1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
44 /* Type of value ranges. See value_range_d for a description of these
46 enum value_range_type
{ VR_UNDEFINED
, VR_RANGE
, VR_ANTI_RANGE
, VR_VARYING
};
48 /* Range of values that can be associated with an SSA_NAME after VRP
52 /* Lattice value represented by this range. */
53 enum value_range_type type
;
55 /* Minimum and maximum values represented by this range. These
56 values should be interpreted as follows:
58 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
61 - If TYPE == VR_RANGE then MIN holds the minimum value and
62 MAX holds the maximum value of the range [MIN, MAX].
64 - If TYPE == ANTI_RANGE the variable is known to NOT
65 take any values in the range [MIN, MAX]. */
69 /* Set of SSA names whose value ranges are equivalent to this one.
70 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
74 typedef struct value_range_d value_range_t
;
76 /* Set of SSA names found live during the RPO traversal of the function
77 for still active basic-blocks. */
80 /* Return true if the SSA name NAME is live on the edge E. */
83 live_on_edge (edge e
, tree name
)
85 return (live
[e
->dest
->index
]
86 && TEST_BIT (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
89 /* Local functions. */
90 static int compare_values (tree val1
, tree val2
);
91 static int compare_values_warnv (tree val1
, tree val2
, bool *);
92 static void vrp_meet (value_range_t
*, value_range_t
*);
93 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
94 tree
, tree
, bool, bool *,
97 /* Location information for ASSERT_EXPRs. Each instance of this
98 structure describes an ASSERT_EXPR for an SSA name. Since a single
99 SSA name may have more than one assertion associated with it, these
100 locations are kept in a linked list attached to the corresponding
102 struct assert_locus_d
104 /* Basic block where the assertion would be inserted. */
107 /* Some assertions need to be inserted on an edge (e.g., assertions
108 generated by COND_EXPRs). In those cases, BB will be NULL. */
111 /* Pointer to the statement that generated this assertion. */
112 gimple_stmt_iterator si
;
114 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
115 enum tree_code comp_code
;
117 /* Value being compared against. */
120 /* Expression to compare. */
123 /* Next node in the linked list. */
124 struct assert_locus_d
*next
;
127 typedef struct assert_locus_d
*assert_locus_t
;
129 /* If bit I is present, it means that SSA name N_i has a list of
130 assertions that should be inserted in the IL. */
131 static bitmap need_assert_for
;
133 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
134 holds a list of ASSERT_LOCUS_T nodes that describe where
135 ASSERT_EXPRs for SSA name N_I should be inserted. */
136 static assert_locus_t
*asserts_for
;
138 /* Value range array. After propagation, VR_VALUE[I] holds the range
139 of values that SSA name N_I may take. */
140 static value_range_t
**vr_value
;
142 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
143 number of executable edges we saw the last time we visited the
145 static int *vr_phi_edge_counts
;
152 static VEC (edge
, heap
) *to_remove_edges
;
153 DEF_VEC_O(switch_update
);
154 DEF_VEC_ALLOC_O(switch_update
, heap
);
155 static VEC (switch_update
, heap
) *to_update_switch_stmts
;
158 /* Return the maximum value for TYPE. */
161 vrp_val_max (const_tree type
)
163 if (!INTEGRAL_TYPE_P (type
))
166 return TYPE_MAX_VALUE (type
);
169 /* Return the minimum value for TYPE. */
172 vrp_val_min (const_tree type
)
174 if (!INTEGRAL_TYPE_P (type
))
177 return TYPE_MIN_VALUE (type
);
180 /* Return whether VAL is equal to the maximum value of its type. This
181 will be true for a positive overflow infinity. We can't do a
182 simple equality comparison with TYPE_MAX_VALUE because C typedefs
183 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
184 to the integer constant with the same value in the type. */
187 vrp_val_is_max (const_tree val
)
189 tree type_max
= vrp_val_max (TREE_TYPE (val
));
190 return (val
== type_max
191 || (type_max
!= NULL_TREE
192 && operand_equal_p (val
, type_max
, 0)));
195 /* Return whether VAL is equal to the minimum value of its type. This
196 will be true for a negative overflow infinity. */
199 vrp_val_is_min (const_tree val
)
201 tree type_min
= vrp_val_min (TREE_TYPE (val
));
202 return (val
== type_min
203 || (type_min
!= NULL_TREE
204 && operand_equal_p (val
, type_min
, 0)));
208 /* Return whether TYPE should use an overflow infinity distinct from
209 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
210 represent a signed overflow during VRP computations. An infinity
211 is distinct from a half-range, which will go from some number to
212 TYPE_{MIN,MAX}_VALUE. */
215 needs_overflow_infinity (const_tree type
)
217 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
220 /* Return whether TYPE can support our overflow infinity
221 representation: we use the TREE_OVERFLOW flag, which only exists
222 for constants. If TYPE doesn't support this, we don't optimize
223 cases which would require signed overflow--we drop them to
227 supports_overflow_infinity (const_tree type
)
229 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
230 #ifdef ENABLE_CHECKING
231 gcc_assert (needs_overflow_infinity (type
));
233 return (min
!= NULL_TREE
234 && CONSTANT_CLASS_P (min
)
236 && CONSTANT_CLASS_P (max
));
239 /* VAL is the maximum or minimum value of a type. Return a
240 corresponding overflow infinity. */
243 make_overflow_infinity (tree val
)
245 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
246 val
= copy_node (val
);
247 TREE_OVERFLOW (val
) = 1;
251 /* Return a negative overflow infinity for TYPE. */
254 negative_overflow_infinity (tree type
)
256 gcc_checking_assert (supports_overflow_infinity (type
));
257 return make_overflow_infinity (vrp_val_min (type
));
260 /* Return a positive overflow infinity for TYPE. */
263 positive_overflow_infinity (tree type
)
265 gcc_checking_assert (supports_overflow_infinity (type
));
266 return make_overflow_infinity (vrp_val_max (type
));
269 /* Return whether VAL is a negative overflow infinity. */
272 is_negative_overflow_infinity (const_tree val
)
274 return (needs_overflow_infinity (TREE_TYPE (val
))
275 && CONSTANT_CLASS_P (val
)
276 && TREE_OVERFLOW (val
)
277 && vrp_val_is_min (val
));
280 /* Return whether VAL is a positive overflow infinity. */
283 is_positive_overflow_infinity (const_tree val
)
285 return (needs_overflow_infinity (TREE_TYPE (val
))
286 && CONSTANT_CLASS_P (val
)
287 && TREE_OVERFLOW (val
)
288 && vrp_val_is_max (val
));
291 /* Return whether VAL is a positive or negative overflow infinity. */
294 is_overflow_infinity (const_tree val
)
296 return (needs_overflow_infinity (TREE_TYPE (val
))
297 && CONSTANT_CLASS_P (val
)
298 && TREE_OVERFLOW (val
)
299 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
302 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
305 stmt_overflow_infinity (gimple stmt
)
307 if (is_gimple_assign (stmt
)
308 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
310 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
314 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
315 the same value with TREE_OVERFLOW clear. This can be used to avoid
316 confusing a regular value with an overflow value. */
319 avoid_overflow_infinity (tree val
)
321 if (!is_overflow_infinity (val
))
324 if (vrp_val_is_max (val
))
325 return vrp_val_max (TREE_TYPE (val
));
328 gcc_checking_assert (vrp_val_is_min (val
));
329 return vrp_val_min (TREE_TYPE (val
));
334 /* Return true if ARG is marked with the nonnull attribute in the
335 current function signature. */
338 nonnull_arg_p (const_tree arg
)
340 tree t
, attrs
, fntype
;
341 unsigned HOST_WIDE_INT arg_num
;
343 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
345 /* The static chain decl is always non null. */
346 if (arg
== cfun
->static_chain_decl
)
349 fntype
= TREE_TYPE (current_function_decl
);
350 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
352 /* If "nonnull" wasn't specified, we know nothing about the argument. */
353 if (attrs
== NULL_TREE
)
356 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
357 if (TREE_VALUE (attrs
) == NULL_TREE
)
360 /* Get the position number for ARG in the function signature. */
361 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
363 t
= DECL_CHAIN (t
), arg_num
++)
369 gcc_assert (t
== arg
);
371 /* Now see if ARG_NUM is mentioned in the nonnull list. */
372 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
374 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
382 /* Set value range VR to VR_VARYING. */
385 set_value_range_to_varying (value_range_t
*vr
)
387 vr
->type
= VR_VARYING
;
388 vr
->min
= vr
->max
= NULL_TREE
;
390 bitmap_clear (vr
->equiv
);
394 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
397 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
398 tree max
, bitmap equiv
)
400 #if defined ENABLE_CHECKING
401 /* Check the validity of the range. */
402 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
406 gcc_assert (min
&& max
);
408 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
409 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
411 cmp
= compare_values (min
, max
);
412 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
414 if (needs_overflow_infinity (TREE_TYPE (min
)))
415 gcc_assert (!is_overflow_infinity (min
)
416 || !is_overflow_infinity (max
));
419 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
420 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
422 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
423 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
430 /* Since updating the equivalence set involves deep copying the
431 bitmaps, only do it if absolutely necessary. */
432 if (vr
->equiv
== NULL
434 vr
->equiv
= BITMAP_ALLOC (NULL
);
436 if (equiv
!= vr
->equiv
)
438 if (equiv
&& !bitmap_empty_p (equiv
))
439 bitmap_copy (vr
->equiv
, equiv
);
441 bitmap_clear (vr
->equiv
);
446 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
447 This means adjusting T, MIN and MAX representing the case of a
448 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
449 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
450 In corner cases where MAX+1 or MIN-1 wraps this will fall back
452 This routine exists to ease canonicalization in the case where we
453 extract ranges from var + CST op limit. */
456 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
457 tree min
, tree max
, bitmap equiv
)
459 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
461 && t
!= VR_ANTI_RANGE
)
462 || TREE_CODE (min
) != INTEGER_CST
463 || TREE_CODE (max
) != INTEGER_CST
)
465 set_value_range (vr
, t
, min
, max
, equiv
);
469 /* Wrong order for min and max, to swap them and the VR type we need
471 if (tree_int_cst_lt (max
, min
))
473 tree one
= build_int_cst (TREE_TYPE (min
), 1);
474 tree tmp
= int_const_binop (PLUS_EXPR
, max
, one
, 0);
475 max
= int_const_binop (MINUS_EXPR
, min
, one
, 0);
478 /* There's one corner case, if we had [C+1, C] before we now have
479 that again. But this represents an empty value range, so drop
480 to varying in this case. */
481 if (tree_int_cst_lt (max
, min
))
483 set_value_range_to_varying (vr
);
487 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
490 /* Anti-ranges that can be represented as ranges should be so. */
491 if (t
== VR_ANTI_RANGE
)
493 bool is_min
= vrp_val_is_min (min
);
494 bool is_max
= vrp_val_is_max (max
);
496 if (is_min
&& is_max
)
498 /* We cannot deal with empty ranges, drop to varying. */
499 set_value_range_to_varying (vr
);
503 /* As a special exception preserve non-null ranges. */
504 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
505 && integer_zerop (max
)))
507 tree one
= build_int_cst (TREE_TYPE (max
), 1);
508 min
= int_const_binop (PLUS_EXPR
, max
, one
, 0);
509 max
= vrp_val_max (TREE_TYPE (max
));
514 tree one
= build_int_cst (TREE_TYPE (min
), 1);
515 max
= int_const_binop (MINUS_EXPR
, min
, one
, 0);
516 min
= vrp_val_min (TREE_TYPE (min
));
521 set_value_range (vr
, t
, min
, max
, equiv
);
524 /* Copy value range FROM into value range TO. */
527 copy_value_range (value_range_t
*to
, value_range_t
*from
)
529 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
532 /* Set value range VR to a single value. This function is only called
533 with values we get from statements, and exists to clear the
534 TREE_OVERFLOW flag so that we don't think we have an overflow
535 infinity when we shouldn't. */
538 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
540 gcc_assert (is_gimple_min_invariant (val
));
541 val
= avoid_overflow_infinity (val
);
542 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
545 /* Set value range VR to a non-negative range of type TYPE.
546 OVERFLOW_INFINITY indicates whether to use an overflow infinity
547 rather than TYPE_MAX_VALUE; this should be true if we determine
548 that the range is nonnegative based on the assumption that signed
549 overflow does not occur. */
552 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
553 bool overflow_infinity
)
557 if (overflow_infinity
&& !supports_overflow_infinity (type
))
559 set_value_range_to_varying (vr
);
563 zero
= build_int_cst (type
, 0);
564 set_value_range (vr
, VR_RANGE
, zero
,
566 ? positive_overflow_infinity (type
)
567 : TYPE_MAX_VALUE (type
)),
571 /* Set value range VR to a non-NULL range of type TYPE. */
574 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
576 tree zero
= build_int_cst (type
, 0);
577 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
581 /* Set value range VR to a NULL range of type TYPE. */
584 set_value_range_to_null (value_range_t
*vr
, tree type
)
586 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
590 /* Set value range VR to a range of a truthvalue of type TYPE. */
593 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
595 if (TYPE_PRECISION (type
) == 1)
596 set_value_range_to_varying (vr
);
598 set_value_range (vr
, VR_RANGE
,
599 build_int_cst (type
, 0), build_int_cst (type
, 1),
604 /* Set value range VR to VR_UNDEFINED. */
607 set_value_range_to_undefined (value_range_t
*vr
)
609 vr
->type
= VR_UNDEFINED
;
610 vr
->min
= vr
->max
= NULL_TREE
;
612 bitmap_clear (vr
->equiv
);
616 /* If abs (min) < abs (max), set VR to [-max, max], if
617 abs (min) >= abs (max), set VR to [-min, min]. */
620 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
624 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
625 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
626 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
627 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
628 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
629 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
630 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
632 set_value_range_to_varying (vr
);
635 cmp
= compare_values (min
, max
);
637 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
638 else if (cmp
== 0 || cmp
== 1)
641 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
645 set_value_range_to_varying (vr
);
648 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
652 /* Return value range information for VAR.
654 If we have no values ranges recorded (ie, VRP is not running), then
655 return NULL. Otherwise create an empty range if none existed for VAR. */
657 static value_range_t
*
658 get_value_range (const_tree var
)
662 unsigned ver
= SSA_NAME_VERSION (var
);
664 /* If we have no recorded ranges, then return NULL. */
672 /* Create a default value range. */
673 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
675 /* Defer allocating the equivalence set. */
678 /* If VAR is a default definition, the variable can take any value
680 sym
= SSA_NAME_VAR (var
);
681 if (SSA_NAME_IS_DEFAULT_DEF (var
))
683 /* Try to use the "nonnull" attribute to create ~[0, 0]
684 anti-ranges for pointers. Note that this is only valid with
685 default definitions of PARM_DECLs. */
686 if (TREE_CODE (sym
) == PARM_DECL
687 && POINTER_TYPE_P (TREE_TYPE (sym
))
688 && nonnull_arg_p (sym
))
689 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
691 set_value_range_to_varying (vr
);
697 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
700 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
704 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
706 if (is_overflow_infinity (val1
))
707 return is_overflow_infinity (val2
);
711 /* Return true, if the bitmaps B1 and B2 are equal. */
714 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
717 || ((!b1
|| bitmap_empty_p (b1
))
718 && (!b2
|| bitmap_empty_p (b2
)))
720 && bitmap_equal_p (b1
, b2
)));
723 /* Update the value range and equivalence set for variable VAR to
724 NEW_VR. Return true if NEW_VR is different from VAR's previous
727 NOTE: This function assumes that NEW_VR is a temporary value range
728 object created for the sole purpose of updating VAR's range. The
729 storage used by the equivalence set from NEW_VR will be freed by
730 this function. Do not call update_value_range when NEW_VR
731 is the range object associated with another SSA name. */
734 update_value_range (const_tree var
, value_range_t
*new_vr
)
736 value_range_t
*old_vr
;
739 /* Update the value range, if necessary. */
740 old_vr
= get_value_range (var
);
741 is_new
= old_vr
->type
!= new_vr
->type
742 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
743 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
744 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
747 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
750 BITMAP_FREE (new_vr
->equiv
);
756 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
757 point where equivalence processing can be turned on/off. */
760 add_equivalence (bitmap
*equiv
, const_tree var
)
762 unsigned ver
= SSA_NAME_VERSION (var
);
763 value_range_t
*vr
= vr_value
[ver
];
766 *equiv
= BITMAP_ALLOC (NULL
);
767 bitmap_set_bit (*equiv
, ver
);
769 bitmap_ior_into (*equiv
, vr
->equiv
);
773 /* Return true if VR is ~[0, 0]. */
776 range_is_nonnull (value_range_t
*vr
)
778 return vr
->type
== VR_ANTI_RANGE
779 && integer_zerop (vr
->min
)
780 && integer_zerop (vr
->max
);
784 /* Return true if VR is [0, 0]. */
787 range_is_null (value_range_t
*vr
)
789 return vr
->type
== VR_RANGE
790 && integer_zerop (vr
->min
)
791 && integer_zerop (vr
->max
);
794 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
798 range_int_cst_p (value_range_t
*vr
)
800 return (vr
->type
== VR_RANGE
801 && TREE_CODE (vr
->max
) == INTEGER_CST
802 && TREE_CODE (vr
->min
) == INTEGER_CST
803 && !TREE_OVERFLOW (vr
->max
)
804 && !TREE_OVERFLOW (vr
->min
));
807 /* Return true if VR is a INTEGER_CST singleton. */
810 range_int_cst_singleton_p (value_range_t
*vr
)
812 return (range_int_cst_p (vr
)
813 && tree_int_cst_equal (vr
->min
, vr
->max
));
816 /* Return true if value range VR involves at least one symbol. */
819 symbolic_range_p (value_range_t
*vr
)
821 return (!is_gimple_min_invariant (vr
->min
)
822 || !is_gimple_min_invariant (vr
->max
));
825 /* Return true if value range VR uses an overflow infinity. */
828 overflow_infinity_range_p (value_range_t
*vr
)
830 return (vr
->type
== VR_RANGE
831 && (is_overflow_infinity (vr
->min
)
832 || is_overflow_infinity (vr
->max
)));
835 /* Return false if we can not make a valid comparison based on VR;
836 this will be the case if it uses an overflow infinity and overflow
837 is not undefined (i.e., -fno-strict-overflow is in effect).
838 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
839 uses an overflow infinity. */
842 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
844 gcc_assert (vr
->type
== VR_RANGE
);
845 if (is_overflow_infinity (vr
->min
))
847 *strict_overflow_p
= true;
848 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
851 if (is_overflow_infinity (vr
->max
))
853 *strict_overflow_p
= true;
854 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
861 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
862 ranges obtained so far. */
865 vrp_expr_computes_nonnegative (tree expr
, bool *strict_overflow_p
)
867 return (tree_expr_nonnegative_warnv_p (expr
, strict_overflow_p
)
868 || (TREE_CODE (expr
) == SSA_NAME
869 && ssa_name_nonnegative_p (expr
)));
872 /* Return true if the result of assignment STMT is know to be non-negative.
873 If the return value is based on the assumption that signed overflow is
874 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
875 *STRICT_OVERFLOW_P.*/
878 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
880 enum tree_code code
= gimple_assign_rhs_code (stmt
);
881 switch (get_gimple_rhs_class (code
))
883 case GIMPLE_UNARY_RHS
:
884 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
885 gimple_expr_type (stmt
),
886 gimple_assign_rhs1 (stmt
),
888 case GIMPLE_BINARY_RHS
:
889 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
890 gimple_expr_type (stmt
),
891 gimple_assign_rhs1 (stmt
),
892 gimple_assign_rhs2 (stmt
),
894 case GIMPLE_TERNARY_RHS
:
896 case GIMPLE_SINGLE_RHS
:
897 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
899 case GIMPLE_INVALID_RHS
:
906 /* Return true if return value of call STMT is know to be non-negative.
907 If the return value is based on the assumption that signed overflow is
908 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
909 *STRICT_OVERFLOW_P.*/
912 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
914 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
915 gimple_call_arg (stmt
, 0) : NULL_TREE
;
916 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
917 gimple_call_arg (stmt
, 1) : NULL_TREE
;
919 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
920 gimple_call_fndecl (stmt
),
926 /* Return true if STMT is know to to compute a non-negative value.
927 If the return value is based on the assumption that signed overflow is
928 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
929 *STRICT_OVERFLOW_P.*/
932 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
934 switch (gimple_code (stmt
))
937 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
939 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
945 /* Return true if the result of assignment STMT is know to be non-zero.
946 If the return value is based on the assumption that signed overflow is
947 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
948 *STRICT_OVERFLOW_P.*/
951 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
953 enum tree_code code
= gimple_assign_rhs_code (stmt
);
954 switch (get_gimple_rhs_class (code
))
956 case GIMPLE_UNARY_RHS
:
957 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
958 gimple_expr_type (stmt
),
959 gimple_assign_rhs1 (stmt
),
961 case GIMPLE_BINARY_RHS
:
962 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
963 gimple_expr_type (stmt
),
964 gimple_assign_rhs1 (stmt
),
965 gimple_assign_rhs2 (stmt
),
967 case GIMPLE_TERNARY_RHS
:
969 case GIMPLE_SINGLE_RHS
:
970 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
972 case GIMPLE_INVALID_RHS
:
979 /* Return true if STMT is know to to compute a non-zero value.
980 If the return value is based on the assumption that signed overflow is
981 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
982 *STRICT_OVERFLOW_P.*/
985 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
987 switch (gimple_code (stmt
))
990 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
992 return gimple_alloca_call_p (stmt
);
998 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1002 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
1004 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1007 /* If we have an expression of the form &X->a, then the expression
1008 is nonnull if X is nonnull. */
1009 if (is_gimple_assign (stmt
)
1010 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1012 tree expr
= gimple_assign_rhs1 (stmt
);
1013 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1015 if (base
!= NULL_TREE
1016 && TREE_CODE (base
) == MEM_REF
1017 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1019 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1020 if (range_is_nonnull (vr
))
1028 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1029 a gimple invariant, or SSA_NAME +- CST. */
1032 valid_value_p (tree expr
)
1034 if (TREE_CODE (expr
) == SSA_NAME
)
1037 if (TREE_CODE (expr
) == PLUS_EXPR
1038 || TREE_CODE (expr
) == MINUS_EXPR
)
1039 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1040 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1042 return is_gimple_min_invariant (expr
);
1048 -2 if those are incomparable. */
1050 operand_less_p (tree val
, tree val2
)
1052 /* LT is folded faster than GE and others. Inline the common case. */
1053 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1055 if (TYPE_UNSIGNED (TREE_TYPE (val
)))
1056 return INT_CST_LT_UNSIGNED (val
, val2
);
1059 if (INT_CST_LT (val
, val2
))
1067 fold_defer_overflow_warnings ();
1069 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1071 fold_undefer_and_ignore_overflow_warnings ();
1074 || TREE_CODE (tcmp
) != INTEGER_CST
)
1077 if (!integer_zerop (tcmp
))
1081 /* val >= val2, not considering overflow infinity. */
1082 if (is_negative_overflow_infinity (val
))
1083 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1084 else if (is_positive_overflow_infinity (val2
))
1085 return is_positive_overflow_infinity (val
) ? 0 : 1;
1090 /* Compare two values VAL1 and VAL2. Return
1092 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1095 +1 if VAL1 > VAL2, and
1098 This is similar to tree_int_cst_compare but supports pointer values
1099 and values that cannot be compared at compile time.
