1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "double-int.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
39 #include "hard-reg-set.h"
41 #include "dominance.h"
43 #include "basic-block.h"
44 #include "tree-ssa-alias.h"
45 #include "internal-fn.h"
47 #include "gimple-expr.h"
51 #include "gimple-iterator.h"
52 #include "gimplify-me.h"
53 #include "gimple-ssa.h"
55 #include "tree-phinodes.h"
56 #include "ssa-iterators.h"
57 #include "stringpool.h"
58 #include "tree-ssanames.h"
61 #include "statistics.h"
62 #include "fixed-value.h"
63 #include "insn-config.h"
74 #include "tree-iterator.h"
75 #include "tree-pass.h"
76 #include "tree-ssa-propagate.h"
77 #include "tree-hasher.h"
81 /* For each complex ssa name, a lattice value. We're interested in finding
82 out whether a complex number is degenerate in some way, having only real
83 or only complex parts. */
93 /* The type complex_lattice_t holds combinations of the above
95 typedef int complex_lattice_t
;
97 #define PAIR(a, b) ((a) << 2 | (b))
100 static vec
<complex_lattice_t
> complex_lattice_values
;
102 /* For each complex variable, a pair of variables for the components exists in
104 static int_tree_htab_type
*complex_variable_components
;
106 /* For each complex SSA_NAME, a pair of ssa names for the components. */
107 static vec
<tree
> complex_ssa_name_components
;
109 /* Lookup UID in the complex_variable_components hashtable and return the
112 cvc_lookup (unsigned int uid
)
114 struct int_tree_map in
;
116 return complex_variable_components
->find_with_hash (in
, uid
).to
;
119 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
122 cvc_insert (unsigned int uid
, tree to
)
128 loc
= complex_variable_components
->find_slot_with_hash (h
, uid
, INSERT
);
133 /* Return true if T is not a zero constant. In the case of real values,
134 we're only interested in +0.0. */
137 some_nonzerop (tree t
)
141 /* Operations with real or imaginary part of a complex number zero
142 cannot be treated the same as operations with a real or imaginary
143 operand if we care about the signs of zeros in the result. */
144 if (TREE_CODE (t
) == REAL_CST
&& !flag_signed_zeros
)
145 zerop
= REAL_VALUES_IDENTICAL (TREE_REAL_CST (t
), dconst0
);
146 else if (TREE_CODE (t
) == FIXED_CST
)
147 zerop
= fixed_zerop (t
);
148 else if (TREE_CODE (t
) == INTEGER_CST
)
149 zerop
= integer_zerop (t
);
155 /* Compute a lattice value from the components of a complex type REAL
158 static complex_lattice_t
159 find_lattice_value_parts (tree real
, tree imag
)
162 complex_lattice_t ret
;
164 r
= some_nonzerop (real
);
165 i
= some_nonzerop (imag
);
166 ret
= r
* ONLY_REAL
+ i
* ONLY_IMAG
;
168 /* ??? On occasion we could do better than mapping 0+0i to real, but we
169 certainly don't want to leave it UNINITIALIZED, which eventually gets
170 mapped to VARYING. */
171 if (ret
== UNINITIALIZED
)
178 /* Compute a lattice value from gimple_val T. */
180 static complex_lattice_t
181 find_lattice_value (tree t
)
185 switch (TREE_CODE (t
))
188 return complex_lattice_values
[SSA_NAME_VERSION (t
)];
191 real
= TREE_REALPART (t
);
192 imag
= TREE_IMAGPART (t
);
199 return find_lattice_value_parts (real
, imag
);
202 /* Determine if LHS is something for which we're interested in seeing
203 simulation results. */
206 is_complex_reg (tree lhs
)
208 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
211 /* Mark the incoming parameters to the function as VARYING. */
214 init_parameter_lattice_values (void)
218 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
219 if (is_complex_reg (parm
)
220 && (ssa_name
= ssa_default_def (cfun
, parm
)) != NULL_TREE
)
221 complex_lattice_values
[SSA_NAME_VERSION (ssa_name
)] = VARYING
;
224 /* Initialize simulation state for each statement. Return false if we
225 found no statements we want to simulate, and thus there's nothing
226 for the entire pass to do. */
229 init_dont_simulate_again (void)
232 bool saw_a_complex_op
= false;
234 FOR_EACH_BB_FN (bb
, cfun
)
236 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
239 gphi
*phi
= gsi
.phi ();
240 prop_set_simulate_again (phi
,
241 is_complex_reg (gimple_phi_result (phi
)));
244 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
251 stmt
= gsi_stmt (gsi
);
252 op0
= op1
= NULL_TREE
;
254 /* Most control-altering statements must be initially
255 simulated, else we won't cover the entire cfg. */
256 sim_again_p
= stmt_ends_bb_p (stmt
);
258 switch (gimple_code (stmt
))
261 if (gimple_call_lhs (stmt
))
262 sim_again_p
= is_complex_reg (gimple_call_lhs (stmt
));
266 sim_again_p
= is_complex_reg (gimple_assign_lhs (stmt
));
267 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
268 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
269 op0
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
271 op0
= gimple_assign_rhs1 (stmt
);
272 if (gimple_num_ops (stmt
) > 2)
273 op1
= gimple_assign_rhs2 (stmt
);
277 op0
= gimple_cond_lhs (stmt
