Daily bump.
[official-gcc.git] / gcc / var-tracking.c
blobcd394a0c8ac3263bb4450821ca729d74a1fc3754
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "cfghooks.h"
93 #include "rtl.h"
94 #include "alias.h"
95 #include "tree.h"
96 #include "varasm.h"
97 #include "stor-layout.h"
98 #include "cfgrtl.h"
99 #include "cfganal.h"
100 #include "tm_p.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "alloc-pool.h"
105 #include "regs.h"
106 #include "expmed.h"
107 #include "dojump.h"
108 #include "explow.h"
109 #include "calls.h"
110 #include "emit-rtl.h"
111 #include "stmt.h"
112 #include "expr.h"
113 #include "tree-pass.h"
114 #include "tree-dfa.h"
115 #include "tree-ssa.h"
116 #include "cselib.h"
117 #include "target.h"
118 #include "params.h"
119 #include "diagnostic.h"
120 #include "tree-pretty-print.h"
121 #include "recog.h"
122 #include "rtl-iter.h"
123 #include "fibonacci_heap.h"
125 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
126 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
128 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
129 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
130 Currently the value is the same as IDENTIFIER_NODE, which has such
131 a property. If this compile time assertion ever fails, make sure that
132 the new tree code that equals (int) VALUE has the same property. */
133 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
135 /* Type of micro operation. */
136 enum micro_operation_type
138 MO_USE, /* Use location (REG or MEM). */
139 MO_USE_NO_VAR,/* Use location which is not associated with a variable
140 or the variable is not trackable. */
141 MO_VAL_USE, /* Use location which is associated with a value. */
142 MO_VAL_LOC, /* Use location which appears in a debug insn. */
143 MO_VAL_SET, /* Set location associated with a value. */
144 MO_SET, /* Set location. */
145 MO_COPY, /* Copy the same portion of a variable from one
146 location to another. */
147 MO_CLOBBER, /* Clobber location. */
148 MO_CALL, /* Call insn. */
149 MO_ADJUST /* Adjust stack pointer. */
153 static const char * const ATTRIBUTE_UNUSED
154 micro_operation_type_name[] = {
155 "MO_USE",
156 "MO_USE_NO_VAR",
157 "MO_VAL_USE",
158 "MO_VAL_LOC",
159 "MO_VAL_SET",
160 "MO_SET",
161 "MO_COPY",
162 "MO_CLOBBER",
163 "MO_CALL",
164 "MO_ADJUST"
167 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
168 Notes emitted as AFTER_CALL are to take effect during the call,
169 rather than after the call. */
170 enum emit_note_where
172 EMIT_NOTE_BEFORE_INSN,
173 EMIT_NOTE_AFTER_INSN,
174 EMIT_NOTE_AFTER_CALL_INSN
177 /* Structure holding information about micro operation. */
178 struct micro_operation
180 /* Type of micro operation. */
181 enum micro_operation_type type;
183 /* The instruction which the micro operation is in, for MO_USE,
184 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
185 instruction or note in the original flow (before any var-tracking
186 notes are inserted, to simplify emission of notes), for MO_SET
187 and MO_CLOBBER. */
188 rtx_insn *insn;
190 union {
191 /* Location. For MO_SET and MO_COPY, this is the SET that
192 performs the assignment, if known, otherwise it is the target
193 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
194 CONCAT of the VALUE and the LOC associated with it. For
195 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
196 associated with it. */
197 rtx loc;
199 /* Stack adjustment. */
200 HOST_WIDE_INT adjust;
201 } u;
205 /* A declaration of a variable, or an RTL value being handled like a
206 declaration. */
207 typedef void *decl_or_value;
209 /* Return true if a decl_or_value DV is a DECL or NULL. */
210 static inline bool
211 dv_is_decl_p (decl_or_value dv)
213 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
216 /* Return true if a decl_or_value is a VALUE rtl. */
217 static inline bool
218 dv_is_value_p (decl_or_value dv)
220 return dv && !dv_is_decl_p (dv);
223 /* Return the decl in the decl_or_value. */
224 static inline tree
225 dv_as_decl (decl_or_value dv)
227 gcc_checking_assert (dv_is_decl_p (dv));
228 return (tree) dv;
231 /* Return the value in the decl_or_value. */
232 static inline rtx
233 dv_as_value (decl_or_value dv)
235 gcc_checking_assert (dv_is_value_p (dv));
236 return (rtx)dv;
239 /* Return the opaque pointer in the decl_or_value. */
240 static inline void *
241 dv_as_opaque (decl_or_value dv)
243 return dv;
247 /* Description of location of a part of a variable. The content of a physical
248 register is described by a chain of these structures.
