2017-09-26 Thomas Koenig <tkoenig@gcc.gnu.org>
[official-gcc.git] / gcc / tree-vrp.c
blob3dba35627893e7af44109c3388c89f4997d0e7f0
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "intl.h"
51 #include "cfgloop.h"
52 #include "tree-scalar-evolution.h"
53 #include "tree-ssa-propagate.h"
54 #include "tree-chrec.h"
55 #include "tree-ssa-threadupdate.h"
56 #include "tree-ssa-scopedtables.h"
57 #include "tree-ssa-threadedge.h"
58 #include "omp-general.h"
59 #include "target.h"
60 #include "case-cfn-macros.h"
61 #include "params.h"
62 #include "alloc-pool.h"
63 #include "domwalk.h"
64 #include "tree-cfgcleanup.h"
65 #include "stringpool.h"
66 #include "attribs.h"
68 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
70 /* Allocation pools for tree-vrp allocations. */
71 static object_allocator<value_range> vrp_value_range_pool ("Tree VRP value ranges");
72 static bitmap_obstack vrp_equiv_obstack;
74 /* Set of SSA names found live during the RPO traversal of the function
75 for still active basic-blocks. */
76 static sbitmap *live;
78 /* Return true if the SSA name NAME is live on the edge E. */
80 static bool
81 live_on_edge (edge e, tree name)
83 return (live[e->dest->index]
84 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
87 /* Local functions. */
88 static int compare_values (tree val1, tree val2);
89 static int compare_values_warnv (tree val1, tree val2, bool *);
90 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
91 tree, tree, bool, bool *,
92 bool *);
94 struct assert_info
96 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
97 enum tree_code comp_code;
99 /* Name to register the assert for. */
100 tree name;
102 /* Value being compared against. */
103 tree val;
105 /* Expression to compare. */
106 tree expr;
109 /* Location information for ASSERT_EXPRs. Each instance of this
110 structure describes an ASSERT_EXPR for an SSA name. Since a single
111 SSA name may have more than one assertion associated with it, these
112 locations are kept in a linked list attached to the corresponding
113 SSA name. */
114 struct assert_locus
116 /* Basic block where the assertion would be inserted. */
117 basic_block bb;
119 /* Some assertions need to be inserted on an edge (e.g., assertions
120 generated by COND_EXPRs). In those cases, BB will be NULL. */
121 edge e;
123 /* Pointer to the statement that generated this assertion. */
124 gimple_stmt_iterator si;
126 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
127 enum tree_code comp_code;
129 /* Value being compared against. */
130 tree val;
132 /* Expression to compare. */
133 tree expr;
135 /* Next node in the linked list. */
136 assert_locus *next;
139 /* If bit I is present, it means that SSA name N_i has a list of
140 assertions that should be inserted in the IL. */
141 static bitmap need_assert_for;
143 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
144 holds a list of ASSERT_LOCUS_T nodes that describe where
145 ASSERT_EXPRs for SSA name N_I should be inserted. */
146 static assert_locus **asserts_for;
148 /* Value range array. After propagation, VR_VALUE[I] holds the range
149 of values that SSA name N_I may take. */
150 static unsigned num_vr_values;
151 static value_range **vr_value;
152 static bool values_propagated;
154 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
155 number of executable edges we saw the last time we visited the
156 node. */
157 static int *vr_phi_edge_counts;
159 struct switch_update {
160 gswitch *stmt;
161 tree vec;
164 static vec<edge> to_remove_edges;
165 static vec<switch_update> to_update_switch_stmts;
168 /* Return the maximum value for TYPE. */
170 static inline tree
171 vrp_val_max (const_tree type)
173 if (!INTEGRAL_TYPE_P (type))
174 return NULL_TREE;
176 return TYPE_MAX_VALUE (type);
179 /* Return the minimum value for TYPE. */
181 static inline tree
182 vrp_val_min (const_tree type)
184 if (!INTEGRAL_TYPE_P (type))
185 return NULL_TREE;
187 return TYPE_MIN_VALUE (type);
190 /* Return whether VAL is equal to the maximum value of its type.
191 We can't do a simple equality comparison with TYPE_MAX_VALUE because
192 C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
193 is not == to the integer constant with the same value in the type. */
195 static inline bool
196 vrp_val_is_max (const_tree val)
198 tree type_max = vrp_val_max (TREE_TYPE (val));
199 return (val == type_max
200 || (type_max != NULL_TREE
201 && operand_equal_p (val, type_max, 0)));
204 /* Return whether VAL is equal to the minimum value of its type. */
206 static inline bool
207 vrp_val_is_min (const_tree val)
209 tree type_min = vrp_val_min (TREE_TYPE (val));
210 return (val == type_min
211 || (type_min != NULL_TREE
212 && operand_equal_p (val, type_min, 0)));
216 /* Set value range VR to VR_UNDEFINED. */
218 static inline void
219 set_value_range_to_undefined (value_range *vr)
221 vr->type = VR_UNDEFINED;
222 vr->min = vr->max = NULL_TREE;
223 if (vr->equiv)
224 bitmap_clear (vr->equiv);
228 /* Set value range VR to VR_VARYING. */
230 static inline void
231 set_value_range_to_varying (value_range *vr)
233 vr->type = VR_VARYING;
234 vr->min = vr->max = NULL_TREE;
235 if (vr->equiv)
236 bitmap_clear (vr->equiv);
240 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
242 static void
243 set_value_range (value_range *vr, enum value_range_type t, tree min,
244 tree max, bitmap equiv)
246 /* Check the validity of the range. */
247 if (flag_checking
248 && (t == VR_RANGE || t == VR_ANTI_RANGE))
250 int cmp;
252 gcc_assert (min && max);
254 gcc_assert (!TREE_OVERFLOW_P (min) && !TREE_OVERFLOW_P (max));
256 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
257 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
259 cmp = compare_values (min, max);
260 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
263 if (flag_checking
264 && (t == VR_UNDEFINED || t == VR_VARYING))
266 gcc_assert (min == NULL_TREE && max == NULL_TREE);
267 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
270 vr->type = t;
271 vr->min = min;
272 vr->max = max;
274 /* Since updating the equivalence set involves deep copying the
275 bitmaps, only do it if absolutely necessary. */
276 if (vr->equiv == NULL
277 && equiv != NULL)
278 vr->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
280 if (equiv != vr->equiv)
282 if (equiv && !bitmap_empty_p (equiv))
283 bitmap_copy (vr->equiv, equiv);
284 else
285 bitmap_clear (vr->equiv);
290 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
291 This means adjusting T, MIN and MAX representing the case of a
292 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
293 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
294 In corner cases where MAX+1 or MIN-1 wraps this will fall back
295 to varying.
296 This routine exists to ease canonicalization in the case where we
297 extract ranges from var + CST op limit. */
299 static void
300 set_and_canonicalize_value_range (value_range *vr, enum value_range_type t,
301 tree min, tree max, bitmap equiv)
303 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
304 if (t == VR_UNDEFINED)
306 set_value_range_to_undefined (vr);
307 return;
309 else if (t == VR_VARYING)
311 set_value_range_to_varying (vr);
312 return;
315 /* Nothing to canonicalize for symbolic ranges. */
316 if (TREE_CODE (min) != INTEGER_CST
317 || TREE_CODE (max) != INTEGER_CST)
319 set_value_range (vr, t, min, max, equiv);
320 return;
323 /* Wrong order for min and max, to swap them and the VR type we need
324 to adjust them. */
325 if (tree_int_cst_lt (max, min))
327 tree one, tmp;
329 /* For one bit precision if max < min, then the swapped
330 range covers all values, so for VR_RANGE it is varying and
331 for VR_ANTI_RANGE empty range, so drop to varying as well. */
332 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
334 set_value_range_to_varying (vr);
335 return;
338 one = build_int_cst (TREE_TYPE (min), 1);
339 tmp = int_const_binop (PLUS_EXPR, max, one);
340 max = int_const_binop (MINUS_EXPR, min, one);
341 min = tmp;
343 /* There's one corner case, if we had [C+1, C] before we now have
344 that again. But this represents an empty value range, so drop
345 to varying in this case. */
346 if (tree_int_cst_lt (max, min))
348 set_value_range_to_varying (vr);
349 return;
352 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
355 /* Anti-ranges that can be represented as ranges should be so. */
356 if (t == VR_ANTI_RANGE)
358 bool is_min = vrp_val_is_min (min);
359 bool is_max = vrp_val_is_max (max);
361 if (is_min && is_max)
363 /* We cannot deal with empty ranges, drop to varying.
364 ??? This could be VR_UNDEFINED instead. */
365 set_value_range_to_varying (vr);
366 return;
368 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
369 && (is_min || is_max))
371 /* Non-empty boolean ranges can always be represented
372 as a singleton range. */
373 if (is_min)
374 min = max = vrp_val_max (TREE_TYPE (min));
375 else
376 min = max = vrp_val_min (TREE_TYPE (min));
377 t = VR_RANGE;
379 else if (is_min
380 /* As a special exception preserve non-null ranges. */
381 && !(TYPE_UNSIGNED (TREE_TYPE (min))
382 && integer_zerop (max)))
384 tree one = build_int_cst (TREE_TYPE (max), 1);
385 min = int_const_binop (PLUS_EXPR, max, one);
386 max = vrp_val_max (TREE_TYPE (max));
387 t = VR_RANGE;
389 else if (is_max)
391 tree one = build_int_cst (TREE_TYPE (min), 1);
392 max = int_const_binop (MINUS_EXPR, min, one);
393 min = vrp_val_min (TREE_TYPE (min));
394 t = VR_RANGE;
398 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
399 to make sure VRP iteration terminates, otherwise we can get into
400 oscillations. */
402 set_value_range (vr, t, min, max, equiv);
405 /* Copy value range FROM into value range TO. */
407 static inline void
408 copy_value_range (value_range *to, value_range *from)
410 set_value_range (to, from->type, from->min, from->max, from->equiv);
413 /* Set value range VR to a single value. This function is only called
414 with values we get from statements, and exists to clear the
415 TREE_OVERFLOW flag. */
417 static inline void
418 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
420 gcc_assert (is_gimple_min_invariant (val));
421 if (TREE_OVERFLOW_P (val))
422 val = drop_tree_overflow (val);
423 set_value_range (vr, VR_RANGE, val, val, equiv);
426 /* Set value range VR to a non-negative range of type TYPE. */
428 static inline void
429 set_value_range_to_nonnegative (value_range *vr, tree type)
431 tree zero = build_int_cst (type, 0);
432 set_value_range (vr, VR_RANGE, zero, vrp_val_max (type), vr->equiv);
435 /* Set value range VR to a non-NULL range of type TYPE. */
437 static inline void
438 set_value_range_to_nonnull (value_range *vr, tree type)
440 tree zero = build_int_cst (type, 0);
441 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
445 /* Set value range VR to a NULL range of type TYPE. */
447 static inline void
448 set_value_range_to_null (value_range *vr, tree type)
450 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
454 /* Set value range VR to a range of a truthvalue of type TYPE. */
456 static inline void
457 set_value_range_to_truthvalue (value_range *vr, tree type)
459 if (TYPE_PRECISION (type) == 1)
460 set_value_range_to_varying (vr);
461 else
462 set_value_range (vr, VR_RANGE,
463 build_int_cst (type, 0), build_int_cst (type, 1),
464 vr->equiv);
468 /* If abs (min) < abs (max), set VR to [-max, max], if
469 abs (min) >= abs (max), set VR to [-min, min]. */
471 static void
472 abs_extent_range (value_range *vr, tree min, tree max)
474 int cmp;
476 gcc_assert (TREE_CODE (min) == INTEGER_CST);
477 gcc_assert (TREE_CODE (max) == INTEGER_CST);
478 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
479 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
480 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
481 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
482 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
484 set_value_range_to_varying (vr);
485 return;
487 cmp = compare_values (min, max);
488 if (cmp == -1)
489 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
490 else if (cmp == 0 || cmp == 1)
492 max = min;
493 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
495 else
497 set_value_range_to_varying (vr);
498 return;
500 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
504 /* Return value range information for VAR.
506 If we have no values ranges recorded (ie, VRP is not running), then
507 return NULL. Otherwise create an empty range if none existed for VAR. */
509 static value_range *
510 get_value_range (const_tree var)
512 static const value_range vr_const_varying
513 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
514 value_range *vr;
515 tree sym;
516 unsigned ver = SSA_NAME_VERSION (var);
518 /* If we have no recorded ranges, then return NULL. */
519 if (! vr_value)
520 return NULL;
522 /* If we query the range for a new SSA name return an unmodifiable VARYING.
523 We should get here at most from the substitute-and-fold stage which
524 will never try to change values. */
525 if (ver >= num_vr_values)
526 return CONST_CAST (value_range *, &vr_const_varying);
528 vr = vr_value[ver];
529 if (vr)
530 return vr;
532 /* After propagation finished do not allocate new value-ranges. */
533 if (values_propagated)
534 return CONST_CAST (value_range *, &vr_const_varying);
536 /* Create a default value range. */
537 vr_value[ver] = vr = vrp_value_range_pool.allocate ();
538 memset (vr, 0, sizeof (*vr));
540 /* Defer allocating the equivalence set. */
541 vr->equiv = NULL;
543 /* If VAR is a default definition of a parameter, the variable can
544 take any value in VAR's type. */
545 if (SSA_NAME_IS_DEFAULT_DEF (var))
547 sym = SSA_NAME_VAR (var);
548 if (TREE_CODE (sym) == PARM_DECL)
550 /* Try to use the "nonnull" attribute to create ~[0, 0]
551 anti-ranges for pointers. Note that this is only valid with
552 default definitions of PARM_DECLs. */
553 if (POINTER_TYPE_P (TREE_TYPE (sym))
554 && (nonnull_arg_p (sym)
555 || get_ptr_nonnull (var)))
556 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
557 else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
559 wide_int min, max;
560 value_range_type rtype = get_range_info (var, &min, &max);
561 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
562 set_value_range (vr, rtype,
563 wide_int_to_tree (TREE_TYPE (var), min),
564 wide_int_to_tree (TREE_TYPE (var), max),
565 NULL);
566 else
567 set_value_range_to_varying (vr);
569 else
570 set_value_range_to_varying (vr);
572 else if (TREE_CODE (sym) == RESULT_DECL
573 && DECL_BY_REFERENCE (sym))
574 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
577 return vr;
580 /* Set value-ranges of all SSA names defined by STMT to varying. */
582 static void
583 set_defs_to_varying (gimple *stmt)
585 ssa_op_iter i;
586 tree def;
587 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
589 value_range *vr = get_value_range (def);
590 /* Avoid writing to vr_const_varying get_value_range may return. */
591 if (vr->type != VR_VARYING)
592 set_value_range_to_varying (vr);
597 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
599 static inline bool
600 vrp_operand_equal_p (const_tree val1, const_tree val2)
602 if (val1 == val2)
603 return true;
604 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
605 return false;
606 return true;
609 /* Return true, if the bitmaps B1 and B2 are equal. */
611 static inline bool
612 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
614 return (b1 == b2
615 || ((!b1 || bitmap_empty_p (b1))
616 && (!b2 || bitmap_empty_p (b2)))
617 || (b1 && b2
618 && bitmap_equal_p (b1, b2)));
621 /* Update the value range and equivalence set for variable VAR to
622 NEW_VR. Return true if NEW_VR is different from VAR's previous
623 value.
625 NOTE: This function assumes that NEW_VR is a temporary value range
626 object created for the sole purpose of updating VAR's range. The
627 storage used by the equivalence set from NEW_VR will be freed by
628 this function. Do not call update_value_range when NEW_VR
629 is the range object associated with another SSA name. */
631 static inline bool
632 update_value_range (const_tree var, value_range *new_vr)
634 value_range *old_vr;
635 bool is_new;
637 /* If there is a value-range on the SSA name from earlier analysis
638 factor that in. */
639 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
641 wide_int min, max;
642 value_range_type rtype = get_range_info (var, &min, &max);
643 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
645 tree nr_min, nr_max;
646 nr_min = wide_int_to_tree (TREE_TYPE (var), min);
647 nr_max = wide_int_to_tree (TREE_TYPE (var), max);
648 value_range nr = VR_INITIALIZER;
649 set_and_canonicalize_value_range (&nr, rtype, nr_min, nr_max, NULL);
650 vrp_intersect_ranges (new_vr, &nr);
654 /* Update the value range, if necessary. */
655 old_vr = get_value_range (var);
656 is_new = old_vr->type != new_vr->type
657 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
658 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
659 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
661 if (is_new)
663 /* Do not allow transitions up the lattice. The following
664 is slightly more awkward than just new_vr->type < old_vr->type
665 because VR_RANGE and VR_ANTI_RANGE need to be considered
666 the same. We may not have is_new when transitioning to
667 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
668 called. */
669 if (new_vr->type == VR_UNDEFINED)
671 BITMAP_FREE (new_vr->equiv);
672 set_value_range_to_varying (old_vr);
673 set_value_range_to_varying (new_vr);
674 return true;
676 else
677 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
678 new_vr->equiv);
681 BITMAP_FREE (new_vr->equiv);
683 return is_new;
687 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
688 point where equivalence processing can be turned on/off. */
690 static void
691 add_equivalence (bitmap *equiv, const_tree var)
693 unsigned ver = SSA_NAME_VERSION (var);
694 value_range *vr = get_value_range (var);
696 if (*equiv == NULL)
697 *equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
698 bitmap_set_bit (*equiv, ver);
699 if (vr && vr->equiv)
700 bitmap_ior_into (*equiv, vr->equiv);
704 /* Return true if VR is ~[0, 0]. */
706 static inline bool
707 range_is_nonnull (value_range *vr)
709 return vr->type == VR_ANTI_RANGE
710 && integer_zerop (vr->min)
711 && integer_zerop (vr->max);
715 /* Return true if VR is [0, 0]. */
717 static inline bool
718 range_is_null (value_range *vr)
720 return vr->type == VR_RANGE
721 && integer_zerop (vr->min)
722 && integer_zerop (vr->max);
725 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
726 a singleton. */
728 static inline bool
729 range_int_cst_p (value_range *vr)
731 return (vr->type == VR_RANGE
732 && TREE_CODE (vr->max) == INTEGER_CST
733 && TREE_CODE (vr->min) == INTEGER_CST);
736 /* Return true if VR is a INTEGER_CST singleton. */
738 static inline bool
739 range_int_cst_singleton_p (value_range *vr)
741 return (range_int_cst_p (vr)
742 && tree_int_cst_equal (vr->min, vr->max));
745 /* Return true if value range VR involves at least one symbol. */
747 static inline bool
748 symbolic_range_p (value_range *vr)
750 return (!is_gimple_min_invariant (vr->min)
751 || !is_gimple_min_invariant (vr->max));
754 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
755 otherwise. We only handle additive operations and set NEG to true if the
756 symbol is negated and INV to the invariant part, if any. */
758 static tree
759 get_single_symbol (tree t, bool *neg, tree *inv)
761 bool neg_;
762 tree inv_;
764 *inv = NULL_TREE;
765 *neg = false;
767 if (TREE_CODE (t) == PLUS_EXPR
768 || TREE_CODE (t) == POINTER_PLUS_EXPR
769 || TREE_CODE (t) == MINUS_EXPR)
771 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
773 neg_ = (TREE_CODE (t) == MINUS_EXPR);
774 inv_ = TREE_OPERAND (t, 0);
775 t = TREE_OPERAND (t, 1);
777 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
779 neg_ = false;
780 inv_ = TREE_OPERAND (t, 1);
781 t = TREE_OPERAND (t, 0);
783 else
784 return NULL_TREE;
786 else
788 neg_ = false;
789 inv_ = NULL_TREE;
792 if (TREE_CODE (t) == NEGATE_EXPR)
794 t = TREE_OPERAND (t, 0);
795 neg_ = !neg_;
798 if (TREE_CODE (t) != SSA_NAME)
799 return NULL_TREE;
801 if (inv_ && TREE_OVERFLOW_P (inv_))
802 inv_ = drop_tree_overflow (inv_);
804 *neg = neg_;
805 *inv = inv_;
806 return t;
809 /* The reverse operation: build a symbolic expression with TYPE
810 from symbol SYM, negated according to NEG, and invariant INV. */
812 static tree
813 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
815 const bool pointer_p = POINTER_TYPE_P (type);
816 tree t = sym;
818 if (neg)
819 t = build1 (NEGATE_EXPR, type, t);
821 if (integer_zerop (inv))
822 return t;
824 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
827 /* Return true if value range VR involves exactly one symbol SYM. */
829 static bool
830 symbolic_range_based_on_p (value_range *vr, const_tree sym)
832 bool neg, min_has_symbol, max_has_symbol;
833 tree inv;
835 if (is_gimple_min_invariant (vr->min))
836 min_has_symbol = false;
837 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
838 min_has_symbol = true;
839 else
840 return false;
842 if (is_gimple_min_invariant (vr->max))
843 max_has_symbol = false;
844 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
845 max_has_symbol = true;
846 else
847 return false;
849 return (min_has_symbol || max_has_symbol);
852 /* Return true if the result of assignment STMT is know to be non-zero. */
854 static bool
855 gimple_assign_nonzero_p (gimple *stmt)
857 enum tree_code code = gimple_assign_rhs_code (stmt);
858 bool strict_overflow_p;
859 switch (get_gimple_rhs_class (code))
861 case GIMPLE_UNARY_RHS:
862 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
863 gimple_expr_type (stmt),
864 gimple_assign_rhs1 (stmt),
865 &strict_overflow_p);
866 case GIMPLE_BINARY_RHS:
867 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
868 gimple_expr_type (stmt),
869 gimple_assign_rhs1 (stmt),
870 gimple_assign_rhs2 (stmt),
871 &strict_overflow_p);
872 case GIMPLE_TERNARY_RHS:
873 return false;
874 case GIMPLE_SINGLE_RHS:
875 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
876 &strict_overflow_p);
877 case GIMPLE_INVALID_RHS:
878 gcc_unreachable ();
879 default:
880 gcc_unreachable ();
884 /* Return true if STMT is known to compute a non-zero value. */
886 static bool
887 gimple_stmt_nonzero_p (gimple *stmt)
889 switch (gimple_code (stmt))
891 case GIMPLE_ASSIGN:
892 return gimple_assign_nonzero_p (stmt);
893 case GIMPLE_CALL:
895 tree fndecl = gimple_call_fndecl (stmt);
896 if (!fndecl) return false;
897 if (flag_delete_null_pointer_checks && !flag_check_new
898 && DECL_IS_OPERATOR_NEW (fndecl)
899 && !TREE_NOTHROW (fndecl))
900 return true;
901 /* References are always non-NULL. */
902 if (flag_delete_null_pointer_checks
903 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
904 return true;
905 if (flag_delete_null_pointer_checks &&
906 lookup_attribute ("returns_nonnull",
907 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
908 return true;
910 gcall *call_stmt = as_a<gcall *> (stmt);
911 unsigned rf = gimple_call_return_flags (call_stmt);
912 if (rf & ERF_RETURNS_ARG)
914 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
915 if (argnum < gimple_call_num_args (call_stmt))
917 tree arg = gimple_call_arg (call_stmt, argnum);
918 if (SSA_VAR_P (arg)
919 && infer_nonnull_range_by_attribute (stmt, arg))
920 return true;
923 return gimple_alloca_call_p (stmt);
925 default:
926 gcc_unreachable ();
930 /* Like tree_expr_nonzero_p, but this function uses value ranges
931 obtained so far. */
933 static bool
934 vrp_stmt_computes_nonzero (gimple *stmt)
936 if (gimple_stmt_nonzero_p (stmt))
937 return true;
939 /* If we have an expression of the form &X->a, then the expression
940 is nonnull if X is nonnull. */
941 if (is_gimple_assign (stmt)
942 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
944 tree expr = gimple_assign_rhs1 (stmt);
945 tree base = get_base_address (TREE_OPERAND (expr, 0));
947 if (base != NULL_TREE
948 && TREE_CODE (base) == MEM_REF
949 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
951 value_range *vr = get_value_range (TREE_OPERAND (base, 0));
952 if (range_is_nonnull (vr))
953 return true;
957 return false;
960 /* Returns true if EXPR is a valid value (as expected by compare_values) --
961 a gimple invariant, or SSA_NAME +- CST. */
963 static bool
964 valid_value_p (tree expr)
966 if (TREE_CODE (expr) == SSA_NAME)
967 return true;
969 if (TREE_CODE (expr) == PLUS_EXPR
970 || TREE_CODE (expr) == MINUS_EXPR)
971 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
972 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
974 return is_gimple_min_invariant (expr);
977 /* Return
978 1 if VAL < VAL2
979 0 if !(VAL < VAL2)
980 -2 if those are incomparable. */
981 static inline int
982 operand_less_p (tree val, tree val2)
984 /* LT is folded faster than GE and others. Inline the common case. */
985 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
986 return tree_int_cst_lt (val, val2);
987 else
989 tree tcmp;
991 fold_defer_overflow_warnings ();
993 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
995 fold_undefer_and_ignore_overflow_warnings ();
997 if (!tcmp
998 || TREE_CODE (tcmp) != INTEGER_CST)
999 return -2;
1001 if (!integer_zerop (tcmp))
1002 return 1;
1005 return 0;
1008 /* Compare two values VAL1 and VAL2. Return
1010 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1011 -1 if VAL1 < VAL2,
1012 0 if VAL1 == VAL2,
1013 +1 if VAL1 > VAL2, and
1014 +2 if VAL1 != VAL2
1016 This is similar to tree_int_cst_compare but supports pointer values
1017 and values that cannot be compared at compile time.
1019 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1020 true if the return value is only valid if we assume that signed
1021 overflow is undefined. */
1023 static int
1024 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1026 if (val1 == val2)
1027 return 0;
1029 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1030 both integers. */
1031 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1032 == POINTER_TYPE_P (TREE_TYPE (val2)));
1034 /* Convert the two values into the same type. This is needed because
1035 sizetype causes sign extension even for unsigned types. */
1036 val2 = fold_convert (TREE_TYPE (val1), val2);
1037 STRIP_USELESS_TYPE_CONVERSION (val2);
1039 const bool overflow_undefined
1040 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1041 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1042 tree inv1, inv2;
1043 bool neg1, neg2;
1044 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1045 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1047 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1048 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1049 if (sym1 && sym2)
1051 /* Both values must use the same name with the same sign. */
1052 if (sym1 != sym2 || neg1 != neg2)
1053 return -2;
1055 /* [-]NAME + CST == [-]NAME + CST. */
1056 if (inv1 == inv2)
1057 return 0;
1059 /* If overflow is defined we cannot simplify more. */
1060 if (!overflow_undefined)
1061 return -2;
1063 if (strict_overflow_p != NULL
1064 /* Symbolic range building sets TREE_NO_WARNING to declare
1065 that overflow doesn't happen. */
1066 && (!inv1 || !TREE_NO_WARNING (val1))
1067 && (!inv2 || !TREE_NO_WARNING (val2)))
1068 *strict_overflow_p = true;
1070 if (!inv1)
1071 inv1 = build_int_cst (TREE_TYPE (val1), 0);
1072 if (!inv2)
1073 inv2 = build_int_cst (TREE_TYPE (val2), 0);
1075 return wi::cmp (inv1, inv2, TYPE_SIGN (TREE_TYPE (val1)));
1078 const bool cst1 = is_gimple_min_invariant (val1);
1079 const bool cst2 = is_gimple_min_invariant (val2);
1081 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1082 it might be possible to say something depending on the constants. */
1083 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1085 if (!overflow_undefined)
1086 return -2;
1088 if (strict_overflow_p != NULL
1089 /* Symbolic range building sets TREE_NO_WARNING to declare
1090 that overflow doesn't happen. */
1091 && (!sym1 || !TREE_NO_WARNING (val1))
1092 && (!sym2 || !TREE_NO_WARNING (val2)))
1093 *strict_overflow_p = true;
1095 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1096 tree cst = cst1 ? val1 : val2;
1097 tree inv = cst1 ? inv2 : inv1;
1099 /* Compute the difference between the constants. If it overflows or
1100 underflows, this means that we can trivially compare the NAME with
1101 it and, consequently, the two values with each other. */
1102 wide_int diff = wi::sub (cst, inv);
1103 if (wi::cmp (0, inv, sgn) != wi::cmp (diff, cst, sgn))
1105 const int res = wi::cmp (cst, inv, sgn);
1106 return cst1 ? res : -res;
1109 return -2;
1112 /* We cannot say anything more for non-constants. */
1113 if (!cst1 || !cst2)
1114 return -2;
1116 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1118 /* We cannot compare overflowed values. */
1119 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1120 return -2;
1122 return tree_int_cst_compare (val1, val2);
1124 else
1126 tree t;
1128 /* First see if VAL1 and VAL2 are not the same. */
1129 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1130 return 0;
1132 /* If VAL1 is a lower address than VAL2, return -1. */
1133 if (operand_less_p (val1, val2) == 1)
1134 return -1;
1136 /* If VAL1 is a higher address than VAL2, return +1. */
1137 if (operand_less_p (val2, val1) == 1)
1138 return 1;
1140 /* If VAL1 is different than VAL2, return +2.
1141 For integer constants we either have already returned -1 or 1
1142 or they are equivalent. We still might succeed in proving
1143 something about non-trivial operands. */
1144 if (TREE_CODE (val1) != INTEGER_CST
1145 || TREE_CODE (val2) != INTEGER_CST)
1147 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1148 if (t && integer_onep (t))
1149 return 2;
1152 return -2;
1156 /* Compare values like compare_values_warnv. */
1158 static int
1159 compare_values (tree val1, tree val2)
1161 bool sop;
1162 return compare_values_warnv (val1, val2, &sop);
1166 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1167 0 if VAL is not inside [MIN, MAX],
1168 -2 if we cannot tell either way.
1170 Benchmark compile/20001226-1.c compilation time after changing this
1171 function. */
1173 static inline int
1174 value_inside_range (tree val, tree min, tree max)
1176 int cmp1, cmp2;
1178 cmp1 = operand_less_p (val, min);
1179 if (cmp1 == -2)
1180 return -2;
1181 if (cmp1 == 1)
1182 return 0;
1184 cmp2 = operand_less_p (max, val);
1185 if (cmp2 == -2)
1186 return -2;
1188 return !cmp2;
1192 /* Return true if value ranges VR0 and VR1 have a non-empty
1193 intersection.
1195 Benchmark compile/20001226-1.c compilation time after changing this
1196 function.
1199 static inline bool
1200 value_ranges_intersect_p (value_range *vr0, value_range *vr1)
1202 /* The value ranges do not intersect if the maximum of the first range is
1203 less than the minimum of the second range or vice versa.
1204 When those relations are unknown, we can't do any better. */
1205 if (operand_less_p (vr0->max, vr1->min) != 0)
1206 return false;
1207 if (operand_less_p (vr1->max, vr0->min) != 0)
1208 return false;
1209 return true;
1213 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1214 include the value zero, -2 if we cannot tell. */
1216 static inline int
1217 range_includes_zero_p (tree min, tree max)
1219 tree zero = build_int_cst (TREE_TYPE (min), 0);
1220 return value_inside_range (zero, min, max);
1223 /* Return true if *VR is know to only contain nonnegative values. */
1225 static inline bool
1226 value_range_nonnegative_p (value_range *vr)
1228 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1229 which would return a useful value should be encoded as a
1230 VR_RANGE. */
1231 if (vr->type == VR_RANGE)
1233 int result = compare_values (vr->min, integer_zero_node);
1234 return (result == 0 || result == 1);
1237 return false;
1240 /* If *VR has a value rante that is a single constant value return that,
1241 otherwise return NULL_TREE. */
1243 static tree
1244 value_range_constant_singleton (value_range *vr)
1246 if (vr->type == VR_RANGE
1247 && vrp_operand_equal_p (vr->min, vr->max)
1248 && is_gimple_min_invariant (vr->min))
1249 return vr->min;
1251 return NULL_TREE;
1254 /* If OP has a value range with a single constant value return that,
1255 otherwise return NULL_TREE. This returns OP itself if OP is a
1256 constant. */
1258 static tree
1259 op_with_constant_singleton_value_range (tree op)
1261 if (is_gimple_min_invariant (op))
1262 return op;
1264 if (TREE_CODE (op) != SSA_NAME)
1265 return NULL_TREE;
1267 return value_range_constant_singleton (get_value_range (op));
1270 /* Return true if op is in a boolean [0, 1] value-range. */
1272 static bool
1273 op_with_boolean_value_range_p (tree op)
1275 value_range *vr;
1277 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1278 return true;
1280 if (integer_zerop (op)
1281 || integer_onep (op))
1282 return true;
1284 if (TREE_CODE (op) != SSA_NAME)
1285 return false;
1287 vr = get_value_range (op);
1288 return (vr->type == VR_RANGE
1289 && integer_zerop (vr->min)
1290 && integer_onep (vr->max));
1293 /* Extract value range information for VAR when (OP COND_CODE LIMIT) is
1294 true and store it in *VR_P. */
1296 static void
1297 extract_range_for_var_from_comparison_expr (tree var, enum tree_code cond_code,
1298 tree op, tree limit,
1299 value_range *vr_p)
1301 tree min, max, type;
1302 value_range *limit_vr;
1303 type = TREE_TYPE (var);
1304 gcc_assert (limit != var);
1306 /* For pointer arithmetic, we only keep track of pointer equality
1307 and inequality. */
1308 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1310 set_value_range_to_varying (vr_p);
1311 return;
1314 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1315 try to use LIMIT's range to avoid creating symbolic ranges
1316 unnecessarily. */
1317 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1319 /* LIMIT's range is only interesting if it has any useful information. */
1320 if (! limit_vr
1321 || limit_vr->type == VR_UNDEFINED
1322 || limit_vr->type == VR_VARYING
1323 || (symbolic_range_p (limit_vr)
1324 && ! (limit_vr->type == VR_RANGE
1325 && (limit_vr->min == limit_vr->max
1326 || operand_equal_p (limit_vr->min, limit_vr->max, 0)))))
1327 limit_vr = NULL;
1329 /* Initially, the new range has the same set of equivalences of
1330 VAR's range. This will be revised before returning the final
1331 value. Since assertions may be chained via mutually exclusive
1332 predicates, we will need to trim the set of equivalences before
1333 we are done. */
1334 gcc_assert (vr_p->equiv == NULL);
1335 add_equivalence (&vr_p->equiv, var);
1337 /* Extract a new range based on the asserted comparison for VAR and
1338 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1339 will only use it for equality comparisons (EQ_EXPR). For any
1340 other kind of assertion, we cannot derive a range from LIMIT's
1341 anti-range that can be used to describe the new range. For
1342 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1343 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1344 no single range for x_2 that could describe LE_EXPR, so we might
1345 as well build the range [b_4, +INF] for it.
1346 One special case we handle is extracting a range from a
1347 range test encoded as (unsigned)var + CST <= limit. */
1348 if (TREE_CODE (op) == NOP_EXPR
1349 || TREE_CODE (op) == PLUS_EXPR)
1351 if (TREE_CODE (op) == PLUS_EXPR)
1353 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
1354 TREE_OPERAND (op, 1));
1355 max = int_const_binop (PLUS_EXPR, limit, min);
1356 op = TREE_OPERAND (op, 0);
1358 else
1360 min = build_int_cst (TREE_TYPE (var), 0);
1361 max = limit;
1364 /* Make sure to not set TREE_OVERFLOW on the final type
1365 conversion. We are willingly interpreting large positive
1366 unsigned values as negative signed values here. */
1367 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1368 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1370 /* We can transform a max, min range to an anti-range or
1371 vice-versa. Use set_and_canonicalize_value_range which does
1372 this for us. */
1373 if (cond_code == LE_EXPR)
1374 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1375 min, max, vr_p->equiv);
1376 else if (cond_code == GT_EXPR)
1377 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1378 min, max, vr_p->equiv);
1379 else
1380 gcc_unreachable ();
1382 else if (cond_code == EQ_EXPR)
1384 enum value_range_type range_type;
1386 if (limit_vr)
1388 range_type = limit_vr->type;
1389 min = limit_vr->min;
1390 max = limit_vr->max;
1392 else
1394 range_type = VR_RANGE;
1395 min = limit;
1396 max = limit;
1399 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1401 /* When asserting the equality VAR == LIMIT and LIMIT is another
1402 SSA name, the new range will also inherit the equivalence set
1403 from LIMIT. */
1404 if (TREE_CODE (limit) == SSA_NAME)
1405 add_equivalence (&vr_p->equiv, limit);
1407 else if (cond_code == NE_EXPR)
1409 /* As described above, when LIMIT's range is an anti-range and
1410 this assertion is an inequality (NE_EXPR), then we cannot
1411 derive anything from the anti-range. For instance, if
1412 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1413 not imply that VAR's range is [0, 0]. So, in the case of
1414 anti-ranges, we just assert the inequality using LIMIT and
1415 not its anti-range.
1417 If LIMIT_VR is a range, we can only use it to build a new
1418 anti-range if LIMIT_VR is a single-valued range. For
1419 instance, if LIMIT_VR is [0, 1], the predicate
1420 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1421 Rather, it means that for value 0 VAR should be ~[0, 0]
1422 and for value 1, VAR should be ~[1, 1]. We cannot
1423 represent these ranges.
1425 The only situation in which we can build a valid
1426 anti-range is when LIMIT_VR is a single-valued range
1427 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1428 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1429 if (limit_vr
1430 && limit_vr->type == VR_RANGE
1431 && compare_values (limit_vr->min, limit_vr->max) == 0)
1433 min = limit_vr->min;
1434 max = limit_vr->max;
1436 else
1438 /* In any other case, we cannot use LIMIT's range to build a
1439 valid anti-range. */
1440 min = max = limit;
1443 /* If MIN and MAX cover the whole range for their type, then
1444 just use the original LIMIT. */
1445 if (INTEGRAL_TYPE_P (type)
1446 && vrp_val_is_min (min)
1447 && vrp_val_is_max (max))
1448 min = max = limit;
1450 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1451 min, max, vr_p->equiv);
1453 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1455 min = TYPE_MIN_VALUE (type);
1457 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1458 max = limit;
1459 else
1461 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1462 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1463 LT_EXPR. */
1464 max = limit_vr->max;
1467 /* If the maximum value forces us to be out of bounds, simply punt.
1468 It would be pointless to try and do anything more since this
1469 all should be optimized away above us. */
1470 if (cond_code == LT_EXPR
1471 && compare_values (max, min) == 0)
1472 set_value_range_to_varying (vr_p);
1473 else
1475 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1476 if (cond_code == LT_EXPR)
1478 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1479 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1480 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1481 build_int_cst (TREE_TYPE (max), -1));
1482 else
1483 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1484 build_int_cst (TREE_TYPE (max), 1));
1485 /* Signal to compare_values_warnv this expr doesn't overflow. */
1486 if (EXPR_P (max))
1487 TREE_NO_WARNING (max) = 1;
1490 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1493 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1495 max = TYPE_MAX_VALUE (type);
1497 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1498 min = limit;
1499 else
1501 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1502 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1503 GT_EXPR. */
1504 min = limit_vr->min;
1507 /* If the minimum value forces us to be out of bounds, simply punt.
1508 It would be pointless to try and do anything more since this
1509 all should be optimized away above us. */
1510 if (cond_code == GT_EXPR
1511 && compare_values (min, max) == 0)
1512 set_value_range_to_varying (vr_p);
1513 else
1515 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1516 if (cond_code == GT_EXPR)
1518 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1519 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1520 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1521 build_int_cst (TREE_TYPE (min), -1));
1522 else
1523 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1524 build_int_cst (TREE_TYPE (min), 1));
1525 /* Signal to compare_values_warnv this expr doesn't overflow. */
1526 if (EXPR_P (min))
1527 TREE_NO_WARNING (min) = 1;
1530 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1533 else
1534 gcc_unreachable ();
1536 /* Finally intersect the new range with what we already know about var. */
1537 vrp_intersect_ranges (vr_p, get_value_range (var));
1540 /* Extract value range information from an ASSERT_EXPR EXPR and store
1541 it in *VR_P. */
1543 static void
1544 extract_range_from_assert (value_range *vr_p, tree expr)
1546 tree var = ASSERT_EXPR_VAR (expr);
1547 tree cond = ASSERT_EXPR_COND (expr);
1548 tree limit, op;
1549 enum tree_code cond_code;
1550 gcc_assert (COMPARISON_CLASS_P (cond));
1552 /* Find VAR in the ASSERT_EXPR conditional. */
1553 if (var == TREE_OPERAND (cond, 0)
1554 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1555 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1557 /* If the predicate is of the form VAR COMP LIMIT, then we just
1558 take LIMIT from the RHS and use the same comparison code. */
1559 cond_code = TREE_CODE (cond);
1560 limit = TREE_OPERAND (cond, 1);
1561 op = TREE_OPERAND (cond, 0);
1563 else
1565 /* If the predicate is of the form LIMIT COMP VAR, then we need
1566 to flip around the comparison code to create the proper range
1567 for VAR. */
1568 cond_code = swap_tree_comparison (TREE_CODE (cond));
1569 limit = TREE_OPERAND (cond, 0);
1570 op = TREE_OPERAND (cond, 1);
1572 extract_range_for_var_from_comparison_expr (var, cond_code, op,
1573 limit, vr_p);
1576 /* Extract range information from SSA name VAR and store it in VR. If
1577 VAR has an interesting range, use it. Otherwise, create the
1578 range [VAR, VAR] and return it. This is useful in situations where
1579 we may have conditionals testing values of VARYING names. For
1580 instance,
1582 x_3 = y_5;
1583 if (x_3 > y_5)
1586 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1587 always false. */
1589 static void
1590 extract_range_from_ssa_name (value_range *vr, tree var)
1592 value_range *var_vr = get_value_range (var);
1594 if (var_vr->type != VR_VARYING)
1595 copy_value_range (vr, var_vr);
1596 else
1597 set_value_range (vr, VR_RANGE, var, var, NULL);
1599 add_equivalence (&vr->equiv, var);
1603 /* Wrapper around int_const_binop. If the operation overflows and
1604 overflow is undefined, then adjust the result to be
1605 -INF or +INF depending on CODE, VAL1 and VAL2. Sets *OVERFLOW_P
1606 to whether the operation overflowed. For division by zero
1607 the result is indeterminate but *OVERFLOW_P is set. */
1609 static wide_int
1610 vrp_int_const_binop (enum tree_code code, tree val1, tree val2,
1611 bool *overflow_p)
1613 bool overflow = false;
1614 signop sign = TYPE_SIGN (TREE_TYPE (val1));
1615 wide_int res;
1617 *overflow_p = false;
1619 switch (code)
1621 case RSHIFT_EXPR:
1622 case LSHIFT_EXPR:
1624 wide_int wval2 = wi::to_wide (val2, TYPE_PRECISION (TREE_TYPE (val1)));
1625 if (wi::neg_p (wval2))
1627 wval2 = -wval2;
1628 if (code == RSHIFT_EXPR)
1629 code = LSHIFT_EXPR;
1630 else
1631 code = RSHIFT_EXPR;
1634 if (code == RSHIFT_EXPR)
1635 /* It's unclear from the C standard whether shifts can overflow.
