1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "diagnostic-core.h"
29 #include "hard-reg-set.h"
39 #include "insn-config.h"
40 #include "insn-attr.h"
43 #include "dominance.h"
47 #include "basic-block.h"
48 #include "sched-int.h"
51 #include "double-int.h"
57 #include "insn-codes.h"
59 #include "statistics.h"
61 #include "fixed-value.h"
75 #include "tree-pass.h"
77 #include "loop-unroll.h"
79 #ifdef INSN_SCHEDULING
81 /* This file contains the implementation of the Swing Modulo Scheduler,
82 described in the following references:
83 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
84 Lifetime--sensitive modulo scheduling in a production environment.
85 IEEE Trans. on Comps., 50(3), March 2001
86 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
87 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
88 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
90 The basic structure is:
91 1. Build a data-dependence graph (DDG) for each loop.
92 2. Use the DDG to order the insns of a loop (not in topological order
93 necessarily, but rather) trying to place each insn after all its
94 predecessors _or_ after all its successors.
95 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
96 4. Use the ordering to perform list-scheduling of the loop:
97 1. Set II = MII. We will try to schedule the loop within II cycles.
98 2. Try to schedule the insns one by one according to the ordering.
99 For each insn compute an interval of cycles by considering already-
100 scheduled preds and succs (and associated latencies); try to place
101 the insn in the cycles of this window checking for potential
102 resource conflicts (using the DFA interface).
103 Note: this is different from the cycle-scheduling of schedule_insns;
104 here the insns are not scheduled monotonically top-down (nor bottom-
106 3. If failed in scheduling all insns - bump II++ and try again, unless
107 II reaches an upper bound MaxII, in which case report failure.
108 5. If we succeeded in scheduling the loop within II cycles, we now
109 generate prolog and epilog, decrease the counter of the loop, and
110 perform modulo variable expansion for live ranges that span more than
111 II cycles (i.e. use register copies to prevent a def from overwriting
112 itself before reaching the use).
114 SMS works with countable loops (1) whose control part can be easily
115 decoupled from the rest of the loop and (2) whose loop count can
116 be easily adjusted. This is because we peel a constant number of
117 iterations into a prologue and epilogue for which we want to avoid
118 emitting the control part, and a kernel which is to iterate that
119 constant number of iterations less than the original loop. So the
120 control part should be a set of insns clearly identified and having
121 its own iv, not otherwise used in the loop (at-least for now), which
122 initializes a register before the loop to the number of iterations.
123 Currently SMS relies on the do-loop pattern to recognize such loops,
124 where (1) the control part comprises of all insns defining and/or
125 using a certain 'count' register and (2) the loop count can be
126 adjusted by modifying this register prior to the loop.
127 TODO: Rely on cfgloop analysis instead. */
129 /* This page defines partial-schedule structures and functions for
130 modulo scheduling. */
132 typedef struct partial_schedule
*partial_schedule_ptr
;
133 typedef struct ps_insn
*ps_insn_ptr
;
135 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
136 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
138 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
139 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
141 /* Perform signed modulo, always returning a non-negative value. */
142 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
144 /* The number of different iterations the nodes in ps span, assuming
145 the stage boundaries are placed efficiently. */
146 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
148 /* The stage count of ps. */
149 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
151 /* A single instruction in the partial schedule. */
154 /* Identifies the instruction to be scheduled. Values smaller than
155 the ddg's num_nodes refer directly to ddg nodes. A value of
156 X - num_nodes refers to register move X. */
159 /* The (absolute) cycle in which the PS instruction is scheduled.
160 Same as SCHED_TIME (node). */
163 /* The next/prev PS_INSN in the same row. */
164 ps_insn_ptr next_in_row
,
169 /* Information about a register move that has been added to a partial
171 struct ps_reg_move_info
173 /* The source of the move is defined by the ps_insn with id DEF.
174 The destination is used by the ps_insns with the ids in USES. */
178 /* The original form of USES' instructions used OLD_REG, but they
179 should now use NEW_REG. */
183 /* The number of consecutive stages that the move occupies. */
184 int num_consecutive_stages
;
186 /* An instruction that sets NEW_REG to the correct value. The first
187 move associated with DEF will have an rhs of OLD_REG; later moves
188 use the result of the previous move. */
192 typedef struct ps_reg_move_info ps_reg_move_info
;
194 /* Holds the partial schedule as an array of II rows. Each entry of the
195 array points to a linked list of PS_INSNs, which represents the
196 instructions that are scheduled for that row. */
197 struct partial_schedule
199 int ii
; /* Number of rows in the partial schedule. */
200 int history
; /* Threshold for conflict checking using DFA. */
202 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
205 /* All the moves added for this partial schedule. Index X has
206 a ps_insn id of X + g->num_nodes. */
207 vec
<ps_reg_move_info
> reg_moves
;
209 /* rows_length[i] holds the number of instructions in the row.
210 It is used only (as an optimization) to back off quickly from
211 trying to schedule a node in a full row; that is, to avoid running
212 through futile DFA state transitions. */
215 /* The earliest absolute cycle of an insn in the partial schedule. */
218 /* The latest absolute cycle of an insn in the partial schedule. */
221 ddg_ptr g
; /* The DDG of the insns in the partial schedule. */
223 int stage_count
; /* The stage count of the partial schedule. */
227 static partial_schedule_ptr
create_partial_schedule (int ii
, ddg_ptr
, int history
);
228 static void free_partial_schedule (partial_schedule_ptr
);
229 static void reset_partial_schedule (partial_schedule_ptr
, int new_ii
);
230 void print_partial_schedule (partial_schedule_ptr
, FILE *);
231 static void verify_partial_schedule (partial_schedule_ptr
, sbitmap
);
232 static ps_insn_ptr
ps_add_node_check_conflicts (partial_schedule_ptr
,
233 int, int, sbitmap
, sbitmap
);
234 static void rotate_partial_schedule (partial_schedule_ptr
, int);
235 void set_row_column_for_ps (partial_schedule_ptr
);
236 static void ps_insert_empty_row (partial_schedule_ptr
, int, sbitmap
);
237 static int compute_split_row (sbitmap
, int, int, int, ddg_node_ptr
);
240 /* This page defines constants and structures for the modulo scheduling
243 static int sms_order_nodes (ddg_ptr
, int, int *, int *);
244 static void set_node_sched_params (ddg_ptr
);
245 static partial_schedule_ptr
sms_schedule_by_order (ddg_ptr
, int, int, int *);
246 static void permute_partial_schedule (partial_schedule_ptr
, rtx_insn
*);
247 static void generate_prolog_epilog (partial_schedule_ptr
, struct loop
*,
249 static int calculate_stage_count (partial_schedule_ptr
, int);
250 static void calculate_must_precede_follow (ddg_node_ptr
, int, int,
251 int, int, sbitmap
, sbitmap
, sbitmap
);
252 static int get_sched_window (partial_schedule_ptr
, ddg_node_ptr
,
253 sbitmap
, int, int *, int *, int *);
254 static bool try_scheduling_node_in_cycle (partial_schedule_ptr
, int, int,
255 sbitmap
, int *, sbitmap
, sbitmap
);
256 static void remove_node_from_ps (partial_schedule_ptr
, ps_insn_ptr
);
258 #define NODE_ASAP(node) ((node)->aux.count)
260 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
261 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
262 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
263 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
264 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
266 /* The scheduling parameters held for each node. */
267 typedef struct node_sched_params
269 int time
; /* The absolute scheduling cycle. */
271 int row
; /* Holds time % ii. */
272 int stage
; /* Holds time / ii. */
274 /* The column of a node inside the ps. If nodes u, v are on the same row,
275 u will precede v if column (u) < column (v). */
277 } *node_sched_params_ptr
;
279 typedef struct node_sched_params node_sched_params
;
281 /* The following three functions are copied from the current scheduler
282 code in order to use sched_analyze() for computing the dependencies.
283 They are used when initializing the sched_info structure. */
285 sms_print_insn (const rtx_insn
*insn
, int aligned ATTRIBUTE_UNUSED
)
289 sprintf (tmp
, "i%4d", INSN_UID (insn
));
294 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED
,
295 regset used ATTRIBUTE_UNUSED
)
299 static struct common_sched_info_def sms_common_sched_info
;
301 static struct sched_deps_info_def sms_sched_deps_info
=
303 compute_jump_reg_dependencies
,
304 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
309 static struct haifa_sched_info sms_sched_info
=
318 NULL
, /* insn_finishes_block_p */
323 NULL
, NULL
, NULL
, NULL
,
328 /* Partial schedule instruction ID in PS is a register move. Return
329 information about it. */
330 static struct ps_reg_move_info
*
331 ps_reg_move (partial_schedule_ptr ps
, int id
)
333 gcc_checking_assert (id
>= ps
->g
->num_nodes
);
334 return &ps
->reg_moves
[id
- ps
->g
->num_nodes
];
337 /* Return the rtl instruction that is being scheduled by partial schedule
338 instruction ID, which belongs to schedule PS. */
340 ps_rtl_insn (partial_schedule_ptr ps
, int id
)
342 if (id
< ps
->g
->num_nodes
)
343 return ps
->g
->nodes
[id
].insn
;
345 return ps_reg_move (ps
, id
)->insn
;
348 /* Partial schedule instruction ID, which belongs to PS, occurred in
349 the original (unscheduled) loop. Return the first instruction
350 in the loop that was associated with ps_rtl_insn (PS, ID).
351 If the instruction had some notes before it, this is the first
354 ps_first_note (partial_schedule_ptr ps
, int id
)
356 gcc_assert (id
< ps
->g
->num_nodes
);
357 return ps
->g
->nodes
[id
].first_note
;
360 /* Return the number of consecutive stages that are occupied by
361 partial schedule instruction ID in PS. */
363 ps_num_consecutive_stages (partial_schedule_ptr ps
, int id
)
365 if (id
< ps
->g
->num_nodes
)
368 return ps_reg_move (ps
, id
)->num_consecutive_stages
;
371 /* Given HEAD and TAIL which are the first and last insns in a loop;
372 return the register which controls the loop. Return zero if it has
373 more than one occurrence in the loop besides the control part or the
374 do-loop pattern is not of the form we expect. */
376 doloop_register_get (rtx_insn
*head ATTRIBUTE_UNUSED
, rtx_insn
*tail ATTRIBUTE_UNUSED
)
378 #ifdef HAVE_doloop_end
380 rtx_insn
*insn
, *first_insn_not_to_check
;
385 /* TODO: Free SMS's dependence on doloop_condition_get. */
386 condition
= doloop_condition_get (tail
);
390 if (REG_P (XEXP (condition
, 0)))
391 reg
= XEXP (condition
, 0);
392 else if (GET_CODE (XEXP (condition
, 0)) == PLUS
393 && REG_P (XEXP (XEXP (condition
, 0), 0)))
394 reg
= XEXP (XEXP (condition
, 0), 0);
398 /* Check that the COUNT_REG has no other occurrences in the loop
399 until the decrement. We assume the control part consists of
400 either a single (parallel) branch-on-count or a (non-parallel)
401 branch immediately preceded by a single (decrement) insn. */
402 first_insn_not_to_check
= (GET_CODE (PATTERN (tail
)) == PARALLEL
? tail
403 : prev_nondebug_insn (tail
));
405 for (insn
= head
; insn
!= first_insn_not_to_check
; insn
= NEXT_INSN (insn
))
406 if (!DEBUG_INSN_P (insn
) && reg_mentioned_p (reg
, insn
))
410 fprintf (dump_file
, "SMS count_reg found ");
411 print_rtl_single (dump_file
, reg
);
412 fprintf (dump_file
, " outside control in insn:\n");
413 print_rtl_single (dump_file
, insn
);
425 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
426 that the number of iterations is a compile-time constant. If so,
427 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
428 this constant. Otherwise return 0. */
430 const_iteration_count (rtx count_reg
, basic_block pre_header
,
434 rtx_insn
*head
, *tail
;
439 get_ebb_head_tail (pre_header
, pre_header
, &head
, &tail
);
441 for (insn
= tail
; insn
!= PREV_INSN (head
); insn
= PREV_INSN (insn
))
442 if (NONDEBUG_INSN_P (insn
) && single_set (insn
) &&
443 rtx_equal_p (count_reg
, SET_DEST (single_set (insn
))))
445 rtx pat
= single_set (insn
);
447 if (CONST_INT_P (SET_SRC (pat
)))
449 *count
= INTVAL (SET_SRC (pat
));
459 /* A very simple resource-based lower bound on the initiation interval.
460 ??? Improve the accuracy of this bound by considering the
461 utilization of various units. */
465 if (targetm
.sched
.sms_res_mii
)
466 return targetm
.sched
.sms_res_mii (g
);
468 return ((g
->num_nodes
- g
->num_debug
) / issue_rate
);
472 /* A vector that contains the sched data for each ps_insn. */
473 static vec
<node_sched_params
> node_sched_param_vec
;
475 /* Allocate sched_params for each node and initialize it. */
477 set_node_sched_params (ddg_ptr g
)
479 node_sched_param_vec
.truncate (0);
480 node_sched_param_vec
.safe_grow_cleared (g
->num_nodes
);
483 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
485 extend_node_sched_params (partial_schedule_ptr ps
)
487 node_sched_param_vec
.safe_grow_cleared (ps
->g
->num_nodes
488 + ps
->reg_moves
.length ());
491 /* Update the sched_params (time, row and stage) for node U using the II,
492 the CYCLE of U and MIN_CYCLE.