249 The chains are pretty short (usually 1 or 2 elements) and thus
250 chain is the best data structure. */
251 typedef struct attrs_def
253 /* Pointer to next member of the list. */
254 struct attrs_def *next;
256 /* The rtx of register. */
257 rtx loc;
259 /* The declaration corresponding to LOC. */
260 decl_or_value dv;
262 /* Offset from start of DECL. */
263 HOST_WIDE_INT offset;
264 } *attrs;
266 /* Structure for chaining the locations. */
267 typedef struct location_chain_def
269 /* Next element in the chain. */
270 struct location_chain_def *next;
272 /* The location (REG, MEM or VALUE). */
273 rtx loc;
275 /* The "value" stored in this location. */
276 rtx set_src;
278 /* Initialized? */
279 enum var_init_status init;
280 } *location_chain;
282 /* A vector of loc_exp_dep holds the active dependencies of a one-part
283 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
284 location of DV. Each entry is also part of VALUE' s linked-list of
285 backlinks back to DV. */
286 struct loc_exp_dep
288 /* The dependent DV. */
289 decl_or_value dv;
290 /* The dependency VALUE or DECL_DEBUG. */
291 rtx value;
292 /* The next entry in VALUE's backlinks list. */
293 struct loc_exp_dep *next;
294 /* A pointer to the pointer to this entry (head or prev's next) in
295 the doubly-linked list. */
296 struct loc_exp_dep **pprev;
300 /* This data structure holds information about the depth of a variable
301 expansion. */
302 struct expand_depth
304 /* This measures the complexity of the expanded expression. It
305 grows by one for each level of expansion that adds more than one
306 operand. */
307 int complexity;
308 /* This counts the number of ENTRY_VALUE expressions in an
309 expansion. We want to minimize their use. */
310 int entryvals;
313 /* This data structure is allocated for one-part variables at the time
314 of emitting notes. */
315 struct onepart_aux
317 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
318 computation used the expansion of this variable, and that ought
319 to be notified should this variable change. If the DV's cur_loc
320 expanded to NULL, all components of the loc list are regarded as
321 active, so that any changes in them give us a chance to get a
322 location. Otherwise, only components of the loc that expanded to
323 non-NULL are regarded as active dependencies. */
324 loc_exp_dep *backlinks;
325 /* This holds the LOC that was expanded into cur_loc. We need only
326 mark a one-part variable as changed if the FROM loc is removed,
327 or if it has no known location and a loc is added, or if it gets
328 a change notification from any of its active dependencies. */
329 rtx from;
330 /* The depth of the cur_loc expression. */
331 expand_depth depth;
332 /* Dependencies actively used when expand FROM into cur_loc. */
333 vec<loc_exp_dep, va_heap, vl_embed> deps;
336 /* Structure describing one part of variable. */
337 struct variable_part
339 /* Chain of locations of the part. */
340 location_chain loc_chain;
342 /* Location which was last emitted to location list. */
343 rtx cur_loc;
345 union variable_aux
347 /* The offset in the variable, if !var->onepart. */
348 HOST_WIDE_INT offset;
350 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
351 struct onepart_aux *onepaux;
352 } aux;
355 /* Maximum number of location parts. */
356 #define MAX_VAR_PARTS 16
358 /* Enumeration type used to discriminate various types of one-part
359 variables. */
360 typedef enum onepart_enum
362 /* Not a one-part variable. */
363 NOT_ONEPART = 0,
364 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
365 ONEPART_VDECL = 1,
366 /* A DEBUG_EXPR_DECL. */
367 ONEPART_DEXPR = 2,
368 /* A VALUE. */
369 ONEPART_VALUE = 3
370 } onepart_enum_t;
372 /* Structure describing where the variable is located. */
373 typedef struct variable_def
375 /* The declaration of the variable, or an RTL value being handled
376 like a declaration. */
377 decl_or_value dv;
379 /* Reference count. */
380 int refcount;
