc
,
6556 Defining_Identifier
=> Implicit_Base
,
6557 Discriminant_Specifications
=> No_List
,
6559 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
6561 Mark_Rewrite_Insertion
(Type_Decl
);
6562 Insert_Before
(N
, Type_Decl
);
6563 Analyze
(Type_Decl
);
6565 -- The anonymous base now has a full declaration, but this base
6566 -- is not a first subtype.
6568 Set_Is_First_Subtype
(Implicit_Base
, False);
6570 -- After the implicit base is analyzed its Etype needs to be changed
6571 -- to reflect the fact that it is derived from the parent type which
6572 -- was ignored during analysis. We also set the size at this point.
6574 Set_Etype
(Implicit_Base
, Parent_Type
);
6576 Set_Size_Info
(Implicit_Base
, Parent_Type
);
6577 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
6578 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
6580 -- Copy other flags from parent type
6582 Set_Has_Non_Standard_Rep
6583 (Implicit_Base
, Has_Non_Standard_Rep
6585 Set_Has_Pragma_Ordered
6586 (Implicit_Base
, Has_Pragma_Ordered
6588 Set_Has_Delayed_Freeze
(Implicit_Base
);
6590 -- Process the subtype indication including a validation check on the
6591 -- constraint, if any. If a constraint is given, its bounds must be
6592 -- implicitly converted to the new type.
6594 if Nkind
(Indic
) = N_Subtype_Indication
then
6596 R
: constant Node_Id
:=
6597 Range_Expression
(Constraint
(Indic
));
6600 if Nkind
(R
) = N_Range
then
6601 Hi
:= Build_Scalar_Bound
6602 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
6603 Lo
:= Build_Scalar_Bound
6604 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
6607 -- Constraint is a Range attribute. Replace with explicit
6608 -- mention of the bounds of the prefix, which must be a
6611 Analyze
(Prefix
(R
));
6613 Convert_To
(Implicit_Base
,
6614 Make_Attribute_Reference
(Loc
,
6615 Attribute_Name
=> Name_Last
,
6617 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6620 Convert_To
(Implicit_Base
,
6621 Make_Attribute_Reference
(Loc
,
6622 Attribute_Name
=> Name_First
,
6624 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6631 (Type_High_Bound
(Parent_Type
),
6632 Parent_Type
, Implicit_Base
);
6635 (Type_Low_Bound
(Parent_Type
),
6636 Parent_Type
, Implicit_Base
);
6644 -- If we constructed a default range for the case where no range
6645 -- was given, then the expressions in the range must not freeze
6646 -- since they do not correspond to expressions in the source.
6648 if Nkind
(Indic
) /= N_Subtype_Indication
then
6649 Set_Must_Not_Freeze
(Lo
);
6650 Set_Must_Not_Freeze
(Hi
);
6651 Set_Must_Not_Freeze
(Rang_Expr
);
6655 Make_Subtype_Declaration
(Loc
,
6656 Defining_Identifier
=> Derived_Type
,
6657 Subtype_Indication
=>
6658 Make_Subtype_Indication
(Loc
,
6659 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6661 Make_Range_Constraint
(Loc
,
6662 Range_Expression
=> Rang_Expr
))));
6666 -- Propagate the aspects from the original type declaration to the
6667 -- declaration of the implicit base.
6669 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
6671 -- Apply a range check. Since this range expression doesn't have an
6672 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6675 if Nkind
(Indic
) = N_Subtype_Indication
then
6677 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
6678 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
6681 end Build_Derived_Enumeration_Type
;
6683 --------------------------------
6684 -- Build_Derived_Numeric_Type --
6685 --------------------------------
6687 procedure Build_Derived_Numeric_Type
6689 Parent_Type
: Entity_Id
;
6690 Derived_Type
: Entity_Id
)
6692 Loc
: constant Source_Ptr
:= Sloc
(N
);
6693 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6694 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6695 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6696 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
6697 N_Subtype_Indication
;
6698 Implicit_Base
: Entity_Id
;
6704 -- Process the subtype indication including a validation check on
6705 -- the constraint if any.
6707 Discard_Node
(Process_Subtype
(Indic
, N
));
6709 -- Introduce an implicit base type for the derived type even if there
6710 -- is no constraint attached to it, since this seems closer to the Ada
6714 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6716 Set_Etype
(Implicit_Base
, Parent_Base
);
6717 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6718 Set_Size_Info
(Implicit_Base
, Parent_Base
);
6719 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
6720 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
6721 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6723 -- Set RM Size for discrete type or decimal fixed-point type
6724 -- Ordinary fixed-point is excluded, why???
6726 if Is_Discrete_Type
(Parent_Base
)
6727 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
6729 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
6732 Set_Has_Delayed_Freeze
(Implicit_Base
);
6734 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
6735 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
6737 Set_Scalar_Range
(Implicit_Base
,
6742 if Has_Infinities
(Parent_Base
) then
6743 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
6746 -- The Derived_Type, which is the entity of the declaration, is a
6747 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6748 -- absence of an explicit constraint.
6750 Set_Etype
(Derived_Type
, Implicit_Base
);
6752 -- If we did not have a constraint, then the Ekind is set from the
6753 -- parent type (otherwise Process_Subtype has set the bounds)
6755 if No_Constraint
then
6756 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
6759 -- If we did not have a range constraint, then set the range from the
6760 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6762 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
6763 Set_Scalar_Range
(Derived_Type
,
6765 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6766 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6767 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6769 if Has_Infinities
(Parent_Type
) then
6770 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6773 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6776 Set_Is_Descendent_Of_Address
(Derived_Type
,
6777 Is_Descendent_Of_Address
(Parent_Type
));
6778 Set_Is_Descendent_Of_Address
(Implicit_Base
,
6779 Is_Descendent_Of_Address
(Parent_Type
));
6781 -- Set remaining type-specific fields, depending on numeric type
6783 if Is_Modular_Integer_Type
(Parent_Type
) then
6784 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6786 Set_Non_Binary_Modulus
6787 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6790 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6792 elsif Is_Floating_Point_Type
(Parent_Type
) then
6794 -- Digits of base type is always copied from the digits value of
6795 -- the parent base type, but the digits of the derived type will
6796 -- already have been set if there was a constraint present.
6798 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6799 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6801 if No_Constraint
then
6802 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6805 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6807 -- Small of base type and derived type are always copied from the
6808 -- parent base type, since smalls never change. The delta of the
6809 -- base type is also copied from the parent base type. However the
6810 -- delta of the derived type will have been set already if a
6811 -- constraint was present.
6813 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6814 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6815 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6817 if No_Constraint
then
6818 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6821 -- The scale and machine radix in the decimal case are always
6822 -- copied from the parent base type.
6824 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6825 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6826 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6828 Set_Machine_Radix_10
6829 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6830 Set_Machine_Radix_10
6831 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6833 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6835 if No_Constraint
then
6836 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6839 -- the analysis of the subtype_indication sets the
6840 -- digits value of the derived type.
6847 if Is_Integer_Type
(Parent_Type
) then
6848 Set_Has_Shift_Operator
6849 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
6852 -- The type of the bounds is that of the parent type, and they
6853 -- must be converted to the derived type.
6855 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6857 -- The implicit_base should be frozen when the derived type is frozen,
6858 -- but note that it is used in the conversions of the bounds. For fixed
6859 -- types we delay the determination of the bounds until the proper
6860 -- freezing point. For other numeric types this is rejected by GCC, for
6861 -- reasons that are currently unclear (???), so we choose to freeze the
6862 -- implicit base now. In the case of integers and floating point types
6863 -- this is harmless because subsequent representation clauses cannot
6864 -- affect anything, but it is still baffling that we cannot use the
6865 -- same mechanism for all derived numeric types.
6867 -- There is a further complication: actually some representation
6868 -- clauses can affect the implicit base type. For example, attribute
6869 -- definition clauses for stream-oriented attributes need to set the
6870 -- corresponding TSS entries on the base type, and this normally
6871 -- cannot be done after the base type is frozen, so the circuitry in
6872 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6873 -- and not use Set_TSS in this case.
6875 -- There are also consequences for the case of delayed representation
6876 -- aspects for some cases. For example, a Size aspect is delayed and
6877 -- should not be evaluated to the freeze point. This early freezing
6878 -- means that the size attribute evaluation happens too early???
6880 if Is_Fixed_Point_Type
(Parent_Type
) then
6881 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6883 Freeze_Before
(N
, Implicit_Base
);
6885 end Build_Derived_Numeric_Type
;
6887 --------------------------------
6888 -- Build_Derived_Private_Type --
6889 --------------------------------
6891 procedure Build_Derived_Private_Type
6893 Parent_Type
: Entity_Id
;
6894 Derived_Type
: Entity_Id
;
6895 Is_Completion
: Boolean;
6896 Derive_Subps
: Boolean := True)
6898 Loc
: constant Source_Ptr
:= Sloc
(N
);
6899 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6900 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
6901 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
6902 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
6905 procedure Build_Full_Derivation
;
6906 -- Build full derivation, i.e. derive from the full view
6908 procedure Copy_And_Build
;
6909 -- Copy derived type declaration, replace parent with its full view,
6910 -- and build derivation
6912 ---------------------------
6913 -- Build_Full_Derivation --
6914 ---------------------------
6916 procedure Build_Full_Derivation
is
6918 -- If parent scope is not open, install the declarations
6920 if not In_Open_Scopes
(Par_Scope
) then
6921 Install_Private_Declarations
(Par_Scope
);
6922 Install_Visible_Declarations
(Par_Scope
);
6924 Uninstall_Declarations
(Par_Scope
);
6926 -- If parent scope is open and in another unit, and parent has a
6927 -- completion, then the derivation is taking place in the visible
6928 -- part of a child unit. In that case retrieve the full view of
6929 -- the parent momentarily.
6931 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6932 Full_P
:= Full_View
(Parent_Type
);
6933 Exchange_Declarations
(Parent_Type
);
6935 Exchange_Declarations
(Full_P
);
6937 -- Otherwise it is a local derivation
6942 end Build_Full_Derivation
;
6944 --------------------
6945 -- Copy_And_Build --
6946 --------------------
6948 procedure Copy_And_Build
is
6949 Full_Parent
: Entity_Id
:= Parent_Type
;
6952 -- If the parent is itself derived from another private type,
6953 -- installing the private declarations has not affected its
6954 -- privacy status, so use its own full view explicitly.
6956 if Is_Private_Type
(Full_Parent
)
6957 and then Present
(Full_View
(Full_Parent
))
6959 Full_Parent
:= Full_View
(Full_Parent
);
6962 -- And its underlying full view if necessary
6964 if Is_Private_Type
(Full_Parent
)
6965 and then Present
(Underlying_Full_View
(Full_Parent
))
6967 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
6970 -- For record, access and most enumeration types, derivation from
6971 -- the full view requires a fully-fledged declaration. In the other
6972 -- cases, just use an itype.
6974 if Ekind
(Full_Parent
) in Record_Kind
6975 or else Ekind
(Full_Parent
) in Access_Kind
6977 (Ekind
(Full_Parent
) in Enumeration_Kind
6978 and then not Is_Standard_Character_Type
(Full_Parent
)
6979 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
6981 -- Copy and adjust declaration to provide a completion for what
6982 -- is originally a private declaration. Indicate that full view
6983 -- is internally generated.
6985 Set_Comes_From_Source
(Full_N
, False);
6986 Set_Comes_From_Source
(Full_Der
, False);
6987 Set_Parent
(Full_Der
, Full_N
);
6988 Set_Defining_Identifier
(Full_N
, Full_Der
);
6990 -- If there are no constraints, adjust the subtype mark
6992 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
6993 N_Subtype_Indication
6995 Set_Subtype_Indication
6996 (Type_Definition
(Full_N
),
6997 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
7000 Insert_After
(N
, Full_N
);
7002 -- Build full view of derived type from full view of parent which
7003 -- is now installed. Subprograms have been derived on the partial
7004 -- view, the completion does not derive them anew.
7006 if Ekind
(Full_Parent
) in Record_Kind
then
7008 -- If parent type is tagged, the completion inherits the proper
7009 -- primitive operations.
7011 if Is_Tagged_Type
(Parent_Type
) then
7012 Build_Derived_Record_Type
7013 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
7015 Build_Derived_Record_Type
7016 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
7021 (Full_N
, Full_Parent
, Full_Der
,
7022 Is_Completion
=> False, Derive_Subps
=> False);
7025 -- The full declaration has been introduced into the tree and
7026 -- processed in the step above. It should not be analyzed again
7027 -- (when encountered later in the current list of declarations)
7028 -- to prevent spurious name conflicts. The full entity remains
7031 Set_Analyzed
(Full_N
);
7035 Make_Defining_Identifier
(Sloc
(Derived_Type
),
7036 Chars
=> Chars
(Derived_Type
));
7037 Set_Is_Itype
(Full_Der
);
7038 Set_Associated_Node_For_Itype
(Full_Der
, N
);
7039 Set_Parent
(Full_Der
, N
);
7041 (N
, Full_Parent
, Full_Der
,
7042 Is_Completion
=> False, Derive_Subps
=> False);
7045 Set_Has_Private_Declaration
(Full_Der
);
7046 Set_Has_Private_Declaration
(Derived_Type
);
7048 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
7049 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
7050 Set_Has_Size_Clause
(Full_Der
, False);
7051 Set_Has_Alignment_Clause
(Full_Der
, False);
7052 Set_Has_Delayed_Freeze
(Full_Der
);
7053 Set_Is_Frozen
(Full_Der
, False);
7054 Set_Freeze_Node
(Full_Der
, Empty
);
7055 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
7056 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
7058 -- The convention on the base type may be set in the private part
7059 -- and not propagated to the subtype until later, so we obtain the
7060 -- convention from the base type of the parent.
7062 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
7065 -- Start of processing for Build_Derived_Private_Type
7068 if Is_Tagged_Type
(Parent_Type
) then
7069 Full_P
:= Full_View
(Parent_Type
);
7071 -- A type extension of a type with unknown discriminants is an
7072 -- indefinite type that the back-end cannot handle directly.
7073 -- We treat it as a private type, and build a completion that is
7074 -- derived from the full view of the parent, and hopefully has
7075 -- known discriminants.
7077 -- If the full view of the parent type has an underlying record view,
7078 -- use it to generate the underlying record view of this derived type
7079 -- (required for chains of derivations with unknown discriminants).
7081 -- Minor optimization: we avoid the generation of useless underlying
7082 -- record view entities if the private type declaration has unknown
7083 -- discriminants but its corresponding full view has no
7086 if Has_Unknown_Discriminants
(Parent_Type
)
7087 and then Present
(Full_P
)
7088 and then (Has_Discriminants
(Full_P
)
7089 or else Present
(Underlying_Record_View
(Full_P
)))
7090 and then not In_Open_Scopes
(Par_Scope
)
7091 and then Expander_Active
7094 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7095 New_Ext
: constant Node_Id
:=
7097 (Record_Extension_Part
(Type_Definition
(N
)));
7101 Build_Derived_Record_Type
7102 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7104 -- Build anonymous completion, as a derivation from the full
7105 -- view of the parent. This is not a completion in the usual
7106 -- sense, because the current type is not private.
7109 Make_Full_Type_Declaration
(Loc
,
7110 Defining_Identifier
=> Full_Der
,
7112 Make_Derived_Type_Definition
(Loc
,
7113 Subtype_Indication
=>
7115 (Subtype_Indication
(Type_Definition
(N
))),
7116 Record_Extension_Part
=> New_Ext
));
7118 -- If the parent type has an underlying record view, use it
7119 -- here to build the new underlying record view.
7121 if Present
(Underlying_Record_View
(Full_P
)) then
7123 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
7125 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
7126 Underlying_Record_View
(Full_P
));
7129 Install_Private_Declarations
(Par_Scope
);
7130 Install_Visible_Declarations
(Par_Scope
);
7131 Insert_Before
(N
, Decl
);
7133 -- Mark entity as an underlying record view before analysis,
7134 -- to avoid generating the list of its primitive operations
7135 -- (which is not really required for this entity) and thus
7136 -- prevent spurious errors associated with missing overriding
7137 -- of abstract primitives (overridden only for Derived_Type).
7139 Set_Ekind
(Full_Der
, E_Record_Type
);
7140 Set_Is_Underlying_Record_View
(Full_Der
);
7141 Set_Default_SSO
(Full_Der
);
7145 pragma Assert
(Has_Discriminants
(Full_Der
)
7146 and then not Has_Unknown_Discriminants
(Full_Der
));
7148 Uninstall_Declarations
(Par_Scope
);
7150 -- Freeze the underlying record view, to prevent generation of
7151 -- useless dispatching information, which is simply shared with
7152 -- the real derived type.
7154 Set_Is_Frozen
(Full_Der
);
7156 -- If the derived type has access discriminants, create
7157 -- references to their anonymous types now, to prevent
7158 -- back-end problems when their first use is in generated
7159 -- bodies of primitives.
7165 E
:= First_Entity
(Full_Der
);
7167 while Present
(E
) loop
7168 if Ekind
(E
) = E_Discriminant
7169 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
7171 Build_Itype_Reference
(Etype
(E
), Decl
);
7178 -- Set up links between real entity and underlying record view
7180 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
7181 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
7184 -- If discriminants are known, build derived record
7187 Build_Derived_Record_Type
7188 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7193 elsif Has_Discriminants
(Parent_Type
) then
7195 -- Build partial view of derived type from partial view of parent.
7196 -- This must be done before building the full derivation because the
7197 -- second derivation will modify the discriminants of the first and
7198 -- the discriminants are chained with the rest of the components in
7199 -- the full derivation.
7201 Build_Derived_Record_Type
7202 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7204 -- Build the full derivation if this is not the anonymous derived
7205 -- base type created by Build_Derived_Record_Type in the constrained
7206 -- case (see point 5. of its head comment) since we build it for the
7207 -- derived subtype. And skip it for protected types altogether, as
7208 -- gigi does not use these types directly.
7210 if Present
(Full_View
(Parent_Type
))
7211 and then not Is_Itype
(Derived_Type
)
7212 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7215 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7217 Last_Discr
: Entity_Id
;
7220 -- If this is not a completion, construct the implicit full
7221 -- view by deriving from the full view of the parent type.
7222 -- But if this is a completion, the derived private type
7223 -- being built is a full view and the full derivation can
7224 -- only be its underlying full view.
7226 Build_Full_Derivation
;
7228 if not Is_Completion
then
7229 Set_Full_View
(Derived_Type
, Full_Der
);
7231 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7234 if not Is_Base_Type
(Derived_Type
) then
7235 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7238 -- Copy the discriminant list from full view to the partial
7239 -- view (base type and its subtype). Gigi requires that the
7240 -- partial and full views have the same discriminants.
7242 -- Note that since the partial view points to discriminants
7243 -- in the full view, their scope will be that of the full
7244 -- view. This might cause some front end problems and need
7247 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7248 Set_First_Entity
(Der_Base
, Discr
);
7251 Last_Discr
:= Discr
;
7252 Next_Discriminant
(Discr
);
7253 exit when No
(Discr
);
7256 Set_Last_Entity
(Der_Base
, Last_Discr
);
7257 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7258 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7260 Set_Stored_Constraint
7261 (Full_Der
, Stored_Constraint
(Derived_Type
));
7265 elsif Present
(Full_View
(Parent_Type
))
7266 and then Has_Discriminants
(Full_View
(Parent_Type
))
7268 if Has_Unknown_Discriminants
(Parent_Type
)
7269 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7270 N_Subtype_Indication
7273 ("cannot constrain type with unknown discriminants",
7274 Subtype_Indication
(Type_Definition
(N
)));
7278 -- If this is not a completion, construct the implicit full view by
7279 -- deriving from the full view of the parent type. But if this is a
7280 -- completion, the derived private type being built is a full view
7281 -- and the full derivation can only be its underlying full view.
7283 Build_Full_Derivation
;
7285 if not Is_Completion
then
7286 Set_Full_View
(Derived_Type
, Full_Der
);
7288 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7291 -- In any case, the primitive operations are inherited from the
7292 -- parent type, not from the internal full view.
7294 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7296 if Derive_Subps
then
7297 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7300 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7302 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7305 -- Untagged type, No discriminants on either view
7307 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7308 N_Subtype_Indication
7311 ("illegal constraint on type without discriminants", N
);
7314 if Present
(Discriminant_Specifications
(N
))
7315 and then Present
(Full_View
(Parent_Type
))
7316 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7318 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7321 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7322 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7323 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7324 Set_Has_Controlled_Component
7325 (Derived_Type
, Has_Controlled_Component
7328 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7330 if not Is_Controlled
(Parent_Type
) then
7331 Set_Finalize_Storage_Only
7332 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7335 -- If this is not a completion, construct the implicit full view by
7336 -- deriving from the full view of the parent type.
7338 -- ??? If the parent is untagged private and its completion is
7339 -- tagged, this mechanism will not work because we cannot derive from
7340 -- the tagged full view unless we have an extension.
7342 if Present
(Full_View
(Parent_Type
))
7343 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7344 and then not Is_Completion
7346 Build_Full_Derivation
;
7347 Set_Full_View
(Derived_Type
, Full_Der
);
7351 Set_Has_Unknown_Discriminants
(Derived_Type
,
7352 Has_Unknown_Discriminants
(Parent_Type
));
7354 if Is_Private_Type
(Derived_Type
) then
7355 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7358 -- If the parent base type is in scope, add the derived type to its
7359 -- list of private dependents, because its full view may become
7360 -- visible subsequently (in a nested private part, a body, or in a
7361 -- further child unit).
7363 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7364 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
7366 -- Check for unusual case where a type completed by a private
7367 -- derivation occurs within a package nested in a child unit, and
7368 -- the parent is declared in an ancestor.
7370 if Is_Child_Unit
(Scope
(Current_Scope
))
7371 and then Is_Completion
7372 and then In_Private_Part
(Current_Scope
)
7373 and then Scope
(Parent_Type
) /= Current_Scope
7375 -- Note that if the parent has a completion in the private part,
7376 -- (which is itself a derivation from some other private type)
7377 -- it is that completion that is visible, there is no full view
7378 -- available, and no special processing is needed.
7380 and then Present
(Full_View
(Parent_Type
))
7382 -- In this case, the full view of the parent type will become
7383 -- visible in the body of the enclosing child, and only then will
7384 -- the current type be possibly non-private. Build an underlying
7385 -- full view that will be installed when the enclosing child body
7388 if Present
(Underlying_Full_View
(Derived_Type
)) then
7389 Full_Der
:= Underlying_Full_View
(Derived_Type
);
7391 Build_Full_Derivation
;
7392 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7395 -- The full view will be used to swap entities on entry/exit to
7396 -- the body, and must appear in the entity list for the package.
7398 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
7401 end Build_Derived_Private_Type
;
7403 -------------------------------
7404 -- Build_Derived_Record_Type --
7405 -------------------------------
7409 -- Ideally we would like to use the same model of type derivation for
7410 -- tagged and untagged record types. Unfortunately this is not quite
7411 -- possible because the semantics of representation clauses is different
7412 -- for tagged and untagged records under inheritance. Consider the
7415 -- type R (...) is [tagged] record ... end record;
7416 -- type T (...) is new R (...) [with ...];
7418 -- The representation clauses for T can specify a completely different
7419 -- record layout from R's. Hence the same component can be placed in two
7420 -- very different positions in objects of type T and R. If R and T are
7421 -- tagged types, representation clauses for T can only specify the layout
7422 -- of non inherited components, thus components that are common in R and T
7423 -- have the same position in objects of type R and T.
7425 -- This has two implications. The first is that the entire tree for R's
7426 -- declaration needs to be copied for T in the untagged case, so that T
7427 -- can be viewed as a record type of its own with its own representation
7428 -- clauses. The second implication is the way we handle discriminants.
7429 -- Specifically, in the untagged case we need a way to communicate to Gigi
7430 -- what are the real discriminants in the record, while for the semantics
7431 -- we need to consider those introduced by the user to rename the
7432 -- discriminants in the parent type. This is handled by introducing the
7433 -- notion of stored discriminants. See below for more.
7435 -- Fortunately the way regular components are inherited can be handled in
7436 -- the same way in tagged and untagged types.
7438 -- To complicate things a bit more the private view of a private extension
7439 -- cannot be handled in the same way as the full view (for one thing the
7440 -- semantic rules are somewhat different). We will explain what differs
7443 -- 2. DISCRIMINANTS UNDER INHERITANCE
7445 -- The semantic rules governing the discriminants of derived types are
7448 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7449 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7451 -- If parent type has discriminants, then the discriminants that are
7452 -- declared in the derived type are [3.4 (11)]:
7454 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7457 -- o Otherwise, each discriminant of the parent type (implicitly declared
7458 -- in the same order with the same specifications). In this case, the
7459 -- discriminants are said to be "inherited", or if unknown in the parent
7460 -- are also unknown in the derived type.
7462 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7464 -- o The parent subtype must be constrained;
7466 -- o If the parent type is not a tagged type, then each discriminant of
7467 -- the derived type must be used in the constraint defining a parent
7468 -- subtype. [Implementation note: This ensures that the new discriminant
7469 -- can share storage with an existing discriminant.]
7471 -- For the derived type each discriminant of the parent type is either
7472 -- inherited, constrained to equal some new discriminant of the derived
7473 -- type, or constrained to the value of an expression.
7475 -- When inherited or constrained to equal some new discriminant, the
7476 -- parent discriminant and the discriminant of the derived type are said
7479 -- If a discriminant of the parent type is constrained to a specific value
7480 -- in the derived type definition, then the discriminant is said to be
7481 -- "specified" by that derived type definition.
7483 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7485 -- We have spoken about stored discriminants in point 1 (introduction)
7486 -- above. There are two sort of stored discriminants: implicit and
7487 -- explicit. As long as the derived type inherits the same discriminants as
7488 -- the root record type, stored discriminants are the same as regular
7489 -- discriminants, and are said to be implicit. However, if any discriminant
7490 -- in the root type was renamed in the derived type, then the derived
7491 -- type will contain explicit stored discriminants. Explicit stored
7492 -- discriminants are discriminants in addition to the semantically visible
7493 -- discriminants defined for the derived type. Stored discriminants are
7494 -- used by Gigi to figure out what are the physical discriminants in
7495 -- objects of the derived type (see precise definition in einfo.ads).
7496 -- As an example, consider the following:
7498 -- type R (D1, D2, D3 : Int) is record ... end record;
7499 -- type T1 is new R;
7500 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7501 -- type T3 is new T2;
7502 -- type T4 (Y : Int) is new T3 (Y, 99);
7504 -- The following table summarizes the discriminants and stored
7505 -- discriminants in R and T1 through T4.
7507 -- Type Discrim Stored Discrim Comment
7508 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7509 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7510 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7511 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7512 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7514 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7515 -- find the corresponding discriminant in the parent type, while
7516 -- Original_Record_Component (abbreviated ORC below), the actual physical
7517 -- component that is renamed. Finally the field Is_Completely_Hidden
7518 -- (abbreviated ICH below) is set for all explicit stored discriminants
7519 -- (see einfo.ads for more info). For the above example this gives:
7521 -- Discrim CD ORC ICH
7522 -- ^^^^^^^ ^^ ^^^ ^^^
7523 -- D1 in R empty itself no
7524 -- D2 in R empty itself no
7525 -- D3 in R empty itself no
7527 -- D1 in T1 D1 in R itself no
7528 -- D2 in T1 D2 in R itself no
7529 -- D3 in T1 D3 in R itself no
7531 -- X1 in T2 D3 in T1 D3 in T2 no
7532 -- X2 in T2 D1 in T1 D1 in T2 no
7533 -- D1 in T2 empty itself yes
7534 -- D2 in T2 empty itself yes
7535 -- D3 in T2 empty itself yes
7537 -- X1 in T3 X1 in T2 D3 in T3 no
7538 -- X2 in T3 X2 in T2 D1 in T3 no
7539 -- D1 in T3 empty itself yes
7540 -- D2 in T3 empty itself yes
7541 -- D3 in T3 empty itself yes
7543 -- Y in T4 X1 in T3 D3 in T3 no
7544 -- D1 in T3 empty itself yes
7545 -- D2 in T3 empty itself yes
7546 -- D3 in T3 empty itself yes
7548 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7550 -- Type derivation for tagged types is fairly straightforward. If no
7551 -- discriminants are specified by the derived type, these are inherited
7552 -- from the parent. No explicit stored discriminants are ever necessary.
7553 -- The only manipulation that is done to the tree is that of adding a
7554 -- _parent field with parent type and constrained to the same constraint
7555 -- specified for the parent in the derived type definition. For instance:
7557 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7558 -- type T1 is new R with null record;
7559 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7561 -- are changed into:
7563 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7564 -- _parent : R (D1, D2, D3);
7567 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7568 -- _parent : T1 (X2, 88, X1);
7571 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7572 -- ORC and ICH fields are:
7574 -- Discrim CD ORC ICH
7575 -- ^^^^^^^ ^^ ^^^ ^^^
7576 -- D1 in R empty itself no
7577 -- D2 in R empty itself no
7578 -- D3 in R empty itself no
7580 -- D1 in T1 D1 in R D1 in R no
7581 -- D2 in T1 D2 in R D2 in R no
7582 -- D3 in T1 D3 in R D3 in R no
7584 -- X1 in T2 D3 in T1 D3 in R no
7585 -- X2 in T2 D1 in T1 D1 in R no
7587 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7589 -- Regardless of whether we dealing with a tagged or untagged type
7590 -- we will transform all derived type declarations of the form
7592 -- type T is new R (...) [with ...];
7594 -- subtype S is R (...);
7595 -- type T is new S [with ...];
7597 -- type BT is new R [with ...];
7598 -- subtype T is BT (...);
7600 -- That is, the base derived type is constrained only if it has no
7601 -- discriminants. The reason for doing this is that GNAT's semantic model
7602 -- assumes that a base type with discriminants is unconstrained.
7604 -- Note that, strictly speaking, the above transformation is not always
7605 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7607 -- procedure B34011A is
7608 -- type REC (D : integer := 0) is record
7613 -- type T6 is new Rec;
7614 -- function F return T6;
7619 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7622 -- The definition of Q6.U is illegal. However transforming Q6.U into
7624 -- type BaseU is new T6;
7625 -- subtype U is BaseU (Q6.F.I)
7627 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7628 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7629 -- the transformation described above.
7631 -- There is another instance where the above transformation is incorrect.
7635 -- type Base (D : Integer) is tagged null record;
7636 -- procedure P (X : Base);
7638 -- type Der is new Base (2) with null record;
7639 -- procedure P (X : Der);
7642 -- Then the above transformation turns this into
7644 -- type Der_Base is new Base with null record;
7645 -- -- procedure P (X : Base) is implicitly inherited here
7646 -- -- as procedure P (X : Der_Base).
7648 -- subtype Der is Der_Base (2);
7649 -- procedure P (X : Der);
7650 -- -- The overriding of P (X : Der_Base) is illegal since we
7651 -- -- have a parameter conformance problem.
7653 -- To get around this problem, after having semantically processed Der_Base
7654 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7655 -- Discriminant_Constraint from Der so that when parameter conformance is
7656 -- checked when P is overridden, no semantic errors are flagged.
7658 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7660 -- Regardless of whether we are dealing with a tagged or untagged type
7661 -- we will transform all derived type declarations of the form
7663 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7664 -- type T is new R [with ...];
7666 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7668 -- The reason for such transformation is that it allows us to implement a
7669 -- very clean form of component inheritance as explained below.
7671 -- Note that this transformation is not achieved by direct tree rewriting
7672 -- and manipulation, but rather by redoing the semantic actions that the
7673 -- above transformation will entail. This is done directly in routine
7674 -- Inherit_Components.
7676 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7678 -- In both tagged and untagged derived types, regular non discriminant
7679 -- components are inherited in the derived type from the parent type. In
7680 -- the absence of discriminants component, inheritance is straightforward
7681 -- as components can simply be copied from the parent.
7683 -- If the parent has discriminants, inheriting components constrained with
7684 -- these discriminants requires caution. Consider the following example:
7686 -- type R (D1, D2 : Positive) is [tagged] record
7687 -- S : String (D1 .. D2);
7690 -- type T1 is new R [with null record];
7691 -- type T2 (X : positive) is new R (1, X) [with null record];
7693 -- As explained in 6. above, T1 is rewritten as
7694 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7695 -- which makes the treatment for T1 and T2 identical.
7697 -- What we want when inheriting S, is that references to D1 and D2 in R are
7698 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7699 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7700 -- with either discriminant references in the derived type or expressions.
7701 -- This replacement is achieved as follows: before inheriting R's
7702 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7703 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7704 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7705 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7706 -- by String (1 .. X).
7708 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7710 -- We explain here the rules governing private type extensions relevant to
7711 -- type derivation. These rules are explained on the following example:
7713 -- type D [(...)] is new A [(...)] with private; <-- partial view
7714 -- type D [(...)] is new P [(...)] with null record; <-- full view
7716 -- Type A is called the ancestor subtype of the private extension.
7717 -- Type P is the parent type of the full view of the private extension. It
7718 -- must be A or a type derived from A.
7720 -- The rules concerning the discriminants of private type extensions are
7723 -- o If a private extension inherits known discriminants from the ancestor
7724 -- subtype, then the full view must also inherit its discriminants from
7725 -- the ancestor subtype and the parent subtype of the full view must be
7726 -- constrained if and only if the ancestor subtype is constrained.
7728 -- o If a partial view has unknown discriminants, then the full view may
7729 -- define a definite or an indefinite subtype, with or without
7732 -- o If a partial view has neither known nor unknown discriminants, then
7733 -- the full view must define a definite subtype.
7735 -- o If the ancestor subtype of a private extension has constrained
7736 -- discriminants, then the parent subtype of the full view must impose a
7737 -- statically matching constraint on those discriminants.
7739 -- This means that only the following forms of private extensions are
7742 -- type D is new A with private; <-- partial view
7743 -- type D is new P with null record; <-- full view
7745 -- If A has no discriminants than P has no discriminants, otherwise P must
7746 -- inherit A's discriminants.
7748 -- type D is new A (...) with private; <-- partial view
7749 -- type D is new P (:::) with null record; <-- full view
7751 -- P must inherit A's discriminants and (...) and (:::) must statically
7754 -- subtype A is R (...);
7755 -- type D is new A with private; <-- partial view
7756 -- type D is new P with null record; <-- full view
7758 -- P must have inherited R's discriminants and must be derived from A or
7759 -- any of its subtypes.
7761 -- type D (..) is new A with private; <-- partial view
7762 -- type D (..) is new P [(:::)] with null record; <-- full view
7764 -- No specific constraints on P's discriminants or constraint (:::).
7765 -- Note that A can be unconstrained, but the parent subtype P must either
7766 -- be constrained or (:::) must be present.
7768 -- type D (..) is new A [(...)] with private; <-- partial view
7769 -- type D (..) is new P [(:::)] with null record; <-- full view
7771 -- P's constraints on A's discriminants must statically match those
7772 -- imposed by (...).
7774 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7776 -- The full view of a private extension is handled exactly as described
7777 -- above. The model chose for the private view of a private extension is
7778 -- the same for what concerns discriminants (i.e. they receive the same
7779 -- treatment as in the tagged case). However, the private view of the
7780 -- private extension always inherits the components of the parent base,
7781 -- without replacing any discriminant reference. Strictly speaking this is
7782 -- incorrect. However, Gigi never uses this view to generate code so this
7783 -- is a purely semantic issue. In theory, a set of transformations similar
7784 -- to those given in 5. and 6. above could be applied to private views of
7785 -- private extensions to have the same model of component inheritance as
7786 -- for non private extensions. However, this is not done because it would
7787 -- further complicate private type processing. Semantically speaking, this
7788 -- leaves us in an uncomfortable situation. As an example consider:
7791 -- type R (D : integer) is tagged record
7792 -- S : String (1 .. D);
7794 -- procedure P (X : R);
7795 -- type T is new R (1) with private;
7797 -- type T is new R (1) with null record;
7800 -- This is transformed into:
7803 -- type R (D : integer) is tagged record
7804 -- S : String (1 .. D);
7806 -- procedure P (X : R);
7807 -- type T is new R (1) with private;
7809 -- type BaseT is new R with null record;
7810 -- subtype T is BaseT (1);
7813 -- (strictly speaking the above is incorrect Ada)
7815 -- From the semantic standpoint the private view of private extension T
7816 -- should be flagged as constrained since one can clearly have
7820 -- in a unit withing Pack. However, when deriving subprograms for the
7821 -- private view of private extension T, T must be seen as unconstrained
7822 -- since T has discriminants (this is a constraint of the current
7823 -- subprogram derivation model). Thus, when processing the private view of
7824 -- a private extension such as T, we first mark T as unconstrained, we
7825 -- process it, we perform program derivation and just before returning from
7826 -- Build_Derived_Record_Type we mark T as constrained.
7828 -- ??? Are there are other uncomfortable cases that we will have to
7831 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7833 -- Types that are derived from a visible record type and have a private
7834 -- extension present other peculiarities. They behave mostly like private
7835 -- types, but if they have primitive operations defined, these will not
7836 -- have the proper signatures for further inheritance, because other
7837 -- primitive operations will use the implicit base that we define for
7838 -- private derivations below. This affect subprogram inheritance (see
7839 -- Derive_Subprograms for details). We also derive the implicit base from
7840 -- the base type of the full view, so that the implicit base is a record
7841 -- type and not another private type, This avoids infinite loops.
7843 procedure Build_Derived_Record_Type
7845 Parent_Type
: Entity_Id
;
7846 Derived_Type
: Entity_Id
;
7847 Derive_Subps
: Boolean := True)
7849 Discriminant_Specs
: constant Boolean :=
7850 Present
(Discriminant_Specifications
(N
));
7851 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7852 Loc
: constant Source_Ptr
:= Sloc
(N
);
7853 Private_Extension
: constant Boolean :=
7854 Nkind
(N
) = N_Private_Extension_Declaration
;
7855 Assoc_List
: Elist_Id
;
7856 Constraint_Present
: Boolean;
7858 Discrim
: Entity_Id
;
7860 Inherit_Discrims
: Boolean := False;
7861 Last_Discrim
: Entity_Id
;
7862 New_Base
: Entity_Id
;
7864 New_Discrs
: Elist_Id
;
7865 New_Indic
: Node_Id
;
7866 Parent_Base
: Entity_Id
;
7867 Save_Etype
: Entity_Id
;
7868 Save_Discr_Constr
: Elist_Id
;
7869 Save_Next_Entity
: Entity_Id
;
7872 Discs
: Elist_Id
:= New_Elmt_List
;
7873 -- An empty Discs list means that there were no constraints in the
7874 -- subtype indication or that there was an error processing it.
7877 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7878 and then Present
(Full_View
(Parent_Type
))
7879 and then Has_Discriminants
(Parent_Type
)
7881 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7883 Parent_Base
:= Base_Type
(Parent_Type
);
7886 -- AI05-0115 : if this is a derivation from a private type in some
7887 -- other scope that may lead to invisible components for the derived
7888 -- type, mark it accordingly.
7890 if Is_Private_Type
(Parent_Type
) then
7891 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7894 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7895 and then In_Private_Part
(Scope
(Parent_Type
))
7900 Set_Has_Private_Ancestor
(Derived_Type
);
7904 Set_Has_Private_Ancestor
7905 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7908 -- Before we start the previously documented transformations, here is
7909 -- little fix for size and alignment of tagged types. Normally when we
7910 -- derive type D from type P, we copy the size and alignment of P as the
7911 -- default for D, and in the absence of explicit representation clauses
7912 -- for D, the size and alignment are indeed the same as the parent.
7914 -- But this is wrong for tagged types, since fields may be added, and
7915 -- the default size may need to be larger, and the default alignment may
7916 -- need to be larger.
7918 -- We therefore reset the size and alignment fields in the tagged case.
7919 -- Note that the size and alignment will in any case be at least as
7920 -- large as the parent type (since the derived type has a copy of the
7921 -- parent type in the _parent field)
7923 -- The type is also marked as being tagged here, which is needed when
7924 -- processing components with a self-referential anonymous access type
7925 -- in the call to Check_Anonymous_Access_Components below. Note that
7926 -- this flag is also set later on for completeness.
7929 Set_Is_Tagged_Type
(Derived_Type
);
7930 Init_Size_Align
(Derived_Type
);
7933 -- STEP 0a: figure out what kind of derived type declaration we have
7935 if Private_Extension
then
7937 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7938 Set_Default_SSO
(Derived_Type
);
7941 Type_Def
:= Type_Definition
(N
);
7943 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7944 -- Parent_Base can be a private type or private extension. However,
7945 -- for tagged types with an extension the newly added fields are
7946 -- visible and hence the Derived_Type is always an E_Record_Type.
7947 -- (except that the parent may have its own private fields).
7948 -- For untagged types we preserve the Ekind of the Parent_Base.
7950 if Present
(Record_Extension_Part
(Type_Def
)) then
7951 Set_Ekind
(Derived_Type
, E_Record_Type
);
7952 Set_Default_SSO
(Derived_Type
);
7954 -- Create internal access types for components with anonymous
7957 if Ada_Version
>= Ada_2005
then
7958 Check_Anonymous_Access_Components
7959 (N
, Derived_Type
, Derived_Type
,
7960 Component_List
(Record_Extension_Part
(Type_Def
)));
7964 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7968 -- Indic can either be an N_Identifier if the subtype indication
7969 -- contains no constraint or an N_Subtype_Indication if the subtype
7970 -- indication has a constraint.
7972 Indic
:= Subtype_Indication
(Type_Def
);
7973 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7975 -- Check that the type has visible discriminants. The type may be
7976 -- a private type with unknown discriminants whose full view has
7977 -- discriminants which are invisible.
7979 if Constraint_Present
then
7980 if not Has_Discriminants
(Parent_Base
)
7982 (Has_Unknown_Discriminants
(Parent_Base
)
7983 and then Is_Private_Type
(Parent_Base
))
7986 ("invalid constraint: type has no discriminant",
7987 Constraint
(Indic
));
7989 Constraint_Present
:= False;
7990 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7992 elsif Is_Constrained
(Parent_Type
) then
7994 ("invalid constraint: parent type is already constrained",
7995 Constraint
(Indic
));
7997 Constraint_Present
:= False;
7998 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8002 -- STEP 0b: If needed, apply transformation given in point 5. above
8004 if not Private_Extension
8005 and then Has_Discriminants
(Parent_Type
)
8006 and then not Discriminant_Specs
8007 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
8009 -- First, we must analyze the constraint (see comment in point 5.)
8010 -- The constraint may come from the subtype indication of the full
8013 if Constraint_Present
then
8014 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8016 -- If there is no explicit constraint, there might be one that is
8017 -- inherited from a constrained parent type. In that case verify that
8018 -- it conforms to the constraint in the partial view. In perverse
8019 -- cases the parent subtypes of the partial and full view can have
8020 -- different constraints.
8022 elsif Present
(Stored_Constraint
(Parent_Type
)) then
8023 New_Discrs
:= Stored_Constraint
(Parent_Type
);
8026 New_Discrs
:= No_Elist
;
8029 if Has_Discriminants
(Derived_Type
)
8030 and then Has_Private_Declaration
(Derived_Type
)
8031 and then Present
(Discriminant_Constraint
(Derived_Type
))
8032 and then Present
(New_Discrs
)
8034 -- Verify that constraints of the full view statically match
8035 -- those given in the partial view.
8041 C1
:= First_Elmt
(New_Discrs
);
8042 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
8043 while Present
(C1
) and then Present
(C2
) loop
8044 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8046 (Is_OK_Static_Expression
(Node
(C1
))
8047 and then Is_OK_Static_Expression
(Node
(C2
))
8049 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
8054 if Constraint_Present
then
8056 ("constraint not conformant to previous declaration",
8060 ("constraint of full view is incompatible "
8061 & "with partial view", N
);
8071 -- Insert and analyze the declaration for the unconstrained base type
8073 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
8076 Make_Full_Type_Declaration
(Loc
,
8077 Defining_Identifier
=> New_Base
,
8079 Make_Derived_Type_Definition
(Loc
,
8080 Abstract_Present
=> Abstract_Present
(Type_Def
),
8081 Limited_Present
=> Limited_Present
(Type_Def
),
8082 Subtype_Indication
=>
8083 New_Occurrence_Of
(Parent_Base
, Loc
),
8084 Record_Extension_Part
=>
8085 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
8086 Interface_List
=> Interface_List
(Type_Def
)));
8088 Set_Parent
(New_Decl
, Parent
(N
));
8089 Mark_Rewrite_Insertion
(New_Decl
);
8090 Insert_Before
(N
, New_Decl
);
8092 -- In the extension case, make sure ancestor is frozen appropriately
8093 -- (see also non-discriminated case below).
8095 if Present
(Record_Extension_Part
(Type_Def
))
8096 or else Is_Interface
(Parent_Base
)
8098 Freeze_Before
(New_Decl
, Parent_Type
);
8101 -- Note that this call passes False for the Derive_Subps parameter
8102 -- because subprogram derivation is deferred until after creating
8103 -- the subtype (see below).
8106 (New_Decl
, Parent_Base
, New_Base
,
8107 Is_Completion
=> False, Derive_Subps
=> False);
8109 -- ??? This needs re-examination to determine whether the
8110 -- above call can simply be replaced by a call to Analyze.
8112 Set_Analyzed
(New_Decl
);
8114 -- Insert and analyze the declaration for the constrained subtype
8116 if Constraint_Present
then
8118 Make_Subtype_Indication
(Loc
,
8119 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8120 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
8124 Constr_List
: constant List_Id
:= New_List
;
8129 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
8130 while Present
(C
) loop
8133 -- It is safe here to call New_Copy_Tree since we called
8134 -- Force_Evaluation on each constraint previously
8135 -- in Build_Discriminant_Constraints.
8137 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
8143 Make_Subtype_Indication
(Loc
,
8144 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8146 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
8151 Make_Subtype_Declaration
(Loc
,
8152 Defining_Identifier
=> Derived_Type
,
8153 Subtype_Indication
=> New_Indic
));
8157 -- Derivation of subprograms must be delayed until the full subtype
8158 -- has been established, to ensure proper overriding of subprograms
8159 -- inherited by full types. If the derivations occurred as part of
8160 -- the call to Build_Derived_Type above, then the check for type
8161 -- conformance would fail because earlier primitive subprograms
8162 -- could still refer to the full type prior the change to the new
8163 -- subtype and hence would not match the new base type created here.
8164 -- Subprograms are not derived, however, when Derive_Subps is False
8165 -- (since otherwise there could be redundant derivations).
8167 if Derive_Subps
then
8168 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8171 -- For tagged types the Discriminant_Constraint of the new base itype
8172 -- is inherited from the first subtype so that no subtype conformance
8173 -- problem arise when the first subtype overrides primitive
8174 -- operations inherited by the implicit base type.
8177 Set_Discriminant_Constraint
8178 (New_Base
, Discriminant_Constraint
(Derived_Type
));
8184 -- If we get here Derived_Type will have no discriminants or it will be
8185 -- a discriminated unconstrained base type.
8187 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8191 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8192 -- The declaration of a specific descendant of an interface type
8193 -- freezes the interface type (RM 13.14).
8195 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
8196 Freeze_Before
(N
, Parent_Type
);
8199 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8200 -- cannot be declared at a deeper level than its parent type is
8201 -- removed. The check on derivation within a generic body is also
8202 -- relaxed, but there's a restriction that a derived tagged type
8203 -- cannot be declared in a generic body if it's derived directly
8204 -- or indirectly from a formal type of that generic.
8206 if Ada_Version
>= Ada_2005
then
8207 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
8209 Ancestor_Type
: Entity_Id
;
8212 -- Check to see if any ancestor of the derived type is a
8215 Ancestor_Type
:= Parent_Type
;
8216 while not Is_Generic_Type
(Ancestor_Type
)
8217 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8219 Ancestor_Type
:= Etype
(Ancestor_Type
);
8222 -- If the derived type does have a formal type as an
8223 -- ancestor, then it's an error if the derived type is
8224 -- declared within the body of the generic unit that
8225 -- declares the formal type in its generic formal part. It's
8226 -- sufficient to check whether the ancestor type is declared
8227 -- inside the same generic body as the derived type (such as
8228 -- within a nested generic spec), in which case the
8229 -- derivation is legal. If the formal type is declared
8230 -- outside of that generic body, then it's guaranteed that
8231 -- the derived type is declared within the generic body of
8232 -- the generic unit declaring the formal type.
8234 if Is_Generic_Type
(Ancestor_Type
)
8235 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8236 Enclosing_Generic_Body
(Derived_Type
)
8239 ("parent type of& must not be descendant of formal type"
8240 & " of an enclosing generic body",
8241 Indic
, Derived_Type
);
8246 elsif Type_Access_Level
(Derived_Type
) /=
8247 Type_Access_Level
(Parent_Type
)
8248 and then not Is_Generic_Type
(Derived_Type
)
8250 if Is_Controlled
(Parent_Type
) then
8252 ("controlled type must be declared at the library level",
8256 ("type extension at deeper accessibility level than parent",
8262 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8265 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8268 ("parent type of& must not be outside generic body"
8270 Indic
, Derived_Type
);
8276 -- Ada 2005 (AI-251)
8278 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8280 -- "The declaration of a specific descendant of an interface type
8281 -- freezes the interface type" (RM 13.14).
8286 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8287 Iface
:= First
(Interface_List
(Type_Def
));
8288 while Present
(Iface
) loop
8289 Freeze_Before
(N
, Etype
(Iface
));
8296 -- STEP 1b : preliminary cleanup of the full view of private types
8298 -- If the type is already marked as having discriminants, then it's the
8299 -- completion of a private type or private extension and we need to
8300 -- retain the discriminants from the partial view if the current
8301 -- declaration has Discriminant_Specifications so that we can verify
8302 -- conformance. However, we must remove any existing components that
8303 -- were inherited from the parent (and attached in Copy_And_Swap)
8304 -- because the full type inherits all appropriate components anyway, and
8305 -- we do not want the partial view's components interfering.