1101 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1102 true if the return value is only valid if we assume that signed
1103 overflow is undefined. */
1106 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1111 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1113 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1114 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1115 /* Convert the two values into the same type. This is needed because
1116 sizetype causes sign extension even for unsigned types. */
1117 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1118 STRIP_USELESS_TYPE_CONVERSION (val2
);
1120 if ((TREE_CODE (val1
) == SSA_NAME
1121 || TREE_CODE (val1
) == PLUS_EXPR
1122 || TREE_CODE (val1
) == MINUS_EXPR
)
1123 && (TREE_CODE (val2
) == SSA_NAME
1124 || TREE_CODE (val2
) == PLUS_EXPR
1125 || TREE_CODE (val2
) == MINUS_EXPR
))
1127 tree n1
, c1
, n2
, c2
;
1128 enum tree_code code1
, code2
;
1130 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1131 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1132 same name, return -2. */
1133 if (TREE_CODE (val1
) == SSA_NAME
)
1141 code1
= TREE_CODE (val1
);
1142 n1
= TREE_OPERAND (val1
, 0);
1143 c1
= TREE_OPERAND (val1
, 1);
1144 if (tree_int_cst_sgn (c1
) == -1)
1146 if (is_negative_overflow_infinity (c1
))
1148 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1151 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1155 if (TREE_CODE (val2
) == SSA_NAME
)
1163 code2
= TREE_CODE (val2
);
1164 n2
= TREE_OPERAND (val2
, 0);
1165 c2
= TREE_OPERAND (val2
, 1);
1166 if (tree_int_cst_sgn (c2
) == -1)
1168 if (is_negative_overflow_infinity (c2
))
1170 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1173 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1177 /* Both values must use the same name. */
1181 if (code1
== SSA_NAME
1182 && code2
== SSA_NAME
)
1186 /* If overflow is defined we cannot simplify more. */
1187 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1190 if (strict_overflow_p
!= NULL
1191 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1192 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1193 *strict_overflow_p
= true;
1195 if (code1
== SSA_NAME
)
1197 if (code2
== PLUS_EXPR
)
1198 /* NAME < NAME + CST */
1200 else if (code2
== MINUS_EXPR
)
1201 /* NAME > NAME - CST */
1204 else if (code1
== PLUS_EXPR
)
1206 if (code2
== SSA_NAME
)
1207 /* NAME + CST > NAME */
1209 else if (code2
== PLUS_EXPR
)
1210 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1211 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1212 else if (code2
== MINUS_EXPR
)
1213 /* NAME + CST1 > NAME - CST2 */
1216 else if (code1
== MINUS_EXPR
)
1218 if (code2
== SSA_NAME
)
1219 /* NAME - CST < NAME */
1221 else if (code2
== PLUS_EXPR
)
1222 /* NAME - CST1 < NAME + CST2 */
1224 else if (code2
== MINUS_EXPR
)
1225 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1226 C1 and C2 are swapped in the call to compare_values. */
1227 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1233 /* We cannot compare non-constants. */
1234 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1237 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1239 /* We cannot compare overflowed values, except for overflow
1241 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1243 if (strict_overflow_p
!= NULL
)
1244 *strict_overflow_p
= true;
1245 if (is_negative_overflow_infinity (val1
))
1246 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1247 else if (is_negative_overflow_infinity (val2
))
1249 else if (is_positive_overflow_infinity (val1
))
1250 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1251 else if (is_positive_overflow_infinity (val2
))
1256 return tree_int_cst_compare (val1
, val2
);
1262 /* First see if VAL1 and VAL2 are not the same. */
1263 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1266 /* If VAL1 is a lower address than VAL2, return -1. */
1267 if (operand_less_p (val1
, val2
) == 1)
1270 /* If VAL1 is a higher address than VAL2, return +1. */
1271 if (operand_less_p (val2
, val1
) == 1)
1274 /* If VAL1 is different than VAL2, return +2.
1275 For integer constants we either have already returned -1 or 1
1276 or they are equivalent. We still might succeed in proving
1277 something about non-trivial operands. */
1278 if (TREE_CODE (val1
) != INTEGER_CST
1279 || TREE_CODE (val2
) != INTEGER_CST
)
1281 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1282 if (t
&& integer_onep (t
))
1290 /* Compare values like compare_values_warnv, but treat comparisons of
1291 nonconstants which rely on undefined overflow as incomparable. */
1294 compare_values (tree val1
, tree val2
)
1300 ret
= compare_values_warnv (val1
, val2
, &sop
);
1302 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1308 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1309 0 if VAL is not inside VR,
1310 -2 if we cannot tell either way.
1312 FIXME, the current semantics of this functions are a bit quirky
1313 when taken in the context of VRP. In here we do not care
1314 about VR's type. If VR is the anti-range ~[3, 5] the call
1315 value_inside_range (4, VR) will return 1.
1317 This is counter-intuitive in a strict sense, but the callers
1318 currently expect this. They are calling the function
1319 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1320 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1323 This also applies to value_ranges_intersect_p and
1324 range_includes_zero_p. The semantics of VR_RANGE and
1325 VR_ANTI_RANGE should be encoded here, but that also means
1326 adapting the users of these functions to the new semantics.
1328 Benchmark compile/20001226-1.c compilation time after changing this
1332 value_inside_range (tree val
, value_range_t
* vr
)
1336 cmp1
= operand_less_p (val
, vr
->min
);
1342 cmp2
= operand_less_p (vr
->max
, val
);
1350 /* Return true if value ranges VR0 and VR1 have a non-empty
1353 Benchmark compile/20001226-1.c compilation time after changing this
1358 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1360 /* The value ranges do not intersect if the maximum of the first range is
1361 less than the minimum of the second range or vice versa.
1362 When those relations are unknown, we can't do any better. */
1363 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1365 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1371 /* Return true if VR includes the value zero, false otherwise. FIXME,
1372 currently this will return false for an anti-range like ~[-4, 3].
1373 This will be wrong when the semantics of value_inside_range are
1374 modified (currently the users of this function expect these
1378 range_includes_zero_p (value_range_t
*vr
)
1382 gcc_assert (vr
->type
!= VR_UNDEFINED
1383 && vr
->type
!= VR_VARYING
1384 && !symbolic_range_p (vr
));
1386 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
1387 return (value_inside_range (zero
, vr
) == 1);
1390 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1391 false otherwise or if no value range information is available. */
1394 ssa_name_nonnegative_p (const_tree t
)
1396 value_range_t
*vr
= get_value_range (t
);
1398 if (INTEGRAL_TYPE_P (t
)
1399 && TYPE_UNSIGNED (t
))
1405 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1406 which would return a useful value should be encoded as a VR_RANGE. */
1407 if (vr
->type
== VR_RANGE
)
1409 int result
= compare_values (vr
->min
, integer_zero_node
);
1411 return (result
== 0 || result
== 1);
1416 /* If OP has a value range with a single constant value return that,
1417 otherwise return NULL_TREE. This returns OP itself if OP is a
1421 op_with_constant_singleton_value_range (tree op
)
1425 if (is_gimple_min_invariant (op
))
1428 if (TREE_CODE (op
) != SSA_NAME
)
1431 vr
= get_value_range (op
);
1432 if (vr
->type
== VR_RANGE
1433 && operand_equal_p (vr
->min
, vr
->max
, 0)
1434 && is_gimple_min_invariant (vr
->min
))
1441 /* Extract value range information from an ASSERT_EXPR EXPR and store
1445 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1447 tree var
, cond
, limit
, min
, max
, type
;
1448 value_range_t
*var_vr
, *limit_vr
;
1449 enum tree_code cond_code
;
1451 var
= ASSERT_EXPR_VAR (expr
);
1452 cond
= ASSERT_EXPR_COND (expr
);
1454 gcc_assert (COMPARISON_CLASS_P (cond
));
1456 /* Find VAR in the ASSERT_EXPR conditional. */
1457 if (var
== TREE_OPERAND (cond
, 0)
1458 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1459 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1461 /* If the predicate is of the form VAR COMP LIMIT, then we just
1462 take LIMIT from the RHS and use the same comparison code. */
1463 cond_code
= TREE_CODE (cond
);
1464 limit
= TREE_OPERAND (cond
, 1);
1465 cond
= TREE_OPERAND (cond
, 0);
1469 /* If the predicate is of the form LIMIT COMP VAR, then we need
1470 to flip around the comparison code to create the proper range
1472 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1473 limit
= TREE_OPERAND (cond
, 0);
1474 cond
= TREE_OPERAND (cond
, 1);
1477 limit
= avoid_overflow_infinity (limit
);
1479 type
= TREE_TYPE (limit
);
1480 gcc_assert (limit
!= var
);
1482 /* For pointer arithmetic, we only keep track of pointer equality
1484 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1486 set_value_range_to_varying (vr_p
);
1490 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1491 try to use LIMIT's range to avoid creating symbolic ranges
1493 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1495 /* LIMIT's range is only interesting if it has any useful information. */
1497 && (limit_vr
->type
== VR_UNDEFINED
1498 || limit_vr
->type
== VR_VARYING
1499 || symbolic_range_p (limit_vr
)))
1502 /* Initially, the new range has the same set of equivalences of
1503 VAR's range. This will be revised before returning the final
1504 value. Since assertions may be chained via mutually exclusive
1505 predicates, we will need to trim the set of equivalences before
1507 gcc_assert (vr_p
->equiv
== NULL
);
1508 add_equivalence (&vr_p
->equiv
, var
);
1510 /* Extract a new range based on the asserted comparison for VAR and
1511 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1512 will only use it for equality comparisons (EQ_EXPR). For any
1513 other kind of assertion, we cannot derive a range from LIMIT's
1514 anti-range that can be used to describe the new range. For
1515 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1516 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1517 no single range for x_2 that could describe LE_EXPR, so we might
1518 as well build the range [b_4, +INF] for it.
1519 One special case we handle is extracting a range from a
1520 range test encoded as (unsigned)var + CST <= limit. */
1521 if (TREE_CODE (cond
) == NOP_EXPR
1522 || TREE_CODE (cond
) == PLUS_EXPR
)
1524 if (TREE_CODE (cond
) == PLUS_EXPR
)
1526 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1527 TREE_OPERAND (cond
, 1));
1528 max
= int_const_binop (PLUS_EXPR
, limit
, min
, 0);
1529 cond
= TREE_OPERAND (cond
, 0);
1533 min
= build_int_cst (TREE_TYPE (var
), 0);
1537 /* Make sure to not set TREE_OVERFLOW on the final type
1538 conversion. We are willingly interpreting large positive
1539 unsigned values as negative singed values here. */
1540 min
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (min
),
1542 max
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (max
),
1545 /* We can transform a max, min range to an anti-range or
1546 vice-versa. Use set_and_canonicalize_value_range which does
1548 if (cond_code
== LE_EXPR
)
1549 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1550 min
, max
, vr_p
->equiv
);
1551 else if (cond_code
== GT_EXPR
)
1552 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1553 min
, max
, vr_p
->equiv
);
1557 else if (cond_code
== EQ_EXPR
)
1559 enum value_range_type range_type
;
1563 range_type
= limit_vr
->type
;
1564 min
= limit_vr
->min
;
1565 max
= limit_vr
->max
;
1569 range_type
= VR_RANGE
;
1574 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1576 /* When asserting the equality VAR == LIMIT and LIMIT is another
1577 SSA name, the new range will also inherit the equivalence set
1579 if (TREE_CODE (limit
) == SSA_NAME
)
1580 add_equivalence (&vr_p
->equiv
, limit
);
1582 else if (cond_code
== NE_EXPR
)
1584 /* As described above, when LIMIT's range is an anti-range and
1585 this assertion is an inequality (NE_EXPR), then we cannot
1586 derive anything from the anti-range. For instance, if
1587 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1588 not imply that VAR's range is [0, 0]. So, in the case of
1589 anti-ranges, we just assert the inequality using LIMIT and
1592 If LIMIT_VR is a range, we can only use it to build a new
1593 anti-range if LIMIT_VR is a single-valued range. For
1594 instance, if LIMIT_VR is [0, 1], the predicate
1595 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1596 Rather, it means that for value 0 VAR should be ~[0, 0]
1597 and for value 1, VAR should be ~[1, 1]. We cannot
1598 represent these ranges.
1600 The only situation in which we can build a valid
1601 anti-range is when LIMIT_VR is a single-valued range
1602 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1603 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1605 && limit_vr
->type
== VR_RANGE
1606 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1608 min
= limit_vr
->min
;
1609 max
= limit_vr
->max
;
1613 /* In any other case, we cannot use LIMIT's range to build a
1614 valid anti-range. */
1618 /* If MIN and MAX cover the whole range for their type, then
1619 just use the original LIMIT. */
1620 if (INTEGRAL_TYPE_P (type
)
1621 && vrp_val_is_min (min
)
1622 && vrp_val_is_max (max
))
1625 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
1627 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1629 min
= TYPE_MIN_VALUE (type
);
1631 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1635 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1636 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1638 max
= limit_vr
->max
;
1641 /* If the maximum value forces us to be out of bounds, simply punt.
1642 It would be pointless to try and do anything more since this
1643 all should be optimized away above us. */
1644 if ((cond_code
== LT_EXPR
1645 && compare_values (max
, min
) == 0)
1646 || (CONSTANT_CLASS_P (max
) && TREE_OVERFLOW (max
)))
1647 set_value_range_to_varying (vr_p
);
1650 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1651 if (cond_code
== LT_EXPR
)
1653 tree one
= build_int_cst (type
, 1);
1654 max
= fold_build2 (MINUS_EXPR
, type
, max
, one
);
1656 TREE_NO_WARNING (max
) = 1;
1659 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1662 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1664 max
= TYPE_MAX_VALUE (type
);
1666 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1670 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1671 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1673 min
= limit_vr
->min
;
1676 /* If the minimum value forces us to be out of bounds, simply punt.
1677 It would be pointless to try and do anything more since this
1678 all should be optimized away above us. */
1679 if ((cond_code
== GT_EXPR
1680 && compare_values (min
, max
) == 0)
1681 || (CONSTANT_CLASS_P (min
) && TREE_OVERFLOW (min
)))
1682 set_value_range_to_varying (vr_p
);
1685 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1686 if (cond_code
== GT_EXPR
)
1688 tree one
= build_int_cst (type
, 1);
1689 min
= fold_build2 (PLUS_EXPR
, type
, min
, one
);
1691 TREE_NO_WARNING (min
) = 1;
1694 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1700 /* If VAR already had a known range, it may happen that the new
1701 range we have computed and VAR's range are not compatible. For
1705 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1707 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1709 While the above comes from a faulty program, it will cause an ICE
1710 later because p_8 and p_6 will have incompatible ranges and at
1711 the same time will be considered equivalent. A similar situation
1715 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1717 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1719 Again i_6 and i_7 will have incompatible ranges. It would be
1720 pointless to try and do anything with i_7's range because
1721 anything dominated by 'if (i_5 < 5)' will be optimized away.
1722 Note, due to the wa in which simulation proceeds, the statement
1723 i_7 = ASSERT_EXPR <...> we would never be visited because the
1724 conditional 'if (i_5 < 5)' always evaluates to false. However,
1725 this extra check does not hurt and may protect against future
1726 changes to VRP that may get into a situation similar to the
1727 NULL pointer dereference example.
1729 Note that these compatibility tests are only needed when dealing
1730 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1731 are both anti-ranges, they will always be compatible, because two
1732 anti-ranges will always have a non-empty intersection. */
1734 var_vr
= get_value_range (var
);
1736 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1737 ranges or anti-ranges. */
1738 if (vr_p
->type
== VR_VARYING
1739 || vr_p
->type
== VR_UNDEFINED
1740 || var_vr
->type
== VR_VARYING
1741 || var_vr
->type
== VR_UNDEFINED
1742 || symbolic_range_p (vr_p
)
1743 || symbolic_range_p (var_vr
))
1746 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1748 /* If the two ranges have a non-empty intersection, we can
1749 refine the resulting range. Since the assert expression
1750 creates an equivalency and at the same time it asserts a
1751 predicate, we can take the intersection of the two ranges to
1752 get better precision. */
1753 if (value_ranges_intersect_p (var_vr
, vr_p
))
1755 /* Use the larger of the two minimums. */
1756 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1761 /* Use the smaller of the two maximums. */
1762 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1767 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1771 /* The two ranges do not intersect, set the new range to
1772 VARYING, because we will not be able to do anything
1773 meaningful with it. */
1774 set_value_range_to_varying (vr_p
);
1777 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1778 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1780 /* A range and an anti-range will cancel each other only if
1781 their ends are the same. For instance, in the example above,
1782 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1783 so VR_P should be set to VR_VARYING. */
1784 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1785 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1786 set_value_range_to_varying (vr_p
);
1789 tree min
, max
, anti_min
, anti_max
, real_min
, real_max
;
1792 /* We want to compute the logical AND of the two ranges;
1793 there are three cases to consider.
1796 1. The VR_ANTI_RANGE range is completely within the
1797 VR_RANGE and the endpoints of the ranges are
1798 different. In that case the resulting range
1799 should be whichever range is more precise.
1800 Typically that will be the VR_RANGE.
1802 2. The VR_ANTI_RANGE is completely disjoint from
1803 the VR_RANGE. In this case the resulting range
1804 should be the VR_RANGE.
1806 3. There is some overlap between the VR_ANTI_RANGE
1809 3a. If the high limit of the VR_ANTI_RANGE resides
1810 within the VR_RANGE, then the result is a new
1811 VR_RANGE starting at the high limit of the
1812 VR_ANTI_RANGE + 1 and extending to the
1813 high limit of the original VR_RANGE.
1815 3b. If the low limit of the VR_ANTI_RANGE resides
1816 within the VR_RANGE, then the result is a new
1817 VR_RANGE starting at the low limit of the original
1818 VR_RANGE and extending to the low limit of the
1819 VR_ANTI_RANGE - 1. */
1820 if (vr_p
->type
== VR_ANTI_RANGE
)
1822 anti_min
= vr_p
->min
;
1823 anti_max
= vr_p
->max
;
1824 real_min
= var_vr
->min
;
1825 real_max
= var_vr
->max
;
1829 anti_min
= var_vr
->min
;
1830 anti_max
= var_vr
->max
;
1831 real_min
= vr_p
->min
;
1832 real_max
= vr_p
->max
;
1836 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1837 not including any endpoints. */
1838 if (compare_values (anti_max
, real_max
) == -1
1839 && compare_values (anti_min
, real_min
) == 1)
1841 /* If the range is covering the whole valid range of
1842 the type keep the anti-range. */
1843 if (!vrp_val_is_min (real_min
)
1844 || !vrp_val_is_max (real_max
))
1845 set_value_range (vr_p
, VR_RANGE
, real_min
,
1846 real_max
, vr_p
->equiv
);
1848 /* Case 2, VR_ANTI_RANGE completely disjoint from
1850 else if (compare_values (anti_min
, real_max
) == 1
1851 || compare_values (anti_max
, real_min
) == -1)
1853 set_value_range (vr_p
, VR_RANGE
, real_min
,
1854 real_max
, vr_p
->equiv
);
1856 /* Case 3a, the anti-range extends into the low
1857 part of the real range. Thus creating a new
1858 low for the real range. */
1859 else if (((cmp
= compare_values (anti_max
, real_min
)) == 1
1861 && compare_values (anti_max
, real_max
) == -1)
1863 gcc_assert (!is_positive_overflow_infinity (anti_max
));
1864 if (needs_overflow_infinity (TREE_TYPE (anti_max
))
1865 && vrp_val_is_max (anti_max
))
1867 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1869 set_value_range_to_varying (vr_p
);
1872 min
= positive_overflow_infinity (TREE_TYPE (var_vr
->min
));
1874 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1875 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1877 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1879 min
= fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1880 anti_max
, size_int (1));
1882 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1884 /* Case 3b, the anti-range extends into the high
1885 part of the real range. Thus creating a new
1886 higher for the real range. */
1887 else if (compare_values (anti_min
, real_min
) == 1
1888 && ((cmp
= compare_values (anti_min
, real_max
)) == -1
1891 gcc_assert (!is_negative_overflow_infinity (anti_min
));
1892 if (needs_overflow_infinity (TREE_TYPE (anti_min
))
1893 && vrp_val_is_min (anti_min
))
1895 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1897 set_value_range_to_varying (vr_p
);
1900 max
= negative_overflow_infinity (TREE_TYPE (var_vr
->min
));
1902 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1903 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1905 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1907 max
= fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1911 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1918 /* Extract range information from SSA name VAR and store it in VR. If
1919 VAR has an interesting range, use it. Otherwise, create the
1920 range [VAR, VAR] and return it. This is useful in situations where
1921 we may have conditionals testing values of VARYING names. For
1928 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1932 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1934 value_range_t
*var_vr
= get_value_range (var
);
1936 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1937 copy_value_range (vr
, var_vr
);
1939 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1941 add_equivalence (&vr
->equiv
, var
);
1945 /* Wrapper around int_const_binop. If the operation overflows and we
1946 are not using wrapping arithmetic, then adjust the result to be
1947 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1948 NULL_TREE if we need to use an overflow infinity representation but
1949 the type does not support it. */
1952 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1956 res
= int_const_binop (code
, val1
, val2
, 0);
1958 /* If we are using unsigned arithmetic, operate symbolically
1959 on -INF and +INF as int_const_binop only handles signed overflow. */
1960 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1962 int checkz
= compare_values (res
, val1
);
1963 bool overflow
= false;
1965 /* Ensure that res = val1 [+*] val2 >= val1
1966 or that res = val1 - val2 <= val1. */
1967 if ((code
== PLUS_EXPR
1968 && !(checkz
== 1 || checkz
== 0))
1969 || (code
== MINUS_EXPR
1970 && !(checkz
== 0 || checkz
== -1)))
1974 /* Checking for multiplication overflow is done by dividing the
1975 output of the multiplication by the first input of the
1976 multiplication. If the result of that division operation is
1977 not equal to the second input of the multiplication, then the
1978 multiplication overflowed. */
1979 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
1981 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
1984 int check
= compare_values (tmp
, val2
);
1992 res
= copy_node (res
);
1993 TREE_OVERFLOW (res
) = 1;
1997 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
1998 /* If the singed operation wraps then int_const_binop has done
1999 everything we want. */
2001 else if ((TREE_OVERFLOW (res
)
2002 && !TREE_OVERFLOW (val1
)
2003 && !TREE_OVERFLOW (val2
))
2004 || is_overflow_infinity (val1
)
2005 || is_overflow_infinity (val2
))
2007 /* If the operation overflowed but neither VAL1 nor VAL2 are
2008 overflown, return -INF or +INF depending on the operation
2009 and the combination of signs of the operands. */
2010 int sgn1
= tree_int_cst_sgn (val1
);
2011 int sgn2
= tree_int_cst_sgn (val2
);
2013 if (needs_overflow_infinity (TREE_TYPE (res
))
2014 && !supports_overflow_infinity (TREE_TYPE (res
)))
2017 /* We have to punt on adding infinities of different signs,
2018 since we can't tell what the sign of the result should be.
2019 Likewise for subtracting infinities of the same sign. */
2020 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
2021 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
2022 && is_overflow_infinity (val1
)
2023 && is_overflow_infinity (val2
))
2026 /* Don't try to handle division or shifting of infinities. */
2027 if ((code
== TRUNC_DIV_EXPR
2028 || code
== FLOOR_DIV_EXPR
2029 || code
== CEIL_DIV_EXPR
2030 || code
== EXACT_DIV_EXPR
2031 || code
== ROUND_DIV_EXPR
2032 || code
== RSHIFT_EXPR
)
2033 && (is_overflow_infinity (val1
)
2034 || is_overflow_infinity (val2
)))
2037 /* Notice that we only need to handle the restricted set of
2038 operations handled by extract_range_from_binary_expr.
2039 Among them, only multiplication, addition and subtraction
2040 can yield overflow without overflown operands because we
2041 are working with integral types only... except in the
2042 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2043 for division too. */
2045 /* For multiplication, the sign of the overflow is given
2046 by the comparison of the signs of the operands. */
2047 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
2048 /* For addition, the operands must be of the same sign
2049 to yield an overflow. Its sign is therefore that
2050 of one of the operands, for example the first. For
2051 infinite operands X + -INF is negative, not positive. */
2052 || (code
== PLUS_EXPR
2054 ? !is_negative_overflow_infinity (val2
)
2055 : is_positive_overflow_infinity (val2
)))
2056 /* For subtraction, non-infinite operands must be of
2057 different signs to yield an overflow. Its sign is
2058 therefore that of the first operand or the opposite of
2059 that of the second operand. A first operand of 0 counts
2060 as positive here, for the corner case 0 - (-INF), which
2061 overflows, but must yield +INF. For infinite operands 0
2062 - INF is negative, not positive. */
2063 || (code
== MINUS_EXPR
2065 ? !is_positive_overflow_infinity (val2
)
2066 : is_negative_overflow_infinity (val2
)))
2067 /* We only get in here with positive shift count, so the
2068 overflow direction is the same as the sign of val1.
