1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
75 #include "coretypes.h"
81 #include "hard-reg-set.h"
82 #include "basic-block.h"
83 #include "insn-config.h"
85 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "insn-attr.h"
92 /* It is not safe to use ordinary gen_lowpart in combine.
93 Use gen_lowpart_for_combine instead. See comments there. */
94 #define gen_lowpart dont_use_gen_lowpart_you_dummy
96 /* Number of attempts to combine instructions in this function. */
98 static int combine_attempts
;
100 /* Number of attempts that got as far as substitution in this function. */
102 static int combine_merges
;
104 /* Number of instructions combined with added SETs in this function. */
106 static int combine_extras
;
108 /* Number of instructions combined in this function. */
110 static int combine_successes
;
112 /* Totals over entire compilation. */
114 static int total_attempts
, total_merges
, total_extras
, total_successes
;
117 /* Vector mapping INSN_UIDs to cuids.
118 The cuids are like uids but increase monotonically always.
119 Combine always uses cuids so that it can compare them.
120 But actually renumbering the uids, which we used to do,
121 proves to be a bad idea because it makes it hard to compare
122 the dumps produced by earlier passes with those from later passes. */
124 static int *uid_cuid
;
125 static int max_uid_cuid
;
127 /* Get the cuid of an insn. */
129 #define INSN_CUID(INSN) \
130 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
132 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
133 BITS_PER_WORD would invoke undefined behavior. Work around it. */
135 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
136 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
138 #define nonzero_bits(X, M) \
139 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
141 #define num_sign_bit_copies(X, M) \
142 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
144 /* Maximum register number, which is the size of the tables below. */
146 static unsigned int combine_max_regno
;
148 /* Record last point of death of (hard or pseudo) register n. */
150 static rtx
*reg_last_death
;
152 /* Record last point of modification of (hard or pseudo) register n. */
154 static rtx
*reg_last_set
;
156 /* Record the cuid of the last insn that invalidated memory
157 (anything that writes memory, and subroutine calls, but not pushes). */
159 static int mem_last_set
;
161 /* Record the cuid of the last CALL_INSN
162 so we can tell whether a potential combination crosses any calls. */
164 static int last_call_cuid
;
166 /* When `subst' is called, this is the insn that is being modified
167 (by combining in a previous insn). The PATTERN of this insn
168 is still the old pattern partially modified and it should not be
169 looked at, but this may be used to examine the successors of the insn
170 to judge whether a simplification is valid. */
172 static rtx subst_insn
;
174 /* This is the lowest CUID that `subst' is currently dealing with.
175 get_last_value will not return a value if the register was set at or
176 after this CUID. If not for this mechanism, we could get confused if
177 I2 or I1 in try_combine were an insn that used the old value of a register
178 to obtain a new value. In that case, we might erroneously get the
179 new value of the register when we wanted the old one. */
181 static int subst_low_cuid
;
183 /* This contains any hard registers that are used in newpat; reg_dead_at_p
184 must consider all these registers to be always live. */
186 static HARD_REG_SET newpat_used_regs
;
188 /* This is an insn to which a LOG_LINKS entry has been added. If this
189 insn is the earlier than I2 or I3, combine should rescan starting at
192 static rtx added_links_insn
;
194 /* Basic block in which we are performing combines. */
195 static basic_block this_basic_block
;
197 /* A bitmap indicating which blocks had registers go dead at entry.
198 After combine, we'll need to re-do global life analysis with
199 those blocks as starting points. */
200 static sbitmap refresh_blocks
;
202 /* The next group of arrays allows the recording of the last value assigned
203 to (hard or pseudo) register n. We use this information to see if an
204 operation being processed is redundant given a prior operation performed
205 on the register. For example, an `and' with a constant is redundant if
206 all the zero bits are already known to be turned off.
208 We use an approach similar to that used by cse, but change it in the
211 (1) We do not want to reinitialize at each label.
212 (2) It is useful, but not critical, to know the actual value assigned
213 to a register. Often just its form is helpful.
215 Therefore, we maintain the following arrays:
217 reg_last_set_value the last value assigned
218 reg_last_set_label records the value of label_tick when the
219 register was assigned
220 reg_last_set_table_tick records the value of label_tick when a
221 value using the register is assigned
222 reg_last_set_invalid set to nonzero when it is not valid
223 to use the value of this register in some
226 To understand the usage of these tables, it is important to understand
227 the distinction between the value in reg_last_set_value being valid
228 and the register being validly contained in some other expression in the
231 Entry I in reg_last_set_value is valid if it is nonzero, and either
232 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
234 Register I may validly appear in any expression returned for the value
235 of another register if reg_n_sets[i] is 1. It may also appear in the
236 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
237 reg_last_set_invalid[j] is zero.
239 If an expression is found in the table containing a register which may
240 not validly appear in an expression, the register is replaced by
241 something that won't match, (clobber (const_int 0)).
243 reg_last_set_invalid[i] is set nonzero when register I is being assigned
244 to and reg_last_set_table_tick[i] == label_tick. */
246 /* Record last value assigned to (hard or pseudo) register n. */
248 static rtx
*reg_last_set_value
;
250 /* Record the value of label_tick when the value for register n is placed in
251 reg_last_set_value[n]. */
253 static int *reg_last_set_label
;
255 /* Record the value of label_tick when an expression involving register n
256 is placed in reg_last_set_value. */
258 static int *reg_last_set_table_tick
;
260 /* Set nonzero if references to register n in expressions should not be
263 static char *reg_last_set_invalid
;
265 /* Incremented for each label. */
267 static int label_tick
;
269 /* Some registers that are set more than once and used in more than one
270 basic block are nevertheless always set in similar ways. For example,
271 a QImode register may be loaded from memory in two places on a machine
272 where byte loads zero extend.
274 We record in the following array what we know about the nonzero
275 bits of a register, specifically which bits are known to be zero.
277 If an entry is zero, it means that we don't know anything special. */
279 static unsigned HOST_WIDE_INT
*reg_nonzero_bits
;
281 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
282 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
284 static enum machine_mode nonzero_bits_mode
;
286 /* Nonzero if we know that a register has some leading bits that are always
287 equal to the sign bit. */
289 static unsigned char *reg_sign_bit_copies
;
291 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
292 It is zero while computing them and after combine has completed. This
293 former test prevents propagating values based on previously set values,
294 which can be incorrect if a variable is modified in a loop. */
296 static int nonzero_sign_valid
;
298 /* These arrays are maintained in parallel with reg_last_set_value
299 and are used to store the mode in which the register was last set,
300 the bits that were known to be zero when it was last set, and the
301 number of sign bits copies it was known to have when it was last set. */
303 static enum machine_mode
*reg_last_set_mode
;
304 static unsigned HOST_WIDE_INT
*reg_last_set_nonzero_bits
;
305 static char *reg_last_set_sign_bit_copies
;
307 /* Record one modification to rtl structure
308 to be undone by storing old_contents into *where.
309 is_int is 1 if the contents are an int. */
315 union {rtx r
; int i
;} old_contents
;
316 union {rtx
*r
; int *i
;} where
;
319 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
320 num_undo says how many are currently recorded.
322 other_insn is nonzero if we have modified some other insn in the process
323 of working on subst_insn. It must be verified too. */
332 static struct undobuf undobuf
;
334 /* Number of times the pseudo being substituted for
335 was found and replaced. */
337 static int n_occurrences
;
339 static void do_SUBST (rtx
*, rtx
);
340 static void do_SUBST_INT (int *, int);
341 static void init_reg_last_arrays (void);
342 static void setup_incoming_promotions (void);
343 static void set_nonzero_bits_and_sign_copies (rtx
, rtx
, void *);
344 static int cant_combine_insn_p (rtx
);
345 static int can_combine_p (rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*);
346 static int sets_function_arg_p (rtx
);
347 static int combinable_i3pat (rtx
, rtx
*, rtx
, rtx
, int, rtx
*);
348 static int contains_muldiv (rtx
);
349 static rtx
try_combine (rtx
, rtx
, rtx
, int *);
350 static void undo_all (void);
351 static void undo_commit (void);
352 static rtx
*find_split_point (rtx
*, rtx
);
353 static rtx
subst (rtx
, rtx
, rtx
, int, int);
354 static rtx
combine_simplify_rtx (rtx
, enum machine_mode
, int, int);
355 static rtx
simplify_if_then_else (rtx
);
356 static rtx
simplify_set (rtx
);
357 static rtx
simplify_logical (rtx
, int);
358 static rtx
expand_compound_operation (rtx
);
359 static rtx
expand_field_assignment (rtx
);
360 static rtx
make_extraction (enum machine_mode
, rtx
, HOST_WIDE_INT
,
361 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
362 static rtx
extract_left_shift (rtx
, int);
363 static rtx
make_compound_operation (rtx
, enum rtx_code
);
364 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
365 unsigned HOST_WIDE_INT
*);
366 static rtx
force_to_mode (rtx
, enum machine_mode
,
367 unsigned HOST_WIDE_INT
, rtx
, int);
368 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
369 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
370 static int rtx_equal_for_field_assignment_p (rtx
, rtx
);
371 static rtx
make_field_assignment (rtx
);
372 static rtx
apply_distributive_law (rtx
);
373 static rtx
simplify_and_const_int (rtx
, enum machine_mode
, rtx
,
374 unsigned HOST_WIDE_INT
);
375 static unsigned HOST_WIDE_INT
cached_nonzero_bits (rtx
, enum machine_mode
,
376 rtx
, enum machine_mode
,
377 unsigned HOST_WIDE_INT
);
378 static unsigned HOST_WIDE_INT
nonzero_bits1 (rtx
, enum machine_mode
, rtx
,
380 unsigned HOST_WIDE_INT
);
381 static unsigned int cached_num_sign_bit_copies (rtx
, enum machine_mode
, rtx
,
384 static unsigned int num_sign_bit_copies1 (rtx
, enum machine_mode
, rtx
,
385 enum machine_mode
, unsigned int);
386 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
387 HOST_WIDE_INT
, enum machine_mode
, int *);
388 static rtx
simplify_shift_const (rtx
, enum rtx_code
, enum machine_mode
, rtx
,
390 static int recog_for_combine (rtx
*, rtx
, rtx
*);
391 static rtx
gen_lowpart_for_combine (enum machine_mode
, rtx
);
392 static rtx
gen_binary (enum rtx_code
, enum machine_mode
, rtx
, rtx
);
393 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
394 static void update_table_tick (rtx
);
395 static void record_value_for_reg (rtx
, rtx
, rtx
);
396 static void check_promoted_subreg (rtx
, rtx
);
397 static void record_dead_and_set_regs_1 (rtx
, rtx
, void *);
398 static void record_dead_and_set_regs (rtx
);
399 static int get_last_value_validate (rtx
*, rtx
, int, int);
400 static rtx
get_last_value (rtx
);
401 static int use_crosses_set_p (rtx
, int);
402 static void reg_dead_at_p_1 (rtx
, rtx
, void *);
403 static int reg_dead_at_p (rtx
, rtx
);
404 static void move_deaths (rtx
, rtx
, int, rtx
, rtx
*);
405 static int reg_bitfield_target_p (rtx
, rtx
);
406 static void distribute_notes (rtx
, rtx
, rtx
, rtx
);
407 static void distribute_links (rtx
);
408 static void mark_used_regs_combine (rtx
);
409 static int insn_cuid (rtx
);
410 static void record_promoted_value (rtx
, rtx
);
411 static rtx
reversed_comparison (rtx
, enum machine_mode
, rtx
, rtx
);
412 static enum rtx_code
combine_reversed_comparison_code (rtx
);
414 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
415 insn. The substitution can be undone by undo_all. If INTO is already
416 set to NEWVAL, do not record this change. Because computing NEWVAL might
417 also call SUBST, we have to compute it before we put anything into
421 do_SUBST (rtx
*into
, rtx newval
)
426 if (oldval
== newval
)
429 /* We'd like to catch as many invalid transformations here as
430 possible. Unfortunately, there are way too many mode changes
431 that are perfectly valid, so we'd waste too much effort for
432 little gain doing the checks here. Focus on catching invalid
433 transformations involving integer constants. */
434 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
435 && GET_CODE (newval
) == CONST_INT
)
437 /* Sanity check that we're replacing oldval with a CONST_INT
438 that is a valid sign-extension for the original mode. */
439 if (INTVAL (newval
) != trunc_int_for_mode (INTVAL (newval
),
443 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
444 CONST_INT is not valid, because after the replacement, the
445 original mode would be gone. Unfortunately, we can't tell
446 when do_SUBST is called to replace the operand thereof, so we
447 perform this test on oldval instead, checking whether an
448 invalid replacement took place before we got here. */
449 if ((GET_CODE (oldval
) == SUBREG
450 && GET_CODE (SUBREG_REG (oldval
)) == CONST_INT
)
451 || (GET_CODE (oldval
) == ZERO_EXTEND
452 && GET_CODE (XEXP (oldval
, 0)) == CONST_INT
))
457 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
459 buf
= (struct undo
*) xmalloc (sizeof (struct undo
));
463 buf
->old_contents
.r
= oldval
;
466 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
469 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
471 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
472 for the value of a HOST_WIDE_INT value (including CONST_INT) is
476 do_SUBST_INT (int *into
, int newval
)
481 if (oldval
== newval
)
485 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
487 buf
= (struct undo
*) xmalloc (sizeof (struct undo
));
491 buf
->old_contents
.i
= oldval
;
494 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
497 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
499 /* Main entry point for combiner. F is the first insn of the function.
500 NREGS is the first unused pseudo-reg number.
502 Return nonzero if the combiner has turned an indirect jump
503 instruction into a direct jump. */
505 combine_instructions (rtx f
, unsigned int nregs
)
512 rtx links
, nextlinks
;
514 int new_direct_jump_p
= 0;
516 combine_attempts
= 0;
519 combine_successes
= 0;
521 combine_max_regno
= nregs
;
523 reg_nonzero_bits
= ((unsigned HOST_WIDE_INT
*)
524 xcalloc (nregs
, sizeof (unsigned HOST_WIDE_INT
)));
526 = (unsigned char *) xcalloc (nregs
, sizeof (unsigned char));
528 reg_last_death
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
529 reg_last_set
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
530 reg_last_set_value
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
531 reg_last_set_table_tick
= (int *) xmalloc (nregs
* sizeof (int));
532 reg_last_set_label
= (int *) xmalloc (nregs
* sizeof (int));
533 reg_last_set_invalid
= (char *) xmalloc (nregs
* sizeof (char));
535 = (enum machine_mode
*) xmalloc (nregs
* sizeof (enum machine_mode
));
536 reg_last_set_nonzero_bits
537 = (unsigned HOST_WIDE_INT
*) xmalloc (nregs
* sizeof (HOST_WIDE_INT
));
538 reg_last_set_sign_bit_copies
539 = (char *) xmalloc (nregs
* sizeof (char));
541 init_reg_last_arrays ();
543 init_recog_no_volatile ();
545 /* Compute maximum uid value so uid_cuid can be allocated. */
547 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
548 if (INSN_UID (insn
) > i
)
551 uid_cuid
= (int *) xmalloc ((i
+ 1) * sizeof (int));
554 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
556 /* Don't use reg_nonzero_bits when computing it. This can cause problems
557 when, for example, we have j <<= 1 in a loop. */
559 nonzero_sign_valid
= 0;
561 /* Compute the mapping from uids to cuids.
562 Cuids are numbers assigned to insns, like uids,
563 except that cuids increase monotonically through the code.
565 Scan all SETs and see if we can deduce anything about what
566 bits are known to be zero for some registers and how many copies
567 of the sign bit are known to exist for those registers.
569 Also set any known values so that we can use it while searching
570 for what bits are known to be set. */
574 setup_incoming_promotions ();
576 refresh_blocks
= sbitmap_alloc (last_basic_block
);
577 sbitmap_zero (refresh_blocks
);
579 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
581 uid_cuid
[INSN_UID (insn
)] = ++i
;
587 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
589 record_dead_and_set_regs (insn
);
592 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
593 if (REG_NOTE_KIND (links
) == REG_INC
)
594 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
599 if (GET_CODE (insn
) == CODE_LABEL
)
603 nonzero_sign_valid
= 1;
605 /* Now scan all the insns in forward order. */
610 init_reg_last_arrays ();
611 setup_incoming_promotions ();
613 FOR_EACH_BB (this_basic_block
)
615 for (insn
= this_basic_block
->head
;
616 insn
!= NEXT_INSN (this_basic_block
->end
);
617 insn
= next
? next
: NEXT_INSN (insn
))
621 if (GET_CODE (insn
) == CODE_LABEL
)
624 else if (INSN_P (insn
))
626 /* See if we know about function return values before this
627 insn based upon SUBREG flags. */
628 check_promoted_subreg (insn
, PATTERN (insn
));
630 /* Try this insn with each insn it links back to. */
632 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
633 if ((next
= try_combine (insn
, XEXP (links
, 0),
634 NULL_RTX
, &new_direct_jump_p
)) != 0)
637 /* Try each sequence of three linked insns ending with this one. */
639 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
641 rtx link
= XEXP (links
, 0);
643 /* If the linked insn has been replaced by a note, then there
644 is no point in pursuing this chain any further. */
645 if (GET_CODE (link
) == NOTE
)
648 for (nextlinks
= LOG_LINKS (link
);
650 nextlinks
= XEXP (nextlinks
, 1))
651 if ((next
= try_combine (insn
, link
,
653 &new_direct_jump_p
)) != 0)
658 /* Try to combine a jump insn that uses CC0
659 with a preceding insn that sets CC0, and maybe with its
660 logical predecessor as well.
661 This is how we make decrement-and-branch insns.
662 We need this special code because data flow connections
663 via CC0 do not get entered in LOG_LINKS. */
665 if (GET_CODE (insn
) == JUMP_INSN
666 && (prev
= prev_nonnote_insn (insn
)) != 0
667 && GET_CODE (prev
) == INSN
668 && sets_cc0_p (PATTERN (prev
)))
670 if ((next
= try_combine (insn
, prev
,
671 NULL_RTX
, &new_direct_jump_p
)) != 0)
674 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
675 nextlinks
= XEXP (nextlinks
, 1))
676 if ((next
= try_combine (insn
, prev
,
678 &new_direct_jump_p
)) != 0)
682 /* Do the same for an insn that explicitly references CC0. */
683 if (GET_CODE (insn
) == INSN
684 && (prev
= prev_nonnote_insn (insn
)) != 0
685 && GET_CODE (prev
) == INSN
686 && sets_cc0_p (PATTERN (prev
))
687 && GET_CODE (PATTERN (insn
)) == SET
688 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
690 if ((next
= try_combine (insn
, prev
,
691 NULL_RTX
, &new_direct_jump_p
)) != 0)
694 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
695 nextlinks
= XEXP (nextlinks
, 1))
696 if ((next
= try_combine (insn
, prev
,
698 &new_direct_jump_p
)) != 0)
702 /* Finally, see if any of the insns that this insn links to
703 explicitly references CC0. If so, try this insn, that insn,
704 and its predecessor if it sets CC0. */
705 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
706 if (GET_CODE (XEXP (links
, 0)) == INSN
707 && GET_CODE (PATTERN (XEXP (links
, 0))) == SET
708 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (XEXP (links
, 0))))
709 && (prev
= prev_nonnote_insn (XEXP (links
, 0))) != 0
710 && GET_CODE (prev
) == INSN
711 && sets_cc0_p (PATTERN (prev
))
712 && (next
= try_combine (insn
, XEXP (links
, 0),
713 prev
, &new_direct_jump_p
)) != 0)
717 /* Try combining an insn with two different insns whose results it
719 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
720 for (nextlinks
= XEXP (links
, 1); nextlinks
;
721 nextlinks
= XEXP (nextlinks
, 1))
722 if ((next
= try_combine (insn
, XEXP (links
, 0),
724 &new_direct_jump_p
)) != 0)
727 if (GET_CODE (insn
) != NOTE
)
728 record_dead_and_set_regs (insn
);
737 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks
, 0, i
,
738 BASIC_BLOCK (i
)->flags
|= BB_DIRTY
);
739 new_direct_jump_p
|= purge_all_dead_edges (0);
740 delete_noop_moves (f
);
742 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
743 PROP_DEATH_NOTES
| PROP_SCAN_DEAD_CODE
744 | PROP_KILL_DEAD_CODE
);
747 sbitmap_free (refresh_blocks
);
748 free (reg_nonzero_bits
);
749 free (reg_sign_bit_copies
);
750 free (reg_last_death
);
752 free (reg_last_set_value
);
753 free (reg_last_set_table_tick
);
754 free (reg_last_set_label
);
755 free (reg_last_set_invalid
);
756 free (reg_last_set_mode
);
757 free (reg_last_set_nonzero_bits
);
758 free (reg_last_set_sign_bit_copies
);
762 struct undo
*undo
, *next
;
763 for (undo
= undobuf
.frees
; undo
; undo
= next
)
771 total_attempts
+= combine_attempts
;
772 total_merges
+= combine_merges
;
773 total_extras
+= combine_extras
;
774 total_successes
+= combine_successes
;
776 nonzero_sign_valid
= 0;
778 /* Make recognizer allow volatile MEMs again. */
781 return new_direct_jump_p
;
784 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
787 init_reg_last_arrays (void)
789 unsigned int nregs
= combine_max_regno
;
791 memset ((char *) reg_last_death
, 0, nregs
* sizeof (rtx
));
792 memset ((char *) reg_last_set
, 0, nregs
* sizeof (rtx
));
793 memset ((char *) reg_last_set_value
, 0, nregs
* sizeof (rtx
));
794 memset ((char *) reg_last_set_table_tick
, 0, nregs
* sizeof (int));
795 memset ((char *) reg_last_set_label
, 0, nregs
* sizeof (int));
796 memset (reg_last_set_invalid
, 0, nregs
* sizeof (char));
797 memset ((char *) reg_last_set_mode
, 0, nregs
* sizeof (enum machine_mode
));
798 memset ((char *) reg_last_set_nonzero_bits
, 0, nregs
* sizeof (HOST_WIDE_INT
));
799 memset (reg_last_set_sign_bit_copies
, 0, nregs
* sizeof (char));
802 /* Set up any promoted values for incoming argument registers. */
805 setup_incoming_promotions (void)
807 #ifdef PROMOTE_FUNCTION_ARGS
810 enum machine_mode mode
;
812 rtx first
= get_insns ();
814 #ifndef OUTGOING_REGNO
815 #define OUTGOING_REGNO(N) N
817 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
818 /* Check whether this register can hold an incoming pointer
819 argument. FUNCTION_ARG_REGNO_P tests outgoing register
820 numbers, so translate if necessary due to register windows. */
821 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno
))
822 && (reg
= promoted_input_arg (regno
, &mode
, &unsignedp
)) != 0)
825 (reg
, first
, gen_rtx_fmt_e ((unsignedp
? ZERO_EXTEND
828 gen_rtx_CLOBBER (mode
, const0_rtx
)));
833 /* Called via note_stores. If X is a pseudo that is narrower than
834 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
836 If we are setting only a portion of X and we can't figure out what
837 portion, assume all bits will be used since we don't know what will
840 Similarly, set how many bits of X are known to be copies of the sign bit
841 at all locations in the function. This is the smallest number implied
845 set_nonzero_bits_and_sign_copies (rtx x
, rtx set
,
846 void *data ATTRIBUTE_UNUSED
)
850 if (GET_CODE (x
) == REG
851 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
852 /* If this register is undefined at the start of the file, we can't
853 say what its contents were. */
854 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR
->next_bb
->global_live_at_start
, REGNO (x
))
855 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
857 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
859 reg_nonzero_bits
[REGNO (x
)] = GET_MODE_MASK (GET_MODE (x
));
860 reg_sign_bit_copies
[REGNO (x
)] = 1;
864 /* If this is a complex assignment, see if we can convert it into a
865 simple assignment. */
866 set
= expand_field_assignment (set
);
868 /* If this is a simple assignment, or we have a paradoxical SUBREG,
869 set what we know about X. */
871 if (SET_DEST (set
) == x
872 || (GET_CODE (SET_DEST (set
)) == SUBREG
873 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set
)))
874 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set
)))))
875 && SUBREG_REG (SET_DEST (set
)) == x
))
877 rtx src
= SET_SRC (set
);
879 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
880 /* If X is narrower than a word and SRC is a non-negative
881 constant that would appear negative in the mode of X,
882 sign-extend it for use in reg_nonzero_bits because some
883 machines (maybe most) will actually do the sign-extension
884 and this is the conservative approach.
886 ??? For 2.5, try to tighten up the MD files in this regard
887 instead of this kludge. */
889 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
890 && GET_CODE (src
) == CONST_INT
892 && 0 != (INTVAL (src
)
894 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
895 src
= GEN_INT (INTVAL (src
)
896 | ((HOST_WIDE_INT
) (-1)
897 << GET_MODE_BITSIZE (GET_MODE (x
))));
900 /* Don't call nonzero_bits if it cannot change anything. */
901 if (reg_nonzero_bits
[REGNO (x
)] != ~(unsigned HOST_WIDE_INT
) 0)
902 reg_nonzero_bits
[REGNO (x
)]
903 |= nonzero_bits (src
, nonzero_bits_mode
);
904 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
905 if (reg_sign_bit_copies
[REGNO (x
)] == 0
906 || reg_sign_bit_copies
[REGNO (x
)] > num
)
907 reg_sign_bit_copies
[REGNO (x
)] = num
;
911 reg_nonzero_bits
[REGNO (x
)] = GET_MODE_MASK (GET_MODE (x
));
912 reg_sign_bit_copies
[REGNO (x
)] = 1;
917 /* See if INSN can be combined into I3. PRED and SUCC are optionally
918 insns that were previously combined into I3 or that will be combined
919 into the merger of INSN and I3.
921 Return 0 if the combination is not allowed for any reason.
923 If the combination is allowed, *PDEST will be set to the single
924 destination of INSN and *PSRC to the single source, and this function
928 can_combine_p (rtx insn
, rtx i3
, rtx pred ATTRIBUTE_UNUSED
, rtx succ
,
929 rtx
*pdest
, rtx
*psrc
)
932 rtx set
= 0, src
, dest
;
937 int all_adjacent
= (succ
? (next_active_insn (insn
) == succ
938 && next_active_insn (succ
) == i3
)
939 : next_active_insn (insn
) == i3
);
941 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
942 or a PARALLEL consisting of such a SET and CLOBBERs.
944 If INSN has CLOBBER parallel parts, ignore them for our processing.
945 By definition, these happen during the execution of the insn. When it
946 is merged with another insn, all bets are off. If they are, in fact,
947 needed and aren't also supplied in I3, they may be added by
948 recog_for_combine. Otherwise, it won't match.
950 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
953 Get the source and destination of INSN. If more than one, can't
956 if (GET_CODE (PATTERN (insn
)) == SET
)
957 set
= PATTERN (insn
);
958 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
959 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
961 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
963 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
965 switch (GET_CODE (elt
))
967 /* This is important to combine floating point insns
970 /* Combining an isolated USE doesn't make sense.
971 We depend here on combinable_i3pat to reject them. */
972 /* The code below this loop only verifies that the inputs of
973 the SET in INSN do not change. We call reg_set_between_p
974 to verify that the REG in the USE does not change between
976 If the USE in INSN was for a pseudo register, the matching
977 insn pattern will likely match any register; combining this
978 with any other USE would only be safe if we knew that the
979 used registers have identical values, or if there was
980 something to tell them apart, e.g. different modes. For
981 now, we forgo such complicated tests and simply disallow
982 combining of USES of pseudo registers with any other USE. */
983 if (GET_CODE (XEXP (elt
, 0)) == REG
984 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
986 rtx i3pat
= PATTERN (i3
);
987 int i
= XVECLEN (i3pat
, 0) - 1;
988 unsigned int regno
= REGNO (XEXP (elt
, 0));
992 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
994 if (GET_CODE (i3elt
) == USE
995 && GET_CODE (XEXP (i3elt
, 0)) == REG
996 && (REGNO (XEXP (i3elt
, 0)) == regno
997 ? reg_set_between_p (XEXP (elt
, 0),
998 PREV_INSN (insn
), i3
)
999 : regno
>= FIRST_PSEUDO_REGISTER
))
1006 /* We can ignore CLOBBERs. */
1011 /* Ignore SETs whose result isn't used but not those that
1012 have side-effects. */
1013 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1014 && ! side_effects_p (elt
))
1017 /* If we have already found a SET, this is a second one and
1018 so we cannot combine with this insn. */
1026 /* Anything else means we can't combine. */
1032 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1033 so don't do anything with it. */
1034 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1043 set
= expand_field_assignment (set
);
1044 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1046 /* Don't eliminate a store in the stack pointer. */
1047 if (dest
== stack_pointer_rtx
1048 /* Don't combine with an insn that sets a register to itself if it has
1049 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1050 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1051 /* Can't merge an ASM_OPERANDS. */
1052 || GET_CODE (src
) == ASM_OPERANDS
1053 /* Can't merge a function call. */
1054 || GET_CODE (src
) == CALL
1055 /* Don't eliminate a function call argument. */
1056 || (GET_CODE (i3
) == CALL_INSN
1057 && (find_reg_fusage (i3
, USE
, dest
)
1058 || (GET_CODE (dest
) == REG
1059 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1060 && global_regs
[REGNO (dest
)])))
1061 /* Don't substitute into an incremented register. */
1062 || FIND_REG_INC_NOTE (i3
, dest
)
1063 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1065 /* Don't combine the end of a libcall into anything. */
1066 /* ??? This gives worse code, and appears to be unnecessary, since no
1067 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1068 use REG_RETVAL notes for noconflict blocks, but other code here
1069 makes sure that those insns don't disappear. */
1070 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)
1072 /* Make sure that DEST is not used after SUCC but before I3. */
1073 || (succ
&& ! all_adjacent
1074 && reg_used_between_p (dest
, succ
, i3
))
1075 /* Make sure that the value that is to be substituted for the register
1076 does not use any registers whose values alter in between. However,
1077 If the insns are adjacent, a use can't cross a set even though we
1078 think it might (this can happen for a sequence of insns each setting
1079 the same destination; reg_last_set of that register might point to
1080 a NOTE). If INSN has a REG_EQUIV note, the register is always
1081 equivalent to the memory so the substitution is valid even if there
1082 are intervening stores. Also, don't move a volatile asm or
1083 UNSPEC_VOLATILE across any other insns. */
1085 && (((GET_CODE (src
) != MEM
1086 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1087 && use_crosses_set_p (src
, INSN_CUID (insn
)))
1088 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1089 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1090 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1091 better register allocation by not doing the combine. */
1092 || find_reg_note (i3
, REG_NO_CONFLICT
, dest
)
1093 || (succ
&& find_reg_note (succ
, REG_NO_CONFLICT
, dest
))
1094 /* Don't combine across a CALL_INSN, because that would possibly
1095 change whether the life span of some REGs crosses calls or not,
1096 and it is a pain to update that information.
1097 Exception: if source is a constant, moving it later can't hurt.
1098 Accept that special case, because it helps -fforce-addr a lot. */
1099 || (INSN_CUID (insn
) < last_call_cuid
&& ! CONSTANT_P (src
)))
1102 /* DEST must either be a REG or CC0. */
1103 if (GET_CODE (dest
) == REG
)
1105 /* If register alignment is being enforced for multi-word items in all
1106 cases except for parameters, it is possible to have a register copy
1107 insn referencing a hard register that is not allowed to contain the
1108 mode being copied and which would not be valid as an operand of most
1109 insns. Eliminate this problem by not combining with such an insn.
1111 Also, on some machines we don't want to extend the life of a hard
1114 if (GET_CODE (src
) == REG
1115 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1116 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1117 /* Don't extend the life of a hard register unless it is
1118 user variable (if we have few registers) or it can't
1119 fit into the desired register (meaning something special
1121 Also avoid substituting a return register into I3, because
1122 reload can't handle a conflict with constraints of other
1124 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1125 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1128 else if (GET_CODE (dest
) != CC0
)
1131 /* Don't substitute for a register intended as a clobberable operand.
1132 Similarly, don't substitute an expression containing a register that
1133 will be clobbered in I3. */
1134 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1135 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1136 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
1137 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0),
1139 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0), dest
)))
1142 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1143 or not), reject, unless nothing volatile comes between it and I3 */
1145 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1147 /* Make sure succ doesn't contain a volatile reference. */
1148 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1151 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1152 if (INSN_P (p
) && p
!= succ
&& volatile_refs_p (PATTERN (p
)))
1156 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1157 to be an explicit register variable, and was chosen for a reason. */
1159 if (GET_CODE (src
) == ASM_OPERANDS
1160 && GET_CODE (dest
) == REG
&& REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1163 /* If there are any volatile insns between INSN and I3, reject, because
1164 they might affect machine state. */
1166 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1167 if (INSN_P (p
) && p
!= succ
&& volatile_insn_p (PATTERN (p
)))
1170 /* If INSN or I2 contains an autoincrement or autodecrement,
1171 make sure that register is not used between there and I3,
1172 and not already used in I3 either.
1173 Also insist that I3 not be a jump; if it were one
1174 and the incremented register were spilled, we would lose. */
1177 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1178 if (REG_NOTE_KIND (link
) == REG_INC
1179 && (GET_CODE (i3
) == JUMP_INSN
1180 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
1181 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
1186 /* Don't combine an insn that follows a CC0-setting insn.
1187 An insn that uses CC0 must not be separated from the one that sets it.
1188 We do, however, allow I2 to follow a CC0-setting insn if that insn
1189 is passed as I1; in that case it will be deleted also.
1190 We also allow combining in this case if all the insns are adjacent
1191 because that would leave the two CC0 insns adjacent as well.
1192 It would be more logical to test whether CC0 occurs inside I1 or I2,
1193 but that would be much slower, and this ought to be equivalent. */
1195 p
= prev_nonnote_insn (insn
);
1196 if (p
&& p
!= pred
&& GET_CODE (p
) == INSN
&& sets_cc0_p (PATTERN (p
))
1201 /* If we get here, we have passed all the tests and the combination is
1210 /* Check if PAT is an insn - or a part of it - used to set up an
1211 argument for a function in a hard register. */
1214 sets_function_arg_p (rtx pat
)
1219 switch (GET_CODE (pat
))
1222 return sets_function_arg_p (PATTERN (pat
));
1225 for (i
= XVECLEN (pat
, 0); --i
>= 0;)
1226 if (sets_function_arg_p (XVECEXP (pat
, 0, i
)))
1232 inner_dest
= SET_DEST (pat
);
1233 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1234 || GET_CODE (inner_dest
) == SUBREG
1235 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1236 inner_dest
= XEXP (inner_dest
, 0);
1238 return (GET_CODE (inner_dest
) == REG
1239 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1240 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest
)));
1249 /* LOC is the location within I3 that contains its pattern or the component
1250 of a PARALLEL of the pattern. We validate that it is valid for combining.
1252 One problem is if I3 modifies its output, as opposed to replacing it
1253 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1254 so would produce an insn that is not equivalent to the original insns.
1258 (set (reg:DI 101) (reg:DI 100))
1259 (set (subreg:SI (reg:DI 101) 0) <foo>)
1261 This is NOT equivalent to:
1263 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1264 (set (reg:DI 101) (reg:DI 100))])
1266 Not only does this modify 100 (in which case it might still be valid
1267 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1269 We can also run into a problem if I2 sets a register that I1
1270 uses and I1 gets directly substituted into I3 (not via I2). In that
1271 case, we would be getting the wrong value of I2DEST into I3, so we
1272 must reject the combination. This case occurs when I2 and I1 both
1273 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1274 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1275 of a SET must prevent combination from occurring.
1277 Before doing the above check, we first try to expand a field assignment
1278 into a set of logical operations.
1280 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1281 we place a register that is both set and used within I3. If more than one
1282 such register is detected, we fail.
1284 Return 1 if the combination is valid, zero otherwise. */
1287 combinable_i3pat (rtx i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
,
1288 int i1_not_in_src
, rtx
*pi3dest_killed
)
1292 if (GET_CODE (x
) == SET
)
1295 rtx dest
= SET_DEST (set
);
1296 rtx src
= SET_SRC (set
);
1297 rtx inner_dest
= dest
;
1299 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1300 || GET_CODE (inner_dest
) == SUBREG
1301 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1302 inner_dest
= XEXP (inner_dest
, 0);
1304 /* Check for the case where I3 modifies its output, as
1306 if ((inner_dest
!= dest
1307 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
1308 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))))
1310 /* This is the same test done in can_combine_p except we can't test
1311 all_adjacent; we don't have to, since this instruction will stay
1312 in place, thus we are not considering increasing the lifetime of
1315 Also, if this insn sets a function argument, combining it with
1316 something that might need a spill could clobber a previous
1317 function argument; the all_adjacent test in can_combine_p also
1318 checks this; here, we do a more specific test for this case. */
1320 || (GET_CODE (inner_dest
) == REG
1321 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1322 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
1323 GET_MODE (inner_dest
))))
1324 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
)))
1327 /* If DEST is used in I3, it is being killed in this insn,
1328 so record that for later.
1329 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1330 STACK_POINTER_REGNUM, since these are always considered to be
1331 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1332 if (pi3dest_killed
&& GET_CODE (dest
) == REG
1333 && reg_referenced_p (dest
, PATTERN (i3
))
1334 && REGNO (dest
) != FRAME_POINTER_REGNUM
1335 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1336 && REGNO (dest
) != HARD_FRAME_POINTER_REGNUM
1338 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1339 && (REGNO (dest
) != ARG_POINTER_REGNUM
1340 || ! fixed_regs
[REGNO (dest
)])
1342 && REGNO (dest
) != STACK_POINTER_REGNUM
)
1344 if (*pi3dest_killed
)
1347 *pi3dest_killed
= dest
;
1351 else if (GET_CODE (x
) == PARALLEL
)
1355 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1356 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
,
1357 i1_not_in_src
, pi3dest_killed
))
1364 /* Return 1 if X is an arithmetic expression that contains a multiplication
1365 and division. We don't count multiplications by powers of two here. */
1368 contains_muldiv (rtx x
)
1370 switch (GET_CODE (x
))
1372 case MOD
: case DIV
: case UMOD
: case UDIV
:
1376 return ! (GET_CODE (XEXP (x
, 1)) == CONST_INT
1377 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0);
1379 switch (GET_RTX_CLASS (GET_CODE (x
)))
1381 case 'c': case '<': case '2':
1382 return contains_muldiv (XEXP (x
, 0))
1383 || contains_muldiv (XEXP (x
, 1));
1386 return contains_muldiv (XEXP (x
, 0));
1394 /* Determine whether INSN can be used in a combination. Return nonzero if
1395 not. This is used in try_combine to detect early some cases where we
1396 can't perform combinations. */
1399 cant_combine_insn_p (rtx insn
)
1404 /* If this isn't really an insn, we can't do anything.
1405 This can occur when flow deletes an insn that it has merged into an
1406 auto-increment address. */
1407 if (! INSN_P (insn
))
1410 /* Never combine loads and stores involving hard regs that are likely
1411 to be spilled. The register allocator can usually handle such
1412 reg-reg moves by tying. If we allow the combiner to make
1413 substitutions of likely-spilled regs, we may abort in reload.
1414 As an exception, we allow combinations involving fixed regs; these are
1415 not available to the register allocator so there's no risk involved. */
1417 set
= single_set (insn
);
1420 src
= SET_SRC (set
);
1421 dest
= SET_DEST (set
);
1422 if (GET_CODE (src
) == SUBREG
)
1423 src
= SUBREG_REG (src
);
1424 if (GET_CODE (dest
) == SUBREG
)
1425 dest
= SUBREG_REG (dest
);
1426 if (REG_P (src
) && REG_P (dest
)
1427 && ((REGNO (src
) < FIRST_PSEUDO_REGISTER
1428 && ! fixed_regs
[REGNO (src
)]
1429 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src
))))
1430 || (REGNO (dest
) < FIRST_PSEUDO_REGISTER
1431 && ! fixed_regs
[REGNO (dest
)]
1432 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest
))))))
1438 /* Try to combine the insns I1 and I2 into I3.
1439 Here I1 and I2 appear earlier than I3.
1440 I1 can be zero; then we combine just I2 into I3.
1442 If we are combining three insns and the resulting insn is not recognized,
1443 try splitting it into two insns. If that happens, I2 and I3 are retained
1444 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1447 Return 0 if the combination does not work. Then nothing is changed.
1448 If we did the combination, return the insn at which combine should
1451 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1452 new direct jump instruction. */
1455 try_combine (rtx i3
, rtx i2
, rtx i1
, int *new_direct_jump_p
)
1457 /* New patterns for I3 and I2, respectively. */
1458 rtx newpat
, newi2pat
= 0;
1459 int substed_i2
= 0, substed_i1
= 0;
1460 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1461 int added_sets_1
, added_sets_2
;
1462 /* Total number of SETs to put into I3. */
1464 /* Nonzero is I2's body now appears in I3. */
1466 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1467 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
1468 /* Contains I3 if the destination of I3 is used in its source, which means
1469 that the old life of I3 is being killed. If that usage is placed into
1470 I2 and not in I3, a REG_DEAD note must be made. */
1471 rtx i3dest_killed
= 0;
1472 /* SET_DEST and SET_SRC of I2 and I1. */
1473 rtx i2dest
, i2src
, i1dest
= 0, i1src
= 0;
1474 /* PATTERN (I2), or a copy of it in certain cases. */
1476 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1477 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
1478 int i1_feeds_i3
= 0;
1479 /* Notes that must be added to REG_NOTES in I3 and I2. */
1480 rtx new_i3_notes
, new_i2_notes
;
1481 /* Notes that we substituted I3 into I2 instead of the normal case. */
1482 int i3_subst_into_i2
= 0;
1483 /* Notes that I1, I2 or I3 is a MULT operation. */
1491 /* Exit early if one of the insns involved can't be used for
1493 if (cant_combine_insn_p (i3
)
1494 || cant_combine_insn_p (i2
)
1495 || (i1
&& cant_combine_insn_p (i1
))
1496 /* We also can't do anything if I3 has a
1497 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1500 /* ??? This gives worse code, and appears to be unnecessary, since no
1501 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1502 || find_reg_note (i3
, REG_LIBCALL
, NULL_RTX
)
1508 undobuf
.other_insn
= 0;
1510 /* Reset the hard register usage information. */
1511 CLEAR_HARD_REG_SET (newpat_used_regs
);
1513 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1514 code below, set I1 to be the earlier of the two insns. */
1515 if (i1
&& INSN_CUID (i1
) > INSN_CUID (i2
))
1516 temp
= i1
, i1
= i2
, i2
= temp
;
1518 added_links_insn
= 0;
1520 /* First check for one important special-case that the code below will
1521 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1522 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1523 we may be able to replace that destination with the destination of I3.
1524 This occurs in the common code where we compute both a quotient and
1525 remainder into a structure, in which case we want to do the computation
1526 directly into the structure to avoid register-register copies.
1528 Note that this case handles both multiple sets in I2 and also
1529 cases where I2 has a number of CLOBBER or PARALLELs.
1531 We make very conservative checks below and only try to handle the
1532 most common cases of this. For example, we only handle the case
1533 where I2 and I3 are adjacent to avoid making difficult register
1536 if (i1
== 0 && GET_CODE (i3
) == INSN
&& GET_CODE (PATTERN (i3
)) == SET
1537 && GET_CODE (SET_SRC (PATTERN (i3
))) == REG
1538 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
1539 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
1540 && GET_CODE (PATTERN (i2
)) == PARALLEL
1541 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
1542 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1543 below would need to check what is inside (and reg_overlap_mentioned_p
1544 doesn't support those codes anyway). Don't allow those destinations;
1545 the resulting insn isn't likely to be recognized anyway. */
1546 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
1547 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
1548 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
1549 SET_DEST (PATTERN (i3
)))
1550 && next_real_insn (i2
) == i3
)
1552 rtx p2
= PATTERN (i2
);
1554 /* Make sure that the destination of I3,
1555 which we are going to substitute into one output of I2,
1556 is not used within another output of I2. We must avoid making this:
1557 (parallel [(set (mem (reg 69)) ...)
1558 (set (reg 69) ...)])
1559 which is not well-defined as to order of actions.
1560 (Besides, reload can't handle output reloads for this.)
1562 The problem can also happen if the dest of I3 is a memory ref,
1563 if another dest in I2 is an indirect memory ref. */
1564 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1565 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1566 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1567 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
1568 SET_DEST (XVECEXP (p2
, 0, i
))))
1571 if (i
== XVECLEN (p2
, 0))
1572 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1573 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1574 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1575 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
1580 subst_low_cuid
= INSN_CUID (i2
);
1582 added_sets_2
= added_sets_1
= 0;
1583 i2dest
= SET_SRC (PATTERN (i3
));
1585 /* Replace the dest in I2 with our dest and make the resulting
1586 insn the new pattern for I3. Then skip to where we
1587 validate the pattern. Everything was set up above. */
1588 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)),
1589 SET_DEST (PATTERN (i3
)));
1592 i3_subst_into_i2
= 1;
1593 goto validate_replacement
;
1597 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1598 one of those words to another constant, merge them by making a new
1601 && (temp
= single_set (i2
)) != 0
1602 && (GET_CODE (SET_SRC (temp
)) == CONST_INT
1603 || GET_CODE (SET_SRC (temp
)) == CONST_DOUBLE
)
1604 && GET_CODE (SET_DEST (temp
)) == REG
1605 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp
))) == MODE_INT
1606 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp
))) == 2 * UNITS_PER_WORD
1607 && GET_CODE (PATTERN (i3
)) == SET
1608 && GET_CODE (SET_DEST (PATTERN (i3
))) == SUBREG
1609 && SUBREG_REG (SET_DEST (PATTERN (i3
))) == SET_DEST (temp
)
1610 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3
)))) == MODE_INT
1611 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3
)))) == UNITS_PER_WORD
1612 && GET_CODE (SET_SRC (PATTERN (i3
))) == CONST_INT
)
1614 HOST_WIDE_INT lo
, hi
;
1616 if (GET_CODE (SET_SRC (temp
)) == CONST_INT
)
1617 lo
= INTVAL (SET_SRC (temp
)), hi
= lo
< 0 ? -1 : 0;
1620 lo
= CONST_DOUBLE_LOW (SET_SRC (temp
));
1621 hi
= CONST_DOUBLE_HIGH (SET_SRC (temp
));
1624 if (subreg_lowpart_p (SET_DEST (PATTERN (i3
))))
1626 /* We don't handle the case of the target word being wider
1627 than a host wide int. */
1628 if (HOST_BITS_PER_WIDE_INT
< BITS_PER_WORD
)
1631 lo
&= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1632 lo
|= (INTVAL (SET_SRC (PATTERN (i3
)))
1633 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1635 else if (HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1636 hi
= INTVAL (SET_SRC (PATTERN (i3
)));
1637 else if (HOST_BITS_PER_WIDE_INT
>= 2 * BITS_PER_WORD
)
1639 int sign
= -(int) ((unsigned HOST_WIDE_INT
) lo
1640 >> (HOST_BITS_PER_WIDE_INT
- 1));
1642 lo
&= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1643 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1644 lo
|= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1645 (INTVAL (SET_SRC (PATTERN (i3
)))));
1647 hi
= lo
< 0 ? -1 : 0;
1650 /* We don't handle the case of the higher word not fitting
1651 entirely in either hi or lo. */
1656 subst_low_cuid
= INSN_CUID (i2
);
1657 added_sets_2
= added_sets_1
= 0;
1658 i2dest
= SET_DEST (temp
);
1660 SUBST (SET_SRC (temp
),
1661 immed_double_const (lo
, hi
, GET_MODE (SET_DEST (temp
))));
1663 newpat
= PATTERN (i2
);
1664 goto validate_replacement
;
1668 /* If we have no I1 and I2 looks like:
1669 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1671 make up a dummy I1 that is
1674 (set (reg:CC X) (compare:CC Y (const_int 0)))
1676 (We can ignore any trailing CLOBBERs.)