1636 The following code ignores overflow; perhaps a C standard
1637 interpretation ruling is needed. */
1638 res = wi::rshift (val1, wval2, sign);
1639 else
1640 res = wi::lshift (val1, wval2);
1641 break;
1644 case MULT_EXPR:
1645 res = wi::mul (val1, val2, sign, &overflow);
1646 break;
1648 case TRUNC_DIV_EXPR:
1649 case EXACT_DIV_EXPR:
1650 if (val2 == 0)
1652 *overflow_p = true;
1653 return res;
1655 else
1656 res = wi::div_trunc (val1, val2, sign, &overflow);
1657 break;
1659 case FLOOR_DIV_EXPR:
1660 if (val2 == 0)
1662 *overflow_p = true;
1663 return res;
1665 res = wi::div_floor (val1, val2, sign, &overflow);
1666 break;
1668 case CEIL_DIV_EXPR:
1669 if (val2 == 0)
1671 *overflow_p = true;
1672 return res;
1674 res = wi::div_ceil (val1, val2, sign, &overflow);
1675 break;
1677 case ROUND_DIV_EXPR:
1678 if (val2 == 0)
1680 *overflow_p = 0;
1681 return res;
1683 res = wi::div_round (val1, val2, sign, &overflow);
1684 break;
1686 default:
1687 gcc_unreachable ();
1690 if (overflow
1691 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1693 /* If the operation overflowed return -INF or +INF depending
1694 on the operation and the combination of signs of the operands. */
1695 int sgn1 = tree_int_cst_sgn (val1);
1696 int sgn2 = tree_int_cst_sgn (val2);
1698 /* Notice that we only need to handle the restricted set of
1699 operations handled by extract_range_from_binary_expr.
1700 Among them, only multiplication, addition and subtraction
1701 can yield overflow without overflown operands because we
1702 are working with integral types only... except in the
1703 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1704 for division too. */
1706 /* For multiplication, the sign of the overflow is given
1707 by the comparison of the signs of the operands. */
1708 if ((code == MULT_EXPR && sgn1 == sgn2)
1709 /* For addition, the operands must be of the same sign
1710 to yield an overflow. Its sign is therefore that
1711 of one of the operands, for example the first. */
1712 || (code == PLUS_EXPR && sgn1 >= 0)
1713 /* For subtraction, operands must be of
1714 different signs to yield an overflow. Its sign is
1715 therefore that of the first operand or the opposite of
1716 that of the second operand. A first operand of 0 counts
1717 as positive here, for the corner case 0 - (-INF), which
1718 overflows, but must yield +INF. */
1719 || (code == MINUS_EXPR && sgn1 >= 0)
1720 /* For division, the only case is -INF / -1 = +INF. */
1721 || code == TRUNC_DIV_EXPR
1722 || code == FLOOR_DIV_EXPR
1723 || code == CEIL_DIV_EXPR
1724 || code == EXACT_DIV_EXPR
1725 || code == ROUND_DIV_EXPR)
1726 return wi::max_value (TYPE_PRECISION (TREE_TYPE (val1)),
1727 TYPE_SIGN (TREE_TYPE (val1)));
1728 else
1729 return wi::min_value (TYPE_PRECISION (TREE_TYPE (val1)),
1730 TYPE_SIGN (TREE_TYPE (val1)));
1733 *overflow_p = overflow;
1735 return res;
1739 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
1740 bitmask if some bit is unset, it means for all numbers in the range
1741 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1742 bitmask if some bit is set, it means for all numbers in the range
1743 the bit is 1, otherwise it might be 0 or 1. */
1745 static bool
1746 zero_nonzero_bits_from_vr (const tree expr_type,
1747 value_range *vr,
1748 wide_int *may_be_nonzero,
1749 wide_int *must_be_nonzero)
1751 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1752 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1753 if (!range_int_cst_p (vr))
1754 return false;
1756 if (range_int_cst_singleton_p (vr))
1758 *may_be_nonzero = vr->min;
1759 *must_be_nonzero = *may_be_nonzero;
1761 else if (tree_int_cst_sgn (vr->min) >= 0
1762 || tree_int_cst_sgn (vr->max) < 0)
1764 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
1765 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
1766 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
1767 if (xor_mask != 0)
1769 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1770 may_be_nonzero->get_precision ());
1771 *may_be_nonzero = *may_be_nonzero | mask;
1772 *must_be_nonzero = must_be_nonzero->and_not (mask);
1776 return true;
1779 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
1780 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
1781 false otherwise. If *AR can be represented with a single range
1782 *VR1 will be VR_UNDEFINED. */
1784 static bool
1785 ranges_from_anti_range (value_range *ar,
1786 value_range *vr0, value_range *vr1)
1788 tree type = TREE_TYPE (ar->min);
1790 vr0->type = VR_UNDEFINED;
1791 vr1->type = VR_UNDEFINED;
1793 if (ar->type != VR_ANTI_RANGE
1794 || TREE_CODE (ar->min) != INTEGER_CST
1795 || TREE_CODE (ar->max) != INTEGER_CST
1796 || !vrp_val_min (type)
1797 || !vrp_val_max (type))
1798 return false;
1800 if (!vrp_val_is_min (ar->min))
1802 vr0->type = VR_RANGE;
1803 vr0->min = vrp_val_min (type);
1804 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
1806 if (!vrp_val_is_max (ar->max))
1808 vr1->type = VR_RANGE;
1809 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
1810 vr1->max = vrp_val_max (type);
1812 if (vr0->type == VR_UNDEFINED)
1814 *vr0 = *vr1;
1815 vr1->type = VR_UNDEFINED;
1818 return vr0->type != VR_UNDEFINED;
1821 /* Helper to extract a value-range *VR for a multiplicative operation
1822 *VR0 CODE *VR1. */
1824 static void
1825 extract_range_from_multiplicative_op_1 (value_range *vr,
1826 enum tree_code code,
1827 value_range *vr0, value_range *vr1)
1829 enum value_range_type rtype;
1830 wide_int val, min, max;
1831 bool sop;
1832 tree type;
1834 /* Multiplications, divisions and shifts are a bit tricky to handle,
1835 depending on the mix of signs we have in the two ranges, we
1836 need to operate on different values to get the minimum and
1837 maximum values for the new range. One approach is to figure
1838 out all the variations of range combinations and do the
1839 operations.
1841 However, this involves several calls to compare_values and it
1842 is pretty convoluted. It's simpler to do the 4 operations
1843 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1844 MAX1) and then figure the smallest and largest values to form
1845 the new range. */
1846 gcc_assert (code == MULT_EXPR
1847 || code == TRUNC_DIV_EXPR
1848 || code == FLOOR_DIV_EXPR
1849 || code == CEIL_DIV_EXPR
1850 || code == EXACT_DIV_EXPR
1851 || code == ROUND_DIV_EXPR
1852 || code == RSHIFT_EXPR
1853 || code == LSHIFT_EXPR);
1854 gcc_assert (vr0->type == VR_RANGE
1855 && vr0->type == vr1->type);
1857 rtype = vr0->type;
1858 type = TREE_TYPE (vr0->min);
1859 signop sgn = TYPE_SIGN (type);
1861 /* Compute the 4 cross operations and their minimum and maximum value. */
1862 sop = false;
1863 val = vrp_int_const_binop (code, vr0->min, vr1->min, &sop);
1864 if (! sop)
1865 min = max = val;
1867 if (vr1->max == vr1->min)
1869 else if (! sop)
1871 val = vrp_int_const_binop (code, vr0->min, vr1->max, &sop);
1872 if (! sop)
1874 if (wi::lt_p (val, min, sgn))
1875 min = val;
1876 else if (wi::gt_p (val, max, sgn))
1877 max = val;
1881 if (vr0->max == vr0->min)
1883 else if (! sop)
1885 val = vrp_int_const_binop (code, vr0->max, vr1->min, &sop);
1886 if (! sop)
1888 if (wi::lt_p (val, min, sgn))
1889 min = val;
1890 else if (wi::gt_p (val, max, sgn))
1891 max = val;
1895 if (vr0->min == vr0->max || vr1->min == vr1->max)
1897 else if (! sop)
1899 val = vrp_int_const_binop (code, vr0->max, vr1->max, &sop);
1900 if (! sop)
1902 if (wi::lt_p (val, min, sgn))
1903 min = val;
1904 else if (wi::gt_p (val, max, sgn))
1905 max = val;
1909 /* If either operation overflowed, drop to VARYING. */
1910 if (sop)
1912 set_value_range_to_varying (vr);
1913 return;
1916 /* If the new range has its limits swapped around (MIN > MAX),
1917 then the operation caused one of them to wrap around, mark
1918 the new range VARYING. */
1919 if (wi::gt_p (min, max, sgn))
1921 set_value_range_to_varying (vr);
1922 return;
1925 /* We punt for [-INF, +INF].
1926 We learn nothing when we have INF on both sides.
1927 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
1928 if (wi::eq_p (min, wi::min_value (TYPE_PRECISION (type), sgn))
1929 && wi::eq_p (max, wi::max_value (TYPE_PRECISION (type), sgn)))
1931 set_value_range_to_varying (vr);
1932 return;
1935 set_value_range (vr, rtype,
1936 wide_int_to_tree (type, min),
1937 wide_int_to_tree (type, max), NULL);
1940 /* Extract range information from a binary operation CODE based on
1941 the ranges of each of its operands *VR0 and *VR1 with resulting
1942 type EXPR_TYPE. The resulting range is stored in *VR. */
1944 static void
1945 extract_range_from_binary_expr_1 (value_range *vr,
1946 enum tree_code code, tree expr_type,
1947 value_range *vr0_, value_range *vr1_)
1949 value_range vr0 = *vr0_, vr1 = *vr1_;
1950 value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
1951 enum value_range_type type;
1952 tree min = NULL_TREE, max = NULL_TREE;
1953 int cmp;
1955 if (!INTEGRAL_TYPE_P (expr_type)
1956 && !POINTER_TYPE_P (expr_type))
1958 set_value_range_to_varying (vr);
1959 return;
1962 /* Not all binary expressions can be applied to ranges in a
1963 meaningful way. Handle only arithmetic operations. */
1964 if (code != PLUS_EXPR
1965 && code != MINUS_EXPR
1966 && code != POINTER_PLUS_EXPR
1967 && code != MULT_EXPR
1968 && code != TRUNC_DIV_EXPR
1969 && code != FLOOR_DIV_EXPR
1970 && code != CEIL_DIV_EXPR
1971 && code != EXACT_DIV_EXPR
1972 && code != ROUND_DIV_EXPR
1973 && code != TRUNC_MOD_EXPR
1974 && code != RSHIFT_EXPR
1975 && code != LSHIFT_EXPR
1976 && code != MIN_EXPR
1977 && code != MAX_EXPR
1978 && code != BIT_AND_EXPR
1979 && code != BIT_IOR_EXPR
1980 && code != BIT_XOR_EXPR)
1982 set_value_range_to_varying (vr);
1983 return;
1986 /* If both ranges are UNDEFINED, so is the result. */
1987 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
1989 set_value_range_to_undefined (vr);
1990 return;
1992 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
1993 code. At some point we may want to special-case operations that
1994 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
1995 operand. */
1996 else if (vr0.type == VR_UNDEFINED)
1997 set_value_range_to_varying (&vr0);
1998 else if (vr1.type == VR_UNDEFINED)
1999 set_value_range_to_varying (&vr1);
2001 /* We get imprecise results from ranges_from_anti_range when
2002 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
2003 range, but then we also need to hack up vrp_meet. It's just
2004 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
2005 if (code == EXACT_DIV_EXPR
2006 && vr0.type == VR_ANTI_RANGE
2007 && vr0.min == vr0.max
2008 && integer_zerop (vr0.min))
2010 set_value_range_to_nonnull (vr, expr_type);
2011 return;
2014 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2015 and express ~[] op X as ([]' op X) U ([]'' op X). */
2016 if (vr0.type == VR_ANTI_RANGE
2017 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2019 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2020 if (vrtem1.type != VR_UNDEFINED)
2022 value_range vrres = VR_INITIALIZER;
2023 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2024 &vrtem1, vr1_);
2025 vrp_meet (vr, &vrres);
2027 return;
2029 /* Likewise for X op ~[]. */
2030 if (vr1.type == VR_ANTI_RANGE
2031 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2033 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2034 if (vrtem1.type != VR_UNDEFINED)
2036 value_range vrres = VR_INITIALIZER;
2037 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2038 vr0_, &vrtem1);
2039 vrp_meet (vr, &vrres);
2041 return;
2044 /* The type of the resulting value range defaults to VR0.TYPE. */
2045 type = vr0.type;
2047 /* Refuse to operate on VARYING ranges, ranges of different kinds
2048 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2049 because we may be able to derive a useful range even if one of
2050 the operands is VR_VARYING or symbolic range. Similarly for
2051 divisions, MIN/MAX and PLUS/MINUS.
2053 TODO, we may be able to derive anti-ranges in some cases. */
2054 if (code != BIT_AND_EXPR
2055 && code != BIT_IOR_EXPR
2056 && code != TRUNC_DIV_EXPR
2057 && code != FLOOR_DIV_EXPR
2058 && code != CEIL_DIV_EXPR
2059 && code != EXACT_DIV_EXPR
2060 && code != ROUND_DIV_EXPR
2061 && code != TRUNC_MOD_EXPR
2062 && code != MIN_EXPR
2063 && code != MAX_EXPR
2064 && code != PLUS_EXPR
2065 && code != MINUS_EXPR
2066 && code != RSHIFT_EXPR
2067 && (vr0.type == VR_VARYING
2068 || vr1.type == VR_VARYING
2069 || vr0.type != vr1.type
2070 || symbolic_range_p (&vr0)
2071 || symbolic_range_p (&vr1)))
2073 set_value_range_to_varying (vr);
2074 return;
2077 /* Now evaluate the expression to determine the new range. */
2078 if (POINTER_TYPE_P (expr_type))
2080 if (code == MIN_EXPR || code == MAX_EXPR)
2082 /* For MIN/MAX expressions with pointers, we only care about
2083 nullness, if both are non null, then the result is nonnull.
2084 If both are null, then the result is null. Otherwise they
2085 are varying. */
2086 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2087 set_value_range_to_nonnull (vr, expr_type);
2088 else if (range_is_null (&vr0) && range_is_null (&vr1))
2089 set_value_range_to_null (vr, expr_type);
2090 else
2091 set_value_range_to_varying (vr);
2093 else if (code == POINTER_PLUS_EXPR)
2095 /* For pointer types, we are really only interested in asserting
2096 whether the expression evaluates to non-NULL. */
2097 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2098 set_value_range_to_nonnull (vr, expr_type);
2099 else if (range_is_null (&vr0) && range_is_null (&vr1))
2100 set_value_range_to_null (vr, expr_type);
2101 else
2102 set_value_range_to_varying (vr);
2104 else if (code == BIT_AND_EXPR)
2106 /* For pointer types, we are really only interested in asserting
2107 whether the expression evaluates to non-NULL. */
2108 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2109 set_value_range_to_nonnull (vr, expr_type);
2110 else if (range_is_null (&vr0) || range_is_null (&vr1))
2111 set_value_range_to_null (vr, expr_type);
2112 else
2113 set_value_range_to_varying (vr);
2115 else
2116 set_value_range_to_varying (vr);
2118 return;
2121 /* For integer ranges, apply the operation to each end of the
2122 range and see what we end up with. */
2123 if (code == PLUS_EXPR || code == MINUS_EXPR)
2125 const bool minus_p = (code == MINUS_EXPR);
2126 tree min_op0 = vr0.min;
2127 tree min_op1 = minus_p ? vr1.max : vr1.min;
2128 tree max_op0 = vr0.max;
2129 tree max_op1 = minus_p ? vr1.min : vr1.max;
2130 tree sym_min_op0 = NULL_TREE;
2131 tree sym_min_op1 = NULL_TREE;
2132 tree sym_max_op0 = NULL_TREE;
2133 tree sym_max_op1 = NULL_TREE;
2134 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2136 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2137 single-symbolic ranges, try to compute the precise resulting range,
2138 but only if we know that this resulting range will also be constant
2139 or single-symbolic. */
2140 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2141 && (TREE_CODE (min_op0) == INTEGER_CST
2142 || (sym_min_op0
2143 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2144 && (TREE_CODE (min_op1) == INTEGER_CST
2145 || (sym_min_op1
2146 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2147 && (!(sym_min_op0 && sym_min_op1)
2148 || (sym_min_op0 == sym_min_op1
2149 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2150 && (TREE_CODE (max_op0) == INTEGER_CST
2151 || (sym_max_op0
2152 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2153 && (TREE_CODE (max_op1) == INTEGER_CST
2154 || (sym_max_op1
2155 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2156 && (!(sym_max_op0 && sym_max_op1)
2157 || (sym_max_op0 == sym_max_op1
2158 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2160 const signop sgn = TYPE_SIGN (expr_type);
2161 const unsigned int prec = TYPE_PRECISION (expr_type);
2162 wide_int type_min, type_max, wmin, wmax;
2163 int min_ovf = 0;
2164 int max_ovf = 0;
2166 /* Get the lower and upper bounds of the type. */
2167 if (TYPE_OVERFLOW_WRAPS (expr_type))
2169 type_min = wi::min_value (prec, sgn);
2170 type_max = wi::max_value (prec, sgn);
2172 else
2174 type_min = vrp_val_min (expr_type);
2175 type_max = vrp_val_max (expr_type);
2178 /* Combine the lower bounds, if any. */
2179 if (min_op0 && min_op1)
2181 if (minus_p)
2183 wmin = wi::sub (min_op0, min_op1);
2185 /* Check for overflow. */
2186 if (wi::cmp (0, min_op1, sgn)
2187 != wi::cmp (wmin, min_op0, sgn))
2188 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2190 else
2192 wmin = wi::add (min_op0, min_op1);
2194 /* Check for overflow. */
2195 if (wi::cmp (min_op1, 0, sgn)
2196 != wi::cmp (wmin, min_op0, sgn))
2197 min_ovf = wi::cmp (min_op0, wmin, sgn);
2200 else if (min_op0)
2201 wmin = min_op0;
2202 else if (min_op1)
2204 if (minus_p)
2206 wmin = wi::neg (min_op1);
2208 /* Check for overflow. */
2209 if (sgn == SIGNED && wi::neg_p (min_op1) && wi::neg_p (wmin))
2210 min_ovf = 1;
2211 else if (sgn == UNSIGNED && wi::ne_p (min_op1, 0))
2212 min_ovf = -1;
2214 else
2215 wmin = min_op1;
2217 else
2218 wmin = wi::shwi (0, prec);
2220 /* Combine the upper bounds, if any. */
2221 if (max_op0 && max_op1)
2223 if (minus_p)
2225 wmax = wi::sub (max_op0, max_op1);
2227 /* Check for overflow. */
2228 if (wi::cmp (0, max_op1, sgn)
2229 != wi::cmp (wmax, max_op0, sgn))
2230 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2232 else
2234 wmax = wi::add (max_op0, max_op1);
2236 if (wi::cmp (max_op1, 0, sgn)
2237 != wi::cmp (wmax, max_op0, sgn))
2238 max_ovf = wi::cmp (max_op0, wmax, sgn);
2241 else if (max_op0)
2242 wmax = max_op0;
2243 else if (max_op1)
2245 if (minus_p)
2247 wmax = wi::neg (max_op1);
2249 /* Check for overflow. */
2250 if (sgn == SIGNED && wi::neg_p (max_op1) && wi::neg_p (wmax))
2251 max_ovf = 1;
2252 else if (sgn == UNSIGNED && wi::ne_p (max_op1, 0))
2253 max_ovf = -1;
2255 else
2256 wmax = max_op1;
2258 else
2259 wmax = wi::shwi (0, prec);
2261 /* Check for type overflow. */
2262 if (min_ovf == 0)
2264 if (wi::cmp (wmin, type_min, sgn) == -1)
2265 min_ovf = -1;
2266 else if (wi::cmp (wmin, type_max, sgn) == 1)
2267 min_ovf = 1;
2269 if (max_ovf == 0)
2271 if (wi::cmp (wmax, type_min, sgn) == -1)
2272 max_ovf = -1;
2273 else if (wi::cmp (wmax, type_max, sgn) == 1)
2274 max_ovf = 1;
2277 /* If we have overflow for the constant part and the resulting
2278 range will be symbolic, drop to VR_VARYING. */
2279 if ((min_ovf && sym_min_op0 != sym_min_op1)
2280 || (max_ovf && sym_max_op0 != sym_max_op1))
2282 set_value_range_to_varying (vr);
2283 return;
2286 if (TYPE_OVERFLOW_WRAPS (expr_type))
2288 /* If overflow wraps, truncate the values and adjust the
2289 range kind and bounds appropriately. */
2290 wide_int tmin = wide_int::from (wmin, prec, sgn);
2291 wide_int tmax = wide_int::from (wmax, prec, sgn);
2292 if (min_ovf == max_ovf)
2294 /* No overflow or both overflow or underflow. The
2295 range kind stays VR_RANGE. */
2296 min = wide_int_to_tree (expr_type, tmin);
2297 max = wide_int_to_tree (expr_type, tmax);
2299 else if ((min_ovf == -1 && max_ovf == 0)
2300 || (max_ovf == 1 && min_ovf == 0))
2302 /* Min underflow or max overflow. The range kind
2303 changes to VR_ANTI_RANGE. */
2304 bool covers = false;
2305 wide_int tem = tmin;
2306 type = VR_ANTI_RANGE;
2307 tmin = tmax + 1;
2308 if (wi::cmp (tmin, tmax, sgn) < 0)
2309 covers = true;
2310 tmax = tem - 1;
2311 if (wi::cmp (tmax, tem, sgn) > 0)
2312 covers = true;
2313 /* If the anti-range would cover nothing, drop to varying.
2314 Likewise if the anti-range bounds are outside of the
2315 types values. */
2316 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2318 set_value_range_to_varying (vr);
2319 return;
2321 min = wide_int_to_tree (expr_type, tmin);
2322 max = wide_int_to_tree (expr_type, tmax);
2324 else
2326 /* Other underflow and/or overflow, drop to VR_VARYING. */
2327 set_value_range_to_varying (vr);
2328 return;
2331 else
2333 /* If overflow does not wrap, saturate to the types min/max
2334 value. */
2335 if (min_ovf == -1)
2336 min = wide_int_to_tree (expr_type, type_min);
2337 else if (min_ovf == 1)
2338 min = wide_int_to_tree (expr_type, type_max);
2339 else
2340 min = wide_int_to_tree (expr_type, wmin);
2342 if (max_ovf == -1)
2343 max = wide_int_to_tree (expr_type, type_min);
2344 else if (max_ovf == 1)
2345 max = wide_int_to_tree (expr_type, type_max);
2346 else
2347 max = wide_int_to_tree (expr_type, wmax);
2350 /* If the result lower bound is constant, we're done;
2351 otherwise, build the symbolic lower bound. */
2352 if (sym_min_op0 == sym_min_op1)
2354 else if (sym_min_op0)
2355 min = build_symbolic_expr (expr_type, sym_min_op0,
2356 neg_min_op0, min);
2357 else if (sym_min_op1)
2359 /* We may not negate if that might introduce
2360 undefined overflow. */
2361 if (! minus_p
2362 || neg_min_op1
2363 || TYPE_OVERFLOW_WRAPS (expr_type))
2364 min = build_symbolic_expr (expr_type, sym_min_op1,
2365 neg_min_op1 ^ minus_p, min);
2366 else
2367 min = NULL_TREE;
2370 /* Likewise for the upper bound. */
2371 if (sym_max_op0 == sym_max_op1)
2373 else if (sym_max_op0)
2374 max = build_symbolic_expr (expr_type, sym_max_op0,
2375 neg_max_op0, max);
2376 else if (sym_max_op1)
2378 /* We may not negate if that might introduce
2379 undefined overflow. */
2380 if (! minus_p
2381 || neg_max_op1
2382 || TYPE_OVERFLOW_WRAPS (expr_type))
2383 max = build_symbolic_expr (expr_type, sym_max_op1,
2384 neg_max_op1 ^ minus_p, max);
2385 else
2386 max = NULL_TREE;
2389 else
2391 /* For other cases, for example if we have a PLUS_EXPR with two
2392 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2393 to compute a precise range for such a case.
2394 ??? General even mixed range kind operations can be expressed
2395 by for example transforming ~[3, 5] + [1, 2] to range-only
2396 operations and a union primitive:
2397 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2398 [-INF+1, 4] U [6, +INF(OVF)]
2399 though usually the union is not exactly representable with
2400 a single range or anti-range as the above is
2401 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2402 but one could use a scheme similar to equivalences for this. */
2403 set_value_range_to_varying (vr);
2404 return;
2407 else if (code == MIN_EXPR
2408 || code == MAX_EXPR)
2410 if (vr0.type == VR_RANGE
2411 && !symbolic_range_p (&vr0))
2413 type = VR_RANGE;
2414 if (vr1.type == VR_RANGE
2415 && !symbolic_range_p (&vr1))
2417 /* For operations that make the resulting range directly
2418 proportional to the original ranges, apply the operation to
2419 the same end of each range. */
2420 min = int_const_binop (code, vr0.min, vr1.min);
2421 max = int_const_binop (code, vr0.max, vr1.max);
2423 else if (code == MIN_EXPR)
2425 min = vrp_val_min (expr_type);
2426 max = vr0.max;
2428 else if (code == MAX_EXPR)
2430 min = vr0.min;
2431 max = vrp_val_max (expr_type);
2434 else if (vr1.type == VR_RANGE
2435 && !symbolic_range_p (&vr1))
2437 type = VR_RANGE;
2438 if (code == MIN_EXPR)
2440 min = vrp_val_min (expr_type);
2441 max = vr1.max;
2443 else if (code == MAX_EXPR)
2445 min = vr1.min;
2446 max = vrp_val_max (expr_type);
2449 else
2451 set_value_range_to_varying (vr);
2452 return;
2455 else if (code == MULT_EXPR)
2457 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2458 drop to varying. This test requires 2*prec bits if both
2459 operands are signed and 2*prec + 2 bits if either is not. */
2461 signop sign = TYPE_SIGN (expr_type);
2462 unsigned int prec = TYPE_PRECISION (expr_type);
2464 if (!range_int_cst_p (&vr0)
2465 || !range_int_cst_p (&vr1))
2467 set_value_range_to_varying (vr);
2468 return;
2471 if (TYPE_OVERFLOW_WRAPS (expr_type))
2473 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2474 typedef generic_wide_int
2475 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2476 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2477 vrp_int size = sizem1 + 1;
2479 /* Extend the values using the sign of the result to PREC2.
2480 From here on out, everthing is just signed math no matter
2481 what the input types were. */
2482 vrp_int min0 = vrp_int_cst (vr0.min);
2483 vrp_int max0 = vrp_int_cst (vr0.max);
2484 vrp_int min1 = vrp_int_cst (vr1.min);
2485 vrp_int max1 = vrp_int_cst (vr1.max);
2486 /* Canonicalize the intervals. */
2487 if (sign == UNSIGNED)
2489 if (wi::ltu_p (size, min0 + max0))
2491 min0 -= size;
2492 max0 -= size;
2495 if (wi::ltu_p (size, min1 + max1))
2497 min1 -= size;
2498 max1 -= size;
2502 vrp_int prod0 = min0 * min1;
2503 vrp_int prod1 = min0 * max1;
2504 vrp_int prod2 = max0 * min1;
2505 vrp_int prod3 = max0 * max1;
2507 /* Sort the 4 products so that min is in prod0 and max is in
2508 prod3. */
2509 /* min0min1 > max0max1 */
2510 if (prod0 > prod3)
2511 std::swap (prod0, prod3);
2513 /* min0max1 > max0min1 */
2514 if (prod1 > prod2)
2515 std::swap (prod1, prod2);
2517 if (prod0 > prod1)
2518 std::swap (prod0, prod1);
2520 if (prod2 > prod3)
2521 std::swap (prod2, prod3);
2523 /* diff = max - min. */
2524 prod2 = prod3 - prod0;
2525 if (wi::geu_p (prod2, sizem1))
2527 /* the range covers all values. */
2528 set_value_range_to_varying (vr);
2529 return;
2532 /* The following should handle the wrapping and selecting
2533 VR_ANTI_RANGE for us. */
2534 min = wide_int_to_tree (expr_type, prod0);
2535 max = wide_int_to_tree (expr_type, prod3);
2536 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2537 return;
2540 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2541 drop to VR_VARYING. It would take more effort to compute a
2542 precise range for such a case. For example, if we have
2543 op0 == 65536 and op1 == 65536 with their ranges both being
2544 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2545 we cannot claim that the product is in ~[0,0]. Note that we
2546 are guaranteed to have vr0.type == vr1.type at this
2547 point. */
2548 if (vr0.type == VR_ANTI_RANGE
2549 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2551 set_value_range_to_varying (vr);
2552 return;
2555 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2556 return;
2558 else if (code == RSHIFT_EXPR
2559 || code == LSHIFT_EXPR)
2561 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2562 then drop to VR_VARYING. Outside of this range we get undefined
2563 behavior from the shift operation. We cannot even trust
2564 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2565 shifts, and the operation at the tree level may be widened. */
2566 if (range_int_cst_p (&vr1)
2567 && compare_tree_int (vr1.min, 0) >= 0
2568 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2570 if (code == RSHIFT_EXPR)
2572 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2573 useful ranges just from the shift count. E.g.
2574 x >> 63 for signed 64-bit x is always [-1, 0]. */
2575 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2577 vr0.type = type = VR_RANGE;
2578 vr0.min = vrp_val_min (expr_type);
2579 vr0.max = vrp_val_max (expr_type);
2581 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2582 return;
2584 /* We can map lshifts by constants to MULT_EXPR handling. */
2585 else if (code == LSHIFT_EXPR
2586 && range_int_cst_singleton_p (&vr1))
2588 bool saved_flag_wrapv;
2589 value_range vr1p = VR_INITIALIZER;
2590 vr1p.type = VR_RANGE;
2591 vr1p.min = (wide_int_to_tree
2592 (expr_type,
2593 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2594 TYPE_PRECISION (expr_type))));
2595 vr1p.max = vr1p.min;
2596 /* We have to use a wrapping multiply though as signed overflow
2597 on lshifts is implementation defined in C89. */
2598 saved_flag_wrapv = flag_wrapv;
2599 flag_wrapv = 1;
2600 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2601 &vr0, &vr1p);
2602 flag_wrapv = saved_flag_wrapv;
2603 return;
2605 else if (code == LSHIFT_EXPR
2606 && range_int_cst_p (&vr0))
2608 int prec = TYPE_PRECISION (expr_type);
2609 int overflow_pos = prec;
2610 int bound_shift;
2611 wide_int low_bound, high_bound;
2612 bool uns = TYPE_UNSIGNED (expr_type);
2613 bool in_bounds = false;
2615 if (!uns)
2616 overflow_pos -= 1;
2618 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2619 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2620 overflow. However, for that to happen, vr1.max needs to be
2621 zero, which means vr1 is a singleton range of zero, which
2622 means it should be handled by the previous LSHIFT_EXPR
2623 if-clause. */
2624 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2625 wide_int complement = ~(bound - 1);
2627 if (uns)
2629 low_bound = bound;
2630 high_bound = complement;
2631 if (wi::ltu_p (vr0.max, low_bound))
2633 /* [5, 6] << [1, 2] == [10, 24]. */
2634 /* We're shifting out only zeroes, the value increases
2635 monotonically. */
2636 in_bounds = true;
2638 else if (wi::ltu_p (high_bound, vr0.min))
2640 /* [0xffffff00, 0xffffffff] << [1, 2]
2641 == [0xfffffc00, 0xfffffffe]. */
2642 /* We're shifting out only ones, the value decreases
2643 monotonically. */
2644 in_bounds = true;
2647 else
2649 /* [-1, 1] << [1, 2] == [-4, 4]. */
2650 low_bound = complement;
2651 high_bound = bound;
2652 if (wi::lts_p (vr0.max, high_bound)
2653 && wi::lts_p (low_bound, vr0.min))
2655 /* For non-negative numbers, we're shifting out only
2656 zeroes, the value increases monotonically.
2657 For negative numbers, we're shifting out only ones, the
2658 value decreases monotomically. */
2659 in_bounds = true;
2663 if (in_bounds)
2665 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2666 return;
2670 set_value_range_to_varying (vr);
2671 return;
2673 else if (code == TRUNC_DIV_EXPR
2674 || code == FLOOR_DIV_EXPR
2675 || code == CEIL_DIV_EXPR
2676 || code == EXACT_DIV_EXPR
2677 || code == ROUND_DIV_EXPR)
2679 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2681 /* For division, if op1 has VR_RANGE but op0 does not, something
2682 can be deduced just from that range. Say [min, max] / [4, max]
2683 gives [min / 4, max / 4] range. */
2684 if (vr1.type == VR_RANGE
2685 && !symbolic_range_p (&vr1)
2686 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2688 vr0.type = type = VR_RANGE;
2689 vr0.min = vrp_val_min (expr_type);
2690 vr0.max = vrp_val_max (expr_type);
2692 else
2694 set_value_range_to_varying (vr);
2695 return;
2699 /* For divisions, if flag_non_call_exceptions is true, we must
2700 not eliminate a division by zero. */
2701 if (cfun->can_throw_non_call_exceptions
2702 && (vr1.type != VR_RANGE
2703 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2705 set_value_range_to_varying (vr);
2706 return;
2709 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2710 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2711 include 0. */
2712 if (vr0.type == VR_RANGE
2713 && (vr1.type != VR_RANGE
2714 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2716 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2717 int cmp;
2719 min = NULL_TREE;
2720 max = NULL_TREE;
2721 if (TYPE_UNSIGNED (expr_type)
2722 || value_range_nonnegative_p (&vr1))
2724 /* For unsigned division or when divisor is known
2725 to be non-negative, the range has to cover
2726 all numbers from 0 to max for positive max
2727 and all numbers from min to 0 for negative min. */
2728 cmp = compare_values (vr0.max, zero);
2729 if (cmp == -1)
2731 /* When vr0.max < 0, vr1.min != 0 and value
2732 ranges for dividend and divisor are available. */
2733 if (vr1.type == VR_RANGE
2734 && !symbolic_range_p (&vr0)
2735 && !symbolic_range_p (&vr1)
2736 && compare_values (vr1.min, zero) != 0)
2737 max = int_const_binop (code, vr0.max, vr1.min);
2738 else
2739 max = zero;
2741 else if (cmp == 0 || cmp == 1)
2742 max = vr0.max;
2743 else
2744 type = VR_VARYING;
2745 cmp = compare_values (vr0.min, zero);
2746 if (cmp == 1)
2748 /* For unsigned division when value ranges for dividend
2749 and divisor are available. */
2750 if (vr1.type == VR_RANGE
2751 && !symbolic_range_p (&vr0)
2752 && !symbolic_range_p (&vr1)
2753 && compare_values (vr1.max, zero) != 0)
2754 min = int_const_binop (code, vr0.min, vr1.max);
2755 else
2756 min = zero;
2758 else if (cmp == 0 || cmp == -1)
2759 min = vr0.min;
2760 else
2761 type = VR_VARYING;
2763 else
2765 /* Otherwise the range is -max .. max or min .. -min
2766 depending on which bound is bigger in absolute value,
2767 as the division can change the sign. */
2768 abs_extent_range (vr, vr0.min, vr0.max);
2769 return;
2771 if (type == VR_VARYING)
2773 set_value_range_to_varying (vr);
2774 return;
2777 else if (!symbolic_range_p (&vr0) && !symbolic_range_p (&vr1))
2779 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2780 return;
2783 else if (code == TRUNC_MOD_EXPR)
2785 if (range_is_null (&vr1))
2787 set_value_range_to_undefined (vr);
2788 return;
2790 /* ABS (A % B) < ABS (B) and either
2791 0 <= A % B <= A or A <= A % B <= 0. */
2792 type = VR_RANGE;
2793 signop sgn = TYPE_SIGN (expr_type);
2794 unsigned int prec = TYPE_PRECISION (expr_type);
2795 wide_int wmin, wmax, tmp;
2796 wide_int zero = wi::zero (prec);
2797 wide_int one = wi::one (prec);
2798 if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
2800 wmax = wi::sub (vr1.max, one);
2801 if (sgn == SIGNED)
2803 tmp = wi::sub (wi::minus_one (prec), vr1.min);
2804 wmax = wi::smax (wmax, tmp);
2807 else
2809 wmax = wi::max_value (prec, sgn);
2810 /* X % INT_MIN may be INT_MAX. */
2811 if (sgn == UNSIGNED)
2812 wmax = wmax - one;
2815 if (sgn == UNSIGNED)
2816 wmin = zero;
2817 else
2819 wmin = -wmax;
2820 if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
2822 tmp = vr0.min;
2823 if (wi::gts_p (tmp, zero))
2824 tmp = zero;
2825 wmin = wi::smax (wmin, tmp);
2829 if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
2831 tmp = vr0.max;
2832 if (sgn == SIGNED && wi::neg_p (tmp))
2833 tmp = zero;
2834 wmax = wi::min (wmax, tmp, sgn);
2837 min = wide_int_to_tree (expr_type, wmin);
2838 max = wide_int_to_tree (expr_type, wmax);
2840 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2842 bool int_cst_range0, int_cst_range1;
2843 wide_int may_be_nonzero0, may_be_nonzero1;
2844 wide_int must_be_nonzero0, must_be_nonzero1;
2846 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
2847 &may_be_nonzero0,
2848 &must_be_nonzero0);
2849 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
2850 &may_be_nonzero1,
2851 &must_be_nonzero1);
2853 if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR)
2855 value_range *vr0p = NULL, *vr1p = NULL;
2856 if (range_int_cst_singleton_p (&vr1))
2858 vr0p = &vr0;
2859 vr1p = &vr1;
2861 else if (range_int_cst_singleton_p (&vr0))
2863 vr0p = &vr1;
2864 vr1p = &vr0;
2866 /* For op & or | attempt to optimize:
2867 [x, y] op z into [x op z, y op z]
2868 if z is a constant which (for op | its bitwise not) has n
2869 consecutive least significant bits cleared followed by m 1
2870 consecutive bits set immediately above it and either
2871 m + n == precision, or (x >> (m + n)) == (y >> (m + n)).
2872 The least significant n bits of all the values in the range are
2873 cleared or set, the m bits above it are preserved and any bits
2874 above these are required to be the same for all values in the
2875 range. */
2876 if (vr0p && range_int_cst_p (vr0p))
2878 wide_int w = vr1p->min;
2879 int m = 0, n = 0;
2880 if (code == BIT_IOR_EXPR)
2881 w = ~w;
2882 if (wi::eq_p (w, 0))
2883 n = TYPE_PRECISION (expr_type);
2884 else
2886 n = wi::ctz (w);
2887 w = ~(w | wi::mask (n, false, w.get_precision ()));
2888 if (wi::eq_p (w, 0))
2889 m = TYPE_PRECISION (expr_type) - n;
2890 else
2891 m = wi::ctz (w) - n;
2893 wide_int mask = wi::mask (m + n, true, w.get_precision ());
2894 if (wi::eq_p (mask & vr0p->min, mask & vr0p->max))
2896 min = int_const_binop (code, vr0p->min, vr1p->min);
2897 max = int_const_binop (code, vr0p->max, vr1p->min);
2902 type = VR_RANGE;
2903 if (min && max)
2904 /* Optimized above already. */;
2905 else if (code == BIT_AND_EXPR)
2907 min = wide_int_to_tree (expr_type,
2908 must_be_nonzero0 & must_be_nonzero1);
2909 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
2910 /* If both input ranges contain only negative values we can
2911 truncate the result range maximum to the minimum of the
2912 input range maxima. */
2913 if (int_cst_range0 && int_cst_range1
2914 && tree_int_cst_sgn (vr0.max) < 0
2915 && tree_int_cst_sgn (vr1.max) < 0)
2917 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
2918 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
2920 /* If either input range contains only non-negative values
2921 we can truncate the result range maximum to the respective
2922 maximum of the input range. */
2923 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2924 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
2925 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2926 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
2927 max = wide_int_to_tree (expr_type, wmax);
2928 cmp = compare_values (min, max);
2929 /* PR68217: In case of signed & sign-bit-CST should
2930 result in [-INF, 0] instead of [-INF, INF]. */
2931 if (cmp == -2 || cmp == 1)
2933 wide_int sign_bit
2934 = wi::set_bit_in_zero (TYPE_PRECISION (expr_type) - 1,
2935 TYPE_PRECISION (expr_type));
2936 if (!TYPE_UNSIGNED (expr_type)
2937 && ((int_cst_range0
2938 && value_range_constant_singleton (&vr0)
2939 && !wi::cmps (vr0.min, sign_bit))
2940 || (int_cst_range1
2941 && value_range_constant_singleton (&vr1)
2942 && !wi::cmps (vr1.min, sign_bit))))
2944 min = TYPE_MIN_VALUE (expr_type);
2945 max = build_int_cst (expr_type, 0);
2949 else if (code == BIT_IOR_EXPR)
2951 max = wide_int_to_tree (expr_type,
2952 may_be_nonzero0 | may_be_nonzero1);
2953 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
2954 /* If the input ranges contain only positive values we can
2955 truncate the minimum of the result range to the maximum
2956 of the input range minima. */
2957 if (int_cst_range0 && int_cst_range1
2958 && tree_int_cst_sgn (vr0.min) >= 0
2959 && tree_int_cst_sgn (vr1.min) >= 0)
2961 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
2962 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
2964 /* If either input range contains only negative values
2965 we can truncate the minimum of the result range to the
2966 respective minimum range. */
2967 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
2968 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
2969 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
2970 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
2971 min = wide_int_to_tree (expr_type, wmin);
2973 else if (code == BIT_XOR_EXPR)
2975 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
2976 | ~(may_be_nonzero0 | may_be_nonzero1));
2977 wide_int result_one_bits
2978 = (must_be_nonzero0.and_not (may_be_nonzero1)
2979 | must_be_nonzero1.and_not (may_be_nonzero0));
2980 max = wide_int_to_tree (expr_type, ~result_zero_bits);
2981 min = wide_int_to_tree (expr_type, result_one_bits);
2982 /* If the range has all positive or all negative values the
2983 result is better than VARYING. */
2984 if (tree_int_cst_sgn (min) < 0
2985 || tree_int_cst_sgn (max) >= 0)
2987 else
2988 max = min = NULL_TREE;
2991 else
2992 gcc_unreachable ();
2994 /* If either MIN or MAX overflowed, then set the resulting range to
2995 VARYING. */
2996 if (min == NULL_TREE
2997 || TREE_OVERFLOW_P (min)
2998 || max == NULL_TREE
2999 || TREE_OVERFLOW_P (max))
3001 set_value_range_to_varying (vr);
3002 return;
3005 /* We punt for [-INF, +INF].