2069 Actually rshift does not overflow at all, but we only
2070 handle the case of shifting overflowed -INF and +INF. */
2071 || (code
== RSHIFT_EXPR
2073 /* For division, the only case is -INF / -1 = +INF. */
2074 || code
== TRUNC_DIV_EXPR
2075 || code
== FLOOR_DIV_EXPR
2076 || code
== CEIL_DIV_EXPR
2077 || code
== EXACT_DIV_EXPR
2078 || code
== ROUND_DIV_EXPR
)
2079 return (needs_overflow_infinity (TREE_TYPE (res
))
2080 ? positive_overflow_infinity (TREE_TYPE (res
))
2081 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
2083 return (needs_overflow_infinity (TREE_TYPE (res
))
2084 ? negative_overflow_infinity (TREE_TYPE (res
))
2085 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
2092 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2093 bitmask if some bit is unset, it means for all numbers in the range
2094 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2095 bitmask if some bit is set, it means for all numbers in the range
2096 the bit is 1, otherwise it might be 0 or 1. */
2099 zero_nonzero_bits_from_vr (value_range_t
*vr
, double_int
*may_be_nonzero
,
2100 double_int
*must_be_nonzero
)
2102 if (range_int_cst_p (vr
))
2104 if (range_int_cst_singleton_p (vr
))
2106 *may_be_nonzero
= tree_to_double_int (vr
->min
);
2107 *must_be_nonzero
= *may_be_nonzero
;
2110 if (tree_int_cst_sgn (vr
->min
) >= 0)
2112 double_int dmin
= tree_to_double_int (vr
->min
);
2113 double_int dmax
= tree_to_double_int (vr
->max
);
2114 double_int xor_mask
= double_int_xor (dmin
, dmax
);
2115 *may_be_nonzero
= double_int_ior (dmin
, dmax
);
2116 *must_be_nonzero
= double_int_and (dmin
, dmax
);
2117 if (xor_mask
.high
!= 0)
2119 unsigned HOST_WIDE_INT mask
2120 = ((unsigned HOST_WIDE_INT
) 1
2121 << floor_log2 (xor_mask
.high
)) - 1;
2122 may_be_nonzero
->low
= ALL_ONES
;
2123 may_be_nonzero
->high
|= mask
;
2124 must_be_nonzero
->low
= 0;
2125 must_be_nonzero
->high
&= ~mask
;
2127 else if (xor_mask
.low
!= 0)
2129 unsigned HOST_WIDE_INT mask
2130 = ((unsigned HOST_WIDE_INT
) 1
2131 << floor_log2 (xor_mask
.low
)) - 1;
2132 may_be_nonzero
->low
|= mask
;
2133 must_be_nonzero
->low
&= ~mask
;
2138 may_be_nonzero
->low
= ALL_ONES
;
2139 may_be_nonzero
->high
= ALL_ONES
;
2140 must_be_nonzero
->low
= 0;
2141 must_be_nonzero
->high
= 0;
2146 /* Extract range information from a binary expression EXPR based on
2147 the ranges of each of its operands and the expression code. */
2150 extract_range_from_binary_expr (value_range_t
*vr
,
2151 enum tree_code code
,
2152 tree expr_type
, tree op0
, tree op1
)
2154 enum value_range_type type
;
2157 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2158 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2160 /* Not all binary expressions can be applied to ranges in a
2161 meaningful way. Handle only arithmetic operations. */
2162 if (code
!= PLUS_EXPR
2163 && code
!= MINUS_EXPR
2164 && code
!= POINTER_PLUS_EXPR
2165 && code
!= MULT_EXPR
2166 && code
!= TRUNC_DIV_EXPR
2167 && code
!= FLOOR_DIV_EXPR
2168 && code
!= CEIL_DIV_EXPR
2169 && code
!= EXACT_DIV_EXPR
2170 && code
!= ROUND_DIV_EXPR
2171 && code
!= TRUNC_MOD_EXPR
2172 && code
!= RSHIFT_EXPR
2175 && code
!= BIT_AND_EXPR
2176 && code
!= BIT_IOR_EXPR
2177 && code
!= TRUTH_AND_EXPR
2178 && code
!= TRUTH_OR_EXPR
)
2180 /* We can still do constant propagation here. */
2181 tree const_op0
= op_with_constant_singleton_value_range (op0
);
2182 tree const_op1
= op_with_constant_singleton_value_range (op1
);
2183 if (const_op0
|| const_op1
)
2185 tree tem
= fold_binary (code
, expr_type
,
2186 const_op0
? const_op0
: op0
,
2187 const_op1
? const_op1
: op1
);
2189 && is_gimple_min_invariant (tem
)
2190 && !is_overflow_infinity (tem
))
2192 set_value_range (vr
, VR_RANGE
, tem
, tem
, NULL
);
2196 set_value_range_to_varying (vr
);
2200 /* Get value ranges for each operand. For constant operands, create
2201 a new value range with the operand to simplify processing. */
2202 if (TREE_CODE (op0
) == SSA_NAME
)
2203 vr0
= *(get_value_range (op0
));
2204 else if (is_gimple_min_invariant (op0
))
2205 set_value_range_to_value (&vr0
, op0
, NULL
);
2207 set_value_range_to_varying (&vr0
);
2209 if (TREE_CODE (op1
) == SSA_NAME
)
2210 vr1
= *(get_value_range (op1
));
2211 else if (is_gimple_min_invariant (op1
))
2212 set_value_range_to_value (&vr1
, op1
, NULL
);
2214 set_value_range_to_varying (&vr1
);
2216 /* If either range is UNDEFINED, so is the result. */
2217 if (vr0
.type
== VR_UNDEFINED
|| vr1
.type
== VR_UNDEFINED
)
2219 set_value_range_to_undefined (vr
);
2223 /* The type of the resulting value range defaults to VR0.TYPE. */
2226 /* Refuse to operate on VARYING ranges, ranges of different kinds
2227 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2228 because we may be able to derive a useful range even if one of
2229 the operands is VR_VARYING or symbolic range. Similarly for
2230 divisions. TODO, we may be able to derive anti-ranges in
2232 if (code
!= BIT_AND_EXPR
2233 && code
!= TRUTH_AND_EXPR
2234 && code
!= TRUTH_OR_EXPR
2235 && code
!= TRUNC_DIV_EXPR
2236 && code
!= FLOOR_DIV_EXPR
2237 && code
!= CEIL_DIV_EXPR
2238 && code
!= EXACT_DIV_EXPR
2239 && code
!= ROUND_DIV_EXPR
2240 && code
!= TRUNC_MOD_EXPR
2241 && (vr0
.type
== VR_VARYING
2242 || vr1
.type
== VR_VARYING
2243 || vr0
.type
!= vr1
.type
2244 || symbolic_range_p (&vr0
)
2245 || symbolic_range_p (&vr1
)))
2247 set_value_range_to_varying (vr
);
2251 /* Now evaluate the expression to determine the new range. */
2252 if (POINTER_TYPE_P (expr_type
)
2253 || POINTER_TYPE_P (TREE_TYPE (op0
))
2254 || POINTER_TYPE_P (TREE_TYPE (op1
)))
2256 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2258 /* For MIN/MAX expressions with pointers, we only care about
2259 nullness, if both are non null, then the result is nonnull.
2260 If both are null, then the result is null. Otherwise they
2262 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2263 set_value_range_to_nonnull (vr
, expr_type
);
2264 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2265 set_value_range_to_null (vr
, expr_type
);
2267 set_value_range_to_varying (vr
);
2271 if (code
== POINTER_PLUS_EXPR
)
2273 /* For pointer types, we are really only interested in asserting
2274 whether the expression evaluates to non-NULL. */
2275 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2276 set_value_range_to_nonnull (vr
, expr_type
);
2277 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2278 set_value_range_to_null (vr
, expr_type
);
2280 set_value_range_to_varying (vr
);
2282 else if (code
== BIT_AND_EXPR
)
2284 /* For pointer types, we are really only interested in asserting
2285 whether the expression evaluates to non-NULL. */
2286 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2287 set_value_range_to_nonnull (vr
, expr_type
);
2288 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2289 set_value_range_to_null (vr
, expr_type
);
2291 set_value_range_to_varying (vr
);
2299 /* For integer ranges, apply the operation to each end of the
2300 range and see what we end up with. */
2301 if (code
== TRUTH_AND_EXPR
2302 || code
== TRUTH_OR_EXPR
)
2304 /* If one of the operands is zero, we know that the whole
2305 expression evaluates zero. */
2306 if (code
== TRUTH_AND_EXPR
2307 && ((vr0
.type
== VR_RANGE
2308 && integer_zerop (vr0
.min
)
2309 && integer_zerop (vr0
.max
))
2310 || (vr1
.type
== VR_RANGE
2311 && integer_zerop (vr1
.min
)
2312 && integer_zerop (vr1
.max
))))
2315 min
= max
= build_int_cst (expr_type
, 0);
2317 /* If one of the operands is one, we know that the whole
2318 expression evaluates one. */
2319 else if (code
== TRUTH_OR_EXPR
2320 && ((vr0
.type
== VR_RANGE
2321 && integer_onep (vr0
.min
)
2322 && integer_onep (vr0
.max
))
2323 || (vr1
.type
== VR_RANGE
2324 && integer_onep (vr1
.min
)
2325 && integer_onep (vr1
.max
))))
2328 min
= max
= build_int_cst (expr_type
, 1);
2330 else if (vr0
.type
!= VR_VARYING
2331 && vr1
.type
!= VR_VARYING
2332 && vr0
.type
== vr1
.type
2333 && !symbolic_range_p (&vr0
)
2334 && !overflow_infinity_range_p (&vr0
)
2335 && !symbolic_range_p (&vr1
)
2336 && !overflow_infinity_range_p (&vr1
))
2338 /* Boolean expressions cannot be folded with int_const_binop. */
2339 min
= fold_binary (code
, expr_type
, vr0
.min
, vr1
.min
);
2340 max
= fold_binary (code
, expr_type
, vr0
.max
, vr1
.max
);
2344 /* The result of a TRUTH_*_EXPR is always true or false. */
2345 set_value_range_to_truthvalue (vr
, expr_type
);
2349 else if (code
== PLUS_EXPR
2351 || code
== MAX_EXPR
)
2353 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2354 VR_VARYING. It would take more effort to compute a precise
2355 range for such a case. For example, if we have op0 == 1 and
2356 op1 == -1 with their ranges both being ~[0,0], we would have
2357 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2358 Note that we are guaranteed to have vr0.type == vr1.type at
2360 if (code
== PLUS_EXPR
&& vr0
.type
== VR_ANTI_RANGE
)
2362 set_value_range_to_varying (vr
);
2366 /* For operations that make the resulting range directly
2367 proportional to the original ranges, apply the operation to
2368 the same end of each range. */
2369 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2370 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2372 /* If both additions overflowed the range kind is still correct.
2373 This happens regularly with subtracting something in unsigned
2375 ??? See PR30318 for all the cases we do not handle. */
2376 if (code
== PLUS_EXPR
2377 && (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2378 && (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2380 min
= build_int_cst_wide (TREE_TYPE (min
),
2381 TREE_INT_CST_LOW (min
),
2382 TREE_INT_CST_HIGH (min
));
2383 max
= build_int_cst_wide (TREE_TYPE (max
),
2384 TREE_INT_CST_LOW (max
),
2385 TREE_INT_CST_HIGH (max
));
2388 else if (code
== MULT_EXPR
2389 || code
== TRUNC_DIV_EXPR
2390 || code
== FLOOR_DIV_EXPR
2391 || code
== CEIL_DIV_EXPR
2392 || code
== EXACT_DIV_EXPR
2393 || code
== ROUND_DIV_EXPR
2394 || code
== RSHIFT_EXPR
)
2400 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2401 drop to VR_VARYING. It would take more effort to compute a
2402 precise range for such a case. For example, if we have
2403 op0 == 65536 and op1 == 65536 with their ranges both being
2404 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2405 we cannot claim that the product is in ~[0,0]. Note that we
2406 are guaranteed to have vr0.type == vr1.type at this
2408 if (code
== MULT_EXPR
2409 && vr0
.type
== VR_ANTI_RANGE
2410 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
2412 set_value_range_to_varying (vr
);
2416 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2417 then drop to VR_VARYING. Outside of this range we get undefined
2418 behavior from the shift operation. We cannot even trust
2419 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2420 shifts, and the operation at the tree level may be widened. */
2421 if (code
== RSHIFT_EXPR
)
2423 if (vr1
.type
== VR_ANTI_RANGE
2424 || !vrp_expr_computes_nonnegative (op1
, &sop
)
2426 (build_int_cst (TREE_TYPE (vr1
.max
),
2427 TYPE_PRECISION (expr_type
) - 1),
2430 set_value_range_to_varying (vr
);
2435 else if ((code
== TRUNC_DIV_EXPR
2436 || code
== FLOOR_DIV_EXPR
2437 || code
== CEIL_DIV_EXPR
2438 || code
== EXACT_DIV_EXPR
2439 || code
== ROUND_DIV_EXPR
)
2440 && (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
)))
2442 /* For division, if op1 has VR_RANGE but op0 does not, something
2443 can be deduced just from that range. Say [min, max] / [4, max]
2444 gives [min / 4, max / 4] range. */
2445 if (vr1
.type
== VR_RANGE
2446 && !symbolic_range_p (&vr1
)
2447 && !range_includes_zero_p (&vr1
))
2449 vr0
.type
= type
= VR_RANGE
;
2450 vr0
.min
= vrp_val_min (TREE_TYPE (op0
));
2451 vr0
.max
= vrp_val_max (TREE_TYPE (op1
));
2455 set_value_range_to_varying (vr
);
2460 /* For divisions, if flag_non_call_exceptions is true, we must
2461 not eliminate a division by zero. */
2462 if ((code
== TRUNC_DIV_EXPR
2463 || code
== FLOOR_DIV_EXPR
2464 || code
== CEIL_DIV_EXPR
2465 || code
== EXACT_DIV_EXPR
2466 || code
== ROUND_DIV_EXPR
)
2467 && cfun
->can_throw_non_call_exceptions
2468 && (vr1
.type
!= VR_RANGE
2469 || symbolic_range_p (&vr1
)
2470 || range_includes_zero_p (&vr1
)))
2472 set_value_range_to_varying (vr
);
2476 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2477 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2479 if ((code
== TRUNC_DIV_EXPR
2480 || code
== FLOOR_DIV_EXPR
2481 || code
== CEIL_DIV_EXPR
2482 || code
== EXACT_DIV_EXPR
2483 || code
== ROUND_DIV_EXPR
)
2484 && vr0
.type
== VR_RANGE
2485 && (vr1
.type
!= VR_RANGE
2486 || symbolic_range_p (&vr1
)
2487 || range_includes_zero_p (&vr1
)))
2489 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
2495 if (vrp_expr_computes_nonnegative (op1
, &sop
) && !sop
)
2497 /* For unsigned division or when divisor is known
2498 to be non-negative, the range has to cover
2499 all numbers from 0 to max for positive max
2500 and all numbers from min to 0 for negative min. */
2501 cmp
= compare_values (vr0
.max
, zero
);
2504 else if (cmp
== 0 || cmp
== 1)
2508 cmp
= compare_values (vr0
.min
, zero
);
2511 else if (cmp
== 0 || cmp
== -1)
2518 /* Otherwise the range is -max .. max or min .. -min
2519 depending on which bound is bigger in absolute value,
2520 as the division can change the sign. */
2521 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
2524 if (type
== VR_VARYING
)
2526 set_value_range_to_varying (vr
);
2531 /* Multiplications and divisions are a bit tricky to handle,
2532 depending on the mix of signs we have in the two ranges, we
2533 need to operate on different values to get the minimum and
2534 maximum values for the new range. One approach is to figure
2535 out all the variations of range combinations and do the
2538 However, this involves several calls to compare_values and it
2539 is pretty convoluted. It's simpler to do the 4 operations
2540 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2541 MAX1) and then figure the smallest and largest values to form
2545 gcc_assert ((vr0
.type
== VR_RANGE
2546 || (code
== MULT_EXPR
&& vr0
.type
== VR_ANTI_RANGE
))
2547 && vr0
.type
== vr1
.type
);
2549 /* Compute the 4 cross operations. */
2551 val
[0] = vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2552 if (val
[0] == NULL_TREE
)
2555 if (vr1
.max
== vr1
.min
)
2559 val
[1] = vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
2560 if (val
[1] == NULL_TREE
)
2564 if (vr0
.max
== vr0
.min
)
2568 val
[2] = vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
2569 if (val
[2] == NULL_TREE
)
2573 if (vr0
.min
== vr0
.max
|| vr1
.min
== vr1
.max
)
2577 val
[3] = vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2578 if (val
[3] == NULL_TREE
)
2584 set_value_range_to_varying (vr
);
2588 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2592 for (i
= 1; i
< 4; i
++)
2594 if (!is_gimple_min_invariant (min
)
2595 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2596 || !is_gimple_min_invariant (max
)
2597 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2602 if (!is_gimple_min_invariant (val
[i
])
2603 || (TREE_OVERFLOW (val
[i
])
2604 && !is_overflow_infinity (val
[i
])))
2606 /* If we found an overflowed value, set MIN and MAX
2607 to it so that we set the resulting range to
2613 if (compare_values (val
[i
], min
) == -1)
2616 if (compare_values (val
[i
], max
) == 1)
2622 else if (code
== TRUNC_MOD_EXPR
)
2625 if (vr1
.type
!= VR_RANGE
2626 || symbolic_range_p (&vr1
)
2627 || range_includes_zero_p (&vr1
)
2628 || vrp_val_is_min (vr1
.min
))
2630 set_value_range_to_varying (vr
);
2634 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2635 max
= fold_unary_to_constant (ABS_EXPR
, TREE_TYPE (vr1
.min
), vr1
.min
);
2636 if (tree_int_cst_lt (max
, vr1
.max
))
2638 max
= int_const_binop (MINUS_EXPR
, max
, integer_one_node
, 0);
2639 /* If the dividend is non-negative the modulus will be
2640 non-negative as well. */
2641 if (TYPE_UNSIGNED (TREE_TYPE (max
))
2642 || (vrp_expr_computes_nonnegative (op0
, &sop
) && !sop
))
2643 min
= build_int_cst (TREE_TYPE (max
), 0);
2645 min
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (max
), max
);
2647 else if (code
== MINUS_EXPR
)
2649 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2650 VR_VARYING. It would take more effort to compute a precise
2651 range for such a case. For example, if we have op0 == 1 and
2652 op1 == 1 with their ranges both being ~[0,0], we would have
2653 op0 - op1 == 0, so we cannot claim that the difference is in
2654 ~[0,0]. Note that we are guaranteed to have
2655 vr0.type == vr1.type at this point. */
2656 if (vr0
.type
== VR_ANTI_RANGE
)
2658 set_value_range_to_varying (vr
);
2662 /* For MINUS_EXPR, apply the operation to the opposite ends of
2664 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
2665 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
2667 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
)
2669 bool vr0_int_cst_singleton_p
, vr1_int_cst_singleton_p
;
2670 bool int_cst_range0
, int_cst_range1
;
2671 double_int may_be_nonzero0
, may_be_nonzero1
;
2672 double_int must_be_nonzero0
, must_be_nonzero1
;
2674 vr0_int_cst_singleton_p
= range_int_cst_singleton_p (&vr0
);
2675 vr1_int_cst_singleton_p
= range_int_cst_singleton_p (&vr1
);
2676 int_cst_range0
= zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
,
2678 int_cst_range1
= zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
,
2682 if (vr0_int_cst_singleton_p
&& vr1_int_cst_singleton_p
)
2683 min
= max
= int_const_binop (code
, vr0
.max
, vr1
.max
, 0);
2684 else if (!int_cst_range0
&& !int_cst_range1
)
2686 set_value_range_to_varying (vr
);
2689 else if (code
== BIT_AND_EXPR
)
2691 min
= double_int_to_tree (expr_type
,
2692 double_int_and (must_be_nonzero0
,
2694 max
= double_int_to_tree (expr_type
,
2695 double_int_and (may_be_nonzero0
,
2697 if (TREE_OVERFLOW (min
) || tree_int_cst_sgn (min
) < 0)
2699 if (TREE_OVERFLOW (max
) || tree_int_cst_sgn (max
) < 0)
2701 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
2703 if (min
== NULL_TREE
)
2704 min
= build_int_cst (expr_type
, 0);
2705 if (max
== NULL_TREE
|| tree_int_cst_lt (vr0
.max
, max
))
2708 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
2710 if (min
== NULL_TREE
)
2711 min
= build_int_cst (expr_type
, 0);
2712 if (max
== NULL_TREE
|| tree_int_cst_lt (vr1
.max
, max
))
2716 else if (!int_cst_range0
2718 || tree_int_cst_sgn (vr0
.min
) < 0
2719 || tree_int_cst_sgn (vr1
.min
) < 0)
2721 set_value_range_to_varying (vr
);
2726 min
= double_int_to_tree (expr_type
,
2727 double_int_ior (must_be_nonzero0
,
2729 max
= double_int_to_tree (expr_type
,
2730 double_int_ior (may_be_nonzero0
,
2732 if (TREE_OVERFLOW (min
) || tree_int_cst_sgn (min
) < 0)
2735 min
= vrp_int_const_binop (MAX_EXPR
, min
, vr0
.min
);
2736 if (TREE_OVERFLOW (max
) || tree_int_cst_sgn (max
) < 0)
2738 min
= vrp_int_const_binop (MAX_EXPR
, min
, vr1
.min
);
2744 /* If either MIN or MAX overflowed, then set the resulting range to
2745 VARYING. But we do accept an overflow infinity
2747 if (min
== NULL_TREE
2748 || !is_gimple_min_invariant (min
)
2749 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2751 || !is_gimple_min_invariant (max
)
2752 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2754 set_value_range_to_varying (vr
);
2760 2) [-INF, +-INF(OVF)]
2761 3) [+-INF(OVF), +INF]
2762 4) [+-INF(OVF), +-INF(OVF)]
