* config/vax/vax.h (MASK_UNIX_ASM, MASK_VAXC_ALIGNMENT)
[official-gcc.git] / gcc / config / vax / vax.h
blob503f0f6a3f0eba7769a932c816015d1ae2261883
1 /* Definitions of target machine for GNU compiler. VAX version.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__vax__"); \
28 builtin_assert ("cpu=vax"); \
29 builtin_assert ("machine=vax"); \
30 if (TARGET_G_FLOAT) \
31 { \
32 builtin_define ("__GFLOAT"); \
33 builtin_define ("__GFLOAT__"); \
34 } \
35 } \
36 while (0)
38 #define VMS_TARGET 0
40 /* Use -J option for long branch support with Unix assembler. */
42 #define ASM_SPEC "-J"
44 /* Choose proper libraries depending on float format.
45 Note that there are no profiling libraries for g-format.
46 Also use -lg for the sake of dbx. */
48 #define LIB_SPEC "%{g:-lg}\
49 %{mg:%{lm:-lmg} -lcg \
50 %{p:%eprofiling not supported with -mg\n}\
51 %{pg:%eprofiling not supported with -mg\n}}\
52 %{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
54 /* Print subsidiary information on the compiler version in use. */
56 #ifndef TARGET_NAME /* A more specific value might be supplied via -D. */
57 #define TARGET_NAME "vax"
58 #endif
59 #define TARGET_VERSION fprintf (stderr, " (%s)", TARGET_NAME)
61 /* Run-time compilation parameters selecting different hardware subsets. */
63 extern int target_flags;
65 #define MASK_UNIX_ASM 1
66 #define MASK_VAXC_ALIGNMENT 2
67 #define MASK_G_FLOAT 4
70 /* Macros used in the machine description to test the flags. */
72 /* Nonzero if compiling code that Unix assembler can assemble. */
73 #define TARGET_UNIX_ASM (target_flags & MASK_UNIX_ASM)
75 /* Nonzero if compiling with VAX-11 "C" style structure alignment */
76 #define TARGET_VAXC_ALIGNMENT (target_flags & MASK_VAXC_ALIGNMENT)
78 /* Nonzero if compiling with `G'-format floating point */
79 #define TARGET_G_FLOAT (target_flags & MASK_G_FLOAT)
81 /* Macro to define tables used to set the flags.
82 This is a list in braces of pairs in braces,
83 each pair being { "NAME", VALUE }
84 where VALUE is the bits to set or minus the bits to clear.
85 An empty string NAME is used to identify the default VALUE. */
87 #define TARGET_SWITCHES \
88 { {"unix", MASK_UNIX_ASM, \
89 "Generate code for UNIX assembler"}, \
90 {"gnu", -MASK_UNIX_ASM, \
91 "Generate code for GNU assembler (gas)"}, \
92 {"vaxc-alignment", MASK_VAXC_ALIGNMENT, \
93 "Use VAXC structure conventions"}, \
94 {"g", MASK_G_FLOAT, \
95 "Generate GFLOAT double precision code"}, \
96 {"g-float", MASK_G_FLOAT, \
97 "Generate GFLOAT double precision code"}, \
98 {"d", -MASK_G_FLOAT, \
99 "Generate DFLOAT double precision code"}, \
100 {"d-float", -MASK_G_FLOAT, \
101 "Generate DFLOAT double precision code"}, \
102 { "", TARGET_DEFAULT, 0}}
104 /* Default target_flags if no switches specified. */
106 #ifndef TARGET_DEFAULT
107 #define TARGET_DEFAULT (MASK_UNIX_ASM)
108 #endif
110 /* Target machine storage layout */
112 /* Define this if most significant bit is lowest numbered
113 in instructions that operate on numbered bit-fields.
114 This is not true on the VAX. */
115 #define BITS_BIG_ENDIAN 0
117 /* Define this if most significant byte of a word is the lowest numbered. */
118 /* That is not true on the VAX. */
119 #define BYTES_BIG_ENDIAN 0
121 /* Define this if most significant word of a multiword number is the lowest
122 numbered. */
123 /* This is not true on the VAX. */
124 #define WORDS_BIG_ENDIAN 0
126 /* Width of a word, in units (bytes). */
127 #define UNITS_PER_WORD 4
129 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
130 #define PARM_BOUNDARY 32
132 /* Allocation boundary (in *bits*) for the code of a function. */
133 #define FUNCTION_BOUNDARY 16
135 /* Alignment of field after `int : 0' in a structure. */
136 #define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
138 /* Every structure's size must be a multiple of this. */
139 #define STRUCTURE_SIZE_BOUNDARY 8
141 /* A bitfield declared as `int' forces `int' alignment for the struct. */
142 #define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
144 /* No data type wants to be aligned rounder than this. */
145 #define BIGGEST_ALIGNMENT 32
147 /* No structure field wants to be aligned rounder than this. */
148 #define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
150 /* Set this nonzero if move instructions will actually fail to work
151 when given unaligned data. */
152 #define STRICT_ALIGNMENT 0
154 /* Let's keep the stack somewhat aligned. */
155 #define STACK_BOUNDARY 32
157 /* The table of an ADDR_DIFF_VEC must be contiguous with the case
158 opcode, it is part of the case instruction. */
159 #define ADDR_VEC_ALIGN(ADDR_VEC) 0
161 /* Standard register usage. */
163 /* Number of actual hardware registers.
164 The hardware registers are assigned numbers for the compiler
165 from 0 to just below FIRST_PSEUDO_REGISTER.