1678 This undoes a previous combination and allows us to match a branch-and-
1681 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
1682 && XVECLEN (PATTERN (i2
), 0) >= 2
1683 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
1684 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
1686 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
1687 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
1688 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
1689 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1))) == REG
1690 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
1691 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
1693 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
1694 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
1699 /* We make I1 with the same INSN_UID as I2. This gives it
1700 the same INSN_CUID for value tracking. Our fake I1 will
1701 never appear in the insn stream so giving it the same INSN_UID
1702 as I2 will not cause a problem. */
1704 i1
= gen_rtx_INSN (VOIDmode
, INSN_UID (i2
), NULL_RTX
, i2
,
1705 BLOCK_FOR_INSN (i2
), INSN_LOCATOR (i2
),
1706 XVECEXP (PATTERN (i2
), 0, 1), -1, NULL_RTX
,
1709 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
1710 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
1711 SET_DEST (PATTERN (i1
)));
1716 /* Verify that I2 and I1 are valid for combining. */
1717 if (! can_combine_p (i2
, i3
, i1
, NULL_RTX
, &i2dest
, &i2src
)
1718 || (i1
&& ! can_combine_p (i1
, i3
, NULL_RTX
, i2
, &i1dest
, &i1src
)))
1724 /* Record whether I2DEST is used in I2SRC and similarly for the other
1725 cases. Knowing this will help in register status updating below. */
1726 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
1727 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
1728 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
1730 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1732 i1_feeds_i3
= i1
&& ! reg_overlap_mentioned_p (i1dest
, i2src
);
1734 /* Ensure that I3's pattern can be the destination of combines. */
1735 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
,
1736 i1
&& i2dest_in_i1src
&& i1_feeds_i3
,
1743 /* See if any of the insns is a MULT operation. Unless one is, we will
1744 reject a combination that is, since it must be slower. Be conservative
1746 if (GET_CODE (i2src
) == MULT
1747 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
1748 || (GET_CODE (PATTERN (i3
)) == SET
1749 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
1752 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1753 We used to do this EXCEPT in one case: I3 has a post-inc in an
1754 output operand. However, that exception can give rise to insns like
1756 which is a famous insn on the PDP-11 where the value of r3 used as the
1757 source was model-dependent. Avoid this sort of thing. */
1760 if (!(GET_CODE (PATTERN (i3
)) == SET
1761 && GET_CODE (SET_SRC (PATTERN (i3
))) == REG
1762 && GET_CODE (SET_DEST (PATTERN (i3
))) == MEM
1763 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
1764 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
1765 /* It's not the exception. */
1768 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
1769 if (REG_NOTE_KIND (link
) == REG_INC
1770 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
1772 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
1779 /* See if the SETs in I1 or I2 need to be kept around in the merged
1780 instruction: whenever the value set there is still needed past I3.
1781 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1783 For the SET in I1, we have two cases: If I1 and I2 independently
1784 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1785 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1786 in I1 needs to be kept around unless I1DEST dies or is set in either
1787 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1788 I1DEST. If so, we know I1 feeds into I2. */
1790 added_sets_2
= ! dead_or_set_p (i3
, i2dest
);
1793 = i1
&& ! (i1_feeds_i3
? dead_or_set_p (i3
, i1dest
)
1794 : (dead_or_set_p (i3
, i1dest
) || dead_or_set_p (i2
, i1dest
)));
1796 /* If the set in I2 needs to be kept around, we must make a copy of
1797 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1798 PATTERN (I2), we are only substituting for the original I1DEST, not into
1799 an already-substituted copy. This also prevents making self-referential
1800 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1803 i2pat
= (GET_CODE (PATTERN (i2
)) == PARALLEL
1804 ? gen_rtx_SET (VOIDmode
, i2dest
, i2src
)
1808 i2pat
= copy_rtx (i2pat
);
1812 /* Substitute in the latest insn for the regs set by the earlier ones. */
1814 maxreg
= max_reg_num ();
1818 /* It is possible that the source of I2 or I1 may be performing an
1819 unneeded operation, such as a ZERO_EXTEND of something that is known
1820 to have the high part zero. Handle that case by letting subst look at
1821 the innermost one of them.
1823 Another way to do this would be to have a function that tries to
1824 simplify a single insn instead of merging two or more insns. We don't
1825 do this because of the potential of infinite loops and because
1826 of the potential extra memory required. However, doing it the way
1827 we are is a bit of a kludge and doesn't catch all cases.
1829 But only do this if -fexpensive-optimizations since it slows things down
1830 and doesn't usually win. */
1832 if (flag_expensive_optimizations
)
1834 /* Pass pc_rtx so no substitutions are done, just simplifications.
1835 The cases that we are interested in here do not involve the few
1836 cases were is_replaced is checked. */
1839 subst_low_cuid
= INSN_CUID (i1
);
1840 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0);
1844 subst_low_cuid
= INSN_CUID (i2
);
1845 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0);
1850 /* Many machines that don't use CC0 have insns that can both perform an
1851 arithmetic operation and set the condition code. These operations will
1852 be represented as a PARALLEL with the first element of the vector
1853 being a COMPARE of an arithmetic operation with the constant zero.
1854 The second element of the vector will set some pseudo to the result
1855 of the same arithmetic operation. If we simplify the COMPARE, we won't
1856 match such a pattern and so will generate an extra insn. Here we test
1857 for this case, where both the comparison and the operation result are
1858 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1859 I2SRC. Later we will make the PARALLEL that contains I2. */
1861 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
1862 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
1863 && XEXP (SET_SRC (PATTERN (i3
)), 1) == const0_rtx
1864 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
1866 #ifdef EXTRA_CC_MODES
1868 enum machine_mode compare_mode
;
1871 newpat
= PATTERN (i3
);
1872 SUBST (XEXP (SET_SRC (newpat
), 0), i2src
);
1876 #ifdef EXTRA_CC_MODES
1877 /* See if a COMPARE with the operand we substituted in should be done
1878 with the mode that is currently being used. If not, do the same
1879 processing we do in `subst' for a SET; namely, if the destination
1880 is used only once, try to replace it with a register of the proper
1881 mode and also replace the COMPARE. */
1882 if (undobuf
.other_insn
== 0
1883 && (cc_use
= find_single_use (SET_DEST (newpat
), i3
,
1884 &undobuf
.other_insn
))
1885 && ((compare_mode
= SELECT_CC_MODE (GET_CODE (*cc_use
),
1887 != GET_MODE (SET_DEST (newpat
))))
1889 unsigned int regno
= REGNO (SET_DEST (newpat
));
1890 rtx new_dest
= gen_rtx_REG (compare_mode
, regno
);
1892 if (regno
< FIRST_PSEUDO_REGISTER
1893 || (REG_N_SETS (regno
) == 1 && ! added_sets_2
1894 && ! REG_USERVAR_P (SET_DEST (newpat
))))
1896 if (regno
>= FIRST_PSEUDO_REGISTER
)
1897 SUBST (regno_reg_rtx
[regno
], new_dest
);
1899 SUBST (SET_DEST (newpat
), new_dest
);
1900 SUBST (XEXP (*cc_use
, 0), new_dest
);
1901 SUBST (SET_SRC (newpat
),
1902 gen_rtx_COMPARE (compare_mode
, i2src
, const0_rtx
));
1905 undobuf
.other_insn
= 0;
1912 n_occurrences
= 0; /* `subst' counts here */
1914 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1915 need to make a unique copy of I2SRC each time we substitute it
1916 to avoid self-referential rtl. */
1918 subst_low_cuid
= INSN_CUID (i2
);
1919 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0,
1920 ! i1_feeds_i3
&& i1dest_in_i1src
);
1923 /* Record whether i2's body now appears within i3's body. */
1924 i2_is_used
= n_occurrences
;
1927 /* If we already got a failure, don't try to do more. Otherwise,
1928 try to substitute in I1 if we have it. */
1930 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
1932 /* Before we can do this substitution, we must redo the test done
1933 above (see detailed comments there) that ensures that I1DEST
1934 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1936 if (! combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
,
1944 subst_low_cuid
= INSN_CUID (i1
);
1945 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0);
1949 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1950 to count all the ways that I2SRC and I1SRC can be used. */
1951 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
1952 && i2_is_used
+ added_sets_2
> 1)
1953 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
1954 && (n_occurrences
+ added_sets_1
+ (added_sets_2
&& ! i1_feeds_i3
)
1956 /* Fail if we tried to make a new register (we used to abort, but there's
1957 really no reason to). */
1958 || max_reg_num () != maxreg
1959 /* Fail if we couldn't do something and have a CLOBBER. */
1960 || GET_CODE (newpat
) == CLOBBER
1961 /* Fail if this new pattern is a MULT and we didn't have one before
1962 at the outer level. */
1963 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
1970 /* If the actions of the earlier insns must be kept
1971 in addition to substituting them into the latest one,
1972 we must make a new PARALLEL for the latest insn
1973 to hold additional the SETs. */
1975 if (added_sets_1
|| added_sets_2
)
1979 if (GET_CODE (newpat
) == PARALLEL
)
1981 rtvec old
= XVEC (newpat
, 0);
1982 total_sets
= XVECLEN (newpat
, 0) + added_sets_1
+ added_sets_2
;
1983 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
1984 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
1985 sizeof (old
->elem
[0]) * old
->num_elem
);
1990 total_sets
= 1 + added_sets_1
+ added_sets_2
;
1991 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
1992 XVECEXP (newpat
, 0, 0) = old
;
1996 XVECEXP (newpat
, 0, --total_sets
)
1997 = (GET_CODE (PATTERN (i1
)) == PARALLEL
1998 ? gen_rtx_SET (VOIDmode
, i1dest
, i1src
) : PATTERN (i1
));
2002 /* If there is no I1, use I2's body as is. We used to also not do
2003 the subst call below if I2 was substituted into I3,
2004 but that could lose a simplification. */
2006 XVECEXP (newpat
, 0, --total_sets
) = i2pat
;
2008 /* See comment where i2pat is assigned. */
2009 XVECEXP (newpat
, 0, --total_sets
)
2010 = subst (i2pat
, i1dest
, i1src
, 0, 0);
2014 /* We come here when we are replacing a destination in I2 with the
2015 destination of I3. */
2016 validate_replacement
:
2018 /* Note which hard regs this insn has as inputs. */
2019 mark_used_regs_combine (newpat
);
2021 /* Is the result of combination a valid instruction? */
2022 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2024 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2025 the second SET's destination is a register that is unused. In that case,
2026 we just need the first SET. This can occur when simplifying a divmod
2027 insn. We *must* test for this case here because the code below that
2028 splits two independent SETs doesn't handle this case correctly when it
2029 updates the register status. Also check the case where the first
2030 SET's destination is unused. That would not cause incorrect code, but
2031 does cause an unneeded insn to remain. */
2033 if (insn_code_number
< 0 && GET_CODE (newpat
) == PARALLEL
2034 && XVECLEN (newpat
, 0) == 2
2035 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2036 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2037 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == REG
2038 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (XVECEXP (newpat
, 0, 1)))
2039 && ! side_effects_p (SET_SRC (XVECEXP (newpat
, 0, 1)))
2040 && asm_noperands (newpat
) < 0)
2042 newpat
= XVECEXP (newpat
, 0, 0);
2043 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2046 else if (insn_code_number
< 0 && GET_CODE (newpat
) == PARALLEL
2047 && XVECLEN (newpat
, 0) == 2
2048 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2049 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2050 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) == REG
2051 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (XVECEXP (newpat
, 0, 0)))
2052 && ! side_effects_p (SET_SRC (XVECEXP (newpat
, 0, 0)))
2053 && asm_noperands (newpat
) < 0)
2055 newpat
= XVECEXP (newpat
, 0, 1);
2056 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2059 /* If we were combining three insns and the result is a simple SET
2060 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2061 insns. There are two ways to do this. It can be split using a
2062 machine-specific method (like when you have an addition of a large
2063 constant) or by combine in the function find_split_point. */
2065 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
2066 && asm_noperands (newpat
) < 0)
2068 rtx m_split
, *split
;
2069 rtx ni2dest
= i2dest
;
2071 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2072 use I2DEST as a scratch register will help. In the latter case,
2073 convert I2DEST to the mode of the source of NEWPAT if we can. */
2075 m_split
= split_insns (newpat
, i3
);
2077 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2078 inputs of NEWPAT. */
2080 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2081 possible to try that as a scratch reg. This would require adding
2082 more code to make it work though. */
2084 if (m_split
== 0 && ! reg_overlap_mentioned_p (ni2dest
, newpat
))
2086 /* If I2DEST is a hard register or the only use of a pseudo,
2087 we can change its mode. */
2088 if (GET_MODE (SET_DEST (newpat
)) != GET_MODE (i2dest
)
2089 && GET_MODE (SET_DEST (newpat
)) != VOIDmode
2090 && GET_CODE (i2dest
) == REG
2091 && (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
2092 || (REG_N_SETS (REGNO (i2dest
)) == 1 && ! added_sets_2
2093 && ! REG_USERVAR_P (i2dest
))))
2094 ni2dest
= gen_rtx_REG (GET_MODE (SET_DEST (newpat
)),
2097 m_split
= split_insns (gen_rtx_PARALLEL
2099 gen_rtvec (2, newpat
,
2100 gen_rtx_CLOBBER (VOIDmode
,
2103 /* If the split with the mode-changed register didn't work, try
2104 the original register. */
2105 if (! m_split
&& ni2dest
!= i2dest
)
2108 m_split
= split_insns (gen_rtx_PARALLEL
2110 gen_rtvec (2, newpat
,
2111 gen_rtx_CLOBBER (VOIDmode
,
2117 if (m_split
&& NEXT_INSN (m_split
) == NULL_RTX
)
2119 m_split
= PATTERN (m_split
);
2120 insn_code_number
= recog_for_combine (&m_split
, i3
, &new_i3_notes
);
2121 if (insn_code_number
>= 0)
2124 else if (m_split
&& NEXT_INSN (NEXT_INSN (m_split
)) == NULL_RTX
2125 && (next_real_insn (i2
) == i3
2126 || ! use_crosses_set_p (PATTERN (m_split
), INSN_CUID (i2
))))
2129 rtx newi3pat
= PATTERN (NEXT_INSN (m_split
));
2130 newi2pat
= PATTERN (m_split
);
2132 i3set
= single_set (NEXT_INSN (m_split
));
2133 i2set
= single_set (m_split
);
2135 /* In case we changed the mode of I2DEST, replace it in the
2136 pseudo-register table here. We can't do it above in case this
2137 code doesn't get executed and we do a split the other way. */
2139 if (REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2140 SUBST (regno_reg_rtx
[REGNO (i2dest
)], ni2dest
);
2142 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2144 /* If I2 or I3 has multiple SETs, we won't know how to track
2145 register status, so don't use these insns. If I2's destination
2146 is used between I2 and I3, we also can't use these insns. */
2148 if (i2_code_number
>= 0 && i2set
&& i3set
2149 && (next_real_insn (i2
) == i3
2150 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
2151 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
2153 if (insn_code_number
>= 0)
2156 /* It is possible that both insns now set the destination of I3.
2157 If so, we must show an extra use of it. */
2159 if (insn_code_number
>= 0)
2161 rtx new_i3_dest
= SET_DEST (i3set
);
2162 rtx new_i2_dest
= SET_DEST (i2set
);
2164 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
2165 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
2166 || GET_CODE (new_i3_dest
) == SUBREG
)
2167 new_i3_dest
= XEXP (new_i3_dest
, 0);
2169 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
2170 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
2171 || GET_CODE (new_i2_dest
) == SUBREG
)
2172 new_i2_dest
= XEXP (new_i2_dest
, 0);
2174 if (GET_CODE (new_i3_dest
) == REG
2175 && GET_CODE (new_i2_dest
) == REG
2176 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
2177 REG_N_SETS (REGNO (new_i2_dest
))++;
2181 /* If we can split it and use I2DEST, go ahead and see if that
2182 helps things be recognized. Verify that none of the registers
2183 are set between I2 and I3. */
2184 if (insn_code_number
< 0 && (split
= find_split_point (&newpat
, i3
)) != 0
2186 && GET_CODE (i2dest
) == REG
2188 /* We need I2DEST in the proper mode. If it is a hard register
2189 or the only use of a pseudo, we can change its mode. */
2190 && (GET_MODE (*split
) == GET_MODE (i2dest
)
2191 || GET_MODE (*split
) == VOIDmode
2192 || REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
2193 || (REG_N_SETS (REGNO (i2dest
)) == 1 && ! added_sets_2
2194 && ! REG_USERVAR_P (i2dest
)))
2195 && (next_real_insn (i2
) == i3
2196 || ! use_crosses_set_p (*split
, INSN_CUID (i2
)))
2197 /* We can't overwrite I2DEST if its value is still used by
2199 && ! reg_referenced_p (i2dest
, newpat
))
2201 rtx newdest
= i2dest
;
2202 enum rtx_code split_code
= GET_CODE (*split
);
2203 enum machine_mode split_mode
= GET_MODE (*split
);
2205 /* Get NEWDEST as a register in the proper mode. We have already
2206 validated that we can do this. */
2207 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
2209 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
2211 if (REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2212 SUBST (regno_reg_rtx
[REGNO (i2dest
)], newdest
);
2215 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2216 an ASHIFT. This can occur if it was inside a PLUS and hence
2217 appeared to be a memory address. This is a kludge. */
2218 if (split_code
== MULT
2219 && GET_CODE (XEXP (*split
, 1)) == CONST_INT
2220 && INTVAL (XEXP (*split
, 1)) > 0
2221 && (i
= exact_log2 (INTVAL (XEXP (*split
, 1)))) >= 0)
2223 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
2224 XEXP (*split
, 0), GEN_INT (i
)));
2225 /* Update split_code because we may not have a multiply
2227 split_code
= GET_CODE (*split
);
2230 #ifdef INSN_SCHEDULING
2231 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2232 be written as a ZERO_EXTEND. */
2233 if (split_code
== SUBREG
&& GET_CODE (SUBREG_REG (*split
)) == MEM
)
2235 #ifdef LOAD_EXTEND_OP
2236 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2237 what it really is. */
2238 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split
)))
2240 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
2241 SUBREG_REG (*split
)));
2244 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
2245 SUBREG_REG (*split
)));
2249 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, *split
);
2250 SUBST (*split
, newdest
);
2251 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2253 /* If the split point was a MULT and we didn't have one before,
2254 don't use one now. */
2255 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
2256 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2260 /* Check for a case where we loaded from memory in a narrow mode and
2261 then sign extended it, but we need both registers. In that case,
2262 we have a PARALLEL with both loads from the same memory location.
2263 We can split this into a load from memory followed by a register-register
2264 copy. This saves at least one insn, more if register allocation can
2267 We cannot do this if the destination of the first assignment is a
2268 condition code register or cc0. We eliminate this case by making sure
2269 the SET_DEST and SET_SRC have the same mode.
2271 We cannot do this if the destination of the second assignment is
2272 a register that we have already assumed is zero-extended. Similarly
2273 for a SUBREG of such a register. */
2275 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2276 && GET_CODE (newpat
) == PARALLEL
2277 && XVECLEN (newpat
, 0) == 2
2278 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2279 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
2280 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
2281 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
2282 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2283 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2284 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
2285 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2287 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2288 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2289 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
2290 (GET_CODE (temp
) == REG
2291 && reg_nonzero_bits
[REGNO (temp
)] != 0
2292 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2293 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2294 && (reg_nonzero_bits
[REGNO (temp
)]
2295 != GET_MODE_MASK (word_mode
))))
2296 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
2297 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
2298 (GET_CODE (temp
) == REG
2299 && reg_nonzero_bits
[REGNO (temp
)] != 0
2300 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2301 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2302 && (reg_nonzero_bits
[REGNO (temp
)]
2303 != GET_MODE_MASK (word_mode
)))))
2304 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2305 SET_SRC (XVECEXP (newpat
, 0, 1)))
2306 && ! find_reg_note (i3
, REG_UNUSED
,
2307 SET_DEST (XVECEXP (newpat
, 0, 0))))
2311 newi2pat
= XVECEXP (newpat
, 0, 0);
2312 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
2313 newpat
= XVECEXP (newpat
, 0, 1);
2314 SUBST (SET_SRC (newpat
),
2315 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat
)), ni2dest
));
2316 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2318 if (i2_code_number
>= 0)
2319 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2321 if (insn_code_number
>= 0)
2326 /* If we will be able to accept this, we have made a change to the
2327 destination of I3. This can invalidate a LOG_LINKS pointing
2328 to I3. No other part of combine.c makes such a transformation.
2330 The new I3 will have a destination that was previously the
2331 destination of I1 or I2 and which was used in i2 or I3. Call
2332 distribute_links to make a LOG_LINK from the next use of
2333 that destination. */
2335 PATTERN (i3
) = newpat
;
2336 distribute_links (gen_rtx_INSN_LIST (VOIDmode
, i3
, NULL_RTX
));
2338 /* I3 now uses what used to be its destination and which is
2339 now I2's destination. That means we need a LOG_LINK from
2340 I3 to I2. But we used to have one, so we still will.
2342 However, some later insn might be using I2's dest and have
2343 a LOG_LINK pointing at I3. We must remove this link.
2344 The simplest way to remove the link is to point it at I1,
2345 which we know will be a NOTE. */
2347 for (insn
= NEXT_INSN (i3
);
2348 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
2349 || insn
!= this_basic_block
->next_bb
->head
);
2350 insn
= NEXT_INSN (insn
))
2352 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
2354 for (link
= LOG_LINKS (insn
); link
;
2355 link
= XEXP (link
, 1))
2356 if (XEXP (link
, 0) == i3
)
2357 XEXP (link
, 0) = i1
;
2365 /* Similarly, check for a case where we have a PARALLEL of two independent
2366 SETs but we started with three insns. In this case, we can do the sets
2367 as two separate insns. This case occurs when some SET allows two
2368 other insns to combine, but the destination of that SET is still live. */
2370 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2371 && GET_CODE (newpat
) == PARALLEL
2372 && XVECLEN (newpat
, 0) == 2
2373 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2374 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
2375 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
2376 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2377 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2378 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2379 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2381 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2382 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != USE
2383 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != USE
2384 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2385 XVECEXP (newpat
, 0, 0))
2386 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
2387 XVECEXP (newpat
, 0, 1))
2388 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
2389 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
2391 /* Normally, it doesn't matter which of the two is done first,
2392 but it does if one references cc0. In that case, it has to
2395 if (reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 0)))
2397 newi2pat
= XVECEXP (newpat
, 0, 0);
2398 newpat
= XVECEXP (newpat
, 0, 1);
2403 newi2pat
= XVECEXP (newpat
, 0, 1);
2404 newpat
= XVECEXP (newpat
, 0, 0);
2407 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2409 if (i2_code_number
>= 0)
2410 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2413 /* If it still isn't recognized, fail and change things back the way they
2415 if ((insn_code_number
< 0
2416 /* Is the result a reasonable ASM_OPERANDS? */
2417 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
2423 /* If we had to change another insn, make sure it is valid also. */
2424 if (undobuf
.other_insn
)
2426 rtx other_pat
= PATTERN (undobuf
.other_insn
);
2427 rtx new_other_notes
;
2430 CLEAR_HARD_REG_SET (newpat_used_regs
);
2432 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
2435 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
2441 PATTERN (undobuf
.other_insn
) = other_pat
;
2443 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2444 are still valid. Then add any non-duplicate notes added by
2445 recog_for_combine. */
2446 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
2448 next
= XEXP (note
, 1);
2450 if (REG_NOTE_KIND (note
) == REG_UNUSED
2451 && ! reg_set_p (XEXP (note
, 0), PATTERN (undobuf
.other_insn
)))
2453 if (GET_CODE (XEXP (note
, 0)) == REG
)
2454 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
2456 remove_note (undobuf
.other_insn
, note
);
2460 for (note
= new_other_notes
; note
; note
= XEXP (note
, 1))
2461 if (GET_CODE (XEXP (note
, 0)) == REG
)
2462 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
2464 distribute_notes (new_other_notes
, undobuf
.other_insn
,
2465 undobuf
.other_insn
, NULL_RTX
);
2468 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2469 they are adjacent to each other or not. */
2471 rtx p
= prev_nonnote_insn (i3
);
2472 if (p
&& p
!= i2
&& GET_CODE (p
) == INSN
&& newi2pat
2473 && sets_cc0_p (newi2pat
))
2481 /* We now know that we can do this combination. Merge the insns and
2482 update the status of registers and LOG_LINKS. */
2485 rtx i3notes
, i2notes
, i1notes
= 0;
2486 rtx i3links
, i2links
, i1links
= 0;
2490 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2492 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
2493 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
2495 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
2497 /* Ensure that we do not have something that should not be shared but
2498 occurs multiple times in the new insns. Check this by first
2499 resetting all the `used' flags and then copying anything is shared. */
2501 reset_used_flags (i3notes
);
2502 reset_used_flags (i2notes
);
2503 reset_used_flags (i1notes
);
2504 reset_used_flags (newpat
);
2505 reset_used_flags (newi2pat
);
2506 if (undobuf
.other_insn
)
2507 reset_used_flags (PATTERN (undobuf
.other_insn
));
2509 i3notes
= copy_rtx_if_shared (i3notes
);
2510 i2notes
= copy_rtx_if_shared (i2notes
);
2511 i1notes
= copy_rtx_if_shared (i1notes
);
2512 newpat
= copy_rtx_if_shared (newpat
);
2513 newi2pat
= copy_rtx_if_shared (newi2pat
);
2514 if (undobuf
.other_insn
)
2515 reset_used_flags (PATTERN (undobuf
.other_insn
));
2517 INSN_CODE (i3
) = insn_code_number
;
2518 PATTERN (i3
) = newpat
;
2520 if (GET_CODE (i3
) == CALL_INSN
&& CALL_INSN_FUNCTION_USAGE (i3
))
2522 rtx call_usage
= CALL_INSN_FUNCTION_USAGE (i3
);
2524 reset_used_flags (call_usage
);
2525 call_usage
= copy_rtx (call_usage
);
2528 replace_rtx (call_usage
, i2dest
, i2src
);
2531 replace_rtx (call_usage
, i1dest
, i1src
);
2533 CALL_INSN_FUNCTION_USAGE (i3
) = call_usage
;
2536 if (undobuf
.other_insn
)
2537 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
2539 /* We had one special case above where I2 had more than one set and
2540 we replaced a destination of one of those sets with the destination
2541 of I3. In that case, we have to update LOG_LINKS of insns later
2542 in this basic block. Note that this (expensive) case is rare.
2544 Also, in this case, we must pretend that all REG_NOTEs for I2
2545 actually came from I3, so that REG_UNUSED notes from I2 will be
2546 properly handled. */
2548 if (i3_subst_into_i2
)
2550 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
2551 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != USE
2552 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))) == REG
2553 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
2554 && ! find_reg_note (i2
, REG_UNUSED
,
2555 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
2556 for (temp
= NEXT_INSN (i2
);
2557 temp
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
2558 || this_basic_block
->head
!= temp
);
2559 temp
= NEXT_INSN (temp
))
2560 if (temp
!= i3
&& INSN_P (temp
))
2561 for (link
= LOG_LINKS (temp
); link
; link
= XEXP (link
, 1))
2562 if (XEXP (link
, 0) == i2
)
2563 XEXP (link
, 0) = i3
;
2568 while (XEXP (link
, 1))
2569 link
= XEXP (link
, 1);
2570 XEXP (link
, 1) = i2notes
;
2584 INSN_CODE (i2
) = i2_code_number
;
2585 PATTERN (i2
) = newi2pat
;
2589 PUT_CODE (i2
, NOTE
);
2590 NOTE_LINE_NUMBER (i2
) = NOTE_INSN_DELETED
;
2591 NOTE_SOURCE_FILE (i2
) = 0;
2598 PUT_CODE (i1
, NOTE
);
2599 NOTE_LINE_NUMBER (i1
) = NOTE_INSN_DELETED
;
2600 NOTE_SOURCE_FILE (i1
) = 0;
2603 /* Get death notes for everything that is now used in either I3 or
2604 I2 and used to die in a previous insn. If we built two new
2605 patterns, move from I1 to I2 then I2 to I3 so that we get the
2606 proper movement on registers that I2 modifies. */
2610 move_deaths (newi2pat
, NULL_RTX
, INSN_CUID (i1
), i2
, &midnotes
);
2611 move_deaths (newpat
, newi2pat
, INSN_CUID (i1
), i3
, &midnotes
);
2614 move_deaths (newpat
, NULL_RTX
, i1
? INSN_CUID (i1
) : INSN_CUID (i2
),
2617 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2619 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
);
2621 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
);
2623 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
);
2625 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
);
2627 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2628 know these are REG_UNUSED and want them to go to the desired insn,
2629 so we always pass it as i3. We have not counted the notes in
2630 reg_n_deaths yet, so we need to do so now. */
2632 if (newi2pat
&& new_i2_notes
)
2634 for (temp
= new_i2_notes
; temp
; temp
= XEXP (temp
, 1))
2635 if (GET_CODE (XEXP (temp
, 0)) == REG
)
2636 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
2638 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
);
2643 for (temp
= new_i3_notes
; temp
; temp
= XEXP (temp
, 1))
2644 if (GET_CODE (XEXP (temp
, 0)) == REG
)
2645 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
2647 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
);
2650 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2651 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2652 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2653 in that case, it might delete I2. Similarly for I2 and I1.
2654 Show an additional death due to the REG_DEAD note we make here. If
2655 we discard it in distribute_notes, we will decrement it again. */
2659 if (GET_CODE (i3dest_killed
) == REG
)
2660 REG_N_DEATHS (REGNO (i3dest_killed
))++;
2662 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
2663 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
2665 NULL_RTX
, i2
, NULL_RTX
);
2667 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
2669 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
);
2672 if (i2dest_in_i2src
)
2674 if (GET_CODE (i2dest
) == REG
)
2675 REG_N_DEATHS (REGNO (i2dest
))++;
2677 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
2678 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
2679 NULL_RTX
, i2
, NULL_RTX
);
2681 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
2682 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
);
2685 if (i1dest_in_i1src
)
2687 if (GET_CODE (i1dest
) == REG
)
2688 REG_N_DEATHS (REGNO (i1dest
))++;
2690 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
2691 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
2692 NULL_RTX
, i2
, NULL_RTX
);
2694 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
2695 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
);
2698 distribute_links (i3links
);
2699 distribute_links (i2links
);
2700 distribute_links (i1links
);
2702 if (GET_CODE (i2dest
) == REG
)
2705 rtx i2_insn
= 0, i2_val
= 0, set
;
2707 /* The insn that used to set this register doesn't exist, and
2708 this life of the register may not exist either. See if one of
2709 I3's links points to an insn that sets I2DEST. If it does,
2710 that is now the last known value for I2DEST. If we don't update
2711 this and I2 set the register to a value that depended on its old
2712 contents, we will get confused. If this insn is used, thing
2713 will be set correctly in combine_instructions. */
2715 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
2716 if ((set
= single_set (XEXP (link
, 0))) != 0
2717 && rtx_equal_p (i2dest
, SET_DEST (set
)))
2718 i2_insn
= XEXP (link
, 0), i2_val
= SET_SRC (set
);
2720 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
2722 /* If the reg formerly set in I2 died only once and that was in I3,
2723 zero its use count so it won't make `reload' do any work. */
2725 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
2726 && ! i2dest_in_i2src
)
2728 regno
= REGNO (i2dest
);
2729 REG_N_SETS (regno
)--;
2733 if (i1
&& GET_CODE (i1dest
) == REG
)
2736 rtx i1_insn
= 0, i1_val
= 0, set
;
2738 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
2739 if ((set
= single_set (XEXP (link
, 0))) != 0
2740 && rtx_equal_p (i1dest
, SET_DEST (set
)))
2741 i1_insn
= XEXP (link
, 0), i1_val
= SET_SRC (set
);
2743 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
2745 regno
= REGNO (i1dest
);
2746 if (! added_sets_1
&& ! i1dest_in_i1src
)
2747 REG_N_SETS (regno
)--;
2750 /* Update reg_nonzero_bits et al for any changes that may have been made
2751 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2752 important. Because newi2pat can affect nonzero_bits of newpat */
2754 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
2755 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
2757 /* Set new_direct_jump_p if a new return or simple jump instruction
2760 If I3 is now an unconditional jump, ensure that it has a
2761 BARRIER following it since it may have initially been a
2762 conditional jump. It may also be the last nonnote insn. */
2764 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
2766 *new_direct_jump_p
= 1;
2768 if ((temp
= next_nonnote_insn (i3
)) == NULL_RTX
2769 || GET_CODE (temp
) != BARRIER
)
2770 emit_barrier_after (i3
);
2773 if (undobuf
.other_insn
!= NULL_RTX
2774 && (returnjump_p (undobuf
.other_insn
)
2775 || any_uncondjump_p (undobuf
.other_insn
)))
2777 *new_direct_jump_p
= 1;
2779 if ((temp
= next_nonnote_insn (undobuf
.other_insn
)) == NULL_RTX
2780 || GET_CODE (temp
) != BARRIER
)
2781 emit_barrier_after (undobuf
.other_insn
);
2784 /* An NOOP jump does not need barrier, but it does need cleaning up
2786 if (GET_CODE (newpat
) == SET
2787 && SET_SRC (newpat
) == pc_rtx
2788 && SET_DEST (newpat
) == pc_rtx
)
2789 *new_direct_jump_p
= 1;
2792 combine_successes
++;
2795 if (added_links_insn
2796 && (newi2pat
== 0 || INSN_CUID (added_links_insn
) < INSN_CUID (i2
))
2797 && INSN_CUID (added_links_insn
) < INSN_CUID (i3
))
2798 return added_links_insn
;
2800 return newi2pat
? i2
: i3
;
2803 /* Undo all the modifications recorded in undobuf. */
2808 struct undo
*undo
, *next
;
2810 for (undo
= undobuf
.undos
; undo
; undo
= next
)
2814 *undo
->where
.i
= undo
->old_contents
.i
;
2816 *undo
->where
.r
= undo
->old_contents
.r
;
2818 undo
->next
= undobuf
.frees
;
2819 undobuf
.frees
= undo
;
2825 /* We've committed to accepting the changes we made. Move all
2826 of the undos to the free list. */
2831 struct undo
*undo
, *next
;
2833 for (undo
= undobuf
.undos
; undo
; undo
= next
)
2836 undo
->next
= undobuf
.frees
;
2837 undobuf
.frees
= undo
;
2843 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2844 where we have an arithmetic expression and return that point. LOC will
2847 try_combine will call this function to see if an insn can be split into
2851 find_split_point (rtx
*loc
, rtx insn
)
2854 enum rtx_code code
= GET_CODE (x
);
2856 unsigned HOST_WIDE_INT len
= 0;
2857 HOST_WIDE_INT pos
= 0;
2859 rtx inner
= NULL_RTX
;
2861 /* First special-case some codes. */
2865 #ifdef INSN_SCHEDULING
2866 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2868 if (GET_CODE (SUBREG_REG (x
)) == MEM
)
2871 return find_split_point (&SUBREG_REG (x
), insn
);
2875 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2876 using LO_SUM and HIGH. */
2877 if (GET_CODE (XEXP (x
, 0)) == CONST
2878 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2881 gen_rtx_LO_SUM (Pmode
,
2882 gen_rtx_HIGH (Pmode
, XEXP (x
, 0)),
2884 return &XEXP (XEXP (x
, 0), 0);
2888 /* If we have a PLUS whose second operand is a constant and the
2889 address is not valid, perhaps will can split it up using
2890 the machine-specific way to split large constants. We use
2891 the first pseudo-reg (one of the virtual regs) as a placeholder;
2892 it will not remain in the result. */
2893 if (GET_CODE (XEXP (x
, 0)) == PLUS
2894 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
2895 && ! memory_address_p (GET_MODE (x
), XEXP (x
, 0)))
2897 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
2898 rtx seq
= split_insns (gen_rtx_SET (VOIDmode
, reg
, XEXP (x
, 0)),
2901 /* This should have produced two insns, each of which sets our
2902 placeholder. If the source of the second is a valid address,
2903 we can make put both sources together and make a split point
2907 && NEXT_INSN (seq
) != NULL_RTX
2908 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
2909 && GET_CODE (seq
) == INSN
2910 && GET_CODE (PATTERN (seq
)) == SET
2911 && SET_DEST (PATTERN (seq
)) == reg
2912 && ! reg_mentioned_p (reg
,
2913 SET_SRC (PATTERN (seq
)))
2914 && GET_CODE (NEXT_INSN (seq
)) == INSN
2915 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
2916 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
2917 && memory_address_p (GET_MODE (x
),
2918 SET_SRC (PATTERN (NEXT_INSN (seq
)))))
2920 rtx src1
= SET_SRC (PATTERN (seq
));
2921 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
2923 /* Replace the placeholder in SRC2 with SRC1. If we can
2924 find where in SRC2 it was placed, that can become our
2925 split point and we can replace this address with SRC2.
2926 Just try two obvious places. */
2928 src2
= replace_rtx (src2
, reg
, src1
);
2930 if (XEXP (src2
, 0) == src1
)
2931 split
= &XEXP (src2
, 0);
2932 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
2933 && XEXP (XEXP (src2
, 0), 0) == src1
)
2934 split
= &XEXP (XEXP (src2
, 0), 0);
2938 SUBST (XEXP (x
, 0), src2
);
2943 /* If that didn't work, perhaps the first operand is complex and
2944 needs to be computed separately, so make a split point there.
2945 This will occur on machines that just support REG + CONST
2946 and have a constant moved through some previous computation. */
2948 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x
, 0), 0))) != 'o'
2949 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
2950 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x
, 0), 0))))
2952 return &XEXP (XEXP (x
, 0), 0);
2958 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2959 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2960 we need to put the operand into a register. So split at that
2963 if (SET_DEST (x
) == cc0_rtx
2964 && GET_CODE (SET_SRC (x
)) != COMPARE
2965 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
2966 && GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) != 'o'
2967 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
2968 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x
)))) == 'o'))
2969 return &SET_SRC (x
);
2972 /* See if we can split SET_SRC as it stands. */
2973 split
= find_split_point (&SET_SRC (x
), insn
);
2974 if (split
&& split
!= &SET_SRC (x
))
2977 /* See if we can split SET_DEST as it stands. */
2978 split
= find_split_point (&SET_DEST (x
), insn
);
2979 if (split
&& split
!= &SET_DEST (x
))
2982 /* See if this is a bitfield assignment with everything constant. If
2983 so, this is an IOR of an AND, so split it into that. */
2984 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
2985 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)))
2986 <= HOST_BITS_PER_WIDE_INT
)
2987 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
2988 && GET_CODE (XEXP (SET_DEST (x
), 2)) == CONST_INT
2989 && GET_CODE (SET_SRC (x
)) == CONST_INT
2990 && ((INTVAL (XEXP (SET_DEST (x
), 1))
2991 + INTVAL (XEXP (SET_DEST (x
), 2)))
2992 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0))))
2993 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
2995 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
2996 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
2997 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
2998 rtx dest
= XEXP (SET_DEST (x
), 0);
2999 enum machine_mode mode
= GET_MODE (dest
);
3000 unsigned HOST_WIDE_INT mask
= ((HOST_WIDE_INT
) 1 << len
) - 1;
3002 if (BITS_BIG_ENDIAN
)
3003 pos
= GET_MODE_BITSIZE (mode
) - len
- pos
;
3007 gen_binary (IOR
, mode
, dest
, GEN_INT (src
<< pos
)));
3010 gen_binary (IOR
, mode
,
3011 gen_binary (AND
, mode
, dest
,
3012 gen_int_mode (~(mask
<< pos
),
3014 GEN_INT (src
<< pos
)));
3016 SUBST (SET_DEST (x
), dest
);
3018 split
= find_split_point (&SET_SRC (x
), insn
);
3019 if (split
&& split
!= &SET_SRC (x
))
3023 /* Otherwise, see if this is an operation that we can split into two.
3024 If so, try to split that. */
3025 code
= GET_CODE (SET_SRC (x
));
3030 /* If we are AND'ing with a large constant that is only a single
3031 bit and the result is only being used in a context where we
3032 need to know if it is zero or nonzero, replace it with a bit
3033 extraction. This will avoid the large constant, which might
3034 have taken more than one insn to make. If the constant were
3035 not a valid argument to the AND but took only one insn to make,
3036 this is no worse, but if it took more than one insn, it will
3039 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3040 && GET_CODE (XEXP (SET_SRC (x
), 0)) == REG
3041 && (pos
= exact_log2 (INTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
3042 && GET_CODE (SET_DEST (x
)) == REG
3043 && (split
= find_single_use (SET_DEST (x
), insn
, (rtx
*) 0)) != 0
3044 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
3045 && XEXP (*split
, 0) == SET_DEST (x
)
3046 && XEXP (*split
, 1) == const0_rtx
)
3048 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
3049 XEXP (SET_SRC (x
), 0),
3050 pos
, NULL_RTX
, 1, 1, 0, 0);
3051 if (extraction
!= 0)
3053 SUBST (SET_SRC (x
), extraction
);
3054 return find_split_point (loc
, insn
);
3060 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3061 is known to be on, this can be converted into a NEG of a shift. */
3062 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
3063 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
3064 && 1 <= (pos
= exact_log2
3065 (nonzero_bits (XEXP (SET_SRC (x
), 0),
3066 GET_MODE (XEXP (SET_SRC (x
), 0))))))
3068 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
3072 gen_rtx_LSHIFTRT (mode
,
3073 XEXP (SET_SRC (x
), 0),
3076 split
= find_split_point (&SET_SRC (x
), insn
);
3077 if (split
&& split
!= &SET_SRC (x
))
3083 inner
= XEXP (SET_SRC (x
), 0);
3085 /* We can't optimize if either mode is a partial integer
3086 mode as we don't know how many bits are significant
3088 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
3089 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
3093 len
= GET_MODE_BITSIZE (GET_MODE (inner
));
3099 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3100 && GET_CODE (XEXP (SET_SRC (x
), 2)) == CONST_INT
)
3102 inner
= XEXP (SET_SRC (x
), 0);
3103 len
= INTVAL (XEXP (SET_SRC (x
), 1));
3104 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
3106 if (BITS_BIG_ENDIAN
)
3107 pos
= GET_MODE_BITSIZE (GET_MODE (inner
)) - len
- pos
;
3108 unsignedp
= (code
== ZERO_EXTRACT
);
3116 if (len
&& pos
>= 0 && pos
+ len
<= GET_MODE_BITSIZE (GET_MODE (inner
)))
3118 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
3120 /* For unsigned, we have a choice of a shift followed by an
3121 AND or two shifts. Use two shifts for field sizes where the
3122 constant might be too large. We assume here that we can
3123 always at least get 8-bit constants in an AND insn, which is
3124 true for every current RISC. */
3126 if (unsignedp
&& len
<= 8)
3131 (mode
, gen_lowpart_for_combine (mode
, inner
),
3133 GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1)));
3135 split
= find_split_point (&SET_SRC (x
), insn
);
3136 if (split
&& split
!= &SET_SRC (x
))
3143 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
3144 gen_rtx_ASHIFT (mode
,
3145 gen_lowpart_for_combine (mode
, inner
),
3146 GEN_INT (GET_MODE_BITSIZE (mode
)
3148 GEN_INT (GET_MODE_BITSIZE (mode
) - len
)));
3150 split
= find_split_point (&SET_SRC (x
), insn
);
3151 if (split
&& split
!= &SET_SRC (x
))
3156 /* See if this is a simple operation with a constant as the second
3157 operand. It might be that this constant is out of range and hence
3158 could be used as a split point. */
3159 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '2'
3160 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == 'c'
3161 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '<')
3162 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
3163 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x
), 0))) == 'o'
3164 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
3165 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x
), 0))))
3167 return &XEXP (SET_SRC (x
), 1);
3169 /* Finally, see if this is a simple operation with its first operand
3170 not in a register. The operation might require this operand in a
3171 register, so return it as a split point. We can always do this
3172 because if the first operand were another operation, we would have
3173 already found it as a split point. */
3174 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '2'
3175 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == 'c'
3176 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '<'
3177 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '1')
3178 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
3179 return &XEXP (SET_SRC (x
), 0);
3185 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3186 it is better to write this as (not (ior A B)) so we can split it.