2763 We learn nothing when we have INF and INF(OVF) on both sides.
2764 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2766 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2767 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2769 set_value_range_to_varying (vr
);
2773 cmp
= compare_values (min
, max
);
2774 if (cmp
== -2 || cmp
== 1)
2776 /* If the new range has its limits swapped around (MIN > MAX),
2777 then the operation caused one of them to wrap around, mark
2778 the new range VARYING. */
2779 set_value_range_to_varying (vr
);
2782 set_value_range (vr
, type
, min
, max
, NULL
);
2786 /* Extract range information from a unary expression EXPR based on
2787 the range of its operand and the expression code. */
2790 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
2791 tree type
, tree op0
)
2795 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2797 /* Refuse to operate on certain unary expressions for which we
2798 cannot easily determine a resulting range. */
2799 if (code
== FIX_TRUNC_EXPR
2800 || code
== FLOAT_EXPR
2801 || code
== BIT_NOT_EXPR
2802 || code
== CONJ_EXPR
)
2804 /* We can still do constant propagation here. */
2805 if ((op0
= op_with_constant_singleton_value_range (op0
)) != NULL_TREE
)
2807 tree tem
= fold_unary (code
, type
, op0
);
2809 && is_gimple_min_invariant (tem
)
2810 && !is_overflow_infinity (tem
))
2812 set_value_range (vr
, VR_RANGE
, tem
, tem
, NULL
);
2816 set_value_range_to_varying (vr
);
2820 /* Get value ranges for the operand. For constant operands, create
2821 a new value range with the operand to simplify processing. */
2822 if (TREE_CODE (op0
) == SSA_NAME
)
2823 vr0
= *(get_value_range (op0
));
2824 else if (is_gimple_min_invariant (op0
))
2825 set_value_range_to_value (&vr0
, op0
, NULL
);
2827 set_value_range_to_varying (&vr0
);
2829 /* If VR0 is UNDEFINED, so is the result. */
2830 if (vr0
.type
== VR_UNDEFINED
)
2832 set_value_range_to_undefined (vr
);
2836 /* Refuse to operate on symbolic ranges, or if neither operand is
2837 a pointer or integral type. */
2838 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
2839 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
2840 || (vr0
.type
!= VR_VARYING
2841 && symbolic_range_p (&vr0
)))
2843 set_value_range_to_varying (vr
);
2847 /* If the expression involves pointers, we are only interested in
2848 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2849 if (POINTER_TYPE_P (type
) || POINTER_TYPE_P (TREE_TYPE (op0
)))
2854 if (range_is_nonnull (&vr0
)
2855 || (tree_unary_nonzero_warnv_p (code
, type
, op0
, &sop
)
2857 set_value_range_to_nonnull (vr
, type
);
2858 else if (range_is_null (&vr0
))
2859 set_value_range_to_null (vr
, type
);
2861 set_value_range_to_varying (vr
);
2866 /* Handle unary expressions on integer ranges. */
2867 if (CONVERT_EXPR_CODE_P (code
)
2868 && INTEGRAL_TYPE_P (type
)
2869 && INTEGRAL_TYPE_P (TREE_TYPE (op0
)))
2871 tree inner_type
= TREE_TYPE (op0
);
2872 tree outer_type
= type
;
2874 /* If VR0 is varying and we increase the type precision, assume
2875 a full range for the following transformation. */
2876 if (vr0
.type
== VR_VARYING
2877 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
2879 vr0
.type
= VR_RANGE
;
2880 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
2881 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
2884 /* If VR0 is a constant range or anti-range and the conversion is
2885 not truncating we can convert the min and max values and
2886 canonicalize the resulting range. Otherwise we can do the
2887 conversion if the size of the range is less than what the
2888 precision of the target type can represent and the range is
2889 not an anti-range. */
2890 if ((vr0
.type
== VR_RANGE
2891 || vr0
.type
== VR_ANTI_RANGE
)
2892 && TREE_CODE (vr0
.min
) == INTEGER_CST
2893 && TREE_CODE (vr0
.max
) == INTEGER_CST
2894 && (!is_overflow_infinity (vr0
.min
)
2895 || (vr0
.type
== VR_RANGE
2896 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
2897 && needs_overflow_infinity (outer_type
)
2898 && supports_overflow_infinity (outer_type
)))
2899 && (!is_overflow_infinity (vr0
.max
)
2900 || (vr0
.type
== VR_RANGE
2901 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
2902 && needs_overflow_infinity (outer_type
)
2903 && supports_overflow_infinity (outer_type
)))
2904 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
2905 || (vr0
.type
== VR_RANGE
2906 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
2907 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
, 0),
2908 size_int (TYPE_PRECISION (outer_type
)), 0)))))
2910 tree new_min
, new_max
;
2911 new_min
= force_fit_type_double (outer_type
,
2912 tree_to_double_int (vr0
.min
),
2914 new_max
= force_fit_type_double (outer_type
,
2915 tree_to_double_int (vr0
.max
),
2917 if (is_overflow_infinity (vr0
.min
))
2918 new_min
= negative_overflow_infinity (outer_type
);
2919 if (is_overflow_infinity (vr0
.max
))
2920 new_max
= positive_overflow_infinity (outer_type
);
2921 set_and_canonicalize_value_range (vr
, vr0
.type
,
2922 new_min
, new_max
, NULL
);
2926 set_value_range_to_varying (vr
);
2930 /* Conversion of a VR_VARYING value to a wider type can result
2931 in a usable range. So wait until after we've handled conversions
2932 before dropping the result to VR_VARYING if we had a source
2933 operand that is VR_VARYING. */
2934 if (vr0
.type
== VR_VARYING
)
2936 set_value_range_to_varying (vr
);
2940 /* Apply the operation to each end of the range and see what we end
2942 if (code
== NEGATE_EXPR
2943 && !TYPE_UNSIGNED (type
))
2945 /* NEGATE_EXPR flips the range around. We need to treat
2946 TYPE_MIN_VALUE specially. */
2947 if (is_positive_overflow_infinity (vr0
.max
))
2948 min
= negative_overflow_infinity (type
);
2949 else if (is_negative_overflow_infinity (vr0
.max
))
2950 min
= positive_overflow_infinity (type
);
2951 else if (!vrp_val_is_min (vr0
.max
))
2952 min
= fold_unary_to_constant (code
, type
, vr0
.max
);
2953 else if (needs_overflow_infinity (type
))
2955 if (supports_overflow_infinity (type
)
2956 && !is_overflow_infinity (vr0
.min
)
2957 && !vrp_val_is_min (vr0
.min
))
2958 min
= positive_overflow_infinity (type
);
2961 set_value_range_to_varying (vr
);
2966 min
= TYPE_MIN_VALUE (type
);
2968 if (is_positive_overflow_infinity (vr0
.min
))
2969 max
= negative_overflow_infinity (type
);
2970 else if (is_negative_overflow_infinity (vr0
.min
))
2971 max
= positive_overflow_infinity (type
);
2972 else if (!vrp_val_is_min (vr0
.min
))
2973 max
= fold_unary_to_constant (code
, type
, vr0
.min
);
2974 else if (needs_overflow_infinity (type
))
2976 if (supports_overflow_infinity (type
))
2977 max
= positive_overflow_infinity (type
);
2980 set_value_range_to_varying (vr
);
2985 max
= TYPE_MIN_VALUE (type
);
2987 else if (code
== NEGATE_EXPR
2988 && TYPE_UNSIGNED (type
))
2990 if (!range_includes_zero_p (&vr0
))
2992 max
= fold_unary_to_constant (code
, type
, vr0
.min
);
2993 min
= fold_unary_to_constant (code
, type
, vr0
.max
);
2997 if (range_is_null (&vr0
))
2998 set_value_range_to_null (vr
, type
);
3000 set_value_range_to_varying (vr
);
3004 else if (code
== ABS_EXPR
3005 && !TYPE_UNSIGNED (type
))
3007 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3009 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3010 && ((vr0
.type
== VR_RANGE
3011 && vrp_val_is_min (vr0
.min
))
3012 || (vr0
.type
== VR_ANTI_RANGE
3013 && !vrp_val_is_min (vr0
.min
)
3014 && !range_includes_zero_p (&vr0
))))
3016 set_value_range_to_varying (vr
);
3020 /* ABS_EXPR may flip the range around, if the original range
3021 included negative values. */
3022 if (is_overflow_infinity (vr0
.min
))
3023 min
= positive_overflow_infinity (type
);
3024 else if (!vrp_val_is_min (vr0
.min
))
3025 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3026 else if (!needs_overflow_infinity (type
))
3027 min
= TYPE_MAX_VALUE (type
);
3028 else if (supports_overflow_infinity (type
))
3029 min
= positive_overflow_infinity (type
);
3032 set_value_range_to_varying (vr
);
3036 if (is_overflow_infinity (vr0
.max
))
3037 max
= positive_overflow_infinity (type
);
3038 else if (!vrp_val_is_min (vr0
.max
))
3039 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3040 else if (!needs_overflow_infinity (type
))
3041 max
= TYPE_MAX_VALUE (type
);
3042 else if (supports_overflow_infinity (type
)
3043 /* We shouldn't generate [+INF, +INF] as set_value_range
3044 doesn't like this and ICEs. */
3045 && !is_positive_overflow_infinity (min
))
3046 max
= positive_overflow_infinity (type
);
3049 set_value_range_to_varying (vr
);
3053 cmp
= compare_values (min
, max
);
3055 /* If a VR_ANTI_RANGEs contains zero, then we have
3056 ~[-INF, min(MIN, MAX)]. */
3057 if (vr0
.type
== VR_ANTI_RANGE
)
3059 if (range_includes_zero_p (&vr0
))
3061 /* Take the lower of the two values. */
3065 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3066 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3067 flag_wrapv is set and the original anti-range doesn't include
3068 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3069 if (TYPE_OVERFLOW_WRAPS (type
))
3071 tree type_min_value
= TYPE_MIN_VALUE (type
);
3073 min
= (vr0
.min
!= type_min_value
3074 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3075 integer_one_node
, 0)
3080 if (overflow_infinity_range_p (&vr0
))
3081 min
= negative_overflow_infinity (type
);
3083 min
= TYPE_MIN_VALUE (type
);
3088 /* All else has failed, so create the range [0, INF], even for
3089 flag_wrapv since TYPE_MIN_VALUE is in the original
3091 vr0
.type
= VR_RANGE
;
3092 min
= build_int_cst (type
, 0);
3093 if (needs_overflow_infinity (type
))
3095 if (supports_overflow_infinity (type
))
3096 max
= positive_overflow_infinity (type
);
3099 set_value_range_to_varying (vr
);
3104 max
= TYPE_MAX_VALUE (type
);
3108 /* If the range contains zero then we know that the minimum value in the
3109 range will be zero. */
3110 else if (range_includes_zero_p (&vr0
))
3114 min
= build_int_cst (type
, 0);
3118 /* If the range was reversed, swap MIN and MAX. */
3129 /* Otherwise, operate on each end of the range. */
3130 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3131 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3133 if (needs_overflow_infinity (type
))
3135 gcc_assert (code
!= NEGATE_EXPR
&& code
!= ABS_EXPR
);
3137 /* If both sides have overflowed, we don't know
3139 if ((is_overflow_infinity (vr0
.min
)
3140 || TREE_OVERFLOW (min
))
3141 && (is_overflow_infinity (vr0
.max
)
3142 || TREE_OVERFLOW (max
)))
3144 set_value_range_to_varying (vr
);
3148 if (is_overflow_infinity (vr0
.min
))
3150 else if (TREE_OVERFLOW (min
))
3152 if (supports_overflow_infinity (type
))
3153 min
= (tree_int_cst_sgn (min
) >= 0
3154 ? positive_overflow_infinity (TREE_TYPE (min
))
3155 : negative_overflow_infinity (TREE_TYPE (min
)));
3158 set_value_range_to_varying (vr
);
3163 if (is_overflow_infinity (vr0
.max
))
3165 else if (TREE_OVERFLOW (max
))
3167 if (supports_overflow_infinity (type
))
3168 max
= (tree_int_cst_sgn (max
) >= 0
3169 ? positive_overflow_infinity (TREE_TYPE (max
))
3170 : negative_overflow_infinity (TREE_TYPE (max
)));
3173 set_value_range_to_varying (vr
);
3180 cmp
= compare_values (min
, max
);
3181 if (cmp
== -2 || cmp
== 1)
3183 /* If the new range has its limits swapped around (MIN > MAX),
3184 then the operation caused one of them to wrap around, mark
3185 the new range VARYING. */
3186 set_value_range_to_varying (vr
);
3189 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3193 /* Extract range information from a conditional expression EXPR based on
3194 the ranges of each of its operands and the expression code. */
3197 extract_range_from_cond_expr (value_range_t
*vr
, tree expr
)
3200 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3201 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3203 /* Get value ranges for each operand. For constant operands, create
3204 a new value range with the operand to simplify processing. */
3205 op0
= COND_EXPR_THEN (expr
);
3206 if (TREE_CODE (op0
) == SSA_NAME
)
3207 vr0
= *(get_value_range (op0
));
3208 else if (is_gimple_min_invariant (op0
))
3209 set_value_range_to_value (&vr0
, op0
, NULL
);
3211 set_value_range_to_varying (&vr0
);
3213 op1
= COND_EXPR_ELSE (expr
);
3214 if (TREE_CODE (op1
) == SSA_NAME
)
3215 vr1
= *(get_value_range (op1
));
3216 else if (is_gimple_min_invariant (op1
))
3217 set_value_range_to_value (&vr1
, op1
, NULL
);
3219 set_value_range_to_varying (&vr1
);
3221 /* The resulting value range is the union of the operand ranges */
3222 vrp_meet (&vr0
, &vr1
);
3223 copy_value_range (vr
, &vr0
);
3227 /* Extract range information from a comparison expression EXPR based
3228 on the range of its operand and the expression code. */
3231 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3232 tree type
, tree op0
, tree op1
)
3237 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3240 /* A disadvantage of using a special infinity as an overflow
3241 representation is that we lose the ability to record overflow
3242 when we don't have an infinity. So we have to ignore a result
3243 which relies on overflow. */
3245 if (val
&& !is_overflow_infinity (val
) && !sop
)
3247 /* Since this expression was found on the RHS of an assignment,
3248 its type may be different from _Bool. Convert VAL to EXPR's
3250 val
= fold_convert (type
, val
);
3251 if (is_gimple_min_invariant (val
))
3252 set_value_range_to_value (vr
, val
, vr
->equiv
);
3254 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3257 /* The result of a comparison is always true or false. */
3258 set_value_range_to_truthvalue (vr
, type
);
3261 /* Try to derive a nonnegative or nonzero range out of STMT relying
3262 primarily on generic routines in fold in conjunction with range data.
3263 Store the result in *VR */
3266 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3269 tree type
= gimple_expr_type (stmt
);
3271 if (INTEGRAL_TYPE_P (type
)
3272 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
3273 set_value_range_to_nonnegative (vr
, type
,
3274 sop
|| stmt_overflow_infinity (stmt
));
3275 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
3277 set_value_range_to_nonnull (vr
, type
);
3279 set_value_range_to_varying (vr
);
3283 /* Try to compute a useful range out of assignment STMT and store it
3287 extract_range_from_assignment (value_range_t
*vr
, gimple stmt
)
3289 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3291 if (code
== ASSERT_EXPR
)
3292 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
3293 else if (code
== SSA_NAME
)
3294 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
3295 else if (TREE_CODE_CLASS (code
) == tcc_binary
3296 || code
== TRUTH_AND_EXPR
3297 || code
== TRUTH_OR_EXPR
3298 || code
== TRUTH_XOR_EXPR
)
3299 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
3300 gimple_expr_type (stmt
),
3301 gimple_assign_rhs1 (stmt
),
3302 gimple_assign_rhs2 (stmt
));
3303 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
3304 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
3305 gimple_expr_type (stmt
),
3306 gimple_assign_rhs1 (stmt
));
3307 else if (code
== COND_EXPR
)
3308 extract_range_from_cond_expr (vr
, gimple_assign_rhs1 (stmt
));
3309 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3310 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
3311 gimple_expr_type (stmt
),
3312 gimple_assign_rhs1 (stmt
),
3313 gimple_assign_rhs2 (stmt
));
3314 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
3315 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
3316 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
3318 set_value_range_to_varying (vr
);
3320 if (vr
->type
== VR_VARYING
)
3321 extract_range_basic (vr
, stmt
);
3324 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3325 would be profitable to adjust VR using scalar evolution information
3326 for VAR. If so, update VR with the new limits. */
3329 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
3330 gimple stmt
, tree var
)
3332 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
3333 enum ev_direction dir
;
3335 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3336 better opportunities than a regular range, but I'm not sure. */
3337 if (vr
->type
== VR_ANTI_RANGE
)
3340 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
3342 /* Like in PR19590, scev can return a constant function. */
3343 if (is_gimple_min_invariant (chrec
))
3345 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
3349 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3352 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
3353 tem
= op_with_constant_singleton_value_range (init
);
3356 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
3357 tem
= op_with_constant_singleton_value_range (step
);
3361 /* If STEP is symbolic, we can't know whether INIT will be the
3362 minimum or maximum value in the range. Also, unless INIT is
3363 a simple expression, compare_values and possibly other functions
3364 in tree-vrp won't be able to handle it. */
3365 if (step
== NULL_TREE
3366 || !is_gimple_min_invariant (step
)
3367 || !valid_value_p (init
))
3370 dir
= scev_direction (chrec
);
3371 if (/* Do not adjust ranges if we do not know whether the iv increases
3372 or decreases, ... */
3373 dir
== EV_DIR_UNKNOWN
3374 /* ... or if it may wrap. */
3375 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3379 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3380 negative_overflow_infinity and positive_overflow_infinity,
3381 because we have concluded that the loop probably does not
3384 type
= TREE_TYPE (var
);
3385 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
3386 tmin
= lower_bound_in_type (type
, type
);
3388 tmin
= TYPE_MIN_VALUE (type
);
3389 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
3390 tmax
= upper_bound_in_type (type
, type
);
3392 tmax
= TYPE_MAX_VALUE (type
);
3394 /* Try to use estimated number of iterations for the loop to constrain the
3395 final value in the evolution.
3396 We are interested in the number of executions of the latch, while
3397 nb_iterations_upper_bound includes the last execution of the exit test. */
3398 if (TREE_CODE (step
) == INTEGER_CST
3399 && loop
->any_upper_bound
3400 && !double_int_zero_p (loop
->nb_iterations_upper_bound
)
3401 && is_gimple_val (init
)
3402 && (TREE_CODE (init
) != SSA_NAME
3403 || get_value_range (init
)->type
== VR_RANGE
))
3405 value_range_t maxvr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3407 bool unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (step
));
3410 dtmp
= double_int_mul_with_sign (tree_to_double_int (step
),
3412 loop
->nb_iterations_upper_bound
,
3414 unsigned_p
, &overflow
);
3415 tem
= double_int_to_tree (TREE_TYPE (init
), dtmp
);
3416 /* If the multiplication overflowed we can't do a meaningful
3418 if (!overflow
&& double_int_equal_p (dtmp
, tree_to_double_int (tem
)))
3420 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
3421 TREE_TYPE (init
), init
, tem
);
3422 /* Likewise if the addition did. */
3423 if (maxvr
.type
== VR_RANGE
)
3431 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3436 /* For VARYING or UNDEFINED ranges, just about anything we get
3437 from scalar evolutions should be better. */
3439 if (dir
== EV_DIR_DECREASES
)
3444 /* If we would create an invalid range, then just assume we
3445 know absolutely nothing. This may be over-conservative,
3446 but it's clearly safe, and should happen only in unreachable
3447 parts of code, or for invalid programs. */
3448 if (compare_values (min
, max
) == 1)
3451 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3453 else if (vr
->type
== VR_RANGE
)
3458 if (dir
== EV_DIR_DECREASES
)
3460 /* INIT is the maximum value. If INIT is lower than VR->MAX
3461 but no smaller than VR->MIN, set VR->MAX to INIT. */
3462 if (compare_values (init
, max
) == -1)
3465 /* According to the loop information, the variable does not
3466 overflow. If we think it does, probably because of an
3467 overflow due to arithmetic on a different INF value,
3469 if (is_negative_overflow_infinity (min
)
3470 || compare_values (min
, tmin
) == -1)
3476 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3477 if (compare_values (init
, min
) == 1)
3480 if (is_positive_overflow_infinity (max
)
3481 || compare_values (tmax
, max
) == -1)
3485 /* If we just created an invalid range with the minimum
3486 greater than the maximum, we fail conservatively.
3487 This should happen only in unreachable
3488 parts of code, or for invalid programs. */
3489 if (compare_values (min
, max
) == 1)
3492 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3496 /* Return true if VAR may overflow at STMT. This checks any available
3497 loop information to see if we can determine that VAR does not
3501 vrp_var_may_overflow (tree var
, gimple stmt
)
3504 tree chrec
, init
, step
;
3506 if (current_loops
== NULL
)
3509 l
= loop_containing_stmt (stmt
);
3514 chrec
= instantiate_parameters (l
, analyze_scalar_evolution (l
, var
));
3515 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3518 init
= initial_condition_in_loop_num (chrec
, l
->num
);
3519 step
= evolution_part_in_loop_num (chrec
, l
->num
);
3521 if (step
== NULL_TREE
3522 || !is_gimple_min_invariant (step
)
3523 || !valid_value_p (init
))
3526 /* If we get here, we know something useful about VAR based on the
3527 loop information. If it wraps, it may overflow. */
3529 if (scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3533 if (dump_file
&& (dump_flags
& TDF_DETAILS
) != 0)
3535 print_generic_expr (dump_file
, var
, 0);
3536 fprintf (dump_file
, ": loop information indicates does not overflow\n");
3543 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3545 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3546 all the values in the ranges.
3548 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3550 - Return NULL_TREE if it is not always possible to determine the
3551 value of the comparison.