3006 We learn nothing when we have INF on both sides.
3007 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
3008 if (vrp_val_is_min (min) && vrp_val_is_max (max))
3010 set_value_range_to_varying (vr);
3011 return;
3014 cmp = compare_values (min, max);
3015 if (cmp == -2 || cmp == 1)
3017 /* If the new range has its limits swapped around (MIN > MAX),
3018 then the operation caused one of them to wrap around, mark
3019 the new range VARYING. */
3020 set_value_range_to_varying (vr);
3022 else
3023 set_value_range (vr, type, min, max, NULL);
3026 /* Extract range information from a binary expression OP0 CODE OP1 based on
3027 the ranges of each of its operands with resulting type EXPR_TYPE.
3028 The resulting range is stored in *VR. */
3030 static void
3031 extract_range_from_binary_expr (value_range *vr,
3032 enum tree_code code,
3033 tree expr_type, tree op0, tree op1)
3035 value_range vr0 = VR_INITIALIZER;
3036 value_range vr1 = VR_INITIALIZER;
3038 /* Get value ranges for each operand. For constant operands, create
3039 a new value range with the operand to simplify processing. */
3040 if (TREE_CODE (op0) == SSA_NAME)
3041 vr0 = *(get_value_range (op0));
3042 else if (is_gimple_min_invariant (op0))
3043 set_value_range_to_value (&vr0, op0, NULL);
3044 else
3045 set_value_range_to_varying (&vr0);
3047 if (TREE_CODE (op1) == SSA_NAME)
3048 vr1 = *(get_value_range (op1));
3049 else if (is_gimple_min_invariant (op1))
3050 set_value_range_to_value (&vr1, op1, NULL);
3051 else
3052 set_value_range_to_varying (&vr1);
3054 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3056 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3057 and based on the other operand, for example if it was deduced from a
3058 symbolic comparison. When a bound of the range of the first operand
3059 is invariant, we set the corresponding bound of the new range to INF
3060 in order to avoid recursing on the range of the second operand. */
3061 if (vr->type == VR_VARYING
3062 && (code == PLUS_EXPR || code == MINUS_EXPR)
3063 && TREE_CODE (op1) == SSA_NAME
3064 && vr0.type == VR_RANGE
3065 && symbolic_range_based_on_p (&vr0, op1))
3067 const bool minus_p = (code == MINUS_EXPR);
3068 value_range n_vr1 = VR_INITIALIZER;
3070 /* Try with VR0 and [-INF, OP1]. */
3071 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3072 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3074 /* Try with VR0 and [OP1, +INF]. */
3075 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3076 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3078 /* Try with VR0 and [OP1, OP1]. */
3079 else
3080 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3082 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3085 if (vr->type == VR_VARYING
3086 && (code == PLUS_EXPR || code == MINUS_EXPR)
3087 && TREE_CODE (op0) == SSA_NAME
3088 && vr1.type == VR_RANGE
3089 && symbolic_range_based_on_p (&vr1, op0))
3091 const bool minus_p = (code == MINUS_EXPR);
3092 value_range n_vr0 = VR_INITIALIZER;
3094 /* Try with [-INF, OP0] and VR1. */
3095 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3096 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3098 /* Try with [OP0, +INF] and VR1. */
3099 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3100 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3102 /* Try with [OP0, OP0] and VR1. */
3103 else
3104 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3106 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3109 /* If we didn't derive a range for MINUS_EXPR, and
3110 op1's range is ~[op0,op0] or vice-versa, then we
3111 can derive a non-null range. This happens often for
3112 pointer subtraction. */
3113 if (vr->type == VR_VARYING
3114 && code == MINUS_EXPR
3115 && TREE_CODE (op0) == SSA_NAME
3116 && ((vr0.type == VR_ANTI_RANGE
3117 && vr0.min == op1
3118 && vr0.min == vr0.max)
3119 || (vr1.type == VR_ANTI_RANGE
3120 && vr1.min == op0
3121 && vr1.min == vr1.max)))
3122 set_value_range_to_nonnull (vr, TREE_TYPE (op0));
3125 /* Extract range information from a unary operation CODE based on
3126 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3127 The resulting range is stored in *VR. */
3129 void
3130 extract_range_from_unary_expr (value_range *vr,
3131 enum tree_code code, tree type,
3132 value_range *vr0_, tree op0_type)
3134 value_range vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3136 /* VRP only operates on integral and pointer types. */
3137 if (!(INTEGRAL_TYPE_P (op0_type)
3138 || POINTER_TYPE_P (op0_type))
3139 || !(INTEGRAL_TYPE_P (type)
3140 || POINTER_TYPE_P (type)))
3142 set_value_range_to_varying (vr);
3143 return;
3146 /* If VR0 is UNDEFINED, so is the result. */
3147 if (vr0.type == VR_UNDEFINED)
3149 set_value_range_to_undefined (vr);
3150 return;
3153 /* Handle operations that we express in terms of others. */
3154 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3156 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3157 copy_value_range (vr, &vr0);
3158 return;
3160 else if (code == NEGATE_EXPR)
3162 /* -X is simply 0 - X, so re-use existing code that also handles
3163 anti-ranges fine. */
3164 value_range zero = VR_INITIALIZER;
3165 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3166 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3167 return;
3169 else if (code == BIT_NOT_EXPR)
3171 /* ~X is simply -1 - X, so re-use existing code that also handles
3172 anti-ranges fine. */
3173 value_range minusone = VR_INITIALIZER;
3174 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3175 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3176 type, &minusone, &vr0);
3177 return;
3180 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3181 and express op ~[] as (op []') U (op []''). */
3182 if (vr0.type == VR_ANTI_RANGE
3183 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3185 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
3186 if (vrtem1.type != VR_UNDEFINED)
3188 value_range vrres = VR_INITIALIZER;
3189 extract_range_from_unary_expr (&vrres, code, type,
3190 &vrtem1, op0_type);
3191 vrp_meet (vr, &vrres);
3193 return;
3196 if (CONVERT_EXPR_CODE_P (code))
3198 tree inner_type = op0_type;
3199 tree outer_type = type;
3201 /* If the expression evaluates to a pointer, we are only interested in
3202 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3203 if (POINTER_TYPE_P (type))
3205 if (range_is_nonnull (&vr0))
3206 set_value_range_to_nonnull (vr, type);
3207 else if (range_is_null (&vr0))
3208 set_value_range_to_null (vr, type);
3209 else
3210 set_value_range_to_varying (vr);
3211 return;
3214 /* If VR0 is varying and we increase the type precision, assume
3215 a full range for the following transformation. */
3216 if (vr0.type == VR_VARYING
3217 && INTEGRAL_TYPE_P (inner_type)
3218 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3220 vr0.type = VR_RANGE;
3221 vr0.min = TYPE_MIN_VALUE (inner_type);
3222 vr0.max = TYPE_MAX_VALUE (inner_type);
3225 /* If VR0 is a constant range or anti-range and the conversion is
3226 not truncating we can convert the min and max values and
3227 canonicalize the resulting range. Otherwise we can do the
3228 conversion if the size of the range is less than what the
3229 precision of the target type can represent and the range is
3230 not an anti-range. */
3231 if ((vr0.type == VR_RANGE
3232 || vr0.type == VR_ANTI_RANGE)
3233 && TREE_CODE (vr0.min) == INTEGER_CST
3234 && TREE_CODE (vr0.max) == INTEGER_CST
3235 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3236 || (vr0.type == VR_RANGE
3237 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3238 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3239 size_int (TYPE_PRECISION (outer_type)))))))
3241 tree new_min, new_max;
3242 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3243 0, false);
3244 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3245 0, false);
3246 set_and_canonicalize_value_range (vr, vr0.type,
3247 new_min, new_max, NULL);
3248 return;
3251 set_value_range_to_varying (vr);
3252 return;
3254 else if (code == ABS_EXPR)
3256 tree min, max;
3257 int cmp;
3259 /* Pass through vr0 in the easy cases. */
3260 if (TYPE_UNSIGNED (type)
3261 || value_range_nonnegative_p (&vr0))
3263 copy_value_range (vr, &vr0);
3264 return;
3267 /* For the remaining varying or symbolic ranges we can't do anything
3268 useful. */
3269 if (vr0.type == VR_VARYING
3270 || symbolic_range_p (&vr0))
3272 set_value_range_to_varying (vr);
3273 return;
3276 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3277 useful range. */
3278 if (!TYPE_OVERFLOW_UNDEFINED (type)
3279 && ((vr0.type == VR_RANGE
3280 && vrp_val_is_min (vr0.min))
3281 || (vr0.type == VR_ANTI_RANGE
3282 && !vrp_val_is_min (vr0.min))))
3284 set_value_range_to_varying (vr);
3285 return;
3288 /* ABS_EXPR may flip the range around, if the original range
3289 included negative values. */
3290 if (!vrp_val_is_min (vr0.min))
3291 min = fold_unary_to_constant (code, type, vr0.min);
3292 else
3293 min = TYPE_MAX_VALUE (type);
3295 if (!vrp_val_is_min (vr0.max))
3296 max = fold_unary_to_constant (code, type, vr0.max);
3297 else
3298 max = TYPE_MAX_VALUE (type);
3300 cmp = compare_values (min, max);
3302 /* If a VR_ANTI_RANGEs contains zero, then we have
3303 ~[-INF, min(MIN, MAX)]. */
3304 if (vr0.type == VR_ANTI_RANGE)
3306 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3308 /* Take the lower of the two values. */
3309 if (cmp != 1)
3310 max = min;
3312 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3313 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3314 flag_wrapv is set and the original anti-range doesn't include
3315 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3316 if (TYPE_OVERFLOW_WRAPS (type))
3318 tree type_min_value = TYPE_MIN_VALUE (type);
3320 min = (vr0.min != type_min_value
3321 ? int_const_binop (PLUS_EXPR, type_min_value,
3322 build_int_cst (TREE_TYPE (type_min_value), 1))
3323 : type_min_value);
3325 else
3326 min = TYPE_MIN_VALUE (type);
3328 else
3330 /* All else has failed, so create the range [0, INF], even for
3331 flag_wrapv since TYPE_MIN_VALUE is in the original
3332 anti-range. */
3333 vr0.type = VR_RANGE;
3334 min = build_int_cst (type, 0);
3335 max = TYPE_MAX_VALUE (type);
3339 /* If the range contains zero then we know that the minimum value in the
3340 range will be zero. */
3341 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3343 if (cmp == 1)
3344 max = min;
3345 min = build_int_cst (type, 0);
3347 else
3349 /* If the range was reversed, swap MIN and MAX. */
3350 if (cmp == 1)
3351 std::swap (min, max);
3354 cmp = compare_values (min, max);
3355 if (cmp == -2 || cmp == 1)
3357 /* If the new range has its limits swapped around (MIN > MAX),
3358 then the operation caused one of them to wrap around, mark
3359 the new range VARYING. */
3360 set_value_range_to_varying (vr);
3362 else
3363 set_value_range (vr, vr0.type, min, max, NULL);
3364 return;
3367 /* For unhandled operations fall back to varying. */
3368 set_value_range_to_varying (vr);
3369 return;
3373 /* Extract range information from a unary expression CODE OP0 based on
3374 the range of its operand with resulting type TYPE.
3375 The resulting range is stored in *VR. */
3377 static void
3378 extract_range_from_unary_expr (value_range *vr, enum tree_code code,
3379 tree type, tree op0)
3381 value_range vr0 = VR_INITIALIZER;
3383 /* Get value ranges for the operand. For constant operands, create
3384 a new value range with the operand to simplify processing. */
3385 if (TREE_CODE (op0) == SSA_NAME)
3386 vr0 = *(get_value_range (op0));
3387 else if (is_gimple_min_invariant (op0))
3388 set_value_range_to_value (&vr0, op0, NULL);
3389 else
3390 set_value_range_to_varying (&vr0);
3392 extract_range_from_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0));
3396 /* Extract range information from a conditional expression STMT based on
3397 the ranges of each of its operands and the expression code. */
3399 static void
3400 extract_range_from_cond_expr (value_range *vr, gassign *stmt)
3402 tree op0, op1;
3403 value_range vr0 = VR_INITIALIZER;
3404 value_range vr1 = VR_INITIALIZER;
3406 /* Get value ranges for each operand. For constant operands, create
3407 a new value range with the operand to simplify processing. */
3408 op0 = gimple_assign_rhs2 (stmt);
3409 if (TREE_CODE (op0) == SSA_NAME)
3410 vr0 = *(get_value_range (op0));
3411 else if (is_gimple_min_invariant (op0))
3412 set_value_range_to_value (&vr0, op0, NULL);
3413 else
3414 set_value_range_to_varying (&vr0);
3416 op1 = gimple_assign_rhs3 (stmt);
3417 if (TREE_CODE (op1) == SSA_NAME)
3418 vr1 = *(get_value_range (op1));
3419 else if (is_gimple_min_invariant (op1))
3420 set_value_range_to_value (&vr1, op1, NULL);
3421 else
3422 set_value_range_to_varying (&vr1);
3424 /* The resulting value range is the union of the operand ranges */
3425 copy_value_range (vr, &vr0);
3426 vrp_meet (vr, &vr1);
3430 /* Extract range information from a comparison expression EXPR based
3431 on the range of its operand and the expression code. */
3433 static void
3434 extract_range_from_comparison (value_range *vr, enum tree_code code,
3435 tree type, tree op0, tree op1)
3437 bool sop;
3438 tree val;
3440 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3441 NULL);
3442 if (val)
3444 /* Since this expression was found on the RHS of an assignment,
3445 its type may be different from _Bool. Convert VAL to EXPR's
3446 type. */
3447 val = fold_convert (type, val);
3448 if (is_gimple_min_invariant (val))
3449 set_value_range_to_value (vr, val, vr->equiv);
3450 else
3451 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3453 else
3454 /* The result of a comparison is always true or false. */
3455 set_value_range_to_truthvalue (vr, type);
3458 /* Helper function for simplify_internal_call_using_ranges and
3459 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3460 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3461 always overflow. Set *OVF to true if it is known to always
3462 overflow. */
3464 static bool
3465 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3466 tree op0, tree op1, bool *ovf)
3468 value_range vr0 = VR_INITIALIZER;
3469 value_range vr1 = VR_INITIALIZER;
3470 if (TREE_CODE (op0) == SSA_NAME)
3471 vr0 = *get_value_range (op0);
3472 else if (TREE_CODE (op0) == INTEGER_CST)
3473 set_value_range_to_value (&vr0, op0, NULL);
3474 else
3475 set_value_range_to_varying (&vr0);
3477 if (TREE_CODE (op1) == SSA_NAME)
3478 vr1 = *get_value_range (op1);
3479 else if (TREE_CODE (op1) == INTEGER_CST)
3480 set_value_range_to_value (&vr1, op1, NULL);
3481 else
3482 set_value_range_to_varying (&vr1);
3484 if (!range_int_cst_p (&vr0)
3485 || TREE_OVERFLOW (vr0.min)
3486 || TREE_OVERFLOW (vr0.max))
3488 vr0.min = vrp_val_min (TREE_TYPE (op0));
3489 vr0.max = vrp_val_max (TREE_TYPE (op0));
3491 if (!range_int_cst_p (&vr1)
3492 || TREE_OVERFLOW (vr1.min)
3493 || TREE_OVERFLOW (vr1.max))
3495 vr1.min = vrp_val_min (TREE_TYPE (op1));
3496 vr1.max = vrp_val_max (TREE_TYPE (op1));
3498 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3499 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3500 if (arith_overflowed_p (subcode, type, vr0.max,
3501 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3502 return false;
3503 if (subcode == MULT_EXPR)
3505 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3506 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3507 return false;
3509 if (*ovf)
3511 /* So far we found that there is an overflow on the boundaries.
3512 That doesn't prove that there is an overflow even for all values
3513 in between the boundaries. For that compute widest_int range
3514 of the result and see if it doesn't overlap the range of
3515 type. */
3516 widest_int wmin, wmax;
3517 widest_int w[4];
3518 int i;
3519 w[0] = wi::to_widest (vr0.min);
3520 w[1] = wi::to_widest (vr0.max);
3521 w[2] = wi::to_widest (vr1.min);
3522 w[3] = wi::to_widest (vr1.max);
3523 for (i = 0; i < 4; i++)
3525 widest_int wt;
3526 switch (subcode)
3528 case PLUS_EXPR:
3529 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3530 break;
3531 case MINUS_EXPR:
3532 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3533 break;
3534 case MULT_EXPR:
3535 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3536 break;
3537 default:
3538 gcc_unreachable ();
3540 if (i == 0)
3542 wmin = wt;
3543 wmax = wt;
3545 else
3547 wmin = wi::smin (wmin, wt);
3548 wmax = wi::smax (wmax, wt);
3551 /* The result of op0 CODE op1 is known to be in range
3552 [wmin, wmax]. */
3553 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3554 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3555 /* If all values in [wmin, wmax] are smaller than
3556 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3557 the arithmetic operation will always overflow. */
3558 if (wmax < wtmin || wmin > wtmax)
3559 return true;
3560 return false;
3562 return true;
3565 /* Try to derive a nonnegative or nonzero range out of STMT relying
3566 primarily on generic routines in fold in conjunction with range data.
3567 Store the result in *VR */
3569 static void
3570 extract_range_basic (value_range *vr, gimple *stmt)
3572 bool sop;
3573 tree type = gimple_expr_type (stmt);
3575 if (is_gimple_call (stmt))
3577 tree arg;
3578 int mini, maxi, zerov = 0, prec;
3579 enum tree_code subcode = ERROR_MARK;
3580 combined_fn cfn = gimple_call_combined_fn (stmt);
3581 scalar_int_mode mode;
3583 switch (cfn)
3585 case CFN_BUILT_IN_CONSTANT_P:
3586 /* If the call is __builtin_constant_p and the argument is a
3587 function parameter resolve it to false. This avoids bogus
3588 array bound warnings.
3589 ??? We could do this as early as inlining is finished. */
3590 arg = gimple_call_arg (stmt, 0);
3591 if (TREE_CODE (arg) == SSA_NAME
3592 && SSA_NAME_IS_DEFAULT_DEF (arg)
3593 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL
3594 && cfun->after_inlining)
3596 set_value_range_to_null (vr, type);
3597 return;
3599 break;
3600 /* Both __builtin_ffs* and __builtin_popcount return
3601 [0, prec]. */
3602 CASE_CFN_FFS:
3603 CASE_CFN_POPCOUNT:
3604 arg = gimple_call_arg (stmt, 0);
3605 prec = TYPE_PRECISION (TREE_TYPE (arg));
3606 mini = 0;
3607 maxi = prec;
3608 if (TREE_CODE (arg) == SSA_NAME)
3610 value_range *vr0 = get_value_range (arg);
3611 /* If arg is non-zero, then ffs or popcount
3612 are non-zero. */
3613 if ((vr0->type == VR_RANGE
3614 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3615 || (vr0->type == VR_ANTI_RANGE
3616 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3617 mini = 1;
3618 /* If some high bits are known to be zero,
3619 we can decrease the maximum. */
3620 if (vr0->type == VR_RANGE
3621 && TREE_CODE (vr0->max) == INTEGER_CST
3622 && !operand_less_p (vr0->min,
3623 build_zero_cst (TREE_TYPE (vr0->min))))
3624 maxi = tree_floor_log2 (vr0->max) + 1;
3626 goto bitop_builtin;
3627 /* __builtin_parity* returns [0, 1]. */
3628 CASE_CFN_PARITY:
3629 mini = 0;
3630 maxi = 1;
3631 goto bitop_builtin;
3632 /* __builtin_c[lt]z* return [0, prec-1], except for
3633 when the argument is 0, but that is undefined behavior.
3634 On many targets where the CLZ RTL or optab value is defined
3635 for 0 the value is prec, so include that in the range
3636 by default. */
3637 CASE_CFN_CLZ:
3638 arg = gimple_call_arg (stmt, 0);
3639 prec = TYPE_PRECISION (TREE_TYPE (arg));
3640 mini = 0;
3641 maxi = prec;
3642 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
3643 if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
3644 && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov)
3645 /* Handle only the single common value. */
3646 && zerov != prec)
3647 /* Magic value to give up, unless vr0 proves
3648 arg is non-zero. */
3649 mini = -2;
3650 if (TREE_CODE (arg) == SSA_NAME)
3652 value_range *vr0 = get_value_range (arg);
3653 /* From clz of VR_RANGE minimum we can compute
3654 result maximum. */
3655 if (vr0->type == VR_RANGE
3656 && TREE_CODE (vr0->min) == INTEGER_CST)
3658 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3659 if (maxi != prec)
3660 mini = 0;
3662 else if (vr0->type == VR_ANTI_RANGE
3663 && integer_zerop (vr0->min))
3665 maxi = prec - 1;
3666 mini = 0;
3668 if (mini == -2)
3669 break;
3670 /* From clz of VR_RANGE maximum we can compute
3671 result minimum. */
3672 if (vr0->type == VR_RANGE
3673 && TREE_CODE (vr0->max) == INTEGER_CST)
3675 mini = prec - 1 - tree_floor_log2 (vr0->max);
3676 if (mini == prec)
3677 break;
3680 if (mini == -2)
3681 break;
3682 goto bitop_builtin;
3683 /* __builtin_ctz* return [0, prec-1], except for
3684 when the argument is 0, but that is undefined behavior.
3685 If there is a ctz optab for this mode and
3686 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3687 otherwise just assume 0 won't be seen. */
3688 CASE_CFN_CTZ:
3689 arg = gimple_call_arg (stmt, 0);
3690 prec = TYPE_PRECISION (TREE_TYPE (arg));
3691 mini = 0;
3692 maxi = prec - 1;
3693 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
3694 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
3695 && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov))
3697 /* Handle only the two common values. */
3698 if (zerov == -1)
3699 mini = -1;
3700 else if (zerov == prec)
3701 maxi = prec;
3702 else
3703 /* Magic value to give up, unless vr0 proves
3704 arg is non-zero. */
3705 mini = -2;
3707 if (TREE_CODE (arg) == SSA_NAME)
3709 value_range *vr0 = get_value_range (arg);
3710 /* If arg is non-zero, then use [0, prec - 1]. */
3711 if ((vr0->type == VR_RANGE
3712 && integer_nonzerop (vr0->min))
3713 || (vr0->type == VR_ANTI_RANGE
3714 && integer_zerop (vr0->min)))
3716 mini = 0;
3717 maxi = prec - 1;
3719 /* If some high bits are known to be zero,
3720 we can decrease the result maximum. */
3721 if (vr0->type == VR_RANGE
3722 && TREE_CODE (vr0->max) == INTEGER_CST)
3724 maxi = tree_floor_log2 (vr0->max);
3725 /* For vr0 [0, 0] give up. */
3726 if (maxi == -1)
3727 break;
3730 if (mini == -2)
3731 break;
3732 goto bitop_builtin;
3733 /* __builtin_clrsb* returns [0, prec-1]. */
3734 CASE_CFN_CLRSB:
3735 arg = gimple_call_arg (stmt, 0);
3736 prec = TYPE_PRECISION (TREE_TYPE (arg));
3737 mini = 0;
3738 maxi = prec - 1;
3739 goto bitop_builtin;
3740 bitop_builtin:
3741 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3742 build_int_cst (type, maxi), NULL);
3743 return;
3744 case CFN_UBSAN_CHECK_ADD:
3745 subcode = PLUS_EXPR;
3746 break;
3747 case CFN_UBSAN_CHECK_SUB:
3748 subcode = MINUS_EXPR;
3749 break;
3750 case CFN_UBSAN_CHECK_MUL:
3751 subcode = MULT_EXPR;
3752 break;
3753 case CFN_GOACC_DIM_SIZE:
3754 case CFN_GOACC_DIM_POS:
3755 /* Optimizing these two internal functions helps the loop
3756 optimizer eliminate outer comparisons. Size is [1,N]
3757 and pos is [0,N-1]. */
3759 bool is_pos = cfn == CFN_GOACC_DIM_POS;
3760 int axis = oacc_get_ifn_dim_arg (stmt);
3761 int size = oacc_get_fn_dim_size (current_function_decl, axis);
3763 if (!size)
3764 /* If it's dynamic, the backend might know a hardware
3765 limitation. */
3766 size = targetm.goacc.dim_limit (axis);
3768 tree type = TREE_TYPE (gimple_call_lhs (stmt));
3769 set_value_range (vr, VR_RANGE,
3770 build_int_cst (type, is_pos ? 0 : 1),
3771 size ? build_int_cst (type, size - is_pos)
3772 : vrp_val_max (type), NULL);
3774 return;
3775 case CFN_BUILT_IN_STRLEN:
3776 if (tree lhs = gimple_call_lhs (stmt))
3777 if (ptrdiff_type_node
3778 && (TYPE_PRECISION (ptrdiff_type_node)
3779 == TYPE_PRECISION (TREE_TYPE (lhs))))
3781 tree type = TREE_TYPE (lhs);
3782 tree max = vrp_val_max (ptrdiff_type_node);
3783 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
3784 tree range_min = build_zero_cst (type);
3785 tree range_max = wide_int_to_tree (type, wmax - 1);
3786 set_value_range (vr, VR_RANGE, range_min, range_max, NULL);
3787 return;
3789 break;
3790 default:
3791 break;
3793 if (subcode != ERROR_MARK)
3795 bool saved_flag_wrapv = flag_wrapv;
3796 /* Pretend the arithmetics is wrapping. If there is
3797 any overflow, we'll complain, but will actually do
3798 wrapping operation. */
3799 flag_wrapv = 1;
3800 extract_range_from_binary_expr (vr, subcode, type,
3801 gimple_call_arg (stmt, 0),
3802 gimple_call_arg (stmt, 1));
3803 flag_wrapv = saved_flag_wrapv;
3805 /* If for both arguments vrp_valueize returned non-NULL,
3806 this should have been already folded and if not, it
3807 wasn't folded because of overflow. Avoid removing the
3808 UBSAN_CHECK_* calls in that case. */
3809 if (vr->type == VR_RANGE
3810 && (vr->min == vr->max
3811 || operand_equal_p (vr->min, vr->max, 0)))
3812 set_value_range_to_varying (vr);
3813 return;
3816 /* Handle extraction of the two results (result of arithmetics and
3817 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
3818 internal function. Similarly from ATOMIC_COMPARE_EXCHANGE. */
3819 else if (is_gimple_assign (stmt)
3820 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
3821 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
3822 && INTEGRAL_TYPE_P (type))
3824 enum tree_code code = gimple_assign_rhs_code (stmt);
3825 tree op = gimple_assign_rhs1 (stmt);
3826 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
3828 gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
3829 if (is_gimple_call (g) && gimple_call_internal_p (g))
3831 enum tree_code subcode = ERROR_MARK;
3832 switch (gimple_call_internal_fn (g))
3834 case IFN_ADD_OVERFLOW:
3835 subcode = PLUS_EXPR;
3836 break;
3837 case IFN_SUB_OVERFLOW:
3838 subcode = MINUS_EXPR;
3839 break;
3840 case IFN_MUL_OVERFLOW:
3841 subcode = MULT_EXPR;
3842 break;
3843 case IFN_ATOMIC_COMPARE_EXCHANGE:
3844 if (code == IMAGPART_EXPR)
3846 /* This is the boolean return value whether compare and
3847 exchange changed anything or not. */
3848 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
3849 build_int_cst (type, 1), NULL);
3850 return;
3852 break;
3853 default:
3854 break;
3856 if (subcode != ERROR_MARK)
3858 tree op0 = gimple_call_arg (g, 0);
3859 tree op1 = gimple_call_arg (g, 1);
3860 if (code == IMAGPART_EXPR)
3862 bool ovf = false;
3863 if (check_for_binary_op_overflow (subcode, type,
3864 op0, op1, &ovf))
3865 set_value_range_to_value (vr,
3866 build_int_cst (type, ovf),
3867 NULL);
3868 else if (TYPE_PRECISION (type) == 1
3869 && !TYPE_UNSIGNED (type))
3870 set_value_range_to_varying (vr);
3871 else
3872 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
3873 build_int_cst (type, 1), NULL);
3875 else if (types_compatible_p (type, TREE_TYPE (op0))
3876 && types_compatible_p (type, TREE_TYPE (op1)))
3878 bool saved_flag_wrapv = flag_wrapv;
3879 /* Pretend the arithmetics is wrapping. If there is
3880 any overflow, IMAGPART_EXPR will be set. */
3881 flag_wrapv = 1;
3882 extract_range_from_binary_expr (vr, subcode, type,
3883 op0, op1);
3884 flag_wrapv = saved_flag_wrapv;
3886 else
3888 value_range vr0 = VR_INITIALIZER;
3889 value_range vr1 = VR_INITIALIZER;
3890 bool saved_flag_wrapv = flag_wrapv;
3891 /* Pretend the arithmetics is wrapping. If there is
3892 any overflow, IMAGPART_EXPR will be set. */
3893 flag_wrapv = 1;
3894 extract_range_from_unary_expr (&vr0, NOP_EXPR,
3895 type, op0);
3896 extract_range_from_unary_expr (&vr1, NOP_EXPR,
3897 type, op1);
3898 extract_range_from_binary_expr_1 (vr, subcode, type,
3899 &vr0, &vr1);
3900 flag_wrapv = saved_flag_wrapv;
3902 return;
3907 if (INTEGRAL_TYPE_P (type)
3908 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3909 set_value_range_to_nonnegative (vr, type);
3910 else if (vrp_stmt_computes_nonzero (stmt))
3911 set_value_range_to_nonnull (vr, type);
3912 else
3913 set_value_range_to_varying (vr);
3917 /* Try to compute a useful range out of assignment STMT and store it
3918 in *VR. */
3920 static void
3921 extract_range_from_assignment (value_range *vr, gassign *stmt)
3923 enum tree_code code = gimple_assign_rhs_code (stmt);
3925 if (code == ASSERT_EXPR)
3926 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3927 else if (code == SSA_NAME)
3928 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3929 else if (TREE_CODE_CLASS (code) == tcc_binary)
3930 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3931 gimple_expr_type (stmt),
3932 gimple_assign_rhs1 (stmt),
3933 gimple_assign_rhs2 (stmt));
3934 else if (TREE_CODE_CLASS (code) == tcc_unary)
3935 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3936 gimple_expr_type (stmt),
3937 gimple_assign_rhs1 (stmt));
3938 else if (code == COND_EXPR)
3939 extract_range_from_cond_expr (vr, stmt);
3940 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3941 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3942 gimple_expr_type (stmt),
3943 gimple_assign_rhs1 (stmt),
3944 gimple_assign_rhs2 (stmt));
3945 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3946 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3947 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3948 else
3949 set_value_range_to_varying (vr);
3951 if (vr->type == VR_VARYING)
3952 extract_range_basic (vr, stmt);
3955 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3956 would be profitable to adjust VR using scalar evolution information
3957 for VAR. If so, update VR with the new limits. */
3959 static void
3960 adjust_range_with_scev (value_range *vr, struct loop *loop,
3961 gimple *stmt, tree var)
3963 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3964 enum ev_direction dir;
3966 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3967 better opportunities than a regular range, but I'm not sure. */
3968 if (vr->type == VR_ANTI_RANGE)
3969 return;
3971 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3973 /* Like in PR19590, scev can return a constant function. */
3974 if (is_gimple_min_invariant (chrec))
3976 set_value_range_to_value (vr, chrec, vr->equiv);
3977 return;
3980 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3981 return;
3983 init = initial_condition_in_loop_num (chrec, loop->num);
3984 tem = op_with_constant_singleton_value_range (init);
3985 if (tem)
3986 init = tem;
3987 step = evolution_part_in_loop_num (chrec, loop->num);
3988 tem = op_with_constant_singleton_value_range (step);
3989 if (tem)
3990 step = tem;
3992 /* If STEP is symbolic, we can't know whether INIT will be the
3993 minimum or maximum value in the range. Also, unless INIT is
3994 a simple expression, compare_values and possibly other functions
3995 in tree-vrp won't be able to handle it. */
3996 if (step == NULL_TREE
3997 || !is_gimple_min_invariant (step)
3998 || !valid_value_p (init))
3999 return;
4001 dir = scev_direction (chrec);
4002 if (/* Do not adjust ranges if we do not know whether the iv increases
4003 or decreases, ... */
4004 dir == EV_DIR_UNKNOWN
4005 /* ... or if it may wrap. */
4006 || scev_probably_wraps_p (NULL_TREE, init, step, stmt,
4007 get_chrec_loop (chrec), true))
4008 return;
4010 type = TREE_TYPE (var);
4011 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4012 tmin = lower_bound_in_type (type, type);
4013 else
4014 tmin = TYPE_MIN_VALUE (type);
4015 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4016 tmax = upper_bound_in_type (type, type);
4017 else
4018 tmax = TYPE_MAX_VALUE (type);
4020 /* Try to use estimated number of iterations for the loop to constrain the
4021 final value in the evolution. */
4022 if (TREE_CODE (step) == INTEGER_CST
4023 && is_gimple_val (init)
4024 && (TREE_CODE (init) != SSA_NAME
4025 || get_value_range (init)->type == VR_RANGE))
4027 widest_int nit;
4029 /* We are only entering here for loop header PHI nodes, so using
4030 the number of latch executions is the correct thing to use. */
4031 if (max_loop_iterations (loop, &nit))
4033 value_range maxvr = VR_INITIALIZER;
4034 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4035 bool overflow;
4037 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4038 &overflow);
4039 /* If the multiplication overflowed we can't do a meaningful
4040 adjustment. Likewise if the result doesn't fit in the type
4041 of the induction variable. For a signed type we have to
4042 check whether the result has the expected signedness which
4043 is that of the step as number of iterations is unsigned. */
4044 if (!overflow
4045 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4046 && (sgn == UNSIGNED
4047 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4049 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4050 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4051 TREE_TYPE (init), init, tem);
4052 /* Likewise if the addition did. */
4053 if (maxvr.type == VR_RANGE)
4055 value_range initvr = VR_INITIALIZER;
4057 if (TREE_CODE (init) == SSA_NAME)
4058 initvr = *(get_value_range (init));
4059 else if (is_gimple_min_invariant (init))
4060 set_value_range_to_value (&initvr, init, NULL);
4061 else
4062 return;
4064 /* Check if init + nit * step overflows. Though we checked
4065 scev {init, step}_loop doesn't wrap, it is not enough
4066 because the loop may exit immediately. Overflow could
4067 happen in the plus expression in this case. */
4068 if ((dir == EV_DIR_DECREASES
4069 && compare_values (maxvr.min, initvr.min) != -1)
4070 || (dir == EV_DIR_GROWS
4071 && compare_values (maxvr.max, initvr.max) != 1))
4072 return;
4074 tmin = maxvr.min;
4075 tmax = maxvr.max;
4081 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4083 min = tmin;
4084 max = tmax;
4086 /* For VARYING or UNDEFINED ranges, just about anything we get
4087 from scalar evolutions should be better. */
4089 if (dir == EV_DIR_DECREASES)
4090 max = init;
4091 else
4092 min = init;
4094 else if (vr->type == VR_RANGE)
4096 min = vr->min;
4097 max = vr->max;
4099 if (dir == EV_DIR_DECREASES)
4101 /* INIT is the maximum value. If INIT is lower than VR->MAX
4102 but no smaller than VR->MIN, set VR->MAX to INIT. */
4103 if (compare_values (init, max) == -1)
4104 max = init;
4106 /* According to the loop information, the variable does not
4107 overflow. */
4108 if (compare_values (min, tmin) == -1)
4109 min = tmin;
4112 else
4114 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4115 if (compare_values (init, min) == 1)
4116 min = init;
4118 if (compare_values (tmax, max) == -1)
4119 max = tmax;
4122 else
4123 return;
4125 /* If we just created an invalid range with the minimum
4126 greater than the maximum, we fail conservatively.
4127 This should happen only in unreachable
4128 parts of code, or for invalid programs. */
4129 if (compare_values (min, max) == 1)
4130 return;
4132 /* Even for valid range info, sometimes overflow flag will leak in.
4133 As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
4134 drop them. */
4135 if (TREE_OVERFLOW_P (min))
4136 min = drop_tree_overflow (min);
4137 if (TREE_OVERFLOW_P (max))
4138 max = drop_tree_overflow (max);
4140 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4144 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4146 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4147 all the values in the ranges.
4149 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4151 - Return NULL_TREE if it is not always possible to determine the
4152 value of the comparison.