166 All registers that the compiler knows about must be given numbers,
167 even those that are not normally considered general registers. */
168 #define FIRST_PSEUDO_REGISTER 16
170 /* 1 for registers that have pervasive standard uses
171 and are not available for the register allocator.
172 On the VAX, these are the AP, FP, SP and PC. */
173 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
175 /* 1 for registers not available across function calls.
176 These must include the FIXED_REGISTERS and also any
177 registers that can be used without being saved.
178 The latter must include the registers where values are returned
179 and the register where structure-value addresses are passed.
180 Aside from that, you can include as many other registers as you like. */
181 #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
183 /* Return number of consecutive hard regs needed starting at reg REGNO
184 to hold something of mode MODE.
185 This is ordinarily the length in words of a value of mode MODE
186 but can be less for certain modes in special long registers.
187 On the VAX, all registers are one word long. */
188 #define HARD_REGNO_NREGS(REGNO, MODE) \
189 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
191 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
192 On the VAX, all registers can hold all modes. */
193 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
195 /* Value is 1 if it is a good idea to tie two pseudo registers
196 when one has mode MODE1 and one has mode MODE2.
197 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
198 for any hard reg, then this must be 0 for correct output. */
199 #define MODES_TIEABLE_P(MODE1, MODE2) 1
201 /* Specify the registers used for certain standard purposes.
202 The values of these macros are register numbers. */
204 /* VAX pc is overloaded on a register. */
205 #define PC_REGNUM 15
207 /* Register to use for pushing function arguments. */
208 #define STACK_POINTER_REGNUM 14
210 /* Base register for access to local variables of the function. */
211 #define FRAME_POINTER_REGNUM 13
213 /* Value should be nonzero if functions must have frame pointers.
214 Zero means the frame pointer need not be set up (and parms
215 may be accessed via the stack pointer) in functions that seem suitable.
216 This is computed in `reload', in reload1.c. */
217 #define FRAME_POINTER_REQUIRED 1
219 /* Base register for access to arguments of the function. */
220 #define ARG_POINTER_REGNUM 12
222 /* Register in which static-chain is passed to a function. */
223 #define STATIC_CHAIN_REGNUM 0
225 /* Register in which address to store a structure value
226 is passed to a function. */
227 #define STRUCT_VALUE_REGNUM 1
229 /* Define the classes of registers for register constraints in the
230 machine description. Also define ranges of constants.
232 One of the classes must always be named ALL_REGS and include all hard regs.
233 If there is more than one class, another class must be named NO_REGS
234 and contain no registers.
236 The name GENERAL_REGS must be the name of a class (or an alias for
237 another name such as ALL_REGS). This is the class of registers
238 that is allowed by "g" or "r" in a register constraint.
239 Also, registers outside this class are allocated only when
240 instructions express preferences for them.
242 The classes must be numbered in nondecreasing order; that is,
243 a larger-numbered class must never be contained completely
244 in a smaller-numbered class.
246 For any two classes, it is very desirable that there be another
247 class that represents their union. */
249 /* The VAX has only one kind of registers, so NO_REGS and ALL_REGS
250 are the only classes. */
252 enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
254 #define N_REG_CLASSES (int) LIM_REG_CLASSES
256 /* Since GENERAL_REGS is the same class as ALL_REGS,
257 don't give it a different class number; just make it an alias. */
259 #define GENERAL_REGS ALL_REGS
261 /* Give names of register classes as strings for dump file. */
263 #define REG_CLASS_NAMES \
264 {"NO_REGS", "ALL_REGS" }
266 /* Define which registers fit in which classes.
267 This is an initializer for a vector of HARD_REG_SET
268 of length N_REG_CLASSES. */
270 #define REG_CLASS_CONTENTS {{0}, {0xffff}}
272 /* The same information, inverted:
273 Return the class number of the smallest class containing
274 reg number REGNO. This could be a conditional expression
275 or could index an array. */
277 #define REGNO_REG_CLASS(REGNO) ALL_REGS
279 /* The class value for index registers, and the one for base regs. */
281 #define INDEX_REG_CLASS ALL_REGS
282 #define BASE_REG_CLASS ALL_REGS
284 /* Get reg_class from a letter such as appears in the machine description. */
286 #define REG_CLASS_FROM_LETTER(C) NO_REGS
288 /* The letters I, J, K, L and M in a register constraint string
289 can be used to stand for particular ranges of immediate operands.
290 This macro defines what the ranges are.
291 C is the letter, and VALUE is a constant value.
292 Return 1 if VALUE is in the range specified by C.
294 `I' is the constant zero. */
296 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
297 ((C) == 'I' ? (VALUE) == 0 \
298 : 0)
300 /* Similar, but for floating constants, and defining letters G and H.
301 Here VALUE is the CONST_DOUBLE rtx itself.
303 `G' is a floating-point zero. */
305 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
306 ((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode) \
307 || (VALUE) == CONST0_RTX (SFmode)) \
308 : 0)
310 /* Optional extra constraints for this machine.
312 For the VAX, `Q' means that OP is a MEM that does not have a mode-dependent
313 address. */
315 #define EXTRA_CONSTRAINT(OP, C) \
316 ((C) == 'Q' \
317 ? GET_CODE (OP) == MEM && ! mode_dependent_address_p (XEXP (OP, 0)) \
318 : 0)
320 /* Given an rtx X being reloaded into a reg required to be
321 in class CLASS, return the class of reg to actually use.