3553 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3554 overflow infinity was used in the test. */
3558 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
3559 bool *strict_overflow_p
)
3561 /* VARYING or UNDEFINED ranges cannot be compared. */
3562 if (vr0
->type
== VR_VARYING
3563 || vr0
->type
== VR_UNDEFINED
3564 || vr1
->type
== VR_VARYING
3565 || vr1
->type
== VR_UNDEFINED
)
3568 /* Anti-ranges need to be handled separately. */
3569 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3571 /* If both are anti-ranges, then we cannot compute any
3573 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3576 /* These comparisons are never statically computable. */
3583 /* Equality can be computed only between a range and an
3584 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3585 if (vr0
->type
== VR_RANGE
)
3587 /* To simplify processing, make VR0 the anti-range. */
3588 value_range_t
*tmp
= vr0
;
3593 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
3595 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
3596 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
3597 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3602 if (!usable_range_p (vr0
, strict_overflow_p
)
3603 || !usable_range_p (vr1
, strict_overflow_p
))
3606 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3607 operands around and change the comparison code. */
3608 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3611 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
3617 if (comp
== EQ_EXPR
)
3619 /* Equality may only be computed if both ranges represent
3620 exactly one value. */
3621 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
3622 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
3624 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
3626 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
3628 if (cmp_min
== 0 && cmp_max
== 0)
3629 return boolean_true_node
;
3630 else if (cmp_min
!= -2 && cmp_max
!= -2)
3631 return boolean_false_node
;
3633 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3634 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
3635 strict_overflow_p
) == 1
3636 || compare_values_warnv (vr1
->min
, vr0
->max
,
3637 strict_overflow_p
) == 1)
3638 return boolean_false_node
;
3642 else if (comp
== NE_EXPR
)
3646 /* If VR0 is completely to the left or completely to the right
3647 of VR1, they are always different. Notice that we need to
3648 make sure that both comparisons yield similar results to
3649 avoid comparing values that cannot be compared at
3651 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3652 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3653 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
3654 return boolean_true_node
;
3656 /* If VR0 and VR1 represent a single value and are identical,
3658 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
3659 strict_overflow_p
) == 0
3660 && compare_values_warnv (vr1
->min
, vr1
->max
,
3661 strict_overflow_p
) == 0
3662 && compare_values_warnv (vr0
->min
, vr1
->min
,
3663 strict_overflow_p
) == 0
3664 && compare_values_warnv (vr0
->max
, vr1
->max
,
3665 strict_overflow_p
) == 0)
3666 return boolean_false_node
;
3668 /* Otherwise, they may or may not be different. */
3672 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3676 /* If VR0 is to the left of VR1, return true. */
3677 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3678 if ((comp
== LT_EXPR
&& tst
== -1)
3679 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3681 if (overflow_infinity_range_p (vr0
)
3682 || overflow_infinity_range_p (vr1
))
3683 *strict_overflow_p
= true;
3684 return boolean_true_node
;
3687 /* If VR0 is to the right of VR1, return false. */
3688 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3689 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3690 || (comp
== LE_EXPR
&& tst
== 1))
3692 if (overflow_infinity_range_p (vr0
)
3693 || overflow_infinity_range_p (vr1
))
3694 *strict_overflow_p
= true;
3695 return boolean_false_node
;
3698 /* Otherwise, we don't know. */
3706 /* Given a value range VR, a value VAL and a comparison code COMP, return
3707 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3708 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3709 always returns false. Return NULL_TREE if it is not always
3710 possible to determine the value of the comparison. Also set
3711 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3712 infinity was used in the test. */
3715 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
3716 bool *strict_overflow_p
)
3718 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3721 /* Anti-ranges need to be handled separately. */
3722 if (vr
->type
== VR_ANTI_RANGE
)
3724 /* For anti-ranges, the only predicates that we can compute at
3725 compile time are equality and inequality. */
3732 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3733 if (value_inside_range (val
, vr
) == 1)
3734 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3739 if (!usable_range_p (vr
, strict_overflow_p
))
3742 if (comp
== EQ_EXPR
)
3744 /* EQ_EXPR may only be computed if VR represents exactly
3746 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
3748 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3750 return boolean_true_node
;
3751 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
3752 return boolean_false_node
;
3754 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
3755 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
3756 return boolean_false_node
;
3760 else if (comp
== NE_EXPR
)
3762 /* If VAL is not inside VR, then they are always different. */
3763 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
3764 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
3765 return boolean_true_node
;
3767 /* If VR represents exactly one value equal to VAL, then return
3769 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
3770 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
3771 return boolean_false_node
;
3773 /* Otherwise, they may or may not be different. */
3776 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3780 /* If VR is to the left of VAL, return true. */
3781 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3782 if ((comp
== LT_EXPR
&& tst
== -1)
3783 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3785 if (overflow_infinity_range_p (vr
))
3786 *strict_overflow_p
= true;
3787 return boolean_true_node
;
3790 /* If VR is to the right of VAL, return false. */
3791 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3792 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3793 || (comp
== LE_EXPR
&& tst
== 1))
3795 if (overflow_infinity_range_p (vr
))
3796 *strict_overflow_p
= true;
3797 return boolean_false_node
;
3800 /* Otherwise, we don't know. */
3803 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3807 /* If VR is to the right of VAL, return true. */
3808 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3809 if ((comp
== GT_EXPR
&& tst
== 1)
3810 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
3812 if (overflow_infinity_range_p (vr
))
3813 *strict_overflow_p
= true;
3814 return boolean_true_node
;
3817 /* If VR is to the left of VAL, return false. */
3818 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3819 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
3820 || (comp
== GE_EXPR
&& tst
== -1))
3822 if (overflow_infinity_range_p (vr
))
3823 *strict_overflow_p
= true;
3824 return boolean_false_node
;
3827 /* Otherwise, we don't know. */
3835 /* Debugging dumps. */
3837 void dump_value_range (FILE *, value_range_t
*);
3838 void debug_value_range (value_range_t
*);
3839 void dump_all_value_ranges (FILE *);
3840 void debug_all_value_ranges (void);
3841 void dump_vr_equiv (FILE *, bitmap
);
3842 void debug_vr_equiv (bitmap
);
3845 /* Dump value range VR to FILE. */
3848 dump_value_range (FILE *file
, value_range_t
*vr
)
3851 fprintf (file
, "[]");
3852 else if (vr
->type
== VR_UNDEFINED
)
3853 fprintf (file
, "UNDEFINED");
3854 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
3856 tree type
= TREE_TYPE (vr
->min
);
3858 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
3860 if (is_negative_overflow_infinity (vr
->min
))
3861 fprintf (file
, "-INF(OVF)");
3862 else if (INTEGRAL_TYPE_P (type
)
3863 && !TYPE_UNSIGNED (type
)
3864 && vrp_val_is_min (vr
->min
))
3865 fprintf (file
, "-INF");
3867 print_generic_expr (file
, vr
->min
, 0);
3869 fprintf (file
, ", ");
3871 if (is_positive_overflow_infinity (vr
->max
))
3872 fprintf (file
, "+INF(OVF)");
3873 else if (INTEGRAL_TYPE_P (type
)
3874 && vrp_val_is_max (vr
->max
))
3875 fprintf (file
, "+INF");
3877 print_generic_expr (file
, vr
->max
, 0);
3879 fprintf (file
, "]");
3886 fprintf (file
, " EQUIVALENCES: { ");
3888 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
3890 print_generic_expr (file
, ssa_name (i
), 0);
3891 fprintf (file
, " ");
3895 fprintf (file
, "} (%u elements)", c
);
3898 else if (vr
->type
== VR_VARYING
)
3899 fprintf (file
, "VARYING");
3901 fprintf (file
, "INVALID RANGE");
3905 /* Dump value range VR to stderr. */
3908 debug_value_range (value_range_t
*vr
)
3910 dump_value_range (stderr
, vr
);
3911 fprintf (stderr
, "\n");
3915 /* Dump value ranges of all SSA_NAMEs to FILE. */
3918 dump_all_value_ranges (FILE *file
)
3922 for (i
= 0; i
< num_ssa_names
; i
++)
3926 print_generic_expr (file
, ssa_name (i
), 0);
3927 fprintf (file
, ": ");
3928 dump_value_range (file
, vr_value
[i
]);
3929 fprintf (file
, "\n");
3933 fprintf (file
, "\n");
3937 /* Dump all value ranges to stderr. */
3940 debug_all_value_ranges (void)
3942 dump_all_value_ranges (stderr
);
3946 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3947 create a new SSA name N and return the assertion assignment
3948 'V = ASSERT_EXPR <V, V OP W>'. */
3951 build_assert_expr_for (tree cond
, tree v
)
3956 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
3957 n
= duplicate_ssa_name (v
, NULL
);
3959 if (COMPARISON_CLASS_P (cond
))
3961 tree a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
3962 assertion
= gimple_build_assign (n
, a
);
3964 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
3966 /* Given !V, build the assignment N = false. */
3967 tree op0
= TREE_OPERAND (cond
, 0);
3968 gcc_assert (op0
== v
);
3969 assertion
= gimple_build_assign (n
, boolean_false_node
);
3971 else if (TREE_CODE (cond
) == SSA_NAME
)
3973 /* Given V, build the assignment N = true. */
3974 gcc_assert (v
== cond
);
3975 assertion
= gimple_build_assign (n
, boolean_true_node
);
3980 SSA_NAME_DEF_STMT (n
) = assertion
;
3982 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3983 operand of the ASSERT_EXPR. Register the new name and the old one
3984 in the replacement table so that we can fix the SSA web after
3985 adding all the ASSERT_EXPRs. */
3986 register_new_name_mapping (n
, v
);
3992 /* Return false if EXPR is a predicate expression involving floating
3996 fp_predicate (gimple stmt
)
3998 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
4000 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
4004 /* If the range of values taken by OP can be inferred after STMT executes,
4005 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4006 describes the inferred range. Return true if a range could be
4010 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
4013 *comp_code_p
= ERROR_MARK
;
4015 /* Do not attempt to infer anything in names that flow through
4017 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4020 /* Similarly, don't infer anything from statements that may throw
4022 if (stmt_could_throw_p (stmt
))
4025 /* If STMT is the last statement of a basic block with no
4026 successors, there is no point inferring anything about any of its
4027 operands. We would not be able to find a proper insertion point
4028 for the assertion, anyway. */
4029 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (gimple_bb (stmt
)->succs
) == 0)
4032 /* We can only assume that a pointer dereference will yield
4033 non-NULL if -fdelete-null-pointer-checks is enabled. */
4034 if (flag_delete_null_pointer_checks
4035 && POINTER_TYPE_P (TREE_TYPE (op
))
4036 && gimple_code (stmt
) != GIMPLE_ASM
)
4038 unsigned num_uses
, num_loads
, num_stores
;
4040 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_loads
, &num_stores
);
4041 if (num_loads
+ num_stores
> 0)
4043 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4044 *comp_code_p
= NE_EXPR
;
4053 void dump_asserts_for (FILE *, tree
);
4054 void debug_asserts_for (tree
);
4055 void dump_all_asserts (FILE *);
4056 void debug_all_asserts (void);
4058 /* Dump all the registered assertions for NAME to FILE. */
4061 dump_asserts_for (FILE *file
, tree name
)
4065 fprintf (file
, "Assertions to be inserted for ");
4066 print_generic_expr (file
, name
, 0);
4067 fprintf (file
, "\n");
4069 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4072 fprintf (file
, "\t");
4073 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4074 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4077 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4078 loc
->e
->dest
->index
);
4079 dump_edge_info (file
, loc
->e
, 0);
4081 fprintf (file
, "\n\tPREDICATE: ");
4082 print_generic_expr (file
, name
, 0);
4083 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
4084 print_generic_expr (file
, loc
->val
, 0);
4085 fprintf (file
, "\n\n");
4089 fprintf (file
, "\n");
4093 /* Dump all the registered assertions for NAME to stderr. */
4096 debug_asserts_for (tree name
)
4098 dump_asserts_for (stderr
, name
);
4102 /* Dump all the registered assertions for all the names to FILE. */
4105 dump_all_asserts (FILE *file
)
4110 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
4111 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4112 dump_asserts_for (file
, ssa_name (i
));
4113 fprintf (file
, "\n");
4117 /* Dump all the registered assertions for all the names to stderr. */
4120 debug_all_asserts (void)
4122 dump_all_asserts (stderr
);
4126 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4127 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4128 E->DEST, then register this location as a possible insertion point
4129 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4131 BB, E and SI provide the exact insertion point for the new
4132 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4133 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4134 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4135 must not be NULL. */
4138 register_new_assert_for (tree name
, tree expr
,
4139 enum tree_code comp_code
,
4143 gimple_stmt_iterator si
)
4145 assert_locus_t n
, loc
, last_loc
;
4146 basic_block dest_bb
;
4148 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
4151 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
4152 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
4154 /* Never build an assert comparing against an integer constant with
4155 TREE_OVERFLOW set. This confuses our undefined overflow warning
4157 if (TREE_CODE (val
) == INTEGER_CST
4158 && TREE_OVERFLOW (val
))
4159 val
= build_int_cst_wide (TREE_TYPE (val
),
4160 TREE_INT_CST_LOW (val
), TREE_INT_CST_HIGH (val
));
4162 /* The new assertion A will be inserted at BB or E. We need to
4163 determine if the new location is dominated by a previously
4164 registered location for A. If we are doing an edge insertion,
4165 assume that A will be inserted at E->DEST. Note that this is not
4168 If E is a critical edge, it will be split. But even if E is
4169 split, the new block will dominate the same set of blocks that
4172 The reverse, however, is not true, blocks dominated by E->DEST
4173 will not be dominated by the new block created to split E. So,
4174 if the insertion location is on a critical edge, we will not use
4175 the new location to move another assertion previously registered
4176 at a block dominated by E->DEST. */
4177 dest_bb
= (bb
) ? bb
: e
->dest
;
4179 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4180 VAL at a block dominating DEST_BB, then we don't need to insert a new
4181 one. Similarly, if the same assertion already exists at a block
4182 dominated by DEST_BB and the new location is not on a critical
4183 edge, then update the existing location for the assertion (i.e.,
4184 move the assertion up in the dominance tree).
4186 Note, this is implemented as a simple linked list because there
4187 should not be more than a handful of assertions registered per
4188 name. If this becomes a performance problem, a table hashed by
4189 COMP_CODE and VAL could be implemented. */
4190 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4194 if (loc
->comp_code
== comp_code
4196 || operand_equal_p (loc
->val
, val
, 0))
4197 && (loc
->expr
== expr
4198 || operand_equal_p (loc
->expr
, expr
, 0)))
4200 /* If the assertion NAME COMP_CODE VAL has already been
4201 registered at a basic block that dominates DEST_BB, then
4202 we don't need to insert the same assertion again. Note
4203 that we don't check strict dominance here to avoid
4204 replicating the same assertion inside the same basic
4205 block more than once (e.g., when a pointer is
4206 dereferenced several times inside a block).
4208 An exception to this rule are edge insertions. If the
4209 new assertion is to be inserted on edge E, then it will
4210 dominate all the other insertions that we may want to
4211 insert in DEST_BB. So, if we are doing an edge
4212 insertion, don't do this dominance check. */
4214 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
4217 /* Otherwise, if E is not a critical edge and DEST_BB
4218 dominates the existing location for the assertion, move
4219 the assertion up in the dominance tree by updating its
4220 location information. */
4221 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
4222 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
4231 /* Update the last node of the list and move to the next one. */
4236 /* If we didn't find an assertion already registered for
4237 NAME COMP_CODE VAL, add a new one at the end of the list of
4238 assertions associated with NAME. */
4239 n
= XNEW (struct assert_locus_d
);
4243 n
->comp_code
= comp_code
;
4251 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
4253 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
4256 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4257 Extract a suitable test code and value and store them into *CODE_P and
4258 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4260 If no extraction was possible, return FALSE, otherwise return TRUE.
4262 If INVERT is true, then we invert the result stored into *CODE_P. */
4265 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
4266 tree cond_op0
, tree cond_op1
,
4267 bool invert
, enum tree_code
*code_p
,
4270 enum tree_code comp_code
;
4273 /* Otherwise, we have a comparison of the form NAME COMP VAL
4274 or VAL COMP NAME. */
4275 if (name
== cond_op1
)
4277 /* If the predicate is of the form VAL COMP NAME, flip
4278 COMP around because we need to register NAME as the
4279 first operand in the predicate. */
4280 comp_code
= swap_tree_comparison (cond_code
);
4285 /* The comparison is of the form NAME COMP VAL, so the
4286 comparison code remains unchanged. */
4287 comp_code
= cond_code
;
4291 /* Invert the comparison code as necessary. */
4293 comp_code
= invert_tree_comparison (comp_code
, 0);
4295 /* VRP does not handle float types. */
4296 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
4299 /* Do not register always-false predicates.
4300 FIXME: this works around a limitation in fold() when dealing with
4301 enumerations. Given 'enum { N1, N2 } x;', fold will not
4302 fold 'if (x > N2)' to 'if (0)'. */
4303 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
4304 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
4306 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
4307 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4309 if (comp_code
== GT_EXPR
4311 || compare_values (val
, max
) == 0))
4314 if (comp_code
== LT_EXPR
4316 || compare_values (val
, min
) == 0))
4319 *code_p
= comp_code
;
4324 /* Try to register an edge assertion for SSA name NAME on edge E for
4325 the condition COND contributing to the conditional jump pointed to by BSI.
4326 Invert the condition COND if INVERT is true.
4327 Return true if an assertion for NAME could be registered. */
4330 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
4331 enum tree_code cond_code
,
4332 tree cond_op0
, tree cond_op1
, bool invert
)
4335 enum tree_code comp_code
;
4336 bool retval
= false;
4338 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4341 invert
, &comp_code
, &val
))
4344 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4345 reachable from E. */
4346 if (live_on_edge (e
, name
)
4347 && !has_single_use (name
))
4349 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
4353 /* In the case of NAME <= CST and NAME being defined as
4354 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4355 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4356 This catches range and anti-range tests. */
4357 if ((comp_code
== LE_EXPR
4358 || comp_code
== GT_EXPR
)
4359 && TREE_CODE (val
) == INTEGER_CST
4360 && TYPE_UNSIGNED (TREE_TYPE (val
)))
4362 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4363 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
4365 /* Extract CST2 from the (optional) addition. */
4366 if (is_gimple_assign (def_stmt
)
4367 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
4369 name2
= gimple_assign_rhs1 (def_stmt
);
4370 cst2
= gimple_assign_rhs2 (def_stmt
);
4371 if (TREE_CODE (name2
) == SSA_NAME
4372 && TREE_CODE (cst2
) == INTEGER_CST
)
4373 def_stmt
= SSA_NAME_DEF_STMT (name2
);
4376 /* Extract NAME2 from the (optional) sign-changing cast. */
4377 if (gimple_assign_cast_p (def_stmt
))
4379 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
4380 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4381 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
4382 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
4383 name3
= gimple_assign_rhs1 (def_stmt
);
4386 /* If name3 is used later, create an ASSERT_EXPR for it. */
4387 if (name3
!= NULL_TREE
4388 && TREE_CODE (name3
) == SSA_NAME
4389 && (cst2
== NULL_TREE
4390 || TREE_CODE (cst2
) == INTEGER_CST
)
4391 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
4392 && live_on_edge (e
, name3
)
4393 && !has_single_use (name3
))
4397 /* Build an expression for the range test. */
4398 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
4399 if (cst2
!= NULL_TREE
)
4400 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4404 fprintf (dump_file
, "Adding assert for ");
4405 print_generic_expr (dump_file
, name3
, 0);
4406 fprintf (dump_file
, " from ");
4407 print_generic_expr (dump_file
, tmp
, 0);
4408 fprintf (dump_file
, "\n");
4411 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4416 /* If name2 is used later, create an ASSERT_EXPR for it. */
4417 if (name2
!= NULL_TREE
4418 && TREE_CODE (name2
) == SSA_NAME
4419 && TREE_CODE (cst2
) == INTEGER_CST
4420 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4421 && live_on_edge (e
, name2
)
4422 && !has_single_use (name2
))
4426 /* Build an expression for the range test. */
4428 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
4429 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
4430 if (cst2
!= NULL_TREE
)
4431 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4435 fprintf (dump_file
, "Adding assert for ");
4436 print_generic_expr (dump_file
, name2
, 0);
4437 fprintf (dump_file
, " from ");
4438 print_generic_expr (dump_file
, tmp
, 0);
4439 fprintf (dump_file
, "\n");
4442 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4451 /* OP is an operand of a truth value expression which is known to have
4452 a particular value. Register any asserts for OP and for any
4453 operands in OP's defining statement.
4455 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4456 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4459 register_edge_assert_for_1 (tree op
, enum tree_code code
,
4460 edge e
, gimple_stmt_iterator bsi
)
4462 bool retval
= false;
4465 enum tree_code rhs_code
;
4467 /* We only care about SSA_NAMEs. */
4468 if (TREE_CODE (op
) != SSA_NAME
)
4471 /* We know that OP will have a zero or nonzero value. If OP is used
4472 more than once go ahead and register an assert for OP.
4474 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4475 it will always be set for OP (because OP is used in a COND_EXPR in
4477 if (!has_single_use (op
))
4479 val
= build_int_cst (TREE_TYPE (op
), 0);
4480 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
4484 /* Now look at how OP is set. If it's set from a comparison,
4485 a truth operation or some bit operations, then we may be able
4486 to register information about the operands of that assignment. */
4487 op_def
= SSA_NAME_DEF_STMT (op
);
4488 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
4491 rhs_code
= gimple_assign_rhs_code (op_def
);
4493 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
4495 bool invert
= (code
== EQ_EXPR
? true : false);
4496 tree op0
= gimple_assign_rhs1 (op_def
);
4497 tree op1
= gimple_assign_rhs2 (op_def
);
4499 if (TREE_CODE (op0
) == SSA_NAME
)
4500 retval
|= register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
,
4502 if (TREE_CODE (op1
) == SSA_NAME
)
4503 retval
|= register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
,
4506 else if ((code
== NE_EXPR
4507 && (gimple_assign_rhs_code (op_def
) == TRUTH_AND_EXPR
4508 || gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
))
4510 && (gimple_assign_rhs_code (op_def
) == TRUTH_OR_EXPR
4511 || gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
)))
4513 /* Recurse on each operand. */
4514 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4516 retval
|= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def
),
4519 else if (gimple_assign_rhs_code (op_def
) == TRUTH_NOT_EXPR
)
4521 /* Recurse, flipping CODE. */
4522 code
= invert_tree_comparison (code
, false);
4523 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4526 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
4528 /* Recurse through the copy. */
4529 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4532 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
4534 /* Recurse through the type conversion. */
4535 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4542 /* Try to register an edge assertion for SSA name NAME on edge E for
4543 the condition COND contributing to the conditional jump pointed to by SI.
4544 Return true if an assertion for NAME could be registered. */
4547 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
4548 enum tree_code cond_code
, tree cond_op0
,
4552 enum tree_code comp_code
;
4553 bool retval
= false;
4554 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
4556 /* Do not attempt to infer anything in names that flow through
4558 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
4561 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4567 /* Register ASSERT_EXPRs for name. */
4568 retval
|= register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
4569 cond_op1
, is_else_edge
);
4572 /* If COND is effectively an equality test of an SSA_NAME against
4573 the value zero or one, then we may be able to assert values
4574 for SSA_NAMEs which flow into COND. */
4576 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4577 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4578 have nonzero value. */
4579 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
4580 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
4582 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4584 if (is_gimple_assign (def_stmt
)
4585 && (gimple_assign_rhs_code (def_stmt
) == TRUTH_AND_EXPR
4586 || gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
))
4588 tree op0
= gimple_assign_rhs1 (def_stmt
);
4589 tree op1
= gimple_assign_rhs2 (def_stmt
);
4590 retval
|= register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
4591 retval
|= register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
4595 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4596 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4598 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
4599 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
4601 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4603 if (is_gimple_assign (def_stmt
)
4604 && (gimple_assign_rhs_code (def_stmt
) == TRUTH_OR_EXPR
4605 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4606 necessarily zero value. */
4607 || (comp_code
== EQ_EXPR
4608 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
))))
4610 tree op0
= gimple_assign_rhs1 (def_stmt
);
4611 tree op1
= gimple_assign_rhs2 (def_stmt
);
4612 retval
|= register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
4613 retval
|= register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
4621 /* Determine whether the outgoing edges of BB should receive an
4622 ASSERT_EXPR for each of the operands of BB's LAST statement.
4623 The last statement of BB must be a COND_EXPR.
4625 If any of the sub-graphs rooted at BB have an interesting use of
4626 the predicate operands, an assert location node is added to the
4627 list of assertions for the corresponding operands. */
4630 find_conditional_asserts (basic_block bb
, gimple last
)
4633 gimple_stmt_iterator bsi
;
4639 need_assert
= false;
4640 bsi
= gsi_for_stmt (last
);
4642 /* Look for uses of the operands in each of the sub-graphs
4643 rooted at BB. We need to check each of the outgoing edges
4644 separately, so that we know what kind of ASSERT_EXPR to
4646 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4651 /* Register the necessary assertions for each operand in the
4652 conditional predicate. */
4653 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
4655 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4656 gimple_cond_code (last
),
4657 gimple_cond_lhs (last
),
4658 gimple_cond_rhs (last
));
4665 /* Compare two case labels sorting first by the destination label uid
4666 and then by the case value. */
4669 compare_case_labels (const void *p1
, const void *p2
)
4671 const_tree
const case1
= *(const_tree
const*)p1
;
4672 const_tree
const case2
= *(const_tree
const*)p2
;
4673 unsigned int uid1
= DECL_UID (CASE_LABEL (case1
));
4674 unsigned int uid2
= DECL_UID (CASE_LABEL (case2
));
4678 else if (uid1
== uid2
)
4680 /* Make sure the default label is first in a group. */
4681 if (!CASE_LOW (case1
))
4683 else if (!CASE_LOW (case2
))
4686 return tree_int_cst_compare (CASE_LOW (case1
), CASE_LOW (case2
));
4692 /* Determine whether the outgoing edges of BB should receive an
4693 ASSERT_EXPR for each of the operands of BB's LAST statement.
4694 The last statement of BB must be a SWITCH_EXPR.
4696 If any of the sub-graphs rooted at BB have an interesting use of
4697 the predicate operands, an assert location node is added to the
4698 list of assertions for the corresponding operands. */
4701 find_switch_asserts (basic_block bb
, gimple last
)
4704 gimple_stmt_iterator bsi
;
4708 size_t n
= gimple_switch_num_labels(last
);
4709 #if GCC_VERSION >= 4000
4712 /* Work around GCC 3.4 bug (PR 37086). */
4713 volatile unsigned int idx
;
4716 need_assert
= false;
4717 bsi
= gsi_for_stmt (last
);
4718 op
= gimple_switch_index (last
);
4719 if (TREE_CODE (op
) != SSA_NAME
)
4722 /* Build a vector of case labels sorted by destination label. */
4723 vec2
= make_tree_vec (n
);
4724 for (idx
= 0; idx
< n
; ++idx
)
4725 TREE_VEC_ELT (vec2
, idx
) = gimple_switch_label (last
, idx
);
4726 qsort (&TREE_VEC_ELT (vec2
, 0), n
, sizeof (tree
), compare_case_labels
);
4728 for (idx
= 0; idx
< n
; ++idx
)
4731 tree cl
= TREE_VEC_ELT (vec2
, idx
);
4733 min
= CASE_LOW (cl
);
4734 max
= CASE_HIGH (cl
);
4736 /* If there are multiple case labels with the same destination
4737 we need to combine them to a single value range for the edge. */
4739 && CASE_LABEL (cl
) == CASE_LABEL (TREE_VEC_ELT (vec2
, idx
+ 1)))
4741 /* Skip labels until the last of the group. */
4745 && CASE_LABEL (cl
) == CASE_LABEL (TREE_VEC_ELT (vec2
, idx
)));
4748 /* Pick up the maximum of the case label range. */
4749 if (CASE_HIGH (TREE_VEC_ELT (vec2
, idx
)))
4750 max
= CASE_HIGH (TREE_VEC_ELT (vec2
, idx
));
4752 max
= CASE_LOW (TREE_VEC_ELT (vec2
, idx
));
4755 /* Nothing to do if the range includes the default label until we
4756 can register anti-ranges. */
4757 if (min
== NULL_TREE
)
4760 /* Find the edge to register the assert expr on. */
4761 e
= find_edge (bb
, label_to_block (CASE_LABEL (cl
)));
4763 /* Register the necessary assertions for the operand in the
4765 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4766 max
? GE_EXPR
: EQ_EXPR
,
4768 fold_convert (TREE_TYPE (op
),
4772 need_assert
|= register_edge_assert_for (op
, e
, bsi
, LE_EXPR
,
4774 fold_convert (TREE_TYPE (op
),
4783 /* Traverse all the statements in block BB looking for statements that
4784 may generate useful assertions for the SSA names in their operand.