8307 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8308 Discrim
:= First_Discriminant
(Derived_Type
);
8310 Last_Discrim
:= Discrim
;
8311 Next_Discriminant
(Discrim
);
8312 exit when No
(Discrim
);
8315 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8317 -- In all other cases wipe out the list of inherited components (even
8318 -- inherited discriminants), it will be properly rebuilt here.
8321 Set_First_Entity
(Derived_Type
, Empty
);
8322 Set_Last_Entity
(Derived_Type
, Empty
);
8325 -- STEP 1c: Initialize some flags for the Derived_Type
8327 -- The following flags must be initialized here so that
8328 -- Process_Discriminants can check that discriminants of tagged types do
8329 -- not have a default initial value and that access discriminants are
8330 -- only specified for limited records. For completeness, these flags are
8331 -- also initialized along with all the other flags below.
8333 -- AI-419: Limitedness is not inherited from an interface parent, so to
8334 -- be limited in that case the type must be explicitly declared as
8335 -- limited. However, task and protected interfaces are always limited.
8337 if Limited_Present
(Type_Def
) then
8338 Set_Is_Limited_Record
(Derived_Type
);
8340 elsif Is_Limited_Record
(Parent_Type
)
8341 or else (Present
(Full_View
(Parent_Type
))
8342 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8344 if not Is_Interface
(Parent_Type
)
8345 or else Is_Synchronized_Interface
(Parent_Type
)
8346 or else Is_Protected_Interface
(Parent_Type
)
8347 or else Is_Task_Interface
(Parent_Type
)
8349 Set_Is_Limited_Record
(Derived_Type
);
8353 -- STEP 2a: process discriminants of derived type if any
8355 Push_Scope
(Derived_Type
);
8357 if Discriminant_Specs
then
8358 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8360 -- The following call initializes fields Has_Discriminants and
8361 -- Discriminant_Constraint, unless we are processing the completion
8362 -- of a private type declaration.
8364 Check_Or_Process_Discriminants
(N
, Derived_Type
);
8366 -- For untagged types, the constraint on the Parent_Type must be
8367 -- present and is used to rename the discriminants.
8369 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
8370 Error_Msg_N
("untagged parent must have discriminants", Indic
);
8372 elsif not Is_Tagged
and then not Constraint_Present
then
8374 ("discriminant constraint needed for derived untagged records",
8377 -- Otherwise the parent subtype must be constrained unless we have a
8378 -- private extension.
8380 elsif not Constraint_Present
8381 and then not Private_Extension
8382 and then not Is_Constrained
(Parent_Type
)
8385 ("unconstrained type not allowed in this context", Indic
);
8387 elsif Constraint_Present
then
8388 -- The following call sets the field Corresponding_Discriminant
8389 -- for the discriminants in the Derived_Type.
8391 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
8393 -- For untagged types all new discriminants must rename
8394 -- discriminants in the parent. For private extensions new
8395 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8397 Discrim
:= First_Discriminant
(Derived_Type
);
8398 while Present
(Discrim
) loop
8400 and then No
(Corresponding_Discriminant
(Discrim
))
8403 ("new discriminants must constrain old ones", Discrim
);
8405 elsif Private_Extension
8406 and then Present
(Corresponding_Discriminant
(Discrim
))
8409 ("only static constraints allowed for parent"
8410 & " discriminants in the partial view", Indic
);
8414 -- If a new discriminant is used in the constraint, then its
8415 -- subtype must be statically compatible with the parent
8416 -- discriminant's subtype (3.7(15)).
8418 -- However, if the record contains an array constrained by
8419 -- the discriminant but with some different bound, the compiler
8420 -- attemps to create a smaller range for the discriminant type.
8421 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8422 -- the discriminant type is a scalar type, the check must use
8423 -- the original discriminant type in the parent declaration.
8426 Corr_Disc
: constant Entity_Id
:=
8427 Corresponding_Discriminant
(Discrim
);
8428 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
8429 Corr_Type
: Entity_Id
;
8432 if Present
(Corr_Disc
) then
8433 if Is_Scalar_Type
(Disc_Type
) then
8435 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
8437 Corr_Type
:= Etype
(Corr_Disc
);
8441 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
8444 ("subtype must be compatible "
8445 & "with parent discriminant",
8451 Next_Discriminant
(Discrim
);
8454 -- Check whether the constraints of the full view statically
8455 -- match those imposed by the parent subtype [7.3(13)].
8457 if Present
(Stored_Constraint
(Derived_Type
)) then
8462 C1
:= First_Elmt
(Discs
);
8463 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
8464 while Present
(C1
) and then Present
(C2
) loop
8466 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8469 ("not conformant with previous declaration",
8480 -- STEP 2b: No new discriminants, inherit discriminants if any
8483 if Private_Extension
then
8484 Set_Has_Unknown_Discriminants
8486 Has_Unknown_Discriminants
(Parent_Type
)
8487 or else Unknown_Discriminants_Present
(N
));
8489 -- The partial view of the parent may have unknown discriminants,
8490 -- but if the full view has discriminants and the parent type is
8491 -- in scope they must be inherited.
8493 elsif Has_Unknown_Discriminants
(Parent_Type
)
8495 (not Has_Discriminants
(Parent_Type
)
8496 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
8498 Set_Has_Unknown_Discriminants
(Derived_Type
);
8501 if not Has_Unknown_Discriminants
(Derived_Type
)
8502 and then not Has_Unknown_Discriminants
(Parent_Base
)
8503 and then Has_Discriminants
(Parent_Type
)
8505 Inherit_Discrims
:= True;
8506 Set_Has_Discriminants
8507 (Derived_Type
, True);
8508 Set_Discriminant_Constraint
8509 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
8512 -- The following test is true for private types (remember
8513 -- transformation 5. is not applied to those) and in an error
8516 if Constraint_Present
then
8517 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8520 -- For now mark a new derived type as constrained only if it has no
8521 -- discriminants. At the end of Build_Derived_Record_Type we properly
8522 -- set this flag in the case of private extensions. See comments in
8523 -- point 9. just before body of Build_Derived_Record_Type.
8527 not (Inherit_Discrims
8528 or else Has_Unknown_Discriminants
(Derived_Type
)));
8531 -- STEP 3: initialize fields of derived type
8533 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
8534 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
8536 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8537 -- but cannot be interfaces
8539 if not Private_Extension
8540 and then Ekind
(Derived_Type
) /= E_Private_Type
8541 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
8543 if Interface_Present
(Type_Def
) then
8544 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
8547 Set_Interfaces
(Derived_Type
, No_Elist
);
8550 -- Fields inherited from the Parent_Type
8552 Set_Has_Specified_Layout
8553 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
8554 Set_Is_Limited_Composite
8555 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
8556 Set_Is_Private_Composite
8557 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
8559 if Is_Tagged_Type
(Parent_Type
) then
8560 Set_No_Tagged_Streams_Pragma
8561 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8564 -- Fields inherited from the Parent_Base
8566 Set_Has_Controlled_Component
8567 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
8568 Set_Has_Non_Standard_Rep
8569 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8570 Set_Has_Primitive_Operations
8571 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
8573 -- Fields inherited from the Parent_Base in the non-private case
8575 if Ekind
(Derived_Type
) = E_Record_Type
then
8576 Set_Has_Complex_Representation
8577 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
8580 -- Fields inherited from the Parent_Base for record types
8582 if Is_Record_Type
(Derived_Type
) then
8584 Parent_Full
: Entity_Id
;
8587 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8588 -- Parent_Base can be a private type or private extension. Go
8589 -- to the full view here to get the E_Record_Type specific flags.
8591 if Present
(Full_View
(Parent_Base
)) then
8592 Parent_Full
:= Full_View
(Parent_Base
);
8594 Parent_Full
:= Parent_Base
;
8597 Set_OK_To_Reorder_Components
8598 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
8602 -- Set fields for private derived types
8604 if Is_Private_Type
(Derived_Type
) then
8605 Set_Depends_On_Private
(Derived_Type
, True);
8606 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
8608 -- Inherit fields from non private record types. If this is the
8609 -- completion of a derivation from a private type, the parent itself
8610 -- is private, and the attributes come from its full view, which must
8614 if Is_Private_Type
(Parent_Base
)
8615 and then not Is_Record_Type
(Parent_Base
)
8617 Set_Component_Alignment
8618 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
8620 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
8622 Set_Component_Alignment
8623 (Derived_Type
, Component_Alignment
(Parent_Base
));
8625 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
8629 -- Set fields for tagged types
8632 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
8634 -- All tagged types defined in Ada.Finalization are controlled
8636 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
8637 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
8638 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
8640 Set_Is_Controlled
(Derived_Type
);
8642 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
8645 -- Minor optimization: there is no need to generate the class-wide
8646 -- entity associated with an underlying record view.
8648 if not Is_Underlying_Record_View
(Derived_Type
) then
8649 Make_Class_Wide_Type
(Derived_Type
);
8652 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
8654 if Has_Discriminants
(Derived_Type
)
8655 and then Constraint_Present
8657 Set_Stored_Constraint
8658 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
8661 if Ada_Version
>= Ada_2005
then
8663 Ifaces_List
: Elist_Id
;
8666 -- Checks rules 3.9.4 (13/2 and 14/2)
8668 if Comes_From_Source
(Derived_Type
)
8669 and then not Is_Private_Type
(Derived_Type
)
8670 and then Is_Interface
(Parent_Type
)
8671 and then not Is_Interface
(Derived_Type
)
8673 if Is_Task_Interface
(Parent_Type
) then
8675 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8678 elsif Is_Protected_Interface
(Parent_Type
) then
8680 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8685 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8687 Check_Interfaces
(N
, Type_Def
);
8689 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8690 -- not already in the parents.
8694 Ifaces_List
=> Ifaces_List
,
8695 Exclude_Parents
=> True);
8697 Set_Interfaces
(Derived_Type
, Ifaces_List
);
8699 -- If the derived type is the anonymous type created for
8700 -- a declaration whose parent has a constraint, propagate
8701 -- the interface list to the source type. This must be done
8702 -- prior to the completion of the analysis of the source type
8703 -- because the components in the extension may contain current
8704 -- instances whose legality depends on some ancestor.
8706 if Is_Itype
(Derived_Type
) then
8708 Def
: constant Node_Id
:=
8709 Associated_Node_For_Itype
(Derived_Type
);
8712 and then Nkind
(Def
) = N_Full_Type_Declaration
8715 (Defining_Identifier
(Def
), Ifaces_List
);
8720 -- Propagate inherited invariant information of parents
8723 if Ada_Version
>= Ada_2012
8724 and then not Is_Interface
(Derived_Type
)
8726 if Has_Inheritable_Invariants
(Parent_Type
) then
8727 Set_Has_Invariants
(Derived_Type
);
8728 Set_Has_Inheritable_Invariants
(Derived_Type
);
8730 elsif not Is_Empty_Elmt_List
(Ifaces_List
) then
8735 AI
:= First_Elmt
(Ifaces_List
);
8736 while Present
(AI
) loop
8737 if Has_Inheritable_Invariants
(Node
(AI
)) then
8738 Set_Has_Invariants
(Derived_Type
);
8739 Set_Has_Inheritable_Invariants
(Derived_Type
);
8750 -- A type extension is automatically Ghost when one of its
8751 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8752 -- also inherited when the parent type is Ghost, but this is
8753 -- done in Build_Derived_Type as the mechanism also handles
8754 -- untagged derivations.
8756 if Implements_Ghost_Interface
(Derived_Type
) then
8757 Set_Is_Ghost_Entity
(Derived_Type
);
8763 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
8764 Set_Has_Non_Standard_Rep
8765 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8768 -- STEP 4: Inherit components from the parent base and constrain them.
8769 -- Apply the second transformation described in point 6. above.
8771 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
8772 or else not Has_Discriminants
(Parent_Type
)
8773 or else not Is_Constrained
(Parent_Type
)
8777 Constrs
:= Discriminant_Constraint
(Parent_Type
);
8782 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
8784 -- STEP 5a: Copy the parent record declaration for untagged types
8786 if not Is_Tagged
then
8788 -- Discriminant_Constraint (Derived_Type) has been properly
8789 -- constructed. Save it and temporarily set it to Empty because we
8790 -- do not want the call to New_Copy_Tree below to mess this list.
8792 if Has_Discriminants
(Derived_Type
) then
8793 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
8794 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
8796 Save_Discr_Constr
:= No_Elist
;
8799 -- Save the Etype field of Derived_Type. It is correctly set now,
8800 -- but the call to New_Copy tree may remap it to point to itself,
8801 -- which is not what we want. Ditto for the Next_Entity field.
8803 Save_Etype
:= Etype
(Derived_Type
);
8804 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
8806 -- Assoc_List maps all stored discriminants in the Parent_Base to
8807 -- stored discriminants in the Derived_Type. It is fundamental that
8808 -- no types or itypes with discriminants other than the stored
8809 -- discriminants appear in the entities declared inside
8810 -- Derived_Type, since the back end cannot deal with it.
8814 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
8816 -- Restore the fields saved prior to the New_Copy_Tree call
8817 -- and compute the stored constraint.
8819 Set_Etype
(Derived_Type
, Save_Etype
);
8820 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
8822 if Has_Discriminants
(Derived_Type
) then
8823 Set_Discriminant_Constraint
8824 (Derived_Type
, Save_Discr_Constr
);
8825 Set_Stored_Constraint
8826 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
8827 Replace_Components
(Derived_Type
, New_Decl
);
8828 Set_Has_Implicit_Dereference
8829 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
8832 -- Insert the new derived type declaration
8834 Rewrite
(N
, New_Decl
);
8836 -- STEP 5b: Complete the processing for record extensions in generics
8838 -- There is no completion for record extensions declared in the
8839 -- parameter part of a generic, so we need to complete processing for
8840 -- these generic record extensions here. The Record_Type_Definition call
8841 -- will change the Ekind of the components from E_Void to E_Component.
8843 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
8844 Record_Type_Definition
(Empty
, Derived_Type
);
8846 -- STEP 5c: Process the record extension for non private tagged types
8848 elsif not Private_Extension
then
8849 Expand_Record_Extension
(Derived_Type
, Type_Def
);
8851 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8852 -- derived type to propagate some semantic information. This led
8853 -- to other ASIS failures and has been removed.
8855 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8856 -- implemented interfaces if we are in expansion mode
8859 and then Has_Interfaces
(Derived_Type
)
8861 Add_Interface_Tag_Components
(N
, Derived_Type
);
8864 -- Analyze the record extension
8866 Record_Type_Definition
8867 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8872 -- Nothing else to do if there is an error in the derivation.
8873 -- An unusual case: the full view may be derived from a type in an
8874 -- instance, when the partial view was used illegally as an actual
8875 -- in that instance, leading to a circular definition.
8877 if Etype
(Derived_Type
) = Any_Type
8878 or else Etype
(Parent_Type
) = Derived_Type
8883 -- Set delayed freeze and then derive subprograms, we need to do
8884 -- this in this order so that derived subprograms inherit the
8885 -- derived freeze if necessary.
8887 Set_Has_Delayed_Freeze
(Derived_Type
);
8889 if Derive_Subps
then
8890 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8893 -- If we have a private extension which defines a constrained derived
8894 -- type mark as constrained here after we have derived subprograms. See
8895 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8897 if Private_Extension
and then Inherit_Discrims
then
8898 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
8899 Set_Is_Constrained
(Derived_Type
, True);
8900 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
8902 elsif Is_Constrained
(Parent_Type
) then
8904 (Derived_Type
, True);
8905 Set_Discriminant_Constraint
8906 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
8910 -- Update the class-wide type, which shares the now-completed entity
8911 -- list with its specific type. In case of underlying record views,
8912 -- we do not generate the corresponding class wide entity.
8915 and then not Is_Underlying_Record_View
(Derived_Type
)
8918 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8920 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8923 Check_Function_Writable_Actuals
(N
);
8924 end Build_Derived_Record_Type
;
8926 ------------------------
8927 -- Build_Derived_Type --
8928 ------------------------
8930 procedure Build_Derived_Type
8932 Parent_Type
: Entity_Id
;
8933 Derived_Type
: Entity_Id
;
8934 Is_Completion
: Boolean;
8935 Derive_Subps
: Boolean := True)
8937 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8940 -- Set common attributes
8942 Set_Scope
(Derived_Type
, Current_Scope
);
8944 Set_Etype
(Derived_Type
, Parent_Base
);
8945 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8946 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8947 Set_Has_Protected
(Derived_Type
, Has_Protected
(Parent_Base
));
8949 Set_Size_Info
(Derived_Type
, Parent_Type
);
8950 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8951 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8952 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8953 Set_Is_Volatile
(Derived_Type
, Is_Volatile
(Parent_Type
));
8955 if Is_Tagged_Type
(Derived_Type
) then
8956 Set_No_Tagged_Streams_Pragma
8957 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8960 -- If the parent has primitive routines, set the derived type link
8962 if Has_Primitive_Operations
(Parent_Type
) then
8963 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
8966 -- If the parent type is a private subtype, the convention on the base
8967 -- type may be set in the private part, and not propagated to the
8968 -- subtype until later, so we obtain the convention from the base type.
8970 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8972 -- Set SSO default for record or array type
8974 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
8975 and then Is_Base_Type
(Derived_Type
)
8977 Set_Default_SSO
(Derived_Type
);
8980 -- Propagate invariant information. The new type has invariants if
8981 -- they are inherited from the parent type, and these invariants can
8982 -- be further inherited, so both flags are set.
8984 -- We similarly inherit predicates
8986 if Has_Predicates
(Parent_Type
) then
8987 Set_Has_Predicates
(Derived_Type
);
8990 -- The derived type inherits the representation clauses of the parent
8992 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
8994 -- Propagate the attributes related to pragma Default_Initial_Condition
8995 -- from the parent type to the private extension. A derived type always
8996 -- inherits the default initial condition flag from the parent type. If
8997 -- the derived type carries its own Default_Initial_Condition pragma,
8998 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8999 -- mutually exclusive.
9001 Propagate_Default_Init_Cond_Attributes
9002 (From_Typ
=> Parent_Type
,
9003 To_Typ
=> Derived_Type
,
9004 Parent_To_Derivation
=> True);
9006 -- If the parent type has delayed rep aspects, then mark the derived
9007 -- type as possibly inheriting a delayed rep aspect.
9009 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
9010 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
9013 -- Propagate the attributes related to pragma Ghost from the parent type
9014 -- to the derived type or type extension (SPARK RM 6.9(9)).
9016 if Is_Ghost_Entity
(Parent_Type
) then
9017 Set_Is_Ghost_Entity
(Derived_Type
);
9020 -- Type dependent processing
9022 case Ekind
(Parent_Type
) is
9023 when Numeric_Kind
=>
9024 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
9027 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
9031 | Class_Wide_Kind
=>
9032 Build_Derived_Record_Type
9033 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
9036 when Enumeration_Kind
=>
9037 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
9040 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
9042 when Incomplete_Or_Private_Kind
=>
9043 Build_Derived_Private_Type
9044 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
9046 -- For discriminated types, the derivation includes deriving
9047 -- primitive operations. For others it is done below.
9049 if Is_Tagged_Type
(Parent_Type
)
9050 or else Has_Discriminants
(Parent_Type
)
9051 or else (Present
(Full_View
(Parent_Type
))
9052 and then Has_Discriminants
(Full_View
(Parent_Type
)))
9057 when Concurrent_Kind
=>
9058 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
9061 raise Program_Error
;
9064 -- Nothing more to do if some error occurred
9066 if Etype
(Derived_Type
) = Any_Type
then
9070 -- Set delayed freeze and then derive subprograms, we need to do this
9071 -- in this order so that derived subprograms inherit the derived freeze
9074 Set_Has_Delayed_Freeze
(Derived_Type
);
9076 if Derive_Subps
then
9077 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9080 Set_Has_Primitive_Operations
9081 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
9082 end Build_Derived_Type
;
9084 -----------------------
9085 -- Build_Discriminal --
9086 -----------------------
9088 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
9089 D_Minal
: Entity_Id
;
9090 CR_Disc
: Entity_Id
;
9093 -- A discriminal has the same name as the discriminant
9095 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9097 Set_Ekind
(D_Minal
, E_In_Parameter
);
9098 Set_Mechanism
(D_Minal
, Default_Mechanism
);
9099 Set_Etype
(D_Minal
, Etype
(Discrim
));
9100 Set_Scope
(D_Minal
, Current_Scope
);
9102 Set_Discriminal
(Discrim
, D_Minal
);
9103 Set_Discriminal_Link
(D_Minal
, Discrim
);
9105 -- For task types, build at once the discriminants of the corresponding
9106 -- record, which are needed if discriminants are used in entry defaults
9107 -- and in family bounds.
9109 if Is_Concurrent_Type
(Current_Scope
)
9111 Is_Limited_Type
(Current_Scope
)
9113 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9115 Set_Ekind
(CR_Disc
, E_In_Parameter
);
9116 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
9117 Set_Etype
(CR_Disc
, Etype
(Discrim
));
9118 Set_Scope
(CR_Disc
, Current_Scope
);
9119 Set_Discriminal_Link
(CR_Disc
, Discrim
);
9120 Set_CR_Discriminant
(Discrim
, CR_Disc
);
9122 end Build_Discriminal
;
9124 ------------------------------------
9125 -- Build_Discriminant_Constraints --
9126 ------------------------------------
9128 function Build_Discriminant_Constraints
9131 Derived_Def
: Boolean := False) return Elist_Id
9133 C
: constant Node_Id
:= Constraint
(Def
);
9134 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
9136 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
9137 -- Saves the expression corresponding to a given discriminant in T
9139 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
9140 -- Return the Position number within array Discr_Expr of a discriminant
9141 -- D within the discriminant list of the discriminated type T.
9143 procedure Process_Discriminant_Expression
9146 -- If this is a discriminant constraint on a partial view, do not
9147 -- generate an overflow check on the discriminant expression. The check
9148 -- will be generated when constraining the full view. Otherwise the
9149 -- backend creates duplicate symbols for the temporaries corresponding
9150 -- to the expressions to be checked, causing spurious assembler errors.
9156 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
9160 Disc
:= First_Discriminant
(T
);
9161 for J
in Discr_Expr
'Range loop
9166 Next_Discriminant
(Disc
);
9169 -- Note: Since this function is called on discriminants that are
9170 -- known to belong to the discriminated type, falling through the
9171 -- loop with no match signals an internal compiler error.
9173 raise Program_Error
;
9176 -------------------------------------
9177 -- Process_Discriminant_Expression --
9178 -------------------------------------
9180 procedure Process_Discriminant_Expression
9184 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
9187 -- If this is a discriminant constraint on a partial view, do
9188 -- not generate an overflow on the discriminant expression. The
9189 -- check will be generated when constraining the full view.
9191 if Is_Private_Type
(T
)
9192 and then Present
(Full_View
(T
))
9194 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
9196 Analyze_And_Resolve
(Expr
, BDT
);
9198 end Process_Discriminant_Expression
;
9200 -- Declarations local to Build_Discriminant_Constraints
9204 Elist
: constant Elist_Id
:= New_Elmt_List
;
9212 Discrim_Present
: Boolean := False;
9214 -- Start of processing for Build_Discriminant_Constraints
9217 -- The following loop will process positional associations only.
9218 -- For a positional association, the (single) discriminant is
9219 -- implicitly specified by position, in textual order (RM 3.7.2).
9221 Discr
:= First_Discriminant
(T
);
9222 Constr
:= First
(Constraints
(C
));
9223 for D
in Discr_Expr
'Range loop
9224 exit when Nkind
(Constr
) = N_Discriminant_Association
;
9227 Error_Msg_N
("too few discriminants given in constraint", C
);
9228 return New_Elmt_List
;
9230 elsif Nkind
(Constr
) = N_Range
9231 or else (Nkind
(Constr
) = N_Attribute_Reference
9232 and then Attribute_Name
(Constr
) = Name_Range
)
9235 ("a range is not a valid discriminant constraint", Constr
);
9236 Discr_Expr
(D
) := Error
;
9239 Process_Discriminant_Expression
(Constr
, Discr
);
9240 Discr_Expr
(D
) := Constr
;
9243 Next_Discriminant
(Discr
);
9247 if No
(Discr
) and then Present
(Constr
) then
9248 Error_Msg_N
("too many discriminants given in constraint", Constr
);
9249 return New_Elmt_List
;
9252 -- Named associations can be given in any order, but if both positional
9253 -- and named associations are used in the same discriminant constraint,
9254 -- then positional associations must occur first, at their normal
9255 -- position. Hence once a named association is used, the rest of the
9256 -- discriminant constraint must use only named associations.
9258 while Present
(Constr
) loop
9260 -- Positional association forbidden after a named association
9262 if Nkind
(Constr
) /= N_Discriminant_Association
then
9263 Error_Msg_N
("positional association follows named one", Constr
);
9264 return New_Elmt_List
;
9266 -- Otherwise it is a named association
9269 -- E records the type of the discriminants in the named
9270 -- association. All the discriminants specified in the same name
9271 -- association must have the same type.
9275 -- Search the list of discriminants in T to see if the simple name
9276 -- given in the constraint matches any of them.
9278 Id
:= First
(Selector_Names
(Constr
));
9279 while Present
(Id
) loop
9282 -- If Original_Discriminant is present, we are processing a
9283 -- generic instantiation and this is an instance node. We need
9284 -- to find the name of the corresponding discriminant in the
9285 -- actual record type T and not the name of the discriminant in
9286 -- the generic formal. Example:
9289 -- type G (D : int) is private;
9291 -- subtype W is G (D => 1);
9293 -- type Rec (X : int) is record ... end record;
9294 -- package Q is new P (G => Rec);
9296 -- At the point of the instantiation, formal type G is Rec
9297 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9298 -- which really looks like "subtype W is Rec (D => 1);" at
9299 -- the point of instantiation, we want to find the discriminant
9300 -- that corresponds to D in Rec, i.e. X.
9302 if Present
(Original_Discriminant
(Id
))
9303 and then In_Instance
9305 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9309 Discr
:= First_Discriminant
(T
);
9310 while Present
(Discr
) loop
9311 if Chars
(Discr
) = Chars
(Id
) then
9316 Next_Discriminant
(Discr
);
9320 Error_Msg_N
("& does not match any discriminant", Id
);
9321 return New_Elmt_List
;
9323 -- If the parent type is a generic formal, preserve the
9324 -- name of the discriminant for subsequent instances.
9325 -- see comment at the beginning of this if statement.
9327 elsif Is_Generic_Type
(Root_Type
(T
)) then
9328 Set_Original_Discriminant
(Id
, Discr
);
9332 Position
:= Pos_Of_Discr
(T
, Discr
);
9334 if Present
(Discr_Expr
(Position
)) then
9335 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9338 -- Each discriminant specified in the same named association
9339 -- must be associated with a separate copy of the
9340 -- corresponding expression.
9342 if Present
(Next
(Id
)) then
9343 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9344 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9346 Expr
:= Expression
(Constr
);
9349 Discr_Expr
(Position
) := Expr
;
9350 Process_Discriminant_Expression
(Expr
, Discr
);
9353 -- A discriminant association with more than one discriminant
9354 -- name is only allowed if the named discriminants are all of
9355 -- the same type (RM 3.7.1(8)).
9358 E
:= Base_Type
(Etype
(Discr
));
9360 elsif Base_Type
(Etype
(Discr
)) /= E
then
9362 ("all discriminants in an association " &
9363 "must have the same type", Id
);
9373 -- A discriminant constraint must provide exactly one value for each
9374 -- discriminant of the type (RM 3.7.1(8)).
9376 for J
in Discr_Expr
'Range loop
9377 if No
(Discr_Expr
(J
)) then
9378 Error_Msg_N
("too few discriminants given in constraint", C
);
9379 return New_Elmt_List
;
9383 -- Determine if there are discriminant expressions in the constraint
9385 for J
in Discr_Expr
'Range loop
9386 if Denotes_Discriminant
9387 (Discr_Expr
(J
), Check_Concurrent
=> True)
9389 Discrim_Present
:= True;
9393 -- Build an element list consisting of the expressions given in the
9394 -- discriminant constraint and apply the appropriate checks. The list
9395 -- is constructed after resolving any named discriminant associations
9396 -- and therefore the expressions appear in the textual order of the
9399 Discr
:= First_Discriminant
(T
);
9400 for J
in Discr_Expr
'Range loop
9401 if Discr_Expr
(J
) /= Error
then
9402 Append_Elmt
(Discr_Expr
(J
), Elist
);
9404 -- If any of the discriminant constraints is given by a
9405 -- discriminant and we are in a derived type declaration we
9406 -- have a discriminant renaming. Establish link between new
9407 -- and old discriminant.
9409 if Denotes_Discriminant
(Discr_Expr
(J
)) then
9411 Set_Corresponding_Discriminant
9412 (Entity
(Discr_Expr
(J
)), Discr
);
9415 -- Force the evaluation of non-discriminant expressions.
9416 -- If we have found a discriminant in the constraint 3.4(26)
9417 -- and 3.8(18) demand that no range checks are performed are
9418 -- after evaluation. If the constraint is for a component
9419 -- definition that has a per-object constraint, expressions are
9420 -- evaluated but not checked either. In all other cases perform
9424 if Discrim_Present
then
9427 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
9429 Has_Per_Object_Constraint
9430 (Defining_Identifier
(Parent
(Parent
(Def
))))
9434 elsif Is_Access_Type
(Etype
(Discr
)) then
9435 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
9438 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
9441 Force_Evaluation
(Discr_Expr
(J
));
9444 -- Check that the designated type of an access discriminant's
9445 -- expression is not a class-wide type unless the discriminant's
9446 -- designated type is also class-wide.
9448 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
9449 and then not Is_Class_Wide_Type
9450 (Designated_Type
(Etype
(Discr
)))
9451 and then Etype
(Discr_Expr
(J
)) /= Any_Type
9452 and then Is_Class_Wide_Type
9453 (Designated_Type
(Etype
(Discr_Expr
(J
))))
9455 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
9457 elsif Is_Access_Type
(Etype
(Discr
))
9458 and then not Is_Access_Constant
(Etype
(Discr
))
9459 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
9460 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
9463 ("constraint for discriminant& must be access to variable",
9468 Next_Discriminant
(Discr
);
9472 end Build_Discriminant_Constraints
;
9474 ---------------------------------
9475 -- Build_Discriminated_Subtype --
9476 ---------------------------------
9478 procedure Build_Discriminated_Subtype
9482 Related_Nod
: Node_Id
;
9483 For_Access
: Boolean := False)
9485 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
9486 Constrained
: constant Boolean :=
9488 and then not Is_Empty_Elmt_List
(Elist
)
9489 and then not Is_Class_Wide_Type
(T
))
9490 or else Is_Constrained
(T
);
9493 if Ekind
(T
) = E_Record_Type
then
9495 Set_Ekind
(Def_Id
, E_Private_Subtype
);
9496 Set_Is_For_Access_Subtype
(Def_Id
, True);
9498 Set_Ekind
(Def_Id
, E_Record_Subtype
);
9501 -- Inherit preelaboration flag from base, for types for which it
9502 -- may have been set: records, private types, protected types.
9504 Set_Known_To_Have_Preelab_Init
9505 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9507 elsif Ekind
(T
) = E_Task_Type
then
9508 Set_Ekind
(Def_Id
, E_Task_Subtype
);
9510 elsif Ekind
(T
) = E_Protected_Type
then
9511 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
9512 Set_Known_To_Have_Preelab_Init
9513 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9515 elsif Is_Private_Type
(T
) then
9516 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
9517 Set_Known_To_Have_Preelab_Init
9518 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9520 -- Private subtypes may have private dependents
9522 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
9524 elsif Is_Class_Wide_Type
(T
) then
9525 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
9528 -- Incomplete type. Attach subtype to list of dependents, to be
9529 -- completed with full view of parent type, unless is it the
9530 -- designated subtype of a record component within an init_proc.
9531 -- This last case arises for a component of an access type whose
9532 -- designated type is incomplete (e.g. a Taft Amendment type).
9533 -- The designated subtype is within an inner scope, and needs no
9534 -- elaboration, because only the access type is needed in the
9535 -- initialization procedure.
9537 Set_Ekind
(Def_Id
, Ekind
(T
));
9539 if For_Access
and then Within_Init_Proc
then
9542 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
9546 Set_Etype
(Def_Id
, T
);
9547 Init_Size_Align
(Def_Id
);
9548 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
9549 Set_Is_Constrained
(Def_Id
, Constrained
);
9551 Set_First_Entity
(Def_Id
, First_Entity
(T
));
9552 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
9553 Set_Has_Implicit_Dereference
9554 (Def_Id
, Has_Implicit_Dereference
(T
));
9556 -- If the subtype is the completion of a private declaration, there may
9557 -- have been representation clauses for the partial view, and they must
9558 -- be preserved. Build_Derived_Type chains the inherited clauses with
9559 -- the ones appearing on the extension. If this comes from a subtype
9560 -- declaration, all clauses are inherited.
9562 if No
(First_Rep_Item
(Def_Id
)) then
9563 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
9566 if Is_Tagged_Type
(T
) then
9567 Set_Is_Tagged_Type
(Def_Id
);
9568 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
9569 Make_Class_Wide_Type
(Def_Id
);
9572 Set_Stored_Constraint
(Def_Id
, No_Elist
);
9575 Set_Discriminant_Constraint
(Def_Id
, Elist
);
9576 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
9579 if Is_Tagged_Type
(T
) then
9581 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9582 -- concurrent record type (which has the list of primitive
9585 if Ada_Version
>= Ada_2005
9586 and then Is_Concurrent_Type
(T
)
9588 Set_Corresponding_Record_Type
(Def_Id
,
9589 Corresponding_Record_Type
(T
));
9591 Set_Direct_Primitive_Operations
(Def_Id
,
9592 Direct_Primitive_Operations
(T
));
9595 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
9598 -- Subtypes introduced by component declarations do not need to be
9599 -- marked as delayed, and do not get freeze nodes, because the semantics
9600 -- verifies that the parents of the subtypes are frozen before the
9601 -- enclosing record is frozen.
9603 if not Is_Type
(Scope
(Def_Id
)) then
9604 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
9606 if Is_Private_Type
(T
)
9607 and then Present
(Full_View
(T
))
9609 Conditional_Delay
(Def_Id
, Full_View
(T
));
9611 Conditional_Delay
(Def_Id
, T
);
9615 if Is_Record_Type
(T
) then
9616 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
9619 and then not Is_Empty_Elmt_List
(Elist
)
9620 and then not For_Access
9622 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
9623 elsif not For_Access
then
9624 Set_Cloned_Subtype
(Def_Id
, T
);
9627 end Build_Discriminated_Subtype
;
9629 ---------------------------
9630 -- Build_Itype_Reference --
9631 ---------------------------
9633 procedure Build_Itype_Reference
9637 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
9640 -- Itype references are only created for use by the back-end
9642 if Inside_A_Generic
then
9645 Set_Itype
(IR
, Ityp
);
9646 Insert_After
(Nod
, IR
);
9648 end Build_Itype_Reference
;
9650 ------------------------
9651 -- Build_Scalar_Bound --
9652 ------------------------
9654 function Build_Scalar_Bound
9657 Der_T
: Entity_Id
) return Node_Id
9659 New_Bound
: Entity_Id
;
9662 -- Note: not clear why this is needed, how can the original bound
9663 -- be unanalyzed at this point? and if it is, what business do we
9664 -- have messing around with it? and why is the base type of the
9665 -- parent type the right type for the resolution. It probably is
9666 -- not. It is OK for the new bound we are creating, but not for
9667 -- the old one??? Still if it never happens, no problem.
9669 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
9671 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
9672 New_Bound
:= New_Copy
(Bound
);
9673 Set_Etype
(New_Bound
, Der_T
);
9674 Set_Analyzed
(New_Bound
);
9676 elsif Is_Entity_Name
(Bound
) then
9677 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
9679 -- The following is almost certainly wrong. What business do we have
9680 -- relocating a node (Bound) that is presumably still attached to
9681 -- the tree elsewhere???
9684 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
9687 Set_Etype
(New_Bound
, Der_T
);
9689 end Build_Scalar_Bound
;
9691 --------------------------------
9692 -- Build_Underlying_Full_View --
9693 --------------------------------
9695 procedure Build_Underlying_Full_View
9700 Loc
: constant Source_Ptr
:= Sloc
(N
);
9701 Subt
: constant Entity_Id
:=
9702 Make_Defining_Identifier
9703 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
9710 procedure Set_Discriminant_Name
(Id
: Node_Id
);
9711 -- If the derived type has discriminants, they may rename discriminants
9712 -- of the parent. When building the full view of the parent, we need to
9713 -- recover the names of the original discriminants if the constraint is
9714 -- given by named associations.
9716 ---------------------------
9717 -- Set_Discriminant_Name --
9718 ---------------------------
9720 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
9724 Set_Original_Discriminant
(Id
, Empty
);
9726 if Has_Discriminants
(Typ
) then
9727 Disc
:= First_Discriminant
(Typ
);
9728 while Present
(Disc
) loop
9729 if Chars
(Disc
) = Chars
(Id
)
9730 and then Present
(Corresponding_Discriminant
(Disc
))
9732 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
9734 Next_Discriminant
(Disc
);
9737 end Set_Discriminant_Name
;
9739 -- Start of processing for Build_Underlying_Full_View
9742 if Nkind
(N
) = N_Full_Type_Declaration
then
9743 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
9745 elsif Nkind
(N
) = N_Subtype_Declaration
then
9746 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
9748 elsif Nkind
(N
) = N_Component_Declaration
then
9751 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
9754 raise Program_Error
;
9757 C
:= First
(Constraints
(Constr
));
9758 while Present
(C
) loop
9759 if Nkind
(C
) = N_Discriminant_Association
then
9760 Id
:= First
(Selector_Names
(C
));
9761 while Present
(Id
) loop
9762 Set_Discriminant_Name
(Id
);
9771 Make_Subtype_Declaration
(Loc
,
9772 Defining_Identifier
=> Subt
,
9773 Subtype_Indication
=>
9774 Make_Subtype_Indication
(Loc
,
9775 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
9776 Constraint
=> New_Copy_Tree
(Constr
)));
9778 -- If this is a component subtype for an outer itype, it is not
9779 -- a list member, so simply set the parent link for analysis: if
9780 -- the enclosing type does not need to be in a declarative list,
9781 -- neither do the components.
9783 if Is_List_Member
(N
)
9784 and then Nkind
(N
) /= N_Component_Declaration
9786 Insert_Before
(N
, Indic
);
9788 Set_Parent
(Indic
, Parent
(N
));
9792 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
9793 end Build_Underlying_Full_View
;
9795 -------------------------------
9796 -- Check_Abstract_Overriding --
9797 -------------------------------
9799 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
9800 Alias_Subp
: Entity_Id
;
9806 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
9807 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9808 -- which has pragma Implemented already set. Check whether Subp's entity
9809 -- kind conforms to the implementation kind of the overridden routine.
9811 procedure Check_Pragma_Implemented
9813 Iface_Subp
: Entity_Id
);
9814 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9815 -- Iface_Subp and both entities have pragma Implemented already set on
9816 -- them. Check whether the two implementation kinds are conforming.
9818 procedure Inherit_Pragma_Implemented
9820 Iface_Subp
: Entity_Id
);
9821 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9822 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9823 -- Propagate the implementation kind of Iface_Subp to Subp.
9825 ------------------------------
9826 -- Check_Pragma_Implemented --
9827 ------------------------------
9829 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
9830 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
9831 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
9832 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
9833 Contr_Typ
: Entity_Id
;
9834 Impl_Subp
: Entity_Id
;
9837 -- Subp must have an alias since it is a hidden entity used to link
9838 -- an interface subprogram to its overriding counterpart.
9840 pragma Assert
(Present
(Subp_Alias
));
9842 -- Handle aliases to synchronized wrappers
9844 Impl_Subp
:= Subp_Alias
;
9846 if Is_Primitive_Wrapper
(Impl_Subp
) then
9847 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
9850 -- Extract the type of the controlling formal
9852 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
9854 if Is_Concurrent_Record_Type
(Contr_Typ
) then
9855 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
9858 -- An interface subprogram whose implementation kind is By_Entry must
9859 -- be implemented by an entry.
9861 if Impl_Kind
= Name_By_Entry
9862 and then Ekind
(Impl_Subp
) /= E_Entry
9864 Error_Msg_Node_2
:= Iface_Alias
;
9866 ("type & must implement abstract subprogram & with an entry",
9867 Subp_Alias
, Contr_Typ
);
9869 elsif Impl_Kind
= Name_By_Protected_Procedure
then
9871 -- An interface subprogram whose implementation kind is By_
9872 -- Protected_Procedure cannot be implemented by a primitive
9873 -- procedure of a task type.
9875 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
9876 Error_Msg_Node_2
:= Contr_Typ
;
9878 ("interface subprogram & cannot be implemented by a " &
9879 "primitive procedure of task type &", Subp_Alias
,
9882 -- An interface subprogram whose implementation kind is By_
9883 -- Protected_Procedure must be implemented by a procedure.
9885 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
9886 Error_Msg_Node_2
:= Iface_Alias
;
9888 ("type & must implement abstract subprogram & with a " &
9889 "procedure", Subp_Alias
, Contr_Typ
);
9891 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9892 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9894 Error_Msg_Name_1
:= Impl_Kind
;
9896 ("overriding operation& must have synchronization%",
9900 -- If primitive has Optional synchronization, overriding operation
9901 -- must match if it has an explicit synchronization..
9903 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9904 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9906 Error_Msg_Name_1
:= Impl_Kind
;
9908 ("overriding operation& must have syncrhonization%",
9911 end Check_Pragma_Implemented
;
9913 ------------------------------
9914 -- Check_Pragma_Implemented --
9915 ------------------------------
9917 procedure Check_Pragma_Implemented
9919 Iface_Subp
: Entity_Id
)
9921 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9922 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
9925 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9926 -- and overriding subprogram are different. In general this is an
9927 -- error except when the implementation kind of the overridden
9928 -- subprograms is By_Any or Optional.
9930 if Iface_Kind
/= Subp_Kind
9931 and then Iface_Kind
/= Name_By_Any
9932 and then Iface_Kind
/= Name_Optional
9934 if Iface_Kind
= Name_By_Entry
then
9936 ("incompatible implementation kind, overridden subprogram " &
9937 "is marked By_Entry", Subp
);
9940 ("incompatible implementation kind, overridden subprogram " &
9941 "is marked By_Protected_Procedure", Subp
);
9944 end Check_Pragma_Implemented
;
9946 --------------------------------
9947 -- Inherit_Pragma_Implemented --
9948 --------------------------------
9950 procedure Inherit_Pragma_Implemented
9952 Iface_Subp
: Entity_Id
)
9954 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9955 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
9956 Impl_Prag
: Node_Id
;
9959 -- Since the implementation kind is stored as a representation item
9960 -- rather than a flag, create a pragma node.
9964 Chars
=> Name_Implemented
,
9965 Pragma_Argument_Associations
=> New_List
(
9966 Make_Pragma_Argument_Association
(Loc
,
9967 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
9969 Make_Pragma_Argument_Association
(Loc
,
9970 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
9972 -- The pragma doesn't need to be analyzed because it is internally
9973 -- built. It is safe to directly register it as a rep item since we
9974 -- are only interested in the characters of the implementation kind.
9976 Record_Rep_Item
(Subp
, Impl_Prag
);
9977 end Inherit_Pragma_Implemented
;
9979 -- Start of processing for Check_Abstract_Overriding
9982 Op_List
:= Primitive_Operations
(T
);
9984 -- Loop to check primitive operations
9986 Elmt
:= First_Elmt
(Op_List
);
9987 while Present
(Elmt
) loop
9988 Subp
:= Node
(Elmt
);
9989 Alias_Subp
:= Alias
(Subp
);
9991 -- Inherited subprograms are identified by the fact that they do not
9992 -- come from source, and the associated source location is the
9993 -- location of the first subtype of the derived type.
9995 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9996 -- subprograms that "require overriding".
9998 -- Special exception, do not complain about failure to override the
9999 -- stream routines _Input and _Output, as well as the primitive
10000 -- operations used in dispatching selects since we always provide
10001 -- automatic overridings for these subprograms.
10003 -- Also ignore this rule for convention CIL since .NET libraries
10004 -- do bizarre things with interfaces???
10006 -- The partial view of T may have been a private extension, for
10007 -- which inherited functions dispatching on result are abstract.
10008 -- If the full view is a null extension, there is no need for
10009 -- overriding in Ada 2005, but wrappers need to be built for them
10010 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10012 if Is_Null_Extension
(T
)
10013 and then Has_Controlling_Result
(Subp
)
10014 and then Ada_Version
>= Ada_2005
10015 and then Present
(Alias_Subp
)
10016 and then not Comes_From_Source
(Subp
)
10017 and then not Is_Abstract_Subprogram
(Alias_Subp
)
10018 and then not Is_Access_Type
(Etype
(Subp
))
10022 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10023 -- processing because this check is done with the aliased
10026 elsif Present
(Interface_Alias
(Subp
)) then
10029 elsif (Is_Abstract_Subprogram
(Subp
)
10030 or else Requires_Overriding
(Subp
)
10032 (Has_Controlling_Result
(Subp
)
10033 and then Present
(Alias_Subp
)
10034 and then not Comes_From_Source
(Subp
)
10035 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
10036 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
10037 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
10038 and then not Is_Abstract_Type
(T
)
10039 and then Convention
(T
) /= Convention_CIL
10040 and then not Is_Predefined_Interface_Primitive
(Subp
)
10042 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10043 -- with abstract interface types because the check will be done
10044 -- with the aliased entity (otherwise we generate a duplicated
10047 and then not Present
(Interface_Alias
(Subp
))
10049 if Present
(Alias_Subp
) then
10051 -- Only perform the check for a derived subprogram when the
10052 -- type has an explicit record extension. This avoids incorrect
10053 -- flagging of abstract subprograms for the case of a type
10054 -- without an extension that is derived from a formal type
10055 -- with a tagged actual (can occur within a private part).
10057 -- Ada 2005 (AI-391): In the case of an inherited function with
10058 -- a controlling result of the type, the rule does not apply if
10059 -- the type is a null extension (unless the parent function
10060 -- itself is abstract, in which case the function must still be
10061 -- be overridden). The expander will generate an overriding
10062 -- wrapper function calling the parent subprogram (see
10063 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10065 Type_Def
:= Type_Definition
(Parent
(T
));
10067 if Nkind
(Type_Def
) = N_Derived_Type_Definition
10068 and then Present
(Record_Extension_Part
(Type_Def
))
10070 (Ada_Version
< Ada_2005
10071 or else not Is_Null_Extension
(T
)
10072 or else Ekind
(Subp
) = E_Procedure
10073 or else not Has_Controlling_Result
(Subp
)
10074 or else Is_Abstract_Subprogram
(Alias_Subp
)
10075 or else Requires_Overriding
(Subp
)
10076 or else Is_Access_Type
(Etype
(Subp
)))
10078 -- Avoid reporting error in case of abstract predefined
10079 -- primitive inherited from interface type because the
10080 -- body of internally generated predefined primitives
10081 -- of tagged types are generated later by Freeze_Type
10083 if Is_Interface
(Root_Type
(T
))
10084 and then Is_Abstract_Subprogram
(Subp
)
10085 and then Is_Predefined_Dispatching_Operation
(Subp
)
10086 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
10090 -- A null extension is not obliged to override an inherited
10091 -- procedure subject to pragma Extensions_Visible with value
10092 -- False and at least one controlling OUT parameter
10093 -- (SPARK RM 6.1.7(6)).
10095 elsif Is_Null_Extension
(T
)
10096 and then Is_EVF_Procedure
(Subp
)
10102 ("type must be declared abstract or & overridden",
10105 -- Traverse the whole chain of aliased subprograms to
10106 -- complete the error notification. This is especially
10107 -- useful for traceability of the chain of entities when
10108 -- the subprogram corresponds with an interface
10109 -- subprogram (which may be defined in another package).
10111 if Present
(Alias_Subp
) then
10117 while Present
(Alias
(E
)) loop
10119 -- Avoid reporting redundant errors on entities
10120 -- inherited from interfaces
10122 if Sloc
(E
) /= Sloc
(T
) then
10123 Error_Msg_Sloc
:= Sloc
(E
);
10125 ("\& has been inherited #", T
, Subp
);
10131 Error_Msg_Sloc
:= Sloc
(E
);
10133 -- AI05-0068: report if there is an overriding
10134 -- non-abstract subprogram that is invisible.
10137 and then not Is_Abstract_Subprogram
(E
)
10140 ("\& subprogram# is not visible",
10143 -- Clarify the case where a non-null extension must
10144 -- override inherited procedure subject to pragma
10145 -- Extensions_Visible with value False and at least
10146 -- one controlling OUT param.
10148 elsif Is_EVF_Procedure
(E
) then
10150 ("\& # is subject to Extensions_Visible False",
10155 ("\& has been inherited from subprogram #",
10162 -- Ada 2005 (AI-345): Protected or task type implementing
10163 -- abstract interfaces.
10165 elsif Is_Concurrent_Record_Type
(T
)
10166 and then Present
(Interfaces
(T
))
10168 -- There is no need to check here RM 9.4(11.9/3) since we
10169 -- are processing the corresponding record type and the
10170 -- mode of the overriding subprograms was verified by
10171 -- Check_Conformance when the corresponding concurrent
10172 -- type declaration was analyzed.
10175 ("interface subprogram & must be overridden", T
, Subp
);
10177 -- Examine primitive operations of synchronized type to find
10178 -- homonyms that have the wrong profile.
