* config/sh/sh.c (sh_delegitimize_address): Handle UNSPEC_SYMOFF
[official-gcc.git] / gcc / tree-vect-loop.c
blob7692eb8bc96a419375f5cfafdc3604e916e6a8de
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
5 Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "expr.h"
37 #include "recog.h"
38 #include "optabs.h"
39 #include "params.h"
40 #include "diagnostic-core.h"
41 #include "tree-chrec.h"
42 #include "tree-scalar-evolution.h"
43 #include "tree-vectorizer.h"
44 #include "target.h"
46 /* Loop Vectorization Pass.
48 This pass tries to vectorize loops.
50 For example, the vectorizer transforms the following simple loop:
52 short a[N]; short b[N]; short c[N]; int i;
54 for (i=0; i<N; i++){
55 a[i] = b[i] + c[i];
58 as if it was manually vectorized by rewriting the source code into:
60 typedef int __attribute__((mode(V8HI))) v8hi;
61 short a[N]; short b[N]; short c[N]; int i;
62 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
63 v8hi va, vb, vc;
65 for (i=0; i<N/8; i++){
66 vb = pb[i];
67 vc = pc[i];
68 va = vb + vc;
69 pa[i] = va;
72 The main entry to this pass is vectorize_loops(), in which
73 the vectorizer applies a set of analyses on a given set of loops,
74 followed by the actual vectorization transformation for the loops that
75 had successfully passed the analysis phase.
76 Throughout this pass we make a distinction between two types of
77 data: scalars (which are represented by SSA_NAMES), and memory references
78 ("data-refs"). These two types of data require different handling both
79 during analysis and transformation. The types of data-refs that the
80 vectorizer currently supports are ARRAY_REFS which base is an array DECL
81 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
82 accesses are required to have a simple (consecutive) access pattern.
84 Analysis phase:
85 ===============
86 The driver for the analysis phase is vect_analyze_loop().
87 It applies a set of analyses, some of which rely on the scalar evolution
88 analyzer (scev) developed by Sebastian Pop.
90 During the analysis phase the vectorizer records some information
91 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
92 loop, as well as general information about the loop as a whole, which is
93 recorded in a "loop_vec_info" struct attached to each loop.
95 Transformation phase:
96 =====================
97 The loop transformation phase scans all the stmts in the loop, and
98 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
99 the loop that needs to be vectorized. It inserts the vector code sequence
100 just before the scalar stmt S, and records a pointer to the vector code
101 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
102 attached to S). This pointer will be used for the vectorization of following
103 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
104 otherwise, we rely on dead code elimination for removing it.
106 For example, say stmt S1 was vectorized into stmt VS1:
108 VS1: vb = px[i];
109 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
110 S2: a = b;
112 To vectorize stmt S2, the vectorizer first finds the stmt that defines
113 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
114 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
115 resulting sequence would be:
117 VS1: vb = px[i];
118 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
119 VS2: va = vb;
120 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
122 Operands that are not SSA_NAMEs, are data-refs that appear in
123 load/store operations (like 'x[i]' in S1), and are handled differently.
125 Target modeling:
126 =================
127 Currently the only target specific information that is used is the
128 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
129 Targets that can support different sizes of vectors, for now will need
130 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
131 flexibility will be added in the future.
133 Since we only vectorize operations which vector form can be
134 expressed using existing tree codes, to verify that an operation is
135 supported, the vectorizer checks the relevant optab at the relevant
136 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
137 the value found is CODE_FOR_nothing, then there's no target support, and
138 we can't vectorize the stmt.
140 For additional information on this project see:
141 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
144 /* Function vect_determine_vectorization_factor
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
185 if (vect_print_dump_info (REPORT_DETAILS))
186 fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
188 for (i = 0; i < nbbs; i++)
190 basic_block bb = bbs[i];
192 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
194 phi = gsi_stmt (si);
195 stmt_info = vinfo_for_stmt (phi);
196 if (vect_print_dump_info (REPORT_DETAILS))
198 fprintf (vect_dump, "==> examining phi: ");
199 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
202 gcc_assert (stmt_info);
204 if (STMT_VINFO_RELEVANT_P (stmt_info))
206 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
207 scalar_type = TREE_TYPE (PHI_RESULT (phi));
209 if (vect_print_dump_info (REPORT_DETAILS))
211 fprintf (vect_dump, "get vectype for scalar type: ");
212 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
215 vectype = get_vectype_for_scalar_type (scalar_type);
216 if (!vectype)
218 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
220 fprintf (vect_dump,
221 "not vectorized: unsupported data-type ");
222 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
224 return false;
226 STMT_VINFO_VECTYPE (stmt_info) = vectype;
228 if (vect_print_dump_info (REPORT_DETAILS))
230 fprintf (vect_dump, "vectype: ");
231 print_generic_expr (vect_dump, vectype, TDF_SLIM);
234 nunits = TYPE_VECTOR_SUBPARTS (vectype);
235 if (vect_print_dump_info (REPORT_DETAILS))
236 fprintf (vect_dump, "nunits = %d", nunits);
238 if (!vectorization_factor
239 || (nunits > vectorization_factor))
240 vectorization_factor = nunits;
244 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
246 tree vf_vectype;
247 gimple stmt = gsi_stmt (si);
248 stmt_info = vinfo_for_stmt (stmt);
250 if (vect_print_dump_info (REPORT_DETAILS))
252 fprintf (vect_dump, "==> examining statement: ");
253 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
256 gcc_assert (stmt_info);
258 /* skip stmts which do not need to be vectorized. */
259 if (!STMT_VINFO_RELEVANT_P (stmt_info)
260 && !STMT_VINFO_LIVE_P (stmt_info))
262 if (vect_print_dump_info (REPORT_DETAILS))
263 fprintf (vect_dump, "skip.");
264 continue;
267 if (gimple_get_lhs (stmt) == NULL_TREE)
269 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
271 fprintf (vect_dump, "not vectorized: irregular stmt.");
272 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
274 return false;
277 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
279 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
281 fprintf (vect_dump, "not vectorized: vector stmt in loop:");
282 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
284 return false;
287 if (STMT_VINFO_VECTYPE (stmt_info))
289 /* The only case when a vectype had been already set is for stmts
290 that contain a dataref, or for "pattern-stmts" (stmts generated
291 by the vectorizer to represent/replace a certain idiom). */
292 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
293 || is_pattern_stmt_p (stmt_info));
294 vectype = STMT_VINFO_VECTYPE (stmt_info);
296 else
298 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info)
299 && !is_pattern_stmt_p (stmt_info));
301 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
302 if (vect_print_dump_info (REPORT_DETAILS))
304 fprintf (vect_dump, "get vectype for scalar type: ");
305 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
307 vectype = get_vectype_for_scalar_type (scalar_type);
308 if (!vectype)
310 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
312 fprintf (vect_dump,
313 "not vectorized: unsupported data-type ");
314 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
316 return false;
319 STMT_VINFO_VECTYPE (stmt_info) = vectype;
322 /* The vectorization factor is according to the smallest
323 scalar type (or the largest vector size, but we only
324 support one vector size per loop). */
325 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
326 &dummy);
327 if (vect_print_dump_info (REPORT_DETAILS))
329 fprintf (vect_dump, "get vectype for scalar type: ");
330 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
332 vf_vectype = get_vectype_for_scalar_type (scalar_type);
333 if (!vf_vectype)
335 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
337 fprintf (vect_dump,
338 "not vectorized: unsupported data-type ");
339 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
341 return false;
344 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
345 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
347 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
349 fprintf (vect_dump,
350 "not vectorized: different sized vector "
351 "types in statement, ");
352 print_generic_expr (vect_dump, vectype, TDF_SLIM);
353 fprintf (vect_dump, " and ");
354 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
356 return false;
359 if (vect_print_dump_info (REPORT_DETAILS))
361 fprintf (vect_dump, "vectype: ");
362 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
365 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
366 if (vect_print_dump_info (REPORT_DETAILS))
367 fprintf (vect_dump, "nunits = %d", nunits);
369 if (!vectorization_factor
370 || (nunits > vectorization_factor))
371 vectorization_factor = nunits;
375 /* TODO: Analyze cost. Decide if worth while to vectorize. */
376 if (vect_print_dump_info (REPORT_DETAILS))
377 fprintf (vect_dump, "vectorization factor = %d", vectorization_factor);
378 if (vectorization_factor <= 1)
380 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
381 fprintf (vect_dump, "not vectorized: unsupported data-type");
382 return false;
384 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
386 return true;
390 /* Function vect_is_simple_iv_evolution.
392 FORNOW: A simple evolution of an induction variables in the loop is
393 considered a polynomial evolution with constant step. */
395 static bool
396 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
397 tree * step)
399 tree init_expr;
400 tree step_expr;
401 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
403 /* When there is no evolution in this loop, the evolution function
404 is not "simple". */
405 if (evolution_part == NULL_TREE)
406 return false;
408 /* When the evolution is a polynomial of degree >= 2
409 the evolution function is not "simple". */
410 if (tree_is_chrec (evolution_part))
411 return false;
413 step_expr = evolution_part;
414 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
416 if (vect_print_dump_info (REPORT_DETAILS))
418 fprintf (vect_dump, "step: ");
419 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
420 fprintf (vect_dump, ", init: ");
421 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
424 *init = init_expr;
425 *step = step_expr;
427 if (TREE_CODE (step_expr) != INTEGER_CST)
429 if (vect_print_dump_info (REPORT_DETAILS))
430 fprintf (vect_dump, "step unknown.");
431 return false;
434 return true;
437 /* Function vect_analyze_scalar_cycles_1.
439 Examine the cross iteration def-use cycles of scalar variables
440 in LOOP. LOOP_VINFO represents the loop that is now being
441 considered for vectorization (can be LOOP, or an outer-loop
442 enclosing LOOP). */
444 static void
445 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
447 basic_block bb = loop->header;
448 tree dumy;
449 VEC(gimple,heap) *worklist = VEC_alloc (gimple, heap, 64);
450 gimple_stmt_iterator gsi;
451 bool double_reduc;
453 if (vect_print_dump_info (REPORT_DETAILS))
454 fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
456 /* First - identify all inductions. Reduction detection assumes that all the
457 inductions have been identified, therefore, this order must not be
458 changed. */
459 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
461 gimple phi = gsi_stmt (gsi);
462 tree access_fn = NULL;
463 tree def = PHI_RESULT (phi);
464 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
466 if (vect_print_dump_info (REPORT_DETAILS))
468 fprintf (vect_dump, "Analyze phi: ");
469 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
472 /* Skip virtual phi's. The data dependences that are associated with
473 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
474 if (!is_gimple_reg (SSA_NAME_VAR (def)))
475 continue;
477 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
479 /* Analyze the evolution function. */
480 access_fn = analyze_scalar_evolution (loop, def);
481 if (access_fn)
482 STRIP_NOPS (access_fn);
483 if (access_fn && vect_print_dump_info (REPORT_DETAILS))
485 fprintf (vect_dump, "Access function of PHI: ");
486 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
489 if (!access_fn
490 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
492 VEC_safe_push (gimple, heap, worklist, phi);
493 continue;
496 if (vect_print_dump_info (REPORT_DETAILS))
497 fprintf (vect_dump, "Detected induction.");
498 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
502 /* Second - identify all reductions and nested cycles. */
503 while (VEC_length (gimple, worklist) > 0)
505 gimple phi = VEC_pop (gimple, worklist);
506 tree def = PHI_RESULT (phi);
507 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
508 gimple reduc_stmt;
509 bool nested_cycle;
511 if (vect_print_dump_info (REPORT_DETAILS))
513 fprintf (vect_dump, "Analyze phi: ");
514 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
517 gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
518 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
520 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
521 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
522 &double_reduc);
523 if (reduc_stmt)
525 if (double_reduc)
527 if (vect_print_dump_info (REPORT_DETAILS))
528 fprintf (vect_dump, "Detected double reduction.");
530 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
531 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
532 vect_double_reduction_def;
534 else
536 if (nested_cycle)
538 if (vect_print_dump_info (REPORT_DETAILS))
539 fprintf (vect_dump, "Detected vectorizable nested cycle.");
541 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
542 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
543 vect_nested_cycle;
545 else
547 if (vect_print_dump_info (REPORT_DETAILS))
548 fprintf (vect_dump, "Detected reduction.");
550 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
551 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
552 vect_reduction_def;
553 /* Store the reduction cycles for possible vectorization in
554 loop-aware SLP. */
555 VEC_safe_push (gimple, heap,
556 LOOP_VINFO_REDUCTIONS (loop_vinfo),
557 reduc_stmt);
561 else
562 if (vect_print_dump_info (REPORT_DETAILS))
563 fprintf (vect_dump, "Unknown def-use cycle pattern.");
566 VEC_free (gimple, heap, worklist);
570 /* Function vect_analyze_scalar_cycles.
572 Examine the cross iteration def-use cycles of scalar variables, by
573 analyzing the loop-header PHIs of scalar variables. Classify each
574 cycle as one of the following: invariant, induction, reduction, unknown.
575 We do that for the loop represented by LOOP_VINFO, and also to its
576 inner-loop, if exists.
577 Examples for scalar cycles:
579 Example1: reduction:
581 loop1:
582 for (i=0; i<N; i++)
583 sum += a[i];
585 Example2: induction:
587 loop2:
588 for (i=0; i<N; i++)
589 a[i] = i; */
591 static void
592 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
594 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
596 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
598 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
599 Reductions in such inner-loop therefore have different properties than
600 the reductions in the nest that gets vectorized:
601 1. When vectorized, they are executed in the same order as in the original
602 scalar loop, so we can't change the order of computation when
603 vectorizing them.
604 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
605 current checks are too strict. */
607 if (loop->inner)
608 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
611 /* Function vect_get_loop_niters.
613 Determine how many iterations the loop is executed.
614 If an expression that represents the number of iterations
615 can be constructed, place it in NUMBER_OF_ITERATIONS.
616 Return the loop exit condition. */
618 static gimple
619 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
621 tree niters;
623 if (vect_print_dump_info (REPORT_DETAILS))
624 fprintf (vect_dump, "=== get_loop_niters ===");
626 niters = number_of_exit_cond_executions (loop);
628 if (niters != NULL_TREE
629 && niters != chrec_dont_know)
631 *number_of_iterations = niters;
633 if (vect_print_dump_info (REPORT_DETAILS))
635 fprintf (vect_dump, "==> get_loop_niters:" );
636 print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
640 return get_loop_exit_condition (loop);
644 /* Function bb_in_loop_p
646 Used as predicate for dfs order traversal of the loop bbs. */
648 static bool
649 bb_in_loop_p (const_basic_block bb, const void *data)
651 const struct loop *const loop = (const struct loop *)data;
652 if (flow_bb_inside_loop_p (loop, bb))
653 return true;
654 return false;
658 /* Function new_loop_vec_info.
660 Create and initialize a new loop_vec_info struct for LOOP, as well as
661 stmt_vec_info structs for all the stmts in LOOP. */
663 static loop_vec_info
664 new_loop_vec_info (struct loop *loop)
666 loop_vec_info res;
667 basic_block *bbs;
668 gimple_stmt_iterator si;
669 unsigned int i, nbbs;
671 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
672 LOOP_VINFO_LOOP (res) = loop;
674 bbs = get_loop_body (loop);
676 /* Create/Update stmt_info for all stmts in the loop. */
677 for (i = 0; i < loop->num_nodes; i++)
679 basic_block bb = bbs[i];
681 /* BBs in a nested inner-loop will have been already processed (because
682 we will have called vect_analyze_loop_form for any nested inner-loop).
683 Therefore, for stmts in an inner-loop we just want to update the
684 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
685 loop_info of the outer-loop we are currently considering to vectorize
686 (instead of the loop_info of the inner-loop).
687 For stmts in other BBs we need to create a stmt_info from scratch. */
688 if (bb->loop_father != loop)
690 /* Inner-loop bb. */
691 gcc_assert (loop->inner && bb->loop_father == loop->inner);
692 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
694 gimple phi = gsi_stmt (si);
695 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
696 loop_vec_info inner_loop_vinfo =
697 STMT_VINFO_LOOP_VINFO (stmt_info);
698 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
699 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
701 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
703 gimple stmt = gsi_stmt (si);
704 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
705 loop_vec_info inner_loop_vinfo =
706 STMT_VINFO_LOOP_VINFO (stmt_info);
707 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
708 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
711 else
713 /* bb in current nest. */
714 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
716 gimple phi = gsi_stmt (si);
717 gimple_set_uid (phi, 0);
718 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
721 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
723 gimple stmt = gsi_stmt (si);
724 gimple_set_uid (stmt, 0);
725 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
730 /* CHECKME: We want to visit all BBs before their successors (except for
731 latch blocks, for which this assertion wouldn't hold). In the simple
732 case of the loop forms we allow, a dfs order of the BBs would the same
733 as reversed postorder traversal, so we are safe. */
735 free (bbs);
736 bbs = XCNEWVEC (basic_block, loop->num_nodes);
737 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
738 bbs, loop->num_nodes, loop);
739 gcc_assert (nbbs == loop->num_nodes);
741 LOOP_VINFO_BBS (res) = bbs;
742 LOOP_VINFO_NITERS (res) = NULL;
743 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
744 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
745 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
746 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
747 LOOP_VINFO_VECT_FACTOR (res) = 0;
748 LOOP_VINFO_LOOP_NEST (res) = VEC_alloc (loop_p, heap, 3);
749 LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
750 LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
751 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
752 LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
753 VEC_alloc (gimple, heap,
754 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
755 LOOP_VINFO_MAY_ALIAS_DDRS (res) =
756 VEC_alloc (ddr_p, heap,
757 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
758 LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
759 LOOP_VINFO_REDUCTIONS (res) = VEC_alloc (gimple, heap, 10);
760 LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
761 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
762 LOOP_VINFO_PEELING_HTAB (res) = NULL;
764 return res;
768 /* Function destroy_loop_vec_info.