4785 If a statement produces a useful assertion A for name N_i, then the
4786 list of assertions already generated for N_i is scanned to
4787 determine if A is actually needed.
4789 If N_i already had the assertion A at a location dominating the
4790 current location, then nothing needs to be done. Otherwise, the
4791 new location for A is recorded instead.
4793 1- For every statement S in BB, all the variables used by S are
4794 added to bitmap FOUND_IN_SUBGRAPH.
4796 2- If statement S uses an operand N in a way that exposes a known
4797 value range for N, then if N was not already generated by an
4798 ASSERT_EXPR, create a new assert location for N. For instance,
4799 if N is a pointer and the statement dereferences it, we can
4800 assume that N is not NULL.
4802 3- COND_EXPRs are a special case of #2. We can derive range
4803 information from the predicate but need to insert different
4804 ASSERT_EXPRs for each of the sub-graphs rooted at the
4805 conditional block. If the last statement of BB is a conditional
4806 expression of the form 'X op Y', then
4808 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4810 b) If the conditional is the only entry point to the sub-graph
4811 corresponding to the THEN_CLAUSE, recurse into it. On
4812 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4813 an ASSERT_EXPR is added for the corresponding variable.
4815 c) Repeat step (b) on the ELSE_CLAUSE.
4817 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4826 In this case, an assertion on the THEN clause is useful to
4827 determine that 'a' is always 9 on that edge. However, an assertion
4828 on the ELSE clause would be unnecessary.
4830 4- If BB does not end in a conditional expression, then we recurse
4831 into BB's dominator children.
4833 At the end of the recursive traversal, every SSA name will have a
4834 list of locations where ASSERT_EXPRs should be added. When a new
4835 location for name N is found, it is registered by calling
4836 register_new_assert_for. That function keeps track of all the
4837 registered assertions to prevent adding unnecessary assertions.
4838 For instance, if a pointer P_4 is dereferenced more than once in a
4839 dominator tree, only the location dominating all the dereference of
4840 P_4 will receive an ASSERT_EXPR.
4842 If this function returns true, then it means that there are names
4843 for which we need to generate ASSERT_EXPRs. Those assertions are
4844 inserted by process_assert_insertions. */
4847 find_assert_locations_1 (basic_block bb
, sbitmap live
)
4849 gimple_stmt_iterator si
;
4854 need_assert
= false;
4855 last
= last_stmt (bb
);
4857 /* If BB's last statement is a conditional statement involving integer
4858 operands, determine if we need to add ASSERT_EXPRs. */
4860 && gimple_code (last
) == GIMPLE_COND
4861 && !fp_predicate (last
)
4862 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4863 need_assert
|= find_conditional_asserts (bb
, last
);
4865 /* If BB's last statement is a switch statement involving integer
4866 operands, determine if we need to add ASSERT_EXPRs. */
4868 && gimple_code (last
) == GIMPLE_SWITCH
4869 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4870 need_assert
|= find_switch_asserts (bb
, last
);
4872 /* Traverse all the statements in BB marking used names and looking
4873 for statements that may infer assertions for their used operands. */
4874 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
4880 stmt
= gsi_stmt (si
);
4882 if (is_gimple_debug (stmt
))
4885 /* See if we can derive an assertion for any of STMT's operands. */
4886 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
4889 enum tree_code comp_code
;
4891 /* Mark OP in our live bitmap. */
4892 SET_BIT (live
, SSA_NAME_VERSION (op
));
4894 /* If OP is used in such a way that we can infer a value
4895 range for it, and we don't find a previous assertion for
4896 it, create a new assertion location node for OP. */
4897 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
4899 /* If we are able to infer a nonzero value range for OP,
4900 then walk backwards through the use-def chain to see if OP
4901 was set via a typecast.
4903 If so, then we can also infer a nonzero value range
4904 for the operand of the NOP_EXPR. */
4905 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
4908 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
4910 while (is_gimple_assign (def_stmt
)
4911 && gimple_assign_rhs_code (def_stmt
) == NOP_EXPR
4913 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
4915 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
4917 t
= gimple_assign_rhs1 (def_stmt
);
4918 def_stmt
= SSA_NAME_DEF_STMT (t
);
4920 /* Note we want to register the assert for the
4921 operand of the NOP_EXPR after SI, not after the
4923 if (! has_single_use (t
))
4925 register_new_assert_for (t
, t
, comp_code
, value
,
4932 /* If OP is used only once, namely in this STMT, don't
4933 bother creating an ASSERT_EXPR for it. Such an
4934 ASSERT_EXPR would do nothing but increase compile time. */
4935 if (!has_single_use (op
))
4937 register_new_assert_for (op
, op
, comp_code
, value
,
4945 /* Traverse all PHI nodes in BB marking used operands. */
4946 for (si
= gsi_start_phis (bb
); !gsi_end_p(si
); gsi_next (&si
))
4948 use_operand_p arg_p
;
4950 phi
= gsi_stmt (si
);
4952 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
4954 tree arg
= USE_FROM_PTR (arg_p
);
4955 if (TREE_CODE (arg
) == SSA_NAME
)
4956 SET_BIT (live
, SSA_NAME_VERSION (arg
));
4963 /* Do an RPO walk over the function computing SSA name liveness
4964 on-the-fly and deciding on assert expressions to insert.
4965 Returns true if there are assert expressions to be inserted. */
4968 find_assert_locations (void)
4970 int *rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4971 int *bb_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4972 int *last_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4976 live
= XCNEWVEC (sbitmap
, last_basic_block
+ NUM_FIXED_BLOCKS
);
4977 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
4978 for (i
= 0; i
< rpo_cnt
; ++i
)
4981 need_asserts
= false;
4982 for (i
= rpo_cnt
-1; i
>= 0; --i
)
4984 basic_block bb
= BASIC_BLOCK (rpo
[i
]);
4990 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
4991 sbitmap_zero (live
[rpo
[i
]]);
4994 /* Process BB and update the live information with uses in
4996 need_asserts
|= find_assert_locations_1 (bb
, live
[rpo
[i
]]);
4998 /* Merge liveness into the predecessor blocks and free it. */
4999 if (!sbitmap_empty_p (live
[rpo
[i
]]))
5002 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5004 int pred
= e
->src
->index
;
5005 if (e
->flags
& EDGE_DFS_BACK
)
5010 live
[pred
] = sbitmap_alloc (num_ssa_names
);
5011 sbitmap_zero (live
[pred
]);
5013 sbitmap_a_or_b (live
[pred
], live
[pred
], live
[rpo
[i
]]);
5015 if (bb_rpo
[pred
] < pred_rpo
)
5016 pred_rpo
= bb_rpo
[pred
];
5019 /* Record the RPO number of the last visited block that needs
5020 live information from this block. */
5021 last_rpo
[rpo
[i
]] = pred_rpo
;
5025 sbitmap_free (live
[rpo
[i
]]);
5026 live
[rpo
[i
]] = NULL
;
5029 /* We can free all successors live bitmaps if all their
5030 predecessors have been visited already. */
5031 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5032 if (last_rpo
[e
->dest
->index
] == i
5033 && live
[e
->dest
->index
])
5035 sbitmap_free (live
[e
->dest
->index
]);
5036 live
[e
->dest
->index
] = NULL
;
5041 XDELETEVEC (bb_rpo
);
5042 XDELETEVEC (last_rpo
);
5043 for (i
= 0; i
< last_basic_block
+ NUM_FIXED_BLOCKS
; ++i
)
5045 sbitmap_free (live
[i
]);
5048 return need_asserts
;
5051 /* Create an ASSERT_EXPR for NAME and insert it in the location
5052 indicated by LOC. Return true if we made any edge insertions. */
5055 process_assert_insertions_for (tree name
, assert_locus_t loc
)
5057 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5064 /* If we have X <=> X do not insert an assert expr for that. */
5065 if (loc
->expr
== loc
->val
)
5068 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
5069 assert_stmt
= build_assert_expr_for (cond
, name
);
5072 /* We have been asked to insert the assertion on an edge. This
5073 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5074 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
5075 || (gimple_code (gsi_stmt (loc
->si
))
5078 gsi_insert_on_edge (loc
->e
, assert_stmt
);
5082 /* Otherwise, we can insert right after LOC->SI iff the
5083 statement must not be the last statement in the block. */
5084 stmt
= gsi_stmt (loc
->si
);
5085 if (!stmt_ends_bb_p (stmt
))
5087 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
5091 /* If STMT must be the last statement in BB, we can only insert new
5092 assertions on the non-abnormal edge out of BB. Note that since
5093 STMT is not control flow, there may only be one non-abnormal edge
5095 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
5096 if (!(e
->flags
& EDGE_ABNORMAL
))
5098 gsi_insert_on_edge (e
, assert_stmt
);
5106 /* Process all the insertions registered for every name N_i registered
5107 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5108 found in ASSERTS_FOR[i]. */
5111 process_assert_insertions (void)
5115 bool update_edges_p
= false;
5116 int num_asserts
= 0;
5118 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5119 dump_all_asserts (dump_file
);
5121 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
5123 assert_locus_t loc
= asserts_for
[i
];
5128 assert_locus_t next
= loc
->next
;
5129 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
5137 gsi_commit_edge_inserts ();
5139 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
5144 /* Traverse the flowgraph looking for conditional jumps to insert range
5145 expressions. These range expressions are meant to provide information
5146 to optimizations that need to reason in terms of value ranges. They
5147 will not be expanded into RTL. For instance, given:
5156 this pass will transform the code into:
5162 x = ASSERT_EXPR <x, x < y>
5167 y = ASSERT_EXPR <y, x <= y>
5171 The idea is that once copy and constant propagation have run, other
5172 optimizations will be able to determine what ranges of values can 'x'
5173 take in different paths of the code, simply by checking the reaching
5174 definition of 'x'. */
5177 insert_range_assertions (void)
5179 need_assert_for
= BITMAP_ALLOC (NULL
);
5180 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
5182 calculate_dominance_info (CDI_DOMINATORS
);
5184 if (find_assert_locations ())
5186 process_assert_insertions ();
5187 update_ssa (TODO_update_ssa_no_phi
);
5190 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5192 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
5193 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
5197 BITMAP_FREE (need_assert_for
);
5200 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5201 and "struct" hacks. If VRP can determine that the
5202 array subscript is a constant, check if it is outside valid
5203 range. If the array subscript is a RANGE, warn if it is
5204 non-overlapping with valid range.
5205 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5208 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
5210 value_range_t
* vr
= NULL
;
5211 tree low_sub
, up_sub
;
5212 tree low_bound
, up_bound
, up_bound_p1
;
5215 if (TREE_NO_WARNING (ref
))
5218 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
5219 up_bound
= array_ref_up_bound (ref
);
5221 /* Can not check flexible arrays. */
5223 || TREE_CODE (up_bound
) != INTEGER_CST
)
5226 /* Accesses to trailing arrays via pointers may access storage
5227 beyond the types array bounds. */
5228 base
= get_base_address (ref
);
5229 if (base
&& TREE_CODE (base
) == MEM_REF
)
5231 tree cref
, next
= NULL_TREE
;
5233 if (TREE_CODE (TREE_OPERAND (ref
, 0)) != COMPONENT_REF
)
5236 cref
= TREE_OPERAND (ref
, 0);
5237 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref
, 0))) == RECORD_TYPE
)
5238 for (next
= DECL_CHAIN (TREE_OPERAND (cref
, 1));
5239 next
&& TREE_CODE (next
) != FIELD_DECL
;
5240 next
= DECL_CHAIN (next
))
5243 /* If this is the last field in a struct type or a field in a
5244 union type do not warn. */
5249 low_bound
= array_ref_low_bound (ref
);
5250 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
, integer_one_node
, 0);
5252 if (TREE_CODE (low_sub
) == SSA_NAME
)
5254 vr
= get_value_range (low_sub
);
5255 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
5257 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
5258 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
5262 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
5264 if (TREE_CODE (up_sub
) == INTEGER_CST
5265 && tree_int_cst_lt (up_bound
, up_sub
)
5266 && TREE_CODE (low_sub
) == INTEGER_CST
5267 && tree_int_cst_lt (low_sub
, low_bound
))
5269 warning_at (location
, OPT_Warray_bounds
,
5270 "array subscript is outside array bounds");
5271 TREE_NO_WARNING (ref
) = 1;
5274 else if (TREE_CODE (up_sub
) == INTEGER_CST
5275 && (ignore_off_by_one
5276 ? (tree_int_cst_lt (up_bound
, up_sub
)
5277 && !tree_int_cst_equal (up_bound_p1
, up_sub
))
5278 : (tree_int_cst_lt (up_bound
, up_sub
)
5279 || tree_int_cst_equal (up_bound_p1
, up_sub
))))
5281 warning_at (location
, OPT_Warray_bounds
,
5282 "array subscript is above array bounds");
5283 TREE_NO_WARNING (ref
) = 1;
5285 else if (TREE_CODE (low_sub
) == INTEGER_CST
5286 && tree_int_cst_lt (low_sub
, low_bound
))
5288 warning_at (location
, OPT_Warray_bounds
,
5289 "array subscript is below array bounds");
5290 TREE_NO_WARNING (ref
) = 1;
5294 /* Searches if the expr T, located at LOCATION computes
5295 address of an ARRAY_REF, and call check_array_ref on it. */
5298 search_for_addr_array (tree t
, location_t location
)
5300 while (TREE_CODE (t
) == SSA_NAME
)
5302 gimple g
= SSA_NAME_DEF_STMT (t
);
5304 if (gimple_code (g
) != GIMPLE_ASSIGN
)
5307 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
5308 != GIMPLE_SINGLE_RHS
)
5311 t
= gimple_assign_rhs1 (g
);
5315 /* We are only interested in addresses of ARRAY_REF's. */
5316 if (TREE_CODE (t
) != ADDR_EXPR
)
5319 /* Check each ARRAY_REFs in the reference chain. */
5322 if (TREE_CODE (t
) == ARRAY_REF
)
5323 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
5325 t
= TREE_OPERAND (t
, 0);
5327 while (handled_component_p (t
));
5329 if (TREE_CODE (t
) == MEM_REF
5330 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
5331 && !TREE_NO_WARNING (t
))
5333 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
5334 tree low_bound
, up_bound
, el_sz
;
5336 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
5337 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
5338 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
5341 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
5342 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
5343 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
5345 || TREE_CODE (low_bound
) != INTEGER_CST
5347 || TREE_CODE (up_bound
) != INTEGER_CST
5349 || TREE_CODE (el_sz
) != INTEGER_CST
)
5352 idx
= mem_ref_offset (t
);
5353 idx
= double_int_sdiv (idx
, tree_to_double_int (el_sz
), TRUNC_DIV_EXPR
);
5354 if (double_int_scmp (idx
, double_int_zero
) < 0)
5356 warning_at (location
, OPT_Warray_bounds
,
5357 "array subscript is below array bounds");
5358 TREE_NO_WARNING (t
) = 1;
5360 else if (double_int_scmp (idx
,
5363 (tree_to_double_int (up_bound
),
5365 (tree_to_double_int (low_bound
))),
5366 double_int_one
)) > 0)
5368 warning_at (location
, OPT_Warray_bounds
,
5369 "array subscript is above array bounds");
5370 TREE_NO_WARNING (t
) = 1;
5375 /* walk_tree() callback that checks if *TP is
5376 an ARRAY_REF inside an ADDR_EXPR (in which an array
5377 subscript one outside the valid range is allowed). Call
5378 check_array_ref for each ARRAY_REF found. The location is
5382 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
5385 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5386 location_t location
;
5388 if (EXPR_HAS_LOCATION (t
))
5389 location
= EXPR_LOCATION (t
);
5392 location_t
*locp
= (location_t
*) wi
->info
;
5396 *walk_subtree
= TRUE
;
5398 if (TREE_CODE (t
) == ARRAY_REF
)
5399 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
5401 if (TREE_CODE (t
) == MEM_REF
5402 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
5403 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
5405 if (TREE_CODE (t
) == ADDR_EXPR
)
5406 *walk_subtree
= FALSE
;
5411 /* Walk over all statements of all reachable BBs and call check_array_bounds
5415 check_all_array_refs (void)
5418 gimple_stmt_iterator si
;
5424 bool executable
= false;
5426 /* Skip blocks that were found to be unreachable. */
5427 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5428 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
5432 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5434 gimple stmt
= gsi_stmt (si
);
5435 struct walk_stmt_info wi
;
5436 if (!gimple_has_location (stmt
))
5439 if (is_gimple_call (stmt
))
5442 size_t n
= gimple_call_num_args (stmt
);
5443 for (i
= 0; i
< n
; i
++)
5445 tree arg
= gimple_call_arg (stmt
, i
);
5446 search_for_addr_array (arg
, gimple_location (stmt
));
5451 memset (&wi
, 0, sizeof (wi
));
5452 wi
.info
= CONST_CAST (void *, (const void *)
5453 gimple_location_ptr (stmt
));
5455 walk_gimple_op (gsi_stmt (si
),
5463 /* Convert range assertion expressions into the implied copies and
5464 copy propagate away the copies. Doing the trivial copy propagation
5465 here avoids the need to run the full copy propagation pass after
5468 FIXME, this will eventually lead to copy propagation removing the
5469 names that had useful range information attached to them. For
5470 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5471 then N_i will have the range [3, +INF].
5473 However, by converting the assertion into the implied copy
5474 operation N_i = N_j, we will then copy-propagate N_j into the uses
5475 of N_i and lose the range information. We may want to hold on to
5476 ASSERT_EXPRs a little while longer as the ranges could be used in
5477 things like jump threading.
5479 The problem with keeping ASSERT_EXPRs around is that passes after
5480 VRP need to handle them appropriately.
5482 Another approach would be to make the range information a first
5483 class property of the SSA_NAME so that it can be queried from
5484 any pass. This is made somewhat more complex by the need for
5485 multiple ranges to be associated with one SSA_NAME. */
5488 remove_range_assertions (void)
5491 gimple_stmt_iterator si
;
5493 /* Note that the BSI iterator bump happens at the bottom of the
5494 loop and no bump is necessary if we're removing the statement
5495 referenced by the current BSI. */
5497 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
);)
5499 gimple stmt
= gsi_stmt (si
);
5502 if (is_gimple_assign (stmt
)
5503 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
5505 tree rhs
= gimple_assign_rhs1 (stmt
);
5507 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
5508 use_operand_p use_p
;
5509 imm_use_iterator iter
;
5511 gcc_assert (cond
!= boolean_false_node
);
5513 /* Propagate the RHS into every use of the LHS. */
5514 var
= ASSERT_EXPR_VAR (rhs
);
5515 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
,
5516 gimple_assign_lhs (stmt
))
5517 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
5519 SET_USE (use_p
, var
);
5520 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
5523 /* And finally, remove the copy, it is not needed. */
5524 gsi_remove (&si
, true);
5525 release_defs (stmt
);
5533 /* Return true if STMT is interesting for VRP. */
5536 stmt_interesting_for_vrp (gimple stmt
)
5538 if (gimple_code (stmt
) == GIMPLE_PHI
5539 && is_gimple_reg (gimple_phi_result (stmt
))
5540 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))
5541 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))))
5543 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
5545 tree lhs
= gimple_get_lhs (stmt
);
5547 /* In general, assignments with virtual operands are not useful
5548 for deriving ranges, with the obvious exception of calls to
5549 builtin functions. */
5550 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
5551 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5552 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
5553 && ((is_gimple_call (stmt
)
5554 && gimple_call_fndecl (stmt
) != NULL_TREE
5555 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt
)))
5556 || !gimple_vuse (stmt
)))
5559 else if (gimple_code (stmt
) == GIMPLE_COND
5560 || gimple_code (stmt
) == GIMPLE_SWITCH
)
5567 /* Initialize local data structures for VRP. */
5570 vrp_initialize (void)
5574 vr_value
= XCNEWVEC (value_range_t
*, num_ssa_names
);
5575 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
5579 gimple_stmt_iterator si
;
5581 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
5583 gimple phi
= gsi_stmt (si
);
5584 if (!stmt_interesting_for_vrp (phi
))
5586 tree lhs
= PHI_RESULT (phi
);
5587 set_value_range_to_varying (get_value_range (lhs
));
5588 prop_set_simulate_again (phi
, false);
5591 prop_set_simulate_again (phi
, true);
5594 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5596 gimple stmt
= gsi_stmt (si
);
5598 /* If the statement is a control insn, then we do not
5599 want to avoid simulating the statement once. Failure
5600 to do so means that those edges will never get added. */
5601 if (stmt_ends_bb_p (stmt
))
5602 prop_set_simulate_again (stmt
, true);
5603 else if (!stmt_interesting_for_vrp (stmt
))
5607 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
5608 set_value_range_to_varying (get_value_range (def
));
5609 prop_set_simulate_again (stmt
, false);
5612 prop_set_simulate_again (stmt
, true);
5618 /* Visit assignment STMT. If it produces an interesting range, record
5619 the SSA name in *OUTPUT_P. */
5621 static enum ssa_prop_result
5622 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
5626 enum gimple_code code
= gimple_code (stmt
);
5627 lhs
= gimple_get_lhs (stmt
);
5629 /* We only keep track of ranges in integral and pointer types. */
5630 if (TREE_CODE (lhs
) == SSA_NAME
5631 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5632 /* It is valid to have NULL MIN/MAX values on a type. See
5633 build_range_type. */
5634 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
5635 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
5636 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
5638 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
5640 if (code
== GIMPLE_CALL
)
5641 extract_range_basic (&new_vr
, stmt
);
5643 extract_range_from_assignment (&new_vr
, stmt
);
5645 if (update_value_range (lhs
, &new_vr
))
5649 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5651 fprintf (dump_file
, "Found new range for ");
5652 print_generic_expr (dump_file
, lhs
, 0);
5653 fprintf (dump_file
, ": ");
5654 dump_value_range (dump_file
, &new_vr
);
5655 fprintf (dump_file
, "\n\n");
5658 if (new_vr
.type
== VR_VARYING
)
5659 return SSA_PROP_VARYING
;
5661 return SSA_PROP_INTERESTING
;
5664 return SSA_PROP_NOT_INTERESTING
;
5667 /* Every other statement produces no useful ranges. */
5668 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
5669 set_value_range_to_varying (get_value_range (def
));
5671 return SSA_PROP_VARYING
;
5674 /* Helper that gets the value range of the SSA_NAME with version I
5675 or a symbolic range containing the SSA_NAME only if the value range
5676 is varying or undefined. */
5678 static inline value_range_t
5679 get_vr_for_comparison (int i
)
5681 value_range_t vr
= *(vr_value
[i
]);
5683 /* If name N_i does not have a valid range, use N_i as its own
5684 range. This allows us to compare against names that may
5685 have N_i in their ranges. */
5686 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
5689 vr
.min
= ssa_name (i
);
5690 vr
.max
= ssa_name (i
);
5696 /* Compare all the value ranges for names equivalent to VAR with VAL
5697 using comparison code COMP. Return the same value returned by
5698 compare_range_with_value, including the setting of
5699 *STRICT_OVERFLOW_P. */
5702 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
5703 bool *strict_overflow_p
)
5709 int used_strict_overflow
;
5711 value_range_t equiv_vr
;
5713 /* Get the set of equivalences for VAR. */
5714 e
= get_value_range (var
)->equiv
;
5716 /* Start at -1. Set it to 0 if we do a comparison without relying
5717 on overflow, or 1 if all comparisons rely on overflow. */
5718 used_strict_overflow
= -1;
5720 /* Compare vars' value range with val. */
5721 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
5723 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5725 used_strict_overflow
= sop
? 1 : 0;
5727 /* If the equiv set is empty we have done all work we need to do. */
5731 && used_strict_overflow
> 0)
5732 *strict_overflow_p
= true;
5736 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
5738 equiv_vr
= get_vr_for_comparison (i
);
5740 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5743 /* If we get different answers from different members
5744 of the equivalence set this check must be in a dead
5745 code region. Folding it to a trap representation
5746 would be correct here. For now just return don't-know. */
5756 used_strict_overflow
= 0;
5757 else if (used_strict_overflow
< 0)
5758 used_strict_overflow
= 1;
5763 && used_strict_overflow
> 0)
5764 *strict_overflow_p
= true;
5770 /* Given a comparison code COMP and names N1 and N2, compare all the
5771 ranges equivalent to N1 against all the ranges equivalent to N2
5772 to determine the value of N1 COMP N2. Return the same value
5773 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5774 whether we relied on an overflow infinity in the comparison. */
5778 compare_names (enum tree_code comp
, tree n1
, tree n2
,
5779 bool *strict_overflow_p
)
5783 bitmap_iterator bi1
, bi2
;
5785 int used_strict_overflow
;
5786 static bitmap_obstack
*s_obstack
= NULL
;
5787 static bitmap s_e1
= NULL
, s_e2
= NULL
;
5789 /* Compare the ranges of every name equivalent to N1 against the
5790 ranges of every name equivalent to N2. */
5791 e1
= get_value_range (n1
)->equiv
;
5792 e2
= get_value_range (n2
)->equiv
;
5794 /* Use the fake bitmaps if e1 or e2 are not available. */
5795 if (s_obstack
== NULL
)
5797 s_obstack
= XNEW (bitmap_obstack
);
5798 bitmap_obstack_initialize (s_obstack
);
5799 s_e1
= BITMAP_ALLOC (s_obstack
);
5800 s_e2
= BITMAP_ALLOC (s_obstack
);
5807 /* Add N1 and N2 to their own set of equivalences to avoid
5808 duplicating the body of the loop just to check N1 and N2
5810 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
5811 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
5813 /* If the equivalence sets have a common intersection, then the two
5814 names can be compared without checking their ranges. */
5815 if (bitmap_intersect_p (e1
, e2
))
5817 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5818 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5820 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
5822 : boolean_false_node
;
5825 /* Start at -1. Set it to 0 if we do a comparison without relying
5826 on overflow, or 1 if all comparisons rely on overflow. */
5827 used_strict_overflow
= -1;
5829 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5830 N2 to their own set of equivalences to avoid duplicating the body
5831 of the loop just to check N1 and N2 ranges. */
5832 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
5834 value_range_t vr1
= get_vr_for_comparison (i1
);
5836 t
= retval
= NULL_TREE
;
5837 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
5841 value_range_t vr2
= get_vr_for_comparison (i2
);
5843 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
5846 /* If we get different answers from different members
5847 of the equivalence set this check must be in a dead
5848 code region. Folding it to a trap representation
5849 would be correct here. For now just return don't-know. */
5853 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5854 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5860 used_strict_overflow
= 0;
5861 else if (used_strict_overflow
< 0)
5862 used_strict_overflow
= 1;
5868 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5869 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5870 if (used_strict_overflow
> 0)
5871 *strict_overflow_p
= true;
5876 /* None of the equivalent ranges are useful in computing this
5878 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5879 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5883 /* Helper function for vrp_evaluate_conditional_warnv. */
5886 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
5888 bool * strict_overflow_p
)
5890 value_range_t
*vr0
, *vr1
;
5892 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
5893 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
5896 return compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
5897 else if (vr0
&& vr1
== NULL
)
5898 return compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
5899 else if (vr0
== NULL
&& vr1
)
5900 return (compare_range_with_value
5901 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
5905 /* Helper function for vrp_evaluate_conditional_warnv. */
5908 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
5909 tree op1
, bool use_equiv_p
,
5910 bool *strict_overflow_p
, bool *only_ranges
)
5914 *only_ranges
= true;
5916 /* We only deal with integral and pointer types. */
5917 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
5918 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
5924 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
5925 (code
, op0
, op1
, strict_overflow_p
)))
5927 *only_ranges
= false;
5928 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
5929 return compare_names (code
, op0
, op1
, strict_overflow_p
);
5930 else if (TREE_CODE (op0
) == SSA_NAME
)
5931 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
5932 else if (TREE_CODE (op1
) == SSA_NAME
)
5933 return (compare_name_with_value
5934 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
5937 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
5942 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5943 information. Return NULL if the conditional can not be evaluated.