10184 Prim
:= First_Entity
(Corresponding_Concurrent_Type
(T
));
10185 while Present
(Prim
) loop
10186 if Chars
(Prim
) = Chars
(Subp
) then
10188 ("profile is not type conformant with prefixed "
10189 & "view profile of inherited operation&",
10193 Next_Entity
(Prim
);
10199 Error_Msg_Node_2
:= T
;
10201 ("abstract subprogram& not allowed for type&", Subp
);
10203 -- Also post unconditional warning on the type (unconditional
10204 -- so that if there are more than one of these cases, we get
10205 -- them all, and not just the first one).
10207 Error_Msg_Node_2
:= Subp
;
10208 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
10211 -- A subprogram subject to pragma Extensions_Visible with value
10212 -- "True" cannot override a subprogram subject to the same pragma
10213 -- with value "False" (SPARK RM 6.1.7(5)).
10215 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
10216 and then Present
(Overridden_Operation
(Subp
))
10217 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
10218 Extensions_Visible_False
10220 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
10222 ("subprogram & with Extensions_Visible True cannot override "
10223 & "subprogram # with Extensions_Visible False", Subp
);
10226 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10228 -- Subp is an expander-generated procedure which maps an interface
10229 -- alias to a protected wrapper. The interface alias is flagged by
10230 -- pragma Implemented. Ensure that Subp is a procedure when the
10231 -- implementation kind is By_Protected_Procedure or an entry when
10234 if Ada_Version
>= Ada_2012
10235 and then Is_Hidden
(Subp
)
10236 and then Present
(Interface_Alias
(Subp
))
10237 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
10239 Check_Pragma_Implemented
(Subp
);
10242 -- Subp is an interface primitive which overrides another interface
10243 -- primitive marked with pragma Implemented.
10245 if Ada_Version
>= Ada_2012
10246 and then Present
(Overridden_Operation
(Subp
))
10247 and then Has_Rep_Pragma
10248 (Overridden_Operation
(Subp
), Name_Implemented
)
10250 -- If the overriding routine is also marked by Implemented, check
10251 -- that the two implementation kinds are conforming.
10253 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10254 Check_Pragma_Implemented
10256 Iface_Subp
=> Overridden_Operation
(Subp
));
10258 -- Otherwise the overriding routine inherits the implementation
10259 -- kind from the overridden subprogram.
10262 Inherit_Pragma_Implemented
10264 Iface_Subp
=> Overridden_Operation
(Subp
));
10268 -- If the operation is a wrapper for a synchronized primitive, it
10269 -- may be called indirectly through a dispatching select. We assume
10270 -- that it will be referenced elsewhere indirectly, and suppress
10271 -- warnings about an unused entity.
10273 if Is_Primitive_Wrapper
(Subp
)
10274 and then Present
(Wrapped_Entity
(Subp
))
10276 Set_Referenced
(Wrapped_Entity
(Subp
));
10281 end Check_Abstract_Overriding
;
10283 ------------------------------------------------
10284 -- Check_Access_Discriminant_Requires_Limited --
10285 ------------------------------------------------
10287 procedure Check_Access_Discriminant_Requires_Limited
10292 -- A discriminant_specification for an access discriminant shall appear
10293 -- only in the declaration for a task or protected type, or for a type
10294 -- with the reserved word 'limited' in its definition or in one of its
10295 -- ancestors (RM 3.7(10)).
10297 -- AI-0063: The proper condition is that type must be immutably limited,
10298 -- or else be a partial view.
10300 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10301 if Is_Limited_View
(Current_Scope
)
10303 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10304 and then Limited_Present
(Parent
(Current_Scope
)))
10310 ("access discriminants allowed only for limited types", Loc
);
10313 end Check_Access_Discriminant_Requires_Limited
;
10315 -----------------------------------
10316 -- Check_Aliased_Component_Types --
10317 -----------------------------------
10319 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10323 -- ??? Also need to check components of record extensions, but not
10324 -- components of protected types (which are always limited).
10326 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10327 -- types to be unconstrained. This is safe because it is illegal to
10328 -- create access subtypes to such types with explicit discriminant
10331 if not Is_Limited_Type
(T
) then
10332 if Ekind
(T
) = E_Record_Type
then
10333 C
:= First_Component
(T
);
10334 while Present
(C
) loop
10336 and then Has_Discriminants
(Etype
(C
))
10337 and then not Is_Constrained
(Etype
(C
))
10338 and then not In_Instance_Body
10339 and then Ada_Version
< Ada_2005
10342 ("aliased component must be constrained (RM 3.6(11))",
10346 Next_Component
(C
);
10349 elsif Ekind
(T
) = E_Array_Type
then
10350 if Has_Aliased_Components
(T
)
10351 and then Has_Discriminants
(Component_Type
(T
))
10352 and then not Is_Constrained
(Component_Type
(T
))
10353 and then not In_Instance_Body
10354 and then Ada_Version
< Ada_2005
10357 ("aliased component type must be constrained (RM 3.6(11))",
10362 end Check_Aliased_Component_Types
;
10364 ---------------------------------------
10365 -- Check_Anonymous_Access_Components --
10366 ---------------------------------------
10368 procedure Check_Anonymous_Access_Components
10369 (Typ_Decl
: Node_Id
;
10372 Comp_List
: Node_Id
)
10374 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
10375 Anon_Access
: Entity_Id
;
10378 Comp_Def
: Node_Id
;
10380 Type_Def
: Node_Id
;
10382 procedure Build_Incomplete_Type_Declaration
;
10383 -- If the record type contains components that include an access to the
10384 -- current record, then create an incomplete type declaration for the
10385 -- record, to be used as the designated type of the anonymous access.
10386 -- This is done only once, and only if there is no previous partial
10387 -- view of the type.
10389 function Designates_T
(Subt
: Node_Id
) return Boolean;
10390 -- Check whether a node designates the enclosing record type, or 'Class
10393 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
10394 -- Check whether an access definition includes a reference to
10395 -- the enclosing record type. The reference can be a subtype mark
10396 -- in the access definition itself, a 'Class attribute reference, or
10397 -- recursively a reference appearing in a parameter specification
10398 -- or result definition of an access_to_subprogram definition.
10400 --------------------------------------
10401 -- Build_Incomplete_Type_Declaration --
10402 --------------------------------------
10404 procedure Build_Incomplete_Type_Declaration
is
10409 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10410 -- it's "is new ... with record" or else "is tagged record ...".
10412 Is_Tagged
: constant Boolean :=
10413 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
10415 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
10417 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
10418 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
10421 -- If there is a previous partial view, no need to create a new one
10422 -- If the partial view, given by Prev, is incomplete, If Prev is
10423 -- a private declaration, full declaration is flagged accordingly.
10425 if Prev
/= Typ
then
10427 Make_Class_Wide_Type
(Prev
);
10428 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
10429 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10434 elsif Has_Private_Declaration
(Typ
) then
10436 -- If we refer to T'Class inside T, and T is the completion of a
10437 -- private type, then make sure the class-wide type exists.
10440 Make_Class_Wide_Type
(Typ
);
10445 -- If there was a previous anonymous access type, the incomplete
10446 -- type declaration will have been created already.
10448 elsif Present
(Current_Entity
(Typ
))
10449 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
10450 and then Full_View
(Current_Entity
(Typ
)) = Typ
10453 and then Comes_From_Source
(Current_Entity
(Typ
))
10454 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
10456 Make_Class_Wide_Type
(Typ
);
10458 ("incomplete view of tagged type should be declared tagged??",
10459 Parent
(Current_Entity
(Typ
)));
10464 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
10465 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
10467 -- Type has already been inserted into the current scope. Remove
10468 -- it, and add incomplete declaration for type, so that subsequent
10469 -- anonymous access types can use it. The entity is unchained from
10470 -- the homonym list and from immediate visibility. After analysis,
10471 -- the entity in the incomplete declaration becomes immediately
10472 -- visible in the record declaration that follows.
10474 H
:= Current_Entity
(Typ
);
10477 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
10480 and then Homonym
(H
) /= Typ
10482 H
:= Homonym
(Typ
);
10485 Set_Homonym
(H
, Homonym
(Typ
));
10488 Insert_Before
(Typ_Decl
, Decl
);
10490 Set_Full_View
(Inc_T
, Typ
);
10494 -- Create a common class-wide type for both views, and set the
10495 -- Etype of the class-wide type to the full view.
10497 Make_Class_Wide_Type
(Inc_T
);
10498 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
10499 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10502 end Build_Incomplete_Type_Declaration
;
10508 function Designates_T
(Subt
: Node_Id
) return Boolean is
10509 Type_Id
: constant Name_Id
:= Chars
(Typ
);
10511 function Names_T
(Nam
: Node_Id
) return Boolean;
10512 -- The record type has not been introduced in the current scope
10513 -- yet, so we must examine the name of the type itself, either
10514 -- an identifier T, or an expanded name of the form P.T, where
10515 -- P denotes the current scope.
10521 function Names_T
(Nam
: Node_Id
) return Boolean is
10523 if Nkind
(Nam
) = N_Identifier
then
10524 return Chars
(Nam
) = Type_Id
;
10526 elsif Nkind
(Nam
) = N_Selected_Component
then
10527 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
10528 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
10529 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
10531 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
10532 return Chars
(Selector_Name
(Prefix
(Nam
))) =
10533 Chars
(Current_Scope
);
10547 -- Start of processing for Designates_T
10550 if Nkind
(Subt
) = N_Identifier
then
10551 return Chars
(Subt
) = Type_Id
;
10553 -- Reference can be through an expanded name which has not been
10554 -- analyzed yet, and which designates enclosing scopes.
10556 elsif Nkind
(Subt
) = N_Selected_Component
then
10557 if Names_T
(Subt
) then
10560 -- Otherwise it must denote an entity that is already visible.
10561 -- The access definition may name a subtype of the enclosing
10562 -- type, if there is a previous incomplete declaration for it.
10565 Find_Selected_Component
(Subt
);
10567 Is_Entity_Name
(Subt
)
10568 and then Scope
(Entity
(Subt
)) = Current_Scope
10570 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
10572 (Is_Class_Wide_Type
(Entity
(Subt
))
10574 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
10578 -- A reference to the current type may appear as the prefix of
10579 -- a 'Class attribute.
10581 elsif Nkind
(Subt
) = N_Attribute_Reference
10582 and then Attribute_Name
(Subt
) = Name_Class
10584 return Names_T
(Prefix
(Subt
));
10595 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
10596 Param_Spec
: Node_Id
;
10598 Acc_Subprg
: constant Node_Id
:=
10599 Access_To_Subprogram_Definition
(Acc_Def
);
10602 if No
(Acc_Subprg
) then
10603 return Designates_T
(Subtype_Mark
(Acc_Def
));
10606 -- Component is an access_to_subprogram: examine its formals,
10607 -- and result definition in the case of an access_to_function.
10609 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
10610 while Present
(Param_Spec
) loop
10611 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
10612 and then Mentions_T
(Parameter_Type
(Param_Spec
))
10616 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
10623 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
10624 if Nkind
(Result_Definition
(Acc_Subprg
)) =
10625 N_Access_Definition
10627 return Mentions_T
(Result_Definition
(Acc_Subprg
));
10629 return Designates_T
(Result_Definition
(Acc_Subprg
));
10636 -- Start of processing for Check_Anonymous_Access_Components
10639 if No
(Comp_List
) then
10643 Comp
:= First
(Component_Items
(Comp_List
));
10644 while Present
(Comp
) loop
10645 if Nkind
(Comp
) = N_Component_Declaration
10647 (Access_Definition
(Component_Definition
(Comp
)))
10649 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
10651 Comp_Def
:= Component_Definition
(Comp
);
10653 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
10655 Build_Incomplete_Type_Declaration
;
10656 Anon_Access
:= Make_Temporary
(Loc
, 'S');
10658 -- Create a declaration for the anonymous access type: either
10659 -- an access_to_object or an access_to_subprogram.
10661 if Present
(Acc_Def
) then
10662 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
10664 Make_Access_Function_Definition
(Loc
,
10665 Parameter_Specifications
=>
10666 Parameter_Specifications
(Acc_Def
),
10667 Result_Definition
=> Result_Definition
(Acc_Def
));
10670 Make_Access_Procedure_Definition
(Loc
,
10671 Parameter_Specifications
=>
10672 Parameter_Specifications
(Acc_Def
));
10677 Make_Access_To_Object_Definition
(Loc
,
10678 Subtype_Indication
=>
10680 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
10682 Set_Constant_Present
10683 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
10685 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
10688 Set_Null_Exclusion_Present
10690 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
10693 Make_Full_Type_Declaration
(Loc
,
10694 Defining_Identifier
=> Anon_Access
,
10695 Type_Definition
=> Type_Def
);
10697 Insert_Before
(Typ_Decl
, Decl
);
10700 -- If an access to subprogram, create the extra formals
10702 if Present
(Acc_Def
) then
10703 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
10705 -- If an access to object, preserve entity of designated type,
10706 -- for ASIS use, before rewriting the component definition.
10713 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
10715 -- If the access definition is to the current record,
10716 -- the visible entity at this point is an incomplete
10717 -- type. Retrieve the full view to simplify ASIS queries
10719 if Ekind
(Desig
) = E_Incomplete_Type
then
10720 Desig
:= Full_View
(Desig
);
10724 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
10729 Make_Component_Definition
(Loc
,
10730 Subtype_Indication
=>
10731 New_Occurrence_Of
(Anon_Access
, Loc
)));
10733 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
10734 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
10736 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
10739 Set_Is_Local_Anonymous_Access
(Anon_Access
);
10745 if Present
(Variant_Part
(Comp_List
)) then
10749 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
10750 while Present
(V
) loop
10751 Check_Anonymous_Access_Components
10752 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
10753 Next_Non_Pragma
(V
);
10757 end Check_Anonymous_Access_Components
;
10759 ----------------------
10760 -- Check_Completion --
10761 ----------------------
10763 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
10766 procedure Post_Error
;
10767 -- Post error message for lack of completion for entity E
10773 procedure Post_Error
is
10775 procedure Missing_Body
;
10776 -- Output missing body message
10782 procedure Missing_Body
is
10784 -- Spec is in same unit, so we can post on spec
10786 if In_Same_Source_Unit
(Body_Id
, E
) then
10787 Error_Msg_N
("missing body for &", E
);
10789 -- Spec is in a separate unit, so we have to post on the body
10792 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
10796 -- Start of processing for Post_Error
10799 if not Comes_From_Source
(E
) then
10801 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
10803 -- It may be an anonymous protected type created for a
10804 -- single variable. Post error on variable, if present.
10810 Var
:= First_Entity
(Current_Scope
);
10811 while Present
(Var
) loop
10812 exit when Etype
(Var
) = E
10813 and then Comes_From_Source
(Var
);
10818 if Present
(Var
) then
10825 -- If a generated entity has no completion, then either previous
10826 -- semantic errors have disabled the expansion phase, or else we had
10827 -- missing subunits, or else we are compiling without expansion,
10828 -- or else something is very wrong.
10830 if not Comes_From_Source
(E
) then
10832 (Serious_Errors_Detected
> 0
10833 or else Configurable_Run_Time_Violations
> 0
10834 or else Subunits_Missing
10835 or else not Expander_Active
);
10838 -- Here for source entity
10841 -- Here if no body to post the error message, so we post the error
10842 -- on the declaration that has no completion. This is not really
10843 -- the right place to post it, think about this later ???
10845 if No
(Body_Id
) then
10846 if Is_Type
(E
) then
10848 ("missing full declaration for }", Parent
(E
), E
);
10850 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
10853 -- Package body has no completion for a declaration that appears
10854 -- in the corresponding spec. Post error on the body, with a
10855 -- reference to the non-completed declaration.
10858 Error_Msg_Sloc
:= Sloc
(E
);
10860 if Is_Type
(E
) then
10861 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
10863 elsif Is_Overloadable
(E
)
10864 and then Current_Entity_In_Scope
(E
) /= E
10866 -- It may be that the completion is mistyped and appears as
10867 -- a distinct overloading of the entity.
10870 Candidate
: constant Entity_Id
:=
10871 Current_Entity_In_Scope
(E
);
10872 Decl
: constant Node_Id
:=
10873 Unit_Declaration_Node
(Candidate
);
10876 if Is_Overloadable
(Candidate
)
10877 and then Ekind
(Candidate
) = Ekind
(E
)
10878 and then Nkind
(Decl
) = N_Subprogram_Body
10879 and then Acts_As_Spec
(Decl
)
10881 Check_Type_Conformant
(Candidate
, E
);
10897 Pack_Id
: constant Entity_Id
:= Current_Scope
;
10899 -- Start of processing for Check_Completion
10902 E
:= First_Entity
(Pack_Id
);
10903 while Present
(E
) loop
10904 if Is_Intrinsic_Subprogram
(E
) then
10907 -- A Ghost entity declared in a non-Ghost package does not force the
10908 -- need for a body (SPARK RM 6.9(11)).
10910 elsif not Is_Ghost_Entity
(Pack_Id
) and then Is_Ghost_Entity
(E
) then
10913 -- The following situation requires special handling: a child unit
10914 -- that appears in the context clause of the body of its parent:
10916 -- procedure Parent.Child (...);
10918 -- with Parent.Child;
10919 -- package body Parent is
10921 -- Here Parent.Child appears as a local entity, but should not be
10922 -- flagged as requiring completion, because it is a compilation
10925 -- Ignore missing completion for a subprogram that does not come from
10926 -- source (including the _Call primitive operation of RAS types,
10927 -- which has to have the flag Comes_From_Source for other purposes):
10928 -- we assume that the expander will provide the missing completion.
10929 -- In case of previous errors, other expansion actions that provide
10930 -- bodies for null procedures with not be invoked, so inhibit message
10933 -- Note that E_Operator is not in the list that follows, because
10934 -- this kind is reserved for predefined operators, that are
10935 -- intrinsic and do not need completion.
10937 elsif Ekind_In
(E
, E_Function
,
10939 E_Generic_Function
,
10940 E_Generic_Procedure
)
10942 if Has_Completion
(E
) then
10945 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
10948 elsif Is_Subprogram
(E
)
10949 and then (not Comes_From_Source
(E
)
10950 or else Chars
(E
) = Name_uCall
)
10955 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
10959 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
10960 and then Null_Present
(Parent
(E
))
10961 and then Serious_Errors_Detected
> 0
10969 elsif Is_Entry
(E
) then
10970 if not Has_Completion
(E
) and then
10971 (Ekind
(Scope
(E
)) = E_Protected_Object
10972 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
10977 elsif Is_Package_Or_Generic_Package
(E
) then
10978 if Unit_Requires_Body
(E
) then
10979 if not Has_Completion
(E
)
10980 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
10986 elsif not Is_Child_Unit
(E
) then
10987 May_Need_Implicit_Body
(E
);
10990 -- A formal incomplete type (Ada 2012) does not require a completion;
10991 -- other incomplete type declarations do.
10993 elsif Ekind
(E
) = E_Incomplete_Type
10994 and then No
(Underlying_Type
(E
))
10995 and then not Is_Generic_Type
(E
)
10999 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
11000 and then not Has_Completion
(E
)
11004 -- A single task declared in the current scope is a constant, verify
11005 -- that the body of its anonymous type is in the same scope. If the
11006 -- task is defined elsewhere, this may be a renaming declaration for
11007 -- which no completion is needed.
11009 elsif Ekind
(E
) = E_Constant
11010 and then Ekind
(Etype
(E
)) = E_Task_Type
11011 and then not Has_Completion
(Etype
(E
))
11012 and then Scope
(Etype
(E
)) = Current_Scope
11016 elsif Ekind
(E
) = E_Protected_Object
11017 and then not Has_Completion
(Etype
(E
))
11021 elsif Ekind
(E
) = E_Record_Type
then
11022 if Is_Tagged_Type
(E
) then
11023 Check_Abstract_Overriding
(E
);
11024 Check_Conventions
(E
);
11027 Check_Aliased_Component_Types
(E
);
11029 elsif Ekind
(E
) = E_Array_Type
then
11030 Check_Aliased_Component_Types
(E
);
11036 end Check_Completion
;
11038 ------------------------------------
11039 -- Check_CPP_Type_Has_No_Defaults --
11040 ------------------------------------
11042 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
11043 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
11048 -- Obtain the component list
11050 if Nkind
(Tdef
) = N_Record_Definition
then
11051 Clist
:= Component_List
(Tdef
);
11052 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
11053 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
11056 -- Check all components to ensure no default expressions
11058 if Present
(Clist
) then
11059 Comp
:= First
(Component_Items
(Clist
));
11060 while Present
(Comp
) loop
11061 if Present
(Expression
(Comp
)) then
11063 ("component of imported 'C'P'P type cannot have "
11064 & "default expression", Expression
(Comp
));
11070 end Check_CPP_Type_Has_No_Defaults
;
11072 ----------------------------
11073 -- Check_Delta_Expression --
11074 ----------------------------
11076 procedure Check_Delta_Expression
(E
: Node_Id
) is
11078 if not (Is_Real_Type
(Etype
(E
))) then
11079 Wrong_Type
(E
, Any_Real
);
11081 elsif not Is_OK_Static_Expression
(E
) then
11082 Flag_Non_Static_Expr
11083 ("non-static expression used for delta value!", E
);
11085 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
11086 Error_Msg_N
("delta expression must be positive", E
);
11092 -- If any of above errors occurred, then replace the incorrect
11093 -- expression by the real 0.1, which should prevent further errors.
11096 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
11097 Analyze_And_Resolve
(E
, Standard_Float
);
11098 end Check_Delta_Expression
;
11100 -----------------------------
11101 -- Check_Digits_Expression --
11102 -----------------------------
11104 procedure Check_Digits_Expression
(E
: Node_Id
) is
11106 if not (Is_Integer_Type
(Etype
(E
))) then
11107 Wrong_Type
(E
, Any_Integer
);
11109 elsif not Is_OK_Static_Expression
(E
) then
11110 Flag_Non_Static_Expr
11111 ("non-static expression used for digits value!", E
);
11113 elsif Expr_Value
(E
) <= 0 then
11114 Error_Msg_N
("digits value must be greater than zero", E
);
11120 -- If any of above errors occurred, then replace the incorrect
11121 -- expression by the integer 1, which should prevent further errors.
11123 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
11124 Analyze_And_Resolve
(E
, Standard_Integer
);
11126 end Check_Digits_Expression
;
11128 --------------------------
11129 -- Check_Initialization --
11130 --------------------------
11132 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
11134 -- Special processing for limited types
11136 if Is_Limited_Type
(T
)
11137 and then not In_Instance
11138 and then not In_Inlined_Body
11140 if not OK_For_Limited_Init
(T
, Exp
) then
11142 -- In GNAT mode, this is just a warning, to allow it to be evilly
11143 -- turned off. Otherwise it is a real error.
11147 ("??cannot initialize entities of limited type!", Exp
);
11149 elsif Ada_Version
< Ada_2005
then
11151 -- The side effect removal machinery may generate illegal Ada
11152 -- code to avoid the usage of access types and 'reference in
11153 -- SPARK mode. Since this is legal code with respect to theorem
11154 -- proving, do not emit the error.
11157 and then Nkind
(Exp
) = N_Function_Call
11158 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11159 and then not Comes_From_Source
11160 (Defining_Identifier
(Parent
(Exp
)))
11166 ("cannot initialize entities of limited type", Exp
);
11167 Explain_Limited_Type
(T
, Exp
);
11171 -- Specialize error message according to kind of illegal
11172 -- initial expression.
11174 if Nkind
(Exp
) = N_Type_Conversion
11175 and then Nkind
(Expression
(Exp
)) = N_Function_Call
11178 ("illegal context for call"
11179 & " to function with limited result", Exp
);
11183 ("initialization of limited object requires aggregate "
11184 & "or function call", Exp
);
11190 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11191 -- set unless we can be sure that no range check is required.
11193 if (GNATprove_Mode
or not Expander_Active
)
11194 and then Is_Scalar_Type
(T
)
11195 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
11197 Set_Do_Range_Check
(Exp
);
11199 end Check_Initialization
;
11201 ----------------------
11202 -- Check_Interfaces --
11203 ----------------------
11205 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
11206 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
11209 Iface_Def
: Node_Id
;
11210 Iface_Typ
: Entity_Id
;
11211 Parent_Node
: Node_Id
;
11213 Is_Task
: Boolean := False;
11214 -- Set True if parent type or any progenitor is a task interface
11216 Is_Protected
: Boolean := False;
11217 -- Set True if parent type or any progenitor is a protected interface
11219 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
11220 -- Check that a progenitor is compatible with declaration. If an error
11221 -- message is output, it is posted on Error_Node.
11227 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
11228 Iface_Id
: constant Entity_Id
:=
11229 Defining_Identifier
(Parent
(Iface_Def
));
11230 Type_Def
: Node_Id
;
11233 if Nkind
(N
) = N_Private_Extension_Declaration
then
11236 Type_Def
:= Type_Definition
(N
);
11239 if Is_Task_Interface
(Iface_Id
) then
11242 elsif Is_Protected_Interface
(Iface_Id
) then
11243 Is_Protected
:= True;
11246 if Is_Synchronized_Interface
(Iface_Id
) then
11248 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11249 -- extension derived from a synchronized interface must explicitly
11250 -- be declared synchronized, because the full view will be a
11251 -- synchronized type.
11253 if Nkind
(N
) = N_Private_Extension_Declaration
then
11254 if not Synchronized_Present
(N
) then
11256 ("private extension of& must be explicitly synchronized",
11260 -- However, by 3.9.4(16/2), a full type that is a record extension
11261 -- is never allowed to derive from a synchronized interface (note
11262 -- that interfaces must be excluded from this check, because those
11263 -- are represented by derived type definitions in some cases).
11265 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11266 and then not Interface_Present
(Type_Definition
(N
))
11268 Error_Msg_N
("record extension cannot derive from synchronized "
11269 & "interface", Error_Node
);
11273 -- Check that the characteristics of the progenitor are compatible
11274 -- with the explicit qualifier in the declaration.
11275 -- The check only applies to qualifiers that come from source.
11276 -- Limited_Present also appears in the declaration of corresponding
11277 -- records, and the check does not apply to them.
11279 if Limited_Present
(Type_Def
)
11281 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11283 if Is_Limited_Interface
(Parent_Type
)
11284 and then not Is_Limited_Interface
(Iface_Id
)
11287 ("progenitor & must be limited interface",
11288 Error_Node
, Iface_Id
);
11291 (Task_Present
(Iface_Def
)
11292 or else Protected_Present
(Iface_Def
)
11293 or else Synchronized_Present
(Iface_Def
))
11294 and then Nkind
(N
) /= N_Private_Extension_Declaration
11295 and then not Error_Posted
(N
)
11298 ("progenitor & must be limited interface",
11299 Error_Node
, Iface_Id
);
11302 -- Protected interfaces can only inherit from limited, synchronized
11303 -- or protected interfaces.
11305 elsif Nkind
(N
) = N_Full_Type_Declaration
11306 and then Protected_Present
(Type_Def
)
11308 if Limited_Present
(Iface_Def
)
11309 or else Synchronized_Present
(Iface_Def
)
11310 or else Protected_Present
(Iface_Def
)
11314 elsif Task_Present
(Iface_Def
) then
11315 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11316 & "from task interface", Error_Node
);
11319 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11320 & "from non-limited interface", Error_Node
);
11323 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11324 -- limited and synchronized.
11326 elsif Synchronized_Present
(Type_Def
) then
11327 if Limited_Present
(Iface_Def
)
11328 or else Synchronized_Present
(Iface_Def
)
11332 elsif Protected_Present
(Iface_Def
)
11333 and then Nkind
(N
) /= N_Private_Extension_Declaration
11335 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11336 & "from protected interface", Error_Node
);
11338 elsif Task_Present
(Iface_Def
)
11339 and then Nkind
(N
) /= N_Private_Extension_Declaration
11341 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11342 & "from task interface", Error_Node
);
11344 elsif not Is_Limited_Interface
(Iface_Id
) then
11345 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11346 & "from non-limited interface", Error_Node
);
11349 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11350 -- synchronized or task interfaces.
11352 elsif Nkind
(N
) = N_Full_Type_Declaration
11353 and then Task_Present
(Type_Def
)
11355 if Limited_Present
(Iface_Def
)
11356 or else Synchronized_Present
(Iface_Def
)
11357 or else Task_Present
(Iface_Def
)
11361 elsif Protected_Present
(Iface_Def
) then
11362 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11363 & "protected interface", Error_Node
);
11366 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11367 & "non-limited interface", Error_Node
);
11372 -- Start of processing for Check_Interfaces
11375 if Is_Interface
(Parent_Type
) then
11376 if Is_Task_Interface
(Parent_Type
) then
11379 elsif Is_Protected_Interface
(Parent_Type
) then
11380 Is_Protected
:= True;
11384 if Nkind
(N
) = N_Private_Extension_Declaration
then
11386 -- Check that progenitors are compatible with declaration
11388 Iface
:= First
(Interface_List
(Def
));
11389 while Present
(Iface
) loop
11390 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11392 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11393 Iface_Def
:= Type_Definition
(Parent_Node
);
11395 if not Is_Interface
(Iface_Typ
) then
11396 Diagnose_Interface
(Iface
, Iface_Typ
);
11398 Check_Ifaces
(Iface_Def
, Iface
);
11404 if Is_Task
and Is_Protected
then
11406 ("type cannot derive from task and protected interface", N
);
11412 -- Full type declaration of derived type.
11413 -- Check compatibility with parent if it is interface type
11415 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11416 and then Is_Interface
(Parent_Type
)
11418 Parent_Node
:= Parent
(Parent_Type
);
11420 -- More detailed checks for interface varieties
11423 (Iface_Def
=> Type_Definition
(Parent_Node
),
11424 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
11427 Iface
:= First
(Interface_List
(Def
));
11428 while Present
(Iface
) loop
11429 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11431 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11432 Iface_Def
:= Type_Definition
(Parent_Node
);
11434 if not Is_Interface
(Iface_Typ
) then
11435 Diagnose_Interface
(Iface
, Iface_Typ
);
11438 -- "The declaration of a specific descendant of an interface
11439 -- type freezes the interface type" RM 13.14
11441 Freeze_Before
(N
, Iface_Typ
);
11442 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
11448 if Is_Task
and Is_Protected
then
11450 ("type cannot derive from task and protected interface", N
);
11452 end Check_Interfaces
;
11454 ------------------------------------
11455 -- Check_Or_Process_Discriminants --
11456 ------------------------------------
11458 -- If an incomplete or private type declaration was already given for the
11459 -- type, the discriminants may have already been processed if they were
11460 -- present on the incomplete declaration. In this case a full conformance
11461 -- check has been performed in Find_Type_Name, and we then recheck here
11462 -- some properties that can't be checked on the partial view alone.
11463 -- Otherwise we call Process_Discriminants.
11465 procedure Check_Or_Process_Discriminants
11468 Prev
: Entity_Id
:= Empty
)
11471 if Has_Discriminants
(T
) then
11473 -- Discriminants are already set on T if they were already present
11474 -- on the partial view. Make them visible to component declarations.
11478 -- Discriminant on T (full view) referencing expr on partial view
11480 Prev_D
: Entity_Id
;
11481 -- Entity of corresponding discriminant on partial view
11484 -- Discriminant specification for full view, expression is
11485 -- the syntactic copy on full view (which has been checked for
11486 -- conformance with partial view), only used here to post error
11490 D
:= First_Discriminant
(T
);
11491 New_D
:= First
(Discriminant_Specifications
(N
));
11492 while Present
(D
) loop
11493 Prev_D
:= Current_Entity
(D
);
11494 Set_Current_Entity
(D
);
11495 Set_Is_Immediately_Visible
(D
);
11496 Set_Homonym
(D
, Prev_D
);
11498 -- Handle the case where there is an untagged partial view and
11499 -- the full view is tagged: must disallow discriminants with
11500 -- defaults, unless compiling for Ada 2012, which allows a
11501 -- limited tagged type to have defaulted discriminants (see
11502 -- AI05-0214). However, suppress error here if it was already
11503 -- reported on the default expression of the partial view.
11505 if Is_Tagged_Type
(T
)
11506 and then Present
(Expression
(Parent
(D
)))
11507 and then (not Is_Limited_Type
(Current_Scope
)
11508 or else Ada_Version
< Ada_2012
)
11509 and then not Error_Posted
(Expression
(Parent
(D
)))
11511 if Ada_Version
>= Ada_2012
then
11513 ("discriminants of nonlimited tagged type cannot have "
11515 Expression
(New_D
));
11518 ("discriminants of tagged type cannot have defaults",
11519 Expression
(New_D
));
11523 -- Ada 2005 (AI-230): Access discriminant allowed in
11524 -- non-limited record types.
11526 if Ada_Version
< Ada_2005
then
11528 -- This restriction gets applied to the full type here. It
11529 -- has already been applied earlier to the partial view.
11531 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
11534 Next_Discriminant
(D
);
11539 elsif Present
(Discriminant_Specifications
(N
)) then
11540 Process_Discriminants
(N
, Prev
);
11542 end Check_Or_Process_Discriminants
;
11544 ----------------------
11545 -- Check_Real_Bound --
11546 ----------------------
11548 procedure Check_Real_Bound
(Bound
: Node_Id
) is
11550 if not Is_Real_Type
(Etype
(Bound
)) then
11552 ("bound in real type definition must be of real type", Bound
);
11554 elsif not Is_OK_Static_Expression
(Bound
) then
11555 Flag_Non_Static_Expr
11556 ("non-static expression used for real type bound!", Bound
);
11563 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
11565 Resolve
(Bound
, Standard_Float
);
11566 end Check_Real_Bound
;
11568 ------------------------------
11569 -- Complete_Private_Subtype --
11570 ------------------------------
11572 procedure Complete_Private_Subtype
11575 Full_Base
: Entity_Id
;
11576 Related_Nod
: Node_Id
)
11578 Save_Next_Entity
: Entity_Id
;
11579 Save_Homonym
: Entity_Id
;
11582 -- Set semantic attributes for (implicit) private subtype completion.
11583 -- If the full type has no discriminants, then it is a copy of the
11584 -- full view of the base. Otherwise, it is a subtype of the base with
11585 -- a possible discriminant constraint. Save and restore the original
11586 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11587 -- not corrupt the entity chain.
11589 -- Note that the type of the full view is the same entity as the type
11590 -- of the partial view. In this fashion, the subtype has access to the
11591 -- correct view of the parent.
11593 Save_Next_Entity
:= Next_Entity
(Full
);
11594 Save_Homonym
:= Homonym
(Priv
);
11596 case Ekind
(Full_Base
) is
11597 when E_Record_Type |
11603 Copy_Node
(Priv
, Full
);
11605 Set_Has_Discriminants
11606 (Full
, Has_Discriminants
(Full_Base
));
11607 Set_Has_Unknown_Discriminants
11608 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11609 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
11610 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
11612 -- If the underlying base type is constrained, we know that the
11613 -- full view of the subtype is constrained as well (the converse
11614 -- is not necessarily true).
11616 if Is_Constrained
(Full_Base
) then
11617 Set_Is_Constrained
(Full
);
11621 Copy_Node
(Full_Base
, Full
);
11623 Set_Chars
(Full
, Chars
(Priv
));
11624 Conditional_Delay
(Full
, Priv
);
11625 Set_Sloc
(Full
, Sloc
(Priv
));
11628 Set_Next_Entity
(Full
, Save_Next_Entity
);
11629 Set_Homonym
(Full
, Save_Homonym
);
11630 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
11632 -- Set common attributes for all subtypes: kind, convention, etc.
11634 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
11635 Set_Convention
(Full
, Convention
(Full_Base
));
11637 -- The Etype of the full view is inconsistent. Gigi needs to see the
11638 -- structural full view, which is what the current scheme gives: the
11639 -- Etype of the full view is the etype of the full base. However, if the
11640 -- full base is a derived type, the full view then looks like a subtype
11641 -- of the parent, not a subtype of the full base. If instead we write:
11643 -- Set_Etype (Full, Full_Base);
11645 -- then we get inconsistencies in the front-end (confusion between
11646 -- views). Several outstanding bugs are related to this ???
11648 Set_Is_First_Subtype
(Full
, False);
11649 Set_Scope
(Full
, Scope
(Priv
));
11650 Set_Size_Info
(Full
, Full_Base
);
11651 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
11652 Set_Is_Itype
(Full
);
11654 -- A subtype of a private-type-without-discriminants, whose full-view
11655 -- has discriminants with default expressions, is not constrained.
11657 if not Has_Discriminants
(Priv
) then
11658 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
11660 if Has_Discriminants
(Full_Base
) then
11661 Set_Discriminant_Constraint
11662 (Full
, Discriminant_Constraint
(Full_Base
));
11664 -- The partial view may have been indefinite, the full view
11667 Set_Has_Unknown_Discriminants
11668 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11672 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
11673 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
11675 -- Freeze the private subtype entity if its parent is delayed, and not
11676 -- already frozen. We skip this processing if the type is an anonymous
11677 -- subtype of a record component, or is the corresponding record of a
11678 -- protected type, since these are processed when the enclosing type
11681 if not Is_Type
(Scope
(Full
)) then
11682 Set_Has_Delayed_Freeze
(Full
,
11683 Has_Delayed_Freeze
(Full_Base
)
11684 and then (not Is_Frozen
(Full_Base
)));
11687 Set_Freeze_Node
(Full
, Empty
);
11688 Set_Is_Frozen
(Full
, False);
11689 Set_Full_View
(Priv
, Full
);
11691 if Has_Discriminants
(Full
) then
11692 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
11693 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
11695 if Has_Unknown_Discriminants
(Full
) then
11696 Set_Discriminant_Constraint
(Full
, No_Elist
);
11700 if Ekind
(Full_Base
) = E_Record_Type
11701 and then Has_Discriminants
(Full_Base
)
11702 and then Has_Discriminants
(Priv
) -- might not, if errors
11703 and then not Has_Unknown_Discriminants
(Priv
)
11704 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
11706 Create_Constrained_Components
11707 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
11709 -- If the full base is itself derived from private, build a congruent
11710 -- subtype of its underlying type, for use by the back end. For a
11711 -- constrained record component, the declaration cannot be placed on
11712 -- the component list, but it must nevertheless be built an analyzed, to
11713 -- supply enough information for Gigi to compute the size of component.
11715 elsif Ekind
(Full_Base
) in Private_Kind
11716 and then Is_Derived_Type
(Full_Base
)
11717 and then Has_Discriminants
(Full_Base
)
11718 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
11720 if not Is_Itype
(Priv
)
11722 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
11724 Build_Underlying_Full_View
11725 (Parent
(Priv
), Full
, Etype
(Full_Base
));
11727 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
11728 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
11731 elsif Is_Record_Type
(Full_Base
) then
11733 -- Show Full is simply a renaming of Full_Base
11735 Set_Cloned_Subtype
(Full
, Full_Base
);
11738 -- It is unsafe to share the bounds of a scalar type, because the Itype
11739 -- is elaborated on demand, and if a bound is non-static then different
11740 -- orders of elaboration in different units will lead to different
11741 -- external symbols.
11743 if Is_Scalar_Type
(Full_Base
) then
11744 Set_Scalar_Range
(Full
,
11745 Make_Range
(Sloc
(Related_Nod
),
11747 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
11749 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
11751 -- This completion inherits the bounds of the full parent, but if
11752 -- the parent is an unconstrained floating point type, so is the
11755 if Is_Floating_Point_Type
(Full_Base
) then
11756 Set_Includes_Infinities
11757 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
11761 -- ??? It seems that a lot of fields are missing that should be copied
11762 -- from Full_Base to Full. Here are some that are introduced in a
11763 -- non-disruptive way but a cleanup is necessary.
11765 if Is_Tagged_Type
(Full_Base
) then
11766 Set_Is_Tagged_Type
(Full
);
11767 Set_Direct_Primitive_Operations
11768 (Full
, Direct_Primitive_Operations
(Full_Base
));
11769 Set_No_Tagged_Streams_Pragma
11770 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
11772 -- Inherit class_wide type of full_base in case the partial view was
11773 -- not tagged. Otherwise it has already been created when the private
11774 -- subtype was analyzed.
11776 if No
(Class_Wide_Type
(Full
)) then
11777 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
11780 -- If this is a subtype of a protected or task type, constrain its
11781 -- corresponding record, unless this is a subtype without constraints,
11782 -- i.e. a simple renaming as with an actual subtype in an instance.
11784 elsif Is_Concurrent_Type
(Full_Base
) then
11785 if Has_Discriminants
(Full
)
11786 and then Present
(Corresponding_Record_Type
(Full_Base
))
11788 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
11790 Set_Corresponding_Record_Type
(Full
,
11791 Constrain_Corresponding_Record
11792 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
11795 Set_Corresponding_Record_Type
(Full
,
11796 Corresponding_Record_Type
(Full_Base
));
11800 -- Link rep item chain, and also setting of Has_Predicates from private
11801 -- subtype to full subtype, since we will need these on the full subtype
11802 -- to create the predicate function. Note that the full subtype may
11803 -- already have rep items, inherited from the full view of the base
11804 -- type, so we must be sure not to overwrite these entries.
11809 Next_Item
: Node_Id
;
11812 Item
:= First_Rep_Item
(Full
);
11814 -- If no existing rep items on full type, we can just link directly
11815 -- to the list of items on the private type, if any exist.. Same if
11816 -- the rep items are only those inherited from the base
11819 or else Nkind
(Item
) /= N_Aspect_Specification
11820 or else Entity
(Item
) = Full_Base
)
11821 and then Present
(First_Rep_Item
(Priv
))
11823 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
11825 -- Otherwise, search to the end of items currently linked to the full
11826 -- subtype and append the private items to the end. However, if Priv
11827 -- and Full already have the same list of rep items, then the append
11828 -- is not done, as that would create a circularity.
11830 elsif Item
/= First_Rep_Item
(Priv
) then
11833 Next_Item
:= Next_Rep_Item
(Item
);
11834 exit when No
(Next_Item
);
11837 -- If the private view has aspect specifications, the full view
11838 -- inherits them. Since these aspects may already have been
11839 -- attached to the full view during derivation, do not append
11840 -- them if already present.
11842 if Item
= First_Rep_Item
(Priv
) then
11848 -- And link the private type items at the end of the chain
11851 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
11856 -- Make sure Has_Predicates is set on full type if it is set on the
11857 -- private type. Note that it may already be set on the full type and
11858 -- if so, we don't want to unset it. Similarly, propagate information
11859 -- about delayed aspects, because the corresponding pragmas must be
11860 -- analyzed when one of the views is frozen. This last step is needed
11861 -- in particular when the full type is a scalar type for which an
11862 -- anonymous base type is constructed.
11864 if Has_Predicates
(Priv
) then
11865 Set_Has_Predicates
(Full
);
11868 if Has_Delayed_Aspects
(Priv
) then
11869 Set_Has_Delayed_Aspects
(Full
);
11871 end Complete_Private_Subtype
;
11873 ----------------------------
11874 -- Constant_Redeclaration --
11875 ----------------------------
11877 procedure Constant_Redeclaration
11882 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
11883 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
11886 procedure Check_Possible_Deferred_Completion
11887 (Prev_Id
: Entity_Id
;
11888 Prev_Obj_Def
: Node_Id
;
11889 Curr_Obj_Def
: Node_Id
);
11890 -- Determine whether the two object definitions describe the partial
11891 -- and the full view of a constrained deferred constant. Generate
11892 -- a subtype for the full view and verify that it statically matches
11893 -- the subtype of the partial view.
11895 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
11896 -- If deferred constant is an access type initialized with an allocator,
11897 -- check whether there is an illegal recursion in the definition,
11898 -- through a default value of some record subcomponent. This is normally
11899 -- detected when generating init procs, but requires this additional
11900 -- mechanism when expansion is disabled.
11902 ----------------------------------------
11903 -- Check_Possible_Deferred_Completion --
11904 ----------------------------------------
11906 procedure Check_Possible_Deferred_Completion
11907 (Prev_Id
: Entity_Id
;
11908 Prev_Obj_Def
: Node_Id
;
11909 Curr_Obj_Def
: Node_Id
)
11912 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
11913 and then Present
(Constraint
(Prev_Obj_Def
))
11914 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
11915 and then Present
(Constraint
(Curr_Obj_Def
))
11918 Loc
: constant Source_Ptr
:= Sloc
(N
);
11919 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
11920 Decl
: constant Node_Id
:=
11921 Make_Subtype_Declaration
(Loc
,
11922 Defining_Identifier
=> Def_Id
,
11923 Subtype_Indication
=>
11924 Relocate_Node
(Curr_Obj_Def
));
11927 Insert_Before_And_Analyze
(N
, Decl
);
11928 Set_Etype
(Id
, Def_Id
);
11930 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
11931 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
11932 Error_Msg_N
("subtype does not statically match deferred "
11933 & "declaration #", N
);
11937 end Check_Possible_Deferred_Completion
;
11939 ---------------------------------
11940 -- Check_Recursive_Declaration --
11941 ---------------------------------
11943 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
11947 if Is_Record_Type
(Typ
) then
11948 Comp
:= First_Component
(Typ
);
11949 while Present
(Comp
) loop
11950 if Comes_From_Source
(Comp
) then
11951 if Present
(Expression
(Parent
(Comp
)))
11952 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
11953 and then Entity
(Expression
(Parent
(Comp
))) = Prev
11955 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
11957 ("illegal circularity with declaration for & #",
11961 elsif Is_Record_Type
(Etype
(Comp
)) then
11962 Check_Recursive_Declaration
(Etype
(Comp
));
11966 Next_Component
(Comp
);
11969 end Check_Recursive_Declaration
;
11971 -- Start of processing for Constant_Redeclaration
11974 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
11975 if Nkind
(Object_Definition
11976 (Parent
(Prev
))) = N_Subtype_Indication
11978 -- Find type of new declaration. The constraints of the two
11979 -- views must match statically, but there is no point in
11980 -- creating an itype for the full view.
11982 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
11983 Find_Type
(Subtype_Mark
(Obj_Def
));
11984 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
11987 Find_Type
(Obj_Def
);
11988 New_T
:= Entity
(Obj_Def
);
11994 -- The full view may impose a constraint, even if the partial
11995 -- view does not, so construct the subtype.
11997 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
12002 -- Current declaration is illegal, diagnosed below in Enter_Name
12008 -- If previous full declaration or a renaming declaration exists, or if
12009 -- a homograph is present, let Enter_Name handle it, either with an
12010 -- error or with the removal of an overridden implicit subprogram.
12011 -- The previous one is a full declaration if it has an expression
12012 -- (which in the case of an aggregate is indicated by the Init flag).
12014 if Ekind
(Prev
) /= E_Constant
12015 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
12016 or else Present
(Expression
(Parent
(Prev
)))
12017 or else Has_Init_Expression
(Parent
(Prev
))
12018 or else Present
(Full_View
(Prev
))
12022 -- Verify that types of both declarations match, or else that both types
12023 -- are anonymous access types whose designated subtypes statically match
12024 -- (as allowed in Ada 2005 by AI-385).
12026 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
12028 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
12029 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
12030 or else Is_Access_Constant
(Etype
(New_T
)) /=
12031 Is_Access_Constant
(Etype
(Prev
))
12032 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
12033 Can_Never_Be_Null
(Etype
(Prev
))
12034 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
12035 Null_Exclusion_Present
(Parent
(Id
))
12036 or else not Subtypes_Statically_Match
12037 (Designated_Type
(Etype
(Prev
)),
12038 Designated_Type
(Etype
(New_T
))))
12040 Error_Msg_Sloc
:= Sloc
(Prev
);
12041 Error_Msg_N
("type does not match declaration#", N
);
12042 Set_Full_View
(Prev
, Id
);
12043 Set_Etype
(Id
, Any_Type
);
12045 -- A deferred constant whose type is an anonymous array is always
12046 -- illegal (unless imported). A detailed error message might be
12047 -- helpful for Ada beginners.
12049 if Nkind
(Object_Definition
(Parent
(Prev
)))
12050 = N_Constrained_Array_Definition
12051 and then Nkind
(Object_Definition
(N
))
12052 = N_Constrained_Array_Definition
12054 Error_Msg_N
("\each anonymous array is a distinct type", N
);
12055 Error_Msg_N
("a deferred constant must have a named type",
12056 Object_Definition
(Parent
(Prev
)));
12060 Null_Exclusion_Present
(Parent
(Prev
))
12061 and then not Null_Exclusion_Present
(N
)
12063 Error_Msg_Sloc
:= Sloc
(Prev
);
12064 Error_Msg_N
("null-exclusion does not match declaration#", N
);
12065 Set_Full_View
(Prev
, Id
);
12066 Set_Etype
(Id
, Any_Type
);
12068 -- If so, process the full constant declaration
12071 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12072 -- the deferred declaration is constrained, then the subtype defined
12073 -- by the subtype_indication in the full declaration shall match it
12076 Check_Possible_Deferred_Completion
12078 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
12079 Curr_Obj_Def
=> Obj_Def
);
12081 Set_Full_View
(Prev
, Id
);
12082 Set_Is_Public
(Id
, Is_Public
(Prev
));
12083 Set_Is_Internal
(Id
);
12084 Append_Entity
(Id
, Current_Scope
);
12086 -- Check ALIASED present if present before (RM 7.4(7))
12088 if Is_Aliased
(Prev
)
12089 and then not Aliased_Present
(N
)
12091 Error_Msg_Sloc
:= Sloc
(Prev
);
12092 Error_Msg_N
("ALIASED required (see declaration #)", N
);
12095 -- Check that placement is in private part and that the incomplete
12096 -- declaration appeared in the visible part.