3187 Similarly for IOR. */
3188 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
3191 gen_rtx_NOT (GET_MODE (x
),
3192 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
3194 XEXP (XEXP (x
, 0), 0),
3195 XEXP (XEXP (x
, 1), 0))));
3196 return find_split_point (loc
, insn
);
3199 /* Many RISC machines have a large set of logical insns. If the
3200 second operand is a NOT, put it first so we will try to split the
3201 other operand first. */
3202 if (GET_CODE (XEXP (x
, 1)) == NOT
)
3204 rtx tem
= XEXP (x
, 0);
3205 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3206 SUBST (XEXP (x
, 1), tem
);
3214 /* Otherwise, select our actions depending on our rtx class. */
3215 switch (GET_RTX_CLASS (code
))
3217 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3219 split
= find_split_point (&XEXP (x
, 2), insn
);
3222 /* ... fall through ... */
3226 split
= find_split_point (&XEXP (x
, 1), insn
);
3229 /* ... fall through ... */
3231 /* Some machines have (and (shift ...) ...) insns. If X is not
3232 an AND, but XEXP (X, 0) is, use it as our split point. */
3233 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
3234 return &XEXP (x
, 0);
3236 split
= find_split_point (&XEXP (x
, 0), insn
);
3242 /* Otherwise, we don't have a split point. */
3246 /* Throughout X, replace FROM with TO, and return the result.
3247 The result is TO if X is FROM;
3248 otherwise the result is X, but its contents may have been modified.
3249 If they were modified, a record was made in undobuf so that
3250 undo_all will (among other things) return X to its original state.
3252 If the number of changes necessary is too much to record to undo,
3253 the excess changes are not made, so the result is invalid.
3254 The changes already made can still be undone.
3255 undobuf.num_undo is incremented for such changes, so by testing that
3256 the caller can tell whether the result is valid.
3258 `n_occurrences' is incremented each time FROM is replaced.
3260 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3262 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3263 by copying if `n_occurrences' is nonzero. */
3266 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int unique_copy
)
3268 enum rtx_code code
= GET_CODE (x
);
3269 enum machine_mode op0_mode
= VOIDmode
;
3274 /* Two expressions are equal if they are identical copies of a shared
3275 RTX or if they are both registers with the same register number
3278 #define COMBINE_RTX_EQUAL_P(X,Y) \
3280 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3281 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3283 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
3286 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
3289 /* If X and FROM are the same register but different modes, they will
3290 not have been seen as equal above. However, flow.c will make a
3291 LOG_LINKS entry for that case. If we do nothing, we will try to
3292 rerecognize our original insn and, when it succeeds, we will
3293 delete the feeding insn, which is incorrect.
3295 So force this insn not to match in this (rare) case. */
3296 if (! in_dest
&& code
== REG
&& GET_CODE (from
) == REG
3297 && REGNO (x
) == REGNO (from
))
3298 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
3300 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3301 of which may contain things that can be combined. */
3302 if (code
!= MEM
&& code
!= LO_SUM
&& GET_RTX_CLASS (code
) == 'o')
3305 /* It is possible to have a subexpression appear twice in the insn.
3306 Suppose that FROM is a register that appears within TO.
3307 Then, after that subexpression has been scanned once by `subst',
3308 the second time it is scanned, TO may be found. If we were
3309 to scan TO here, we would find FROM within it and create a
3310 self-referent rtl structure which is completely wrong. */
3311 if (COMBINE_RTX_EQUAL_P (x
, to
))
3314 /* Parallel asm_operands need special attention because all of the
3315 inputs are shared across the arms. Furthermore, unsharing the
3316 rtl results in recognition failures. Failure to handle this case
3317 specially can result in circular rtl.
3319 Solve this by doing a normal pass across the first entry of the
3320 parallel, and only processing the SET_DESTs of the subsequent
3323 if (code
== PARALLEL
3324 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
3325 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
3327 new = subst (XVECEXP (x
, 0, 0), from
, to
, 0, unique_copy
);
3329 /* If this substitution failed, this whole thing fails. */
3330 if (GET_CODE (new) == CLOBBER
3331 && XEXP (new, 0) == const0_rtx
)
3334 SUBST (XVECEXP (x
, 0, 0), new);
3336 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
3338 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
3340 if (GET_CODE (dest
) != REG
3341 && GET_CODE (dest
) != CC0
3342 && GET_CODE (dest
) != PC
)
3344 new = subst (dest
, from
, to
, 0, unique_copy
);
3346 /* If this substitution failed, this whole thing fails. */
3347 if (GET_CODE (new) == CLOBBER
3348 && XEXP (new, 0) == const0_rtx
)
3351 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new);
3357 len
= GET_RTX_LENGTH (code
);
3358 fmt
= GET_RTX_FORMAT (code
);
3360 /* We don't need to process a SET_DEST that is a register, CC0,
3361 or PC, so set up to skip this common case. All other cases
3362 where we want to suppress replacing something inside a
3363 SET_SRC are handled via the IN_DEST operand. */
3365 && (GET_CODE (SET_DEST (x
)) == REG
3366 || GET_CODE (SET_DEST (x
)) == CC0
3367 || GET_CODE (SET_DEST (x
)) == PC
))
3370 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3373 op0_mode
= GET_MODE (XEXP (x
, 0));
3375 for (i
= 0; i
< len
; i
++)
3380 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3382 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
3384 new = (unique_copy
&& n_occurrences
3385 ? copy_rtx (to
) : to
);
3390 new = subst (XVECEXP (x
, i
, j
), from
, to
, 0,
3393 /* If this substitution failed, this whole thing
3395 if (GET_CODE (new) == CLOBBER
3396 && XEXP (new, 0) == const0_rtx
)
3400 SUBST (XVECEXP (x
, i
, j
), new);
3403 else if (fmt
[i
] == 'e')
3405 /* If this is a register being set, ignore it. */
3408 && (code
== SUBREG
|| code
== STRICT_LOW_PART
3409 || code
== ZERO_EXTRACT
)
3411 && GET_CODE (new) == REG
)
3414 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
3416 /* In general, don't install a subreg involving two
3417 modes not tieable. It can worsen register
3418 allocation, and can even make invalid reload
3419 insns, since the reg inside may need to be copied
3420 from in the outside mode, and that may be invalid
3421 if it is an fp reg copied in integer mode.
3423 We allow two exceptions to this: It is valid if
3424 it is inside another SUBREG and the mode of that
3425 SUBREG and the mode of the inside of TO is
3426 tieable and it is valid if X is a SET that copies
3429 if (GET_CODE (to
) == SUBREG
3430 && ! MODES_TIEABLE_P (GET_MODE (to
),
3431 GET_MODE (SUBREG_REG (to
)))
3432 && ! (code
== SUBREG
3433 && MODES_TIEABLE_P (GET_MODE (x
),
3434 GET_MODE (SUBREG_REG (to
))))
3436 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
3439 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
3441 #ifdef CANNOT_CHANGE_MODE_CLASS
3443 && GET_CODE (to
) == REG
3444 && REGNO (to
) < FIRST_PSEUDO_REGISTER
3445 && REG_CANNOT_CHANGE_MODE_P (REGNO (to
),
3448 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
3451 new = (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
3455 /* If we are in a SET_DEST, suppress most cases unless we
3456 have gone inside a MEM, in which case we want to
3457 simplify the address. We assume here that things that
3458 are actually part of the destination have their inner
3459 parts in the first expression. This is true for SUBREG,
3460 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3461 things aside from REG and MEM that should appear in a
3463 new = subst (XEXP (x
, i
), from
, to
,
3465 && (code
== SUBREG
|| code
== STRICT_LOW_PART
3466 || code
== ZERO_EXTRACT
))
3468 && i
== 0), unique_copy
);
3470 /* If we found that we will have to reject this combination,
3471 indicate that by returning the CLOBBER ourselves, rather than
3472 an expression containing it. This will speed things up as
3473 well as prevent accidents where two CLOBBERs are considered
3474 to be equal, thus producing an incorrect simplification. */
3476 if (GET_CODE (new) == CLOBBER
&& XEXP (new, 0) == const0_rtx
)
3479 if (GET_CODE (new) == CONST_INT
&& GET_CODE (x
) == SUBREG
)
3481 enum machine_mode mode
= GET_MODE (x
);
3483 x
= simplify_subreg (GET_MODE (x
), new,
3484 GET_MODE (SUBREG_REG (x
)),
3487 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
3489 else if (GET_CODE (new) == CONST_INT
3490 && GET_CODE (x
) == ZERO_EXTEND
)
3492 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
3493 new, GET_MODE (XEXP (x
, 0)));
3498 SUBST (XEXP (x
, i
), new);
3503 /* Try to simplify X. If the simplification changed the code, it is likely
3504 that further simplification will help, so loop, but limit the number
3505 of repetitions that will be performed. */
3507 for (i
= 0; i
< 4; i
++)
3509 /* If X is sufficiently simple, don't bother trying to do anything
3511 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
3512 x
= combine_simplify_rtx (x
, op0_mode
, i
== 3, in_dest
);
3514 if (GET_CODE (x
) == code
)
3517 code
= GET_CODE (x
);
3519 /* We no longer know the original mode of operand 0 since we
3520 have changed the form of X) */
3521 op0_mode
= VOIDmode
;
3527 /* Simplify X, a piece of RTL. We just operate on the expression at the
3528 outer level; call `subst' to simplify recursively. Return the new
3531 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3532 will be the iteration even if an expression with a code different from
3533 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3536 combine_simplify_rtx (rtx x
, enum machine_mode op0_mode
, int last
,
3539 enum rtx_code code
= GET_CODE (x
);
3540 enum machine_mode mode
= GET_MODE (x
);
3545 /* If this is a commutative operation, put a constant last and a complex
3546 expression first. We don't need to do this for comparisons here. */
3547 if (GET_RTX_CLASS (code
) == 'c'
3548 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
3551 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3552 SUBST (XEXP (x
, 1), temp
);
3555 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3556 sign extension of a PLUS with a constant, reverse the order of the sign
3557 extension and the addition. Note that this not the same as the original
3558 code, but overflow is undefined for signed values. Also note that the
3559 PLUS will have been partially moved "inside" the sign-extension, so that
3560 the first operand of X will really look like:
3561 (ashiftrt (plus (ashift A C4) C5) C4).
3563 (plus (ashiftrt (ashift A C4) C2) C4)
3564 and replace the first operand of X with that expression. Later parts
3565 of this function may simplify the expression further.
3567 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3568 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3569 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3571 We do this to simplify address expressions. */
3573 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
)
3574 && GET_CODE (XEXP (x
, 0)) == ASHIFTRT
3575 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
3576 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == ASHIFT
3577 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 1)) == CONST_INT
3578 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3579 && XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 1) == XEXP (XEXP (x
, 0), 1)
3580 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
3581 && (temp
= simplify_binary_operation (ASHIFTRT
, mode
,
3582 XEXP (XEXP (XEXP (x
, 0), 0), 1),
3583 XEXP (XEXP (x
, 0), 1))) != 0)
3586 = simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
3587 XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 0),
3588 INTVAL (XEXP (XEXP (x
, 0), 1)));
3590 new = simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
, new,
3591 INTVAL (XEXP (XEXP (x
, 0), 1)));
3593 SUBST (XEXP (x
, 0), gen_binary (PLUS
, mode
, new, temp
));
3596 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3597 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3598 things. Check for cases where both arms are testing the same
3601 Don't do anything if all operands are very simple. */
3603 if (((GET_RTX_CLASS (code
) == '2' || GET_RTX_CLASS (code
) == 'c'
3604 || GET_RTX_CLASS (code
) == '<')
3605 && ((GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) != 'o'
3606 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
3607 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0))))
3609 || (GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) != 'o'
3610 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
3611 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 1))))
3613 || (GET_RTX_CLASS (code
) == '1'
3614 && ((GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) != 'o'
3615 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
3616 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0))))
3619 rtx cond
, true_rtx
, false_rtx
;
3621 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
3623 /* If everything is a comparison, what we have is highly unlikely
3624 to be simpler, so don't use it. */
3625 && ! (GET_RTX_CLASS (code
) == '<'
3626 && (GET_RTX_CLASS (GET_CODE (true_rtx
)) == '<'
3627 || GET_RTX_CLASS (GET_CODE (false_rtx
)) == '<')))
3629 rtx cop1
= const0_rtx
;
3630 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
3632 if (cond_code
== NE
&& GET_RTX_CLASS (GET_CODE (cond
)) == '<')
3635 /* Simplify the alternative arms; this may collapse the true and
3636 false arms to store-flag values. */
3637 true_rtx
= subst (true_rtx
, pc_rtx
, pc_rtx
, 0, 0);
3638 false_rtx
= subst (false_rtx
, pc_rtx
, pc_rtx
, 0, 0);
3640 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3641 is unlikely to be simpler. */
3642 if (general_operand (true_rtx
, VOIDmode
)
3643 && general_operand (false_rtx
, VOIDmode
))
3645 enum rtx_code reversed
;
3647 /* Restarting if we generate a store-flag expression will cause
3648 us to loop. Just drop through in this case. */
3650 /* If the result values are STORE_FLAG_VALUE and zero, we can
3651 just make the comparison operation. */
3652 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
3653 x
= gen_binary (cond_code
, mode
, cond
, cop1
);
3654 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
3655 && ((reversed
= reversed_comparison_code_parts
3656 (cond_code
, cond
, cop1
, NULL
))
3658 x
= gen_binary (reversed
, mode
, cond
, cop1
);
3660 /* Likewise, we can make the negate of a comparison operation
3661 if the result values are - STORE_FLAG_VALUE and zero. */
3662 else if (GET_CODE (true_rtx
) == CONST_INT
3663 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
3664 && false_rtx
== const0_rtx
)
3665 x
= simplify_gen_unary (NEG
, mode
,
3666 gen_binary (cond_code
, mode
, cond
,
3669 else if (GET_CODE (false_rtx
) == CONST_INT
3670 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
3671 && true_rtx
== const0_rtx
3672 && ((reversed
= reversed_comparison_code_parts
3673 (cond_code
, cond
, cop1
, NULL
))
3675 x
= simplify_gen_unary (NEG
, mode
,
3676 gen_binary (reversed
, mode
,
3680 return gen_rtx_IF_THEN_ELSE (mode
,
3681 gen_binary (cond_code
, VOIDmode
,
3683 true_rtx
, false_rtx
);
3685 code
= GET_CODE (x
);
3686 op0_mode
= VOIDmode
;
3691 /* Try to fold this expression in case we have constants that weren't
3694 switch (GET_RTX_CLASS (code
))
3697 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
3701 enum machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
3702 if (cmp_mode
== VOIDmode
)
3704 cmp_mode
= GET_MODE (XEXP (x
, 1));
3705 if (cmp_mode
== VOIDmode
)
3706 cmp_mode
= op0_mode
;
3708 temp
= simplify_relational_operation (code
, cmp_mode
,
3709 XEXP (x
, 0), XEXP (x
, 1));
3711 #ifdef FLOAT_STORE_FLAG_VALUE
3712 if (temp
!= 0 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3714 if (temp
== const0_rtx
)
3715 temp
= CONST0_RTX (mode
);
3717 temp
= CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode
),
3724 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
3728 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
3729 XEXP (x
, 1), XEXP (x
, 2));
3736 code
= GET_CODE (temp
);
3737 op0_mode
= VOIDmode
;
3738 mode
= GET_MODE (temp
);
3741 /* First see if we can apply the inverse distributive law. */
3742 if (code
== PLUS
|| code
== MINUS
3743 || code
== AND
|| code
== IOR
|| code
== XOR
)
3745 x
= apply_distributive_law (x
);
3746 code
= GET_CODE (x
);
3747 op0_mode
= VOIDmode
;
3750 /* If CODE is an associative operation not otherwise handled, see if we
3751 can associate some operands. This can win if they are constants or
3752 if they are logically related (i.e. (a & b) & a). */
3753 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
3754 || code
== AND
|| code
== IOR
|| code
== XOR
3755 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
3756 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
3757 || (flag_unsafe_math_optimizations
&& FLOAT_MODE_P (mode
))))
3759 if (GET_CODE (XEXP (x
, 0)) == code
)
3761 rtx other
= XEXP (XEXP (x
, 0), 0);
3762 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
3763 rtx inner_op1
= XEXP (x
, 1);
3766 /* Make sure we pass the constant operand if any as the second
3767 one if this is a commutative operation. */
3768 if (CONSTANT_P (inner_op0
) && GET_RTX_CLASS (code
) == 'c')
3770 rtx tem
= inner_op0
;
3771 inner_op0
= inner_op1
;
3774 inner
= simplify_binary_operation (code
== MINUS
? PLUS
3775 : code
== DIV
? MULT
3777 mode
, inner_op0
, inner_op1
);
3779 /* For commutative operations, try the other pair if that one
3781 if (inner
== 0 && GET_RTX_CLASS (code
) == 'c')
3783 other
= XEXP (XEXP (x
, 0), 1);
3784 inner
= simplify_binary_operation (code
, mode
,
3785 XEXP (XEXP (x
, 0), 0),
3790 return gen_binary (code
, mode
, other
, inner
);
3794 /* A little bit of algebraic simplification here. */
3798 /* Ensure that our address has any ASHIFTs converted to MULT in case
3799 address-recognizing predicates are called later. */
3800 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
3801 SUBST (XEXP (x
, 0), temp
);
3805 if (op0_mode
== VOIDmode
)
3806 op0_mode
= GET_MODE (SUBREG_REG (x
));
3808 /* simplify_subreg can't use gen_lowpart_for_combine. */
3809 if (CONSTANT_P (SUBREG_REG (x
))
3810 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
3811 /* Don't call gen_lowpart_for_combine if the inner mode
3812 is VOIDmode and we cannot simplify it, as SUBREG without
3813 inner mode is invalid. */
3814 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
3815 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
3816 return gen_lowpart_for_combine (mode
, SUBREG_REG (x
));
3818 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
3822 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
3828 /* Don't change the mode of the MEM if that would change the meaning
3830 if (GET_CODE (SUBREG_REG (x
)) == MEM
3831 && (MEM_VOLATILE_P (SUBREG_REG (x
))
3832 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0))))
3833 return gen_rtx_CLOBBER (mode
, const0_rtx
);
3835 /* Note that we cannot do any narrowing for non-constants since
3836 we might have been counting on using the fact that some bits were
3837 zero. We now do this in the SET. */
3842 /* (not (plus X -1)) can become (neg X). */
3843 if (GET_CODE (XEXP (x
, 0)) == PLUS
3844 && XEXP (XEXP (x
, 0), 1) == constm1_rtx
)
3845 return gen_rtx_NEG (mode
, XEXP (XEXP (x
, 0), 0));
3847 /* Similarly, (not (neg X)) is (plus X -1). */
3848 if (GET_CODE (XEXP (x
, 0)) == NEG
)
3849 return gen_rtx_PLUS (mode
, XEXP (XEXP (x
, 0), 0), constm1_rtx
);
3851 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3852 if (GET_CODE (XEXP (x
, 0)) == XOR
3853 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3854 && (temp
= simplify_unary_operation (NOT
, mode
,
3855 XEXP (XEXP (x
, 0), 1),
3857 return gen_binary (XOR
, mode
, XEXP (XEXP (x
, 0), 0), temp
);
3859 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3860 other than 1, but that is not valid. We could do a similar
3861 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3862 but this doesn't seem common enough to bother with. */
3863 if (GET_CODE (XEXP (x
, 0)) == ASHIFT
3864 && XEXP (XEXP (x
, 0), 0) == const1_rtx
)
3865 return gen_rtx_ROTATE (mode
, simplify_gen_unary (NOT
, mode
,
3867 XEXP (XEXP (x
, 0), 1));
3869 if (GET_CODE (XEXP (x
, 0)) == SUBREG
3870 && subreg_lowpart_p (XEXP (x
, 0))
3871 && (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0)))
3872 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x
, 0)))))
3873 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == ASHIFT
3874 && XEXP (SUBREG_REG (XEXP (x
, 0)), 0) == const1_rtx
)
3876 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (XEXP (x
, 0)));
3878 x
= gen_rtx_ROTATE (inner_mode
,
3879 simplify_gen_unary (NOT
, inner_mode
, const1_rtx
,
3881 XEXP (SUBREG_REG (XEXP (x
, 0)), 1));
3882 return gen_lowpart_for_combine (mode
, x
);
3885 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3886 reversing the comparison code if valid. */
3887 if (STORE_FLAG_VALUE
== -1
3888 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
3889 && (reversed
= reversed_comparison (x
, mode
, XEXP (XEXP (x
, 0), 0),
3890 XEXP (XEXP (x
, 0), 1))))
3893 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3894 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3895 perform the above simplification. */
3897 if (STORE_FLAG_VALUE
== -1
3898 && GET_CODE (XEXP (x
, 0)) == ASHIFTRT
3899 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3900 && INTVAL (XEXP (XEXP (x
, 0), 1)) == GET_MODE_BITSIZE (mode
) - 1)
3901 return gen_rtx_GE (mode
, XEXP (XEXP (x
, 0), 0), const0_rtx
);
3903 /* Apply De Morgan's laws to reduce number of patterns for machines
3904 with negating logical insns (and-not, nand, etc.). If result has
3905 only one NOT, put it first, since that is how the patterns are
3908 if (GET_CODE (XEXP (x
, 0)) == IOR
|| GET_CODE (XEXP (x
, 0)) == AND
)
3910 rtx in1
= XEXP (XEXP (x
, 0), 0), in2
= XEXP (XEXP (x
, 0), 1);
3911 enum machine_mode op_mode
;
3913 op_mode
= GET_MODE (in1
);
3914 in1
= simplify_gen_unary (NOT
, op_mode
, in1
, op_mode
);
3916 op_mode
= GET_MODE (in2
);
3917 if (op_mode
== VOIDmode
)
3919 in2
= simplify_gen_unary (NOT
, op_mode
, in2
, op_mode
);
3921 if (GET_CODE (in2
) == NOT
&& GET_CODE (in1
) != NOT
)
3924 in2
= in1
; in1
= tem
;
3927 return gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)) == IOR
? AND
: IOR
,
3933 /* (neg (plus X 1)) can become (not X). */
3934 if (GET_CODE (XEXP (x
, 0)) == PLUS
3935 && XEXP (XEXP (x
, 0), 1) == const1_rtx
)
3936 return gen_rtx_NOT (mode
, XEXP (XEXP (x
, 0), 0));
3938 /* Similarly, (neg (not X)) is (plus X 1). */
3939 if (GET_CODE (XEXP (x
, 0)) == NOT
)
3940 return plus_constant (XEXP (XEXP (x
, 0), 0), 1);
3942 /* (neg (minus X Y)) can become (minus Y X). This transformation
3943 isn't safe for modes with signed zeros, since if X and Y are
3944 both +0, (minus Y X) is the same as (minus X Y). If the rounding
3945 mode is towards +infinity (or -infinity) then the two expressions
3946 will be rounded differently. */
3947 if (GET_CODE (XEXP (x
, 0)) == MINUS
3948 && !HONOR_SIGNED_ZEROS (mode
)
3949 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
3950 return gen_binary (MINUS
, mode
, XEXP (XEXP (x
, 0), 1),
3951 XEXP (XEXP (x
, 0), 0));
3953 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
3954 if (GET_CODE (XEXP (x
, 0)) == PLUS
3955 && !HONOR_SIGNED_ZEROS (mode
)
3956 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
3958 temp
= simplify_gen_unary (NEG
, mode
, XEXP (XEXP (x
, 0), 0), mode
);
3959 temp
= combine_simplify_rtx (temp
, mode
, last
, in_dest
);
3960 return gen_binary (MINUS
, mode
, temp
, XEXP (XEXP (x
, 0), 1));
3963 /* (neg (mult A B)) becomes (mult (neg A) B).
3964 This works even for floating-point values. */
3965 if (GET_CODE (XEXP (x
, 0)) == MULT
)
3967 temp
= simplify_gen_unary (NEG
, mode
, XEXP (XEXP (x
, 0), 0), mode
);
3968 return gen_binary (MULT
, mode
, temp
, XEXP (XEXP (x
, 0), 1));
3971 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3972 if (GET_CODE (XEXP (x
, 0)) == XOR
&& XEXP (XEXP (x
, 0), 1) == const1_rtx
3973 && nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
) == 1)
3974 return gen_binary (PLUS
, mode
, XEXP (XEXP (x
, 0), 0), constm1_rtx
);
3976 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3977 if we can then eliminate the NEG (e.g.,
3978 if the operand is a constant). */
3980 if (GET_CODE (XEXP (x
, 0)) == ASHIFT
)
3982 temp
= simplify_unary_operation (NEG
, mode
,
3983 XEXP (XEXP (x
, 0), 0), mode
);
3985 return gen_binary (ASHIFT
, mode
, temp
, XEXP (XEXP (x
, 0), 1));
3988 temp
= expand_compound_operation (XEXP (x
, 0));
3990 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3991 replaced by (lshiftrt X C). This will convert
3992 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3994 if (GET_CODE (temp
) == ASHIFTRT
3995 && GET_CODE (XEXP (temp
, 1)) == CONST_INT
3996 && INTVAL (XEXP (temp
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
3997 return simplify_shift_const (temp
, LSHIFTRT
, mode
, XEXP (temp
, 0),
3998 INTVAL (XEXP (temp
, 1)));
4000 /* If X has only a single bit that might be nonzero, say, bit I, convert
4001 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4002 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4003 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4004 or a SUBREG of one since we'd be making the expression more
4005 complex if it was just a register. */
4007 if (GET_CODE (temp
) != REG
4008 && ! (GET_CODE (temp
) == SUBREG
4009 && GET_CODE (SUBREG_REG (temp
)) == REG
)
4010 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
4012 rtx temp1
= simplify_shift_const
4013 (NULL_RTX
, ASHIFTRT
, mode
,
4014 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
4015 GET_MODE_BITSIZE (mode
) - 1 - i
),
4016 GET_MODE_BITSIZE (mode
) - 1 - i
);
4018 /* If all we did was surround TEMP with the two shifts, we
4019 haven't improved anything, so don't use it. Otherwise,
4020 we are better off with TEMP1. */
4021 if (GET_CODE (temp1
) != ASHIFTRT
4022 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
4023 || XEXP (XEXP (temp1
, 0), 0) != temp
)
4029 /* We can't handle truncation to a partial integer mode here
4030 because we don't know the real bitsize of the partial
4032 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
4035 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4036 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
4037 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))))
4039 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
4040 GET_MODE_MASK (mode
), NULL_RTX
, 0));
4042 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4043 if ((GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
4044 || GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
4045 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
)
4046 return XEXP (XEXP (x
, 0), 0);
4048 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4049 (OP:SI foo:SI) if OP is NEG or ABS. */
4050 if ((GET_CODE (XEXP (x
, 0)) == ABS
4051 || GET_CODE (XEXP (x
, 0)) == NEG
)
4052 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SIGN_EXTEND
4053 || GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
)
4054 && GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == mode
)
4055 return simplify_gen_unary (GET_CODE (XEXP (x
, 0)), mode
,
4056 XEXP (XEXP (XEXP (x
, 0), 0), 0), mode
);
4058 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4060 if (GET_CODE (XEXP (x
, 0)) == SUBREG
4061 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == TRUNCATE
4062 && subreg_lowpart_p (XEXP (x
, 0)))
4063 return SUBREG_REG (XEXP (x
, 0));
4065 /* If we know that the value is already truncated, we can
4066 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4067 is nonzero for the corresponding modes. But don't do this
4068 for an (LSHIFTRT (MULT ...)) since this will cause problems
4069 with the umulXi3_highpart patterns. */
4070 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
4071 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
4072 && num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
4073 >= (unsigned int) (GET_MODE_BITSIZE (mode
) + 1)
4074 && ! (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4075 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == MULT
))
4076 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4078 /* A truncate of a comparison can be replaced with a subreg if
4079 STORE_FLAG_VALUE permits. This is like the previous test,
4080 but it works even if the comparison is done in a mode larger
4081 than HOST_BITS_PER_WIDE_INT. */
4082 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4083 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
4084 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0)
4085 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4087 /* Similarly, a truncate of a register whose value is a
4088 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4090 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4091 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
4092 && (temp
= get_last_value (XEXP (x
, 0)))
4093 && GET_RTX_CLASS (GET_CODE (temp
)) == '<')
4094 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4098 case FLOAT_TRUNCATE
:
4099 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4100 if (GET_CODE (XEXP (x
, 0)) == FLOAT_EXTEND
4101 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
)
4102 return XEXP (XEXP (x
, 0), 0);
4104 /* (float_truncate:SF (float_truncate:DF foo:XF))
4105 = (float_truncate:SF foo:XF).
4106 This may elliminate double rounding, so it is unsafe.
4108 (float_truncate:SF (float_extend:XF foo:DF))
4109 = (float_truncate:SF foo:DF).
4111 (float_truncate:DF (float_extend:XF foo:SF))
4112 = (float_extend:SF foo:DF). */
4113 if ((GET_CODE (XEXP (x
, 0)) == FLOAT_TRUNCATE
4114 && flag_unsafe_math_optimizations
)
4115 || GET_CODE (XEXP (x
, 0)) == FLOAT_EXTEND
)
4116 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x
, 0),
4118 > GET_MODE_SIZE (mode
)
4119 ? FLOAT_TRUNCATE
: FLOAT_EXTEND
,
4121 XEXP (XEXP (x
, 0), 0), mode
);
4123 /* (float_truncate (float x)) is (float x) */
4124 if (GET_CODE (XEXP (x
, 0)) == FLOAT
4125 && (flag_unsafe_math_optimizations
4126 || ((unsigned)significand_size (GET_MODE (XEXP (x
, 0)))
4127 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x
, 0), 0)))
4128 - num_sign_bit_copies (XEXP (XEXP (x
, 0), 0),
4129 GET_MODE (XEXP (XEXP (x
, 0), 0)))))))
4130 return simplify_gen_unary (FLOAT
, mode
,
4131 XEXP (XEXP (x
, 0), 0),
4132 GET_MODE (XEXP (XEXP (x
, 0), 0)));
4134 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4135 (OP:SF foo:SF) if OP is NEG or ABS. */
4136 if ((GET_CODE (XEXP (x
, 0)) == ABS
4137 || GET_CODE (XEXP (x
, 0)) == NEG
)
4138 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == FLOAT_EXTEND
4139 && GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == mode
)
4140 return simplify_gen_unary (GET_CODE (XEXP (x
, 0)), mode
,
4141 XEXP (XEXP (XEXP (x
, 0), 0), 0), mode
);
4143 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4144 is (float_truncate:SF x). */
4145 if (GET_CODE (XEXP (x
, 0)) == SUBREG
4146 && subreg_lowpart_p (XEXP (x
, 0))
4147 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == FLOAT_TRUNCATE
)
4148 return SUBREG_REG (XEXP (x
, 0));
4151 /* (float_extend (float_extend x)) is (float_extend x)
4153 (float_extend (float x)) is (float x) assuming that double
4154 rounding can't happen.
4156 if (GET_CODE (XEXP (x
, 0)) == FLOAT_EXTEND
4157 || (GET_CODE (XEXP (x
, 0)) == FLOAT
4158 && ((unsigned)significand_size (GET_MODE (XEXP (x
, 0)))
4159 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x
, 0), 0)))
4160 - num_sign_bit_copies (XEXP (XEXP (x
, 0), 0),
4161 GET_MODE (XEXP (XEXP (x
, 0), 0)))))))
4162 return simplify_gen_unary (GET_CODE (XEXP (x
, 0)), mode
,
4163 XEXP (XEXP (x
, 0), 0),
4164 GET_MODE (XEXP (XEXP (x
, 0), 0)));
4169 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4170 using cc0, in which case we want to leave it as a COMPARE
4171 so we can distinguish it from a register-register-copy. */
4172 if (XEXP (x
, 1) == const0_rtx
)
4175 /* x - 0 is the same as x unless x's mode has signed zeros and
4176 allows rounding towards -infinity. Under those conditions,
4178 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x
, 0)))
4179 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x
, 0))))
4180 && XEXP (x
, 1) == CONST0_RTX (GET_MODE (XEXP (x
, 0))))
4186 /* (const (const X)) can become (const X). Do it this way rather than
4187 returning the inner CONST since CONST can be shared with a
4189 if (GET_CODE (XEXP (x
, 0)) == CONST
)
4190 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4195 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4196 can add in an offset. find_split_point will split this address up
4197 again if it doesn't match. */
4198 if (GET_CODE (XEXP (x
, 0)) == HIGH
4199 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
4205 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4207 if (GET_CODE (XEXP (x
, 0)) == MULT
4208 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == NEG
)
4212 in1
= XEXP (XEXP (XEXP (x
, 0), 0), 0);
4213 in2
= XEXP (XEXP (x
, 0), 1);
4214 return gen_binary (MINUS
, mode
, XEXP (x
, 1),
4215 gen_binary (MULT
, mode
, in1
, in2
));
4218 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4219 outermost. That's because that's the way indexed addresses are
4220 supposed to appear. This code used to check many more cases, but
4221 they are now checked elsewhere. */
4222 if (GET_CODE (XEXP (x
, 0)) == PLUS
4223 && CONSTANT_ADDRESS_P (XEXP (XEXP (x
, 0), 1)))
4224 return gen_binary (PLUS
, mode
,
4225 gen_binary (PLUS
, mode
, XEXP (XEXP (x
, 0), 0),
4227 XEXP (XEXP (x
, 0), 1));
4229 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4230 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4231 bit-field and can be replaced by either a sign_extend or a
4232 sign_extract. The `and' may be a zero_extend and the two
4233 <c>, -<c> constants may be reversed. */
4234 if (GET_CODE (XEXP (x
, 0)) == XOR
4235 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4236 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4237 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
4238 && ((i
= exact_log2 (INTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
4239 || (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
4240 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4241 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
4242 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
4243 && (INTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4244 == ((HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
4245 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
4246 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
4247 == (unsigned int) i
+ 1))))
4248 return simplify_shift_const
4249 (NULL_RTX
, ASHIFTRT
, mode
,
4250 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4251 XEXP (XEXP (XEXP (x
, 0), 0), 0),
4252 GET_MODE_BITSIZE (mode
) - (i
+ 1)),
4253 GET_MODE_BITSIZE (mode
) - (i
+ 1));
4255 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4256 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4257 is 1. This produces better code than the alternative immediately
4259 if (GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
4260 && ((STORE_FLAG_VALUE
== -1 && XEXP (x
, 1) == const1_rtx
)
4261 || (STORE_FLAG_VALUE
== 1 && XEXP (x
, 1) == constm1_rtx
))
4262 && (reversed
= reversed_comparison (XEXP (x
, 0), mode
,
4263 XEXP (XEXP (x
, 0), 0),
4264 XEXP (XEXP (x
, 0), 1))))
4266 simplify_gen_unary (NEG
, mode
, reversed
, mode
);
4268 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4269 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4270 the bitsize of the mode - 1. This allows simplification of
4271 "a = (b & 8) == 0;" */
4272 if (XEXP (x
, 1) == constm1_rtx
4273 && GET_CODE (XEXP (x
, 0)) != REG
4274 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
4275 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == REG
)
4276 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
4277 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
4278 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4279 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
4280 GET_MODE_BITSIZE (mode
) - 1),
4281 GET_MODE_BITSIZE (mode
) - 1);
4283 /* If we are adding two things that have no bits in common, convert
4284 the addition into an IOR. This will often be further simplified,
4285 for example in cases like ((a & 1) + (a & 2)), which can
4288 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4289 && (nonzero_bits (XEXP (x
, 0), mode
)
4290 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
4292 /* Try to simplify the expression further. */
4293 rtx tor
= gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
4294 temp
= combine_simplify_rtx (tor
, mode
, last
, in_dest
);
4296 /* If we could, great. If not, do not go ahead with the IOR
4297 replacement, since PLUS appears in many special purpose
4298 address arithmetic instructions. */
4299 if (GET_CODE (temp
) != CLOBBER
&& temp
!= tor
)
4305 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4306 by reversing the comparison code if valid. */
4307 if (STORE_FLAG_VALUE
== 1
4308 && XEXP (x
, 0) == const1_rtx
4309 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) == '<'
4310 && (reversed
= reversed_comparison (XEXP (x
, 1), mode
,
4311 XEXP (XEXP (x
, 1), 0),
4312 XEXP (XEXP (x
, 1), 1))))
4315 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4316 (and <foo> (const_int pow2-1)) */
4317 if (GET_CODE (XEXP (x
, 1)) == AND
4318 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4319 && exact_log2 (-INTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
4320 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
4321 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
4322 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
4324 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4326 if (GET_CODE (XEXP (x
, 1)) == MULT
4327 && GET_CODE (XEXP (XEXP (x
, 1), 0)) == NEG
)
4331 in1
= XEXP (XEXP (XEXP (x
, 1), 0), 0);
4332 in2
= XEXP (XEXP (x
, 1), 1);
4333 return gen_binary (PLUS
, mode
, gen_binary (MULT
, mode
, in1
, in2
),
4337 /* Canonicalize (minus (neg A) (mult B C)) to
4338 (minus (mult (neg B) C) A). */
4339 if (GET_CODE (XEXP (x
, 1)) == MULT
4340 && GET_CODE (XEXP (x
, 0)) == NEG
)
4344 in1
= simplify_gen_unary (NEG
, mode
, XEXP (XEXP (x
, 1), 0), mode
);
4345 in2
= XEXP (XEXP (x
, 1), 1);
4346 return gen_binary (MINUS
, mode
, gen_binary (MULT
, mode
, in1
, in2
),
4347 XEXP (XEXP (x
, 0), 0));
4350 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4352 if (GET_CODE (XEXP (x
, 1)) == PLUS
&& INTEGRAL_MODE_P (mode
))
4353 return gen_binary (MINUS
, mode
,
4354 gen_binary (MINUS
, mode
, XEXP (x
, 0),
4355 XEXP (XEXP (x
, 1), 0)),
4356 XEXP (XEXP (x
, 1), 1));
4360 /* If we have (mult (plus A B) C), apply the distributive law and then
4361 the inverse distributive law to see if things simplify. This
4362 occurs mostly in addresses, often when unrolling loops. */
4364 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
4366 x
= apply_distributive_law
4367 (gen_binary (PLUS
, mode
,
4368 gen_binary (MULT
, mode
,
4369 XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)),
4370 gen_binary (MULT
, mode
,
4371 XEXP (XEXP (x
, 0), 1),
4372 copy_rtx (XEXP (x
, 1)))));
4374 if (GET_CODE (x
) != MULT
)
4377 /* Try simplify a*(b/c) as (a*b)/c. */
4378 if (FLOAT_MODE_P (mode
) && flag_unsafe_math_optimizations
4379 && GET_CODE (XEXP (x
, 0)) == DIV
)
4381 rtx tem
= simplify_binary_operation (MULT
, mode
,
4382 XEXP (XEXP (x
, 0), 0),
4385 return gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
4390 /* If this is a divide by a power of two, treat it as a shift if
4391 its first operand is a shift. */
4392 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4393 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0
4394 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
4395 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4396 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
4397 || GET_CODE (XEXP (x
, 0)) == ROTATE
4398 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
4399 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
4403 case GT
: case GTU
: case GE
: case GEU
:
4404 case LT
: case LTU
: case LE
: case LEU
:
4405 case UNEQ
: case LTGT
:
4406 case UNGT
: case UNGE
:
4407 case UNLT
: case UNLE
:
4408 case UNORDERED
: case ORDERED
:
4409 /* If the first operand is a condition code, we can't do anything
4411 if (GET_CODE (XEXP (x
, 0)) == COMPARE
4412 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
4413 && ! CC0_P (XEXP (x
, 0))))
4415 rtx op0
= XEXP (x
, 0);
4416 rtx op1
= XEXP (x
, 1);
4417 enum rtx_code new_code
;
4419 if (GET_CODE (op0
) == COMPARE
)
4420 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4422 /* Simplify our comparison, if possible. */
4423 new_code
= simplify_comparison (code
, &op0
, &op1
);
4425 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4426 if only the low-order bit is possibly nonzero in X (such as when
4427 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4428 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4429 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4432 Remove any ZERO_EXTRACT we made when thinking this was a
4433 comparison. It may now be simpler to use, e.g., an AND. If a
4434 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4435 the call to make_compound_operation in the SET case. */
4437 if (STORE_FLAG_VALUE
== 1
4438 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4439 && op1
== const0_rtx
4440 && mode
== GET_MODE (op0
)
4441 && nonzero_bits (op0
, mode
) == 1)
4442 return gen_lowpart_for_combine (mode
,
4443 expand_compound_operation (op0
));
4445 else if (STORE_FLAG_VALUE
== 1
4446 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4447 && op1
== const0_rtx
4448 && mode
== GET_MODE (op0
)
4449 && (num_sign_bit_copies (op0
, mode
)
4450 == GET_MODE_BITSIZE (mode
)))
4452 op0
= expand_compound_operation (op0
);
4453 return simplify_gen_unary (NEG
, mode
,
4454 gen_lowpart_for_combine (mode
, op0
),
4458 else if (STORE_FLAG_VALUE
== 1
4459 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4460 && op1
== const0_rtx
4461 && mode
== GET_MODE (op0
)
4462 && nonzero_bits (op0
, mode
) == 1)
4464 op0
= expand_compound_operation (op0
);
4465 return gen_binary (XOR
, mode
,
4466 gen_lowpart_for_combine (mode
, op0
),
4470 else if (STORE_FLAG_VALUE
== 1
4471 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4472 && op1
== const0_rtx
4473 && mode
== GET_MODE (op0
)
4474 && (num_sign_bit_copies (op0
, mode
)
4475 == GET_MODE_BITSIZE (mode
)))
4477 op0
= expand_compound_operation (op0
);
4478 return plus_constant (gen_lowpart_for_combine (mode
, op0
), 1);
4481 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4483 if (STORE_FLAG_VALUE
== -1
4484 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4485 && op1
== const0_rtx
4486 && (num_sign_bit_copies (op0
, mode
)
4487 == GET_MODE_BITSIZE (mode
)))
4488 return gen_lowpart_for_combine (mode
,
4489 expand_compound_operation (op0
));
4491 else if (STORE_FLAG_VALUE
== -1
4492 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4493 && op1
== const0_rtx
4494 && mode
== GET_MODE (op0
)
4495 && nonzero_bits (op0
, mode
) == 1)
4497 op0
= expand_compound_operation (op0
);
4498 return simplify_gen_unary (NEG
, mode
,
4499 gen_lowpart_for_combine (mode
, op0
),
4503 else if (STORE_FLAG_VALUE
== -1
4504 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4505 && op1
== const0_rtx
4506 && mode
== GET_MODE (op0
)
4507 && (num_sign_bit_copies (op0
, mode
)
4508 == GET_MODE_BITSIZE (mode
)))
4510 op0
= expand_compound_operation (op0
);
4511 return simplify_gen_unary (NOT
, mode
,
4512 gen_lowpart_for_combine (mode
, op0
),
4516 /* If X is 0/1, (eq X 0) is X-1. */
4517 else if (STORE_FLAG_VALUE
== -1
4518 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4519 && op1
== const0_rtx
4520 && mode
== GET_MODE (op0
)
4521 && nonzero_bits (op0
, mode
) == 1)
4523 op0
= expand_compound_operation (op0
);
4524 return plus_constant (gen_lowpart_for_combine (mode
, op0
), -1);
4527 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4528 one bit that might be nonzero, we can convert (ne x 0) to
4529 (ashift x c) where C puts the bit in the sign bit. Remove any
4530 AND with STORE_FLAG_VALUE when we are done, since we are only
4531 going to test the sign bit. */
4532 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4533 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4534 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
4535 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))
4536 && op1
== const0_rtx
4537 && mode
== GET_MODE (op0
)
4538 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
4540 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4541 expand_compound_operation (op0
),
4542 GET_MODE_BITSIZE (mode
) - 1 - i
);
4543 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
4549 /* If the code changed, return a whole new comparison. */
4550 if (new_code
!= code
)
4551 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
4553 /* Otherwise, keep this operation, but maybe change its operands.