322 In general this is just CLASS; but on some machines
323 in some cases it is preferable to use a more restrictive class. */
325 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
327 /* Return the maximum number of consecutive registers
328 needed to represent mode MODE in a register of class CLASS. */
329 /* On the VAX, this is always the size of MODE in words,
330 since all registers are the same size. */
331 #define CLASS_MAX_NREGS(CLASS, MODE) \
332 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
334 /* Stack layout; function entry, exit and calling. */
336 /* Define this if pushing a word on the stack
337 makes the stack pointer a smaller address. */
338 #define STACK_GROWS_DOWNWARD
340 /* Define this if the nominal address of the stack frame
341 is at the high-address end of the local variables;
342 that is, each additional local variable allocated
343 goes at a more negative offset in the frame. */
344 #define FRAME_GROWS_DOWNWARD
346 /* Offset within stack frame to start allocating local variables at.
347 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
348 first local allocated. Otherwise, it is the offset to the BEGINNING
349 of the first local allocated. */
350 #define STARTING_FRAME_OFFSET 0
352 /* Given an rtx for the address of a frame,
353 return an rtx for the address of the word in the frame
354 that holds the dynamic chain--the previous frame's address. */
355 #define DYNAMIC_CHAIN_ADDRESS(FRAME) plus_constant ((FRAME), 12)
357 /* If we generate an insn to push BYTES bytes,
358 this says how many the stack pointer really advances by.
359 On the VAX, -(sp) pushes only the bytes of the operands. */
360 #define PUSH_ROUNDING(BYTES) (BYTES)
362 /* Offset of first parameter from the argument pointer register value. */
363 #define FIRST_PARM_OFFSET(FNDECL) 4
365 /* Value is the number of bytes of arguments automatically
366 popped when returning from a subroutine call.
367 FUNDECL is the declaration node of the function (as a tree),
368 FUNTYPE is the data type of the function (as a tree),
369 or for a library call it is an identifier node for the subroutine name.
370 SIZE is the number of bytes of arguments passed on the stack.
372 On the VAX, the RET insn pops a maximum of 255 args for any function. */
374 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
375 ((SIZE) > 255*4 ? 0 : (SIZE))
377 /* Define how to find the value returned by a function.
378 VALTYPE is the data type of the value (as a tree).
379 If the precise function being called is known, FUNC is its FUNCTION_DECL;
380 otherwise, FUNC is 0. */
382 /* On the VAX the return value is in R0 regardless. */
384 #define FUNCTION_VALUE(VALTYPE, FUNC) \
385 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
387 /* Define how to find the value returned by a library function
388 assuming the value has mode MODE. */
390 /* On the VAX the return value is in R0 regardless. */
392 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
394 /* Define this if PCC uses the nonreentrant convention for returning
395 structure and union values. */
397 #define PCC_STATIC_STRUCT_RETURN
399 /* 1 if N is a possible register number for a function value.
400 On the VAX, R0 is the only register thus used. */
402 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
404 /* 1 if N is a possible register number for function argument passing.
405 On the VAX, no registers are used in this way. */
407 #define FUNCTION_ARG_REGNO_P(N) 0
409 /* Define a data type for recording info about an argument list
410 during the scan of that argument list. This data type should
411 hold all necessary information about the function itself
412 and about the args processed so far, enough to enable macros
413 such as FUNCTION_ARG to determine where the next arg should go.
415 On the VAX, this is a single integer, which is a number of bytes
416 of arguments scanned so far. */
418 #define CUMULATIVE_ARGS int
420 /* Initialize a variable CUM of type CUMULATIVE_ARGS
421 for a call to a function whose data type is FNTYPE.
422 For a library call, FNTYPE is 0.
424 On the VAX, the offset starts at 0. */
426 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
427 ((CUM) = 0)
429 /* Update the data in CUM to advance over an argument
430 of mode MODE and data type TYPE.
431 (TYPE is null for libcalls where that information may not be available.) */
433 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
434 ((CUM) += ((MODE) != BLKmode \
435 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
436 : (int_size_in_bytes (TYPE) + 3) & ~3))
438 /* Define where to put the arguments to a function.
439 Value is zero to push the argument on the stack,
440 or a hard register in which to store the argument.
442 MODE is the argument's machine mode.
443 TYPE is the data type of the argument (as a tree).
444 This is null for libcalls where that information may
445 not be available.
446 CUM is a variable of type CUMULATIVE_ARGS which gives info about
447 the preceding args and about the function being called.
448 NAMED is nonzero if this argument is a named parameter
449 (otherwise it is an extra parameter matching an ellipsis). */
451 /* On the VAX all args are pushed. */
453 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
455 /* Output assembler code to FILE to increment profiler label # LABELNO
456 for profiling a function entry. */
458 #define FUNCTION_PROFILER(FILE, LABELNO) \
459 fprintf (FILE, "\tmovab LP%d,r0\n\tjsb mcount\n", (LABELNO));
461 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
462 the stack pointer does not matter. The value is tested only in
463 functions that have frame pointers.
464 No definition is equivalent to always zero. */
466 #define EXIT_IGNORE_STACK 1
468 /* Store in the variable DEPTH the initial difference between the
469 frame pointer reg contents and the stack pointer reg contents,
470 as of the start of the function body. This depends on the layout
471 of the fixed parts of the stack frame and on how registers are saved.