493 We're not simply taking the following
494 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
495 because the stages may not be aligned on cycle 0. */
497 update_node_sched_params (int u
, int ii
, int cycle
, int min_cycle
)
499 int sc_until_cycle_zero
;
502 SCHED_TIME (u
) = cycle
;
503 SCHED_ROW (u
) = SMODULO (cycle
, ii
);
505 /* The calculation of stage count is done adding the number
506 of stages before cycle zero and after cycle zero. */
507 sc_until_cycle_zero
= CALC_STAGE_COUNT (-1, min_cycle
, ii
);
509 if (SCHED_TIME (u
) < 0)
511 stage
= CALC_STAGE_COUNT (-1, SCHED_TIME (u
), ii
);
512 SCHED_STAGE (u
) = sc_until_cycle_zero
- stage
;
516 stage
= CALC_STAGE_COUNT (SCHED_TIME (u
), 0, ii
);
517 SCHED_STAGE (u
) = sc_until_cycle_zero
+ stage
- 1;
522 print_node_sched_params (FILE *file
, int num_nodes
, partial_schedule_ptr ps
)
528 for (i
= 0; i
< num_nodes
; i
++)
530 node_sched_params_ptr nsp
= SCHED_PARAMS (i
);
532 fprintf (file
, "Node = %d; INSN = %d\n", i
,
533 INSN_UID (ps_rtl_insn (ps
, i
)));
534 fprintf (file
, " asap = %d:\n", NODE_ASAP (&ps
->g
->nodes
[i
]));
535 fprintf (file
, " time = %d:\n", nsp
->time
);
536 fprintf (file
, " stage = %d:\n", nsp
->stage
);
540 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
542 set_columns_for_row (partial_schedule_ptr ps
, int row
)
544 ps_insn_ptr cur_insn
;
548 for (cur_insn
= ps
->rows
[row
]; cur_insn
; cur_insn
= cur_insn
->next_in_row
)
549 SCHED_COLUMN (cur_insn
->id
) = column
++;
552 /* Set SCHED_COLUMN for each instruction in PS. */
554 set_columns_for_ps (partial_schedule_ptr ps
)
558 for (row
= 0; row
< ps
->ii
; row
++)
559 set_columns_for_row (ps
, row
);
562 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
563 Its single predecessor has already been scheduled, as has its
564 ddg node successors. (The move may have also another move as its
565 successor, in which case that successor will be scheduled later.)
567 The move is part of a chain that satisfies register dependencies
568 between a producing ddg node and various consuming ddg nodes.
569 If some of these dependencies have a distance of 1 (meaning that
570 the use is upward-exposed) then DISTANCE1_USES is nonnull and
571 contains the set of uses with distance-1 dependencies.
572 DISTANCE1_USES is null otherwise.
574 MUST_FOLLOW is a scratch bitmap that is big enough to hold
575 all current ps_insn ids.
577 Return true on success. */
579 schedule_reg_move (partial_schedule_ptr ps
, int i_reg_move
,
580 sbitmap distance1_uses
, sbitmap must_follow
)
583 int this_time
, this_distance
, this_start
, this_end
, this_latency
;
584 int start
, end
, c
, ii
;
585 sbitmap_iterator sbi
;
586 ps_reg_move_info
*move
;
590 move
= ps_reg_move (ps
, i_reg_move
);
594 fprintf (dump_file
, "Scheduling register move INSN %d; ii = %d"
595 ", min cycle = %d\n\n", INSN_UID (move
->insn
), ii
,
597 print_rtl_single (dump_file
, move
->insn
);
598 fprintf (dump_file
, "\n%11s %11s %5s\n", "start", "end", "time");
599 fprintf (dump_file
, "=========== =========== =====\n");
605 /* For dependencies of distance 1 between a producer ddg node A
606 and consumer ddg node B, we have a chain of dependencies:
608 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
610 where Mi is the ith move. For dependencies of distance 0 between
611 a producer ddg node A and consumer ddg node C, we have a chain of
614 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
616 where Mi' occupies the same position as Mi but occurs a stage later.
617 We can only schedule each move once, so if we have both types of
618 chain, we model the second as:
620 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
622 First handle the dependencies between the previously-scheduled
623 predecessor and the move. */
624 this_insn
= ps_rtl_insn (ps
, move
->def
);
625 this_latency
= insn_latency (this_insn
, move
->insn
);
626 this_distance
= distance1_uses
&& move
->def
< ps
->g
->num_nodes
? 1 : 0;
627 this_time
= SCHED_TIME (move
->def
) - this_distance
* ii
;
628 this_start
= this_time
+ this_latency
;
629 this_end
= this_time
+ ii
;
631 fprintf (dump_file
, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
632 this_start
, this_end
, SCHED_TIME (move
->def
),
633 INSN_UID (this_insn
), this_latency
, this_distance
,
634 INSN_UID (move
->insn
));
636 if (start
< this_start
)
641 /* Handle the dependencies between the move and previously-scheduled
643 EXECUTE_IF_SET_IN_BITMAP (move
->uses
, 0, u
, sbi
)
645 this_insn
= ps_rtl_insn (ps
, u
);
646 this_latency
= insn_latency (move
->insn
, this_insn
);
647 if (distance1_uses
&& !bitmap_bit_p (distance1_uses
, u
))
651 this_time
= SCHED_TIME (u
) + this_distance
* ii
;
652 this_start
= this_time
- ii
;
653 this_end
= this_time
- this_latency
;
655 fprintf (dump_file
, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
656 this_start
, this_end
, SCHED_TIME (u
), INSN_UID (move
->insn
),
657 this_latency
, this_distance
, INSN_UID (this_insn
));
659 if (start
< this_start
)
667 fprintf (dump_file
, "----------- ----------- -----\n");
668 fprintf (dump_file
, "%11d %11d %5s %s\n", start
, end
, "", "(max, min)");
671 bitmap_clear (must_follow
);
672 bitmap_set_bit (must_follow
, move
->def
);
674 start
= MAX (start
, end
- (ii
- 1));
675 for (c
= end
; c
>= start
; c
--)
677 psi
= ps_add_node_check_conflicts (ps
, i_reg_move
, c
,
678 move
->uses
, must_follow
);
681 update_node_sched_params (i_reg_move
, ii
, c
, PS_MIN_CYCLE (ps
));
683 fprintf (dump_file
, "\nScheduled register move INSN %d at"
684 " time %d, row %d\n\n", INSN_UID (move
->insn
), c
,
685 SCHED_ROW (i_reg_move
));
691 fprintf (dump_file
, "\nNo available slot\n\n");
697 Breaking intra-loop register anti-dependences:
698 Each intra-loop register anti-dependence implies a cross-iteration true
699 dependence of distance 1. Therefore, we can remove such false dependencies
700 and figure out if the partial schedule broke them by checking if (for a
701 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
702 if so generate a register move. The number of such moves is equal to:
703 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
704 nreg_moves = ----------------------------------- + 1 - { dependence.
708 schedule_reg_moves (partial_schedule_ptr ps
)
714 for (i
= 0; i
< g
->num_nodes
; i
++)
716 ddg_node_ptr u
= &g
->nodes
[i
];
718 int nreg_moves
= 0, i_reg_move
;
719 rtx prev_reg
, old_reg
;
723 sbitmap distance1_uses
;
724 rtx set
= single_set (u
->insn
);
726 /* Skip instructions that do not set a register. */
727 if ((set
&& !REG_P (SET_DEST (set
))))
730 /* Compute the number of reg_moves needed for u, by looking at life
731 ranges started at u (excluding self-loops). */
732 distances
[0] = distances
[1] = false;
733 for (e
= u
->out
; e
; e
= e
->next_out
)
734 if (e
->type
== TRUE_DEP
&& e
->dest
!= e
->src
)
736 int nreg_moves4e
= (SCHED_TIME (e
->dest
->cuid
)
737 - SCHED_TIME (e
->src
->cuid
)) / ii
;
739 if (e
->distance
== 1)
740 nreg_moves4e
= (SCHED_TIME (e
->dest
->cuid
)
741 - SCHED_TIME (e
->src
->cuid
) + ii
) / ii
;
743 /* If dest precedes src in the schedule of the kernel, then dest
744 will read before src writes and we can save one reg_copy. */
745 if (SCHED_ROW (e
->dest
->cuid
) == SCHED_ROW (e
->src
->cuid
)
746 && SCHED_COLUMN (e
->dest
->cuid
) < SCHED_COLUMN (e
->src
->cuid
))
749 if (nreg_moves4e
>= 1)
751 /* !single_set instructions are not supported yet and
752 thus we do not except to encounter them in the loop
753 except from the doloop part. For the latter case
754 we assume no regmoves are generated as the doloop
755 instructions are tied to the branch with an edge. */
757 /* If the instruction contains auto-inc register then
758 validate that the regmov is being generated for the
759 target regsiter rather then the inc'ed register. */
760 gcc_assert (!autoinc_var_is_used_p (u
->insn
, e
->dest
->insn
));
765 gcc_assert (e
->distance
< 2);
766 distances
[e
->distance
] = true;
768 nreg_moves
= MAX (nreg_moves
, nreg_moves4e
);
774 /* Create NREG_MOVES register moves. */
775 first_move
= ps
->reg_moves
.length ();
776 ps
->reg_moves
.safe_grow_cleared (first_move
+ nreg_moves
);
777 extend_node_sched_params (ps
);
779 /* Record the moves associated with this node. */
780 first_move
+= ps
->g
->num_nodes
;
782 /* Generate each move. */
783 old_reg
= prev_reg
= SET_DEST (single_set (u
->insn
));
784 for (i_reg_move
= 0; i_reg_move
< nreg_moves
; i_reg_move
++)
786 ps_reg_move_info
*move
= ps_reg_move (ps
, first_move
+ i_reg_move
);
788 move
->def
= i_reg_move
> 0 ? first_move
+ i_reg_move
- 1 : i
;
789 move
->uses
= sbitmap_alloc (first_move
+ nreg_moves
);
790 move
->old_reg
= old_reg
;
791 move
->new_reg
= gen_reg_rtx (GET_MODE (prev_reg
));
792 move
->num_consecutive_stages
= distances
[0] && distances
[1] ? 2 : 1;
793 move
->insn
= as_a
<rtx_insn
*> (gen_move_insn (move
->new_reg
,
794 copy_rtx (prev_reg
)));
795 bitmap_clear (move
->uses
);
797 prev_reg
= move
->new_reg
;
800 distance1_uses
= distances
[1] ? sbitmap_alloc (g
->num_nodes
) : NULL
;
803 bitmap_clear (distance1_uses
);
805 /* Every use of the register defined by node may require a different
806 copy of this register, depending on the time the use is scheduled.