4554 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4555 SUBST (XEXP (x
, 0), op0
);
4556 SUBST (XEXP (x
, 1), op1
);
4561 return simplify_if_then_else (x
);
4567 /* If we are processing SET_DEST, we are done. */
4571 return expand_compound_operation (x
);
4574 return simplify_set (x
);
4579 return simplify_logical (x
, last
);
4582 /* (abs (neg <foo>)) -> (abs <foo>) */
4583 if (GET_CODE (XEXP (x
, 0)) == NEG
)
4584 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4586 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4588 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
4591 /* If operand is something known to be positive, ignore the ABS. */
4592 if (GET_CODE (XEXP (x
, 0)) == FFS
|| GET_CODE (XEXP (x
, 0)) == ABS
4593 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4594 <= HOST_BITS_PER_WIDE_INT
)
4595 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
4596 & ((HOST_WIDE_INT
) 1
4597 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1)))
4601 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4602 if (num_sign_bit_copies (XEXP (x
, 0), mode
) == GET_MODE_BITSIZE (mode
))
4603 return gen_rtx_NEG (mode
, XEXP (x
, 0));
4608 /* (ffs (*_extend <X>)) = (ffs <X>) */
4609 if (GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
4610 || GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
4611 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4616 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4617 if (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
4618 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4622 /* (float (sign_extend <X>)) = (float <X>). */
4623 if (GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
4624 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4632 /* If this is a shift by a constant amount, simplify it. */
4633 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4634 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
4635 INTVAL (XEXP (x
, 1)));
4637 #ifdef SHIFT_COUNT_TRUNCATED
4638 else if (SHIFT_COUNT_TRUNCATED
&& GET_CODE (XEXP (x
, 1)) != REG
)
4640 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
4642 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
4651 rtx op0
= XEXP (x
, 0);
4652 rtx op1
= XEXP (x
, 1);
4655 if (GET_CODE (op1
) != PARALLEL
)
4657 len
= XVECLEN (op1
, 0);
4659 && GET_CODE (XVECEXP (op1
, 0, 0)) == CONST_INT
4660 && GET_CODE (op0
) == VEC_CONCAT
)
4662 int offset
= INTVAL (XVECEXP (op1
, 0, 0)) * GET_MODE_SIZE (GET_MODE (x
));
4664 /* Try to find the element in the VEC_CONCAT. */
4667 if (GET_MODE (op0
) == GET_MODE (x
))
4669 if (GET_CODE (op0
) == VEC_CONCAT
)
4671 HOST_WIDE_INT op0_size
= GET_MODE_SIZE (GET_MODE (XEXP (op0
, 0)));
4672 if (op0_size
< offset
)
4673 op0
= XEXP (op0
, 0);
4677 op0
= XEXP (op0
, 1);
4695 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4698 simplify_if_then_else (rtx x
)
4700 enum machine_mode mode
= GET_MODE (x
);
4701 rtx cond
= XEXP (x
, 0);
4702 rtx true_rtx
= XEXP (x
, 1);
4703 rtx false_rtx
= XEXP (x
, 2);
4704 enum rtx_code true_code
= GET_CODE (cond
);
4705 int comparison_p
= GET_RTX_CLASS (true_code
) == '<';
4708 enum rtx_code false_code
;
4711 /* Simplify storing of the truth value. */
4712 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
4713 return gen_binary (true_code
, mode
, XEXP (cond
, 0), XEXP (cond
, 1));
4715 /* Also when the truth value has to be reversed. */
4717 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
4718 && (reversed
= reversed_comparison (cond
, mode
, XEXP (cond
, 0),
4722 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4723 in it is being compared against certain values. Get the true and false
4724 comparisons and see if that says anything about the value of each arm. */
4727 && ((false_code
= combine_reversed_comparison_code (cond
))
4729 && GET_CODE (XEXP (cond
, 0)) == REG
)
4732 rtx from
= XEXP (cond
, 0);
4733 rtx true_val
= XEXP (cond
, 1);
4734 rtx false_val
= true_val
;
4737 /* If FALSE_CODE is EQ, swap the codes and arms. */
4739 if (false_code
== EQ
)
4741 swapped
= 1, true_code
= EQ
, false_code
= NE
;
4742 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
4745 /* If we are comparing against zero and the expression being tested has
4746 only a single bit that might be nonzero, that is its value when it is
4747 not equal to zero. Similarly if it is known to be -1 or 0. */
4749 if (true_code
== EQ
&& true_val
== const0_rtx
4750 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
4751 false_code
= EQ
, false_val
= GEN_INT (nzb
);
4752 else if (true_code
== EQ
&& true_val
== const0_rtx
4753 && (num_sign_bit_copies (from
, GET_MODE (from
))
4754 == GET_MODE_BITSIZE (GET_MODE (from
))))
4755 false_code
= EQ
, false_val
= constm1_rtx
;
4757 /* Now simplify an arm if we know the value of the register in the
4758 branch and it is used in the arm. Be careful due to the potential
4759 of locally-shared RTL. */
4761 if (reg_mentioned_p (from
, true_rtx
))
4762 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
4764 pc_rtx
, pc_rtx
, 0, 0);
4765 if (reg_mentioned_p (from
, false_rtx
))
4766 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
4768 pc_rtx
, pc_rtx
, 0, 0);
4770 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
4771 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
4773 true_rtx
= XEXP (x
, 1);
4774 false_rtx
= XEXP (x
, 2);
4775 true_code
= GET_CODE (cond
);
4778 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4779 reversed, do so to avoid needing two sets of patterns for
4780 subtract-and-branch insns. Similarly if we have a constant in the true
4781 arm, the false arm is the same as the first operand of the comparison, or
4782 the false arm is more complicated than the true arm. */
4785 && combine_reversed_comparison_code (cond
) != UNKNOWN
4786 && (true_rtx
== pc_rtx
4787 || (CONSTANT_P (true_rtx
)
4788 && GET_CODE (false_rtx
) != CONST_INT
&& false_rtx
!= pc_rtx
)
4789 || true_rtx
== const0_rtx
4790 || (GET_RTX_CLASS (GET_CODE (true_rtx
)) == 'o'
4791 && GET_RTX_CLASS (GET_CODE (false_rtx
)) != 'o')
4792 || (GET_CODE (true_rtx
) == SUBREG
4793 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx
))) == 'o'
4794 && GET_RTX_CLASS (GET_CODE (false_rtx
)) != 'o')
4795 || reg_mentioned_p (true_rtx
, false_rtx
)
4796 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
4798 true_code
= reversed_comparison_code (cond
, NULL
);
4800 reversed_comparison (cond
, GET_MODE (cond
), XEXP (cond
, 0),
4803 SUBST (XEXP (x
, 1), false_rtx
);
4804 SUBST (XEXP (x
, 2), true_rtx
);
4806 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
4809 /* It is possible that the conditional has been simplified out. */
4810 true_code
= GET_CODE (cond
);
4811 comparison_p
= GET_RTX_CLASS (true_code
) == '<';
4814 /* If the two arms are identical, we don't need the comparison. */
4816 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
4819 /* Convert a == b ? b : a to "a". */
4820 if (true_code
== EQ
&& ! side_effects_p (cond
)
4821 && !HONOR_NANS (mode
)
4822 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
4823 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
4825 else if (true_code
== NE
&& ! side_effects_p (cond
)
4826 && !HONOR_NANS (mode
)
4827 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
4828 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
4831 /* Look for cases where we have (abs x) or (neg (abs X)). */
4833 if (GET_MODE_CLASS (mode
) == MODE_INT
4834 && GET_CODE (false_rtx
) == NEG
4835 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
4837 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
4838 && ! side_effects_p (true_rtx
))
4843 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
4847 simplify_gen_unary (NEG
, mode
,
4848 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
4854 /* Look for MIN or MAX. */
4856 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
4858 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
4859 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
4860 && ! side_effects_p (cond
))
4865 return gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
4868 return gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
4871 return gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
4874 return gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
4879 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4880 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4881 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4882 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4883 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4884 neither 1 or -1, but it isn't worth checking for. */
4886 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
4888 && GET_MODE_CLASS (mode
) == MODE_INT
4889 && ! side_effects_p (x
))
4891 rtx t
= make_compound_operation (true_rtx
, SET
);
4892 rtx f
= make_compound_operation (false_rtx
, SET
);
4893 rtx cond_op0
= XEXP (cond
, 0);
4894 rtx cond_op1
= XEXP (cond
, 1);
4895 enum rtx_code op
= NIL
, extend_op
= NIL
;
4896 enum machine_mode m
= mode
;
4897 rtx z
= 0, c1
= NULL_RTX
;
4899 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
4900 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
4901 || GET_CODE (t
) == ASHIFT
4902 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
4903 && rtx_equal_p (XEXP (t
, 0), f
))
4904 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
4906 /* If an identity-zero op is commutative, check whether there
4907 would be a match if we swapped the operands. */
4908 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
4909 || GET_CODE (t
) == XOR
)
4910 && rtx_equal_p (XEXP (t
, 1), f
))
4911 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
4912 else if (GET_CODE (t
) == SIGN_EXTEND
4913 && (GET_CODE (XEXP (t
, 0)) == PLUS
4914 || GET_CODE (XEXP (t
, 0)) == MINUS
4915 || GET_CODE (XEXP (t
, 0)) == IOR
4916 || GET_CODE (XEXP (t
, 0)) == XOR
4917 || GET_CODE (XEXP (t
, 0)) == ASHIFT
4918 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
4919 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
4920 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
4921 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
4922 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
4923 && (num_sign_bit_copies (f
, GET_MODE (f
))
4925 (GET_MODE_BITSIZE (mode
)
4926 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
4928 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4929 extend_op
= SIGN_EXTEND
;
4930 m
= GET_MODE (XEXP (t
, 0));
4932 else if (GET_CODE (t
) == SIGN_EXTEND
4933 && (GET_CODE (XEXP (t
, 0)) == PLUS
4934 || GET_CODE (XEXP (t
, 0)) == IOR
4935 || GET_CODE (XEXP (t
, 0)) == XOR
)
4936 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
4937 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
4938 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
4939 && (num_sign_bit_copies (f
, GET_MODE (f
))
4941 (GET_MODE_BITSIZE (mode
)
4942 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
4944 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4945 extend_op
= SIGN_EXTEND
;
4946 m
= GET_MODE (XEXP (t
, 0));
4948 else if (GET_CODE (t
) == ZERO_EXTEND
4949 && (GET_CODE (XEXP (t
, 0)) == PLUS
4950 || GET_CODE (XEXP (t
, 0)) == MINUS
4951 || GET_CODE (XEXP (t
, 0)) == IOR
4952 || GET_CODE (XEXP (t
, 0)) == XOR
4953 || GET_CODE (XEXP (t
, 0)) == ASHIFT
4954 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
4955 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
4956 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
4957 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4958 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
4959 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
4960 && ((nonzero_bits (f
, GET_MODE (f
))
4961 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
4964 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4965 extend_op
= ZERO_EXTEND
;
4966 m
= GET_MODE (XEXP (t
, 0));
4968 else if (GET_CODE (t
) == ZERO_EXTEND
4969 && (GET_CODE (XEXP (t
, 0)) == PLUS
4970 || GET_CODE (XEXP (t
, 0)) == IOR
4971 || GET_CODE (XEXP (t
, 0)) == XOR
)
4972 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
4973 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4974 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
4975 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
4976 && ((nonzero_bits (f
, GET_MODE (f
))
4977 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
4980 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4981 extend_op
= ZERO_EXTEND
;
4982 m
= GET_MODE (XEXP (t
, 0));
4987 temp
= subst (gen_binary (true_code
, m
, cond_op0
, cond_op1
),
4988 pc_rtx
, pc_rtx
, 0, 0);
4989 temp
= gen_binary (MULT
, m
, temp
,
4990 gen_binary (MULT
, m
, c1
, const_true_rtx
));
4991 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0);
4992 temp
= gen_binary (op
, m
, gen_lowpart_for_combine (m
, z
), temp
);
4994 if (extend_op
!= NIL
)
4995 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
5001 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5002 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5003 negation of a single bit, we can convert this operation to a shift. We
5004 can actually do this more generally, but it doesn't seem worth it. */
5006 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
5007 && false_rtx
== const0_rtx
&& GET_CODE (true_rtx
) == CONST_INT
5008 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
5009 && (i
= exact_log2 (INTVAL (true_rtx
))) >= 0)
5010 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
5011 == GET_MODE_BITSIZE (mode
))
5012 && (i
= exact_log2 (-INTVAL (true_rtx
))) >= 0)))
5014 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5015 gen_lowpart_for_combine (mode
, XEXP (cond
, 0)), i
);
5017 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5018 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
5019 && false_rtx
== const0_rtx
&& GET_CODE (true_rtx
) == CONST_INT
5020 && (INTVAL (true_rtx
) & GET_MODE_MASK (mode
))
5021 == nonzero_bits (XEXP (cond
, 0), mode
)
5022 && (i
= exact_log2 (INTVAL (true_rtx
) & GET_MODE_MASK (mode
))) >= 0)
5023 return XEXP (cond
, 0);
5028 /* Simplify X, a SET expression. Return the new expression. */
5031 simplify_set (rtx x
)
5033 rtx src
= SET_SRC (x
);
5034 rtx dest
= SET_DEST (x
);
5035 enum machine_mode mode
5036 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
5040 /* (set (pc) (return)) gets written as (return). */
5041 if (GET_CODE (dest
) == PC
&& GET_CODE (src
) == RETURN
)
5044 /* Now that we know for sure which bits of SRC we are using, see if we can
5045 simplify the expression for the object knowing that we only need the
5048 if (GET_MODE_CLASS (mode
) == MODE_INT
5049 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
5051 src
= force_to_mode (src
, mode
, ~(HOST_WIDE_INT
) 0, NULL_RTX
, 0);
5052 SUBST (SET_SRC (x
), src
);
5055 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5056 the comparison result and try to simplify it unless we already have used
5057 undobuf.other_insn. */
5058 if ((GET_MODE_CLASS (mode
) == MODE_CC
5059 || GET_CODE (src
) == COMPARE
5061 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
5062 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
5063 && GET_RTX_CLASS (GET_CODE (*cc_use
)) == '<'
5064 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
5066 enum rtx_code old_code
= GET_CODE (*cc_use
);
5067 enum rtx_code new_code
;
5069 int other_changed
= 0;
5070 enum machine_mode compare_mode
= GET_MODE (dest
);
5071 enum machine_mode tmp_mode
;
5073 if (GET_CODE (src
) == COMPARE
)
5074 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
5076 op0
= src
, op1
= const0_rtx
;
5078 /* Check whether the comparison is known at compile time. */
5079 if (GET_MODE (op0
) != VOIDmode
)
5080 tmp_mode
= GET_MODE (op0
);
5081 else if (GET_MODE (op1
) != VOIDmode
)
5082 tmp_mode
= GET_MODE (op1
);
5084 tmp_mode
= compare_mode
;
5085 tmp
= simplify_relational_operation (old_code
, tmp_mode
, op0
, op1
);
5086 if (tmp
!= NULL_RTX
)
5088 rtx pat
= PATTERN (other_insn
);
5089 undobuf
.other_insn
= other_insn
;
5090 SUBST (*cc_use
, tmp
);
5092 /* Attempt to simplify CC user. */
5093 if (GET_CODE (pat
) == SET
)
5095 rtx
new = simplify_rtx (SET_SRC (pat
));
5096 if (new != NULL_RTX
)
5097 SUBST (SET_SRC (pat
), new);
5100 /* Convert X into a no-op move. */
5101 SUBST (SET_DEST (x
), pc_rtx
);
5102 SUBST (SET_SRC (x
), pc_rtx
);
5106 /* Simplify our comparison, if possible. */
5107 new_code
= simplify_comparison (old_code
, &op0
, &op1
);
5109 #ifdef EXTRA_CC_MODES
5110 /* If this machine has CC modes other than CCmode, check to see if we
5111 need to use a different CC mode here. */
5112 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
5113 #endif /* EXTRA_CC_MODES */
5115 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5116 /* If the mode changed, we have to change SET_DEST, the mode in the
5117 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5118 a hard register, just build new versions with the proper mode. If it
5119 is a pseudo, we lose unless it is only time we set the pseudo, in
5120 which case we can safely change its mode. */
5121 if (compare_mode
!= GET_MODE (dest
))
5123 unsigned int regno
= REGNO (dest
);
5124 rtx new_dest
= gen_rtx_REG (compare_mode
, regno
);
5126 if (regno
< FIRST_PSEUDO_REGISTER
5127 || (REG_N_SETS (regno
) == 1 && ! REG_USERVAR_P (dest
)))
5129 if (regno
>= FIRST_PSEUDO_REGISTER
)
5130 SUBST (regno_reg_rtx
[regno
], new_dest
);
5132 SUBST (SET_DEST (x
), new_dest
);
5133 SUBST (XEXP (*cc_use
, 0), new_dest
);
5141 /* If the code changed, we have to build a new comparison in
5142 undobuf.other_insn. */
5143 if (new_code
!= old_code
)
5145 unsigned HOST_WIDE_INT mask
;
5147 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
5150 /* If the only change we made was to change an EQ into an NE or
5151 vice versa, OP0 has only one bit that might be nonzero, and OP1
5152 is zero, check if changing the user of the condition code will
5153 produce a valid insn. If it won't, we can keep the original code
5154 in that insn by surrounding our operation with an XOR. */
5156 if (((old_code
== NE
&& new_code
== EQ
)
5157 || (old_code
== EQ
&& new_code
== NE
))
5158 && ! other_changed
&& op1
== const0_rtx
5159 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
5160 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
5162 rtx pat
= PATTERN (other_insn
), note
= 0;
5164 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
5165 && ! check_asm_operands (pat
)))
5167 PUT_CODE (*cc_use
, old_code
);
5170 op0
= gen_binary (XOR
, GET_MODE (op0
), op0
, GEN_INT (mask
));
5178 undobuf
.other_insn
= other_insn
;
5181 /* If we are now comparing against zero, change our source if
5182 needed. If we do not use cc0, we always have a COMPARE. */
5183 if (op1
== const0_rtx
&& dest
== cc0_rtx
)
5185 SUBST (SET_SRC (x
), op0
);
5191 /* Otherwise, if we didn't previously have a COMPARE in the
5192 correct mode, we need one. */
5193 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
5195 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
5200 /* Otherwise, update the COMPARE if needed. */
5201 SUBST (XEXP (src
, 0), op0
);
5202 SUBST (XEXP (src
, 1), op1
);
5207 /* Get SET_SRC in a form where we have placed back any
5208 compound expressions. Then do the checks below. */
5209 src
= make_compound_operation (src
, SET
);
5210 SUBST (SET_SRC (x
), src
);
5213 #ifdef WORD_REGISTER_OPERATIONS
5214 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5215 and X being a REG or (subreg (reg)), we may be able to convert this to
5216 (set (subreg:m2 x) (op)).
5218 On a machine where WORD_REGISTER_OPERATIONS is defined, this
5219 transformation is safe as long as M1 and M2 have the same number
5222 However, on a machine without WORD_REGISTER_OPERATIONS defined,
5223 we cannot apply this transformation because it would create a
5224 paradoxical subreg in SET_DEST. */
5226 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5227 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src
))) != 'o'
5228 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
5230 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
5231 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
5232 #ifdef CANNOT_CHANGE_MODE_CLASS
5233 && ! (GET_CODE (dest
) == REG
&& REGNO (dest
) < FIRST_PSEUDO_REGISTER
5234 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
5235 GET_MODE (SUBREG_REG (src
)),
5238 && (GET_CODE (dest
) == REG
5239 || (GET_CODE (dest
) == SUBREG
5240 && GET_CODE (SUBREG_REG (dest
)) == REG
)))
5242 SUBST (SET_DEST (x
),
5243 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src
)),
5245 SUBST (SET_SRC (x
), SUBREG_REG (src
));
5247 src
= SET_SRC (x
), dest
= SET_DEST (x
);
5252 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5255 && GET_CODE (src
) == SUBREG
5256 && subreg_lowpart_p (src
)
5257 && (GET_MODE_BITSIZE (GET_MODE (src
))
5258 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src
)))))
5260 rtx inner
= SUBREG_REG (src
);
5261 enum machine_mode inner_mode
= GET_MODE (inner
);
5263 /* Here we make sure that we don't have a sign bit on. */
5264 if (GET_MODE_BITSIZE (inner_mode
) <= HOST_BITS_PER_WIDE_INT
5265 && (nonzero_bits (inner
, inner_mode
)
5266 < ((unsigned HOST_WIDE_INT
) 1
5267 << (GET_MODE_BITSIZE (GET_MODE (src
)) - 1))))
5269 SUBST (SET_SRC (x
), inner
);
5275 #ifdef LOAD_EXTEND_OP
5276 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5277 would require a paradoxical subreg. Replace the subreg with a
5278 zero_extend to avoid the reload that would otherwise be required. */
5280 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5281 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != NIL
5282 && SUBREG_BYTE (src
) == 0
5283 && (GET_MODE_SIZE (GET_MODE (src
))
5284 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5285 && GET_CODE (SUBREG_REG (src
)) == MEM
)
5288 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
5289 GET_MODE (src
), SUBREG_REG (src
)));
5295 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5296 are comparing an item known to be 0 or -1 against 0, use a logical
5297 operation instead. Check for one of the arms being an IOR of the other
5298 arm with some value. We compute three terms to be IOR'ed together. In
5299 practice, at most two will be nonzero. Then we do the IOR's. */
5301 if (GET_CODE (dest
) != PC
5302 && GET_CODE (src
) == IF_THEN_ELSE
5303 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
5304 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
5305 && XEXP (XEXP (src
, 0), 1) == const0_rtx
5306 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
5307 #ifdef HAVE_conditional_move
5308 && ! can_conditionally_move_p (GET_MODE (src
))
5310 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
5311 GET_MODE (XEXP (XEXP (src
, 0), 0)))
5312 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src
, 0), 0))))
5313 && ! side_effects_p (src
))
5315 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
5316 ? XEXP (src
, 1) : XEXP (src
, 2));
5317 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
5318 ? XEXP (src
, 2) : XEXP (src
, 1));
5319 rtx term1
= const0_rtx
, term2
, term3
;
5321 if (GET_CODE (true_rtx
) == IOR
5322 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
5323 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
5324 else if (GET_CODE (true_rtx
) == IOR
5325 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
5326 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
5327 else if (GET_CODE (false_rtx
) == IOR
5328 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
5329 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
5330 else if (GET_CODE (false_rtx
) == IOR
5331 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
5332 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
5334 term2
= gen_binary (AND
, GET_MODE (src
),
5335 XEXP (XEXP (src
, 0), 0), true_rtx
);
5336 term3
= gen_binary (AND
, GET_MODE (src
),
5337 simplify_gen_unary (NOT
, GET_MODE (src
),
5338 XEXP (XEXP (src
, 0), 0),
5343 gen_binary (IOR
, GET_MODE (src
),
5344 gen_binary (IOR
, GET_MODE (src
), term1
, term2
),
5350 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5351 whole thing fail. */
5352 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
5354 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
5357 /* Convert this into a field assignment operation, if possible. */
5358 return make_field_assignment (x
);
5361 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5362 result. LAST is nonzero if this is the last retry. */
5365 simplify_logical (rtx x
, int last
)
5367 enum machine_mode mode
= GET_MODE (x
);
5368 rtx op0
= XEXP (x
, 0);
5369 rtx op1
= XEXP (x
, 1);
5372 switch (GET_CODE (x
))
5375 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5376 insn (and may simplify more). */
5377 if (GET_CODE (op0
) == XOR
5378 && rtx_equal_p (XEXP (op0
, 0), op1
)
5379 && ! side_effects_p (op1
))
5380 x
= gen_binary (AND
, mode
,
5381 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 1), mode
),
5384 if (GET_CODE (op0
) == XOR
5385 && rtx_equal_p (XEXP (op0
, 1), op1
)
5386 && ! side_effects_p (op1
))
5387 x
= gen_binary (AND
, mode
,
5388 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 0), mode
),
5391 /* Similarly for (~(A ^ B)) & A. */
5392 if (GET_CODE (op0
) == NOT
5393 && GET_CODE (XEXP (op0
, 0)) == XOR
5394 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), op1
)
5395 && ! side_effects_p (op1
))
5396 x
= gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 1), op1
);
5398 if (GET_CODE (op0
) == NOT
5399 && GET_CODE (XEXP (op0
, 0)) == XOR
5400 && rtx_equal_p (XEXP (XEXP (op0
, 0), 1), op1
)
5401 && ! side_effects_p (op1
))
5402 x
= gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 0), op1
);
5404 /* We can call simplify_and_const_int only if we don't lose
5405 any (sign) bits when converting INTVAL (op1) to
5406 "unsigned HOST_WIDE_INT". */
5407 if (GET_CODE (op1
) == CONST_INT
5408 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5409 || INTVAL (op1
) > 0))
5411 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
5413 /* If we have (ior (and (X C1) C2)) and the next restart would be
5414 the last, simplify this by making C1 as small as possible
5417 && GET_CODE (x
) == IOR
&& GET_CODE (op0
) == AND
5418 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5419 && GET_CODE (op1
) == CONST_INT
)
5420 return gen_binary (IOR
, mode
,
5421 gen_binary (AND
, mode
, XEXP (op0
, 0),
5422 GEN_INT (INTVAL (XEXP (op0
, 1))
5423 & ~INTVAL (op1
))), op1
);
5425 if (GET_CODE (x
) != AND
)
5428 if (GET_RTX_CLASS (GET_CODE (x
)) == 'c'
5429 || GET_RTX_CLASS (GET_CODE (x
)) == '2')
5430 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5433 /* Convert (A | B) & A to A. */
5434 if (GET_CODE (op0
) == IOR
5435 && (rtx_equal_p (XEXP (op0
, 0), op1
)
5436 || rtx_equal_p (XEXP (op0
, 1), op1
))
5437 && ! side_effects_p (XEXP (op0
, 0))
5438 && ! side_effects_p (XEXP (op0
, 1)))
5441 /* In the following group of tests (and those in case IOR below),
5442 we start with some combination of logical operations and apply
5443 the distributive law followed by the inverse distributive law.
5444 Most of the time, this results in no change. However, if some of
5445 the operands are the same or inverses of each other, simplifications
5448 For example, (and (ior A B) (not B)) can occur as the result of
5449 expanding a bit field assignment. When we apply the distributive
5450 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5451 which then simplifies to (and (A (not B))).
5453 If we have (and (ior A B) C), apply the distributive law and then
5454 the inverse distributive law to see if things simplify. */
5456 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
5458 x
= apply_distributive_law
5459 (gen_binary (GET_CODE (op0
), mode
,
5460 gen_binary (AND
, mode
, XEXP (op0
, 0), op1
),
5461 gen_binary (AND
, mode
, XEXP (op0
, 1),
5463 if (GET_CODE (x
) != AND
)
5467 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
5468 return apply_distributive_law
5469 (gen_binary (GET_CODE (op1
), mode
,
5470 gen_binary (AND
, mode
, XEXP (op1
, 0), op0
),
5471 gen_binary (AND
, mode
, XEXP (op1
, 1),
5474 /* Similarly, taking advantage of the fact that
5475 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5477 if (GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == XOR
)
5478 return apply_distributive_law
5479 (gen_binary (XOR
, mode
,
5480 gen_binary (IOR
, mode
, XEXP (op0
, 0), XEXP (op1
, 0)),
5481 gen_binary (IOR
, mode
, copy_rtx (XEXP (op0
, 0)),
5484 else if (GET_CODE (op1
) == NOT
&& GET_CODE (op0
) == XOR
)
5485 return apply_distributive_law
5486 (gen_binary (XOR
, mode
,
5487 gen_binary (IOR
, mode
, XEXP (op1
, 0), XEXP (op0
, 0)),
5488 gen_binary (IOR
, mode
, copy_rtx (XEXP (op1
, 0)), XEXP (op0
, 1))));
5492 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5493 if (GET_CODE (op1
) == CONST_INT
5494 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5495 && (nonzero_bits (op0
, mode
) & ~INTVAL (op1
)) == 0)
5498 /* Convert (A & B) | A to A. */
5499 if (GET_CODE (op0
) == AND
5500 && (rtx_equal_p (XEXP (op0
, 0), op1
)
5501 || rtx_equal_p (XEXP (op0
, 1), op1
))
5502 && ! side_effects_p (XEXP (op0
, 0))
5503 && ! side_effects_p (XEXP (op0
, 1)))
5506 /* If we have (ior (and A B) C), apply the distributive law and then
5507 the inverse distributive law to see if things simplify. */
5509 if (GET_CODE (op0
) == AND
)
5511 x
= apply_distributive_law
5512 (gen_binary (AND
, mode
,
5513 gen_binary (IOR
, mode
, XEXP (op0
, 0), op1
),
5514 gen_binary (IOR
, mode
, XEXP (op0
, 1),
5517 if (GET_CODE (x
) != IOR
)
5521 if (GET_CODE (op1
) == AND
)
5523 x
= apply_distributive_law
5524 (gen_binary (AND
, mode
,
5525 gen_binary (IOR
, mode
, XEXP (op1
, 0), op0
),
5526 gen_binary (IOR
, mode
, XEXP (op1
, 1),
5529 if (GET_CODE (x
) != IOR
)
5533 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5534 mode size to (rotate A CX). */
5536 if (((GET_CODE (op0
) == ASHIFT
&& GET_CODE (op1
) == LSHIFTRT
)
5537 || (GET_CODE (op1
) == ASHIFT
&& GET_CODE (op0
) == LSHIFTRT
))
5538 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
5539 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5540 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
5541 && (INTVAL (XEXP (op0
, 1)) + INTVAL (XEXP (op1
, 1))
5542 == GET_MODE_BITSIZE (mode
)))
5543 return gen_rtx_ROTATE (mode
, XEXP (op0
, 0),
5544 (GET_CODE (op0
) == ASHIFT
5545 ? XEXP (op0
, 1) : XEXP (op1
, 1)));
5547 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5548 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5549 does not affect any of the bits in OP1, it can really be done
5550 as a PLUS and we can associate. We do this by seeing if OP1
5551 can be safely shifted left C bits. */
5552 if (GET_CODE (op1
) == CONST_INT
&& GET_CODE (op0
) == ASHIFTRT
5553 && GET_CODE (XEXP (op0
, 0)) == PLUS
5554 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
5555 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5556 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
)
5558 int count
= INTVAL (XEXP (op0
, 1));
5559 HOST_WIDE_INT mask
= INTVAL (op1
) << count
;
5561 if (mask
>> count
== INTVAL (op1
)
5562 && (mask
& nonzero_bits (XEXP (op0
, 0), mode
)) == 0)
5564 SUBST (XEXP (XEXP (op0
, 0), 1),
5565 GEN_INT (INTVAL (XEXP (XEXP (op0
, 0), 1)) | mask
));
5572 /* If we are XORing two things that have no bits in common,
5573 convert them into an IOR. This helps to detect rotation encoded
5574 using those methods and possibly other simplifications. */
5576 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5577 && (nonzero_bits (op0
, mode
)
5578 & nonzero_bits (op1
, mode
)) == 0)
5579 return (gen_binary (IOR
, mode
, op0
, op1
));
5581 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5582 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5585 int num_negated
= 0;
5587 if (GET_CODE (op0
) == NOT
)
5588 num_negated
++, op0
= XEXP (op0
, 0);
5589 if (GET_CODE (op1
) == NOT
)
5590 num_negated
++, op1
= XEXP (op1
, 0);
5592 if (num_negated
== 2)
5594 SUBST (XEXP (x
, 0), op0
);
5595 SUBST (XEXP (x
, 1), op1
);
5597 else if (num_negated
== 1)
5599 simplify_gen_unary (NOT
, mode
, gen_binary (XOR
, mode
, op0
, op1
),
5603 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5604 correspond to a machine insn or result in further simplifications
5605 if B is a constant. */
5607 if (GET_CODE (op0
) == AND
5608 && rtx_equal_p (XEXP (op0
, 1), op1
)
5609 && ! side_effects_p (op1
))
5610 return gen_binary (AND
, mode
,
5611 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 0), mode
),
5614 else if (GET_CODE (op0
) == AND
5615 && rtx_equal_p (XEXP (op0
, 0), op1
)
5616 && ! side_effects_p (op1
))
5617 return gen_binary (AND
, mode
,
5618 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 1), mode
),
5621 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5622 comparison if STORE_FLAG_VALUE is 1. */
5623 if (STORE_FLAG_VALUE
== 1
5624 && op1
== const1_rtx
5625 && GET_RTX_CLASS (GET_CODE (op0
)) == '<'
5626 && (reversed
= reversed_comparison (op0
, mode
, XEXP (op0
, 0),
5630 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5631 is (lt foo (const_int 0)), so we can perform the above
5632 simplification if STORE_FLAG_VALUE is 1. */
5634 if (STORE_FLAG_VALUE
== 1
5635 && op1
== const1_rtx
5636 && GET_CODE (op0
) == LSHIFTRT
5637 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5638 && INTVAL (XEXP (op0
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
5639 return gen_rtx_GE (mode
, XEXP (op0
, 0), const0_rtx
);
5641 /* (xor (comparison foo bar) (const_int sign-bit))
5642 when STORE_FLAG_VALUE is the sign bit. */
5643 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5644 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5645 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))
5646 && op1
== const_true_rtx
5647 && GET_RTX_CLASS (GET_CODE (op0
)) == '<'
5648 && (reversed
= reversed_comparison (op0
, mode
, XEXP (op0
, 0),
5661 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5662 operations" because they can be replaced with two more basic operations.
5663 ZERO_EXTEND is also considered "compound" because it can be replaced with
5664 an AND operation, which is simpler, though only one operation.
5666 The function expand_compound_operation is called with an rtx expression
5667 and will convert it to the appropriate shifts and AND operations,
5668 simplifying at each stage.
5670 The function make_compound_operation is called to convert an expression
5671 consisting of shifts and ANDs into the equivalent compound expression.
5672 It is the inverse of this function, loosely speaking. */
5675 expand_compound_operation (rtx x
)
5677 unsigned HOST_WIDE_INT pos
= 0, len
;
5679 unsigned int modewidth
;
5682 switch (GET_CODE (x
))
5687 /* We can't necessarily use a const_int for a multiword mode;
5688 it depends on implicitly extending the value.
5689 Since we don't know the right way to extend it,
5690 we can't tell whether the implicit way is right.
5692 Even for a mode that is no wider than a const_int,
5693 we can't win, because we need to sign extend one of its bits through
5694 the rest of it, and we don't know which bit. */
5695 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
5698 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5699 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5700 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5701 reloaded. If not for that, MEM's would very rarely be safe.
5703 Reject MODEs bigger than a word, because we might not be able
5704 to reference a two-register group starting with an arbitrary register
5705 (and currently gen_lowpart might crash for a SUBREG). */
5707 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
5710 /* Reject MODEs that aren't scalar integers because turning vector
5711 or complex modes into shifts causes problems. */
5713 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
5716 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)));
5717 /* If the inner object has VOIDmode (the only way this can happen
5718 is if it is an ASM_OPERANDS), we can't do anything since we don't
5719 know how much masking to do. */
5728 /* If the operand is a CLOBBER, just return it. */
5729 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
5732 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
5733 || GET_CODE (XEXP (x
, 2)) != CONST_INT
5734 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
5737 /* Reject MODEs that aren't scalar integers because turning vector
5738 or complex modes into shifts causes problems. */
5740 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
5743 len
= INTVAL (XEXP (x
, 1));
5744 pos
= INTVAL (XEXP (x
, 2));
5746 /* If this goes outside the object being extracted, replace the object
5747 with a (use (mem ...)) construct that only combine understands
5748 and is used only for this purpose. */
5749 if (len
+ pos
> GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
5750 SUBST (XEXP (x
, 0), gen_rtx_USE (GET_MODE (x
), XEXP (x
, 0)));
5752 if (BITS_BIG_ENDIAN
)
5753 pos
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - len
- pos
;
5760 /* Convert sign extension to zero extension, if we know that the high
5761 bit is not set, as this is easier to optimize. It will be converted
5762 back to cheaper alternative in make_extraction. */
5763 if (GET_CODE (x
) == SIGN_EXTEND
5764 && (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5765 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
5766 & ~(((unsigned HOST_WIDE_INT
)
5767 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
5771 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
5772 rtx temp2
= expand_compound_operation (temp
);
5774 /* Make sure this is a profitable operation. */
5775 if (rtx_cost (x
, SET
) > rtx_cost (temp2
, SET
))
5777 else if (rtx_cost (x
, SET
) > rtx_cost (temp
, SET
))
5783 /* We can optimize some special cases of ZERO_EXTEND. */
5784 if (GET_CODE (x
) == ZERO_EXTEND
)
5786 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5787 know that the last value didn't have any inappropriate bits
5789 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5790 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5791 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5792 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
5793 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5794 return XEXP (XEXP (x
, 0), 0);
5796 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5797 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5798 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5799 && subreg_lowpart_p (XEXP (x
, 0))
5800 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5801 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
5802 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5803 return SUBREG_REG (XEXP (x
, 0));
5805 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5806 is a comparison and STORE_FLAG_VALUE permits. This is like
5807 the first case, but it works even when GET_MODE (x) is larger
5808 than HOST_WIDE_INT. */
5809 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5810 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5811 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x
, 0), 0))) == '<'
5812 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5813 <= HOST_BITS_PER_WIDE_INT
)
5814 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5815 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5816 return XEXP (XEXP (x
, 0), 0);
5818 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5819 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5820 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5821 && subreg_lowpart_p (XEXP (x
, 0))
5822 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0)))) == '<'
5823 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5824 <= HOST_BITS_PER_WIDE_INT
)
5825 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5826 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5827 return SUBREG_REG (XEXP (x
, 0));
5831 /* If we reach here, we want to return a pair of shifts. The inner
5832 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5833 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5834 logical depending on the value of UNSIGNEDP.
5836 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5837 converted into an AND of a shift.
5839 We must check for the case where the left shift would have a negative
5840 count. This can happen in a case like (x >> 31) & 255 on machines
5841 that can't shift by a constant. On those machines, we would first
5842 combine the shift with the AND to produce a variable-position
5843 extraction. Then the constant of 31 would be substituted in to produce
5844 a such a position. */
5846 modewidth
= GET_MODE_BITSIZE (GET_MODE (x
));
5847 if (modewidth
+ len
>= pos
)
5848 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
5850 simplify_shift_const (NULL_RTX
, ASHIFT
,
5853 modewidth
- pos
- len
),
5856 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
5857 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
5858 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
5861 ((HOST_WIDE_INT
) 1 << len
) - 1);
5863 /* Any other cases we can't handle. */
5866 /* If we couldn't do this for some reason, return the original
5868 if (GET_CODE (tem
) == CLOBBER
)
5874 /* X is a SET which contains an assignment of one object into
5875 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5876 or certain SUBREGS). If possible, convert it into a series of
5879 We half-heartedly support variable positions, but do not at all
5880 support variable lengths. */
5883 expand_field_assignment (rtx x
)
5886 rtx pos
; /* Always counts from low bit. */
5889 enum machine_mode compute_mode
;
5891 /* Loop until we find something we can't simplify. */
5894 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
5895 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
5897 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
5898 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)));
5899 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
5901 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5902 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
)
5904 inner
= XEXP (SET_DEST (x
), 0);
5905 len
= INTVAL (XEXP (SET_DEST (x
), 1));
5906 pos
= XEXP (SET_DEST (x
), 2);
5908 /* If the position is constant and spans the width of INNER,
5909 surround INNER with a USE to indicate this. */
5910 if (GET_CODE (pos
) == CONST_INT
5911 && INTVAL (pos
) + len
> GET_MODE_BITSIZE (GET_MODE (inner
)))
5912 inner
= gen_rtx_USE (GET_MODE (SET_DEST (x
)), inner
);
5914 if (BITS_BIG_ENDIAN
)
5916 if (GET_CODE (pos
) == CONST_INT
)
5917 pos
= GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
)) - len
5919 else if (GET_CODE (pos
) == MINUS
5920 && GET_CODE (XEXP (pos
, 1)) == CONST_INT
5921 && (INTVAL (XEXP (pos
, 1))
5922 == GET_MODE_BITSIZE (GET_MODE (inner
)) - len
))
5923 /* If position is ADJUST - X, new position is X. */
5924 pos
= XEXP (pos
, 0);
5926 pos
= gen_binary (MINUS
, GET_MODE (pos
),
5927 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
))
5933 /* A SUBREG between two modes that occupy the same numbers of words
5934 can be done by moving the SUBREG to the source. */
5935 else if (GET_CODE (SET_DEST (x
)) == SUBREG
5936 /* We need SUBREGs to compute nonzero_bits properly. */
5937 && nonzero_sign_valid
5938 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
5939 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
5940 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
5941 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
5943 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
5944 gen_lowpart_for_combine
5945 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
5952 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5953 inner
= SUBREG_REG (inner
);
5955 compute_mode
= GET_MODE (inner
);
5957 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5958 if (! SCALAR_INT_MODE_P (compute_mode
))
5960 enum machine_mode imode
;
5962 /* Don't do anything for vector or complex integral types. */
5963 if (! FLOAT_MODE_P (compute_mode
))
5966 /* Try to find an integral mode to pun with. */
5967 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
5968 if (imode
== BLKmode
)
5971 compute_mode
= imode
;
5972 inner
= gen_lowpart_for_combine (imode
, inner
);
5975 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5976 if (len
< HOST_BITS_PER_WIDE_INT
)
5977 mask
= GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1);
5981 /* Now compute the equivalent expression. Make a copy of INNER
5982 for the SET_DEST in case it is a MEM into which we will substitute;
5983 we don't want shared RTL in that case. */
5985 (VOIDmode
, copy_rtx (inner
),
5986 gen_binary (IOR
, compute_mode
,
5987 gen_binary (AND
, compute_mode
,
5988 simplify_gen_unary (NOT
, compute_mode
,
5994 gen_binary (ASHIFT
, compute_mode
,
5995 gen_binary (AND
, compute_mode
,
5996 gen_lowpart_for_combine
5997 (compute_mode
, SET_SRC (x
)),
6005 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6006 it is an RTX that represents a variable starting position; otherwise,
6007 POS is the (constant) starting bit position (counted from the LSB).
6009 INNER may be a USE. This will occur when we started with a bitfield
6010 that went outside the boundary of the object in memory, which is
6011 allowed on most machines. To isolate this case, we produce a USE
6012 whose mode is wide enough and surround the MEM with it. The only
6013 code that understands the USE is this routine. If it is not removed,
6014 it will cause the resulting insn not to match.
6016 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6019 IN_DEST is nonzero if this is a reference in the destination of a
6020 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6021 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6024 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6025 ZERO_EXTRACT should be built even for bits starting at bit 0.
6027 MODE is the desired mode of the result (if IN_DEST == 0).
6029 The result is an RTX for the extraction or NULL_RTX if the target
6033 make_extraction (enum machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
6034 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
6035 int in_dest
, int in_compare
)
6037 /* This mode describes the size of the storage area
6038 to fetch the overall value from. Within that, we
6039 ignore the POS lowest bits, etc. */
6040 enum machine_mode is_mode
= GET_MODE (inner
);
6041 enum machine_mode inner_mode
;
6042 enum machine_mode wanted_inner_mode
= byte_mode
;
6043 enum machine_mode wanted_inner_reg_mode
= word_mode
;
6044 enum machine_mode pos_mode
= word_mode
;
6045 enum machine_mode extraction_mode
= word_mode
;
6046 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
6049 rtx orig_pos_rtx
= pos_rtx
;
6050 HOST_WIDE_INT orig_pos
;
6052 /* Get some information about INNER and get the innermost object. */
6053 if (GET_CODE (inner
) == USE
)
6054 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6055 /* We don't need to adjust the position because we set up the USE
6056 to pretend that it was a full-word object. */
6057 spans_byte
= 1, inner
= XEXP (inner
, 0);
6058 else if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
6060 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6061 consider just the QI as the memory to extract from.
6062 The subreg adds or removes high bits; its mode is
6063 irrelevant to the meaning of this extraction,
6064 since POS and LEN count from the lsb. */
6065 if (GET_CODE (SUBREG_REG (inner
)) == MEM
)
6066 is_mode
= GET_MODE (SUBREG_REG (inner
));
6067 inner
= SUBREG_REG (inner
);
6069 else if (GET_CODE (inner
) == ASHIFT
6070 && GET_CODE (XEXP (inner
, 1)) == CONST_INT
6071 && pos_rtx
== 0 && pos
== 0
6072 && len
> (unsigned HOST_WIDE_INT
) INTVAL (XEXP (inner
, 1)))
6074 /* We're extracting the least significant bits of an rtx
6075 (ashift X (const_int C)), where LEN > C. Extract the
6076 least significant (LEN - C) bits of X, giving an rtx
6077 whose mode is MODE, then shift it left C times. */
6078 new = make_extraction (mode
, XEXP (inner
, 0),
6079 0, 0, len
- INTVAL (XEXP (inner
, 1)),
6080 unsignedp
, in_dest
, in_compare
);
6082 return gen_rtx_ASHIFT (mode
, new, XEXP (inner
, 1));
6085 inner_mode
= GET_MODE (inner
);
6087 if (pos_rtx
&& GET_CODE (pos_rtx
) == CONST_INT
)
6088 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
6090 /* See if this can be done without an extraction. We never can if the
6091 width of the field is not the same as that of some integer mode. For
6092 registers, we can only avoid the extraction if the position is at the
6093 low-order bit and this is either not in the destination or we have the
6094 appropriate STRICT_LOW_PART operation available.
6096 For MEM, we can avoid an extract if the field starts on an appropriate
6097 boundary and we can change the mode of the memory reference. However,
6098 we cannot directly access the MEM if we have a USE and the underlying
6099 MEM is not TMODE. This combination means that MEM was being used in a
6100 context where bits outside its mode were being referenced; that is only
6101 valid in bit-field insns. */
6103 if (tmode
!= BLKmode
6104 && ! (spans_byte
&& inner_mode
!= tmode
)
6105 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
6106 && GET_CODE (inner
) != MEM
6108 || (GET_CODE (inner
) == REG
6109 && have_insn_for (STRICT_LOW_PART
, tmode
))))
6110 || (GET_CODE (inner
) == MEM
&& pos_rtx
== 0
6112 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
6113 : BITS_PER_UNIT
)) == 0
6114 /* We can't do this if we are widening INNER_MODE (it
6115 may not be aligned, for one thing). */
6116 && GET_MODE_BITSIZE (inner_mode
) >= GET_MODE_BITSIZE (tmode
)
6117 && (inner_mode
== tmode
6118 || (! mode_dependent_address_p (XEXP (inner
, 0))
6119 && ! MEM_VOLATILE_P (inner
))))))
6121 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6122 field. If the original and current mode are the same, we need not
6123 adjust the offset. Otherwise, we do if bytes big endian.