473 On the VAX, FRAME_POINTER_REQUIRED is always 1, so the definition of this
474 macro doesn't matter. But it must be defined. */
476 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
478 /* Output assembler code for a block containing the constant parts
479 of a trampoline, leaving space for the variable parts. */
481 /* On the VAX, the trampoline contains an entry mask and two instructions:
482 .word NN
483 movl $STATIC,r0 (store the functions static chain)
484 jmp *$FUNCTION (jump to function code at address FUNCTION) */
486 #define TRAMPOLINE_TEMPLATE(FILE) \
488 assemble_aligned_integer (2, const0_rtx); \
489 assemble_aligned_integer (2, GEN_INT (0x8fd0)); \
490 assemble_aligned_integer (4, const0_rtx); \
491 assemble_aligned_integer (1, GEN_INT (0x50 + STATIC_CHAIN_REGNUM)); \
492 assemble_aligned_integer (2, GEN_INT (0x9f17)); \
493 assemble_aligned_integer (4, const0_rtx); \
496 /* Length in units of the trampoline for entering a nested function. */
498 #define TRAMPOLINE_SIZE 15
500 /* Emit RTL insns to initialize the variable parts of a trampoline.
501 FNADDR is an RTX for the address of the function's pure code.
502 CXT is an RTX for the static chain value for the function. */
504 /* We copy the register-mask from the function's pure code
505 to the start of the trampoline. */
506 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
508 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, \
509 "movpsl -(sp)\n\tpushal 1(pc)\n\trei")); \
510 emit_move_insn (gen_rtx_MEM (HImode, TRAMP), \
511 gen_rtx_MEM (HImode, FNADDR)); \
512 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), CXT);\
513 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 11)), \
514 plus_constant (FNADDR, 2)); \
517 /* Byte offset of return address in a stack frame. The "saved PC" field
518 is in element [4] when treating the frame as an array of longwords. */
520 #define RETURN_ADDRESS_OFFSET (4 * UNITS_PER_WORD) /* 16 */
522 /* A C expression whose value is RTL representing the value of the return
523 address for the frame COUNT steps up from the current frame.
524 FRAMEADDR is already the frame pointer of the COUNT frame, so we
525 can ignore COUNT. */
527 #define RETURN_ADDR_RTX(COUNT, FRAME) \
528 ((COUNT == 0) \
529 ? gen_rtx_MEM (Pmode, plus_constant (FRAME, RETURN_ADDRESS_OFFSET)) \
530 : (rtx) 0)
533 /* Addressing modes, and classification of registers for them. */
535 #define HAVE_POST_INCREMENT 1
536 /* #define HAVE_POST_DECREMENT 0 */
538 #define HAVE_PRE_DECREMENT 1
539 /* #define HAVE_PRE_INCREMENT 0 */
541 /* Macros to check register numbers against specific register classes. */
543 /* These assume that REGNO is a hard or pseudo reg number.
544 They give nonzero only if REGNO is a hard reg of the suitable class
545 or a pseudo reg currently allocated to a suitable hard reg.
546 Since they use reg_renumber, they are safe only once reg_renumber
547 has been allocated, which happens in local-alloc.c. */
549 #define REGNO_OK_FOR_INDEX_P(regno) \
550 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
551 #define REGNO_OK_FOR_BASE_P(regno) \
552 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
554 /* Maximum number of registers that can appear in a valid memory address. */
556 #define MAX_REGS_PER_ADDRESS 2
558 /* 1 if X is an rtx for a constant that is a valid address. */
560 #define CONSTANT_ADDRESS_P(X) \
561 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
562 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
563 || GET_CODE (X) == HIGH)
565 /* Nonzero if the constant value X is a legitimate general operand.
566 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
568 #define LEGITIMATE_CONSTANT_P(X) 1
570 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
571 and check its validity for a certain class.
572 We have two alternate definitions for each of them.
573 The usual definition accepts all pseudo regs; the other rejects
574 them unless they have been allocated suitable hard regs.
575 The symbol REG_OK_STRICT causes the latter definition to be used.
577 Most source files want to accept pseudo regs in the hope that
578 they will get allocated to the class that the insn wants them to be in.
579 Source files for reload pass need to be strict.
580 After reload, it makes no difference, since pseudo regs have
581 been eliminated by then. */
583 #ifndef REG_OK_STRICT
585 /* Nonzero if X is a hard reg that can be used as an index
586 or if it is a pseudo reg. */
587 #define REG_OK_FOR_INDEX_P(X) 1
588 /* Nonzero if X is a hard reg that can be used as a base reg
589 or if it is a pseudo reg. */
590 #define REG_OK_FOR_BASE_P(X) 1
592 #else
594 /* Nonzero if X is a hard reg that can be used as an index. */
595 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
596 /* Nonzero if X is a hard reg that can be used as a base reg. */
597 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
599 #endif
601 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
602 that is a valid memory address for an instruction.
603 The MODE argument is the machine mode for the MEM expression
604 that wants to use this address.
606 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
607 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
609 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS
611 /* Zero if this contains a (CONST (PLUS (SYMBOL_REF) (...))) and the
612 symbol in the SYMBOL_REF is an external symbol. */
614 #define INDIRECTABLE_CONSTANT_P(X) \
615 (! (GET_CODE ((X)) == CONST \
616 && GET_CODE (XEXP ((X), 0)) == PLUS \
617 && GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF \
618 && SYMBOL_REF_FLAG (XEXP (XEXP ((X), 0), 0))))
620 /* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
621 are no SYMBOL_REFs for external symbols present. */
623 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) \
624 (GET_CODE (X) == LABEL_REF \
625 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_FLAG (X)) \
626 || (GET_CODE (X) == CONST && INDIRECTABLE_CONSTANT_P(X)) \
627 || GET_CODE (X) == CONST_INT)
630 /* Non-zero if X is an address which can be indirected. External symbols
631 could be in a sharable image library, so we disallow those. */
633 #define INDIRECTABLE_ADDRESS_P(X) \
634 (INDIRECTABLE_CONSTANT_ADDRESS_P (X) \
635 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
636 || (GET_CODE (X) == PLUS \
637 && GET_CODE (XEXP (X, 0)) == REG \
638 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
639 && INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
641 #else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
643 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
645 /* Non-zero if X is an address which can be indirected. */
646 #define INDIRECTABLE_ADDRESS_P(X) \
647 (CONSTANT_ADDRESS_P (X) \
648 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
649 || (GET_CODE (X) == PLUS \
650 && GET_CODE (XEXP (X, 0)) == REG \
651 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
652 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
654 #endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
656 /* Go to ADDR if X is a valid address not using indexing.