4154 Also set *STRICT_OVERFLOW_P to indicate whether comparision evaluation
4155 assumed signed overflow is undefined. */
4158 static tree
4159 compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1,
4160 bool *strict_overflow_p)
4162 /* VARYING or UNDEFINED ranges cannot be compared. */
4163 if (vr0->type == VR_VARYING
4164 || vr0->type == VR_UNDEFINED
4165 || vr1->type == VR_VARYING
4166 || vr1->type == VR_UNDEFINED)
4167 return NULL_TREE;
4169 /* Anti-ranges need to be handled separately. */
4170 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4172 /* If both are anti-ranges, then we cannot compute any
4173 comparison. */
4174 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4175 return NULL_TREE;
4177 /* These comparisons are never statically computable. */
4178 if (comp == GT_EXPR
4179 || comp == GE_EXPR
4180 || comp == LT_EXPR
4181 || comp == LE_EXPR)
4182 return NULL_TREE;
4184 /* Equality can be computed only between a range and an
4185 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4186 if (vr0->type == VR_RANGE)
4188 /* To simplify processing, make VR0 the anti-range. */
4189 value_range *tmp = vr0;
4190 vr0 = vr1;
4191 vr1 = tmp;
4194 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4196 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4197 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4198 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4200 return NULL_TREE;
4203 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4204 operands around and change the comparison code. */
4205 if (comp == GT_EXPR || comp == GE_EXPR)
4207 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4208 std::swap (vr0, vr1);
4211 if (comp == EQ_EXPR)
4213 /* Equality may only be computed if both ranges represent
4214 exactly one value. */
4215 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4216 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4218 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4219 strict_overflow_p);
4220 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4221 strict_overflow_p);
4222 if (cmp_min == 0 && cmp_max == 0)
4223 return boolean_true_node;
4224 else if (cmp_min != -2 && cmp_max != -2)
4225 return boolean_false_node;
4227 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4228 else if (compare_values_warnv (vr0->min, vr1->max,
4229 strict_overflow_p) == 1
4230 || compare_values_warnv (vr1->min, vr0->max,
4231 strict_overflow_p) == 1)
4232 return boolean_false_node;
4234 return NULL_TREE;
4236 else if (comp == NE_EXPR)
4238 int cmp1, cmp2;
4240 /* If VR0 is completely to the left or completely to the right
4241 of VR1, they are always different. Notice that we need to
4242 make sure that both comparisons yield similar results to
4243 avoid comparing values that cannot be compared at
4244 compile-time. */
4245 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4246 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4247 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4248 return boolean_true_node;
4250 /* If VR0 and VR1 represent a single value and are identical,
4251 return false. */
4252 else if (compare_values_warnv (vr0->min, vr0->max,
4253 strict_overflow_p) == 0
4254 && compare_values_warnv (vr1->min, vr1->max,
4255 strict_overflow_p) == 0
4256 && compare_values_warnv (vr0->min, vr1->min,
4257 strict_overflow_p) == 0
4258 && compare_values_warnv (vr0->max, vr1->max,
4259 strict_overflow_p) == 0)
4260 return boolean_false_node;
4262 /* Otherwise, they may or may not be different. */
4263 else
4264 return NULL_TREE;
4266 else if (comp == LT_EXPR || comp == LE_EXPR)
4268 int tst;
4270 /* If VR0 is to the left of VR1, return true. */
4271 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4272 if ((comp == LT_EXPR && tst == -1)
4273 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4274 return boolean_true_node;
4276 /* If VR0 is to the right of VR1, return false. */
4277 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4278 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4279 || (comp == LE_EXPR && tst == 1))
4280 return boolean_false_node;
4282 /* Otherwise, we don't know. */
4283 return NULL_TREE;
4286 gcc_unreachable ();
4290 /* Given a value range VR, a value VAL and a comparison code COMP, return
4291 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4292 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4293 always returns false. Return NULL_TREE if it is not always
4294 possible to determine the value of the comparison. Also set
4295 *STRICT_OVERFLOW_P to indicate whether comparision evaluation
4296 assumed signed overflow is undefined. */
4298 static tree
4299 compare_range_with_value (enum tree_code comp, value_range *vr, tree val,
4300 bool *strict_overflow_p)
4302 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4303 return NULL_TREE;
4305 /* Anti-ranges need to be handled separately. */
4306 if (vr->type == VR_ANTI_RANGE)
4308 /* For anti-ranges, the only predicates that we can compute at
4309 compile time are equality and inequality. */
4310 if (comp == GT_EXPR
4311 || comp == GE_EXPR
4312 || comp == LT_EXPR
4313 || comp == LE_EXPR)
4314 return NULL_TREE;
4316 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4317 if (value_inside_range (val, vr->min, vr->max) == 1)
4318 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4320 return NULL_TREE;
4323 if (comp == EQ_EXPR)
4325 /* EQ_EXPR may only be computed if VR represents exactly
4326 one value. */
4327 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4329 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4330 if (cmp == 0)
4331 return boolean_true_node;
4332 else if (cmp == -1 || cmp == 1 || cmp == 2)
4333 return boolean_false_node;
4335 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4336 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4337 return boolean_false_node;
4339 return NULL_TREE;
4341 else if (comp == NE_EXPR)
4343 /* If VAL is not inside VR, then they are always different. */
4344 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4345 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4346 return boolean_true_node;
4348 /* If VR represents exactly one value equal to VAL, then return
4349 false. */
4350 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4351 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4352 return boolean_false_node;
4354 /* Otherwise, they may or may not be different. */
4355 return NULL_TREE;
4357 else if (comp == LT_EXPR || comp == LE_EXPR)
4359 int tst;
4361 /* If VR is to the left of VAL, return true. */
4362 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4363 if ((comp == LT_EXPR && tst == -1)
4364 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4365 return boolean_true_node;
4367 /* If VR is to the right of VAL, return false. */
4368 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4369 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4370 || (comp == LE_EXPR && tst == 1))
4371 return boolean_false_node;
4373 /* Otherwise, we don't know. */
4374 return NULL_TREE;
4376 else if (comp == GT_EXPR || comp == GE_EXPR)
4378 int tst;
4380 /* If VR is to the right of VAL, return true. */
4381 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4382 if ((comp == GT_EXPR && tst == 1)
4383 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4384 return boolean_true_node;
4386 /* If VR is to the left of VAL, return false. */
4387 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4388 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4389 || (comp == GE_EXPR && tst == -1))
4390 return boolean_false_node;
4392 /* Otherwise, we don't know. */
4393 return NULL_TREE;
4396 gcc_unreachable ();
4400 /* Debugging dumps. */
4402 void dump_value_range (FILE *, const value_range *);
4403 void debug_value_range (value_range *);
4404 void dump_all_value_ranges (FILE *);
4405 void debug_all_value_ranges (void);
4406 void dump_vr_equiv (FILE *, bitmap);
4407 void debug_vr_equiv (bitmap);
4410 /* Dump value range VR to FILE. */
4412 void
4413 dump_value_range (FILE *file, const value_range *vr)
4415 if (vr == NULL)
4416 fprintf (file, "[]");
4417 else if (vr->type == VR_UNDEFINED)
4418 fprintf (file, "UNDEFINED");
4419 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4421 tree type = TREE_TYPE (vr->min);
4423 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4425 if (INTEGRAL_TYPE_P (type)
4426 && !TYPE_UNSIGNED (type)
4427 && vrp_val_is_min (vr->min))
4428 fprintf (file, "-INF");
4429 else
4430 print_generic_expr (file, vr->min);
4432 fprintf (file, ", ");
4434 if (INTEGRAL_TYPE_P (type)
4435 && vrp_val_is_max (vr->max))
4436 fprintf (file, "+INF");
4437 else
4438 print_generic_expr (file, vr->max);
4440 fprintf (file, "]");
4442 if (vr->equiv)
4444 bitmap_iterator bi;
4445 unsigned i, c = 0;
4447 fprintf (file, " EQUIVALENCES: { ");
4449 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4451 print_generic_expr (file, ssa_name (i));
4452 fprintf (file, " ");
4453 c++;
4456 fprintf (file, "} (%u elements)", c);
4459 else if (vr->type == VR_VARYING)
4460 fprintf (file, "VARYING");
4461 else
4462 fprintf (file, "INVALID RANGE");
4466 /* Dump value range VR to stderr. */
4468 DEBUG_FUNCTION void
4469 debug_value_range (value_range *vr)
4471 dump_value_range (stderr, vr);
4472 fprintf (stderr, "\n");
4476 /* Dump value ranges of all SSA_NAMEs to FILE. */
4478 void
4479 dump_all_value_ranges (FILE *file)
4481 size_t i;
4483 for (i = 0; i < num_vr_values; i++)
4485 if (vr_value[i])
4487 print_generic_expr (file, ssa_name (i));
4488 fprintf (file, ": ");
4489 dump_value_range (file, vr_value[i]);
4490 fprintf (file, "\n");
4494 fprintf (file, "\n");
4498 /* Dump all value ranges to stderr. */
4500 DEBUG_FUNCTION void
4501 debug_all_value_ranges (void)
4503 dump_all_value_ranges (stderr);
4507 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4508 create a new SSA name N and return the assertion assignment
4509 'N = ASSERT_EXPR <V, V OP W>'. */
4511 static gimple *
4512 build_assert_expr_for (tree cond, tree v)
4514 tree a;
4515 gassign *assertion;
4517 gcc_assert (TREE_CODE (v) == SSA_NAME
4518 && COMPARISON_CLASS_P (cond));
4520 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4521 assertion = gimple_build_assign (NULL_TREE, a);
4523 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4524 operand of the ASSERT_EXPR. Create it so the new name and the old one
4525 are registered in the replacement table so that we can fix the SSA web
4526 after adding all the ASSERT_EXPRs. */
4527 tree new_def = create_new_def_for (v, assertion, NULL);
4528 /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
4529 given we have to be able to fully propagate those out to re-create
4530 valid SSA when removing the asserts. */
4531 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v))
4532 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def) = 1;
4534 return assertion;
4538 /* Return false if EXPR is a predicate expression involving floating
4539 point values. */
4541 static inline bool
4542 fp_predicate (gimple *stmt)
4544 GIMPLE_CHECK (stmt, GIMPLE_COND);
4546 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4549 /* If the range of values taken by OP can be inferred after STMT executes,
4550 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4551 describes the inferred range. Return true if a range could be
4552 inferred. */
4554 static bool
4555 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
4557 *val_p = NULL_TREE;
4558 *comp_code_p = ERROR_MARK;
4560 /* Do not attempt to infer anything in names that flow through
4561 abnormal edges. */
4562 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4563 return false;
4565 /* If STMT is the last statement of a basic block with no normal
4566 successors, there is no point inferring anything about any of its
4567 operands. We would not be able to find a proper insertion point
4568 for the assertion, anyway. */
4569 if (stmt_ends_bb_p (stmt))
4571 edge_iterator ei;
4572 edge e;
4574 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4575 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4576 break;
4577 if (e == NULL)
4578 return false;
4581 if (infer_nonnull_range (stmt, op))
4583 *val_p = build_int_cst (TREE_TYPE (op), 0);
4584 *comp_code_p = NE_EXPR;
4585 return true;
4588 return false;
4592 void dump_asserts_for (FILE *, tree);
4593 void debug_asserts_for (tree);
4594 void dump_all_asserts (FILE *);
4595 void debug_all_asserts (void);
4597 /* Dump all the registered assertions for NAME to FILE. */
4599 void
4600 dump_asserts_for (FILE *file, tree name)
4602 assert_locus *loc;
4604 fprintf (file, "Assertions to be inserted for ");
4605 print_generic_expr (file, name);
4606 fprintf (file, "\n");
4608 loc = asserts_for[SSA_NAME_VERSION (name)];
4609 while (loc)
4611 fprintf (file, "\t");
4612 print_gimple_stmt (file, gsi_stmt (loc->si), 0);
4613 fprintf (file, "\n\tBB #%d", loc->bb->index);
4614 if (loc->e)
4616 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4617 loc->e->dest->index);
4618 dump_edge_info (file, loc->e, dump_flags, 0);
4620 fprintf (file, "\n\tPREDICATE: ");
4621 print_generic_expr (file, loc->expr);
4622 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4623 print_generic_expr (file, loc->val);
4624 fprintf (file, "\n\n");
4625 loc = loc->next;
4628 fprintf (file, "\n");
4632 /* Dump all the registered assertions for NAME to stderr. */
4634 DEBUG_FUNCTION void
4635 debug_asserts_for (tree name)
4637 dump_asserts_for (stderr, name);
4641 /* Dump all the registered assertions for all the names to FILE. */
4643 void
4644 dump_all_asserts (FILE *file)
4646 unsigned i;
4647 bitmap_iterator bi;
4649 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4650 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4651 dump_asserts_for (file, ssa_name (i));
4652 fprintf (file, "\n");
4656 /* Dump all the registered assertions for all the names to stderr. */
4658 DEBUG_FUNCTION void
4659 debug_all_asserts (void)
4661 dump_all_asserts (stderr);
4664 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
4666 static void
4667 add_assert_info (vec<assert_info> &asserts,
4668 tree name, tree expr, enum tree_code comp_code, tree val)
4670 assert_info info;
4671 info.comp_code = comp_code;
4672 info.name = name;
4673 info.val = val;
4674 info.expr = expr;
4675 asserts.safe_push (info);
4678 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4679 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4680 E->DEST, then register this location as a possible insertion point
4681 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4683 BB, E and SI provide the exact insertion point for the new
4684 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4685 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4686 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4687 must not be NULL. */
4689 static void
4690 register_new_assert_for (tree name, tree expr,
4691 enum tree_code comp_code,
4692 tree val,
4693 basic_block bb,
4694 edge e,
4695 gimple_stmt_iterator si)
4697 assert_locus *n, *loc, *last_loc;
4698 basic_block dest_bb;
4700 gcc_checking_assert (bb == NULL || e == NULL);
4702 if (e == NULL)
4703 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4704 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4706 /* Never build an assert comparing against an integer constant with
4707 TREE_OVERFLOW set. This confuses our undefined overflow warning
4708 machinery. */
4709 if (TREE_OVERFLOW_P (val))
4710 val = drop_tree_overflow (val);
4712 /* The new assertion A will be inserted at BB or E. We need to
4713 determine if the new location is dominated by a previously
4714 registered location for A. If we are doing an edge insertion,
4715 assume that A will be inserted at E->DEST. Note that this is not
4716 necessarily true.
4718 If E is a critical edge, it will be split. But even if E is
4719 split, the new block will dominate the same set of blocks that
4720 E->DEST dominates.
4722 The reverse, however, is not true, blocks dominated by E->DEST
4723 will not be dominated by the new block created to split E. So,
4724 if the insertion location is on a critical edge, we will not use
4725 the new location to move another assertion previously registered
4726 at a block dominated by E->DEST. */
4727 dest_bb = (bb) ? bb : e->dest;
4729 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4730 VAL at a block dominating DEST_BB, then we don't need to insert a new
4731 one. Similarly, if the same assertion already exists at a block
4732 dominated by DEST_BB and the new location is not on a critical
4733 edge, then update the existing location for the assertion (i.e.,
4734 move the assertion up in the dominance tree).
4736 Note, this is implemented as a simple linked list because there
4737 should not be more than a handful of assertions registered per
4738 name. If this becomes a performance problem, a table hashed by
4739 COMP_CODE and VAL could be implemented. */
4740 loc = asserts_for[SSA_NAME_VERSION (name)];
4741 last_loc = loc;
4742 while (loc)
4744 if (loc->comp_code == comp_code
4745 && (loc->val == val
4746 || operand_equal_p (loc->val, val, 0))
4747 && (loc->expr == expr
4748 || operand_equal_p (loc->expr, expr, 0)))
4750 /* If E is not a critical edge and DEST_BB
4751 dominates the existing location for the assertion, move
4752 the assertion up in the dominance tree by updating its
4753 location information. */
4754 if ((e == NULL || !EDGE_CRITICAL_P (e))
4755 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4757 loc->bb = dest_bb;
4758 loc->e = e;
4759 loc->si = si;
4760 return;
4764 /* Update the last node of the list and move to the next one. */
4765 last_loc = loc;
4766 loc = loc->next;
4769 /* If we didn't find an assertion already registered for
4770 NAME COMP_CODE VAL, add a new one at the end of the list of
4771 assertions associated with NAME. */
4772 n = XNEW (struct assert_locus);
4773 n->bb = dest_bb;
4774 n->e = e;
4775 n->si = si;
4776 n->comp_code = comp_code;
4777 n->val = val;
4778 n->expr = expr;
4779 n->next = NULL;
4781 if (last_loc)
4782 last_loc->next = n;
4783 else
4784 asserts_for[SSA_NAME_VERSION (name)] = n;
4786 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4789 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4790 Extract a suitable test code and value and store them into *CODE_P and
4791 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4793 If no extraction was possible, return FALSE, otherwise return TRUE.
4795 If INVERT is true, then we invert the result stored into *CODE_P. */
4797 static bool
4798 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4799 tree cond_op0, tree cond_op1,
4800 bool invert, enum tree_code *code_p,
4801 tree *val_p)
4803 enum tree_code comp_code;
4804 tree val;
4806 /* Otherwise, we have a comparison of the form NAME COMP VAL
4807 or VAL COMP NAME. */
4808 if (name == cond_op1)
4810 /* If the predicate is of the form VAL COMP NAME, flip
4811 COMP around because we need to register NAME as the
4812 first operand in the predicate. */
4813 comp_code = swap_tree_comparison (cond_code);
4814 val = cond_op0;
4816 else if (name == cond_op0)
4818 /* The comparison is of the form NAME COMP VAL, so the
4819 comparison code remains unchanged. */
4820 comp_code = cond_code;
4821 val = cond_op1;
4823 else
4824 gcc_unreachable ();
4826 /* Invert the comparison code as necessary. */
4827 if (invert)
4828 comp_code = invert_tree_comparison (comp_code, 0);
4830 /* VRP only handles integral and pointer types. */
4831 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
4832 && ! POINTER_TYPE_P (TREE_TYPE (val)))
4833 return false;
4835 /* Do not register always-false predicates.
4836 FIXME: this works around a limitation in fold() when dealing with
4837 enumerations. Given 'enum { N1, N2 } x;', fold will not
4838 fold 'if (x > N2)' to 'if (0)'. */
4839 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4840 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4842 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4843 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4845 if (comp_code == GT_EXPR
4846 && (!max
4847 || compare_values (val, max) == 0))
4848 return false;
4850 if (comp_code == LT_EXPR
4851 && (!min
4852 || compare_values (val, min) == 0))
4853 return false;
4855 *code_p = comp_code;
4856 *val_p = val;
4857 return true;
4860 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4861 (otherwise return VAL). VAL and MASK must be zero-extended for
4862 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4863 (to transform signed values into unsigned) and at the end xor
4864 SGNBIT back. */
4866 static wide_int
4867 masked_increment (const wide_int &val_in, const wide_int &mask,
4868 const wide_int &sgnbit, unsigned int prec)
4870 wide_int bit = wi::one (prec), res;
4871 unsigned int i;
4873 wide_int val = val_in ^ sgnbit;
4874 for (i = 0; i < prec; i++, bit += bit)
4876 res = mask;
4877 if ((res & bit) == 0)
4878 continue;
4879 res = bit - 1;
4880 res = (val + bit).and_not (res);
4881 res &= mask;
4882 if (wi::gtu_p (res, val))
4883 return res ^ sgnbit;
4885 return val ^ sgnbit;
4888 /* Helper for overflow_comparison_p
4890 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
4891 OP1's defining statement to see if it ultimately has the form
4892 OP0 CODE (OP0 PLUS INTEGER_CST)
4894 If so, return TRUE indicating this is an overflow test and store into
4895 *NEW_CST an updated constant that can be used in a narrowed range test.
4897 REVERSED indicates if the comparison was originally:
4899 OP1 CODE' OP0.
4901 This affects how we build the updated constant. */
4903 static bool
4904 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
4905 bool follow_assert_exprs, bool reversed, tree *new_cst)
4907 /* See if this is a relational operation between two SSA_NAMES with
4908 unsigned, overflow wrapping values. If so, check it more deeply. */
4909 if ((code == LT_EXPR || code == LE_EXPR
4910 || code == GE_EXPR || code == GT_EXPR)
4911 && TREE_CODE (op0) == SSA_NAME
4912 && TREE_CODE (op1) == SSA_NAME
4913 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4914 && TYPE_UNSIGNED (TREE_TYPE (op0))
4915 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
4917 gimple *op1_def = SSA_NAME_DEF_STMT (op1);
4919 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
4920 if (follow_assert_exprs)
4922 while (gimple_assign_single_p (op1_def)
4923 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
4925 op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
4926 if (TREE_CODE (op1) != SSA_NAME)
4927 break;
4928 op1_def = SSA_NAME_DEF_STMT (op1);
4932 /* Now look at the defining statement of OP1 to see if it adds
4933 or subtracts a nonzero constant from another operand. */
4934 if (op1_def
4935 && is_gimple_assign (op1_def)
4936 && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
4937 && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
4938 && !integer_zerop (gimple_assign_rhs2 (op1_def)))
4940 tree target = gimple_assign_rhs1 (op1_def);
4942 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
4943 for one where TARGET appears on the RHS. */
4944 if (follow_assert_exprs)
4946 /* Now see if that "other operand" is op0, following the chain
4947 of ASSERT_EXPRs if necessary. */
4948 gimple *op0_def = SSA_NAME_DEF_STMT (op0);
4949 while (op0 != target
4950 && gimple_assign_single_p (op0_def)
4951 && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
4953 op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
4954 if (TREE_CODE (op0) != SSA_NAME)
4955 break;
4956 op0_def = SSA_NAME_DEF_STMT (op0);
4960 /* If we did not find our target SSA_NAME, then this is not
4961 an overflow test. */
4962 if (op0 != target)
4963 return false;
4965 tree type = TREE_TYPE (op0);
4966 wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
4967 tree inc = gimple_assign_rhs2 (op1_def);
4968 if (reversed)
4969 *new_cst = wide_int_to_tree (type, max + inc);
4970 else
4971 *new_cst = wide_int_to_tree (type, max - inc);
4972 return true;
4975 return false;
4978 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
4979 OP1's defining statement to see if it ultimately has the form
4980 OP0 CODE (OP0 PLUS INTEGER_CST)
4982 If so, return TRUE indicating this is an overflow test and store into
4983 *NEW_CST an updated constant that can be used in a narrowed range test.
4985 These statements are left as-is in the IL to facilitate discovery of
4986 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
4987 the alternate range representation is often useful within VRP. */
4989 static bool
4990 overflow_comparison_p (tree_code code, tree name, tree val,
4991 bool use_equiv_p, tree *new_cst)
4993 if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
4994 return true;
4995 return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
4996 use_equiv_p, true, new_cst);
5000 /* Try to register an edge assertion for SSA name NAME on edge E for
5001 the condition COND contributing to the conditional jump pointed to by BSI.
5002 Invert the condition COND if INVERT is true. */
5004 static void
5005 register_edge_assert_for_2 (tree name, edge e,
5006 enum tree_code cond_code,
5007 tree cond_op0, tree cond_op1, bool invert,
5008 vec<assert_info> &asserts)
5010 tree val;
5011 enum tree_code comp_code;
5013 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5014 cond_op0,
5015 cond_op1,
5016 invert, &comp_code, &val))
5017 return;
5019 /* Queue the assert. */
5020 tree x;
5021 if (overflow_comparison_p (comp_code, name, val, false, &x))
5023 enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
5024 ? GT_EXPR : LE_EXPR);
5025 add_assert_info (asserts, name, name, new_code, x);
5027 add_assert_info (asserts, name, name, comp_code, val);
5029 /* In the case of NAME <= CST and NAME being defined as
5030 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5031 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5032 This catches range and anti-range tests. */
5033 if ((comp_code == LE_EXPR
5034 || comp_code == GT_EXPR)
5035 && TREE_CODE (val) == INTEGER_CST
5036 && TYPE_UNSIGNED (TREE_TYPE (val)))
5038 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5039 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5041 /* Extract CST2 from the (optional) addition. */
5042 if (is_gimple_assign (def_stmt)
5043 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5045 name2 = gimple_assign_rhs1 (def_stmt);
5046 cst2 = gimple_assign_rhs2 (def_stmt);
5047 if (TREE_CODE (name2) == SSA_NAME
5048 && TREE_CODE (cst2) == INTEGER_CST)
5049 def_stmt = SSA_NAME_DEF_STMT (name2);
5052 /* Extract NAME2 from the (optional) sign-changing cast. */
5053 if (gimple_assign_cast_p (def_stmt))
5055 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5056 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5057 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5058 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5059 name3 = gimple_assign_rhs1 (def_stmt);
5062 /* If name3 is used later, create an ASSERT_EXPR for it. */
5063 if (name3 != NULL_TREE
5064 && TREE_CODE (name3) == SSA_NAME
5065 && (cst2 == NULL_TREE
5066 || TREE_CODE (cst2) == INTEGER_CST)
5067 && INTEGRAL_TYPE_P (TREE_TYPE (name3)))
5069 tree tmp;
5071 /* Build an expression for the range test. */
5072 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5073 if (cst2 != NULL_TREE)
5074 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5076 if (dump_file)
5078 fprintf (dump_file, "Adding assert for ");
5079 print_generic_expr (dump_file, name3);
5080 fprintf (dump_file, " from ");
5081 print_generic_expr (dump_file, tmp);
5082 fprintf (dump_file, "\n");
5085 add_assert_info (asserts, name3, tmp, comp_code, val);
5088 /* If name2 is used later, create an ASSERT_EXPR for it. */
5089 if (name2 != NULL_TREE
5090 && TREE_CODE (name2) == SSA_NAME
5091 && TREE_CODE (cst2) == INTEGER_CST
5092 && INTEGRAL_TYPE_P (TREE_TYPE (name2)))
5094 tree tmp;
5096 /* Build an expression for the range test. */
5097 tmp = name2;
5098 if (TREE_TYPE (name) != TREE_TYPE (name2))
5099 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5100 if (cst2 != NULL_TREE)
5101 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5103 if (dump_file)
5105 fprintf (dump_file, "Adding assert for ");
5106 print_generic_expr (dump_file, name2);
5107 fprintf (dump_file, " from ");
5108 print_generic_expr (dump_file, tmp);
5109 fprintf (dump_file, "\n");
5112 add_assert_info (asserts, name2, tmp, comp_code, val);
5116 /* In the case of post-in/decrement tests like if (i++) ... and uses
5117 of the in/decremented value on the edge the extra name we want to
5118 assert for is not on the def chain of the name compared. Instead
5119 it is in the set of use stmts.
5120 Similar cases happen for conversions that were simplified through
5121 fold_{sign_changed,widened}_comparison. */
5122 if ((comp_code == NE_EXPR
5123 || comp_code == EQ_EXPR)
5124 && TREE_CODE (val) == INTEGER_CST)
5126 imm_use_iterator ui;
5127 gimple *use_stmt;
5128 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5130 if (!is_gimple_assign (use_stmt))
5131 continue;
5133 /* Cut off to use-stmts that are dominating the predecessor. */
5134 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
5135 continue;
5137 tree name2 = gimple_assign_lhs (use_stmt);
5138 if (TREE_CODE (name2) != SSA_NAME)
5139 continue;
5141 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5142 tree cst;
5143 if (code == PLUS_EXPR
5144 || code == MINUS_EXPR)
5146 cst = gimple_assign_rhs2 (use_stmt);
5147 if (TREE_CODE (cst) != INTEGER_CST)
5148 continue;
5149 cst = int_const_binop (code, val, cst);
5151 else if (CONVERT_EXPR_CODE_P (code))
5153 /* For truncating conversions we cannot record
5154 an inequality. */
5155 if (comp_code == NE_EXPR
5156 && (TYPE_PRECISION (TREE_TYPE (name2))
5157 < TYPE_PRECISION (TREE_TYPE (name))))
5158 continue;
5159 cst = fold_convert (TREE_TYPE (name2), val);
5161 else
5162 continue;
5164 if (TREE_OVERFLOW_P (cst))
5165 cst = drop_tree_overflow (cst);
5166 add_assert_info (asserts, name2, name2, comp_code, cst);
5170 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5171 && TREE_CODE (val) == INTEGER_CST)
5173 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5174 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5175 tree val2 = NULL_TREE;
5176 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5177 wide_int mask = wi::zero (prec);
5178 unsigned int nprec = prec;
5179 enum tree_code rhs_code = ERROR_MARK;
5181 if (is_gimple_assign (def_stmt))
5182 rhs_code = gimple_assign_rhs_code (def_stmt);
5184 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
5185 assert that A != CST1 -+ CST2. */
5186 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
5187 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
5189 tree op0 = gimple_assign_rhs1 (def_stmt);
5190 tree op1 = gimple_assign_rhs2 (def_stmt);
5191 if (TREE_CODE (op0) == SSA_NAME
5192 && TREE_CODE (op1) == INTEGER_CST)
5194 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
5195 ? MINUS_EXPR : PLUS_EXPR);
5196 op1 = int_const_binop (reverse_op, val, op1);
5197 if (TREE_OVERFLOW (op1))
5198 op1 = drop_tree_overflow (op1);
5199 add_assert_info (asserts, op0, op0, comp_code, op1);
5203 /* Add asserts for NAME cmp CST and NAME being defined
5204 as NAME = (int) NAME2. */
5205 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5206 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5207 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5208 && gimple_assign_cast_p (def_stmt))
5210 name2 = gimple_assign_rhs1 (def_stmt);
5211 if (CONVERT_EXPR_CODE_P (rhs_code)
5212 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5213 && TYPE_UNSIGNED (TREE_TYPE (name2))
5214 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5215 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5216 || !tree_int_cst_equal (val,
5217 TYPE_MIN_VALUE (TREE_TYPE (val)))))
5219 tree tmp, cst;
5220 enum tree_code new_comp_code = comp_code;
5222 cst = fold_convert (TREE_TYPE (name2),
5223 TYPE_MIN_VALUE (TREE_TYPE (val)));
5224 /* Build an expression for the range test. */
5225 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5226 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5227 fold_convert (TREE_TYPE (name2), val));
5228 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5230 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5231 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5232 build_int_cst (TREE_TYPE (name2), 1));
5235 if (dump_file)
5237 fprintf (dump_file, "Adding assert for ");
5238 print_generic_expr (dump_file, name2);
5239 fprintf (dump_file, " from ");
5240 print_generic_expr (dump_file, tmp);
5241 fprintf (dump_file, "\n");
5244 add_assert_info (asserts, name2, tmp, new_comp_code, cst);
5248 /* Add asserts for NAME cmp CST and NAME being defined as
5249 NAME = NAME2 >> CST2.
5251 Extract CST2 from the right shift. */
5252 if (rhs_code == RSHIFT_EXPR)
5254 name2 = gimple_assign_rhs1 (def_stmt);
5255 cst2 = gimple_assign_rhs2 (def_stmt);
5256 if (TREE_CODE (name2) == SSA_NAME
5257 && tree_fits_uhwi_p (cst2)
5258 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5259 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5260 && type_has_mode_precision_p (TREE_TYPE (val)))
5262 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5263 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5266 if (val2 != NULL_TREE
5267 && TREE_CODE (val2) == INTEGER_CST
5268 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5269 TREE_TYPE (val),
5270 val2, cst2), val))
5272 enum tree_code new_comp_code = comp_code;
5273 tree tmp, new_val;
5275 tmp = name2;
5276 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5278 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5280 tree type = build_nonstandard_integer_type (prec, 1);
5281 tmp = build1 (NOP_EXPR, type, name2);
5282 val2 = fold_convert (type, val2);
5284 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5285 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5286 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5288 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5290 wide_int minval
5291 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5292 new_val = val2;
5293 if (minval == new_val)
5294 new_val = NULL_TREE;
5296 else
5298 wide_int maxval
5299 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5300 mask |= val2;
5301 if (mask == maxval)
5302 new_val = NULL_TREE;
5303 else
5304 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5307 if (new_val)
5309 if (dump_file)
5311 fprintf (dump_file, "Adding assert for ");
5312 print_generic_expr (dump_file, name2);
5313 fprintf (dump_file, " from ");
5314 print_generic_expr (dump_file, tmp);
5315 fprintf (dump_file, "\n");
5318 add_assert_info (asserts, name2, tmp, new_comp_code, new_val);
5322 /* Add asserts for NAME cmp CST and NAME being defined as
5323 NAME = NAME2 & CST2.
5325 Extract CST2 from the and.
5327 Also handle
5328 NAME = (unsigned) NAME2;
5329 casts where NAME's type is unsigned and has smaller precision
5330 than NAME2's type as if it was NAME = NAME2 & MASK. */
5331 names[0] = NULL_TREE;
5332 names[1] = NULL_TREE;
5333 cst2 = NULL_TREE;
5334 if (rhs_code == BIT_AND_EXPR
5335 || (CONVERT_EXPR_CODE_P (rhs_code)
5336 && INTEGRAL_TYPE_P (TREE_TYPE (val))
5337 && TYPE_UNSIGNED (TREE_TYPE (val))
5338 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5339 > prec))
5341 name2 = gimple_assign_rhs1 (def_stmt);
5342 if (rhs_code == BIT_AND_EXPR)
5343 cst2 = gimple_assign_rhs2 (def_stmt);
5344 else
5346 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5347 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5349 if (TREE_CODE (name2) == SSA_NAME
5350 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5351 && TREE_CODE (cst2) == INTEGER_CST
5352 && !integer_zerop (cst2)
5353 && (nprec > 1
5354 || TYPE_UNSIGNED (TREE_TYPE (val))))
5356 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
5357 if (gimple_assign_cast_p (def_stmt2))
5359 names[1] = gimple_assign_rhs1 (def_stmt2);
5360 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5361 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5362 || (TYPE_PRECISION (TREE_TYPE (name2))
5363 != TYPE_PRECISION (TREE_TYPE (names[1]))))
5364 names[1] = NULL_TREE;
5366 names[0] = name2;
5369 if (names[0] || names[1])
5371 wide_int minv, maxv, valv, cst2v;
5372 wide_int tem, sgnbit;
5373 bool valid_p = false, valn, cst2n;
5374 enum tree_code ccode = comp_code;
5376 valv = wide_int::from (val, nprec, UNSIGNED);
5377 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5378 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5379 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5380 /* If CST2 doesn't have most significant bit set,
5381 but VAL is negative, we have comparison like
5382 if ((x & 0x123) > -4) (always true). Just give up. */
5383 if (!cst2n && valn)
5384 ccode = ERROR_MARK;
5385 if (cst2n)
5386 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5387 else
5388 sgnbit = wi::zero (nprec);
5389 minv = valv & cst2v;
5390 switch (ccode)
5392 case EQ_EXPR:
5393 /* Minimum unsigned value for equality is VAL & CST2
5394 (should be equal to VAL, otherwise we probably should
5395 have folded the comparison into false) and
5396 maximum unsigned value is VAL | ~CST2. */
5397 maxv = valv | ~cst2v;
5398 valid_p = true;
5399 break;
5401 case NE_EXPR:
5402 tem = valv | ~cst2v;
5403 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5404 if (valv == 0)
5406 cst2n = false;
5407 sgnbit = wi::zero (nprec);
5408 goto gt_expr;
5410 /* If (VAL | ~CST2) is all ones, handle it as
5411 (X & CST2) < VAL. */
5412 if (tem == -1)
5414 cst2n = false;
5415 valn = false;
5416 sgnbit = wi::zero (nprec);
5417 goto lt_expr;
5419 if (!cst2n && wi::neg_p (cst2v))
5420 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5421 if (sgnbit != 0)
5423 if (valv == sgnbit)
5425 cst2n = true;
5426 valn = true;
5427 goto gt_expr;
5429 if (tem == wi::mask (nprec - 1, false, nprec))
5431 cst2n = true;
5432 goto lt_expr;
5434 if (!cst2n)
5435 sgnbit = wi::zero (nprec);
5437 break;
5439 case GE_EXPR:
5440 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5441 is VAL and maximum unsigned value is ~0. For signed
5442 comparison, if CST2 doesn't have most significant bit
5443 set, handle it similarly. If CST2 has MSB set,
5444 the minimum is the same, and maximum is ~0U/2. */
5445 if (minv != valv)
5447 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5448 VAL. */
5449 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5450 if (minv == valv)
5451 break;
5453 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5454 valid_p = true;
5455 break;
5457 case GT_EXPR:
5458 gt_expr:
5459 /* Find out smallest MINV where MINV > VAL
5460 && (MINV & CST2) == MINV, if any. If VAL is signed and
5461 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5462 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5463 if (minv == valv)
5464 break;
5465 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5466 valid_p = true;
5467 break;
5469 case LE_EXPR:
5470 /* Minimum unsigned value for <= is 0 and maximum
5471 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5472 Otherwise, find smallest VAL2 where VAL2 > VAL
5473 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5474 as maximum.
5475 For signed comparison, if CST2 doesn't have most
5476 significant bit set, handle it similarly. If CST2 has
5477 MSB set, the maximum is the same and minimum is INT_MIN. */
5478 if (minv == valv)
5479 maxv = valv;
5480 else
5482 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5483 if (maxv == valv)
5484 break;
5485 maxv -= 1;
5487 maxv |= ~cst2v;
5488 minv = sgnbit;
5489 valid_p = true;
5490 break;
5492 case LT_EXPR:
5493 lt_expr:
5494 /* Minimum unsigned value for < is 0 and maximum
5495 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5496 Otherwise, find smallest VAL2 where VAL2 > VAL
5497 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5498 as maximum.
5499 For signed comparison, if CST2 doesn't have most
5500 significant bit set, handle it similarly. If CST2 has
5501 MSB set, the maximum is the same and minimum is INT_MIN. */
5502 if (minv == valv)
5504 if (valv == sgnbit)
5505 break;
5506 maxv = valv;
5508 else
5510 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5511 if (maxv == valv)
5512 break;
5514 maxv -= 1;
5515 maxv |= ~cst2v;
5516 minv = sgnbit;
5517 valid_p = true;
5518 break;
5520 default:
5521 break;
5523 if (valid_p
5524 && (maxv - minv) != -1)
5526 tree tmp, new_val, type;
5527 int i;
5529 for (i = 0; i < 2; i++)
5530 if (names[i])
5532 wide_int maxv2 = maxv;
5533 tmp = names[i];
5534 type = TREE_TYPE (names[i]);
5535 if (!TYPE_UNSIGNED (type))
5537 type = build_nonstandard_integer_type (nprec, 1);
5538 tmp = build1 (NOP_EXPR, type, names[i]);
5540 if (minv != 0)
5542 tmp = build2 (PLUS_EXPR, type, tmp,
5543 wide_int_to_tree (type, -minv));
5544 maxv2 = maxv - minv;
5546 new_val = wide_int_to_tree (type, maxv2);
5548 if (dump_file)
5550 fprintf (dump_file, "Adding assert for ");
5551 print_generic_expr (dump_file, names[i]);
5552 fprintf (dump_file, " from ");
5553 print_generic_expr (dump_file, tmp);
5554 fprintf (dump_file, "\n");
5557 add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val);
5564 /* OP is an operand of a truth value expression which is known to have
5565 a particular value. Register any asserts for OP and for any
5566 operands in OP's defining statement.
5568 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5569 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5571 static void
5572 register_edge_assert_for_1 (tree op, enum tree_code code,
5573 edge e, vec<assert_info> &asserts)
5575 gimple *op_def;
5576 tree val;
5577 enum tree_code rhs_code;
5579 /* We only care about SSA_NAMEs. */
5580 if (TREE_CODE (op) != SSA_NAME)
5581 return;
5583 /* We know that OP will have a zero or nonzero value. */
5584 val = build_int_cst (TREE_TYPE (op), 0);
5585 add_assert_info (asserts, op, op, code, val);
5587 /* Now look at how OP is set. If it's set from a comparison,
5588 a truth operation or some bit operations, then we may be able
5589 to register information about the operands of that assignment. */
5590 op_def = SSA_NAME_DEF_STMT (op);
5591 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5592 return;
5594 rhs_code = gimple_assign_rhs_code (op_def);
5596 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5598 bool invert = (code == EQ_EXPR ? true : false);
5599 tree op0 = gimple_assign_rhs1 (op_def);
5600 tree op1 = gimple_assign_rhs2 (op_def);
5602 if (TREE_CODE (op0) == SSA_NAME)
5603 register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts);
5604 if (TREE_CODE (op1) == SSA_NAME)
5605 register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts);
5607 else if ((code == NE_EXPR
5608 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5609 || (code == EQ_EXPR
5610 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5612 /* Recurse on each operand. */
5613 tree op0 = gimple_assign_rhs1 (op_def);
5614 tree op1 = gimple_assign_rhs2 (op_def);
5615 if (TREE_CODE (op0) == SSA_NAME
5616 && has_single_use (op0))
5617 register_edge_assert_for_1 (op0, code, e, asserts);
5618 if (TREE_CODE (op1) == SSA_NAME
5619 && has_single_use (op1))
5620 register_edge_assert_for_1 (op1, code, e, asserts);
5622 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5623 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5625 /* Recurse, flipping CODE. */
5626 code = invert_tree_comparison (code, false);
5627 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
5629 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5631 /* Recurse through the copy. */
5632 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
5634 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5636 /* Recurse through the type conversion, unless it is a narrowing
5637 conversion or conversion from non-integral type. */
5638 tree rhs = gimple_assign_rhs1 (op_def);
5639 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5640 && (TYPE_PRECISION (TREE_TYPE (rhs))
5641 <= TYPE_PRECISION (TREE_TYPE (op))))
5642 register_edge_assert_for_1 (rhs, code, e, asserts);
5646 /* Check if comparison
5647 NAME COND_OP INTEGER_CST
5648 has a form of
5649 (X & 11...100..0) COND_OP XX...X00...0
5650 Such comparison can yield assertions like
5651 X >= XX...X00...0
5652 X <= XX...X11...1
5653 in case of COND_OP being NE_EXPR or
5654 X < XX...X00...0
5655 X > XX...X11...1
5656 in case of EQ_EXPR. */
5658 static bool
5659 is_masked_range_test (tree name, tree valt, enum tree_code cond_code,
5660 tree *new_name, tree *low, enum tree_code *low_code,
5661 tree *high, enum tree_code *high_code)
5663 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5665 if (!is_gimple_assign (def_stmt)
5666 || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
5667 return false;
5669 tree t = gimple_assign_rhs1 (def_stmt);
5670 tree maskt = gimple_assign_rhs2 (def_stmt);
5671 if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST)
5672 return false;
5674 wide_int mask = maskt;
5675 wide_int inv_mask = ~mask;
5676 wide_int val = valt; // Assume VALT is INTEGER_CST
5678 if ((inv_mask & (inv_mask + 1)) != 0
5679 || (val & mask) != val)
5680 return false;
5682 bool is_range = cond_code == EQ_EXPR;
5684 tree type = TREE_TYPE (t);
5685 wide_int min = wi::min_value (type),
5686 max = wi::max_value (type);
5688 if (is_range)
5690 *low_code = val == min ? ERROR_MARK : GE_EXPR;
5691 *high_code = val == max ? ERROR_MARK : LE_EXPR;
5693 else
5695 /* We can still generate assertion if one of alternatives
5696 is known to always be false. */
5697 if (val == min)
5699 *low_code = (enum tree_code) 0;
5700 *high_code = GT_EXPR;
5702 else if ((val | inv_mask) == max)
5704 *low_code = LT_EXPR;
5705 *high_code = (enum tree_code) 0;
5707 else
5708 return false;
5711 *new_name = t;
5712 *low = wide_int_to_tree (type, val);
5713 *high = wide_int_to_tree (type, val | inv_mask);
5715 if (wi::neg_p (val, TYPE_SIGN (type)))
5716 std::swap (*low, *high);
5718 return true;
5721 /* Try to register an edge assertion for SSA name NAME on edge E for
5722 the condition COND contributing to the conditional jump pointed to by
5723 SI. */
5725 static void
5726 register_edge_assert_for (tree name, edge e,
5727 enum tree_code cond_code, tree cond_op0,
5728 tree cond_op1, vec<assert_info> &asserts)
5730 tree val;
5731 enum tree_code comp_code;
5732 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5734 /* Do not attempt to infer anything in names that flow through
5735 abnormal edges. */
5736 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5737 return;
5739 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5740 cond_op0, cond_op1,
5741 is_else_edge,
5742 &comp_code, &val))
5743 return;
5745 /* Register ASSERT_EXPRs for name. */
5746 register_edge_assert_for_2 (name, e, cond_code, cond_op0,
5747 cond_op1, is_else_edge, asserts);
5750 /* If COND is effectively an equality test of an SSA_NAME against
5751 the value zero or one, then we may be able to assert values
5752 for SSA_NAMEs which flow into COND. */
5754 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5755 statement of NAME we can assert both operands of the BIT_AND_EXPR
5756 have nonzero value. */
5757 if (((comp_code == EQ_EXPR && integer_onep (val))
5758 || (comp_code == NE_EXPR && integer_zerop (val))))
5760 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5762 if (is_gimple_assign (def_stmt)
5763 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5765 tree op0 = gimple_assign_rhs1 (def_stmt);
5766 tree op1 = gimple_assign_rhs2 (def_stmt);
5767 register_edge_assert_for_1 (op0, NE_EXPR, e, asserts);
5768 register_edge_assert_for_1 (op1, NE_EXPR, e, asserts);
5772 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5773 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5774 have zero value. */
5775 if (((comp_code == EQ_EXPR && integer_zerop (val))
5776 || (comp_code == NE_EXPR && integer_onep (val))))
5778 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5780 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5781 necessarily zero value, or if type-precision is one. */
5782 if (is_gimple_assign (def_stmt)
5783 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5784 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5785 || comp_code == EQ_EXPR)))
5787 tree op0 = gimple_assign_rhs1 (def_stmt);
5788 tree op1 = gimple_assign_rhs2 (def_stmt);
5789 register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts);
5790 register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts);
5794 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
5795 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
5796 && TREE_CODE (val) == INTEGER_CST)
5798 enum tree_code low_code, high_code;
5799 tree low, high;
5800 if (is_masked_range_test (name, val, comp_code, &name, &low,
5801 &low_code, &high, &high_code))
5803 if (low_code != ERROR_MARK)
5804 register_edge_assert_for_2 (name, e, low_code, name,
5805 low, /*invert*/false, asserts);
5806 if (high_code != ERROR_MARK)
5807 register_edge_assert_for_2 (name, e, high_code, name,
5808 high, /*invert*/false, asserts);
5813 /* Finish found ASSERTS for E and register them at GSI. */
5815 static void
5816 finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi,
5817 vec<assert_info> &asserts)
5819 for (unsigned i = 0; i < asserts.length (); ++i)
5820 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5821 reachable from E. */
5822 if (live_on_edge (e, asserts[i].name))
5823 register_new_assert_for (asserts[i].name, asserts[i].expr,
5824 asserts[i].comp_code, asserts[i].val,
5825 NULL, e, gsi);
5830 /* Determine whether the outgoing edges of BB should receive an
5831 ASSERT_EXPR for each of the operands of BB's LAST statement.
5832 The last statement of BB must be a COND_EXPR.
5834 If any of the sub-graphs rooted at BB have an interesting use of
5835 the predicate operands, an assert location node is added to the
5836 list of assertions for the corresponding operands. */
5838 static void
5839 find_conditional_asserts (basic_block bb, gcond *last)
5841 gimple_stmt_iterator bsi;
5842 tree op;
5843 edge_iterator ei;
5844 edge e;
5845 ssa_op_iter iter;
5847 bsi = gsi_for_stmt (last);
5849 /* Look for uses of the operands in each of the sub-graphs
5850 rooted at BB. We need to check each of the outgoing edges
5851 separately, so that we know what kind of ASSERT_EXPR to
5852 insert. */
5853 FOR_EACH_EDGE (e, ei, bb->succs)
5855 if (e->dest == bb)
5856 continue;
5858 /* Register the necessary assertions for each operand in the
5859 conditional predicate. */
5860 auto_vec<assert_info, 8> asserts;
5861 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5862 register_edge_assert_for (op, e,
5863 gimple_cond_code (last),
5864 gimple_cond_lhs (last),
5865 gimple_cond_rhs (last), asserts);
5866 finish_register_edge_assert_for (e, bsi, asserts);
5870 struct case_info
5872 tree expr;
5873 basic_block bb;
5876 /* Compare two case labels sorting first by the destination bb index
5877 and then by the case value. */
5879 static int
5880 compare_case_labels (const void *p1, const void *p2)
5882 const struct case_info *ci1 = (const struct case_info *) p1;
5883 const struct case_info *ci2 = (const struct case_info *) p2;
5884 int idx1 = ci1->bb->index;
5885 int idx2 = ci2->bb->index;
5887 if (idx1 < idx2)
5888 return -1;
5889 else if (idx1 == idx2)
5891 /* Make sure the default label is first in a group. */
5892 if (!CASE_LOW (ci1->expr))
5893 return -1;
5894 else if (!CASE_LOW (ci2->expr))
5895 return 1;
5896 else
5897 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5898 CASE_LOW (ci2->expr));
5900 else
5901 return 1;
5904 /* Determine whether the outgoing edges of BB should receive an
5905 ASSERT_EXPR for each of the operands of BB's LAST statement.
5906 The last statement of BB must be a SWITCH_EXPR.
5908 If any of the sub-graphs rooted at BB have an interesting use of
5909 the predicate operands, an assert location node is added to the
5910 list of assertions for the corresponding operands. */
5912 static void
5913 find_switch_asserts (basic_block bb, gswitch *last)
5915 gimple_stmt_iterator bsi;
5916 tree op;
5917 edge e;
5918 struct case_info *ci;
5919 size_t n = gimple_switch_num_labels (last);
5920 #if GCC_VERSION >= 4000
5921 unsigned int idx;
5922 #else
5923 /* Work around GCC 3.4 bug (PR 37086). */
5924 volatile unsigned int idx;
5925 #endif
5927 bsi = gsi_for_stmt (last);
5928 op = gimple_switch_index (last);
5929 if (TREE_CODE (op) != SSA_NAME)
5930 return;
5932 /* Build a vector of case labels sorted by destination label. */
5933 ci = XNEWVEC (struct case_info, n);
5934 for (idx = 0; idx < n; ++idx)
5936 ci[idx].expr = gimple_switch_label (last, idx);
5937 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5939 edge default_edge = find_edge (bb, ci[0].bb);
5940 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5942 for (idx = 0; idx < n; ++idx)
5944 tree min, max;
5945 tree cl = ci[idx].expr;
5946 basic_block cbb = ci[idx].bb;
5948 min = CASE_LOW (cl);
5949 max = CASE_HIGH (cl);
5951 /* If there are multiple case labels with the same destination
5952 we need to combine them to a single value range for the edge. */
5953 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5955 /* Skip labels until the last of the group. */
5956 do {
5957 ++idx;
5958 } while (idx < n && cbb == ci[idx].bb);
5959 --idx;
5961 /* Pick up the maximum of the case label range. */
5962 if (CASE_HIGH (ci[idx].expr))
5963 max = CASE_HIGH (ci[idx].expr);
5964 else
5965 max = CASE_LOW (ci[idx].expr);
5968 /* Can't extract a useful assertion out of a range that includes the
5969 default label. */
5970 if (min == NULL_TREE)
5971 continue;
5973 /* Find the edge to register the assert expr on. */
5974 e = find_edge (bb, cbb);
5976 /* Register the necessary assertions for the operand in the
5977 SWITCH_EXPR. */
5978 auto_vec<assert_info, 8> asserts;
5979 register_edge_assert_for (op, e,
5980 max ? GE_EXPR : EQ_EXPR,
5981 op, fold_convert (TREE_TYPE (op), min),
5982 asserts);
5983 if (max)
5984 register_edge_assert_for (op, e, LE_EXPR, op,
5985 fold_convert (TREE_TYPE (op), max),
5986 asserts);
5987 finish_register_edge_assert_for (e, bsi, asserts);
5990 XDELETEVEC (ci);
5992 if (!live_on_edge (default_edge, op))
5993 return;
5995 /* Now register along the default label assertions that correspond to the
5996 anti-range of each label. */
5997 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
5998 if (insertion_limit == 0)
5999 return;
6001 /* We can't do this if the default case shares a label with another case. */
6002 tree default_cl = gimple_switch_default_label (last);
6003 for (idx = 1; idx < n; idx++)
6005 tree min, max;
6006 tree cl = gimple_switch_label (last, idx);
6007 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
6008 continue;
6010 min = CASE_LOW (cl);
6011 max = CASE_HIGH (cl);
6013 /* Combine contiguous case ranges to reduce the number of assertions
6014 to insert. */
6015 for (idx = idx + 1; idx < n; idx++)
6017 tree next_min, next_max;
6018 tree next_cl = gimple_switch_label (last, idx);
6019 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
6020 break;
6022 next_min = CASE_LOW (next_cl);
6023 next_max = CASE_HIGH (next_cl);
6025 wide_int difference = wi::sub (next_min, max ? max : min);
6026 if (wi::eq_p (difference, 1))
6027 max = next_max ? next_max : next_min;
6028 else
6029 break;
6031 idx--;
6033 if (max == NULL_TREE)
6035 /* Register the assertion OP != MIN. */
6036 auto_vec<assert_info, 8> asserts;
6037 min = fold_convert (TREE_TYPE (op), min);
6038 register_edge_assert_for (op, default_edge, NE_EXPR, op, min,
6039 asserts);
6040 finish_register_edge_assert_for (default_edge, bsi, asserts);
6042 else
6044 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
6045 which will give OP the anti-range ~[MIN,MAX]. */
6046 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
6047 min = fold_convert (TREE_TYPE (uop), min);
6048 max = fold_convert (TREE_TYPE (uop), max);
6050 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
6051 tree rhs = int_const_binop (MINUS_EXPR, max, min);
6052 register_new_assert_for (op, lhs, GT_EXPR, rhs,
6053 NULL, default_edge, bsi);
6056 if (--insertion_limit == 0)
6057 break;
6062 /* Traverse all the statements in block BB looking for statements that
6063 may generate useful assertions for the SSA names in their operand.