);
278 op1
= gimple_cond_rhs (stmt
);
286 switch (gimple_expr_code (stmt
))
298 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
299 || TREE_CODE (TREE_TYPE (op1
)) == COMPLEX_TYPE
)
300 saw_a_complex_op
= true;
305 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
)
306 saw_a_complex_op
= true;
311 /* The total store transformation performed during
312 gimplification creates such uninitialized loads
313 and we need to lower the statement to be able
315 if (TREE_CODE (op0
) == SSA_NAME
316 && ssa_undefined_value_p (op0
))
317 saw_a_complex_op
= true;
324 prop_set_simulate_again (stmt
, sim_again_p
);
328 return saw_a_complex_op
;
332 /* Evaluate statement STMT against the complex lattice defined above. */
334 static enum ssa_prop_result
335 complex_visit_stmt (gimple stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
338 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
342 lhs
= gimple_get_lhs (stmt
);
343 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
345 return SSA_PROP_VARYING
;
347 /* These conditions should be satisfied due to the initial filter
348 set up in init_dont_simulate_again. */
349 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
350 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
353 ver
= SSA_NAME_VERSION (lhs
);
354 old_l
= complex_lattice_values
[ver
];
356 switch (gimple_expr_code (stmt
))
360 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
364 new_l
= find_lattice_value_parts (gimple_assign_rhs1 (stmt
),
365 gimple_assign_rhs2 (stmt
));
370 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
371 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
373 /* We've set up the lattice values such that IOR neatly
375 new_l
= op1_l
| op2_l
;
384 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
385 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
387 /* Obviously, if either varies, so does the result. */
388 if (op1_l
== VARYING
|| op2_l
== VARYING
)
390 /* Don't prematurely promote variables if we've not yet seen
392 else if (op1_l
== UNINITIALIZED
)
394 else if (op2_l
== UNINITIALIZED
)
398 /* At this point both numbers have only one component. If the
399 numbers are of opposite kind, the result is imaginary,
400 otherwise the result is real. The add/subtract translates
401 the real/imag from/to 0/1; the ^ performs the comparison. */
402 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
404 /* Don't allow the lattice value to flip-flop indefinitely. */
411 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
419 /* If nothing changed this round, let the propagator know. */
421 return SSA_PROP_NOT_INTERESTING
;
423 complex_lattice_values
[ver
] = new_l
;
424 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
427 /* Evaluate a PHI node against the complex lattice defined above. */
429 static enum ssa_prop_result
430 complex_visit_phi (gphi
*phi
)
432 complex_lattice_t new_l
, old_l
;
437 lhs
= gimple_phi_result (phi
);
439 /* This condition should be satisfied due to the initial filter
440 set up in init_dont_simulate_again. */
441 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
443 /* We've set up the lattice values such that IOR neatly models PHI meet. */
444 new_l
= UNINITIALIZED
;
445 for (i
= gimple_phi_num_args (phi
) - 1; i
>= 0; --i
)
446 new_l
|= find_lattice_value (gimple_phi_arg_def (phi
, i
));
448 ver
= SSA_NAME_VERSION (lhs
);
449 old_l
= complex_lattice_values
[ver
];
452 return SSA_PROP_NOT_INTERESTING
;
454 complex_lattice_values
[ver
] = new_l
;
455 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
458 /* Create one backing variable for a complex component of ORIG. */
461 create_one_component_var (tree type
, tree orig
, const char *prefix
,
462 const char *suffix
, enum tree_code code
)
464 tree r
= create_tmp_var (type
, prefix
);
466 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
467 DECL_ARTIFICIAL (r
) = 1;
469 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
471 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
473 DECL_NAME (r
) = get_identifier (ACONCAT ((name
, suffix
, NULL
)));
475 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
476 DECL_HAS_DEBUG_EXPR_P (r
) = 1;
477 DECL_IGNORED_P (r
) = 0;
478 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
482 DECL_IGNORED_P (r
) = 1;
483 TREE_NO_WARNING (r
) = 1;
489 /* Retrieve a value for a complex component of VAR. */
492 get_component_var (tree var
, bool imag_p
)
494 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
495 tree ret
= cvc_lookup (decl_index
);
499 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
500 imag_p
? "CI" : "CR",
501 imag_p
? "$imag" : "$real",
502 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
503 cvc_insert (decl_index
, ret
);
509 /* Retrieve a value for a complex component of SSA_NAME. */
512 get_component_ssa_name (tree ssa_name
, bool imag_p
)
514 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