6125 If INNER is not a MEM, get a piece consisting of just the field
6126 of interest (in this case POS % BITS_PER_WORD must be 0). */
6128 if (GET_CODE (inner
) == MEM
)
6130 HOST_WIDE_INT offset
;
6132 /* POS counts from lsb, but make OFFSET count in memory order. */
6133 if (BYTES_BIG_ENDIAN
)
6134 offset
= (GET_MODE_BITSIZE (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
6136 offset
= pos
/ BITS_PER_UNIT
;
6138 new = adjust_address_nv (inner
, tmode
, offset
);
6140 else if (GET_CODE (inner
) == REG
)
6142 /* We can't call gen_lowpart_for_combine here since we always want
6143 a SUBREG and it would sometimes return a new hard register. */
6144 if (tmode
!= inner_mode
)
6146 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
6148 if (WORDS_BIG_ENDIAN
6149 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
6150 final_word
= ((GET_MODE_SIZE (inner_mode
)
6151 - GET_MODE_SIZE (tmode
))
6152 / UNITS_PER_WORD
) - final_word
;
6154 final_word
*= UNITS_PER_WORD
;
6155 if (BYTES_BIG_ENDIAN
&&
6156 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
6157 final_word
+= (GET_MODE_SIZE (inner_mode
)
6158 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
6160 /* Avoid creating invalid subregs, for example when
6161 simplifying (x>>32)&255. */
6162 if (final_word
>= GET_MODE_SIZE (inner_mode
))
6165 new = gen_rtx_SUBREG (tmode
, inner
, final_word
);
6171 new = force_to_mode (inner
, tmode
,
6172 len
>= HOST_BITS_PER_WIDE_INT
6173 ? ~(unsigned HOST_WIDE_INT
) 0
6174 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
6177 /* If this extraction is going into the destination of a SET,
6178 make a STRICT_LOW_PART unless we made a MEM. */
6181 return (GET_CODE (new) == MEM
? new
6182 : (GET_CODE (new) != SUBREG
6183 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
6184 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new)));
6189 if (GET_CODE (new) == CONST_INT
)
6190 return gen_int_mode (INTVAL (new), mode
);
6192 /* If we know that no extraneous bits are set, and that the high
6193 bit is not set, convert the extraction to the cheaper of
6194 sign and zero extension, that are equivalent in these cases. */
6195 if (flag_expensive_optimizations
6196 && (GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
6197 && ((nonzero_bits (new, tmode
)
6198 & ~(((unsigned HOST_WIDE_INT
)
6199 GET_MODE_MASK (tmode
))
6203 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new);
6204 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new);
6206 /* Prefer ZERO_EXTENSION, since it gives more information to
6208 if (rtx_cost (temp
, SET
) <= rtx_cost (temp1
, SET
))
6213 /* Otherwise, sign- or zero-extend unless we already are in the
6216 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
6220 /* Unless this is a COMPARE or we have a funny memory reference,
6221 don't do anything with zero-extending field extracts starting at
6222 the low-order bit since they are simple AND operations. */
6223 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
6224 && ! in_compare
&& ! spans_byte
&& unsignedp
)
6227 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6228 we would be spanning bytes or if the position is not a constant and the
6229 length is not 1. In all other cases, we would only be going outside
6230 our object in cases when an original shift would have been
6232 if (! spans_byte
&& GET_CODE (inner
) == MEM
6233 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_BITSIZE (is_mode
))
6234 || (pos_rtx
!= 0 && len
!= 1)))
6237 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6238 and the mode for the result. */
6239 if (in_dest
&& mode_for_extraction (EP_insv
, -1) != MAX_MACHINE_MODE
)
6241 wanted_inner_reg_mode
= mode_for_extraction (EP_insv
, 0);
6242 pos_mode
= mode_for_extraction (EP_insv
, 2);
6243 extraction_mode
= mode_for_extraction (EP_insv
, 3);
6246 if (! in_dest
&& unsignedp
6247 && mode_for_extraction (EP_extzv
, -1) != MAX_MACHINE_MODE
)
6249 wanted_inner_reg_mode
= mode_for_extraction (EP_extzv
, 1);
6250 pos_mode
= mode_for_extraction (EP_extzv
, 3);
6251 extraction_mode
= mode_for_extraction (EP_extzv
, 0);
6254 if (! in_dest
&& ! unsignedp
6255 && mode_for_extraction (EP_extv
, -1) != MAX_MACHINE_MODE
)
6257 wanted_inner_reg_mode
= mode_for_extraction (EP_extv
, 1);
6258 pos_mode
= mode_for_extraction (EP_extv
, 3);
6259 extraction_mode
= mode_for_extraction (EP_extv
, 0);
6262 /* Never narrow an object, since that might not be safe. */
6264 if (mode
!= VOIDmode
6265 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
6266 extraction_mode
= mode
;
6268 if (pos_rtx
&& GET_MODE (pos_rtx
) != VOIDmode
6269 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6270 pos_mode
= GET_MODE (pos_rtx
);
6272 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6273 if we have to change the mode of memory and cannot, the desired mode is
6275 if (GET_CODE (inner
) != MEM
)
6276 wanted_inner_mode
= wanted_inner_reg_mode
;
6277 else if (inner_mode
!= wanted_inner_mode
6278 && (mode_dependent_address_p (XEXP (inner
, 0))
6279 || MEM_VOLATILE_P (inner
)))
6280 wanted_inner_mode
= extraction_mode
;
6284 if (BITS_BIG_ENDIAN
)
6286 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6287 BITS_BIG_ENDIAN style. If position is constant, compute new
6288 position. Otherwise, build subtraction.
6289 Note that POS is relative to the mode of the original argument.
6290 If it's a MEM we need to recompute POS relative to that.
6291 However, if we're extracting from (or inserting into) a register,
6292 we want to recompute POS relative to wanted_inner_mode. */
6293 int width
= (GET_CODE (inner
) == MEM
6294 ? GET_MODE_BITSIZE (is_mode
)
6295 : GET_MODE_BITSIZE (wanted_inner_mode
));
6298 pos
= width
- len
- pos
;
6301 = gen_rtx_MINUS (GET_MODE (pos_rtx
), GEN_INT (width
- len
), pos_rtx
);
6302 /* POS may be less than 0 now, but we check for that below.
6303 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6306 /* If INNER has a wider mode, make it smaller. If this is a constant
6307 extract, try to adjust the byte to point to the byte containing
6309 if (wanted_inner_mode
!= VOIDmode
6310 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
6311 && ((GET_CODE (inner
) == MEM
6312 && (inner_mode
== wanted_inner_mode
6313 || (! mode_dependent_address_p (XEXP (inner
, 0))
6314 && ! MEM_VOLATILE_P (inner
))))))
6318 /* The computations below will be correct if the machine is big
6319 endian in both bits and bytes or little endian in bits and bytes.
6320 If it is mixed, we must adjust. */
6322 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6323 adjust OFFSET to compensate. */
6324 if (BYTES_BIG_ENDIAN
6326 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
6327 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
6329 /* If this is a constant position, we can move to the desired byte. */
6332 offset
+= pos
/ BITS_PER_UNIT
;
6333 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
6336 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
6338 && is_mode
!= wanted_inner_mode
)
6339 offset
= (GET_MODE_SIZE (is_mode
)
6340 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
6342 if (offset
!= 0 || inner_mode
!= wanted_inner_mode
)
6343 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
6346 /* If INNER is not memory, we can always get it into the proper mode. If we
6347 are changing its mode, POS must be a constant and smaller than the size
6349 else if (GET_CODE (inner
) != MEM
)
6351 if (GET_MODE (inner
) != wanted_inner_mode
6353 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
6356 inner
= force_to_mode (inner
, wanted_inner_mode
,
6358 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
6359 ? ~(unsigned HOST_WIDE_INT
) 0
6360 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
6365 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6366 have to zero extend. Otherwise, we can just use a SUBREG. */
6368 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6370 rtx temp
= gen_rtx_ZERO_EXTEND (pos_mode
, pos_rtx
);
6372 /* If we know that no extraneous bits are set, and that the high
6373 bit is not set, convert extraction to cheaper one - either
6374 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6376 if (flag_expensive_optimizations
6377 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx
)) <= HOST_BITS_PER_WIDE_INT
6378 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
6379 & ~(((unsigned HOST_WIDE_INT
)
6380 GET_MODE_MASK (GET_MODE (pos_rtx
)))
6384 rtx temp1
= gen_rtx_SIGN_EXTEND (pos_mode
, pos_rtx
);
6386 /* Prefer ZERO_EXTENSION, since it gives more information to
6388 if (rtx_cost (temp1
, SET
) < rtx_cost (temp
, SET
))
6393 else if (pos_rtx
!= 0
6394 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6395 pos_rtx
= gen_lowpart_for_combine (pos_mode
, pos_rtx
);
6397 /* Make POS_RTX unless we already have it and it is correct. If we don't
6398 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6400 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
6401 pos_rtx
= orig_pos_rtx
;
6403 else if (pos_rtx
== 0)
6404 pos_rtx
= GEN_INT (pos
);
6406 /* Make the required operation. See if we can use existing rtx. */
6407 new = gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
6408 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
6410 new = gen_lowpart_for_combine (mode
, new);
6415 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6416 with any other operations in X. Return X without that shift if so. */
6419 extract_left_shift (rtx x
, int count
)
6421 enum rtx_code code
= GET_CODE (x
);
6422 enum machine_mode mode
= GET_MODE (x
);
6428 /* This is the shift itself. If it is wide enough, we will return
6429 either the value being shifted if the shift count is equal to
6430 COUNT or a shift for the difference. */
6431 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6432 && INTVAL (XEXP (x
, 1)) >= count
)
6433 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
6434 INTVAL (XEXP (x
, 1)) - count
);
6438 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6439 return simplify_gen_unary (code
, mode
, tem
, mode
);
6443 case PLUS
: case IOR
: case XOR
: case AND
:
6444 /* If we can safely shift this constant and we find the inner shift,
6445 make a new operation. */
6446 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6447 && (INTVAL (XEXP (x
, 1)) & ((((HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
6448 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6449 return gen_binary (code
, mode
, tem
,
6450 GEN_INT (INTVAL (XEXP (x
, 1)) >> count
));
6461 /* Look at the expression rooted at X. Look for expressions
6462 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6463 Form these expressions.
6465 Return the new rtx, usually just X.
6467 Also, for machines like the VAX that don't have logical shift insns,
6468 try to convert logical to arithmetic shift operations in cases where
6469 they are equivalent. This undoes the canonicalizations to logical
6470 shifts done elsewhere.
6472 We try, as much as possible, to re-use rtl expressions to save memory.
6474 IN_CODE says what kind of expression we are processing. Normally, it is
6475 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6476 being kludges), it is MEM. When processing the arguments of a comparison
6477 or a COMPARE against zero, it is COMPARE. */
6480 make_compound_operation (rtx x
, enum rtx_code in_code
)
6482 enum rtx_code code
= GET_CODE (x
);
6483 enum machine_mode mode
= GET_MODE (x
);
6484 int mode_width
= GET_MODE_BITSIZE (mode
);
6486 enum rtx_code next_code
;
6492 /* Select the code to be used in recursive calls. Once we are inside an
6493 address, we stay there. If we have a comparison, set to COMPARE,
6494 but once inside, go back to our default of SET. */
6496 next_code
= (code
== MEM
|| code
== PLUS
|| code
== MINUS
? MEM
6497 : ((code
== COMPARE
|| GET_RTX_CLASS (code
) == '<')
6498 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
6499 : in_code
== COMPARE
? SET
: in_code
);
6501 /* Process depending on the code of this operation. If NEW is set
6502 nonzero, it will be returned. */
6507 /* Convert shifts by constants into multiplications if inside
6509 if (in_code
== MEM
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6510 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
6511 && INTVAL (XEXP (x
, 1)) >= 0)
6513 new = make_compound_operation (XEXP (x
, 0), next_code
);
6514 new = gen_rtx_MULT (mode
, new,
6515 GEN_INT ((HOST_WIDE_INT
) 1
6516 << INTVAL (XEXP (x
, 1))));
6521 /* If the second operand is not a constant, we can't do anything
6523 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
6526 /* If the constant is a power of two minus one and the first operand
6527 is a logical right shift, make an extraction. */
6528 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6529 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6531 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6532 new = make_extraction (mode
, new, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
6533 0, in_code
== COMPARE
);
6536 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6537 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
6538 && subreg_lowpart_p (XEXP (x
, 0))
6539 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
6540 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6542 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
6544 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new, 0,
6545 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
6546 0, in_code
== COMPARE
);
6548 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6549 else if ((GET_CODE (XEXP (x
, 0)) == XOR
6550 || GET_CODE (XEXP (x
, 0)) == IOR
)
6551 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
6552 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
6553 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6555 /* Apply the distributive law, and then try to make extractions. */
6556 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
6557 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
6559 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
6561 new = make_compound_operation (new, in_code
);
6564 /* If we are have (and (rotate X C) M) and C is larger than the number
6565 of bits in M, this is an extraction. */
6567 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
6568 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6569 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0
6570 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
6572 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6573 new = make_extraction (mode
, new,
6574 (GET_MODE_BITSIZE (mode
)
6575 - INTVAL (XEXP (XEXP (x
, 0), 1))),
6576 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6579 /* On machines without logical shifts, if the operand of the AND is
6580 a logical shift and our mask turns off all the propagated sign
6581 bits, we can replace the logical shift with an arithmetic shift. */
6582 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6583 && !have_insn_for (LSHIFTRT
, mode
)
6584 && have_insn_for (ASHIFTRT
, mode
)
6585 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6586 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
6587 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
6588 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
6590 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
6592 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
6593 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
6595 gen_rtx_ASHIFTRT (mode
,
6596 make_compound_operation
6597 (XEXP (XEXP (x
, 0), 0), next_code
),
6598 XEXP (XEXP (x
, 0), 1)));
6601 /* If the constant is one less than a power of two, this might be
6602 representable by an extraction even if no shift is present.
6603 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6604 we are in a COMPARE. */
6605 else if ((i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6606 new = make_extraction (mode
,
6607 make_compound_operation (XEXP (x
, 0),
6609 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6611 /* If we are in a comparison and this is an AND with a power of two,
6612 convert this into the appropriate bit extract. */
6613 else if (in_code
== COMPARE
6614 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
6615 new = make_extraction (mode
,
6616 make_compound_operation (XEXP (x
, 0),
6618 i
, NULL_RTX
, 1, 1, 0, 1);
6623 /* If the sign bit is known to be zero, replace this with an
6624 arithmetic shift. */
6625 if (have_insn_for (ASHIFTRT
, mode
)
6626 && ! have_insn_for (LSHIFTRT
, mode
)
6627 && mode_width
<= HOST_BITS_PER_WIDE_INT
6628 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
6630 new = gen_rtx_ASHIFTRT (mode
,
6631 make_compound_operation (XEXP (x
, 0),
6637 /* ... fall through ... */
6643 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6644 this is a SIGN_EXTRACT. */
6645 if (GET_CODE (rhs
) == CONST_INT
6646 && GET_CODE (lhs
) == ASHIFT
6647 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
6648 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1)))
6650 new = make_compound_operation (XEXP (lhs
, 0), next_code
);
6651 new = make_extraction (mode
, new,
6652 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
6653 NULL_RTX
, mode_width
- INTVAL (rhs
),
6654 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6658 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6659 If so, try to merge the shifts into a SIGN_EXTEND. We could
6660 also do this for some cases of SIGN_EXTRACT, but it doesn't
6661 seem worth the effort; the case checked for occurs on Alpha. */
6663 if (GET_RTX_CLASS (GET_CODE (lhs
)) != 'o'
6664 && ! (GET_CODE (lhs
) == SUBREG
6665 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs
))) == 'o'))
6666 && GET_CODE (rhs
) == CONST_INT
6667 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
6668 && (new = extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
6669 new = make_extraction (mode
, make_compound_operation (new, next_code
),
6670 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
6671 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6676 /* Call ourselves recursively on the inner expression. If we are
6677 narrowing the object and it has a different RTL code from
6678 what it originally did, do this SUBREG as a force_to_mode. */
6680 tem
= make_compound_operation (SUBREG_REG (x
), in_code
);
6681 if (GET_CODE (tem
) != GET_CODE (SUBREG_REG (x
))
6682 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (tem
))
6683 && subreg_lowpart_p (x
))
6685 rtx newer
= force_to_mode (tem
, mode
, ~(HOST_WIDE_INT
) 0,
6688 /* If we have something other than a SUBREG, we might have
6689 done an expansion, so rerun ourselves. */
6690 if (GET_CODE (newer
) != SUBREG
)
6691 newer
= make_compound_operation (newer
, in_code
);
6696 /* If this is a paradoxical subreg, and the new code is a sign or
6697 zero extension, omit the subreg and widen the extension. If it
6698 is a regular subreg, we can still get rid of the subreg by not
6699 widening so much, or in fact removing the extension entirely. */
6700 if ((GET_CODE (tem
) == SIGN_EXTEND
6701 || GET_CODE (tem
) == ZERO_EXTEND
)
6702 && subreg_lowpart_p (x
))
6704 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (tem
))
6705 || (GET_MODE_SIZE (mode
) >
6706 GET_MODE_SIZE (GET_MODE (XEXP (tem
, 0)))))
6708 if (! SCALAR_INT_MODE_P (mode
))
6710 tem
= gen_rtx_fmt_e (GET_CODE (tem
), mode
, XEXP (tem
, 0));
6713 tem
= gen_lowpart_for_combine (mode
, XEXP (tem
, 0));
6724 x
= gen_lowpart_for_combine (mode
, new);
6725 code
= GET_CODE (x
);
6728 /* Now recursively process each operand of this operation. */
6729 fmt
= GET_RTX_FORMAT (code
);
6730 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
6733 new = make_compound_operation (XEXP (x
, i
), next_code
);
6734 SUBST (XEXP (x
, i
), new);
6740 /* Given M see if it is a value that would select a field of bits
6741 within an item, but not the entire word. Return -1 if not.
6742 Otherwise, return the starting position of the field, where 0 is the
6745 *PLEN is set to the length of the field. */
6748 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
6750 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6751 int pos
= exact_log2 (m
& -m
);
6757 /* Now shift off the low-order zero bits and see if we have a power of
6759 len
= exact_log2 ((m
>> pos
) + 1);
6768 /* See if X can be simplified knowing that we will only refer to it in
6769 MODE and will only refer to those bits that are nonzero in MASK.
6770 If other bits are being computed or if masking operations are done
6771 that select a superset of the bits in MASK, they can sometimes be
6774 Return a possibly simplified expression, but always convert X to
6775 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6777 Also, if REG is nonzero and X is a register equal in value to REG,
6780 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6781 are all off in X. This is used when X will be complemented, by either
6782 NOT, NEG, or XOR. */
6785 force_to_mode (rtx x
, enum machine_mode mode
, unsigned HOST_WIDE_INT mask
,
6786 rtx reg
, int just_select
)
6788 enum rtx_code code
= GET_CODE (x
);
6789 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
6790 enum machine_mode op_mode
;
6791 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
6794 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6795 code below will do the wrong thing since the mode of such an
6796 expression is VOIDmode.
6798 Also do nothing if X is a CLOBBER; this can happen if X was
6799 the return value from a call to gen_lowpart_for_combine. */
6800 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
6803 /* We want to perform the operation is its present mode unless we know
6804 that the operation is valid in MODE, in which case we do the operation
6806 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
6807 && have_insn_for (code
, mode
))
6808 ? mode
: GET_MODE (x
));
6810 /* It is not valid to do a right-shift in a narrower mode
6811 than the one it came in with. */
6812 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
6813 && GET_MODE_BITSIZE (mode
) < GET_MODE_BITSIZE (GET_MODE (x
)))
6814 op_mode
= GET_MODE (x
);
6816 /* Truncate MASK to fit OP_MODE. */
6818 mask
&= GET_MODE_MASK (op_mode
);
6820 /* When we have an arithmetic operation, or a shift whose count we
6821 do not know, we need to assume that all bit the up to the highest-order
6822 bit in MASK will be needed. This is how we form such a mask. */
6824 fuller_mask
= (GET_MODE_BITSIZE (op_mode
) >= HOST_BITS_PER_WIDE_INT
6825 ? GET_MODE_MASK (op_mode
)
6826 : (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
6829 fuller_mask
= ~(HOST_WIDE_INT
) 0;
6831 /* Determine what bits of X are guaranteed to be (non)zero. */
6832 nonzero
= nonzero_bits (x
, mode
);
6834 /* If none of the bits in X are needed, return a zero. */
6835 if (! just_select
&& (nonzero
& mask
) == 0)
6838 /* If X is a CONST_INT, return a new one. Do this here since the
6839 test below will fail. */
6840 if (GET_CODE (x
) == CONST_INT
)
6842 if (SCALAR_INT_MODE_P (mode
))
6843 return gen_int_mode (INTVAL (x
) & mask
, mode
);
6846 x
= GEN_INT (INTVAL (x
) & mask
);
6847 return gen_lowpart_common (mode
, x
);
6851 /* If X is narrower than MODE and we want all the bits in X's mode, just
6852 get X in the proper mode. */
6853 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
6854 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
6855 return gen_lowpart_for_combine (mode
, x
);
6857 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6858 MASK are already known to be zero in X, we need not do anything. */
6859 if (GET_MODE (x
) == mode
&& code
!= SUBREG
&& (~mask
& nonzero
) == 0)
6865 /* If X is a (clobber (const_int)), return it since we know we are
6866 generating something that won't match. */
6870 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6871 spanned the boundary of the MEM. If we are now masking so it is
6872 within that boundary, we don't need the USE any more. */
6873 if (! BITS_BIG_ENDIAN
6874 && (mask
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6875 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
6882 x
= expand_compound_operation (x
);
6883 if (GET_CODE (x
) != code
)
6884 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6888 if (reg
!= 0 && (rtx_equal_p (get_last_value (reg
), x
)
6889 || rtx_equal_p (reg
, get_last_value (x
))))
6894 if (subreg_lowpart_p (x
)
6895 /* We can ignore the effect of this SUBREG if it narrows the mode or
6896 if the constant masks to zero all the bits the mode doesn't
6898 && ((GET_MODE_SIZE (GET_MODE (x
))
6899 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
6901 & GET_MODE_MASK (GET_MODE (x
))
6902 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
6903 return force_to_mode (SUBREG_REG (x
), mode
, mask
, reg
, next_select
);
6907 /* If this is an AND with a constant, convert it into an AND
6908 whose constant is the AND of that constant with MASK. If it
6909 remains an AND of MASK, delete it since it is redundant. */
6911 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6913 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
6914 mask
& INTVAL (XEXP (x
, 1)));
6916 /* If X is still an AND, see if it is an AND with a mask that
6917 is just some low-order bits. If so, and it is MASK, we don't
6920 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6921 && ((INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (GET_MODE (x
)))
6925 /* If it remains an AND, try making another AND with the bits
6926 in the mode mask that aren't in MASK turned on. If the
6927 constant in the AND is wide enough, this might make a
6928 cheaper constant. */
6930 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6931 && GET_MODE_MASK (GET_MODE (x
)) != mask
6932 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
6934 HOST_WIDE_INT cval
= (INTVAL (XEXP (x
, 1))
6935 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
));
6936 int width
= GET_MODE_BITSIZE (GET_MODE (x
));
6939 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6940 number, sign extend it. */
6941 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
6942 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6943 cval
|= (HOST_WIDE_INT
) -1 << width
;
6945 y
= gen_binary (AND
, GET_MODE (x
), XEXP (x
, 0), GEN_INT (cval
));
6946 if (rtx_cost (y
, SET
) < rtx_cost (x
, SET
))
6956 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6957 low-order bits (as in an alignment operation) and FOO is already
6958 aligned to that boundary, mask C1 to that boundary as well.
6959 This may eliminate that PLUS and, later, the AND. */
6962 unsigned int width
= GET_MODE_BITSIZE (mode
);
6963 unsigned HOST_WIDE_INT smask
= mask
;
6965 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6966 number, sign extend it. */
6968 if (width
< HOST_BITS_PER_WIDE_INT
6969 && (smask
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6970 smask
|= (HOST_WIDE_INT
) -1 << width
;
6972 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6973 && exact_log2 (- smask
) >= 0
6974 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
6975 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
6976 return force_to_mode (plus_constant (XEXP (x
, 0),
6977 (INTVAL (XEXP (x
, 1)) & smask
)),
6978 mode
, smask
, reg
, next_select
);
6981 /* ... fall through ... */
6984 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6985 most significant bit in MASK since carries from those bits will
6986 affect the bits we are interested in. */
6991 /* If X is (minus C Y) where C's least set bit is larger than any bit
6992 in the mask, then we may replace with (neg Y). */
6993 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
6994 && (((unsigned HOST_WIDE_INT
) (INTVAL (XEXP (x
, 0))
6995 & -INTVAL (XEXP (x
, 0))))
6998 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
7000 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7003 /* Similarly, if C contains every bit in the fuller_mask, then we may
7004 replace with (not Y). */
7005 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
7006 && ((INTVAL (XEXP (x
, 0)) | (HOST_WIDE_INT
) fuller_mask
)
7007 == INTVAL (XEXP (x
, 0))))
7009 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
7010 XEXP (x
, 1), GET_MODE (x
));
7011 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7019 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7020 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7021 operation which may be a bitfield extraction. Ensure that the
7022 constant we form is not wider than the mode of X. */
7024 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7025 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7026 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7027 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
7028 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7029 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
7030 + floor_log2 (INTVAL (XEXP (x
, 1))))
7031 < GET_MODE_BITSIZE (GET_MODE (x
)))
7032 && (INTVAL (XEXP (x
, 1))
7033 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
7035 temp
= GEN_INT ((INTVAL (XEXP (x
, 1)) & mask
)
7036 << INTVAL (XEXP (XEXP (x
, 0), 1)));
7037 temp
= gen_binary (GET_CODE (x
), GET_MODE (x
),
7038 XEXP (XEXP (x
, 0), 0), temp
);
7039 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
7040 XEXP (XEXP (x
, 0), 1));
7041 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7045 /* For most binary operations, just propagate into the operation and
7046 change the mode if we have an operation of that mode. */
7048 op0
= gen_lowpart_for_combine (op_mode
,
7049 force_to_mode (XEXP (x
, 0), mode
, mask
,
7051 op1
= gen_lowpart_for_combine (op_mode
,
7052 force_to_mode (XEXP (x
, 1), mode
, mask
,
7055 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7056 x
= gen_binary (code
, op_mode
, op0
, op1
);
7060 /* For left shifts, do the same, but just for the first operand.
7061 However, we cannot do anything with shifts where we cannot
7062 guarantee that the counts are smaller than the size of the mode
7063 because such a count will have a different meaning in a
7066 if (! (GET_CODE (XEXP (x
, 1)) == CONST_INT
7067 && INTVAL (XEXP (x
, 1)) >= 0
7068 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (mode
))
7069 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
7070 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
7071 < (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
))))
7074 /* If the shift count is a constant and we can do arithmetic in
7075 the mode of the shift, refine which bits we need. Otherwise, use the
7076 conservative form of the mask. */
7077 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7078 && INTVAL (XEXP (x
, 1)) >= 0
7079 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (op_mode
)
7080 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
7081 mask
>>= INTVAL (XEXP (x
, 1));
7085 op0
= gen_lowpart_for_combine (op_mode
,
7086 force_to_mode (XEXP (x
, 0), op_mode
,
7087 mask
, reg
, next_select
));
7089 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7090 x
= gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
7094 /* Here we can only do something if the shift count is a constant,
7095 this shift constant is valid for the host, and we can do arithmetic
7098 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7099 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7100 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
7102 rtx inner
= XEXP (x
, 0);
7103 unsigned HOST_WIDE_INT inner_mask
;
7105 /* Select the mask of the bits we need for the shift operand. */
7106 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
7108 /* We can only change the mode of the shift if we can do arithmetic
7109 in the mode of the shift and INNER_MASK is no wider than the
7110 width of OP_MODE. */
7111 if (GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
7112 || (inner_mask
& ~GET_MODE_MASK (op_mode
)) != 0)
7113 op_mode
= GET_MODE (x
);
7115 inner
= force_to_mode (inner
, op_mode
, inner_mask
, reg
, next_select
);
7117 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
7118 x
= gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
7121 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7122 shift and AND produces only copies of the sign bit (C2 is one less
7123 than a power of two), we can do this with just a shift. */
7125 if (GET_CODE (x
) == LSHIFTRT
7126 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7127 /* The shift puts one of the sign bit copies in the least significant
7129 && ((INTVAL (XEXP (x
, 1))
7130 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
7131 >= GET_MODE_BITSIZE (GET_MODE (x
)))
7132 && exact_log2 (mask
+ 1) >= 0
7133 /* Number of bits left after the shift must be more than the mask
7135 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
7136 <= GET_MODE_BITSIZE (GET_MODE (x
)))
7137 /* Must be more sign bit copies than the mask needs. */
7138 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
7139 >= exact_log2 (mask
+ 1)))
7140 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7141 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x
))
7142 - exact_log2 (mask
+ 1)));
7147 /* If we are just looking for the sign bit, we don't need this shift at
7148 all, even if it has a variable count. */
7149 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
7150 && (mask
== ((unsigned HOST_WIDE_INT
) 1
7151 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
7152 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
7154 /* If this is a shift by a constant, get a mask that contains those bits
7155 that are not copies of the sign bit. We then have two cases: If
7156 MASK only includes those bits, this can be a logical shift, which may
7157 allow simplifications. If MASK is a single-bit field not within
7158 those bits, we are requesting a copy of the sign bit and hence can
7159 shift the sign bit to the appropriate location. */
7161 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0
7162 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
7166 /* If the considered data is wider than HOST_WIDE_INT, we can't
7167 represent a mask for all its bits in a single scalar.
7168 But we only care about the lower bits, so calculate these. */
7170 if (GET_MODE_BITSIZE (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
7172 nonzero
= ~(HOST_WIDE_INT
) 0;
7174 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7175 is the number of bits a full-width mask would have set.
7176 We need only shift if these are fewer than nonzero can
7177 hold. If not, we must keep all bits set in nonzero. */
7179 if (GET_MODE_BITSIZE (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
7180 < HOST_BITS_PER_WIDE_INT
)
7181 nonzero
>>= INTVAL (XEXP (x
, 1))
7182 + HOST_BITS_PER_WIDE_INT
7183 - GET_MODE_BITSIZE (GET_MODE (x
)) ;
7187 nonzero
= GET_MODE_MASK (GET_MODE (x
));
7188 nonzero
>>= INTVAL (XEXP (x
, 1));
7191 if ((mask
& ~nonzero
) == 0
7192 || (i
= exact_log2 (mask
)) >= 0)
7194 x
= simplify_shift_const
7195 (x
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7196 i
< 0 ? INTVAL (XEXP (x
, 1))
7197 : GET_MODE_BITSIZE (GET_MODE (x
)) - 1 - i
);
7199 if (GET_CODE (x
) != ASHIFTRT
)
7200 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7204 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7205 even if the shift count isn't a constant. */
7207 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1));
7211 /* If this is a zero- or sign-extension operation that just affects bits
7212 we don't care about, remove it. Be sure the call above returned
7213 something that is still a shift. */
7215 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
7216 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7217 && INTVAL (XEXP (x
, 1)) >= 0
7218 && (INTVAL (XEXP (x
, 1))
7219 <= GET_MODE_BITSIZE (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
7220 && GET_CODE (XEXP (x
, 0)) == ASHIFT
7221 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7222 && INTVAL (XEXP (XEXP (x
, 0), 1)) == INTVAL (XEXP (x
, 1)))
7223 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
7230 /* If the shift count is constant and we can do computations
7231 in the mode of X, compute where the bits we care about are.
7232 Otherwise, we can't do anything. Don't change the mode of
7233 the shift or propagate MODE into the shift, though. */
7234 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7235 && INTVAL (XEXP (x
, 1)) >= 0)
7237 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
7238 GET_MODE (x
), GEN_INT (mask
),
7240 if (temp
&& GET_CODE (temp
) == CONST_INT
)
7242 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
7243 INTVAL (temp
), reg
, next_select
));
7248 /* If we just want the low-order bit, the NEG isn't needed since it
7249 won't change the low-order bit. */
7251 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, just_select
);
7253 /* We need any bits less significant than the most significant bit in
7254 MASK since carries from those bits will affect the bits we are
7260 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7261 same as the XOR case above. Ensure that the constant we form is not
7262 wider than the mode of X. */
7264 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7265 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7266 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7267 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
7268 < GET_MODE_BITSIZE (GET_MODE (x
)))
7269 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
7271 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)),
7273 temp
= gen_binary (XOR
, GET_MODE (x
), XEXP (XEXP (x
, 0), 0), temp
);
7274 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), temp
, XEXP (XEXP (x
, 0), 1));
7276 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7279 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7280 use the full mask inside the NOT. */
7284 op0
= gen_lowpart_for_combine (op_mode
,
7285 force_to_mode (XEXP (x
, 0), mode
, mask
,
7287 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7288 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
7292 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7293 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7294 which is equal to STORE_FLAG_VALUE. */
7295 if ((mask
& ~STORE_FLAG_VALUE
) == 0 && XEXP (x
, 1) == const0_rtx
7296 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
7297 && (nonzero_bits (XEXP (x
, 0), mode
)
7298 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
7299 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
7304 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7305 written in a narrower mode. We play it safe and do not do so. */
7308 gen_lowpart_for_combine (GET_MODE (x
),
7309 force_to_mode (XEXP (x
, 1), mode
,
7310 mask
, reg
, next_select
)));
7312 gen_lowpart_for_combine (GET_MODE (x
),
7313 force_to_mode (XEXP (x
, 2), mode
,
7314 mask
, reg
, next_select
)));
7321 /* Ensure we return a value of the proper mode. */
7322 return gen_lowpart_for_combine (mode
, x
);
7325 /* Return nonzero if X is an expression that has one of two values depending on
7326 whether some other value is zero or nonzero. In that case, we return the
7327 value that is being tested, *PTRUE is set to the value if the rtx being
7328 returned has a nonzero value, and *PFALSE is set to the other alternative.
7330 If we return zero, we set *PTRUE and *PFALSE to X. */
7333 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
7335 enum machine_mode mode
= GET_MODE (x
);
7336 enum rtx_code code
= GET_CODE (x
);
7337 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
7338 unsigned HOST_WIDE_INT nz
;
7340 /* If we are comparing a value against zero, we are done. */
7341 if ((code
== NE
|| code
== EQ
)
7342 && GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) == 0)
7344 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
7345 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
7349 /* If this is a unary operation whose operand has one of two values, apply
7350 our opcode to compute those values. */
7351 else if (GET_RTX_CLASS (code
) == '1'
7352 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
7354 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
7355 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
7356 GET_MODE (XEXP (x
, 0)));
7360 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7361 make can't possibly match and would suppress other optimizations. */
7362 else if (code
== COMPARE
)
7365 /* If this is a binary operation, see if either side has only one of two
7366 values. If either one does or if both do and they are conditional on
7367 the same value, compute the new true and false values. */
7368 else if (GET_RTX_CLASS (code
) == 'c' || GET_RTX_CLASS (code
) == '2'
7369 || GET_RTX_CLASS (code
) == '<')
7371 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
7372 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
7374 if ((cond0
!= 0 || cond1
!= 0)
7375 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
7377 /* If if_then_else_cond returned zero, then true/false are the
7378 same rtl. We must copy one of them to prevent invalid rtl
7381 true0
= copy_rtx (true0
);
7382 else if (cond1
== 0)
7383 true1
= copy_rtx (true1
);
7385 *ptrue
= gen_binary (code
, mode
, true0
, true1
);
7386 *pfalse
= gen_binary (code
, mode
, false0
, false1
);
7387 return cond0
? cond0
: cond1
;
7390 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7391 operands is zero when the other is nonzero, and vice-versa,
7392 and STORE_FLAG_VALUE is 1 or -1. */
7394 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7395 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
7397 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7399 rtx op0
= XEXP (XEXP (x
, 0), 1);
7400 rtx op1
= XEXP (XEXP (x
, 1), 1);
7402 cond0
= XEXP (XEXP (x
, 0), 0);
7403 cond1
= XEXP (XEXP (x
, 1), 0);
7405 if (GET_RTX_CLASS (GET_CODE (cond0
)) == '<'
7406 && GET_RTX_CLASS (GET_CODE (cond1
)) == '<'
7407 && ((GET_CODE (cond0
) == combine_reversed_comparison_code (cond1
)
7408 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7409 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7410 || ((swap_condition (GET_CODE (cond0
))
7411 == combine_reversed_comparison_code (cond1
))
7412 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7413 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7414 && ! side_effects_p (x
))
7416 *ptrue
= gen_binary (MULT
, mode
, op0
, const_true_rtx
);
7417 *pfalse
= gen_binary (MULT
, mode
,
7419 ? simplify_gen_unary (NEG
, mode
, op1
,
7427 /* Similarly for MULT, AND and UMIN, except that for these the result
7429 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7430 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
7431 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7433 cond0
= XEXP (XEXP (x
, 0), 0);
7434 cond1
= XEXP (XEXP (x
, 1), 0);
7436 if (GET_RTX_CLASS (GET_CODE (cond0
)) == '<'
7437 && GET_RTX_CLASS (GET_CODE (cond1
)) == '<'
7438 && ((GET_CODE (cond0
) == combine_reversed_comparison_code (cond1
)
7439 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7440 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7441 || ((swap_condition (GET_CODE (cond0
))
7442 == combine_reversed_comparison_code (cond1
))
7443 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7444 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7445 && ! side_effects_p (x
))
7447 *ptrue
= *pfalse
= const0_rtx
;
7453 else if (code
== IF_THEN_ELSE
)
7455 /* If we have IF_THEN_ELSE already, extract the condition and
7456 canonicalize it if it is NE or EQ. */
7457 cond0
= XEXP (x
, 0);
7458 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
7459 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
7460 return XEXP (cond0
, 0);
7461 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
7463 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
7464 return XEXP (cond0
, 0);
7470 /* If X is a SUBREG, we can narrow both the true and false values
7471 if the inner expression, if there is a condition. */
7472 else if (code
== SUBREG
7473 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
7476 *ptrue
= simplify_gen_subreg (mode
, true0
,
7477 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
7478 *pfalse
= simplify_gen_subreg (mode
, false0
,
7479 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
7484 /* If X is a constant, this isn't special and will cause confusions
7485 if we treat it as such. Likewise if it is equivalent to a constant. */
7486 else if (CONSTANT_P (x
)
7487 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
7490 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7491 will be least confusing to the rest of the compiler. */
7492 else if (mode
== BImode
)
7494 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
7498 /* If X is known to be either 0 or -1, those are the true and
7499 false values when testing X. */
7500 else if (x
== constm1_rtx
|| x
== const0_rtx
7501 || (mode
!= VOIDmode
7502 && num_sign_bit_copies (x
, mode
) == GET_MODE_BITSIZE (mode
)))
7504 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
7508 /* Likewise for 0 or a single bit. */
7509 else if (mode
!= VOIDmode
7510 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7511 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
7513 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
7517 /* Otherwise fail; show no condition with true and false values the same. */
7518 *ptrue
= *pfalse
= x
;
7522 /* Return the value of expression X given the fact that condition COND
7523 is known to be true when applied to REG as its first operand and VAL
7524 as its second. X is known to not be shared and so can be modified in
7527 We only handle the simplest cases, and specifically those cases that
7528 arise with IF_THEN_ELSE expressions. */
7531 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
7533 enum rtx_code code
= GET_CODE (x
);
7538 if (side_effects_p (x
))
7541 /* If either operand of the condition is a floating point value,
7542 then we have to avoid collapsing an EQ comparison. */
7544 && rtx_equal_p (x
, reg
)
7545 && ! FLOAT_MODE_P (GET_MODE (x
))
7546 && ! FLOAT_MODE_P (GET_MODE (val
)))
7549 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
7552 /* If X is (abs REG) and we know something about REG's relationship
7553 with zero, we may be able to simplify this. */
7555 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
7558 case GE
: case GT
: case EQ
:
7561 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
7563 GET_MODE (XEXP (x
, 0)));
7568 /* The only other cases we handle are MIN, MAX, and comparisons if the
7569 operands are the same as REG and VAL. */
7571 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == 'c')
7573 if (rtx_equal_p (XEXP (x
, 0), val
))
7574 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
7576 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
7578 if (GET_RTX_CLASS (code
) == '<')
7580 if (comparison_dominates_p (cond
, code
))
7581 return const_true_rtx
;
7583 code
= combine_reversed_comparison_code (x
);
7585 && comparison_dominates_p (cond
, code
))
7590 else if (code
== SMAX
|| code
== SMIN
7591 || code
== UMIN
|| code
== UMAX
)
7593 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
7595 /* Do not reverse the condition when it is NE or EQ.
7596 This is because we cannot conclude anything about
7597 the value of 'SMAX (x, y)' when x is not equal to y,
7598 but we can when x equals y. */
7599 if ((code
== SMAX
|| code
== UMAX
)
7600 && ! (cond
== EQ
|| cond
== NE
))
7601 cond
= reverse_condition (cond
);
7606 return unsignedp
? x
: XEXP (x
, 1);
7608 return unsignedp
? x
: XEXP (x
, 0);
7610 return unsignedp
? XEXP (x
, 1) : x
;
7612 return unsignedp
? XEXP (x
, 0) : x
;
7619 else if (code
== SUBREG
)
7621 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
7622 rtx
new, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
7624 if (SUBREG_REG (x
) != r
)
7626 /* We must simplify subreg here, before we lose track of the
7627 original inner_mode. */
7628 new = simplify_subreg (GET_MODE (x
), r
,
7629 inner_mode
, SUBREG_BYTE (x
));
7633 SUBST (SUBREG_REG (x
), r
);
7638 /* We don't have to handle SIGN_EXTEND here, because even in the
7639 case of replacing something with a modeless CONST_INT, a
7640 CONST_INT is already (supposed to be) a valid sign extension for
7641 its narrower mode, which implies it's already properly
7642 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7643 story is different. */
7644 else if (code
== ZERO_EXTEND
)
7646 enum machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
7647 rtx
new, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
7649 if (XEXP (x
, 0) != r
)
7651 /* We must simplify the zero_extend here, before we lose
7652 track of the original inner_mode. */
7653 new = simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
7658 SUBST (XEXP (x
, 0), r
);
7664 fmt
= GET_RTX_FORMAT (code
);
7665 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7668 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
7669 else if (fmt
[i
] == 'E')
7670 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7671 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
7678 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7679 assignment as a field assignment. */
7682 rtx_equal_for_field_assignment_p (rtx x
, rtx y
)
7684 if (x
== y
|| rtx_equal_p (x
, y
))
7687 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
7690 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7691 Note that all SUBREGs of MEM are paradoxical; otherwise they
7692 would have been rewritten. */
7693 if (GET_CODE (x
) == MEM
&& GET_CODE (y
) == SUBREG
7694 && GET_CODE (SUBREG_REG (y
)) == MEM
7695 && rtx_equal_p (SUBREG_REG (y
),
7696 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y
)), x
)))
7699 if (GET_CODE (y
) == MEM
&& GET_CODE (x
) == SUBREG
7700 && GET_CODE (SUBREG_REG (x
)) == MEM
7701 && rtx_equal_p (SUBREG_REG (x
),
7702 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x
)), y
)))
7705 /* We used to see if get_last_value of X and Y were the same but that's
7706 not correct. In one direction, we'll cause the assignment to have
7707 the wrong destination and in the case, we'll import a register into this
7708 insn that might have already have been dead. So fail if none of the
7709 above cases are true. */
7713 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7714 Return that assignment if so.
7716 We only handle the most common cases. */
7719 make_field_assignment (rtx x
)
7721 rtx dest
= SET_DEST (x
);
7722 rtx src
= SET_SRC (x
);
7727 unsigned HOST_WIDE_INT len
;
7729 enum machine_mode mode
;
7731 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7732 a clear of a one-bit field. We will have changed it to
7733 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7736 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
7737 && GET_CODE (XEXP (XEXP (src
, 0), 0)) == CONST_INT
7738 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
7739 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7741 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7744 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7748 else if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
7749 && subreg_lowpart_p (XEXP (src
, 0))
7750 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
7751 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
7752 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
7753 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
7754 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7756 assign
= make_extraction (VOIDmode
, dest
, 0,
7757 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
7760 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7764 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7766 else if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
7767 && XEXP (XEXP (src
, 0), 0) == const1_rtx
7768 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7770 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7773 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
7777 /* The other case we handle is assignments into a constant-position
7778 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7779 a mask that has all one bits except for a group of zero bits and
7780 OTHER is known to have zeros where C1 has ones, this is such an
7781 assignment. Compute the position and length from C1. Shift OTHER
7782 to the appropriate position, force it to the required mode, and
7783 make the extraction. Check for the AND in both operands. */
7785 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
7788 rhs
= expand_compound_operation (XEXP (src
, 0));
7789 lhs
= expand_compound_operation (XEXP (src
, 1));
7791 if (GET_CODE (rhs
) == AND
7792 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
7793 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
7794 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
7795 else if (GET_CODE (lhs
) == AND
7796 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
7797 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
7798 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
7802 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
7803 if (pos
< 0 || pos
+ len
> GET_MODE_BITSIZE (GET_MODE (dest
))
7804 || GET_MODE_BITSIZE (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
7805 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
7808 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
7812 /* The mode to use for the source is the mode of the assignment, or of
7813 what is inside a possible STRICT_LOW_PART. */
7814 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
7815 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
7817 /* Shift OTHER right POS places and make it the source, restricting it
7818 to the proper length and mode. */
7820 src
= force_to_mode (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7821 GET_MODE (src
), other
, pos
),
7823 GET_MODE_BITSIZE (mode
) >= HOST_BITS_PER_WIDE_INT
7824 ? ~(unsigned HOST_WIDE_INT
) 0
7825 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7828 /* If SRC is masked by an AND that does not make a difference in
7829 the value being stored, strip it. */
7830 if (GET_CODE (assign
) == ZERO_EXTRACT
7831 && GET_CODE (XEXP (assign
, 1)) == CONST_INT
7832 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
7833 && GET_CODE (src
) == AND
7834 && GET_CODE (XEXP (src
, 1)) == CONST_INT
7835 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (src
, 1))
7836 == ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (assign
, 1))) - 1))
7837 src
= XEXP (src
, 0);
7839 return gen_rtx_SET (VOIDmode
, assign
, src
);
7842 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7846 apply_distributive_law (rtx x
)
7848 enum rtx_code code
= GET_CODE (x
);
7849 rtx lhs
, rhs
, other
;
7851 enum rtx_code inner_code
;
7853 /* Distributivity is not true for floating point.
7854 It can change the value. So don't do it.
7855 -- rms and moshier@world.std.com. */
7856 if (FLOAT_MODE_P (GET_MODE (x
)))
7859 /* The outer operation can only be one of the following: */
7860 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
7861 && code
!= PLUS
&& code
!= MINUS
)
7864 lhs
= XEXP (x
, 0), rhs
= XEXP (x
, 1);
7866 /* If either operand is a primitive we can't do anything, so get out
7868 if (GET_RTX_CLASS (GET_CODE (lhs
)) == 'o'
7869 || GET_RTX_CLASS (GET_CODE (rhs
)) == 'o')
7872 lhs
= expand_compound_operation (lhs
);
7873 rhs
= expand_compound_operation (rhs
);
7874 inner_code
= GET_CODE (lhs
);
7875 if (inner_code
!= GET_CODE (rhs
))
7878 /* See if the inner and outer operations distribute. */
7885 /* These all distribute except over PLUS. */
7886 if (code
== PLUS
|| code
== MINUS
)
7891 if (code
!= PLUS
&& code
!= MINUS
)
7896 /* This is also a multiply, so it distributes over everything. */
7900 /* Non-paradoxical SUBREGs distributes over all operations, provided
7901 the inner modes and byte offsets are the same, this is an extraction
7902 of a low-order part, we don't convert an fp operation to int or
7903 vice versa, and we would not be converting a single-word
7904 operation into a multi-word operation. The latter test is not
7905 required, but it prevents generating unneeded multi-word operations.
7906 Some of the previous tests are redundant given the latter test, but
7907 are retained because they are required for correctness.
7909 We produce the result slightly differently in this case. */
7911 if (GET_MODE (SUBREG_REG (lhs
)) != GET_MODE (SUBREG_REG (rhs
))
7912 || SUBREG_BYTE (lhs
) != SUBREG_BYTE (rhs
)
7913 || ! subreg_lowpart_p (lhs
)
7914 || (GET_MODE_CLASS (GET_MODE (lhs
))
7915 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs
))))
7916 || (GET_MODE_SIZE (GET_MODE (lhs
))
7917 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))))
7918 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))) > UNITS_PER_WORD
)
7921 tem
= gen_binary (code
, GET_MODE (SUBREG_REG (lhs
)),
7922 SUBREG_REG (lhs
), SUBREG_REG (rhs
));
7923 return gen_lowpart_for_combine (GET_MODE (x
), tem
);
7929 /* Set LHS and RHS to the inner operands (A and B in the example
7930 above) and set OTHER to the common operand (C in the example).
