PR middle-end/24998
[official-gcc.git] / libgfortran / generated / product_c16.c
blobc5ac52fb8346698c7ad2769bae6b7804e57991e3
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
37 #if defined (HAVE_GFC_COMPLEX_16) && defined (HAVE_GFC_COMPLEX_16)
40 extern void product_c16 (gfc_array_c16 * const restrict,
41 gfc_array_c16 * const restrict, const index_type * const restrict);
42 export_proto(product_c16);
44 void
45 product_c16 (gfc_array_c16 * const restrict retarray,
46 gfc_array_c16 * const restrict array,
47 const index_type * const restrict pdim)
49 index_type count[GFC_MAX_DIMENSIONS];
50 index_type extent[GFC_MAX_DIMENSIONS];
51 index_type sstride[GFC_MAX_DIMENSIONS];
52 index_type dstride[GFC_MAX_DIMENSIONS];
53 const GFC_COMPLEX_16 * restrict base;
54 GFC_COMPLEX_16 * restrict dest;
55 index_type rank;
56 index_type n;
57 index_type len;
58 index_type delta;
59 index_type dim;
61 /* Make dim zero based to avoid confusion. */
62 dim = (*pdim) - 1;
63 rank = GFC_DESCRIPTOR_RANK (array) - 1;
65 /* TODO: It should be a front end job to correctly set the strides. */
67 if (array->dim[0].stride == 0)
68 array->dim[0].stride = 1;
70 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
71 delta = array->dim[dim].stride;
73 for (n = 0; n < dim; n++)
75 sstride[n] = array->dim[n].stride;
76 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
78 for (n = dim; n < rank; n++)
80 sstride[n] = array->dim[n + 1].stride;
81 extent[n] =
82 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
85 if (retarray->data == NULL)
87 for (n = 0; n < rank; n++)
89 retarray->dim[n].lbound = 0;
90 retarray->dim[n].ubound = extent[n]-1;
91 if (n == 0)
92 retarray->dim[n].stride = 1;
93 else
94 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
97 retarray->data
98 = internal_malloc_size (sizeof (GFC_COMPLEX_16)
99 * retarray->dim[rank-1].stride
100 * extent[rank-1]);
101 retarray->offset = 0;
102 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
104 else
106 if (retarray->dim[0].stride == 0)
107 retarray->dim[0].stride = 1;
109 if (rank != GFC_DESCRIPTOR_RANK (retarray))
110 runtime_error ("rank of return array incorrect");
113 for (n = 0; n < rank; n++)
115 count[n] = 0;
116 dstride[n] = retarray->dim[n].stride;
117 if (extent[n] <= 0)
118 len = 0;
121 base = array->data;
122 dest = retarray->data;
124 while (base)
126 const GFC_COMPLEX_16 * restrict src;
127 GFC_COMPLEX_16 result;
128 src = base;
131 result = 1;
132 if (len <= 0)
133 *dest = 1;
134 else
136 for (n = 0; n < len; n++, src += delta)
139 result *= *src;
141 *dest = result;
144 /* Advance to the next element. */
145 count[0]++;
146 base += sstride[0];
147 dest += dstride[0];
148 n = 0;
149 while (count[n] == extent[n])
151 /* When we get to the end of a dimension, reset it and increment
152 the next dimension. */
153 count[n] = 0;
154 /* We could precalculate these products, but this is a less
155 frequently used path so proabably not worth it. */
156 base -= sstride[n] * extent[n];
157 dest -= dstride[n] * extent[n];
158 n++;
159 if (n == rank)
161 /* Break out of the look. */
162 base = NULL;
163 break;
165 else
167 count[n]++;
168 base += sstride[n];
169 dest += dstride[n];
176 extern void mproduct_c16 (gfc_array_c16 * const restrict,
177 gfc_array_c16 * const restrict, const index_type * const restrict,
178 gfc_array_l4 * const restrict);
179 export_proto(mproduct_c16);
181 void
182 mproduct_c16 (gfc_array_c16 * const restrict retarray,
183 gfc_array_c16 * const restrict array,