515 size_t ssa_name_index
;
518 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
520 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
521 if (SCALAR_FLOAT_TYPE_P (inner_type
))
522 return build_real (inner_type
, dconst0
);
524 return build_int_cst (inner_type
, 0);
527 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
528 ret
= complex_ssa_name_components
[ssa_name_index
];
531 if (SSA_NAME_VAR (ssa_name
))
532 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
534 ret
= TREE_TYPE (TREE_TYPE (ssa_name
));
535 ret
= make_ssa_name (ret
);
537 /* Copy some properties from the original. In particular, whether it
538 is used in an abnormal phi, and whether it's uninitialized. */
539 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
540 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
541 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name
)
542 && TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
)
544 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
545 set_ssa_default_def (cfun
, SSA_NAME_VAR (ret
), ret
);
548 complex_ssa_name_components
[ssa_name_index
] = ret
;
554 /* Set a value for a complex component of SSA_NAME, return a
555 gimple_seq of stuff that needs doing. */
558 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
560 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
561 size_t ssa_name_index
;
566 /* We know the value must be zero, else there's a bug in our lattice
567 analysis. But the value may well be a variable known to contain
568 zero. We should be safe ignoring it. */
569 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
572 /* If we've already assigned an SSA_NAME to this component, then this
573 means that our walk of the basic blocks found a use before the set.
574 This is fine. Now we should create an initialization for the value
575 we created earlier. */
576 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
577 comp
= complex_ssa_name_components
[ssa_name_index
];
581 /* If we've nothing assigned, and the value we're given is already stable,
582 then install that as the value for this SSA_NAME. This preemptively
583 copy-propagates the value, which avoids unnecessary memory allocation. */
584 else if (is_gimple_min_invariant (value
)
585 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
587 complex_ssa_name_components
[ssa_name_index
] = value
;
590 else if (TREE_CODE (value
) == SSA_NAME
591 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
593 /* Replace an anonymous base value with the variable from cvc_lookup.
594 This should result in better debug info. */
595 if (SSA_NAME_VAR (ssa_name
)
596 && (!SSA_NAME_VAR (value
) || DECL_IGNORED_P (SSA_NAME_VAR (value
)))
597 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
599 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
600 replace_ssa_name_symbol (value
, comp
);
603 complex_ssa_name_components
[ssa_name_index
] = value
;
607 /* Finally, we need to stabilize the result by installing the value into
610 comp
= get_component_ssa_name (ssa_name
, imag_p
);
612 /* Do all the work to assign VALUE to COMP. */
614 value
= force_gimple_operand (value
, &list
, false, NULL
);
615 last
= gimple_build_assign (comp
, value
);
616 gimple_seq_add_stmt (&list
, last
);
617 gcc_assert (SSA_NAME_DEF_STMT (comp
) == last
);
622 /* Extract the real or imaginary part of a complex variable or constant.
623 Make sure that it's a proper gimple_val and gimplify it if not.
624 Emit any new code before gsi. */
627 extract_component (gimple_stmt_iterator
*gsi
, tree t
, bool imagpart_p
,
630 switch (TREE_CODE (t
))
633 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
643 case VIEW_CONVERT_EXPR
:
646 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
648 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
649 inner_type
, unshare_expr (t
));
652 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
659 return get_component_ssa_name (t
, imagpart_p
);
666 /* Update the complex components of the ssa name on the lhs of STMT. */
669 update_complex_components (gimple_stmt_iterator
*gsi
, gimple stmt
, tree r
,
675 lhs
= gimple_get_lhs (stmt
);
677 list
= set_component_ssa_name (lhs
, false, r
);
679 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
681 list
= set_component_ssa_name (lhs
, true, i
);
683 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
687 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
691 list
= set_component_ssa_name (lhs
, false, r
);
693 gsi_insert_seq_on_edge (e
, list
);
695 list
= set_component_ssa_name (lhs
, true, i
);
697 gsi_insert_seq_on_edge (e
, list
);
701 /* Update an assignment to a complex variable in place. */
704 update_complex_assignment (gimple_stmt_iterator
*gsi
, tree r
, tree i
)
708 gimple_assign_set_rhs_with_ops (gsi
, COMPLEX_EXPR
, r
, i
);
709 stmt
= gsi_stmt (*gsi
);
711 if (maybe_clean_eh_stmt (stmt
))
712 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