807 Record which uses require which move results. */
808 for (e
= u
->out
; e
; e
= e
->next_out
)
809 if (e
->type
== TRUE_DEP
&& e
->dest
!= e
->src
)
811 int dest_copy
= (SCHED_TIME (e
->dest
->cuid
)
812 - SCHED_TIME (e
->src
->cuid
)) / ii
;
814 if (e
->distance
== 1)
815 dest_copy
= (SCHED_TIME (e
->dest
->cuid
)
816 - SCHED_TIME (e
->src
->cuid
) + ii
) / ii
;
818 if (SCHED_ROW (e
->dest
->cuid
) == SCHED_ROW (e
->src
->cuid
)
819 && SCHED_COLUMN (e
->dest
->cuid
) < SCHED_COLUMN (e
->src
->cuid
))
824 ps_reg_move_info
*move
;
826 move
= ps_reg_move (ps
, first_move
+ dest_copy
- 1);
827 bitmap_set_bit (move
->uses
, e
->dest
->cuid
);
828 if (e
->distance
== 1)
829 bitmap_set_bit (distance1_uses
, e
->dest
->cuid
);
833 must_follow
= sbitmap_alloc (first_move
+ nreg_moves
);
834 for (i_reg_move
= 0; i_reg_move
< nreg_moves
; i_reg_move
++)
835 if (!schedule_reg_move (ps
, first_move
+ i_reg_move
,
836 distance1_uses
, must_follow
))
838 sbitmap_free (must_follow
);
840 sbitmap_free (distance1_uses
);
841 if (i_reg_move
< nreg_moves
)
847 /* Emit the moves associatied with PS. Apply the substitutions
848 associated with them. */
850 apply_reg_moves (partial_schedule_ptr ps
)
852 ps_reg_move_info
*move
;
855 FOR_EACH_VEC_ELT (ps
->reg_moves
, i
, move
)
858 sbitmap_iterator sbi
;
860 EXECUTE_IF_SET_IN_BITMAP (move
->uses
, 0, i_use
, sbi
)
862 replace_rtx (ps
->g
->nodes
[i_use
].insn
, move
->old_reg
, move
->new_reg
);
863 df_insn_rescan (ps
->g
->nodes
[i_use
].insn
);
868 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
869 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
870 will move to cycle zero. */
872 reset_sched_times (partial_schedule_ptr ps
, int amount
)
876 ps_insn_ptr crr_insn
;
878 for (row
= 0; row
< ii
; row
++)
879 for (crr_insn
= ps
->rows
[row
]; crr_insn
; crr_insn
= crr_insn
->next_in_row
)
881 int u
= crr_insn
->id
;
882 int normalized_time
= SCHED_TIME (u
) - amount
;
883 int new_min_cycle
= PS_MIN_CYCLE (ps
) - amount
;
887 /* Print the scheduling times after the rotation. */
888 rtx_insn
*insn
= ps_rtl_insn (ps
, u
);
890 fprintf (dump_file
, "crr_insn->node=%d (insn id %d), "
891 "crr_insn->cycle=%d, min_cycle=%d", u
,
892 INSN_UID (insn
), normalized_time
, new_min_cycle
);
894 fprintf (dump_file
, " (branch)");
895 fprintf (dump_file
, "\n");
898 gcc_assert (SCHED_TIME (u
) >= ps
->min_cycle
);
899 gcc_assert (SCHED_TIME (u
) <= ps
->max_cycle
);
901 crr_insn
->cycle
= normalized_time
;
902 update_node_sched_params (u
, ii
, normalized_time
, new_min_cycle
);
906 /* Permute the insns according to their order in PS, from row 0 to
907 row ii-1, and position them right before LAST. This schedules
908 the insns of the loop kernel. */
910 permute_partial_schedule (partial_schedule_ptr ps
, rtx_insn
*last
)
916 for (row
= 0; row
< ii
; row
++)
917 for (ps_ij
= ps
->rows
[row
]; ps_ij
; ps_ij
= ps_ij
->next_in_row
)
919 rtx_insn
*insn
= ps_rtl_insn (ps
, ps_ij
->id
);
921 if (PREV_INSN (last
) != insn
)
923 if (ps_ij
->id
< ps
->g
->num_nodes
)
924 reorder_insns_nobb (ps_first_note (ps
, ps_ij
->id
), insn
,
927 add_insn_before (insn
, last
, NULL
);
932 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
933 respectively only if cycle C falls on the border of the scheduling
934 window boundaries marked by START and END cycles. STEP is the
935 direction of the window. */
937 set_must_precede_follow (sbitmap
*tmp_follow
, sbitmap must_follow
,
938 sbitmap
*tmp_precede
, sbitmap must_precede
, int c
,
939 int start
, int end
, int step
)
947 *tmp_precede
= must_precede
;
948 else /* step == -1. */
949 *tmp_follow
= must_follow
;
954 *tmp_follow
= must_follow
;
955 else /* step == -1. */
956 *tmp_precede
= must_precede
;
961 /* Return True if the branch can be moved to row ii-1 while
962 normalizing the partial schedule PS to start from cycle zero and thus
963 optimize the SC. Otherwise return False. */
965 optimize_sc (partial_schedule_ptr ps
, ddg_ptr g
)
967 int amount
= PS_MIN_CYCLE (ps
);
968 sbitmap sched_nodes
= sbitmap_alloc (g
->num_nodes
);
969 int start
, end
, step
;
972 int stage_count
, stage_count_curr
;
974 /* Compare the SC after normalization and SC after bringing the branch
975 to row ii-1. If they are equal just bail out. */
976 stage_count
= calculate_stage_count (ps
, amount
);
978 calculate_stage_count (ps
, SCHED_TIME (g
->closing_branch
->cuid
) - (ii
- 1));
980 if (stage_count
== stage_count_curr
)
983 fprintf (dump_file
, "SMS SC already optimized.\n");
991 fprintf (dump_file
, "SMS Trying to optimize branch location\n");
992 fprintf (dump_file
, "SMS partial schedule before trial:\n");
993 print_partial_schedule (ps
, dump_file
);
996 /* First, normalize the partial scheduling. */
997 reset_sched_times (ps
, amount
);
998 rotate_partial_schedule (ps
, amount
);
1002 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
1004 print_partial_schedule (ps
, dump_file
);
1007 if (SMODULO (SCHED_TIME (g
->closing_branch
->cuid
), ii
) == ii
- 1)
1013 bitmap_ones (sched_nodes
);
1015 /* Calculate the new placement of the branch. It should be in row
1016 ii-1 and fall into it's scheduling window. */
1017 if (get_sched_window (ps
, g
->closing_branch
, sched_nodes
, ii
, &start
,
1021 ps_insn_ptr next_ps_i
;
1022 int branch_cycle
= SCHED_TIME (g
->closing_branch
->cuid
);
1023 int row
= SMODULO (branch_cycle
, ps
->ii
);
1025 sbitmap must_precede
, must_follow
, tmp_precede
, tmp_follow
;
1029 fprintf (dump_file
, "\nTrying to schedule node %d "
1030 "INSN = %d in (%d .. %d) step %d\n",
1031 g
->closing_branch
->cuid
,
1032 (INSN_UID (g
->closing_branch
->insn
)), start
, end
, step
);
1034 gcc_assert ((step
> 0 && start
< end
) || (step
< 0 && start
> end
));
1037 c
= start
+ ii
- SMODULO (start
, ii
) - 1;
1038 gcc_assert (c
>= start
);
1044 "SMS failed to schedule branch at cycle: %d\n", c
);
1050 c
= start
- SMODULO (start
, ii
) - 1;
1051 gcc_assert (c
<= start
);
1057 "SMS failed to schedule branch at cycle: %d\n", c
);
1063 must_precede
= sbitmap_alloc (g
->num_nodes
);
1064 must_follow
= sbitmap_alloc (g
->num_nodes
);
1066 /* Try to schedule the branch is it's new cycle. */
1067 calculate_must_precede_follow (g
->closing_branch
, start
, end
,
1068 step
, ii
, sched_nodes
,
1069 must_precede
, must_follow
);
1071 set_must_precede_follow (&tmp_follow
, must_follow
, &tmp_precede
,
1072 must_precede
, c
, start
, end
, step
);
1074 /* Find the element in the partial schedule related to the closing
1075 branch so we can remove it from it's current cycle. */
1076 for (next_ps_i
= ps
->rows
[row
];
1077 next_ps_i
; next_ps_i
= next_ps_i
->next_in_row
)
1078 if (next_ps_i
->id
== g
->closing_branch
->cuid
)
1081 remove_node_from_ps (ps
, next_ps_i
);
1083 try_scheduling_node_in_cycle (ps
, g
->closing_branch
->cuid
, c
,
1084 sched_nodes
, &num_splits
,
1085 tmp_precede
, tmp_follow
);
1086 gcc_assert (num_splits
== 0);
1091 "SMS failed to schedule branch at cycle: %d, "
1092 "bringing it back to cycle %d\n", c
, branch_cycle
);
1094 /* The branch was failed to be placed in row ii - 1.
1095 Put it back in it's original place in the partial
1097 set_must_precede_follow (&tmp_follow
, must_follow
, &tmp_precede
,
1098 must_precede
, branch_cycle
, start
, end
,
1101 try_scheduling_node_in_cycle (ps
, g
->closing_branch
->cuid
,
1102 branch_cycle
, sched_nodes
,
1103 &num_splits
, tmp_precede
,
1105 gcc_assert (success
&& (num_splits
== 0));
1110 /* The branch is placed in row ii - 1. */
1113 "SMS success in moving branch to cycle %d\n", c
);
1115 update_node_sched_params (g
->closing_branch
->cuid
, ii
, c
,
1120 free (must_precede
);
1130 duplicate_insns_of_cycles (partial_schedule_ptr ps
, int from_stage
,
1131 int to_stage
, rtx count_reg
)
1136 for (row
= 0; row
< ps
->ii
; row
++)
1137 for (ps_ij
= ps
->rows
[row
]; ps_ij
; ps_ij
= ps_ij
->next_in_row
)
1140 int first_u
, last_u
;
1143 /* Do not duplicate any insn which refers to count_reg as it
1144 belongs to the control part.
1145 The closing branch is scheduled as well and thus should
1147 TODO: This should be done by analyzing the control part of
1149 u_insn
= ps_rtl_insn (ps
, u
);
1150 if (reg_mentioned_p (count_reg
, u_insn
)
1154 first_u
= SCHED_STAGE (u
);
1155 last_u
= first_u
+ ps_num_consecutive_stages (ps
, u
) - 1;
1156 if (from_stage
<= last_u
&& to_stage
>= first_u
)
1158 if (u
< ps
->g
->num_nodes
)
1159 duplicate_insn_chain (ps_first_note (ps
, u
), u_insn
);
1161 emit_insn (copy_rtx (PATTERN (u_insn
)));
1167 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1169 generate_prolog_epilog (partial_schedule_ptr ps
, struct loop
*loop
,
1170 rtx count_reg
, rtx count_init
)
1173 int last_stage
= PS_STAGE_COUNT (ps
) - 1;
1176 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1181 /* Generate instructions at the beginning of the prolog to
1182 adjust the loop count by STAGE_COUNT. If loop count is constant
1183 (count_init), this constant is adjusted by STAGE_COUNT in
1184 generate_prolog_epilog function. */
1185 rtx sub_reg
= NULL_RTX
;
1187 sub_reg
= expand_simple_binop (GET_MODE (count_reg
), MINUS
, count_reg
,
1188 gen_int_mode (last_stage
,
1189 GET_MODE (count_reg
)),
1190 count_reg
, 1, OPTAB_DIRECT
);
1191 gcc_assert (REG_P (sub_reg
));
1192 if (REGNO (sub_reg
) != REGNO (count_reg
))
1193 emit_move_insn (count_reg
, sub_reg
);
1196 for (i
= 0; i
< last_stage
; i
++)
1197 duplicate_insns_of_cycles (ps
, 0, i
, count_reg
);
1199 /* Put the prolog on the entry edge. */
1200 e
= loop_preheader_edge (loop
);
1201 split_edge_and_insert (e
, get_insns ());
1202 if (!flag_resched_modulo_sched
)
1203 e
->dest
->flags
|= BB_DISABLE_SCHEDULE
;
1207 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1210 for (i
= 0; i
< last_stage
; i
++)
1211 duplicate_insns_of_cycles (ps
, i
+ 1, last_stage
, count_reg
);
1213 /* Put the epilogue on the exit edge. */
1214 gcc_assert (single_exit (loop
));
1215 e
= single_exit (loop
);
1216 split_edge_and_insert (e
, get_insns ());
1217 if (!flag_resched_modulo_sched
)
1218 e
->dest
->flags
|= BB_DISABLE_SCHEDULE
;
1223 /* Mark LOOP as software pipelined so the later
1224 scheduling passes don't touch it. */
1226 mark_loop_unsched (struct loop
*loop
)
1229 basic_block
*bbs
= get_loop_body (loop
);
1231 for (i
= 0; i
< loop
->num_nodes
; i
++)
1232 bbs
[i
]->flags
|= BB_DISABLE_SCHEDULE
;
1237 /* Return true if all the BBs of the loop are empty except the
1240 loop_single_full_bb_p (struct loop
*loop
)
1243 basic_block
*bbs
= get_loop_body (loop
);
1245 for (i
= 0; i
< loop
->num_nodes
; i
++)
1247 rtx_insn
*head
, *tail
;
1248 bool empty_bb
= true;
1250 if (bbs
[i
] == loop
->header
)
1253 /* Make sure that basic blocks other than the header
1254 have only notes labels or jumps. */
1255 get_ebb_head_tail (bbs
[i
], bbs
[i
], &head
, &tail
);
1256 for (; head
!= NEXT_INSN (tail
); head
= NEXT_INSN (head
))
1258 if (NOTE_P (head
) || LABEL_P (head
)
1259 || (INSN_P (head
) && (DEBUG_INSN_P (head
) || JUMP_P (head
))))
1275 /* Dump file:line from INSN's location info to dump_file. */
1278 dump_insn_location (rtx_insn
*insn
)
1280 if (dump_file
&& INSN_HAS_LOCATION (insn
))
1282 expanded_location xloc
= insn_location (insn
);
1283 fprintf (dump_file
, " %s:%i", xloc
.file
, xloc
.line
);
1287 /* A simple loop from SMS point of view; it is a loop that is composed of
1288 either a single basic block or two BBs - a header and a latch. */
1289 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1290 && (EDGE_COUNT (loop->latch->preds) == 1) \
1291 && (EDGE_COUNT (loop->latch->succs) == 1))
1293 /* Return true if the loop is in its canonical form and false if not.