382 /* Number of variable parts. */
383 char n_var_parts;
385 /* What type of DV this is, according to enum onepart_enum. */
386 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
388 /* True if this variable_def struct is currently in the
389 changed_variables hash table. */
390 bool in_changed_variables;
392 /* The variable parts. */
393 variable_part var_part[1];
394 } *variable;
395 typedef const struct variable_def *const_variable;
397 /* Pointer to the BB's information specific to variable tracking pass. */
398 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
400 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
401 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
403 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
405 /* Access VAR's Ith part's offset, checking that it's not a one-part
406 variable. */
407 #define VAR_PART_OFFSET(var, i) __extension__ \
408 (*({ variable const __v = (var); \
409 gcc_checking_assert (!__v->onepart); \
410 &__v->var_part[(i)].aux.offset; }))
412 /* Access VAR's one-part auxiliary data, checking that it is a
413 one-part variable. */
414 #define VAR_LOC_1PAUX(var) __extension__ \
415 (*({ variable const __v = (var); \
416 gcc_checking_assert (__v->onepart); \
417 &__v->var_part[0].aux.onepaux; }))
419 #else
420 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
421 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
422 #endif
424 /* These are accessor macros for the one-part auxiliary data. When
425 convenient for users, they're guarded by tests that the data was
426 allocated. */
427 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
428 ? VAR_LOC_1PAUX (var)->backlinks \
429 : NULL)
430 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
431 ? &VAR_LOC_1PAUX (var)->backlinks \
432 : NULL)
433 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
434 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
435 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
436 ? &VAR_LOC_1PAUX (var)->deps \
437 : NULL)
441 typedef unsigned int dvuid;
443 /* Return the uid of DV. */
445 static inline dvuid
446 dv_uid (decl_or_value dv)
448 if (dv_is_value_p (dv))
449 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
450 else
451 return DECL_UID (dv_as_decl (dv));
454 /* Compute the hash from the uid. */
456 static inline hashval_t
457 dv_uid2hash (dvuid uid)
459 return uid;
462 /* The hash function for a mask table in a shared_htab chain. */
464 static inline hashval_t
465 dv_htab_hash (decl_or_value dv)
467 return dv_uid2hash (dv_uid (dv));
470 static void variable_htab_free (void *);
472 /* Variable hashtable helpers. */
474 struct variable_hasher : pointer_hash <variable_def>
476 typedef void *compare_type;
477 static inline hashval_t hash (const variable_def *);
478 static inline bool equal (const variable_def *, const void *);
479 static inline void remove (variable_def *);
482 /* The hash function for variable_htab, computes the hash value
483 from the declaration of variable X. */
485 inline hashval_t
486 variable_hasher::hash (const variable_def *v)
488 return dv_htab_hash (v->dv);
491 /* Compare the declaration of variable X with declaration Y. */
493 inline bool
494 variable_hasher::equal (const variable_def *v, const void *y)
496 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
498 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
501 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
503 inline void
504 variable_hasher::remove (variable_def *var)
506 variable_htab_free (var);
509 typedef hash_table<variable_hasher> variable_table_type;
510 typedef variable_table_type::iterator variable_iterator_type;
512 /* Structure for passing some other parameters to function
513 emit_note_insn_var_location. */
514 struct emit_note_data
516 /* The instruction which the note will be emitted before/after. */
517 rtx_insn *insn;
519 /* Where the note will be emitted (before/after insn)? */
520 enum emit_note_where where;