714 if (gimple_in_ssa_p (cfun
))
715 update_complex_components (gsi
, gsi_stmt (*gsi
), r
, i
);
719 /* Generate code at the entry point of the function to initialize the
720 component variables for a complex parameter. */
723 update_parameter_components (void)
725 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
728 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
730 tree type
= TREE_TYPE (parm
);
733 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
736 type
= TREE_TYPE (type
);
737 ssa_name
= ssa_default_def (cfun
, parm
);
741 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
742 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
743 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
747 /* Generate code to set the component variables of a complex variable
748 to match the PHI statements in block BB. */
751 update_phi_components (basic_block bb
)
755 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
757 gphi
*phi
= gsi
.phi ();
759 if (is_complex_reg (gimple_phi_result (phi
)))
762 gimple pr
= NULL
, pi
= NULL
;
765 lr
= get_component_ssa_name (gimple_phi_result (phi
), false);
766 if (TREE_CODE (lr
) == SSA_NAME
)
767 pr
= create_phi_node (lr
, bb
);
769 li
= get_component_ssa_name (gimple_phi_result (phi
), true);
770 if (TREE_CODE (li
) == SSA_NAME
)
771 pi
= create_phi_node (li
, bb
);
773 for (i
= 0, n
= gimple_phi_num_args (phi
); i
< n
; ++i
)
775 tree comp
, arg
= gimple_phi_arg_def (phi
, i
);
778 comp
= extract_component (NULL
, arg
, false, false);
779 SET_PHI_ARG_DEF (pr
, i
, comp
);
783 comp
= extract_component (NULL
, arg
, true, false);
784 SET_PHI_ARG_DEF (pi
, i
, comp
);
791 /* Expand a complex move to scalars. */
794 expand_complex_move (gimple_stmt_iterator
*gsi
, tree type
)
796 tree inner_type
= TREE_TYPE (type
);
798 gimple stmt
= gsi_stmt (*gsi
);
800 if (is_gimple_assign (stmt
))
802 lhs
= gimple_assign_lhs (stmt
);
803 if (gimple_num_ops (stmt
) == 2)
804 rhs
= gimple_assign_rhs1 (stmt
);
808 else if (is_gimple_call (stmt
))
810 lhs
= gimple_call_lhs (stmt
);
816 if (TREE_CODE (lhs
) == SSA_NAME
)
818 if (is_ctrl_altering_stmt (stmt
))
822 /* The value is not assigned on the exception edges, so we need not
823 concern ourselves there. We do need to update on the fallthru
825 e
= find_fallthru_edge (gsi_bb (*gsi
)->succs
);
829 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
830 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
831 update_complex_components_on_edge (e
, lhs
, r
, i
);
833 else if (is_gimple_call (stmt
)
834 || gimple_has_side_effects (stmt
)
835 || gimple_assign_rhs_code (stmt
) == PAREN_EXPR
)
837 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
838 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
839 update_complex_components (gsi
, stmt
, r
, i
);
843 if (gimple_assign_rhs_code (stmt
) != COMPLEX_EXPR
)
845 r
= extract_component (gsi
, rhs
, 0, true);
846 i
= extract_component (gsi
, rhs
, 1, true);
850 r
= gimple_assign_rhs1 (stmt
);
851 i
= gimple_assign_rhs2 (stmt
);
853 update_complex_assignment (gsi
, r
, i
);
856 else if (rhs
&& TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
862 loc
= gimple_location (stmt
);
863 r
= extract_component (gsi
, rhs
, 0, false);
864 i
= extract_component (gsi
, rhs
, 1, false);
866 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
867 t
= gimple_build_assign (x
, r
);
868 gimple_set_location (t
, loc
);
869 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
871 if (stmt
== gsi_stmt (*gsi
))
873 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
874 gimple_assign_set_lhs (stmt
, x
);
875 gimple_assign_set_rhs1 (stmt
, i
);
879 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
880 t
= gimple_build_assign (x
, i
);
881 gimple_set_location (t
, loc
);
882 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
884 stmt
= gsi_stmt (*gsi
);
885 gcc_assert (gimple_code (stmt
) == GIMPLE_RETURN
);
886 gimple_return_set_retval (as_a
<greturn
*> (stmt
), lhs
);
893 /* Expand complex addition to scalars:
894 a + b = (ar + br) + i(ai + bi)
895 a - b = (ar - br) + i(ai + bi)
899 expand_complex_addition (gimple_stmt_iterator
*gsi
, tree inner_type
,
900 tree ar
, tree ai
, tree br
, tree bi
,
902 complex_lattice_t al
, complex_lattice_t bl
)
906 switch (PAIR (al
, bl
))
908 case PAIR (ONLY_REAL
, ONLY_REAL
):
909 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
913 case PAIR (ONLY_REAL
, ONLY_IMAG
):
915 if (code
== MINUS_EXPR
)
916 ri
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
921 case PAIR (ONLY_IMAG
, ONLY_REAL
):
922 if (code
== MINUS_EXPR
)
923 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ar
, br
);
929 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
931 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
934 case PAIR (VARYING
, ONLY_REAL
):
935 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
939 case PAIR (VARYING
, ONLY_IMAG
):