12098 if Ekind
(Current_Scope
) = E_Package
12099 and then not In_Private_Part
(Current_Scope
)
12101 Error_Msg_Sloc
:= Sloc
(Prev
);
12103 ("full constant for declaration # must be in private part", N
);
12105 elsif Ekind
(Current_Scope
) = E_Package
12107 List_Containing
(Parent
(Prev
)) /=
12108 Visible_Declarations
(Package_Specification
(Current_Scope
))
12111 ("deferred constant must be declared in visible part",
12115 if Is_Access_Type
(T
)
12116 and then Nkind
(Expression
(N
)) = N_Allocator
12118 Check_Recursive_Declaration
(Designated_Type
(T
));
12121 -- A deferred constant is a visible entity. If type has invariants,
12122 -- verify that the initial value satisfies them.
12124 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
12126 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
12129 end Constant_Redeclaration
;
12131 ----------------------
12132 -- Constrain_Access --
12133 ----------------------
12135 procedure Constrain_Access
12136 (Def_Id
: in out Entity_Id
;
12138 Related_Nod
: Node_Id
)
12140 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12141 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
12142 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
12143 Constraint_OK
: Boolean := True;
12146 if Is_Array_Type
(Desig_Type
) then
12147 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
12149 elsif (Is_Record_Type
(Desig_Type
)
12150 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
12151 and then not Is_Constrained
(Desig_Type
)
12153 -- ??? The following code is a temporary bypass to ignore a
12154 -- discriminant constraint on access type if it is constraining
12155 -- the current record. Avoid creating the implicit subtype of the
12156 -- record we are currently compiling since right now, we cannot
12157 -- handle these. For now, just return the access type itself.
12159 if Desig_Type
= Current_Scope
12160 and then No
(Def_Id
)
12162 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
12163 Def_Id
:= Entity
(Subtype_Mark
(S
));
12165 -- This call added to ensure that the constraint is analyzed
12166 -- (needed for a B test). Note that we still return early from
12167 -- this procedure to avoid recursive processing. ???
12169 Constrain_Discriminated_Type
12170 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
12174 -- Enforce rule that the constraint is illegal if there is an
12175 -- unconstrained view of the designated type. This means that the
12176 -- partial view (either a private type declaration or a derivation
12177 -- from a private type) has no discriminants. (Defect Report
12178 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12180 -- Rule updated for Ada 2005: The private type is said to have
12181 -- a constrained partial view, given that objects of the type
12182 -- can be declared. Furthermore, the rule applies to all access
12183 -- types, unlike the rule concerning default discriminants (see
12186 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
12187 and then Has_Private_Declaration
(Desig_Type
)
12188 and then In_Open_Scopes
(Scope
(Desig_Type
))
12189 and then Has_Discriminants
(Desig_Type
)
12192 Pack
: constant Node_Id
:=
12193 Unit_Declaration_Node
(Scope
(Desig_Type
));
12198 if Nkind
(Pack
) = N_Package_Declaration
then
12199 Decls
:= Visible_Declarations
(Specification
(Pack
));
12200 Decl
:= First
(Decls
);
12201 while Present
(Decl
) loop
12202 if (Nkind
(Decl
) = N_Private_Type_Declaration
12203 and then Chars
(Defining_Identifier
(Decl
)) =
12204 Chars
(Desig_Type
))
12207 (Nkind
(Decl
) = N_Full_Type_Declaration
12209 Chars
(Defining_Identifier
(Decl
)) =
12211 and then Is_Derived_Type
(Desig_Type
)
12213 Has_Private_Declaration
(Etype
(Desig_Type
)))
12215 if No
(Discriminant_Specifications
(Decl
)) then
12217 ("cannot constrain access type if designated "
12218 & "type has constrained partial view", S
);
12230 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
12231 For_Access
=> True);
12233 elsif Is_Concurrent_Type
(Desig_Type
)
12234 and then not Is_Constrained
(Desig_Type
)
12236 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
12239 Error_Msg_N
("invalid constraint on access type", S
);
12241 -- We simply ignore an invalid constraint
12243 Desig_Subtype
:= Desig_Type
;
12244 Constraint_OK
:= False;
12247 if No
(Def_Id
) then
12248 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
12250 Set_Ekind
(Def_Id
, E_Access_Subtype
);
12253 if Constraint_OK
then
12254 Set_Etype
(Def_Id
, Base_Type
(T
));
12256 if Is_Private_Type
(Desig_Type
) then
12257 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
12260 Set_Etype
(Def_Id
, Any_Type
);
12263 Set_Size_Info
(Def_Id
, T
);
12264 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
12265 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
12266 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12267 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12269 Conditional_Delay
(Def_Id
, T
);
12271 -- AI-363 : Subtypes of general access types whose designated types have
12272 -- default discriminants are disallowed. In instances, the rule has to
12273 -- be checked against the actual, of which T is the subtype. In a
12274 -- generic body, the rule is checked assuming that the actual type has
12275 -- defaulted discriminants.
12277 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12278 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12279 and then Has_Defaulted_Discriminants
(Desig_Type
)
12281 if Ada_Version
< Ada_2005
then
12283 ("access subtype of general access type would not " &
12284 "be allowed in Ada 2005?y?", S
);
12287 ("access subtype of general access type not allowed", S
);
12290 Error_Msg_N
("\discriminants have defaults", S
);
12292 elsif Is_Access_Type
(T
)
12293 and then Is_Generic_Type
(Desig_Type
)
12294 and then Has_Discriminants
(Desig_Type
)
12295 and then In_Package_Body
(Current_Scope
)
12297 if Ada_Version
< Ada_2005
then
12299 ("access subtype would not be allowed in generic body "
12300 & "in Ada 2005?y?", S
);
12303 ("access subtype not allowed in generic body", S
);
12307 ("\designated type is a discriminated formal", S
);
12310 end Constrain_Access
;
12312 ---------------------
12313 -- Constrain_Array --
12314 ---------------------
12316 procedure Constrain_Array
12317 (Def_Id
: in out Entity_Id
;
12319 Related_Nod
: Node_Id
;
12320 Related_Id
: Entity_Id
;
12321 Suffix
: Character)
12323 C
: constant Node_Id
:= Constraint
(SI
);
12324 Number_Of_Constraints
: Nat
:= 0;
12327 Constraint_OK
: Boolean := True;
12330 T
:= Entity
(Subtype_Mark
(SI
));
12332 if Is_Access_Type
(T
) then
12333 T
:= Designated_Type
(T
);
12336 -- If an index constraint follows a subtype mark in a subtype indication
12337 -- then the type or subtype denoted by the subtype mark must not already
12338 -- impose an index constraint. The subtype mark must denote either an
12339 -- unconstrained array type or an access type whose designated type
12340 -- is such an array type... (RM 3.6.1)
12342 if Is_Constrained
(T
) then
12343 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
12344 Constraint_OK
:= False;
12347 S
:= First
(Constraints
(C
));
12348 while Present
(S
) loop
12349 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
12353 -- In either case, the index constraint must provide a discrete
12354 -- range for each index of the array type and the type of each
12355 -- discrete range must be the same as that of the corresponding
12356 -- index. (RM 3.6.1)
12358 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
12359 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
12360 Constraint_OK
:= False;
12363 S
:= First
(Constraints
(C
));
12364 Index
:= First_Index
(T
);
12367 -- Apply constraints to each index type
12369 for J
in 1 .. Number_Of_Constraints
loop
12370 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
12378 if No
(Def_Id
) then
12380 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
12381 Set_Parent
(Def_Id
, Related_Nod
);
12384 Set_Ekind
(Def_Id
, E_Array_Subtype
);
12387 Set_Size_Info
(Def_Id
, (T
));
12388 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12389 Set_Etype
(Def_Id
, Base_Type
(T
));
12391 if Constraint_OK
then
12392 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
12394 Set_First_Index
(Def_Id
, First_Index
(T
));
12397 Set_Is_Constrained
(Def_Id
, True);
12398 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
12399 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12401 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
12402 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
12404 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12405 -- We need to initialize the attribute because if Def_Id is previously
12406 -- analyzed through a limited_with clause, it will have the attributes
12407 -- of an incomplete type, one of which is an Elist that overlaps the
12408 -- Packed_Array_Impl_Type field.
12410 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
12412 -- Build a freeze node if parent still needs one. Also make sure that
12413 -- the Depends_On_Private status is set because the subtype will need
12414 -- reprocessing at the time the base type does, and also we must set a
12415 -- conditional delay.
12417 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
12418 Conditional_Delay
(Def_Id
, T
);
12419 end Constrain_Array
;
12421 ------------------------------
12422 -- Constrain_Component_Type --
12423 ------------------------------
12425 function Constrain_Component_Type
12427 Constrained_Typ
: Entity_Id
;
12428 Related_Node
: Node_Id
;
12430 Constraints
: Elist_Id
) return Entity_Id
12432 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
12433 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
12435 function Build_Constrained_Array_Type
12436 (Old_Type
: Entity_Id
) return Entity_Id
;
12437 -- If Old_Type is an array type, one of whose indexes is constrained
12438 -- by a discriminant, build an Itype whose constraint replaces the
12439 -- discriminant with its value in the constraint.
12441 function Build_Constrained_Discriminated_Type
12442 (Old_Type
: Entity_Id
) return Entity_Id
;
12443 -- Ditto for record components
12445 function Build_Constrained_Access_Type
12446 (Old_Type
: Entity_Id
) return Entity_Id
;
12447 -- Ditto for access types. Makes use of previous two functions, to
12448 -- constrain designated type.
12450 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
12451 -- T is an array or discriminated type, C is a list of constraints
12452 -- that apply to T. This routine builds the constrained subtype.
12454 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
12455 -- Returns True if Expr is a discriminant
12457 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
12458 -- Find the value of discriminant Discrim in Constraint
12460 -----------------------------------
12461 -- Build_Constrained_Access_Type --
12462 -----------------------------------
12464 function Build_Constrained_Access_Type
12465 (Old_Type
: Entity_Id
) return Entity_Id
12467 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
12469 Desig_Subtype
: Entity_Id
;
12473 -- if the original access type was not embedded in the enclosing
12474 -- type definition, there is no need to produce a new access
12475 -- subtype. In fact every access type with an explicit constraint
12476 -- generates an itype whose scope is the enclosing record.
12478 if not Is_Type
(Scope
(Old_Type
)) then
12481 elsif Is_Array_Type
(Desig_Type
) then
12482 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
12484 elsif Has_Discriminants
(Desig_Type
) then
12486 -- This may be an access type to an enclosing record type for
12487 -- which we are constructing the constrained components. Return
12488 -- the enclosing record subtype. This is not always correct,
12489 -- but avoids infinite recursion. ???
12491 Desig_Subtype
:= Any_Type
;
12493 for J
in reverse 0 .. Scope_Stack
.Last
loop
12494 Scop
:= Scope_Stack
.Table
(J
).Entity
;
12497 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
12499 Desig_Subtype
:= Scop
;
12502 exit when not Is_Type
(Scop
);
12505 if Desig_Subtype
= Any_Type
then
12507 Build_Constrained_Discriminated_Type
(Desig_Type
);
12514 if Desig_Subtype
/= Desig_Type
then
12516 -- The Related_Node better be here or else we won't be able
12517 -- to attach new itypes to a node in the tree.
12519 pragma Assert
(Present
(Related_Node
));
12521 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
12523 Set_Etype
(Itype
, Base_Type
(Old_Type
));
12524 Set_Size_Info
(Itype
, (Old_Type
));
12525 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
12526 Set_Depends_On_Private
(Itype
, Has_Private_Component
12528 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
12531 -- The new itype needs freezing when it depends on a not frozen
12532 -- type and the enclosing subtype needs freezing.
12534 if Has_Delayed_Freeze
(Constrained_Typ
)
12535 and then not Is_Frozen
(Constrained_Typ
)
12537 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
12545 end Build_Constrained_Access_Type
;
12547 ----------------------------------
12548 -- Build_Constrained_Array_Type --
12549 ----------------------------------
12551 function Build_Constrained_Array_Type
12552 (Old_Type
: Entity_Id
) return Entity_Id
12556 Old_Index
: Node_Id
;
12557 Range_Node
: Node_Id
;
12558 Constr_List
: List_Id
;
12560 Need_To_Create_Itype
: Boolean := False;
12563 Old_Index
:= First_Index
(Old_Type
);
12564 while Present
(Old_Index
) loop
12565 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12567 if Is_Discriminant
(Lo_Expr
)
12569 Is_Discriminant
(Hi_Expr
)
12571 Need_To_Create_Itype
:= True;
12574 Next_Index
(Old_Index
);
12577 if Need_To_Create_Itype
then
12578 Constr_List
:= New_List
;
12580 Old_Index
:= First_Index
(Old_Type
);
12581 while Present
(Old_Index
) loop
12582 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12584 if Is_Discriminant
(Lo_Expr
) then
12585 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
12588 if Is_Discriminant
(Hi_Expr
) then
12589 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
12594 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
12596 Append
(Range_Node
, To
=> Constr_List
);
12598 Next_Index
(Old_Index
);
12601 return Build_Subtype
(Old_Type
, Constr_List
);
12606 end Build_Constrained_Array_Type
;
12608 ------------------------------------------
12609 -- Build_Constrained_Discriminated_Type --
12610 ------------------------------------------
12612 function Build_Constrained_Discriminated_Type
12613 (Old_Type
: Entity_Id
) return Entity_Id
12616 Constr_List
: List_Id
;
12617 Old_Constraint
: Elmt_Id
;
12619 Need_To_Create_Itype
: Boolean := False;
12622 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12623 while Present
(Old_Constraint
) loop
12624 Expr
:= Node
(Old_Constraint
);
12626 if Is_Discriminant
(Expr
) then
12627 Need_To_Create_Itype
:= True;
12630 Next_Elmt
(Old_Constraint
);
12633 if Need_To_Create_Itype
then
12634 Constr_List
:= New_List
;
12636 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12637 while Present
(Old_Constraint
) loop
12638 Expr
:= Node
(Old_Constraint
);
12640 if Is_Discriminant
(Expr
) then
12641 Expr
:= Get_Discr_Value
(Expr
);
12644 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
12646 Next_Elmt
(Old_Constraint
);
12649 return Build_Subtype
(Old_Type
, Constr_List
);
12654 end Build_Constrained_Discriminated_Type
;
12656 -------------------
12657 -- Build_Subtype --
12658 -------------------
12660 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
12662 Subtyp_Decl
: Node_Id
;
12663 Def_Id
: Entity_Id
;
12664 Btyp
: Entity_Id
:= Base_Type
(T
);
12667 -- The Related_Node better be here or else we won't be able to
12668 -- attach new itypes to a node in the tree.
12670 pragma Assert
(Present
(Related_Node
));
12672 -- If the view of the component's type is incomplete or private
12673 -- with unknown discriminants, then the constraint must be applied
12674 -- to the full type.
12676 if Has_Unknown_Discriminants
(Btyp
)
12677 and then Present
(Underlying_Type
(Btyp
))
12679 Btyp
:= Underlying_Type
(Btyp
);
12683 Make_Subtype_Indication
(Loc
,
12684 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
12685 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
12687 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
12690 Make_Subtype_Declaration
(Loc
,
12691 Defining_Identifier
=> Def_Id
,
12692 Subtype_Indication
=> Indic
);
12694 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
12696 -- Itypes must be analyzed with checks off (see package Itypes)
12698 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
12703 ---------------------
12704 -- Get_Discr_Value --
12705 ---------------------
12707 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
12712 -- The discriminant may be declared for the type, in which case we
12713 -- find it by iterating over the list of discriminants. If the
12714 -- discriminant is inherited from a parent type, it appears as the
12715 -- corresponding discriminant of the current type. This will be the
12716 -- case when constraining an inherited component whose constraint is
12717 -- given by a discriminant of the parent.
12719 D
:= First_Discriminant
(Typ
);
12720 E
:= First_Elmt
(Constraints
);
12722 while Present
(D
) loop
12723 if D
= Entity
(Discrim
)
12724 or else D
= CR_Discriminant
(Entity
(Discrim
))
12725 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
12730 Next_Discriminant
(D
);
12734 -- The Corresponding_Discriminant mechanism is incomplete, because
12735 -- the correspondence between new and old discriminants is not one
12736 -- to one: one new discriminant can constrain several old ones. In
12737 -- that case, scan sequentially the stored_constraint, the list of
12738 -- discriminants of the parents, and the constraints.
12740 -- Previous code checked for the present of the Stored_Constraint
12741 -- list for the derived type, but did not use it at all. Should it
12742 -- be present when the component is a discriminated task type?
12744 if Is_Derived_Type
(Typ
)
12745 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
12747 D
:= First_Discriminant
(Etype
(Typ
));
12748 E
:= First_Elmt
(Constraints
);
12749 while Present
(D
) loop
12750 if D
= Entity
(Discrim
) then
12754 Next_Discriminant
(D
);
12759 -- Something is wrong if we did not find the value
12761 raise Program_Error
;
12762 end Get_Discr_Value
;
12764 ---------------------
12765 -- Is_Discriminant --
12766 ---------------------
12768 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
12769 Discrim_Scope
: Entity_Id
;
12772 if Denotes_Discriminant
(Expr
) then
12773 Discrim_Scope
:= Scope
(Entity
(Expr
));
12775 -- Either we have a reference to one of Typ's discriminants,
12777 pragma Assert
(Discrim_Scope
= Typ
12779 -- or to the discriminants of the parent type, in the case
12780 -- of a derivation of a tagged type with variants.
12782 or else Discrim_Scope
= Etype
(Typ
)
12783 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
12785 -- or same as above for the case where the discriminants
12786 -- were declared in Typ's private view.
12788 or else (Is_Private_Type
(Discrim_Scope
)
12789 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12791 -- or else we are deriving from the full view and the
12792 -- discriminant is declared in the private entity.
12794 or else (Is_Private_Type
(Typ
)
12795 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12797 -- Or we are constrained the corresponding record of a
12798 -- synchronized type that completes a private declaration.
12800 or else (Is_Concurrent_Record_Type
(Typ
)
12802 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
12804 -- or we have a class-wide type, in which case make sure the
12805 -- discriminant found belongs to the root type.
12807 or else (Is_Class_Wide_Type
(Typ
)
12808 and then Etype
(Typ
) = Discrim_Scope
));
12813 -- In all other cases we have something wrong
12816 end Is_Discriminant
;
12818 -- Start of processing for Constrain_Component_Type
12821 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
12822 and then Comes_From_Source
(Parent
(Comp
))
12823 and then Comes_From_Source
12824 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12827 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12829 return Compon_Type
;
12831 elsif Is_Array_Type
(Compon_Type
) then
12832 return Build_Constrained_Array_Type
(Compon_Type
);
12834 elsif Has_Discriminants
(Compon_Type
) then
12835 return Build_Constrained_Discriminated_Type
(Compon_Type
);
12837 elsif Is_Access_Type
(Compon_Type
) then
12838 return Build_Constrained_Access_Type
(Compon_Type
);
12841 return Compon_Type
;
12843 end Constrain_Component_Type
;
12845 --------------------------
12846 -- Constrain_Concurrent --
12847 --------------------------
12849 -- For concurrent types, the associated record value type carries the same
12850 -- discriminants, so when we constrain a concurrent type, we must constrain
12851 -- the corresponding record type as well.
12853 procedure Constrain_Concurrent
12854 (Def_Id
: in out Entity_Id
;
12856 Related_Nod
: Node_Id
;
12857 Related_Id
: Entity_Id
;
12858 Suffix
: Character)
12860 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12861 -- case of a private subtype (needed when only doing semantic analysis).
12863 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
12867 if Is_Access_Type
(T_Ent
) then
12868 T_Ent
:= Designated_Type
(T_Ent
);
12871 T_Val
:= Corresponding_Record_Type
(T_Ent
);
12873 if Present
(T_Val
) then
12875 if No
(Def_Id
) then
12876 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12879 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12881 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12882 Set_Corresponding_Record_Type
(Def_Id
,
12883 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
12886 -- If there is no associated record, expansion is disabled and this
12887 -- is a generic context. Create a subtype in any case, so that
12888 -- semantic analysis can proceed.
12890 if No
(Def_Id
) then
12891 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12894 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12896 end Constrain_Concurrent
;
12898 ------------------------------------
12899 -- Constrain_Corresponding_Record --
12900 ------------------------------------
12902 function Constrain_Corresponding_Record
12903 (Prot_Subt
: Entity_Id
;
12904 Corr_Rec
: Entity_Id
;
12905 Related_Nod
: Node_Id
) return Entity_Id
12907 T_Sub
: constant Entity_Id
:=
12908 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
12911 Set_Etype
(T_Sub
, Corr_Rec
);
12912 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
12913 Set_Is_Constrained
(T_Sub
, True);
12914 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
12915 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
12917 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
12918 Set_Discriminant_Constraint
12919 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
12920 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
12921 Create_Constrained_Components
12922 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
12925 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
12927 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
12928 Conditional_Delay
(T_Sub
, Corr_Rec
);
12931 -- This is a component subtype: it will be frozen in the context of
12932 -- the enclosing record's init_proc, so that discriminant references
12933 -- are resolved to discriminals. (Note: we used to skip freezing
12934 -- altogether in that case, which caused errors downstream for
12935 -- components of a bit packed array type).
12937 Set_Has_Delayed_Freeze
(T_Sub
);
12941 end Constrain_Corresponding_Record
;
12943 -----------------------
12944 -- Constrain_Decimal --
12945 -----------------------
12947 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
12948 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12949 C
: constant Node_Id
:= Constraint
(S
);
12950 Loc
: constant Source_Ptr
:= Sloc
(C
);
12951 Range_Expr
: Node_Id
;
12952 Digits_Expr
: Node_Id
;
12957 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
12959 if Nkind
(C
) = N_Range_Constraint
then
12960 Range_Expr
:= Range_Expression
(C
);
12961 Digits_Val
:= Digits_Value
(T
);
12964 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
12966 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
12968 Digits_Expr
:= Digits_Expression
(C
);
12969 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
12971 Check_Digits_Expression
(Digits_Expr
);
12972 Digits_Val
:= Expr_Value
(Digits_Expr
);
12974 if Digits_Val
> Digits_Value
(T
) then
12976 ("digits expression is incompatible with subtype", C
);
12977 Digits_Val
:= Digits_Value
(T
);
12980 if Present
(Range_Constraint
(C
)) then
12981 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
12983 Range_Expr
:= Empty
;
12987 Set_Etype
(Def_Id
, Base_Type
(T
));
12988 Set_Size_Info
(Def_Id
, (T
));
12989 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12990 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
12991 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
12992 Set_Small_Value
(Def_Id
, Small_Value
(T
));
12993 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
12994 Set_Digits_Value
(Def_Id
, Digits_Val
);
12996 -- Manufacture range from given digits value if no range present
12998 if No
(Range_Expr
) then
12999 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
13003 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
13005 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
13008 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
13009 Set_Discrete_RM_Size
(Def_Id
);
13011 -- Unconditionally delay the freeze, since we cannot set size
13012 -- information in all cases correctly until the freeze point.
13014 Set_Has_Delayed_Freeze
(Def_Id
);
13015 end Constrain_Decimal
;
13017 ----------------------------------
13018 -- Constrain_Discriminated_Type --
13019 ----------------------------------
13021 procedure Constrain_Discriminated_Type
13022 (Def_Id
: Entity_Id
;
13024 Related_Nod
: Node_Id
;
13025 For_Access
: Boolean := False)
13027 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13030 Elist
: Elist_Id
:= New_Elmt_List
;
13032 procedure Fixup_Bad_Constraint
;
13033 -- This is called after finding a bad constraint, and after having
13034 -- posted an appropriate error message. The mission is to leave the
13035 -- entity T in as reasonable state as possible.
13037 --------------------------
13038 -- Fixup_Bad_Constraint --
13039 --------------------------
13041 procedure Fixup_Bad_Constraint
is
13043 -- Set a reasonable Ekind for the entity. For an incomplete type,
13044 -- we can't do much, but for other types, we can set the proper
13045 -- corresponding subtype kind.
13047 if Ekind
(T
) = E_Incomplete_Type
then
13048 Set_Ekind
(Def_Id
, Ekind
(T
));
13050 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
13053 -- Set Etype to the known type, to reduce chances of cascaded errors
13055 Set_Etype
(Def_Id
, E
);
13056 Set_Error_Posted
(Def_Id
);
13057 end Fixup_Bad_Constraint
;
13059 -- Start of processing for Constrain_Discriminated_Type
13062 C
:= Constraint
(S
);
13064 -- A discriminant constraint is only allowed in a subtype indication,
13065 -- after a subtype mark. This subtype mark must denote either a type
13066 -- with discriminants, or an access type whose designated type is a
13067 -- type with discriminants. A discriminant constraint specifies the
13068 -- values of these discriminants (RM 3.7.2(5)).
13070 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
13072 if Is_Access_Type
(T
) then
13073 T
:= Designated_Type
(T
);
13076 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13077 -- Avoid generating an error for access-to-incomplete subtypes.
13079 if Ada_Version
>= Ada_2005
13080 and then Ekind
(T
) = E_Incomplete_Type
13081 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
13082 and then not Is_Itype
(Def_Id
)
13084 -- A little sanity check, emit an error message if the type
13085 -- has discriminants to begin with. Type T may be a regular
13086 -- incomplete type or imported via a limited with clause.
13088 if Has_Discriminants
(T
)
13089 or else (From_Limited_With
(T
)
13090 and then Present
(Non_Limited_View
(T
))
13091 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
13092 N_Full_Type_Declaration
13093 and then Present
(Discriminant_Specifications
13094 (Parent
(Non_Limited_View
(T
)))))
13097 ("(Ada 2005) incomplete subtype may not be constrained", C
);
13099 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13102 Fixup_Bad_Constraint
;
13105 -- Check that the type has visible discriminants. The type may be
13106 -- a private type with unknown discriminants whose full view has
13107 -- discriminants which are invisible.
13109 elsif not Has_Discriminants
(T
)
13111 (Has_Unknown_Discriminants
(T
)
13112 and then Is_Private_Type
(T
))
13114 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13115 Fixup_Bad_Constraint
;
13118 elsif Is_Constrained
(E
)
13119 or else (Ekind
(E
) = E_Class_Wide_Subtype
13120 and then Present
(Discriminant_Constraint
(E
)))
13122 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
13123 Fixup_Bad_Constraint
;
13127 -- T may be an unconstrained subtype (e.g. a generic actual).
13128 -- Constraint applies to the base type.
13130 T
:= Base_Type
(T
);
13132 Elist
:= Build_Discriminant_Constraints
(T
, S
);
13134 -- If the list returned was empty we had an error in building the
13135 -- discriminant constraint. We have also already signalled an error
13136 -- in the incomplete type case
13138 if Is_Empty_Elmt_List
(Elist
) then
13139 Fixup_Bad_Constraint
;
13143 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
13144 end Constrain_Discriminated_Type
;
13146 ---------------------------
13147 -- Constrain_Enumeration --
13148 ---------------------------
13150 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
13151 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13152 C
: constant Node_Id
:= Constraint
(S
);
13155 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13157 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
13159 Set_Etype
(Def_Id
, Base_Type
(T
));
13160 Set_Size_Info
(Def_Id
, (T
));
13161 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13162 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13164 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13166 Set_Discrete_RM_Size
(Def_Id
);
13167 end Constrain_Enumeration
;
13169 ----------------------
13170 -- Constrain_Float --
13171 ----------------------
13173 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
13174 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13180 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
13182 Set_Etype
(Def_Id
, Base_Type
(T
));
13183 Set_Size_Info
(Def_Id
, (T
));
13184 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13186 -- Process the constraint
13188 C
:= Constraint
(S
);
13190 -- Digits constraint present
13192 if Nkind
(C
) = N_Digits_Constraint
then
13194 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13195 Check_Restriction
(No_Obsolescent_Features
, C
);
13197 if Warn_On_Obsolescent_Feature
then
13199 ("subtype digits constraint is an " &
13200 "obsolescent feature (RM J.3(8))?j?", C
);
13203 D
:= Digits_Expression
(C
);
13204 Analyze_And_Resolve
(D
, Any_Integer
);
13205 Check_Digits_Expression
(D
);
13206 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
13208 -- Check that digits value is in range. Obviously we can do this
13209 -- at compile time, but it is strictly a runtime check, and of
13210 -- course there is an ACVC test that checks this.
13212 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
13213 Error_Msg_Uint_1
:= Digits_Value
(T
);
13214 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
13216 Make_Raise_Constraint_Error
(Sloc
(D
),
13217 Reason
=> CE_Range_Check_Failed
);
13218 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13221 C
:= Range_Constraint
(C
);
13223 -- No digits constraint present
13226 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
13229 -- Range constraint present
13231 if Nkind
(C
) = N_Range_Constraint
then
13232 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13234 -- No range constraint present
13237 pragma Assert
(No
(C
));
13238 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13241 Set_Is_Constrained
(Def_Id
);
13242 end Constrain_Float
;
13244 ---------------------
13245 -- Constrain_Index --
13246 ---------------------
13248 procedure Constrain_Index
13251 Related_Nod
: Node_Id
;
13252 Related_Id
: Entity_Id
;
13253 Suffix
: Character;
13254 Suffix_Index
: Nat
)
13256 Def_Id
: Entity_Id
;
13257 R
: Node_Id
:= Empty
;
13258 T
: constant Entity_Id
:= Etype
(Index
);
13262 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13263 Set_Etype
(Def_Id
, Base_Type
(T
));
13265 if Nkind
(S
) = N_Range
13267 (Nkind
(S
) = N_Attribute_Reference
13268 and then Attribute_Name
(S
) = Name_Range
)
13270 -- A Range attribute will be transformed into N_Range by Resolve
13276 Process_Range_Expr_In_Decl
(R
, T
);
13278 if not Error_Posted
(S
)
13280 (Nkind
(S
) /= N_Range
13281 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
13282 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
13284 if Base_Type
(T
) /= Any_Type
13285 and then Etype
(Low_Bound
(S
)) /= Any_Type
13286 and then Etype
(High_Bound
(S
)) /= Any_Type
13288 Error_Msg_N
("range expected", S
);
13292 elsif Nkind
(S
) = N_Subtype_Indication
then
13294 -- The parser has verified that this is a discrete indication
13296 Resolve_Discrete_Subtype_Indication
(S
, T
);
13297 Bad_Predicated_Subtype_Use
13298 ("subtype& has predicate, not allowed in index constraint",
13299 S
, Entity
(Subtype_Mark
(S
)));
13301 R
:= Range_Expression
(Constraint
(S
));
13303 -- Capture values of bounds and generate temporaries for them if
13304 -- needed, since checks may cause duplication of the expressions
13305 -- which must not be reevaluated.
13307 -- The forced evaluation removes side effects from expressions, which
13308 -- should occur also in GNATprove mode. Otherwise, we end up with
13309 -- unexpected insertions of actions at places where this is not
13310 -- supposed to occur, e.g. on default parameters of a call.
13312 if Expander_Active
or GNATprove_Mode
then
13314 (Low_Bound
(R
), Related_Id
=> Def_Id
, Is_Low_Bound
=> True);
13316 (High_Bound
(R
), Related_Id
=> Def_Id
, Is_High_Bound
=> True);
13319 elsif Nkind
(S
) = N_Discriminant_Association
then
13321 -- Syntactically valid in subtype indication
13323 Error_Msg_N
("invalid index constraint", S
);
13324 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13327 -- Subtype_Mark case, no anonymous subtypes to construct
13332 if Is_Entity_Name
(S
) then
13333 if not Is_Type
(Entity
(S
)) then
13334 Error_Msg_N
("expect subtype mark for index constraint", S
);
13336 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
13337 Wrong_Type
(S
, Base_Type
(T
));
13339 -- Check error of subtype with predicate in index constraint
13342 Bad_Predicated_Subtype_Use
13343 ("subtype& has predicate, not allowed in index constraint",
13350 Error_Msg_N
("invalid index constraint", S
);
13351 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13356 -- Complete construction of the Itype
13358 if Is_Modular_Integer_Type
(T
) then
13359 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13361 elsif Is_Integer_Type
(T
) then
13362 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13365 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13366 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13367 Set_First_Literal
(Def_Id
, First_Literal
(T
));
13370 Set_Size_Info
(Def_Id
, (T
));
13371 Set_RM_Size
(Def_Id
, RM_Size
(T
));
13372 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13374 Set_Scalar_Range
(Def_Id
, R
);
13376 Set_Etype
(S
, Def_Id
);
13377 Set_Discrete_RM_Size
(Def_Id
);
13378 end Constrain_Index
;
13380 -----------------------
13381 -- Constrain_Integer --
13382 -----------------------
13384 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
13385 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13386 C
: constant Node_Id
:= Constraint
(S
);
13389 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13391 if Is_Modular_Integer_Type
(T
) then
13392 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13394 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13397 Set_Etype
(Def_Id
, Base_Type
(T
));
13398 Set_Size_Info
(Def_Id
, (T
));
13399 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13400 Set_Discrete_RM_Size
(Def_Id
);
13401 end Constrain_Integer
;
13403 ------------------------------
13404 -- Constrain_Ordinary_Fixed --
13405 ------------------------------
13407 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
13408 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13414 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
13415 Set_Etype
(Def_Id
, Base_Type
(T
));
13416 Set_Size_Info
(Def_Id
, (T
));
13417 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13418 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13420 -- Process the constraint
13422 C
:= Constraint
(S
);
13424 -- Delta constraint present
13426 if Nkind
(C
) = N_Delta_Constraint
then
13428 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
13429 Check_Restriction
(No_Obsolescent_Features
, C
);
13431 if Warn_On_Obsolescent_Feature
then
13433 ("subtype delta constraint is an " &
13434 "obsolescent feature (RM J.3(7))?j?");
13437 D
:= Delta_Expression
(C
);
13438 Analyze_And_Resolve
(D
, Any_Real
);
13439 Check_Delta_Expression
(D
);
13440 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
13442 -- Check that delta value is in range. Obviously we can do this
13443 -- at compile time, but it is strictly a runtime check, and of
13444 -- course there is an ACVC test that checks this.
13446 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
13447 Error_Msg_N
("??delta value is too small", D
);
13449 Make_Raise_Constraint_Error
(Sloc
(D
),
13450 Reason
=> CE_Range_Check_Failed
);
13451 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13454 C
:= Range_Constraint
(C
);
13456 -- No delta constraint present
13459 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13462 -- Range constraint present
13464 if Nkind
(C
) = N_Range_Constraint
then
13465 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13467 -- No range constraint present
13470 pragma Assert
(No
(C
));
13471 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13474 Set_Discrete_RM_Size
(Def_Id
);
13476 -- Unconditionally delay the freeze, since we cannot set size
13477 -- information in all cases correctly until the freeze point.
13479 Set_Has_Delayed_Freeze
(Def_Id
);
13480 end Constrain_Ordinary_Fixed
;
13482 -----------------------
13483 -- Contain_Interface --
13484 -----------------------
13486 function Contain_Interface
13487 (Iface
: Entity_Id
;
13488 Ifaces
: Elist_Id
) return Boolean
13490 Iface_Elmt
: Elmt_Id
;
13493 if Present
(Ifaces
) then
13494 Iface_Elmt
:= First_Elmt
(Ifaces
);
13495 while Present
(Iface_Elmt
) loop
13496 if Node
(Iface_Elmt
) = Iface
then
13500 Next_Elmt
(Iface_Elmt
);
13505 end Contain_Interface
;
13507 ---------------------------
13508 -- Convert_Scalar_Bounds --
13509 ---------------------------
13511 procedure Convert_Scalar_Bounds
13513 Parent_Type
: Entity_Id
;
13514 Derived_Type
: Entity_Id
;
13517 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
13524 -- Defend against previous errors
13526 if No
(Scalar_Range
(Derived_Type
)) then
13527 Check_Error_Detected
;
13531 Lo
:= Build_Scalar_Bound
13532 (Type_Low_Bound
(Derived_Type
),
13533 Parent_Type
, Implicit_Base
);
13535 Hi
:= Build_Scalar_Bound
13536 (Type_High_Bound
(Derived_Type
),
13537 Parent_Type
, Implicit_Base
);
13544 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
13546 Set_Parent
(Rng
, N
);
13547 Set_Scalar_Range
(Derived_Type
, Rng
);
13549 -- Analyze the bounds
13551 Analyze_And_Resolve
(Lo
, Implicit_Base
);
13552 Analyze_And_Resolve
(Hi
, Implicit_Base
);
13554 -- Analyze the range itself, except that we do not analyze it if
13555 -- the bounds are real literals, and we have a fixed-point type.
13556 -- The reason for this is that we delay setting the bounds in this
13557 -- case till we know the final Small and Size values (see circuit
13558 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13560 if Is_Fixed_Point_Type
(Parent_Type
)
13561 and then Nkind
(Lo
) = N_Real_Literal
13562 and then Nkind
(Hi
) = N_Real_Literal
13566 -- Here we do the analysis of the range
13568 -- Note: we do this manually, since if we do a normal Analyze and
13569 -- Resolve call, there are problems with the conversions used for
13570 -- the derived type range.
13573 Set_Etype
(Rng
, Implicit_Base
);
13574 Set_Analyzed
(Rng
, True);
13576 end Convert_Scalar_Bounds
;
13578 -------------------
13579 -- Copy_And_Swap --
13580 -------------------
13582 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
13584 -- Initialize new full declaration entity by copying the pertinent
13585 -- fields of the corresponding private declaration entity.
13587 -- We temporarily set Ekind to a value appropriate for a type to
13588 -- avoid assert failures in Einfo from checking for setting type
13589 -- attributes on something that is not a type. Ekind (Priv) is an
13590 -- appropriate choice, since it allowed the attributes to be set
13591 -- in the first place. This Ekind value will be modified later.
13593 Set_Ekind
(Full
, Ekind
(Priv
));
13595 -- Also set Etype temporarily to Any_Type, again, in the absence
13596 -- of errors, it will be properly reset, and if there are errors,
13597 -- then we want a value of Any_Type to remain.
13599 Set_Etype
(Full
, Any_Type
);
13601 -- Now start copying attributes
13603 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
13605 if Has_Discriminants
(Full
) then
13606 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
13607 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
13610 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
13611 Set_Homonym
(Full
, Homonym
(Priv
));
13612 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
13613 Set_Is_Public
(Full
, Is_Public
(Priv
));
13614 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
13615 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
13616 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
13617 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
13618 Set_Has_Pragma_Unreferenced_Objects
13619 (Full
, Has_Pragma_Unreferenced_Objects
13622 Conditional_Delay
(Full
, Priv
);
13624 if Is_Tagged_Type
(Full
) then
13625 Set_Direct_Primitive_Operations
13626 (Full
, Direct_Primitive_Operations
(Priv
));
13627 Set_No_Tagged_Streams_Pragma
13628 (Full
, No_Tagged_Streams_Pragma
(Priv
));
13630 if Is_Base_Type
(Priv
) then
13631 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
13635 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
13636 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
13637 Set_Scope
(Full
, Scope
(Priv
));
13638 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
13639 Set_First_Entity
(Full
, First_Entity
(Priv
));
13640 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
13642 -- If access types have been recorded for later handling, keep them in
13643 -- the full view so that they get handled when the full view freeze
13644 -- node is expanded.
13646 if Present
(Freeze_Node
(Priv
))
13647 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
13649 Ensure_Freeze_Node
(Full
);
13650 Set_Access_Types_To_Process
13651 (Freeze_Node
(Full
),
13652 Access_Types_To_Process
(Freeze_Node
(Priv
)));
13655 -- Swap the two entities. Now Private is the full type entity and Full
13656 -- is the private one. They will be swapped back at the end of the
13657 -- private part. This swapping ensures that the entity that is visible
13658 -- in the private part is the full declaration.
13660 Exchange_Entities
(Priv
, Full
);
13661 Append_Entity
(Full
, Scope
(Full
));
13664 -------------------------------------
13665 -- Copy_Array_Base_Type_Attributes --
13666 -------------------------------------
13668 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
13670 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
13671 Set_Component_Type
(T1
, Component_Type
(T2
));
13672 Set_Component_Size
(T1
, Component_Size
(T2
));
13673 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
13674 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
13675 Set_Has_Protected
(T1
, Has_Protected
(T2
));
13676 Set_Has_Task
(T1
, Has_Task
(T2
));
13677 Set_Is_Packed
(T1
, Is_Packed
(T2
));
13678 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
13679 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
13680 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
13681 end Copy_Array_Base_Type_Attributes
;
13683 -----------------------------------
13684 -- Copy_Array_Subtype_Attributes --
13685 -----------------------------------
13687 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
13689 Set_Size_Info
(T1
, T2
);
13691 Set_First_Index
(T1
, First_Index
(T2
));
13692 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
13693 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
13694 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
13695 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
13696 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
13697 Inherit_Rep_Item_Chain
(T1
, T2
);
13698 Set_Convention
(T1
, Convention
(T2
));
13699 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
13700 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
13701 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
13702 end Copy_Array_Subtype_Attributes
;
13704 -----------------------------------
13705 -- Create_Constrained_Components --
13706 -----------------------------------
13708 procedure Create_Constrained_Components
13710 Decl_Node
: Node_Id
;
13712 Constraints
: Elist_Id
)
13714 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
13715 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
13716 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
13717 Assoc_List
: constant List_Id
:= New_List
;
13718 Discr_Val
: Elmt_Id
;
13722 Is_Static
: Boolean := True;
13724 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
13725 -- Collect parent type components that do not appear in a variant part
13727 procedure Create_All_Components
;
13728 -- Iterate over Comp_List to create the components of the subtype
13730 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
13731 -- Creates a new component from Old_Compon, copying all the fields from
13732 -- it, including its Etype, inserts the new component in the Subt entity
13733 -- chain and returns the new component.
13735 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
13736 -- If true, and discriminants are static, collect only components from
13737 -- variants selected by discriminant values.
13739 ------------------------------
13740 -- Collect_Fixed_Components --
13741 ------------------------------
13743 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
13745 -- Build association list for discriminants, and find components of the
13746 -- variant part selected by the values of the discriminants.
13748 Old_C
:= First_Discriminant
(Typ
);
13749 Discr_Val
:= First_Elmt
(Constraints
);
13750 while Present
(Old_C
) loop
13751 Append_To
(Assoc_List
,
13752 Make_Component_Association
(Loc
,
13753 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
13754 Expression
=> New_Copy
(Node
(Discr_Val
))));
13756 Next_Elmt
(Discr_Val
);
13757 Next_Discriminant
(Old_C
);
13760 -- The tag and the possible parent component are unconditionally in
13763 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
13764 Old_C
:= First_Component
(Typ
);
13765 while Present
(Old_C
) loop
13766 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
13767 Append_Elmt
(Old_C
, Comp_List
);
13770 Next_Component
(Old_C
);
13773 end Collect_Fixed_Components
;
13775 ---------------------------
13776 -- Create_All_Components --
13777 ---------------------------
13779 procedure Create_All_Components
is
13783 Comp
:= First_Elmt
(Comp_List
);
13784 while Present
(Comp
) loop
13785 Old_C
:= Node
(Comp
);
13786 New_C
:= Create_Component
(Old_C
);
13790 Constrain_Component_Type
13791 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13792 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13796 end Create_All_Components
;
13798 ----------------------
13799 -- Create_Component --
13800 ----------------------
13802 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
13803 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
13806 if Ekind
(Old_Compon
) = E_Discriminant
13807 and then Is_Completely_Hidden
(Old_Compon
)
13809 -- This is a shadow discriminant created for a discriminant of
13810 -- the parent type, which needs to be present in the subtype.
13811 -- Give the shadow discriminant an internal name that cannot
13812 -- conflict with that of visible components.
13814 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
13817 -- Set the parent so we have a proper link for freezing etc. This is
13818 -- not a real parent pointer, since of course our parent does not own
13819 -- up to us and reference us, we are an illegitimate child of the
13820 -- original parent.
13822 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
13824 -- If the old component's Esize was already determined and is a
13825 -- static value, then the new component simply inherits it. Otherwise
13826 -- the old component's size may require run-time determination, but
13827 -- the new component's size still might be statically determinable
13828 -- (if, for example it has a static constraint). In that case we want
13829 -- Layout_Type to recompute the component's size, so we reset its
13830 -- size and positional fields.
13832 if Frontend_Layout_On_Target
13833 and then not Known_Static_Esize
(Old_Compon
)
13835 Set_Esize
(New_Compon
, Uint_0
);
13836 Init_Normalized_First_Bit
(New_Compon
);
13837 Init_Normalized_Position
(New_Compon
);
13838 Init_Normalized_Position_Max
(New_Compon
);
13841 -- We do not want this node marked as Comes_From_Source, since
13842 -- otherwise it would get first class status and a separate cross-
13843 -- reference line would be generated. Illegitimate children do not
13844 -- rate such recognition.
13846 Set_Comes_From_Source
(New_Compon
, False);
13848 -- But it is a real entity, and a birth certificate must be properly
13849 -- registered by entering it into the entity list.
13851 Enter_Name
(New_Compon
);
13854 end Create_Component
;
13856 -----------------------
13857 -- Is_Variant_Record --
13858 -----------------------
13860 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
13862 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
13863 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
13864 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
13867 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
13868 end Is_Variant_Record
;
13870 -- Start of processing for Create_Constrained_Components
13873 pragma Assert
(Subt
/= Base_Type
(Subt
));
13874 pragma Assert
(Typ
= Base_Type
(Typ
));
13876 Set_First_Entity
(Subt
, Empty
);
13877 Set_Last_Entity
(Subt
, Empty
);
13879 -- Check whether constraint is fully static, in which case we can
13880 -- optimize the list of components.
13882 Discr_Val
:= First_Elmt
(Constraints
);
13883 while Present
(Discr_Val
) loop
13884 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
13885 Is_Static
:= False;
13889 Next_Elmt
(Discr_Val
);
13892 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
13896 -- Inherit the discriminants of the parent type
13898 Add_Discriminants
: declare
13904 Old_C
:= First_Discriminant
(Typ
);
13906 while Present
(Old_C
) loop
13907 Num_Disc
:= Num_Disc
+ 1;
13908 New_C
:= Create_Component
(Old_C
);
13909 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13910 Next_Discriminant
(Old_C
);
13913 -- For an untagged derived subtype, the number of discriminants may
13914 -- be smaller than the number of inherited discriminants, because
13915 -- several of them may be renamed by a single new discriminant or
13916 -- constrained. In this case, add the hidden discriminants back into
13917 -- the subtype, because they need to be present if the optimizer of
13918 -- the GCC 4.x back-end decides to break apart assignments between
13919 -- objects using the parent view into member-wise assignments.
13923 if Is_Derived_Type
(Typ
)
13924 and then not Is_Tagged_Type
(Typ
)
13926 Old_C
:= First_Stored_Discriminant
(Typ
);
13928 while Present
(Old_C
) loop
13929 Num_Gird
:= Num_Gird
+ 1;
13930 Next_Stored_Discriminant
(Old_C
);
13934 if Num_Gird
> Num_Disc
then
13936 -- Find out multiple uses of new discriminants, and add hidden
13937 -- components for the extra renamed discriminants. We recognize
13938 -- multiple uses through the Corresponding_Discriminant of a
13939 -- new discriminant: if it constrains several old discriminants,
13940 -- this field points to the last one in the parent type. The
13941 -- stored discriminants of the derived type have the same name
13942 -- as those of the parent.
13946 New_Discr
: Entity_Id
;
13947 Old_Discr
: Entity_Id
;
13950 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
13951 Old_Discr
:= First_Stored_Discriminant
(Typ
);
13952 while Present
(Constr
) loop
13953 if Is_Entity_Name
(Node
(Constr
))
13954 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
13956 New_Discr
:= Entity
(Node
(Constr
));
13958 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
13961 -- The new discriminant has been used to rename a
13962 -- subsequent old discriminant. Introduce a shadow
13963 -- component for the current old discriminant.
13965 New_C
:= Create_Component
(Old_Discr
);
13966 Set_Original_Record_Component
(New_C
, Old_Discr
);
13970 -- The constraint has eliminated the old discriminant.
13971 -- Introduce a shadow component.
13973 New_C
:= Create_Component
(Old_Discr
);
13974 Set_Original_Record_Component
(New_C
, Old_Discr
);
13977 Next_Elmt
(Constr
);
13978 Next_Stored_Discriminant
(Old_Discr
);
13982 end Add_Discriminants
;
13985 and then Is_Variant_Record
(Typ
)
13987 Collect_Fixed_Components
(Typ
);
13989 Gather_Components
(
13991 Component_List
(Type_Definition
(Parent
(Typ
))),
13992 Governed_By
=> Assoc_List
,
13994 Report_Errors
=> Errors
);
13995 pragma Assert
(not Errors
);
13997 Create_All_Components
;
13999 -- If the subtype declaration is created for a tagged type derivation
14000 -- with constraints, we retrieve the record definition of the parent
14001 -- type to select the components of the proper variant.
14004 and then Is_Tagged_Type
(Typ
)
14005 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
14007 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
14008 and then Is_Variant_Record
(Parent_Type
)
14010 Collect_Fixed_Components
(Typ
);
14014 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
14015 Governed_By
=> Assoc_List
,
14017 Report_Errors
=> Errors
);
14019 -- Note: previously there was a check at this point that no errors
14020 -- were detected. As a consequence of AI05-220 there may be an error
14021 -- if an inherited discriminant that controls a variant has a non-
14022 -- static constraint.
14024 -- If the tagged derivation has a type extension, collect all the
14025 -- new components therein.
14027 if Present
(Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
14029 Old_C
:= First_Component
(Typ
);
14030 while Present
(Old_C
) loop
14031 if Original_Record_Component
(Old_C
) = Old_C
14032 and then Chars
(Old_C
) /= Name_uTag
14033 and then Chars
(Old_C
) /= Name_uParent
14035 Append_Elmt
(Old_C
, Comp_List
);
14038 Next_Component
(Old_C
);
14042 Create_All_Components
;
14045 -- If discriminants are not static, or if this is a multi-level type
14046 -- extension, we have to include all components of the parent type.