6064 If a statement produces a useful assertion A for name N_i, then the
6065 list of assertions already generated for N_i is scanned to
6066 determine if A is actually needed.
6068 If N_i already had the assertion A at a location dominating the
6069 current location, then nothing needs to be done. Otherwise, the
6070 new location for A is recorded instead.
6072 1- For every statement S in BB, all the variables used by S are
6073 added to bitmap FOUND_IN_SUBGRAPH.
6075 2- If statement S uses an operand N in a way that exposes a known
6076 value range for N, then if N was not already generated by an
6077 ASSERT_EXPR, create a new assert location for N. For instance,
6078 if N is a pointer and the statement dereferences it, we can
6079 assume that N is not NULL.
6081 3- COND_EXPRs are a special case of #2. We can derive range
6082 information from the predicate but need to insert different
6083 ASSERT_EXPRs for each of the sub-graphs rooted at the
6084 conditional block. If the last statement of BB is a conditional
6085 expression of the form 'X op Y', then
6087 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6089 b) If the conditional is the only entry point to the sub-graph
6090 corresponding to the THEN_CLAUSE, recurse into it. On
6091 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6092 an ASSERT_EXPR is added for the corresponding variable.
6094 c) Repeat step (b) on the ELSE_CLAUSE.
6096 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6098 For instance,
6100 if (a == 9)
6101 b = a;
6102 else
6103 b = c + 1;
6105 In this case, an assertion on the THEN clause is useful to
6106 determine that 'a' is always 9 on that edge. However, an assertion
6107 on the ELSE clause would be unnecessary.
6109 4- If BB does not end in a conditional expression, then we recurse
6110 into BB's dominator children.
6112 At the end of the recursive traversal, every SSA name will have a
6113 list of locations where ASSERT_EXPRs should be added. When a new
6114 location for name N is found, it is registered by calling
6115 register_new_assert_for. That function keeps track of all the
6116 registered assertions to prevent adding unnecessary assertions.
6117 For instance, if a pointer P_4 is dereferenced more than once in a
6118 dominator tree, only the location dominating all the dereference of
6119 P_4 will receive an ASSERT_EXPR. */
6121 static void
6122 find_assert_locations_1 (basic_block bb, sbitmap live)
6124 gimple *last;
6126 last = last_stmt (bb);
6128 /* If BB's last statement is a conditional statement involving integer
6129 operands, determine if we need to add ASSERT_EXPRs. */
6130 if (last
6131 && gimple_code (last) == GIMPLE_COND
6132 && !fp_predicate (last)
6133 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6134 find_conditional_asserts (bb, as_a <gcond *> (last));
6136 /* If BB's last statement is a switch statement involving integer
6137 operands, determine if we need to add ASSERT_EXPRs. */
6138 if (last
6139 && gimple_code (last) == GIMPLE_SWITCH
6140 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6141 find_switch_asserts (bb, as_a <gswitch *> (last));
6143 /* Traverse all the statements in BB marking used names and looking
6144 for statements that may infer assertions for their used operands. */
6145 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6146 gsi_prev (&si))
6148 gimple *stmt;
6149 tree op;
6150 ssa_op_iter i;
6152 stmt = gsi_stmt (si);
6154 if (is_gimple_debug (stmt))
6155 continue;
6157 /* See if we can derive an assertion for any of STMT's operands. */
6158 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6160 tree value;
6161 enum tree_code comp_code;
6163 /* If op is not live beyond this stmt, do not bother to insert
6164 asserts for it. */
6165 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6166 continue;
6168 /* If OP is used in such a way that we can infer a value
6169 range for it, and we don't find a previous assertion for
6170 it, create a new assertion location node for OP. */
6171 if (infer_value_range (stmt, op, &comp_code, &value))
6173 /* If we are able to infer a nonzero value range for OP,
6174 then walk backwards through the use-def chain to see if OP
6175 was set via a typecast.
6177 If so, then we can also infer a nonzero value range
6178 for the operand of the NOP_EXPR. */
6179 if (comp_code == NE_EXPR && integer_zerop (value))
6181 tree t = op;
6182 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
6184 while (is_gimple_assign (def_stmt)
6185 && CONVERT_EXPR_CODE_P
6186 (gimple_assign_rhs_code (def_stmt))
6187 && TREE_CODE
6188 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6189 && POINTER_TYPE_P
6190 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6192 t = gimple_assign_rhs1 (def_stmt);
6193 def_stmt = SSA_NAME_DEF_STMT (t);
6195 /* Note we want to register the assert for the
6196 operand of the NOP_EXPR after SI, not after the
6197 conversion. */
6198 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
6199 register_new_assert_for (t, t, comp_code, value,
6200 bb, NULL, si);
6204 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6208 /* Update live. */
6209 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6210 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6211 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6212 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6215 /* Traverse all PHI nodes in BB, updating live. */
6216 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6217 gsi_next (&si))
6219 use_operand_p arg_p;
6220 ssa_op_iter i;
6221 gphi *phi = si.phi ();
6222 tree res = gimple_phi_result (phi);
6224 if (virtual_operand_p (res))
6225 continue;
6227 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6229 tree arg = USE_FROM_PTR (arg_p);
6230 if (TREE_CODE (arg) == SSA_NAME)
6231 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6234 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6238 /* Do an RPO walk over the function computing SSA name liveness
6239 on-the-fly and deciding on assert expressions to insert. */
6241 static void
6242 find_assert_locations (void)
6244 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6245 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6246 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6247 int rpo_cnt, i;
6249 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6250 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6251 for (i = 0; i < rpo_cnt; ++i)
6252 bb_rpo[rpo[i]] = i;
6254 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6255 the order we compute liveness and insert asserts we otherwise
6256 fail to insert asserts into the loop latch. */
6257 loop_p loop;
6258 FOR_EACH_LOOP (loop, 0)
6260 i = loop->latch->index;
6261 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6262 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6263 !gsi_end_p (gsi); gsi_next (&gsi))
6265 gphi *phi = gsi.phi ();
6266 if (virtual_operand_p (gimple_phi_result (phi)))
6267 continue;
6268 tree arg = gimple_phi_arg_def (phi, j);
6269 if (TREE_CODE (arg) == SSA_NAME)
6271 if (live[i] == NULL)
6273 live[i] = sbitmap_alloc (num_ssa_names);
6274 bitmap_clear (live[i]);
6276 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6281 for (i = rpo_cnt - 1; i >= 0; --i)
6283 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6284 edge e;
6285 edge_iterator ei;
6287 if (!live[rpo[i]])
6289 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6290 bitmap_clear (live[rpo[i]]);
6293 /* Process BB and update the live information with uses in
6294 this block. */
6295 find_assert_locations_1 (bb, live[rpo[i]]);
6297 /* Merge liveness into the predecessor blocks and free it. */
6298 if (!bitmap_empty_p (live[rpo[i]]))
6300 int pred_rpo = i;
6301 FOR_EACH_EDGE (e, ei, bb->preds)
6303 int pred = e->src->index;
6304 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6305 continue;
6307 if (!live[pred])
6309 live[pred] = sbitmap_alloc (num_ssa_names);
6310 bitmap_clear (live[pred]);
6312 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6314 if (bb_rpo[pred] < pred_rpo)
6315 pred_rpo = bb_rpo[pred];
6318 /* Record the RPO number of the last visited block that needs
6319 live information from this block. */
6320 last_rpo[rpo[i]] = pred_rpo;
6322 else
6324 sbitmap_free (live[rpo[i]]);
6325 live[rpo[i]] = NULL;
6328 /* We can free all successors live bitmaps if all their
6329 predecessors have been visited already. */
6330 FOR_EACH_EDGE (e, ei, bb->succs)
6331 if (last_rpo[e->dest->index] == i
6332 && live[e->dest->index])
6334 sbitmap_free (live[e->dest->index]);
6335 live[e->dest->index] = NULL;
6339 XDELETEVEC (rpo);
6340 XDELETEVEC (bb_rpo);
6341 XDELETEVEC (last_rpo);
6342 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6343 if (live[i])
6344 sbitmap_free (live[i]);
6345 XDELETEVEC (live);
6348 /* Create an ASSERT_EXPR for NAME and insert it in the location
6349 indicated by LOC. Return true if we made any edge insertions. */
6351 static bool
6352 process_assert_insertions_for (tree name, assert_locus *loc)
6354 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6355 gimple *stmt;
6356 tree cond;
6357 gimple *assert_stmt;
6358 edge_iterator ei;
6359 edge e;
6361 /* If we have X <=> X do not insert an assert expr for that. */
6362 if (loc->expr == loc->val)
6363 return false;
6365 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6366 assert_stmt = build_assert_expr_for (cond, name);
6367 if (loc->e)
6369 /* We have been asked to insert the assertion on an edge. This
6370 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6371 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6372 || (gimple_code (gsi_stmt (loc->si))
6373 == GIMPLE_SWITCH));
6375 gsi_insert_on_edge (loc->e, assert_stmt);
6376 return true;
6379 /* If the stmt iterator points at the end then this is an insertion
6380 at the beginning of a block. */
6381 if (gsi_end_p (loc->si))
6383 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
6384 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
6385 return false;
6388 /* Otherwise, we can insert right after LOC->SI iff the
6389 statement must not be the last statement in the block. */
6390 stmt = gsi_stmt (loc->si);
6391 if (!stmt_ends_bb_p (stmt))
6393 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6394 return false;
6397 /* If STMT must be the last statement in BB, we can only insert new
6398 assertions on the non-abnormal edge out of BB. Note that since
6399 STMT is not control flow, there may only be one non-abnormal/eh edge
6400 out of BB. */
6401 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6402 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
6404 gsi_insert_on_edge (e, assert_stmt);
6405 return true;
6408 gcc_unreachable ();
6411 /* Qsort helper for sorting assert locations. If stable is true, don't
6412 use iterative_hash_expr because it can be unstable for -fcompare-debug,
6413 on the other side some pointers might be NULL. */
6415 template <bool stable>
6416 static int
6417 compare_assert_loc (const void *pa, const void *pb)
6419 assert_locus * const a = *(assert_locus * const *)pa;
6420 assert_locus * const b = *(assert_locus * const *)pb;
6422 /* If stable, some asserts might be optimized away already, sort
6423 them last. */
6424 if (stable)
6426 if (a == NULL)
6427 return b != NULL;
6428 else if (b == NULL)
6429 return -1;
6432 if (a->e == NULL && b->e != NULL)
6433 return 1;
6434 else if (a->e != NULL && b->e == NULL)
6435 return -1;
6437 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
6438 no need to test both a->e and b->e. */
6440 /* Sort after destination index. */
6441 if (a->e == NULL)
6443 else if (a->e->dest->index > b->e->dest->index)
6444 return 1;
6445 else if (a->e->dest->index < b->e->dest->index)
6446 return -1;
6448 /* Sort after comp_code. */
6449 if (a->comp_code > b->comp_code)
6450 return 1;
6451 else if (a->comp_code < b->comp_code)
6452 return -1;
6454 hashval_t ha, hb;
6456 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
6457 uses DECL_UID of the VAR_DECL, so sorting might differ between
6458 -g and -g0. When doing the removal of redundant assert exprs
6459 and commonization to successors, this does not matter, but for
6460 the final sort needs to be stable. */
6461 if (stable)
6463 ha = 0;
6464 hb = 0;
6466 else
6468 ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
6469 hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
6472 /* Break the tie using hashing and source/bb index. */
6473 if (ha == hb)
6474 return (a->e != NULL
6475 ? a->e->src->index - b->e->src->index
6476 : a->bb->index - b->bb->index);
6477 return ha > hb ? 1 : -1;
6480 /* Process all the insertions registered for every name N_i registered
6481 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6482 found in ASSERTS_FOR[i]. */
6484 static void
6485 process_assert_insertions (void)
6487 unsigned i;
6488 bitmap_iterator bi;
6489 bool update_edges_p = false;
6490 int num_asserts = 0;
6492 if (dump_file && (dump_flags & TDF_DETAILS))
6493 dump_all_asserts (dump_file);
6495 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6497 assert_locus *loc = asserts_for[i];
6498 gcc_assert (loc);
6500 auto_vec<assert_locus *, 16> asserts;
6501 for (; loc; loc = loc->next)
6502 asserts.safe_push (loc);
6503 asserts.qsort (compare_assert_loc<false>);
6505 /* Push down common asserts to successors and remove redundant ones. */
6506 unsigned ecnt = 0;
6507 assert_locus *common = NULL;
6508 unsigned commonj = 0;
6509 for (unsigned j = 0; j < asserts.length (); ++j)
6511 loc = asserts[j];
6512 if (! loc->e)
6513 common = NULL;
6514 else if (! common
6515 || loc->e->dest != common->e->dest
6516 || loc->comp_code != common->comp_code
6517 || ! operand_equal_p (loc->val, common->val, 0)
6518 || ! operand_equal_p (loc->expr, common->expr, 0))
6520 commonj = j;
6521 common = loc;
6522 ecnt = 1;
6524 else if (loc->e == asserts[j-1]->e)
6526 /* Remove duplicate asserts. */
6527 if (commonj == j - 1)
6529 commonj = j;
6530 common = loc;
6532 free (asserts[j-1]);
6533 asserts[j-1] = NULL;
6535 else
6537 ecnt++;
6538 if (EDGE_COUNT (common->e->dest->preds) == ecnt)
6540 /* We have the same assertion on all incoming edges of a BB.
6541 Insert it at the beginning of that block. */
6542 loc->bb = loc->e->dest;
6543 loc->e = NULL;
6544 loc->si = gsi_none ();
6545 common = NULL;
6546 /* Clear asserts commoned. */
6547 for (; commonj != j; ++commonj)
6548 if (asserts[commonj])
6550 free (asserts[commonj]);
6551 asserts[commonj] = NULL;
6557 /* The asserts vector sorting above might be unstable for
6558 -fcompare-debug, sort again to ensure a stable sort. */
6559 asserts.qsort (compare_assert_loc<true>);
6560 for (unsigned j = 0; j < asserts.length (); ++j)
6562 loc = asserts[j];
6563 if (! loc)
6564 break;
6565 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6566 num_asserts++;
6567 free (loc);
6571 if (update_edges_p)
6572 gsi_commit_edge_inserts ();
6574 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6575 num_asserts);
6579 /* Traverse the flowgraph looking for conditional jumps to insert range
6580 expressions. These range expressions are meant to provide information
6581 to optimizations that need to reason in terms of value ranges. They
6582 will not be expanded into RTL. For instance, given:
6584 x = ...
6585 y = ...
6586 if (x < y)
6587 y = x - 2;
6588 else
6589 x = y + 3;
6591 this pass will transform the code into:
6593 x = ...
6594 y = ...
6595 if (x < y)
6597 x = ASSERT_EXPR <x, x < y>
6598 y = x - 2
6600 else
6602 y = ASSERT_EXPR <y, x >= y>
6603 x = y + 3
6606 The idea is that once copy and constant propagation have run, other
6607 optimizations will be able to determine what ranges of values can 'x'
6608 take in different paths of the code, simply by checking the reaching
6609 definition of 'x'. */
6611 static void
6612 insert_range_assertions (void)
6614 need_assert_for = BITMAP_ALLOC (NULL);
6615 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
6617 calculate_dominance_info (CDI_DOMINATORS);
6619 find_assert_locations ();
6620 if (!bitmap_empty_p (need_assert_for))
6622 process_assert_insertions ();
6623 update_ssa (TODO_update_ssa_no_phi);
6626 if (dump_file && (dump_flags & TDF_DETAILS))
6628 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6629 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6632 free (asserts_for);
6633 BITMAP_FREE (need_assert_for);
6636 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6637 and "struct" hacks. If VRP can determine that the
6638 array subscript is a constant, check if it is outside valid
6639 range. If the array subscript is a RANGE, warn if it is
6640 non-overlapping with valid range.
6641 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6643 static void
6644 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6646 value_range *vr = NULL;
6647 tree low_sub, up_sub;
6648 tree low_bound, up_bound, up_bound_p1;
6650 if (TREE_NO_WARNING (ref))
6651 return;
6653 low_sub = up_sub = TREE_OPERAND (ref, 1);
6654 up_bound = array_ref_up_bound (ref);
6656 /* Can not check flexible arrays. */
6657 if (!up_bound
6658 || TREE_CODE (up_bound) != INTEGER_CST)
6659 return;
6661 /* Accesses to trailing arrays via pointers may access storage
6662 beyond the types array bounds. */
6663 if (warn_array_bounds < 2
6664 && array_at_struct_end_p (ref))
6665 return;
6667 low_bound = array_ref_low_bound (ref);
6668 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6669 build_int_cst (TREE_TYPE (up_bound), 1));
6671 /* Empty array. */
6672 if (tree_int_cst_equal (low_bound, up_bound_p1))
6674 warning_at (location, OPT_Warray_bounds,
6675 "array subscript is above array bounds");
6676 TREE_NO_WARNING (ref) = 1;
6679 if (TREE_CODE (low_sub) == SSA_NAME)
6681 vr = get_value_range (low_sub);
6682 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6684 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6685 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6689 if (vr && vr->type == VR_ANTI_RANGE)
6691 if (TREE_CODE (up_sub) == INTEGER_CST
6692 && (ignore_off_by_one
6693 ? tree_int_cst_lt (up_bound, up_sub)
6694 : tree_int_cst_le (up_bound, up_sub))
6695 && TREE_CODE (low_sub) == INTEGER_CST
6696 && tree_int_cst_le (low_sub, low_bound))
6698 warning_at (location, OPT_Warray_bounds,
6699 "array subscript is outside array bounds");
6700 TREE_NO_WARNING (ref) = 1;
6703 else if (TREE_CODE (up_sub) == INTEGER_CST
6704 && (ignore_off_by_one
6705 ? !tree_int_cst_le (up_sub, up_bound_p1)
6706 : !tree_int_cst_le (up_sub, up_bound)))
6708 if (dump_file && (dump_flags & TDF_DETAILS))
6710 fprintf (dump_file, "Array bound warning for ");
6711 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6712 fprintf (dump_file, "\n");
6714 warning_at (location, OPT_Warray_bounds,
6715 "array subscript is above array bounds");
6716 TREE_NO_WARNING (ref) = 1;
6718 else if (TREE_CODE (low_sub) == INTEGER_CST
6719 && tree_int_cst_lt (low_sub, low_bound))
6721 if (dump_file && (dump_flags & TDF_DETAILS))
6723 fprintf (dump_file, "Array bound warning for ");
6724 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6725 fprintf (dump_file, "\n");
6727 warning_at (location, OPT_Warray_bounds,
6728 "array subscript is below array bounds");
6729 TREE_NO_WARNING (ref) = 1;
6733 /* Searches if the expr T, located at LOCATION computes
6734 address of an ARRAY_REF, and call check_array_ref on it. */
6736 static void
6737 search_for_addr_array (tree t, location_t location)
6739 /* Check each ARRAY_REFs in the reference chain. */
6742 if (TREE_CODE (t) == ARRAY_REF)
6743 check_array_ref (location, t, true /*ignore_off_by_one*/);
6745 t = TREE_OPERAND (t, 0);
6747 while (handled_component_p (t));
6749 if (TREE_CODE (t) == MEM_REF
6750 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6751 && !TREE_NO_WARNING (t))
6753 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6754 tree low_bound, up_bound, el_sz;
6755 offset_int idx;
6756 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6757 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6758 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6759 return;
6761 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6762 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6763 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6764 if (!low_bound
6765 || TREE_CODE (low_bound) != INTEGER_CST
6766 || !up_bound
6767 || TREE_CODE (up_bound) != INTEGER_CST
6768 || !el_sz
6769 || TREE_CODE (el_sz) != INTEGER_CST)
6770 return;
6772 idx = mem_ref_offset (t);
6773 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6774 if (idx < 0)
6776 if (dump_file && (dump_flags & TDF_DETAILS))
6778 fprintf (dump_file, "Array bound warning for ");
6779 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6780 fprintf (dump_file, "\n");
6782 warning_at (location, OPT_Warray_bounds,
6783 "array subscript is below array bounds");
6784 TREE_NO_WARNING (t) = 1;
6786 else if (idx > (wi::to_offset (up_bound)
6787 - wi::to_offset (low_bound) + 1))
6789 if (dump_file && (dump_flags & TDF_DETAILS))
6791 fprintf (dump_file, "Array bound warning for ");
6792 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6793 fprintf (dump_file, "\n");
6795 warning_at (location, OPT_Warray_bounds,
6796 "array subscript is above array bounds");
6797 TREE_NO_WARNING (t) = 1;
6802 /* walk_tree() callback that checks if *TP is
6803 an ARRAY_REF inside an ADDR_EXPR (in which an array
6804 subscript one outside the valid range is allowed). Call
6805 check_array_ref for each ARRAY_REF found. The location is
6806 passed in DATA. */
6808 static tree
6809 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6811 tree t = *tp;
6812 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6813 location_t location;
6815 if (EXPR_HAS_LOCATION (t))
6816 location = EXPR_LOCATION (t);
6817 else
6819 location_t *locp = (location_t *) wi->info;
6820 location = *locp;
6823 *walk_subtree = TRUE;
6825 if (TREE_CODE (t) == ARRAY_REF)
6826 check_array_ref (location, t, false /*ignore_off_by_one*/);
6828 else if (TREE_CODE (t) == ADDR_EXPR)
6830 search_for_addr_array (t, location);
6831 *walk_subtree = FALSE;
6834 return NULL_TREE;
6837 /* Walk over all statements of all reachable BBs and call check_array_bounds
6838 on them. */
6840 static void
6841 check_all_array_refs (void)
6843 basic_block bb;
6844 gimple_stmt_iterator si;
6846 FOR_EACH_BB_FN (bb, cfun)
6848 edge_iterator ei;
6849 edge e;
6850 bool executable = false;
6852 /* Skip blocks that were found to be unreachable. */
6853 FOR_EACH_EDGE (e, ei, bb->preds)
6854 executable |= !!(e->flags & EDGE_EXECUTABLE);
6855 if (!executable)
6856 continue;
6858 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6860 gimple *stmt = gsi_stmt (si);
6861 struct walk_stmt_info wi;
6862 if (!gimple_has_location (stmt)
6863 || is_gimple_debug (stmt))
6864 continue;
6866 memset (&wi, 0, sizeof (wi));
6868 location_t loc = gimple_location (stmt);
6869 wi.info = &loc;
6871 walk_gimple_op (gsi_stmt (si),
6872 check_array_bounds,
6873 &wi);
6878 /* Return true if all imm uses of VAR are either in STMT, or
6879 feed (optionally through a chain of single imm uses) GIMPLE_COND
6880 in basic block COND_BB. */
6882 static bool
6883 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
6885 use_operand_p use_p, use2_p;
6886 imm_use_iterator iter;
6888 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6889 if (USE_STMT (use_p) != stmt)
6891 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
6892 if (is_gimple_debug (use_stmt))
6893 continue;
6894 while (is_gimple_assign (use_stmt)
6895 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6896 && single_imm_use (gimple_assign_lhs (use_stmt),
6897 &use2_p, &use_stmt2))
6898 use_stmt = use_stmt2;
6899 if (gimple_code (use_stmt) != GIMPLE_COND
6900 || gimple_bb (use_stmt) != cond_bb)
6901 return false;
6903 return true;
6906 /* Handle
6907 _4 = x_3 & 31;
6908 if (_4 != 0)
6909 goto <bb 6>;
6910 else
6911 goto <bb 7>;
6912 <bb 6>:
6913 __builtin_unreachable ();
6914 <bb 7>:
6915 x_5 = ASSERT_EXPR <x_3, ...>;
6916 If x_3 has no other immediate uses (checked by caller),
6917 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6918 from the non-zero bitmask. */
6920 static void
6921 maybe_set_nonzero_bits (basic_block bb, tree var)
6923 edge e = single_pred_edge (bb);
6924 basic_block cond_bb = e->src;
6925 gimple *stmt = last_stmt (cond_bb);
6926 tree cst;
6928 if (stmt == NULL
6929 || gimple_code (stmt) != GIMPLE_COND
6930 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6931 ? EQ_EXPR : NE_EXPR)
6932 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6933 || !integer_zerop (gimple_cond_rhs (stmt)))
6934 return;
6936 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6937 if (!is_gimple_assign (stmt)
6938 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6939 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6940 return;
6941 if (gimple_assign_rhs1 (stmt) != var)
6943 gimple *stmt2;
6945 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6946 return;
6947 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6948 if (!gimple_assign_cast_p (stmt2)
6949 || gimple_assign_rhs1 (stmt2) != var
6950 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6951 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6952 != TYPE_PRECISION (TREE_TYPE (var))))
6953 return;
6955 cst = gimple_assign_rhs2 (stmt);
6956 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6959 /* Convert range assertion expressions into the implied copies and
6960 copy propagate away the copies. Doing the trivial copy propagation
6961 here avoids the need to run the full copy propagation pass after
6962 VRP.
6964 FIXME, this will eventually lead to copy propagation removing the
6965 names that had useful range information attached to them. For
6966 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6967 then N_i will have the range [3, +INF].
6969 However, by converting the assertion into the implied copy
6970 operation N_i = N_j, we will then copy-propagate N_j into the uses
6971 of N_i and lose the range information. We may want to hold on to
6972 ASSERT_EXPRs a little while longer as the ranges could be used in
6973 things like jump threading.
6975 The problem with keeping ASSERT_EXPRs around is that passes after
6976 VRP need to handle them appropriately.
6978 Another approach would be to make the range information a first
6979 class property of the SSA_NAME so that it can be queried from
6980 any pass. This is made somewhat more complex by the need for
6981 multiple ranges to be associated with one SSA_NAME. */
6983 static void
6984 remove_range_assertions (void)
6986 basic_block bb;
6987 gimple_stmt_iterator si;
6988 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6989 a basic block preceeded by GIMPLE_COND branching to it and
6990 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6991 int is_unreachable;
6993 /* Note that the BSI iterator bump happens at the bottom of the
6994 loop and no bump is necessary if we're removing the statement
6995 referenced by the current BSI. */
6996 FOR_EACH_BB_FN (bb, cfun)
6997 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6999 gimple *stmt = gsi_stmt (si);
7001 if (is_gimple_assign (stmt)
7002 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
7004 tree lhs = gimple_assign_lhs (stmt);
7005 tree rhs = gimple_assign_rhs1 (stmt);
7006 tree var;
7008 var = ASSERT_EXPR_VAR (rhs);
7010 if (TREE_CODE (var) == SSA_NAME
7011 && !POINTER_TYPE_P (TREE_TYPE (lhs))
7012 && SSA_NAME_RANGE_INFO (lhs))
7014 if (is_unreachable == -1)
7016 is_unreachable = 0;
7017 if (single_pred_p (bb)
7018 && assert_unreachable_fallthru_edge_p
7019 (single_pred_edge (bb)))
7020 is_unreachable = 1;
7022 /* Handle
7023 if (x_7 >= 10 && x_7 < 20)
7024 __builtin_unreachable ();
7025 x_8 = ASSERT_EXPR <x_7, ...>;
7026 if the only uses of x_7 are in the ASSERT_EXPR and
7027 in the condition. In that case, we can copy the
7028 range info from x_8 computed in this pass also
7029 for x_7. */
7030 if (is_unreachable
7031 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
7032 single_pred (bb)))
7034 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
7035 SSA_NAME_RANGE_INFO (lhs)->get_min (),
7036 SSA_NAME_RANGE_INFO (lhs)->get_max ());
7037 maybe_set_nonzero_bits (bb, var);
7041 /* Propagate the RHS into every use of the LHS. For SSA names
7042 also propagate abnormals as it merely restores the original
7043 IL in this case (an replace_uses_by would assert). */
7044 if (TREE_CODE (var) == SSA_NAME)
7046 imm_use_iterator iter;
7047 use_operand_p use_p;
7048 gimple *use_stmt;
7049 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7050 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7051 SET_USE (use_p, var);
7053 else
7054 replace_uses_by (lhs, var);
7056 /* And finally, remove the copy, it is not needed. */
7057 gsi_remove (&si, true);
7058 release_defs (stmt);
7060 else
7062 if (!is_gimple_debug (gsi_stmt (si)))
7063 is_unreachable = 0;
7064 gsi_next (&si);
7070 /* Return true if STMT is interesting for VRP. */
7072 static bool
7073 stmt_interesting_for_vrp (gimple *stmt)
7075 if (gimple_code (stmt) == GIMPLE_PHI)
7077 tree res = gimple_phi_result (stmt);
7078 return (!virtual_operand_p (res)
7079 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
7080 || POINTER_TYPE_P (TREE_TYPE (res))));
7082 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7084 tree lhs = gimple_get_lhs (stmt);
7086 /* In general, assignments with virtual operands are not useful
7087 for deriving ranges, with the obvious exception of calls to
7088 builtin functions. */
7089 if (lhs && TREE_CODE (lhs) == SSA_NAME
7090 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7091 || POINTER_TYPE_P (TREE_TYPE (lhs)))
7092 && (is_gimple_call (stmt)
7093 || !gimple_vuse (stmt)))
7094 return true;
7095 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7096 switch (gimple_call_internal_fn (stmt))
7098 case IFN_ADD_OVERFLOW:
7099 case IFN_SUB_OVERFLOW:
7100 case IFN_MUL_OVERFLOW:
7101 case IFN_ATOMIC_COMPARE_EXCHANGE:
7102 /* These internal calls return _Complex integer type,
7103 but are interesting to VRP nevertheless. */
7104 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7105 return true;
7106 break;
7107 default:
7108 break;
7111 else if (gimple_code (stmt) == GIMPLE_COND
7112 || gimple_code (stmt) == GIMPLE_SWITCH)
7113 return true;
7115 return false;
7118 /* Initialize VRP lattice. */
7120 static void
7121 vrp_initialize_lattice ()
7123 values_propagated = false;
7124 num_vr_values = num_ssa_names;
7125 vr_value = XCNEWVEC (value_range *, num_vr_values);
7126 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
7127 bitmap_obstack_initialize (&vrp_equiv_obstack);
7130 /* Initialization required by ssa_propagate engine. */
7132 static void
7133 vrp_initialize ()
7135 basic_block bb;
7137 FOR_EACH_BB_FN (bb, cfun)
7139 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7140 gsi_next (&si))
7142 gphi *phi = si.phi ();
7143 if (!stmt_interesting_for_vrp (phi))
7145 tree lhs = PHI_RESULT (phi);
7146 set_value_range_to_varying (get_value_range (lhs));
7147 prop_set_simulate_again (phi, false);
7149 else
7150 prop_set_simulate_again (phi, true);
7153 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
7154 gsi_next (&si))
7156 gimple *stmt = gsi_stmt (si);
7158 /* If the statement is a control insn, then we do not
7159 want to avoid simulating the statement once. Failure
7160 to do so means that those edges will never get added. */
7161 if (stmt_ends_bb_p (stmt))
7162 prop_set_simulate_again (stmt, true);
7163 else if (!stmt_interesting_for_vrp (stmt))
7165 set_defs_to_varying (stmt);
7166 prop_set_simulate_again (stmt, false);
7168 else
7169 prop_set_simulate_again (stmt, true);
7174 /* Return the singleton value-range for NAME or NAME. */
7176 static inline tree
7177 vrp_valueize (tree name)
7179 if (TREE_CODE (name) == SSA_NAME)
7181 value_range *vr = get_value_range (name);
7182 if (vr->type == VR_RANGE
7183 && (TREE_CODE (vr->min) == SSA_NAME
7184 || is_gimple_min_invariant (vr->min))
7185 && vrp_operand_equal_p (vr->min, vr->max))
7186 return vr->min;
7188 return name;
7191 /* Return the singleton value-range for NAME if that is a constant
7192 but signal to not follow SSA edges. */
7194 static inline tree
7195 vrp_valueize_1 (tree name)
7197 if (TREE_CODE (name) == SSA_NAME)
7199 /* If the definition may be simulated again we cannot follow
7200 this SSA edge as the SSA propagator does not necessarily
7201 re-visit the use. */
7202 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
7203 if (!gimple_nop_p (def_stmt)
7204 && prop_simulate_again_p (def_stmt))
7205 return NULL_TREE;
7206 value_range *vr = get_value_range (name);
7207 if (range_int_cst_singleton_p (vr))
7208 return vr->min;
7210 return name;
7213 /* Visit assignment STMT. If it produces an interesting range, record
7214 the range in VR and set LHS to OUTPUT_P. */
7216 static void
7217 vrp_visit_assignment_or_call (gimple *stmt, tree *output_p, value_range *vr)
7219 tree lhs;
7220 enum gimple_code code = gimple_code (stmt);
7221 lhs = gimple_get_lhs (stmt);
7222 *output_p = NULL_TREE;
7224 /* We only keep track of ranges in integral and pointer types. */
7225 if (TREE_CODE (lhs) == SSA_NAME
7226 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7227 /* It is valid to have NULL MIN/MAX values on a type. See
7228 build_range_type. */
7229 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7230 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7231 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7233 *output_p = lhs;
7235 /* Try folding the statement to a constant first. */
7236 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7237 vrp_valueize_1);
7238 if (tem)
7240 if (TREE_CODE (tem) == SSA_NAME
7241 && (SSA_NAME_IS_DEFAULT_DEF (tem)
7242 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem))))
7244 extract_range_from_ssa_name (vr, tem);
7245 return;
7247 else if (is_gimple_min_invariant (tem))
7249 set_value_range_to_value (vr, tem, NULL);
7250 return;
7253 /* Then dispatch to value-range extracting functions. */
7254 if (code == GIMPLE_CALL)
7255 extract_range_basic (vr, stmt);
7256 else
7257 extract_range_from_assignment (vr, as_a <gassign *> (stmt));
7261 /* Helper that gets the value range of the SSA_NAME with version I
7262 or a symbolic range containing the SSA_NAME only if the value range
7263 is varying or undefined. */
7265 static inline value_range
7266 get_vr_for_comparison (int i)
7268 value_range vr = *get_value_range (ssa_name (i));
7270 /* If name N_i does not have a valid range, use N_i as its own
7271 range. This allows us to compare against names that may
7272 have N_i in their ranges. */
7273 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7275 vr.type = VR_RANGE;
7276 vr.min = ssa_name (i);
7277 vr.max = ssa_name (i);
7280 return vr;
7283 /* Compare all the value ranges for names equivalent to VAR with VAL
7284 using comparison code COMP. Return the same value returned by
7285 compare_range_with_value, including the setting of
7286 *STRICT_OVERFLOW_P. */
7288 static tree
7289 compare_name_with_value (enum tree_code comp, tree var, tree val,
7290 bool *strict_overflow_p, bool use_equiv_p)
7292 bitmap_iterator bi;
7293 unsigned i;
7294 bitmap e;
7295 tree retval, t;
7296 int used_strict_overflow;
7297 bool sop;
7298 value_range equiv_vr;
7300 /* Get the set of equivalences for VAR. */
7301 e = get_value_range (var)->equiv;
7303 /* Start at -1. Set it to 0 if we do a comparison without relying
7304 on overflow, or 1 if all comparisons rely on overflow. */
7305 used_strict_overflow = -1;
7307 /* Compare vars' value range with val. */
7308 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7309 sop = false;
7310 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7311 if (retval)
7312 used_strict_overflow = sop ? 1 : 0;
7314 /* If the equiv set is empty we have done all work we need to do. */
7315 if (e == NULL)
7317 if (retval
7318 && used_strict_overflow > 0)
7319 *strict_overflow_p = true;
7320 return retval;
7323 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7325 tree name = ssa_name (i);
7326 if (! name)
7327 continue;
7329 if (! use_equiv_p
7330 && ! SSA_NAME_IS_DEFAULT_DEF (name)
7331 && prop_simulate_again_p (SSA_NAME_DEF_STMT (name)))
7332 continue;
7334 equiv_vr = get_vr_for_comparison (i);
7335 sop = false;
7336 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7337 if (t)
7339 /* If we get different answers from different members
7340 of the equivalence set this check must be in a dead
7341 code region. Folding it to a trap representation
7342 would be correct here. For now just return don't-know. */
7343 if (retval != NULL
7344 && t != retval)
7346 retval = NULL_TREE;
7347 break;
7349 retval = t;
7351 if (!sop)
7352 used_strict_overflow = 0;
7353 else if (used_strict_overflow < 0)
7354 used_strict_overflow = 1;
7358 if (retval
7359 && used_strict_overflow > 0)
7360 *strict_overflow_p = true;
7362 return retval;
7366 /* Given a comparison code COMP and names N1 and N2, compare all the
7367 ranges equivalent to N1 against all the ranges equivalent to N2
7368 to determine the value of N1 COMP N2. Return the same value
7369 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7370 whether we relied on undefined signed overflow in the comparison. */
7373 static tree
7374 compare_names (enum tree_code comp, tree n1, tree n2,
7375 bool *strict_overflow_p)
7377 tree t, retval;
7378 bitmap e1, e2;
7379 bitmap_iterator bi1, bi2;
7380 unsigned i1, i2;
7381 int used_strict_overflow;
7382 static bitmap_obstack *s_obstack = NULL;
7383 static bitmap s_e1 = NULL, s_e2 = NULL;
7385 /* Compare the ranges of every name equivalent to N1 against the
7386 ranges of every name equivalent to N2. */
7387 e1 = get_value_range (n1)->equiv;
7388 e2 = get_value_range (n2)->equiv;
7390 /* Use the fake bitmaps if e1 or e2 are not available. */
7391 if (s_obstack == NULL)
7393 s_obstack = XNEW (bitmap_obstack);
7394 bitmap_obstack_initialize (s_obstack);
7395 s_e1 = BITMAP_ALLOC (s_obstack);
7396 s_e2 = BITMAP_ALLOC (s_obstack);
7398 if (e1 == NULL)
7399 e1 = s_e1;
7400 if (e2 == NULL)
7401 e2 = s_e2;
7403 /* Add N1 and N2 to their own set of equivalences to avoid
7404 duplicating the body of the loop just to check N1 and N2
7405 ranges. */
7406 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7407 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7409 /* If the equivalence sets have a common intersection, then the two
7410 names can be compared without checking their ranges. */
7411 if (bitmap_intersect_p (e1, e2))
7413 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7414 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7416 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7417 ? boolean_true_node
7418 : boolean_false_node;
7421 /* Start at -1. Set it to 0 if we do a comparison without relying
7422 on overflow, or 1 if all comparisons rely on overflow. */
7423 used_strict_overflow = -1;
7425 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7426 N2 to their own set of equivalences to avoid duplicating the body
7427 of the loop just to check N1 and N2 ranges. */
7428 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7430 if (! ssa_name (i1))
7431 continue;
7433 value_range vr1 = get_vr_for_comparison (i1);
7435 t = retval = NULL_TREE;
7436 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7438 if (! ssa_name (i2))
7439 continue;
7441 bool sop = false;
7443 value_range vr2 = get_vr_for_comparison (i2);
7445 t = compare_ranges (comp, &vr1, &vr2, &sop);
7446 if (t)
7448 /* If we get different answers from different members
7449 of the equivalence set this check must be in a dead
7450 code region. Folding it to a trap representation
7451 would be correct here. For now just return don't-know. */
7452 if (retval != NULL
7453 && t != retval)
7455 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7456 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7457 return NULL_TREE;
7459 retval = t;
7461 if (!sop)
7462 used_strict_overflow = 0;
7463 else if (used_strict_overflow < 0)
7464 used_strict_overflow = 1;
7468 if (retval)
7470 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7471 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7472 if (used_strict_overflow > 0)
7473 *strict_overflow_p = true;
7474 return retval;
7478 /* None of the equivalent ranges are useful in computing this
7479 comparison. */
7480 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7481 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7482 return NULL_TREE;
7485 /* Helper function for vrp_evaluate_conditional_warnv & other
7486 optimizers. */
7488 static tree
7489 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7490 tree op0, tree op1,
7491 bool * strict_overflow_p)
7493 value_range *vr0, *vr1;
7495 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7496 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7498 tree res = NULL_TREE;
7499 if (vr0 && vr1)
7500 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7501 if (!res && vr0)
7502 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7503 if (!res && vr1)
7504 res = (compare_range_with_value
7505 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7506 return res;
7509 /* Helper function for vrp_evaluate_conditional_warnv. */
7511 static tree
7512 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7513 tree op1, bool use_equiv_p,
7514 bool *strict_overflow_p, bool *only_ranges)
7516 tree ret;
7517 if (only_ranges)
7518 *only_ranges = true;
7520 /* We only deal with integral and pointer types. */
7521 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7522 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7523 return NULL_TREE;
7525 /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed
7526 as a simple equality test, then prefer that over its current form
7527 for evaluation.