941 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
944 case PAIR (ONLY_REAL
, VARYING
):
945 if (code
== MINUS_EXPR
)
947 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
951 case PAIR (ONLY_IMAG
, VARYING
):
952 if (code
== MINUS_EXPR
)
955 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
958 case PAIR (VARYING
, VARYING
):
960 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
961 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
968 update_complex_assignment (gsi
, rr
, ri
);
971 /* Expand a complex multiplication or division to a libcall to the c99
972 compliant routines. */
975 expand_complex_libcall (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
976 tree br
, tree bi
, enum tree_code code
)
979 enum built_in_function bcode
;
984 old_stmt
= gsi_stmt (*gsi
);
985 lhs
= gimple_assign_lhs (old_stmt
);
986 type
= TREE_TYPE (lhs
);
988 mode
= TYPE_MODE (type
);
989 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
991 if (code
== MULT_EXPR
)
992 bcode
= ((enum built_in_function
)
993 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
994 else if (code
== RDIV_EXPR
)
995 bcode
= ((enum built_in_function
)
996 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
999 fn
= builtin_decl_explicit (bcode
);
1001 stmt
= gimple_build_call (fn
, 4, ar
, ai
, br
, bi
);
1002 gimple_call_set_lhs (stmt
, lhs
);
1004 gsi_replace (gsi
, stmt
, false);
1006 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
1007 gimple_purge_dead_eh_edges (gsi_bb (*gsi
));
1009 if (gimple_in_ssa_p (cfun
))
1011 type
= TREE_TYPE (type
);
1012 update_complex_components (gsi
, stmt
,
1013 build1 (REALPART_EXPR
, type
, lhs
),
1014 build1 (IMAGPART_EXPR
, type
, lhs
));
1015 SSA_NAME_DEF_STMT (lhs
) = stmt
;
1019 /* Expand complex multiplication to scalars:
1020 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1024 expand_complex_multiplication (gimple_stmt_iterator
*gsi
, tree inner_type
,
1025 tree ar
, tree ai
, tree br
, tree bi
,
1026 complex_lattice_t al
, complex_lattice_t bl
)
1032 complex_lattice_t tl
;
1033 rr
= ar
, ar
= br
, br
= rr
;
1034 ri
= ai
, ai
= bi
, bi
= ri
;
1035 tl
= al
, al
= bl
, bl
= tl
;
1038 switch (PAIR (al
, bl
))
1040 case PAIR (ONLY_REAL
, ONLY_REAL
):
1041 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1045 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1047 if (TREE_CODE (ai
) == REAL_CST
1048 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai
), dconst1
))
1051 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1054 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1055 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1056 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1060 case PAIR (VARYING
, ONLY_REAL
):
1061 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1062 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1065 case PAIR (VARYING
, ONLY_IMAG
):
1066 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1067 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1068 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1071 case PAIR (VARYING
, VARYING
):
1072 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
1074 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
1079 tree t1
, t2
, t3
, t4
;
1081 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1082 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1083 t3
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1085 /* Avoid expanding redundant multiplication for the common
1086 case of squaring a complex number. */
1087 if (ar
== br
&& ai
== bi
)
1090 t4
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1092 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1093 ri
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
1101 update_complex_assignment (gsi
, rr
, ri
);
1104 /* Keep this algorithm in sync with fold-const.c:const_binop().
1106 Expand complex division to scalars, straightforward algorithm.
1107 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1112 expand_complex_div_straight (gimple_stmt_iterator
*gsi
, tree inner_type
,
1113 tree ar
, tree ai
, tree br
, tree bi
,
1114 enum tree_code code
)
1116 tree rr
, ri
, div
, t1
, t2
, t3
;
1118 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, br
);
1119 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1120 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1122 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1123 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1124 t3
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1125 rr
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1127 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1128 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1129 t3
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1130 ri
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1132 update_complex_assignment (gsi
, rr
, ri
);
1135 /* Keep this algorithm in sync with fold-const.c:const_binop().