657 (This much is the easy part.) */
658 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
659 { register rtx xfoob = (X); \
660 if (GET_CODE (xfoob) == REG) \
662 extern rtx *reg_equiv_mem; \
663 if (! reload_in_progress \
664 || reg_equiv_mem[REGNO (xfoob)] == 0 \
665 || INDIRECTABLE_ADDRESS_P (reg_equiv_mem[REGNO (xfoob)])) \
666 goto ADDR; \
668 if (CONSTANT_ADDRESS_P (xfoob)) goto ADDR; \
669 if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
670 xfoob = XEXP (X, 0); \
671 if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
672 goto ADDR; \
673 if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
674 && GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
675 goto ADDR; }
677 /* 1 if PROD is either a reg times size of mode MODE and MODE is less
678 than or equal 8 bytes, or just a reg if MODE is one byte.
679 This macro's expansion uses the temporary variables xfoo0 and xfoo1
680 that must be declared in the surrounding context. */
681 #define INDEX_TERM_P(PROD, MODE) \
682 (GET_MODE_SIZE (MODE) == 1 \
683 ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
684 : (GET_CODE (PROD) == MULT && GET_MODE_SIZE (MODE) <= 8 \
685 && \
686 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
687 ((((GET_CODE (xfoo0) == CONST_INT \
688 && GET_CODE (xfoo1) == REG) \
689 && INTVAL (xfoo0) == (int)GET_MODE_SIZE (MODE)) \
690 && REG_OK_FOR_INDEX_P (xfoo1)) \
691 || \
692 (((GET_CODE (xfoo1) == CONST_INT \
693 && GET_CODE (xfoo0) == REG) \
694 && INTVAL (xfoo1) == (int)GET_MODE_SIZE (MODE)) \
695 && REG_OK_FOR_INDEX_P (xfoo0))))))
697 /* Go to ADDR if X is the sum of a register
698 and a valid index term for mode MODE. */
699 #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
700 { register rtx xfooa; \
701 if (GET_CODE (X) == PLUS) \
702 { if (GET_CODE (XEXP (X, 0)) == REG \
703 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
704 && (xfooa = XEXP (X, 1), \
705 INDEX_TERM_P (xfooa, MODE))) \
706 goto ADDR; \
707 if (GET_CODE (XEXP (X, 1)) == REG \
708 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
709 && (xfooa = XEXP (X, 0), \
710 INDEX_TERM_P (xfooa, MODE))) \
711 goto ADDR; } }
713 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
714 { register rtx xfoo, xfoo0, xfoo1; \
715 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
716 if (GET_CODE (X) == PLUS) \
717 { /* Handle <address>[index] represented with index-sum outermost */\
718 xfoo = XEXP (X, 0); \
719 if (INDEX_TERM_P (xfoo, MODE)) \
720 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
721 xfoo = XEXP (X, 1); \
722 if (INDEX_TERM_P (xfoo, MODE)) \
723 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
724 /* Handle offset(reg)[index] with offset added outermost */ \
725 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0))) \
726 { if (GET_CODE (XEXP (X, 1)) == REG \
727 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
728 goto ADDR; \
729 GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
730 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))) \
731 { if (GET_CODE (XEXP (X, 0)) == REG \
732 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
733 goto ADDR; \
734 GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
736 /* Try machine-dependent ways of modifying an illegitimate address
737 to be legitimate. If we find one, return the new, valid address.
738 This macro is used in only one place: `memory_address' in explow.c.
740 OLDX is the address as it was before break_out_memory_refs was called.
741 In some cases it is useful to look at this to decide what needs to be done.
743 MODE and WIN are passed so that this macro can use
744 GO_IF_LEGITIMATE_ADDRESS.
746 It is always safe for this macro to do nothing. It exists to recognize
747 opportunities to optimize the output.
749 For the VAX, nothing needs to be done. */
751 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
753 /* Go to LABEL if ADDR (a legitimate address expression)
754 has an effect that depends on the machine mode it is used for.
755 On the VAX, the predecrement and postincrement address depend thus
756 (the amount of decrement or increment being the length of the operand)
757 and all indexed address depend thus (because the index scale factor
758 is the length of the operand). */
759 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
760 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
761 goto LABEL; \
762 if (GET_CODE (ADDR) == PLUS) \
763 { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
764 && GET_CODE (XEXP (ADDR, 1)) == REG); \
765 else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
766 && GET_CODE (XEXP (ADDR, 0)) == REG); \
767 else goto LABEL; }}
769 /* Specify the machine mode that this machine uses
770 for the index in the tablejump instruction. */
771 #define CASE_VECTOR_MODE HImode
773 /* Define as C expression which evaluates to nonzero if the tablejump
774 instruction expects the table to contain offsets from the address of the
775 table.