1294 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1296 loop_canon_p (struct loop
*loop
)
1299 if (loop
->inner
|| !loop_outer (loop
))
1302 fprintf (dump_file
, "SMS loop inner or !loop_outer\n");
1306 if (!single_exit (loop
))
1310 rtx_insn
*insn
= BB_END (loop
->header
);
1312 fprintf (dump_file
, "SMS loop many exits");
1313 dump_insn_location (insn
);
1314 fprintf (dump_file
, "\n");
1319 if (! SIMPLE_SMS_LOOP_P (loop
) && ! loop_single_full_bb_p (loop
))
1323 rtx_insn
*insn
= BB_END (loop
->header
);
1325 fprintf (dump_file
, "SMS loop many BBs.");
1326 dump_insn_location (insn
);
1327 fprintf (dump_file
, "\n");
1335 /* If there are more than one entry for the loop,
1336 make it one by splitting the first entry edge and
1337 redirecting the others to the new BB. */
1339 canon_loop (struct loop
*loop
)
1344 /* Avoid annoying special cases of edges going to exit
1346 FOR_EACH_EDGE (e
, i
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
1347 if ((e
->flags
& EDGE_FALLTHRU
) && (EDGE_COUNT (e
->src
->succs
) > 1))
1350 if (loop
->latch
== loop
->header
1351 || EDGE_COUNT (loop
->latch
->succs
) > 1)
1353 FOR_EACH_EDGE (e
, i
, loop
->header
->preds
)
1354 if (e
->src
== loop
->latch
)
1362 setup_sched_infos (void)
1364 memcpy (&sms_common_sched_info
, &haifa_common_sched_info
,
1365 sizeof (sms_common_sched_info
));
1366 sms_common_sched_info
.sched_pass_id
= SCHED_SMS_PASS
;
1367 common_sched_info
= &sms_common_sched_info
;
1369 sched_deps_info
= &sms_sched_deps_info
;
1370 current_sched_info
= &sms_sched_info
;
1373 /* Probability in % that the sms-ed loop rolls enough so that optimized
1374 version may be entered. Just a guess. */
1375 #define PROB_SMS_ENOUGH_ITERATIONS 80
1377 /* Used to calculate the upper bound of ii. */
1378 #define MAXII_FACTOR 2
1380 /* Main entry point, perform SMS scheduling on the loops of the function
1381 that consist of single basic blocks. */
1388 int maxii
, max_asap
;
1389 partial_schedule_ptr ps
;
1390 basic_block bb
= NULL
;
1392 basic_block condition_bb
= NULL
;
1394 gcov_type trip_count
= 0;
1396 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1397 | LOOPS_HAVE_RECORDED_EXITS
);
1398 if (number_of_loops (cfun
) <= 1)
1400 loop_optimizer_finalize ();
1401 return; /* There are no loops to schedule. */
1404 /* Initialize issue_rate. */
1405 if (targetm
.sched
.issue_rate
)
1407 int temp
= reload_completed
;
1409 reload_completed
= 1;
1410 issue_rate
= targetm
.sched
.issue_rate ();
1411 reload_completed
= temp
;
1416 /* Initialize the scheduler. */
1417 setup_sched_infos ();
1418 haifa_sched_init ();
1420 /* Allocate memory to hold the DDG array one entry for each loop.
1421 We use loop->num as index into this array. */
1422 g_arr
= XCNEWVEC (ddg_ptr
, number_of_loops (cfun
));
1426 fprintf (dump_file
, "\n\nSMS analysis phase\n");
1427 fprintf (dump_file
, "===================\n\n");
1430 /* Build DDGs for all the relevant loops and hold them in G_ARR
1431 indexed by the loop index. */
1432 FOR_EACH_LOOP (loop
, 0)
1434 rtx_insn
*head
, *tail
;
1437 /* For debugging. */
1438 if (dbg_cnt (sms_sched_loop
) == false)
1441 fprintf (dump_file
, "SMS reached max limit... \n");
1448 rtx_insn
*insn
= BB_END (loop
->header
);
1450 fprintf (dump_file
, "SMS loop num: %d", loop
->num
);
1451 dump_insn_location (insn
);
1452 fprintf (dump_file
, "\n");
1455 if (! loop_canon_p (loop
))
1458 if (! loop_single_full_bb_p (loop
))
1461 fprintf (dump_file
, "SMS not loop_single_full_bb_p\n");
1467 get_ebb_head_tail (bb
, bb
, &head
, &tail
);
1468 latch_edge
= loop_latch_edge (loop
);
1469 gcc_assert (single_exit (loop
));
1470 if (single_exit (loop
)->count
)
1471 trip_count
= latch_edge
->count
/ single_exit (loop
)->count
;
1473 /* Perform SMS only on loops that their average count is above threshold. */
1475 if ( latch_edge
->count
1476 && (latch_edge
->count
< single_exit (loop
)->count
* SMS_LOOP_AVERAGE_COUNT_THRESHOLD
))
1480 dump_insn_location (tail
);
1481 fprintf (dump_file
, "\nSMS single-bb-loop\n");
1482 if (profile_info
&& flag_branch_probabilities
)
1484 fprintf (dump_file
, "SMS loop-count ");
1485 fprintf (dump_file
, "%"PRId64
,
1486 (int64_t) bb
->count
);
1487 fprintf (dump_file
, "\n");
1488 fprintf (dump_file
, "SMS trip-count ");
1489 fprintf (dump_file
, "%"PRId64
,
1490 (int64_t) trip_count
);
1491 fprintf (dump_file
, "\n");
1492 fprintf (dump_file
, "SMS profile-sum-max ");
1493 fprintf (dump_file
, "%"PRId64
,
1494 (int64_t) profile_info
->sum_max
);
1495 fprintf (dump_file
, "\n");
1501 /* Make sure this is a doloop. */
1502 if ( !(count_reg
= doloop_register_get (head
, tail
)))
1505 fprintf (dump_file
, "SMS doloop_register_get failed\n");
1509 /* Don't handle BBs with calls or barriers
1510 or !single_set with the exception of instructions that include
1511 count_reg---these instructions are part of the control part
1512 that do-loop recognizes.
1513 ??? Should handle insns defining subregs. */
1514 for (insn
= head
; insn
!= NEXT_INSN (tail
); insn
= NEXT_INSN (insn
))
1520 || (NONDEBUG_INSN_P (insn
) && !JUMP_P (insn
)
1521 && !single_set (insn
) && GET_CODE (PATTERN (insn
)) != USE
1522 && !reg_mentioned_p (count_reg
, insn
))
1523 || (INSN_P (insn
) && (set
= single_set (insn
))
1524 && GET_CODE (SET_DEST (set
)) == SUBREG
))
1528 if (insn
!= NEXT_INSN (tail
))
1533 fprintf (dump_file
, "SMS loop-with-call\n");
1534 else if (BARRIER_P (insn
))
1535 fprintf (dump_file
, "SMS loop-with-barrier\n");
1536 else if ((NONDEBUG_INSN_P (insn
) && !JUMP_P (insn
)
1537 && !single_set (insn
) && GET_CODE (PATTERN (insn
)) != USE
))
1538 fprintf (dump_file
, "SMS loop-with-not-single-set\n");
1540 fprintf (dump_file
, "SMS loop with subreg in lhs\n");
1541 print_rtl_single (dump_file
, insn
);
1547 /* Always schedule the closing branch with the rest of the
1548 instructions. The branch is rotated to be in row ii-1 at the
1549 end of the scheduling procedure to make sure it's the last
1550 instruction in the iteration. */
1551 if (! (g
= create_ddg (bb
, 1)))
1554 fprintf (dump_file
, "SMS create_ddg failed\n");
1558 g_arr
[loop
->num
] = g
;
1560 fprintf (dump_file
, "...OK\n");
1565 fprintf (dump_file
, "\nSMS transformation phase\n");
1566 fprintf (dump_file
, "=========================\n\n");
1569 /* We don't want to perform SMS on new loops - created by versioning. */
1570 FOR_EACH_LOOP (loop
, 0)
1572 rtx_insn
*head
, *tail
;
1574 rtx_insn
*count_init
;
1575 int mii
, rec_mii
, stage_count
, min_cycle
;
1576 int64_t loop_count
= 0;
1579 if (! (g
= g_arr
[loop
->num
]))
1584 rtx_insn
*insn
= BB_END (loop
->header
);
1586 fprintf (dump_file
, "SMS loop num: %d", loop
->num
);
1587 dump_insn_location (insn
);
1588 fprintf (dump_file
, "\n");
1590 print_ddg (dump_file
, g
);
1593 get_ebb_head_tail (loop
->header
, loop
->header
, &head
, &tail
);
1595 latch_edge
= loop_latch_edge (loop
);
1596 gcc_assert (single_exit (loop
));
1597 if (single_exit (loop
)->count
)
1598 trip_count
= latch_edge
->count
/ single_exit (loop
)->count
;
1602 dump_insn_location (tail
);
1603 fprintf (dump_file
, "\nSMS single-bb-loop\n");
1604 if (profile_info
&& flag_branch_probabilities
)
1606 fprintf (dump_file
, "SMS loop-count ");
1607 fprintf (dump_file
, "%"PRId64
,
1608 (int64_t) bb
->count
);
1609 fprintf (dump_file
, "\n");
1610 fprintf (dump_file
, "SMS profile-sum-max ");
1611 fprintf (dump_file
, "%"PRId64
,
1612 (int64_t) profile_info
->sum_max
);
1613 fprintf (dump_file
, "\n");
1615 fprintf (dump_file
, "SMS doloop\n");
1616 fprintf (dump_file
, "SMS built-ddg %d\n", g
->num_nodes
);
1617 fprintf (dump_file
, "SMS num-loads %d\n", g
->num_loads
);
1618 fprintf (dump_file
, "SMS num-stores %d\n", g
->num_stores
);
1622 /* In case of th loop have doloop register it gets special
1625 if ((count_reg
= doloop_register_get (head
, tail
)))
1627 basic_block pre_header
;
1629 pre_header
= loop_preheader_edge (loop
)->src
;
1630 count_init
= const_iteration_count (count_reg
, pre_header
,
1633 gcc_assert (count_reg
);
1635 if (dump_file
&& count_init
)
1637 fprintf (dump_file
, "SMS const-doloop ");
1638 fprintf (dump_file
, "%"PRId64
,
1640 fprintf (dump_file
, "\n");
1643 node_order
= XNEWVEC (int, g
->num_nodes
);
1645 mii
= 1; /* Need to pass some estimate of mii. */
1646 rec_mii
= sms_order_nodes (g
, mii
, node_order
, &max_asap
);
1647 mii
= MAX (res_MII (g
), rec_mii
);
1648 maxii
= MAX (max_asap
, MAXII_FACTOR
* mii
);
1651 fprintf (dump_file
, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1652 rec_mii
, mii
, maxii
);
1656 set_node_sched_params (g
);
1660 ps
= sms_schedule_by_order (g
, mii
, maxii
, node_order
);
1664 /* Try to achieve optimized SC by normalizing the partial
1665 schedule (having the cycles start from cycle zero).
1666 The branch location must be placed in row ii-1 in the
1667 final scheduling. If failed, shift all instructions to
1668 position the branch in row ii-1. */
1669 opt_sc_p
= optimize_sc (ps
, g
);
1671 stage_count
= calculate_stage_count (ps
, 0);
1674 /* Bring the branch to cycle ii-1. */
1675 int amount
= (SCHED_TIME (g
->closing_branch
->cuid
)
1679 fprintf (dump_file
, "SMS schedule branch at cycle ii-1\n");
1681 stage_count
= calculate_stage_count (ps
, amount
);
1684 gcc_assert (stage_count
>= 1);
1687 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1688 1 means that there is no interleaving between iterations thus
1689 we let the scheduling passes do the job in this case. */
1690 if (stage_count
< PARAM_VALUE (PARAM_SMS_MIN_SC
)
1691 || (count_init
&& (loop_count
<= stage_count
))
1692 || (flag_branch_probabilities
&& (trip_count
<= stage_count
)))
1696 fprintf (dump_file
, "SMS failed... \n");
1697 fprintf (dump_file
, "SMS sched-failed (stage-count=%d,"
1698 " loop-count=", stage_count
);
1699 fprintf (dump_file
, "%"PRId64
, loop_count
);
1700 fprintf (dump_file
, ", trip-count=");
1701 fprintf (dump_file
, "%"PRId64
, trip_count
);
1702 fprintf (dump_file
, ")\n");
1709 /* Rotate the partial schedule to have the branch in row ii-1. */
1710 int amount
= SCHED_TIME (g
->closing_branch
->cuid
) - (ps
->ii
- 1);
1712 reset_sched_times (ps
, amount
);
1713 rotate_partial_schedule (ps
, amount
);
1716 set_columns_for_ps (ps
);
1718 min_cycle
= PS_MIN_CYCLE (ps
) - SMODULO (PS_MIN_CYCLE (ps
), ps
->ii
);
1719 if (!schedule_reg_moves (ps
))
1722 free_partial_schedule (ps
);
1726 /* Moves that handle incoming values might have been added
1727 to a new first stage. Bump the stage count if so.