1137 Expand complex division to scalars, modified algorithm to minimize
1138 overflow with wide input ranges. */
1141 expand_complex_div_wide (gimple_stmt_iterator
*gsi
, tree inner_type
,
1142 tree ar
, tree ai
, tree br
, tree bi
,
1143 enum tree_code code
)
1145 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, compare
;
1146 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1149 /* Examine |br| < |bi|, and branch. */
1150 t1
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, br
);
1151 t2
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, bi
);
1152 compare
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)),
1153 LT_EXPR
, boolean_type_node
, t1
, t2
);
1154 STRIP_NOPS (compare
);
1156 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1157 rr
= ri
= tr
= ti
= NULL
;
1158 if (TREE_CODE (compare
) != INTEGER_CST
)
1164 tmp
= create_tmp_var (boolean_type_node
);
1165 stmt
= gimple_build_assign (tmp
, compare
);
1166 if (gimple_in_ssa_p (cfun
))
1168 tmp
= make_ssa_name (tmp
, stmt
);
1169 gimple_assign_set_lhs (stmt
, tmp
);
1172 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1174 cond
= fold_build2_loc (gimple_location (stmt
),
1175 EQ_EXPR
, boolean_type_node
, tmp
, boolean_true_node
);
1176 stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1177 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1179 /* Split the original block, and create the TRUE and FALSE blocks. */
1180 e
= split_block (gsi_bb (*gsi
), stmt
);
1183 bb_true
= create_empty_bb (bb_cond
);
1184 bb_false
= create_empty_bb (bb_true
);
1186 /* Wire the blocks together. */
1187 e
->flags
= EDGE_TRUE_VALUE
;
1188 redirect_edge_succ (e
, bb_true
);
1189 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1190 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1191 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1192 add_bb_to_loop (bb_true
, bb_cond
->loop_father
);
1193 add_bb_to_loop (bb_false
, bb_cond
->loop_father
);
1195 /* Update dominance info. Note that bb_join's data was
1196 updated by split_block. */
1197 if (dom_info_available_p (CDI_DOMINATORS
))
1199 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1200 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1203 rr
= create_tmp_reg (inner_type
);
1204 ri
= create_tmp_reg (inner_type
);
1207 /* In the TRUE branch, we compute
1209 div = (br * ratio) + bi;
1210 tr = (ar * ratio) + ai;
1211 ti = (ai * ratio) - ar;
1214 if (bb_true
|| integer_nonzerop (compare
))
1218 *gsi
= gsi_last_bb (bb_true
);
1219 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1222 ratio
= gimplify_build2 (gsi
, code
, inner_type
, br
, bi
);
1224 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1225 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1227 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1228 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1230 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1231 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1233 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1234 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1238 stmt
= gimple_build_assign (rr
, tr
);
1239 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1240 stmt
= gimple_build_assign (ri
, ti
);
1241 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1242 gsi_remove (gsi
, true);
1246 /* In the FALSE branch, we compute
1248 divisor = (d * ratio) + c;
1249 tr = (b * ratio) + a;
1250 ti = b - (a * ratio);
1253 if (bb_false
|| integer_zerop (compare
))
1257 *gsi
= gsi_last_bb (bb_false
);
1258 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1261 ratio
= gimplify_build2 (gsi
, code
, inner_type
, bi
, br
);
1263 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1264 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1266 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1267 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1269 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1270 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1272 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1273 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1277 stmt
= gimple_build_assign (rr
, tr
);
1278 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1279 stmt
= gimple_build_assign (ri
, ti
);
1280 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1281 gsi_remove (gsi
, true);
1286 *gsi
= gsi_start_bb (bb_join
);
1290 update_complex_assignment (gsi
, rr
, ri
);
1293 /* Expand complex division to scalars. */
1296 expand_complex_division (gimple_stmt_iterator
*gsi
, tree inner_type
,
1297 tree ar
, tree ai
, tree br
, tree bi
,
1298 enum tree_code code
,
1299 complex_lattice_t al
, complex_lattice_t bl
)
1303 switch (PAIR (al
, bl
))
1305 case PAIR (ONLY_REAL
, ONLY_REAL
):