770 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
771 stmts in the loop. */
773 void
774 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
776 struct loop *loop;
777 basic_block *bbs;
778 int nbbs;
779 gimple_stmt_iterator si;
780 int j;
781 VEC (slp_instance, heap) *slp_instances;
782 slp_instance instance;
784 if (!loop_vinfo)
785 return;
787 loop = LOOP_VINFO_LOOP (loop_vinfo);
789 bbs = LOOP_VINFO_BBS (loop_vinfo);
790 nbbs = loop->num_nodes;
792 if (!clean_stmts)
794 free (LOOP_VINFO_BBS (loop_vinfo));
795 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
796 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
797 VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
798 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
799 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
801 free (loop_vinfo);
802 loop->aux = NULL;
803 return;
806 for (j = 0; j < nbbs; j++)
808 basic_block bb = bbs[j];
809 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
810 free_stmt_vec_info (gsi_stmt (si));
812 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
814 gimple stmt = gsi_stmt (si);
815 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
817 if (stmt_info)
819 /* Check if this is a "pattern stmt" (introduced by the
820 vectorizer during the pattern recognition pass). */
821 bool remove_stmt_p = false;
822 gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
823 if (orig_stmt)
825 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
826 if (orig_stmt_info
827 && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
828 remove_stmt_p = true;
831 /* Free stmt_vec_info. */
832 free_stmt_vec_info (stmt);
834 /* Remove dead "pattern stmts". */
835 if (remove_stmt_p)
836 gsi_remove (&si, true);
838 gsi_next (&si);
842 free (LOOP_VINFO_BBS (loop_vinfo));
843 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
844 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
845 VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
846 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
847 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
848 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
849 FOR_EACH_VEC_ELT (slp_instance, slp_instances, j, instance)
850 vect_free_slp_instance (instance);
852 VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
853 VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
854 VEC_free (gimple, heap, LOOP_VINFO_REDUCTIONS (loop_vinfo));
856 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
857 htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
859 free (loop_vinfo);
860 loop->aux = NULL;
864 /* Function vect_analyze_loop_1.
866 Apply a set of analyses on LOOP, and create a loop_vec_info struct
867 for it. The different analyses will record information in the
868 loop_vec_info struct. This is a subset of the analyses applied in
869 vect_analyze_loop, to be applied on an inner-loop nested in the loop
870 that is now considered for (outer-loop) vectorization. */
872 static loop_vec_info
873 vect_analyze_loop_1 (struct loop *loop)
875 loop_vec_info loop_vinfo;
877 if (vect_print_dump_info (REPORT_DETAILS))
878 fprintf (vect_dump, "===== analyze_loop_nest_1 =====");
880 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
882 loop_vinfo = vect_analyze_loop_form (loop);
883 if (!loop_vinfo)
885 if (vect_print_dump_info (REPORT_DETAILS))
886 fprintf (vect_dump, "bad inner-loop form.");
887 return NULL;
890 return loop_vinfo;
894 /* Function vect_analyze_loop_form.
896 Verify that certain CFG restrictions hold, including:
897 - the loop has a pre-header
898 - the loop has a single entry and exit
899 - the loop exit condition is simple enough, and the number of iterations
900 can be analyzed (a countable loop). */
902 loop_vec_info
903 vect_analyze_loop_form (struct loop *loop)
905 loop_vec_info loop_vinfo;
906 gimple loop_cond;
907 tree number_of_iterations = NULL;
908 loop_vec_info inner_loop_vinfo = NULL;
910 if (vect_print_dump_info (REPORT_DETAILS))
911 fprintf (vect_dump, "=== vect_analyze_loop_form ===");
913 /* Different restrictions apply when we are considering an inner-most loop,
914 vs. an outer (nested) loop.
915 (FORNOW. May want to relax some of these restrictions in the future). */
917 if (!loop->inner)
919 /* Inner-most loop. We currently require that the number of BBs is
920 exactly 2 (the header and latch). Vectorizable inner-most loops
921 look like this:
923 (pre-header)
925 header <--------+
926 | | |
927 | +--> latch --+
929 (exit-bb) */
931 if (loop->num_nodes != 2)
933 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
934 fprintf (vect_dump, "not vectorized: control flow in loop.");
935 return NULL;
938 if (empty_block_p (loop->header))
940 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
941 fprintf (vect_dump, "not vectorized: empty loop.");
942 return NULL;
945 else
947 struct loop *innerloop = loop->inner;
948 edge entryedge;
950 /* Nested loop. We currently require that the loop is doubly-nested,
951 contains a single inner loop, and the number of BBs is exactly 5.
952 Vectorizable outer-loops look like this:
954 (pre-header)
956 header <---+
958 inner-loop |
960 tail ------+
962 (exit-bb)
964 The inner-loop has the properties expected of inner-most loops
965 as described above. */
967 if ((loop->inner)->inner || (loop->inner)->next)
969 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
970 fprintf (vect_dump, "not vectorized: multiple nested loops.");
971 return NULL;
974 /* Analyze the inner-loop. */
975 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
976 if (!inner_loop_vinfo)
978 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
979 fprintf (vect_dump, "not vectorized: Bad inner loop.");
980 return NULL;
983 if (!expr_invariant_in_loop_p (loop,
984 LOOP_VINFO_NITERS (inner_loop_vinfo)))
986 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
987 fprintf (vect_dump,
988 "not vectorized: inner-loop count not invariant.");
989 destroy_loop_vec_info (inner_loop_vinfo, true);
990 return NULL;
993 if (loop->num_nodes != 5)
995 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
996 fprintf (vect_dump, "not vectorized: control flow in loop.");
997 destroy_loop_vec_info (inner_loop_vinfo, true);
998 return NULL;
1001 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1002 entryedge = EDGE_PRED (innerloop->header, 0);
1003 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1004 entryedge = EDGE_PRED (innerloop->header, 1);
1006 if (entryedge->src != loop->header
1007 || !single_exit (innerloop)
1008 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1010 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1011 fprintf (vect_dump, "not vectorized: unsupported outerloop form.");
1012 destroy_loop_vec_info (inner_loop_vinfo, true);
1013 return NULL;
1016 if (vect_print_dump_info (REPORT_DETAILS))
1017 fprintf (vect_dump, "Considering outer-loop vectorization.");
1020 if (!single_exit (loop)
1021 || EDGE_COUNT (loop->header->preds) != 2)
1023 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1025 if (!single_exit (loop))
1026 fprintf (vect_dump, "not vectorized: multiple exits.");
1027 else if (EDGE_COUNT (loop->header->preds) != 2)
1028 fprintf (vect_dump, "not vectorized: too many incoming edges.");
1030 if (inner_loop_vinfo)
1031 destroy_loop_vec_info (inner_loop_vinfo, true);
1032 return NULL;
1035 /* We assume that the loop exit condition is at the end of the loop. i.e,
1036 that the loop is represented as a do-while (with a proper if-guard
1037 before the loop if needed), where the loop header contains all the
1038 executable statements, and the latch is empty. */
1039 if (!empty_block_p (loop->latch)
1040 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1042 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1043 fprintf (vect_dump, "not vectorized: unexpected loop form.");
1044 if (inner_loop_vinfo)
1045 destroy_loop_vec_info (inner_loop_vinfo, true);
1046 return NULL;
1049 /* Make sure there exists a single-predecessor exit bb: */
1050 if (!single_pred_p (single_exit (loop)->dest))
1052 edge e = single_exit (loop);
1053 if (!(e->flags & EDGE_ABNORMAL))
1055 split_loop_exit_edge (e);
1056 if (vect_print_dump_info (REPORT_DETAILS))
1057 fprintf (vect_dump, "split exit edge.");
1059 else
1061 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1062 fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
1063 if (inner_loop_vinfo)
1064 destroy_loop_vec_info (inner_loop_vinfo, true);
1065 return NULL;
1069 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1070 if (!loop_cond)
1072 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1073 fprintf (vect_dump, "not vectorized: complicated exit condition.");
1074 if (inner_loop_vinfo)
1075 destroy_loop_vec_info (inner_loop_vinfo, true);
1076 return NULL;
1079 if (!number_of_iterations)
1081 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1082 fprintf (vect_dump,
1083 "not vectorized: number of iterations cannot be computed.");
1084 if (inner_loop_vinfo)
1085 destroy_loop_vec_info (inner_loop_vinfo, true);
1086 return NULL;
1089 if (chrec_contains_undetermined (number_of_iterations))
1091 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1092 fprintf (vect_dump, "Infinite number of iterations.");
1093 if (inner_loop_vinfo)
1094 destroy_loop_vec_info (inner_loop_vinfo, true);
1095 return NULL;
1098 if (!NITERS_KNOWN_P (number_of_iterations))
1100 if (vect_print_dump_info (REPORT_DETAILS))
1102 fprintf (vect_dump, "Symbolic number of iterations is ");
1103 print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
1106 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1108 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1109 fprintf (vect_dump, "not vectorized: number of iterations = 0.");
1110 if (inner_loop_vinfo)
1111 destroy_loop_vec_info (inner_loop_vinfo, false);
1112 return NULL;
1115 loop_vinfo = new_loop_vec_info (loop);
1116 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1117 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1119 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1121 /* CHECKME: May want to keep it around it in the future. */
1122 if (inner_loop_vinfo)
1123 destroy_loop_vec_info (inner_loop_vinfo, false);
1125 gcc_assert (!loop->aux);
1126 loop->aux = loop_vinfo;
1127 return loop_vinfo;
1131 /* Get cost by calling cost target builtin. */
1133 static inline int
1134 vect_get_cost (enum vect_cost_for_stmt type_of_cost)
1136 tree dummy_type = NULL;
1137 int dummy = 0;
1139 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1140 dummy_type, dummy);
1144 /* Function vect_analyze_loop_operations.
1146 Scan the loop stmts and make sure they are all vectorizable. */
1148 static bool
1149 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1151 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1152 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1153 int nbbs = loop->num_nodes;
1154 gimple_stmt_iterator si;
1155 unsigned int vectorization_factor = 0;
1156 int i;
1157 gimple phi;
1158 stmt_vec_info stmt_info;
1159 bool need_to_vectorize = false;
1160 int min_profitable_iters;
1161 int min_scalar_loop_bound;
1162 unsigned int th;
1163 bool only_slp_in_loop = true, ok;
1165 if (vect_print_dump_info (REPORT_DETAILS))
1166 fprintf (vect_dump, "=== vect_analyze_loop_operations ===");
1168 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1169 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1171 for (i = 0; i < nbbs; i++)
1173 basic_block bb = bbs[i];
1175 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1177 phi = gsi_stmt (si);
1178 ok = true;
1180 stmt_info = vinfo_for_stmt (phi);
1181 if (vect_print_dump_info (REPORT_DETAILS))
1183 fprintf (vect_dump, "examining phi: ");
1184 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1187 if (! is_loop_header_bb_p (bb))
1189 /* inner-loop loop-closed exit phi in outer-loop vectorization
1190 (i.e. a phi in the tail of the outer-loop).
1191 FORNOW: we currently don't support the case that these phis
1192 are not used in the outerloop (unless it is double reduction,
1193 i.e., this phi is vect_reduction_def), cause this case
1194 requires to actually do something here. */
1195 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1196 || STMT_VINFO_LIVE_P (stmt_info))
1197 && STMT_VINFO_DEF_TYPE (stmt_info)
1198 != vect_double_reduction_def)
1200 if (vect_print_dump_info (REPORT_DETAILS))
1201 fprintf (vect_dump,
1202 "Unsupported loop-closed phi in outer-loop.");
1203 return false;
1205 continue;
1208 gcc_assert (stmt_info);
1210 if (STMT_VINFO_LIVE_P (stmt_info))
1212 /* FORNOW: not yet supported. */
1213 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1214 fprintf (vect_dump, "not vectorized: value used after loop.");
1215 return false;
1218 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1219 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1221 /* A scalar-dependence cycle that we don't support. */
1222 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1223 fprintf (vect_dump, "not vectorized: scalar dependence cycle.");
1224 return false;
1227 if (STMT_VINFO_RELEVANT_P (stmt_info))
1229 need_to_vectorize = true;
1230 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1231 ok = vectorizable_induction (phi, NULL, NULL);
1234 if (!ok)
1236 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1238 fprintf (vect_dump,
1239 "not vectorized: relevant phi not supported: ");
1240 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1242 return false;
1246 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1248 gimple stmt = gsi_stmt (si);
1249 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1251 gcc_assert (stmt_info);
1253 if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1254 return false;
1256 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1257 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1258 && !PURE_SLP_STMT (stmt_info))
1259 /* STMT needs both SLP and loop-based vectorization. */
1260 only_slp_in_loop = false;
1262 } /* bbs */
1264 /* All operations in the loop are either irrelevant (deal with loop
1265 control, or dead), or only used outside the loop and can be moved
1266 out of the loop (e.g. invariants, inductions). The loop can be
1267 optimized away by scalar optimizations. We're better off not
1268 touching this loop. */
1269 if (!need_to_vectorize)
1271 if (vect_print_dump_info (REPORT_DETAILS))
1272 fprintf (vect_dump,
1273 "All the computation can be taken out of the loop.");
1274 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1275 fprintf (vect_dump,
1276 "not vectorized: redundant loop. no profit to vectorize.");
1277 return false;
1280 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1281 vectorization factor of the loop is the unrolling factor required by the
1282 SLP instances. If that unrolling factor is 1, we say, that we perform
1283 pure SLP on loop - cross iteration parallelism is not exploited. */
1284 if (only_slp_in_loop)
1285 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1286 else
1287 vectorization_factor = least_common_multiple (vectorization_factor,
1288 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1290 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1292 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1293 && vect_print_dump_info (REPORT_DETAILS))
1294 fprintf (vect_dump,
1295 "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
1296 vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
1298 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1299 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1301 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1302 fprintf (vect_dump, "not vectorized: iteration count too small.");
1303 if (vect_print_dump_info (REPORT_DETAILS))
1304 fprintf (vect_dump,"not vectorized: iteration count smaller than "
1305 "vectorization factor.");
1306 return false;
1309 /* Analyze cost. Decide if worth while to vectorize. */
1311 /* Once VF is set, SLP costs should be updated since the number of created
1312 vector stmts depends on VF. */
1313 vect_update_slp_costs_according_to_vf (loop_vinfo);
1315 min_profitable_iters = vect_estimate_min_profitable_iters (loop_vinfo);
1316 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1318 if (min_profitable_iters < 0)
1320 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1321 fprintf (vect_dump, "not vectorized: vectorization not profitable.");
1322 if (vect_print_dump_info (REPORT_DETAILS))
1323 fprintf (vect_dump, "not vectorized: vector version will never be "
1324 "profitable.");
1325 return false;
1328 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1329 * vectorization_factor) - 1);
1331 /* Use the cost model only if it is more conservative than user specified
1332 threshold. */
1334 th = (unsigned) min_scalar_loop_bound;
1335 if (min_profitable_iters
1336 && (!min_scalar_loop_bound
1337 || min_profitable_iters > min_scalar_loop_bound))
1338 th = (unsigned) min_profitable_iters;
1340 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1341 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1343 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1344 fprintf (vect_dump, "not vectorized: vectorization not "
1345 "profitable.");
1346 if (vect_print_dump_info (REPORT_DETAILS))
1347 fprintf (vect_dump, "not vectorized: iteration count smaller than "
1348 "user specified loop bound parameter or minimum "
1349 "profitable iterations (whichever is more conservative).");
1350 return false;
1353 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1354 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1355 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
1357 if (vect_print_dump_info (REPORT_DETAILS))
1358 fprintf (vect_dump, "epilog loop required.");
1359 if (!vect_can_advance_ivs_p (loop_vinfo))
1361 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1362 fprintf (vect_dump,
1363 "not vectorized: can't create epilog loop 1.");
1364 return false;
1366 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1368 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1369 fprintf (vect_dump,
1370 "not vectorized: can't create epilog loop 2.");
1371 return false;
1375 return true;
1379 /* Function vect_analyze_loop_2.
1381 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1382 for it. The different analyses will record information in the
1383 loop_vec_info struct. */
1384 static bool
1385 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1387 bool ok, dummy;
1388 int max_vf = MAX_VECTORIZATION_FACTOR;
1389 int min_vf = 2;
1391 /* Find all data references in the loop (which correspond to vdefs/vuses)
1392 and analyze their evolution in the loop. Also adjust the minimal
1393 vectorization factor according to the loads and stores.