522 /* The variables and values active at this point. */
523 variable_table_type *vars;
526 /* Structure holding a refcounted hash table. If refcount > 1,
527 it must be first unshared before modified. */
528 typedef struct shared_hash_def
530 /* Reference count. */
531 int refcount;
533 /* Actual hash table. */
534 variable_table_type *htab;
535 } *shared_hash;
537 /* Structure holding the IN or OUT set for a basic block. */
538 struct dataflow_set
540 /* Adjustment of stack offset. */
541 HOST_WIDE_INT stack_adjust;
543 /* Attributes for registers (lists of attrs). */
544 attrs regs[FIRST_PSEUDO_REGISTER];
546 /* Variable locations. */
547 shared_hash vars;
549 /* Vars that is being traversed. */
550 shared_hash traversed_vars;
553 /* The structure (one for each basic block) containing the information
554 needed for variable tracking. */
555 typedef struct variable_tracking_info_def
557 /* The vector of micro operations. */
558 vec<micro_operation> mos;
560 /* The IN and OUT set for dataflow analysis. */
561 dataflow_set in;
562 dataflow_set out;
564 /* The permanent-in dataflow set for this block. This is used to
565 hold values for which we had to compute entry values. ??? This
566 should probably be dynamically allocated, to avoid using more
567 memory in non-debug builds. */
568 dataflow_set *permp;
570 /* Has the block been visited in DFS? */
571 bool visited;
573 /* Has the block been flooded in VTA? */
574 bool flooded;
576 } *variable_tracking_info;
578 /* Alloc pool for struct attrs_def. */
579 object_allocator<attrs_def> attrs_def_pool ("attrs_def pool", 1024);
581 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
583 static pool_allocator var_pool
584 ("variable_def pool", 64, sizeof (variable_def) +
585 (MAX_VAR_PARTS - 1) * sizeof (((variable)NULL)->var_part[0]));
587 /* Alloc pool for struct variable_def with a single var_part entry. */
588 static pool_allocator valvar_pool
589 ("small variable_def pool", 256, sizeof (variable_def));
591 /* Alloc pool for struct location_chain_def. */
592 static object_allocator<location_chain_def> location_chain_def_pool
593 ("location_chain_def pool", 1024);
595 /* Alloc pool for struct shared_hash_def. */
596 static object_allocator<shared_hash_def> shared_hash_def_pool
597 ("shared_hash_def pool", 256);
599 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
600 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool", 64);
602 /* Changed variables, notes will be emitted for them. */
603 static variable_table_type *changed_variables;
605 /* Shall notes be emitted? */
606 static bool emit_notes;
608 /* Values whose dynamic location lists have gone empty, but whose
609 cselib location lists are still usable. Use this to hold the
610 current location, the backlinks, etc, during emit_notes. */
611 static variable_table_type *dropped_values;
613 /* Empty shared hashtable. */
614 static shared_hash empty_shared_hash;
616 /* Scratch register bitmap used by cselib_expand_value_rtx. */
617 static bitmap scratch_regs = NULL;
619 #ifdef HAVE_window_save
620 typedef struct GTY(()) parm_reg {
621 rtx outgoing;
622 rtx incoming;
623 } parm_reg_t;
626 /* Vector of windowed parameter registers, if any. */
627 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
628 #endif
630 /* Variable used to tell whether cselib_process_insn called our hook. */
631 static bool cselib_hook_called;
633 /* Local function prototypes. */
634 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
635 HOST_WIDE_INT *);
636 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
637 HOST_WIDE_INT *);
638 static bool vt_stack_adjustments (void);
640 static void init_attrs_list_set (attrs *);
641 static void attrs_list_clear (attrs *);
642 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
643 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
644 static void attrs_list_copy (attrs *, attrs);
645 static void attrs_list_union (attrs *, attrs);
647 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