776 Do not define this if the table should contain absolute addresses. */
777 #define CASE_VECTOR_PC_RELATIVE 1
779 /* Define this if the case instruction drops through after the table
780 when the index is out of range. Don't define it if the case insn
781 jumps to the default label instead. */
782 #define CASE_DROPS_THROUGH
784 /* Define this as 1 if `char' should by default be signed; else as 0. */
785 #define DEFAULT_SIGNED_CHAR 1
787 /* This flag, if defined, says the same insns that convert to a signed fixnum
788 also convert validly to an unsigned one. */
789 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
791 /* Max number of bytes we can move from memory to memory
792 in one reasonably fast instruction. */
793 #define MOVE_MAX 8
795 /* Nonzero if access to memory by bytes is slow and undesirable. */
796 #define SLOW_BYTE_ACCESS 0
798 /* Define if shifts truncate the shift count
799 which implies one can omit a sign-extension or zero-extension
800 of a shift count. */
801 /* #define SHIFT_COUNT_TRUNCATED */
803 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
804 is done just by pretending it is already truncated. */
805 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
807 /* When a prototype says `char' or `short', really pass an `int'.
808 (On the VAX, this is required for system-library compatibility.) */
809 #define PROMOTE_PROTOTYPES 1
811 /* Specify the machine mode that pointers have.
812 After generation of rtl, the compiler makes no further distinction
813 between pointers and any other objects of this machine mode. */
814 #define Pmode SImode
816 /* A function address in a call instruction
817 is a byte address (for indexing purposes)
818 so give the MEM rtx a byte's mode. */
819 #define FUNCTION_MODE QImode
821 /* This machine doesn't use IEEE floats. */
823 #define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
825 /* Compute the cost of computing a constant rtl expression RTX
826 whose rtx-code is CODE. The body of this macro is a portion
827 of a switch statement. If the code is computed here,
828 return it with a return statement. Otherwise, break from the switch. */
830 /* On a VAX, constants from 0..63 are cheap because they can use the
831 1 byte literal constant format. compare to -1 should be made cheap
832 so that decrement-and-branch insns can be formed more easily (if
833 the value -1 is copied to a register some decrement-and-branch patterns
834 will not match). */
836 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
837 case CONST_INT: \
838 if (INTVAL (RTX) == 0) return 0; \
839 if ((OUTER_CODE) == AND) \
840 return ((unsigned) ~INTVAL (RTX) <= 077) ? 1 : 2; \
841 if ((unsigned) INTVAL (RTX) <= 077) return 1; \
842 if ((OUTER_CODE) == COMPARE && INTVAL (RTX) == -1) \
843 return 1; \
844 if ((OUTER_CODE) == PLUS && (unsigned) -INTVAL (RTX) <= 077)\
845 return 1; \
846 case CONST: \
847 case LABEL_REF: \
848 case SYMBOL_REF: \
849 return 3; \
850 case CONST_DOUBLE: \
851 if (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
852 return vax_float_literal (RTX) ? 5 : 8; \
853 else \
854 return (((CONST_DOUBLE_HIGH (RTX) == 0 \
855 && (unsigned) CONST_DOUBLE_LOW (RTX) < 64) \
856 || ((OUTER_CODE) == PLUS \
857 && CONST_DOUBLE_HIGH (RTX) == -1 \
858 && (unsigned)-CONST_DOUBLE_LOW (RTX) < 64)) \
859 ? 2 : 5);
861 #define RTX_COSTS(RTX,CODE,OUTER_CODE) case FIX: case FLOAT: \
862 case MULT: case DIV: case UDIV: case MOD: case UMOD: \
863 case ASHIFT: case LSHIFTRT: case ASHIFTRT: \
864 case ROTATE: case ROTATERT: case PLUS: case MINUS: case IOR: \
865 case XOR: case AND: case NEG: case NOT: case ZERO_EXTRACT: \
866 case SIGN_EXTRACT: case MEM: return vax_rtx_cost(RTX)
868 #define ADDRESS_COST(RTX) (1 + (GET_CODE (RTX) == REG ? 0 : vax_address_cost(RTX)))
870 /* Specify the cost of a branch insn; roughly the number of extra insns that
871 should be added to avoid a branch.
873 Branches are extremely cheap on the VAX while the shift insns often
874 used to replace branches can be expensive. */
876 #define BRANCH_COST 0
879 * We can use the BSD C library routines for the libgcc calls that are
880 * still generated, since that's what they boil down to anyways.
883 #define UDIVSI3_LIBCALL "*udiv"
884 #define UMODSI3_LIBCALL "*urem"
886 /* Check a `double' value for validity for a particular machine mode. */
888 /* note that it is very hard to accidentally create a number that fits in a
889 double but not in a float, since their ranges are almost the same */
891 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
892 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
894 /* For future reference:
895 D Float: 9 bit, sign magnitude, excess 128 binary exponent
896 normalized 56 bit fraction, redundant bit not represented
897 approximately 16 decimal digits of precision
899 The values to use if we trust decimal to binary conversions:
900 #define MAX_D_FLOAT 1.7014118346046923e+38
901 #define MIN_D_FLOAT .29387358770557188e-38
903 G float: 12 bit, sign magnitude, excess 1024 binary exponent
904 normalized 53 bit fraction, redundant bit not represented
905 approximately 15 decimal digits precision
907 The values to use if we trust decimal to binary conversions:
908 #define MAX_G_FLOAT .898846567431157e+308
909 #define MIN_G_FLOAT .556268464626800e-308
912 /* Tell final.c how to eliminate redundant test instructions. */
914 /* Here we define machine-dependent flags and fields in cc_status
915 (see `conditions.h'). No extra ones are needed for the VAX. */
917 /* Store in cc_status the expressions
918 that the condition codes will describe
919 after execution of an instruction whose pattern is EXP.