1395 FORNOW: Handle only simple, array references, which
1396 alignment can be forced, and aligned pointer-references. */
1398 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1399 if (!ok)
1401 if (vect_print_dump_info (REPORT_DETAILS))
1402 fprintf (vect_dump, "bad data references.");
1403 return false;
1406 /* Classify all cross-iteration scalar data-flow cycles.
1407 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1409 vect_analyze_scalar_cycles (loop_vinfo);
1411 vect_pattern_recog (loop_vinfo);
1413 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1415 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1416 if (!ok)
1418 if (vect_print_dump_info (REPORT_DETAILS))
1419 fprintf (vect_dump, "unexpected pattern.");
1420 return false;
1423 /* Analyze data dependences between the data-refs in the loop
1424 and adjust the maximum vectorization factor according to
1425 the dependences.
1426 FORNOW: fail at the first data dependence that we encounter. */
1428 ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL, &max_vf, &dummy);
1429 if (!ok
1430 || max_vf < min_vf)
1432 if (vect_print_dump_info (REPORT_DETAILS))
1433 fprintf (vect_dump, "bad data dependence.");
1434 return false;
1437 ok = vect_determine_vectorization_factor (loop_vinfo);
1438 if (!ok)
1440 if (vect_print_dump_info (REPORT_DETAILS))
1441 fprintf (vect_dump, "can't determine vectorization factor.");
1442 return false;
1444 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1446 if (vect_print_dump_info (REPORT_DETAILS))
1447 fprintf (vect_dump, "bad data dependence.");
1448 return false;
1451 /* Analyze the alignment of the data-refs in the loop.
1452 Fail if a data reference is found that cannot be vectorized. */
1454 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1455 if (!ok)
1457 if (vect_print_dump_info (REPORT_DETAILS))
1458 fprintf (vect_dump, "bad data alignment.");
1459 return false;
1462 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1463 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1465 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1466 if (!ok)
1468 if (vect_print_dump_info (REPORT_DETAILS))
1469 fprintf (vect_dump, "bad data access.");
1470 return false;
1473 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1474 It is important to call pruning after vect_analyze_data_ref_accesses,
1475 since we use grouping information gathered by interleaving analysis. */
1476 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1477 if (!ok)
1479 if (vect_print_dump_info (REPORT_DETAILS))
1480 fprintf (vect_dump, "too long list of versioning for alias "
1481 "run-time tests.");
1482 return false;
1485 /* This pass will decide on using loop versioning and/or loop peeling in
1486 order to enhance the alignment of data references in the loop. */
1488 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1489 if (!ok)
1491 if (vect_print_dump_info (REPORT_DETAILS))
1492 fprintf (vect_dump, "bad data alignment.");
1493 return false;
1496 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1497 ok = vect_analyze_slp (loop_vinfo, NULL);
1498 if (ok)
1500 /* Decide which possible SLP instances to SLP. */
1501 vect_make_slp_decision (loop_vinfo);
1503 /* Find stmts that need to be both vectorized and SLPed. */
1504 vect_detect_hybrid_slp (loop_vinfo);
1507 /* Scan all the operations in the loop and make sure they are
1508 vectorizable. */
1510 ok = vect_analyze_loop_operations (loop_vinfo);
1511 if (!ok)
1513 if (vect_print_dump_info (REPORT_DETAILS))
1514 fprintf (vect_dump, "bad operation or unsupported loop bound.");
1515 return false;
1518 return true;
1521 /* Function vect_analyze_loop.
1523 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1524 for it. The different analyses will record information in the
1525 loop_vec_info struct. */
1526 loop_vec_info
1527 vect_analyze_loop (struct loop *loop)
1529 loop_vec_info loop_vinfo;
1530 unsigned int vector_sizes;
1532 /* Autodetect first vector size we try. */
1533 current_vector_size = 0;
1534 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1536 if (vect_print_dump_info (REPORT_DETAILS))
1537 fprintf (vect_dump, "===== analyze_loop_nest =====");
1539 if (loop_outer (loop)
1540 && loop_vec_info_for_loop (loop_outer (loop))
1541 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1543 if (vect_print_dump_info (REPORT_DETAILS))
1544 fprintf (vect_dump, "outer-loop already vectorized.");
1545 return NULL;
1548 while (1)
1550 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1551 loop_vinfo = vect_analyze_loop_form (loop);
1552 if (!loop_vinfo)
1554 if (vect_print_dump_info (REPORT_DETAILS))
1555 fprintf (vect_dump, "bad loop form.");
1556 return NULL;
1559 if (vect_analyze_loop_2 (loop_vinfo))
1561 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1563 return loop_vinfo;
1566 destroy_loop_vec_info (loop_vinfo, true);
1568 vector_sizes &= ~current_vector_size;
1569 if (vector_sizes == 0
1570 || current_vector_size == 0)
1571 return NULL;
1573 /* Try the next biggest vector size. */
1574 current_vector_size = 1 << floor_log2 (vector_sizes);
1575 if (vect_print_dump_info (REPORT_DETAILS))
1576 fprintf (vect_dump, "***** Re-trying analysis with "
1577 "vector size %d\n", current_vector_size);
1582 /* Function reduction_code_for_scalar_code
1584 Input:
1585 CODE - tree_code of a reduction operations.
1587 Output:
1588 REDUC_CODE - the corresponding tree-code to be used to reduce the
1589 vector of partial results into a single scalar result (which
1590 will also reside in a vector) or ERROR_MARK if the operation is
1591 a supported reduction operation, but does not have such tree-code.
1593 Return FALSE if CODE currently cannot be vectorized as reduction. */
1595 static bool
1596 reduction_code_for_scalar_code (enum tree_code code,
1597 enum tree_code *reduc_code)
1599 switch (code)
1601 case MAX_EXPR:
1602 *reduc_code = REDUC_MAX_EXPR;
1603 return true;
1605 case MIN_EXPR:
1606 *reduc_code = REDUC_MIN_EXPR;
1607 return true;
1609 case PLUS_EXPR:
1610 *reduc_code = REDUC_PLUS_EXPR;
1611 return true;
1613 case MULT_EXPR:
1614 case MINUS_EXPR:
1615 case BIT_IOR_EXPR:
1616 case BIT_XOR_EXPR:
1617 case BIT_AND_EXPR:
1618 *reduc_code = ERROR_MARK;
1619 return true;
1621 default:
1622 return false;
1627 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1628 STMT is printed with a message MSG. */
1630 static void
1631 report_vect_op (gimple stmt, const char *msg)
1633 fprintf (vect_dump, "%s", msg);
1634 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
1638 /* Function vect_is_simple_reduction_1
1640 (1) Detect a cross-iteration def-use cycle that represents a simple
1641 reduction computation. We look for the following pattern:
1643 loop_header:
1644 a1 = phi < a0, a2 >
1645 a3 = ...
1646 a2 = operation (a3, a1)
1648 such that:
1649 1. operation is commutative and associative and it is safe to
1650 change the order of the computation (if CHECK_REDUCTION is true)
1651 2. no uses for a2 in the loop (a2 is used out of the loop)
1652 3. no uses of a1 in the loop besides the reduction operation
1653 4. no uses of a1 outside the loop.
1655 Conditions 1,4 are tested here.
1656 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
1658 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
1659 nested cycles, if CHECK_REDUCTION is false.
1661 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
1662 reductions:
1664 a1 = phi < a0, a2 >
1665 inner loop (def of a3)
1666 a2 = phi < a3 >
1668 If MODIFY is true it tries also to rework the code in-place to enable
1669 detection of more reduction patterns. For the time being we rewrite
1670 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
1673 static gimple
1674 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
1675 bool check_reduction, bool *double_reduc,
1676 bool modify)
1678 struct loop *loop = (gimple_bb (phi))->loop_father;
1679 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1680 edge latch_e = loop_latch_edge (loop);
1681 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
1682 gimple def_stmt, def1 = NULL, def2 = NULL;
1683 enum tree_code orig_code, code;
1684 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
1685 tree type;
1686 int nloop_uses;
1687 tree name;
1688 imm_use_iterator imm_iter;
1689 use_operand_p use_p;
1690 bool phi_def;
1692 *double_reduc = false;
1694 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
1695 otherwise, we assume outer loop vectorization. */
1696 gcc_assert ((check_reduction && loop == vect_loop)
1697 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
1699 name = PHI_RESULT (phi);
1700 nloop_uses = 0;
1701 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1703 gimple use_stmt = USE_STMT (use_p);
1704 if (is_gimple_debug (use_stmt))
1705 continue;
1707 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1709 if (vect_print_dump_info (REPORT_DETAILS))
1710 fprintf (vect_dump, "intermediate value used outside loop.");
1712 return NULL;
1715 if (vinfo_for_stmt (use_stmt)
1716 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1717 nloop_uses++;
1718 if (nloop_uses > 1)
1720 if (vect_print_dump_info (REPORT_DETAILS))
1721 fprintf (vect_dump, "reduction used in loop.");
1722 return NULL;
1726 if (TREE_CODE (loop_arg) != SSA_NAME)
1728 if (vect_print_dump_info (REPORT_DETAILS))
1730 fprintf (vect_dump, "reduction: not ssa_name: ");
1731 print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
1733 return NULL;
1736 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
1737 if (!def_stmt)
1739 if (vect_print_dump_info (REPORT_DETAILS))
1740 fprintf (vect_dump, "reduction: no def_stmt.");
1741 return NULL;
1744 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
1746 if (vect_print_dump_info (REPORT_DETAILS))
1747 print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
1748 return NULL;
1751 if (is_gimple_assign (def_stmt))
1753 name = gimple_assign_lhs (def_stmt);
1754 phi_def = false;
1756 else
1758 name = PHI_RESULT (def_stmt);
1759 phi_def = true;
1762 nloop_uses = 0;
1763 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1765 gimple use_stmt = USE_STMT (use_p);
1766 if (is_gimple_debug (use_stmt))
1767 continue;
1768 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
1769 && vinfo_for_stmt (use_stmt)
1770 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1771 nloop_uses++;
1772 if (nloop_uses > 1)
1774 if (vect_print_dump_info (REPORT_DETAILS))
1775 fprintf (vect_dump, "reduction used in loop.");
1776 return NULL;
1780 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
1781 defined in the inner loop. */
1782 if (phi_def)
1784 op1 = PHI_ARG_DEF (def_stmt, 0);
1786 if (gimple_phi_num_args (def_stmt) != 1
1787 || TREE_CODE (op1) != SSA_NAME)
1789 if (vect_print_dump_info (REPORT_DETAILS))
1790 fprintf (vect_dump, "unsupported phi node definition.");
1792 return NULL;
1795 def1 = SSA_NAME_DEF_STMT (op1);
1796 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1797 && loop->inner
1798 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
1799 && is_gimple_assign (def1))
1801 if (vect_print_dump_info (REPORT_DETAILS))
1802 report_vect_op (def_stmt, "detected double reduction: ");
1804 *double_reduc = true;
1805 return def_stmt;
1808 return NULL;
1811 code = orig_code = gimple_assign_rhs_code (def_stmt);
1813 /* We can handle "res -= x[i]", which is non-associative by
1814 simply rewriting this into "res += -x[i]". Avoid changing
1815 gimple instruction for the first simple tests and only do this
1816 if we're allowed to change code at all. */
1817 if (code == MINUS_EXPR
1818 && modify
1819 && (op1 = gimple_assign_rhs1 (def_stmt))
1820 && TREE_CODE (op1) == SSA_NAME
1821 && SSA_NAME_DEF_STMT (op1) == phi)
1822 code = PLUS_EXPR;
1824 if (check_reduction
1825 && (!commutative_tree_code (code) || !associative_tree_code (code)))
1827 if (vect_print_dump_info (REPORT_DETAILS))
1828 report_vect_op (def_stmt, "reduction: not commutative/associative: ");
1829 return NULL;
1832 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
1834 if (code != COND_EXPR)
1836 if (vect_print_dump_info (REPORT_DETAILS))
1837 report_vect_op (def_stmt, "reduction: not binary operation: ");
1839 return NULL;
1842 op3 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
1843 if (COMPARISON_CLASS_P (op3))
1845 op4 = TREE_OPERAND (op3, 1);
1846 op3 = TREE_OPERAND (op3, 0);
1849 op1 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 1);
1850 op2 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 2);
1852 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
1854 if (vect_print_dump_info (REPORT_DETAILS))
1855 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
1857 return NULL;
1860 else
1862 op1 = gimple_assign_rhs1 (def_stmt);
1863 op2 = gimple_assign_rhs2 (def_stmt);
1865 if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
1867 if (vect_print_dump_info (REPORT_DETAILS))
1868 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
1870 return NULL;
1874 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
1875 if ((TREE_CODE (op1) == SSA_NAME
1876 && !types_compatible_p (type,TREE_TYPE (op1)))
1877 || (TREE_CODE (op2) == SSA_NAME
1878 && !types_compatible_p (type, TREE_TYPE (op2)))
1879 || (op3 && TREE_CODE (op3) == SSA_NAME
1880 && !types_compatible_p (type, TREE_TYPE (op3)))
1881 || (op4 && TREE_CODE (op4) == SSA_NAME
1882 && !types_compatible_p (type, TREE_TYPE (op4))))
1884 if (vect_print_dump_info (REPORT_DETAILS))
1886 fprintf (vect_dump, "reduction: multiple types: operation type: ");
1887 print_generic_expr (vect_dump, type, TDF_SLIM);
1888 fprintf (vect_dump, ", operands types: ");
1889 print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
1890 fprintf (vect_dump, ",");
1891 print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
1892 if (op3)
1894 fprintf (vect_dump, ",");
1895 print_generic_expr (vect_dump, TREE_TYPE (op3), TDF_SLIM);
1898 if (op4)
1900 fprintf (vect_dump, ",");
1901 print_generic_expr (vect_dump, TREE_TYPE (op4), TDF_SLIM);
1905 return NULL;
1908 /* Check that it's ok to change the order of the computation.
1909 Generally, when vectorizing a reduction we change the order of the
1910 computation. This may change the behavior of the program in some
1911 cases, so we need to check that this is ok. One exception is when
1912 vectorizing an outer-loop: the inner-loop is executed sequentially,
1913 and therefore vectorizing reductions in the inner-loop during
1914 outer-loop vectorization is safe. */
1916 /* CHECKME: check for !flag_finite_math_only too? */
1917 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
1918 && check_reduction)
1920 /* Changing the order of operations changes the semantics. */
1921 if (vect_print_dump_info (REPORT_DETAILS))
1922 report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
1923 return NULL;
1925 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
1926 && check_reduction)
1928 /* Changing the order of operations changes the semantics. */
1929 if (vect_print_dump_info (REPORT_DETAILS))
1930 report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
1931 return NULL;
1933 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
1935 /* Changing the order of operations changes the semantics. */
1936 if (vect_print_dump_info (REPORT_DETAILS))
1937 report_vect_op (def_stmt,
1938 "reduction: unsafe fixed-point math optimization: ");
1939 return NULL;
1942 /* If we detected "res -= x[i]" earlier, rewrite it into
1943 "res += -x[i]" now. If this turns out to be useless reassoc
1944 will clean it up again. */
1945 if (orig_code == MINUS_EXPR)
1947 tree rhs = gimple_assign_rhs2 (def_stmt);
1948 tree negrhs = make_ssa_name (SSA_NAME_VAR (rhs), NULL);
1949 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
1950 rhs, NULL);
1951 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
1952 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
1953 loop_info, NULL));
1954 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
1955 gimple_assign_set_rhs2 (def_stmt, negrhs);
1956 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
1957 update_stmt (def_stmt);
1960 /* Reduction is safe. We're dealing with one of the following:
1961 1) integer arithmetic and no trapv
1962 2) floating point arithmetic, and special flags permit this optimization
1963 3) nested cycle (i.e., outer loop vectorization). */
1964 if (TREE_CODE (op1) == SSA_NAME)
1965 def1 = SSA_NAME_DEF_STMT (op1);
1967 if (TREE_CODE (op2) == SSA_NAME)
1968 def2 = SSA_NAME_DEF_STMT (op2);
1970 if (code != COND_EXPR
1971 && (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2)))
1973 if (vect_print_dump_info (REPORT_DETAILS))
1974 report_vect_op (def_stmt, "reduction: no defs for operands: ");
1975 return NULL;
1978 /* Check that one def is the reduction def, defined by PHI,
1979 the other def is either defined in the loop ("vect_internal_def"),
1980 or it's an induction (defined by a loop-header phi-node). */
1982 if (def2 && def2 == phi
1983 && (code == COND_EXPR
1984 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
1985 && (is_gimple_assign (def1)
1986 || is_gimple_call (def1)
1987 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
1988 == vect_induction_def
1989 || (gimple_code (def1) == GIMPLE_PHI
1990 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
1991 == vect_internal_def
1992 && !is_loop_header_bb_p (gimple_bb (def1)))))))
1994 if (vect_print_dump_info (REPORT_DETAILS))
1995 report_vect_op (def_stmt, "detected reduction: ");
1996 return def_stmt;
1998 else if (def1 && def1 == phi
1999 && (code == COND_EXPR
2000 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2001 && (is_gimple_assign (def2)
2002 || is_gimple_call (def2)
2003 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2004 == vect_induction_def
2005 || (gimple_code (def2) == GIMPLE_PHI
2006 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2007 == vect_internal_def
2008 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2010 if (check_reduction)
2012 /* Swap operands (just for simplicity - so that the rest of the code
2013 can assume that the reduction variable is always the last (second)
2014 argument). */
2015 if (vect_print_dump_info (REPORT_DETAILS))
2016 report_vect_op (def_stmt,
2017 "detected reduction: need to swap operands: ");
2019 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2020 gimple_assign_rhs2_ptr (def_stmt));
2022 else
2024 if (vect_print_dump_info (REPORT_DETAILS))
2025 report_vect_op (def_stmt, "detected reduction: ");
2028 return def_stmt;
2030 else
2032 if (vect_print_dump_info (REPORT_DETAILS))
2033 report_vect_op (def_stmt, "reduction: unknown pattern: ");
2035 return NULL;
2039 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2040 in-place. Arguments as there. */
2042 static gimple
2043 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2044 bool check_reduction, bool *double_reduc)
2046 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2047 double_reduc, false);
2050 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2051 in-place if it enables detection of more reductions. Arguments
2052 as there. */
2054 gimple
2055 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2056 bool check_reduction, bool *double_reduc)
2058 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2059 double_reduc, true);
2062 /* Calculate the cost of one scalar iteration of the loop. */
2064 vect_get_single_scalar_iteraion_cost (loop_vec_info loop_vinfo)
2066 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2067 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2068 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2069 int innerloop_iters, i, stmt_cost;
2071 /* Count statements in scalar loop. Using this as scalar cost for a single
2072 iteration for now.