14048 Old_C
:= First_Component
(Typ
);
14049 while Present
(Old_C
) loop
14050 New_C
:= Create_Component
(Old_C
);
14054 Constrain_Component_Type
14055 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
14056 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14058 Next_Component
(Old_C
);
14063 end Create_Constrained_Components
;
14065 ------------------------------------------
14066 -- Decimal_Fixed_Point_Type_Declaration --
14067 ------------------------------------------
14069 procedure Decimal_Fixed_Point_Type_Declaration
14073 Loc
: constant Source_Ptr
:= Sloc
(Def
);
14074 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
14075 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
14076 Implicit_Base
: Entity_Id
;
14083 Check_SPARK_05_Restriction
14084 ("decimal fixed point type is not allowed", Def
);
14085 Check_Restriction
(No_Fixed_Point
, Def
);
14087 -- Create implicit base type
14090 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
14091 Set_Etype
(Implicit_Base
, Implicit_Base
);
14093 -- Analyze and process delta expression
14095 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
14097 Check_Delta_Expression
(Delta_Expr
);
14098 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
14100 -- Check delta is power of 10, and determine scale value from it
14106 Scale_Val
:= Uint_0
;
14109 if Val
< Ureal_1
then
14110 while Val
< Ureal_1
loop
14111 Val
:= Val
* Ureal_10
;
14112 Scale_Val
:= Scale_Val
+ 1;
14115 if Scale_Val
> 18 then
14116 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
14117 Scale_Val
:= UI_From_Int
(+18);
14121 while Val
> Ureal_1
loop
14122 Val
:= Val
/ Ureal_10
;
14123 Scale_Val
:= Scale_Val
- 1;
14126 if Scale_Val
< -18 then
14127 Error_Msg_N
("scale is less than minimum value of -18", Def
);
14128 Scale_Val
:= UI_From_Int
(-18);
14132 if Val
/= Ureal_1
then
14133 Error_Msg_N
("delta expression must be a power of 10", Def
);
14134 Delta_Val
:= Ureal_10
** (-Scale_Val
);
14138 -- Set delta, scale and small (small = delta for decimal type)
14140 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
14141 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
14142 Set_Small_Value
(Implicit_Base
, Delta_Val
);
14144 -- Analyze and process digits expression
14146 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
14147 Check_Digits_Expression
(Digs_Expr
);
14148 Digs_Val
:= Expr_Value
(Digs_Expr
);
14150 if Digs_Val
> 18 then
14151 Digs_Val
:= UI_From_Int
(+18);
14152 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
14155 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
14156 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
14158 -- Set range of base type from digits value for now. This will be
14159 -- expanded to represent the true underlying base range by Freeze.
14161 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
14163 -- Note: We leave size as zero for now, size will be set at freeze
14164 -- time. We have to do this for ordinary fixed-point, because the size
14165 -- depends on the specified small, and we might as well do the same for
14166 -- decimal fixed-point.
14168 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
14170 -- If there are bounds given in the declaration use them as the
14171 -- bounds of the first named subtype.
14173 if Present
(Real_Range_Specification
(Def
)) then
14175 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14176 Low
: constant Node_Id
:= Low_Bound
(RRS
);
14177 High
: constant Node_Id
:= High_Bound
(RRS
);
14182 Analyze_And_Resolve
(Low
, Any_Real
);
14183 Analyze_And_Resolve
(High
, Any_Real
);
14184 Check_Real_Bound
(Low
);
14185 Check_Real_Bound
(High
);
14186 Low_Val
:= Expr_Value_R
(Low
);
14187 High_Val
:= Expr_Value_R
(High
);
14189 if Low_Val
< (-Bound_Val
) then
14191 ("range low bound too small for digits value", Low
);
14192 Low_Val
:= -Bound_Val
;
14195 if High_Val
> Bound_Val
then
14197 ("range high bound too large for digits value", High
);
14198 High_Val
:= Bound_Val
;
14201 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
14204 -- If no explicit range, use range that corresponds to given
14205 -- digits value. This will end up as the final range for the
14209 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
14212 -- Complete entity for first subtype. The inheritance of the rep item
14213 -- chain ensures that SPARK-related pragmas are not clobbered when the
14214 -- decimal fixed point type acts as a full view of a private type.
14216 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
14217 Set_Etype
(T
, Implicit_Base
);
14218 Set_Size_Info
(T
, Implicit_Base
);
14219 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
14220 Set_Digits_Value
(T
, Digs_Val
);
14221 Set_Delta_Value
(T
, Delta_Val
);
14222 Set_Small_Value
(T
, Delta_Val
);
14223 Set_Scale_Value
(T
, Scale_Val
);
14224 Set_Is_Constrained
(T
);
14225 end Decimal_Fixed_Point_Type_Declaration
;
14227 -----------------------------------
14228 -- Derive_Progenitor_Subprograms --
14229 -----------------------------------
14231 procedure Derive_Progenitor_Subprograms
14232 (Parent_Type
: Entity_Id
;
14233 Tagged_Type
: Entity_Id
)
14238 Iface_Elmt
: Elmt_Id
;
14239 Iface_Subp
: Entity_Id
;
14240 New_Subp
: Entity_Id
:= Empty
;
14241 Prim_Elmt
: Elmt_Id
;
14246 pragma Assert
(Ada_Version
>= Ada_2005
14247 and then Is_Record_Type
(Tagged_Type
)
14248 and then Is_Tagged_Type
(Tagged_Type
)
14249 and then Has_Interfaces
(Tagged_Type
));
14251 -- Step 1: Transfer to the full-view primitives associated with the
14252 -- partial-view that cover interface primitives. Conceptually this
14253 -- work should be done later by Process_Full_View; done here to
14254 -- simplify its implementation at later stages. It can be safely
14255 -- done here because interfaces must be visible in the partial and
14256 -- private view (RM 7.3(7.3/2)).
14258 -- Small optimization: This work is only required if the parent may
14259 -- have entities whose Alias attribute reference an interface primitive.
14260 -- Such a situation may occur if the parent is an abstract type and the
14261 -- primitive has not been yet overridden or if the parent is a generic
14262 -- formal type covering interfaces.
14264 -- If the tagged type is not abstract, it cannot have abstract
14265 -- primitives (the only entities in the list of primitives of
14266 -- non-abstract tagged types that can reference abstract primitives
14267 -- through its Alias attribute are the internal entities that have
14268 -- attribute Interface_Alias, and these entities are generated later
14269 -- by Add_Internal_Interface_Entities).
14271 if In_Private_Part
(Current_Scope
)
14272 and then (Is_Abstract_Type
(Parent_Type
)
14274 Is_Generic_Type
(Parent_Type
))
14276 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14277 while Present
(Elmt
) loop
14278 Subp
:= Node
(Elmt
);
14280 -- At this stage it is not possible to have entities in the list
14281 -- of primitives that have attribute Interface_Alias.
14283 pragma Assert
(No
(Interface_Alias
(Subp
)));
14285 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
14287 if Is_Interface
(Typ
) then
14288 E
:= Find_Primitive_Covering_Interface
14289 (Tagged_Type
=> Tagged_Type
,
14290 Iface_Prim
=> Subp
);
14293 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
14295 Replace_Elmt
(Elmt
, E
);
14296 Remove_Homonym
(Subp
);
14304 -- Step 2: Add primitives of progenitors that are not implemented by
14305 -- parents of Tagged_Type.
14307 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
14308 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
14309 while Present
(Iface_Elmt
) loop
14310 Iface
:= Node
(Iface_Elmt
);
14312 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
14313 while Present
(Prim_Elmt
) loop
14314 Iface_Subp
:= Node
(Prim_Elmt
);
14316 -- Exclude derivation of predefined primitives except those
14317 -- that come from source, or are inherited from one that comes
14318 -- from source. Required to catch declarations of equality
14319 -- operators of interfaces. For example:
14321 -- type Iface is interface;
14322 -- function "=" (Left, Right : Iface) return Boolean;
14324 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
14325 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
14327 E
:= Find_Primitive_Covering_Interface
14328 (Tagged_Type
=> Tagged_Type
,
14329 Iface_Prim
=> Iface_Subp
);
14331 -- If not found we derive a new primitive leaving its alias
14332 -- attribute referencing the interface primitive.
14336 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14338 -- Ada 2012 (AI05-0197): If the covering primitive's name
14339 -- differs from the name of the interface primitive then it
14340 -- is a private primitive inherited from a parent type. In
14341 -- such case, given that Tagged_Type covers the interface,
14342 -- the inherited private primitive becomes visible. For such
14343 -- purpose we add a new entity that renames the inherited
14344 -- private primitive.
14346 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
14347 pragma Assert
(Has_Suffix
(E
, 'P'));
14349 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14350 Set_Alias
(New_Subp
, E
);
14351 Set_Is_Abstract_Subprogram
(New_Subp
,
14352 Is_Abstract_Subprogram
(E
));
14354 -- Propagate to the full view interface entities associated
14355 -- with the partial view.
14357 elsif In_Private_Part
(Current_Scope
)
14358 and then Present
(Alias
(E
))
14359 and then Alias
(E
) = Iface_Subp
14361 List_Containing
(Parent
(E
)) /=
14362 Private_Declarations
14364 (Unit_Declaration_Node
(Current_Scope
)))
14366 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
14370 Next_Elmt
(Prim_Elmt
);
14373 Next_Elmt
(Iface_Elmt
);
14376 end Derive_Progenitor_Subprograms
;
14378 -----------------------
14379 -- Derive_Subprogram --
14380 -----------------------
14382 procedure Derive_Subprogram
14383 (New_Subp
: in out Entity_Id
;
14384 Parent_Subp
: Entity_Id
;
14385 Derived_Type
: Entity_Id
;
14386 Parent_Type
: Entity_Id
;
14387 Actual_Subp
: Entity_Id
:= Empty
)
14389 Formal
: Entity_Id
;
14390 -- Formal parameter of parent primitive operation
14392 Formal_Of_Actual
: Entity_Id
;
14393 -- Formal parameter of actual operation, when the derivation is to
14394 -- create a renaming for a primitive operation of an actual in an
14397 New_Formal
: Entity_Id
;
14398 -- Formal of inherited operation
14400 Visible_Subp
: Entity_Id
:= Parent_Subp
;
14402 function Is_Private_Overriding
return Boolean;
14403 -- If Subp is a private overriding of a visible operation, the inherited
14404 -- operation derives from the overridden op (even though its body is the
14405 -- overriding one) and the inherited operation is visible now. See
14406 -- sem_disp to see the full details of the handling of the overridden
14407 -- subprogram, which is removed from the list of primitive operations of
14408 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14409 -- and used to diagnose abstract operations that need overriding in the
14412 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
14413 -- When the type is an anonymous access type, create a new access type
14414 -- designating the derived type.
14416 procedure Set_Derived_Name
;
14417 -- This procedure sets the appropriate Chars name for New_Subp. This
14418 -- is normally just a copy of the parent name. An exception arises for
14419 -- type support subprograms, where the name is changed to reflect the
14420 -- name of the derived type, e.g. if type foo is derived from type bar,
14421 -- then a procedure barDA is derived with a name fooDA.
14423 ---------------------------
14424 -- Is_Private_Overriding --
14425 ---------------------------
14427 function Is_Private_Overriding
return Boolean is
14431 -- If the parent is not a dispatching operation there is no
14432 -- need to investigate overridings
14434 if not Is_Dispatching_Operation
(Parent_Subp
) then
14438 -- The visible operation that is overridden is a homonym of the
14439 -- parent subprogram. We scan the homonym chain to find the one
14440 -- whose alias is the subprogram we are deriving.
14442 Prev
:= Current_Entity
(Parent_Subp
);
14443 while Present
(Prev
) loop
14444 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
14445 and then Alias
(Prev
) = Parent_Subp
14446 and then Scope
(Parent_Subp
) = Scope
(Prev
)
14447 and then not Is_Hidden
(Prev
)
14449 Visible_Subp
:= Prev
;
14453 Prev
:= Homonym
(Prev
);
14457 end Is_Private_Overriding
;
14463 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
14464 Id_Type
: constant Entity_Id
:= Etype
(Id
);
14465 Acc_Type
: Entity_Id
;
14466 Par
: constant Node_Id
:= Parent
(Derived_Type
);
14469 -- When the type is an anonymous access type, create a new access
14470 -- type designating the derived type. This itype must be elaborated
14471 -- at the point of the derivation, not on subsequent calls that may
14472 -- be out of the proper scope for Gigi, so we insert a reference to
14473 -- it after the derivation.
14475 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
14477 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
14480 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
14481 and then Present
(Full_View
(Desig_Typ
))
14482 and then not Is_Private_Type
(Parent_Type
)
14484 Desig_Typ
:= Full_View
(Desig_Typ
);
14487 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
14489 -- Ada 2005 (AI-251): Handle also derivations of abstract
14490 -- interface primitives.
14492 or else (Is_Interface
(Desig_Typ
)
14493 and then not Is_Class_Wide_Type
(Desig_Typ
))
14495 Acc_Type
:= New_Copy
(Id_Type
);
14496 Set_Etype
(Acc_Type
, Acc_Type
);
14497 Set_Scope
(Acc_Type
, New_Subp
);
14499 -- Set size of anonymous access type. If we have an access
14500 -- to an unconstrained array, this is a fat pointer, so it
14501 -- is sizes at twice addtress size.
14503 if Is_Array_Type
(Desig_Typ
)
14504 and then not Is_Constrained
(Desig_Typ
)
14506 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
14508 -- Other cases use a thin pointer
14511 Init_Size
(Acc_Type
, System_Address_Size
);
14514 -- Set remaining characterstics of anonymous access type
14516 Init_Alignment
(Acc_Type
);
14517 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
14519 Set_Etype
(New_Id
, Acc_Type
);
14520 Set_Scope
(New_Id
, New_Subp
);
14522 -- Create a reference to it
14524 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
14527 Set_Etype
(New_Id
, Id_Type
);
14531 -- In Ada2012, a formal may have an incomplete type but the type
14532 -- derivation that inherits the primitive follows the full view.
14534 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
14536 (Ekind
(Id_Type
) = E_Record_Type_With_Private
14537 and then Present
(Full_View
(Id_Type
))
14539 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
14541 (Ada_Version
>= Ada_2012
14542 and then Ekind
(Id_Type
) = E_Incomplete_Type
14543 and then Full_View
(Id_Type
) = Parent_Type
)
14545 -- Constraint checks on formals are generated during expansion,
14546 -- based on the signature of the original subprogram. The bounds
14547 -- of the derived type are not relevant, and thus we can use
14548 -- the base type for the formals. However, the return type may be
14549 -- used in a context that requires that the proper static bounds
14550 -- be used (a case statement, for example) and for those cases
14551 -- we must use the derived type (first subtype), not its base.
14553 -- If the derived_type_definition has no constraints, we know that
14554 -- the derived type has the same constraints as the first subtype
14555 -- of the parent, and we can also use it rather than its base,
14556 -- which can lead to more efficient code.
14558 if Etype
(Id
) = Parent_Type
then
14559 if Is_Scalar_Type
(Parent_Type
)
14561 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
14563 Set_Etype
(New_Id
, Derived_Type
);
14565 elsif Nkind
(Par
) = N_Full_Type_Declaration
14567 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
14570 (Subtype_Indication
(Type_Definition
(Par
)))
14572 Set_Etype
(New_Id
, Derived_Type
);
14575 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14579 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14583 Set_Etype
(New_Id
, Etype
(Id
));
14587 ----------------------
14588 -- Set_Derived_Name --
14589 ----------------------
14591 procedure Set_Derived_Name
is
14592 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
14594 if Nm
= TSS_Null
then
14595 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
14597 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
14599 end Set_Derived_Name
;
14601 -- Start of processing for Derive_Subprogram
14604 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
14605 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
14607 -- Check whether the inherited subprogram is a private operation that
14608 -- should be inherited but not yet made visible. Such subprograms can
14609 -- become visible at a later point (e.g., the private part of a public
14610 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14611 -- following predicate is true, then this is not such a private
14612 -- operation and the subprogram simply inherits the name of the parent
14613 -- subprogram. Note the special check for the names of controlled
14614 -- operations, which are currently exempted from being inherited with
14615 -- a hidden name because they must be findable for generation of
14616 -- implicit run-time calls.
14618 if not Is_Hidden
(Parent_Subp
)
14619 or else Is_Internal
(Parent_Subp
)
14620 or else Is_Private_Overriding
14621 or else Is_Internal_Name
(Chars
(Parent_Subp
))
14622 or else Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14628 -- An inherited dispatching equality will be overridden by an internally
14629 -- generated one, or by an explicit one, so preserve its name and thus
14630 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14631 -- private operation it may become invisible if the full view has
14632 -- progenitors, and the dispatch table will be malformed.
14633 -- We check that the type is limited to handle the anomalous declaration
14634 -- of Limited_Controlled, which is derived from a non-limited type, and
14635 -- which is handled specially elsewhere as well.
14637 elsif Chars
(Parent_Subp
) = Name_Op_Eq
14638 and then Is_Dispatching_Operation
(Parent_Subp
)
14639 and then Etype
(Parent_Subp
) = Standard_Boolean
14640 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
14642 Etype
(First_Formal
(Parent_Subp
)) =
14643 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
14647 -- If parent is hidden, this can be a regular derivation if the
14648 -- parent is immediately visible in a non-instantiating context,
14649 -- or if we are in the private part of an instance. This test
14650 -- should still be refined ???
14652 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14653 -- operation as a non-visible operation in cases where the parent
14654 -- subprogram might not be visible now, but was visible within the
14655 -- original generic, so it would be wrong to make the inherited
14656 -- subprogram non-visible now. (Not clear if this test is fully
14657 -- correct; are there any cases where we should declare the inherited
14658 -- operation as not visible to avoid it being overridden, e.g., when
14659 -- the parent type is a generic actual with private primitives ???)
14661 -- (they should be treated the same as other private inherited
14662 -- subprograms, but it's not clear how to do this cleanly). ???
14664 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14665 and then Is_Immediately_Visible
(Parent_Subp
)
14666 and then not In_Instance
)
14667 or else In_Instance_Not_Visible
14671 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14672 -- overrides an interface primitive because interface primitives
14673 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14675 elsif Ada_Version
>= Ada_2005
14676 and then Is_Dispatching_Operation
(Parent_Subp
)
14677 and then Covers_Some_Interface
(Parent_Subp
)
14681 -- Otherwise, the type is inheriting a private operation, so enter
14682 -- it with a special name so it can't be overridden.
14685 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
14688 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
14690 if Present
(Actual_Subp
) then
14691 Replace_Type
(Actual_Subp
, New_Subp
);
14693 Replace_Type
(Parent_Subp
, New_Subp
);
14696 Conditional_Delay
(New_Subp
, Parent_Subp
);
14698 -- If we are creating a renaming for a primitive operation of an
14699 -- actual of a generic derived type, we must examine the signature
14700 -- of the actual primitive, not that of the generic formal, which for
14701 -- example may be an interface. However the name and initial value
14702 -- of the inherited operation are those of the formal primitive.
14704 Formal
:= First_Formal
(Parent_Subp
);
14706 if Present
(Actual_Subp
) then
14707 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
14709 Formal_Of_Actual
:= Empty
;
14712 while Present
(Formal
) loop
14713 New_Formal
:= New_Copy
(Formal
);
14715 -- Normally we do not go copying parents, but in the case of
14716 -- formals, we need to link up to the declaration (which is the
14717 -- parameter specification), and it is fine to link up to the
14718 -- original formal's parameter specification in this case.
14720 Set_Parent
(New_Formal
, Parent
(Formal
));
14721 Append_Entity
(New_Formal
, New_Subp
);
14723 if Present
(Formal_Of_Actual
) then
14724 Replace_Type
(Formal_Of_Actual
, New_Formal
);
14725 Next_Formal
(Formal_Of_Actual
);
14727 Replace_Type
(Formal
, New_Formal
);
14730 Next_Formal
(Formal
);
14733 -- If this derivation corresponds to a tagged generic actual, then
14734 -- primitive operations rename those of the actual. Otherwise the
14735 -- primitive operations rename those of the parent type, If the parent
14736 -- renames an intrinsic operator, so does the new subprogram. We except
14737 -- concatenation, which is always properly typed, and does not get
14738 -- expanded as other intrinsic operations.
14740 if No
(Actual_Subp
) then
14741 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
14742 Set_Is_Intrinsic_Subprogram
(New_Subp
);
14744 if Present
(Alias
(Parent_Subp
))
14745 and then Chars
(Parent_Subp
) /= Name_Op_Concat
14747 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
14749 Set_Alias
(New_Subp
, Parent_Subp
);
14753 Set_Alias
(New_Subp
, Parent_Subp
);
14757 Set_Alias
(New_Subp
, Actual_Subp
);
14760 -- Inherit the "ghostness" from the parent subprogram
14762 if Is_Ghost_Entity
(Alias
(New_Subp
)) then
14763 Set_Is_Ghost_Entity
(New_Subp
);
14766 -- Derived subprograms of a tagged type must inherit the convention
14767 -- of the parent subprogram (a requirement of AI-117). Derived
14768 -- subprograms of untagged types simply get convention Ada by default.
14770 -- If the derived type is a tagged generic formal type with unknown
14771 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14773 -- However, if the type is derived from a generic formal, the further
14774 -- inherited subprogram has the convention of the non-generic ancestor.
14775 -- Otherwise there would be no way to override the operation.
14776 -- (This is subject to forthcoming ARG discussions).
14778 if Is_Tagged_Type
(Derived_Type
) then
14779 if Is_Generic_Type
(Derived_Type
)
14780 and then Has_Unknown_Discriminants
(Derived_Type
)
14782 Set_Convention
(New_Subp
, Convention_Intrinsic
);
14785 if Is_Generic_Type
(Parent_Type
)
14786 and then Has_Unknown_Discriminants
(Parent_Type
)
14788 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
14790 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
14795 -- Predefined controlled operations retain their name even if the parent
14796 -- is hidden (see above), but they are not primitive operations if the
14797 -- ancestor is not visible, for example if the parent is a private
14798 -- extension completed with a controlled extension. Note that a full
14799 -- type that is controlled can break privacy: the flag Is_Controlled is
14800 -- set on both views of the type.
14802 if Is_Controlled
(Parent_Type
)
14803 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14806 and then Is_Hidden
(Parent_Subp
)
14807 and then not Is_Visibly_Controlled
(Parent_Type
)
14809 Set_Is_Hidden
(New_Subp
);
14812 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
14813 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
14815 if Ekind
(Parent_Subp
) = E_Procedure
then
14816 Set_Is_Valued_Procedure
14817 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
14819 Set_Has_Controlling_Result
14820 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
14823 -- No_Return must be inherited properly. If this is overridden in the
14824 -- case of a dispatching operation, then a check is made in Sem_Disp
14825 -- that the overriding operation is also No_Return (no such check is
14826 -- required for the case of non-dispatching operation.
14828 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
14830 -- A derived function with a controlling result is abstract. If the
14831 -- Derived_Type is a nonabstract formal generic derived type, then
14832 -- inherited operations are not abstract: the required check is done at
14833 -- instantiation time. If the derivation is for a generic actual, the
14834 -- function is not abstract unless the actual is.
14836 if Is_Generic_Type
(Derived_Type
)
14837 and then not Is_Abstract_Type
(Derived_Type
)
14841 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14842 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14844 -- A subprogram subject to pragma Extensions_Visible with value False
14845 -- requires overriding if the subprogram has at least one controlling
14846 -- OUT parameter (SPARK RM 6.1.7(6)).
14848 elsif Ada_Version
>= Ada_2005
14849 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14850 or else (Is_Tagged_Type
(Derived_Type
)
14851 and then Etype
(New_Subp
) = Derived_Type
14852 and then not Is_Null_Extension
(Derived_Type
))
14853 or else (Is_Tagged_Type
(Derived_Type
)
14854 and then Ekind
(Etype
(New_Subp
)) =
14855 E_Anonymous_Access_Type
14856 and then Designated_Type
(Etype
(New_Subp
)) =
14858 and then not Is_Null_Extension
(Derived_Type
))
14859 or else (Comes_From_Source
(Alias
(New_Subp
))
14860 and then Is_EVF_Procedure
(Alias
(New_Subp
))))
14861 and then No
(Actual_Subp
)
14863 if not Is_Tagged_Type
(Derived_Type
)
14864 or else Is_Abstract_Type
(Derived_Type
)
14865 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
14867 Set_Is_Abstract_Subprogram
(New_Subp
);
14869 Set_Requires_Overriding
(New_Subp
);
14872 elsif Ada_Version
< Ada_2005
14873 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14874 or else (Is_Tagged_Type
(Derived_Type
)
14875 and then Etype
(New_Subp
) = Derived_Type
14876 and then No
(Actual_Subp
)))
14878 Set_Is_Abstract_Subprogram
(New_Subp
);
14880 -- AI05-0097 : an inherited operation that dispatches on result is
14881 -- abstract if the derived type is abstract, even if the parent type
14882 -- is concrete and the derived type is a null extension.
14884 elsif Has_Controlling_Result
(Alias
(New_Subp
))
14885 and then Is_Abstract_Type
(Etype
(New_Subp
))
14887 Set_Is_Abstract_Subprogram
(New_Subp
);
14889 -- Finally, if the parent type is abstract we must verify that all
14890 -- inherited operations are either non-abstract or overridden, or that
14891 -- the derived type itself is abstract (this check is performed at the
14892 -- end of a package declaration, in Check_Abstract_Overriding). A
14893 -- private overriding in the parent type will not be visible in the
14894 -- derivation if we are not in an inner package or in a child unit of
14895 -- the parent type, in which case the abstractness of the inherited
14896 -- operation is carried to the new subprogram.
14898 elsif Is_Abstract_Type
(Parent_Type
)
14899 and then not In_Open_Scopes
(Scope
(Parent_Type
))
14900 and then Is_Private_Overriding
14901 and then Is_Abstract_Subprogram
(Visible_Subp
)
14903 if No
(Actual_Subp
) then
14904 Set_Alias
(New_Subp
, Visible_Subp
);
14905 Set_Is_Abstract_Subprogram
(New_Subp
, True);
14908 -- If this is a derivation for an instance of a formal derived
14909 -- type, abstractness comes from the primitive operation of the
14910 -- actual, not from the operation inherited from the ancestor.
14912 Set_Is_Abstract_Subprogram
14913 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
14917 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
14919 -- Check for case of a derived subprogram for the instantiation of a
14920 -- formal derived tagged type, if so mark the subprogram as dispatching
14921 -- and inherit the dispatching attributes of the actual subprogram. The
14922 -- derived subprogram is effectively renaming of the actual subprogram,
14923 -- so it needs to have the same attributes as the actual.
14925 if Present
(Actual_Subp
)
14926 and then Is_Dispatching_Operation
(Actual_Subp
)
14928 Set_Is_Dispatching_Operation
(New_Subp
);
14930 if Present
(DTC_Entity
(Actual_Subp
)) then
14931 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
14932 Set_DT_Position_Value
(New_Subp
, DT_Position
(Actual_Subp
));
14936 -- Indicate that a derived subprogram does not require a body and that
14937 -- it does not require processing of default expressions.
14939 Set_Has_Completion
(New_Subp
);
14940 Set_Default_Expressions_Processed
(New_Subp
);
14942 if Ekind
(New_Subp
) = E_Function
then
14943 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
14945 end Derive_Subprogram
;
14947 ------------------------
14948 -- Derive_Subprograms --
14949 ------------------------
14951 procedure Derive_Subprograms
14952 (Parent_Type
: Entity_Id
;
14953 Derived_Type
: Entity_Id
;
14954 Generic_Actual
: Entity_Id
:= Empty
)
14956 Op_List
: constant Elist_Id
:=
14957 Collect_Primitive_Operations
(Parent_Type
);
14959 function Check_Derived_Type
return Boolean;
14960 -- Check that all the entities derived from Parent_Type are found in
14961 -- the list of primitives of Derived_Type exactly in the same order.
14963 procedure Derive_Interface_Subprogram
14964 (New_Subp
: in out Entity_Id
;
14966 Actual_Subp
: Entity_Id
);
14967 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14968 -- (which is an interface primitive). If Generic_Actual is present then
14969 -- Actual_Subp is the actual subprogram corresponding with the generic
14970 -- subprogram Subp.
14972 function Check_Derived_Type
return Boolean is
14976 New_Subp
: Entity_Id
;
14981 -- Traverse list of entities in the current scope searching for
14982 -- an incomplete type whose full-view is derived type
14984 E
:= First_Entity
(Scope
(Derived_Type
));
14985 while Present
(E
) and then E
/= Derived_Type
loop
14986 if Ekind
(E
) = E_Incomplete_Type
14987 and then Present
(Full_View
(E
))
14988 and then Full_View
(E
) = Derived_Type
14990 -- Disable this test if Derived_Type completes an incomplete
14991 -- type because in such case more primitives can be added
14992 -- later to the list of primitives of Derived_Type by routine
14993 -- Process_Incomplete_Dependents
14998 E
:= Next_Entity
(E
);
15001 List
:= Collect_Primitive_Operations
(Derived_Type
);
15002 Elmt
:= First_Elmt
(List
);
15004 Op_Elmt
:= First_Elmt
(Op_List
);
15005 while Present
(Op_Elmt
) loop
15006 Subp
:= Node
(Op_Elmt
);
15007 New_Subp
:= Node
(Elmt
);
15009 -- At this early stage Derived_Type has no entities with attribute
15010 -- Interface_Alias. In addition, such primitives are always
15011 -- located at the end of the list of primitives of Parent_Type.
15012 -- Therefore, if found we can safely stop processing pending
15015 exit when Present
(Interface_Alias
(Subp
));
15017 -- Handle hidden entities
15019 if not Is_Predefined_Dispatching_Operation
(Subp
)
15020 and then Is_Hidden
(Subp
)
15022 if Present
(New_Subp
)
15023 and then Primitive_Names_Match
(Subp
, New_Subp
)
15029 if not Present
(New_Subp
)
15030 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
15031 or else not Primitive_Names_Match
(Subp
, New_Subp
)
15039 Next_Elmt
(Op_Elmt
);
15043 end Check_Derived_Type
;
15045 ---------------------------------
15046 -- Derive_Interface_Subprogram --
15047 ---------------------------------
15049 procedure Derive_Interface_Subprogram
15050 (New_Subp
: in out Entity_Id
;
15052 Actual_Subp
: Entity_Id
)
15054 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
15055 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
15058 pragma Assert
(Is_Interface
(Iface_Type
));
15061 (New_Subp
=> New_Subp
,
15062 Parent_Subp
=> Iface_Subp
,
15063 Derived_Type
=> Derived_Type
,
15064 Parent_Type
=> Iface_Type
,
15065 Actual_Subp
=> Actual_Subp
);
15067 -- Given that this new interface entity corresponds with a primitive
15068 -- of the parent that was not overridden we must leave it associated
15069 -- with its parent primitive to ensure that it will share the same
15070 -- dispatch table slot when overridden.
15072 if No
(Actual_Subp
) then
15073 Set_Alias
(New_Subp
, Subp
);
15075 -- For instantiations this is not needed since the previous call to
15076 -- Derive_Subprogram leaves the entity well decorated.
15079 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
15082 end Derive_Interface_Subprogram
;
15086 Alias_Subp
: Entity_Id
;
15087 Act_List
: Elist_Id
;
15088 Act_Elmt
: Elmt_Id
;
15089 Act_Subp
: Entity_Id
:= Empty
;
15091 Need_Search
: Boolean := False;
15092 New_Subp
: Entity_Id
:= Empty
;
15093 Parent_Base
: Entity_Id
;
15096 -- Start of processing for Derive_Subprograms
15099 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
15100 and then Has_Discriminants
(Parent_Type
)
15101 and then Present
(Full_View
(Parent_Type
))
15103 Parent_Base
:= Full_View
(Parent_Type
);
15105 Parent_Base
:= Parent_Type
;
15108 if Present
(Generic_Actual
) then
15109 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
15110 Act_Elmt
:= First_Elmt
(Act_List
);
15112 Act_List
:= No_Elist
;
15113 Act_Elmt
:= No_Elmt
;
15116 -- Derive primitives inherited from the parent. Note that if the generic
15117 -- actual is present, this is not really a type derivation, it is a
15118 -- completion within an instance.
15120 -- Case 1: Derived_Type does not implement interfaces
15122 if not Is_Tagged_Type
(Derived_Type
)
15123 or else (not Has_Interfaces
(Derived_Type
)
15124 and then not (Present
(Generic_Actual
)
15125 and then Has_Interfaces
(Generic_Actual
)))
15127 Elmt
:= First_Elmt
(Op_List
);
15128 while Present
(Elmt
) loop
15129 Subp
:= Node
(Elmt
);
15131 -- Literals are derived earlier in the process of building the
15132 -- derived type, and are skipped here.
15134 if Ekind
(Subp
) = E_Enumeration_Literal
then
15137 -- The actual is a direct descendant and the common primitive
15138 -- operations appear in the same order.
15140 -- If the generic parent type is present, the derived type is an
15141 -- instance of a formal derived type, and within the instance its
15142 -- operations are those of the actual. We derive from the formal
15143 -- type but make the inherited operations aliases of the
15144 -- corresponding operations of the actual.
15147 pragma Assert
(No
(Node
(Act_Elmt
))
15148 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
15151 (Subp
, Node
(Act_Elmt
),
15152 Skip_Controlling_Formals
=> True)));
15155 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
15157 if Present
(Act_Elmt
) then
15158 Next_Elmt
(Act_Elmt
);
15165 -- Case 2: Derived_Type implements interfaces
15168 -- If the parent type has no predefined primitives we remove
15169 -- predefined primitives from the list of primitives of generic
15170 -- actual to simplify the complexity of this algorithm.
15172 if Present
(Generic_Actual
) then
15174 Has_Predefined_Primitives
: Boolean := False;
15177 -- Check if the parent type has predefined primitives
15179 Elmt
:= First_Elmt
(Op_List
);
15180 while Present
(Elmt
) loop
15181 Subp
:= Node
(Elmt
);
15183 if Is_Predefined_Dispatching_Operation
(Subp
)
15184 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
15186 Has_Predefined_Primitives
:= True;
15193 -- Remove predefined primitives of Generic_Actual. We must use
15194 -- an auxiliary list because in case of tagged types the value
15195 -- returned by Collect_Primitive_Operations is the value stored
15196 -- in its Primitive_Operations attribute (and we don't want to
15197 -- modify its current contents).
15199 if not Has_Predefined_Primitives
then
15201 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
15204 Elmt
:= First_Elmt
(Act_List
);
15205 while Present
(Elmt
) loop
15206 Subp
:= Node
(Elmt
);
15208 if not Is_Predefined_Dispatching_Operation
(Subp
)
15209 or else Comes_From_Source
(Subp
)
15211 Append_Elmt
(Subp
, Aux_List
);
15217 Act_List
:= Aux_List
;
15221 Act_Elmt
:= First_Elmt
(Act_List
);
15222 Act_Subp
:= Node
(Act_Elmt
);
15226 -- Stage 1: If the generic actual is not present we derive the
15227 -- primitives inherited from the parent type. If the generic parent
15228 -- type is present, the derived type is an instance of a formal
15229 -- derived type, and within the instance its operations are those of
15230 -- the actual. We derive from the formal type but make the inherited
15231 -- operations aliases of the corresponding operations of the actual.
15233 Elmt
:= First_Elmt
(Op_List
);
15234 while Present
(Elmt
) loop
15235 Subp
:= Node
(Elmt
);
15236 Alias_Subp
:= Ultimate_Alias
(Subp
);
15238 -- Do not derive internal entities of the parent that link
15239 -- interface primitives with their covering primitive. These
15240 -- entities will be added to this type when frozen.
15242 if Present
(Interface_Alias
(Subp
)) then
15246 -- If the generic actual is present find the corresponding
15247 -- operation in the generic actual. If the parent type is a
15248 -- direct ancestor of the derived type then, even if it is an
15249 -- interface, the operations are inherited from the primary
15250 -- dispatch table and are in the proper order. If we detect here
15251 -- that primitives are not in the same order we traverse the list
15252 -- of primitive operations of the actual to find the one that
15253 -- implements the interface primitive.
15257 (Present
(Generic_Actual
)
15258 and then Present
(Act_Subp
)
15260 (Primitive_Names_Match
(Subp
, Act_Subp
)
15262 Type_Conformant
(Subp
, Act_Subp
,
15263 Skip_Controlling_Formals
=> True)))
15265 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
15266 Use_Full_View
=> True));
15268 -- Remember that we need searching for all pending primitives
15270 Need_Search
:= True;
15272 -- Handle entities associated with interface primitives
15274 if Present
(Alias_Subp
)
15275 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15276 and then not Is_Predefined_Dispatching_Operation
(Subp
)
15278 -- Search for the primitive in the homonym chain
15281 Find_Primitive_Covering_Interface
15282 (Tagged_Type
=> Generic_Actual
,
15283 Iface_Prim
=> Alias_Subp
);
15285 -- Previous search may not locate primitives covering
15286 -- interfaces defined in generics units or instantiations.
15287 -- (it fails if the covering primitive has formals whose
15288 -- type is also defined in generics or instantiations).
15289 -- In such case we search in the list of primitives of the
15290 -- generic actual for the internal entity that links the
15291 -- interface primitive and the covering primitive.
15294 and then Is_Generic_Type
(Parent_Type
)
15296 -- This code has been designed to handle only generic
15297 -- formals that implement interfaces that are defined
15298 -- in a generic unit or instantiation. If this code is
15299 -- needed for other cases we must review it because
15300 -- (given that it relies on Original_Location to locate
15301 -- the primitive of Generic_Actual that covers the
15302 -- interface) it could leave linked through attribute
15303 -- Alias entities of unrelated instantiations).
15307 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
15309 Instantiation_Depth
15310 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
15313 Iface_Prim_Loc
: constant Source_Ptr
:=
15314 Original_Location
(Sloc
(Alias_Subp
));
15321 First_Elmt
(Primitive_Operations
(Generic_Actual
));
15323 Search
: while Present
(Elmt
) loop
15324 Prim
:= Node
(Elmt
);
15326 if Present
(Interface_Alias
(Prim
))
15327 and then Original_Location
15328 (Sloc
(Interface_Alias
(Prim
))) =
15331 Act_Subp
:= Alias
(Prim
);
15340 pragma Assert
(Present
(Act_Subp
)
15341 or else Is_Abstract_Type
(Generic_Actual
)
15342 or else Serious_Errors_Detected
> 0);
15344 -- Handle predefined primitives plus the rest of user-defined
15348 Act_Elmt
:= First_Elmt
(Act_List
);
15349 while Present
(Act_Elmt
) loop
15350 Act_Subp
:= Node
(Act_Elmt
);
15352 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
15353 and then Type_Conformant
15355 Skip_Controlling_Formals
=> True)
15356 and then No
(Interface_Alias
(Act_Subp
));
15358 Next_Elmt
(Act_Elmt
);
15361 if No
(Act_Elmt
) then
15367 -- Case 1: If the parent is a limited interface then it has the
15368 -- predefined primitives of synchronized interfaces. However, the
15369 -- actual type may be a non-limited type and hence it does not
15370 -- have such primitives.
15372 if Present
(Generic_Actual
)
15373 and then not Present
(Act_Subp
)
15374 and then Is_Limited_Interface
(Parent_Base
)
15375 and then Is_Predefined_Interface_Primitive
(Subp
)
15379 -- Case 2: Inherit entities associated with interfaces that were
15380 -- not covered by the parent type. We exclude here null interface
15381 -- primitives because they do not need special management.
15383 -- We also exclude interface operations that are renamings. If the
15384 -- subprogram is an explicit renaming of an interface primitive,
15385 -- it is a regular primitive operation, and the presence of its
15386 -- alias is not relevant: it has to be derived like any other
15389 elsif Present
(Alias
(Subp
))
15390 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
15391 N_Subprogram_Renaming_Declaration
15392 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15394 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
15395 and then Null_Present
(Parent
(Alias_Subp
)))
15397 -- If this is an abstract private type then we transfer the
15398 -- derivation of the interface primitive from the partial view
15399 -- to the full view. This is safe because all the interfaces
15400 -- must be visible in the partial view. Done to avoid adding
15401 -- a new interface derivation to the private part of the
15402 -- enclosing package; otherwise this new derivation would be
15403 -- decorated as hidden when the analysis of the enclosing
15404 -- package completes.
15406 if Is_Abstract_Type
(Derived_Type
)
15407 and then In_Private_Part
(Current_Scope
)
15408 and then Has_Private_Declaration
(Derived_Type
)
15411 Partial_View
: Entity_Id
;
15416 Partial_View
:= First_Entity
(Current_Scope
);
15418 exit when No
(Partial_View
)
15419 or else (Has_Private_Declaration
(Partial_View
)
15421 Full_View
(Partial_View
) = Derived_Type
);
15423 Next_Entity
(Partial_View
);
15426 -- If the partial view was not found then the source code
15427 -- has errors and the derivation is not needed.
15429 if Present
(Partial_View
) then
15431 First_Elmt
(Primitive_Operations
(Partial_View
));
15432 while Present
(Elmt
) loop
15433 Ent
:= Node
(Elmt
);
15435 if Present
(Alias
(Ent
))
15436 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
15439 (Ent
, Primitive_Operations
(Derived_Type
));
15446 -- If the interface primitive was not found in the
15447 -- partial view then this interface primitive was
15448 -- overridden. We add a derivation to activate in
15449 -- Derive_Progenitor_Subprograms the machinery to
15453 Derive_Interface_Subprogram
15454 (New_Subp
=> New_Subp
,
15456 Actual_Subp
=> Act_Subp
);
15461 Derive_Interface_Subprogram
15462 (New_Subp
=> New_Subp
,
15464 Actual_Subp
=> Act_Subp
);
15467 -- Case 3: Common derivation
15471 (New_Subp
=> New_Subp
,
15472 Parent_Subp
=> Subp
,
15473 Derived_Type
=> Derived_Type
,
15474 Parent_Type
=> Parent_Base
,
15475 Actual_Subp
=> Act_Subp
);
15478 -- No need to update Act_Elm if we must search for the
15479 -- corresponding operation in the generic actual
15482 and then Present
(Act_Elmt
)
15484 Next_Elmt
(Act_Elmt
);
15485 Act_Subp
:= Node
(Act_Elmt
);
15492 -- Inherit additional operations from progenitors. If the derived
15493 -- type is a generic actual, there are not new primitive operations
15494 -- for the type because it has those of the actual, and therefore
15495 -- nothing needs to be done. The renamings generated above are not
15496 -- primitive operations, and their purpose is simply to make the
15497 -- proper operations visible within an instantiation.
15499 if No
(Generic_Actual
) then
15500 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
15504 -- Final check: Direct descendants must have their primitives in the
15505 -- same order. We exclude from this test untagged types and instances
15506 -- of formal derived types. We skip this test if we have already
15507 -- reported serious errors in the sources.
15509 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
15510 or else Present
(Generic_Actual
)
15511 or else Serious_Errors_Detected
> 0
15512 or else Check_Derived_Type
);
15513 end Derive_Subprograms
;
15515 --------------------------------
15516 -- Derived_Standard_Character --
15517 --------------------------------
15519 procedure Derived_Standard_Character
15521 Parent_Type
: Entity_Id
;
15522 Derived_Type
: Entity_Id
)
15524 Loc
: constant Source_Ptr
:= Sloc
(N
);
15525 Def
: constant Node_Id
:= Type_Definition
(N
);
15526 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15527 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
15528 Implicit_Base
: constant Entity_Id
:=
15530 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
15536 Discard_Node
(Process_Subtype
(Indic
, N
));
15538 Set_Etype
(Implicit_Base
, Parent_Base
);
15539 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
15540 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
15542 Set_Is_Character_Type
(Implicit_Base
, True);
15543 Set_Has_Delayed_Freeze
(Implicit_Base
);
15545 -- The bounds of the implicit base are the bounds of the parent base.
15546 -- Note that their type is the parent base.
15548 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
15549 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
15551 Set_Scalar_Range
(Implicit_Base
,
15554 High_Bound
=> Hi
));
15556 Conditional_Delay
(Derived_Type
, Parent_Type
);
15558 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
15559 Set_Etype
(Derived_Type
, Implicit_Base
);
15560 Set_Size_Info
(Derived_Type
, Parent_Type
);
15562 if Unknown_RM_Size
(Derived_Type
) then
15563 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
15566 Set_Is_Character_Type
(Derived_Type
, True);
15568 if Nkind
(Indic
) /= N_Subtype_Indication
then
15570 -- If no explicit constraint, the bounds are those
15571 -- of the parent type.
15573 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
15574 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
15575 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
15578 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
15580 -- Because the implicit base is used in the conversion of the bounds, we
15581 -- have to freeze it now. This is similar to what is done for numeric
15582 -- types, and it equally suspicious, but otherwise a non-static bound
15583 -- will have a reference to an unfrozen type, which is rejected by Gigi
15584 -- (???). This requires specific care for definition of stream
15585 -- attributes. For details, see comments at the end of
15586 -- Build_Derived_Numeric_Type.
15588 Freeze_Before
(N
, Implicit_Base
);
15589 end Derived_Standard_Character
;
15591 ------------------------------
15592 -- Derived_Type_Declaration --
15593 ------------------------------
15595 procedure Derived_Type_Declaration
15598 Is_Completion
: Boolean)
15600 Parent_Type
: Entity_Id
;
15602 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
15603 -- Check whether the parent type is a generic formal, or derives
15604 -- directly or indirectly from one.
15606 ------------------------
15607 -- Comes_From_Generic --
15608 ------------------------
15610 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
15612 if Is_Generic_Type
(Typ
) then
15615 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
15618 elsif Is_Private_Type
(Typ
)
15619 and then Present
(Full_View
(Typ
))
15620 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
15624 elsif Is_Generic_Actual_Type
(Typ
) then
15630 end Comes_From_Generic
;
15634 Def
: constant Node_Id
:= Type_Definition
(N
);
15635 Iface_Def
: Node_Id
;
15636 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15637 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
15638 Parent_Node
: Node_Id
;
15641 -- Start of processing for Derived_Type_Declaration
15644 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
15646 -- Ada 2005 (AI-251): In case of interface derivation check that the
15647 -- parent is also an interface.
15649 if Interface_Present
(Def
) then
15650 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
15652 if not Is_Interface
(Parent_Type
) then
15653 Diagnose_Interface
(Indic
, Parent_Type
);
15656 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
15657 Iface_Def
:= Type_Definition
(Parent_Node
);
15659 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15660 -- other limited interfaces.
15662 if Limited_Present
(Def
) then
15663 if Limited_Present
(Iface_Def
) then
15666 elsif Protected_Present
(Iface_Def
) then
15668 ("descendant of& must be declared"
15669 & " as a protected interface",
15672 elsif Synchronized_Present
(Iface_Def
) then
15674 ("descendant of& must be declared"
15675 & " as a synchronized interface",
15678 elsif Task_Present
(Iface_Def
) then
15680 ("descendant of& must be declared as a task interface",
15685 ("(Ada 2005) limited interface cannot "
15686 & "inherit from non-limited interface", Indic
);
15689 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15690 -- from non-limited or limited interfaces.
15692 elsif not Protected_Present
(Def
)
15693 and then not Synchronized_Present
(Def
)
15694 and then not Task_Present
(Def
)
15696 if Limited_Present
(Iface_Def
) then
15699 elsif Protected_Present
(Iface_Def
) then
15701 ("descendant of& must be declared"
15702 & " as a protected interface",
15705 elsif Synchronized_Present
(Iface_Def
) then
15707 ("descendant of& must be declared"
15708 & " as a synchronized interface",
15711 elsif Task_Present
(Iface_Def
) then
15713 ("descendant of& must be declared as a task interface",
15722 if Is_Tagged_Type
(Parent_Type
)
15723 and then Is_Concurrent_Type
(Parent_Type
)
15724 and then not Is_Interface
(Parent_Type
)
15727 ("parent type of a record extension cannot be "
15728 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
15729 Set_Etype
(T
, Any_Type
);
15733 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15736 if Is_Tagged_Type
(Parent_Type
)
15737 and then Is_Non_Empty_List
(Interface_List
(Def
))
15744 Intf
:= First
(Interface_List
(Def
));
15745 while Present
(Intf
) loop
15746 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
15748 if not Is_Interface
(T
) then
15749 Diagnose_Interface
(Intf
, T
);
15751 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15752 -- a limited type from having a nonlimited progenitor.
15754 elsif (Limited_Present
(Def
)
15755 or else (not Is_Interface
(Parent_Type
)
15756 and then Is_Limited_Type
(Parent_Type
)))
15757 and then not Is_Limited_Interface
(T
)
15760 ("progenitor interface& of limited type must be limited",
15769 if Parent_Type
= Any_Type
15770 or else Etype
(Parent_Type
) = Any_Type
15771 or else (Is_Class_Wide_Type
(Parent_Type
)
15772 and then Etype
(Parent_Type
) = T
)
15774 -- If Parent_Type is undefined or illegal, make new type into a
15775 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15776 -- errors. If this is a self-definition, emit error now.
15778 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
15779 Error_Msg_N
("type cannot be used in its own definition", Indic
);
15782 Set_Ekind
(T
, Ekind
(Parent_Type
));
15783 Set_Etype
(T
, Any_Type
);
15784 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
15786 if Is_Tagged_Type
(T
)
15787 and then Is_Record_Type
(T
)
15789 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
15795 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15796 -- an interface is special because the list of interfaces in the full
15797 -- view can be given in any order. For example:
15799 -- type A is interface;
15800 -- type B is interface and A;
15801 -- type D is new B with private;
15803 -- type D is new A and B with null record; -- 1 --
15805 -- In this case we perform the following transformation of -1-:
15807 -- type D is new B and A with null record;
15809 -- If the parent of the full-view covers the parent of the partial-view
15810 -- we have two possible cases:
15812 -- 1) They have the same parent
15813 -- 2) The parent of the full-view implements some further interfaces
15815 -- In both cases we do not need to perform the transformation. In the
15816 -- first case the source program is correct and the transformation is
15817 -- not needed; in the second case the source program does not fulfill
15818 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15821 -- This transformation not only simplifies the rest of the analysis of
15822 -- this type declaration but also simplifies the correct generation of
15823 -- the object layout to the expander.