1306 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1310 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1312 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1313 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1316 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1318 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1321 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1322 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1326 case PAIR (VARYING
, ONLY_REAL
):
1327 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1328 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1331 case PAIR (VARYING
, ONLY_IMAG
):
1332 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1333 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1334 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1336 case PAIR (ONLY_REAL
, VARYING
):
1337 case PAIR (ONLY_IMAG
, VARYING
):
1338 case PAIR (VARYING
, VARYING
):
1339 switch (flag_complex_method
)
1342 /* straightforward implementation of complex divide acceptable. */
1343 expand_complex_div_straight (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1347 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1349 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, code
);
1355 /* wide ranges of inputs must work for complex divide. */
1356 expand_complex_div_wide (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1368 update_complex_assignment (gsi
, rr
, ri
);
1371 /* Expand complex negation to scalars:
1376 expand_complex_negation (gimple_stmt_iterator
*gsi
, tree inner_type
,
1381 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ar
);
1382 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1384 update_complex_assignment (gsi
, rr
, ri
);
1387 /* Expand complex conjugate to scalars:
1392 expand_complex_conjugate (gimple_stmt_iterator
*gsi
, tree inner_type
,
1397 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1399 update_complex_assignment (gsi
, ar
, ri
);
1402 /* Expand complex comparison (EQ or NE only). */
1405 expand_complex_comparison (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
1406 tree br
, tree bi
, enum tree_code code
)
1408 tree cr
, ci
, cc
, type
;
1411 cr
= gimplify_build2 (gsi
, code
, boolean_type_node
, ar
, br
);
1412 ci
= gimplify_build2 (gsi
, code
, boolean_type_node
, ai
, bi
);
1413 cc
= gimplify_build2 (gsi
,
1414 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1415 boolean_type_node
, cr
, ci
);
1417 stmt
= gsi_stmt (*gsi
);
1419 switch (gimple_code (stmt
))
1423 greturn
*return_stmt
= as_a
<greturn
*> (stmt
);
1424 type
= TREE_TYPE (gimple_return_retval (return_stmt
));
1425 gimple_return_set_retval (return_stmt
, fold_convert (type
, cc
));
1430 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1431 gimple_assign_set_rhs_from_tree (gsi
, fold_convert (type
, cc
));
1432 stmt
= gsi_stmt (*gsi
);
1437 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1438 gimple_cond_set_code (cond_stmt
, EQ_EXPR
);
1439 gimple_cond_set_lhs (cond_stmt
, cc
);
1440 gimple_cond_set_rhs (cond_stmt
, boolean_true_node
);
1451 /* Expand inline asm that sets some complex SSA_NAMEs. */
1454 expand_complex_asm (gimple_stmt_iterator
*gsi
)
1456 gasm
*stmt
= as_a
<gasm
*> (gsi_stmt (*gsi
));
1459 for (i
= 0; i
< gimple_asm_noutputs (stmt
); ++i
)
1461 tree link
= gimple_asm_output_op (stmt
, i
);
1462 tree op
= TREE_VALUE (link
);
1463 if (TREE_CODE (op
) == SSA_NAME
1464 && TREE_CODE (TREE_TYPE (op
)) == COMPLEX_TYPE
)
1466 tree type
= TREE_TYPE (op
);
1467 tree inner_type
= TREE_TYPE (type
);
1468 tree r
= build1 (REALPART_EXPR
, inner_type
, op
);
1469 tree i
= build1 (IMAGPART_EXPR
, inner_type
, op
);
1470 gimple_seq list
= set_component_ssa_name (op
, false, r
);
1473 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1475 list
= set_component_ssa_name (op
, true, i
);
1477 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1482 /* Process one statement. If we identify a complex operation, expand it. */
1485 expand_complex_operations_1 (gimple_stmt_iterator
*gsi
)
1487 gimple stmt
= gsi_stmt (*gsi
);
1488 tree type
, inner_type
, lhs
;
1489 tree ac
, ar
, ai
, bc
, br
, bi
;
1490 complex_lattice_t al
, bl
;
1491 enum tree_code code
;
1493 if (gimple_code (stmt
) == GIMPLE_ASM
)
1495 expand_complex_asm (gsi
);
1499 lhs
= gimple_get_lhs (stmt
);
1500 if (!lhs
&& gimple_code (stmt
) != GIMPLE_COND
)
1503 type
= TREE_TYPE (gimple_op (stmt
, 0));
1504 code
= gimple_expr_code (stmt
);
1506 /* Initial filter for operations we handle. */
1512 case TRUNC_DIV_EXPR
:
1514 case FLOOR_DIV_EXPR
:
1515 case ROUND_DIV_EXPR
:
1519 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1521 inner_type
= TREE_TYPE (type
);
1526 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1527 subcode, so we need to access the operands using gimple_op. */
1528 inner_type
= TREE_TYPE (gimple_op (stmt
, 1));
1529 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1537 /* GIMPLE_COND may also fallthru here, but we do not need to
1538 do anything with it. */
1539 if (gimple_code (stmt
) == GIMPLE_COND
)