2074 TODO: Add outer loop support.
2076 TODO: Consider assigning different costs to different scalar
2077 statements. */
2079 /* FORNOW. */
2080 innerloop_iters = 1;
2081 if (loop->inner)
2082 innerloop_iters = 50; /* FIXME */
2084 for (i = 0; i < nbbs; i++)
2086 gimple_stmt_iterator si;
2087 basic_block bb = bbs[i];
2089 if (bb->loop_father == loop->inner)
2090 factor = innerloop_iters;
2091 else
2092 factor = 1;
2094 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2096 gimple stmt = gsi_stmt (si);
2097 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2099 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2100 continue;
2102 /* Skip stmts that are not vectorized inside the loop. */
2103 if (stmt_info
2104 && !STMT_VINFO_RELEVANT_P (stmt_info)
2105 && (!STMT_VINFO_LIVE_P (stmt_info)
2106 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2107 continue;
2109 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2111 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2112 stmt_cost = vect_get_cost (scalar_load);
2113 else
2114 stmt_cost = vect_get_cost (scalar_store);
2116 else
2117 stmt_cost = vect_get_cost (scalar_stmt);
2119 scalar_single_iter_cost += stmt_cost * factor;
2122 return scalar_single_iter_cost;
2125 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2127 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2128 int *peel_iters_epilogue,
2129 int scalar_single_iter_cost)
2131 int peel_guard_costs = 0;
2132 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2134 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2136 *peel_iters_epilogue = vf/2;
2137 if (vect_print_dump_info (REPORT_COST))
2138 fprintf (vect_dump, "cost model: "
2139 "epilogue peel iters set to vf/2 because "
2140 "loop iterations are unknown .");
2142 /* If peeled iterations are known but number of scalar loop
2143 iterations are unknown, count a taken branch per peeled loop. */
2144 peel_guard_costs = 2 * vect_get_cost (cond_branch_taken);
2146 else
2148 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2149 peel_iters_prologue = niters < peel_iters_prologue ?
2150 niters : peel_iters_prologue;
2151 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2154 return (peel_iters_prologue * scalar_single_iter_cost)
2155 + (*peel_iters_epilogue * scalar_single_iter_cost)
2156 + peel_guard_costs;
2159 /* Function vect_estimate_min_profitable_iters
2161 Return the number of iterations required for the vector version of the
2162 loop to be profitable relative to the cost of the scalar version of the
2163 loop.
2165 TODO: Take profile info into account before making vectorization
2166 decisions, if available. */
2169 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
2171 int i;
2172 int min_profitable_iters;
2173 int peel_iters_prologue;
2174 int peel_iters_epilogue;
2175 int vec_inside_cost = 0;
2176 int vec_outside_cost = 0;
2177 int scalar_single_iter_cost = 0;
2178 int scalar_outside_cost = 0;
2179 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2180 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2181 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2182 int nbbs = loop->num_nodes;
2183 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2184 int peel_guard_costs = 0;
2185 int innerloop_iters = 0, factor;
2186 VEC (slp_instance, heap) *slp_instances;
2187 slp_instance instance;
2189 /* Cost model disabled. */
2190 if (!flag_vect_cost_model)
2192 if (vect_print_dump_info (REPORT_COST))
2193 fprintf (vect_dump, "cost model disabled.");
2194 return 0;
2197 /* Requires loop versioning tests to handle misalignment. */
2198 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2200 /* FIXME: Make cost depend on complexity of individual check. */
2201 vec_outside_cost +=
2202 VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
2203 if (vect_print_dump_info (REPORT_COST))
2204 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2205 "versioning to treat misalignment.\n");
2208 /* Requires loop versioning with alias checks. */
2209 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2211 /* FIXME: Make cost depend on complexity of individual check. */
2212 vec_outside_cost +=
2213 VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
2214 if (vect_print_dump_info (REPORT_COST))
2215 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2216 "versioning aliasing.\n");
2219 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2220 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2221 vec_outside_cost += vect_get_cost (cond_branch_taken);
2223 /* Count statements in scalar loop. Using this as scalar cost for a single
2224 iteration for now.
2226 TODO: Add outer loop support.
2228 TODO: Consider assigning different costs to different scalar
2229 statements. */
2231 /* FORNOW. */
2232 if (loop->inner)
2233 innerloop_iters = 50; /* FIXME */
2235 for (i = 0; i < nbbs; i++)
2237 gimple_stmt_iterator si;
2238 basic_block bb = bbs[i];
2240 if (bb->loop_father == loop->inner)
2241 factor = innerloop_iters;
2242 else
2243 factor = 1;
2245 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2247 gimple stmt = gsi_stmt (si);
2248 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2249 /* Skip stmts that are not vectorized inside the loop. */
2250 if (!STMT_VINFO_RELEVANT_P (stmt_info)
2251 && (!STMT_VINFO_LIVE_P (stmt_info)
2252 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2253 continue;
2254 vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
2255 /* FIXME: for stmts in the inner-loop in outer-loop vectorization,
2256 some of the "outside" costs are generated inside the outer-loop. */
2257 vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
2261 scalar_single_iter_cost = vect_get_single_scalar_iteraion_cost (loop_vinfo);
2263 /* Add additional cost for the peeled instructions in prologue and epilogue
2264 loop.
2266 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2267 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2269 TODO: Build an expression that represents peel_iters for prologue and
2270 epilogue to be used in a run-time test. */
2272 if (npeel < 0)
2274 peel_iters_prologue = vf/2;
2275 if (vect_print_dump_info (REPORT_COST))
2276 fprintf (vect_dump, "cost model: "
2277 "prologue peel iters set to vf/2.");
2279 /* If peeling for alignment is unknown, loop bound of main loop becomes
2280 unknown. */
2281 peel_iters_epilogue = vf/2;
2282 if (vect_print_dump_info (REPORT_COST))
2283 fprintf (vect_dump, "cost model: "
2284 "epilogue peel iters set to vf/2 because "
2285 "peeling for alignment is unknown .");
2287 /* If peeled iterations are unknown, count a taken branch and a not taken
2288 branch per peeled loop. Even if scalar loop iterations are known,
2289 vector iterations are not known since peeled prologue iterations are
2290 not known. Hence guards remain the same. */
2291 peel_guard_costs += 2 * (vect_get_cost (cond_branch_taken)
2292 + vect_get_cost (cond_branch_not_taken));
2293 vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
2294 + (peel_iters_epilogue * scalar_single_iter_cost)
2295 + peel_guard_costs;
2297 else
2299 peel_iters_prologue = npeel;
2300 vec_outside_cost += vect_get_known_peeling_cost (loop_vinfo,
2301 peel_iters_prologue, &peel_iters_epilogue,
2302 scalar_single_iter_cost);
2305 /* FORNOW: The scalar outside cost is incremented in one of the
2306 following ways:
2308 1. The vectorizer checks for alignment and aliasing and generates
2309 a condition that allows dynamic vectorization. A cost model
2310 check is ANDED with the versioning condition. Hence scalar code
2311 path now has the added cost of the versioning check.
2313 if (cost > th & versioning_check)
2314 jmp to vector code
2316 Hence run-time scalar is incremented by not-taken branch cost.
2318 2. The vectorizer then checks if a prologue is required. If the
2319 cost model check was not done before during versioning, it has to
2320 be done before the prologue check.
2322 if (cost <= th)
2323 prologue = scalar_iters
2324 if (prologue == 0)
2325 jmp to vector code
2326 else
2327 execute prologue
2328 if (prologue == num_iters)
2329 go to exit
2331 Hence the run-time scalar cost is incremented by a taken branch,
2332 plus a not-taken branch, plus a taken branch cost.
2334 3. The vectorizer then checks if an epilogue is required. If the
2335 cost model check was not done before during prologue check, it
2336 has to be done with the epilogue check.
2338 if (prologue == 0)
2339 jmp to vector code
2340 else
2341 execute prologue
2342 if (prologue == num_iters)
2343 go to exit
2344 vector code:
2345 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2346 jmp to epilogue
2348 Hence the run-time scalar cost should be incremented by 2 taken
2349 branches.
2351 TODO: The back end may reorder the BBS's differently and reverse
2352 conditions/branch directions. Change the estimates below to
2353 something more reasonable. */
2355 /* If the number of iterations is known and we do not do versioning, we can
2356 decide whether to vectorize at compile time. Hence the scalar version
2357 do not carry cost model guard costs. */
2358 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2359 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2360 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2362 /* Cost model check occurs at versioning. */
2363 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2364 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2365 scalar_outside_cost += vect_get_cost (cond_branch_not_taken);
2366 else
2368 /* Cost model check occurs at prologue generation. */
2369 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2370 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken)
2371 + vect_get_cost (cond_branch_not_taken);
2372 /* Cost model check occurs at epilogue generation. */
2373 else
2374 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken);
2378 /* Add SLP costs. */
2379 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
2380 FOR_EACH_VEC_ELT (slp_instance, slp_instances, i, instance)
2382 vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
2383 vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
2386 /* Calculate number of iterations required to make the vector version
2387 profitable, relative to the loop bodies only. The following condition
2388 must hold true:
2389 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2390 where
2391 SIC = scalar iteration cost, VIC = vector iteration cost,
2392 VOC = vector outside cost, VF = vectorization factor,
2393 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2394 SOC = scalar outside cost for run time cost model check. */
2396 if ((scalar_single_iter_cost * vf) > vec_inside_cost)
2398 if (vec_outside_cost <= 0)
2399 min_profitable_iters = 1;
2400 else
2402 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2403 - vec_inside_cost * peel_iters_prologue
2404 - vec_inside_cost * peel_iters_epilogue)
2405 / ((scalar_single_iter_cost * vf)
2406 - vec_inside_cost);
2408 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2409 <= ((vec_inside_cost * min_profitable_iters)
2410 + ((vec_outside_cost - scalar_outside_cost) * vf)))
2411 min_profitable_iters++;
2414 /* vector version will never be profitable. */
2415 else
2417 if (vect_print_dump_info (REPORT_COST))
2418 fprintf (vect_dump, "cost model: the vector iteration cost = %d "
2419 "divided by the scalar iteration cost = %d "
2420 "is greater or equal to the vectorization factor = %d.",
2421 vec_inside_cost, scalar_single_iter_cost, vf);
2422 return -1;
2425 if (vect_print_dump_info (REPORT_COST))
2427 fprintf (vect_dump, "Cost model analysis: \n");
2428 fprintf (vect_dump, " Vector inside of loop cost: %d\n",
2429 vec_inside_cost);
2430 fprintf (vect_dump, " Vector outside of loop cost: %d\n",
2431 vec_outside_cost);
2432 fprintf (vect_dump, " Scalar iteration cost: %d\n",
2433 scalar_single_iter_cost);
2434 fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
2435 fprintf (vect_dump, " prologue iterations: %d\n",
2436 peel_iters_prologue);
2437 fprintf (vect_dump, " epilogue iterations: %d\n",
2438 peel_iters_epilogue);
2439 fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
2440 min_profitable_iters);
2443 min_profitable_iters =
2444 min_profitable_iters < vf ? vf : min_profitable_iters;
2446 /* Because the condition we create is:
2447 if (niters <= min_profitable_iters)
2448 then skip the vectorized loop. */
2449 min_profitable_iters--;
2451 if (vect_print_dump_info (REPORT_COST))
2452 fprintf (vect_dump, " Profitability threshold = %d\n",
2453 min_profitable_iters);
2455 return min_profitable_iters;
2459 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2460 functions. Design better to avoid maintenance issues. */
2462 /* Function vect_model_reduction_cost.
2464 Models cost for a reduction operation, including the vector ops
2465 generated within the strip-mine loop, the initial definition before
2466 the loop, and the epilogue code that must be generated. */
2468 static bool
2469 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2470 int ncopies)
2472 int outer_cost = 0;
2473 enum tree_code code;
2474 optab optab;
2475 tree vectype;
2476 gimple stmt, orig_stmt;
2477 tree reduction_op;
2478 enum machine_mode mode;
2479 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2480 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2483 /* Cost of reduction op inside loop. */
2484 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2485 += ncopies * vect_get_cost (vector_stmt);
2487 stmt = STMT_VINFO_STMT (stmt_info);
2489 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2491 case GIMPLE_SINGLE_RHS:
2492 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2493 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2494 break;
2495 case GIMPLE_UNARY_RHS:
2496 reduction_op = gimple_assign_rhs1 (stmt);
2497 break;
2498 case GIMPLE_BINARY_RHS:
2499 reduction_op = gimple_assign_rhs2 (stmt);
2500 break;
2501 default:
2502 gcc_unreachable ();
2505 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2506 if (!vectype)
2508 if (vect_print_dump_info (REPORT_COST))
2510 fprintf (vect_dump, "unsupported data-type ");
2511 print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
2513 return false;
2516 mode = TYPE_MODE (vectype);
2517 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2519 if (!orig_stmt)
2520 orig_stmt = STMT_VINFO_STMT (stmt_info);
2522 code = gimple_assign_rhs_code (orig_stmt);
2524 /* Add in cost for initial definition. */
2525 outer_cost += vect_get_cost (scalar_to_vec);
2527 /* Determine cost of epilogue code.
2529 We have a reduction operator that will reduce the vector in one statement.
2530 Also requires scalar extract. */
2532 if (!nested_in_vect_loop_p (loop, orig_stmt))
2534 if (reduc_code != ERROR_MARK)
2535 outer_cost += vect_get_cost (vector_stmt)
2536 + vect_get_cost (vec_to_scalar);
2537 else
2539 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
2540 tree bitsize =
2541 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
2542 int element_bitsize = tree_low_cst (bitsize, 1);
2543 int nelements = vec_size_in_bits / element_bitsize;
2545 optab = optab_for_tree_code (code, vectype, optab_default);
2547 /* We have a whole vector shift available. */
2548 if (VECTOR_MODE_P (mode)
2549 && optab_handler (optab, mode) != CODE_FOR_nothing
2550 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
2551 /* Final reduction via vector shifts and the reduction operator. Also
2552 requires scalar extract. */
2553 outer_cost += ((exact_log2(nelements) * 2)
2554 * vect_get_cost (vector_stmt)
2555 + vect_get_cost (vec_to_scalar));
2556 else
2557 /* Use extracts and reduction op for final reduction. For N elements,
2558 we have N extracts and N-1 reduction ops. */
2559 outer_cost += ((nelements + nelements - 1)
2560 * vect_get_cost (vector_stmt));
2564 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
2566 if (vect_print_dump_info (REPORT_COST))
2567 fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
2568 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2569 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2571 return true;
2575 /* Function vect_model_induction_cost.