7931 These is only one way to do this unless the inner operation is
7933 if (GET_RTX_CLASS (inner_code
) == 'c'
7934 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
7935 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
7936 else if (GET_RTX_CLASS (inner_code
) == 'c'
7937 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
7938 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
7939 else if (GET_RTX_CLASS (inner_code
) == 'c'
7940 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
7941 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
7942 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
7943 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
7947 /* Form the new inner operation, seeing if it simplifies first. */
7948 tem
= gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
7950 /* There is one exception to the general way of distributing:
7951 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7952 if (code
== XOR
&& inner_code
== IOR
)
7955 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
7958 /* We may be able to continuing distributing the result, so call
7959 ourselves recursively on the inner operation before forming the
7960 outer operation, which we return. */
7961 return gen_binary (inner_code
, GET_MODE (x
),
7962 apply_distributive_law (tem
), other
);
7965 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7968 Return an equivalent form, if different from X. Otherwise, return X. If
7969 X is zero, we are to always construct the equivalent form. */
7972 simplify_and_const_int (rtx x
, enum machine_mode mode
, rtx varop
,
7973 unsigned HOST_WIDE_INT constop
)
7975 unsigned HOST_WIDE_INT nonzero
;
7978 /* Simplify VAROP knowing that we will be only looking at some of the
7981 Note by passing in CONSTOP, we guarantee that the bits not set in
7982 CONSTOP are not significant and will never be examined. We must
7983 ensure that is the case by explicitly masking out those bits
7984 before returning. */
7985 varop
= force_to_mode (varop
, mode
, constop
, NULL_RTX
, 0);
7987 /* If VAROP is a CLOBBER, we will fail so return it. */
7988 if (GET_CODE (varop
) == CLOBBER
)
7991 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7992 to VAROP and return the new constant. */
7993 if (GET_CODE (varop
) == CONST_INT
)
7994 return GEN_INT (trunc_int_for_mode (INTVAL (varop
) & constop
, mode
));
7996 /* See what bits may be nonzero in VAROP. Unlike the general case of
7997 a call to nonzero_bits, here we don't care about bits outside
8000 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
8002 /* Turn off all bits in the constant that are known to already be zero.
8003 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8004 which is tested below. */
8008 /* If we don't have any bits left, return zero. */
8012 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8013 a power of two, we can replace this with an ASHIFT. */
8014 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
8015 && (i
= exact_log2 (constop
)) >= 0)
8016 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
8018 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8019 or XOR, then try to apply the distributive law. This may eliminate
8020 operations if either branch can be simplified because of the AND.
8021 It may also make some cases more complex, but those cases probably
8022 won't match a pattern either with or without this. */
8024 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
8026 gen_lowpart_for_combine
8028 apply_distributive_law
8029 (gen_binary (GET_CODE (varop
), GET_MODE (varop
),
8030 simplify_and_const_int (NULL_RTX
, GET_MODE (varop
),
8031 XEXP (varop
, 0), constop
),
8032 simplify_and_const_int (NULL_RTX
, GET_MODE (varop
),
8033 XEXP (varop
, 1), constop
))));
8035 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8036 the AND and see if one of the operands simplifies to zero. If so, we
8037 may eliminate it. */
8039 if (GET_CODE (varop
) == PLUS
8040 && exact_log2 (constop
+ 1) >= 0)
8044 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
8045 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
8046 if (o0
== const0_rtx
)
8048 if (o1
== const0_rtx
)
8052 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8053 if we already had one (just check for the simplest cases). */
8054 if (x
&& GET_CODE (XEXP (x
, 0)) == SUBREG
8055 && GET_MODE (XEXP (x
, 0)) == mode
8056 && SUBREG_REG (XEXP (x
, 0)) == varop
)
8057 varop
= XEXP (x
, 0);
8059 varop
= gen_lowpart_for_combine (mode
, varop
);
8061 /* If we can't make the SUBREG, try to return what we were given. */
8062 if (GET_CODE (varop
) == CLOBBER
)
8063 return x
? x
: varop
;
8065 /* If we are only masking insignificant bits, return VAROP. */
8066 if (constop
== nonzero
)
8070 /* Otherwise, return an AND. */
8071 constop
= trunc_int_for_mode (constop
, mode
);
8072 /* See how much, if any, of X we can use. */
8073 if (x
== 0 || GET_CODE (x
) != AND
|| GET_MODE (x
) != mode
)
8074 x
= gen_binary (AND
, mode
, varop
, GEN_INT (constop
));
8078 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
8079 || (unsigned HOST_WIDE_INT
) INTVAL (XEXP (x
, 1)) != constop
)
8080 SUBST (XEXP (x
, 1), GEN_INT (constop
));
8082 SUBST (XEXP (x
, 0), varop
);
8089 #define nonzero_bits_with_known(X, MODE) \
8090 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
8092 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8093 It avoids exponential behavior in nonzero_bits1 when X has
8094 identical subexpressions on the first or the second level. */
8096 static unsigned HOST_WIDE_INT
8097 cached_nonzero_bits (rtx x
, enum machine_mode mode
, rtx known_x
,
8098 enum machine_mode known_mode
,
8099 unsigned HOST_WIDE_INT known_ret
)
8101 if (x
== known_x
&& mode
== known_mode
)
8104 /* Try to find identical subexpressions. If found call
8105 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8106 precomputed value for the subexpression as KNOWN_RET. */
8108 if (GET_RTX_CLASS (GET_CODE (x
)) == '2'
8109 || GET_RTX_CLASS (GET_CODE (x
)) == 'c')
8111 rtx x0
= XEXP (x
, 0);
8112 rtx x1
= XEXP (x
, 1);
8114 /* Check the first level. */
8116 return nonzero_bits1 (x
, mode
, x0
, mode
,
8117 nonzero_bits_with_known (x0
, mode
));
8119 /* Check the second level. */
8120 if ((GET_RTX_CLASS (GET_CODE (x0
)) == '2'
8121 || GET_RTX_CLASS (GET_CODE (x0
)) == 'c')
8122 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
8123 return nonzero_bits1 (x
, mode
, x1
, mode
,
8124 nonzero_bits_with_known (x1
, mode
));
8126 if ((GET_RTX_CLASS (GET_CODE (x1
)) == '2'
8127 || GET_RTX_CLASS (GET_CODE (x1
)) == 'c')
8128 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
8129 return nonzero_bits1 (x
, mode
, x0
, mode
,
8130 nonzero_bits_with_known (x0
, mode
));
8133 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
8136 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8137 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8138 is less useful. We can't allow both, because that results in exponential
8139 run time recursion. There is a nullstone testcase that triggered
8140 this. This macro avoids accidental uses of num_sign_bit_copies. */
8141 #define cached_num_sign_bit_copies()
8143 /* Given an expression, X, compute which bits in X can be nonzero.
8144 We don't care about bits outside of those defined in MODE.
8146 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8147 a shift, AND, or zero_extract, we can do better. */
8149 static unsigned HOST_WIDE_INT
8150 nonzero_bits1 (rtx x
, enum machine_mode mode
, rtx known_x
,
8151 enum machine_mode known_mode
,
8152 unsigned HOST_WIDE_INT known_ret
)
8154 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
8155 unsigned HOST_WIDE_INT inner_nz
;
8157 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
8160 /* For floating-point values, assume all bits are needed. */
8161 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
))
8164 /* If X is wider than MODE, use its mode instead. */
8165 if (GET_MODE_BITSIZE (GET_MODE (x
)) > mode_width
)
8167 mode
= GET_MODE (x
);
8168 nonzero
= GET_MODE_MASK (mode
);
8169 mode_width
= GET_MODE_BITSIZE (mode
);
8172 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
8173 /* Our only callers in this case look for single bit values. So
8174 just return the mode mask. Those tests will then be false. */
8177 #ifndef WORD_REGISTER_OPERATIONS
8178 /* If MODE is wider than X, but both are a single word for both the host
8179 and target machines, we can compute this from which bits of the
8180 object might be nonzero in its own mode, taking into account the fact
8181 that on many CISC machines, accessing an object in a wider mode
8182 causes the high-order bits to become undefined. So they are
8183 not known to be zero. */
8185 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
8186 && GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
8187 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
8188 && GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (GET_MODE (x
)))
8190 nonzero
&= nonzero_bits_with_known (x
, GET_MODE (x
));
8191 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
8196 code
= GET_CODE (x
);
8200 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8201 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8202 all the bits above ptr_mode are known to be zero. */
8203 if (POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
8205 nonzero
&= GET_MODE_MASK (ptr_mode
);
8208 /* Include declared information about alignment of pointers. */
8209 /* ??? We don't properly preserve REG_POINTER changes across
8210 pointer-to-integer casts, so we can't trust it except for
8211 things that we know must be pointers. See execute/960116-1.c. */
8212 if ((x
== stack_pointer_rtx
8213 || x
== frame_pointer_rtx
8214 || x
== arg_pointer_rtx
)
8215 && REGNO_POINTER_ALIGN (REGNO (x
)))
8217 unsigned HOST_WIDE_INT alignment
8218 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
8220 #ifdef PUSH_ROUNDING
8221 /* If PUSH_ROUNDING is defined, it is possible for the
8222 stack to be momentarily aligned only to that amount,
8223 so we pick the least alignment. */
8224 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
8225 alignment
= MIN (PUSH_ROUNDING (1), alignment
);
8228 nonzero
&= ~(alignment
- 1);
8231 /* If X is a register whose nonzero bits value is current, use it.
8232 Otherwise, if X is a register whose value we can find, use that
8233 value. Otherwise, use the previously-computed global nonzero bits
8234 for this register. */
8236 if (reg_last_set_value
[REGNO (x
)] != 0
8237 && (reg_last_set_mode
[REGNO (x
)] == mode
8238 || (GET_MODE_CLASS (reg_last_set_mode
[REGNO (x
)]) == MODE_INT
8239 && GET_MODE_CLASS (mode
) == MODE_INT
))
8240 && (reg_last_set_label
[REGNO (x
)] == label_tick
8241 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8242 && REG_N_SETS (REGNO (x
)) == 1
8243 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR
->next_bb
->global_live_at_start
,
8245 && INSN_CUID (reg_last_set
[REGNO (x
)]) < subst_low_cuid
)
8246 return reg_last_set_nonzero_bits
[REGNO (x
)] & nonzero
;
8248 tem
= get_last_value (x
);
8252 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8253 /* If X is narrower than MODE and TEM is a non-negative
8254 constant that would appear negative in the mode of X,
8255 sign-extend it for use in reg_nonzero_bits because some
8256 machines (maybe most) will actually do the sign-extension
8257 and this is the conservative approach.
8259 ??? For 2.5, try to tighten up the MD files in this regard
8260 instead of this kludge. */
8262 if (GET_MODE_BITSIZE (GET_MODE (x
)) < mode_width
8263 && GET_CODE (tem
) == CONST_INT
8265 && 0 != (INTVAL (tem
)
8266 & ((HOST_WIDE_INT
) 1
8267 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
8268 tem
= GEN_INT (INTVAL (tem
)
8269 | ((HOST_WIDE_INT
) (-1)
8270 << GET_MODE_BITSIZE (GET_MODE (x
))));
8272 return nonzero_bits_with_known (tem
, mode
) & nonzero
;
8274 else if (nonzero_sign_valid
&& reg_nonzero_bits
[REGNO (x
)])
8276 unsigned HOST_WIDE_INT mask
= reg_nonzero_bits
[REGNO (x
)];
8278 if (GET_MODE_BITSIZE (GET_MODE (x
)) < mode_width
)
8279 /* We don't know anything about the upper bits. */
8280 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
8281 return nonzero
& mask
;
8287 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8288 /* If X is negative in MODE, sign-extend the value. */
8289 if (INTVAL (x
) > 0 && mode_width
< BITS_PER_WORD
8290 && 0 != (INTVAL (x
) & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))))
8291 return (INTVAL (x
) | ((HOST_WIDE_INT
) (-1) << mode_width
));
8297 #ifdef LOAD_EXTEND_OP
8298 /* In many, if not most, RISC machines, reading a byte from memory
8299 zeros the rest of the register. Noticing that fact saves a lot
8300 of extra zero-extends. */
8301 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
8302 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
8307 case UNEQ
: case LTGT
:
8308 case GT
: case GTU
: case UNGT
:
8309 case LT
: case LTU
: case UNLT
:
8310 case GE
: case GEU
: case UNGE
:
8311 case LE
: case LEU
: case UNLE
:
8312 case UNORDERED
: case ORDERED
:
8314 /* If this produces an integer result, we know which bits are set.
8315 Code here used to clear bits outside the mode of X, but that is
8318 if (GET_MODE_CLASS (mode
) == MODE_INT
8319 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
8320 nonzero
= STORE_FLAG_VALUE
;
8325 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8326 and num_sign_bit_copies. */
8327 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
8328 == GET_MODE_BITSIZE (GET_MODE (x
)))
8332 if (GET_MODE_SIZE (GET_MODE (x
)) < mode_width
)
8333 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
8338 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8339 and num_sign_bit_copies. */
8340 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
8341 == GET_MODE_BITSIZE (GET_MODE (x
)))
8347 nonzero
&= (nonzero_bits_with_known (XEXP (x
, 0), mode
)
8348 & GET_MODE_MASK (mode
));
8352 nonzero
&= nonzero_bits_with_known (XEXP (x
, 0), mode
);
8353 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
8354 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
8358 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8359 Otherwise, show all the bits in the outer mode but not the inner
8361 inner_nz
= nonzero_bits_with_known (XEXP (x
, 0), mode
);
8362 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
8364 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
8366 & (((HOST_WIDE_INT
) 1
8367 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1))))
8368 inner_nz
|= (GET_MODE_MASK (mode
)
8369 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
8372 nonzero
&= inner_nz
;
8376 nonzero
&= (nonzero_bits_with_known (XEXP (x
, 0), mode
)
8377 & nonzero_bits_with_known (XEXP (x
, 1), mode
));
8381 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
8383 unsigned HOST_WIDE_INT nonzero0
=
8384 nonzero_bits_with_known (XEXP (x
, 0), mode
);
8386 /* Don't call nonzero_bits for the second time if it cannot change
8388 if ((nonzero
& nonzero0
) != nonzero
)
8389 nonzero
&= (nonzero0
8390 | nonzero_bits_with_known (XEXP (x
, 1), mode
));
8394 case PLUS
: case MINUS
:
8396 case DIV
: case UDIV
:
8397 case MOD
: case UMOD
:
8398 /* We can apply the rules of arithmetic to compute the number of
8399 high- and low-order zero bits of these operations. We start by
8400 computing the width (position of the highest-order nonzero bit)
8401 and the number of low-order zero bits for each value. */
8403 unsigned HOST_WIDE_INT nz0
=
8404 nonzero_bits_with_known (XEXP (x
, 0), mode
);
8405 unsigned HOST_WIDE_INT nz1
=
8406 nonzero_bits_with_known (XEXP (x
, 1), mode
);
8407 int sign_index
= GET_MODE_BITSIZE (GET_MODE (x
)) - 1;
8408 int width0
= floor_log2 (nz0
) + 1;
8409 int width1
= floor_log2 (nz1
) + 1;
8410 int low0
= floor_log2 (nz0
& -nz0
);
8411 int low1
= floor_log2 (nz1
& -nz1
);
8412 HOST_WIDE_INT op0_maybe_minusp
8413 = (nz0
& ((HOST_WIDE_INT
) 1 << sign_index
));
8414 HOST_WIDE_INT op1_maybe_minusp
8415 = (nz1
& ((HOST_WIDE_INT
) 1 << sign_index
));
8416 unsigned int result_width
= mode_width
;
8422 result_width
= MAX (width0
, width1
) + 1;
8423 result_low
= MIN (low0
, low1
);
8426 result_low
= MIN (low0
, low1
);
8429 result_width
= width0
+ width1
;
8430 result_low
= low0
+ low1
;
8435 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
8436 result_width
= width0
;
8441 result_width
= width0
;
8446 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
8447 result_width
= MIN (width0
, width1
);
8448 result_low
= MIN (low0
, low1
);
8453 result_width
= MIN (width0
, width1
);
8454 result_low
= MIN (low0
, low1
);
8460 if (result_width
< mode_width
)
8461 nonzero
&= ((HOST_WIDE_INT
) 1 << result_width
) - 1;
8464 nonzero
&= ~(((HOST_WIDE_INT
) 1 << result_low
) - 1);
8466 #ifdef POINTERS_EXTEND_UNSIGNED
8467 /* If pointers extend unsigned and this is an addition or subtraction
8468 to a pointer in Pmode, all the bits above ptr_mode are known to be
8470 if (POINTERS_EXTEND_UNSIGNED
> 0 && GET_MODE (x
) == Pmode
8471 && (code
== PLUS
|| code
== MINUS
)
8472 && GET_CODE (XEXP (x
, 0)) == REG
&& REG_POINTER (XEXP (x
, 0)))
8473 nonzero
&= GET_MODE_MASK (ptr_mode
);
8479 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8480 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8481 nonzero
&= ((HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
8485 /* If this is a SUBREG formed for a promoted variable that has
8486 been zero-extended, we know that at least the high-order bits
8487 are zero, though others might be too. */
8489 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
8490 nonzero
= (GET_MODE_MASK (GET_MODE (x
))
8491 & nonzero_bits_with_known (SUBREG_REG (x
), GET_MODE (x
)));
8493 /* If the inner mode is a single word for both the host and target
8494 machines, we can compute this from which bits of the inner
8495 object might be nonzero. */
8496 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) <= BITS_PER_WORD
8497 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
8498 <= HOST_BITS_PER_WIDE_INT
))
8500 nonzero
&= nonzero_bits_with_known (SUBREG_REG (x
), mode
);
8502 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8503 /* If this is a typical RISC machine, we only have to worry
8504 about the way loads are extended. */
8505 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
8507 & (((unsigned HOST_WIDE_INT
) 1
8508 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) - 1))))
8510 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) != ZERO_EXTEND
)
8511 || GET_CODE (SUBREG_REG (x
)) != MEM
)
8514 /* On many CISC machines, accessing an object in a wider mode
8515 causes the high-order bits to become undefined. So they are
8516 not known to be zero. */
8517 if (GET_MODE_SIZE (GET_MODE (x
))
8518 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8519 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
8520 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
))));
8529 /* The nonzero bits are in two classes: any bits within MODE
8530 that aren't in GET_MODE (x) are always significant. The rest of the
8531 nonzero bits are those that are significant in the operand of
8532 the shift when shifted the appropriate number of bits. This
8533 shows that high-order bits are cleared by the right shift and
8534 low-order bits by left shifts. */
8535 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8536 && INTVAL (XEXP (x
, 1)) >= 0
8537 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8539 enum machine_mode inner_mode
= GET_MODE (x
);
8540 unsigned int width
= GET_MODE_BITSIZE (inner_mode
);
8541 int count
= INTVAL (XEXP (x
, 1));
8542 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
8543 unsigned HOST_WIDE_INT op_nonzero
=
8544 nonzero_bits_with_known (XEXP (x
, 0), mode
);
8545 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
8546 unsigned HOST_WIDE_INT outer
= 0;
8548 if (mode_width
> width
)
8549 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
8551 if (code
== LSHIFTRT
)
8553 else if (code
== ASHIFTRT
)
8557 /* If the sign bit may have been nonzero before the shift, we
8558 need to mark all the places it could have been copied to
8559 by the shift as possibly nonzero. */
8560 if (inner
& ((HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
8561 inner
|= (((HOST_WIDE_INT
) 1 << count
) - 1) << (width
- count
);
8563 else if (code
== ASHIFT
)
8566 inner
= ((inner
<< (count
% width
)
8567 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
8569 nonzero
&= (outer
| inner
);
8575 /* This is at most the number of bits in the mode. */
8576 nonzero
= ((HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
8580 /* If CLZ has a known value at zero, then the nonzero bits are
8581 that value, plus the number of bits in the mode minus one. */
8582 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
8583 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
8589 /* If CTZ has a known value at zero, then the nonzero bits are
8590 that value, plus the number of bits in the mode minus one. */
8591 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
8592 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
8602 nonzero
&= (nonzero_bits_with_known (XEXP (x
, 1), mode
)
8603 | nonzero_bits_with_known (XEXP (x
, 2), mode
));
8613 /* See the macro definition above. */
8614 #undef cached_num_sign_bit_copies
8616 #define num_sign_bit_copies_with_known(X, M) \
8617 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8619 /* The function cached_num_sign_bit_copies is a wrapper around
8620 num_sign_bit_copies1. It avoids exponential behavior in
8621 num_sign_bit_copies1 when X has identical subexpressions on the
8622 first or the second level. */
8625 cached_num_sign_bit_copies (rtx x
, enum machine_mode mode
, rtx known_x
,
8626 enum machine_mode known_mode
,
8627 unsigned int known_ret
)
8629 if (x
== known_x
&& mode
== known_mode
)
8632 /* Try to find identical subexpressions. If found call
8633 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8634 the precomputed value for the subexpression as KNOWN_RET. */
8636 if (GET_RTX_CLASS (GET_CODE (x
)) == '2'
8637 || GET_RTX_CLASS (GET_CODE (x
)) == 'c')
8639 rtx x0
= XEXP (x
, 0);
8640 rtx x1
= XEXP (x
, 1);
8642 /* Check the first level. */
8645 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
8646 num_sign_bit_copies_with_known (x0
, mode
));
8648 /* Check the second level. */
8649 if ((GET_RTX_CLASS (GET_CODE (x0
)) == '2'
8650 || GET_RTX_CLASS (GET_CODE (x0
)) == 'c')
8651 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
8653 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
8654 num_sign_bit_copies_with_known (x1
, mode
));
8656 if ((GET_RTX_CLASS (GET_CODE (x1
)) == '2'
8657 || GET_RTX_CLASS (GET_CODE (x1
)) == 'c')
8658 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
8660 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
8661 num_sign_bit_copies_with_known (x0
, mode
));
8664 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
8667 /* Return the number of bits at the high-order end of X that are known to
8668 be equal to the sign bit. X will be used in mode MODE; if MODE is
8669 VOIDmode, X will be used in its own mode. The returned value will always
8670 be between 1 and the number of bits in MODE. */
8673 num_sign_bit_copies1 (rtx x
, enum machine_mode mode
, rtx known_x
,
8674 enum machine_mode known_mode
,
8675 unsigned int known_ret
)
8677 enum rtx_code code
= GET_CODE (x
);
8678 unsigned int bitwidth
;
8679 int num0
, num1
, result
;
8680 unsigned HOST_WIDE_INT nonzero
;
8683 /* If we weren't given a mode, use the mode of X. If the mode is still
8684 VOIDmode, we don't know anything. Likewise if one of the modes is
8687 if (mode
== VOIDmode
)
8688 mode
= GET_MODE (x
);
8690 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
)))
8693 bitwidth
= GET_MODE_BITSIZE (mode
);
8695 /* For a smaller object, just ignore the high bits. */
8696 if (bitwidth
< GET_MODE_BITSIZE (GET_MODE (x
)))
8698 num0
= num_sign_bit_copies_with_known (x
, GET_MODE (x
));
8700 num0
- (int) (GET_MODE_BITSIZE (GET_MODE (x
)) - bitwidth
));
8703 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_BITSIZE (GET_MODE (x
)))
8705 #ifndef WORD_REGISTER_OPERATIONS
8706 /* If this machine does not do all register operations on the entire
8707 register and MODE is wider than the mode of X, we can say nothing
8708 at all about the high-order bits. */
8711 /* Likewise on machines that do, if the mode of the object is smaller
8712 than a word and loads of that size don't sign extend, we can say
8713 nothing about the high order bits. */
8714 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
8715 #ifdef LOAD_EXTEND_OP
8716 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
8727 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8728 /* If pointers extend signed and this is a pointer in Pmode, say that
8729 all the bits above ptr_mode are known to be sign bit copies. */
8730 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
&& mode
== Pmode
8732 return GET_MODE_BITSIZE (Pmode
) - GET_MODE_BITSIZE (ptr_mode
) + 1;
8735 if (reg_last_set_value
[REGNO (x
)] != 0
8736 && reg_last_set_mode
[REGNO (x
)] == mode
8737 && (reg_last_set_label
[REGNO (x
)] == label_tick
8738 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8739 && REG_N_SETS (REGNO (x
)) == 1
8740 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR
->next_bb
->global_live_at_start
,
8742 && INSN_CUID (reg_last_set
[REGNO (x
)]) < subst_low_cuid
)
8743 return reg_last_set_sign_bit_copies
[REGNO (x
)];
8745 tem
= get_last_value (x
);
8747 return num_sign_bit_copies_with_known (tem
, mode
);
8749 if (nonzero_sign_valid
&& reg_sign_bit_copies
[REGNO (x
)] != 0
8750 && GET_MODE_BITSIZE (GET_MODE (x
)) == bitwidth
)
8751 return reg_sign_bit_copies
[REGNO (x
)];
8755 #ifdef LOAD_EXTEND_OP
8756 /* Some RISC machines sign-extend all loads of smaller than a word. */
8757 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
8758 return MAX (1, ((int) bitwidth
8759 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1));
8764 /* If the constant is negative, take its 1's complement and remask.
8765 Then see how many zero bits we have. */
8766 nonzero
= INTVAL (x
) & GET_MODE_MASK (mode
);
8767 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
8768 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8769 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
8771 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
8774 /* If this is a SUBREG for a promoted object that is sign-extended
8775 and we are looking at it in a wider mode, we know that at least the
8776 high-order bits are known to be sign bit copies. */
8778 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
8780 num0
= num_sign_bit_copies_with_known (SUBREG_REG (x
), mode
);
8781 return MAX ((int) bitwidth
8782 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1,
8786 /* For a smaller object, just ignore the high bits. */
8787 if (bitwidth
<= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
8789 num0
= num_sign_bit_copies_with_known (SUBREG_REG (x
), VOIDmode
);
8790 return MAX (1, (num0
8791 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
8795 #ifdef WORD_REGISTER_OPERATIONS
8796 #ifdef LOAD_EXTEND_OP
8797 /* For paradoxical SUBREGs on machines where all register operations
8798 affect the entire register, just look inside. Note that we are
8799 passing MODE to the recursive call, so the number of sign bit copies
8800 will remain relative to that mode, not the inner mode. */
8802 /* This works only if loads sign extend. Otherwise, if we get a
8803 reload for the inner part, it may be loaded from the stack, and
8804 then we lose all sign bit copies that existed before the store
8807 if ((GET_MODE_SIZE (GET_MODE (x
))
8808 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8809 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
8810 && GET_CODE (SUBREG_REG (x
)) == MEM
)
8811 return num_sign_bit_copies_with_known (SUBREG_REG (x
), mode
);
8817 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
8818 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
8822 return (bitwidth
- GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
8823 + num_sign_bit_copies_with_known (XEXP (x
, 0), VOIDmode
));
8826 /* For a smaller object, just ignore the high bits. */
8827 num0
= num_sign_bit_copies_with_known (XEXP (x
, 0), VOIDmode
);
8828 return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
8832 return num_sign_bit_copies_with_known (XEXP (x
, 0), mode
);
8834 case ROTATE
: case ROTATERT
:
8835 /* If we are rotating left by a number of bits less than the number
8836 of sign bit copies, we can just subtract that amount from the
8838 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8839 && INTVAL (XEXP (x
, 1)) >= 0
8840 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
8842 num0
= num_sign_bit_copies_with_known (XEXP (x
, 0), mode
);
8843 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
8844 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
8849 /* In general, this subtracts one sign bit copy. But if the value
8850 is known to be positive, the number of sign bit copies is the
8851 same as that of the input. Finally, if the input has just one bit
8852 that might be nonzero, all the bits are copies of the sign bit. */
8853 num0
= num_sign_bit_copies_with_known (XEXP (x
, 0), mode
);
8854 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8855 return num0
> 1 ? num0
- 1 : 1;
8857 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8862 && (((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
8867 case IOR
: case AND
: case XOR
:
8868 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
8869 /* Logical operations will preserve the number of sign-bit copies.
8870 MIN and MAX operations always return one of the operands. */
8871 num0
= num_sign_bit_copies_with_known (XEXP (x
, 0), mode
);
8872 num1
= num_sign_bit_copies_with_known (XEXP (x
, 1), mode
);
8873 return MIN (num0
, num1
);
8875 case PLUS
: case MINUS
:
8876 /* For addition and subtraction, we can have a 1-bit carry. However,
8877 if we are subtracting 1 from a positive number, there will not
8878 be such a carry. Furthermore, if the positive number is known to
8879 be 0 or 1, we know the result is either -1 or 0. */
8881 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
8882 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
8884 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8885 if ((((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
8886 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
8887 : bitwidth
- floor_log2 (nonzero
) - 1);
8890 num0
= num_sign_bit_copies_with_known (XEXP (x
, 0), mode
);
8891 num1
= num_sign_bit_copies_with_known (XEXP (x
, 1), mode
);
8892 result
= MAX (1, MIN (num0
, num1
) - 1);
8894 #ifdef POINTERS_EXTEND_UNSIGNED
8895 /* If pointers extend signed and this is an addition or subtraction
8896 to a pointer in Pmode, all the bits above ptr_mode are known to be
8898 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
8899 && (code
== PLUS
|| code
== MINUS
)
8900 && GET_CODE (XEXP (x
, 0)) == REG
&& REG_POINTER (XEXP (x
, 0)))
8901 result
= MAX ((int) (GET_MODE_BITSIZE (Pmode
)
8902 - GET_MODE_BITSIZE (ptr_mode
) + 1),
8908 /* The number of bits of the product is the sum of the number of
8909 bits of both terms. However, unless one of the terms if known
8910 to be positive, we must allow for an additional bit since negating
8911 a negative number can remove one sign bit copy. */
8913 num0
= num_sign_bit_copies_with_known (XEXP (x
, 0), mode
);
8914 num1
= num_sign_bit_copies_with_known (XEXP (x
, 1), mode
);
8916 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
8918 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8919 || (((nonzero_bits (XEXP (x
, 0), mode
)
8920 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8921 && ((nonzero_bits (XEXP (x
, 1), mode
)
8922 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))))
8925 return MAX (1, result
);
8928 /* The result must be <= the first operand. If the first operand
8929 has the high bit set, we know nothing about the number of sign
8931 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8933 else if ((nonzero_bits (XEXP (x
, 0), mode
)
8934 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8937 return num_sign_bit_copies_with_known (XEXP (x
, 0), mode
);
8940 /* The result must be <= the second operand. */
8941 return num_sign_bit_copies_with_known (XEXP (x
, 1), mode
);
8944 /* Similar to unsigned division, except that we have to worry about
8945 the case where the divisor is negative, in which case we have
8947 result
= num_sign_bit_copies_with_known (XEXP (x
, 0), mode
);
8949 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8950 || (nonzero_bits (XEXP (x
, 1), mode
)
8951 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
8957 result
= num_sign_bit_copies_with_known (XEXP (x
, 1), mode
);
8959 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8960 || (nonzero_bits (XEXP (x
, 1), mode
)
8961 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
8967 /* Shifts by a constant add to the number of bits equal to the
8969 num0
= num_sign_bit_copies_with_known (XEXP (x
, 0), mode
);
8970 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8971 && INTVAL (XEXP (x
, 1)) > 0)
8972 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
8977 /* Left shifts destroy copies. */
8978 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
8979 || INTVAL (XEXP (x
, 1)) < 0
8980 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
)
8983 num0
= num_sign_bit_copies_with_known (XEXP (x
, 0), mode
);
8984 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
8987 num0
= num_sign_bit_copies_with_known (XEXP (x
, 1), mode
);
8988 num1
= num_sign_bit_copies_with_known (XEXP (x
, 2), mode
);
8989 return MIN (num0
, num1
);
8991 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
8992 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
8993 case GEU
: case GTU
: case LEU
: case LTU
:
8994 case UNORDERED
: case ORDERED
:
8995 /* If the constant is negative, take its 1's complement and remask.
8996 Then see how many zero bits we have. */
8997 nonzero
= STORE_FLAG_VALUE
;
8998 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
8999 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
9000 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
9002 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
9009 /* If we haven't been able to figure it out by one of the above rules,
9010 see if some of the high-order bits are known to be zero. If so,
9011 count those bits and return one less than that amount. If we can't
9012 safely compute the mask for this mode, always return BITWIDTH. */
9014 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
9017 nonzero
= nonzero_bits (x
, mode
);
9018 return (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))
9019 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1);
9022 /* Return the number of "extended" bits there are in X, when interpreted
9023 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9024 unsigned quantities, this is the number of high-order zero bits.
9025 For signed quantities, this is the number of copies of the sign bit
9026 minus 1. In both case, this function returns the number of "spare"
9027 bits. For example, if two quantities for which this function returns
9028 at least 1 are added, the addition is known not to overflow.
9030 This function will always return 0 unless called during combine, which
9031 implies that it must be called from a define_split. */
9034 extended_count (rtx x
, enum machine_mode mode
, int unsignedp
)
9036 if (nonzero_sign_valid
== 0)
9040 ? (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
9041 ? (unsigned int) (GET_MODE_BITSIZE (mode
) - 1
9042 - floor_log2 (nonzero_bits (x
, mode
)))
9044 : num_sign_bit_copies (x
, mode
) - 1);
9047 /* This function is called from `simplify_shift_const' to merge two
9048 outer operations. Specifically, we have already found that we need
9049 to perform operation *POP0 with constant *PCONST0 at the outermost
9050 position. We would now like to also perform OP1 with constant CONST1
9051 (with *POP0 being done last).
9053 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9054 the resulting operation. *PCOMP_P is set to 1 if we would need to
9055 complement the innermost operand, otherwise it is unchanged.
9057 MODE is the mode in which the operation will be done. No bits outside
9058 the width of this mode matter. It is assumed that the width of this mode
9059 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9061 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
9062 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9063 result is simply *PCONST0.
9065 If the resulting operation cannot be expressed as one operation, we
9066 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9069 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, enum machine_mode mode
, int *pcomp_p
)
9071 enum rtx_code op0
= *pop0
;
9072 HOST_WIDE_INT const0
= *pconst0
;
9074 const0
&= GET_MODE_MASK (mode
);
9075 const1
&= GET_MODE_MASK (mode
);
9077 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9081 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
9084 if (op1
== NIL
|| op0
== SET
)
9087 else if (op0
== NIL
)
9088 op0
= op1
, const0
= const1
;
9090 else if (op0
== op1
)
9114 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9115 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
9118 /* If the two constants aren't the same, we can't do anything. The
9119 remaining six cases can all be done. */
9120 else if (const0
!= const1
)
9128 /* (a & b) | b == b */
9130 else /* op1 == XOR */
9131 /* (a ^ b) | b == a | b */
9137 /* (a & b) ^ b == (~a) & b */
9138 op0
= AND
, *pcomp_p
= 1;
9139 else /* op1 == IOR */
9140 /* (a | b) ^ b == a & ~b */
9141 op0
= AND
, const0
= ~const0
;
9146 /* (a | b) & b == b */
9148 else /* op1 == XOR */
9149 /* (a ^ b) & b) == (~a) & b */
9156 /* Check for NO-OP cases. */
9157 const0
&= GET_MODE_MASK (mode
);
9159 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
9161 else if (const0
== 0 && op0
== AND
)
9163 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
9167 /* ??? Slightly redundant with the above mask, but not entirely.
9168 Moving this above means we'd have to sign-extend the mode mask
9169 for the final test. */
9170 const0
= trunc_int_for_mode (const0
, mode
);
9178 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9179 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9180 that we started with.
9182 The shift is normally computed in the widest mode we find in VAROP, as
9183 long as it isn't a different number of words than RESULT_MODE. Exceptions
9184 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9187 simplify_shift_const (rtx x
, enum rtx_code code
,
9188 enum machine_mode result_mode
, rtx varop
,
9191 enum rtx_code orig_code
= code
;
9194 enum machine_mode mode
= result_mode
;
9195 enum machine_mode shift_mode
, tmode
;
9196 unsigned int mode_words
9197 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
9198 /* We form (outer_op (code varop count) (outer_const)). */
9199 enum rtx_code outer_op
= NIL
;
9200 HOST_WIDE_INT outer_const
= 0;
9202 int complement_p
= 0;
9205 /* Make sure and truncate the "natural" shift on the way in. We don't
9206 want to do this inside the loop as it makes it more difficult to
9208 #ifdef SHIFT_COUNT_TRUNCATED
9209 if (SHIFT_COUNT_TRUNCATED
)
9210 orig_count
&= GET_MODE_BITSIZE (mode
) - 1;
9213 /* If we were given an invalid count, don't do anything except exactly
9214 what was requested. */
9216 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_BITSIZE (mode
))
9221 return gen_rtx_fmt_ee (code
, mode
, varop
, GEN_INT (orig_count
));
9226 /* Unless one of the branches of the `if' in this loop does a `continue',
9227 we will `break' the loop after the `if'. */
9231 /* If we have an operand of (clobber (const_int 0)), just return that
9233 if (GET_CODE (varop
) == CLOBBER
)
9236 /* If we discovered we had to complement VAROP, leave. Making a NOT
9237 here would cause an infinite loop. */
9241 /* Convert ROTATERT to ROTATE. */
9242 if (code
== ROTATERT
)
9244 unsigned int bitsize
= GET_MODE_BITSIZE (result_mode
);;
9246 if (VECTOR_MODE_P (result_mode
))
9247 count
= bitsize
/ GET_MODE_NUNITS (result_mode
) - count
;
9249 count
= bitsize
- count
;
9252 /* We need to determine what mode we will do the shift in. If the
9253 shift is a right shift or a ROTATE, we must always do it in the mode
9254 it was originally done in. Otherwise, we can do it in MODE, the
9255 widest mode encountered. */
9257 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
9258 ? result_mode
: mode
);
9260 /* Handle cases where the count is greater than the size of the mode
9261 minus 1. For ASHIFT, use the size minus one as the count (this can
9262 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9263 take the count modulo the size. For other shifts, the result is
9266 Since these shifts are being produced by the compiler by combining
9267 multiple operations, each of which are defined, we know what the
9268 result is supposed to be. */
9270 if (count
> (unsigned int) (GET_MODE_BITSIZE (shift_mode
) - 1))
9272 if (code
== ASHIFTRT
)
9273 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
9274 else if (code
== ROTATE
|| code
== ROTATERT
)
9275 count
%= GET_MODE_BITSIZE (shift_mode
);
9278 /* We can't simply return zero because there may be an
9286 /* An arithmetic right shift of a quantity known to be -1 or 0
9288 if (code
== ASHIFTRT
9289 && (num_sign_bit_copies (varop
, shift_mode
)
9290 == GET_MODE_BITSIZE (shift_mode
)))
9296 /* If we are doing an arithmetic right shift and discarding all but
9297 the sign bit copies, this is equivalent to doing a shift by the
9298 bitsize minus one. Convert it into that shift because it will often
9299 allow other simplifications. */
9301 if (code
== ASHIFTRT
9302 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
9303 >= GET_MODE_BITSIZE (shift_mode
)))
9304 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
9306 /* We simplify the tests below and elsewhere by converting
9307 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9308 `make_compound_operation' will convert it to an ASHIFTRT for
9309 those machines (such as VAX) that don't have an LSHIFTRT. */
9310 if (GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
9312 && ((nonzero_bits (varop
, shift_mode
)
9313 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (shift_mode
) - 1)))
9317 if (code
== LSHIFTRT
9318 && GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
9319 && !(nonzero_bits (varop
, shift_mode
) >> count
))
9322 && GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
9323 && !((nonzero_bits (varop
, shift_mode
) << count
)
9324 & GET_MODE_MASK (shift_mode
)))
9327 switch (GET_CODE (varop
))
9333 new = expand_compound_operation (varop
);
9342 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9343 minus the width of a smaller mode, we can do this with a
9344 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9345 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9346 && ! mode_dependent_address_p (XEXP (varop
, 0))
9347 && ! MEM_VOLATILE_P (varop
)
9348 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
9349 MODE_INT
, 1)) != BLKmode
)
9351 new = adjust_address_nv (varop
, tmode
,
9352 BYTES_BIG_ENDIAN
? 0
9353 : count
/ BITS_PER_UNIT
);
9355 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
9356 : ZERO_EXTEND
, mode
, new);
9363 /* Similar to the case above, except that we can only do this if
9364 the resulting mode is the same as that of the underlying
9365 MEM and adjust the address depending on the *bits* endianness
9366 because of the way that bit-field extract insns are defined. */
9367 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9368 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
9369 MODE_INT
, 1)) != BLKmode
9370 && tmode
== GET_MODE (XEXP (varop
, 0)))
9372 if (BITS_BIG_ENDIAN
)
9373 new = XEXP (varop
, 0);
9376 new = copy_rtx (XEXP (varop
, 0));
9377 SUBST (XEXP (new, 0),
9378 plus_constant (XEXP (new, 0),
9379 count
/ BITS_PER_UNIT
));
9382 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
9383 : ZERO_EXTEND
, mode
, new);
9390 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9391 the same number of words as what we've seen so far. Then store
9392 the widest mode in MODE. */
9393 if (subreg_lowpart_p (varop
)
9394 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9395 > GET_MODE_SIZE (GET_MODE (varop
)))
9396 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9397 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
9400 varop
= SUBREG_REG (varop
);
9401 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
9402 mode
= GET_MODE (varop
);
9408 /* Some machines use MULT instead of ASHIFT because MULT
9409 is cheaper. But it is still better on those machines to
9410 merge two shifts into one. */
9411 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9412 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
9415 = gen_binary (ASHIFT
, GET_MODE (varop
), XEXP (varop
, 0),
9416 GEN_INT (exact_log2 (INTVAL (XEXP (varop
, 1)))));
9422 /* Similar, for when divides are cheaper. */
9423 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9424 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
9427 = gen_binary (LSHIFTRT
, GET_MODE (varop
), XEXP (varop
, 0),
9428 GEN_INT (exact_log2 (INTVAL (XEXP (varop
, 1)))));
9434 /* If we are extracting just the sign bit of an arithmetic
9435 right shift, that shift is not needed. However, the sign
9436 bit of a wider mode may be different from what would be
9437 interpreted as the sign bit in a narrower mode, so, if
9438 the result is narrower, don't discard the shift. */
9439 if (code
== LSHIFTRT
9440 && count
== (unsigned int) (GET_MODE_BITSIZE (result_mode
) - 1)
9441 && (GET_MODE_BITSIZE (result_mode
)
9442 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
9444 varop
= XEXP (varop
, 0);
9448 /* ... fall through ... */
9453 /* Here we have two nested shifts. The result is usually the
9454 AND of a new shift with a mask. We compute the result below. */
9455 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9456 && INTVAL (XEXP (varop
, 1)) >= 0
9457 && INTVAL (XEXP (varop
, 1)) < GET_MODE_BITSIZE (GET_MODE (varop
))
9458 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9459 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
9461 enum rtx_code first_code
= GET_CODE (varop
);
9462 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
9463 unsigned HOST_WIDE_INT mask
;
9466 /* We have one common special case. We can't do any merging if
9467 the inner code is an ASHIFTRT of a smaller mode. However, if
9468 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9469 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9470 we can convert it to
9471 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9472 This simplifies certain SIGN_EXTEND operations. */
9473 if (code
== ASHIFT
&& first_code
== ASHIFTRT
9474 && count
== (unsigned int)
9475 (GET_MODE_BITSIZE (result_mode
)
9476 - GET_MODE_BITSIZE (GET_MODE (varop
))))
9478 /* C3 has the low-order C1 bits zero. */
9480 mask
= (GET_MODE_MASK (mode
)
9481 & ~(((HOST_WIDE_INT
) 1 << first_count
) - 1));
9483 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
9484 XEXP (varop
, 0), mask
);
9485 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
9487 count
= first_count
;
9492 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9493 than C1 high-order bits equal to the sign bit, we can convert
9494 this to either an ASHIFT or an ASHIFTRT depending on the
9497 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9499 if (code
== ASHIFTRT
&& first_code
== ASHIFT
9500 && GET_MODE (varop
) == shift_mode
9501 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
9504 varop
= XEXP (varop
, 0);
9506 signed_count
= count
- first_count
;
9507 if (signed_count
< 0)
9508 count
= -signed_count
, code
= ASHIFT
;
9510 count
= signed_count
;
9515 /* There are some cases we can't do. If CODE is ASHIFTRT,
9516 we can only do this if FIRST_CODE is also ASHIFTRT.
9518 We can't do the case when CODE is ROTATE and FIRST_CODE is
9521 If the mode of this shift is not the mode of the outer shift,
9522 we can't do this if either shift is a right shift or ROTATE.
9524 Finally, we can't do any of these if the mode is too wide
9525 unless the codes are the same.