920 Do not alter them if the instruction would not alter the cc's. */
922 #define NOTICE_UPDATE_CC(EXP, INSN) \
923 { if (GET_CODE (EXP) == SET) \
924 { if (GET_CODE (SET_SRC (EXP)) == CALL) \
925 CC_STATUS_INIT; \
926 else if (GET_CODE (SET_DEST (EXP)) != ZERO_EXTRACT \
927 && GET_CODE (SET_DEST (EXP)) != PC) \
929 cc_status.flags = 0; \
930 /* The integer operations below don't set carry or \
931 set it in an incompatible way. That's ok though \
932 as the Z bit is all we need when doing unsigned \
933 comparisons on the result of these insns (since \
934 they're always with 0). Set CC_NO_OVERFLOW to \
935 generate the correct unsigned branches. */ \
936 switch (GET_CODE (SET_SRC (EXP))) \
938 case NEG: \
939 if (GET_MODE_CLASS (GET_MODE (EXP)) == MODE_FLOAT)\
940 break; \
941 case AND: \
942 case IOR: \
943 case XOR: \
944 case NOT: \
945 case MEM: \
946 case REG: \
947 cc_status.flags = CC_NO_OVERFLOW; \
948 break; \
949 default: \
950 break; \
952 cc_status.value1 = SET_DEST (EXP); \
953 cc_status.value2 = SET_SRC (EXP); } } \
954 else if (GET_CODE (EXP) == PARALLEL \
955 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
957 if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL) \
958 CC_STATUS_INIT; \
959 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
960 { cc_status.flags = 0; \
961 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
962 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
963 else \
964 /* PARALLELs whose first element sets the PC are aob, \
965 sob insns. They do change the cc's. */ \
966 CC_STATUS_INIT; } \
967 else CC_STATUS_INIT; \
968 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
969 && cc_status.value2 \
970 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
971 cc_status.value2 = 0; \
972 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
973 && cc_status.value2 \
974 && GET_CODE (cc_status.value2) == MEM) \
975 cc_status.value2 = 0; }
976 /* Actual condition, one line up, should be that value2's address
977 depends on value1, but that is too much of a pain. */
979 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
980 { if (cc_status.flags & CC_NO_OVERFLOW) \
981 return NO_OV; \
982 return NORMAL; }
984 /* Control the assembler format that we output. */
986 /* Output at beginning of assembler file. */
987 /* When debugging, we want to output an extra dummy label so that gas
988 can distinguish between D_float and G_float prior to processing the
989 .stabs directive identifying type double. */
991 #define ASM_FILE_START(FILE) \
992 do { \
993 fputs (ASM_APP_OFF, FILE); \
994 if (write_symbols == DBX_DEBUG) \
995 fprintf (FILE, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR); \
996 } while (0)
999 /* Output to assembler file text saying following lines
1000 may contain character constants, extra white space, comments, etc. */
1002 #define ASM_APP_ON "#APP\n"
1004 /* Output to assembler file text saying following lines
1005 no longer contain unusual constructs. */
1007 #define ASM_APP_OFF "#NO_APP\n"
1009 /* Output before read-only data. */
1011 #define TEXT_SECTION_ASM_OP "\t.text"
1013 /* Output before writable data. */
1015 #define DATA_SECTION_ASM_OP "\t.data"
1017 /* How to refer to registers in assembler output.
1018 This sequence is indexed by compiler's hard-register-number (see above). */
1020 #define REGISTER_NAMES \
1021 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
1022 "r9", "r10", "r11", "ap", "fp", "sp", "pc"}
1024 /* This is BSD, so it wants DBX format. */
1026 #define DBX_DEBUGGING_INFO
1028 /* Do not break .stabs pseudos into continuations. */
1030 #define DBX_CONTIN_LENGTH 0
1032 /* This is the char to use for continuation (in case we need to turn
1033 continuation back on). */
1035 #define DBX_CONTIN_CHAR '?'
1037 /* Don't use the `xsfoo;' construct in DBX output; this system
1038 doesn't support it. */
1040 #define DBX_NO_XREFS
1042 /* Output the .stabs for a C `static' variable in the data section. */
1043 #define DBX_STATIC_STAB_DATA_SECTION
1045 /* VAX specific: which type character is used for type double? */
1047 #define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
1049 /* This is how to output the definition of a user-level label named NAME,
1050 such as the label on a static function or variable NAME. */
1052 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1053 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1055 /* This is how to output a command to make the user-level label named NAME
1056 defined for reference from other files. */
1058 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1059 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1061 /* The prefix to add to user-visible assembler symbols. */
1063 #define USER_LABEL_PREFIX "_"
1065 /* This is how to output an internal numbered label where
1066 PREFIX is the class of label and NUM is the number within the class. */
1068 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1069 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1071 /* This is how to store into the string LABEL
1072 the symbol_ref name of an internal numbered label where
1073 PREFIX is the class of label and NUM is the number within the class.
1074 This is suitable for output with `assemble_name'. */
1076 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1077 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1079 /* This is how to output an insn to push a register on the stack.
1080 It need not be very fast code. */
1082 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1083 fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
1085 /* This is how to output an insn to pop a register from the stack.
1086 It need not be very fast code. */
1088 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1089 fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
1091 /* This is how to output an element of a case-vector that is absolute.