2577 Models cost for induction operations. */
2579 static void
2580 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
2582 /* loop cost for vec_loop. */
2583 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2584 = ncopies * vect_get_cost (vector_stmt);
2585 /* prologue cost for vec_init and vec_step. */
2586 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info)
2587 = 2 * vect_get_cost (scalar_to_vec);
2589 if (vect_print_dump_info (REPORT_COST))
2590 fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
2591 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2592 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2596 /* Function get_initial_def_for_induction
2598 Input:
2599 STMT - a stmt that performs an induction operation in the loop.
2600 IV_PHI - the initial value of the induction variable
2602 Output:
2603 Return a vector variable, initialized with the first VF values of
2604 the induction variable. E.g., for an iv with IV_PHI='X' and
2605 evolution S, for a vector of 4 units, we want to return:
2606 [X, X + S, X + 2*S, X + 3*S]. */
2608 static tree
2609 get_initial_def_for_induction (gimple iv_phi)
2611 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
2612 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2613 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2614 tree scalar_type;
2615 tree vectype;
2616 int nunits;
2617 edge pe = loop_preheader_edge (loop);
2618 struct loop *iv_loop;
2619 basic_block new_bb;
2620 tree vec, vec_init, vec_step, t;
2621 tree access_fn;
2622 tree new_var;
2623 tree new_name;
2624 gimple init_stmt, induction_phi, new_stmt;
2625 tree induc_def, vec_def, vec_dest;
2626 tree init_expr, step_expr;
2627 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2628 int i;
2629 bool ok;
2630 int ncopies;
2631 tree expr;
2632 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
2633 bool nested_in_vect_loop = false;
2634 gimple_seq stmts = NULL;
2635 imm_use_iterator imm_iter;
2636 use_operand_p use_p;
2637 gimple exit_phi;
2638 edge latch_e;
2639 tree loop_arg;
2640 gimple_stmt_iterator si;
2641 basic_block bb = gimple_bb (iv_phi);
2642 tree stepvectype;
2643 tree resvectype;
2645 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
2646 if (nested_in_vect_loop_p (loop, iv_phi))
2648 nested_in_vect_loop = true;
2649 iv_loop = loop->inner;
2651 else
2652 iv_loop = loop;
2653 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
2655 latch_e = loop_latch_edge (iv_loop);
2656 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
2658 access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
2659 gcc_assert (access_fn);
2660 STRIP_NOPS (access_fn);
2661 ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
2662 &init_expr, &step_expr);
2663 gcc_assert (ok);
2664 pe = loop_preheader_edge (iv_loop);
2666 scalar_type = TREE_TYPE (init_expr);
2667 vectype = get_vectype_for_scalar_type (scalar_type);
2668 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
2669 gcc_assert (vectype);
2670 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2671 ncopies = vf / nunits;
2673 gcc_assert (phi_info);
2674 gcc_assert (ncopies >= 1);
2676 /* Find the first insertion point in the BB. */
2677 si = gsi_after_labels (bb);
2679 /* Create the vector that holds the initial_value of the induction. */
2680 if (nested_in_vect_loop)
2682 /* iv_loop is nested in the loop to be vectorized. init_expr had already
2683 been created during vectorization of previous stmts. We obtain it
2684 from the STMT_VINFO_VEC_STMT of the defining stmt. */
2685 tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
2686 loop_preheader_edge (iv_loop));
2687 vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
2689 else
2691 /* iv_loop is the loop to be vectorized. Create:
2692 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
2693 new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
2694 add_referenced_var (new_var);
2696 new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
2697 if (stmts)
2699 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2700 gcc_assert (!new_bb);
2703 t = NULL_TREE;
2704 t = tree_cons (NULL_TREE, new_name, t);
2705 for (i = 1; i < nunits; i++)
2707 /* Create: new_name_i = new_name + step_expr */
2708 enum tree_code code = POINTER_TYPE_P (scalar_type)
2709 ? POINTER_PLUS_EXPR : PLUS_EXPR;
2710 init_stmt = gimple_build_assign_with_ops (code, new_var,
2711 new_name, step_expr);
2712 new_name = make_ssa_name (new_var, init_stmt);
2713 gimple_assign_set_lhs (init_stmt, new_name);
2715 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
2716 gcc_assert (!new_bb);
2718 if (vect_print_dump_info (REPORT_DETAILS))
2720 fprintf (vect_dump, "created new init_stmt: ");
2721 print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
2723 t = tree_cons (NULL_TREE, new_name, t);
2725 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
2726 vec = build_constructor_from_list (vectype, nreverse (t));
2727 vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
2731 /* Create the vector that holds the step of the induction. */
2732 if (nested_in_vect_loop)
2733 /* iv_loop is nested in the loop to be vectorized. Generate:
2734 vec_step = [S, S, S, S] */
2735 new_name = step_expr;
2736 else
2738 /* iv_loop is the loop to be vectorized. Generate:
2739 vec_step = [VF*S, VF*S, VF*S, VF*S] */
2740 expr = build_int_cst (TREE_TYPE (step_expr), vf);
2741 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2742 expr, step_expr);
2745 t = unshare_expr (new_name);
2746 gcc_assert (CONSTANT_CLASS_P (new_name));
2747 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
2748 gcc_assert (stepvectype);
2749 vec = build_vector_from_val (stepvectype, t);
2750 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
2753 /* Create the following def-use cycle:
2754 loop prolog:
2755 vec_init = ...
2756 vec_step = ...
2757 loop:
2758 vec_iv = PHI <vec_init, vec_loop>
2760 STMT
2762 vec_loop = vec_iv + vec_step; */
2764 /* Create the induction-phi that defines the induction-operand. */
2765 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
2766 add_referenced_var (vec_dest);
2767 induction_phi = create_phi_node (vec_dest, iv_loop->header);
2768 set_vinfo_for_stmt (induction_phi,
2769 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
2770 induc_def = PHI_RESULT (induction_phi);
2772 /* Create the iv update inside the loop */
2773 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
2774 induc_def, vec_step);
2775 vec_def = make_ssa_name (vec_dest, new_stmt);
2776 gimple_assign_set_lhs (new_stmt, vec_def);
2777 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2778 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
2779 NULL));
2781 /* Set the arguments of the phi node: */
2782 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
2783 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
2784 UNKNOWN_LOCATION);
2787 /* In case that vectorization factor (VF) is bigger than the number
2788 of elements that we can fit in a vectype (nunits), we have to generate
2789 more than one vector stmt - i.e - we need to "unroll" the
2790 vector stmt by a factor VF/nunits. For more details see documentation
2791 in vectorizable_operation. */
2793 if (ncopies > 1)
2795 stmt_vec_info prev_stmt_vinfo;
2796 /* FORNOW. This restriction should be relaxed. */
2797 gcc_assert (!nested_in_vect_loop);
2799 /* Create the vector that holds the step of the induction. */
2800 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
2801 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2802 expr, step_expr);
2803 t = unshare_expr (new_name);
2804 gcc_assert (CONSTANT_CLASS_P (new_name));
2805 vec = build_vector_from_val (stepvectype, t);
2806 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
2808 vec_def = induc_def;
2809 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
2810 for (i = 1; i < ncopies; i++)
2812 /* vec_i = vec_prev + vec_step */
2813 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
2814 vec_def, vec_step);
2815 vec_def = make_ssa_name (vec_dest, new_stmt);
2816 gimple_assign_set_lhs (new_stmt, vec_def);
2818 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2819 if (!useless_type_conversion_p (resvectype, vectype))
2821 new_stmt = gimple_build_assign_with_ops
2822 (VIEW_CONVERT_EXPR,
2823 vect_get_new_vect_var (resvectype, vect_simple_var,
2824 "vec_iv_"),
2825 build1 (VIEW_CONVERT_EXPR, resvectype,
2826 gimple_assign_lhs (new_stmt)), NULL_TREE);
2827 gimple_assign_set_lhs (new_stmt,
2828 make_ssa_name
2829 (gimple_assign_lhs (new_stmt), new_stmt));
2830 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2832 set_vinfo_for_stmt (new_stmt,
2833 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
2834 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
2835 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
2839 if (nested_in_vect_loop)
2841 /* Find the loop-closed exit-phi of the induction, and record
2842 the final vector of induction results: */
2843 exit_phi = NULL;
2844 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
2846 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
2848 exit_phi = USE_STMT (use_p);
2849 break;
2852 if (exit_phi)
2854 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
2855 /* FORNOW. Currently not supporting the case that an inner-loop induction
2856 is not used in the outer-loop (i.e. only outside the outer-loop). */
2857 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
2858 && !STMT_VINFO_LIVE_P (stmt_vinfo));
2860 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
2861 if (vect_print_dump_info (REPORT_DETAILS))
2863 fprintf (vect_dump, "vector of inductions after inner-loop:");
2864 print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
2870 if (vect_print_dump_info (REPORT_DETAILS))
2872 fprintf (vect_dump, "transform induction: created def-use cycle: ");
2873 print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
2874 fprintf (vect_dump, "\n");
2875 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
2878 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
2879 if (!useless_type_conversion_p (resvectype, vectype))
2881 new_stmt = gimple_build_assign_with_ops
2882 (VIEW_CONVERT_EXPR,
2883 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
2884 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
2885 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
2886 gimple_assign_set_lhs (new_stmt, induc_def);
2887 si = gsi_start_bb (bb);
2888 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2889 set_vinfo_for_stmt (new_stmt,
2890 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
2891 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
2892 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
2895 return induc_def;
2899 /* Function get_initial_def_for_reduction
2901 Input:
2902 STMT - a stmt that performs a reduction operation in the loop.
2903 INIT_VAL - the initial value of the reduction variable
2905 Output:
2906 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
2907 of the reduction (used for adjusting the epilog - see below).
2908 Return a vector variable, initialized according to the operation that STMT
2909 performs. This vector will be used as the initial value of the
2910 vector of partial results.
2912 Option1 (adjust in epilog): Initialize the vector as follows:
2913 add/bit or/xor: [0,0,...,0,0]
2914 mult/bit and: [1,1,...,1,1]
2915 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
2916 and when necessary (e.g. add/mult case) let the caller know
2917 that it needs to adjust the result by init_val.
2919 Option2: Initialize the vector as follows:
2920 add/bit or/xor: [init_val,0,0,...,0]
2921 mult/bit and: [init_val,1,1,...,1]
2922 min/max/cond_expr: [init_val,init_val,...,init_val]
2923 and no adjustments are needed.
2925 For example, for the following code:
2927 s = init_val;
2928 for (i=0;i<n;i++)
2929 s = s + a[i];
2931 STMT is 's = s + a[i]', and the reduction variable is 's'.
2932 For a vector of 4 units, we want to return either [0,0,0,init_val],
2933 or [0,0,0,0] and let the caller know that it needs to adjust
2934 the result at the end by 'init_val'.
2936 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
2937 initialization vector is simpler (same element in all entries), if
2938 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
2940 A cost model should help decide between these two schemes. */
2942 tree
2943 get_initial_def_for_reduction (gimple stmt, tree init_val,
2944 tree *adjustment_def)
2946 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
2947 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2948 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2949 tree scalar_type = TREE_TYPE (init_val);
2950 tree vectype = get_vectype_for_scalar_type (scalar_type);
2951 int nunits;
2952 enum tree_code code = gimple_assign_rhs_code (stmt);
2953 tree def_for_init;
2954 tree init_def;
2955 tree t = NULL_TREE;
2956 int i;
2957 bool nested_in_vect_loop = false;
2958 tree init_value;
2959 REAL_VALUE_TYPE real_init_val = dconst0;
2960 int int_init_val = 0;
2961 gimple def_stmt = NULL;
2963 gcc_assert (vectype);
2964 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2966 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
2967 || SCALAR_FLOAT_TYPE_P (scalar_type));
2969 if (nested_in_vect_loop_p (loop, stmt))
2970 nested_in_vect_loop = true;
2971 else
2972 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
2974 /* In case of double reduction we only create a vector variable to be put
2975 in the reduction phi node. The actual statement creation is done in
2976 vect_create_epilog_for_reduction. */
2977 if (adjustment_def && nested_in_vect_loop
2978 && TREE_CODE (init_val) == SSA_NAME
2979 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
2980 && gimple_code (def_stmt) == GIMPLE_PHI
2981 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2982 && vinfo_for_stmt (def_stmt)
2983 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2984 == vect_double_reduction_def)
2986 *adjustment_def = NULL;
2987 return vect_create_destination_var (init_val, vectype);
2990 if (TREE_CONSTANT (init_val))
2992 if (SCALAR_FLOAT_TYPE_P (scalar_type))
2993 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
2994 else
2995 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
2997 else
2998 init_value = init_val;
3000 switch (code)
3002 case WIDEN_SUM_EXPR:
3003 case DOT_PROD_EXPR:
3004 case PLUS_EXPR:
3005 case MINUS_EXPR:
3006 case BIT_IOR_EXPR:
3007 case BIT_XOR_EXPR:
3008 case MULT_EXPR:
3009 case BIT_AND_EXPR:
3010 /* ADJUSMENT_DEF is NULL when called from
3011 vect_create_epilog_for_reduction to vectorize double reduction. */
3012 if (adjustment_def)
3014 if (nested_in_vect_loop)
3015 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3016 NULL);
3017 else
3018 *adjustment_def = init_val;
3021 if (code == MULT_EXPR)
3023 real_init_val = dconst1;
3024 int_init_val = 1;
3027 if (code == BIT_AND_EXPR)
3028 int_init_val = -1;
3030 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3031 def_for_init = build_real (scalar_type, real_init_val);
3032 else
3033 def_for_init = build_int_cst (scalar_type, int_init_val);
3035 /* Create a vector of '0' or '1' except the first element. */
3036 for (i = nunits - 2; i >= 0; --i)
3037 t = tree_cons (NULL_TREE, def_for_init, t);
3039 /* Option1: the first element is '0' or '1' as well. */
3040 if (adjustment_def)
3042 t = tree_cons (NULL_TREE, def_for_init, t);
3043 init_def = build_vector (vectype, t);
3044 break;
3047 /* Option2: the first element is INIT_VAL. */
3048 t = tree_cons (NULL_TREE, init_value, t);
3049 if (TREE_CONSTANT (init_val))
3050 init_def = build_vector (vectype, t);
3051 else
3052 init_def = build_constructor_from_list (vectype, t);
3054 break;
3056 case MIN_EXPR:
3057 case MAX_EXPR:
3058 case COND_EXPR:
3059 if (adjustment_def)
3061 *adjustment_def = NULL_TREE;
3062 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3063 break;
3066 init_def = build_vector_from_val (vectype, init_value);
3067 break;
3069 default:
3070 gcc_unreachable ();
3073 return init_def;
3077 /* Function vect_create_epilog_for_reduction
3079 Create code at the loop-epilog to finalize the result of a reduction
3080 computation.
3082 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3083 reduction statements.
3084 STMT is the scalar reduction stmt that is being vectorized.
3085 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3086 number of elements that we can fit in a vectype (nunits). In this case
3087 we have to generate more than one vector stmt - i.e - we need to "unroll"
3088 the vector stmt by a factor VF/nunits. For more details see documentation
3089 in vectorizable_operation.
3090 REDUC_CODE is the tree-code for the epilog reduction.
3091 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3092 computation.
3093 REDUC_INDEX is the index of the operand in the right hand side of the
3094 statement that is defined by REDUCTION_PHI.
3095 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3096 SLP_NODE is an SLP node containing a group of reduction statements. The
3097 first one in this group is STMT.
3099 This function:
3100 1. Creates the reduction def-use cycles: sets the arguments for
3101 REDUCTION_PHIS:
3102 The loop-entry argument is the vectorized initial-value of the reduction.
3103 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3104 sums.
3105 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3106 by applying the operation specified by REDUC_CODE if available, or by
3107 other means (whole-vector shifts or a scalar loop).
3108 The function also creates a new phi node at the loop exit to preserve
3109 loop-closed form, as illustrated below.
3111 The flow at the entry to this function:
3113 loop:
3114 vec_def = phi <null, null> # REDUCTION_PHI
3115 VECT_DEF = vector_stmt # vectorized form of STMT
3116 s_loop = scalar_stmt # (scalar) STMT
3117 loop_exit:
3118 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3119 use <s_out0>
3120 use <s_out0>
3122 The above is transformed by this function into:
3124 loop:
3125 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3126 VECT_DEF = vector_stmt # vectorized form of STMT
3127 s_loop = scalar_stmt # (scalar) STMT
3128 loop_exit:
3129 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3130 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3131 v_out2 = reduce <v_out1>
3132 s_out3 = extract_field <v_out2, 0>
3133 s_out4 = adjust_result <s_out3>
3134 use <s_out4>
3135 use <s_out4>
3138 static void
3139 vect_create_epilog_for_reduction (VEC (tree, heap) *vect_defs, gimple stmt,
3140 int ncopies, enum tree_code reduc_code,
3141 VEC (gimple, heap) *reduction_phis,
3142 int reduc_index, bool double_reduc,
3143 slp_tree slp_node)
3145 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3146 stmt_vec_info prev_phi_info;
3147 tree vectype;
3148 enum machine_mode mode;
3149 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3150 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3151 basic_block exit_bb;
3152 tree scalar_dest;
3153 tree scalar_type;
3154 gimple new_phi = NULL, phi;
3155 gimple_stmt_iterator exit_gsi;
3156 tree vec_dest;
3157 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3158 gimple epilog_stmt = NULL;
3159 enum tree_code code = gimple_assign_rhs_code (stmt);
3160 gimple exit_phi;
3161 tree bitsize, bitpos;
3162 tree adjustment_def = NULL;
3163 tree vec_initial_def = NULL;
3164 tree reduction_op, expr, def;
3165 tree orig_name, scalar_result;
3166 imm_use_iterator imm_iter, phi_imm_iter;
3167 use_operand_p use_p, phi_use_p;
3168 bool extract_scalar_result = false;
3169 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3170 bool nested_in_vect_loop = false;
3171 VEC (gimple, heap) *new_phis = NULL;
3172 enum vect_def_type dt = vect_unknown_def_type;
3173 int j, i;
3174 VEC (tree, heap) *scalar_results = NULL;
3175 unsigned int group_size = 1, k, ratio;
3176 VEC (tree, heap) *vec_initial_defs = NULL;
3177 VEC (gimple, heap) *phis;
3179 if (slp_node)
3180 group_size = VEC_length (gimple, SLP_TREE_SCALAR_STMTS (slp_node));
3182 if (nested_in_vect_loop_p (loop, stmt))
3184 outer_loop = loop;
3185 loop = loop->inner;
3186 nested_in_vect_loop = true;
3187 gcc_assert (!slp_node);
3190 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3192 case GIMPLE_SINGLE_RHS:
3193 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3194 == ternary_op);
3195 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3196 break;
3197 case GIMPLE_UNARY_RHS:
3198 reduction_op = gimple_assign_rhs1 (stmt);
3199 break;
3200 case GIMPLE_BINARY_RHS:
3201 reduction_op = reduc_index ?