9527 Handle the case where the shift codes are the same
9530 if (code
== first_code
)
9532 if (GET_MODE (varop
) != result_mode
9533 && (code
== ASHIFTRT
|| code
== LSHIFTRT
9537 count
+= first_count
;
9538 varop
= XEXP (varop
, 0);
9542 if (code
== ASHIFTRT
9543 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
9544 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
9545 || (GET_MODE (varop
) != result_mode
9546 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
9547 || first_code
== ROTATE
9548 || code
== ROTATE
)))
9551 /* To compute the mask to apply after the shift, shift the
9552 nonzero bits of the inner shift the same way the
9553 outer shift will. */
9555 mask_rtx
= GEN_INT (nonzero_bits (varop
, GET_MODE (varop
)));
9558 = simplify_binary_operation (code
, result_mode
, mask_rtx
,
9561 /* Give up if we can't compute an outer operation to use. */
9563 || GET_CODE (mask_rtx
) != CONST_INT
9564 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
9566 result_mode
, &complement_p
))
9569 /* If the shifts are in the same direction, we add the
9570 counts. Otherwise, we subtract them. */
9571 signed_count
= count
;
9572 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9573 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
9574 signed_count
+= first_count
;
9576 signed_count
-= first_count
;
9578 /* If COUNT is positive, the new shift is usually CODE,
9579 except for the two exceptions below, in which case it is
9580 FIRST_CODE. If the count is negative, FIRST_CODE should
9582 if (signed_count
> 0
9583 && ((first_code
== ROTATE
&& code
== ASHIFT
)
9584 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
9585 code
= first_code
, count
= signed_count
;
9586 else if (signed_count
< 0)
9587 code
= first_code
, count
= -signed_count
;
9589 count
= signed_count
;
9591 varop
= XEXP (varop
, 0);
9595 /* If we have (A << B << C) for any shift, we can convert this to
9596 (A << C << B). This wins if A is a constant. Only try this if
9597 B is not a constant. */
9599 else if (GET_CODE (varop
) == code
9600 && GET_CODE (XEXP (varop
, 1)) != CONST_INT
9602 = simplify_binary_operation (code
, mode
,
9606 varop
= gen_rtx_fmt_ee (code
, mode
, new, XEXP (varop
, 1));
9613 /* Make this fit the case below. */
9614 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0),
9615 GEN_INT (GET_MODE_MASK (mode
)));
9621 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9622 with C the size of VAROP - 1 and the shift is logical if
9623 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9624 we have an (le X 0) operation. If we have an arithmetic shift
9625 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9626 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9628 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
9629 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
9630 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9631 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9632 && count
== (unsigned int)
9633 (GET_MODE_BITSIZE (GET_MODE (varop
)) - 1)
9634 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9637 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
9640 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9641 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
9646 /* If we have (shift (logical)), move the logical to the outside
9647 to allow it to possibly combine with another logical and the
9648 shift to combine with another shift. This also canonicalizes to
9649 what a ZERO_EXTRACT looks like. Also, some machines have
9650 (and (shift)) insns. */
9652 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9653 && (new = simplify_binary_operation (code
, result_mode
,
9655 GEN_INT (count
))) != 0
9656 && GET_CODE (new) == CONST_INT
9657 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
9658 INTVAL (new), result_mode
, &complement_p
))
9660 varop
= XEXP (varop
, 0);
9664 /* If we can't do that, try to simplify the shift in each arm of the
9665 logical expression, make a new logical expression, and apply
9666 the inverse distributive law. */
9668 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
9669 XEXP (varop
, 0), count
);
9670 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
9671 XEXP (varop
, 1), count
);
9673 varop
= gen_binary (GET_CODE (varop
), shift_mode
, lhs
, rhs
);
9674 varop
= apply_distributive_law (varop
);
9681 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9682 says that the sign bit can be tested, FOO has mode MODE, C is
9683 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9684 that may be nonzero. */
9685 if (code
== LSHIFTRT
9686 && XEXP (varop
, 1) == const0_rtx
9687 && GET_MODE (XEXP (varop
, 0)) == result_mode
9688 && count
== (unsigned int) (GET_MODE_BITSIZE (result_mode
) - 1)
9689 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9690 && ((STORE_FLAG_VALUE
9691 & ((HOST_WIDE_INT
) 1
9692 < (GET_MODE_BITSIZE (result_mode
) - 1))))
9693 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9694 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9695 (HOST_WIDE_INT
) 1, result_mode
,
9698 varop
= XEXP (varop
, 0);
9705 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9706 than the number of bits in the mode is equivalent to A. */
9707 if (code
== LSHIFTRT
9708 && count
== (unsigned int) (GET_MODE_BITSIZE (result_mode
) - 1)
9709 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
9711 varop
= XEXP (varop
, 0);
9716 /* NEG commutes with ASHIFT since it is multiplication. Move the
9717 NEG outside to allow shifts to combine. */
9719 && merge_outer_ops (&outer_op
, &outer_const
, NEG
,
9720 (HOST_WIDE_INT
) 0, result_mode
,
9723 varop
= XEXP (varop
, 0);
9729 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9730 is one less than the number of bits in the mode is
9731 equivalent to (xor A 1). */
9732 if (code
== LSHIFTRT
9733 && count
== (unsigned int) (GET_MODE_BITSIZE (result_mode
) - 1)
9734 && XEXP (varop
, 1) == constm1_rtx
9735 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9736 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9737 (HOST_WIDE_INT
) 1, result_mode
,
9741 varop
= XEXP (varop
, 0);
9745 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9746 that might be nonzero in BAR are those being shifted out and those
9747 bits are known zero in FOO, we can replace the PLUS with FOO.
9748 Similarly in the other operand order. This code occurs when
9749 we are computing the size of a variable-size array. */
9751 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9752 && count
< HOST_BITS_PER_WIDE_INT
9753 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
9754 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
9755 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
9757 varop
= XEXP (varop
, 0);
9760 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9761 && count
< HOST_BITS_PER_WIDE_INT
9762 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9763 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9765 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9766 & nonzero_bits (XEXP (varop
, 1),
9769 varop
= XEXP (varop
, 1);
9773 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9775 && GET_CODE (XEXP (varop
, 1)) == CONST_INT
9776 && (new = simplify_binary_operation (ASHIFT
, result_mode
,
9778 GEN_INT (count
))) != 0
9779 && GET_CODE (new) == CONST_INT
9780 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
9781 INTVAL (new), result_mode
, &complement_p
))
9783 varop
= XEXP (varop
, 0);
9789 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9790 with C the size of VAROP - 1 and the shift is logical if
9791 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9792 we have a (gt X 0) operation. If the shift is arithmetic with
9793 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9794 we have a (neg (gt X 0)) operation. */
9796 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9797 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
9798 && count
== (unsigned int)
9799 (GET_MODE_BITSIZE (GET_MODE (varop
)) - 1)
9800 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9801 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9802 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (XEXP (varop
, 0), 1))
9804 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9807 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
9810 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9811 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
9818 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9819 if the truncate does not affect the value. */
9820 if (code
== LSHIFTRT
9821 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
9822 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9823 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
9824 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop
, 0)))
9825 - GET_MODE_BITSIZE (GET_MODE (varop
)))))
9827 rtx varop_inner
= XEXP (varop
, 0);
9830 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
9831 XEXP (varop_inner
, 0),
9833 (count
+ INTVAL (XEXP (varop_inner
, 1))));
9834 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
9847 /* We need to determine what mode to do the shift in. If the shift is
9848 a right shift or ROTATE, we must always do it in the mode it was
9849 originally done in. Otherwise, we can do it in MODE, the widest mode
9850 encountered. The code we care about is that of the shift that will
9851 actually be done, not the shift that was originally requested. */
9853 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
9854 ? result_mode
: mode
);
9856 /* We have now finished analyzing the shift. The result should be
9857 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9858 OUTER_OP is non-NIL, it is an operation that needs to be applied
9859 to the result of the shift. OUTER_CONST is the relevant constant,
9860 but we must turn off all bits turned off in the shift.
9862 If we were passed a value for X, see if we can use any pieces of
9863 it. If not, make new rtx. */
9865 if (x
&& GET_RTX_CLASS (GET_CODE (x
)) == '2'
9866 && GET_CODE (XEXP (x
, 1)) == CONST_INT
9867 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (x
, 1)) == count
)
9868 const_rtx
= XEXP (x
, 1);
9870 const_rtx
= GEN_INT (count
);
9872 if (x
&& GET_CODE (XEXP (x
, 0)) == SUBREG
9873 && GET_MODE (XEXP (x
, 0)) == shift_mode
9874 && SUBREG_REG (XEXP (x
, 0)) == varop
)
9875 varop
= XEXP (x
, 0);
9876 else if (GET_MODE (varop
) != shift_mode
)
9877 varop
= gen_lowpart_for_combine (shift_mode
, varop
);
9879 /* If we can't make the SUBREG, try to return what we were given. */
9880 if (GET_CODE (varop
) == CLOBBER
)
9881 return x
? x
: varop
;
9883 new = simplify_binary_operation (code
, shift_mode
, varop
, const_rtx
);
9887 x
= gen_rtx_fmt_ee (code
, shift_mode
, varop
, const_rtx
);
9889 /* If we have an outer operation and we just made a shift, it is
9890 possible that we could have simplified the shift were it not
9891 for the outer operation. So try to do the simplification
9894 if (outer_op
!= NIL
&& GET_CODE (x
) == code
9895 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
9896 x
= simplify_shift_const (x
, code
, shift_mode
, XEXP (x
, 0),
9897 INTVAL (XEXP (x
, 1)));
9899 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9900 turn off all the bits that the shift would have turned off. */
9901 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
9902 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
9903 GET_MODE_MASK (result_mode
) >> orig_count
);
9905 /* Do the remainder of the processing in RESULT_MODE. */
9906 x
= gen_lowpart_for_combine (result_mode
, x
);
9908 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9911 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
9913 if (outer_op
!= NIL
)
9915 if (GET_MODE_BITSIZE (result_mode
) < HOST_BITS_PER_WIDE_INT
)
9916 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
9918 if (outer_op
== AND
)
9919 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
9920 else if (outer_op
== SET
)
9921 /* This means that we have determined that the result is
9922 equivalent to a constant. This should be rare. */
9923 x
= GEN_INT (outer_const
);
9924 else if (GET_RTX_CLASS (outer_op
) == '1')
9925 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
9927 x
= gen_binary (outer_op
, result_mode
, x
, GEN_INT (outer_const
));
9933 /* Like recog, but we receive the address of a pointer to a new pattern.
9934 We try to match the rtx that the pointer points to.
9935 If that fails, we may try to modify or replace the pattern,
9936 storing the replacement into the same pointer object.
9938 Modifications include deletion or addition of CLOBBERs.
9940 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9941 the CLOBBERs are placed.
9943 The value is the final insn code from the pattern ultimately matched,
9947 recog_for_combine (rtx
*pnewpat
, rtx insn
, rtx
*pnotes
)
9950 int insn_code_number
;
9951 int num_clobbers_to_add
= 0;
9956 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9957 we use to indicate that something didn't match. If we find such a
9958 thing, force rejection. */
9959 if (GET_CODE (pat
) == PARALLEL
)
9960 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
9961 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
9962 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
9965 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9966 instruction for pattern recognition. */
9967 dummy_insn
= shallow_copy_rtx (insn
);
9968 PATTERN (dummy_insn
) = pat
;
9969 REG_NOTES (dummy_insn
) = 0;
9971 insn_code_number
= recog (pat
, dummy_insn
, &num_clobbers_to_add
);
9973 /* If it isn't, there is the possibility that we previously had an insn
9974 that clobbered some register as a side effect, but the combined
9975 insn doesn't need to do that. So try once more without the clobbers
9976 unless this represents an ASM insn. */
9978 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
9979 && GET_CODE (pat
) == PARALLEL
)
9983 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
9984 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
9987 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
9991 SUBST_INT (XVECLEN (pat
, 0), pos
);
9994 pat
= XVECEXP (pat
, 0, 0);
9996 PATTERN (dummy_insn
) = pat
;
9997 insn_code_number
= recog (pat
, dummy_insn
, &num_clobbers_to_add
);
10000 /* Recognize all noop sets, these will be killed by followup pass. */
10001 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
10002 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
10004 /* If we had any clobbers to add, make a new pattern than contains
10005 them. Then check to make sure that all of them are dead. */
10006 if (num_clobbers_to_add
)
10008 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
10009 rtvec_alloc (GET_CODE (pat
) == PARALLEL
10010 ? (XVECLEN (pat
, 0)
10011 + num_clobbers_to_add
)
10012 : num_clobbers_to_add
+ 1));
10014 if (GET_CODE (pat
) == PARALLEL
)
10015 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
10016 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
10018 XVECEXP (newpat
, 0, 0) = pat
;
10020 add_clobbers (newpat
, insn_code_number
);
10022 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
10023 i
< XVECLEN (newpat
, 0); i
++)
10025 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) == REG
10026 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
10028 notes
= gen_rtx_EXPR_LIST (REG_UNUSED
,
10029 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
10037 return insn_code_number
;
10040 /* Like gen_lowpart but for use by combine. In combine it is not possible
10041 to create any new pseudoregs. However, it is safe to create
10042 invalid memory addresses, because combine will try to recognize
10043 them and all they will do is make the combine attempt fail.
10045 If for some reason this cannot do its job, an rtx
10046 (clobber (const_int 0)) is returned.
10047 An insn containing that will not be recognized. */
10052 gen_lowpart_for_combine (enum machine_mode mode
, rtx x
)
10056 if (GET_MODE (x
) == mode
)
10059 /* Return identity if this is a CONST or symbolic
10062 && (GET_CODE (x
) == CONST
10063 || GET_CODE (x
) == SYMBOL_REF
10064 || GET_CODE (x
) == LABEL_REF
))
10067 /* We can only support MODE being wider than a word if X is a
10068 constant integer or has a mode the same size. */
10070 if (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
10071 && ! ((GET_MODE (x
) == VOIDmode
10072 && (GET_CODE (x
) == CONST_INT
10073 || GET_CODE (x
) == CONST_DOUBLE
))
10074 || GET_MODE_SIZE (GET_MODE (x
)) == GET_MODE_SIZE (mode
)))
10075 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
10077 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10078 won't know what to do. So we will strip off the SUBREG here and
10079 process normally. */
10080 if (GET_CODE (x
) == SUBREG
&& GET_CODE (SUBREG_REG (x
)) == MEM
)
10082 x
= SUBREG_REG (x
);
10083 if (GET_MODE (x
) == mode
)
10087 result
= gen_lowpart_common (mode
, x
);
10088 #ifdef CANNOT_CHANGE_MODE_CLASS
10090 && GET_CODE (result
) == SUBREG
10091 && GET_CODE (SUBREG_REG (result
)) == REG
10092 && REGNO (SUBREG_REG (result
)) >= FIRST_PSEUDO_REGISTER
)
10093 bitmap_set_bit (&subregs_of_mode
, REGNO (SUBREG_REG (result
))
10095 + GET_MODE (result
));
10101 if (GET_CODE (x
) == MEM
)
10105 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10107 if (MEM_VOLATILE_P (x
) || mode_dependent_address_p (XEXP (x
, 0)))
10108 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
10110 /* If we want to refer to something bigger than the original memref,
10111 generate a perverse subreg instead. That will force a reload
10112 of the original memref X. */
10113 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
))
10114 return gen_rtx_SUBREG (mode
, x
, 0);
10116 if (WORDS_BIG_ENDIAN
)
10117 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
10118 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
10120 if (BYTES_BIG_ENDIAN
)
10122 /* Adjust the address so that the address-after-the-data is
10124 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
10125 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
10128 return adjust_address_nv (x
, mode
, offset
);
10131 /* If X is a comparison operator, rewrite it in a new mode. This
10132 probably won't match, but may allow further simplifications. */
10133 else if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
10134 return gen_rtx_fmt_ee (GET_CODE (x
), mode
, XEXP (x
, 0), XEXP (x
, 1));
10136 /* If we couldn't simplify X any other way, just enclose it in a
10137 SUBREG. Normally, this SUBREG won't match, but some patterns may
10138 include an explicit SUBREG or we may simplify it further in combine. */
10143 enum machine_mode sub_mode
= GET_MODE (x
);
10145 offset
= subreg_lowpart_offset (mode
, sub_mode
);
10146 if (sub_mode
== VOIDmode
)
10148 sub_mode
= int_mode_for_mode (mode
);
10149 x
= gen_lowpart_common (sub_mode
, x
);
10151 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
10153 res
= simplify_gen_subreg (mode
, x
, sub_mode
, offset
);
10156 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
10160 /* These routines make binary and unary operations by first seeing if they
10161 fold; if not, a new expression is allocated. */
10164 gen_binary (enum rtx_code code
, enum machine_mode mode
, rtx op0
, rtx op1
)
10169 if (GET_RTX_CLASS (code
) == 'c'
10170 && swap_commutative_operands_p (op0
, op1
))
10171 tem
= op0
, op0
= op1
, op1
= tem
;
10173 if (GET_RTX_CLASS (code
) == '<')
10175 enum machine_mode op_mode
= GET_MODE (op0
);
10177 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10178 just (REL_OP X Y). */
10179 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
10181 op1
= XEXP (op0
, 1);
10182 op0
= XEXP (op0
, 0);
10183 op_mode
= GET_MODE (op0
);
10186 if (op_mode
== VOIDmode
)
10187 op_mode
= GET_MODE (op1
);
10188 result
= simplify_relational_operation (code
, op_mode
, op0
, op1
);
10191 result
= simplify_binary_operation (code
, mode
, op0
, op1
);
10196 /* Put complex operands first and constants second. */
10197 if (GET_RTX_CLASS (code
) == 'c'
10198 && swap_commutative_operands_p (op0
, op1
))
10199 return gen_rtx_fmt_ee (code
, mode
, op1
, op0
);
10201 /* If we are turning off bits already known off in OP0, we need not do
10203 else if (code
== AND
&& GET_CODE (op1
) == CONST_INT
10204 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
10205 && (nonzero_bits (op0
, mode
) & ~INTVAL (op1
)) == 0)
10208 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
10211 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10212 comparison code that will be tested.
10214 The result is a possibly different comparison code to use. *POP0 and
10215 *POP1 may be updated.
10217 It is possible that we might detect that a comparison is either always
10218 true or always false. However, we do not perform general constant
10219 folding in combine, so this knowledge isn't useful. Such tautologies
10220 should have been detected earlier. Hence we ignore all such cases. */
10222 static enum rtx_code
10223 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
10229 enum machine_mode mode
, tmode
;
10231 /* Try a few ways of applying the same transformation to both operands. */
10234 #ifndef WORD_REGISTER_OPERATIONS
10235 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10236 so check specially. */
10237 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
10238 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
10239 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10240 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
10241 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
10242 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
10243 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
10244 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
10245 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10246 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
10247 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10248 && GET_CODE (XEXP (XEXP (op1
, 0), 1)) == CONST_INT
10249 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (op1
, 1))
10250 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (XEXP (op0
, 0), 1))
10251 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (XEXP (op1
, 0), 1))
10252 && (INTVAL (XEXP (op0
, 1))
10253 == (GET_MODE_BITSIZE (GET_MODE (op0
))
10254 - (GET_MODE_BITSIZE
10255 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
10257 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
10258 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
10262 /* If both operands are the same constant shift, see if we can ignore the
10263 shift. We can if the shift is a rotate or if the bits shifted out of
10264 this shift are known to be zero for both inputs and if the type of
10265 comparison is compatible with the shift. */
10266 if (GET_CODE (op0
) == GET_CODE (op1
)
10267 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
10268 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
10269 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
10270 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
10271 || (GET_CODE (op0
) == ASHIFTRT
10272 && (code
!= GTU
&& code
!= LTU
10273 && code
!= GEU
&& code
!= LEU
)))
10274 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10275 && INTVAL (XEXP (op0
, 1)) >= 0
10276 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
10277 && XEXP (op0
, 1) == XEXP (op1
, 1))
10279 enum machine_mode mode
= GET_MODE (op0
);
10280 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
10281 int shift_count
= INTVAL (XEXP (op0
, 1));
10283 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
10284 mask
&= (mask
>> shift_count
) << shift_count
;
10285 else if (GET_CODE (op0
) == ASHIFT
)
10286 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
10288 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
10289 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
10290 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
10295 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10296 SUBREGs are of the same mode, and, in both cases, the AND would
10297 be redundant if the comparison was done in the narrower mode,
10298 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10299 and the operand's possibly nonzero bits are 0xffffff01; in that case
10300 if we only care about QImode, we don't need the AND). This case
10301 occurs if the output mode of an scc insn is not SImode and
10302 STORE_FLAG_VALUE == 1 (e.g., the 386).
10304 Similarly, check for a case where the AND's are ZERO_EXTEND
10305 operations from some narrower mode even though a SUBREG is not
10308 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
10309 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10310 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
)
10312 rtx inner_op0
= XEXP (op0
, 0);
10313 rtx inner_op1
= XEXP (op1
, 0);
10314 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
10315 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
10318 if (GET_CODE (inner_op0
) == SUBREG
&& GET_CODE (inner_op1
) == SUBREG
10319 && (GET_MODE_SIZE (GET_MODE (inner_op0
))
10320 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0
))))
10321 && (GET_MODE (SUBREG_REG (inner_op0
))
10322 == GET_MODE (SUBREG_REG (inner_op1
)))
10323 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0
)))
10324 <= HOST_BITS_PER_WIDE_INT
)
10325 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
10326 GET_MODE (SUBREG_REG (inner_op0
)))))
10327 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
10328 GET_MODE (SUBREG_REG (inner_op1
))))))
10330 op0
= SUBREG_REG (inner_op0
);
10331 op1
= SUBREG_REG (inner_op1
);
10333 /* The resulting comparison is always unsigned since we masked
10334 off the original sign bit. */
10335 code
= unsigned_condition (code
);
10341 for (tmode
= GET_CLASS_NARROWEST_MODE
10342 (GET_MODE_CLASS (GET_MODE (op0
)));
10343 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
10344 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
10346 op0
= gen_lowpart_for_combine (tmode
, inner_op0
);
10347 op1
= gen_lowpart_for_combine (tmode
, inner_op1
);
10348 code
= unsigned_condition (code
);
10357 /* If both operands are NOT, we can strip off the outer operation
10358 and adjust the comparison code for swapped operands; similarly for
10359 NEG, except that this must be an equality comparison. */
10360 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
10361 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
10362 && (code
== EQ
|| code
== NE
)))
10363 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
10369 /* If the first operand is a constant, swap the operands and adjust the
10370 comparison code appropriately, but don't do this if the second operand
10371 is already a constant integer. */
10372 if (swap_commutative_operands_p (op0
, op1
))
10374 tem
= op0
, op0
= op1
, op1
= tem
;
10375 code
= swap_condition (code
);
10378 /* We now enter a loop during which we will try to simplify the comparison.
10379 For the most part, we only are concerned with comparisons with zero,
10380 but some things may really be comparisons with zero but not start
10381 out looking that way. */
10383 while (GET_CODE (op1
) == CONST_INT
)
10385 enum machine_mode mode
= GET_MODE (op0
);
10386 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
10387 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
10388 int equality_comparison_p
;
10389 int sign_bit_comparison_p
;
10390 int unsigned_comparison_p
;
10391 HOST_WIDE_INT const_op
;
10393 /* We only want to handle integral modes. This catches VOIDmode,
10394 CCmode, and the floating-point modes. An exception is that we
10395 can handle VOIDmode if OP0 is a COMPARE or a comparison
10398 if (GET_MODE_CLASS (mode
) != MODE_INT
10399 && ! (mode
== VOIDmode
10400 && (GET_CODE (op0
) == COMPARE
10401 || GET_RTX_CLASS (GET_CODE (op0
)) == '<')))
10404 /* Get the constant we are comparing against and turn off all bits
10405 not on in our mode. */
10406 const_op
= INTVAL (op1
);
10407 if (mode
!= VOIDmode
)
10408 const_op
= trunc_int_for_mode (const_op
, mode
);
10409 op1
= GEN_INT (const_op
);
10411 /* If we are comparing against a constant power of two and the value
10412 being compared can only have that single bit nonzero (e.g., it was
10413 `and'ed with that bit), we can replace this with a comparison
10416 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
10417 || code
== LT
|| code
== LTU
)
10418 && mode_width
<= HOST_BITS_PER_WIDE_INT
10419 && exact_log2 (const_op
) >= 0
10420 && nonzero_bits (op0
, mode
) == (unsigned HOST_WIDE_INT
) const_op
)
10422 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
10423 op1
= const0_rtx
, const_op
= 0;
10426 /* Similarly, if we are comparing a value known to be either -1 or
10427 0 with -1, change it to the opposite comparison against zero. */
10430 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
10431 || code
== GEU
|| code
== LTU
)
10432 && num_sign_bit_copies (op0
, mode
) == mode_width
)
10434 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
10435 op1
= const0_rtx
, const_op
= 0;
10438 /* Do some canonicalizations based on the comparison code. We prefer
10439 comparisons against zero and then prefer equality comparisons.
10440 If we can reduce the size of a constant, we will do that too. */
10445 /* < C is equivalent to <= (C - 1) */
10449 op1
= GEN_INT (const_op
);
10451 /* ... fall through to LE case below. */
10457 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10461 op1
= GEN_INT (const_op
);
10465 /* If we are doing a <= 0 comparison on a value known to have
10466 a zero sign bit, we can replace this with == 0. */
10467 else if (const_op
== 0
10468 && mode_width
<= HOST_BITS_PER_WIDE_INT
10469 && (nonzero_bits (op0
, mode
)
10470 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
10475 /* >= C is equivalent to > (C - 1). */
10479 op1
= GEN_INT (const_op
);
10481 /* ... fall through to GT below. */
10487 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10491 op1
= GEN_INT (const_op
);
10495 /* If we are doing a > 0 comparison on a value known to have
10496 a zero sign bit, we can replace this with != 0. */
10497 else if (const_op
== 0
10498 && mode_width
<= HOST_BITS_PER_WIDE_INT
10499 && (nonzero_bits (op0
, mode
)
10500 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
10505 /* < C is equivalent to <= (C - 1). */
10509 op1
= GEN_INT (const_op
);
10511 /* ... fall through ... */
10514 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10515 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10516 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10518 const_op
= 0, op1
= const0_rtx
;
10526 /* unsigned <= 0 is equivalent to == 0 */
10530 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10531 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10532 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
10534 const_op
= 0, op1
= const0_rtx
;
10540 /* >= C is equivalent to < (C - 1). */
10544 op1
= GEN_INT (const_op
);
10546 /* ... fall through ... */
10549 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10550 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10551 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10553 const_op
= 0, op1
= const0_rtx
;
10561 /* unsigned > 0 is equivalent to != 0 */
10565 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10566 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10567 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
10569 const_op
= 0, op1
= const0_rtx
;
10578 /* Compute some predicates to simplify code below. */
10580 equality_comparison_p
= (code
== EQ
|| code
== NE
);
10581 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
10582 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
10585 /* If this is a sign bit comparison and we can do arithmetic in
10586 MODE, say that we will only be needing the sign bit of OP0. */
10587 if (sign_bit_comparison_p
10588 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10589 op0
= force_to_mode (op0
, mode
,
10591 << (GET_MODE_BITSIZE (mode
) - 1)),
10594 /* Now try cases based on the opcode of OP0. If none of the cases
10595 does a "continue", we exit this loop immediately after the
10598 switch (GET_CODE (op0
))
10601 /* If we are extracting a single bit from a variable position in
10602 a constant that has only a single bit set and are comparing it
10603 with zero, we can convert this into an equality comparison
10604 between the position and the location of the single bit. */
10606 if (GET_CODE (XEXP (op0
, 0)) == CONST_INT
10607 && XEXP (op0
, 1) == const1_rtx
10608 && equality_comparison_p
&& const_op
== 0
10609 && (i
= exact_log2 (INTVAL (XEXP (op0
, 0)))) >= 0)
10611 if (BITS_BIG_ENDIAN
)
10613 enum machine_mode new_mode
10614 = mode_for_extraction (EP_extzv
, 1);
10615 if (new_mode
== MAX_MACHINE_MODE
)
10616 i
= BITS_PER_WORD
- 1 - i
;
10620 i
= (GET_MODE_BITSIZE (mode
) - 1 - i
);
10624 op0
= XEXP (op0
, 2);
10628 /* Result is nonzero iff shift count is equal to I. */
10629 code
= reverse_condition (code
);
10633 /* ... fall through ... */
10636 tem
= expand_compound_operation (op0
);
10645 /* If testing for equality, we can take the NOT of the constant. */
10646 if (equality_comparison_p
10647 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
10649 op0
= XEXP (op0
, 0);
10654 /* If just looking at the sign bit, reverse the sense of the
10656 if (sign_bit_comparison_p
)
10658 op0
= XEXP (op0
, 0);
10659 code
= (code
== GE
? LT
: GE
);
10665 /* If testing for equality, we can take the NEG of the constant. */
10666 if (equality_comparison_p
10667 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
10669 op0
= XEXP (op0
, 0);
10674 /* The remaining cases only apply to comparisons with zero. */
10678 /* When X is ABS or is known positive,
10679 (neg X) is < 0 if and only if X != 0. */
10681 if (sign_bit_comparison_p
10682 && (GET_CODE (XEXP (op0
, 0)) == ABS
10683 || (mode_width
<= HOST_BITS_PER_WIDE_INT
10684 && (nonzero_bits (XEXP (op0
, 0), mode
)
10685 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)))
10687 op0
= XEXP (op0
, 0);
10688 code
= (code
== LT
? NE
: EQ
);
10692 /* If we have NEG of something whose two high-order bits are the
10693 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10694 if (num_sign_bit_copies (op0
, mode
) >= 2)
10696 op0
= XEXP (op0
, 0);
10697 code
= swap_condition (code
);
10703 /* If we are testing equality and our count is a constant, we
10704 can perform the inverse operation on our RHS. */
10705 if (equality_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10706 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
10707 op1
, XEXP (op0
, 1))) != 0)
10709 op0
= XEXP (op0
, 0);
10714 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10715 a particular bit. Convert it to an AND of a constant of that
10716 bit. This will be converted into a ZERO_EXTRACT. */
10717 if (const_op
== 0 && sign_bit_comparison_p
10718 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10719 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10721 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10724 - INTVAL (XEXP (op0
, 1)))));
10725 code
= (code
== LT
? NE
: EQ
);
10729 /* Fall through. */
10732 /* ABS is ignorable inside an equality comparison with zero. */
10733 if (const_op
== 0 && equality_comparison_p
)
10735 op0
= XEXP (op0
, 0);
10741 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10742 to (compare FOO CONST) if CONST fits in FOO's mode and we
10743 are either testing inequality or have an unsigned comparison
10744 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10745 if (! unsigned_comparison_p
10746 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10747 <= HOST_BITS_PER_WIDE_INT
)
10748 && ((unsigned HOST_WIDE_INT
) const_op
10749 < (((unsigned HOST_WIDE_INT
) 1
10750 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))) - 1)))))
10752 op0
= XEXP (op0
, 0);
10758 /* Check for the case where we are comparing A - C1 with C2,
10759 both constants are smaller than 1/2 the maximum positive
10760 value in MODE, and the comparison is equality or unsigned.
10761 In that case, if A is either zero-extended to MODE or has
10762 sufficient sign bits so that the high-order bit in MODE
10763 is a copy of the sign in the inner mode, we can prove that it is
10764 safe to do the operation in the wider mode. This simplifies
10765 many range checks. */
10767 if (mode_width
<= HOST_BITS_PER_WIDE_INT
10768 && subreg_lowpart_p (op0
)
10769 && GET_CODE (SUBREG_REG (op0
)) == PLUS
10770 && GET_CODE (XEXP (SUBREG_REG (op0
), 1)) == CONST_INT
10771 && INTVAL (XEXP (SUBREG_REG (op0
), 1)) < 0
10772 && (-INTVAL (XEXP (SUBREG_REG (op0
), 1))
10773 < (HOST_WIDE_INT
) (GET_MODE_MASK (mode
) / 2))
10774 && (unsigned HOST_WIDE_INT
) const_op
< GET_MODE_MASK (mode
) / 2
10775 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0
), 0),
10776 GET_MODE (SUBREG_REG (op0
)))
10777 & ~GET_MODE_MASK (mode
))
10778 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0
), 0),
10779 GET_MODE (SUBREG_REG (op0
)))
10781 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
10782 - GET_MODE_BITSIZE (mode
)))))
10784 op0
= SUBREG_REG (op0
);
10788 /* If the inner mode is narrower and we are extracting the low part,
10789 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10790 if (subreg_lowpart_p (op0
)
10791 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
10792 /* Fall through */ ;
10796 /* ... fall through ... */
10799 if ((unsigned_comparison_p
|| equality_comparison_p
)
10800 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10801 <= HOST_BITS_PER_WIDE_INT
)
10802 && ((unsigned HOST_WIDE_INT
) const_op
10803 < GET_MODE_MASK (GET_MODE (XEXP (op0
, 0)))))
10805 op0
= XEXP (op0
, 0);
10811 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10812 this for equality comparisons due to pathological cases involving
10814 if (equality_comparison_p
10815 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10816 op1
, XEXP (op0
, 1))))
10818 op0
= XEXP (op0
, 0);
10823 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10824 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
10825 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
10827 op0
= XEXP (XEXP (op0
, 0), 0);
10828 code
= (code
== LT
? EQ
: NE
);
10834 /* We used to optimize signed comparisons against zero, but that
10835 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10836 arrive here as equality comparisons, or (GEU, LTU) are
10837 optimized away. No need to special-case them. */
10839 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10840 (eq B (minus A C)), whichever simplifies. We can only do
10841 this for equality comparisons due to pathological cases involving
10843 if (equality_comparison_p
10844 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
10845 XEXP (op0
, 1), op1
)))
10847 op0
= XEXP (op0
, 0);
10852 if (equality_comparison_p
10853 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10854 XEXP (op0
, 0), op1
)))
10856 op0
= XEXP (op0
, 1);
10861 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10862 of bits in X minus 1, is one iff X > 0. */
10863 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
10864 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10865 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (XEXP (op0
, 0), 1))
10867 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10869 op0
= XEXP (op0
, 1);
10870 code
= (code
== GE
? LE
: GT
);
10876 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10877 if C is zero or B is a constant. */
10878 if (equality_comparison_p
10879 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
10880 XEXP (op0
, 1), op1
)))
10882 op0
= XEXP (op0
, 0);
10889 case UNEQ
: case LTGT
:
10890 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
10891 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
10892 case UNORDERED
: case ORDERED
:
10893 /* We can't do anything if OP0 is a condition code value, rather
10894 than an actual data value. */
10896 || CC0_P (XEXP (op0
, 0))
10897 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
10900 /* Get the two operands being compared. */
10901 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
10902 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
10904 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
10906 /* Check for the cases where we simply want the result of the
10907 earlier test or the opposite of that result. */
10908 if (code
== NE
|| code
== EQ
10909 || (GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
10910 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10911 && (STORE_FLAG_VALUE
10912 & (((HOST_WIDE_INT
) 1
10913 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
10914 && (code
== LT
|| code
== GE
)))
10916 enum rtx_code new_code
;
10917 if (code
== LT
|| code
== NE
)
10918 new_code
= GET_CODE (op0
);
10920 new_code
= combine_reversed_comparison_code (op0
);
10922 if (new_code
!= UNKNOWN
)
10933 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10935 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
10936 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
10937 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10939 op0
= XEXP (op0
, 1);
10940 code
= (code
== GE
? GT
: LE
);
10946 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10947 will be converted to a ZERO_EXTRACT later. */
10948 if (const_op
== 0 && equality_comparison_p
10949 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10950 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
10952 op0
= simplify_and_const_int
10953 (op0
, mode
, gen_rtx_LSHIFTRT (mode
,
10955 XEXP (XEXP (op0
, 0), 1)),
10956 (HOST_WIDE_INT
) 1);
10960 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10961 zero and X is a comparison and C1 and C2 describe only bits set
10962 in STORE_FLAG_VALUE, we can compare with X. */
10963 if (const_op
== 0 && equality_comparison_p
10964 && mode_width
<= HOST_BITS_PER_WIDE_INT
10965 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10966 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
10967 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10968 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
10969 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
10971 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10972 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
10973 if ((~STORE_FLAG_VALUE
& mask
) == 0
10974 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0
, 0), 0))) == '<'
10975 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
10976 && GET_RTX_CLASS (GET_CODE (tem
)) == '<')))
10978 op0
= XEXP (XEXP (op0
, 0), 0);
10983 /* If we are doing an equality comparison of an AND of a bit equal
10984 to the sign bit, replace this with a LT or GE comparison of
10985 the underlying value. */
10986 if (equality_comparison_p
10988 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10989 && mode_width
<= HOST_BITS_PER_WIDE_INT
10990 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10991 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10993 op0
= XEXP (op0
, 0);
10994 code
= (code
== EQ
? GE
: LT
);
10998 /* If this AND operation is really a ZERO_EXTEND from a narrower
10999 mode, the constant fits within that mode, and this is either an
11000 equality or unsigned comparison, try to do this comparison in
11001 the narrower mode. */
11002 if ((equality_comparison_p
|| unsigned_comparison_p
)
11003 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
11004 && (i
= exact_log2 ((INTVAL (XEXP (op0
, 1))
11005 & GET_MODE_MASK (mode
))
11007 && const_op
>> i
== 0
11008 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
)
11010 op0
= gen_lowpart_for_combine (tmode
, XEXP (op0
, 0));
11014 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11015 fits in both M1 and M2 and the SUBREG is either paradoxical
11016 or represents the low part, permute the SUBREG and the AND
11018 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
)
11020 unsigned HOST_WIDE_INT c1
;
11021 tmode
= GET_MODE (SUBREG_REG (XEXP (op0
, 0)));
11022 /* Require an integral mode, to avoid creating something like
11024 if (SCALAR_INT_MODE_P (tmode
)
11025 /* It is unsafe to commute the AND into the SUBREG if the
11026 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11027 not defined. As originally written the upper bits
11028 have a defined value due to the AND operation.
11029 However, if we commute the AND inside the SUBREG then
11030 they no longer have defined values and the meaning of
11031 the code has been changed. */
11033 #ifdef WORD_REGISTER_OPERATIONS
11034 || (mode_width
> GET_MODE_BITSIZE (tmode
)
11035 && mode_width
<= BITS_PER_WORD
)
11037 || (mode_width
<= GET_MODE_BITSIZE (tmode
)
11038 && subreg_lowpart_p (XEXP (op0
, 0))))
11039 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
11040 && mode_width
<= HOST_BITS_PER_WIDE_INT
11041 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
11042 && ((c1
= INTVAL (XEXP (op0
, 1))) & ~mask
) == 0
11043 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
11045 && c1
!= GET_MODE_MASK (tmode
))
11047 op0
= gen_binary (AND
, tmode
,
11048 SUBREG_REG (XEXP (op0
, 0)),
11049 gen_int_mode (c1
, tmode
));
11050 op0
= gen_lowpart_for_combine (mode
, op0
);
11055 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11056 (eq (and (lshiftrt X) 1) 0). */
11057 if (const_op
== 0 && equality_comparison_p
11058 && XEXP (op0
, 1) == const1_rtx
11059 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
11060 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == NOT
)
11062 op0
= simplify_and_const_int
11064 gen_rtx_LSHIFTRT (mode
, XEXP (XEXP (XEXP (op0
, 0), 0), 0),
11065 XEXP (XEXP (op0
, 0), 1)),
11066 (HOST_WIDE_INT
) 1);
11067 code
= (code
== NE
? EQ
: NE
);
11073 /* If we have (compare (ashift FOO N) (const_int C)) and
11074 the high order N bits of FOO (N+1 if an inequality comparison)
11075 are known to be zero, we can do this by comparing FOO with C
11076 shifted right N bits so long as the low-order N bits of C are
11078 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
11079 && INTVAL (XEXP (op0
, 1)) >= 0
11080 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
11081 < HOST_BITS_PER_WIDE_INT
)
11083 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0)
11084 && mode_width
<= HOST_BITS_PER_WIDE_INT
11085 && (nonzero_bits (XEXP (op0
, 0), mode
)
11086 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
11087 + ! equality_comparison_p
))) == 0)
11089 /* We must perform a logical shift, not an arithmetic one,
11090 as we want the top N bits of C to be zero. */
11091 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
11093 temp
>>= INTVAL (XEXP (op0
, 1));
11094 op1
= gen_int_mode (temp
, mode
);
11095 op0
= XEXP (op0
, 0);
11099 /* If we are doing a sign bit comparison, it means we are testing
11100 a particular bit. Convert it to the appropriate AND. */
11101 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
11102 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11104 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11107 - INTVAL (XEXP (op0
, 1)))));
11108 code
= (code
== LT
? NE
: EQ
);
11112 /* If this an equality comparison with zero and we are shifting
11113 the low bit to the sign bit, we can convert this to an AND of the
11115 if (const_op
== 0 && equality_comparison_p
11116 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
11117 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
11120 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11121 (HOST_WIDE_INT
) 1);
11127 /* If this is an equality comparison with zero, we can do this
11128 as a logical shift, which might be much simpler. */
11129 if (equality_comparison_p
&& const_op
== 0
11130 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
)
11132 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
11134 INTVAL (XEXP (op0
, 1)));
11138 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11139 do the comparison in a narrower mode. */
11140 if (! unsigned_comparison_p
11141 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
11142 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11143 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11144 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11145 MODE_INT
, 1)) != BLKmode
11146 && (((unsigned HOST_WIDE_INT
) const_op
11147 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11148 <= GET_MODE_MASK (tmode
)))
11150 op0
= gen_lowpart_for_combine (tmode
, XEXP (XEXP (op0
, 0), 0));
11154 /* Likewise if OP0 is a PLUS of a sign extension with a
11155 constant, which is usually represented with the PLUS
11156 between the shifts. */
11157 if (! unsigned_comparison_p
11158 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
11159 && GET_CODE (XEXP (op0
, 0)) == PLUS
11160 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
11161 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
11162 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
11163 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11164 MODE_INT
, 1)) != BLKmode
11165 && (((unsigned HOST_WIDE_INT
) const_op
11166 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11167 <= GET_MODE_MASK (tmode
)))
11169 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
11170 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
11171 rtx new_const
= gen_binary (ASHIFTRT
, GET_MODE (op0
), add_const
,
11174 op0
= gen_binary (PLUS
, tmode
,
11175 gen_lowpart_for_combine (tmode
, inner
),
11180 /* ... fall through ... */
11182 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11183 the low order N bits of FOO are known to be zero, we can do this
11184 by comparing FOO with C shifted left N bits so long as no
11185 overflow occurs. */
11186 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
11187 && INTVAL (XEXP (op0
, 1)) >= 0
11188 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11189 && mode_width
<= HOST_BITS_PER_WIDE_INT
11190 && (nonzero_bits (XEXP (op0
, 0), mode
)
11191 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0
11192 && (((unsigned HOST_WIDE_INT
) const_op
11193 + (GET_CODE (op0
) != LSHIFTRT
11194 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
11197 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
11199 /* If the shift was logical, then we must make the condition
11201 if (GET_CODE (op0
) == LSHIFTRT
)
11202 code
= unsigned_condition (code
);
11204 const_op
<<= INTVAL (XEXP (op0
, 1));
11205 op1
= GEN_INT (const_op
);
11206 op0
= XEXP (op0
, 0);
11210 /* If we are using this shift to extract just the sign bit, we
11211 can replace this with an LT or GE comparison. */
11213 && (equality_comparison_p
|| sign_bit_comparison_p
)
11214 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
11215 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
11218 op0
= XEXP (op0
, 0);
11219 code
= (code
== NE
|| code
== GT
? LT
: GE
);
11231 /* Now make any compound operations involved in this comparison. Then,
11232 check for an outmost SUBREG on OP0 that is not doing anything or is
11233 paradoxical. The latter transformation must only be performed when
11234 it is known that the "extra" bits will be the same in op0 and op1 or
11235 that they don't matter. There are three cases to consider:
11237 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11238 care bits and we can assume they have any convenient value. So
11239 making the transformation is safe.
11241 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11242 In this case the upper bits of op0 are undefined. We should not make
11243 the simplification in that case as we do not know the contents of
11246 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11247 NIL. In that case we know those bits are zeros or ones. We must
11248 also be sure that they are the same as the upper bits of op1.