1729 ??? Perhaps we could consider rotating the schedule here
1731 if (PS_MIN_CYCLE (ps
) < min_cycle
)
1733 reset_sched_times (ps
, 0);
1737 /* The stage count should now be correct without rotation. */
1738 gcc_checking_assert (stage_count
== calculate_stage_count (ps
, 0));
1739 PS_STAGE_COUNT (ps
) = stage_count
;
1745 dump_insn_location (tail
);
1746 fprintf (dump_file
, " SMS succeeded %d %d (with ii, sc)\n",
1747 ps
->ii
, stage_count
);
1748 print_partial_schedule (ps
, dump_file
);
1751 /* case the BCT count is not known , Do loop-versioning */
1752 if (count_reg
&& ! count_init
)
1754 rtx comp_rtx
= gen_rtx_GT (VOIDmode
, count_reg
,
1755 gen_int_mode (stage_count
,
1756 GET_MODE (count_reg
)));
1757 unsigned prob
= (PROB_SMS_ENOUGH_ITERATIONS
1758 * REG_BR_PROB_BASE
) / 100;
1760 loop_version (loop
, comp_rtx
, &condition_bb
,
1761 prob
, prob
, REG_BR_PROB_BASE
- prob
,
1765 /* Set new iteration count of loop kernel. */
1766 if (count_reg
&& count_init
)
1767 SET_SRC (single_set (count_init
)) = GEN_INT (loop_count
1770 /* Now apply the scheduled kernel to the RTL of the loop. */
1771 permute_partial_schedule (ps
, g
->closing_branch
->first_note
);
1773 /* Mark this loop as software pipelined so the later
1774 scheduling passes don't touch it. */
1775 if (! flag_resched_modulo_sched
)
1776 mark_loop_unsched (loop
);
1778 /* The life-info is not valid any more. */
1779 df_set_bb_dirty (g
->bb
);
1781 apply_reg_moves (ps
);
1783 print_node_sched_params (dump_file
, g
->num_nodes
, ps
);
1784 /* Generate prolog and epilog. */
1785 generate_prolog_epilog (ps
, loop
, count_reg
, count_init
);
1789 free_partial_schedule (ps
);
1790 node_sched_param_vec
.release ();
1797 /* Release scheduler data, needed until now because of DFA. */
1798 haifa_sched_finish ();
1799 loop_optimizer_finalize ();
1802 /* The SMS scheduling algorithm itself
1803 -----------------------------------
1804 Input: 'O' an ordered list of insns of a loop.
1805 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1807 'Q' is the empty Set
1808 'PS' is the partial schedule; it holds the currently scheduled nodes with
1810 'PSP' previously scheduled predecessors.
1811 'PSS' previously scheduled successors.
1812 't(u)' the cycle where u is scheduled.
1813 'l(u)' is the latency of u.
1814 'd(v,u)' is the dependence distance from v to u.
1815 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1816 the node ordering phase.
1817 'check_hardware_resources_conflicts(u, PS, c)'
1818 run a trace around cycle/slot through DFA model
1819 to check resource conflicts involving instruction u
1820 at cycle c given the partial schedule PS.
1821 'add_to_partial_schedule_at_time(u, PS, c)'
1822 Add the node/instruction u to the partial schedule
1824 'calculate_register_pressure(PS)'
1825 Given a schedule of instructions, calculate the register
1826 pressure it implies. One implementation could be the
1827 maximum number of overlapping live ranges.
1828 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1829 registers available in the hardware.
1833 3. for each node u in O in pre-computed order
1834 4. if (PSP(u) != Q && PSS(u) == Q) then
1835 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1836 6. start = Early_start; end = Early_start + II - 1; step = 1
1837 11. else if (PSP(u) == Q && PSS(u) != Q) then
1838 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1839 13. start = Late_start; end = Late_start - II + 1; step = -1
1840 14. else if (PSP(u) != Q && PSS(u) != Q) then
1841 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1842 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1843 17. start = Early_start;
1844 18. end = min(Early_start + II - 1 , Late_start);
1846 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1847 21. start = ASAP(u); end = start + II - 1; step = 1
1851 24. for (c = start ; c != end ; c += step)
1852 25. if check_hardware_resources_conflicts(u, PS, c) then
1853 26. add_to_partial_schedule_at_time(u, PS, c)
1858 31. if (success == false) then
1860 33. if (II > maxII) then
1861 34. finish - failed to schedule
1866 39. if (calculate_register_pressure(PS) > maxRP) then
1869 42. compute epilogue & prologue
1870 43. finish - succeeded to schedule
1872 ??? The algorithm restricts the scheduling window to II cycles.
1873 In rare cases, it may be better to allow windows of II+1 cycles.
1874 The window would then start and end on the same row, but with
1875 different "must precede" and "must follow" requirements. */
1877 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1878 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1879 set to 0 to save compile time. */
1880 #define DFA_HISTORY SMS_DFA_HISTORY
1882 /* A threshold for the number of repeated unsuccessful attempts to insert
1883 an empty row, before we flush the partial schedule and start over. */
1884 #define MAX_SPLIT_NUM 10
1885 /* Given the partial schedule PS, this function calculates and returns the
1886 cycles in which we can schedule the node with the given index I.
1887 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1888 noticed that there are several cases in which we fail to SMS the loop
1889 because the sched window of a node is empty due to tight data-deps. In
1890 such cases we want to unschedule some of the predecessors/successors
1891 until we get non-empty scheduling window. It returns -1 if the
1892 scheduling window is empty and zero otherwise. */
1895 get_sched_window (partial_schedule_ptr ps
, ddg_node_ptr u_node
,
1896 sbitmap sched_nodes
, int ii
, int *start_p
, int *step_p
,
1899 int start
, step
, end
;
1900 int early_start
, late_start
;
1902 sbitmap psp
= sbitmap_alloc (ps
->g
->num_nodes
);
1903 sbitmap pss
= sbitmap_alloc (ps
->g
->num_nodes
);
1904 sbitmap u_node_preds
= NODE_PREDECESSORS (u_node
);
1905 sbitmap u_node_succs
= NODE_SUCCESSORS (u_node
);
1911 /* 1. compute sched window for u (start, end, step). */
1914 psp_not_empty
= bitmap_and (psp
, u_node_preds
, sched_nodes
);
1915 pss_not_empty
= bitmap_and (pss
, u_node_succs
, sched_nodes
);
1917 /* We first compute a forward range (start <= end), then decide whether
1919 early_start
= INT_MIN
;
1920 late_start
= INT_MAX
;
1928 if (dump_file
&& (psp_not_empty
|| pss_not_empty
))
1930 fprintf (dump_file
, "\nAnalyzing dependencies for node %d (INSN %d)"
1931 "; ii = %d\n\n", u_node
->cuid
, INSN_UID (u_node
->insn
), ii
);
1932 fprintf (dump_file
, "%11s %11s %11s %11s %5s\n",
1933 "start", "early start", "late start", "end", "time");
1934 fprintf (dump_file
, "=========== =========== =========== ==========="
1937 /* Calculate early_start and limit end. Both bounds are inclusive. */
1939 for (e
= u_node
->in
; e
!= 0; e
= e
->next_in
)
1941 int v
= e
->src
->cuid
;
1943 if (bitmap_bit_p (sched_nodes
, v
))
1945 int p_st
= SCHED_TIME (v
);
1946 int earliest
= p_st
+ e
->latency
- (e
->distance
* ii
);
1947 int latest
= (e
->data_type
== MEM_DEP
? p_st
+ ii
- 1 : INT_MAX
);
1951 fprintf (dump_file
, "%11s %11d %11s %11d %5d",
1952 "", earliest
, "", latest
, p_st
);
1953 print_ddg_edge (dump_file
, e
);
1954 fprintf (dump_file
, "\n");
1957 early_start
= MAX (early_start
, earliest
);
1958 end
= MIN (end
, latest
);
1960 if (e
->type
== TRUE_DEP
&& e
->data_type
== REG_DEP
)
1965 /* Calculate late_start and limit start. Both bounds are inclusive. */
1967 for (e
= u_node
->out
; e
!= 0; e
= e
->next_out
)
1969 int v
= e
->dest
->cuid
;
1971 if (bitmap_bit_p (sched_nodes
, v
))
1973 int s_st
= SCHED_TIME (v
);
1974 int earliest
= (e
->data_type
== MEM_DEP
? s_st
- ii
+ 1 : INT_MIN
);
1975 int latest
= s_st
- e
->latency
+ (e
->distance
* ii
);
1979 fprintf (dump_file
, "%11d %11s %11d %11s %5d",
1980 earliest
, "", latest
, "", s_st
);
1981 print_ddg_edge (dump_file
, e
);
1982 fprintf (dump_file
, "\n");
1985 start
= MAX (start
, earliest
);
1986 late_start
= MIN (late_start
, latest
);
1988 if (e
->type
== TRUE_DEP
&& e
->data_type
== REG_DEP
)
1993 if (dump_file
&& (psp_not_empty
|| pss_not_empty
))
1995 fprintf (dump_file
, "----------- ----------- ----------- -----------"
1997 fprintf (dump_file
, "%11d %11d %11d %11d %5s %s\n",
1998 start
, early_start
, late_start
, end
, "",
1999 "(max, max, min, min)");
2002 /* Get a target scheduling window no bigger than ii. */
2003 if (early_start
== INT_MIN
&& late_start
== INT_MAX
)
2004 early_start
= NODE_ASAP (u_node
);
2005 else if (early_start
== INT_MIN
)
2006 early_start
= late_start
- (ii
- 1);
2007 late_start
= MIN (late_start
, early_start
+ (ii
- 1));
2009 /* Apply memory dependence limits. */
2010 start
= MAX (start
, early_start
);
2011 end
= MIN (end
, late_start
);
2013 if (dump_file
&& (psp_not_empty
|| pss_not_empty
))
2014 fprintf (dump_file
, "%11s %11d %11d %11s %5s final window\n",
2015 "", start
, end
, "", "");
2017 /* If there are at least as many successors as predecessors, schedule the
2018 node close to its successors. */
2019 if (pss_not_empty
&& count_succs
>= count_preds
)
2027 /* Now that we've finalized the window, make END an exclusive rather
2028 than an inclusive bound. */
2037 if ((start
>= end
&& step
== 1) || (start
<= end
&& step
== -1))
2040 fprintf (dump_file
, "\nEmpty window: start=%d, end=%d, step=%d\n",
2048 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2049 node currently been scheduled. At the end of the calculation
2050 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2051 U_NODE which are (1) already scheduled in the first/last row of
2052 U_NODE's scheduling window, (2) whose dependence inequality with U
2053 becomes an equality when U is scheduled in this same row, and (3)
2054 whose dependence latency is zero.
2056 The first and last rows are calculated using the following parameters:
2057 START/END rows - The cycles that begins/ends the traversal on the window;
2058 searching for an empty cycle to schedule U_NODE.
2059 STEP - The direction in which we traverse the window.
2060 II - The initiation interval. */
2063 calculate_must_precede_follow (ddg_node_ptr u_node
, int start
, int end
,
2064 int step
, int ii
, sbitmap sched_nodes
,
2065 sbitmap must_precede
, sbitmap must_follow
)
2068 int first_cycle_in_window
, last_cycle_in_window
;
2070 gcc_assert (must_precede
&& must_follow
);
2072 /* Consider the following scheduling window:
2073 {first_cycle_in_window, first_cycle_in_window+1, ...,
2074 last_cycle_in_window}. If step is 1 then the following will be
2075 the order we traverse the window: {start=first_cycle_in_window,
2076 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2077 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2078 end=first_cycle_in_window-1} if step is -1. */
2079 first_cycle_in_window
= (step
== 1) ? start
: end
- step
;
2080 last_cycle_in_window
= (step
== 1) ? end
- step
: start
;
2082 bitmap_clear (must_precede
);
2083 bitmap_clear (must_follow
);
2086 fprintf (dump_file
, "\nmust_precede: ");
2088 /* Instead of checking if:
2089 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2090 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2091 first_cycle_in_window)
2093 we use the fact that latency is non-negative:
2094 SCHED_TIME (e->src) - (e->distance * ii) <=
2095 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2096 first_cycle_in_window
2098 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2099 for (e
= u_node
->in
; e
!= 0; e
= e
->next_in
)
2100 if (bitmap_bit_p (sched_nodes
, e
->src
->cuid
)
2101 && ((SCHED_TIME (e
->src
->cuid
) - (e
->distance
* ii
)) ==
2102 first_cycle_in_window
))
2105 fprintf (dump_file
, "%d ", e
->src
->cuid
);
2107 bitmap_set_bit (must_precede
, e
->src
->cuid
);
2111 fprintf (dump_file
, "\nmust_follow: ");
2113 /* Instead of checking if:
2114 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2115 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2116 last_cycle_in_window)
2118 we use the fact that latency is non-negative:
2119 SCHED_TIME (e->dest) + (e->distance * ii) >=
2120 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2121 last_cycle_in_window
2123 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2124 for (e
= u_node
->out
; e
!= 0; e
= e
->next_out
)
2125 if (bitmap_bit_p (sched_nodes
, e
->dest
->cuid
)
2126 && ((SCHED_TIME (e
->dest
->cuid
) + (e
->distance
* ii
)) ==
2127 last_cycle_in_window
))
2130 fprintf (dump_file
, "%d ", e
->dest
->cuid
);
2132 bitmap_set_bit (must_follow
, e
->dest
->cuid
);
2136 fprintf (dump_file
, "\n");
2139 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2140 parameters to decide if that's possible:
2141 PS - The partial schedule.
2142 U - The serial number of U_NODE.
2143 NUM_SPLITS - The number of row splits made so far.
2144 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2145 the first row of the scheduling window)
2146 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2147 last row of the scheduling window) */
2150 try_scheduling_node_in_cycle (partial_schedule_ptr ps
,
2151 int u
, int cycle
, sbitmap sched_nodes
,
2152 int *num_splits
, sbitmap must_precede
,
2153 sbitmap must_follow
)
2158 verify_partial_schedule (ps
, sched_nodes
);
2159 psi
= ps_add_node_check_conflicts (ps
, u
, cycle
, must_precede
, must_follow
);
2162 SCHED_TIME (u
) = cycle
;
2163 bitmap_set_bit (sched_nodes
, u
);
2167 fprintf (dump_file
, "Scheduled w/o split in %d\n", cycle
);
2174 /* This function implements the scheduling algorithm for SMS according to the
2176 static partial_schedule_ptr
2177 sms_schedule_by_order (ddg_ptr g
, int mii
, int maxii
, int *nodes_order
)
2180 int i
, c
, success
, num_splits
= 0;
2181 int flush_and_start_over
= true;
2182 int num_nodes
= g
->num_nodes
;
2183 int start
, end
, step
; /* Place together into one struct? */
2184 sbitmap sched_nodes
= sbitmap_alloc (num_nodes
);
2185 sbitmap must_precede
= sbitmap_alloc (num_nodes
);
2186 sbitmap must_follow
= sbitmap_alloc (num_nodes
);
2187 sbitmap tobe_scheduled
= sbitmap_alloc (num_nodes
);
2189 partial_schedule_ptr ps
= create_partial_schedule (ii
, g
, DFA_HISTORY
);
2191 bitmap_ones (tobe_scheduled
);
2192 bitmap_clear (sched_nodes
);
2194 while (flush_and_start_over
&& (ii
< maxii
))
2198 fprintf (dump_file
, "Starting with ii=%d\n", ii
);
2199 flush_and_start_over
= false;
2200 bitmap_clear (sched_nodes
);
2202 for (i
= 0; i
< num_nodes
; i
++)
2204 int u
= nodes_order
[i
];
2205 ddg_node_ptr u_node
= &ps
->g
->nodes
[u
];
2206 rtx insn
= u_node
->insn
;
2208 if (!NONDEBUG_INSN_P (insn
))
2210 bitmap_clear_bit (tobe_scheduled
, u
);
2214 if (bitmap_bit_p (sched_nodes
, u
))
2217 /* Try to get non-empty scheduling window. */
2219 if (get_sched_window (ps
, u_node
, sched_nodes
, ii
, &start
,
2223 fprintf (dump_file
, "\nTrying to schedule node %d "
2224 "INSN = %d in (%d .. %d) step %d\n", u
, (INSN_UID
2225 (g
->nodes
[u
].insn
)), start
, end
, step
);
2227 gcc_assert ((step
> 0 && start
< end
)
2228 || (step
< 0 && start
> end
));
2230 calculate_must_precede_follow (u_node
, start
, end
, step
, ii
,
2231 sched_nodes
, must_precede
,
2234 for (c
= start
; c
!= end
; c
+= step
)
2236 sbitmap tmp_precede
, tmp_follow
;
2238 set_must_precede_follow (&tmp_follow
, must_follow
,
2239 &tmp_precede
, must_precede
,
2240 c
, start
, end
, step
);
2242 try_scheduling_node_in_cycle (ps
, u
, c
,
2244 &num_splits
, tmp_precede
,
2250 verify_partial_schedule (ps
, sched_nodes
);
2259 if (num_splits
>= MAX_SPLIT_NUM
)
2262 flush_and_start_over
= true;
2263 verify_partial_schedule (ps
, sched_nodes
);
2264 reset_partial_schedule (ps
, ii
);
2265 verify_partial_schedule (ps
, sched_nodes
);
2270 /* The scheduling window is exclusive of 'end'
2271 whereas compute_split_window() expects an inclusive,
2274 split_row
= compute_split_row (sched_nodes
, start
, end
- 1,
2277 split_row
= compute_split_row (sched_nodes
, end
+ 1, start
,
2280 ps_insert_empty_row (ps
, split_row
, sched_nodes
);
2281 i
--; /* Go back and retry node i. */
2284 fprintf (dump_file
, "num_splits=%d\n", num_splits
);
2287 /* ??? If (success), check register pressure estimates. */
2288 } /* Continue with next node. */
2289 } /* While flush_and_start_over. */
2292 free_partial_schedule (ps
);
2296 gcc_assert (bitmap_equal_p (tobe_scheduled
, sched_nodes
));
2298 sbitmap_free (sched_nodes
);
2299 sbitmap_free (must_precede
);
2300 sbitmap_free (must_follow
);
2301 sbitmap_free (tobe_scheduled
);
2306 /* This function inserts a new empty row into PS at the position
2307 according to SPLITROW, keeping all already scheduled instructions
2308 intact and updating their SCHED_TIME and cycle accordingly. */
2310 ps_insert_empty_row (partial_schedule_ptr ps
, int split_row
,
2311 sbitmap sched_nodes
)
2313 ps_insn_ptr crr_insn
;
2314 ps_insn_ptr
*rows_new
;
2316 int new_ii
= ii
+ 1;
2318 int *rows_length_new
;
2320 verify_partial_schedule (ps
, sched_nodes
);
2322 /* We normalize sched_time and rotate ps to have only non-negative sched
2323 times, for simplicity of updating cycles after inserting new row. */
2324 split_row
-= ps
->min_cycle
;
2325 split_row
= SMODULO (split_row
, ii
);
2327 fprintf (dump_file
, "split_row=%d\n", split_row
);
2329 reset_sched_times (ps
, PS_MIN_CYCLE (ps
));
2330 rotate_partial_schedule (ps
, PS_MIN_CYCLE (ps
));
2332 rows_new
= (ps_insn_ptr
*) xcalloc (new_ii
, sizeof (ps_insn_ptr
));
2333 rows_length_new
= (int *) xcalloc (new_ii
, sizeof (int));
2334 for (row
= 0; row
< split_row
; row
++)
2336 rows_new
[row
] = ps
->rows
[row
];
2337 rows_length_new
[row
] = ps
->rows_length
[row
];
2338 ps
->rows
[row
] = NULL
;
2339 for (crr_insn
= rows_new
[row
];
2340 crr_insn
; crr_insn
= crr_insn
->next_in_row
)
2342 int u
= crr_insn
->id
;
2343 int new_time
= SCHED_TIME (u
) + (SCHED_TIME (u
) / ii
);
2345 SCHED_TIME (u
) = new_time
;
2346 crr_insn
->cycle
= new_time
;
2347 SCHED_ROW (u
) = new_time
% new_ii
;
2348 SCHED_STAGE (u
) = new_time
/ new_ii
;
2353 rows_new
[split_row
] = NULL
;
2355 for (row
= split_row
; row
< ii
; row
++)
2357 rows_new
[row
+ 1] = ps
->rows
[row
];
2358 rows_length_new
[row
+ 1] = ps
->rows_length
[row
];
2359 ps
->rows
[row
] = NULL
;
2360 for (crr_insn
= rows_new
[row
+ 1];
2361 crr_insn
; crr_insn
= crr_insn
->next_in_row
)
2363 int u
= crr_insn
->id
;
2364 int new_time
= SCHED_TIME (u
) + (SCHED_TIME (u
) / ii
) + 1;
2366 SCHED_TIME (u
) = new_time
;
2367 crr_insn
->cycle
= new_time
;
2368 SCHED_ROW (u
) = new_time
% new_ii
;
2369 SCHED_STAGE (u
) = new_time
/ new_ii
;
2374 ps
->min_cycle
= ps
->min_cycle
+ ps
->min_cycle
/ ii
2375 + (SMODULO (ps
->min_cycle
, ii
) >= split_row
? 1 : 0);
2376 ps
->max_cycle
= ps
->max_cycle
+ ps
->max_cycle
/ ii
2377 + (SMODULO (ps
->max_cycle
, ii
) >= split_row
? 1 : 0);
2379 ps
->rows
= rows_new
;
2380 free (ps
->rows_length
);
2381 ps
->rows_length
= rows_length_new
;
2383 gcc_assert (ps
->min_cycle
>= 0);
2385 verify_partial_schedule (ps
, sched_nodes
);
2388 fprintf (dump_file
, "min_cycle=%d, max_cycle=%d\n", ps
->min_cycle
,
2392 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2393 UP which are the boundaries of it's scheduling window; compute using
2394 SCHED_NODES and II a row in the partial schedule that can be split
2395 which will separate a critical predecessor from a critical successor
2396 thereby expanding the window, and return it. */
2398 compute_split_row (sbitmap sched_nodes
, int low
, int up
, int ii
,
2399 ddg_node_ptr u_node
)
2402 int lower
= INT_MIN
, upper
= INT_MAX
;
2407 for (e
= u_node
->in
; e
!= 0; e
= e
->next_in
)
2409 int v
= e
->src
->cuid
;
2411 if (bitmap_bit_p (sched_nodes
, v
)
2412 && (low
== SCHED_TIME (v
) + e
->latency
- (e
->distance
* ii
)))
2413 if (SCHED_TIME (v
) > lower
)
2416 lower
= SCHED_TIME (v
);
2422 crit_cycle
= SCHED_TIME (crit_pred
) + 1;
2423 return SMODULO (crit_cycle
, ii
);
2426 for (e
= u_node
->out
; e
!= 0; e
= e
->next_out
)
2428 int v
= e
->dest
->cuid
;
2430 if (bitmap_bit_p (sched_nodes
, v
)
2431 && (up
== SCHED_TIME (v
) - e
->latency
+ (e
->distance
* ii
)))
2432 if (SCHED_TIME (v
) < upper
)
2435 upper
= SCHED_TIME (v
);
2441 crit_cycle
= SCHED_TIME (crit_succ
);
2442 return SMODULO (crit_cycle
, ii
);
2446 fprintf (dump_file
, "Both crit_pred and crit_succ are NULL\n");
2448 return SMODULO ((low
+ up
+ 1) / 2, ii
);
2452 verify_partial_schedule (partial_schedule_ptr ps
, sbitmap sched_nodes
)
2455 ps_insn_ptr crr_insn
;
2457 for (row
= 0; row
< ps
->ii
; row
++)
2461 for (crr_insn
= ps
->rows
[row
]; crr_insn
; crr_insn
= crr_insn
->next_in_row
)
2463 int u
= crr_insn
->id
;
2466 gcc_assert (bitmap_bit_p (sched_nodes
, u
));
2467 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2468 popcount (sched_nodes) == number of insns in ps. */
2469 gcc_assert (SCHED_TIME (u
) >= ps
->min_cycle
);
2470 gcc_assert (SCHED_TIME (u
) <= ps
->max_cycle
);
2473 gcc_assert (ps
->rows_length
[row
] == length
);
2478 /* This page implements the algorithm for ordering the nodes of a DDG
2479 for modulo scheduling, activated through the
2480 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2482 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2483 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2484 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2485 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2486 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2487 #define DEPTH(x) (ASAP ((x)))
2489 typedef struct node_order_params
* nopa
;
2491 static void order_nodes_of_sccs (ddg_all_sccs_ptr
, int * result
);
2492 static int order_nodes_in_scc (ddg_ptr
, sbitmap
, sbitmap
, int*, int);
2493 static nopa
calculate_order_params (ddg_ptr
, int, int *);
2494 static int find_max_asap (ddg_ptr
, sbitmap
);
2495 static int find_max_hv_min_mob (ddg_ptr
, sbitmap
);
2496 static int find_max_dv_min_mob (ddg_ptr
, sbitmap
);
2498 enum sms_direction
{BOTTOMUP
, TOPDOWN
};
2500 struct node_order_params
2507 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2509 check_nodes_order (int *node_order
, int num_nodes
)
2512 sbitmap tmp
= sbitmap_alloc (num_nodes
);
2517 fprintf (dump_file
, "SMS final nodes order: \n");
2519 for (i
= 0; i
< num_nodes
; i
++)
2521 int u
= node_order
[i
];
2524 fprintf (dump_file
, "%d ", u
);
2525 gcc_assert (u
< num_nodes
&& u
>= 0 && !bitmap_bit_p (tmp
, u
));
2527 bitmap_set_bit (tmp
, u
);
2531 fprintf (dump_file
, "\n");
2536 /* Order the nodes of G for scheduling and pass the result in
2537 NODE_ORDER. Also set aux.count of each node to ASAP.
2538 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2540 sms_order_nodes (ddg_ptr g
, int mii
, int * node_order
, int *pmax_asap
)
2544 ddg_all_sccs_ptr sccs
= create_ddg_all_sccs (g
);
2546 nopa nops
= calculate_order_params (g
, mii
, pmax_asap
);
2549 print_sccs (dump_file
, sccs
, g
);
2551 order_nodes_of_sccs (sccs
, node_order
);
2553 if (sccs
->num_sccs
> 0)
2554 /* First SCC has the largest recurrence_length. */
2555 rec_mii
= sccs
->sccs
[0]->recurrence_length
;
2557 /* Save ASAP before destroying node_order_params. */
2558 for (i
= 0; i
< g
->num_nodes
; i
++)
2560 ddg_node_ptr v
= &g
->nodes
[i
];
2561 v
->aux
.count
= ASAP (v
);
2565 free_ddg_all_sccs (sccs
);
2566 check_nodes_order (node_order
, g
->num_nodes
);
2572 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs
, int * node_order
)
2575 ddg_ptr g
= all_sccs
->ddg
;
2576 int num_nodes
= g
->num_nodes
;
2577 sbitmap prev_sccs
= sbitmap_alloc (num_nodes
);
2578 sbitmap on_path
= sbitmap_alloc (num_nodes
);
2579 sbitmap tmp
= sbitmap_alloc (num_nodes
);
2580 sbitmap ones
= sbitmap_alloc (num_nodes
);
2582 bitmap_clear (prev_sccs
);
2585 /* Perform the node ordering starting from the SCC with the highest recMII.