184 const index_type * const restrict pdim,
185 gfc_array_l4 * const restrict mask)
187 index_type count[GFC_MAX_DIMENSIONS];
188 index_type extent[GFC_MAX_DIMENSIONS];
189 index_type sstride[GFC_MAX_DIMENSIONS];
190 index_type dstride[GFC_MAX_DIMENSIONS];
191 index_type mstride[GFC_MAX_DIMENSIONS];
192 GFC_COMPLEX_16 * restrict dest;
193 const GFC_COMPLEX_16 * restrict base;
194 const GFC_LOGICAL_4 * restrict mbase;
195 int rank;
196 int dim;
197 index_type n;
198 index_type len;
199 index_type delta;
200 index_type mdelta;
202 dim = (*pdim) - 1;
203 rank = GFC_DESCRIPTOR_RANK (array) - 1;
205 /* TODO: It should be a front end job to correctly set the strides. */
207 if (array->dim[0].stride == 0)
208 array->dim[0].stride = 1;
210 if (mask->dim[0].stride == 0)
211 mask->dim[0].stride = 1;
213 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
214 if (len <= 0)
215 return;
216 delta = array->dim[dim].stride;
217 mdelta = mask->dim[dim].stride;
219 for (n = 0; n < dim; n++)
221 sstride[n] = array->dim[n].stride;
222 mstride[n] = mask->dim[n].stride;
223 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
225 for (n = dim; n < rank; n++)
227 sstride[n] = array->dim[n + 1].stride;
228 mstride[n] = mask->dim[n + 1].stride;
229 extent[n] =
230 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
233 if (retarray->data == NULL)
235 for (n = 0; n < rank; n++)
237 retarray->dim[n].lbound = 0;
238 retarray->dim[n].ubound = extent[n]-1;
239 if (n == 0)
240 retarray->dim[n].stride = 1;
241 else
242 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
245 retarray->data
246 = internal_malloc_size (sizeof (GFC_COMPLEX_16)
247 * retarray->dim[rank-1].stride
248 * extent[rank-1]);
249 retarray->offset = 0;
250 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
252 else
254 if (retarray->dim[0].stride == 0)
255 retarray->dim[0].stride = 1;
257 if (rank != GFC_DESCRIPTOR_RANK (retarray))
258 runtime_error ("rank of return array incorrect");
261 for (n = 0; n < rank; n++)
263 count[n] = 0;
264 dstride[n] = retarray->dim[n].stride;
265 if (extent[n] <= 0)
266 return;
269 dest = retarray->data;
270 base = array->data;
271 mbase = mask->data;
273 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
275 /* This allows the same loop to be used for all logical types. */
276 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
277 for (n = 0; n < rank; n++)
278 mstride[n] <<= 1;
279 mdelta <<= 1;
280 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
283 while (base)
285 const GFC_COMPLEX_16 * restrict src;
286 const GFC_LOGICAL_4 * restrict msrc;
287 GFC_COMPLEX_16 result;
288 src = base;
289 msrc = mbase;
292 result = 1;
293 if (len <= 0)
294 *dest = 1;
295 else
297 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
300 if (*msrc)
301 result *= *src;
303 *dest = result;
306 /* Advance to the next element. */
307 count[0]++;
308 base += sstride[0];
309 mbase += mstride[0];
310 dest += dstride[0];
311 n = 0;
312 while (count[n] == extent[n])
314 /* When we get to the end of a dimension, reset it and increment
315 the next dimension. */
316 count[n] = 0;
317 /* We could precalculate these products, but this is a less
318 frequently used path so proabably not worth it. */
319 base -= sstride[n] * extent[n];
320 mbase -= mstride[n] * extent[n];
321 dest -= dstride[n] * extent[n];
322 n++;
323 if (n == rank)
325 /* Break out of the look. */
326 base = NULL;
327 break;
329 else
331 count[n]++;
332 base += sstride[n];
333 mbase += mstride[n];
334 dest += dstride[n];
340 #endif