11250 We can never remove a SUBREG for a non-equality comparison because
11251 the sign bit is in a different place in the underlying object. */
11253 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
11254 op1
= make_compound_operation (op1
, SET
);
11256 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
11257 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11259 && GET_CODE (SUBREG_REG (op0
)) == REG
11260 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
11261 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
11262 && (code
== NE
|| code
== EQ
))
11264 if (GET_MODE_SIZE (GET_MODE (op0
))
11265 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
))))
11267 op0
= SUBREG_REG (op0
);
11268 op1
= gen_lowpart_for_combine (GET_MODE (op0
), op1
);
11270 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
11271 <= HOST_BITS_PER_WIDE_INT
)
11272 && (nonzero_bits (SUBREG_REG (op0
),
11273 GET_MODE (SUBREG_REG (op0
)))
11274 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
11276 tem
= gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0
)), op1
);
11278 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
11279 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
11280 op0
= SUBREG_REG (op0
), op1
= tem
;
11284 /* We now do the opposite procedure: Some machines don't have compare
11285 insns in all modes. If OP0's mode is an integer mode smaller than a
11286 word and we can't do a compare in that mode, see if there is a larger
11287 mode for which we can do the compare. There are a number of cases in
11288 which we can use the wider mode. */
11290 mode
= GET_MODE (op0
);
11291 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
11292 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
11293 && ! have_insn_for (COMPARE
, mode
))
11294 for (tmode
= GET_MODE_WIDER_MODE (mode
);
11296 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
);
11297 tmode
= GET_MODE_WIDER_MODE (tmode
))
11298 if (have_insn_for (COMPARE
, tmode
))
11302 /* If the only nonzero bits in OP0 and OP1 are those in the
11303 narrower mode and this is an equality or unsigned comparison,
11304 we can use the wider mode. Similarly for sign-extended
11305 values, in which case it is true for all comparisons. */
11306 zero_extended
= ((code
== EQ
|| code
== NE
11307 || code
== GEU
|| code
== GTU
11308 || code
== LEU
|| code
== LTU
)
11309 && (nonzero_bits (op0
, tmode
)
11310 & ~GET_MODE_MASK (mode
)) == 0
11311 && ((GET_CODE (op1
) == CONST_INT
11312 || (nonzero_bits (op1
, tmode
)
11313 & ~GET_MODE_MASK (mode
)) == 0)));
11316 || ((num_sign_bit_copies (op0
, tmode
)
11317 > (unsigned int) (GET_MODE_BITSIZE (tmode
)
11318 - GET_MODE_BITSIZE (mode
)))
11319 && (num_sign_bit_copies (op1
, tmode
)
11320 > (unsigned int) (GET_MODE_BITSIZE (tmode
)
11321 - GET_MODE_BITSIZE (mode
)))))
11323 /* If OP0 is an AND and we don't have an AND in MODE either,
11324 make a new AND in the proper mode. */
11325 if (GET_CODE (op0
) == AND
11326 && !have_insn_for (AND
, mode
))
11327 op0
= gen_binary (AND
, tmode
,
11328 gen_lowpart_for_combine (tmode
,
11330 gen_lowpart_for_combine (tmode
,
11333 op0
= gen_lowpart_for_combine (tmode
, op0
);
11334 if (zero_extended
&& GET_CODE (op1
) == CONST_INT
)
11335 op1
= GEN_INT (INTVAL (op1
) & GET_MODE_MASK (mode
));
11336 op1
= gen_lowpart_for_combine (tmode
, op1
);
11340 /* If this is a test for negative, we can make an explicit
11341 test of the sign bit. */
11343 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
11344 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
11346 op0
= gen_binary (AND
, tmode
,
11347 gen_lowpart_for_combine (tmode
, op0
),
11348 GEN_INT ((HOST_WIDE_INT
) 1
11349 << (GET_MODE_BITSIZE (mode
) - 1)));
11350 code
= (code
== LT
) ? NE
: EQ
;
11355 #ifdef CANONICALIZE_COMPARISON
11356 /* If this machine only supports a subset of valid comparisons, see if we
11357 can convert an unsupported one into a supported one. */
11358 CANONICALIZE_COMPARISON (code
, op0
, op1
);
11367 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11368 searching backward. */
11369 static enum rtx_code
11370 combine_reversed_comparison_code (rtx exp
)
11372 enum rtx_code code1
= reversed_comparison_code (exp
, NULL
);
11375 if (code1
!= UNKNOWN
11376 || GET_MODE_CLASS (GET_MODE (XEXP (exp
, 0))) != MODE_CC
)
11378 /* Otherwise try and find where the condition codes were last set and
11380 x
= get_last_value (XEXP (exp
, 0));
11381 if (!x
|| GET_CODE (x
) != COMPARE
)
11383 return reversed_comparison_code_parts (GET_CODE (exp
),
11384 XEXP (x
, 0), XEXP (x
, 1), NULL
);
11387 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11388 Return NULL_RTX in case we fail to do the reversal. */
11390 reversed_comparison (rtx exp
, enum machine_mode mode
, rtx op0
, rtx op1
)
11392 enum rtx_code reversed_code
= combine_reversed_comparison_code (exp
);
11393 if (reversed_code
== UNKNOWN
)
11396 return gen_binary (reversed_code
, mode
, op0
, op1
);
11399 /* Utility function for following routine. Called when X is part of a value
11400 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11401 for each register mentioned. Similar to mention_regs in cse.c */
11404 update_table_tick (rtx x
)
11406 enum rtx_code code
= GET_CODE (x
);
11407 const char *fmt
= GET_RTX_FORMAT (code
);
11412 unsigned int regno
= REGNO (x
);
11413 unsigned int endregno
11414 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11415 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
11418 for (r
= regno
; r
< endregno
; r
++)
11419 reg_last_set_table_tick
[r
] = label_tick
;
11424 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11425 /* Note that we can't have an "E" in values stored; see
11426 get_last_value_validate. */
11429 /* Check for identical subexpressions. If x contains
11430 identical subexpression we only have to traverse one of
11433 && (GET_RTX_CLASS (code
) == '2'
11434 || GET_RTX_CLASS (code
) == 'c'))
11436 /* Note that at this point x1 has already been
11438 rtx x0
= XEXP (x
, 0);
11439 rtx x1
= XEXP (x
, 1);
11441 /* If x0 and x1 are identical then there is no need to
11446 /* If x0 is identical to a subexpression of x1 then while
11447 processing x1, x0 has already been processed. Thus we
11448 are done with x. */
11449 if ((GET_RTX_CLASS (GET_CODE (x1
)) == '2'
11450 || GET_RTX_CLASS (GET_CODE (x1
)) == 'c')
11451 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
11454 /* If x1 is identical to a subexpression of x0 then we
11455 still have to process the rest of x0. */
11456 if ((GET_RTX_CLASS (GET_CODE (x0
)) == '2'
11457 || GET_RTX_CLASS (GET_CODE (x0
)) == 'c')
11458 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
11460 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
11465 update_table_tick (XEXP (x
, i
));
11469 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11470 are saying that the register is clobbered and we no longer know its
11471 value. If INSN is zero, don't update reg_last_set; this is only permitted
11472 with VALUE also zero and is used to invalidate the register. */
11475 record_value_for_reg (rtx reg
, rtx insn
, rtx value
)
11477 unsigned int regno
= REGNO (reg
);
11478 unsigned int endregno
11479 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11480 ? HARD_REGNO_NREGS (regno
, GET_MODE (reg
)) : 1);
11483 /* If VALUE contains REG and we have a previous value for REG, substitute
11484 the previous value. */
11485 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
11489 /* Set things up so get_last_value is allowed to see anything set up to
11491 subst_low_cuid
= INSN_CUID (insn
);
11492 tem
= get_last_value (reg
);
11494 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11495 it isn't going to be useful and will take a lot of time to process,
11496 so just use the CLOBBER. */
11500 if ((GET_RTX_CLASS (GET_CODE (tem
)) == '2'
11501 || GET_RTX_CLASS (GET_CODE (tem
)) == 'c')
11502 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
11503 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
11504 tem
= XEXP (tem
, 0);
11506 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
11510 /* For each register modified, show we don't know its value, that
11511 we don't know about its bitwise content, that its value has been
11512 updated, and that we don't know the location of the death of the
11514 for (i
= regno
; i
< endregno
; i
++)
11517 reg_last_set
[i
] = insn
;
11519 reg_last_set_value
[i
] = 0;
11520 reg_last_set_mode
[i
] = 0;
11521 reg_last_set_nonzero_bits
[i
] = 0;
11522 reg_last_set_sign_bit_copies
[i
] = 0;
11523 reg_last_death
[i
] = 0;
11526 /* Mark registers that are being referenced in this value. */
11528 update_table_tick (value
);
11530 /* Now update the status of each register being set.
11531 If someone is using this register in this block, set this register
11532 to invalid since we will get confused between the two lives in this
11533 basic block. This makes using this register always invalid. In cse, we
11534 scan the table to invalidate all entries using this register, but this
11535 is too much work for us. */
11537 for (i
= regno
; i
< endregno
; i
++)
11539 reg_last_set_label
[i
] = label_tick
;
11540 if (value
&& reg_last_set_table_tick
[i
] == label_tick
)
11541 reg_last_set_invalid
[i
] = 1;
11543 reg_last_set_invalid
[i
] = 0;
11546 /* The value being assigned might refer to X (like in "x++;"). In that
11547 case, we must replace it with (clobber (const_int 0)) to prevent
11549 if (value
&& ! get_last_value_validate (&value
, insn
,
11550 reg_last_set_label
[regno
], 0))
11552 value
= copy_rtx (value
);
11553 if (! get_last_value_validate (&value
, insn
,
11554 reg_last_set_label
[regno
], 1))
11558 /* For the main register being modified, update the value, the mode, the
11559 nonzero bits, and the number of sign bit copies. */
11561 reg_last_set_value
[regno
] = value
;
11565 enum machine_mode mode
= GET_MODE (reg
);
11566 subst_low_cuid
= INSN_CUID (insn
);
11567 reg_last_set_mode
[regno
] = mode
;
11568 if (GET_MODE_CLASS (mode
) == MODE_INT
11569 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
11570 mode
= nonzero_bits_mode
;
11571 reg_last_set_nonzero_bits
[regno
] = nonzero_bits (value
, mode
);
11572 reg_last_set_sign_bit_copies
[regno
]
11573 = num_sign_bit_copies (value
, GET_MODE (reg
));
11577 /* Called via note_stores from record_dead_and_set_regs to handle one
11578 SET or CLOBBER in an insn. DATA is the instruction in which the
11579 set is occurring. */
11582 record_dead_and_set_regs_1 (rtx dest
, rtx setter
, void *data
)
11584 rtx record_dead_insn
= (rtx
) data
;
11586 if (GET_CODE (dest
) == SUBREG
)
11587 dest
= SUBREG_REG (dest
);
11589 if (GET_CODE (dest
) == REG
)
11591 /* If we are setting the whole register, we know its value. Otherwise
11592 show that we don't know the value. We can handle SUBREG in
11594 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
11595 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
11596 else if (GET_CODE (setter
) == SET
11597 && GET_CODE (SET_DEST (setter
)) == SUBREG
11598 && SUBREG_REG (SET_DEST (setter
)) == dest
11599 && GET_MODE_BITSIZE (GET_MODE (dest
)) <= BITS_PER_WORD
11600 && subreg_lowpart_p (SET_DEST (setter
)))
11601 record_value_for_reg (dest
, record_dead_insn
,
11602 gen_lowpart_for_combine (GET_MODE (dest
),
11603 SET_SRC (setter
)));
11605 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
11607 else if (GET_CODE (dest
) == MEM
11608 /* Ignore pushes, they clobber nothing. */
11609 && ! push_operand (dest
, GET_MODE (dest
)))
11610 mem_last_set
= INSN_CUID (record_dead_insn
);
11613 /* Update the records of when each REG was most recently set or killed
11614 for the things done by INSN. This is the last thing done in processing
11615 INSN in the combiner loop.
11617 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11618 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11619 and also the similar information mem_last_set (which insn most recently
11620 modified memory) and last_call_cuid (which insn was the most recent
11621 subroutine call). */
11624 record_dead_and_set_regs (rtx insn
)
11629 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
11631 if (REG_NOTE_KIND (link
) == REG_DEAD
11632 && GET_CODE (XEXP (link
, 0)) == REG
)
11634 unsigned int regno
= REGNO (XEXP (link
, 0));
11635 unsigned int endregno
11636 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11637 ? HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (link
, 0)))
11640 for (i
= regno
; i
< endregno
; i
++)
11641 reg_last_death
[i
] = insn
;
11643 else if (REG_NOTE_KIND (link
) == REG_INC
)
11644 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
11647 if (GET_CODE (insn
) == CALL_INSN
)
11649 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
11650 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
11652 reg_last_set_value
[i
] = 0;
11653 reg_last_set_mode
[i
] = 0;
11654 reg_last_set_nonzero_bits
[i
] = 0;
11655 reg_last_set_sign_bit_copies
[i
] = 0;
11656 reg_last_death
[i
] = 0;
11659 last_call_cuid
= mem_last_set
= INSN_CUID (insn
);
11661 /* Don't bother recording what this insn does. It might set the
11662 return value register, but we can't combine into a call
11663 pattern anyway, so there's no point trying (and it may cause
11664 a crash, if e.g. we wind up asking for last_set_value of a
11665 SUBREG of the return value register). */
11669 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
11672 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11673 register present in the SUBREG, so for each such SUBREG go back and
11674 adjust nonzero and sign bit information of the registers that are
11675 known to have some zero/sign bits set.
11677 This is needed because when combine blows the SUBREGs away, the
11678 information on zero/sign bits is lost and further combines can be
11679 missed because of that. */
11682 record_promoted_value (rtx insn
, rtx subreg
)
11685 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
11686 enum machine_mode mode
= GET_MODE (subreg
);
11688 if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
11691 for (links
= LOG_LINKS (insn
); links
;)
11693 insn
= XEXP (links
, 0);
11694 set
= single_set (insn
);
11696 if (! set
|| GET_CODE (SET_DEST (set
)) != REG
11697 || REGNO (SET_DEST (set
)) != regno
11698 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
11700 links
= XEXP (links
, 1);
11704 if (reg_last_set
[regno
] == insn
)
11706 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
) > 0)
11707 reg_last_set_nonzero_bits
[regno
] &= GET_MODE_MASK (mode
);
11710 if (GET_CODE (SET_SRC (set
)) == REG
)
11712 regno
= REGNO (SET_SRC (set
));
11713 links
= LOG_LINKS (insn
);
11720 /* Scan X for promoted SUBREGs. For each one found,
11721 note what it implies to the registers used in it. */
11724 check_promoted_subreg (rtx insn
, rtx x
)
11726 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
11727 && GET_CODE (SUBREG_REG (x
)) == REG
)
11728 record_promoted_value (insn
, x
);
11731 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
11734 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
11738 check_promoted_subreg (insn
, XEXP (x
, i
));
11742 if (XVEC (x
, i
) != 0)
11743 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11744 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
11750 /* Utility routine for the following function. Verify that all the registers
11751 mentioned in *LOC are valid when *LOC was part of a value set when
11752 label_tick == TICK. Return 0 if some are not.
11754 If REPLACE is nonzero, replace the invalid reference with
11755 (clobber (const_int 0)) and return 1. This replacement is useful because
11756 we often can get useful information about the form of a value (e.g., if
11757 it was produced by a shift that always produces -1 or 0) even though
11758 we don't know exactly what registers it was produced from. */
11761 get_last_value_validate (rtx
*loc
, rtx insn
, int tick
, int replace
)
11764 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
11765 int len
= GET_RTX_LENGTH (GET_CODE (x
));
11768 if (GET_CODE (x
) == REG
)
11770 unsigned int regno
= REGNO (x
);
11771 unsigned int endregno
11772 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11773 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
11776 for (j
= regno
; j
< endregno
; j
++)
11777 if (reg_last_set_invalid
[j
]
11778 /* If this is a pseudo-register that was only set once and not
11779 live at the beginning of the function, it is always valid. */
11780 || (! (regno
>= FIRST_PSEUDO_REGISTER
11781 && REG_N_SETS (regno
) == 1
11782 && (! REGNO_REG_SET_P
11783 (ENTRY_BLOCK_PTR
->next_bb
->global_live_at_start
, regno
)))
11784 && reg_last_set_label
[j
] > tick
))
11787 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11793 /* If this is a memory reference, make sure that there were
11794 no stores after it that might have clobbered the value. We don't
11795 have alias info, so we assume any store invalidates it. */
11796 else if (GET_CODE (x
) == MEM
&& ! RTX_UNCHANGING_P (x
)
11797 && INSN_CUID (insn
) <= mem_last_set
)
11800 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11804 for (i
= 0; i
< len
; i
++)
11808 /* Check for identical subexpressions. If x contains
11809 identical subexpression we only have to traverse one of
11812 && (GET_RTX_CLASS (GET_CODE (x
)) == '2'
11813 || GET_RTX_CLASS (GET_CODE (x
)) == 'c'))
11815 /* Note that at this point x0 has already been checked
11816 and found valid. */
11817 rtx x0
= XEXP (x
, 0);
11818 rtx x1
= XEXP (x
, 1);
11820 /* If x0 and x1 are identical then x is also valid. */
11824 /* If x1 is identical to a subexpression of x0 then
11825 while checking x0, x1 has already been checked. Thus
11826 it is valid and so as x. */
11827 if ((GET_RTX_CLASS (GET_CODE (x0
)) == '2'
11828 || GET_RTX_CLASS (GET_CODE (x0
)) == 'c')
11829 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
11832 /* If x0 is identical to a subexpression of x1 then x is
11833 valid iff the rest of x1 is valid. */
11834 if ((GET_RTX_CLASS (GET_CODE (x1
)) == '2'
11835 || GET_RTX_CLASS (GET_CODE (x1
)) == 'c')
11836 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
11838 get_last_value_validate (&XEXP (x1
,
11839 x0
== XEXP (x1
, 0) ? 1 : 0),
11840 insn
, tick
, replace
);
11843 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
11847 /* Don't bother with these. They shouldn't occur anyway. */
11848 else if (fmt
[i
] == 'E')
11852 /* If we haven't found a reason for it to be invalid, it is valid. */
11856 /* Get the last value assigned to X, if known. Some registers
11857 in the value may be replaced with (clobber (const_int 0)) if their value
11858 is known longer known reliably. */
11861 get_last_value (rtx x
)
11863 unsigned int regno
;
11866 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11867 then convert it to the desired mode. If this is a paradoxical SUBREG,
11868 we cannot predict what values the "extra" bits might have. */
11869 if (GET_CODE (x
) == SUBREG
11870 && subreg_lowpart_p (x
)
11871 && (GET_MODE_SIZE (GET_MODE (x
))
11872 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
11873 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
11874 return gen_lowpart_for_combine (GET_MODE (x
), value
);
11876 if (GET_CODE (x
) != REG
)
11880 value
= reg_last_set_value
[regno
];
11882 /* If we don't have a value, or if it isn't for this basic block and
11883 it's either a hard register, set more than once, or it's a live
11884 at the beginning of the function, return 0.
11886 Because if it's not live at the beginning of the function then the reg
11887 is always set before being used (is never used without being set).
11888 And, if it's set only once, and it's always set before use, then all
11889 uses must have the same last value, even if it's not from this basic
11893 || (reg_last_set_label
[regno
] != label_tick
11894 && (regno
< FIRST_PSEUDO_REGISTER
11895 || REG_N_SETS (regno
) != 1
11896 || (REGNO_REG_SET_P
11897 (ENTRY_BLOCK_PTR
->next_bb
->global_live_at_start
, regno
)))))
11900 /* If the value was set in a later insn than the ones we are processing,
11901 we can't use it even if the register was only set once. */
11902 if (INSN_CUID (reg_last_set
[regno
]) >= subst_low_cuid
)
11905 /* If the value has all its registers valid, return it. */
11906 if (get_last_value_validate (&value
, reg_last_set
[regno
],
11907 reg_last_set_label
[regno
], 0))
11910 /* Otherwise, make a copy and replace any invalid register with
11911 (clobber (const_int 0)). If that fails for some reason, return 0. */
11913 value
= copy_rtx (value
);
11914 if (get_last_value_validate (&value
, reg_last_set
[regno
],
11915 reg_last_set_label
[regno
], 1))
11921 /* Return nonzero if expression X refers to a REG or to memory
11922 that is set in an instruction more recent than FROM_CUID. */
11925 use_crosses_set_p (rtx x
, int from_cuid
)
11929 enum rtx_code code
= GET_CODE (x
);
11933 unsigned int regno
= REGNO (x
);
11934 unsigned endreg
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11935 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
11937 #ifdef PUSH_ROUNDING
11938 /* Don't allow uses of the stack pointer to be moved,
11939 because we don't know whether the move crosses a push insn. */
11940 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
11943 for (; regno
< endreg
; regno
++)
11944 if (reg_last_set
[regno
]
11945 && INSN_CUID (reg_last_set
[regno
]) > from_cuid
)
11950 if (code
== MEM
&& mem_last_set
> from_cuid
)
11953 fmt
= GET_RTX_FORMAT (code
);
11955 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11960 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11961 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_cuid
))
11964 else if (fmt
[i
] == 'e'
11965 && use_crosses_set_p (XEXP (x
, i
), from_cuid
))
11971 /* Define three variables used for communication between the following
11974 static unsigned int reg_dead_regno
, reg_dead_endregno
;
11975 static int reg_dead_flag
;
11977 /* Function called via note_stores from reg_dead_at_p.
11979 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11980 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11983 reg_dead_at_p_1 (rtx dest
, rtx x
, void *data ATTRIBUTE_UNUSED
)
11985 unsigned int regno
, endregno
;
11987 if (GET_CODE (dest
) != REG
)
11990 regno
= REGNO (dest
);
11991 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11992 ? HARD_REGNO_NREGS (regno
, GET_MODE (dest
)) : 1);
11994 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
11995 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
11998 /* Return nonzero if REG is known to be dead at INSN.
12000 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12001 referencing REG, it is dead. If we hit a SET referencing REG, it is
12002 live. Otherwise, see if it is live or dead at the start of the basic
12003 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12004 must be assumed to be always live. */
12007 reg_dead_at_p (rtx reg
, rtx insn
)
12012 /* Set variables for reg_dead_at_p_1. */
12013 reg_dead_regno
= REGNO (reg
);
12014 reg_dead_endregno
= reg_dead_regno
+ (reg_dead_regno
< FIRST_PSEUDO_REGISTER
12015 ? HARD_REGNO_NREGS (reg_dead_regno
,
12021 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
12022 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
12024 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12025 if (TEST_HARD_REG_BIT (newpat_used_regs
, i
))
12029 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
12030 beginning of function. */
12031 for (; insn
&& GET_CODE (insn
) != CODE_LABEL
&& GET_CODE (insn
) != BARRIER
;
12032 insn
= prev_nonnote_insn (insn
))
12034 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
12036 return reg_dead_flag
== 1 ? 1 : 0;
12038 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
12042 /* Get the basic block that we were in. */
12044 block
= ENTRY_BLOCK_PTR
->next_bb
;
12047 FOR_EACH_BB (block
)
12048 if (insn
== block
->head
)
12051 if (block
== EXIT_BLOCK_PTR
)
12055 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12056 if (REGNO_REG_SET_P (block
->global_live_at_start
, i
))
12062 /* Note hard registers in X that are used. This code is similar to
12063 that in flow.c, but much simpler since we don't care about pseudos. */
12066 mark_used_regs_combine (rtx x
)
12068 RTX_CODE code
= GET_CODE (x
);
12069 unsigned int regno
;
12082 case ADDR_DIFF_VEC
:
12085 /* CC0 must die in the insn after it is set, so we don't need to take
12086 special note of it here. */
12092 /* If we are clobbering a MEM, mark any hard registers inside the
12093 address as used. */
12094 if (GET_CODE (XEXP (x
, 0)) == MEM
)
12095 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
12100 /* A hard reg in a wide mode may really be multiple registers.
12101 If so, mark all of them just like the first. */
12102 if (regno
< FIRST_PSEUDO_REGISTER
)
12104 unsigned int endregno
, r
;
12106 /* None of this applies to the stack, frame or arg pointers. */
12107 if (regno
== STACK_POINTER_REGNUM
12108 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12109 || regno
== HARD_FRAME_POINTER_REGNUM
12111 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12112 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
12114 || regno
== FRAME_POINTER_REGNUM
)
12117 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
12118 for (r
= regno
; r
< endregno
; r
++)
12119 SET_HARD_REG_BIT (newpat_used_regs
, r
);
12125 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12127 rtx testreg
= SET_DEST (x
);
12129 while (GET_CODE (testreg
) == SUBREG
12130 || GET_CODE (testreg
) == ZERO_EXTRACT
12131 || GET_CODE (testreg
) == SIGN_EXTRACT
12132 || GET_CODE (testreg
) == STRICT_LOW_PART
)
12133 testreg
= XEXP (testreg
, 0);
12135 if (GET_CODE (testreg
) == MEM
)
12136 mark_used_regs_combine (XEXP (testreg
, 0));
12138 mark_used_regs_combine (SET_SRC (x
));
12146 /* Recursively scan the operands of this expression. */
12149 const char *fmt
= GET_RTX_FORMAT (code
);
12151 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12154 mark_used_regs_combine (XEXP (x
, i
));
12155 else if (fmt
[i
] == 'E')
12159 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12160 mark_used_regs_combine (XVECEXP (x
, i
, j
));
12166 /* Remove register number REGNO from the dead registers list of INSN.
12168 Return the note used to record the death, if there was one. */
12171 remove_death (unsigned int regno
, rtx insn
)
12173 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
12177 REG_N_DEATHS (regno
)--;
12178 remove_note (insn
, note
);
12184 /* For each register (hardware or pseudo) used within expression X, if its
12185 death is in an instruction with cuid between FROM_CUID (inclusive) and
12186 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12187 list headed by PNOTES.
12189 That said, don't move registers killed by maybe_kill_insn.
12191 This is done when X is being merged by combination into TO_INSN. These
12192 notes will then be distributed as needed. */
12195 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_cuid
, rtx to_insn
,
12200 enum rtx_code code
= GET_CODE (x
);
12204 unsigned int regno
= REGNO (x
);
12205 rtx where_dead
= reg_last_death
[regno
];
12206 rtx before_dead
, after_dead
;
12208 /* Don't move the register if it gets killed in between from and to. */
12209 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
12210 && ! reg_referenced_p (x
, maybe_kill_insn
))
12213 /* WHERE_DEAD could be a USE insn made by combine, so first we
12214 make sure that we have insns with valid INSN_CUID values. */
12215 before_dead
= where_dead
;
12216 while (before_dead
&& INSN_UID (before_dead
) > max_uid_cuid
)
12217 before_dead
= PREV_INSN (before_dead
);
12219 after_dead
= where_dead
;
12220 while (after_dead
&& INSN_UID (after_dead
) > max_uid_cuid
)
12221 after_dead
= NEXT_INSN (after_dead
);
12223 if (before_dead
&& after_dead
12224 && INSN_CUID (before_dead
) >= from_cuid
12225 && (INSN_CUID (after_dead
) < INSN_CUID (to_insn
)
12226 || (where_dead
!= after_dead
12227 && INSN_CUID (after_dead
) == INSN_CUID (to_insn
))))
12229 rtx note
= remove_death (regno
, where_dead
);
12231 /* It is possible for the call above to return 0. This can occur
12232 when reg_last_death points to I2 or I1 that we combined with.
12233 In that case make a new note.
12235 We must also check for the case where X is a hard register
12236 and NOTE is a death note for a range of hard registers
12237 including X. In that case, we must put REG_DEAD notes for
12238 the remaining registers in place of NOTE. */
12240 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
12241 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
12242 > GET_MODE_SIZE (GET_MODE (x
))))
12244 unsigned int deadregno
= REGNO (XEXP (note
, 0));
12245 unsigned int deadend
12246 = (deadregno
+ HARD_REGNO_NREGS (deadregno
,
12247 GET_MODE (XEXP (note
, 0))));
12248 unsigned int ourend
12249 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
12252 for (i
= deadregno
; i
< deadend
; i
++)
12253 if (i
< regno
|| i
>= ourend
)
12254 REG_NOTES (where_dead
)
12255 = gen_rtx_EXPR_LIST (REG_DEAD
,
12257 REG_NOTES (where_dead
));
12260 /* If we didn't find any note, or if we found a REG_DEAD note that
12261 covers only part of the given reg, and we have a multi-reg hard
12262 register, then to be safe we must check for REG_DEAD notes
12263 for each register other than the first. They could have
12264 their own REG_DEAD notes lying around. */
12265 else if ((note
== 0
12267 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
12268 < GET_MODE_SIZE (GET_MODE (x
)))))
12269 && regno
< FIRST_PSEUDO_REGISTER
12270 && HARD_REGNO_NREGS (regno
, GET_MODE (x
)) > 1)
12272 unsigned int ourend
12273 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
12274 unsigned int i
, offset
;
12278 offset
= HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (note
, 0)));
12282 for (i
= regno
+ offset
; i
< ourend
; i
++)
12283 move_deaths (regno_reg_rtx
[i
],
12284 maybe_kill_insn
, from_cuid
, to_insn
, &oldnotes
);
12287 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
12289 XEXP (note
, 1) = *pnotes
;
12293 *pnotes
= gen_rtx_EXPR_LIST (REG_DEAD
, x
, *pnotes
);
12295 REG_N_DEATHS (regno
)++;
12301 else if (GET_CODE (x
) == SET
)
12303 rtx dest
= SET_DEST (x
);
12305 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
12307 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12308 that accesses one word of a multi-word item, some
12309 piece of everything register in the expression is used by
12310 this insn, so remove any old death. */
12311 /* ??? So why do we test for equality of the sizes? */
12313 if (GET_CODE (dest
) == ZERO_EXTRACT
12314 || GET_CODE (dest
) == STRICT_LOW_PART
12315 || (GET_CODE (dest
) == SUBREG
12316 && (((GET_MODE_SIZE (GET_MODE (dest
))
12317 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
12318 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
12319 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
12321 move_deaths (dest
, maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
12325 /* If this is some other SUBREG, we know it replaces the entire
12326 value, so use that as the destination. */
12327 if (GET_CODE (dest
) == SUBREG
)
12328 dest
= SUBREG_REG (dest
);
12330 /* If this is a MEM, adjust deaths of anything used in the address.
12331 For a REG (the only other possibility), the entire value is
12332 being replaced so the old value is not used in this insn. */
12334 if (GET_CODE (dest
) == MEM
)
12335 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_cuid
,
12340 else if (GET_CODE (x
) == CLOBBER
)
12343 len
= GET_RTX_LENGTH (code
);
12344 fmt
= GET_RTX_FORMAT (code
);
12346 for (i
= 0; i
< len
; i
++)
12351 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
12352 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_cuid
,
12355 else if (fmt
[i
] == 'e')
12356 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
12360 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12361 pattern of an insn. X must be a REG. */
12364 reg_bitfield_target_p (rtx x
, rtx body
)
12368 if (GET_CODE (body
) == SET
)
12370 rtx dest
= SET_DEST (body
);
12372 unsigned int regno
, tregno
, endregno
, endtregno
;
12374 if (GET_CODE (dest
) == ZERO_EXTRACT
)
12375 target
= XEXP (dest
, 0);
12376 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
12377 target
= SUBREG_REG (XEXP (dest
, 0));
12381 if (GET_CODE (target
) == SUBREG
)
12382 target
= SUBREG_REG (target
);
12384 if (GET_CODE (target
) != REG
)
12387 tregno
= REGNO (target
), regno
= REGNO (x
);
12388 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
12389 return target
== x
;
12391 endtregno
= tregno
+ HARD_REGNO_NREGS (tregno
, GET_MODE (target
));
12392 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
12394 return endregno
> tregno
&& regno
< endtregno
;
12397 else if (GET_CODE (body
) == PARALLEL
)
12398 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
12399 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
12405 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12406 as appropriate. I3 and I2 are the insns resulting from the combination
12407 insns including FROM (I2 may be zero).
12409 Each note in the list is either ignored or placed on some insns, depending
12410 on the type of note. */
12413 distribute_notes (rtx notes
, rtx from_insn
, rtx i3
, rtx i2
)
12415 rtx note
, next_note
;
12418 for (note
= notes
; note
; note
= next_note
)
12420 rtx place
= 0, place2
= 0;
12422 /* If this NOTE references a pseudo register, ensure it references
12423 the latest copy of that register. */
12424 if (XEXP (note
, 0) && GET_CODE (XEXP (note
, 0)) == REG
12425 && REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
)
12426 XEXP (note
, 0) = regno_reg_rtx
[REGNO (XEXP (note
, 0))];
12428 next_note
= XEXP (note
, 1);
12429 switch (REG_NOTE_KIND (note
))
12433 /* Doesn't matter much where we put this, as long as it's somewhere.
12434 It is preferable to keep these notes on branches, which is most
12435 likely to be i3. */
12439 case REG_VTABLE_REF
:
12440 /* ??? Should remain with *a particular* memory load. Given the
12441 nature of vtable data, the last insn seems relatively safe. */
12445 case REG_NON_LOCAL_GOTO
:
12446 if (GET_CODE (i3
) == JUMP_INSN
)
12448 else if (i2
&& GET_CODE (i2
) == JUMP_INSN
)
12454 case REG_EH_REGION
:
12455 /* These notes must remain with the call or trapping instruction. */
12456 if (GET_CODE (i3
) == CALL_INSN
)
12458 else if (i2
&& GET_CODE (i2
) == CALL_INSN
)
12460 else if (flag_non_call_exceptions
)
12462 if (may_trap_p (i3
))
12464 else if (i2
&& may_trap_p (i2
))
12466 /* ??? Otherwise assume we've combined things such that we
12467 can now prove that the instructions can't trap. Drop the
12468 note in this case. */
12476 /* These notes must remain with the call. It should not be
12477 possible for both I2 and I3 to be a call. */
12478 if (GET_CODE (i3
) == CALL_INSN
)
12480 else if (i2
&& GET_CODE (i2
) == CALL_INSN
)
12487 /* Any clobbers for i3 may still exist, and so we must process
12488 REG_UNUSED notes from that insn.
12490 Any clobbers from i2 or i1 can only exist if they were added by
12491 recog_for_combine. In that case, recog_for_combine created the
12492 necessary REG_UNUSED notes. Trying to keep any original
12493 REG_UNUSED notes from these insns can cause incorrect output
12494 if it is for the same register as the original i3 dest.
12495 In that case, we will notice that the register is set in i3,
12496 and then add a REG_UNUSED note for the destination of i3, which
12497 is wrong. However, it is possible to have REG_UNUSED notes from
12498 i2 or i1 for register which were both used and clobbered, so
12499 we keep notes from i2 or i1 if they will turn into REG_DEAD
12502 /* If this register is set or clobbered in I3, put the note there
12503 unless there is one already. */
12504 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
12506 if (from_insn
!= i3
)
12509 if (! (GET_CODE (XEXP (note
, 0)) == REG
12510 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
12511 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
12514 /* Otherwise, if this register is used by I3, then this register
12515 now dies here, so we must put a REG_DEAD note here unless there
12517 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
12518 && ! (GET_CODE (XEXP (note
, 0)) == REG
12519 ? find_regno_note (i3
, REG_DEAD
,
12520 REGNO (XEXP (note
, 0)))
12521 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
12523 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
12531 /* These notes say something about results of an insn. We can
12532 only support them if they used to be on I3 in which case they
12533 remain on I3. Otherwise they are ignored.
12535 If the note refers to an expression that is not a constant, we
12536 must also ignore the note since we cannot tell whether the
12537 equivalence is still true. It might be possible to do
12538 slightly better than this (we only have a problem if I2DEST
12539 or I1DEST is present in the expression), but it doesn't
12540 seem worth the trouble. */
12542 if (from_insn
== i3
12543 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
12548 case REG_NO_CONFLICT
:
12549 /* These notes say something about how a register is used. They must
12550 be present on any use of the register in I2 or I3. */
12551 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
12554 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
12564 /* This can show up in several ways -- either directly in the
12565 pattern, or hidden off in the constant pool with (or without?)
12566 a REG_EQUAL note. */
12567 /* ??? Ignore the without-reg_equal-note problem for now. */
12568 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
12569 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
12570 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
12571 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
12575 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
12576 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
12577 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
12578 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
12586 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12587 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12588 if (place
&& GET_CODE (place
) == JUMP_INSN
&& JUMP_LABEL (place
))
12590 if (JUMP_LABEL (place
) != XEXP (note
, 0))
12592 if (GET_CODE (JUMP_LABEL (place
)) == CODE_LABEL
)
12593 LABEL_NUSES (JUMP_LABEL (place
))--;
12596 if (place2
&& GET_CODE (place2
) == JUMP_INSN
&& JUMP_LABEL (place2
))
12598 if (JUMP_LABEL (place2
) != XEXP (note
, 0))
12600 if (GET_CODE (JUMP_LABEL (place2
)) == CODE_LABEL
)
12601 LABEL_NUSES (JUMP_LABEL (place2
))--;
12608 /* These notes say something about the value of a register prior
12609 to the execution of an insn. It is too much trouble to see
12610 if the note is still correct in all situations. It is better
12611 to simply delete it. */
12615 /* If the insn previously containing this note still exists,
12616 put it back where it was. Otherwise move it to the previous
12617 insn. Adjust the corresponding REG_LIBCALL note. */
12618 if (GET_CODE (from_insn
) != NOTE
)
12622 tem
= find_reg_note (XEXP (note
, 0), REG_LIBCALL
, NULL_RTX
);
12623 place
= prev_real_insn (from_insn
);
12625 XEXP (tem
, 0) = place
;
12626 /* If we're deleting the last remaining instruction of a
12627 libcall sequence, don't add the notes. */
12628 else if (XEXP (note
, 0) == from_insn
)
12634 /* This is handled similarly to REG_RETVAL. */
12635 if (GET_CODE (from_insn
) != NOTE
)
12639 tem
= find_reg_note (XEXP (note
, 0), REG_RETVAL
, NULL_RTX
);
12640 place
= next_real_insn (from_insn
);
12642 XEXP (tem
, 0) = place
;
12643 /* If we're deleting the last remaining instruction of a
12644 libcall sequence, don't add the notes. */
12645 else if (XEXP (note
, 0) == from_insn
)
12651 /* If the register is used as an input in I3, it dies there.
12652 Similarly for I2, if it is nonzero and adjacent to I3.
12654 If the register is not used as an input in either I3 or I2
12655 and it is not one of the registers we were supposed to eliminate,
12656 there are two possibilities. We might have a non-adjacent I2
12657 or we might have somehow eliminated an additional register
12658 from a computation. For example, we might have had A & B where
12659 we discover that B will always be zero. In this case we will
12660 eliminate the reference to A.
12662 In both cases, we must search to see if we can find a previous
12663 use of A and put the death note there. */
12666 && GET_CODE (from_insn
) == CALL_INSN
12667 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
12669 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
12671 else if (i2
!= 0 && next_nonnote_insn (i2
) == i3
12672 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12677 basic_block bb
= this_basic_block
;
12679 for (tem
= PREV_INSN (i3
); place
== 0; tem
= PREV_INSN (tem
))
12681 if (! INSN_P (tem
))
12683 if (tem
== bb
->head
)
12688 /* If the register is being set at TEM, see if that is all
12689 TEM is doing. If so, delete TEM. Otherwise, make this
12690 into a REG_UNUSED note instead. */
12691 if (reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
12693 rtx set
= single_set (tem
);
12694 rtx inner_dest
= 0;
12696 rtx cc0_setter
= NULL_RTX
;
12700 for (inner_dest
= SET_DEST (set
);
12701 (GET_CODE (inner_dest
) == STRICT_LOW_PART
12702 || GET_CODE (inner_dest
) == SUBREG
12703 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
12704 inner_dest
= XEXP (inner_dest
, 0))
12707 /* Verify that it was the set, and not a clobber that
12708 modified the register.
12710 CC0 targets must be careful to maintain setter/user
12711 pairs. If we cannot delete the setter due to side
12712 effects, mark the user with an UNUSED note instead
12715 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
12716 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
12718 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
12719 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
12720 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
12724 /* Move the notes and links of TEM elsewhere.
12725 This might delete other dead insns recursively.
12726 First set the pattern to something that won't use
12729 PATTERN (tem
) = pc_rtx
;
12731 distribute_notes (REG_NOTES (tem
), tem
, tem
,
12733 distribute_links (LOG_LINKS (tem
));
12735 PUT_CODE (tem
, NOTE
);
12736 NOTE_LINE_NUMBER (tem
) = NOTE_INSN_DELETED
;
12737 NOTE_SOURCE_FILE (tem
) = 0;
12740 /* Delete the setter too. */
12743 PATTERN (cc0_setter
) = pc_rtx
;
12745 distribute_notes (REG_NOTES (cc0_setter
),
12746 cc0_setter
, cc0_setter
,
12748 distribute_links (LOG_LINKS (cc0_setter
));
12750 PUT_CODE (cc0_setter
, NOTE
);
12751 NOTE_LINE_NUMBER (cc0_setter
)
12752 = NOTE_INSN_DELETED
;
12753 NOTE_SOURCE_FILE (cc0_setter
) = 0;
12757 /* If the register is both set and used here, put the
12758 REG_DEAD note here, but place a REG_UNUSED note
12759 here too unless there already is one. */
12760 else if (reg_referenced_p (XEXP (note
, 0),
12765 if (! find_regno_note (tem
, REG_UNUSED
,
12766 REGNO (XEXP (note
, 0))))
12768 = gen_rtx_EXPR_LIST (REG_UNUSED
, XEXP (note
, 0),
12773 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
12775 /* If there isn't already a REG_UNUSED note, put one
12777 if (! find_regno_note (tem
, REG_UNUSED
,
12778 REGNO (XEXP (note
, 0))))
12783 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
12784 || (GET_CODE (tem
) == CALL_INSN
12785 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
12789 /* If we are doing a 3->2 combination, and we have a
12790 register which formerly died in i3 and was not used
12791 by i2, which now no longer dies in i3 and is used in
12792 i2 but does not die in i2, and place is between i2
12793 and i3, then we may need to move a link from place to
12795 if (i2
&& INSN_UID (place
) <= max_uid_cuid
12796 && INSN_CUID (place
) > INSN_CUID (i2
)
12798 && INSN_CUID (from_insn
) > INSN_CUID (i2
)
12799 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12801 rtx links
= LOG_LINKS (place
);
12802 LOG_LINKS (place
) = 0;
12803 distribute_links (links
);
12808 if (tem
== bb
->head
)
12812 /* We haven't found an insn for the death note and it
12813 is still a REG_DEAD note, but we have hit the beginning
12814 of the block. If the existing life info says the reg
12815 was dead, there's nothing left to do. Otherwise, we'll
12816 need to do a global life update after combine. */
12817 if (REG_NOTE_KIND (note
) == REG_DEAD
&& place
== 0
12818 && REGNO_REG_SET_P (bb
->global_live_at_start
,
12819 REGNO (XEXP (note
, 0))))
12820 SET_BIT (refresh_blocks
, this_basic_block
->index
);
12823 /* If the register is set or already dead at PLACE, we needn't do
12824 anything with this note if it is still a REG_DEAD note.
12825 We can here if it is set at all, not if is it totally replace,
12826 which is what `dead_or_set_p' checks, so also check for it being
12829 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
12831 unsigned int regno
= REGNO (XEXP (note
, 0));
12833 /* Similarly, if the instruction on which we want to place
12834 the note is a noop, we'll need do a global live update
12835 after we remove them in delete_noop_moves. */
12836 if (noop_move_p (place
))
12837 SET_BIT (refresh_blocks
, this_basic_block
->index
);
12839 if (dead_or_set_p (place
, XEXP (note
, 0))
12840 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
12842 /* Unless the register previously died in PLACE, clear
12843 reg_last_death. [I no longer understand why this is
12845 if (reg_last_death
[regno
] != place
)
12846 reg_last_death
[regno
] = 0;
12850 reg_last_death
[regno
] = place
;
12852 /* If this is a death note for a hard reg that is occupying
12853 multiple registers, ensure that we are still using all
12854 parts of the object. If we find a piece of the object
12855 that is unused, we must arrange for an appropriate REG_DEAD
12856 note to be added for it. However, we can't just emit a USE
12857 and tag the note to it, since the register might actually
12858 be dead; so we recourse, and the recursive call then finds
12859 the previous insn that used this register. */
12861 if (place
&& regno
< FIRST_PSEUDO_REGISTER
12862 && HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (note
, 0))) > 1)
12864 unsigned int endregno
12865 = regno
+ HARD_REGNO_NREGS (regno
,
12866 GET_MODE (XEXP (note
, 0)));
12870 for (i
= regno
; i
< endregno
; i
++)
12871 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
12872 && ! find_regno_fusage (place
, USE
, i
))
12873 || dead_or_set_regno_p (place
, i
))
12878 /* Put only REG_DEAD notes for pieces that are
12879 not already dead or set. */
12881 for (i
= regno
; i
< endregno
;
12882 i
+= HARD_REGNO_NREGS (i
, reg_raw_mode
[i
]))
12884 rtx piece
= regno_reg_rtx
[i
];
12885 basic_block bb
= this_basic_block
;
12887 if (! dead_or_set_p (place
, piece
)
12888 && ! reg_bitfield_target_p (piece
,
12892 = gen_rtx_EXPR_LIST (REG_DEAD
, piece
, NULL_RTX
);
12894 distribute_notes (new_note
, place
, place
,
12897 else if (! refers_to_regno_p (i
, i
+ 1,
12898 PATTERN (place
), 0)
12899 && ! find_regno_fusage (place
, USE
, i
))
12900 for (tem
= PREV_INSN (place
); ;
12901 tem
= PREV_INSN (tem
))
12903 if (! INSN_P (tem
))
12905 if (tem
== bb
->head
)
12907 SET_BIT (refresh_blocks
,
12908 this_basic_block
->index
);
12913 if (dead_or_set_p (tem
, piece
)
12914 || reg_bitfield_target_p (piece
,
12918 = gen_rtx_EXPR_LIST (REG_UNUSED
, piece
,
12933 /* Any other notes should not be present at this point in the
12940 XEXP (note
, 1) = REG_NOTES (place
);
12941 REG_NOTES (place
) = note
;
12943 else if ((REG_NOTE_KIND (note
) == REG_DEAD
12944 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12945 && GET_CODE (XEXP (note
, 0)) == REG
)
12946 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
12950 if ((REG_NOTE_KIND (note
) == REG_DEAD
12951 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12952 && GET_CODE (XEXP (note
, 0)) == REG
)
12953 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
12955 REG_NOTES (place2
) = gen_rtx_fmt_ee (GET_CODE (note
),
12956 REG_NOTE_KIND (note
),
12958 REG_NOTES (place2
));
12963 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12964 I3, I2, and I1 to new locations. This is also called in one case to
12965 add a link pointing at I3 when I3's destination is changed. */
12968 distribute_links (rtx links
)
12970 rtx link
, next_link
;
12972 for (link
= links
; link
; link
= next_link
)
12978 next_link
= XEXP (link
, 1);
12980 /* If the insn that this link points to is a NOTE or isn't a single
12981 set, ignore it. In the latter case, it isn't clear what we
12982 can do other than ignore the link, since we can't tell which
12983 register it was for. Such links wouldn't be used by combine
12986 It is not possible for the destination of the target of the link to
12987 have been changed by combine. The only potential of this is if we
12988 replace I3, I2, and I1 by I3 and I2. But in that case the
12989 destination of I2 also remains unchanged. */
12991 if (GET_CODE (XEXP (link
, 0)) == NOTE
12992 || (set
= single_set (XEXP (link
, 0))) == 0)
12995 reg
= SET_DEST (set
);
12996 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
12997 || GET_CODE (reg
) == SIGN_EXTRACT
12998 || GET_CODE (reg
) == STRICT_LOW_PART
)
12999 reg
= XEXP (reg
, 0);
13001 /* A LOG_LINK is defined as being placed on the first insn that uses
13002 a register and points to the insn that sets the register. Start
13003 searching at the next insn after the target of the link and stop
13004 when we reach a set of the register or the end of the basic block.
13006 Note that this correctly handles the link that used to point from
13007 I3 to I2. Also note that not much searching is typically done here
13008 since most links don't point very far away. */
13010 for (insn
= NEXT_INSN (XEXP (link
, 0));
13011 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
13012 || this_basic_block
->next_bb
->head
!= insn
));
13013 insn
= NEXT_INSN (insn
))
13014 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
13016 if (reg_referenced_p (reg
, PATTERN (insn
)))
13020 else if (GET_CODE (insn
) == CALL_INSN
13021 && find_reg_fusage (insn
, USE
, reg
))
13027 /* If we found a place to put the link, place it there unless there
13028 is already a link to the same insn as LINK at that point. */
13034 for (link2
= LOG_LINKS (place
); link2
; link2
= XEXP (link2
, 1))
13035 if (XEXP (link2
, 0) == XEXP (link
, 0))
13040 XEXP (link
, 1) = LOG_LINKS (place
);
13041 LOG_LINKS (place
) = link
;
13043 /* Set added_links_insn to the earliest insn we added a
13045 if (added_links_insn
== 0
13046 || INSN_CUID (added_links_insn
) > INSN_CUID (place
))
13047 added_links_insn
= place
;
13053 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
13056 insn_cuid (rtx insn
)
13058 while (insn
!= 0 && INSN_UID (insn
) > max_uid_cuid
13059 && GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == USE
)
13060 insn
= NEXT_INSN (insn
);
13062 if (INSN_UID (insn
) > max_uid_cuid
)
13065 return INSN_CUID (insn
);
13069 dump_combine_stats (FILE *file
)
13073 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13074 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
13078 dump_combine_total_stats (FILE *file
)
13082 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13083 total_attempts
, total_merges
, total_extras
, total_successes
);