3202 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3203 break;
3204 default:
3205 gcc_unreachable ();
3208 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3209 gcc_assert (vectype);
3210 mode = TYPE_MODE (vectype);
3212 /* 1. Create the reduction def-use cycle:
3213 Set the arguments of REDUCTION_PHIS, i.e., transform
3215 loop:
3216 vec_def = phi <null, null> # REDUCTION_PHI
3217 VECT_DEF = vector_stmt # vectorized form of STMT
3220 into:
3222 loop:
3223 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3224 VECT_DEF = vector_stmt # vectorized form of STMT
3227 (in case of SLP, do it for all the phis). */
3229 /* Get the loop-entry arguments. */
3230 if (slp_node)
3231 vect_get_slp_defs (reduction_op, NULL_TREE, slp_node, &vec_initial_defs,
3232 NULL, reduc_index);
3233 else
3235 vec_initial_defs = VEC_alloc (tree, heap, 1);
3236 /* For the case of reduction, vect_get_vec_def_for_operand returns
3237 the scalar def before the loop, that defines the initial value
3238 of the reduction variable. */
3239 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3240 &adjustment_def);
3241 VEC_quick_push (tree, vec_initial_defs, vec_initial_def);
3244 /* Set phi nodes arguments. */
3245 FOR_EACH_VEC_ELT (gimple, reduction_phis, i, phi)
3247 tree vec_init_def = VEC_index (tree, vec_initial_defs, i);
3248 tree def = VEC_index (tree, vect_defs, i);
3249 for (j = 0; j < ncopies; j++)
3251 /* Set the loop-entry arg of the reduction-phi. */
3252 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3253 UNKNOWN_LOCATION);
3255 /* Set the loop-latch arg for the reduction-phi. */
3256 if (j > 0)
3257 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3259 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3261 if (vect_print_dump_info (REPORT_DETAILS))
3263 fprintf (vect_dump, "transform reduction: created def-use"
3264 " cycle: ");
3265 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
3266 fprintf (vect_dump, "\n");
3267 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0,
3268 TDF_SLIM);
3271 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3275 VEC_free (tree, heap, vec_initial_defs);
3277 /* 2. Create epilog code.
3278 The reduction epilog code operates across the elements of the vector
3279 of partial results computed by the vectorized loop.
3280 The reduction epilog code consists of:
3282 step 1: compute the scalar result in a vector (v_out2)
3283 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3284 step 3: adjust the scalar result (s_out3) if needed.
3286 Step 1 can be accomplished using one the following three schemes:
3287 (scheme 1) using reduc_code, if available.
3288 (scheme 2) using whole-vector shifts, if available.
3289 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3290 combined.
3292 The overall epilog code looks like this:
3294 s_out0 = phi <s_loop> # original EXIT_PHI
3295 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3296 v_out2 = reduce <v_out1> # step 1
3297 s_out3 = extract_field <v_out2, 0> # step 2
3298 s_out4 = adjust_result <s_out3> # step 3
3300 (step 3 is optional, and steps 1 and 2 may be combined).
3301 Lastly, the uses of s_out0 are replaced by s_out4. */
3304 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3305 v_out1 = phi <VECT_DEF>
3306 Store them in NEW_PHIS. */
3308 exit_bb = single_exit (loop)->dest;
3309 prev_phi_info = NULL;
3310 new_phis = VEC_alloc (gimple, heap, VEC_length (tree, vect_defs));
3311 FOR_EACH_VEC_ELT (tree, vect_defs, i, def)
3313 for (j = 0; j < ncopies; j++)
3315 phi = create_phi_node (SSA_NAME_VAR (def), exit_bb);
3316 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3317 if (j == 0)
3318 VEC_quick_push (gimple, new_phis, phi);
3319 else
3321 def = vect_get_vec_def_for_stmt_copy (dt, def);
3322 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3325 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3326 prev_phi_info = vinfo_for_stmt (phi);
3330 /* The epilogue is created for the outer-loop, i.e., for the loop being
3331 vectorized. */
3332 if (double_reduc)
3334 loop = outer_loop;
3335 exit_bb = single_exit (loop)->dest;
3338 exit_gsi = gsi_after_labels (exit_bb);
3340 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3341 (i.e. when reduc_code is not available) and in the final adjustment
3342 code (if needed). Also get the original scalar reduction variable as
3343 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3344 represents a reduction pattern), the tree-code and scalar-def are
3345 taken from the original stmt that the pattern-stmt (STMT) replaces.
3346 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3347 are taken from STMT. */
3349 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3350 if (!orig_stmt)
3352 /* Regular reduction */
3353 orig_stmt = stmt;
3355 else
3357 /* Reduction pattern */
3358 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3359 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3360 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3363 code = gimple_assign_rhs_code (orig_stmt);
3364 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3365 partial results are added and not subtracted. */
3366 if (code == MINUS_EXPR)
3367 code = PLUS_EXPR;
3369 scalar_dest = gimple_assign_lhs (orig_stmt);
3370 scalar_type = TREE_TYPE (scalar_dest);
3371 scalar_results = VEC_alloc (tree, heap, group_size);
3372 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3373 bitsize = TYPE_SIZE (scalar_type);
3375 /* In case this is a reduction in an inner-loop while vectorizing an outer
3376 loop - we don't need to extract a single scalar result at the end of the
3377 inner-loop (unless it is double reduction, i.e., the use of reduction is
3378 outside the outer-loop). The final vector of partial results will be used
3379 in the vectorized outer-loop, or reduced to a scalar result at the end of
3380 the outer-loop. */
3381 if (nested_in_vect_loop && !double_reduc)
3382 goto vect_finalize_reduction;
3384 /* 2.3 Create the reduction code, using one of the three schemes described
3385 above. In SLP we simply need to extract all the elements from the
3386 vector (without reducing them), so we use scalar shifts. */
3387 if (reduc_code != ERROR_MARK && !slp_node)
3389 tree tmp;
3391 /*** Case 1: Create:
3392 v_out2 = reduc_expr <v_out1> */
3394 if (vect_print_dump_info (REPORT_DETAILS))
3395 fprintf (vect_dump, "Reduce using direct vector reduction.");
3397 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3398 new_phi = VEC_index (gimple, new_phis, 0);
3399 tmp = build1 (reduc_code, vectype, PHI_RESULT (new_phi));
3400 epilog_stmt = gimple_build_assign (vec_dest, tmp);
3401 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3402 gimple_assign_set_lhs (epilog_stmt, new_temp);
3403 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3405 extract_scalar_result = true;
3407 else
3409 enum tree_code shift_code = ERROR_MARK;
3410 bool have_whole_vector_shift = true;
3411 int bit_offset;
3412 int element_bitsize = tree_low_cst (bitsize, 1);
3413 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3414 tree vec_temp;
3416 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3417 shift_code = VEC_RSHIFT_EXPR;
3418 else
3419 have_whole_vector_shift = false;
3421 /* Regardless of whether we have a whole vector shift, if we're
3422 emulating the operation via tree-vect-generic, we don't want
3423 to use it. Only the first round of the reduction is likely
3424 to still be profitable via emulation. */
3425 /* ??? It might be better to emit a reduction tree code here, so that
3426 tree-vect-generic can expand the first round via bit tricks. */
3427 if (!VECTOR_MODE_P (mode))
3428 have_whole_vector_shift = false;
3429 else
3431 optab optab = optab_for_tree_code (code, vectype, optab_default);
3432 if (optab_handler (optab, mode) == CODE_FOR_nothing)
3433 have_whole_vector_shift = false;
3436 if (have_whole_vector_shift && !slp_node)
3438 /*** Case 2: Create:
3439 for (offset = VS/2; offset >= element_size; offset/=2)
3441 Create: va' = vec_shift <va, offset>
3442 Create: va = vop <va, va'>
3443 } */
3445 if (vect_print_dump_info (REPORT_DETAILS))
3446 fprintf (vect_dump, "Reduce using vector shifts");
3448 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3449 new_phi = VEC_index (gimple, new_phis, 0);
3450 new_temp = PHI_RESULT (new_phi);
3451 for (bit_offset = vec_size_in_bits/2;
3452 bit_offset >= element_bitsize;
3453 bit_offset /= 2)
3455 tree bitpos = size_int (bit_offset);
3457 epilog_stmt = gimple_build_assign_with_ops (shift_code,
3458 vec_dest, new_temp, bitpos);
3459 new_name = make_ssa_name (vec_dest, epilog_stmt);
3460 gimple_assign_set_lhs (epilog_stmt, new_name);
3461 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3463 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
3464 new_name, new_temp);
3465 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3466 gimple_assign_set_lhs (epilog_stmt, new_temp);
3467 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3470 extract_scalar_result = true;
3472 else
3474 tree rhs;
3476 /*** Case 3: Create:
3477 s = extract_field <v_out2, 0>
3478 for (offset = element_size;
3479 offset < vector_size;
3480 offset += element_size;)
3482 Create: s' = extract_field <v_out2, offset>
3483 Create: s = op <s, s'> // For non SLP cases
3484 } */
3486 if (vect_print_dump_info (REPORT_DETAILS))
3487 fprintf (vect_dump, "Reduce using scalar code. ");
3489 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3490 FOR_EACH_VEC_ELT (gimple, new_phis, i, new_phi)
3492 vec_temp = PHI_RESULT (new_phi);
3493 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
3494 bitsize_zero_node);
3495 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3496 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3497 gimple_assign_set_lhs (epilog_stmt, new_temp);
3498 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3500 /* In SLP we don't need to apply reduction operation, so we just
3501 collect s' values in SCALAR_RESULTS. */
3502 if (slp_node)
3503 VEC_safe_push (tree, heap, scalar_results, new_temp);
3505 for (bit_offset = element_bitsize;
3506 bit_offset < vec_size_in_bits;
3507 bit_offset += element_bitsize)
3509 tree bitpos = bitsize_int (bit_offset);
3510 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
3511 bitsize, bitpos);
3513 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3514 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
3515 gimple_assign_set_lhs (epilog_stmt, new_name);
3516 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3518 if (slp_node)
3520 /* In SLP we don't need to apply reduction operation, so
3521 we just collect s' values in SCALAR_RESULTS. */
3522 new_temp = new_name;
3523 VEC_safe_push (tree, heap, scalar_results, new_name);
3525 else
3527 epilog_stmt = gimple_build_assign_with_ops (code,
3528 new_scalar_dest, new_name, new_temp);
3529 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3530 gimple_assign_set_lhs (epilog_stmt, new_temp);
3531 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3536 /* The only case where we need to reduce scalar results in SLP, is
3537 unrolling. If the size of SCALAR_RESULTS is greater than
3538 GROUP_SIZE, we reduce them combining elements modulo
3539 GROUP_SIZE. */
3540 if (slp_node)
3542 tree res, first_res, new_res;
3543 gimple new_stmt;
3545 /* Reduce multiple scalar results in case of SLP unrolling. */
3546 for (j = group_size; VEC_iterate (tree, scalar_results, j, res);
3547 j++)
3549 first_res = VEC_index (tree, scalar_results, j % group_size);
3550 new_stmt = gimple_build_assign_with_ops (code,
3551 new_scalar_dest, first_res, res);
3552 new_res = make_ssa_name (new_scalar_dest, new_stmt);
3553 gimple_assign_set_lhs (new_stmt, new_res);
3554 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
3555 VEC_replace (tree, scalar_results, j % group_size, new_res);
3558 else
3559 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
3560 VEC_safe_push (tree, heap, scalar_results, new_temp);
3562 extract_scalar_result = false;
3566 /* 2.4 Extract the final scalar result. Create:
3567 s_out3 = extract_field <v_out2, bitpos> */
3569 if (extract_scalar_result)
3571 tree rhs;
3573 if (vect_print_dump_info (REPORT_DETAILS))
3574 fprintf (vect_dump, "extract scalar result");
3576 if (BYTES_BIG_ENDIAN)
3577 bitpos = size_binop (MULT_EXPR,
3578 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
3579 TYPE_SIZE (scalar_type));
3580 else
3581 bitpos = bitsize_zero_node;
3583 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
3584 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3585 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3586 gimple_assign_set_lhs (epilog_stmt, new_temp);
3587 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3588 VEC_safe_push (tree, heap, scalar_results, new_temp);
3591 vect_finalize_reduction:
3593 if (double_reduc)
3594 loop = loop->inner;
3596 /* 2.5 Adjust the final result by the initial value of the reduction
3597 variable. (When such adjustment is not needed, then
3598 'adjustment_def' is zero). For example, if code is PLUS we create:
3599 new_temp = loop_exit_def + adjustment_def */
3601 if (adjustment_def)
3603 gcc_assert (!slp_node);
3604 if (nested_in_vect_loop)
3606 new_phi = VEC_index (gimple, new_phis, 0);
3607 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
3608 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
3609 new_dest = vect_create_destination_var (scalar_dest, vectype);
3611 else
3613 new_temp = VEC_index (tree, scalar_results, 0);
3614 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
3615 expr = build2 (code, scalar_type, new_temp, adjustment_def);
3616 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
3619 epilog_stmt = gimple_build_assign (new_dest, expr);
3620 new_temp = make_ssa_name (new_dest, epilog_stmt);
3621 gimple_assign_set_lhs (epilog_stmt, new_temp);
3622 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
3623 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3624 if (nested_in_vect_loop)
3626 set_vinfo_for_stmt (epilog_stmt,
3627 new_stmt_vec_info (epilog_stmt, loop_vinfo,
3628 NULL));
3629 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
3630 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
3632 if (!double_reduc)
3633 VEC_quick_push (tree, scalar_results, new_temp);
3634 else
3635 VEC_replace (tree, scalar_results, 0, new_temp);
3637 else
3638 VEC_replace (tree, scalar_results, 0, new_temp);
3640 VEC_replace (gimple, new_phis, 0, epilog_stmt);
3643 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
3644 phis with new adjusted scalar results, i.e., replace use <s_out0>
3645 with use <s_out4>.
3647 Transform:
3648 loop_exit:
3649 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3650 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3651 v_out2 = reduce <v_out1>
3652 s_out3 = extract_field <v_out2, 0>
3653 s_out4 = adjust_result <s_out3>
3654 use <s_out0>
3655 use <s_out0>
3657 into:
3659 loop_exit:
3660 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3661 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3662 v_out2 = reduce <v_out1>
3663 s_out3 = extract_field <v_out2, 0>
3664 s_out4 = adjust_result <s_out3>
3665 use <s_out4>
3666 use <s_out4> */
3668 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
3669 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
3670 need to match SCALAR_RESULTS with corresponding statements. The first
3671 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
3672 the first vector stmt, etc.
3673 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
3674 if (group_size > VEC_length (gimple, new_phis))
3676 ratio = group_size / VEC_length (gimple, new_phis);
3677 gcc_assert (!(group_size % VEC_length (gimple, new_phis)));
3679 else
3680 ratio = 1;
3682 for (k = 0; k < group_size; k++)
3684 if (k % ratio == 0)
3686 epilog_stmt = VEC_index (gimple, new_phis, k / ratio);
3687 reduction_phi = VEC_index (gimple, reduction_phis, k / ratio);
3690 if (slp_node)
3692 gimple current_stmt = VEC_index (gimple,
3693 SLP_TREE_SCALAR_STMTS (slp_node), k);
3695 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
3696 /* SLP statements can't participate in patterns. */
3697 gcc_assert (!orig_stmt);
3698 scalar_dest = gimple_assign_lhs (current_stmt);
3701 phis = VEC_alloc (gimple, heap, 3);
3702 /* Find the loop-closed-use at the loop exit of the original scalar
3703 result. (The reduction result is expected to have two immediate uses -
3704 one at the latch block, and one at the loop exit). */
3705 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
3706 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
3707 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
3709 /* We expect to have found an exit_phi because of loop-closed-ssa
3710 form. */
3711 gcc_assert (!VEC_empty (gimple, phis));
3713 FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
3715 if (outer_loop)
3717 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
3718 gimple vect_phi;
3720 /* FORNOW. Currently not supporting the case that an inner-loop
3721 reduction is not used in the outer-loop (but only outside the
3722 outer-loop), unless it is double reduction. */
3723 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
3724 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
3725 || double_reduc);
3727 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
3728 if (!double_reduc
3729 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
3730 != vect_double_reduction_def)
3731 continue;
3733 /* Handle double reduction:
3735 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
3736 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
3737 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
3738 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
3740 At that point the regular reduction (stmt2 and stmt3) is
3741 already vectorized, as well as the exit phi node, stmt4.