15825 if In_Private_Part
(Current_Scope
)
15826 and then Is_Interface
(Parent_Type
)
15830 Partial_View
: Entity_Id
;
15831 Partial_View_Parent
: Entity_Id
;
15832 New_Iface
: Node_Id
;
15835 -- Look for the associated private type declaration
15837 Partial_View
:= First_Entity
(Current_Scope
);
15839 exit when No
(Partial_View
)
15840 or else (Has_Private_Declaration
(Partial_View
)
15841 and then Full_View
(Partial_View
) = T
);
15843 Next_Entity
(Partial_View
);
15846 -- If the partial view was not found then the source code has
15847 -- errors and the transformation is not needed.
15849 if Present
(Partial_View
) then
15850 Partial_View_Parent
:= Etype
(Partial_View
);
15852 -- If the parent of the full-view covers the parent of the
15853 -- partial-view we have nothing else to do.
15855 if Interface_Present_In_Ancestor
15856 (Parent_Type
, Partial_View_Parent
)
15860 -- Traverse the list of interfaces of the full-view to look
15861 -- for the parent of the partial-view and perform the tree
15865 Iface
:= First
(Interface_List
(Def
));
15866 while Present
(Iface
) loop
15867 if Etype
(Iface
) = Etype
(Partial_View
) then
15868 Rewrite
(Subtype_Indication
(Def
),
15869 New_Copy
(Subtype_Indication
15870 (Parent
(Partial_View
))));
15873 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
15874 Append
(New_Iface
, Interface_List
(Def
));
15876 -- Analyze the transformed code
15878 Derived_Type_Declaration
(T
, N
, Is_Completion
);
15889 -- Only composite types other than array types are allowed to have
15892 if Present
(Discriminant_Specifications
(N
)) then
15893 if (Is_Elementary_Type
(Parent_Type
)
15895 Is_Array_Type
(Parent_Type
))
15896 and then not Error_Posted
(N
)
15899 ("elementary or array type cannot have discriminants",
15900 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
15901 Set_Has_Discriminants
(T
, False);
15903 -- The type is allowed to have discriminants
15906 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
15910 -- In Ada 83, a derived type defined in a package specification cannot
15911 -- be used for further derivation until the end of its visible part.
15912 -- Note that derivation in the private part of the package is allowed.
15914 if Ada_Version
= Ada_83
15915 and then Is_Derived_Type
(Parent_Type
)
15916 and then In_Visible_Part
(Scope
(Parent_Type
))
15918 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
15920 ("(Ada 83): premature use of type for derivation", Indic
);
15924 -- Check for early use of incomplete or private type
15926 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
15927 Error_Msg_N
("premature derivation of incomplete type", Indic
);
15930 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
15931 and then not Comes_From_Generic
(Parent_Type
))
15932 or else Has_Private_Component
(Parent_Type
)
15934 -- The ancestor type of a formal type can be incomplete, in which
15935 -- case only the operations of the partial view are available in the
15936 -- generic. Subsequent checks may be required when the full view is
15937 -- analyzed to verify that a derivation from a tagged type has an
15940 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
15943 elsif No
(Underlying_Type
(Parent_Type
))
15944 or else Has_Private_Component
(Parent_Type
)
15947 ("premature derivation of derived or private type", Indic
);
15949 -- Flag the type itself as being in error, this prevents some
15950 -- nasty problems with subsequent uses of the malformed type.
15952 Set_Error_Posted
(T
);
15954 -- Check that within the immediate scope of an untagged partial
15955 -- view it's illegal to derive from the partial view if the
15956 -- full view is tagged. (7.3(7))
15958 -- We verify that the Parent_Type is a partial view by checking
15959 -- that it is not a Full_Type_Declaration (i.e. a private type or
15960 -- private extension declaration), to distinguish a partial view
15961 -- from a derivation from a private type which also appears as
15962 -- E_Private_Type. If the parent base type is not declared in an
15963 -- enclosing scope there is no need to check.
15965 elsif Present
(Full_View
(Parent_Type
))
15966 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
15967 and then not Is_Tagged_Type
(Parent_Type
)
15968 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
15969 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
15972 ("premature derivation from type with tagged full view",
15977 -- Check that form of derivation is appropriate
15979 Taggd
:= Is_Tagged_Type
(Parent_Type
);
15981 -- Set the parent type to the class-wide type's specific type in this
15982 -- case to prevent cascading errors
15984 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
15985 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
15986 Set_Etype
(T
, Etype
(Parent_Type
));
15990 if Present
(Extension
) and then not Taggd
then
15992 ("type derived from untagged type cannot have extension", Indic
);
15994 elsif No
(Extension
) and then Taggd
then
15996 -- If this declaration is within a private part (or body) of a
15997 -- generic instantiation then the derivation is allowed (the parent
15998 -- type can only appear tagged in this case if it's a generic actual
15999 -- type, since it would otherwise have been rejected in the analysis
16000 -- of the generic template).
16002 if not Is_Generic_Actual_Type
(Parent_Type
)
16003 or else In_Visible_Part
(Scope
(Parent_Type
))
16005 if Is_Class_Wide_Type
(Parent_Type
) then
16007 ("parent type must not be a class-wide type", Indic
);
16009 -- Use specific type to prevent cascaded errors.
16011 Parent_Type
:= Etype
(Parent_Type
);
16015 ("type derived from tagged type must have extension", Indic
);
16020 -- AI-443: Synchronized formal derived types require a private
16021 -- extension. There is no point in checking the ancestor type or
16022 -- the progenitors since the construct is wrong to begin with.
16024 if Ada_Version
>= Ada_2005
16025 and then Is_Generic_Type
(T
)
16026 and then Present
(Original_Node
(N
))
16029 Decl
: constant Node_Id
:= Original_Node
(N
);
16032 if Nkind
(Decl
) = N_Formal_Type_Declaration
16033 and then Nkind
(Formal_Type_Definition
(Decl
)) =
16034 N_Formal_Derived_Type_Definition
16035 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
16036 and then No
(Extension
)
16038 -- Avoid emitting a duplicate error message
16040 and then not Error_Posted
(Indic
)
16043 ("synchronized derived type must have extension", N
);
16048 if Null_Exclusion_Present
(Def
)
16049 and then not Is_Access_Type
(Parent_Type
)
16051 Error_Msg_N
("null exclusion can only apply to an access type", N
);
16054 -- Avoid deriving parent primitives of underlying record views
16056 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
16057 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
16059 -- AI-419: The parent type of an explicitly limited derived type must
16060 -- be a limited type or a limited interface.
16062 if Limited_Present
(Def
) then
16063 Set_Is_Limited_Record
(T
);
16065 if Is_Interface
(T
) then
16066 Set_Is_Limited_Interface
(T
);
16069 if not Is_Limited_Type
(Parent_Type
)
16071 (not Is_Interface
(Parent_Type
)
16072 or else not Is_Limited_Interface
(Parent_Type
))
16074 -- AI05-0096: a derivation in the private part of an instance is
16075 -- legal if the generic formal is untagged limited, and the actual
16078 if Is_Generic_Actual_Type
(Parent_Type
)
16079 and then In_Private_Part
(Current_Scope
)
16082 (Generic_Parent_Type
(Parent
(Parent_Type
)))
16088 ("parent type& of limited type must be limited",
16094 -- In SPARK, there are no derived type definitions other than type
16095 -- extensions of tagged record types.
16097 if No
(Extension
) then
16098 Check_SPARK_05_Restriction
16099 ("derived type is not allowed", Original_Node
(N
));
16101 end Derived_Type_Declaration
;
16103 ------------------------
16104 -- Diagnose_Interface --
16105 ------------------------
16107 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
16109 if not Is_Interface
(E
) and then E
/= Any_Type
then
16110 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
16112 end Diagnose_Interface
;
16114 ----------------------------------
16115 -- Enumeration_Type_Declaration --
16116 ----------------------------------
16118 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16125 -- Create identifier node representing lower bound
16127 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16128 L
:= First
(Literals
(Def
));
16129 Set_Chars
(B_Node
, Chars
(L
));
16130 Set_Entity
(B_Node
, L
);
16131 Set_Etype
(B_Node
, T
);
16132 Set_Is_Static_Expression
(B_Node
, True);
16134 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
16135 Set_Low_Bound
(R_Node
, B_Node
);
16137 Set_Ekind
(T
, E_Enumeration_Type
);
16138 Set_First_Literal
(T
, L
);
16140 Set_Is_Constrained
(T
);
16144 -- Loop through literals of enumeration type setting pos and rep values
16145 -- except that if the Ekind is already set, then it means the literal
16146 -- was already constructed (case of a derived type declaration and we
16147 -- should not disturb the Pos and Rep values.
16149 while Present
(L
) loop
16150 if Ekind
(L
) /= E_Enumeration_Literal
then
16151 Set_Ekind
(L
, E_Enumeration_Literal
);
16152 Set_Enumeration_Pos
(L
, Ev
);
16153 Set_Enumeration_Rep
(L
, Ev
);
16154 Set_Is_Known_Valid
(L
, True);
16158 New_Overloaded_Entity
(L
);
16159 Generate_Definition
(L
);
16160 Set_Convention
(L
, Convention_Intrinsic
);
16162 -- Case of character literal
16164 if Nkind
(L
) = N_Defining_Character_Literal
then
16165 Set_Is_Character_Type
(T
, True);
16167 -- Check violation of No_Wide_Characters
16169 if Restriction_Check_Required
(No_Wide_Characters
) then
16170 Get_Name_String
(Chars
(L
));
16172 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
16173 Check_Restriction
(No_Wide_Characters
, L
);
16182 -- Now create a node representing upper bound
16184 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16185 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
16186 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
16187 Set_Etype
(B_Node
, T
);
16188 Set_Is_Static_Expression
(B_Node
, True);
16190 Set_High_Bound
(R_Node
, B_Node
);
16192 -- Initialize various fields of the type. Some of this information
16193 -- may be overwritten later through rep.clauses.
16195 Set_Scalar_Range
(T
, R_Node
);
16196 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
16197 Set_Enum_Esize
(T
);
16198 Set_Enum_Pos_To_Rep
(T
, Empty
);
16200 -- Set Discard_Names if configuration pragma set, or if there is
16201 -- a parameterless pragma in the current declarative region
16203 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
16204 Set_Discard_Names
(T
);
16207 -- Process end label if there is one
16209 if Present
(Def
) then
16210 Process_End_Label
(Def
, 'e', T
);
16212 end Enumeration_Type_Declaration
;
16214 ---------------------------------
16215 -- Expand_To_Stored_Constraint --
16216 ---------------------------------
16218 function Expand_To_Stored_Constraint
16220 Constraint
: Elist_Id
) return Elist_Id
16222 Explicitly_Discriminated_Type
: Entity_Id
;
16223 Expansion
: Elist_Id
;
16224 Discriminant
: Entity_Id
;
16226 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
16227 -- Find the nearest type that actually specifies discriminants
16229 ---------------------------------
16230 -- Type_With_Explicit_Discrims --
16231 ---------------------------------
16233 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
16234 Typ
: constant E
:= Base_Type
(Id
);
16237 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
16238 if Present
(Full_View
(Typ
)) then
16239 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
16243 if Has_Discriminants
(Typ
) then
16248 if Etype
(Typ
) = Typ
then
16250 elsif Has_Discriminants
(Typ
) then
16253 return Type_With_Explicit_Discrims
(Etype
(Typ
));
16256 end Type_With_Explicit_Discrims
;
16258 -- Start of processing for Expand_To_Stored_Constraint
16261 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
16265 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
16267 if No
(Explicitly_Discriminated_Type
) then
16271 Expansion
:= New_Elmt_List
;
16274 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
16275 while Present
(Discriminant
) loop
16277 (Get_Discriminant_Value
16278 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
16280 Next_Stored_Discriminant
(Discriminant
);
16284 end Expand_To_Stored_Constraint
;
16286 ---------------------------
16287 -- Find_Hidden_Interface --
16288 ---------------------------
16290 function Find_Hidden_Interface
16292 Dest
: Elist_Id
) return Entity_Id
16295 Iface_Elmt
: Elmt_Id
;
16298 if Present
(Src
) and then Present
(Dest
) then
16299 Iface_Elmt
:= First_Elmt
(Src
);
16300 while Present
(Iface_Elmt
) loop
16301 Iface
:= Node
(Iface_Elmt
);
16303 if Is_Interface
(Iface
)
16304 and then not Contain_Interface
(Iface
, Dest
)
16309 Next_Elmt
(Iface_Elmt
);
16314 end Find_Hidden_Interface
;
16316 --------------------
16317 -- Find_Type_Name --
16318 --------------------
16320 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
16321 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
16323 New_Id
: Entity_Id
;
16324 Prev_Par
: Node_Id
;
16326 procedure Check_Duplicate_Aspects
;
16327 -- Check that aspects specified in a completion have not been specified
16328 -- already in the partial view. Type_Invariant and others can be
16329 -- specified on either view but never on both.
16331 procedure Tag_Mismatch
;
16332 -- Diagnose a tagged partial view whose full view is untagged.
16333 -- We post the message on the full view, with a reference to
16334 -- the previous partial view. The partial view can be private
16335 -- or incomplete, and these are handled in a different manner,
16336 -- so we determine the position of the error message from the
16337 -- respective slocs of both.
16339 -----------------------------
16340 -- Check_Duplicate_Aspects --
16341 -----------------------------
16342 procedure Check_Duplicate_Aspects
is
16343 Prev_Aspects
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
16344 Full_Aspects
: constant List_Id
:= Aspect_Specifications
(N
);
16345 F_Spec
, P_Spec
: Node_Id
;
16348 if Present
(Prev_Aspects
) and then Present
(Full_Aspects
) then
16349 F_Spec
:= First
(Full_Aspects
);
16350 while Present
(F_Spec
) loop
16351 P_Spec
:= First
(Prev_Aspects
);
16352 while Present
(P_Spec
) loop
16353 if Chars
(Identifier
(P_Spec
)) = Chars
(Identifier
(F_Spec
))
16356 ("aspect already specified in private declaration",
16368 end Check_Duplicate_Aspects
;
16374 procedure Tag_Mismatch
is
16376 if Sloc
(Prev
) < Sloc
(Id
) then
16377 if Ada_Version
>= Ada_2012
16378 and then Nkind
(N
) = N_Private_Type_Declaration
16381 ("declaration of private } must be a tagged type ", Id
, Prev
);
16384 ("full declaration of } must be a tagged type ", Id
, Prev
);
16388 if Ada_Version
>= Ada_2012
16389 and then Nkind
(N
) = N_Private_Type_Declaration
16392 ("declaration of private } must be a tagged type ", Prev
, Id
);
16395 ("full declaration of } must be a tagged type ", Prev
, Id
);
16400 -- Start of processing for Find_Type_Name
16403 -- Find incomplete declaration, if one was given
16405 Prev
:= Current_Entity_In_Scope
(Id
);
16407 -- New type declaration
16413 -- Previous declaration exists
16416 Prev_Par
:= Parent
(Prev
);
16418 -- Error if not incomplete/private case except if previous
16419 -- declaration is implicit, etc. Enter_Name will emit error if
16422 if not Is_Incomplete_Or_Private_Type
(Prev
) then
16426 -- Check invalid completion of private or incomplete type
16428 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
16429 N_Task_Type_Declaration
,
16430 N_Protected_Type_Declaration
)
16432 (Ada_Version
< Ada_2012
16433 or else not Is_Incomplete_Type
(Prev
)
16434 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
16435 N_Private_Extension_Declaration
))
16437 -- Completion must be a full type declarations (RM 7.3(4))
16439 Error_Msg_Sloc
:= Sloc
(Prev
);
16440 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
16442 -- Set scope of Id to avoid cascaded errors. Entity is never
16443 -- examined again, except when saving globals in generics.
16445 Set_Scope
(Id
, Current_Scope
);
16448 -- If this is a repeated incomplete declaration, no further
16449 -- checks are possible.
16451 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
16455 -- Case of full declaration of incomplete type
16457 elsif Ekind
(Prev
) = E_Incomplete_Type
16458 and then (Ada_Version
< Ada_2012
16459 or else No
(Full_View
(Prev
))
16460 or else not Is_Private_Type
(Full_View
(Prev
)))
16462 -- Indicate that the incomplete declaration has a matching full
16463 -- declaration. The defining occurrence of the incomplete
16464 -- declaration remains the visible one, and the procedure
16465 -- Get_Full_View dereferences it whenever the type is used.
16467 if Present
(Full_View
(Prev
)) then
16468 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16471 Set_Full_View
(Prev
, Id
);
16472 Append_Entity
(Id
, Current_Scope
);
16473 Set_Is_Public
(Id
, Is_Public
(Prev
));
16474 Set_Is_Internal
(Id
);
16477 -- If the incomplete view is tagged, a class_wide type has been
16478 -- created already. Use it for the private type as well, in order
16479 -- to prevent multiple incompatible class-wide types that may be
16480 -- created for self-referential anonymous access components.
16482 if Is_Tagged_Type
(Prev
)
16483 and then Present
(Class_Wide_Type
(Prev
))
16485 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
16486 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
16488 -- The type of the classwide type is the current Id. Previously
16489 -- this was not done for private declarations because of order-
16490 -- of elaboration issues in the back-end, but gigi now handles
16493 Set_Etype
(Class_Wide_Type
(Id
), Id
);
16496 -- Case of full declaration of private type
16499 -- If the private type was a completion of an incomplete type then
16500 -- update Prev to reference the private type
16502 if Ada_Version
>= Ada_2012
16503 and then Ekind
(Prev
) = E_Incomplete_Type
16504 and then Present
(Full_View
(Prev
))
16505 and then Is_Private_Type
(Full_View
(Prev
))
16507 Prev
:= Full_View
(Prev
);
16508 Prev_Par
:= Parent
(Prev
);
16511 if Nkind
(N
) = N_Full_Type_Declaration
16513 (Type_Definition
(N
), N_Record_Definition
,
16514 N_Derived_Type_Definition
)
16515 and then Interface_Present
(Type_Definition
(N
))
16518 ("completion of private type cannot be an interface", N
);
16521 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
16522 if Etype
(Prev
) /= Prev
then
16524 -- Prev is a private subtype or a derived type, and needs
16527 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16530 elsif Ekind
(Prev
) = E_Private_Type
16531 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16532 N_Protected_Type_Declaration
)
16535 ("completion of nonlimited type cannot be limited", N
);
16537 elsif Ekind
(Prev
) = E_Record_Type_With_Private
16538 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16539 N_Protected_Type_Declaration
)
16541 if not Is_Limited_Record
(Prev
) then
16543 ("completion of nonlimited type cannot be limited", N
);
16545 elsif No
(Interface_List
(N
)) then
16547 ("completion of tagged private type must be tagged",
16552 -- Ada 2005 (AI-251): Private extension declaration of a task
16553 -- type or a protected type. This case arises when covering
16554 -- interface types.
16556 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16557 N_Protected_Type_Declaration
)
16561 elsif Nkind
(N
) /= N_Full_Type_Declaration
16562 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
16565 ("full view of private extension must be an extension", N
);
16567 elsif not (Abstract_Present
(Parent
(Prev
)))
16568 and then Abstract_Present
(Type_Definition
(N
))
16571 ("full view of non-abstract extension cannot be abstract", N
);
16574 if not In_Private_Part
(Current_Scope
) then
16576 ("declaration of full view must appear in private part", N
);
16579 if Ada_Version
>= Ada_2012
then
16580 Check_Duplicate_Aspects
;
16583 Copy_And_Swap
(Prev
, Id
);
16584 Set_Has_Private_Declaration
(Prev
);
16585 Set_Has_Private_Declaration
(Id
);
16587 -- AI12-0133: Indicate whether we have a partial view with
16588 -- unknown discriminants, in which case initialization of objects
16589 -- of the type do not receive an invariant check.
16591 Set_Partial_View_Has_Unknown_Discr
16592 (Prev
, Has_Unknown_Discriminants
(Id
));
16594 -- Preserve aspect and iterator flags that may have been set on
16595 -- the partial view.
16597 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
16598 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
16600 -- If no error, propagate freeze_node from private to full view.
16601 -- It may have been generated for an early operational item.
16603 if Present
(Freeze_Node
(Id
))
16604 and then Serious_Errors_Detected
= 0
16605 and then No
(Full_View
(Id
))
16607 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
16608 Set_Freeze_Node
(Id
, Empty
);
16609 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
16612 Set_Full_View
(Id
, Prev
);
16616 -- Verify that full declaration conforms to partial one
16618 if Is_Incomplete_Or_Private_Type
(Prev
)
16619 and then Present
(Discriminant_Specifications
(Prev_Par
))
16621 if Present
(Discriminant_Specifications
(N
)) then
16622 if Ekind
(Prev
) = E_Incomplete_Type
then
16623 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
16625 Check_Discriminant_Conformance
(N
, Prev
, Id
);
16630 ("missing discriminants in full type declaration", N
);
16632 -- To avoid cascaded errors on subsequent use, share the
16633 -- discriminants of the partial view.
16635 Set_Discriminant_Specifications
(N
,
16636 Discriminant_Specifications
(Prev_Par
));
16640 -- A prior untagged partial view can have an associated class-wide
16641 -- type due to use of the class attribute, and in this case the full
16642 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16643 -- of incomplete tagged declarations, but we check for it.
16646 and then (Is_Tagged_Type
(Prev
)
16647 or else Present
(Class_Wide_Type
(Prev
)))
16649 -- Ada 2012 (AI05-0162): A private type may be the completion of
16650 -- an incomplete type.
16652 if Ada_Version
>= Ada_2012
16653 and then Is_Incomplete_Type
(Prev
)
16654 and then Nkind_In
(N
, N_Private_Type_Declaration
,
16655 N_Private_Extension_Declaration
)
16657 -- No need to check private extensions since they are tagged
16659 if Nkind
(N
) = N_Private_Type_Declaration
16660 and then not Tagged_Present
(N
)
16665 -- The full declaration is either a tagged type (including
16666 -- a synchronized type that implements interfaces) or a
16667 -- type extension, otherwise this is an error.
16669 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16670 N_Protected_Type_Declaration
)
16672 if No
(Interface_List
(N
)) and then not Error_Posted
(N
) then
16676 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
16678 -- Indicate that the previous declaration (tagged incomplete
16679 -- or private declaration) requires the same on the full one.
16681 if not Tagged_Present
(Type_Definition
(N
)) then
16683 Set_Is_Tagged_Type
(Id
);
16686 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
16687 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
16689 ("full declaration of } must be a record extension",
16692 -- Set some attributes to produce a usable full view
16694 Set_Is_Tagged_Type
(Id
);
16703 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
16704 and then Present
(Premature_Use
(Parent
(Prev
)))
16706 Error_Msg_Sloc
:= Sloc
(N
);
16708 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
16713 end Find_Type_Name
;
16715 -------------------------
16716 -- Find_Type_Of_Object --
16717 -------------------------
16719 function Find_Type_Of_Object
16720 (Obj_Def
: Node_Id
;
16721 Related_Nod
: Node_Id
) return Entity_Id
16723 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
16724 P
: Node_Id
:= Parent
(Obj_Def
);
16729 -- If the parent is a component_definition node we climb to the
16730 -- component_declaration node
16732 if Nkind
(P
) = N_Component_Definition
then
16736 -- Case of an anonymous array subtype
16738 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
16739 N_Unconstrained_Array_Definition
)
16742 Array_Type_Declaration
(T
, Obj_Def
);
16744 -- Create an explicit subtype whenever possible
16746 elsif Nkind
(P
) /= N_Component_Declaration
16747 and then Def_Kind
= N_Subtype_Indication
16749 -- Base name of subtype on object name, which will be unique in
16750 -- the current scope.
16752 -- If this is a duplicate declaration, return base type, to avoid
16753 -- generating duplicate anonymous types.
16755 if Error_Posted
(P
) then
16756 Analyze
(Subtype_Mark
(Obj_Def
));
16757 return Entity
(Subtype_Mark
(Obj_Def
));
16762 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
16764 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
16766 Insert_Action
(Obj_Def
,
16767 Make_Subtype_Declaration
(Sloc
(P
),
16768 Defining_Identifier
=> T
,
16769 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
16771 -- This subtype may need freezing, and this will not be done
16772 -- automatically if the object declaration is not in declarative
16773 -- part. Since this is an object declaration, the type cannot always
16774 -- be frozen here. Deferred constants do not freeze their type
16775 -- (which often enough will be private).
16777 if Nkind
(P
) = N_Object_Declaration
16778 and then Constant_Present
(P
)
16779 and then No
(Expression
(P
))
16783 -- Here we freeze the base type of object type to catch premature use
16784 -- of discriminated private type without a full view.
16787 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
16790 -- Ada 2005 AI-406: the object definition in an object declaration
16791 -- can be an access definition.
16793 elsif Def_Kind
= N_Access_Definition
then
16794 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
16796 Set_Is_Local_Anonymous_Access
16798 V
=> (Ada_Version
< Ada_2012
)
16799 or else (Nkind
(P
) /= N_Object_Declaration
)
16800 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
16802 -- Otherwise, the object definition is just a subtype_mark
16805 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
16807 -- If expansion is disabled an object definition that is an aggregate
16808 -- will not get expanded and may lead to scoping problems in the back
16809 -- end, if the object is referenced in an inner scope. In that case
16810 -- create an itype reference for the object definition now. This
16811 -- may be redundant in some cases, but harmless.
16814 and then Nkind
(Related_Nod
) = N_Object_Declaration
16817 Build_Itype_Reference
(T
, Related_Nod
);
16822 end Find_Type_Of_Object
;
16824 --------------------------------
16825 -- Find_Type_Of_Subtype_Indic --
16826 --------------------------------
16828 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
16832 -- Case of subtype mark with a constraint
16834 if Nkind
(S
) = N_Subtype_Indication
then
16835 Find_Type
(Subtype_Mark
(S
));
16836 Typ
:= Entity
(Subtype_Mark
(S
));
16839 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
16842 ("incorrect constraint for this kind of type", Constraint
(S
));
16843 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
16846 -- Otherwise we have a subtype mark without a constraint
16848 elsif Error_Posted
(S
) then
16849 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
16857 -- Check No_Wide_Characters restriction
16859 Check_Wide_Character_Restriction
(Typ
, S
);
16862 end Find_Type_Of_Subtype_Indic
;
16864 -------------------------------------
16865 -- Floating_Point_Type_Declaration --
16866 -------------------------------------
16868 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16869 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
16870 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
16872 Base_Typ
: Entity_Id
;
16873 Implicit_Base
: Entity_Id
;
16876 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
16877 -- Find if given digits value, and possibly a specified range, allows
16878 -- derivation from specified type
16880 function Find_Base_Type
return Entity_Id
;
16881 -- Find a predefined base type that Def can derive from, or generate
16882 -- an error and substitute Long_Long_Float if none exists.
16884 ---------------------
16885 -- Can_Derive_From --
16886 ---------------------
16888 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
16889 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
16892 -- Check specified "digits" constraint
16894 if Digs_Val
> Digits_Value
(E
) then
16898 -- Check for matching range, if specified
16900 if Present
(Spec
) then
16901 if Expr_Value_R
(Type_Low_Bound
(E
)) >
16902 Expr_Value_R
(Low_Bound
(Spec
))
16907 if Expr_Value_R
(Type_High_Bound
(E
)) <
16908 Expr_Value_R
(High_Bound
(Spec
))
16915 end Can_Derive_From
;
16917 --------------------
16918 -- Find_Base_Type --
16919 --------------------
16921 function Find_Base_Type
return Entity_Id
is
16922 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
16925 -- Iterate over the predefined types in order, returning the first
16926 -- one that Def can derive from.
16928 while Present
(Choice
) loop
16929 if Can_Derive_From
(Node
(Choice
)) then
16930 return Node
(Choice
);
16933 Next_Elmt
(Choice
);
16936 -- If we can't derive from any existing type, use Long_Long_Float
16937 -- and give appropriate message explaining the problem.
16939 if Digs_Val
> Max_Digs_Val
then
16940 -- It might be the case that there is a type with the requested
16941 -- range, just not the combination of digits and range.
16944 ("no predefined type has requested range and precision",
16945 Real_Range_Specification
(Def
));
16949 ("range too large for any predefined type",
16950 Real_Range_Specification
(Def
));
16953 return Standard_Long_Long_Float
;
16954 end Find_Base_Type
;
16956 -- Start of processing for Floating_Point_Type_Declaration
16959 Check_Restriction
(No_Floating_Point
, Def
);
16961 -- Create an implicit base type
16964 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
16966 -- Analyze and verify digits value
16968 Analyze_And_Resolve
(Digs
, Any_Integer
);
16969 Check_Digits_Expression
(Digs
);
16970 Digs_Val
:= Expr_Value
(Digs
);
16972 -- Process possible range spec and find correct type to derive from
16974 Process_Real_Range_Specification
(Def
);
16976 -- Check that requested number of digits is not too high.
16978 if Digs_Val
> Max_Digs_Val
then
16980 -- The check for Max_Base_Digits may be somewhat expensive, as it
16981 -- requires reading System, so only do it when necessary.
16984 Max_Base_Digits
: constant Uint
:=
16987 (Parent
(RTE
(RE_Max_Base_Digits
))));
16990 if Digs_Val
> Max_Base_Digits
then
16991 Error_Msg_Uint_1
:= Max_Base_Digits
;
16992 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
16994 elsif No
(Real_Range_Specification
(Def
)) then
16995 Error_Msg_Uint_1
:= Max_Digs_Val
;
16996 Error_Msg_N
("types with more than ^ digits need range spec "
16997 & "(RM 3.5.7(6))", Digs
);
17002 -- Find a suitable type to derive from or complain and use a substitute
17004 Base_Typ
:= Find_Base_Type
;
17006 -- If there are bounds given in the declaration use them as the bounds
17007 -- of the type, otherwise use the bounds of the predefined base type
17008 -- that was chosen based on the Digits value.
17010 if Present
(Real_Range_Specification
(Def
)) then
17011 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
17012 Set_Is_Constrained
(T
);
17014 -- The bounds of this range must be converted to machine numbers
17015 -- in accordance with RM 4.9(38).
17017 Bound
:= Type_Low_Bound
(T
);
17019 if Nkind
(Bound
) = N_Real_Literal
then
17021 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17022 Set_Is_Machine_Number
(Bound
);
17025 Bound
:= Type_High_Bound
(T
);
17027 if Nkind
(Bound
) = N_Real_Literal
then
17029 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17030 Set_Is_Machine_Number
(Bound
);
17034 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
17037 -- Complete definition of implicit base and declared first subtype. The
17038 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17039 -- are not clobbered when the floating point type acts as a full view of
17042 Set_Etype
(Implicit_Base
, Base_Typ
);
17043 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
17044 Set_Size_Info
(Implicit_Base
, Base_Typ
);
17045 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
17046 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
17047 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
17048 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
17050 Set_Ekind
(T
, E_Floating_Point_Subtype
);
17051 Set_Etype
(T
, Implicit_Base
);
17052 Set_Size_Info
(T
, Implicit_Base
);
17053 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
17054 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
17055 Set_Digits_Value
(T
, Digs_Val
);
17056 end Floating_Point_Type_Declaration
;
17058 ----------------------------
17059 -- Get_Discriminant_Value --
17060 ----------------------------
17062 -- This is the situation:
17064 -- There is a non-derived type
17066 -- type T0 (Dx, Dy, Dz...)
17068 -- There are zero or more levels of derivation, with each derivation
17069 -- either purely inheriting the discriminants, or defining its own.
17071 -- type Ti is new Ti-1
17073 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17075 -- subtype Ti is ...
17077 -- The subtype issue is avoided by the use of Original_Record_Component,
17078 -- and the fact that derived subtypes also derive the constraints.
17080 -- This chain leads back from
17082 -- Typ_For_Constraint
17084 -- Typ_For_Constraint has discriminants, and the value for each
17085 -- discriminant is given by its corresponding Elmt of Constraints.
17087 -- Discriminant is some discriminant in this hierarchy
17089 -- We need to return its value
17091 -- We do this by recursively searching each level, and looking for
17092 -- Discriminant. Once we get to the bottom, we start backing up
17093 -- returning the value for it which may in turn be a discriminant
17094 -- further up, so on the backup we continue the substitution.
17096 function Get_Discriminant_Value
17097 (Discriminant
: Entity_Id
;
17098 Typ_For_Constraint
: Entity_Id
;
17099 Constraint
: Elist_Id
) return Node_Id
17101 function Root_Corresponding_Discriminant
17102 (Discr
: Entity_Id
) return Entity_Id
;
17103 -- Given a discriminant, traverse the chain of inherited discriminants
17104 -- and return the topmost discriminant.
17106 function Search_Derivation_Levels
17108 Discrim_Values
: Elist_Id
;
17109 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
17110 -- This is the routine that performs the recursive search of levels
17111 -- as described above.
17113 -------------------------------------
17114 -- Root_Corresponding_Discriminant --
17115 -------------------------------------
17117 function Root_Corresponding_Discriminant
17118 (Discr
: Entity_Id
) return Entity_Id
17124 while Present
(Corresponding_Discriminant
(D
)) loop
17125 D
:= Corresponding_Discriminant
(D
);
17129 end Root_Corresponding_Discriminant
;
17131 ------------------------------
17132 -- Search_Derivation_Levels --
17133 ------------------------------
17135 function Search_Derivation_Levels
17137 Discrim_Values
: Elist_Id
;
17138 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
17142 Result
: Node_Or_Entity_Id
;
17143 Result_Entity
: Node_Id
;
17146 -- If inappropriate type, return Error, this happens only in
17147 -- cascaded error situations, and we want to avoid a blow up.
17149 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
17153 -- Look deeper if possible. Use Stored_Constraints only for
17154 -- untagged types. For tagged types use the given constraint.
17155 -- This asymmetry needs explanation???
17157 if not Stored_Discrim_Values
17158 and then Present
(Stored_Constraint
(Ti
))
17159 and then not Is_Tagged_Type
(Ti
)
17162 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
17165 Td
: constant Entity_Id
:= Etype
(Ti
);
17169 Result
:= Discriminant
;
17172 if Present
(Stored_Constraint
(Ti
)) then
17174 Search_Derivation_Levels
17175 (Td
, Stored_Constraint
(Ti
), True);
17178 Search_Derivation_Levels
17179 (Td
, Discrim_Values
, Stored_Discrim_Values
);
17185 -- Extra underlying places to search, if not found above. For
17186 -- concurrent types, the relevant discriminant appears in the
17187 -- corresponding record. For a type derived from a private type
17188 -- without discriminant, the full view inherits the discriminants
17189 -- of the full view of the parent.
17191 if Result
= Discriminant
then
17192 if Is_Concurrent_Type
(Ti
)
17193 and then Present
(Corresponding_Record_Type
(Ti
))
17196 Search_Derivation_Levels
(
17197 Corresponding_Record_Type
(Ti
),
17199 Stored_Discrim_Values
);
17201 elsif Is_Private_Type
(Ti
)
17202 and then not Has_Discriminants
(Ti
)
17203 and then Present
(Full_View
(Ti
))
17204 and then Etype
(Full_View
(Ti
)) /= Ti
17207 Search_Derivation_Levels
(
17210 Stored_Discrim_Values
);
17214 -- If Result is not a (reference to a) discriminant, return it,
17215 -- otherwise set Result_Entity to the discriminant.
17217 if Nkind
(Result
) = N_Defining_Identifier
then
17218 pragma Assert
(Result
= Discriminant
);
17219 Result_Entity
:= Result
;
17222 if not Denotes_Discriminant
(Result
) then
17226 Result_Entity
:= Entity
(Result
);
17229 -- See if this level of derivation actually has discriminants because
17230 -- tagged derivations can add them, hence the lower levels need not
17233 if not Has_Discriminants
(Ti
) then
17237 -- Scan Ti's discriminants for Result_Entity, and return its
17238 -- corresponding value, if any.
17240 Result_Entity
:= Original_Record_Component
(Result_Entity
);
17242 Assoc
:= First_Elmt
(Discrim_Values
);
17244 if Stored_Discrim_Values
then
17245 Disc
:= First_Stored_Discriminant
(Ti
);
17247 Disc
:= First_Discriminant
(Ti
);
17250 while Present
(Disc
) loop
17251 pragma Assert
(Present
(Assoc
));
17253 if Original_Record_Component
(Disc
) = Result_Entity
then
17254 return Node
(Assoc
);
17259 if Stored_Discrim_Values
then
17260 Next_Stored_Discriminant
(Disc
);
17262 Next_Discriminant
(Disc
);
17266 -- Could not find it
17269 end Search_Derivation_Levels
;
17273 Result
: Node_Or_Entity_Id
;
17275 -- Start of processing for Get_Discriminant_Value
17278 -- ??? This routine is a gigantic mess and will be deleted. For the
17279 -- time being just test for the trivial case before calling recurse.
17281 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
17287 D
:= First_Discriminant
(Typ_For_Constraint
);
17288 E
:= First_Elmt
(Constraint
);
17289 while Present
(D
) loop
17290 if Chars
(D
) = Chars
(Discriminant
) then
17294 Next_Discriminant
(D
);
17300 Result
:= Search_Derivation_Levels
17301 (Typ_For_Constraint
, Constraint
, False);
17303 -- ??? hack to disappear when this routine is gone
17305 if Nkind
(Result
) = N_Defining_Identifier
then
17311 D
:= First_Discriminant
(Typ_For_Constraint
);
17312 E
:= First_Elmt
(Constraint
);
17313 while Present
(D
) loop
17314 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
17318 Next_Discriminant
(D
);
17324 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
17326 end Get_Discriminant_Value
;
17328 --------------------------
17329 -- Has_Range_Constraint --
17330 --------------------------
17332 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
17333 C
: constant Node_Id
:= Constraint
(N
);
17336 if Nkind
(C
) = N_Range_Constraint
then
17339 elsif Nkind
(C
) = N_Digits_Constraint
then
17341 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
17342 or else Present
(Range_Constraint
(C
));
17344 elsif Nkind
(C
) = N_Delta_Constraint
then
17345 return Present
(Range_Constraint
(C
));
17350 end Has_Range_Constraint
;
17352 ------------------------
17353 -- Inherit_Components --
17354 ------------------------
17356 function Inherit_Components
17358 Parent_Base
: Entity_Id
;
17359 Derived_Base
: Entity_Id
;
17360 Is_Tagged
: Boolean;
17361 Inherit_Discr
: Boolean;
17362 Discs
: Elist_Id
) return Elist_Id
17364 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
17366 procedure Inherit_Component
17367 (Old_C
: Entity_Id
;
17368 Plain_Discrim
: Boolean := False;
17369 Stored_Discrim
: Boolean := False);
17370 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17371 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17372 -- True, Old_C is a stored discriminant. If they are both false then
17373 -- Old_C is a regular component.
17375 -----------------------
17376 -- Inherit_Component --
17377 -----------------------
17379 procedure Inherit_Component
17380 (Old_C
: Entity_Id
;
17381 Plain_Discrim
: Boolean := False;
17382 Stored_Discrim
: Boolean := False)
17384 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
17385 -- Id denotes the entity of an access discriminant or anonymous
17386 -- access component. Set the type of Id to either the same type of
17387 -- Old_C or create a new one depending on whether the parent and
17388 -- the child types are in the same scope.
17390 ------------------------
17391 -- Set_Anonymous_Type --
17392 ------------------------
17394 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
17395 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
17398 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
17399 Set_Etype
(Id
, Old_Typ
);
17401 -- The parent and the derived type are in two different scopes.
17402 -- Reuse the type of the original discriminant / component by
17403 -- copying it in order to preserve all attributes.
17407 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
17410 Set_Etype
(Id
, Typ
);
17412 -- Since we do not generate component declarations for
17413 -- inherited components, associate the itype with the
17416 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
17417 Set_Scope
(Typ
, Derived_Base
);
17420 end Set_Anonymous_Type
;
17422 -- Local variables and constants
17424 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
17426 Corr_Discrim
: Entity_Id
;
17427 Discrim
: Entity_Id
;
17429 -- Start of processing for Inherit_Component
17432 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
17434 Set_Parent
(New_C
, Parent
(Old_C
));
17436 -- Regular discriminants and components must be inserted in the scope
17437 -- of the Derived_Base. Do it here.
17439 if not Stored_Discrim
then
17440 Enter_Name
(New_C
);
17443 -- For tagged types the Original_Record_Component must point to
17444 -- whatever this field was pointing to in the parent type. This has
17445 -- already been achieved by the call to New_Copy above.
17447 if not Is_Tagged
then
17448 Set_Original_Record_Component
(New_C
, New_C
);
17451 -- Set the proper type of an access discriminant
17453 if Ekind
(New_C
) = E_Discriminant
17454 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
17456 Set_Anonymous_Type
(New_C
);
17459 -- If we have inherited a component then see if its Etype contains
17460 -- references to Parent_Base discriminants. In this case, replace
17461 -- these references with the constraints given in Discs. We do not
17462 -- do this for the partial view of private types because this is
17463 -- not needed (only the components of the full view will be used
17464 -- for code generation) and cause problem. We also avoid this
17465 -- transformation in some error situations.
17467 if Ekind
(New_C
) = E_Component
then
17469 -- Set the proper type of an anonymous access component
17471 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
17472 Set_Anonymous_Type
(New_C
);
17474 elsif (Is_Private_Type
(Derived_Base
)
17475 and then not Is_Generic_Type
(Derived_Base
))
17476 or else (Is_Empty_Elmt_List
(Discs
)
17477 and then not Expander_Active
)
17479 Set_Etype
(New_C
, Etype
(Old_C
));
17482 -- The current component introduces a circularity of the
17485 -- limited with Pack_2;
17486 -- package Pack_1 is
17487 -- type T_1 is tagged record
17488 -- Comp : access Pack_2.T_2;
17494 -- package Pack_2 is
17495 -- type T_2 is new Pack_1.T_1 with ...;
17500 Constrain_Component_Type
17501 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
17505 -- In derived tagged types it is illegal to reference a non
17506 -- discriminant component in the parent type. To catch this, mark
17507 -- these components with an Ekind of E_Void. This will be reset in
17508 -- Record_Type_Definition after processing the record extension of
17509 -- the derived type.
17511 -- If the declaration is a private extension, there is no further
17512 -- record extension to process, and the components retain their
17513 -- current kind, because they are visible at this point.
17515 if Is_Tagged
and then Ekind
(New_C
) = E_Component
17516 and then Nkind
(N
) /= N_Private_Extension_Declaration
17518 Set_Ekind
(New_C
, E_Void
);
17521 if Plain_Discrim
then
17522 Set_Corresponding_Discriminant
(New_C
, Old_C
);
17523 Build_Discriminal
(New_C
);
17525 -- If we are explicitly inheriting a stored discriminant it will be
17526 -- completely hidden.
17528 elsif Stored_Discrim
then
17529 Set_Corresponding_Discriminant
(New_C
, Empty
);
17530 Set_Discriminal
(New_C
, Empty
);
17531 Set_Is_Completely_Hidden
(New_C
);
17533 -- Set the Original_Record_Component of each discriminant in the
17534 -- derived base to point to the corresponding stored that we just
17537 Discrim
:= First_Discriminant
(Derived_Base
);
17538 while Present
(Discrim
) loop
17539 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
17541 -- Corr_Discrim could be missing in an error situation
17543 if Present
(Corr_Discrim
)
17544 and then Original_Record_Component
(Corr_Discrim
) = Old_C
17546 Set_Original_Record_Component
(Discrim
, New_C
);
17549 Next_Discriminant
(Discrim
);
17552 Append_Entity
(New_C
, Derived_Base
);
17555 if not Is_Tagged
then
17556 Append_Elmt
(Old_C
, Assoc_List
);
17557 Append_Elmt
(New_C
, Assoc_List
);
17559 end Inherit_Component
;
17561 -- Variables local to Inherit_Component
17563 Loc
: constant Source_Ptr
:= Sloc
(N
);
17565 Parent_Discrim
: Entity_Id
;
17566 Stored_Discrim
: Entity_Id
;
17568 Component
: Entity_Id
;
17570 -- Start of processing for Inherit_Components
17573 if not Is_Tagged
then
17574 Append_Elmt
(Parent_Base
, Assoc_List
);
17575 Append_Elmt
(Derived_Base
, Assoc_List
);
17578 -- Inherit parent discriminants if needed
17580 if Inherit_Discr
then
17581 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
17582 while Present
(Parent_Discrim
) loop
17583 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
17584 Next_Discriminant
(Parent_Discrim
);
17588 -- Create explicit stored discrims for untagged types when necessary
17590 if not Has_Unknown_Discriminants
(Derived_Base
)
17591 and then Has_Discriminants
(Parent_Base
)
17592 and then not Is_Tagged
17595 or else First_Discriminant
(Parent_Base
) /=
17596 First_Stored_Discriminant
(Parent_Base
))
17598 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
17599 while Present
(Stored_Discrim
) loop
17600 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
17601 Next_Stored_Discriminant
(Stored_Discrim
);
17605 -- See if we can apply the second transformation for derived types, as
17606 -- explained in point 6. in the comments above Build_Derived_Record_Type
17607 -- This is achieved by appending Derived_Base discriminants into Discs,
17608 -- which has the side effect of returning a non empty Discs list to the
17609 -- caller of Inherit_Components, which is what we want. This must be
17610 -- done for private derived types if there are explicit stored
17611 -- discriminants, to ensure that we can retrieve the values of the
17612 -- constraints provided in the ancestors.
17615 and then Is_Empty_Elmt_List
(Discs
)
17616 and then Present
(First_Discriminant
(Derived_Base
))
17618 (not Is_Private_Type
(Derived_Base
)
17619 or else Is_Completely_Hidden
17620 (First_Stored_Discriminant
(Derived_Base
))
17621 or else Is_Generic_Type
(Derived_Base
))
17623 D
:= First_Discriminant
(Derived_Base
);
17624 while Present
(D
) loop
17625 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
17626 Next_Discriminant
(D
);
17630 -- Finally, inherit non-discriminant components unless they are not
17631 -- visible because defined or inherited from the full view of the
17632 -- parent. Don't inherit the _parent field of the parent type.
17634 Component
:= First_Entity
(Parent_Base
);
17635 while Present
(Component
) loop
17637 -- Ada 2005 (AI-251): Do not inherit components associated with
17638 -- secondary tags of the parent.
17640 if Ekind
(Component
) = E_Component
17641 and then Present
(Related_Type
(Component
))
17645 elsif Ekind
(Component
) /= E_Component
17646 or else Chars
(Component
) = Name_uParent
17650 -- If the derived type is within the parent type's declarative
17651 -- region, then the components can still be inherited even though
17652 -- they aren't visible at this point. This can occur for cases
17653 -- such as within public child units where the components must
17654 -- become visible upon entering the child unit's private part.
17656 elsif not Is_Visible_Component
(Component
)
17657 and then not In_Open_Scopes
(Scope
(Parent_Base
))
17661 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
17662 E_Limited_Private_Type
)
17667 Inherit_Component
(Component
);
17670 Next_Entity
(Component
);
17673 -- For tagged derived types, inherited discriminants cannot be used in
17674 -- component declarations of the record extension part. To achieve this
17675 -- we mark the inherited discriminants as not visible.
17677 if Is_Tagged
and then Inherit_Discr
then
17678 D
:= First_Discriminant
(Derived_Base
);
17679 while Present
(D
) loop
17680 Set_Is_Immediately_Visible
(D
, False);
17681 Next_Discriminant
(D
);
17686 end Inherit_Components
;
17688 -----------------------------
17689 -- Inherit_Predicate_Flags --
17690 -----------------------------
17692 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
17694 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
17695 Set_Has_Static_Predicate_Aspect
17696 (Subt
, Has_Static_Predicate_Aspect
(Par
));
17697 Set_Has_Dynamic_Predicate_Aspect
17698 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
17699 end Inherit_Predicate_Flags
;
17701 ----------------------
17702 -- Is_EVF_Procedure --
17703 ----------------------
17705 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
17706 Formal
: Entity_Id
;
17709 -- Examine the formals of an Extensions_Visible False procedure looking
17710 -- for a controlling OUT parameter.
17712 if Ekind
(Subp
) = E_Procedure
17713 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
17715 Formal
:= First_Formal
(Subp
);
17716 while Present
(Formal
) loop
17717 if Ekind
(Formal
) = E_Out_Parameter
17718 and then Is_Controlling_Formal
(Formal
)
17723 Next_Formal
(Formal
);
17728 end Is_EVF_Procedure
;
17730 -----------------------
17731 -- Is_Null_Extension --
17732 -----------------------
17734 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
17735 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
17736 Comp_List
: Node_Id
;
17740 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
17741 or else not Is_Tagged_Type
(T
)
17742 or else Nkind
(Type_Definition
(Type_Decl
)) /=
17743 N_Derived_Type_Definition
17744 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
17750 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
17752 if Present
(Discriminant_Specifications
(Type_Decl
)) then
17755 elsif Present
(Comp_List
)
17756 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
17758 Comp
:= First
(Component_Items
(Comp_List
));
17760 -- Only user-defined components are relevant. The component list
17761 -- may also contain a parent component and internal components
17762 -- corresponding to secondary tags, but these do not determine
17763 -- whether this is a null extension.