7529 An overflow test which collapses to an equality test can always be
7530 expressed as a comparison of one argument against zero. Overflow
7531 occurs when the chosen argument is zero and does not occur if the
7532 chosen argument is not zero. */
7533 tree x;
7534 if (overflow_comparison_p (code, op0, op1, use_equiv_p, &x))
7536 wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED);
7537 /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0)
7538 B = A - 1; if (A > B) -> B = A - 1; if (A != 0)
7539 B = A + 1; if (B < A) -> B = A + 1; if (B == 0)
7540 B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */
7541 if (integer_zerop (x))
7543 op1 = x;
7544 code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR;
7546 /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0)
7547 B = A + 1; if (A < B) -> B = A + 1; if (B != 0)
7548 B = A - 1; if (B > A) -> B = A - 1; if (A == 0)
7549 B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */
7550 else if (wi::eq_p (x, max - 1))
7552 op0 = op1;
7553 op1 = wide_int_to_tree (TREE_TYPE (op0), 0);
7554 code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR;
7558 if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7559 (code, op0, op1, strict_overflow_p)))
7560 return ret;
7561 if (only_ranges)
7562 *only_ranges = false;
7563 /* Do not use compare_names during propagation, it's quadratic. */
7564 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME
7565 && use_equiv_p)
7566 return compare_names (code, op0, op1, strict_overflow_p);
7567 else if (TREE_CODE (op0) == SSA_NAME)
7568 return compare_name_with_value (code, op0, op1,
7569 strict_overflow_p, use_equiv_p);
7570 else if (TREE_CODE (op1) == SSA_NAME)
7571 return compare_name_with_value (swap_tree_comparison (code), op1, op0,
7572 strict_overflow_p, use_equiv_p);
7573 return NULL_TREE;
7576 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7577 information. Return NULL if the conditional can not be evaluated.
7578 The ranges of all the names equivalent with the operands in COND
7579 will be used when trying to compute the value. If the result is
7580 based on undefined signed overflow, issue a warning if
7581 appropriate. */
7583 static tree
7584 vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt)
7586 bool sop;
7587 tree ret;
7588 bool only_ranges;
7590 /* Some passes and foldings leak constants with overflow flag set
7591 into the IL. Avoid doing wrong things with these and bail out. */
7592 if ((TREE_CODE (op0) == INTEGER_CST
7593 && TREE_OVERFLOW (op0))
7594 || (TREE_CODE (op1) == INTEGER_CST
7595 && TREE_OVERFLOW (op1)))
7596 return NULL_TREE;
7598 sop = false;
7599 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7600 &only_ranges);
7602 if (ret && sop)
7604 enum warn_strict_overflow_code wc;
7605 const char* warnmsg;
7607 if (is_gimple_min_invariant (ret))
7609 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7610 warnmsg = G_("assuming signed overflow does not occur when "
7611 "simplifying conditional to constant");
7613 else
7615 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7616 warnmsg = G_("assuming signed overflow does not occur when "
7617 "simplifying conditional");
7620 if (issue_strict_overflow_warning (wc))
7622 location_t location;
7624 if (!gimple_has_location (stmt))
7625 location = input_location;
7626 else
7627 location = gimple_location (stmt);
7628 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7632 if (warn_type_limits
7633 && ret && only_ranges
7634 && TREE_CODE_CLASS (code) == tcc_comparison
7635 && TREE_CODE (op0) == SSA_NAME)
7637 /* If the comparison is being folded and the operand on the LHS
7638 is being compared against a constant value that is outside of
7639 the natural range of OP0's type, then the predicate will
7640 always fold regardless of the value of OP0. If -Wtype-limits
7641 was specified, emit a warning. */
7642 tree type = TREE_TYPE (op0);
7643 value_range *vr0 = get_value_range (op0);
7645 if (vr0->type == VR_RANGE
7646 && INTEGRAL_TYPE_P (type)
7647 && vrp_val_is_min (vr0->min)
7648 && vrp_val_is_max (vr0->max)
7649 && is_gimple_min_invariant (op1))
7651 location_t location;
7653 if (!gimple_has_location (stmt))
7654 location = input_location;
7655 else
7656 location = gimple_location (stmt);
7658 warning_at (location, OPT_Wtype_limits,
7659 integer_zerop (ret)
7660 ? G_("comparison always false "
7661 "due to limited range of data type")
7662 : G_("comparison always true "
7663 "due to limited range of data type"));
7667 return ret;
7671 /* Visit conditional statement STMT. If we can determine which edge
7672 will be taken out of STMT's basic block, record it in
7673 *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
7675 static void
7676 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7678 tree val;
7680 *taken_edge_p = NULL;
7682 if (dump_file && (dump_flags & TDF_DETAILS))
7684 tree use;
7685 ssa_op_iter i;
7687 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7688 print_gimple_stmt (dump_file, stmt, 0);
7689 fprintf (dump_file, "\nWith known ranges\n");
7691 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7693 fprintf (dump_file, "\t");
7694 print_generic_expr (dump_file, use);
7695 fprintf (dump_file, ": ");
7696 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7699 fprintf (dump_file, "\n");
7702 /* Compute the value of the predicate COND by checking the known
7703 ranges of each of its operands.
7705 Note that we cannot evaluate all the equivalent ranges here
7706 because those ranges may not yet be final and with the current
7707 propagation strategy, we cannot determine when the value ranges
7708 of the names in the equivalence set have changed.
7710 For instance, given the following code fragment
7712 i_5 = PHI <8, i_13>
7714 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7715 if (i_14 == 1)
7718 Assume that on the first visit to i_14, i_5 has the temporary
7719 range [8, 8] because the second argument to the PHI function is
7720 not yet executable. We derive the range ~[0, 0] for i_14 and the
7721 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7722 the first time, since i_14 is equivalent to the range [8, 8], we
7723 determine that the predicate is always false.
7725 On the next round of propagation, i_13 is determined to be
7726 VARYING, which causes i_5 to drop down to VARYING. So, another
7727 visit to i_14 is scheduled. In this second visit, we compute the
7728 exact same range and equivalence set for i_14, namely ~[0, 0] and
7729 { i_5 }. But we did not have the previous range for i_5
7730 registered, so vrp_visit_assignment thinks that the range for
7731 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7732 is not visited again, which stops propagation from visiting
7733 statements in the THEN clause of that if().
7735 To properly fix this we would need to keep the previous range
7736 value for the names in the equivalence set. This way we would've
7737 discovered that from one visit to the other i_5 changed from
7738 range [8, 8] to VR_VARYING.
7740 However, fixing this apparent limitation may not be worth the
7741 additional checking. Testing on several code bases (GCC, DLV,
7742 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7743 4 more predicates folded in SPEC. */
7745 bool sop;
7746 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7747 gimple_cond_lhs (stmt),
7748 gimple_cond_rhs (stmt),
7749 false, &sop, NULL);
7750 if (val)
7751 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7753 if (dump_file && (dump_flags & TDF_DETAILS))
7755 fprintf (dump_file, "\nPredicate evaluates to: ");
7756 if (val == NULL_TREE)
7757 fprintf (dump_file, "DON'T KNOW\n");
7758 else
7759 print_generic_stmt (dump_file, val);
7763 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7764 that includes the value VAL. The search is restricted to the range
7765 [START_IDX, n - 1] where n is the size of VEC.
7767 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7768 returned.
7770 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7771 it is placed in IDX and false is returned.
7773 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7774 returned. */
7776 static bool
7777 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
7779 size_t n = gimple_switch_num_labels (stmt);
7780 size_t low, high;
7782 /* Find case label for minimum of the value range or the next one.
7783 At each iteration we are searching in [low, high - 1]. */
7785 for (low = start_idx, high = n; high != low; )
7787 tree t;
7788 int cmp;
7789 /* Note that i != high, so we never ask for n. */
7790 size_t i = (high + low) / 2;
7791 t = gimple_switch_label (stmt, i);
7793 /* Cache the result of comparing CASE_LOW and val. */
7794 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7796 if (cmp == 0)
7798 /* Ranges cannot be empty. */
7799 *idx = i;
7800 return true;
7802 else if (cmp > 0)
7803 high = i;
7804 else
7806 low = i + 1;
7807 if (CASE_HIGH (t) != NULL
7808 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7810 *idx = i;
7811 return true;
7816 *idx = high;
7817 return false;
7820 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7821 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7822 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7823 then MAX_IDX < MIN_IDX.
7824 Returns true if the default label is not needed. */
7826 static bool
7827 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
7828 size_t *max_idx)
7830 size_t i, j;
7831 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7832 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7834 if (i == j
7835 && min_take_default
7836 && max_take_default)
7838 /* Only the default case label reached.
7839 Return an empty range. */
7840 *min_idx = 1;
7841 *max_idx = 0;
7842 return false;
7844 else
7846 bool take_default = min_take_default || max_take_default;
7847 tree low, high;
7848 size_t k;
7850 if (max_take_default)
7851 j--;
7853 /* If the case label range is continuous, we do not need
7854 the default case label. Verify that. */
7855 high = CASE_LOW (gimple_switch_label (stmt, i));
7856 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7857 high = CASE_HIGH (gimple_switch_label (stmt, i));
7858 for (k = i + 1; k <= j; ++k)
7860 low = CASE_LOW (gimple_switch_label (stmt, k));
7861 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7863 take_default = true;
7864 break;
7866 high = low;
7867 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7868 high = CASE_HIGH (gimple_switch_label (stmt, k));
7871 *min_idx = i;
7872 *max_idx = j;
7873 return !take_default;
7877 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7878 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7879 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7880 Returns true if the default label is not needed. */
7882 static bool
7883 find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1,
7884 size_t *max_idx1, size_t *min_idx2,
7885 size_t *max_idx2)
7887 size_t i, j, k, l;
7888 unsigned int n = gimple_switch_num_labels (stmt);
7889 bool take_default;
7890 tree case_low, case_high;
7891 tree min = vr->min, max = vr->max;
7893 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7895 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7897 /* Set second range to emtpy. */
7898 *min_idx2 = 1;
7899 *max_idx2 = 0;
7901 if (vr->type == VR_RANGE)
7903 *min_idx1 = i;
7904 *max_idx1 = j;
7905 return !take_default;
7908 /* Set first range to all case labels. */
7909 *min_idx1 = 1;
7910 *max_idx1 = n - 1;
7912 if (i > j)
7913 return false;
7915 /* Make sure all the values of case labels [i , j] are contained in
7916 range [MIN, MAX]. */
7917 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7918 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7919 if (tree_int_cst_compare (case_low, min) < 0)
7920 i += 1;
7921 if (case_high != NULL_TREE
7922 && tree_int_cst_compare (max, case_high) < 0)
7923 j -= 1;
7925 if (i > j)
7926 return false;
7928 /* If the range spans case labels [i, j], the corresponding anti-range spans
7929 the labels [1, i - 1] and [j + 1, n - 1]. */
7930 k = j + 1;
7931 l = n - 1;
7932 if (k > l)
7934 k = 1;
7935 l = 0;
7938 j = i - 1;
7939 i = 1;
7940 if (i > j)
7942 i = k;
7943 j = l;
7944 k = 1;
7945 l = 0;
7948 *min_idx1 = i;
7949 *max_idx1 = j;
7950 *min_idx2 = k;
7951 *max_idx2 = l;
7952 return false;
7955 /* Visit switch statement STMT. If we can determine which edge
7956 will be taken out of STMT's basic block, record it in
7957 *TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */
7959 static void
7960 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
7962 tree op, val;
7963 value_range *vr;
7964 size_t i = 0, j = 0, k, l;
7965 bool take_default;
7967 *taken_edge_p = NULL;
7968 op = gimple_switch_index (stmt);
7969 if (TREE_CODE (op) != SSA_NAME)
7970 return;
7972 vr = get_value_range (op);
7973 if (dump_file && (dump_flags & TDF_DETAILS))
7975 fprintf (dump_file, "\nVisiting switch expression with operand ");
7976 print_generic_expr (dump_file, op);
7977 fprintf (dump_file, " with known range ");
7978 dump_value_range (dump_file, vr);
7979 fprintf (dump_file, "\n");
7982 if ((vr->type != VR_RANGE
7983 && vr->type != VR_ANTI_RANGE)
7984 || symbolic_range_p (vr))
7985 return;
7987 /* Find the single edge that is taken from the switch expression. */
7988 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7990 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7991 label */
7992 if (j < i)
7994 gcc_assert (take_default);
7995 val = gimple_switch_default_label (stmt);
7997 else
7999 /* Check if labels with index i to j and maybe the default label
8000 are all reaching the same label. */
8002 val = gimple_switch_label (stmt, i);
8003 if (take_default
8004 && CASE_LABEL (gimple_switch_default_label (stmt))
8005 != CASE_LABEL (val))
8007 if (dump_file && (dump_flags & TDF_DETAILS))
8008 fprintf (dump_file, " not a single destination for this "
8009 "range\n");
8010 return;
8012 for (++i; i <= j; ++i)
8014 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
8016 if (dump_file && (dump_flags & TDF_DETAILS))
8017 fprintf (dump_file, " not a single destination for this "
8018 "range\n");
8019 return;
8022 for (; k <= l; ++k)
8024 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
8026 if (dump_file && (dump_flags & TDF_DETAILS))
8027 fprintf (dump_file, " not a single destination for this "
8028 "range\n");
8029 return;
8034 *taken_edge_p = find_edge (gimple_bb (stmt),
8035 label_to_block (CASE_LABEL (val)));
8037 if (dump_file && (dump_flags & TDF_DETAILS))
8039 fprintf (dump_file, " will take edge to ");
8040 print_generic_stmt (dump_file, CASE_LABEL (val));
8045 /* Evaluate statement STMT. If the statement produces a useful range,
8046 set VR and corepsponding OUTPUT_P.
8048 If STMT is a conditional branch and we can determine its truth
8049 value, the taken edge is recorded in *TAKEN_EDGE_P. */
8051 static void
8052 extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
8053 tree *output_p, value_range *vr)
8056 if (dump_file && (dump_flags & TDF_DETAILS))
8058 fprintf (dump_file, "\nVisiting statement:\n");
8059 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
8062 if (!stmt_interesting_for_vrp (stmt))
8063 gcc_assert (stmt_ends_bb_p (stmt));
8064 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
8065 vrp_visit_assignment_or_call (stmt, output_p, vr);
8066 else if (gimple_code (stmt) == GIMPLE_COND)
8067 vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
8068 else if (gimple_code (stmt) == GIMPLE_SWITCH)
8069 vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
8072 /* Evaluate statement STMT. If the statement produces a useful range,
8073 return SSA_PROP_INTERESTING and record the SSA name with the
8074 interesting range into *OUTPUT_P.
8076 If STMT is a conditional branch and we can determine its truth
8077 value, the taken edge is recorded in *TAKEN_EDGE_P.
8079 If STMT produces a varying value, return SSA_PROP_VARYING. */
8081 static enum ssa_prop_result
8082 vrp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
8084 value_range vr = VR_INITIALIZER;
8085 tree lhs = gimple_get_lhs (stmt);
8086 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
8088 if (*output_p)
8090 if (update_value_range (*output_p, &vr))
8092 if (dump_file && (dump_flags & TDF_DETAILS))
8094 fprintf (dump_file, "Found new range for ");
8095 print_generic_expr (dump_file, *output_p);
8096 fprintf (dump_file, ": ");
8097 dump_value_range (dump_file, &vr);
8098 fprintf (dump_file, "\n");
8101 if (vr.type == VR_VARYING)
8102 return SSA_PROP_VARYING;
8104 return SSA_PROP_INTERESTING;
8106 return SSA_PROP_NOT_INTERESTING;
8109 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
8110 switch (gimple_call_internal_fn (stmt))
8112 case IFN_ADD_OVERFLOW:
8113 case IFN_SUB_OVERFLOW:
8114 case IFN_MUL_OVERFLOW:
8115 case IFN_ATOMIC_COMPARE_EXCHANGE:
8116 /* These internal calls return _Complex integer type,
8117 which VRP does not track, but the immediate uses
8118 thereof might be interesting. */
8119 if (lhs && TREE_CODE (lhs) == SSA_NAME)
8121 imm_use_iterator iter;
8122 use_operand_p use_p;
8123 enum ssa_prop_result res = SSA_PROP_VARYING;
8125 set_value_range_to_varying (get_value_range (lhs));
8127 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
8129 gimple *use_stmt = USE_STMT (use_p);
8130 if (!is_gimple_assign (use_stmt))
8131 continue;
8132 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
8133 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
8134 continue;
8135 tree rhs1 = gimple_assign_rhs1 (use_stmt);
8136 tree use_lhs = gimple_assign_lhs (use_stmt);
8137 if (TREE_CODE (rhs1) != rhs_code
8138 || TREE_OPERAND (rhs1, 0) != lhs
8139 || TREE_CODE (use_lhs) != SSA_NAME
8140 || !stmt_interesting_for_vrp (use_stmt)
8141 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
8142 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
8143 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
8144 continue;
8146 /* If there is a change in the value range for any of the
8147 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
8148 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
8149 or IMAGPART_EXPR immediate uses, but none of them have
8150 a change in their value ranges, return
8151 SSA_PROP_NOT_INTERESTING. If there are no
8152 {REAL,IMAG}PART_EXPR uses at all,
8153 return SSA_PROP_VARYING. */
8154 value_range new_vr = VR_INITIALIZER;
8155 extract_range_basic (&new_vr, use_stmt);
8156 value_range *old_vr = get_value_range (use_lhs);
8157 if (old_vr->type != new_vr.type
8158 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
8159 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
8160 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
8161 res = SSA_PROP_INTERESTING;
8162 else
8163 res = SSA_PROP_NOT_INTERESTING;
8164 BITMAP_FREE (new_vr.equiv);
8165 if (res == SSA_PROP_INTERESTING)
8167 *output_p = lhs;
8168 return res;
8172 return res;
8174 break;
8175 default:
8176 break;
8179 /* All other statements produce nothing of interest for VRP, so mark
8180 their outputs varying and prevent further simulation. */
8181 set_defs_to_varying (stmt);
8183 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
8186 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8187 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8188 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8189 possible such range. The resulting range is not canonicalized. */
8191 static void
8192 union_ranges (enum value_range_type *vr0type,
8193 tree *vr0min, tree *vr0max,
8194 enum value_range_type vr1type,
8195 tree vr1min, tree vr1max)
8197 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8198 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8200 /* [] is vr0, () is vr1 in the following classification comments. */
8201 if (mineq && maxeq)
8203 /* [( )] */
8204 if (*vr0type == vr1type)
8205 /* Nothing to do for equal ranges. */
8207 else if ((*vr0type == VR_RANGE
8208 && vr1type == VR_ANTI_RANGE)
8209 || (*vr0type == VR_ANTI_RANGE
8210 && vr1type == VR_RANGE))
8212 /* For anti-range with range union the result is varying. */
8213 goto give_up;
8215 else
8216 gcc_unreachable ();
8218 else if (operand_less_p (*vr0max, vr1min) == 1
8219 || operand_less_p (vr1max, *vr0min) == 1)
8221 /* [ ] ( ) or ( ) [ ]
8222 If the ranges have an empty intersection, result of the union
8223 operation is the anti-range or if both are anti-ranges
8224 it covers all. */
8225 if (*vr0type == VR_ANTI_RANGE
8226 && vr1type == VR_ANTI_RANGE)
8227 goto give_up;
8228 else if (*vr0type == VR_ANTI_RANGE
8229 && vr1type == VR_RANGE)
8231 else if (*vr0type == VR_RANGE
8232 && vr1type == VR_ANTI_RANGE)
8234 *vr0type = vr1type;
8235 *vr0min = vr1min;
8236 *vr0max = vr1max;
8238 else if (*vr0type == VR_RANGE
8239 && vr1type == VR_RANGE)
8241 /* The result is the convex hull of both ranges. */
8242 if (operand_less_p (*vr0max, vr1min) == 1)
8244 /* If the result can be an anti-range, create one. */
8245 if (TREE_CODE (*vr0max) == INTEGER_CST
8246 && TREE_CODE (vr1min) == INTEGER_CST
8247 && vrp_val_is_min (*vr0min)
8248 && vrp_val_is_max (vr1max))
8250 tree min = int_const_binop (PLUS_EXPR,
8251 *vr0max,
8252 build_int_cst (TREE_TYPE (*vr0max), 1));
8253 tree max = int_const_binop (MINUS_EXPR,
8254 vr1min,
8255 build_int_cst (TREE_TYPE (vr1min), 1));
8256 if (!operand_less_p (max, min))
8258 *vr0type = VR_ANTI_RANGE;
8259 *vr0min = min;
8260 *vr0max = max;
8262 else
8263 *vr0max = vr1max;
8265 else
8266 *vr0max = vr1max;
8268 else
8270 /* If the result can be an anti-range, create one. */
8271 if (TREE_CODE (vr1max) == INTEGER_CST
8272 && TREE_CODE (*vr0min) == INTEGER_CST
8273 && vrp_val_is_min (vr1min)
8274 && vrp_val_is_max (*vr0max))
8276 tree min = int_const_binop (PLUS_EXPR,
8277 vr1max,
8278 build_int_cst (TREE_TYPE (vr1max), 1));
8279 tree max = int_const_binop (MINUS_EXPR,
8280 *vr0min,
8281 build_int_cst (TREE_TYPE (*vr0min), 1));
8282 if (!operand_less_p (max, min))
8284 *vr0type = VR_ANTI_RANGE;
8285 *vr0min = min;
8286 *vr0max = max;
8288 else
8289 *vr0min = vr1min;
8291 else
8292 *vr0min = vr1min;
8295 else
8296 gcc_unreachable ();
8298 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8299 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8301 /* [ ( ) ] or [( ) ] or [ ( )] */
8302 if (*vr0type == VR_RANGE
8303 && vr1type == VR_RANGE)
8305 else if (*vr0type == VR_ANTI_RANGE
8306 && vr1type == VR_ANTI_RANGE)
8308 *vr0type = vr1type;
8309 *vr0min = vr1min;
8310 *vr0max = vr1max;
8312 else if (*vr0type == VR_ANTI_RANGE
8313 && vr1type == VR_RANGE)
8315 /* Arbitrarily choose the right or left gap. */
8316 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8317 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8318 build_int_cst (TREE_TYPE (vr1min), 1));
8319 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8320 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8321 build_int_cst (TREE_TYPE (vr1max), 1));
8322 else
8323 goto give_up;
8325 else if (*vr0type == VR_RANGE
8326 && vr1type == VR_ANTI_RANGE)
8327 /* The result covers everything. */
8328 goto give_up;
8329 else
8330 gcc_unreachable ();
8332 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8333 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8335 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8336 if (*vr0type == VR_RANGE
8337 && vr1type == VR_RANGE)
8339 *vr0type = vr1type;
8340 *vr0min = vr1min;
8341 *vr0max = vr1max;
8343 else if (*vr0type == VR_ANTI_RANGE
8344 && vr1type == VR_ANTI_RANGE)
8346 else if (*vr0type == VR_RANGE
8347 && vr1type == VR_ANTI_RANGE)
8349 *vr0type = VR_ANTI_RANGE;
8350 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8352 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8353 build_int_cst (TREE_TYPE (*vr0min), 1));
8354 *vr0min = vr1min;
8356 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8358 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8359 build_int_cst (TREE_TYPE (*vr0max), 1));
8360 *vr0max = vr1max;
8362 else
8363 goto give_up;
8365 else if (*vr0type == VR_ANTI_RANGE
8366 && vr1type == VR_RANGE)
8367 /* The result covers everything. */
8368 goto give_up;
8369 else
8370 gcc_unreachable ();
8372 else if ((operand_less_p (vr1min, *vr0max) == 1
8373 || operand_equal_p (vr1min, *vr0max, 0))
8374 && operand_less_p (*vr0min, vr1min) == 1
8375 && operand_less_p (*vr0max, vr1max) == 1)
8377 /* [ ( ] ) or [ ]( ) */
8378 if (*vr0type == VR_RANGE
8379 && vr1type == VR_RANGE)
8380 *vr0max = vr1max;
8381 else if (*vr0type == VR_ANTI_RANGE
8382 && vr1type == VR_ANTI_RANGE)
8383 *vr0min = vr1min;
8384 else if (*vr0type == VR_ANTI_RANGE
8385 && vr1type == VR_RANGE)
8387 if (TREE_CODE (vr1min) == INTEGER_CST)
8388 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8389 build_int_cst (TREE_TYPE (vr1min), 1));
8390 else
8391 goto give_up;
8393 else if (*vr0type == VR_RANGE
8394 && vr1type == VR_ANTI_RANGE)
8396 if (TREE_CODE (*vr0max) == INTEGER_CST)
8398 *vr0type = vr1type;
8399 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8400 build_int_cst (TREE_TYPE (*vr0max), 1));
8401 *vr0max = vr1max;
8403 else
8404 goto give_up;
8406 else
8407 gcc_unreachable ();
8409 else if ((operand_less_p (*vr0min, vr1max) == 1
8410 || operand_equal_p (*vr0min, vr1max, 0))
8411 && operand_less_p (vr1min, *vr0min) == 1
8412 && operand_less_p (vr1max, *vr0max) == 1)
8414 /* ( [ ) ] or ( )[ ] */
8415 if (*vr0type == VR_RANGE
8416 && vr1type == VR_RANGE)
8417 *vr0min = vr1min;
8418 else if (*vr0type == VR_ANTI_RANGE
8419 && vr1type == VR_ANTI_RANGE)
8420 *vr0max = vr1max;
8421 else if (*vr0type == VR_ANTI_RANGE
8422 && vr1type == VR_RANGE)
8424 if (TREE_CODE (vr1max) == INTEGER_CST)
8425 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8426 build_int_cst (TREE_TYPE (vr1max), 1));
8427 else
8428 goto give_up;
8430 else if (*vr0type == VR_RANGE
8431 && vr1type == VR_ANTI_RANGE)
8433 if (TREE_CODE (*vr0min) == INTEGER_CST)
8435 *vr0type = vr1type;
8436 *vr0min = vr1min;
8437 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8438 build_int_cst (TREE_TYPE (*vr0min), 1));
8440 else
8441 goto give_up;
8443 else
8444 gcc_unreachable ();
8446 else
8447 goto give_up;
8449 return;
8451 give_up:
8452 *vr0type = VR_VARYING;
8453 *vr0min = NULL_TREE;
8454 *vr0max = NULL_TREE;
8457 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8458 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8459 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8460 possible such range. The resulting range is not canonicalized. */
8462 static void
8463 intersect_ranges (enum value_range_type *vr0type,
8464 tree *vr0min, tree *vr0max,
8465 enum value_range_type vr1type,
8466 tree vr1min, tree vr1max)
8468 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8469 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8471 /* [] is vr0, () is vr1 in the following classification comments. */
8472 if (mineq && maxeq)
8474 /* [( )] */
8475 if (*vr0type == vr1type)
8476 /* Nothing to do for equal ranges. */
8478 else if ((*vr0type == VR_RANGE
8479 && vr1type == VR_ANTI_RANGE)
8480 || (*vr0type == VR_ANTI_RANGE
8481 && vr1type == VR_RANGE))
8483 /* For anti-range with range intersection the result is empty. */
8484 *vr0type = VR_UNDEFINED;
8485 *vr0min = NULL_TREE;
8486 *vr0max = NULL_TREE;
8488 else
8489 gcc_unreachable ();
8491 else if (operand_less_p (*vr0max, vr1min) == 1
8492 || operand_less_p (vr1max, *vr0min) == 1)
8494 /* [ ] ( ) or ( ) [ ]
8495 If the ranges have an empty intersection, the result of the
8496 intersect operation is the range for intersecting an
8497 anti-range with a range or empty when intersecting two ranges. */
8498 if (*vr0type == VR_RANGE
8499 && vr1type == VR_ANTI_RANGE)
8501 else if (*vr0type == VR_ANTI_RANGE
8502 && vr1type == VR_RANGE)
8504 *vr0type = vr1type;
8505 *vr0min = vr1min;
8506 *vr0max = vr1max;
8508 else if (*vr0type == VR_RANGE
8509 && vr1type == VR_RANGE)
8511 *vr0type = VR_UNDEFINED;
8512 *vr0min = NULL_TREE;
8513 *vr0max = NULL_TREE;
8515 else if (*vr0type == VR_ANTI_RANGE
8516 && vr1type == VR_ANTI_RANGE)
8518 /* If the anti-ranges are adjacent to each other merge them. */
8519 if (TREE_CODE (*vr0max) == INTEGER_CST
8520 && TREE_CODE (vr1min) == INTEGER_CST
8521 && operand_less_p (*vr0max, vr1min) == 1
8522 && integer_onep (int_const_binop (MINUS_EXPR,
8523 vr1min, *vr0max)))
8524 *vr0max = vr1max;
8525 else if (TREE_CODE (vr1max) == INTEGER_CST
8526 && TREE_CODE (*vr0min) == INTEGER_CST
8527 && operand_less_p (vr1max, *vr0min) == 1
8528 && integer_onep (int_const_binop (MINUS_EXPR,
8529 *vr0min, vr1max)))
8530 *vr0min = vr1min;
8531 /* Else arbitrarily take VR0. */
8534 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8535 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8537 /* [ ( ) ] or [( ) ] or [ ( )] */
8538 if (*vr0type == VR_RANGE
8539 && vr1type == VR_RANGE)
8541 /* If both are ranges the result is the inner one. */
8542 *vr0type = vr1type;
8543 *vr0min = vr1min;
8544 *vr0max = vr1max;
8546 else if (*vr0type == VR_RANGE
8547 && vr1type == VR_ANTI_RANGE)
8549 /* Choose the right gap if the left one is empty. */
8550 if (mineq)
8552 if (TREE_CODE (vr1max) != INTEGER_CST)
8553 *vr0min = vr1max;
8554 else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
8555 && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
8556 *vr0min
8557 = int_const_binop (MINUS_EXPR, vr1max,
8558 build_int_cst (TREE_TYPE (vr1max), -1));
8559 else
8560 *vr0min
8561 = int_const_binop (PLUS_EXPR, vr1max,
8562 build_int_cst (TREE_TYPE (vr1max), 1));
8564 /* Choose the left gap if the right one is empty. */
8565 else if (maxeq)
8567 if (TREE_CODE (vr1min) != INTEGER_CST)
8568 *vr0max = vr1min;
8569 else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
8570 && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
8571 *vr0max
8572 = int_const_binop (PLUS_EXPR, vr1min,
8573 build_int_cst (TREE_TYPE (vr1min), -1));
8574 else
8575 *vr0max
8576 = int_const_binop (MINUS_EXPR, vr1min,
8577 build_int_cst (TREE_TYPE (vr1min), 1));
8579 /* Choose the anti-range if the range is effectively varying. */
8580 else if (vrp_val_is_min (*vr0min)
8581 && vrp_val_is_max (*vr0max))
8583 *vr0type = vr1type;
8584 *vr0min = vr1min;
8585 *vr0max = vr1max;
8587 /* Else choose the range. */
8589 else if (*vr0type == VR_ANTI_RANGE
8590 && vr1type == VR_ANTI_RANGE)
8591 /* If both are anti-ranges the result is the outer one. */
8593 else if (*vr0type == VR_ANTI_RANGE
8594 && vr1type == VR_RANGE)
8596 /* The intersection is empty. */
8597 *vr0type = VR_UNDEFINED;
8598 *vr0min = NULL_TREE;
8599 *vr0max = NULL_TREE;
8601 else
8602 gcc_unreachable ();
8604 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8605 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8607 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8608 if (*vr0type == VR_RANGE
8609 && vr1type == VR_RANGE)
8610 /* Choose the inner range. */
8612 else if (*vr0type == VR_ANTI_RANGE
8613 && vr1type == VR_RANGE)
8615 /* Choose the right gap if the left is empty. */
8616 if (mineq)
8618 *vr0type = VR_RANGE;
8619 if (TREE_CODE (*vr0max) != INTEGER_CST)
8620 *vr0min = *vr0max;
8621 else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
8622 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
8623 *vr0min
8624 = int_const_binop (MINUS_EXPR, *vr0max,
8625 build_int_cst (TREE_TYPE (*vr0max), -1));
8626 else
8627 *vr0min
8628 = int_const_binop (PLUS_EXPR, *vr0max,
8629 build_int_cst (TREE_TYPE (*vr0max), 1));
8630 *vr0max = vr1max;
8632 /* Choose the left gap if the right is empty. */
8633 else if (maxeq)
8635 *vr0type = VR_RANGE;
8636 if (TREE_CODE (*vr0min) != INTEGER_CST)
8637 *vr0max = *vr0min;
8638 else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
8639 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
8640 *vr0max
8641 = int_const_binop (PLUS_EXPR, *vr0min,
8642 build_int_cst (TREE_TYPE (*vr0min), -1));
8643 else
8644 *vr0max
8645 = int_const_binop (MINUS_EXPR, *vr0min,
8646 build_int_cst (TREE_TYPE (*vr0min), 1));
8647 *vr0min = vr1min;
8649 /* Choose the anti-range if the range is effectively varying. */
8650 else if (vrp_val_is_min (vr1min)
8651 && vrp_val_is_max (vr1max))
8653 /* Choose the anti-range if it is ~[0,0], that range is special
8654 enough to special case when vr1's range is relatively wide. */
8655 else if (*vr0min == *vr0max
8656 && integer_zerop (*vr0min)
8657 && (TYPE_PRECISION (TREE_TYPE (*vr0min))
8658 == TYPE_PRECISION (ptr_type_node))
8659 && TREE_CODE (vr1max) == INTEGER_CST
8660 && TREE_CODE (vr1min) == INTEGER_CST
8661 && (wi::clz (wi::sub (vr1max, vr1min))
8662 < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
8664 /* Else choose the range. */
8665 else
8667 *vr0type = vr1type;
8668 *vr0min = vr1min;
8669 *vr0max = vr1max;
8672 else if (*vr0type == VR_ANTI_RANGE
8673 && vr1type == VR_ANTI_RANGE)
8675 /* If both are anti-ranges the result is the outer one. */
8676 *vr0type = vr1type;
8677 *vr0min = vr1min;
8678 *vr0max = vr1max;
8680 else if (vr1type == VR_ANTI_RANGE
8681 && *vr0type == VR_RANGE)
8683 /* The intersection is empty. */
8684 *vr0type = VR_UNDEFINED;
8685 *vr0min = NULL_TREE;
8686 *vr0max = NULL_TREE;
8688 else
8689 gcc_unreachable ();
8691 else if ((operand_less_p (vr1min, *vr0max) == 1
8692 || operand_equal_p (vr1min, *vr0max, 0))
8693 && operand_less_p (*vr0min, vr1min) == 1)
8695 /* [ ( ] ) or [ ]( ) */
8696 if (*vr0type == VR_ANTI_RANGE
8697 && vr1type == VR_ANTI_RANGE)
8698 *vr0max = vr1max;
8699 else if (*vr0type == VR_RANGE
8700 && vr1type == VR_RANGE)
8701 *vr0min = vr1min;
8702 else if (*vr0type == VR_RANGE
8703 && vr1type == VR_ANTI_RANGE)
8705 if (TREE_CODE (vr1min) == INTEGER_CST)
8706 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8707 build_int_cst (TREE_TYPE (vr1min), 1));
8708 else
8709 *vr0max = vr1min;
8711 else if (*vr0type == VR_ANTI_RANGE
8712 && vr1type == VR_RANGE)
8714 *vr0type = VR_RANGE;
8715 if (TREE_CODE (*vr0max) == INTEGER_CST)
8716 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8717 build_int_cst (TREE_TYPE (*vr0max), 1));
8718 else
8719 *vr0min = *vr0max;
8720 *vr0max = vr1max;
8722 else
8723 gcc_unreachable ();
8725 else if ((operand_less_p (*vr0min, vr1max) == 1
8726 || operand_equal_p (*vr0min, vr1max, 0))
8727 && operand_less_p (vr1min, *vr0min) == 1)
8729 /* ( [ ) ] or ( )[ ] */
8730 if (*vr0type == VR_ANTI_RANGE
8731 && vr1type == VR_ANTI_RANGE)
8732 *vr0min = vr1min;
8733 else if (*vr0type == VR_RANGE
8734 && vr1type == VR_RANGE)
8735 *vr0max = vr1max;
8736 else if (*vr0type == VR_RANGE
8737 && vr1type == VR_ANTI_RANGE)
8739 if (TREE_CODE (vr1max) == INTEGER_CST)
8740 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8741 build_int_cst (TREE_TYPE (vr1max), 1));
8742 else
8743 *vr0min = vr1max;
8745 else if (*vr0type == VR_ANTI_RANGE
8746 && vr1type == VR_RANGE)
8748 *vr0type = VR_RANGE;
8749 if (TREE_CODE (*vr0min) == INTEGER_CST)
8750 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8751 build_int_cst (TREE_TYPE (*vr0min), 1));
8752 else
8753 *vr0max = *vr0min;
8754 *vr0min = vr1min;
8756 else
8757 gcc_unreachable ();
8760 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8761 result for the intersection. That's always a conservative
8762 correct estimate unless VR1 is a constant singleton range
8763 in which case we choose that. */
8764 if (vr1type == VR_RANGE
8765 && is_gimple_min_invariant (vr1min)
8766 && vrp_operand_equal_p (vr1min, vr1max))
8768 *vr0type = vr1type;
8769 *vr0min = vr1min;
8770 *vr0max = vr1max;
8773 return;
8777 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8778 in *VR0. This may not be the smallest possible such range. */
8780 static void
8781 vrp_intersect_ranges_1 (value_range *vr0, value_range *vr1)
8783 value_range saved;
8785 /* If either range is VR_VARYING the other one wins. */
8786 if (vr1->type == VR_VARYING)
8787 return;
8788 if (vr0->type == VR_VARYING)
8790 copy_value_range (vr0, vr1);
8791 return;
8794 /* When either range is VR_UNDEFINED the resulting range is
8795 VR_UNDEFINED, too. */
8796 if (vr0->type == VR_UNDEFINED)
8797 return;
8798 if (vr1->type == VR_UNDEFINED)
8800 set_value_range_to_undefined (vr0);
8801 return;
8804 /* Save the original vr0 so we can return it as conservative intersection
8805 result when our worker turns things to varying. */
8806 saved = *vr0;
8807 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8808 vr1->type, vr1->min, vr1->max);
8809 /* Make sure to canonicalize the result though as the inversion of a
8810 VR_RANGE can still be a VR_RANGE. */
8811 set_and_canonicalize_value_range (vr0, vr0->type,
8812 vr0->min, vr0->max, vr0->equiv);
8813 /* If that failed, use the saved original VR0. */
8814 if (vr0->type == VR_VARYING)
8816 *vr0 = saved;
8817 return;
8819 /* If the result is VR_UNDEFINED there is no need to mess with
8820 the equivalencies. */
8821 if (vr0->type == VR_UNDEFINED)
8822 return;
8824 /* The resulting set of equivalences for range intersection is the union of
8825 the two sets. */
8826 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8827 bitmap_ior_into (vr0->equiv, vr1->equiv);
8828 else if (vr1->equiv && !vr0->equiv)
8830 vr0->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
8831 bitmap_copy (vr0->equiv, vr1->equiv);
8835 void
8836 vrp_intersect_ranges (value_range *vr0, value_range *vr1)
8838 if (dump_file && (dump_flags & TDF_DETAILS))
8840 fprintf (dump_file, "Intersecting\n ");
8841 dump_value_range (dump_file, vr0);
8842 fprintf (dump_file, "\nand\n ");
8843 dump_value_range (dump_file, vr1);
8844 fprintf (dump_file, "\n");
8846 vrp_intersect_ranges_1 (vr0, vr1);
8847 if (dump_file && (dump_flags & TDF_DETAILS))
8849 fprintf (dump_file, "to\n ");
8850 dump_value_range (dump_file, vr0);
8851 fprintf (dump_file, "\n");
8855 /* Meet operation for value ranges. Given two value ranges VR0 and
8856 VR1, store in VR0 a range that contains both VR0 and VR1. This
8857 may not be the smallest possible such range. */
8859 static void
8860 vrp_meet_1 (value_range *vr0, const value_range *vr1)
8862 value_range saved;
8864 if (vr0->type == VR_UNDEFINED)
8866 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8867 return;
8870 if (vr1->type == VR_UNDEFINED)
8872 /* VR0 already has the resulting range. */
8873 return;
8876 if (vr0->type == VR_VARYING)
8878 /* Nothing to do. VR0 already has the resulting range. */
8879 return;
8882 if (vr1->type == VR_VARYING)
8884 set_value_range_to_varying (vr0);
8885 return;
8888 saved = *vr0;
8889 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8890 vr1->type, vr1->min, vr1->max);
8891 if (vr0->type == VR_VARYING)
8893 /* Failed to find an efficient meet. Before giving up and setting
8894 the result to VARYING, see if we can at least derive a useful
8895 anti-range. FIXME, all this nonsense about distinguishing
8896 anti-ranges from ranges is necessary because of the odd
8897 semantics of range_includes_zero_p and friends. */
8898 if (((saved.type == VR_RANGE
8899 && range_includes_zero_p (saved.min, saved.max) == 0)
8900 || (saved.type == VR_ANTI_RANGE
8901 && range_includes_zero_p (saved.min, saved.max) == 1))
8902 && ((vr1->type == VR_RANGE
8903 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8904 || (vr1->type == VR_ANTI_RANGE
8905 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8907 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8909 /* Since this meet operation did not result from the meeting of
8910 two equivalent names, VR0 cannot have any equivalences. */
8911 if (vr0->equiv)
8912 bitmap_clear (vr0->equiv);
8913 return;
8916 set_value_range_to_varying (vr0);
8917 return;
8919 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8920 vr0->equiv);
8921 if (vr0->type == VR_VARYING)
8922 return;
8924 /* The resulting set of equivalences is always the intersection of
8925 the two sets. */
8926 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8927 bitmap_and_into (vr0->equiv, vr1->equiv);
8928 else if (vr0->equiv && !vr1->equiv)
8929 bitmap_clear (vr0->equiv);
8932 void
8933 vrp_meet (value_range *vr0, const value_range *vr1)
8935 if (dump_file && (dump_flags & TDF_DETAILS))
8937 fprintf (dump_file, "Meeting\n ");
8938 dump_value_range (dump_file, vr0);
8939 fprintf (dump_file, "\nand\n ");
8940 dump_value_range (dump_file, vr1);
8941 fprintf (dump_file, "\n");
8943 vrp_meet_1 (vr0, vr1);
8944 if (dump_file && (dump_flags & TDF_DETAILS))
8946 fprintf (dump_file, "to\n ");
8947 dump_value_range (dump_file, vr0);
8948 fprintf (dump_file, "\n");
8953 /* Visit all arguments for PHI node PHI that flow through executable
8954 edges. If a valid value range can be derived from all the incoming
8955 value ranges, set a new range in VR_RESULT. */
8957 static void
8958 extract_range_from_phi_node (gphi *phi, value_range *vr_result)
8960 size_t i;
8961 tree lhs = PHI_RESULT (phi);
8962 value_range *lhs_vr = get_value_range (lhs);
8963 bool first = true;
8964 int edges, old_edges;
8965 struct loop *l;
8967 if (dump_file && (dump_flags & TDF_DETAILS))
8969 fprintf (dump_file, "\nVisiting PHI node: ");
8970 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8973 bool may_simulate_backedge_again = false;
8974 edges = 0;
8975 for (i = 0; i < gimple_phi_num_args (phi); i++)
8977 edge e = gimple_phi_arg_edge (phi, i);
8979 if (dump_file && (dump_flags & TDF_DETAILS))
8981 fprintf (dump_file,
8982 " Argument #%d (%d -> %d %sexecutable)\n",
8983 (int) i, e->src->index, e->dest->index,
8984 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8987 if (e->flags & EDGE_EXECUTABLE)
8989 tree arg = PHI_ARG_DEF (phi, i);
8990 value_range vr_arg;
8992 ++edges;
8994 if (TREE_CODE (arg) == SSA_NAME)
8996 /* See if we are eventually going to change one of the args. */
8997 gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
8998 if (! gimple_nop_p (def_stmt)
8999 && prop_simulate_again_p (def_stmt)
9000 && e->flags & EDGE_DFS_BACK)
9001 may_simulate_backedge_again = true;
9003 vr_arg = *(get_value_range (arg));
9004 /* Do not allow equivalences or symbolic ranges to leak in from
9005 backedges. That creates invalid equivalencies.