5944 The ranges of all the names equivalent with the operands in COND
5945 will be used when trying to compute the value. If the result is
5946 based on undefined signed overflow, issue a warning if
5950 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
5956 /* Some passes and foldings leak constants with overflow flag set
5957 into the IL. Avoid doing wrong things with these and bail out. */
5958 if ((TREE_CODE (op0
) == INTEGER_CST
5959 && TREE_OVERFLOW (op0
))
5960 || (TREE_CODE (op1
) == INTEGER_CST
5961 && TREE_OVERFLOW (op1
)))
5965 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
5970 enum warn_strict_overflow_code wc
;
5971 const char* warnmsg
;
5973 if (is_gimple_min_invariant (ret
))
5975 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
5976 warnmsg
= G_("assuming signed overflow does not occur when "
5977 "simplifying conditional to constant");
5981 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
5982 warnmsg
= G_("assuming signed overflow does not occur when "
5983 "simplifying conditional");
5986 if (issue_strict_overflow_warning (wc
))
5988 location_t location
;
5990 if (!gimple_has_location (stmt
))
5991 location
= input_location
;
5993 location
= gimple_location (stmt
);
5994 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
5998 if (warn_type_limits
5999 && ret
&& only_ranges
6000 && TREE_CODE_CLASS (code
) == tcc_comparison
6001 && TREE_CODE (op0
) == SSA_NAME
)
6003 /* If the comparison is being folded and the operand on the LHS
6004 is being compared against a constant value that is outside of
6005 the natural range of OP0's type, then the predicate will
6006 always fold regardless of the value of OP0. If -Wtype-limits
6007 was specified, emit a warning. */
6008 tree type
= TREE_TYPE (op0
);
6009 value_range_t
*vr0
= get_value_range (op0
);
6011 if (vr0
->type
!= VR_VARYING
6012 && INTEGRAL_TYPE_P (type
)
6013 && vrp_val_is_min (vr0
->min
)
6014 && vrp_val_is_max (vr0
->max
)
6015 && is_gimple_min_invariant (op1
))
6017 location_t location
;
6019 if (!gimple_has_location (stmt
))
6020 location
= input_location
;
6022 location
= gimple_location (stmt
);
6024 warning_at (location
, OPT_Wtype_limits
,
6026 ? G_("comparison always false "
6027 "due to limited range of data type")
6028 : G_("comparison always true "
6029 "due to limited range of data type"));
6037 /* Visit conditional statement STMT. If we can determine which edge
6038 will be taken out of STMT's basic block, record it in
6039 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6040 SSA_PROP_VARYING. */
6042 static enum ssa_prop_result
6043 vrp_visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
6048 *taken_edge_p
= NULL
;
6050 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6055 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
6056 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6057 fprintf (dump_file
, "\nWith known ranges\n");
6059 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
6061 fprintf (dump_file
, "\t");
6062 print_generic_expr (dump_file
, use
, 0);
6063 fprintf (dump_file
, ": ");
6064 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
6067 fprintf (dump_file
, "\n");
6070 /* Compute the value of the predicate COND by checking the known
6071 ranges of each of its operands.
6073 Note that we cannot evaluate all the equivalent ranges here
6074 because those ranges may not yet be final and with the current
6075 propagation strategy, we cannot determine when the value ranges
6076 of the names in the equivalence set have changed.
6078 For instance, given the following code fragment
6082 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6086 Assume that on the first visit to i_14, i_5 has the temporary
6087 range [8, 8] because the second argument to the PHI function is
6088 not yet executable. We derive the range ~[0, 0] for i_14 and the
6089 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6090 the first time, since i_14 is equivalent to the range [8, 8], we
6091 determine that the predicate is always false.
6093 On the next round of propagation, i_13 is determined to be
6094 VARYING, which causes i_5 to drop down to VARYING. So, another
6095 visit to i_14 is scheduled. In this second visit, we compute the
6096 exact same range and equivalence set for i_14, namely ~[0, 0] and
6097 { i_5 }. But we did not have the previous range for i_5
6098 registered, so vrp_visit_assignment thinks that the range for
6099 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6100 is not visited again, which stops propagation from visiting
6101 statements in the THEN clause of that if().
6103 To properly fix this we would need to keep the previous range
6104 value for the names in the equivalence set. This way we would've
6105 discovered that from one visit to the other i_5 changed from
6106 range [8, 8] to VR_VARYING.
6108 However, fixing this apparent limitation may not be worth the
6109 additional checking. Testing on several code bases (GCC, DLV,
6110 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6111 4 more predicates folded in SPEC. */
6114 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
6115 gimple_cond_lhs (stmt
),
6116 gimple_cond_rhs (stmt
),
6121 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
6124 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6126 "\nIgnoring predicate evaluation because "
6127 "it assumes that signed overflow is undefined");
6132 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6134 fprintf (dump_file
, "\nPredicate evaluates to: ");
6135 if (val
== NULL_TREE
)
6136 fprintf (dump_file
, "DON'T KNOW\n");
6138 print_generic_stmt (dump_file
, val
, 0);
6141 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
6144 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6145 that includes the value VAL. The search is restricted to the range
6146 [START_IDX, n - 1] where n is the size of VEC.
6148 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6151 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6152 it is placed in IDX and false is returned.
6154 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6158 find_case_label_index (gimple stmt
, size_t start_idx
, tree val
, size_t *idx
)
6160 size_t n
= gimple_switch_num_labels (stmt
);
6163 /* Find case label for minimum of the value range or the next one.
6164 At each iteration we are searching in [low, high - 1]. */
6166 for (low
= start_idx
, high
= n
; high
!= low
; )
6170 /* Note that i != high, so we never ask for n. */
6171 size_t i
= (high
+ low
) / 2;
6172 t
= gimple_switch_label (stmt
, i
);
6174 /* Cache the result of comparing CASE_LOW and val. */
6175 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
6179 /* Ranges cannot be empty. */
6188 if (CASE_HIGH (t
) != NULL
6189 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
6201 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6202 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6203 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6204 then MAX_IDX < MIN_IDX.
6205 Returns true if the default label is not needed. */
6208 find_case_label_range (gimple stmt
, tree min
, tree max
, size_t *min_idx
,
6212 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
6213 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
6217 && max_take_default
)
6219 /* Only the default case label reached.
6220 Return an empty range. */
6227 bool take_default
= min_take_default
|| max_take_default
;
6231 if (max_take_default
)
6234 /* If the case label range is continuous, we do not need
6235 the default case label. Verify that. */
6236 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
6237 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
6238 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
6239 for (k
= i
+ 1; k
<= j
; ++k
)
6241 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
6242 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
, 0)))
6244 take_default
= true;
6248 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
6249 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
6254 return !take_default
;
6258 /* Visit switch statement STMT. If we can determine which edge
6259 will be taken out of STMT's basic block, record it in
6260 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6261 SSA_PROP_VARYING. */
6263 static enum ssa_prop_result
6264 vrp_visit_switch_stmt (gimple stmt
, edge
*taken_edge_p
)
6268 size_t i
= 0, j
= 0;
6271 *taken_edge_p
= NULL
;
6272 op
= gimple_switch_index (stmt
);
6273 if (TREE_CODE (op
) != SSA_NAME
)
6274 return SSA_PROP_VARYING
;
6276 vr
= get_value_range (op
);
6277 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6279 fprintf (dump_file
, "\nVisiting switch expression with operand ");
6280 print_generic_expr (dump_file
, op
, 0);
6281 fprintf (dump_file
, " with known range ");
6282 dump_value_range (dump_file
, vr
);
6283 fprintf (dump_file
, "\n");
6286 if (vr
->type
!= VR_RANGE
6287 || symbolic_range_p (vr
))
6288 return SSA_PROP_VARYING
;
6290 /* Find the single edge that is taken from the switch expression. */
6291 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
6293 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6297 gcc_assert (take_default
);
6298 val
= gimple_switch_default_label (stmt
);
6302 /* Check if labels with index i to j and maybe the default label
6303 are all reaching the same label. */
6305 val
= gimple_switch_label (stmt
, i
);
6307 && CASE_LABEL (gimple_switch_default_label (stmt
))
6308 != CASE_LABEL (val
))
6310 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6311 fprintf (dump_file
, " not a single destination for this "
6313 return SSA_PROP_VARYING
;
6315 for (++i
; i
<= j
; ++i
)
6317 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
6319 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6320 fprintf (dump_file
, " not a single destination for this "
6322 return SSA_PROP_VARYING
;
6327 *taken_edge_p
= find_edge (gimple_bb (stmt
),
6328 label_to_block (CASE_LABEL (val
)));
6330 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6332 fprintf (dump_file
, " will take edge to ");
6333 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
6336 return SSA_PROP_INTERESTING
;
6340 /* Evaluate statement STMT. If the statement produces a useful range,
6341 return SSA_PROP_INTERESTING and record the SSA name with the
6342 interesting range into *OUTPUT_P.
6344 If STMT is a conditional branch and we can determine its truth
6345 value, the taken edge is recorded in *TAKEN_EDGE_P.
6347 If STMT produces a varying value, return SSA_PROP_VARYING. */
6349 static enum ssa_prop_result
6350 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
6355 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6357 fprintf (dump_file
, "\nVisiting statement:\n");
6358 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
6359 fprintf (dump_file
, "\n");
6362 if (!stmt_interesting_for_vrp (stmt
))
6363 gcc_assert (stmt_ends_bb_p (stmt
));
6364 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6366 /* In general, assignments with virtual operands are not useful
6367 for deriving ranges, with the obvious exception of calls to
6368 builtin functions. */
6370 if ((is_gimple_call (stmt
)
6371 && gimple_call_fndecl (stmt
) != NULL_TREE
6372 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt
)))
6373 || !gimple_vuse (stmt
))
6374 return vrp_visit_assignment_or_call (stmt
, output_p
);
6376 else if (gimple_code (stmt
) == GIMPLE_COND
)
6377 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
6378 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
6379 return vrp_visit_switch_stmt (stmt
, taken_edge_p
);
6381 /* All other statements produce nothing of interest for VRP, so mark
6382 their outputs varying and prevent further simulation. */
6383 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
6384 set_value_range_to_varying (get_value_range (def
));
6386 return SSA_PROP_VARYING
;
6390 /* Meet operation for value ranges. Given two value ranges VR0 and
6391 VR1, store in VR0 a range that contains both VR0 and VR1. This
6392 may not be the smallest possible such range. */
6395 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
6397 if (vr0
->type
== VR_UNDEFINED
)
6399 copy_value_range (vr0
, vr1
);
6403 if (vr1
->type
== VR_UNDEFINED
)
6405 /* Nothing to do. VR0 already has the resulting range. */
6409 if (vr0
->type
== VR_VARYING
)
6411 /* Nothing to do. VR0 already has the resulting range. */
6415 if (vr1
->type
== VR_VARYING
)
6417 set_value_range_to_varying (vr0
);
6421 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
6426 /* Compute the convex hull of the ranges. The lower limit of
6427 the new range is the minimum of the two ranges. If they
6428 cannot be compared, then give up. */
6429 cmp
= compare_values (vr0
->min
, vr1
->min
);
6430 if (cmp
== 0 || cmp
== 1)
6437 /* Similarly, the upper limit of the new range is the maximum
6438 of the two ranges. If they cannot be compared, then
6440 cmp
= compare_values (vr0
->max
, vr1
->max
);
6441 if (cmp
== 0 || cmp
== -1)
6448 /* Check for useless ranges. */
6449 if (INTEGRAL_TYPE_P (TREE_TYPE (min
))
6450 && ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
6451 && (vrp_val_is_max (max
) || is_overflow_infinity (max
))))
6454 /* The resulting set of equivalences is the intersection of
6456 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6457 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6458 else if (vr0
->equiv
&& !vr1
->equiv
)
6459 bitmap_clear (vr0
->equiv
);
6461 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
6463 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
6465 /* Two anti-ranges meet only if their complements intersect.
6466 Only handle the case of identical ranges. */
6467 if (compare_values (vr0
->min
, vr1
->min
) == 0
6468 && compare_values (vr0
->max
, vr1
->max
) == 0
6469 && compare_values (vr0
->min
, vr0
->max
) == 0)
6471 /* The resulting set of equivalences is the intersection of
6473 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6474 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6475 else if (vr0
->equiv
&& !vr1
->equiv
)
6476 bitmap_clear (vr0
->equiv
);
6481 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
6483 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6484 only handle the case where the ranges have an empty intersection.
6485 The result of the meet operation is the anti-range. */
6486 if (!symbolic_range_p (vr0
)
6487 && !symbolic_range_p (vr1
)
6488 && !value_ranges_intersect_p (vr0
, vr1
))
6490 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6491 set. We need to compute the intersection of the two
6492 equivalence sets. */
6493 if (vr1
->type
== VR_ANTI_RANGE
)
6494 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
6496 /* The resulting set of equivalences is the intersection of
6498 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6499 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6500 else if (vr0
->equiv
&& !vr1
->equiv
)
6501 bitmap_clear (vr0
->equiv
);
6512 /* Failed to find an efficient meet. Before giving up and setting
6513 the result to VARYING, see if we can at least derive a useful
6514 anti-range. FIXME, all this nonsense about distinguishing
6515 anti-ranges from ranges is necessary because of the odd
6516 semantics of range_includes_zero_p and friends. */
6517 if (!symbolic_range_p (vr0
)
6518 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
6519 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
6520 && !symbolic_range_p (vr1
)
6521 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
6522 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
6524 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
6526 /* Since this meet operation did not result from the meeting of
6527 two equivalent names, VR0 cannot have any equivalences. */
6529 bitmap_clear (vr0
->equiv
);
6532 set_value_range_to_varying (vr0
);
6536 /* Visit all arguments for PHI node PHI that flow through executable
6537 edges. If a valid value range can be derived from all the incoming
6538 value ranges, set a new range for the LHS of PHI. */
6540 static enum ssa_prop_result
6541 vrp_visit_phi_node (gimple phi
)
6544 tree lhs
= PHI_RESULT (phi
);
6545 value_range_t
*lhs_vr
= get_value_range (lhs
);
6546 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6547 int edges
, old_edges
;
6550 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6552 fprintf (dump_file
, "\nVisiting PHI node: ");
6553 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
6557 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
6559 edge e
= gimple_phi_arg_edge (phi
, i
);
6561 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6564 "\n Argument #%d (%d -> %d %sexecutable)\n",
6565 (int) i
, e
->src
->index
, e
->dest
->index
,
6566 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
6569 if (e
->flags
& EDGE_EXECUTABLE
)
6571 tree arg
= PHI_ARG_DEF (phi
, i
);
6572 value_range_t vr_arg
;
6576 if (TREE_CODE (arg
) == SSA_NAME
)
6578 vr_arg
= *(get_value_range (arg
));
6582 if (is_overflow_infinity (arg
))
6584 arg
= copy_node (arg
);
6585 TREE_OVERFLOW (arg
) = 0;
6588 vr_arg
.type
= VR_RANGE
;
6591 vr_arg
.equiv
= NULL
;
6594 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6596 fprintf (dump_file
, "\t");
6597 print_generic_expr (dump_file
, arg
, dump_flags
);
6598 fprintf (dump_file
, "\n\tValue: ");
6599 dump_value_range (dump_file
, &vr_arg
);
6600 fprintf (dump_file
, "\n");
6603 vrp_meet (&vr_result
, &vr_arg
);
6605 if (vr_result
.type
== VR_VARYING
)
6610 if (vr_result
.type
== VR_VARYING
)
6613 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
6614 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
6616 /* To prevent infinite iterations in the algorithm, derive ranges
6617 when the new value is slightly bigger or smaller than the
6618 previous one. We don't do this if we have seen a new executable
6619 edge; this helps us avoid an overflow infinity for conditionals
6620 which are not in a loop. */
6622 && edges
== old_edges
)
6624 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
6625 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
6627 /* For non VR_RANGE or for pointers fall back to varying if
6628 the range changed. */
6629 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
.type
!= VR_RANGE
6630 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6631 && (cmp_min
!= 0 || cmp_max
!= 0))
6634 /* If the new minimum is smaller or larger than the previous
6635 one, go all the way to -INF. In the first case, to avoid
6636 iterating millions of times to reach -INF, and in the
6637 other case to avoid infinite bouncing between different
6639 if (cmp_min
> 0 || cmp_min
< 0)
6641 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.min
))
6642 || !vrp_var_may_overflow (lhs
, phi
))
6643 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
6644 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.min
)))
6646 negative_overflow_infinity (TREE_TYPE (vr_result
.min
));
6649 /* Similarly, if the new maximum is smaller or larger than
6650 the previous one, go all the way to +INF. */
6651 if (cmp_max
< 0 || cmp_max
> 0)
6653 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.max
))
6654 || !vrp_var_may_overflow (lhs
, phi
))
6655 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
6656 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.max
)))
6658 positive_overflow_infinity (TREE_TYPE (vr_result
.max
));
6661 /* If we dropped either bound to +-INF then if this is a loop
6662 PHI node SCEV may known more about its value-range. */
6663 if ((cmp_min
> 0 || cmp_min
< 0
6664 || cmp_max
< 0 || cmp_max
> 0)
6666 && (l
= loop_containing_stmt (phi
))
6667 && l
->header
== gimple_bb (phi
))
6668 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
6670 /* If we will end up with a (-INF, +INF) range, set it to
6671 VARYING. Same if the previous max value was invalid for
6672 the type and we end up with vr_result.min > vr_result.max. */
6673 if ((vrp_val_is_max (vr_result
.max
)
6674 && vrp_val_is_min (vr_result
.min
))
6675 || compare_values (vr_result
.min
,
6680 /* If the new range is different than the previous value, keep
6682 if (update_value_range (lhs
, &vr_result
))
6684 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6686 fprintf (dump_file
, "Found new range for ");
6687 print_generic_expr (dump_file
, lhs
, 0);
6688 fprintf (dump_file
, ": ");
6689 dump_value_range (dump_file
, &vr_result
);
6690 fprintf (dump_file
, "\n\n");
6693 return SSA_PROP_INTERESTING
;
6696 /* Nothing changed, don't add outgoing edges. */
6697 return SSA_PROP_NOT_INTERESTING
;
6699 /* No match found. Set the LHS to VARYING. */
6701 set_value_range_to_varying (lhs_vr
);
6702 return SSA_PROP_VARYING
;
6705 /* Simplify boolean operations if the source is known
6706 to be already a boolean. */
6708 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
6710 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6715 bool need_conversion
;
6717 op0
= gimple_assign_rhs1 (stmt
);
6718 if (TYPE_PRECISION (TREE_TYPE (op0
)) != 1)
6720 if (TREE_CODE (op0
) != SSA_NAME
)
6722 vr
= get_value_range (op0
);
6724 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6725 if (!val
|| !integer_onep (val
))
6728 val
= compare_range_with_value (LE_EXPR
, vr
, integer_one_node
, &sop
);
6729 if (!val
|| !integer_onep (val
))
6733 if (rhs_code
== TRUTH_NOT_EXPR
)
6736 op1
= build_int_cst (TREE_TYPE (op0
), 1);
6740 op1
= gimple_assign_rhs2 (stmt
);
6742 /* Reduce number of cases to handle. */
6743 if (is_gimple_min_invariant (op1
))
6745 /* Exclude anything that should have been already folded. */
6746 if (rhs_code
!= EQ_EXPR
6747 && rhs_code
!= NE_EXPR
6748 && rhs_code
!= TRUTH_XOR_EXPR
)
6751 if (!integer_zerop (op1
)
6752 && !integer_onep (op1
)
6753 && !integer_all_onesp (op1
))
6756 /* Limit the number of cases we have to consider. */
6757 if (rhs_code
== EQ_EXPR
)
6760 op1
= fold_unary (TRUTH_NOT_EXPR
, TREE_TYPE (op1
), op1
);
6765 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6766 if (rhs_code
== EQ_EXPR
)
6769 if (TYPE_PRECISION (TREE_TYPE (op1
)) != 1)
6771 vr
= get_value_range (op1
);
6772 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6773 if (!val
|| !integer_onep (val
))
6776 val
= compare_range_with_value (LE_EXPR
, vr
, integer_one_node
, &sop
);
6777 if (!val
|| !integer_onep (val
))
6783 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6785 location_t location
;
6787 if (!gimple_has_location (stmt
))
6788 location
= input_location
;
6790 location
= gimple_location (stmt
);
6792 if (rhs_code
== TRUTH_AND_EXPR
|| rhs_code
== TRUTH_OR_EXPR
)
6793 warning_at (location
, OPT_Wstrict_overflow
,
6794 _("assuming signed overflow does not occur when "
6795 "simplifying && or || to & or |"));
6797 warning_at (location
, OPT_Wstrict_overflow
,
6798 _("assuming signed overflow does not occur when "
6799 "simplifying ==, != or ! to identity or ^"));
6803 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt
)),
6806 /* Make sure to not sign-extend -1 as a boolean value. */
6808 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
6809 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1)
6814 case TRUTH_AND_EXPR
:
6815 rhs_code
= BIT_AND_EXPR
;
6818 rhs_code
= BIT_IOR_EXPR
;
6820 case TRUTH_XOR_EXPR
:
6822 if (integer_zerop (op1
))
6824 gimple_assign_set_rhs_with_ops (gsi
,
6825 need_conversion
? NOP_EXPR
: SSA_NAME
,
6827 update_stmt (gsi_stmt (*gsi
));
6831 rhs_code
= BIT_XOR_EXPR
;
6837 if (need_conversion
)
6840 gimple_assign_set_rhs_with_ops (gsi
, rhs_code
, op0
, op1
);
6841 update_stmt (gsi_stmt (*gsi
));
6845 /* Simplify a division or modulo operator to a right shift or
6846 bitwise and if the first operand is unsigned or is greater
6847 than zero and the second operand is an exact power of two. */
6850 simplify_div_or_mod_using_ranges (gimple stmt
)
6852 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6854 tree op0
= gimple_assign_rhs1 (stmt
);
6855 tree op1
= gimple_assign_rhs2 (stmt
);
6856 value_range_t
*vr
= get_value_range (gimple_assign_rhs1 (stmt
));
6858 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
6860 val
= integer_one_node
;
6866 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6870 && integer_onep (val
)
6871 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6873 location_t location
;
6875 if (!gimple_has_location (stmt
))
6876 location
= input_location
;
6878 location
= gimple_location (stmt
);
6879 warning_at (location
, OPT_Wstrict_overflow
,
6880 "assuming signed overflow does not occur when "
6881 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6885 if (val
&& integer_onep (val
))
6889 if (rhs_code
== TRUNC_DIV_EXPR
)
6891 t
= build_int_cst (NULL_TREE
, tree_log2 (op1
));
6892 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
6893 gimple_assign_set_rhs1 (stmt
, op0
);
6894 gimple_assign_set_rhs2 (stmt
, t
);
6898 t
= build_int_cst (TREE_TYPE (op1
), 1);
6899 t
= int_const_binop (MINUS_EXPR
, op1
, t
, 0);
6900 t
= fold_convert (TREE_TYPE (op0
), t
);
6902 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
6903 gimple_assign_set_rhs1 (stmt
, op0
);
6904 gimple_assign_set_rhs2 (stmt
, t
);
6914 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6915 ABS_EXPR. If the operand is <= 0, then simplify the
6916 ABS_EXPR into a NEGATE_EXPR. */
6919 simplify_abs_using_ranges (gimple stmt
)
6922 tree op
= gimple_assign_rhs1 (stmt
);
6923 tree type
= TREE_TYPE (op
);
6924 value_range_t
*vr
= get_value_range (op
);
6926 if (TYPE_UNSIGNED (type
))
6928 val
= integer_zero_node
;
6934 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
6938 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
6943 if (integer_zerop (val
))
6944 val
= integer_one_node
;
6945 else if (integer_onep (val
))
6946 val
= integer_zero_node
;
6951 && (integer_onep (val
) || integer_zerop (val
)))
6953 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6955 location_t location
;
6957 if (!gimple_has_location (stmt
))
6958 location
= input_location
;
6960 location
= gimple_location (stmt
);
6961 warning_at (location
, OPT_Wstrict_overflow
,
6962 "assuming signed overflow does not occur when "
6963 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6966 gimple_assign_set_rhs1 (stmt
, op
);
6967 if (integer_onep (val
))
6968 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
6970 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
6979 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
6980 If all the bits that are being cleared by & are already
6981 known to be zero from VR, or all the bits that are being
6982 set by | are already known to be one from VR, the bit
6983 operation is redundant. */
6986 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
6988 tree op0
= gimple_assign_rhs1 (stmt
);
6989 tree op1
= gimple_assign_rhs2 (stmt
);
6990 tree op
= NULL_TREE
;
6991 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6992 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6993 double_int may_be_nonzero0
, may_be_nonzero1
;
6994 double_int must_be_nonzero0
, must_be_nonzero1
;
6997 if (TREE_CODE (op0
) == SSA_NAME
)
6998 vr0
= *(get_value_range (op0
));
6999 else if (is_gimple_min_invariant (op0
))
7000 set_value_range_to_value (&vr0
, op0
, NULL
);
7004 if (TREE_CODE (op1
) == SSA_NAME
)
7005 vr1
= *(get_value_range (op1
));
7006 else if (is_gimple_min_invariant (op1
))
7007 set_value_range_to_value (&vr1
, op1
, NULL
);
7011 if (!zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
, &must_be_nonzero0
))
7013 if (!zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
, &must_be_nonzero1
))
7016 switch (gimple_assign_rhs_code (stmt
))
7019 mask
= double_int_and_not (may_be_nonzero0
, must_be_nonzero1
);
7020 if (double_int_zero_p (mask
))
7025 mask
= double_int_and_not (may_be_nonzero1
, must_be_nonzero0
);
7026 if (double_int_zero_p (mask
))
7033 mask
= double_int_and_not (may_be_nonzero0
, must_be_nonzero1
);
7034 if (double_int_zero_p (mask
))
7039 mask
= double_int_and_not (may_be_nonzero1
, must_be_nonzero0
);
7040 if (double_int_zero_p (mask
))
7050 if (op
== NULL_TREE
)
7053 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
, NULL
);
7054 update_stmt (gsi_stmt (*gsi
));
7058 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7059 a known value range VR.