17765 while Present
(Comp
) loop
17766 if Comes_From_Source
(Comp
) then
17778 end Is_Null_Extension
;
17780 ------------------------------
17781 -- Is_Valid_Constraint_Kind --
17782 ------------------------------
17784 function Is_Valid_Constraint_Kind
17785 (T_Kind
: Type_Kind
;
17786 Constraint_Kind
: Node_Kind
) return Boolean
17790 when Enumeration_Kind |
17792 return Constraint_Kind
= N_Range_Constraint
;
17794 when Decimal_Fixed_Point_Kind
=>
17795 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17796 N_Range_Constraint
);
17798 when Ordinary_Fixed_Point_Kind
=>
17799 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
17800 N_Range_Constraint
);
17803 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17804 N_Range_Constraint
);
17811 E_Incomplete_Type |
17814 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
17817 return True; -- Error will be detected later
17819 end Is_Valid_Constraint_Kind
;
17821 --------------------------
17822 -- Is_Visible_Component --
17823 --------------------------
17825 function Is_Visible_Component
17827 N
: Node_Id
:= Empty
) return Boolean
17829 Original_Comp
: Entity_Id
:= Empty
;
17830 Original_Scope
: Entity_Id
;
17831 Type_Scope
: Entity_Id
;
17833 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
17834 -- Check whether parent type of inherited component is declared locally,
17835 -- possibly within a nested package or instance. The current scope is
17836 -- the derived record itself.
17838 -------------------
17839 -- Is_Local_Type --
17840 -------------------
17842 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
17846 Scop
:= Scope
(Typ
);
17847 while Present
(Scop
)
17848 and then Scop
/= Standard_Standard
17850 if Scop
= Scope
(Current_Scope
) then
17854 Scop
:= Scope
(Scop
);
17860 -- Start of processing for Is_Visible_Component
17863 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
17864 Original_Comp
:= Original_Record_Component
(C
);
17867 if No
(Original_Comp
) then
17869 -- Premature usage, or previous error
17874 Original_Scope
:= Scope
(Original_Comp
);
17875 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
17878 -- This test only concerns tagged types
17880 if not Is_Tagged_Type
(Original_Scope
) then
17883 -- If it is _Parent or _Tag, there is no visibility issue
17885 elsif not Comes_From_Source
(Original_Comp
) then
17888 -- Discriminants are visible unless the (private) type has unknown
17889 -- discriminants. If the discriminant reference is inserted for a
17890 -- discriminant check on a full view it is also visible.
17892 elsif Ekind
(Original_Comp
) = E_Discriminant
17894 (not Has_Unknown_Discriminants
(Original_Scope
)
17895 or else (Present
(N
)
17896 and then Nkind
(N
) = N_Selected_Component
17897 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
17898 and then not Comes_From_Source
(Prefix
(N
))))
17902 -- In the body of an instantiation, no need to check for the visibility
17905 elsif In_Instance_Body
then
17908 -- If the component has been declared in an ancestor which is currently
17909 -- a private type, then it is not visible. The same applies if the
17910 -- component's containing type is not in an open scope and the original
17911 -- component's enclosing type is a visible full view of a private type
17912 -- (which can occur in cases where an attempt is being made to reference
17913 -- a component in a sibling package that is inherited from a visible
17914 -- component of a type in an ancestor package; the component in the
17915 -- sibling package should not be visible even though the component it
17916 -- inherited from is visible). This does not apply however in the case
17917 -- where the scope of the type is a private child unit, or when the
17918 -- parent comes from a local package in which the ancestor is currently
17919 -- visible. The latter suppression of visibility is needed for cases
17920 -- that are tested in B730006.
17922 elsif Is_Private_Type
(Original_Scope
)
17924 (not Is_Private_Descendant
(Type_Scope
)
17925 and then not In_Open_Scopes
(Type_Scope
)
17926 and then Has_Private_Declaration
(Original_Scope
))
17928 -- If the type derives from an entity in a formal package, there
17929 -- are no additional visible components.
17931 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
17932 N_Formal_Package_Declaration
17936 -- if we are not in the private part of the current package, there
17937 -- are no additional visible components.
17939 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
17940 and then not In_Private_Part
(Scope
(Current_Scope
))
17945 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
17946 and then In_Open_Scopes
(Scope
(Original_Scope
))
17947 and then Is_Local_Type
(Type_Scope
);
17950 -- There is another weird way in which a component may be invisible when
17951 -- the private and the full view are not derived from the same ancestor.
17952 -- Here is an example :
17954 -- type A1 is tagged record F1 : integer; end record;
17955 -- type A2 is new A1 with record F2 : integer; end record;
17956 -- type T is new A1 with private;
17958 -- type T is new A2 with null record;
17960 -- In this case, the full view of T inherits F1 and F2 but the private
17961 -- view inherits only F1
17965 Ancestor
: Entity_Id
:= Scope
(C
);
17969 if Ancestor
= Original_Scope
then
17971 elsif Ancestor
= Etype
(Ancestor
) then
17975 Ancestor
:= Etype
(Ancestor
);
17979 end Is_Visible_Component
;
17981 --------------------------
17982 -- Make_Class_Wide_Type --
17983 --------------------------
17985 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
17986 CW_Type
: Entity_Id
;
17988 Next_E
: Entity_Id
;
17991 if Present
(Class_Wide_Type
(T
)) then
17993 -- The class-wide type is a partially decorated entity created for a
17994 -- unanalyzed tagged type referenced through a limited with clause.
17995 -- When the tagged type is analyzed, its class-wide type needs to be
17996 -- redecorated. Note that we reuse the entity created by Decorate_
17997 -- Tagged_Type in order to preserve all links.
17999 if Materialize_Entity
(Class_Wide_Type
(T
)) then
18000 CW_Type
:= Class_Wide_Type
(T
);
18001 Set_Materialize_Entity
(CW_Type
, False);
18003 -- The class wide type can have been defined by the partial view, in
18004 -- which case everything is already done.
18010 -- Default case, we need to create a new class-wide type
18014 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
18017 -- Inherit root type characteristics
18019 CW_Name
:= Chars
(CW_Type
);
18020 Next_E
:= Next_Entity
(CW_Type
);
18021 Copy_Node
(T
, CW_Type
);
18022 Set_Comes_From_Source
(CW_Type
, False);
18023 Set_Chars
(CW_Type
, CW_Name
);
18024 Set_Parent
(CW_Type
, Parent
(T
));
18025 Set_Next_Entity
(CW_Type
, Next_E
);
18027 -- Ensure we have a new freeze node for the class-wide type. The partial
18028 -- view may have freeze action of its own, requiring a proper freeze
18029 -- node, and the same freeze node cannot be shared between the two
18032 Set_Has_Delayed_Freeze
(CW_Type
);
18033 Set_Freeze_Node
(CW_Type
, Empty
);
18035 -- Customize the class-wide type: It has no prim. op., it cannot be
18036 -- abstract and its Etype points back to the specific root type.
18038 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
18039 Set_Is_Tagged_Type
(CW_Type
, True);
18040 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
18041 Set_Is_Abstract_Type
(CW_Type
, False);
18042 Set_Is_Constrained
(CW_Type
, False);
18043 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
18044 Set_Default_SSO
(CW_Type
);
18046 if Ekind
(T
) = E_Class_Wide_Subtype
then
18047 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
18049 Set_Etype
(CW_Type
, T
);
18052 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
18054 -- If this is the class_wide type of a constrained subtype, it does
18055 -- not have discriminants.
18057 Set_Has_Discriminants
(CW_Type
,
18058 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
18060 Set_Has_Unknown_Discriminants
(CW_Type
, True);
18061 Set_Class_Wide_Type
(T
, CW_Type
);
18062 Set_Equivalent_Type
(CW_Type
, Empty
);
18064 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18066 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
18067 end Make_Class_Wide_Type
;
18073 procedure Make_Index
18075 Related_Nod
: Node_Id
;
18076 Related_Id
: Entity_Id
:= Empty
;
18077 Suffix_Index
: Nat
:= 1;
18078 In_Iter_Schm
: Boolean := False)
18082 Def_Id
: Entity_Id
:= Empty
;
18083 Found
: Boolean := False;
18086 -- For a discrete range used in a constrained array definition and
18087 -- defined by a range, an implicit conversion to the predefined type
18088 -- INTEGER is assumed if each bound is either a numeric literal, a named
18089 -- number, or an attribute, and the type of both bounds (prior to the
18090 -- implicit conversion) is the type universal_integer. Otherwise, both
18091 -- bounds must be of the same discrete type, other than universal
18092 -- integer; this type must be determinable independently of the
18093 -- context, but using the fact that the type must be discrete and that
18094 -- both bounds must have the same type.
18096 -- Character literals also have a universal type in the absence of
18097 -- of additional context, and are resolved to Standard_Character.
18099 if Nkind
(N
) = N_Range
then
18101 -- The index is given by a range constraint. The bounds are known
18102 -- to be of a consistent type.
18104 if not Is_Overloaded
(N
) then
18107 -- For universal bounds, choose the specific predefined type
18109 if T
= Universal_Integer
then
18110 T
:= Standard_Integer
;
18112 elsif T
= Any_Character
then
18113 Ambiguous_Character
(Low_Bound
(N
));
18115 T
:= Standard_Character
;
18118 -- The node may be overloaded because some user-defined operators
18119 -- are available, but if a universal interpretation exists it is
18120 -- also the selected one.
18122 elsif Universal_Interpretation
(N
) = Universal_Integer
then
18123 T
:= Standard_Integer
;
18129 Ind
: Interp_Index
;
18133 Get_First_Interp
(N
, Ind
, It
);
18134 while Present
(It
.Typ
) loop
18135 if Is_Discrete_Type
(It
.Typ
) then
18138 and then not Covers
(It
.Typ
, T
)
18139 and then not Covers
(T
, It
.Typ
)
18141 Error_Msg_N
("ambiguous bounds in discrete range", N
);
18149 Get_Next_Interp
(Ind
, It
);
18152 if T
= Any_Type
then
18153 Error_Msg_N
("discrete type required for range", N
);
18154 Set_Etype
(N
, Any_Type
);
18157 elsif T
= Universal_Integer
then
18158 T
:= Standard_Integer
;
18163 if not Is_Discrete_Type
(T
) then
18164 Error_Msg_N
("discrete type required for range", N
);
18165 Set_Etype
(N
, Any_Type
);
18169 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
18170 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
18171 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
18172 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18173 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18175 -- The type of the index will be the type of the prefix, as long
18176 -- as the upper bound is 'Last of the same type.
18178 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
18180 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
18181 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
18182 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
18183 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
18190 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
18192 elsif Nkind
(N
) = N_Subtype_Indication
then
18194 -- The index is given by a subtype with a range constraint
18196 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
18198 if not Is_Discrete_Type
(T
) then
18199 Error_Msg_N
("discrete type required for range", N
);
18200 Set_Etype
(N
, Any_Type
);
18204 R
:= Range_Expression
(Constraint
(N
));
18207 Process_Range_Expr_In_Decl
18208 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
18210 elsif Nkind
(N
) = N_Attribute_Reference
then
18212 -- Catch beginner's error (use of attribute other than 'Range)
18214 if Attribute_Name
(N
) /= Name_Range
then
18215 Error_Msg_N
("expect attribute ''Range", N
);
18216 Set_Etype
(N
, Any_Type
);
18220 -- If the node denotes the range of a type mark, that is also the
18221 -- resulting type, and we do not need to create an Itype for it.
18223 if Is_Entity_Name
(Prefix
(N
))
18224 and then Comes_From_Source
(N
)
18225 and then Is_Type
(Entity
(Prefix
(N
)))
18226 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
18228 Def_Id
:= Entity
(Prefix
(N
));
18231 Analyze_And_Resolve
(N
);
18235 -- If none of the above, must be a subtype. We convert this to a
18236 -- range attribute reference because in the case of declared first
18237 -- named subtypes, the types in the range reference can be different
18238 -- from the type of the entity. A range attribute normalizes the
18239 -- reference and obtains the correct types for the bounds.
18241 -- This transformation is in the nature of an expansion, is only
18242 -- done if expansion is active. In particular, it is not done on
18243 -- formal generic types, because we need to retain the name of the
18244 -- original index for instantiation purposes.
18247 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
18248 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
18249 Set_Etype
(N
, Any_Integer
);
18253 -- The type mark may be that of an incomplete type. It is only
18254 -- now that we can get the full view, previous analysis does
18255 -- not look specifically for a type mark.
18257 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
18258 Set_Etype
(N
, Entity
(N
));
18259 Def_Id
:= Entity
(N
);
18261 if not Is_Discrete_Type
(Def_Id
) then
18262 Error_Msg_N
("discrete type required for index", N
);
18263 Set_Etype
(N
, Any_Type
);
18268 if Expander_Active
then
18270 Make_Attribute_Reference
(Sloc
(N
),
18271 Attribute_Name
=> Name_Range
,
18272 Prefix
=> Relocate_Node
(N
)));
18274 -- The original was a subtype mark that does not freeze. This
18275 -- means that the rewritten version must not freeze either.
18277 Set_Must_Not_Freeze
(N
);
18278 Set_Must_Not_Freeze
(Prefix
(N
));
18279 Analyze_And_Resolve
(N
);
18283 -- If expander is inactive, type is legal, nothing else to construct
18290 if not Is_Discrete_Type
(T
) then
18291 Error_Msg_N
("discrete type required for range", N
);
18292 Set_Etype
(N
, Any_Type
);
18295 elsif T
= Any_Type
then
18296 Set_Etype
(N
, Any_Type
);
18300 -- We will now create the appropriate Itype to describe the range, but
18301 -- first a check. If we originally had a subtype, then we just label
18302 -- the range with this subtype. Not only is there no need to construct
18303 -- a new subtype, but it is wrong to do so for two reasons:
18305 -- 1. A legality concern, if we have a subtype, it must not freeze,
18306 -- and the Itype would cause freezing incorrectly
18308 -- 2. An efficiency concern, if we created an Itype, it would not be
18309 -- recognized as the same type for the purposes of eliminating
18310 -- checks in some circumstances.
18312 -- We signal this case by setting the subtype entity in Def_Id
18314 if No
(Def_Id
) then
18316 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
18317 Set_Etype
(Def_Id
, Base_Type
(T
));
18319 if Is_Signed_Integer_Type
(T
) then
18320 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
18322 elsif Is_Modular_Integer_Type
(T
) then
18323 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
18326 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
18327 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
18328 Set_First_Literal
(Def_Id
, First_Literal
(T
));
18331 Set_Size_Info
(Def_Id
, (T
));
18332 Set_RM_Size
(Def_Id
, RM_Size
(T
));
18333 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
18335 Set_Scalar_Range
(Def_Id
, R
);
18336 Conditional_Delay
(Def_Id
, T
);
18338 if Nkind
(N
) = N_Subtype_Indication
then
18339 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
18342 -- In the subtype indication case, if the immediate parent of the
18343 -- new subtype is non-static, then the subtype we create is non-
18344 -- static, even if its bounds are static.
18346 if Nkind
(N
) = N_Subtype_Indication
18347 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
18349 Set_Is_Non_Static_Subtype
(Def_Id
);
18353 -- Final step is to label the index with this constructed type
18355 Set_Etype
(N
, Def_Id
);
18358 ------------------------------
18359 -- Modular_Type_Declaration --
18360 ------------------------------
18362 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
18363 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
18366 procedure Set_Modular_Size
(Bits
: Int
);
18367 -- Sets RM_Size to Bits, and Esize to normal word size above this
18369 ----------------------
18370 -- Set_Modular_Size --
18371 ----------------------
18373 procedure Set_Modular_Size
(Bits
: Int
) is
18375 Set_RM_Size
(T
, UI_From_Int
(Bits
));
18380 elsif Bits
<= 16 then
18381 Init_Esize
(T
, 16);
18383 elsif Bits
<= 32 then
18384 Init_Esize
(T
, 32);
18387 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
18390 if not Non_Binary_Modulus
(T
) and then Esize
(T
) = RM_Size
(T
) then
18391 Set_Is_Known_Valid
(T
);
18393 end Set_Modular_Size
;
18395 -- Start of processing for Modular_Type_Declaration
18398 -- If the mod expression is (exactly) 2 * literal, where literal is
18399 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18401 if Warn_On_Suspicious_Modulus_Value
18402 and then Nkind
(Mod_Expr
) = N_Op_Multiply
18403 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
18404 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
18405 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
18406 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
18409 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
18412 -- Proceed with analysis of mod expression
18414 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
18416 Set_Ekind
(T
, E_Modular_Integer_Type
);
18417 Init_Alignment
(T
);
18418 Set_Is_Constrained
(T
);
18420 if not Is_OK_Static_Expression
(Mod_Expr
) then
18421 Flag_Non_Static_Expr
18422 ("non-static expression used for modular type bound!", Mod_Expr
);
18423 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18425 M_Val
:= Expr_Value
(Mod_Expr
);
18429 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
18430 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18433 if M_Val
> 2 ** Standard_Long_Integer_Size
then
18434 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
18437 Set_Modulus
(T
, M_Val
);
18439 -- Create bounds for the modular type based on the modulus given in
18440 -- the type declaration and then analyze and resolve those bounds.
18442 Set_Scalar_Range
(T
,
18443 Make_Range
(Sloc
(Mod_Expr
),
18444 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
18445 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
18447 -- Properly analyze the literals for the range. We do this manually
18448 -- because we can't go calling Resolve, since we are resolving these
18449 -- bounds with the type, and this type is certainly not complete yet.
18451 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
18452 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
18453 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
18454 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
18456 -- Loop through powers of two to find number of bits required
18458 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
18462 if M_Val
= 2 ** Bits
then
18463 Set_Modular_Size
(Bits
);
18468 elsif M_Val
< 2 ** Bits
then
18469 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
18470 Set_Non_Binary_Modulus
(T
);
18472 if Bits
> System_Max_Nonbinary_Modulus_Power
then
18473 Error_Msg_Uint_1
:=
18474 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
18476 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
18477 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18481 -- In the non-binary case, set size as per RM 13.3(55)
18483 Set_Modular_Size
(Bits
);
18490 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18491 -- so we just signal an error and set the maximum size.
18493 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
18494 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
18496 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18497 Init_Alignment
(T
);
18499 end Modular_Type_Declaration
;
18501 --------------------------
18502 -- New_Concatenation_Op --
18503 --------------------------
18505 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
18506 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
18509 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
18510 -- Create abbreviated declaration for the formal of a predefined
18511 -- Operator 'Op' of type 'Typ'
18513 --------------------
18514 -- Make_Op_Formal --
18515 --------------------
18517 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
18518 Formal
: Entity_Id
;
18520 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
18521 Set_Etype
(Formal
, Typ
);
18522 Set_Mechanism
(Formal
, Default_Mechanism
);
18524 end Make_Op_Formal
;
18526 -- Start of processing for New_Concatenation_Op
18529 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
18531 Set_Ekind
(Op
, E_Operator
);
18532 Set_Scope
(Op
, Current_Scope
);
18533 Set_Etype
(Op
, Typ
);
18534 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
18535 Set_Is_Immediately_Visible
(Op
);
18536 Set_Is_Intrinsic_Subprogram
(Op
);
18537 Set_Has_Completion
(Op
);
18538 Append_Entity
(Op
, Current_Scope
);
18540 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
18542 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18543 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18544 end New_Concatenation_Op
;
18546 -------------------------
18547 -- OK_For_Limited_Init --
18548 -------------------------
18550 -- ???Check all calls of this, and compare the conditions under which it's
18553 function OK_For_Limited_Init
18555 Exp
: Node_Id
) return Boolean
18558 return Is_CPP_Constructor_Call
(Exp
)
18559 or else (Ada_Version
>= Ada_2005
18560 and then not Debug_Flag_Dot_L
18561 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
18562 end OK_For_Limited_Init
;
18564 -------------------------------
18565 -- OK_For_Limited_Init_In_05 --
18566 -------------------------------
18568 function OK_For_Limited_Init_In_05
18570 Exp
: Node_Id
) return Boolean
18573 -- An object of a limited interface type can be initialized with any
18574 -- expression of a nonlimited descendant type.
18576 if Is_Class_Wide_Type
(Typ
)
18577 and then Is_Limited_Interface
(Typ
)
18578 and then not Is_Limited_Type
(Etype
(Exp
))
18583 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18584 -- case of limited aggregates (including extension aggregates), and
18585 -- function calls. The function call may have been given in prefixed
18586 -- notation, in which case the original node is an indexed component.
18587 -- If the function is parameterless, the original node was an explicit
18588 -- dereference. The function may also be parameterless, in which case
18589 -- the source node is just an identifier.
18591 case Nkind
(Original_Node
(Exp
)) is
18592 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
18595 when N_Identifier
=>
18596 return Present
(Entity
(Original_Node
(Exp
)))
18597 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
18599 when N_Qualified_Expression
=>
18601 OK_For_Limited_Init_In_05
18602 (Typ
, Expression
(Original_Node
(Exp
)));
18604 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18605 -- with a function call, the expander has rewritten the call into an
18606 -- N_Type_Conversion node to force displacement of the pointer to
18607 -- reference the component containing the secondary dispatch table.
18608 -- Otherwise a type conversion is not a legal context.
18609 -- A return statement for a build-in-place function returning a
18610 -- synchronized type also introduces an unchecked conversion.
18612 when N_Type_Conversion |
18613 N_Unchecked_Type_Conversion
=>
18614 return not Comes_From_Source
(Exp
)
18616 OK_For_Limited_Init_In_05
18617 (Typ
, Expression
(Original_Node
(Exp
)));
18619 when N_Indexed_Component |
18620 N_Selected_Component |
18621 N_Explicit_Dereference
=>
18622 return Nkind
(Exp
) = N_Function_Call
;
18624 -- A use of 'Input is a function call, hence allowed. Normally the
18625 -- attribute will be changed to a call, but the attribute by itself
18626 -- can occur with -gnatc.
18628 when N_Attribute_Reference
=>
18629 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
18631 -- For a case expression, all dependent expressions must be legal
18633 when N_Case_Expression
=>
18638 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
18639 while Present
(Alt
) loop
18640 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
18650 -- For an if expression, all dependent expressions must be legal
18652 when N_If_Expression
=>
18654 Then_Expr
: constant Node_Id
:=
18655 Next
(First
(Expressions
(Original_Node
(Exp
))));
18656 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
18658 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
18660 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
18666 end OK_For_Limited_Init_In_05
;
18668 -------------------------------------------
18669 -- Ordinary_Fixed_Point_Type_Declaration --
18670 -------------------------------------------
18672 procedure Ordinary_Fixed_Point_Type_Declaration
18676 Loc
: constant Source_Ptr
:= Sloc
(Def
);
18677 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
18678 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
18679 Implicit_Base
: Entity_Id
;
18686 Check_Restriction
(No_Fixed_Point
, Def
);
18688 -- Create implicit base type
18691 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
18692 Set_Etype
(Implicit_Base
, Implicit_Base
);
18694 -- Analyze and process delta expression
18696 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
18698 Check_Delta_Expression
(Delta_Expr
);
18699 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
18701 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
18703 -- Compute default small from given delta, which is the largest power
18704 -- of two that does not exceed the given delta value.
18714 if Delta_Val
< Ureal_1
then
18715 while Delta_Val
< Tmp
loop
18716 Tmp
:= Tmp
/ Ureal_2
;
18717 Scale
:= Scale
+ 1;
18722 Tmp
:= Tmp
* Ureal_2
;
18723 exit when Tmp
> Delta_Val
;
18724 Scale
:= Scale
- 1;
18728 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
18731 Set_Small_Value
(Implicit_Base
, Small_Val
);
18733 -- If no range was given, set a dummy range
18735 if RRS
<= Empty_Or_Error
then
18736 Low_Val
:= -Small_Val
;
18737 High_Val
:= Small_Val
;
18739 -- Otherwise analyze and process given range
18743 Low
: constant Node_Id
:= Low_Bound
(RRS
);
18744 High
: constant Node_Id
:= High_Bound
(RRS
);
18747 Analyze_And_Resolve
(Low
, Any_Real
);
18748 Analyze_And_Resolve
(High
, Any_Real
);
18749 Check_Real_Bound
(Low
);
18750 Check_Real_Bound
(High
);
18752 -- Obtain and set the range
18754 Low_Val
:= Expr_Value_R
(Low
);
18755 High_Val
:= Expr_Value_R
(High
);
18757 if Low_Val
> High_Val
then
18758 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
18763 -- The range for both the implicit base and the declared first subtype
18764 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18765 -- set a temporary range in place. Note that the bounds of the base
18766 -- type will be widened to be symmetrical and to fill the available
18767 -- bits when the type is frozen.
18769 -- We could do this with all discrete types, and probably should, but
18770 -- we absolutely have to do it for fixed-point, since the end-points
18771 -- of the range and the size are determined by the small value, which
18772 -- could be reset before the freeze point.
18774 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
18775 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
18777 -- Complete definition of first subtype. The inheritance of the rep item
18778 -- chain ensures that SPARK-related pragmas are not clobbered when the
18779 -- ordinary fixed point type acts as a full view of a private type.
18781 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
18782 Set_Etype
(T
, Implicit_Base
);
18783 Init_Size_Align
(T
);
18784 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
18785 Set_Small_Value
(T
, Small_Val
);
18786 Set_Delta_Value
(T
, Delta_Val
);
18787 Set_Is_Constrained
(T
);
18788 end Ordinary_Fixed_Point_Type_Declaration
;
18790 ----------------------------------
18791 -- Preanalyze_Assert_Expression --
18792 ----------------------------------
18794 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18796 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
18797 Preanalyze_Spec_Expression
(N
, T
);
18798 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
18799 end Preanalyze_Assert_Expression
;
18801 -----------------------------------
18802 -- Preanalyze_Default_Expression --
18803 -----------------------------------
18805 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18806 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
18808 In_Default_Expr
:= True;
18809 Preanalyze_Spec_Expression
(N
, T
);
18810 In_Default_Expr
:= Save_In_Default_Expr
;
18811 end Preanalyze_Default_Expression
;
18813 --------------------------------
18814 -- Preanalyze_Spec_Expression --
18815 --------------------------------
18817 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18818 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
18820 In_Spec_Expression
:= True;
18821 Preanalyze_And_Resolve
(N
, T
);
18822 In_Spec_Expression
:= Save_In_Spec_Expression
;
18823 end Preanalyze_Spec_Expression
;
18825 ----------------------------------------
18826 -- Prepare_Private_Subtype_Completion --
18827 ----------------------------------------
18829 procedure Prepare_Private_Subtype_Completion
18831 Related_Nod
: Node_Id
)
18833 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
18834 Full_B
: Entity_Id
:= Full_View
(Id_B
);
18838 if Present
(Full_B
) then
18840 -- Get to the underlying full view if necessary
18842 if Is_Private_Type
(Full_B
)
18843 and then Present
(Underlying_Full_View
(Full_B
))
18845 Full_B
:= Underlying_Full_View
(Full_B
);
18848 -- The Base_Type is already completed, we can complete the subtype
18849 -- now. We have to create a new entity with the same name, Thus we
18850 -- can't use Create_Itype.
18852 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
18853 Set_Is_Itype
(Full
);
18854 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
18855 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
18858 -- The parent subtype may be private, but the base might not, in some
18859 -- nested instances. In that case, the subtype does not need to be
18860 -- exchanged. It would still be nice to make private subtypes and their
18861 -- bases consistent at all times ???
18863 if Is_Private_Type
(Id_B
) then
18864 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
18866 end Prepare_Private_Subtype_Completion
;
18868 ---------------------------
18869 -- Process_Discriminants --
18870 ---------------------------
18872 procedure Process_Discriminants
18874 Prev
: Entity_Id
:= Empty
)
18876 Elist
: constant Elist_Id
:= New_Elmt_List
;
18879 Discr_Number
: Uint
;
18880 Discr_Type
: Entity_Id
;
18881 Default_Present
: Boolean := False;
18882 Default_Not_Present
: Boolean := False;
18885 -- A composite type other than an array type can have discriminants.
18886 -- On entry, the current scope is the composite type.
18888 -- The discriminants are initially entered into the scope of the type
18889 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18890 -- use, as explained at the end of this procedure.
18892 Discr
:= First
(Discriminant_Specifications
(N
));
18893 while Present
(Discr
) loop
18894 Enter_Name
(Defining_Identifier
(Discr
));
18896 -- For navigation purposes we add a reference to the discriminant
18897 -- in the entity for the type. If the current declaration is a
18898 -- completion, place references on the partial view. Otherwise the
18899 -- type is the current scope.
18901 if Present
(Prev
) then
18903 -- The references go on the partial view, if present. If the
18904 -- partial view has discriminants, the references have been
18905 -- generated already.
18907 if not Has_Discriminants
(Prev
) then
18908 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
18912 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
18915 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
18916 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
18918 -- Ada 2005 (AI-254)
18920 if Present
(Access_To_Subprogram_Definition
18921 (Discriminant_Type
(Discr
)))
18922 and then Protected_Present
(Access_To_Subprogram_Definition
18923 (Discriminant_Type
(Discr
)))
18926 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
18930 Find_Type
(Discriminant_Type
(Discr
));
18931 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
18933 if Error_Posted
(Discriminant_Type
(Discr
)) then
18934 Discr_Type
:= Any_Type
;
18938 -- Handling of discriminants that are access types
18940 if Is_Access_Type
(Discr_Type
) then
18942 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18943 -- limited record types
18945 if Ada_Version
< Ada_2005
then
18946 Check_Access_Discriminant_Requires_Limited
18947 (Discr
, Discriminant_Type
(Discr
));
18950 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
18952 ("(Ada 83) access discriminant not allowed", Discr
);
18955 -- If not access type, must be a discrete type
18957 elsif not Is_Discrete_Type
(Discr_Type
) then
18959 ("discriminants must have a discrete or access type",
18960 Discriminant_Type
(Discr
));
18963 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
18965 -- If a discriminant specification includes the assignment compound
18966 -- delimiter followed by an expression, the expression is the default
18967 -- expression of the discriminant; the default expression must be of
18968 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18969 -- a default expression, we do the special preanalysis, since this
18970 -- expression does not freeze (see section "Handling of Default and
18971 -- Per-Object Expressions" in spec of package Sem).
18973 if Present
(Expression
(Discr
)) then
18974 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
18978 if Nkind
(N
) = N_Formal_Type_Declaration
then
18980 ("discriminant defaults not allowed for formal type",
18981 Expression
(Discr
));
18983 -- Flag an error for a tagged type with defaulted discriminants,
18984 -- excluding limited tagged types when compiling for Ada 2012
18985 -- (see AI05-0214).
18987 elsif Is_Tagged_Type
(Current_Scope
)
18988 and then (not Is_Limited_Type
(Current_Scope
)
18989 or else Ada_Version
< Ada_2012
)
18990 and then Comes_From_Source
(N
)
18992 -- Note: see similar test in Check_Or_Process_Discriminants, to
18993 -- handle the (illegal) case of the completion of an untagged
18994 -- view with discriminants with defaults by a tagged full view.
18995 -- We skip the check if Discr does not come from source, to
18996 -- account for the case of an untagged derived type providing
18997 -- defaults for a renamed discriminant from a private untagged
18998 -- ancestor with a tagged full view (ACATS B460006).
19000 if Ada_Version
>= Ada_2012
then
19002 ("discriminants of nonlimited tagged type cannot have"
19004 Expression
(Discr
));
19007 ("discriminants of tagged type cannot have defaults",
19008 Expression
(Discr
));
19012 Default_Present
:= True;
19013 Append_Elmt
(Expression
(Discr
), Elist
);
19015 -- Tag the defining identifiers for the discriminants with
19016 -- their corresponding default expressions from the tree.
19018 Set_Discriminant_Default_Value
19019 (Defining_Identifier
(Discr
), Expression
(Discr
));
19022 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19023 -- gets set unless we can be sure that no range check is required.
19025 if (GNATprove_Mode
or not Expander_Active
)
19028 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
19030 Set_Do_Range_Check
(Expression
(Discr
));
19033 -- No default discriminant value given
19036 Default_Not_Present
:= True;
19039 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19040 -- Discr_Type but with the null-exclusion attribute
19042 if Ada_Version
>= Ada_2005
then
19044 -- Ada 2005 (AI-231): Static checks
19046 if Can_Never_Be_Null
(Discr_Type
) then
19047 Null_Exclusion_Static_Checks
(Discr
);
19049 elsif Is_Access_Type
(Discr_Type
)
19050 and then Null_Exclusion_Present
(Discr
)
19052 -- No need to check itypes because in their case this check
19053 -- was done at their point of creation
19055 and then not Is_Itype
(Discr_Type
)
19057 if Can_Never_Be_Null
(Discr_Type
) then
19059 ("`NOT NULL` not allowed (& already excludes null)",
19064 Set_Etype
(Defining_Identifier
(Discr
),
19065 Create_Null_Excluding_Itype
19067 Related_Nod
=> Discr
));
19069 -- Check for improper null exclusion if the type is otherwise
19070 -- legal for a discriminant.
19072 elsif Null_Exclusion_Present
(Discr
)
19073 and then Is_Discrete_Type
(Discr_Type
)
19076 ("null exclusion can only apply to an access type", Discr
);
19079 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19080 -- can't have defaults. Synchronized types, or types that are
19081 -- explicitly limited are fine, but special tests apply to derived
19082 -- types in generics: in a generic body we have to assume the
19083 -- worst, and therefore defaults are not allowed if the parent is
19084 -- a generic formal private type (see ACATS B370001).
19086 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
19087 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
19088 or else Is_Limited_Record
(Current_Scope
)
19089 or else Is_Concurrent_Type
(Current_Scope
)
19090 or else Is_Concurrent_Record_Type
(Current_Scope
)
19091 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
19093 if not Is_Derived_Type
(Current_Scope
)
19094 or else not Is_Generic_Type
(Etype
(Current_Scope
))
19095 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
19096 or else Limited_Present
19097 (Type_Definition
(Parent
(Current_Scope
)))
19103 ("access discriminants of nonlimited types cannot "
19104 & "have defaults", Expression
(Discr
));
19107 elsif Present
(Expression
(Discr
)) then
19109 ("(Ada 2005) access discriminants of nonlimited types "
19110 & "cannot have defaults", Expression
(Discr
));
19115 -- A discriminant cannot be effectively volatile. This check is only
19116 -- relevant when SPARK_Mode is on as it is not standard Ada legality
19117 -- rule (SPARK RM 7.1.3(6)).
19120 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
19122 Error_Msg_N
("discriminant cannot be volatile", Discr
);
19128 -- An element list consisting of the default expressions of the
19129 -- discriminants is constructed in the above loop and used to set
19130 -- the Discriminant_Constraint attribute for the type. If an object
19131 -- is declared of this (record or task) type without any explicit
19132 -- discriminant constraint given, this element list will form the
19133 -- actual parameters for the corresponding initialization procedure
19136 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
19137 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
19139 -- Default expressions must be provided either for all or for none
19140 -- of the discriminants of a discriminant part. (RM 3.7.1)
19142 if Default_Present
and then Default_Not_Present
then
19144 ("incomplete specification of defaults for discriminants", N
);
19147 -- The use of the name of a discriminant is not allowed in default
19148 -- expressions of a discriminant part if the specification of the
19149 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19151 -- To detect this, the discriminant names are entered initially with an
19152 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19153 -- attempt to use a void entity (for example in an expression that is
19154 -- type-checked) produces the error message: premature usage. Now after
19155 -- completing the semantic analysis of the discriminant part, we can set
19156 -- the Ekind of all the discriminants appropriately.
19158 Discr
:= First
(Discriminant_Specifications
(N
));
19159 Discr_Number
:= Uint_1
;
19160 while Present
(Discr
) loop
19161 Id
:= Defining_Identifier
(Discr
);
19162 Set_Ekind
(Id
, E_Discriminant
);
19163 Init_Component_Location
(Id
);
19165 Set_Discriminant_Number
(Id
, Discr_Number
);
19167 -- Make sure this is always set, even in illegal programs
19169 Set_Corresponding_Discriminant
(Id
, Empty
);
19171 -- Initialize the Original_Record_Component to the entity itself.
19172 -- Inherit_Components will propagate the right value to
19173 -- discriminants in derived record types.
19175 Set_Original_Record_Component
(Id
, Id
);
19177 -- Create the discriminal for the discriminant
19179 Build_Discriminal
(Id
);
19182 Discr_Number
:= Discr_Number
+ 1;
19185 Set_Has_Discriminants
(Current_Scope
);
19186 end Process_Discriminants
;
19188 -----------------------
19189 -- Process_Full_View --
19190 -----------------------
19192 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
19193 procedure Collect_Implemented_Interfaces
19195 Ifaces
: Elist_Id
);
19196 -- Ada 2005: Gather all the interfaces that Typ directly or
19197 -- inherently implements. Duplicate entries are not added to
19198 -- the list Ifaces.
19200 ------------------------------------
19201 -- Collect_Implemented_Interfaces --
19202 ------------------------------------
19204 procedure Collect_Implemented_Interfaces
19209 Iface_Elmt
: Elmt_Id
;
19212 -- Abstract interfaces are only associated with tagged record types
19214 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
19218 -- Recursively climb to the ancestors
19220 if Etype
(Typ
) /= Typ
19222 -- Protect the frontend against wrong cyclic declarations like:
19224 -- type B is new A with private;
19225 -- type C is new A with private;
19227 -- type B is new C with null record;
19228 -- type C is new B with null record;
19230 and then Etype
(Typ
) /= Priv_T
19231 and then Etype
(Typ
) /= Full_T
19233 -- Keep separate the management of private type declarations
19235 if Ekind
(Typ
) = E_Record_Type_With_Private
then
19237 -- Handle the following illegal usage:
19238 -- type Private_Type is tagged private;
19240 -- type Private_Type is new Type_Implementing_Iface;
19242 if Present
(Full_View
(Typ
))
19243 and then Etype
(Typ
) /= Full_View
(Typ
)
19245 if Is_Interface
(Etype
(Typ
)) then
19246 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19249 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19252 -- Non-private types
19255 if Is_Interface
(Etype
(Typ
)) then
19256 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19259 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19263 -- Handle entities in the list of abstract interfaces
19265 if Present
(Interfaces
(Typ
)) then
19266 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
19267 while Present
(Iface_Elmt
) loop
19268 Iface
:= Node
(Iface_Elmt
);
19270 pragma Assert
(Is_Interface
(Iface
));
19272 if not Contain_Interface
(Iface
, Ifaces
) then
19273 Append_Elmt
(Iface
, Ifaces
);
19274 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
19277 Next_Elmt
(Iface_Elmt
);
19280 end Collect_Implemented_Interfaces
;
19284 Full_Indic
: Node_Id
;
19285 Full_Parent
: Entity_Id
;
19286 Priv_Parent
: Entity_Id
;
19288 -- Start of processing for Process_Full_View
19291 -- First some sanity checks that must be done after semantic
19292 -- decoration of the full view and thus cannot be placed with other
19293 -- similar checks in Find_Type_Name
19295 if not Is_Limited_Type
(Priv_T
)
19296 and then (Is_Limited_Type
(Full_T
)
19297 or else Is_Limited_Composite
(Full_T
))
19299 if In_Instance
then
19303 ("completion of nonlimited type cannot be limited", Full_T
);
19304 Explain_Limited_Type
(Full_T
, Full_T
);
19307 elsif Is_Abstract_Type
(Full_T
)
19308 and then not Is_Abstract_Type
(Priv_T
)
19311 ("completion of nonabstract type cannot be abstract", Full_T
);
19313 elsif Is_Tagged_Type
(Priv_T
)
19314 and then Is_Limited_Type
(Priv_T
)
19315 and then not Is_Limited_Type
(Full_T
)
19317 -- If pragma CPP_Class was applied to the private declaration
19318 -- propagate the limitedness to the full-view
19320 if Is_CPP_Class
(Priv_T
) then
19321 Set_Is_Limited_Record
(Full_T
);
19323 -- GNAT allow its own definition of Limited_Controlled to disobey
19324 -- this rule in order in ease the implementation. This test is safe
19325 -- because Root_Controlled is defined in a child of System that
19326 -- normal programs are not supposed to use.
19328 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
19329 Set_Is_Limited_Composite
(Full_T
);
19332 ("completion of limited tagged type must be limited", Full_T
);
19335 elsif Is_Generic_Type
(Priv_T
) then
19336 Error_Msg_N
("generic type cannot have a completion", Full_T
);
19339 -- Check that ancestor interfaces of private and full views are
19340 -- consistent. We omit this check for synchronized types because
19341 -- they are performed on the corresponding record type when frozen.
19343 if Ada_Version
>= Ada_2005
19344 and then Is_Tagged_Type
(Priv_T
)
19345 and then Is_Tagged_Type
(Full_T
)
19346 and then not Is_Concurrent_Type
(Full_T
)
19350 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19351 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19354 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
19355 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
19357 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19358 -- an interface type if and only if the full type is descendant
19359 -- of the interface type (AARM 7.3 (7.3/2)).
19361 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
19363 if Present
(Iface
) then
19365 ("interface in partial view& not implemented by full type "
19366 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19369 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
19371 if Present
(Iface
) then
19373 ("interface & not implemented by partial view "
19374 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19379 if Is_Tagged_Type
(Priv_T
)
19380 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19381 and then Is_Derived_Type
(Full_T
)
19383 Priv_Parent
:= Etype
(Priv_T
);
19385 -- The full view of a private extension may have been transformed
19386 -- into an unconstrained derived type declaration and a subtype
19387 -- declaration (see build_derived_record_type for details).
19389 if Nkind
(N
) = N_Subtype_Declaration
then
19390 Full_Indic
:= Subtype_Indication
(N
);
19391 Full_Parent
:= Etype
(Base_Type
(Full_T
));
19393 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
19394 Full_Parent
:= Etype
(Full_T
);
19397 -- Check that the parent type of the full type is a descendant of
19398 -- the ancestor subtype given in the private extension. If either
19399 -- entity has an Etype equal to Any_Type then we had some previous
19400 -- error situation [7.3(8)].
19402 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
19405 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19406 -- any order. Therefore we don't have to check that its parent must
19407 -- be a descendant of the parent of the private type declaration.
19409 elsif Is_Interface
(Priv_Parent
)
19410 and then Is_Interface
(Full_Parent
)
19414 -- Ada 2005 (AI-251): If the parent of the private type declaration
19415 -- is an interface there is no need to check that it is an ancestor
19416 -- of the associated full type declaration. The required tests for
19417 -- this case are performed by Build_Derived_Record_Type.
19419 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
19420 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
19423 ("parent of full type must descend from parent"
19424 & " of private extension", Full_Indic
);
19426 -- First check a formal restriction, and then proceed with checking
19427 -- Ada rules. Since the formal restriction is not a serious error, we
19428 -- don't prevent further error detection for this check, hence the
19432 -- In formal mode, when completing a private extension the type
19433 -- named in the private part must be exactly the same as that
19434 -- named in the visible part.
19436 if Priv_Parent
/= Full_Parent
then
19437 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
19438 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
19441 -- Check the rules of 7.3(10): if the private extension inherits
19442 -- known discriminants, then the full type must also inherit those
19443 -- discriminants from the same (ancestor) type, and the parent
19444 -- subtype of the full type must be constrained if and only if
19445 -- the ancestor subtype of the private extension is constrained.
19447 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
19448 and then not Has_Unknown_Discriminants
(Priv_T
)
19449 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
19452 Priv_Indic
: constant Node_Id
:=
19453 Subtype_Indication
(Parent
(Priv_T
));
19455 Priv_Constr
: constant Boolean :=
19456 Is_Constrained
(Priv_Parent
)
19458 Nkind
(Priv_Indic
) = N_Subtype_Indication
19460 Is_Constrained
(Entity
(Priv_Indic
));
19462 Full_Constr
: constant Boolean :=
19463 Is_Constrained
(Full_Parent
)
19465 Nkind
(Full_Indic
) = N_Subtype_Indication
19467 Is_Constrained
(Entity
(Full_Indic
));
19469 Priv_Discr
: Entity_Id
;
19470 Full_Discr
: Entity_Id
;
19473 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
19474 Full_Discr
:= First_Discriminant
(Full_Parent
);
19475 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
19476 if Original_Record_Component
(Priv_Discr
) =
19477 Original_Record_Component
(Full_Discr
)
19479 Corresponding_Discriminant
(Priv_Discr
) =
19480 Corresponding_Discriminant
(Full_Discr
)
19487 Next_Discriminant
(Priv_Discr
);
19488 Next_Discriminant
(Full_Discr
);
19491 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
19493 ("full view must inherit discriminants of the parent"
19494 & " type used in the private extension", Full_Indic
);
19496 elsif Priv_Constr
and then not Full_Constr
then
19498 ("parent subtype of full type must be constrained",
19501 elsif Full_Constr
and then not Priv_Constr
then
19503 ("parent subtype of full type must be unconstrained",
19508 -- Check the rules of 7.3(12): if a partial view has neither
19509 -- known or unknown discriminants, then the full type
19510 -- declaration shall define a definite subtype.
19512 elsif not Has_Unknown_Discriminants
(Priv_T
)
19513 and then not Has_Discriminants
(Priv_T
)
19514 and then not Is_Constrained
(Full_T
)
19517 ("full view must define a constrained type if partial view"
19518 & " has no discriminants", Full_T
);
19521 -- ??????? Do we implement the following properly ?????
19522 -- If the ancestor subtype of a private extension has constrained
19523 -- discriminants, then the parent subtype of the full view shall
19524 -- impose a statically matching constraint on those discriminants
19529 -- For untagged types, verify that a type without discriminants is
19530 -- not completed with an unconstrained type. A separate error message
19531 -- is produced if the full type has defaulted discriminants.
19533 if not Is_Indefinite_Subtype
(Priv_T
)
19534 and then Is_Indefinite_Subtype
(Full_T
)
19536 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
19538 ("full view of& not compatible with declaration#",
19541 if not Is_Tagged_Type
(Full_T
) then
19543 ("\one is constrained, the other unconstrained", Full_T
);
19548 -- AI-419: verify that the use of "limited" is consistent
19551 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
19554 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19555 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
19557 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
19559 if not Limited_Present
(Parent
(Priv_T
))
19560 and then not Synchronized_Present
(Parent
(Priv_T
))
19561 and then Limited_Present
(Type_Definition
(Orig_Decl
))
19564 ("full view of non-limited extension cannot be limited", N
);
19566 -- Conversely, if the partial view carries the limited keyword,
19567 -- the full view must as well, even if it may be redundant.
19569 elsif Limited_Present
(Parent
(Priv_T
))
19570 and then not Limited_Present
(Type_Definition
(Orig_Decl
))
19573 ("full view of limited extension must be explicitly limited",
19579 -- Ada 2005 (AI-443): A synchronized private extension must be
19580 -- completed by a task or protected type.
19582 if Ada_Version
>= Ada_2005
19583 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19584 and then Synchronized_Present
(Parent
(Priv_T
))
19585 and then not Is_Concurrent_Type
(Full_T
)
19587 Error_Msg_N
("full view of synchronized extension must " &
19588 "be synchronized type", N
);
19591 -- Ada 2005 AI-363: if the full view has discriminants with
19592 -- defaults, it is illegal to declare constrained access subtypes
19593 -- whose designated type is the current type. This allows objects
19594 -- of the type that are declared in the heap to be unconstrained.
19596 if not Has_Unknown_Discriminants
(Priv_T
)
19597 and then not Has_Discriminants
(Priv_T
)
19598 and then Has_Discriminants
(Full_T
)
19600 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
19602 Set_Has_Constrained_Partial_View
(Full_T
);
19603 Set_Has_Constrained_Partial_View
(Priv_T
);
19606 -- Create a full declaration for all its subtypes recorded in
19607 -- Private_Dependents and swap them similarly to the base type. These
19608 -- are subtypes that have been define before the full declaration of
19609 -- the private type. We also swap the entry in Private_Dependents list
19610 -- so we can properly restore the private view on exit from the scope.
19613 Priv_Elmt
: Elmt_Id
;
19614 Priv_Scop
: Entity_Id
;
19619 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
19620 while Present
(Priv_Elmt
) loop
19621 Priv
:= Node
(Priv_Elmt
);
19622 Priv_Scop
:= Scope
(Priv
);
19624 if Ekind_In
(Priv
, E_Private_Subtype
,
19625 E_Limited_Private_Subtype
,
19626 E_Record_Subtype_With_Private
)
19628 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
19629 Set_Is_Itype
(Full
);
19630 Set_Parent
(Full
, Parent
(Priv
));
19631 Set_Associated_Node_For_Itype
(Full
, N
);
19633 -- Now we need to complete the private subtype, but since the
19634 -- base type has already been swapped, we must also swap the
19635 -- subtypes (and thus, reverse the arguments in the call to
19636 -- Complete_Private_Subtype). Also note that we may need to
19637 -- re-establish the scope of the private subtype.
19639 Copy_And_Swap
(Priv
, Full
);
19641 if not In_Open_Scopes
(Priv_Scop
) then
19642 Push_Scope
(Priv_Scop
);
19645 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19647 Priv_Scop
:= Empty
;
19650 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
19652 if Present
(Priv_Scop
) then
19656 Replace_Elmt
(Priv_Elmt
, Full
);
19659 Next_Elmt
(Priv_Elmt
);
19663 -- If the private view was tagged, copy the new primitive operations
19664 -- from the private view to the full view.