1542 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1543 expand_complex_move (gsi
, type
);
1544 else if (is_gimple_assign (stmt
)
1545 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
1546 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
1547 && TREE_CODE (lhs
) == SSA_NAME
)
1549 rhs
= gimple_assign_rhs1 (stmt
);
1550 rhs
= extract_component (gsi
, TREE_OPERAND (rhs
, 0),
1551 gimple_assign_rhs_code (stmt
)
1554 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1555 stmt
= gsi_stmt (*gsi
);
1562 /* Extract the components of the two complex values. Make sure and
1563 handle the common case of the same value used twice specially. */
1564 if (is_gimple_assign (stmt
))
1566 ac
= gimple_assign_rhs1 (stmt
);
1567 bc
= (gimple_num_ops (stmt
) > 2) ? gimple_assign_rhs2 (stmt
) : NULL
;
1569 /* GIMPLE_CALL can not get here. */
1572 ac
= gimple_cond_lhs (stmt
);
1573 bc
= gimple_cond_rhs (stmt
);
1576 ar
= extract_component (gsi
, ac
, false, true);
1577 ai
= extract_component (gsi
, ac
, true, true);
1583 br
= extract_component (gsi
, bc
, 0, true);
1584 bi
= extract_component (gsi
, bc
, 1, true);
1587 br
= bi
= NULL_TREE
;
1589 if (gimple_in_ssa_p (cfun
))
1591 al
= find_lattice_value (ac
);
1592 if (al
== UNINITIALIZED
)
1595 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1601 bl
= find_lattice_value (bc
);
1602 if (bl
== UNINITIALIZED
)
1613 expand_complex_addition (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1617 expand_complex_multiplication (gsi
, inner_type
, ar
, ai
, br
, bi
, al
, bl
);
1620 case TRUNC_DIV_EXPR
:
1622 case FLOOR_DIV_EXPR
:
1623 case ROUND_DIV_EXPR
:
1625 expand_complex_division (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1629 expand_complex_negation (gsi
, inner_type
, ar
, ai
);
1633 expand_complex_conjugate (gsi
, inner_type
, ar
, ai
);
1638 expand_complex_comparison (gsi
, ar
, ai
, br
, bi
, code
);
1647 /* Entry point for complex operation lowering during optimization. */
1650 tree_lower_complex (void)
1652 int old_last_basic_block
;
1653 gimple_stmt_iterator gsi
;
1656 if (!init_dont_simulate_again ())
1659 complex_lattice_values
.create (num_ssa_names
);
1660 complex_lattice_values
.safe_grow_cleared (num_ssa_names
);
1662 init_parameter_lattice_values ();
1663 ssa_propagate (complex_visit_stmt
, complex_visit_phi
);
1665 complex_variable_components
= new int_tree_htab_type (10);
1667 complex_ssa_name_components
.create (2 * num_ssa_names
);
1668 complex_ssa_name_components
.safe_grow_cleared (2 * num_ssa_names
);
1670 update_parameter_components ();
1672 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1673 old_last_basic_block
= last_basic_block_for_fn (cfun
);
1674 FOR_EACH_BB_FN (bb
, cfun
)
1676 if (bb
->index
>= old_last_basic_block
)
1679 update_phi_components (bb
);
1680 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1681 expand_complex_operations_1 (&gsi
);
1684 gsi_commit_edge_inserts ();
1686 delete complex_variable_components
;
1687 complex_variable_components
= NULL
;
1688 complex_ssa_name_components
.release ();
1689 complex_lattice_values
.release ();
1695 const pass_data pass_data_lower_complex
=
1697 GIMPLE_PASS
, /* type */
1698 "cplxlower", /* name */
1699 OPTGROUP_NONE
, /* optinfo_flags */
1700 TV_NONE
, /* tv_id */
1701 PROP_ssa
, /* properties_required */
1702 PROP_gimple_lcx
, /* properties_provided */
1703 0, /* properties_destroyed */
1704 0, /* todo_flags_start */
1705 TODO_update_ssa
, /* todo_flags_finish */
1708 class pass_lower_complex
: public gimple_opt_pass
1711 pass_lower_complex (gcc::context
*ctxt
)
1712 : gimple_opt_pass (pass_data_lower_complex
, ctxt
)
1715 /* opt_pass methods: */
1716 opt_pass
* clone () { return new pass_lower_complex (m_ctxt
); }
1717 virtual unsigned int execute (function
*) { return tree_lower_complex (); }
1719 }; // class pass_lower_complex
1724 make_pass_lower_complex (gcc::context
*ctxt
)
1726 return new pass_lower_complex (ctxt
);
1732 const pass_data pass_data_lower_complex_O0
=
1734 GIMPLE_PASS
, /* type */
1735 "cplxlower0", /* name */
1736 OPTGROUP_NONE
, /* optinfo_flags */
1737 TV_NONE
, /* tv_id */
1738 PROP_cfg
, /* properties_required */
1739 PROP_gimple_lcx
, /* properties_provided */
1740 0, /* properties_destroyed */
1741 0, /* todo_flags_start */
1742 TODO_update_ssa
, /* todo_flags_finish */
1745 class pass_lower_complex_O0
: public gimple_opt_pass
1748 pass_lower_complex_O0 (gcc::context
*ctxt
)
1749 : gimple_opt_pass (pass_data_lower_complex_O0
, ctxt
)
1752 /* opt_pass methods: */
1753 virtual bool gate (function
*fun
)
1755 /* With errors, normal optimization passes are not run. If we don't
1756 lower complex operations at all, rtl expansion will abort. */
1757 return !(fun
->curr_properties
& PROP_gimple_lcx
);
1760 virtual unsigned int execute (function
*) { return tree_lower_complex (); }
1762 }; // class pass_lower_complex_O0
1767 make_pass_lower_complex_O0 (gcc::context
*ctxt
)
1769 return new pass_lower_complex_O0 (ctxt
);