3742 Here we vectorize the phi node of double reduction, stmt1, and
3743 update all relevant statements. */
3745 /* Go through all the uses of s2 to find double reduction phi
3746 node, i.e., stmt1 above. */
3747 orig_name = PHI_RESULT (exit_phi);
3748 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
3750 stmt_vec_info use_stmt_vinfo = vinfo_for_stmt (use_stmt);
3751 stmt_vec_info new_phi_vinfo;
3752 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
3753 basic_block bb = gimple_bb (use_stmt);
3754 gimple use;
3756 /* Check that USE_STMT is really double reduction phi
3757 node. */
3758 if (gimple_code (use_stmt) != GIMPLE_PHI
3759 || gimple_phi_num_args (use_stmt) != 2
3760 || !use_stmt_vinfo
3761 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
3762 != vect_double_reduction_def
3763 || bb->loop_father != outer_loop)
3764 continue;
3766 /* Create vector phi node for double reduction:
3767 vs1 = phi <vs0, vs2>
3768 vs1 was created previously in this function by a call to
3769 vect_get_vec_def_for_operand and is stored in
3770 vec_initial_def;
3771 vs2 is defined by EPILOG_STMT, the vectorized EXIT_PHI;
3772 vs0 is created here. */
3774 /* Create vector phi node. */
3775 vect_phi = create_phi_node (vec_initial_def, bb);
3776 new_phi_vinfo = new_stmt_vec_info (vect_phi,
3777 loop_vec_info_for_loop (outer_loop), NULL);
3778 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
3780 /* Create vs0 - initial def of the double reduction phi. */
3781 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
3782 loop_preheader_edge (outer_loop));
3783 init_def = get_initial_def_for_reduction (stmt,
3784 preheader_arg, NULL);
3785 vect_phi_init = vect_init_vector (use_stmt, init_def,
3786 vectype, NULL);
3788 /* Update phi node arguments with vs0 and vs2. */
3789 add_phi_arg (vect_phi, vect_phi_init,
3790 loop_preheader_edge (outer_loop),
3791 UNKNOWN_LOCATION);
3792 add_phi_arg (vect_phi, PHI_RESULT (epilog_stmt),
3793 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
3794 if (vect_print_dump_info (REPORT_DETAILS))
3796 fprintf (vect_dump, "created double reduction phi "
3797 "node: ");
3798 print_gimple_stmt (vect_dump, vect_phi, 0, TDF_SLIM);
3801 vect_phi_res = PHI_RESULT (vect_phi);
3803 /* Replace the use, i.e., set the correct vs1 in the regular
3804 reduction phi node. FORNOW, NCOPIES is always 1, so the
3805 loop is redundant. */
3806 use = reduction_phi;
3807 for (j = 0; j < ncopies; j++)
3809 edge pr_edge = loop_preheader_edge (loop);
3810 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
3811 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
3817 VEC_free (gimple, heap, phis);
3818 if (nested_in_vect_loop)
3820 if (double_reduc)
3821 loop = outer_loop;
3822 else
3823 continue;
3826 phis = VEC_alloc (gimple, heap, 3);
3827 /* Find the loop-closed-use at the loop exit of the original scalar
3828 result. (The reduction result is expected to have two immediate uses,
3829 one at the latch block, and one at the loop exit). For double
3830 reductions we are looking for exit phis of the outer loop. */
3831 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
3833 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
3834 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
3835 else
3837 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
3839 tree phi_res = PHI_RESULT (USE_STMT (use_p));
3841 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
3843 if (!flow_bb_inside_loop_p (loop,
3844 gimple_bb (USE_STMT (phi_use_p))))
3845 VEC_safe_push (gimple, heap, phis,
3846 USE_STMT (phi_use_p));
3852 FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
3854 /* Replace the uses: */
3855 orig_name = PHI_RESULT (exit_phi);
3856 scalar_result = VEC_index (tree, scalar_results, k);
3857 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
3858 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
3859 SET_USE (use_p, scalar_result);
3862 VEC_free (gimple, heap, phis);
3865 VEC_free (tree, heap, scalar_results);
3866 VEC_free (gimple, heap, new_phis);
3870 /* Function vectorizable_reduction.
3872 Check if STMT performs a reduction operation that can be vectorized.
3873 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3874 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
3875 Return FALSE if not a vectorizable STMT, TRUE otherwise.
3877 This function also handles reduction idioms (patterns) that have been
3878 recognized in advance during vect_pattern_recog. In this case, STMT may be
3879 of this form:
3880 X = pattern_expr (arg0, arg1, ..., X)
3881 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
3882 sequence that had been detected and replaced by the pattern-stmt (STMT).
3884 In some cases of reduction patterns, the type of the reduction variable X is
3885 different than the type of the other arguments of STMT.
3886 In such cases, the vectype that is used when transforming STMT into a vector
3887 stmt is different than the vectype that is used to determine the
3888 vectorization factor, because it consists of a different number of elements
3889 than the actual number of elements that are being operated upon in parallel.
3891 For example, consider an accumulation of shorts into an int accumulator.
3892 On some targets it's possible to vectorize this pattern operating on 8
3893 shorts at a time (hence, the vectype for purposes of determining the
3894 vectorization factor should be V8HI); on the other hand, the vectype that
3895 is used to create the vector form is actually V4SI (the type of the result).
3897 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
3898 indicates what is the actual level of parallelism (V8HI in the example), so
3899 that the right vectorization factor would be derived. This vectype
3900 corresponds to the type of arguments to the reduction stmt, and should *NOT*
3901 be used to create the vectorized stmt. The right vectype for the vectorized
3902 stmt is obtained from the type of the result X:
3903 get_vectype_for_scalar_type (TREE_TYPE (X))
3905 This means that, contrary to "regular" reductions (or "regular" stmts in
3906 general), the following equation:
3907 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
3908 does *NOT* necessarily hold for reduction patterns. */
3910 bool
3911 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
3912 gimple *vec_stmt, slp_tree slp_node)
3914 tree vec_dest;
3915 tree scalar_dest;
3916 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
3917 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3918 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
3919 tree vectype_in = NULL_TREE;
3920 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3921 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3922 enum tree_code code, orig_code, epilog_reduc_code;
3923 enum machine_mode vec_mode;
3924 int op_type;
3925 optab optab, reduc_optab;
3926 tree new_temp = NULL_TREE;
3927 tree def;
3928 gimple def_stmt;
3929 enum vect_def_type dt;
3930 gimple new_phi = NULL;
3931 tree scalar_type;
3932 bool is_simple_use;
3933 gimple orig_stmt;
3934 stmt_vec_info orig_stmt_info;
3935 tree expr = NULL_TREE;
3936 int i;
3937 int ncopies;
3938 int epilog_copies;
3939 stmt_vec_info prev_stmt_info, prev_phi_info;
3940 bool single_defuse_cycle = false;
3941 tree reduc_def = NULL_TREE;
3942 gimple new_stmt = NULL;
3943 int j;
3944 tree ops[3];
3945 bool nested_cycle = false, found_nested_cycle_def = false;
3946 gimple reduc_def_stmt = NULL;
3947 /* The default is that the reduction variable is the last in statement. */
3948 int reduc_index = 2;
3949 bool double_reduc = false, dummy;
3950 basic_block def_bb;
3951 struct loop * def_stmt_loop, *outer_loop = NULL;
3952 tree def_arg;
3953 gimple def_arg_stmt;
3954 VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vect_defs = NULL;
3955 VEC (gimple, heap) *phis = NULL;
3956 int vec_num;
3957 tree def0, def1, tem;
3959 if (nested_in_vect_loop_p (loop, stmt))
3961 outer_loop = loop;
3962 loop = loop->inner;
3963 nested_cycle = true;
3966 /* 1. Is vectorizable reduction? */
3967 /* Not supportable if the reduction variable is used in the loop. */
3968 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer)
3969 return false;
3971 /* Reductions that are not used even in an enclosing outer-loop,
3972 are expected to be "live" (used out of the loop). */
3973 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
3974 && !STMT_VINFO_LIVE_P (stmt_info))
3975 return false;
3977 /* Make sure it was already recognized as a reduction computation. */
3978 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
3979 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
3980 return false;
3982 /* 2. Has this been recognized as a reduction pattern?
3984 Check if STMT represents a pattern that has been recognized
3985 in earlier analysis stages. For stmts that represent a pattern,
3986 the STMT_VINFO_RELATED_STMT field records the last stmt in
3987 the original sequence that constitutes the pattern. */
3989 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3990 if (orig_stmt)
3992 orig_stmt_info = vinfo_for_stmt (orig_stmt);
3993 gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
3994 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
3995 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
3998 /* 3. Check the operands of the operation. The first operands are defined
3999 inside the loop body. The last operand is the reduction variable,
4000 which is defined by the loop-header-phi. */
4002 gcc_assert (is_gimple_assign (stmt));
4004 /* Flatten RHS. */
4005 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4007 case GIMPLE_SINGLE_RHS:
4008 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4009 if (op_type == ternary_op)
4011 tree rhs = gimple_assign_rhs1 (stmt);
4012 ops[0] = TREE_OPERAND (rhs, 0);
4013 ops[1] = TREE_OPERAND (rhs, 1);
4014 ops[2] = TREE_OPERAND (rhs, 2);
4015 code = TREE_CODE (rhs);
4017 else
4018 return false;
4019 break;
4021 case GIMPLE_BINARY_RHS:
4022 code = gimple_assign_rhs_code (stmt);
4023 op_type = TREE_CODE_LENGTH (code);
4024 gcc_assert (op_type == binary_op);
4025 ops[0] = gimple_assign_rhs1 (stmt);
4026 ops[1] = gimple_assign_rhs2 (stmt);
4027 break;
4029 case GIMPLE_UNARY_RHS:
4030 return false;
4032 default:
4033 gcc_unreachable ();
4036 scalar_dest = gimple_assign_lhs (stmt);
4037 scalar_type = TREE_TYPE (scalar_dest);
4038 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4039 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4040 return false;
4042 /* All uses but the last are expected to be defined in the loop.
4043 The last use is the reduction variable. In case of nested cycle this
4044 assumption is not true: we use reduc_index to record the index of the
4045 reduction variable. */
4046 for (i = 0; i < op_type-1; i++)
4048 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4049 if (i == 0 && code == COND_EXPR)
4050 continue;
4052 is_simple_use = vect_is_simple_use_1 (ops[i], loop_vinfo, NULL,
4053 &def_stmt, &def, &dt, &tem);
4054 if (!vectype_in)
4055 vectype_in = tem;
4056 gcc_assert (is_simple_use);
4057 if (dt != vect_internal_def
4058 && dt != vect_external_def
4059 && dt != vect_constant_def
4060 && dt != vect_induction_def
4061 && !(dt == vect_nested_cycle && nested_cycle))
4062 return false;
4064 if (dt == vect_nested_cycle)
4066 found_nested_cycle_def = true;
4067 reduc_def_stmt = def_stmt;
4068 reduc_index = i;
4072 is_simple_use = vect_is_simple_use_1 (ops[i], loop_vinfo, NULL, &def_stmt,
4073 &def, &dt, &tem);
4074 if (!vectype_in)
4075 vectype_in = tem;
4076 gcc_assert (is_simple_use);
4077 gcc_assert (dt == vect_reduction_def
4078 || dt == vect_nested_cycle
4079 || ((dt == vect_internal_def || dt == vect_external_def
4080 || dt == vect_constant_def || dt == vect_induction_def)
4081 && nested_cycle && found_nested_cycle_def));
4082 if (!found_nested_cycle_def)
4083 reduc_def_stmt = def_stmt;
4085 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4086 if (orig_stmt)
4087 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4088 reduc_def_stmt,
4089 !nested_cycle,
4090 &dummy));
4091 else
4092 gcc_assert (stmt == vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4093 !nested_cycle, &dummy));
4095 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4096 return false;
4098 if (slp_node)
4099 ncopies = 1;
4100 else
4101 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4102 / TYPE_VECTOR_SUBPARTS (vectype_in));
4104 gcc_assert (ncopies >= 1);
4106 vec_mode = TYPE_MODE (vectype_in);
4108 if (code == COND_EXPR)
4110 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0))
4112 if (vect_print_dump_info (REPORT_DETAILS))
4113 fprintf (vect_dump, "unsupported condition in reduction");
4115 return false;
4118 else
4120 /* 4. Supportable by target? */
4122 /* 4.1. check support for the operation in the loop */
4123 optab = optab_for_tree_code (code, vectype_in, optab_default);
4124 if (!optab)
4126 if (vect_print_dump_info (REPORT_DETAILS))
4127 fprintf (vect_dump, "no optab.");
4129 return false;
4132 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4134 if (vect_print_dump_info (REPORT_DETAILS))
4135 fprintf (vect_dump, "op not supported by target.");
4137 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4138 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4139 < vect_min_worthwhile_factor (code))
4140 return false;
4142 if (vect_print_dump_info (REPORT_DETAILS))
4143 fprintf (vect_dump, "proceeding using word mode.");
4146 /* Worthwhile without SIMD support? */
4147 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4148 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4149 < vect_min_worthwhile_factor (code))
4151 if (vect_print_dump_info (REPORT_DETAILS))
4152 fprintf (vect_dump, "not worthwhile without SIMD support.");
4154 return false;
4158 /* 4.2. Check support for the epilog operation.
4160 If STMT represents a reduction pattern, then the type of the
4161 reduction variable may be different than the type of the rest
4162 of the arguments. For example, consider the case of accumulation
4163 of shorts into an int accumulator; The original code:
4164 S1: int_a = (int) short_a;
4165 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4167 was replaced with:
4168 STMT: int_acc = widen_sum <short_a, int_acc>
4170 This means that:
4171 1. The tree-code that is used to create the vector operation in the
4172 epilog code (that reduces the partial results) is not the
4173 tree-code of STMT, but is rather the tree-code of the original
4174 stmt from the pattern that STMT is replacing. I.e, in the example
4175 above we want to use 'widen_sum' in the loop, but 'plus' in the
4176 epilog.
4177 2. The type (mode) we use to check available target support
4178 for the vector operation to be created in the *epilog*, is
4179 determined by the type of the reduction variable (in the example
4180 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4181 However the type (mode) we use to check available target support
4182 for the vector operation to be created *inside the loop*, is
4183 determined by the type of the other arguments to STMT (in the
4184 example we'd check this: optab_handler (widen_sum_optab,
4185 vect_short_mode)).
4187 This is contrary to "regular" reductions, in which the types of all
4188 the arguments are the same as the type of the reduction variable.
4189 For "regular" reductions we can therefore use the same vector type
4190 (and also the same tree-code) when generating the epilog code and
4191 when generating the code inside the loop. */
4193 if (orig_stmt)
4195 /* This is a reduction pattern: get the vectype from the type of the
4196 reduction variable, and get the tree-code from orig_stmt. */
4197 orig_code = gimple_assign_rhs_code (orig_stmt);
4198 gcc_assert (vectype_out);
4199 vec_mode = TYPE_MODE (vectype_out);
4201 else
4203 /* Regular reduction: use the same vectype and tree-code as used for
4204 the vector code inside the loop can be used for the epilog code. */
4205 orig_code = code;
4208 if (nested_cycle)
4210 def_bb = gimple_bb (reduc_def_stmt);
4211 def_stmt_loop = def_bb->loop_father;
4212 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4213 loop_preheader_edge (def_stmt_loop));
4214 if (TREE_CODE (def_arg) == SSA_NAME
4215 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4216 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4217 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4218 && vinfo_for_stmt (def_arg_stmt)
4219 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4220 == vect_double_reduction_def)
4221 double_reduc = true;
4224 epilog_reduc_code = ERROR_MARK;
4225 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4227 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4228 optab_default);
4229 if (!reduc_optab)
4231 if (vect_print_dump_info (REPORT_DETAILS))
4232 fprintf (vect_dump, "no optab for reduction.");
4234 epilog_reduc_code = ERROR_MARK;
4237 if (reduc_optab
4238 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
4240 if (vect_print_dump_info (REPORT_DETAILS))
4241 fprintf (vect_dump, "reduc op not supported by target.");
4243 epilog_reduc_code = ERROR_MARK;
4246 else
4248 if (!nested_cycle || double_reduc)
4250 if (vect_print_dump_info (REPORT_DETAILS))
4251 fprintf (vect_dump, "no reduc code for scalar code.");
4253 return false;
4257 if (double_reduc && ncopies > 1)
4259 if (vect_print_dump_info (REPORT_DETAILS))
4260 fprintf (vect_dump, "multiple types in double reduction");
4262 return false;
4265 if (!vec_stmt) /* transformation not required. */
4267 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
4268 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
4269 return false;
4270 return true;
4273 /** Transform. **/
4275 if (vect_print_dump_info (REPORT_DETAILS))
4276 fprintf (vect_dump, "transform reduction.");
4278 /* FORNOW: Multiple types are not supported for condition. */
4279 if (code == COND_EXPR)
4280 gcc_assert (ncopies == 1);
4282 /* Create the destination vector */
4283 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
4285 /* In case the vectorization factor (VF) is bigger than the number
4286 of elements that we can fit in a vectype (nunits), we have to generate
4287 more than one vector stmt - i.e - we need to "unroll" the
4288 vector stmt by a factor VF/nunits. For more details see documentation
4289 in vectorizable_operation. */
4291 /* If the reduction is used in an outer loop we need to generate
4292 VF intermediate results, like so (e.g. for ncopies=2):
4293 r0 = phi (init, r0)
4294 r1 = phi (init, r1)
4295 r0 = x0 + r0;
4296 r1 = x1 + r1;
4297 (i.e. we generate VF results in 2 registers).