7061 If there is one and only one value which will satisfy the
7062 conditional, then return that value. Else return NULL. */
7065 test_for_singularity (enum tree_code cond_code
, tree op0
,
7066 tree op1
, value_range_t
*vr
)
7071 /* Extract minimum/maximum values which satisfy the
7072 the conditional as it was written. */
7073 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
7075 /* This should not be negative infinity; there is no overflow
7077 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
7080 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
7082 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
7083 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
7085 TREE_NO_WARNING (max
) = 1;
7088 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
7090 /* This should not be positive infinity; there is no overflow
7092 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
7095 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
7097 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
7098 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
7100 TREE_NO_WARNING (min
) = 1;
7104 /* Now refine the minimum and maximum values using any
7105 value range information we have for op0. */
7108 if (compare_values (vr
->min
, min
) == 1)
7110 if (compare_values (vr
->max
, max
) == -1)
7113 /* If the new min/max values have converged to a single value,
7114 then there is only one value which can satisfy the condition,
7115 return that value. */
7116 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
7122 /* Simplify a conditional using a relational operator to an equality
7123 test if the range information indicates only one value can satisfy
7124 the original conditional. */
7127 simplify_cond_using_ranges (gimple stmt
)
7129 tree op0
= gimple_cond_lhs (stmt
);
7130 tree op1
= gimple_cond_rhs (stmt
);
7131 enum tree_code cond_code
= gimple_cond_code (stmt
);
7133 if (cond_code
!= NE_EXPR
7134 && cond_code
!= EQ_EXPR
7135 && TREE_CODE (op0
) == SSA_NAME
7136 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7137 && is_gimple_min_invariant (op1
))
7139 value_range_t
*vr
= get_value_range (op0
);
7141 /* If we have range information for OP0, then we might be
7142 able to simplify this conditional. */
7143 if (vr
->type
== VR_RANGE
)
7145 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
7151 fprintf (dump_file
, "Simplified relational ");
7152 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7153 fprintf (dump_file
, " into ");
7156 gimple_cond_set_code (stmt
, EQ_EXPR
);
7157 gimple_cond_set_lhs (stmt
, op0
);
7158 gimple_cond_set_rhs (stmt
, new_tree
);
7164 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7165 fprintf (dump_file
, "\n");
7171 /* Try again after inverting the condition. We only deal
7172 with integral types here, so no need to worry about
7173 issues with inverting FP comparisons. */
7174 cond_code
= invert_tree_comparison (cond_code
, false);
7175 new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
7181 fprintf (dump_file
, "Simplified relational ");
7182 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7183 fprintf (dump_file
, " into ");
7186 gimple_cond_set_code (stmt
, NE_EXPR
);
7187 gimple_cond_set_lhs (stmt
, op0
);
7188 gimple_cond_set_rhs (stmt
, new_tree
);
7194 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7195 fprintf (dump_file
, "\n");
7206 /* Simplify a switch statement using the value range of the switch
7210 simplify_switch_using_ranges (gimple stmt
)
7212 tree op
= gimple_switch_index (stmt
);
7217 size_t i
= 0, j
= 0, n
, n2
;
7221 if (TREE_CODE (op
) == SSA_NAME
)
7223 vr
= get_value_range (op
);
7225 /* We can only handle integer ranges. */
7226 if (vr
->type
!= VR_RANGE
7227 || symbolic_range_p (vr
))
7230 /* Find case label for min/max of the value range. */
7231 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
7233 else if (TREE_CODE (op
) == INTEGER_CST
)
7235 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
7249 n
= gimple_switch_num_labels (stmt
);
7251 /* Bail out if this is just all edges taken. */
7257 /* Build a new vector of taken case labels. */
7258 vec2
= make_tree_vec (j
- i
+ 1 + (int)take_default
);
7261 /* Add the default edge, if necessary. */
7263 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
7265 for (; i
<= j
; ++i
, ++n2
)
7266 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
7268 /* Mark needed edges. */
7269 for (i
= 0; i
< n2
; ++i
)
7271 e
= find_edge (gimple_bb (stmt
),
7272 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
7273 e
->aux
= (void *)-1;
7276 /* Queue not needed edges for later removal. */
7277 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
7279 if (e
->aux
== (void *)-1)
7285 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7287 fprintf (dump_file
, "removing unreachable case label\n");
7289 VEC_safe_push (edge
, heap
, to_remove_edges
, e
);
7290 e
->flags
&= ~EDGE_EXECUTABLE
;
7293 /* And queue an update for the stmt. */
7296 VEC_safe_push (switch_update
, heap
, to_update_switch_stmts
, &su
);
7300 /* Simplify STMT using ranges if possible. */
7303 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
7305 gimple stmt
= gsi_stmt (*gsi
);
7306 if (is_gimple_assign (stmt
))
7308 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
7314 case TRUTH_NOT_EXPR
:
7315 case TRUTH_AND_EXPR
:
7317 case TRUTH_XOR_EXPR
:
7318 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
7319 or identity if the RHS is zero or one, and the LHS are known
7320 to be boolean values. Transform all TRUTH_*_EXPR into
7321 BIT_*_EXPR if both arguments are known to be boolean values. */
7322 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt
))))
7323 return simplify_truth_ops_using_ranges (gsi
, stmt
);
7326 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7327 and BIT_AND_EXPR respectively if the first operand is greater
7328 than zero and the second operand is an exact power of two. */
7329 case TRUNC_DIV_EXPR
:
7330 case TRUNC_MOD_EXPR
:
7331 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt
)))
7332 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
7333 return simplify_div_or_mod_using_ranges (stmt
);
7336 /* Transform ABS (X) into X or -X as appropriate. */
7338 if (TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
7339 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt
))))
7340 return simplify_abs_using_ranges (stmt
);
7345 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7346 if all the bits being cleared are already cleared or
7347 all the bits being set are already set. */
7348 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt
))))
7349 return simplify_bit_ops_using_ranges (gsi
, stmt
);
7356 else if (gimple_code (stmt
) == GIMPLE_COND
)
7357 return simplify_cond_using_ranges (stmt
);
7358 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
7359 return simplify_switch_using_ranges (stmt
);
7364 /* If the statement pointed by SI has a predicate whose value can be
7365 computed using the value range information computed by VRP, compute
7366 its value and return true. Otherwise, return false. */
7369 fold_predicate_in (gimple_stmt_iterator
*si
)
7371 bool assignment_p
= false;
7373 gimple stmt
= gsi_stmt (*si
);
7375 if (is_gimple_assign (stmt
)
7376 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
7378 assignment_p
= true;
7379 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
7380 gimple_assign_rhs1 (stmt
),
7381 gimple_assign_rhs2 (stmt
),
7384 else if (gimple_code (stmt
) == GIMPLE_COND
)
7385 val
= vrp_evaluate_conditional (gimple_cond_code (stmt
),
7386 gimple_cond_lhs (stmt
),
7387 gimple_cond_rhs (stmt
),
7395 val
= fold_convert (gimple_expr_type (stmt
), val
);
7399 fprintf (dump_file
, "Folding predicate ");
7400 print_gimple_expr (dump_file
, stmt
, 0, 0);
7401 fprintf (dump_file
, " to ");
7402 print_generic_expr (dump_file
, val
, 0);
7403 fprintf (dump_file
, "\n");
7406 if (is_gimple_assign (stmt
))
7407 gimple_assign_set_rhs_from_tree (si
, val
);
7410 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
7411 if (integer_zerop (val
))
7412 gimple_cond_make_false (stmt
);
7413 else if (integer_onep (val
))
7414 gimple_cond_make_true (stmt
);
7425 /* Callback for substitute_and_fold folding the stmt at *SI. */
7428 vrp_fold_stmt (gimple_stmt_iterator
*si
)
7430 if (fold_predicate_in (si
))
7433 return simplify_stmt_using_ranges (si
);
7436 /* Stack of dest,src equivalency pairs that need to be restored after
7437 each attempt to thread a block's incoming edge to an outgoing edge.
7439 A NULL entry is used to mark the end of pairs which need to be
7441 static VEC(tree
,heap
) *stack
;
7443 /* A trivial wrapper so that we can present the generic jump threading
7444 code with a simple API for simplifying statements. STMT is the
7445 statement we want to simplify, WITHIN_STMT provides the location
7446 for any overflow warnings. */
7449 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
7451 /* We only use VRP information to simplify conditionals. This is
7452 overly conservative, but it's unclear if doing more would be
7453 worth the compile time cost. */
7454 if (gimple_code (stmt
) != GIMPLE_COND
)
7457 return vrp_evaluate_conditional (gimple_cond_code (stmt
),
7458 gimple_cond_lhs (stmt
),
7459 gimple_cond_rhs (stmt
), within_stmt
);
7462 /* Blocks which have more than one predecessor and more than
7463 one successor present jump threading opportunities, i.e.,
7464 when the block is reached from a specific predecessor, we
7465 may be able to determine which of the outgoing edges will
7466 be traversed. When this optimization applies, we are able
7467 to avoid conditionals at runtime and we may expose secondary
7468 optimization opportunities.
7470 This routine is effectively a driver for the generic jump
7471 threading code. It basically just presents the generic code
7472 with edges that may be suitable for jump threading.
7474 Unlike DOM, we do not iterate VRP if jump threading was successful.
7475 While iterating may expose new opportunities for VRP, it is expected
7476 those opportunities would be very limited and the compile time cost
7477 to expose those opportunities would be significant.
7479 As jump threading opportunities are discovered, they are registered
7480 for later realization. */
7483 identify_jump_threads (void)
7490 /* Ugh. When substituting values earlier in this pass we can
7491 wipe the dominance information. So rebuild the dominator
7492 information as we need it within the jump threading code. */
7493 calculate_dominance_info (CDI_DOMINATORS
);
7495 /* We do not allow VRP information to be used for jump threading
7496 across a back edge in the CFG. Otherwise it becomes too
7497 difficult to avoid eliminating loop exit tests. Of course
7498 EDGE_DFS_BACK is not accurate at this time so we have to
7500 mark_dfs_back_edges ();
7502 /* Do not thread across edges we are about to remove. Just marking
7503 them as EDGE_DFS_BACK will do. */
7504 FOR_EACH_VEC_ELT (edge
, to_remove_edges
, i
, e
)
7505 e
->flags
|= EDGE_DFS_BACK
;
7507 /* Allocate our unwinder stack to unwind any temporary equivalences
7508 that might be recorded. */
7509 stack
= VEC_alloc (tree
, heap
, 20);
7511 /* To avoid lots of silly node creation, we create a single
7512 conditional and just modify it in-place when attempting to
7514 dummy
= gimple_build_cond (EQ_EXPR
,
7515 integer_zero_node
, integer_zero_node
,
7518 /* Walk through all the blocks finding those which present a
7519 potential jump threading opportunity. We could set this up
7520 as a dominator walker and record data during the walk, but
7521 I doubt it's worth the effort for the classes of jump
7522 threading opportunities we are trying to identify at this
7523 point in compilation. */
7528 /* If the generic jump threading code does not find this block
7529 interesting, then there is nothing to do. */
7530 if (! potentially_threadable_block (bb
))
7533 /* We only care about blocks ending in a COND_EXPR. While there
7534 may be some value in handling SWITCH_EXPR here, I doubt it's
7535 terribly important. */
7536 last
= gsi_stmt (gsi_last_bb (bb
));
7537 if (gimple_code (last
) != GIMPLE_COND
)
7540 /* We're basically looking for any kind of conditional with
7541 integral or pointer type arguments. Note the type of the second
7542 argument will be the same as the first argument, so no need to
7543 check it explicitly. */
7544 if (TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
7545 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
7546 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
7547 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
7548 || is_gimple_min_invariant (gimple_cond_rhs (last
))))
7552 /* We've got a block with multiple predecessors and multiple
7553 successors which also ends in a suitable conditional. For
7554 each predecessor, see if we can thread it to a specific
7556 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7558 /* Do not thread across back edges or abnormal edges
7560 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
7563 thread_across_edge (dummy
, e
, true, &stack
,
7564 simplify_stmt_for_jump_threading
);
7569 /* We do not actually update the CFG or SSA graphs at this point as
7570 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7571 handle ASSERT_EXPRs gracefully. */
7574 /* We identified all the jump threading opportunities earlier, but could
7575 not transform the CFG at that time. This routine transforms the
7576 CFG and arranges for the dominator tree to be rebuilt if necessary.
7578 Note the SSA graph update will occur during the normal TODO
7579 processing by the pass manager. */
7581 finalize_jump_threads (void)
7583 thread_through_all_blocks (false);
7584 VEC_free (tree
, heap
, stack
);
7588 /* Traverse all the blocks folding conditionals with known ranges. */
7594 unsigned num
= num_ssa_names
;
7598 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
7599 dump_all_value_ranges (dump_file
);
7600 fprintf (dump_file
, "\n");
7603 substitute_and_fold (op_with_constant_singleton_value_range
,
7604 vrp_fold_stmt
, false);
7606 if (warn_array_bounds
)
7607 check_all_array_refs ();
7609 /* We must identify jump threading opportunities before we release
7610 the datastructures built by VRP. */
7611 identify_jump_threads ();
7613 /* Free allocated memory. */
7614 for (i
= 0; i
< num
; i
++)
7617 BITMAP_FREE (vr_value
[i
]->equiv
);
7622 free (vr_phi_edge_counts
);
7624 /* So that we can distinguish between VRP data being available
7625 and not available. */
7627 vr_phi_edge_counts
= NULL
;
7631 /* Main entry point to VRP (Value Range Propagation). This pass is
7632 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7633 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7634 Programming Language Design and Implementation, pp. 67-78, 1995.
7635 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7637 This is essentially an SSA-CCP pass modified to deal with ranges
7638 instead of constants.
7640 While propagating ranges, we may find that two or more SSA name
7641 have equivalent, though distinct ranges. For instance,
7644 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7646 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7650 In the code above, pointer p_5 has range [q_2, q_2], but from the
7651 code we can also determine that p_5 cannot be NULL and, if q_2 had
7652 a non-varying range, p_5's range should also be compatible with it.
7654 These equivalences are created by two expressions: ASSERT_EXPR and
7655 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7656 result of another assertion, then we can use the fact that p_5 and
7657 p_4 are equivalent when evaluating p_5's range.
7659 Together with value ranges, we also propagate these equivalences
7660 between names so that we can take advantage of information from
7661 multiple ranges when doing final replacement. Note that this
7662 equivalency relation is transitive but not symmetric.
7664 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7665 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7666 in contexts where that assertion does not hold (e.g., in line 6).
7668 TODO, the main difference between this pass and Patterson's is that
7669 we do not propagate edge probabilities. We only compute whether
7670 edges can be taken or not. That is, instead of having a spectrum
7671 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7672 DON'T KNOW. In the future, it may be worthwhile to propagate
7673 probabilities to aid branch prediction. */
7682 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
7683 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
7686 /* Estimate number of iterations - but do not use undefined behavior
7687 for this. We can't do this lazily as other functions may compute
7688 this using undefined behavior. */
7689 free_numbers_of_iterations_estimates ();
7690 estimate_numbers_of_iterations (false);
7692 insert_range_assertions ();
7694 to_remove_edges
= VEC_alloc (edge
, heap
, 10);
7695 to_update_switch_stmts
= VEC_alloc (switch_update
, heap
, 5);
7696 threadedge_initialize_values ();
7699 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
7702 /* ASSERT_EXPRs must be removed before finalizing jump threads
7703 as finalizing jump threads calls the CFG cleanup code which
7704 does not properly handle ASSERT_EXPRs. */
7705 remove_range_assertions ();
7707 /* If we exposed any new variables, go ahead and put them into
7708 SSA form now, before we handle jump threading. This simplifies
7709 interactions between rewriting of _DECL nodes into SSA form
7710 and rewriting SSA_NAME nodes into SSA form after block
7711 duplication and CFG manipulation. */
7712 update_ssa (TODO_update_ssa
);
7714 finalize_jump_threads ();
7716 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7717 CFG in a broken state and requires a cfg_cleanup run. */
7718 FOR_EACH_VEC_ELT (edge
, to_remove_edges
, i
, e
)
7720 /* Update SWITCH_EXPR case label vector. */
7721 FOR_EACH_VEC_ELT (switch_update
, to_update_switch_stmts
, i
, su
)
7724 size_t n
= TREE_VEC_LENGTH (su
->vec
);
7726 gimple_switch_set_num_labels (su
->stmt
, n
);
7727 for (j
= 0; j
< n
; j
++)
7728 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
7729 /* As we may have replaced the default label with a regular one
7730 make sure to make it a real default label again. This ensures
7731 optimal expansion. */
7732 label
= gimple_switch_default_label (su
->stmt
);
7733 CASE_LOW (label
) = NULL_TREE
;
7734 CASE_HIGH (label
) = NULL_TREE
;
7737 if (VEC_length (edge
, to_remove_edges
) > 0)
7738 free_dominance_info (CDI_DOMINATORS
);
7740 VEC_free (edge
, heap
, to_remove_edges
);
7741 VEC_free (switch_update
, heap
, to_update_switch_stmts
);
7742 threadedge_finalize_values ();
7745 loop_optimizer_finalize ();
7752 return flag_tree_vrp
!= 0;
7755 struct gimple_opt_pass pass_vrp
=
7760 gate_vrp
, /* gate */
7761 execute_vrp
, /* execute */
7764 0, /* static_pass_number */
7765 TV_TREE_VRP
, /* tv_id */
7766 PROP_ssa
, /* properties_required */
7767 0, /* properties_provided */
7768 0, /* properties_destroyed */
7769 0, /* todo_flags_start */
7775 | TODO_ggc_collect
/* todo_flags_finish */