2586 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2587 for (i
= 0; i
< all_sccs
->num_sccs
; i
++)
2589 ddg_scc_ptr scc
= all_sccs
->sccs
[i
];
2591 /* Add nodes on paths from previous SCCs to the current SCC. */
2592 find_nodes_on_paths (on_path
, g
, prev_sccs
, scc
->nodes
);
2593 bitmap_ior (tmp
, scc
->nodes
, on_path
);
2595 /* Add nodes on paths from the current SCC to previous SCCs. */
2596 find_nodes_on_paths (on_path
, g
, scc
->nodes
, prev_sccs
);
2597 bitmap_ior (tmp
, tmp
, on_path
);
2599 /* Remove nodes of previous SCCs from current extended SCC. */
2600 bitmap_and_compl (tmp
, tmp
, prev_sccs
);
2602 pos
= order_nodes_in_scc (g
, prev_sccs
, tmp
, node_order
, pos
);
2603 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2606 /* Handle the remaining nodes that do not belong to any scc. Each call
2607 to order_nodes_in_scc handles a single connected component. */
2608 while (pos
< g
->num_nodes
)
2610 bitmap_and_compl (tmp
, ones
, prev_sccs
);
2611 pos
= order_nodes_in_scc (g
, prev_sccs
, tmp
, node_order
, pos
);
2613 sbitmap_free (prev_sccs
);
2614 sbitmap_free (on_path
);
2616 sbitmap_free (ones
);
2619 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2620 static struct node_order_params
*
2621 calculate_order_params (ddg_ptr g
, int mii ATTRIBUTE_UNUSED
, int *pmax_asap
)
2625 int num_nodes
= g
->num_nodes
;
2627 /* Allocate a place to hold ordering params for each node in the DDG. */
2628 nopa node_order_params_arr
;
2630 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2631 node_order_params_arr
= (nopa
) xcalloc (num_nodes
,
2632 sizeof (struct node_order_params
));
2634 /* Set the aux pointer of each node to point to its order_params structure. */
2635 for (u
= 0; u
< num_nodes
; u
++)
2636 g
->nodes
[u
].aux
.info
= &node_order_params_arr
[u
];
2638 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2639 calculate ASAP, ALAP, mobility, distance, and height for each node
2640 in the dependence (direct acyclic) graph. */
2642 /* We assume that the nodes in the array are in topological order. */
2645 for (u
= 0; u
< num_nodes
; u
++)
2647 ddg_node_ptr u_node
= &g
->nodes
[u
];
2650 for (e
= u_node
->in
; e
; e
= e
->next_in
)
2651 if (e
->distance
== 0)
2652 ASAP (u_node
) = MAX (ASAP (u_node
),
2653 ASAP (e
->src
) + e
->latency
);
2654 max_asap
= MAX (max_asap
, ASAP (u_node
));
2657 for (u
= num_nodes
- 1; u
> -1; u
--)
2659 ddg_node_ptr u_node
= &g
->nodes
[u
];
2661 ALAP (u_node
) = max_asap
;
2662 HEIGHT (u_node
) = 0;
2663 for (e
= u_node
->out
; e
; e
= e
->next_out
)
2664 if (e
->distance
== 0)
2666 ALAP (u_node
) = MIN (ALAP (u_node
),
2667 ALAP (e
->dest
) - e
->latency
);
2668 HEIGHT (u_node
) = MAX (HEIGHT (u_node
),
2669 HEIGHT (e
->dest
) + e
->latency
);
2674 fprintf (dump_file
, "\nOrder params\n");
2675 for (u
= 0; u
< num_nodes
; u
++)
2677 ddg_node_ptr u_node
= &g
->nodes
[u
];
2679 fprintf (dump_file
, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u
,
2680 ASAP (u_node
), ALAP (u_node
), HEIGHT (u_node
));
2684 *pmax_asap
= max_asap
;
2685 return node_order_params_arr
;
2689 find_max_asap (ddg_ptr g
, sbitmap nodes
)
2694 sbitmap_iterator sbi
;
2696 EXECUTE_IF_SET_IN_BITMAP (nodes
, 0, u
, sbi
)
2698 ddg_node_ptr u_node
= &g
->nodes
[u
];
2700 if (max_asap
< ASAP (u_node
))
2702 max_asap
= ASAP (u_node
);
2710 find_max_hv_min_mob (ddg_ptr g
, sbitmap nodes
)
2714 int min_mob
= INT_MAX
;
2716 sbitmap_iterator sbi
;
2718 EXECUTE_IF_SET_IN_BITMAP (nodes
, 0, u
, sbi
)
2720 ddg_node_ptr u_node
= &g
->nodes
[u
];
2722 if (max_hv
< HEIGHT (u_node
))
2724 max_hv
= HEIGHT (u_node
);
2725 min_mob
= MOB (u_node
);
2728 else if ((max_hv
== HEIGHT (u_node
))
2729 && (min_mob
> MOB (u_node
)))
2731 min_mob
= MOB (u_node
);
2739 find_max_dv_min_mob (ddg_ptr g
, sbitmap nodes
)
2743 int min_mob
= INT_MAX
;
2745 sbitmap_iterator sbi
;
2747 EXECUTE_IF_SET_IN_BITMAP (nodes
, 0, u
, sbi
)
2749 ddg_node_ptr u_node
= &g
->nodes
[u
];
2751 if (max_dv
< DEPTH (u_node
))
2753 max_dv
= DEPTH (u_node
);
2754 min_mob
= MOB (u_node
);
2757 else if ((max_dv
== DEPTH (u_node
))
2758 && (min_mob
> MOB (u_node
)))
2760 min_mob
= MOB (u_node
);
2767 /* Places the nodes of SCC into the NODE_ORDER array starting
2768 at position POS, according to the SMS ordering algorithm.
2769 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2770 the NODE_ORDER array, starting from position zero. */
2772 order_nodes_in_scc (ddg_ptr g
, sbitmap nodes_ordered
, sbitmap scc
,
2773 int * node_order
, int pos
)
2775 enum sms_direction dir
;
2776 int num_nodes
= g
->num_nodes
;
2777 sbitmap workset
= sbitmap_alloc (num_nodes
);
2778 sbitmap tmp
= sbitmap_alloc (num_nodes
);
2779 sbitmap zero_bitmap
= sbitmap_alloc (num_nodes
);
2780 sbitmap predecessors
= sbitmap_alloc (num_nodes
);
2781 sbitmap successors
= sbitmap_alloc (num_nodes
);
2783 bitmap_clear (predecessors
);
2784 find_predecessors (predecessors
, g
, nodes_ordered
);
2786 bitmap_clear (successors
);
2787 find_successors (successors
, g
, nodes_ordered
);
2790 if (bitmap_and (tmp
, predecessors
, scc
))
2792 bitmap_copy (workset
, tmp
);
2795 else if (bitmap_and (tmp
, successors
, scc
))
2797 bitmap_copy (workset
, tmp
);
2804 bitmap_clear (workset
);
2805 if ((u
= find_max_asap (g
, scc
)) >= 0)
2806 bitmap_set_bit (workset
, u
);
2810 bitmap_clear (zero_bitmap
);
2811 while (!bitmap_equal_p (workset
, zero_bitmap
))
2814 ddg_node_ptr v_node
;
2815 sbitmap v_node_preds
;
2816 sbitmap v_node_succs
;
2820 while (!bitmap_equal_p (workset
, zero_bitmap
))
2822 v
= find_max_hv_min_mob (g
, workset
);
2823 v_node
= &g
->nodes
[v
];
2824 node_order
[pos
++] = v
;
2825 v_node_succs
= NODE_SUCCESSORS (v_node
);
2826 bitmap_and (tmp
, v_node_succs
, scc
);
2828 /* Don't consider the already ordered successors again. */
2829 bitmap_and_compl (tmp
, tmp
, nodes_ordered
);
2830 bitmap_ior (workset
, workset
, tmp
);
2831 bitmap_clear_bit (workset
, v
);
2832 bitmap_set_bit (nodes_ordered
, v
);
2835 bitmap_clear (predecessors
);
2836 find_predecessors (predecessors
, g
, nodes_ordered
);
2837 bitmap_and (workset
, predecessors
, scc
);
2841 while (!bitmap_equal_p (workset
, zero_bitmap
))
2843 v
= find_max_dv_min_mob (g
, workset
);
2844 v_node
= &g
->nodes
[v
];
2845 node_order
[pos
++] = v
;
2846 v_node_preds
= NODE_PREDECESSORS (v_node
);
2847 bitmap_and (tmp
, v_node_preds
, scc
);
2849 /* Don't consider the already ordered predecessors again. */
2850 bitmap_and_compl (tmp
, tmp
, nodes_ordered
);
2851 bitmap_ior (workset
, workset
, tmp
);
2852 bitmap_clear_bit (workset
, v
);
2853 bitmap_set_bit (nodes_ordered
, v
);
2856 bitmap_clear (successors
);
2857 find_successors (successors
, g
, nodes_ordered
);
2858 bitmap_and (workset
, successors
, scc
);
2862 sbitmap_free (workset
);
2863 sbitmap_free (zero_bitmap
);
2864 sbitmap_free (predecessors
);
2865 sbitmap_free (successors
);
2870 /* This page contains functions for manipulating partial-schedules during
2871 modulo scheduling. */
2873 /* Create a partial schedule and allocate a memory to hold II rows. */
2875 static partial_schedule_ptr
2876 create_partial_schedule (int ii
, ddg_ptr g
, int history
)
2878 partial_schedule_ptr ps
= XNEW (struct partial_schedule
);
2879 ps
->rows
= (ps_insn_ptr
*) xcalloc (ii
, sizeof (ps_insn_ptr
));
2880 ps
->rows_length
= (int *) xcalloc (ii
, sizeof (int));
2881 ps
->reg_moves
.create (0);
2883 ps
->history
= history
;
2884 ps
->min_cycle
= INT_MAX
;
2885 ps
->max_cycle
= INT_MIN
;
2891 /* Free the PS_INSNs in rows array of the given partial schedule.