4298 In this case we have a separate def-use cycle for each copy, and therefore
4299 for each copy we get the vector def for the reduction variable from the
4300 respective phi node created for this copy.
4302 Otherwise (the reduction is unused in the loop nest), we can combine
4303 together intermediate results, like so (e.g. for ncopies=2):
4304 r = phi (init, r)
4305 r = x0 + r;
4306 r = x1 + r;
4307 (i.e. we generate VF/2 results in a single register).
4308 In this case for each copy we get the vector def for the reduction variable
4309 from the vectorized reduction operation generated in the previous iteration.
4312 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
4314 single_defuse_cycle = true;
4315 epilog_copies = 1;
4317 else
4318 epilog_copies = ncopies;
4320 prev_stmt_info = NULL;
4321 prev_phi_info = NULL;
4322 if (slp_node)
4324 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4325 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
4326 == TYPE_VECTOR_SUBPARTS (vectype_in));
4328 else
4330 vec_num = 1;
4331 vec_oprnds0 = VEC_alloc (tree, heap, 1);
4332 if (op_type == ternary_op)
4333 vec_oprnds1 = VEC_alloc (tree, heap, 1);
4336 phis = VEC_alloc (gimple, heap, vec_num);
4337 vect_defs = VEC_alloc (tree, heap, vec_num);
4338 if (!slp_node)
4339 VEC_quick_push (tree, vect_defs, NULL_TREE);
4341 for (j = 0; j < ncopies; j++)
4343 if (j == 0 || !single_defuse_cycle)
4345 for (i = 0; i < vec_num; i++)
4347 /* Create the reduction-phi that defines the reduction
4348 operand. */
4349 new_phi = create_phi_node (vec_dest, loop->header);
4350 set_vinfo_for_stmt (new_phi,
4351 new_stmt_vec_info (new_phi, loop_vinfo,
4352 NULL));
4353 if (j == 0 || slp_node)
4354 VEC_quick_push (gimple, phis, new_phi);
4358 if (code == COND_EXPR)
4360 gcc_assert (!slp_node);
4361 vectorizable_condition (stmt, gsi, vec_stmt,
4362 PHI_RESULT (VEC_index (gimple, phis, 0)),
4363 reduc_index);
4364 /* Multiple types are not supported for condition. */
4365 break;
4368 /* Handle uses. */
4369 if (j == 0)
4371 tree op0, op1 = NULL_TREE;
4373 op0 = ops[!reduc_index];
4374 if (op_type == ternary_op)
4376 if (reduc_index == 0)
4377 op1 = ops[2];
4378 else
4379 op1 = ops[1];
4382 if (slp_node)
4383 vect_get_slp_defs (op0, op1, slp_node, &vec_oprnds0, &vec_oprnds1,
4384 -1);
4385 else
4387 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
4388 stmt, NULL);
4389 VEC_quick_push (tree, vec_oprnds0, loop_vec_def0);
4390 if (op_type == ternary_op)
4392 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
4393 NULL);
4394 VEC_quick_push (tree, vec_oprnds1, loop_vec_def1);
4398 else
4400 if (!slp_node)
4402 enum vect_def_type dt = vect_unknown_def_type; /* Dummy */
4403 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def0);
4404 VEC_replace (tree, vec_oprnds0, 0, loop_vec_def0);
4405 if (op_type == ternary_op)
4407 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
4408 loop_vec_def1);
4409 VEC_replace (tree, vec_oprnds1, 0, loop_vec_def1);
4413 if (single_defuse_cycle)
4414 reduc_def = gimple_assign_lhs (new_stmt);
4416 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
4419 FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, def0)
4421 if (slp_node)
4422 reduc_def = PHI_RESULT (VEC_index (gimple, phis, i));
4423 else
4425 if (!single_defuse_cycle || j == 0)
4426 reduc_def = PHI_RESULT (new_phi);
4429 def1 = ((op_type == ternary_op)
4430 ? VEC_index (tree, vec_oprnds1, i) : NULL);
4431 if (op_type == binary_op)
4433 if (reduc_index == 0)
4434 expr = build2 (code, vectype_out, reduc_def, def0);
4435 else
4436 expr = build2 (code, vectype_out, def0, reduc_def);
4438 else
4440 if (reduc_index == 0)
4441 expr = build3 (code, vectype_out, reduc_def, def0, def1);
4442 else
4444 if (reduc_index == 1)
4445 expr = build3 (code, vectype_out, def0, reduc_def, def1);
4446 else
4447 expr = build3 (code, vectype_out, def0, def1, reduc_def);
4451 new_stmt = gimple_build_assign (vec_dest, expr);
4452 new_temp = make_ssa_name (vec_dest, new_stmt);
4453 gimple_assign_set_lhs (new_stmt, new_temp);
4454 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4455 if (slp_node)
4457 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
4458 VEC_quick_push (tree, vect_defs, new_temp);
4460 else
4461 VEC_replace (tree, vect_defs, 0, new_temp);
4464 if (slp_node)
4465 continue;
4467 if (j == 0)
4468 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4469 else
4470 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4472 prev_stmt_info = vinfo_for_stmt (new_stmt);
4473 prev_phi_info = vinfo_for_stmt (new_phi);
4476 /* Finalize the reduction-phi (set its arguments) and create the
4477 epilog reduction code. */
4478 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
4480 new_temp = gimple_assign_lhs (*vec_stmt);
4481 VEC_replace (tree, vect_defs, 0, new_temp);
4484 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
4485 epilog_reduc_code, phis, reduc_index,
4486 double_reduc, slp_node);
4488 VEC_free (gimple, heap, phis);
4489 VEC_free (tree, heap, vec_oprnds0);
4490 if (vec_oprnds1)
4491 VEC_free (tree, heap, vec_oprnds1);
4493 return true;
4496 /* Function vect_min_worthwhile_factor.
4498 For a loop where we could vectorize the operation indicated by CODE,
4499 return the minimum vectorization factor that makes it worthwhile
4500 to use generic vectors. */
4502 vect_min_worthwhile_factor (enum tree_code code)
4504 switch (code)
4506 case PLUS_EXPR:
4507 case MINUS_EXPR:
4508 case NEGATE_EXPR:
4509 return 4;
4511 case BIT_AND_EXPR:
4512 case BIT_IOR_EXPR:
4513 case BIT_XOR_EXPR:
4514 case BIT_NOT_EXPR:
4515 return 2;
4517 default:
4518 return INT_MAX;
4523 /* Function vectorizable_induction
4525 Check if PHI performs an induction computation that can be vectorized.
4526 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
4527 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
4528 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4530 bool
4531 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4532 gimple *vec_stmt)
4534 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
4535 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4536 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4537 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4538 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4539 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4540 tree vec_def;
4542 gcc_assert (ncopies >= 1);
4543 /* FORNOW. This restriction should be relaxed. */
4544 if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
4546 if (vect_print_dump_info (REPORT_DETAILS))
4547 fprintf (vect_dump, "multiple types in nested loop.");
4548 return false;
4551 if (!STMT_VINFO_RELEVANT_P (stmt_info))
4552 return false;
4554 /* FORNOW: SLP not supported. */
4555 if (STMT_SLP_TYPE (stmt_info))
4556 return false;
4558 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
4560 if (gimple_code (phi) != GIMPLE_PHI)
4561 return false;
4563 if (!vec_stmt) /* transformation not required. */
4565 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
4566 if (vect_print_dump_info (REPORT_DETAILS))
4567 fprintf (vect_dump, "=== vectorizable_induction ===");
4568 vect_model_induction_cost (stmt_info, ncopies);
4569 return true;
4572 /** Transform. **/
4574 if (vect_print_dump_info (REPORT_DETAILS))
4575 fprintf (vect_dump, "transform induction phi.");
4577 vec_def = get_initial_def_for_induction (phi);
4578 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
4579 return true;
4582 /* Function vectorizable_live_operation.
4584 STMT computes a value that is used outside the loop. Check if
4585 it can be supported. */
4587 bool
4588 vectorizable_live_operation (gimple stmt,
4589 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4590 gimple *vec_stmt ATTRIBUTE_UNUSED)
4592 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4593 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4594 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4595 int i;
4596 int op_type;
4597 tree op;
4598 tree def;
4599 gimple def_stmt;
4600 enum vect_def_type dt;
4601 enum tree_code code;
4602 enum gimple_rhs_class rhs_class;
4604 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
4606 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
4607 return false;
4609 if (!is_gimple_assign (stmt))
4610 return false;
4612 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4613 return false;
4615 /* FORNOW. CHECKME. */
4616 if (nested_in_vect_loop_p (loop, stmt))
4617 return false;
4619 code = gimple_assign_rhs_code (stmt);
4620 op_type = TREE_CODE_LENGTH (code);
4621 rhs_class = get_gimple_rhs_class (code);
4622 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
4623 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
4625 /* FORNOW: support only if all uses are invariant. This means
4626 that the scalar operations can remain in place, unvectorized.
4627 The original last scalar value that they compute will be used. */
4629 for (i = 0; i < op_type; i++)
4631 if (rhs_class == GIMPLE_SINGLE_RHS)
4632 op = TREE_OPERAND (gimple_op (stmt, 1), i);
4633 else
4634 op = gimple_op (stmt, i + 1);
4635 if (op
4636 && !vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, &dt))
4638 if (vect_print_dump_info (REPORT_DETAILS))
4639 fprintf (vect_dump, "use not simple.");
4640 return false;
4643 if (dt != vect_external_def && dt != vect_constant_def)
4644 return false;
4647 /* No transformation is required for the cases we currently support. */
4648 return true;
4651 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
4653 static void
4654 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
4656 ssa_op_iter op_iter;
4657 imm_use_iterator imm_iter;
4658 def_operand_p def_p;
4659 gimple ustmt;
4661 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
4663 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
4665 basic_block bb;
4667 if (!is_gimple_debug (ustmt))
4668 continue;
4670 bb = gimple_bb (ustmt);
4672 if (!flow_bb_inside_loop_p (loop, bb))
4674 if (gimple_debug_bind_p (ustmt))
4676 if (vect_print_dump_info (REPORT_DETAILS))
4677 fprintf (vect_dump, "killing debug use");
4679 gimple_debug_bind_reset_value (ustmt);
4680 update_stmt (ustmt);
4682 else
4683 gcc_unreachable ();
4689 /* Function vect_transform_loop.
4691 The analysis phase has determined that the loop is vectorizable.
4692 Vectorize the loop - created vectorized stmts to replace the scalar
4693 stmts in the loop, and update the loop exit condition. */
4695 void
4696 vect_transform_loop (loop_vec_info loop_vinfo)
4698 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4699 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
4700 int nbbs = loop->num_nodes;
4701 gimple_stmt_iterator si;
4702 int i;
4703 tree ratio = NULL;
4704 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4705 bool strided_store;
4706 bool slp_scheduled = false;
4707 unsigned int nunits;
4708 tree cond_expr = NULL_TREE;
4709 gimple_seq cond_expr_stmt_list = NULL;
4710 bool do_peeling_for_loop_bound;
4712 if (vect_print_dump_info (REPORT_DETAILS))
4713 fprintf (vect_dump, "=== vec_transform_loop ===");
4715 /* Peel the loop if there are data refs with unknown alignment.
4716 Only one data ref with unknown store is allowed. */
4718 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
4719 vect_do_peeling_for_alignment (loop_vinfo);
4721 do_peeling_for_loop_bound
4722 = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
4723 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
4724 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0));
4726 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
4727 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
4728 vect_loop_versioning (loop_vinfo,
4729 !do_peeling_for_loop_bound,
4730 &cond_expr, &cond_expr_stmt_list);
4732 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
4733 compile time constant), or it is a constant that doesn't divide by the
4734 vectorization factor, then an epilog loop needs to be created.
4735 We therefore duplicate the loop: the original loop will be vectorized,
4736 and will compute the first (n/VF) iterations. The second copy of the loop
4737 will remain scalar and will compute the remaining (n%VF) iterations.
4738 (VF is the vectorization factor). */
4740 if (do_peeling_for_loop_bound)
4741 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
4742 cond_expr, cond_expr_stmt_list);
4743 else
4744 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
4745 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
4747 /* 1) Make sure the loop header has exactly two entries
4748 2) Make sure we have a preheader basic block. */
4750 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
4752 split_edge (loop_preheader_edge (loop));
4754 /* FORNOW: the vectorizer supports only loops which body consist
4755 of one basic block (header + empty latch). When the vectorizer will
4756 support more involved loop forms, the order by which the BBs are
4757 traversed need to be reconsidered. */
4759 for (i = 0; i < nbbs; i++)
4761 basic_block bb = bbs[i];
4762 stmt_vec_info stmt_info;
4763 gimple phi;
4765 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4767 phi = gsi_stmt (si);
4768 if (vect_print_dump_info (REPORT_DETAILS))
4770 fprintf (vect_dump, "------>vectorizing phi: ");
4771 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
4773 stmt_info = vinfo_for_stmt (phi);
4774 if (!stmt_info)
4775 continue;
4777 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
4778 vect_loop_kill_debug_uses (loop, phi);
4780 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4781 && !STMT_VINFO_LIVE_P (stmt_info))
4782 continue;
4784 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
4785 != (unsigned HOST_WIDE_INT) vectorization_factor)
4786 && vect_print_dump_info (REPORT_DETAILS))
4787 fprintf (vect_dump, "multiple-types.");
4789 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
4791 if (vect_print_dump_info (REPORT_DETAILS))
4792 fprintf (vect_dump, "transform phi.");
4793 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
4797 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
4799 gimple stmt = gsi_stmt (si);
4800 bool is_store;
4802 if (vect_print_dump_info (REPORT_DETAILS))
4804 fprintf (vect_dump, "------>vectorizing statement: ");
4805 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
4808 stmt_info = vinfo_for_stmt (stmt);
4810 /* vector stmts created in the outer-loop during vectorization of
4811 stmts in an inner-loop may not have a stmt_info, and do not
4812 need to be vectorized. */
4813 if (!stmt_info)
4815 gsi_next (&si);
4816 continue;
4819 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
4820 vect_loop_kill_debug_uses (loop, stmt);
4822 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4823 && !STMT_VINFO_LIVE_P (stmt_info))
4825 gsi_next (&si);
4826 continue;
4829 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
4830 nunits =
4831 (unsigned int) TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
4832 if (!STMT_SLP_TYPE (stmt_info)
4833 && nunits != (unsigned int) vectorization_factor
4834 && vect_print_dump_info (REPORT_DETAILS))
4835 /* For SLP VF is set according to unrolling factor, and not to
4836 vector size, hence for SLP this print is not valid. */
4837 fprintf (vect_dump, "multiple-types.");
4839 /* SLP. Schedule all the SLP instances when the first SLP stmt is
4840 reached. */
4841 if (STMT_SLP_TYPE (stmt_info))
4843 if (!slp_scheduled)
4845 slp_scheduled = true;
4847 if (vect_print_dump_info (REPORT_DETAILS))
4848 fprintf (vect_dump, "=== scheduling SLP instances ===");
4850 vect_schedule_slp (loop_vinfo, NULL);
4853 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
4854 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
4856 gsi_next (&si);
4857 continue;
4861 /* -------- vectorize statement ------------ */
4862 if (vect_print_dump_info (REPORT_DETAILS))
4863 fprintf (vect_dump, "transform statement.");
4865 strided_store = false;
4866 is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
4867 if (is_store)
4869 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
4871 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
4872 interleaving chain was completed - free all the stores in
4873 the chain. */
4874 vect_remove_stores (DR_GROUP_FIRST_DR (stmt_info));
4875 gsi_remove (&si, true);
4876 continue;
4878 else
4880 /* Free the attached stmt_vec_info and remove the stmt. */
4881 free_stmt_vec_info (stmt);
4882 gsi_remove (&si, true);
4883 continue;
4886 gsi_next (&si);
4887 } /* stmts in BB */
4888 } /* BBs in loop */
4890 slpeel_make_loop_iterate_ntimes (loop, ratio);
4892 /* The memory tags and pointers in vectorized statements need to
4893 have their SSA forms updated. FIXME, why can't this be delayed
4894 until all the loops have been transformed? */
4895 update_ssa (TODO_update_ssa);
4897 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
4898 fprintf (vect_dump, "LOOP VECTORIZED.");
4899 if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
4900 fprintf (vect_dump, "OUTER LOOP VECTORIZED.");