19666 if Is_Tagged_Type
(Full_T
) then
19668 Disp_Typ
: Entity_Id
;
19669 Full_List
: Elist_Id
;
19671 Prim_Elmt
: Elmt_Id
;
19672 Priv_List
: Elist_Id
;
19676 L
: Elist_Id
) return Boolean;
19677 -- Determine whether list L contains element E
19685 L
: Elist_Id
) return Boolean
19687 List_Elmt
: Elmt_Id
;
19690 List_Elmt
:= First_Elmt
(L
);
19691 while Present
(List_Elmt
) loop
19692 if Node
(List_Elmt
) = E
then
19696 Next_Elmt
(List_Elmt
);
19702 -- Start of processing
19705 if Is_Tagged_Type
(Priv_T
) then
19706 Priv_List
:= Primitive_Operations
(Priv_T
);
19707 Prim_Elmt
:= First_Elmt
(Priv_List
);
19709 -- In the case of a concurrent type completing a private tagged
19710 -- type, primitives may have been declared in between the two
19711 -- views. These subprograms need to be wrapped the same way
19712 -- entries and protected procedures are handled because they
19713 -- cannot be directly shared by the two views.
19715 if Is_Concurrent_Type
(Full_T
) then
19717 Conc_Typ
: constant Entity_Id
:=
19718 Corresponding_Record_Type
(Full_T
);
19719 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
19720 Wrap_Spec
: Node_Id
;
19723 while Present
(Prim_Elmt
) loop
19724 Prim
:= Node
(Prim_Elmt
);
19726 if Comes_From_Source
(Prim
)
19727 and then not Is_Abstract_Subprogram
(Prim
)
19730 Make_Subprogram_Declaration
(Sloc
(Prim
),
19734 Obj_Typ
=> Conc_Typ
,
19736 Parameter_Specifications
(
19739 Insert_After
(Curr_Nod
, Wrap_Spec
);
19740 Curr_Nod
:= Wrap_Spec
;
19742 Analyze
(Wrap_Spec
);
19745 Next_Elmt
(Prim_Elmt
);
19751 -- For non-concurrent types, transfer explicit primitives, but
19752 -- omit those inherited from the parent of the private view
19753 -- since they will be re-inherited later on.
19756 Full_List
:= Primitive_Operations
(Full_T
);
19758 while Present
(Prim_Elmt
) loop
19759 Prim
:= Node
(Prim_Elmt
);
19761 if Comes_From_Source
(Prim
)
19762 and then not Contains
(Prim
, Full_List
)
19764 Append_Elmt
(Prim
, Full_List
);
19767 Next_Elmt
(Prim_Elmt
);
19771 -- Untagged private view
19774 Full_List
:= Primitive_Operations
(Full_T
);
19776 -- In this case the partial view is untagged, so here we locate
19777 -- all of the earlier primitives that need to be treated as
19778 -- dispatching (those that appear between the two views). Note
19779 -- that these additional operations must all be new operations
19780 -- (any earlier operations that override inherited operations
19781 -- of the full view will already have been inserted in the
19782 -- primitives list, marked by Check_Operation_From_Private_View
19783 -- as dispatching. Note that implicit "/=" operators are
19784 -- excluded from being added to the primitives list since they
19785 -- shouldn't be treated as dispatching (tagged "/=" is handled
19788 Prim
:= Next_Entity
(Full_T
);
19789 while Present
(Prim
) and then Prim
/= Priv_T
loop
19790 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
19791 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
19793 if Disp_Typ
= Full_T
19794 and then (Chars
(Prim
) /= Name_Op_Ne
19795 or else Comes_From_Source
(Prim
))
19797 Check_Controlling_Formals
(Full_T
, Prim
);
19799 if not Is_Dispatching_Operation
(Prim
) then
19800 Append_Elmt
(Prim
, Full_List
);
19801 Set_Is_Dispatching_Operation
(Prim
, True);
19802 Set_DT_Position_Value
(Prim
, No_Uint
);
19805 elsif Is_Dispatching_Operation
(Prim
)
19806 and then Disp_Typ
/= Full_T
19809 -- Verify that it is not otherwise controlled by a
19810 -- formal or a return value of type T.
19812 Check_Controlling_Formals
(Disp_Typ
, Prim
);
19816 Next_Entity
(Prim
);
19820 -- For the tagged case, the two views can share the same primitive
19821 -- operations list and the same class-wide type. Update attributes
19822 -- of the class-wide type which depend on the full declaration.
19824 if Is_Tagged_Type
(Priv_T
) then
19825 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
19826 Set_Class_Wide_Type
19827 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
19829 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
19831 (Class_Wide_Type
(Priv_T
), Has_Protected
(Full_T
));
19836 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19838 if Known_To_Have_Preelab_Init
(Priv_T
) then
19840 -- Case where there is a pragma Preelaborable_Initialization. We
19841 -- always allow this in predefined units, which is cheating a bit,
19842 -- but it means we don't have to struggle to meet the requirements in
19843 -- the RM for having Preelaborable Initialization. Otherwise we
19844 -- require that the type meets the RM rules. But we can't check that
19845 -- yet, because of the rule about overriding Initialize, so we simply
19846 -- set a flag that will be checked at freeze time.
19848 if not In_Predefined_Unit
(Full_T
) then
19849 Set_Must_Have_Preelab_Init
(Full_T
);
19853 -- If pragma CPP_Class was applied to the private type declaration,
19854 -- propagate it now to the full type declaration.
19856 if Is_CPP_Class
(Priv_T
) then
19857 Set_Is_CPP_Class
(Full_T
);
19858 Set_Convention
(Full_T
, Convention_CPP
);
19860 -- Check that components of imported CPP types do not have default
19863 Check_CPP_Type_Has_No_Defaults
(Full_T
);
19866 -- If the private view has user specified stream attributes, then so has
19869 -- Why the test, how could these flags be already set in Full_T ???
19871 if Has_Specified_Stream_Read
(Priv_T
) then
19872 Set_Has_Specified_Stream_Read
(Full_T
);
19875 if Has_Specified_Stream_Write
(Priv_T
) then
19876 Set_Has_Specified_Stream_Write
(Full_T
);
19879 if Has_Specified_Stream_Input
(Priv_T
) then
19880 Set_Has_Specified_Stream_Input
(Full_T
);
19883 if Has_Specified_Stream_Output
(Priv_T
) then
19884 Set_Has_Specified_Stream_Output
(Full_T
);
19887 -- Propagate the attributes related to pragma Default_Initial_Condition
19888 -- from the private to the full view. Note that both flags are mutually
19891 if Has_Default_Init_Cond
(Priv_T
)
19892 or else Has_Inherited_Default_Init_Cond
(Priv_T
)
19894 Propagate_Default_Init_Cond_Attributes
19895 (From_Typ
=> Priv_T
,
19897 Private_To_Full_View
=> True);
19899 -- In the case where the full view is derived from another private type,
19900 -- the attributes related to pragma Default_Initial_Condition must be
19901 -- propagated from the full to the private view to maintain consistency
19905 -- type Parent_Typ is private
19906 -- with Default_Initial_Condition ...;
19908 -- type Parent_Typ is ...;
19911 -- with Pack; use Pack;
19912 -- package Pack_2 is
19913 -- type Deriv_Typ is private; -- must inherit
19915 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19918 elsif Has_Default_Init_Cond
(Full_T
)
19919 or else Has_Inherited_Default_Init_Cond
(Full_T
)
19921 Propagate_Default_Init_Cond_Attributes
19922 (From_Typ
=> Full_T
,
19924 Private_To_Full_View
=> True);
19927 -- Propagate the attributes related to pragma Ghost from the private to
19930 if Is_Ghost_Entity
(Priv_T
) then
19931 Set_Is_Ghost_Entity
(Full_T
);
19933 -- The Ghost policy in effect at the point of declaration and at the
19934 -- point of completion must match (SPARK RM 6.9(15)).
19936 Check_Ghost_Completion
(Priv_T
, Full_T
);
19938 -- In the case where the private view of a tagged type lacks a parent
19939 -- type and is subject to pragma Ghost, ensure that the parent type
19940 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19942 if Is_Derived_Type
(Full_T
) then
19943 Check_Ghost_Derivation
(Full_T
);
19947 -- Propagate invariants to full type
19949 if Has_Invariants
(Priv_T
) then
19950 Set_Has_Invariants
(Full_T
);
19951 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
19954 if Has_Inheritable_Invariants
(Priv_T
) then
19955 Set_Has_Inheritable_Invariants
(Full_T
);
19958 -- Check hidden inheritance of class-wide type invariants
19960 if Ada_Version
>= Ada_2012
19961 and then not Has_Inheritable_Invariants
(Full_T
)
19962 and then In_Private_Part
(Current_Scope
)
19963 and then Has_Interfaces
(Full_T
)
19970 Collect_Interfaces
(Full_T
, Ifaces
, Exclude_Parents
=> True);
19972 AI
:= First_Elmt
(Ifaces
);
19973 while Present
(AI
) loop
19974 if Has_Inheritable_Invariants
(Node
(AI
)) then
19976 ("hidden inheritance of class-wide type invariants " &
19986 -- Propagate predicates to full type, and predicate function if already
19987 -- defined. It is not clear that this can actually happen? the partial
19988 -- view cannot be frozen yet, and the predicate function has not been
19989 -- built. Still it is a cheap check and seems safer to make it.
19991 if Has_Predicates
(Priv_T
) then
19992 if Present
(Predicate_Function
(Priv_T
)) then
19993 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
19996 Set_Has_Predicates
(Full_T
);
19998 end Process_Full_View
;
20000 -----------------------------------
20001 -- Process_Incomplete_Dependents --
20002 -----------------------------------
20004 procedure Process_Incomplete_Dependents
20006 Full_T
: Entity_Id
;
20009 Inc_Elmt
: Elmt_Id
;
20010 Priv_Dep
: Entity_Id
;
20011 New_Subt
: Entity_Id
;
20013 Disc_Constraint
: Elist_Id
;
20016 if No
(Private_Dependents
(Inc_T
)) then
20020 -- Itypes that may be generated by the completion of an incomplete
20021 -- subtype are not used by the back-end and not attached to the tree.
20022 -- They are created only for constraint-checking purposes.
20024 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
20025 while Present
(Inc_Elmt
) loop
20026 Priv_Dep
:= Node
(Inc_Elmt
);
20028 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
20030 -- An Access_To_Subprogram type may have a return type or a
20031 -- parameter type that is incomplete. Replace with the full view.
20033 if Etype
(Priv_Dep
) = Inc_T
then
20034 Set_Etype
(Priv_Dep
, Full_T
);
20038 Formal
: Entity_Id
;
20041 Formal
:= First_Formal
(Priv_Dep
);
20042 while Present
(Formal
) loop
20043 if Etype
(Formal
) = Inc_T
then
20044 Set_Etype
(Formal
, Full_T
);
20047 Next_Formal
(Formal
);
20051 elsif Is_Overloadable
(Priv_Dep
) then
20053 -- If a subprogram in the incomplete dependents list is primitive
20054 -- for a tagged full type then mark it as a dispatching operation,
20055 -- check whether it overrides an inherited subprogram, and check
20056 -- restrictions on its controlling formals. Note that a protected
20057 -- operation is never dispatching: only its wrapper operation
20058 -- (which has convention Ada) is.
20060 if Is_Tagged_Type
(Full_T
)
20061 and then Is_Primitive
(Priv_Dep
)
20062 and then Convention
(Priv_Dep
) /= Convention_Protected
20064 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
20065 Set_Is_Dispatching_Operation
(Priv_Dep
);
20066 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
20069 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
20071 -- Can happen during processing of a body before the completion
20072 -- of a TA type. Ignore, because spec is also on dependent list.
20076 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20077 -- corresponding subtype of the full view.
20079 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
20080 Set_Subtype_Indication
20081 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
20082 Set_Etype
(Priv_Dep
, Full_T
);
20083 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
20084 Set_Analyzed
(Parent
(Priv_Dep
), False);
20086 -- Reanalyze the declaration, suppressing the call to
20087 -- Enter_Name to avoid duplicate names.
20089 Analyze_Subtype_Declaration
20090 (N
=> Parent
(Priv_Dep
),
20093 -- Dependent is a subtype
20096 -- We build a new subtype indication using the full view of the
20097 -- incomplete parent. The discriminant constraints have been
20098 -- elaborated already at the point of the subtype declaration.
20100 New_Subt
:= Create_Itype
(E_Void
, N
);
20102 if Has_Discriminants
(Full_T
) then
20103 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
20105 Disc_Constraint
:= No_Elist
;
20108 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
20109 Set_Full_View
(Priv_Dep
, New_Subt
);
20112 Next_Elmt
(Inc_Elmt
);
20114 end Process_Incomplete_Dependents
;
20116 --------------------------------
20117 -- Process_Range_Expr_In_Decl --
20118 --------------------------------
20120 procedure Process_Range_Expr_In_Decl
20123 Subtyp
: Entity_Id
:= Empty
;
20124 Check_List
: List_Id
:= Empty_List
;
20125 R_Check_Off
: Boolean := False;
20126 In_Iter_Schm
: Boolean := False)
20129 R_Checks
: Check_Result
;
20130 Insert_Node
: Node_Id
;
20131 Def_Id
: Entity_Id
;
20134 Analyze_And_Resolve
(R
, Base_Type
(T
));
20136 if Nkind
(R
) = N_Range
then
20138 -- In SPARK, all ranges should be static, with the exception of the
20139 -- discrete type definition of a loop parameter specification.
20141 if not In_Iter_Schm
20142 and then not Is_OK_Static_Range
(R
)
20144 Check_SPARK_05_Restriction
("range should be static", R
);
20147 Lo
:= Low_Bound
(R
);
20148 Hi
:= High_Bound
(R
);
20150 -- Validity checks on the range of a quantified expression are
20151 -- delayed until the construct is transformed into a loop.
20153 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
20154 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
20158 -- We need to ensure validity of the bounds here, because if we
20159 -- go ahead and do the expansion, then the expanded code will get
20160 -- analyzed with range checks suppressed and we miss the check.
20162 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20163 -- the temporaries generated by routine Remove_Side_Effects by means
20164 -- of validity checks must use the same names. When a range appears
20165 -- in the parent of a generic, the range is processed with checks
20166 -- disabled as part of the generic context and with checks enabled
20167 -- for code generation purposes. This leads to link issues as the
20168 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20169 -- template sees the temporaries generated by Remove_Side_Effects.
20172 Validity_Check_Range
(R
, Subtyp
);
20175 -- If there were errors in the declaration, try and patch up some
20176 -- common mistakes in the bounds. The cases handled are literals
20177 -- which are Integer where the expected type is Real and vice versa.
20178 -- These corrections allow the compilation process to proceed further
20179 -- along since some basic assumptions of the format of the bounds
20182 if Etype
(R
) = Any_Type
then
20183 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20185 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
20187 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20189 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
20191 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20193 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
20195 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20197 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
20204 -- If the bounds of the range have been mistakenly given as string
20205 -- literals (perhaps in place of character literals), then an error
20206 -- has already been reported, but we rewrite the string literal as a
20207 -- bound of the range's type to avoid blowups in later processing
20208 -- that looks at static values.
20210 if Nkind
(Lo
) = N_String_Literal
then
20212 Make_Attribute_Reference
(Sloc
(Lo
),
20213 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
20214 Attribute_Name
=> Name_First
));
20215 Analyze_And_Resolve
(Lo
);
20218 if Nkind
(Hi
) = N_String_Literal
then
20220 Make_Attribute_Reference
(Sloc
(Hi
),
20221 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
20222 Attribute_Name
=> Name_First
));
20223 Analyze_And_Resolve
(Hi
);
20226 -- If bounds aren't scalar at this point then exit, avoiding
20227 -- problems with further processing of the range in this procedure.
20229 if not Is_Scalar_Type
(Etype
(Lo
)) then
20233 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20234 -- then range of the base type. Here we check whether the bounds
20235 -- are in the range of the subtype itself. Note that if the bounds
20236 -- represent the null range the Constraint_Error exception should
20239 -- ??? The following code should be cleaned up as follows
20241 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20242 -- is done in the call to Range_Check (R, T); below
20244 -- 2. The use of R_Check_Off should be investigated and possibly
20245 -- removed, this would clean up things a bit.
20247 if Is_Null_Range
(Lo
, Hi
) then
20251 -- Capture values of bounds and generate temporaries for them
20252 -- if needed, before applying checks, since checks may cause
20253 -- duplication of the expression without forcing evaluation.
20255 -- The forced evaluation removes side effects from expressions,
20256 -- which should occur also in GNATprove mode. Otherwise, we end up
20257 -- with unexpected insertions of actions at places where this is
20258 -- not supposed to occur, e.g. on default parameters of a call.
20260 if Expander_Active
or GNATprove_Mode
then
20262 -- Call Force_Evaluation to create declarations as needed to
20263 -- deal with side effects, and also create typ_FIRST/LAST
20264 -- entities for bounds if we have a subtype name.
20266 -- Note: we do this transformation even if expansion is not
20267 -- active if we are in GNATprove_Mode since the transformation
20268 -- is in general required to ensure that the resulting tree has
20269 -- proper Ada semantics.
20272 (Lo
, Related_Id
=> Subtyp
, Is_Low_Bound
=> True);
20274 (Hi
, Related_Id
=> Subtyp
, Is_High_Bound
=> True);
20277 -- We use a flag here instead of suppressing checks on the type
20278 -- because the type we check against isn't necessarily the place
20279 -- where we put the check.
20281 if not R_Check_Off
then
20282 R_Checks
:= Get_Range_Checks
(R
, T
);
20284 -- Look up tree to find an appropriate insertion point. We
20285 -- can't just use insert_actions because later processing
20286 -- depends on the insertion node. Prior to Ada 2012 the
20287 -- insertion point could only be a declaration or a loop, but
20288 -- quantified expressions can appear within any context in an
20289 -- expression, and the insertion point can be any statement,
20290 -- pragma, or declaration.
20292 Insert_Node
:= Parent
(R
);
20293 while Present
(Insert_Node
) loop
20295 Nkind
(Insert_Node
) in N_Declaration
20298 (Insert_Node
, N_Component_Declaration
,
20299 N_Loop_Parameter_Specification
,
20300 N_Function_Specification
,
20301 N_Procedure_Specification
);
20303 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
20304 or else Nkind
(Insert_Node
) in
20305 N_Statement_Other_Than_Procedure_Call
20306 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
20309 Insert_Node
:= Parent
(Insert_Node
);
20312 -- Why would Type_Decl not be present??? Without this test,
20313 -- short regression tests fail.
20315 if Present
(Insert_Node
) then
20317 -- Case of loop statement. Verify that the range is part
20318 -- of the subtype indication of the iteration scheme.
20320 if Nkind
(Insert_Node
) = N_Loop_Statement
then
20325 Indic
:= Parent
(R
);
20326 while Present
(Indic
)
20327 and then Nkind
(Indic
) /= N_Subtype_Indication
20329 Indic
:= Parent
(Indic
);
20332 if Present
(Indic
) then
20333 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
20335 Insert_Range_Checks
20339 Sloc
(Insert_Node
),
20341 Do_Before
=> True);
20345 -- Insertion before a declaration. If the declaration
20346 -- includes discriminants, the list of applicable checks
20347 -- is given by the caller.
20349 elsif Nkind
(Insert_Node
) in N_Declaration
then
20350 Def_Id
:= Defining_Identifier
(Insert_Node
);
20352 if (Ekind
(Def_Id
) = E_Record_Type
20353 and then Depends_On_Discriminant
(R
))
20355 (Ekind
(Def_Id
) = E_Protected_Type
20356 and then Has_Discriminants
(Def_Id
))
20358 Append_Range_Checks
20360 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
20363 Insert_Range_Checks
20365 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
20369 -- Insertion before a statement. Range appears in the
20370 -- context of a quantified expression. Insertion will
20371 -- take place when expression is expanded.
20380 -- Case of other than an explicit N_Range node
20382 -- The forced evaluation removes side effects from expressions, which
20383 -- should occur also in GNATprove mode. Otherwise, we end up with
20384 -- unexpected insertions of actions at places where this is not
20385 -- supposed to occur, e.g. on default parameters of a call.
20387 elsif Expander_Active
or GNATprove_Mode
then
20388 Get_Index_Bounds
(R
, Lo
, Hi
);
20389 Force_Evaluation
(Lo
);
20390 Force_Evaluation
(Hi
);
20392 end Process_Range_Expr_In_Decl
;
20394 --------------------------------------
20395 -- Process_Real_Range_Specification --
20396 --------------------------------------
20398 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
20399 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
20402 Err
: Boolean := False;
20404 procedure Analyze_Bound
(N
: Node_Id
);
20405 -- Analyze and check one bound
20407 -------------------
20408 -- Analyze_Bound --
20409 -------------------
20411 procedure Analyze_Bound
(N
: Node_Id
) is
20413 Analyze_And_Resolve
(N
, Any_Real
);
20415 if not Is_OK_Static_Expression
(N
) then
20416 Flag_Non_Static_Expr
20417 ("bound in real type definition is not static!", N
);
20422 -- Start of processing for Process_Real_Range_Specification
20425 if Present
(Spec
) then
20426 Lo
:= Low_Bound
(Spec
);
20427 Hi
:= High_Bound
(Spec
);
20428 Analyze_Bound
(Lo
);
20429 Analyze_Bound
(Hi
);
20431 -- If error, clear away junk range specification
20434 Set_Real_Range_Specification
(Def
, Empty
);
20437 end Process_Real_Range_Specification
;
20439 ---------------------
20440 -- Process_Subtype --
20441 ---------------------
20443 function Process_Subtype
20445 Related_Nod
: Node_Id
;
20446 Related_Id
: Entity_Id
:= Empty
;
20447 Suffix
: Character := ' ') return Entity_Id
20450 Def_Id
: Entity_Id
;
20451 Error_Node
: Node_Id
;
20452 Full_View_Id
: Entity_Id
;
20453 Subtype_Mark_Id
: Entity_Id
;
20455 May_Have_Null_Exclusion
: Boolean;
20457 procedure Check_Incomplete
(T
: Entity_Id
);
20458 -- Called to verify that an incomplete type is not used prematurely
20460 ----------------------
20461 -- Check_Incomplete --
20462 ----------------------
20464 procedure Check_Incomplete
(T
: Entity_Id
) is
20466 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20468 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
20470 not (Ada_Version
>= Ada_2005
20472 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
20473 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
20474 and then Nkind
(Parent
(Parent
(T
))) =
20475 N_Subtype_Declaration
)))
20477 Error_Msg_N
("invalid use of type before its full declaration", T
);
20479 end Check_Incomplete
;
20481 -- Start of processing for Process_Subtype
20484 -- Case of no constraints present
20486 if Nkind
(S
) /= N_Subtype_Indication
then
20488 Check_Incomplete
(S
);
20491 -- Ada 2005 (AI-231): Static check
20493 if Ada_Version
>= Ada_2005
20494 and then Present
(P
)
20495 and then Null_Exclusion_Present
(P
)
20496 and then Nkind
(P
) /= N_Access_To_Object_Definition
20497 and then not Is_Access_Type
(Entity
(S
))
20499 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
20502 -- The following is ugly, can't we have a range or even a flag???
20504 May_Have_Null_Exclusion
:=
20505 Nkind_In
(P
, N_Access_Definition
,
20506 N_Access_Function_Definition
,
20507 N_Access_Procedure_Definition
,
20508 N_Access_To_Object_Definition
,
20510 N_Component_Definition
)
20512 Nkind_In
(P
, N_Derived_Type_Definition
,
20513 N_Discriminant_Specification
,
20514 N_Formal_Object_Declaration
,
20515 N_Object_Declaration
,
20516 N_Object_Renaming_Declaration
,
20517 N_Parameter_Specification
,
20518 N_Subtype_Declaration
);
20520 -- Create an Itype that is a duplicate of Entity (S) but with the
20521 -- null-exclusion attribute.
20523 if May_Have_Null_Exclusion
20524 and then Is_Access_Type
(Entity
(S
))
20525 and then Null_Exclusion_Present
(P
)
20527 -- No need to check the case of an access to object definition.
20528 -- It is correct to define double not-null pointers.
20531 -- type Not_Null_Int_Ptr is not null access Integer;
20532 -- type Acc is not null access Not_Null_Int_Ptr;
20534 and then Nkind
(P
) /= N_Access_To_Object_Definition
20536 if Can_Never_Be_Null
(Entity
(S
)) then
20537 case Nkind
(Related_Nod
) is
20538 when N_Full_Type_Declaration
=>
20539 if Nkind
(Type_Definition
(Related_Nod
))
20540 in N_Array_Type_Definition
20544 (Component_Definition
20545 (Type_Definition
(Related_Nod
)));
20548 Subtype_Indication
(Type_Definition
(Related_Nod
));
20551 when N_Subtype_Declaration
=>
20552 Error_Node
:= Subtype_Indication
(Related_Nod
);
20554 when N_Object_Declaration
=>
20555 Error_Node
:= Object_Definition
(Related_Nod
);
20557 when N_Component_Declaration
=>
20559 Subtype_Indication
(Component_Definition
(Related_Nod
));
20561 when N_Allocator
=>
20562 Error_Node
:= Expression
(Related_Nod
);
20565 pragma Assert
(False);
20566 Error_Node
:= Related_Nod
;
20570 ("`NOT NULL` not allowed (& already excludes null)",
20576 Create_Null_Excluding_Itype
20578 Related_Nod
=> P
));
20579 Set_Entity
(S
, Etype
(S
));
20584 -- Case of constraint present, so that we have an N_Subtype_Indication
20585 -- node (this node is created only if constraints are present).
20588 Find_Type
(Subtype_Mark
(S
));
20590 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
20592 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
20593 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
20595 Check_Incomplete
(Subtype_Mark
(S
));
20599 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
20601 -- Explicit subtype declaration case
20603 if Nkind
(P
) = N_Subtype_Declaration
then
20604 Def_Id
:= Defining_Identifier
(P
);
20606 -- Explicit derived type definition case
20608 elsif Nkind
(P
) = N_Derived_Type_Definition
then
20609 Def_Id
:= Defining_Identifier
(Parent
(P
));
20611 -- Implicit case, the Def_Id must be created as an implicit type.
20612 -- The one exception arises in the case of concurrent types, array
20613 -- and access types, where other subsidiary implicit types may be
20614 -- created and must appear before the main implicit type. In these
20615 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20616 -- has not yet been called to create Def_Id.
20619 if Is_Array_Type
(Subtype_Mark_Id
)
20620 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
20621 or else Is_Access_Type
(Subtype_Mark_Id
)
20625 -- For the other cases, we create a new unattached Itype,
20626 -- and set the indication to ensure it gets attached later.
20630 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20634 -- If the kind of constraint is invalid for this kind of type,
20635 -- then give an error, and then pretend no constraint was given.
20637 if not Is_Valid_Constraint_Kind
20638 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
20641 ("incorrect constraint for this kind of type", Constraint
(S
));
20643 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
20645 -- Set Ekind of orphan itype, to prevent cascaded errors
20647 if Present
(Def_Id
) then
20648 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
20651 -- Make recursive call, having got rid of the bogus constraint
20653 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
20656 -- Remaining processing depends on type. Select on Base_Type kind to
20657 -- ensure getting to the concrete type kind in the case of a private
20658 -- subtype (needed when only doing semantic analysis).
20660 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
20661 when Access_Kind
=>
20663 -- If this is a constraint on a class-wide type, discard it.
20664 -- There is currently no way to express a partial discriminant
20665 -- constraint on a type with unknown discriminants. This is
20666 -- a pathology that the ACATS wisely decides not to test.
20668 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
20669 if Comes_From_Source
(S
) then
20671 ("constraint on class-wide type ignored??",
20675 if Nkind
(P
) = N_Subtype_Declaration
then
20676 Set_Subtype_Indication
(P
,
20677 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
20680 return Subtype_Mark_Id
;
20683 Constrain_Access
(Def_Id
, S
, Related_Nod
);
20686 and then Is_Itype
(Designated_Type
(Def_Id
))
20687 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
20688 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
20690 Build_Itype_Reference
20691 (Designated_Type
(Def_Id
), Related_Nod
);
20695 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
20697 when Decimal_Fixed_Point_Kind
=>
20698 Constrain_Decimal
(Def_Id
, S
);
20700 when Enumeration_Kind
=>
20701 Constrain_Enumeration
(Def_Id
, S
);
20702 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20704 when Ordinary_Fixed_Point_Kind
=>
20705 Constrain_Ordinary_Fixed
(Def_Id
, S
);
20708 Constrain_Float
(Def_Id
, S
);
20710 when Integer_Kind
=>
20711 Constrain_Integer
(Def_Id
, S
);
20712 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20714 when E_Record_Type |
20717 E_Incomplete_Type
=>
20718 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20720 if Ekind
(Def_Id
) = E_Incomplete_Type
then
20721 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20724 when Private_Kind
=>
20725 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20726 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20728 -- In case of an invalid constraint prevent further processing
20729 -- since the type constructed is missing expected fields.
20731 if Etype
(Def_Id
) = Any_Type
then
20735 -- If the full view is that of a task with discriminants,
20736 -- we must constrain both the concurrent type and its
20737 -- corresponding record type. Otherwise we will just propagate
20738 -- the constraint to the full view, if available.
20740 if Present
(Full_View
(Subtype_Mark_Id
))
20741 and then Has_Discriminants
(Subtype_Mark_Id
)
20742 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
20745 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20747 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
20748 Constrain_Concurrent
(Full_View_Id
, S
,
20749 Related_Nod
, Related_Id
, Suffix
);
20750 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
20751 Set_Full_View
(Def_Id
, Full_View_Id
);
20753 -- Introduce an explicit reference to the private subtype,
20754 -- to prevent scope anomalies in gigi if first use appears
20755 -- in a nested context, e.g. a later function body.
20756 -- Should this be generated in other contexts than a full
20757 -- type declaration?
20759 if Is_Itype
(Def_Id
)
20761 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
20763 Build_Itype_Reference
(Def_Id
, Parent
(P
));
20767 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
20770 when Concurrent_Kind
=>
20771 Constrain_Concurrent
(Def_Id
, S
,
20772 Related_Nod
, Related_Id
, Suffix
);
20775 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
20778 -- Size and Convention are always inherited from the base type
20780 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
20781 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
20785 end Process_Subtype
;
20787 --------------------------------------------
20788 -- Propagate_Default_Init_Cond_Attributes --
20789 --------------------------------------------
20791 procedure Propagate_Default_Init_Cond_Attributes
20792 (From_Typ
: Entity_Id
;
20793 To_Typ
: Entity_Id
;
20794 Parent_To_Derivation
: Boolean := False;
20795 Private_To_Full_View
: Boolean := False)
20797 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
);
20798 -- Remove the default initial procedure (if any) from the rep chain of
20801 ----------------------------------------
20802 -- Remove_Default_Init_Cond_Procedure --
20803 ----------------------------------------
20805 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
) is
20806 Found
: Boolean := False;
20812 Subp
:= Subprograms_For_Type
(Typ
);
20813 while Present
(Subp
) loop
20814 if Is_Default_Init_Cond_Procedure
(Subp
) then
20820 Subp
:= Subprograms_For_Type
(Subp
);
20824 Set_Subprograms_For_Type
(Prev
, Subprograms_For_Type
(Subp
));
20825 Set_Subprograms_For_Type
(Subp
, Empty
);
20827 end Remove_Default_Init_Cond_Procedure
;
20831 Inherit_Procedure
: Boolean := False;
20833 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20836 if Has_Default_Init_Cond
(From_Typ
) then
20838 -- A derived type inherits the attributes from its parent type
20840 if Parent_To_Derivation
then
20841 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20843 -- A full view shares the attributes with its private view
20846 Set_Has_Default_Init_Cond
(To_Typ
);
20849 Inherit_Procedure
:= True;
20851 -- Due to the order of expansion, a derived private type is processed
20852 -- by two routines which both attempt to set the attributes related
20853 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20854 -- Process_Full_View.
20857 -- type Parent_Typ is private
20858 -- with Default_Initial_Condition ...;
20860 -- type Parent_Typ is ...;
20863 -- with Pack; use Pack;
20864 -- package Pack_2 is
20865 -- type Deriv_Typ is private
20866 -- with Default_Initial_Condition ...;
20868 -- type Deriv_Typ is new Parent_Typ;
20871 -- When Build_Derived_Type operates, it sets the attributes on the
20872 -- full view without taking into account that the private view may
20873 -- define its own default initial condition procedure. This becomes
20874 -- apparent in Process_Full_View which must undo some of the work by
20875 -- Build_Derived_Type and propagate the attributes from the private
20876 -- to the full view.
20878 if Private_To_Full_View
then
20879 Set_Has_Inherited_Default_Init_Cond
(To_Typ
, False);
20880 Remove_Default_Init_Cond_Procedure
(To_Typ
);
20883 -- A type must inherit the default initial condition procedure from a
20884 -- parent type when the parent itself is inheriting the procedure or
20885 -- when it is defining one. This circuitry is also used when dealing
20886 -- with the private / full view of a type.
20888 elsif Has_Inherited_Default_Init_Cond
(From_Typ
)
20889 or (Parent_To_Derivation
20890 and Present
(Get_Pragma
20891 (From_Typ
, Pragma_Default_Initial_Condition
)))
20893 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20894 Inherit_Procedure
:= True;
20897 if Inherit_Procedure
20898 and then No
(Default_Init_Cond_Procedure
(To_Typ
))
20900 Set_Default_Init_Cond_Procedure
20901 (To_Typ
, Default_Init_Cond_Procedure
(From_Typ
));
20903 end Propagate_Default_Init_Cond_Attributes
;
20905 -----------------------------
20906 -- Record_Type_Declaration --
20907 -----------------------------
20909 procedure Record_Type_Declaration
20914 Def
: constant Node_Id
:= Type_Definition
(N
);
20915 Is_Tagged
: Boolean;
20916 Tag_Comp
: Entity_Id
;
20919 -- These flags must be initialized before calling Process_Discriminants
20920 -- because this routine makes use of them.
20922 Set_Ekind
(T
, E_Record_Type
);
20924 Init_Size_Align
(T
);
20925 Set_Interfaces
(T
, No_Elist
);
20926 Set_Stored_Constraint
(T
, No_Elist
);
20927 Set_Default_SSO
(T
);
20931 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
20932 if Limited_Present
(Def
) then
20933 Check_SPARK_05_Restriction
("limited is not allowed", N
);
20936 if Abstract_Present
(Def
) then
20937 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
20940 -- The flag Is_Tagged_Type might have already been set by
20941 -- Find_Type_Name if it detected an error for declaration T. This
20942 -- arises in the case of private tagged types where the full view
20943 -- omits the word tagged.
20946 Tagged_Present
(Def
)
20947 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
20949 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
20952 Set_Is_Tagged_Type
(T
, True);
20953 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
20956 -- Type is abstract if full declaration carries keyword, or if
20957 -- previous partial view did.
20959 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
20960 or else Abstract_Present
(Def
));
20963 Check_SPARK_05_Restriction
("interface is not allowed", N
);
20966 Analyze_Interface_Declaration
(T
, Def
);
20968 if Present
(Discriminant_Specifications
(N
)) then
20970 ("interface types cannot have discriminants",
20971 Defining_Identifier
20972 (First
(Discriminant_Specifications
(N
))));
20976 -- First pass: if there are self-referential access components,
20977 -- create the required anonymous access type declarations, and if
20978 -- need be an incomplete type declaration for T itself.
20980 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
20982 if Ada_Version
>= Ada_2005
20983 and then Present
(Interface_List
(Def
))
20985 Check_Interfaces
(N
, Def
);
20988 Ifaces_List
: Elist_Id
;
20991 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20992 -- already in the parents.
20996 Ifaces_List
=> Ifaces_List
,
20997 Exclude_Parents
=> True);
20999 Set_Interfaces
(T
, Ifaces_List
);
21003 -- Records constitute a scope for the component declarations within.
21004 -- The scope is created prior to the processing of these declarations.
21005 -- Discriminants are processed first, so that they are visible when
21006 -- processing the other components. The Ekind of the record type itself
21007 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21009 -- Enter record scope
21013 -- If an incomplete or private type declaration was already given for
21014 -- the type, then this scope already exists, and the discriminants have
21015 -- been declared within. We must verify that the full declaration
21016 -- matches the incomplete one.
21018 Check_Or_Process_Discriminants
(N
, T
, Prev
);
21020 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
21021 Set_Has_Delayed_Freeze
(T
, True);
21023 -- For tagged types add a manually analyzed component corresponding
21024 -- to the component _tag, the corresponding piece of tree will be
21025 -- expanded as part of the freezing actions if it is not a CPP_Class.
21029 -- Do not add the tag unless we are in expansion mode
21031 if Expander_Active
then
21032 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
21033 Enter_Name
(Tag_Comp
);
21035 Set_Ekind
(Tag_Comp
, E_Component
);
21036 Set_Is_Tag
(Tag_Comp
);
21037 Set_Is_Aliased
(Tag_Comp
);
21038 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
21039 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
21040 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
21041 Init_Component_Location
(Tag_Comp
);
21043 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21044 -- implemented interfaces.
21046 if Has_Interfaces
(T
) then
21047 Add_Interface_Tag_Components
(N
, T
);
21051 Make_Class_Wide_Type
(T
);
21052 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
21055 -- We must suppress range checks when processing record components in
21056 -- the presence of discriminants, since we don't want spurious checks to
21057 -- be generated during their analysis, but Suppress_Range_Checks flags
21058 -- must be reset the after processing the record definition.
21060 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21061 -- couldn't we just use the normal range check suppression method here.
21062 -- That would seem cleaner ???
21064 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
21065 Set_Kill_Range_Checks
(T
, True);
21066 Record_Type_Definition
(Def
, Prev
);
21067 Set_Kill_Range_Checks
(T
, False);
21069 Record_Type_Definition
(Def
, Prev
);
21072 -- Exit from record scope
21076 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21077 -- the implemented interfaces and associate them an aliased entity.
21080 and then not Is_Empty_List
(Interface_List
(Def
))
21082 Derive_Progenitor_Subprograms
(T
, T
);
21085 Check_Function_Writable_Actuals
(N
);
21086 end Record_Type_Declaration
;
21088 ----------------------------
21089 -- Record_Type_Definition --
21090 ----------------------------
21092 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
21093 Component
: Entity_Id
;
21094 Ctrl_Components
: Boolean := False;
21095 Final_Storage_Only
: Boolean;
21099 if Ekind
(Prev_T
) = E_Incomplete_Type
then
21100 T
:= Full_View
(Prev_T
);
21105 -- In SPARK, tagged types and type extensions may only be declared in
21106 -- the specification of library unit packages.
21108 if Present
(Def
) and then Is_Tagged_Type
(T
) then
21114 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
21115 Typ
:= Parent
(Def
);
21118 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
21119 Typ
:= Parent
(Parent
(Def
));
21122 Ctxt
:= Parent
(Typ
);
21124 if Nkind
(Ctxt
) = N_Package_Body
21125 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
21127 Check_SPARK_05_Restriction
21128 ("type should be defined in package specification", Typ
);
21130 elsif Nkind
(Ctxt
) /= N_Package_Specification
21131 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
21133 Check_SPARK_05_Restriction
21134 ("type should be defined in library unit package", Typ
);
21139 Final_Storage_Only
:= not Is_Controlled
(T
);
21141 -- Ada 2005: Check whether an explicit Limited is present in a derived
21142 -- type declaration.
21144 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
21145 and then Limited_Present
(Parent
(Def
))
21147 Set_Is_Limited_Record
(T
);
21150 -- If the component list of a record type is defined by the reserved
21151 -- word null and there is no discriminant part, then the record type has
21152 -- no components and all records of the type are null records (RM 3.7)
21153 -- This procedure is also called to process the extension part of a
21154 -- record extension, in which case the current scope may have inherited
21158 or else No
(Component_List
(Def
))
21159 or else Null_Present
(Component_List
(Def
))
21161 if not Is_Tagged_Type
(T
) then
21162 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
21166 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
21168 if Present
(Variant_Part
(Component_List
(Def
))) then
21169 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
21170 Analyze
(Variant_Part
(Component_List
(Def
)));
21174 -- After completing the semantic analysis of the record definition,
21175 -- record components, both new and inherited, are accessible. Set their
21176 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21177 -- whose Ekind may be void.
21179 Component
:= First_Entity
(Current_Scope
);
21180 while Present
(Component
) loop
21181 if Ekind
(Component
) = E_Void
21182 and then not Is_Itype
(Component
)
21184 Set_Ekind
(Component
, E_Component
);
21185 Init_Component_Location
(Component
);
21188 if Has_Task
(Etype
(Component
)) then
21192 if Has_Protected
(Etype
(Component
)) then
21193 Set_Has_Protected
(T
);
21196 if Ekind
(Component
) /= E_Component
then
21199 -- Do not set Has_Controlled_Component on a class-wide equivalent
21200 -- type. See Make_CW_Equivalent_Type.
21202 elsif not Is_Class_Wide_Equivalent_Type
(T
)
21203 and then (Has_Controlled_Component
(Etype
(Component
))
21204 or else (Chars
(Component
) /= Name_uParent
21205 and then Is_Controlled
(Etype
(Component
))))
21207 Set_Has_Controlled_Component
(T
, True);
21208 Final_Storage_Only
:=
21210 and then Finalize_Storage_Only
(Etype
(Component
));
21211 Ctrl_Components
:= True;
21214 Next_Entity
(Component
);
21217 -- A Type is Finalize_Storage_Only only if all its controlled components
21220 if Ctrl_Components
then
21221 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
21224 -- Place reference to end record on the proper entity, which may
21225 -- be a partial view.
21227 if Present
(Def
) then
21228 Process_End_Label
(Def
, 'e', Prev_T
);
21230 end Record_Type_Definition
;
21232 ------------------------
21233 -- Replace_Components --
21234 ------------------------
21236 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
21237 function Process
(N
: Node_Id
) return Traverse_Result
;
21243 function Process
(N
: Node_Id
) return Traverse_Result
is
21247 if Nkind
(N
) = N_Discriminant_Specification
then
21248 Comp
:= First_Discriminant
(Typ
);
21249 while Present
(Comp
) loop
21250 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21251 Set_Defining_Identifier
(N
, Comp
);
21255 Next_Discriminant
(Comp
);
21258 elsif Nkind
(N
) = N_Component_Declaration
then
21259 Comp
:= First_Component
(Typ
);
21260 while Present
(Comp
) loop
21261 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21262 Set_Defining_Identifier
(N
, Comp
);
21266 Next_Component
(Comp
);
21273 procedure Replace
is new Traverse_Proc
(Process
);
21275 -- Start of processing for Replace_Components
21279 end Replace_Components
;
21281 -------------------------------
21282 -- Set_Completion_Referenced --
21283 -------------------------------
21285 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
21287 -- If in main unit, mark entity that is a completion as referenced,
21288 -- warnings go on the partial view when needed.
21290 if In_Extended_Main_Source_Unit
(E
) then
21291 Set_Referenced
(E
);
21293 end Set_Completion_Referenced
;
21295 ---------------------
21296 -- Set_Default_SSO --
21297 ---------------------
21299 procedure Set_Default_SSO
(T
: Entity_Id
) is
21301 case Opt
.Default_SSO
is
21305 Set_SSO_Set_Low_By_Default
(T
, True);
21307 Set_SSO_Set_High_By_Default
(T
, True);
21309 raise Program_Error
;
21311 end Set_Default_SSO
;
21313 ---------------------
21314 -- Set_Fixed_Range --
21315 ---------------------
21317 -- The range for fixed-point types is complicated by the fact that we
21318 -- do not know the exact end points at the time of the declaration. This
21319 -- is true for three reasons:
21321 -- A size clause may affect the fudging of the end-points.
21322 -- A small clause may affect the values of the end-points.
21323 -- We try to include the end-points if it does not affect the size.
21325 -- This means that the actual end-points must be established at the
21326 -- point when the type is frozen. Meanwhile, we first narrow the range
21327 -- as permitted (so that it will fit if necessary in a small specified
21328 -- size), and then build a range subtree with these narrowed bounds.
21329 -- Set_Fixed_Range constructs the range from real literal values, and
21330 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21332 -- The parent of this range is set to point to the entity so that it is
21333 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21334 -- other scalar types, which are just pointers to the range in the
21335 -- original tree, this would otherwise be an orphan).
21337 -- The tree is left unanalyzed. When the type is frozen, the processing
21338 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21339 -- analyzed, and uses this as an indication that it should complete
21340 -- work on the range (it will know the final small and size values).
21342 procedure Set_Fixed_Range
21348 S
: constant Node_Id
:=
21350 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
21351 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
21353 Set_Scalar_Range
(E
, S
);
21356 -- Before the freeze point, the bounds of a fixed point are universal
21357 -- and carry the corresponding type.
21359 Set_Etype
(Low_Bound
(S
), Universal_Real
);
21360 Set_Etype
(High_Bound
(S
), Universal_Real
);
21361 end Set_Fixed_Range
;
21363 ----------------------------------
21364 -- Set_Scalar_Range_For_Subtype --
21365 ----------------------------------
21367 procedure Set_Scalar_Range_For_Subtype
21368 (Def_Id
: Entity_Id
;
21372 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
21375 -- Defend against previous error
21377 if Nkind
(R
) = N_Error
then
21381 Set_Scalar_Range
(Def_Id
, R
);
21383 -- We need to link the range into the tree before resolving it so
21384 -- that types that are referenced, including importantly the subtype
21385 -- itself, are properly frozen (Freeze_Expression requires that the
21386 -- expression be properly linked into the tree). Of course if it is
21387 -- already linked in, then we do not disturb the current link.
21389 if No
(Parent
(R
)) then
21390 Set_Parent
(R
, Def_Id
);
21393 -- Reset the kind of the subtype during analysis of the range, to
21394 -- catch possible premature use in the bounds themselves.
21396 Set_Ekind
(Def_Id
, E_Void
);
21397 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
21398 Set_Ekind
(Def_Id
, Kind
);
21399 end Set_Scalar_Range_For_Subtype
;
21401 --------------------------------------------------------
21402 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21403 --------------------------------------------------------
21405 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21409 -- Make sure set if encountered during Expand_To_Stored_Constraint
21411 Set_Stored_Constraint
(E
, No_Elist
);
21413 -- Give it the right value
21415 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
21416 Set_Stored_Constraint
(E
,
21417 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
21419 end Set_Stored_Constraint_From_Discriminant_Constraint
;
21421 -------------------------------------
21422 -- Signed_Integer_Type_Declaration --
21423 -------------------------------------
21425 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
21426 Implicit_Base
: Entity_Id
;
21427 Base_Typ
: Entity_Id
;
21430 Errs
: Boolean := False;
21434 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
21435 -- Determine whether given bounds allow derivation from specified type
21437 procedure Check_Bound
(Expr
: Node_Id
);
21438 -- Check bound to make sure it is integral and static. If not, post
21439 -- appropriate error message and set Errs flag
21441 ---------------------
21442 -- Can_Derive_From --
21443 ---------------------
21445 -- Note we check both bounds against both end values, to deal with
21446 -- strange types like ones with a range of 0 .. -12341234.
21448 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
21449 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
21450 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
21452 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
21454 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
21455 end Can_Derive_From
;
21461 procedure Check_Bound
(Expr
: Node_Id
) is
21463 -- If a range constraint is used as an integer type definition, each
21464 -- bound of the range must be defined by a static expression of some
21465 -- integer type, but the two bounds need not have the same integer
21466 -- type (Negative bounds are allowed.) (RM 3.5.4)
21468 if not Is_Integer_Type
(Etype
(Expr
)) then
21470 ("integer type definition bounds must be of integer type", Expr
);
21473 elsif not Is_OK_Static_Expression
(Expr
) then
21474 Flag_Non_Static_Expr
21475 ("non-static expression used for integer type bound!", Expr
);
21478 -- The bounds are folded into literals, and we set their type to be
21479 -- universal, to avoid typing difficulties: we cannot set the type
21480 -- of the literal to the new type, because this would be a forward
21481 -- reference for the back end, and if the original type is user-
21482 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21485 if Is_Entity_Name
(Expr
) then
21486 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
21489 Set_Etype
(Expr
, Universal_Integer
);
21493 -- Start of processing for Signed_Integer_Type_Declaration
21496 -- Create an anonymous base type
21499 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
21501 -- Analyze and check the bounds, they can be of any integer type
21503 Lo
:= Low_Bound
(Def
);
21504 Hi
:= High_Bound
(Def
);
21506 -- Arbitrarily use Integer as the type if either bound had an error
21508 if Hi
= Error
or else Lo
= Error
then
21509 Base_Typ
:= Any_Integer
;
21510 Set_Error_Posted
(T
, True);
21512 -- Here both bounds are OK expressions
21515 Analyze_And_Resolve
(Lo
, Any_Integer
);
21516 Analyze_And_Resolve
(Hi
, Any_Integer
);
21522 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21523 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21526 -- Find type to derive from
21528 Lo_Val
:= Expr_Value
(Lo
);
21529 Hi_Val
:= Expr_Value
(Hi
);
21531 if Can_Derive_From
(Standard_Short_Short_Integer
) then
21532 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
21534 elsif Can_Derive_From
(Standard_Short_Integer
) then
21535 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
21537 elsif Can_Derive_From
(Standard_Integer
) then
21538 Base_Typ
:= Base_Type
(Standard_Integer
);
21540 elsif Can_Derive_From
(Standard_Long_Integer
) then
21541 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
21543 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
21544 Check_Restriction
(No_Long_Long_Integers
, Def
);
21545 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21548 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21549 Error_Msg_N
("integer type definition bounds out of range", Def
);
21550 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21551 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21555 -- Complete both implicit base and declared first subtype entities. The
21556 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21557 -- are not clobbered when the signed integer type acts as a full view of
21560 Set_Etype
(Implicit_Base
, Base_Typ
);
21561 Set_Size_Info
(Implicit_Base
, Base_Typ
);
21562 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
21563 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
21564 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
21566 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
21567 Set_Etype
(T
, Implicit_Base
);
21568 Set_Size_Info
(T
, Implicit_Base
);
21569 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
21570 Set_Scalar_Range
(T
, Def
);
21571 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
21572 Set_Is_Constrained
(T
);
21573 end Signed_Integer_Type_Declaration
;