9006 See PR53465 and PR54767. */
9007 if (e->flags & EDGE_DFS_BACK)
9009 if (vr_arg.type == VR_RANGE
9010 || vr_arg.type == VR_ANTI_RANGE)
9012 vr_arg.equiv = NULL;
9013 if (symbolic_range_p (&vr_arg))
9015 vr_arg.type = VR_VARYING;
9016 vr_arg.min = NULL_TREE;
9017 vr_arg.max = NULL_TREE;
9021 else
9023 /* If the non-backedge arguments range is VR_VARYING then
9024 we can still try recording a simple equivalence. */
9025 if (vr_arg.type == VR_VARYING)
9027 vr_arg.type = VR_RANGE;
9028 vr_arg.min = arg;
9029 vr_arg.max = arg;
9030 vr_arg.equiv = NULL;
9034 else
9036 if (TREE_OVERFLOW_P (arg))
9037 arg = drop_tree_overflow (arg);
9039 vr_arg.type = VR_RANGE;
9040 vr_arg.min = arg;
9041 vr_arg.max = arg;
9042 vr_arg.equiv = NULL;
9045 if (dump_file && (dump_flags & TDF_DETAILS))
9047 fprintf (dump_file, "\t");
9048 print_generic_expr (dump_file, arg, dump_flags);
9049 fprintf (dump_file, ": ");
9050 dump_value_range (dump_file, &vr_arg);
9051 fprintf (dump_file, "\n");
9054 if (first)
9055 copy_value_range (vr_result, &vr_arg);
9056 else
9057 vrp_meet (vr_result, &vr_arg);
9058 first = false;
9060 if (vr_result->type == VR_VARYING)
9061 break;
9065 if (vr_result->type == VR_VARYING)
9066 goto varying;
9067 else if (vr_result->type == VR_UNDEFINED)
9068 goto update_range;
9070 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
9071 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
9073 /* To prevent infinite iterations in the algorithm, derive ranges
9074 when the new value is slightly bigger or smaller than the
9075 previous one. We don't do this if we have seen a new executable
9076 edge; this helps us avoid an infinity for conditionals
9077 which are not in a loop. If the old value-range was VR_UNDEFINED
9078 use the updated range and iterate one more time. If we will not
9079 simulate this PHI again via the backedge allow us to iterate. */
9080 if (edges > 0
9081 && gimple_phi_num_args (phi) > 1
9082 && edges == old_edges
9083 && lhs_vr->type != VR_UNDEFINED
9084 && may_simulate_backedge_again)
9086 /* Compare old and new ranges, fall back to varying if the
9087 values are not comparable. */
9088 int cmp_min = compare_values (lhs_vr->min, vr_result->min);
9089 if (cmp_min == -2)
9090 goto varying;
9091 int cmp_max = compare_values (lhs_vr->max, vr_result->max);
9092 if (cmp_max == -2)
9093 goto varying;
9095 /* For non VR_RANGE or for pointers fall back to varying if
9096 the range changed. */
9097 if ((lhs_vr->type != VR_RANGE || vr_result->type != VR_RANGE
9098 || POINTER_TYPE_P (TREE_TYPE (lhs)))
9099 && (cmp_min != 0 || cmp_max != 0))
9100 goto varying;
9102 /* If the new minimum is larger than the previous one
9103 retain the old value. If the new minimum value is smaller
9104 than the previous one and not -INF go all the way to -INF + 1.
9105 In the first case, to avoid infinite bouncing between different
9106 minimums, and in the other case to avoid iterating millions of
9107 times to reach -INF. Going to -INF + 1 also lets the following
9108 iteration compute whether there will be any overflow, at the
9109 expense of one additional iteration. */
9110 if (cmp_min < 0)
9111 vr_result->min = lhs_vr->min;
9112 else if (cmp_min > 0
9113 && !vrp_val_is_min (vr_result->min))
9114 vr_result->min
9115 = int_const_binop (PLUS_EXPR,
9116 vrp_val_min (TREE_TYPE (vr_result->min)),
9117 build_int_cst (TREE_TYPE (vr_result->min), 1));
9119 /* Similarly for the maximum value. */
9120 if (cmp_max > 0)
9121 vr_result->max = lhs_vr->max;
9122 else if (cmp_max < 0
9123 && !vrp_val_is_max (vr_result->max))
9124 vr_result->max
9125 = int_const_binop (MINUS_EXPR,
9126 vrp_val_max (TREE_TYPE (vr_result->min)),
9127 build_int_cst (TREE_TYPE (vr_result->min), 1));
9129 /* If we dropped either bound to +-INF then if this is a loop
9130 PHI node SCEV may known more about its value-range. */
9131 if (cmp_min > 0 || cmp_min < 0
9132 || cmp_max < 0 || cmp_max > 0)
9133 goto scev_check;
9135 goto infinite_check;
9138 goto update_range;
9140 varying:
9141 set_value_range_to_varying (vr_result);
9143 scev_check:
9144 /* If this is a loop PHI node SCEV may known more about its value-range.
9145 scev_check can be reached from two paths, one is a fall through from above
9146 "varying" label, the other is direct goto from code block which tries to
9147 avoid infinite simulation. */
9148 if ((l = loop_containing_stmt (phi))
9149 && l->header == gimple_bb (phi))
9150 adjust_range_with_scev (vr_result, l, phi, lhs);
9152 infinite_check:
9153 /* If we will end up with a (-INF, +INF) range, set it to
9154 VARYING. Same if the previous max value was invalid for
9155 the type and we end up with vr_result.min > vr_result.max. */
9156 if ((vr_result->type == VR_RANGE || vr_result->type == VR_ANTI_RANGE)
9157 && !((vrp_val_is_max (vr_result->max) && vrp_val_is_min (vr_result->min))
9158 || compare_values (vr_result->min, vr_result->max) > 0))
9160 else
9161 set_value_range_to_varying (vr_result);
9163 /* If the new range is different than the previous value, keep
9164 iterating. */
9165 update_range:
9166 return;
9169 /* Visit all arguments for PHI node PHI that flow through executable
9170 edges. If a valid value range can be derived from all the incoming
9171 value ranges, set a new range for the LHS of PHI. */
9173 static enum ssa_prop_result
9174 vrp_visit_phi_node (gphi *phi)
9176 tree lhs = PHI_RESULT (phi);
9177 value_range vr_result = VR_INITIALIZER;
9178 extract_range_from_phi_node (phi, &vr_result);
9179 if (update_value_range (lhs, &vr_result))
9181 if (dump_file && (dump_flags & TDF_DETAILS))
9183 fprintf (dump_file, "Found new range for ");
9184 print_generic_expr (dump_file, lhs);
9185 fprintf (dump_file, ": ");
9186 dump_value_range (dump_file, &vr_result);
9187 fprintf (dump_file, "\n");
9190 if (vr_result.type == VR_VARYING)
9191 return SSA_PROP_VARYING;
9193 return SSA_PROP_INTERESTING;
9196 /* Nothing changed, don't add outgoing edges. */
9197 return SSA_PROP_NOT_INTERESTING;
9200 /* Simplify boolean operations if the source is known
9201 to be already a boolean. */
9202 static bool
9203 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9205 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9206 tree lhs, op0, op1;
9207 bool need_conversion;
9209 /* We handle only !=/== case here. */
9210 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
9212 op0 = gimple_assign_rhs1 (stmt);
9213 if (!op_with_boolean_value_range_p (op0))
9214 return false;
9216 op1 = gimple_assign_rhs2 (stmt);
9217 if (!op_with_boolean_value_range_p (op1))
9218 return false;
9220 /* Reduce number of cases to handle to NE_EXPR. As there is no
9221 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
9222 if (rhs_code == EQ_EXPR)
9224 if (TREE_CODE (op1) == INTEGER_CST)
9225 op1 = int_const_binop (BIT_XOR_EXPR, op1,
9226 build_int_cst (TREE_TYPE (op1), 1));
9227 else
9228 return false;
9231 lhs = gimple_assign_lhs (stmt);
9232 need_conversion
9233 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
9235 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9236 if (need_conversion
9237 && !TYPE_UNSIGNED (TREE_TYPE (op0))
9238 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
9239 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
9240 return false;
9242 /* For A != 0 we can substitute A itself. */
9243 if (integer_zerop (op1))
9244 gimple_assign_set_rhs_with_ops (gsi,
9245 need_conversion
9246 ? NOP_EXPR : TREE_CODE (op0), op0);
9247 /* For A != B we substitute A ^ B. Either with conversion. */
9248 else if (need_conversion)
9250 tree tem = make_ssa_name (TREE_TYPE (op0));
9251 gassign *newop
9252 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
9253 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
9254 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9255 && TYPE_PRECISION (TREE_TYPE (tem)) > 1)
9256 set_range_info (tem, VR_RANGE,
9257 wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
9258 wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
9259 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
9261 /* Or without. */
9262 else
9263 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
9264 update_stmt (gsi_stmt (*gsi));
9265 fold_stmt (gsi, follow_single_use_edges);
9267 return true;
9270 /* Simplify a division or modulo operator to a right shift or bitwise and
9271 if the first operand is unsigned or is greater than zero and the second
9272 operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with
9273 constant op1 (op1min = op1) or with op1 in [op1min, op1max] range,
9274 optimize it into just op0 if op0's range is known to be a subset of
9275 [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned
9276 modulo. */
9278 static bool
9279 simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9281 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9282 tree val = NULL;
9283 tree op0 = gimple_assign_rhs1 (stmt);
9284 tree op1 = gimple_assign_rhs2 (stmt);
9285 tree op0min = NULL_TREE, op0max = NULL_TREE;
9286 tree op1min = op1;
9287 value_range *vr = NULL;
9289 if (TREE_CODE (op0) == INTEGER_CST)
9291 op0min = op0;
9292 op0max = op0;
9294 else
9296 vr = get_value_range (op0);
9297 if (range_int_cst_p (vr))
9299 op0min = vr->min;
9300 op0max = vr->max;
9304 if (rhs_code == TRUNC_MOD_EXPR
9305 && TREE_CODE (op1) == SSA_NAME)
9307 value_range *vr1 = get_value_range (op1);
9308 if (range_int_cst_p (vr1))
9309 op1min = vr1->min;
9311 if (rhs_code == TRUNC_MOD_EXPR
9312 && TREE_CODE (op1min) == INTEGER_CST
9313 && tree_int_cst_sgn (op1min) == 1
9314 && op0max
9315 && tree_int_cst_lt (op0max, op1min))
9317 if (TYPE_UNSIGNED (TREE_TYPE (op0))
9318 || tree_int_cst_sgn (op0min) >= 0
9319 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min),
9320 op0min))
9322 /* If op0 already has the range op0 % op1 has,
9323 then TRUNC_MOD_EXPR won't change anything. */
9324 gimple_assign_set_rhs_from_tree (gsi, op0);
9325 return true;
9329 if (TREE_CODE (op0) != SSA_NAME)
9330 return false;
9332 if (!integer_pow2p (op1))
9334 /* X % -Y can be only optimized into X % Y either if
9335 X is not INT_MIN, or Y is not -1. Fold it now, as after
9336 remove_range_assertions the range info might be not available
9337 anymore. */
9338 if (rhs_code == TRUNC_MOD_EXPR
9339 && fold_stmt (gsi, follow_single_use_edges))
9340 return true;
9341 return false;
9344 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9345 val = integer_one_node;
9346 else
9348 bool sop = false;
9350 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9352 if (val
9353 && sop
9354 && integer_onep (val)
9355 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9357 location_t location;
9359 if (!gimple_has_location (stmt))
9360 location = input_location;
9361 else
9362 location = gimple_location (stmt);
9363 warning_at (location, OPT_Wstrict_overflow,
9364 "assuming signed overflow does not occur when "
9365 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9369 if (val && integer_onep (val))
9371 tree t;
9373 if (rhs_code == TRUNC_DIV_EXPR)
9375 t = build_int_cst (integer_type_node, tree_log2 (op1));
9376 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9377 gimple_assign_set_rhs1 (stmt, op0);
9378 gimple_assign_set_rhs2 (stmt, t);
9380 else
9382 t = build_int_cst (TREE_TYPE (op1), 1);
9383 t = int_const_binop (MINUS_EXPR, op1, t);
9384 t = fold_convert (TREE_TYPE (op0), t);
9386 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9387 gimple_assign_set_rhs1 (stmt, op0);
9388 gimple_assign_set_rhs2 (stmt, t);
9391 update_stmt (stmt);
9392 fold_stmt (gsi, follow_single_use_edges);
9393 return true;
9396 return false;
9399 /* Simplify a min or max if the ranges of the two operands are
9400 disjoint. Return true if we do simplify. */
9402 static bool
9403 simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9405 tree op0 = gimple_assign_rhs1 (stmt);
9406 tree op1 = gimple_assign_rhs2 (stmt);
9407 bool sop = false;
9408 tree val;
9410 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9411 (LE_EXPR, op0, op1, &sop));
9412 if (!val)
9414 sop = false;
9415 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9416 (LT_EXPR, op0, op1, &sop));
9419 if (val)
9421 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9423 location_t location;
9425 if (!gimple_has_location (stmt))
9426 location = input_location;
9427 else
9428 location = gimple_location (stmt);
9429 warning_at (location, OPT_Wstrict_overflow,
9430 "assuming signed overflow does not occur when "
9431 "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
9434 /* VAL == TRUE -> OP0 < or <= op1
9435 VAL == FALSE -> OP0 > or >= op1. */
9436 tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
9437 == integer_zerop (val)) ? op0 : op1;
9438 gimple_assign_set_rhs_from_tree (gsi, res);
9439 return true;
9442 return false;
9445 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9446 ABS_EXPR. If the operand is <= 0, then simplify the
9447 ABS_EXPR into a NEGATE_EXPR. */
9449 static bool
9450 simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9452 tree op = gimple_assign_rhs1 (stmt);
9453 value_range *vr = get_value_range (op);
9455 if (vr)
9457 tree val = NULL;
9458 bool sop = false;
9460 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9461 if (!val)
9463 /* The range is neither <= 0 nor > 0. Now see if it is
9464 either < 0 or >= 0. */
9465 sop = false;
9466 val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
9467 &sop);
9470 if (val)
9472 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9474 location_t location;
9476 if (!gimple_has_location (stmt))
9477 location = input_location;
9478 else
9479 location = gimple_location (stmt);
9480 warning_at (location, OPT_Wstrict_overflow,
9481 "assuming signed overflow does not occur when "
9482 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9485 gimple_assign_set_rhs1 (stmt, op);
9486 if (integer_zerop (val))
9487 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9488 else
9489 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9490 update_stmt (stmt);
9491 fold_stmt (gsi, follow_single_use_edges);
9492 return true;
9496 return false;
9499 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9500 If all the bits that are being cleared by & are already
9501 known to be zero from VR, or all the bits that are being
9502 set by | are already known to be one from VR, the bit
9503 operation is redundant. */
9505 static bool
9506 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9508 tree op0 = gimple_assign_rhs1 (stmt);
9509 tree op1 = gimple_assign_rhs2 (stmt);
9510 tree op = NULL_TREE;
9511 value_range vr0 = VR_INITIALIZER;
9512 value_range vr1 = VR_INITIALIZER;
9513 wide_int may_be_nonzero0, may_be_nonzero1;
9514 wide_int must_be_nonzero0, must_be_nonzero1;
9515 wide_int mask;
9517 if (TREE_CODE (op0) == SSA_NAME)
9518 vr0 = *(get_value_range (op0));
9519 else if (is_gimple_min_invariant (op0))
9520 set_value_range_to_value (&vr0, op0, NULL);
9521 else
9522 return false;
9524 if (TREE_CODE (op1) == SSA_NAME)
9525 vr1 = *(get_value_range (op1));
9526 else if (is_gimple_min_invariant (op1))
9527 set_value_range_to_value (&vr1, op1, NULL);
9528 else
9529 return false;
9531 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9532 &must_be_nonzero0))
9533 return false;
9534 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9535 &must_be_nonzero1))
9536 return false;
9538 switch (gimple_assign_rhs_code (stmt))
9540 case BIT_AND_EXPR:
9541 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9542 if (mask == 0)
9544 op = op0;
9545 break;
9547 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9548 if (mask == 0)
9550 op = op1;
9551 break;
9553 break;
9554 case BIT_IOR_EXPR:
9555 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9556 if (mask == 0)
9558 op = op1;
9559 break;
9561 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9562 if (mask == 0)
9564 op = op0;
9565 break;
9567 break;
9568 default:
9569 gcc_unreachable ();
9572 if (op == NULL_TREE)
9573 return false;
9575 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9576 update_stmt (gsi_stmt (*gsi));
9577 return true;
9580 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9581 a known value range VR.
9583 If there is one and only one value which will satisfy the
9584 conditional, then return that value. Else return NULL.
9586 If signed overflow must be undefined for the value to satisfy
9587 the conditional, then set *STRICT_OVERFLOW_P to true. */
9589 static tree
9590 test_for_singularity (enum tree_code cond_code, tree op0,
9591 tree op1, value_range *vr)
9593 tree min = NULL;
9594 tree max = NULL;
9596 /* Extract minimum/maximum values which satisfy the conditional as it was
9597 written. */
9598 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9600 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9602 max = op1;
9603 if (cond_code == LT_EXPR)
9605 tree one = build_int_cst (TREE_TYPE (op0), 1);
9606 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9607 /* Signal to compare_values_warnv this expr doesn't overflow. */
9608 if (EXPR_P (max))
9609 TREE_NO_WARNING (max) = 1;
9612 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9614 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9616 min = op1;
9617 if (cond_code == GT_EXPR)
9619 tree one = build_int_cst (TREE_TYPE (op0), 1);
9620 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9621 /* Signal to compare_values_warnv this expr doesn't overflow. */
9622 if (EXPR_P (min))
9623 TREE_NO_WARNING (min) = 1;
9627 /* Now refine the minimum and maximum values using any
9628 value range information we have for op0. */
9629 if (min && max)
9631 if (compare_values (vr->min, min) == 1)
9632 min = vr->min;
9633 if (compare_values (vr->max, max) == -1)
9634 max = vr->max;
9636 /* If the new min/max values have converged to a single value,
9637 then there is only one value which can satisfy the condition,
9638 return that value. */
9639 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9640 return min;
9642 return NULL;
9645 /* Return whether the value range *VR fits in an integer type specified
9646 by PRECISION and UNSIGNED_P. */
9648 static bool
9649 range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn)
9651 tree src_type;
9652 unsigned src_precision;
9653 widest_int tem;
9654 signop src_sgn;
9656 /* We can only handle integral and pointer types. */
9657 src_type = TREE_TYPE (vr->min);
9658 if (!INTEGRAL_TYPE_P (src_type)
9659 && !POINTER_TYPE_P (src_type))
9660 return false;
9662 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9663 and so is an identity transform. */
9664 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9665 src_sgn = TYPE_SIGN (src_type);
9666 if ((src_precision < dest_precision
9667 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9668 || (src_precision == dest_precision && src_sgn == dest_sgn))
9669 return true;
9671 /* Now we can only handle ranges with constant bounds. */
9672 if (vr->type != VR_RANGE
9673 || TREE_CODE (vr->min) != INTEGER_CST
9674 || TREE_CODE (vr->max) != INTEGER_CST)
9675 return false;
9677 /* For sign changes, the MSB of the wide_int has to be clear.
9678 An unsigned value with its MSB set cannot be represented by
9679 a signed wide_int, while a negative value cannot be represented
9680 by an unsigned wide_int. */
9681 if (src_sgn != dest_sgn
9682 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9683 return false;
9685 /* Then we can perform the conversion on both ends and compare
9686 the result for equality. */
9687 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9688 if (tem != wi::to_widest (vr->min))
9689 return false;
9690 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9691 if (tem != wi::to_widest (vr->max))
9692 return false;
9694 return true;
9697 /* Simplify a conditional using a relational operator to an equality
9698 test if the range information indicates only one value can satisfy
9699 the original conditional. */
9701 static bool
9702 simplify_cond_using_ranges_1 (gcond *stmt)
9704 tree op0 = gimple_cond_lhs (stmt);
9705 tree op1 = gimple_cond_rhs (stmt);
9706 enum tree_code cond_code = gimple_cond_code (stmt);
9708 if (cond_code != NE_EXPR
9709 && cond_code != EQ_EXPR
9710 && TREE_CODE (op0) == SSA_NAME
9711 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9712 && is_gimple_min_invariant (op1))
9714 value_range *vr = get_value_range (op0);
9716 /* If we have range information for OP0, then we might be
9717 able to simplify this conditional. */
9718 if (vr->type == VR_RANGE)
9720 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
9721 if (new_tree)
9723 if (dump_file)
9725 fprintf (dump_file, "Simplified relational ");
9726 print_gimple_stmt (dump_file, stmt, 0);
9727 fprintf (dump_file, " into ");
9730 gimple_cond_set_code (stmt, EQ_EXPR);
9731 gimple_cond_set_lhs (stmt, op0);
9732 gimple_cond_set_rhs (stmt, new_tree);
9734 update_stmt (stmt);
9736 if (dump_file)
9738 print_gimple_stmt (dump_file, stmt, 0);
9739 fprintf (dump_file, "\n");
9742 return true;
9745 /* Try again after inverting the condition. We only deal
9746 with integral types here, so no need to worry about
9747 issues with inverting FP comparisons. */
9748 new_tree = test_for_singularity
9749 (invert_tree_comparison (cond_code, false),
9750 op0, op1, vr);
9751 if (new_tree)
9753 if (dump_file)
9755 fprintf (dump_file, "Simplified relational ");
9756 print_gimple_stmt (dump_file, stmt, 0);
9757 fprintf (dump_file, " into ");
9760 gimple_cond_set_code (stmt, NE_EXPR);
9761 gimple_cond_set_lhs (stmt, op0);
9762 gimple_cond_set_rhs (stmt, new_tree);
9764 update_stmt (stmt);
9766 if (dump_file)
9768 print_gimple_stmt (dump_file, stmt, 0);
9769 fprintf (dump_file, "\n");
9772 return true;
9776 return false;
9779 /* STMT is a conditional at the end of a basic block.
9781 If the conditional is of the form SSA_NAME op constant and the SSA_NAME
9782 was set via a type conversion, try to replace the SSA_NAME with the RHS
9783 of the type conversion. Doing so makes the conversion dead which helps
9784 subsequent passes. */
9786 static void
9787 simplify_cond_using_ranges_2 (gcond *stmt)
9789 tree op0 = gimple_cond_lhs (stmt);
9790 tree op1 = gimple_cond_rhs (stmt);
9792 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9793 see if OP0 was set by a type conversion where the source of
9794 the conversion is another SSA_NAME with a range that fits
9795 into the range of OP0's type.
9797 If so, the conversion is redundant as the earlier SSA_NAME can be
9798 used for the comparison directly if we just massage the constant in the
9799 comparison. */
9800 if (TREE_CODE (op0) == SSA_NAME
9801 && TREE_CODE (op1) == INTEGER_CST)
9803 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
9804 tree innerop;
9806 if (!is_gimple_assign (def_stmt)
9807 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9808 return;
9810 innerop = gimple_assign_rhs1 (def_stmt);
9812 if (TREE_CODE (innerop) == SSA_NAME
9813 && !POINTER_TYPE_P (TREE_TYPE (innerop))
9814 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
9815 && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
9817 value_range *vr = get_value_range (innerop);
9819 if (range_int_cst_p (vr)
9820 && range_fits_type_p (vr,
9821 TYPE_PRECISION (TREE_TYPE (op0)),
9822 TYPE_SIGN (TREE_TYPE (op0)))
9823 && int_fits_type_p (op1, TREE_TYPE (innerop)))
9825 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9826 gimple_cond_set_lhs (stmt, innerop);
9827 gimple_cond_set_rhs (stmt, newconst);
9828 update_stmt (stmt);
9829 if (dump_file && (dump_flags & TDF_DETAILS))
9831 fprintf (dump_file, "Folded into: ");
9832 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
9833 fprintf (dump_file, "\n");
9840 /* Simplify a switch statement using the value range of the switch
9841 argument. */
9843 static bool
9844 simplify_switch_using_ranges (gswitch *stmt)
9846 tree op = gimple_switch_index (stmt);
9847 value_range *vr = NULL;
9848 bool take_default;
9849 edge e;
9850 edge_iterator ei;
9851 size_t i = 0, j = 0, n, n2;
9852 tree vec2;
9853 switch_update su;
9854 size_t k = 1, l = 0;
9856 if (TREE_CODE (op) == SSA_NAME)
9858 vr = get_value_range (op);
9860 /* We can only handle integer ranges. */
9861 if ((vr->type != VR_RANGE
9862 && vr->type != VR_ANTI_RANGE)
9863 || symbolic_range_p (vr))
9864 return false;
9866 /* Find case label for min/max of the value range. */
9867 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9869 else if (TREE_CODE (op) == INTEGER_CST)
9871 take_default = !find_case_label_index (stmt, 1, op, &i);
9872 if (take_default)
9874 i = 1;
9875 j = 0;
9877 else
9879 j = i;
9882 else
9883 return false;
9885 n = gimple_switch_num_labels (stmt);
9887 /* We can truncate the case label ranges that partially overlap with OP's
9888 value range. */
9889 size_t min_idx = 1, max_idx = 0;
9890 if (vr != NULL)
9891 find_case_label_range (stmt, vr->min, vr->max, &min_idx, &max_idx);
9892 if (min_idx <= max_idx)
9894 tree min_label = gimple_switch_label (stmt, min_idx);
9895 tree max_label = gimple_switch_label (stmt, max_idx);
9897 /* Avoid changing the type of the case labels when truncating. */
9898 tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
9899 tree vr_min = fold_convert (case_label_type, vr->min);
9900 tree vr_max = fold_convert (case_label_type, vr->max);
9902 if (vr->type == VR_RANGE)
9904 /* If OP's value range is [2,8] and the low label range is
9905 0 ... 3, truncate the label's range to 2 .. 3. */
9906 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9907 && CASE_HIGH (min_label) != NULL_TREE
9908 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
9909 CASE_LOW (min_label) = vr_min;
9911 /* If OP's value range is [2,8] and the high label range is
9912 7 ... 10, truncate the label's range to 7 .. 8. */
9913 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
9914 && CASE_HIGH (max_label) != NULL_TREE
9915 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
9916 CASE_HIGH (max_label) = vr_max;
9918 else if (vr->type == VR_ANTI_RANGE)
9920 tree one_cst = build_one_cst (case_label_type);
9922 if (min_label == max_label)
9924 /* If OP's value range is ~[7,8] and the label's range is
9925 7 ... 10, truncate the label's range to 9 ... 10. */
9926 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
9927 && CASE_HIGH (min_label) != NULL_TREE
9928 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
9929 CASE_LOW (min_label)
9930 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
9932 /* If OP's value range is ~[7,8] and the label's range is
9933 5 ... 8, truncate the label's range to 5 ... 6. */
9934 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9935 && CASE_HIGH (min_label) != NULL_TREE
9936 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
9937 CASE_HIGH (min_label)
9938 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
9940 else
9942 /* If OP's value range is ~[2,8] and the low label range is
9943 0 ... 3, truncate the label's range to 0 ... 1. */
9944 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9945 && CASE_HIGH (min_label) != NULL_TREE
9946 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
9947 CASE_HIGH (min_label)
9948 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
9950 /* If OP's value range is ~[2,8] and the high label range is
9951 7 ... 10, truncate the label's range to 9 ... 10. */
9952 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
9953 && CASE_HIGH (max_label) != NULL_TREE
9954 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
9955 CASE_LOW (max_label)
9956 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
9960 /* Canonicalize singleton case ranges. */
9961 if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
9962 CASE_HIGH (min_label) = NULL_TREE;
9963 if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
9964 CASE_HIGH (max_label) = NULL_TREE;
9967 /* We can also eliminate case labels that lie completely outside OP's value
9968 range. */
9970 /* Bail out if this is just all edges taken. */
9971 if (i == 1
9972 && j == n - 1
9973 && take_default)
9974 return false;
9976 /* Build a new vector of taken case labels. */
9977 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9978 n2 = 0;
9980 /* Add the default edge, if necessary. */
9981 if (take_default)
9982 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9984 for (; i <= j; ++i, ++n2)
9985 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9987 for (; k <= l; ++k, ++n2)
9988 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9990 /* Mark needed edges. */
9991 for (i = 0; i < n2; ++i)
9993 e = find_edge (gimple_bb (stmt),
9994 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9995 e->aux = (void *)-1;
9998 /* Queue not needed edges for later removal. */
9999 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
10001 if (e->aux == (void *)-1)
10003 e->aux = NULL;
10004 continue;
10007 if (dump_file && (dump_flags & TDF_DETAILS))
10009 fprintf (dump_file, "removing unreachable case label\n");
10011 to_remove_edges.safe_push (e);
10012 e->flags &= ~EDGE_EXECUTABLE;
10015 /* And queue an update for the stmt. */
10016 su.stmt = stmt;
10017 su.vec = vec2;
10018 to_update_switch_stmts.safe_push (su);
10019 return false;
10022 /* Simplify an integral conversion from an SSA name in STMT. */
10024 static bool
10025 simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10027 tree innerop, middleop, finaltype;
10028 gimple *def_stmt;
10029 signop inner_sgn, middle_sgn, final_sgn;
10030 unsigned inner_prec, middle_prec, final_prec;
10031 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
10033 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
10034 if (!INTEGRAL_TYPE_P (finaltype))
10035 return false;
10036 middleop = gimple_assign_rhs1 (stmt);
10037 def_stmt = SSA_NAME_DEF_STMT (middleop);
10038 if (!is_gimple_assign (def_stmt)
10039 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
10040 return false;
10041 innerop = gimple_assign_rhs1 (def_stmt);
10042 if (TREE_CODE (innerop) != SSA_NAME
10043 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
10044 return false;
10046 /* Get the value-range of the inner operand. Use get_range_info in
10047 case innerop was created during substitute-and-fold. */
10048 wide_int imin, imax;
10049 if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))
10050 || get_range_info (innerop, &imin, &imax) != VR_RANGE)
10051 return false;
10052 innermin = widest_int::from (imin, TYPE_SIGN (TREE_TYPE (innerop)));
10053 innermax = widest_int::from (imax, TYPE_SIGN (TREE_TYPE (innerop)));
10055 /* Simulate the conversion chain to check if the result is equal if
10056 the middle conversion is removed. */
10057 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
10058 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
10059 final_prec = TYPE_PRECISION (finaltype);
10061 /* If the first conversion is not injective, the second must not
10062 be widening. */
10063 if (wi::gtu_p (innermax - innermin,
10064 wi::mask <widest_int> (middle_prec, false))
10065 && middle_prec < final_prec)
10066 return false;
10067 /* We also want a medium value so that we can track the effect that
10068 narrowing conversions with sign change have. */
10069 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
10070 if (inner_sgn == UNSIGNED)
10071 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
10072 else
10073 innermed = 0;
10074 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
10075 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
10076 innermed = innermin;
10078 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
10079 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
10080 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
10081 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
10083 /* Require that the final conversion applied to both the original
10084 and the intermediate range produces the same result. */
10085 final_sgn = TYPE_SIGN (finaltype);
10086 if (wi::ext (middlemin, final_prec, final_sgn)
10087 != wi::ext (innermin, final_prec, final_sgn)
10088 || wi::ext (middlemed, final_prec, final_sgn)
10089 != wi::ext (innermed, final_prec, final_sgn)
10090 || wi::ext (middlemax, final_prec, final_sgn)
10091 != wi::ext (innermax, final_prec, final_sgn))
10092 return false;
10094 gimple_assign_set_rhs1 (stmt, innerop);
10095 fold_stmt (gsi, follow_single_use_edges);
10096 return true;
10099 /* Simplify a conversion from integral SSA name to float in STMT. */
10101 static bool
10102 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi,
10103 gimple *stmt)
10105 tree rhs1 = gimple_assign_rhs1 (stmt);
10106 value_range *vr = get_value_range (rhs1);
10107 scalar_float_mode fltmode
10108 = SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
10109 scalar_int_mode mode;
10110 tree tem;
10111 gassign *conv;
10113 /* We can only handle constant ranges. */
10114 if (vr->type != VR_RANGE
10115 || TREE_CODE (vr->min) != INTEGER_CST
10116 || TREE_CODE (vr->max) != INTEGER_CST)
10117 return false;
10119 /* First check if we can use a signed type in place of an unsigned. */
10120 scalar_int_mode rhs_mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs1));
10121 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
10122 && can_float_p (fltmode, rhs_mode, 0) != CODE_FOR_nothing
10123 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
10124 mode = rhs_mode;
10125 /* If we can do the conversion in the current input mode do nothing. */
10126 else if (can_float_p (fltmode, rhs_mode,
10127 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
10128 return false;
10129 /* Otherwise search for a mode we can use, starting from the narrowest
10130 integer mode available. */
10131 else
10133 mode = NARROWEST_INT_MODE;
10134 for (;;)
10136 /* If we cannot do a signed conversion to float from mode
10137 or if the value-range does not fit in the signed type
10138 try with a wider mode. */
10139 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
10140 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
10141 break;
10143 /* But do not widen the input. Instead leave that to the
10144 optabs expansion code. */
10145 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
10146 || GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
10147 return false;
10151 /* It works, insert a truncation or sign-change before the
10152 float conversion. */
10153 tem = make_ssa_name (build_nonstandard_integer_type
10154 (GET_MODE_PRECISION (mode), 0));
10155 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
10156 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
10157 gimple_assign_set_rhs1 (stmt, tem);
10158 fold_stmt (gsi, follow_single_use_edges);
10160 return true;
10163 /* Simplify an internal fn call using ranges if possible. */
10165 static bool
10166 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10168 enum tree_code subcode;
10169 bool is_ubsan = false;
10170 bool ovf = false;
10171 switch (gimple_call_internal_fn (stmt))
10173 case IFN_UBSAN_CHECK_ADD:
10174 subcode = PLUS_EXPR;
10175 is_ubsan = true;
10176 break;
10177 case IFN_UBSAN_CHECK_SUB:
10178 subcode = MINUS_EXPR;
10179 is_ubsan = true;
10180 break;
10181 case IFN_UBSAN_CHECK_MUL:
10182 subcode = MULT_EXPR;
10183 is_ubsan = true;
10184 break;
10185 case IFN_ADD_OVERFLOW:
10186 subcode = PLUS_EXPR;
10187 break;
10188 case IFN_SUB_OVERFLOW:
10189 subcode = MINUS_EXPR;
10190 break;
10191 case IFN_MUL_OVERFLOW:
10192 subcode = MULT_EXPR;
10193 break;
10194 default:
10195 return false;
10198 tree op0 = gimple_call_arg (stmt, 0);
10199 tree op1 = gimple_call_arg (stmt, 1);
10200 tree type;
10201 if (is_ubsan)
10203 type = TREE_TYPE (op0);
10204 if (VECTOR_TYPE_P (type))
10205 return false;
10207 else if (gimple_call_lhs (stmt) == NULL_TREE)
10208 return false;
10209 else
10210 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
10211 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
10212 || (is_ubsan && ovf))
10213 return false;
10215 gimple *g;
10216 location_t loc = gimple_location (stmt);
10217 if (is_ubsan)
10218 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
10219 else
10221 int prec = TYPE_PRECISION (type);
10222 tree utype = type;
10223 if (ovf
10224 || !useless_type_conversion_p (type, TREE_TYPE (op0))
10225 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
10226 utype = build_nonstandard_integer_type (prec, 1);
10227 if (TREE_CODE (op0) == INTEGER_CST)
10228 op0 = fold_convert (utype, op0);
10229 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
10231 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
10232 gimple_set_location (g, loc);
10233 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10234 op0 = gimple_assign_lhs (g);
10236 if (TREE_CODE (op1) == INTEGER_CST)
10237 op1 = fold_convert (utype, op1);
10238 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
10240 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
10241 gimple_set_location (g, loc);
10242 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10243 op1 = gimple_assign_lhs (g);
10245 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
10246 gimple_set_location (g, loc);
10247 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10248 if (utype != type)
10250 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
10251 gimple_assign_lhs (g));
10252 gimple_set_location (g, loc);
10253 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10255 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
10256 gimple_assign_lhs (g),
10257 build_int_cst (type, ovf));
10259 gimple_set_location (g, loc);
10260 gsi_replace (gsi, g, false);
10261 return true;
10264 /* Return true if VAR is a two-valued variable. Set a and b with the
10265 two-values when it is true. Return false otherwise. */
10267 static bool
10268 two_valued_val_range_p (tree var, tree *a, tree *b)
10270 value_range *vr = get_value_range (var);
10271 if ((vr->type != VR_RANGE
10272 && vr->type != VR_ANTI_RANGE)
10273 || TREE_CODE (vr->min) != INTEGER_CST
10274 || TREE_CODE (vr->max) != INTEGER_CST)
10275 return false;
10277 if (vr->type == VR_RANGE
10278 && wi::sub (vr->max, vr->min) == 1)
10280 *a = vr->min;
10281 *b = vr->max;
10282 return true;
10285 /* ~[TYPE_MIN + 1, TYPE_MAX - 1] */
10286 if (vr->type == VR_ANTI_RANGE
10287 && wi::sub (vr->min, vrp_val_min (TREE_TYPE (var))) == 1
10288 && wi::sub (vrp_val_max (TREE_TYPE (var)), vr->max) == 1)
10290 *a = vrp_val_min (TREE_TYPE (var));
10291 *b = vrp_val_max (TREE_TYPE (var));
10292 return true;
10295 return false;
10298 /* Simplify STMT using ranges if possible. */
10300 static bool
10301 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
10303 gimple *stmt = gsi_stmt (*gsi);
10304 if (is_gimple_assign (stmt))
10306 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
10307 tree rhs1 = gimple_assign_rhs1 (stmt);
10308 tree rhs2 = gimple_assign_rhs2 (stmt);
10309 tree lhs = gimple_assign_lhs (stmt);
10310 tree val1 = NULL_TREE, val2 = NULL_TREE;
10311 use_operand_p use_p;
10312 gimple *use_stmt;
10314 /* Convert:
10315 LHS = CST BINOP VAR
10316 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10318 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
10320 Also handles:
10321 LHS = VAR BINOP CST
10322 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10324 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
10326 if (TREE_CODE_CLASS (rhs_code) == tcc_binary
10327 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10328 && ((TREE_CODE (rhs1) == INTEGER_CST
10329 && TREE_CODE (rhs2) == SSA_NAME)
10330 || (TREE_CODE (rhs2) == INTEGER_CST
10331 && TREE_CODE (rhs1) == SSA_NAME))
10332 && single_imm_use (lhs, &use_p, &use_stmt)
10333 && gimple_code (use_stmt) == GIMPLE_COND)
10336 tree new_rhs1 = NULL_TREE;
10337 tree new_rhs2 = NULL_TREE;
10338 tree cmp_var = NULL_TREE;
10340 if (TREE_CODE (rhs2) == SSA_NAME
10341 && two_valued_val_range_p (rhs2, &val1, &val2))
10343 /* Optimize RHS1 OP [VAL1, VAL2]. */
10344 new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
10345 new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
10346 cmp_var = rhs2;
10348 else if (TREE_CODE (rhs1) == SSA_NAME
10349 && two_valued_val_range_p (rhs1, &val1, &val2))
10351 /* Optimize [VAL1, VAL2] OP RHS2. */
10352 new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
10353 new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
10354 cmp_var = rhs1;
10357 /* If we could not find two-vals or the optimzation is invalid as
10358 in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
10359 if (new_rhs1 && new_rhs2)
10361 tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1);
10362 gimple_assign_set_rhs_with_ops (gsi,
10363 COND_EXPR, cond,
10364 new_rhs1,
10365 new_rhs2);
10366 update_stmt (gsi_stmt (*gsi));
10367 fold_stmt (gsi, follow_single_use_edges);
10368 return true;
10372 switch (rhs_code)
10374 case EQ_EXPR:
10375 case NE_EXPR:
10376 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
10377 if the RHS is zero or one, and the LHS are known to be boolean
10378 values. */
10379 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10380 return simplify_truth_ops_using_ranges (gsi, stmt);
10381 break;
10383 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
10384 and BIT_AND_EXPR respectively if the first operand is greater
10385 than zero and the second operand is an exact power of two.