2892 ??? Consider caching the PS_INSN's. */
2894 free_ps_insns (partial_schedule_ptr ps
)
2898 for (i
= 0; i
< ps
->ii
; i
++)
2902 ps_insn_ptr ps_insn
= ps
->rows
[i
]->next_in_row
;
2905 ps
->rows
[i
] = ps_insn
;
2911 /* Free all the memory allocated to the partial schedule. */
2914 free_partial_schedule (partial_schedule_ptr ps
)
2916 ps_reg_move_info
*move
;
2922 FOR_EACH_VEC_ELT (ps
->reg_moves
, i
, move
)
2923 sbitmap_free (move
->uses
);
2924 ps
->reg_moves
.release ();
2928 free (ps
->rows_length
);
2932 /* Clear the rows array with its PS_INSNs, and create a new one with
2936 reset_partial_schedule (partial_schedule_ptr ps
, int new_ii
)
2941 if (new_ii
== ps
->ii
)
2943 ps
->rows
= (ps_insn_ptr
*) xrealloc (ps
->rows
, new_ii
2944 * sizeof (ps_insn_ptr
));
2945 memset (ps
->rows
, 0, new_ii
* sizeof (ps_insn_ptr
));
2946 ps
->rows_length
= (int *) xrealloc (ps
->rows_length
, new_ii
* sizeof (int));
2947 memset (ps
->rows_length
, 0, new_ii
* sizeof (int));
2949 ps
->min_cycle
= INT_MAX
;
2950 ps
->max_cycle
= INT_MIN
;
2953 /* Prints the partial schedule as an ii rows array, for each rows
2954 print the ids of the insns in it. */
2956 print_partial_schedule (partial_schedule_ptr ps
, FILE *dump
)
2960 for (i
= 0; i
< ps
->ii
; i
++)
2962 ps_insn_ptr ps_i
= ps
->rows
[i
];
2964 fprintf (dump
, "\n[ROW %d ]: ", i
);
2967 rtx_insn
*insn
= ps_rtl_insn (ps
, ps_i
->id
);
2970 fprintf (dump
, "%d (branch), ", INSN_UID (insn
));
2972 fprintf (dump
, "%d, ", INSN_UID (insn
));
2974 ps_i
= ps_i
->next_in_row
;
2979 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2981 create_ps_insn (int id
, int cycle
)
2983 ps_insn_ptr ps_i
= XNEW (struct ps_insn
);
2986 ps_i
->next_in_row
= NULL
;
2987 ps_i
->prev_in_row
= NULL
;
2988 ps_i
->cycle
= cycle
;
2994 /* Removes the given PS_INSN from the partial schedule. */
2996 remove_node_from_ps (partial_schedule_ptr ps
, ps_insn_ptr ps_i
)
3000 gcc_assert (ps
&& ps_i
);
3002 row
= SMODULO (ps_i
->cycle
, ps
->ii
);
3003 if (! ps_i
->prev_in_row
)
3005 gcc_assert (ps_i
== ps
->rows
[row
]);
3006 ps
->rows
[row
] = ps_i
->next_in_row
;
3008 ps
->rows
[row
]->prev_in_row
= NULL
;
3012 ps_i
->prev_in_row
->next_in_row
= ps_i
->next_in_row
;
3013 if (ps_i
->next_in_row
)
3014 ps_i
->next_in_row
->prev_in_row
= ps_i
->prev_in_row
;
3017 ps
->rows_length
[row
] -= 1;
3022 /* Unlike what literature describes for modulo scheduling (which focuses
3023 on VLIW machines) the order of the instructions inside a cycle is
3024 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
3025 where the current instruction should go relative to the already
3026 scheduled instructions in the given cycle. Go over these
3027 instructions and find the first possible column to put it in. */
3029 ps_insn_find_column (partial_schedule_ptr ps
, ps_insn_ptr ps_i
,
3030 sbitmap must_precede
, sbitmap must_follow
)
3032 ps_insn_ptr next_ps_i
;
3033 ps_insn_ptr first_must_follow
= NULL
;
3034 ps_insn_ptr last_must_precede
= NULL
;
3035 ps_insn_ptr last_in_row
= NULL
;
3041 row
= SMODULO (ps_i
->cycle
, ps
->ii
);
3043 /* Find the first must follow and the last must precede
3044 and insert the node immediately after the must precede
3045 but make sure that it there is no must follow after it. */
3046 for (next_ps_i
= ps
->rows
[row
];
3048 next_ps_i
= next_ps_i
->next_in_row
)
3051 && bitmap_bit_p (must_follow
, next_ps_i
->id
)
3052 && ! first_must_follow
)
3053 first_must_follow
= next_ps_i
;
3054 if (must_precede
&& bitmap_bit_p (must_precede
, next_ps_i
->id
))
3056 /* If we have already met a node that must follow, then
3057 there is no possible column. */
3058 if (first_must_follow
)
3061 last_must_precede
= next_ps_i
;
3063 /* The closing branch must be the last in the row. */
3065 && bitmap_bit_p (must_precede
, next_ps_i
->id
)
3066 && JUMP_P (ps_rtl_insn (ps
, next_ps_i
->id
)))
3069 last_in_row
= next_ps_i
;
3072 /* The closing branch is scheduled as well. Make sure there is no
3073 dependent instruction after it as the branch should be the last
3074 instruction in the row. */
3075 if (JUMP_P (ps_rtl_insn (ps
, ps_i
->id
)))
3077 if (first_must_follow
)
3081 /* Make the branch the last in the row. New instructions
3082 will be inserted at the beginning of the row or after the
3083 last must_precede instruction thus the branch is guaranteed
3084 to remain the last instruction in the row. */
3085 last_in_row
->next_in_row
= ps_i
;
3086 ps_i
->prev_in_row
= last_in_row
;
3087 ps_i
->next_in_row
= NULL
;
3090 ps
->rows
[row
] = ps_i
;
3094 /* Now insert the node after INSERT_AFTER_PSI. */
3096 if (! last_must_precede
)
3098 ps_i
->next_in_row
= ps
->rows
[row
];
3099 ps_i
->prev_in_row
= NULL
;
3100 if (ps_i
->next_in_row
)
3101 ps_i
->next_in_row
->prev_in_row
= ps_i
;
3102 ps
->rows
[row
] = ps_i
;
3106 ps_i
->next_in_row
= last_must_precede
->next_in_row
;
3107 last_must_precede
->next_in_row
= ps_i
;
3108 ps_i
->prev_in_row
= last_must_precede
;
3109 if (ps_i
->next_in_row
)
3110 ps_i
->next_in_row
->prev_in_row
= ps_i
;
3116 /* Advances the PS_INSN one column in its current row; returns false
3117 in failure and true in success. Bit N is set in MUST_FOLLOW if
3118 the node with cuid N must be come after the node pointed to by
3119 PS_I when scheduled in the same cycle. */
3121 ps_insn_advance_column (partial_schedule_ptr ps
, ps_insn_ptr ps_i
,
3122 sbitmap must_follow
)
3124 ps_insn_ptr prev
, next
;
3130 row
= SMODULO (ps_i
->cycle
, ps
->ii
);
3132 if (! ps_i
->next_in_row
)
3135 /* Check if next_in_row is dependent on ps_i, both having same sched
3136 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3137 if (must_follow
&& bitmap_bit_p (must_follow
, ps_i
->next_in_row
->id
))
3140 /* Advance PS_I over its next_in_row in the doubly linked list. */
3141 prev
= ps_i
->prev_in_row
;
3142 next
= ps_i
->next_in_row
;
3144 if (ps_i
== ps
->rows
[row
])
3145 ps
->rows
[row
] = next
;
3147 ps_i
->next_in_row
= next
->next_in_row
;
3149 if (next
->next_in_row
)
3150 next
->next_in_row
->prev_in_row
= ps_i
;
3152 next
->next_in_row
= ps_i
;
3153 ps_i
->prev_in_row
= next
;
3155 next
->prev_in_row
= prev
;
3157 prev
->next_in_row
= next
;
3162 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3163 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3164 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3165 before/after (respectively) the node pointed to by PS_I when scheduled
3166 in the same cycle. */
3168 add_node_to_ps (partial_schedule_ptr ps
, int id
, int cycle
,
3169 sbitmap must_precede
, sbitmap must_follow
)
3172 int row
= SMODULO (cycle
, ps
->ii
);
3174 if (ps
->rows_length
[row
] >= issue_rate
)
3177 ps_i
= create_ps_insn (id
, cycle
);
3179 /* Finds and inserts PS_I according to MUST_FOLLOW and
3181 if (! ps_insn_find_column (ps
, ps_i
, must_precede
, must_follow
))
3187 ps
->rows_length
[row
] += 1;
3191 /* Advance time one cycle. Assumes DFA is being used. */
3193 advance_one_cycle (void)
3195 if (targetm
.sched
.dfa_pre_cycle_insn
)
3196 state_transition (curr_state
,
3197 targetm
.sched
.dfa_pre_cycle_insn ());
3199 state_transition (curr_state
, NULL
);
3201 if (targetm
.sched
.dfa_post_cycle_insn
)
3202 state_transition (curr_state
,
3203 targetm
.sched
.dfa_post_cycle_insn ());
3208 /* Checks if PS has resource conflicts according to DFA, starting from
3209 FROM cycle to TO cycle; returns true if there are conflicts and false
3210 if there are no conflicts. Assumes DFA is being used. */
3212 ps_has_conflicts (partial_schedule_ptr ps
, int from
, int to
)
3216 state_reset (curr_state
);
3218 for (cycle
= from
; cycle
<= to
; cycle
++)
3220 ps_insn_ptr crr_insn
;
3221 /* Holds the remaining issue slots in the current row. */
3222 int can_issue_more
= issue_rate
;
3224 /* Walk through the DFA for the current row. */
3225 for (crr_insn
= ps
->rows
[SMODULO (cycle
, ps
->ii
)];
3227 crr_insn
= crr_insn
->next_in_row
)
3229 rtx_insn
*insn
= ps_rtl_insn (ps
, crr_insn
->id
);
3231 if (!NONDEBUG_INSN_P (insn
))
3234 /* Check if there is room for the current insn. */
3235 if (!can_issue_more
|| state_dead_lock_p (curr_state
))
3238 /* Update the DFA state and return with failure if the DFA found
3239 resource conflicts. */
3240 if (state_transition (curr_state
, insn
) >= 0)
3243 if (targetm
.sched
.variable_issue
)
3245 targetm
.sched
.variable_issue (sched_dump
, sched_verbose
,
3246 insn
, can_issue_more
);
3247 /* A naked CLOBBER or USE generates no instruction, so don't
3248 let them consume issue slots. */
3249 else if (GET_CODE (PATTERN (insn
)) != USE
3250 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3254 /* Advance the DFA to the next cycle. */
3255 advance_one_cycle ();
3260 /* Checks if the given node causes resource conflicts when added to PS at
3261 cycle C. If not the node is added to PS and returned; otherwise zero
3262 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3263 cuid N must be come before/after (respectively) the node pointed to by
3264 PS_I when scheduled in the same cycle. */
3266 ps_add_node_check_conflicts (partial_schedule_ptr ps
, int n
,
3267 int c
, sbitmap must_precede
,
3268 sbitmap must_follow
)
3270 int has_conflicts
= 0;
3273 /* First add the node to the PS, if this succeeds check for
3274 conflicts, trying different issue slots in the same row. */
3275 if (! (ps_i
= add_node_to_ps (ps
, n
, c
, must_precede
, must_follow
)))
3276 return NULL
; /* Failed to insert the node at the given cycle. */
3278 has_conflicts
= ps_has_conflicts (ps
, c
, c
)
3280 && ps_has_conflicts (ps
,
3284 /* Try different issue slots to find one that the given node can be
3285 scheduled in without conflicts. */
3286 while (has_conflicts
)
3288 if (! ps_insn_advance_column (ps
, ps_i
, must_follow
))
3290 has_conflicts
= ps_has_conflicts (ps
, c
, c
)
3292 && ps_has_conflicts (ps
,
3299 remove_node_from_ps (ps
, ps_i
);
3303 ps
->min_cycle
= MIN (ps
->min_cycle
, c
);
3304 ps
->max_cycle
= MAX (ps
->max_cycle
, c
);
3308 /* Calculate the stage count of the partial schedule PS. The calculation
3309 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3311 calculate_stage_count (partial_schedule_ptr ps
, int rotation_amount
)
3313 int new_min_cycle
= PS_MIN_CYCLE (ps
) - rotation_amount
;
3314 int new_max_cycle
= PS_MAX_CYCLE (ps
) - rotation_amount
;
3315 int stage_count
= CALC_STAGE_COUNT (-1, new_min_cycle
, ps
->ii
);
3317 /* The calculation of stage count is done adding the number of stages
3318 before cycle zero and after cycle zero. */
3319 stage_count
+= CALC_STAGE_COUNT (new_max_cycle
, 0, ps
->ii
);
3324 /* Rotate the rows of PS such that insns scheduled at time
3325 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3327 rotate_partial_schedule (partial_schedule_ptr ps
, int start_cycle
)
3329 int i
, row
, backward_rotates
;
3330 int last_row
= ps
->ii
- 1;
3332 if (start_cycle
== 0)
3335 backward_rotates
= SMODULO (start_cycle
, ps
->ii
);
3337 /* Revisit later and optimize this into a single loop. */
3338 for (i
= 0; i
< backward_rotates
; i
++)
3340 ps_insn_ptr first_row
= ps
->rows
[0];
3341 int first_row_length
= ps
->rows_length
[0];
3343 for (row
= 0; row
< last_row
; row
++)
3345 ps
->rows
[row
] = ps
->rows
[row
+ 1];
3346 ps
->rows_length
[row
] = ps
->rows_length
[row
+ 1];
3349 ps
->rows
[last_row
] = first_row
;
3350 ps
->rows_length
[last_row
] = first_row_length
;
3353 ps
->max_cycle
-= start_cycle
;
3354 ps
->min_cycle
-= start_cycle
;
3357 #endif /* INSN_SCHEDULING */
3359 /* Run instruction scheduler. */
3360 /* Perform SMS module scheduling. */
3364 const pass_data pass_data_sms
=
3366 RTL_PASS
, /* type */
3368 OPTGROUP_NONE
, /* optinfo_flags */
3370 0, /* properties_required */
3371 0, /* properties_provided */
3372 0, /* properties_destroyed */
3373 0, /* todo_flags_start */
3374 TODO_df_finish
, /* todo_flags_finish */
3377 class pass_sms
: public rtl_opt_pass
3380 pass_sms (gcc::context
*ctxt
)
3381 : rtl_opt_pass (pass_data_sms
, ctxt
)
3384 /* opt_pass methods: */
3385 virtual bool gate (function
*)
3387 return (optimize
> 0 && flag_modulo_sched
);
3390 virtual unsigned int execute (function
*);
3392 }; // class pass_sms
3395 pass_sms::execute (function
*fun ATTRIBUTE_UNUSED
)
3397 #ifdef INSN_SCHEDULING
3400 /* Collect loop information to be used in SMS. */
3401 cfg_layout_initialize (0);
3404 /* Update the life information, because we add pseudos. */
3405 max_regno
= max_reg_num ();
3407 /* Finalize layout changes. */
3408 FOR_EACH_BB_FN (bb
, fun
)
3409 if (bb
->next_bb
!= EXIT_BLOCK_PTR_FOR_FN (fun
))
3410 bb
->aux
= bb
->next_bb
;
3411 free_dominance_info (CDI_DOMINATORS
);
3412 cfg_layout_finalize ();
3413 #endif /* INSN_SCHEDULING */
3420 make_pass_sms (gcc::context
*ctxt
)
3422 return new pass_sms (ctxt
);