1092 (The VAX does not use such vectors,
1093 but we must define this macro anyway.) */
1095 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1096 fprintf (FILE, "\t.long L%d\n", VALUE)
1098 /* This is how to output an element of a case-vector that is relative. */
1100 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1101 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1103 /* This is how to output an assembler line
1104 that says to advance the location counter
1105 to a multiple of 2**LOG bytes. */
1107 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1108 fprintf (FILE, "\t.align %d\n", (LOG))
1110 /* This is how to output an assembler line
1111 that says to advance the location counter by SIZE bytes. */
1113 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1114 fprintf (FILE, "\t.space %u\n", (SIZE))
1116 /* This says how to output an assembler line
1117 to define a global common symbol. */
1119 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1120 ( fputs (".comm ", (FILE)), \
1121 assemble_name ((FILE), (NAME)), \
1122 fprintf ((FILE), ",%u\n", (ROUNDED)))
1124 /* This says how to output an assembler line
1125 to define a local common symbol. */
1127 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1128 ( fputs (".lcomm ", (FILE)), \
1129 assemble_name ((FILE), (NAME)), \
1130 fprintf ((FILE), ",%u\n", (ROUNDED)))
1132 /* Store in OUTPUT a string (made with alloca) containing
1133 an assembler-name for a local static variable named NAME.
1134 LABELNO is an integer which is different for each call. */
1136 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1137 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1138 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1140 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1141 Used for C++ multiple inheritance.
1142 .mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
1143 addl2 $DELTA, 4(ap) #adjust first argument
1144 jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
1146 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1147 do { \
1148 fprintf (FILE, "\t.word 0x0ffc\n"); \
1149 fprintf (FILE, "\taddl2 $%d,4(ap)\n", DELTA); \
1150 fprintf (FILE, "\tjmp "); \
1151 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1152 fprintf (FILE, "+2\n"); \
1153 } while (0)
1155 /* Print an instruction operand X on file FILE.
1156 CODE is the code from the %-spec that requested printing this operand;
1157 if `%z3' was used to print operand 3, then CODE is 'z'.
1159 VAX operand formatting codes:
1161 letter print
1162 C reverse branch condition
1163 D 64-bit immediate operand
1164 B the low 8 bits of the complement of a constant operand
1165 H the low 16 bits of the complement of a constant operand
1166 M a mask for the N highest bits of a word
1167 N the complement of a constant integer operand
1168 P constant operand plus 1
1169 R 32 - constant operand
1170 b the low 8 bits of a negated constant operand
1171 h the low 16 bits of a negated constant operand
1172 # 'd' or 'g' depending on whether dfloat or gfloat is used */
1174 /* The purpose of D is to get around a quirk or bug in VAX assembler
1175 whereby -1 in a 64-bit immediate operand means 0x00000000ffffffff,
1176 which is not a 64-bit minus one. */
1178 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1179 ((CODE) == '#')
1181 #define PRINT_OPERAND(FILE, X, CODE) \
1182 { if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
1183 else if (CODE == 'C') \
1184 fputs (rev_cond_name (X), FILE); \
1185 else if (CODE == 'D' && GET_CODE (X) == CONST_INT && INTVAL (X) < 0) \
1186 fprintf (FILE, "$0xffffffff%08x", INTVAL (X)); \
1187 else if (CODE == 'P' && GET_CODE (X) == CONST_INT) \
1188 fprintf (FILE, "$%d", INTVAL (X) + 1); \
1189 else if (CODE == 'N' && GET_CODE (X) == CONST_INT) \
1190 fprintf (FILE, "$%d", ~ INTVAL (X)); \
1191 /* rotl instruction cannot deal with negative arguments. */ \
1192 else if (CODE == 'R' && GET_CODE (X) == CONST_INT) \
1193 fprintf (FILE, "$%d", 32 - INTVAL (X)); \
1194 else if (CODE == 'H' && GET_CODE (X) == CONST_INT) \
1195 fprintf (FILE, "$%d", 0xffff & ~ INTVAL (X)); \
1196 else if (CODE == 'h' && GET_CODE (X) == CONST_INT) \
1197 fprintf (FILE, "$%d", (short) - INTVAL (x)); \
1198 else if (CODE == 'B' && GET_CODE (X) == CONST_INT) \
1199 fprintf (FILE, "$%d", 0xff & ~ INTVAL (X)); \
1200 else if (CODE == 'b' && GET_CODE (X) == CONST_INT) \
1201 fprintf (FILE, "$%d", 0xff & - INTVAL (X)); \
1202 else if (CODE == 'M' && GET_CODE (X) == CONST_INT) \
1203 fprintf (FILE, "$%d", ~((1 << INTVAL (x)) - 1)); \
1204 else if (GET_CODE (X) == REG) \
1205 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1206 else if (GET_CODE (X) == MEM) \
1207 output_address (XEXP (X, 0)); \
1208 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1209 { REAL_VALUE_TYPE r; char dstr[30]; \
1210 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1211 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1212 fprintf (FILE, "$0f%s", dstr); } \
1213 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \
1214 { REAL_VALUE_TYPE r; char dstr[30]; \
1215 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1216 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1217 fprintf (FILE, "$0%c%s", ASM_DOUBLE_CHAR, dstr); } \
1218 else { putc ('$', FILE); output_addr_const (FILE, X); }}
1220 /* Print a memory operand whose address is X, on file FILE.
1221 This uses a function in output-vax.c. */
1223 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1224 print_operand_address (FILE, ADDR)