10386 Also optimize TRUNC_MOD_EXPR away if the second operand is
10387 constant and the first operand already has the right value
10388 range. */
10389 case TRUNC_DIV_EXPR:
10390 case TRUNC_MOD_EXPR:
10391 if ((TREE_CODE (rhs1) == SSA_NAME
10392 || TREE_CODE (rhs1) == INTEGER_CST)
10393 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10394 return simplify_div_or_mod_using_ranges (gsi, stmt);
10395 break;
10397 /* Transform ABS (X) into X or -X as appropriate. */
10398 case ABS_EXPR:
10399 if (TREE_CODE (rhs1) == SSA_NAME
10400 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10401 return simplify_abs_using_ranges (gsi, stmt);
10402 break;
10404 case BIT_AND_EXPR:
10405 case BIT_IOR_EXPR:
10406 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
10407 if all the bits being cleared are already cleared or
10408 all the bits being set are already set. */
10409 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10410 return simplify_bit_ops_using_ranges (gsi, stmt);
10411 break;
10413 CASE_CONVERT:
10414 if (TREE_CODE (rhs1) == SSA_NAME
10415 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10416 return simplify_conversion_using_ranges (gsi, stmt);
10417 break;
10419 case FLOAT_EXPR:
10420 if (TREE_CODE (rhs1) == SSA_NAME
10421 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10422 return simplify_float_conversion_using_ranges (gsi, stmt);
10423 break;
10425 case MIN_EXPR:
10426 case MAX_EXPR:
10427 return simplify_min_or_max_using_ranges (gsi, stmt);
10429 default:
10430 break;
10433 else if (gimple_code (stmt) == GIMPLE_COND)
10434 return simplify_cond_using_ranges_1 (as_a <gcond *> (stmt));
10435 else if (gimple_code (stmt) == GIMPLE_SWITCH)
10436 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
10437 else if (is_gimple_call (stmt)
10438 && gimple_call_internal_p (stmt))
10439 return simplify_internal_call_using_ranges (gsi, stmt);
10441 return false;
10444 /* If the statement pointed by SI has a predicate whose value can be
10445 computed using the value range information computed by VRP, compute
10446 its value and return true. Otherwise, return false. */
10448 static bool
10449 fold_predicate_in (gimple_stmt_iterator *si)
10451 bool assignment_p = false;
10452 tree val;
10453 gimple *stmt = gsi_stmt (*si);
10455 if (is_gimple_assign (stmt)
10456 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
10458 assignment_p = true;
10459 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
10460 gimple_assign_rhs1 (stmt),
10461 gimple_assign_rhs2 (stmt),
10462 stmt);
10464 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10465 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10466 gimple_cond_lhs (cond_stmt),
10467 gimple_cond_rhs (cond_stmt),
10468 stmt);
10469 else
10470 return false;
10472 if (val)
10474 if (assignment_p)
10475 val = fold_convert (gimple_expr_type (stmt), val);
10477 if (dump_file)
10479 fprintf (dump_file, "Folding predicate ");
10480 print_gimple_expr (dump_file, stmt, 0);
10481 fprintf (dump_file, " to ");
10482 print_generic_expr (dump_file, val);
10483 fprintf (dump_file, "\n");
10486 if (is_gimple_assign (stmt))
10487 gimple_assign_set_rhs_from_tree (si, val);
10488 else
10490 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10491 gcond *cond_stmt = as_a <gcond *> (stmt);
10492 if (integer_zerop (val))
10493 gimple_cond_make_false (cond_stmt);
10494 else if (integer_onep (val))
10495 gimple_cond_make_true (cond_stmt);
10496 else
10497 gcc_unreachable ();
10500 return true;
10503 return false;
10506 /* Callback for substitute_and_fold folding the stmt at *SI. */
10508 static bool
10509 vrp_fold_stmt (gimple_stmt_iterator *si)
10511 if (fold_predicate_in (si))
10512 return true;
10514 return simplify_stmt_using_ranges (si);
10517 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
10518 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
10519 BB. If no such ASSERT_EXPR is found, return OP. */
10521 static tree
10522 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
10524 imm_use_iterator imm_iter;
10525 gimple *use_stmt;
10526 use_operand_p use_p;
10528 if (TREE_CODE (op) == SSA_NAME)
10530 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
10532 use_stmt = USE_STMT (use_p);
10533 if (use_stmt != stmt
10534 && gimple_assign_single_p (use_stmt)
10535 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
10536 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
10537 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
10538 return gimple_assign_lhs (use_stmt);
10541 return op;
10544 /* A trivial wrapper so that we can present the generic jump threading
10545 code with a simple API for simplifying statements. STMT is the
10546 statement we want to simplify, WITHIN_STMT provides the location
10547 for any overflow warnings. */
10549 static tree
10550 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
10551 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
10552 basic_block bb)
10554 /* First see if the conditional is in the hash table. */
10555 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
10556 if (cached_lhs && is_gimple_min_invariant (cached_lhs))
10557 return cached_lhs;
10559 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10561 tree op0 = gimple_cond_lhs (cond_stmt);
10562 op0 = lhs_of_dominating_assert (op0, bb, stmt);
10564 tree op1 = gimple_cond_rhs (cond_stmt);
10565 op1 = lhs_of_dominating_assert (op1, bb, stmt);
10567 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10568 op0, op1, within_stmt);
10571 /* We simplify a switch statement by trying to determine which case label
10572 will be taken. If we are successful then we return the corresponding
10573 CASE_LABEL_EXPR. */
10574 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
10576 tree op = gimple_switch_index (switch_stmt);
10577 if (TREE_CODE (op) != SSA_NAME)
10578 return NULL_TREE;
10580 op = lhs_of_dominating_assert (op, bb, stmt);
10582 value_range *vr = get_value_range (op);
10583 if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE)
10584 || symbolic_range_p (vr))
10585 return NULL_TREE;
10587 if (vr->type == VR_RANGE)
10589 size_t i, j;
10590 /* Get the range of labels that contain a part of the operand's
10591 value range. */
10592 find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j);
10594 /* Is there only one such label? */
10595 if (i == j)
10597 tree label = gimple_switch_label (switch_stmt, i);
10599 /* The i'th label will be taken only if the value range of the
10600 operand is entirely within the bounds of this label. */
10601 if (CASE_HIGH (label) != NULL_TREE
10602 ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0
10603 && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0)
10604 : (tree_int_cst_equal (CASE_LOW (label), vr->min)
10605 && tree_int_cst_equal (vr->min, vr->max)))
10606 return label;
10609 /* If there are no such labels then the default label will be
10610 taken. */
10611 if (i > j)
10612 return gimple_switch_label (switch_stmt, 0);
10615 if (vr->type == VR_ANTI_RANGE)
10617 unsigned n = gimple_switch_num_labels (switch_stmt);
10618 tree min_label = gimple_switch_label (switch_stmt, 1);
10619 tree max_label = gimple_switch_label (switch_stmt, n - 1);
10621 /* The default label will be taken only if the anti-range of the
10622 operand is entirely outside the bounds of all the (non-default)
10623 case labels. */
10624 if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0
10625 && (CASE_HIGH (max_label) != NULL_TREE
10626 ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0
10627 : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0))
10628 return gimple_switch_label (switch_stmt, 0);
10631 return NULL_TREE;
10634 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10636 value_range new_vr = VR_INITIALIZER;
10637 tree lhs = gimple_assign_lhs (assign_stmt);
10639 if (TREE_CODE (lhs) == SSA_NAME
10640 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10641 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10643 extract_range_from_assignment (&new_vr, assign_stmt);
10644 if (range_int_cst_singleton_p (&new_vr))
10645 return new_vr.min;
10649 return NULL_TREE;
10652 class vrp_dom_walker : public dom_walker
10654 public:
10655 vrp_dom_walker (cdi_direction direction,
10656 class const_and_copies *const_and_copies,
10657 class avail_exprs_stack *avail_exprs_stack)
10658 : dom_walker (direction, true),
10659 m_const_and_copies (const_and_copies),
10660 m_avail_exprs_stack (avail_exprs_stack),
10661 m_dummy_cond (NULL) {}
10663 virtual edge before_dom_children (basic_block);
10664 virtual void after_dom_children (basic_block);
10666 private:
10667 class const_and_copies *m_const_and_copies;
10668 class avail_exprs_stack *m_avail_exprs_stack;
10670 gcond *m_dummy_cond;
10673 /* Called before processing dominator children of BB. We want to look
10674 at ASSERT_EXPRs and record information from them in the appropriate
10675 tables.
10677 We could look at other statements here. It's not seen as likely
10678 to significantly increase the jump threads we discover. */
10680 edge
10681 vrp_dom_walker::before_dom_children (basic_block bb)
10683 gimple_stmt_iterator gsi;
10685 m_avail_exprs_stack->push_marker ();
10686 m_const_and_copies->push_marker ();
10687 for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
10689 gimple *stmt = gsi_stmt (gsi);
10690 if (gimple_assign_single_p (stmt)
10691 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
10693 tree rhs1 = gimple_assign_rhs1 (stmt);
10694 tree cond = TREE_OPERAND (rhs1, 1);
10695 tree inverted = invert_truthvalue (cond);
10696 vec<cond_equivalence> p;
10697 p.create (3);
10698 record_conditions (&p, cond, inverted);
10699 for (unsigned int i = 0; i < p.length (); i++)
10700 m_avail_exprs_stack->record_cond (&p[i]);
10702 tree lhs = gimple_assign_lhs (stmt);
10703 m_const_and_copies->record_const_or_copy (lhs,
10704 TREE_OPERAND (rhs1, 0));
10705 p.release ();
10706 continue;
10708 break;
10710 return NULL;
10713 /* Called after processing dominator children of BB. This is where we
10714 actually call into the threader. */
10715 void
10716 vrp_dom_walker::after_dom_children (basic_block bb)
10718 if (!m_dummy_cond)
10719 m_dummy_cond = gimple_build_cond (NE_EXPR,
10720 integer_zero_node, integer_zero_node,
10721 NULL, NULL);
10723 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
10724 m_avail_exprs_stack,
10725 simplify_stmt_for_jump_threading);
10727 m_avail_exprs_stack->pop_to_marker ();
10728 m_const_and_copies->pop_to_marker ();
10731 /* Blocks which have more than one predecessor and more than
10732 one successor present jump threading opportunities, i.e.,
10733 when the block is reached from a specific predecessor, we
10734 may be able to determine which of the outgoing edges will
10735 be traversed. When this optimization applies, we are able
10736 to avoid conditionals at runtime and we may expose secondary
10737 optimization opportunities.
10739 This routine is effectively a driver for the generic jump
10740 threading code. It basically just presents the generic code
10741 with edges that may be suitable for jump threading.
10743 Unlike DOM, we do not iterate VRP if jump threading was successful.
10744 While iterating may expose new opportunities for VRP, it is expected
10745 those opportunities would be very limited and the compile time cost
10746 to expose those opportunities would be significant.
10748 As jump threading opportunities are discovered, they are registered
10749 for later realization. */
10751 static void
10752 identify_jump_threads (void)
10754 int i;
10755 edge e;
10757 /* Ugh. When substituting values earlier in this pass we can
10758 wipe the dominance information. So rebuild the dominator
10759 information as we need it within the jump threading code. */
10760 calculate_dominance_info (CDI_DOMINATORS);
10762 /* We do not allow VRP information to be used for jump threading
10763 across a back edge in the CFG. Otherwise it becomes too
10764 difficult to avoid eliminating loop exit tests. Of course
10765 EDGE_DFS_BACK is not accurate at this time so we have to
10766 recompute it. */
10767 mark_dfs_back_edges ();
10769 /* Do not thread across edges we are about to remove. Just marking
10770 them as EDGE_IGNORE will do. */
10771 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10772 e->flags |= EDGE_IGNORE;
10774 /* Allocate our unwinder stack to unwind any temporary equivalences
10775 that might be recorded. */
10776 const_and_copies *equiv_stack = new const_and_copies ();
10778 hash_table<expr_elt_hasher> *avail_exprs
10779 = new hash_table<expr_elt_hasher> (1024);
10780 avail_exprs_stack *avail_exprs_stack
10781 = new class avail_exprs_stack (avail_exprs);
10783 vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
10784 walker.walk (cfun->cfg->x_entry_block_ptr);
10786 /* Clear EDGE_IGNORE. */
10787 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10788 e->flags &= ~EDGE_IGNORE;
10790 /* We do not actually update the CFG or SSA graphs at this point as
10791 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10792 handle ASSERT_EXPRs gracefully. */
10793 delete equiv_stack;
10794 delete avail_exprs;
10795 delete avail_exprs_stack;
10798 /* Free VRP lattice. */
10800 static void
10801 vrp_free_lattice ()
10803 /* Free allocated memory. */
10804 free (vr_value);
10805 free (vr_phi_edge_counts);
10806 bitmap_obstack_release (&vrp_equiv_obstack);
10807 vrp_value_range_pool.release ();
10809 /* So that we can distinguish between VRP data being available
10810 and not available. */
10811 vr_value = NULL;
10812 vr_phi_edge_counts = NULL;
10815 /* Traverse all the blocks folding conditionals with known ranges. */
10817 static void
10818 vrp_finalize (bool warn_array_bounds_p)
10820 size_t i;
10822 values_propagated = true;
10824 if (dump_file)
10826 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
10827 dump_all_value_ranges (dump_file);
10828 fprintf (dump_file, "\n");
10831 /* Set value range to non pointer SSA_NAMEs. */
10832 for (i = 0; i < num_vr_values; i++)
10833 if (vr_value[i])
10835 tree name = ssa_name (i);
10837 if (!name
10838 || (vr_value[i]->type == VR_VARYING)
10839 || (vr_value[i]->type == VR_UNDEFINED)
10840 || (TREE_CODE (vr_value[i]->min) != INTEGER_CST)
10841 || (TREE_CODE (vr_value[i]->max) != INTEGER_CST))
10842 continue;
10844 if (POINTER_TYPE_P (TREE_TYPE (name))
10845 && ((vr_value[i]->type == VR_RANGE
10846 && range_includes_zero_p (vr_value[i]->min,
10847 vr_value[i]->max) == 0)
10848 || (vr_value[i]->type == VR_ANTI_RANGE
10849 && range_includes_zero_p (vr_value[i]->min,
10850 vr_value[i]->max) == 1)))
10851 set_ptr_nonnull (name);
10852 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
10853 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
10854 vr_value[i]->max);
10857 substitute_and_fold (op_with_constant_singleton_value_range, vrp_fold_stmt);
10859 if (warn_array_bounds && warn_array_bounds_p)
10860 check_all_array_refs ();
10863 /* evrp_dom_walker visits the basic blocks in the dominance order and set
10864 the Value Ranges (VR) for SSA_NAMEs in the scope. Use this VR to
10865 discover more VRs. */
10867 class evrp_dom_walker : public dom_walker
10869 public:
10870 evrp_dom_walker ()
10871 : dom_walker (CDI_DOMINATORS), stack (10)
10873 need_eh_cleanup = BITMAP_ALLOC (NULL);
10875 ~evrp_dom_walker ()
10877 BITMAP_FREE (need_eh_cleanup);
10879 virtual edge before_dom_children (basic_block);
10880 virtual void after_dom_children (basic_block);
10881 void push_value_range (tree var, value_range *vr);
10882 value_range *pop_value_range (tree var);
10883 value_range *try_find_new_range (tree, tree op, tree_code code, tree limit);
10885 /* Cond_stack holds the old VR. */
10886 auto_vec<std::pair <tree, value_range*> > stack;
10887 bitmap need_eh_cleanup;
10888 auto_vec<gimple *> stmts_to_fixup;
10889 auto_vec<gimple *> stmts_to_remove;
10892 /* Find new range for NAME such that (OP CODE LIMIT) is true. */
10894 value_range *
10895 evrp_dom_walker::try_find_new_range (tree name,
10896 tree op, tree_code code, tree limit)
10898 value_range vr = VR_INITIALIZER;
10899 value_range *old_vr = get_value_range (name);
10901 /* Discover VR when condition is true. */
10902 extract_range_for_var_from_comparison_expr (name, code, op,
10903 limit, &vr);
10904 /* If we found any usable VR, set the VR to ssa_name and create a
10905 PUSH old value in the stack with the old VR. */
10906 if (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE)
10908 if (old_vr->type == vr.type
10909 && vrp_operand_equal_p (old_vr->min, vr.min)
10910 && vrp_operand_equal_p (old_vr->max, vr.max))
10911 return NULL;
10912 value_range *new_vr = vrp_value_range_pool.allocate ();
10913 *new_vr = vr;
10914 return new_vr;
10916 return NULL;
10919 /* See if there is any new scope is entered with new VR and set that VR to
10920 ssa_name before visiting the statements in the scope. */
10922 edge
10923 evrp_dom_walker::before_dom_children (basic_block bb)
10925 tree op0 = NULL_TREE;
10926 edge_iterator ei;
10927 edge e;
10929 if (dump_file && (dump_flags & TDF_DETAILS))
10930 fprintf (dump_file, "Visiting BB%d\n", bb->index);
10932 stack.safe_push (std::make_pair (NULL_TREE, (value_range *)NULL));
10934 edge pred_e = NULL;
10935 FOR_EACH_EDGE (e, ei, bb->preds)
10937 /* Ignore simple backedges from this to allow recording conditions
10938 in loop headers. */
10939 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
10940 continue;
10941 if (! pred_e)
10942 pred_e = e;
10943 else
10945 pred_e = NULL;
10946 break;
10949 if (pred_e)
10951 gimple *stmt = last_stmt (pred_e->src);
10952 if (stmt
10953 && gimple_code (stmt) == GIMPLE_COND
10954 && (op0 = gimple_cond_lhs (stmt))
10955 && TREE_CODE (op0) == SSA_NAME
10956 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))
10957 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))))
10959 if (dump_file && (dump_flags & TDF_DETAILS))
10961 fprintf (dump_file, "Visiting controlling predicate ");
10962 print_gimple_stmt (dump_file, stmt, 0);
10964 /* Entering a new scope. Try to see if we can find a VR
10965 here. */
10966 tree op1 = gimple_cond_rhs (stmt);
10967 if (TREE_OVERFLOW_P (op1))
10968 op1 = drop_tree_overflow (op1);
10969 tree_code code = gimple_cond_code (stmt);
10971 auto_vec<assert_info, 8> asserts;
10972 register_edge_assert_for (op0, pred_e, code, op0, op1, asserts);
10973 if (TREE_CODE (op1) == SSA_NAME)
10974 register_edge_assert_for (op1, pred_e, code, op0, op1, asserts);
10976 auto_vec<std::pair<tree, value_range *>, 8> vrs;
10977 for (unsigned i = 0; i < asserts.length (); ++i)
10979 value_range *vr = try_find_new_range (asserts[i].name,
10980 asserts[i].expr,
10981 asserts[i].comp_code,
10982 asserts[i].val);
10983 if (vr)
10984 vrs.safe_push (std::make_pair (asserts[i].name, vr));
10986 /* Push updated ranges only after finding all of them to avoid
10987 ordering issues that can lead to worse ranges. */
10988 for (unsigned i = 0; i < vrs.length (); ++i)
10989 push_value_range (vrs[i].first, vrs[i].second);
10993 /* Visit PHI stmts and discover any new VRs possible. */
10994 bool has_unvisited_preds = false;
10995 FOR_EACH_EDGE (e, ei, bb->preds)
10996 if (e->flags & EDGE_EXECUTABLE
10997 && !(e->src->flags & BB_VISITED))
10999 has_unvisited_preds = true;
11000 break;
11003 for (gphi_iterator gpi = gsi_start_phis (bb);
11004 !gsi_end_p (gpi); gsi_next (&gpi))
11006 gphi *phi = gpi.phi ();
11007 tree lhs = PHI_RESULT (phi);
11008 if (virtual_operand_p (lhs))
11009 continue;
11010 value_range vr_result = VR_INITIALIZER;
11011 bool interesting = stmt_interesting_for_vrp (phi);
11012 if (interesting && dump_file && (dump_flags & TDF_DETAILS))
11014 fprintf (dump_file, "Visiting PHI node ");
11015 print_gimple_stmt (dump_file, phi, 0);
11017 if (!has_unvisited_preds
11018 && interesting)
11019 extract_range_from_phi_node (phi, &vr_result);
11020 else
11022 set_value_range_to_varying (&vr_result);
11023 /* When we have an unvisited executable predecessor we can't
11024 use PHI arg ranges which may be still UNDEFINED but have
11025 to use VARYING for them. But we can still resort to
11026 SCEV for loop header PHIs. */
11027 struct loop *l;
11028 if (interesting
11029 && (l = loop_containing_stmt (phi))
11030 && l->header == gimple_bb (phi))
11031 adjust_range_with_scev (&vr_result, l, phi, lhs);
11033 update_value_range (lhs, &vr_result);
11035 /* Mark PHIs whose lhs we fully propagate for removal. */
11036 tree val = op_with_constant_singleton_value_range (lhs);
11037 if (val && may_propagate_copy (lhs, val))
11039 stmts_to_remove.safe_push (phi);
11040 continue;
11043 /* Set the SSA with the value range. */
11044 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
11046 if ((vr_result.type == VR_RANGE
11047 || vr_result.type == VR_ANTI_RANGE)
11048 && (TREE_CODE (vr_result.min) == INTEGER_CST)
11049 && (TREE_CODE (vr_result.max) == INTEGER_CST))
11050 set_range_info (lhs,
11051 vr_result.type, vr_result.min, vr_result.max);
11053 else if (POINTER_TYPE_P (TREE_TYPE (lhs))
11054 && ((vr_result.type == VR_RANGE
11055 && range_includes_zero_p (vr_result.min,
11056 vr_result.max) == 0)
11057 || (vr_result.type == VR_ANTI_RANGE
11058 && range_includes_zero_p (vr_result.min,
11059 vr_result.max) == 1)))
11060 set_ptr_nonnull (lhs);
11063 edge taken_edge = NULL;
11065 /* Visit all other stmts and discover any new VRs possible. */
11066 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
11067 !gsi_end_p (gsi); gsi_next (&gsi))
11069 gimple *stmt = gsi_stmt (gsi);
11070 tree output = NULL_TREE;
11071 gimple *old_stmt = stmt;
11072 bool was_noreturn = (is_gimple_call (stmt)
11073 && gimple_call_noreturn_p (stmt));
11075 if (dump_file && (dump_flags & TDF_DETAILS))
11077 fprintf (dump_file, "Visiting stmt ");
11078 print_gimple_stmt (dump_file, stmt, 0);
11081 if (gcond *cond = dyn_cast <gcond *> (stmt))
11083 vrp_visit_cond_stmt (cond, &taken_edge);
11084 if (taken_edge)
11086 if (taken_edge->flags & EDGE_TRUE_VALUE)
11087 gimple_cond_make_true (cond);
11088 else if (taken_edge->flags & EDGE_FALSE_VALUE)
11089 gimple_cond_make_false (cond);
11090 else
11091 gcc_unreachable ();
11092 update_stmt (stmt);
11095 else if (stmt_interesting_for_vrp (stmt))
11097 edge taken_edge;
11098 value_range vr = VR_INITIALIZER;
11099 extract_range_from_stmt (stmt, &taken_edge, &output, &vr);
11100 if (output
11101 && (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE))
11103 update_value_range (output, &vr);
11104 vr = *get_value_range (output);
11106 /* Mark stmts whose output we fully propagate for removal. */
11107 tree val;
11108 if ((val = op_with_constant_singleton_value_range (output))
11109 && may_propagate_copy (output, val)
11110 && !stmt_could_throw_p (stmt)
11111 && !gimple_has_side_effects (stmt))
11113 stmts_to_remove.safe_push (stmt);
11114 continue;
11117 /* Set the SSA with the value range. */
11118 if (INTEGRAL_TYPE_P (TREE_TYPE (output)))
11120 if ((vr.type == VR_RANGE
11121 || vr.type == VR_ANTI_RANGE)
11122 && (TREE_CODE (vr.min) == INTEGER_CST)
11123 && (TREE_CODE (vr.max) == INTEGER_CST))
11124 set_range_info (output, vr.type, vr.min, vr.max);
11126 else if (POINTER_TYPE_P (TREE_TYPE (output))
11127 && ((vr.type == VR_RANGE
11128 && range_includes_zero_p (vr.min,
11129 vr.max) == 0)
11130 || (vr.type == VR_ANTI_RANGE
11131 && range_includes_zero_p (vr.min,
11132 vr.max) == 1)))
11133 set_ptr_nonnull (output);
11135 else
11136 set_defs_to_varying (stmt);
11138 else
11139 set_defs_to_varying (stmt);
11141 /* See if we can derive a range for any of STMT's operands. */
11142 tree op;
11143 ssa_op_iter i;
11144 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
11146 tree value;
11147 enum tree_code comp_code;
11149 /* If OP is used in such a way that we can infer a value
11150 range for it, and we don't find a previous assertion for
11151 it, create a new assertion location node for OP. */
11152 if (infer_value_range (stmt, op, &comp_code, &value))
11154 /* If we are able to infer a nonzero value range for OP,
11155 then walk backwards through the use-def chain to see if OP
11156 was set via a typecast.
11157 If so, then we can also infer a nonzero value range
11158 for the operand of the NOP_EXPR. */
11159 if (comp_code == NE_EXPR && integer_zerop (value))
11161 tree t = op;
11162 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
11163 while (is_gimple_assign (def_stmt)
11164 && CONVERT_EXPR_CODE_P
11165 (gimple_assign_rhs_code (def_stmt))
11166 && TREE_CODE
11167 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
11168 && POINTER_TYPE_P
11169 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
11171 t = gimple_assign_rhs1 (def_stmt);
11172 def_stmt = SSA_NAME_DEF_STMT (t);
11174 /* Add VR when (T COMP_CODE value) condition is
11175 true. */
11176 value_range *op_range
11177 = try_find_new_range (t, t, comp_code, value);
11178 if (op_range)
11179 push_value_range (t, op_range);
11182 /* Add VR when (OP COMP_CODE value) condition is true. */
11183 value_range *op_range = try_find_new_range (op, op,
11184 comp_code, value);
11185 if (op_range)
11186 push_value_range (op, op_range);
11190 /* Try folding stmts with the VR discovered. */
11191 bool did_replace
11192 = replace_uses_in (stmt, op_with_constant_singleton_value_range);
11193 if (fold_stmt (&gsi, follow_single_use_edges)
11194 || did_replace)
11196 stmt = gsi_stmt (gsi);
11197 update_stmt (stmt);
11198 did_replace = true;
11201 if (did_replace)
11203 /* If we cleaned up EH information from the statement,
11204 remove EH edges. */
11205 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
11206 bitmap_set_bit (need_eh_cleanup, bb->index);
11208 /* If we turned a not noreturn call into a noreturn one
11209 schedule it for fixup. */
11210 if (!was_noreturn
11211 && is_gimple_call (stmt)
11212 && gimple_call_noreturn_p (stmt))
11213 stmts_to_fixup.safe_push (stmt);
11215 if (gimple_assign_single_p (stmt))
11217 tree rhs = gimple_assign_rhs1 (stmt);
11218 if (TREE_CODE (rhs) == ADDR_EXPR)
11219 recompute_tree_invariant_for_addr_expr (rhs);
11224 /* Visit BB successor PHI nodes and replace PHI args. */
11225 FOR_EACH_EDGE (e, ei, bb->succs)
11227 for (gphi_iterator gpi = gsi_start_phis (e->dest);
11228 !gsi_end_p (gpi); gsi_next (&gpi))
11230 gphi *phi = gpi.phi ();
11231 use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
11232 tree arg = USE_FROM_PTR (use_p);
11233 if (TREE_CODE (arg) != SSA_NAME
11234 || virtual_operand_p (arg))
11235 continue;
11236 tree val = op_with_constant_singleton_value_range (arg);
11237 if (val && may_propagate_copy (arg, val))
11238 propagate_value (use_p, val);
11242 bb->flags |= BB_VISITED;
11244 return taken_edge;
11247 /* Restore/pop VRs valid only for BB when we leave BB. */
11249 void
11250 evrp_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
11252 gcc_checking_assert (!stack.is_empty ());
11253 while (stack.last ().first != NULL_TREE)
11254 pop_value_range (stack.last ().first);
11255 stack.pop ();
11258 /* Push the Value Range of VAR to the stack and update it with new VR. */
11260 void
11261 evrp_dom_walker::push_value_range (tree var, value_range *vr)
11263 if (SSA_NAME_VERSION (var) >= num_vr_values)
11264 return;
11265 if (dump_file && (dump_flags & TDF_DETAILS))
11267 fprintf (dump_file, "pushing new range for ");
11268 print_generic_expr (dump_file, var);
11269 fprintf (dump_file, ": ");
11270 dump_value_range (dump_file, vr);
11271 fprintf (dump_file, "\n");
11273 stack.safe_push (std::make_pair (var, get_value_range (var)));
11274 vr_value[SSA_NAME_VERSION (var)] = vr;
11277 /* Pop the Value Range from the vrp_stack and update VAR with it. */
11279 value_range *
11280 evrp_dom_walker::pop_value_range (tree var)
11282 value_range *vr = stack.last ().second;
11283 gcc_checking_assert (var == stack.last ().first);
11284 if (dump_file && (dump_flags & TDF_DETAILS))
11286 fprintf (dump_file, "popping range for ");
11287 print_generic_expr (dump_file, var);
11288 fprintf (dump_file, ", restoring ");
11289 dump_value_range (dump_file, vr);
11290 fprintf (dump_file, "\n");
11292 vr_value[SSA_NAME_VERSION (var)] = vr;
11293 stack.pop ();
11294 return vr;
11298 /* Main entry point for the early vrp pass which is a simplified non-iterative
11299 version of vrp where basic blocks are visited in dominance order. Value
11300 ranges discovered in early vrp will also be used by ipa-vrp. */
11302 static unsigned int
11303 execute_early_vrp ()
11305 edge e;
11306 edge_iterator ei;
11307 basic_block bb;
11309 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11310 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11311 scev_initialize ();
11312 calculate_dominance_info (CDI_DOMINATORS);
11313 FOR_EACH_BB_FN (bb, cfun)
11315 bb->flags &= ~BB_VISITED;
11316 FOR_EACH_EDGE (e, ei, bb->preds)
11317 e->flags |= EDGE_EXECUTABLE;
11319 vrp_initialize_lattice ();
11321 /* Walk stmts in dominance order and propagate VRP. */
11322 evrp_dom_walker walker;
11323 walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
11325 if (dump_file)
11327 fprintf (dump_file, "\nValue ranges after Early VRP:\n\n");
11328 dump_all_value_ranges (dump_file);
11329 fprintf (dump_file, "\n");
11332 /* Remove stmts in reverse order to make debug stmt creation possible. */
11333 while (! walker.stmts_to_remove.is_empty ())
11335 gimple *stmt = walker.stmts_to_remove.pop ();
11336 if (dump_file && dump_flags & TDF_DETAILS)
11338 fprintf (dump_file, "Removing dead stmt ");
11339 print_gimple_stmt (dump_file, stmt, 0);
11340 fprintf (dump_file, "\n");
11342 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
11343 if (gimple_code (stmt) == GIMPLE_PHI)
11344 remove_phi_node (&gsi, true);
11345 else
11347 unlink_stmt_vdef (stmt);
11348 gsi_remove (&gsi, true);
11349 release_defs (stmt);
11353 if (!bitmap_empty_p (walker.need_eh_cleanup))
11354 gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
11356 /* Fixup stmts that became noreturn calls. This may require splitting
11357 blocks and thus isn't possible during the dominator walk. Do this
11358 in reverse order so we don't inadvertedly remove a stmt we want to
11359 fixup by visiting a dominating now noreturn call first. */
11360 while (!walker.stmts_to_fixup.is_empty ())
11362 gimple *stmt = walker.stmts_to_fixup.pop ();
11363 fixup_noreturn_call (stmt);
11366 vrp_free_lattice ();
11367 scev_finalize ();
11368 loop_optimizer_finalize ();
11369 return 0;
11373 /* Main entry point to VRP (Value Range Propagation). This pass is
11374 loosely based on J. R. C. Patterson, ``Accurate Static Branch
11375 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
11376 Programming Language Design and Implementation, pp. 67-78, 1995.
11377 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
11379 This is essentially an SSA-CCP pass modified to deal with ranges
11380 instead of constants.
11382 While propagating ranges, we may find that two or more SSA name
11383 have equivalent, though distinct ranges. For instance,
11385 1 x_9 = p_3->a;
11386 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
11387 3 if (p_4 == q_2)
11388 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
11389 5 endif
11390 6 if (q_2)
11392 In the code above, pointer p_5 has range [q_2, q_2], but from the
11393 code we can also determine that p_5 cannot be NULL and, if q_2 had
11394 a non-varying range, p_5's range should also be compatible with it.
11396 These equivalences are created by two expressions: ASSERT_EXPR and
11397 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
11398 result of another assertion, then we can use the fact that p_5 and
11399 p_4 are equivalent when evaluating p_5's range.
11401 Together with value ranges, we also propagate these equivalences
11402 between names so that we can take advantage of information from
11403 multiple ranges when doing final replacement. Note that this
11404 equivalency relation is transitive but not symmetric.
11406 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
11407 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
11408 in contexts where that assertion does not hold (e.g., in line 6).
11410 TODO, the main difference between this pass and Patterson's is that
11411 we do not propagate edge probabilities. We only compute whether
11412 edges can be taken or not. That is, instead of having a spectrum
11413 of jump probabilities between 0 and 1, we only deal with 0, 1 and
11414 DON'T KNOW. In the future, it may be worthwhile to propagate
11415 probabilities to aid branch prediction. */
11417 static unsigned int
11418 execute_vrp (bool warn_array_bounds_p)
11420 int i;
11421 edge e;
11422 switch_update *su;
11424 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11425 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11426 scev_initialize ();
11428 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
11429 Inserting assertions may split edges which will invalidate
11430 EDGE_DFS_BACK. */
11431 insert_range_assertions ();
11433 to_remove_edges.create (10);
11434 to_update_switch_stmts.create (5);
11435 threadedge_initialize_values ();
11437 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
11438 mark_dfs_back_edges ();
11440 vrp_initialize_lattice ();
11441 vrp_initialize ();
11442 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
11443 vrp_finalize (warn_array_bounds_p);
11445 /* We must identify jump threading opportunities before we release
11446 the datastructures built by VRP. */
11447 identify_jump_threads ();
11449 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
11450 was set by a type conversion can often be rewritten to use the
11451 RHS of the type conversion.
11453 However, doing so inhibits jump threading through the comparison.
11454 So that transformation is not performed until after jump threading
11455 is complete. */
11456 basic_block bb;
11457 FOR_EACH_BB_FN (bb, cfun)
11459 gimple *last = last_stmt (bb);
11460 if (last && gimple_code (last) == GIMPLE_COND)
11461 simplify_cond_using_ranges_2 (as_a <gcond *> (last));
11464 vrp_free_lattice ();
11466 free_numbers_of_iterations_estimates (cfun);
11468 /* ASSERT_EXPRs must be removed before finalizing jump threads
11469 as finalizing jump threads calls the CFG cleanup code which
11470 does not properly handle ASSERT_EXPRs. */
11471 remove_range_assertions ();
11473 /* If we exposed any new variables, go ahead and put them into
11474 SSA form now, before we handle jump threading. This simplifies
11475 interactions between rewriting of _DECL nodes into SSA form
11476 and rewriting SSA_NAME nodes into SSA form after block
11477 duplication and CFG manipulation. */
11478 update_ssa (TODO_update_ssa);
11480 /* We identified all the jump threading opportunities earlier, but could
11481 not transform the CFG at that time. This routine transforms the
11482 CFG and arranges for the dominator tree to be rebuilt if necessary.
11484 Note the SSA graph update will occur during the normal TODO
11485 processing by the pass manager. */
11486 thread_through_all_blocks (false);
11488 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
11489 CFG in a broken state and requires a cfg_cleanup run. */
11490 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11491 remove_edge (e);
11492 /* Update SWITCH_EXPR case label vector. */
11493 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
11495 size_t j;
11496 size_t n = TREE_VEC_LENGTH (su->vec);
11497 tree label;
11498 gimple_switch_set_num_labels (su->stmt, n);
11499 for (j = 0; j < n; j++)
11500 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
11501 /* As we may have replaced the default label with a regular one
11502 make sure to make it a real default label again. This ensures
11503 optimal expansion. */
11504 label = gimple_switch_label (su->stmt, 0);
11505 CASE_LOW (label) = NULL_TREE;
11506 CASE_HIGH (label) = NULL_TREE;
11509 if (to_remove_edges.length () > 0)
11511 free_dominance_info (CDI_DOMINATORS);
11512 loops_state_set (LOOPS_NEED_FIXUP);
11515 to_remove_edges.release ();
11516 to_update_switch_stmts.release ();
11517 threadedge_finalize_values ();
11519 scev_finalize ();
11520 loop_optimizer_finalize ();
11521 return 0;
11524 namespace {
11526 const pass_data pass_data_vrp =
11528 GIMPLE_PASS, /* type */
11529 "vrp", /* name */
11530 OPTGROUP_NONE, /* optinfo_flags */
11531 TV_TREE_VRP, /* tv_id */
11532 PROP_ssa, /* properties_required */
11533 0, /* properties_provided */
11534 0, /* properties_destroyed */
11535 0, /* todo_flags_start */
11536 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
11539 class pass_vrp : public gimple_opt_pass
11541 public:
11542 pass_vrp (gcc::context *ctxt)
11543 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
11546 /* opt_pass methods: */
11547 opt_pass * clone () { return new pass_vrp (m_ctxt); }
11548 void set_pass_param (unsigned int n, bool param)
11550 gcc_assert (n == 0);
11551 warn_array_bounds_p = param;
11553 virtual bool gate (function *) { return flag_tree_vrp != 0; }
11554 virtual unsigned int execute (function *)
11555 { return execute_vrp (warn_array_bounds_p); }
11557 private:
11558 bool warn_array_bounds_p;
11559 }; // class pass_vrp
11561 } // anon namespace
11563 gimple_opt_pass *
11564 make_pass_vrp (gcc::context *ctxt)
11566 return new pass_vrp (ctxt);
11569 namespace {
11571 const pass_data pass_data_early_vrp =
11573 GIMPLE_PASS, /* type */
11574 "evrp", /* name */
11575 OPTGROUP_NONE, /* optinfo_flags */
11576 TV_TREE_EARLY_VRP, /* tv_id */
11577 PROP_ssa, /* properties_required */
11578 0, /* properties_provided */
11579 0, /* properties_destroyed */
11580 0, /* todo_flags_start */
11581 ( TODO_cleanup_cfg | TODO_update_ssa | TODO_verify_all ),
11584 class pass_early_vrp : public gimple_opt_pass
11586 public:
11587 pass_early_vrp (gcc::context *ctxt)
11588 : gimple_opt_pass (pass_data_early_vrp, ctxt)
11591 /* opt_pass methods: */
11592 opt_pass * clone () { return new pass_early_vrp (m_ctxt); }
11593 virtual bool gate (function *)
11595 return flag_tree_vrp != 0;
11597 virtual unsigned int execute (function *)
11598 { return execute_early_vrp (); }
11600 }; // class pass_vrp
11601 } // anon namespace
11603 gimple_opt_pass *
11604 make_pass_early_vrp (gcc::context *ctxt)
11606 return new pass_early_vrp (ctxt);