648 variable var, enum var_init_status);
649 static void vars_copy (variable_table_type *, variable_table_type *);
650 static tree var_debug_decl (tree);
651 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
652 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
653 enum var_init_status, rtx);
654 static void var_reg_delete (dataflow_set *, rtx, bool);
655 static void var_regno_delete (dataflow_set *, int);
656 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
657 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
658 enum var_init_status, rtx);
659 static void var_mem_delete (dataflow_set *, rtx, bool);
661 static void dataflow_set_init (dataflow_set *);
662 static void dataflow_set_clear (dataflow_set *);
663 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
664 static int variable_union_info_cmp_pos (const void *, const void *);
665 static void dataflow_set_union (dataflow_set *, dataflow_set *);
666 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
667 static bool canon_value_cmp (rtx, rtx);
668 static int loc_cmp (rtx, rtx);
669 static bool variable_part_different_p (variable_part *, variable_part *);
670 static bool onepart_variable_different_p (variable, variable);
671 static bool variable_different_p (variable, variable);
672 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
673 static void dataflow_set_destroy (dataflow_set *);
675 static bool contains_symbol_ref (rtx);
676 static bool track_expr_p (tree, bool);
677 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
678 static void add_uses_1 (rtx *, void *);
679 static void add_stores (rtx, const_rtx, void *);
680 static bool compute_bb_dataflow (basic_block);
681 static bool vt_find_locations (void);
683 static void dump_attrs_list (attrs);
684 static void dump_var (variable);
685 static void dump_vars (variable_table_type *);
686 static void dump_dataflow_set (dataflow_set *);
687 static void dump_dataflow_sets (void);
689 static void set_dv_changed (decl_or_value, bool);
690 static void variable_was_changed (variable, dataflow_set *);
691 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
692 decl_or_value, HOST_WIDE_INT,
693 enum var_init_status, rtx);
694 static void set_variable_part (dataflow_set *, rtx,
695 decl_or_value, HOST_WIDE_INT,
696 enum var_init_status, rtx, enum insert_option);
697 static variable_def **clobber_slot_part (dataflow_set *, rtx,
698 variable_def **, HOST_WIDE_INT, rtx);
699 static void clobber_variable_part (dataflow_set *, rtx,
700 decl_or_value, HOST_WIDE_INT, rtx);
701 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
702 HOST_WIDE_INT);
703 static void delete_variable_part (dataflow_set *, rtx,
704 decl_or_value, HOST_WIDE_INT);
705 static void emit_notes_in_bb (basic_block, dataflow_set *);
706 static void vt_emit_notes (void);
708 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
709 static void vt_add_function_parameters (void);
710 static bool vt_initialize (void);
711 static void vt_finalize (void);
713 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
715 static int
716 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
717 void *arg)
719 if (dest != stack_pointer_rtx)
720 return 0;
722 switch (GET_CODE (op))
724 case PRE_INC:
725 case PRE_DEC:
726 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
727 return 0;
728 case POST_INC:
729 case POST_DEC:
730 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
731 return 0;
732 case PRE_MODIFY:
733 case POST_MODIFY:
734 /* We handle only adjustments by constant amount. */
735 gcc_assert (GET_CODE (src) == PLUS
736 && CONST_INT_P (XEXP (src, 1))
737 && XEXP (src, 0) == stack_pointer_rtx);
738 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
739 -= INTVAL (XEXP (src, 1));
740 return 0;
741 default:
742 gcc_unreachable ();
746 /* Given a SET, calculate the amount of stack adjustment it contains
747 PRE- and POST-modifying stack pointer.
748 This function is similar to stack_adjust_offset. */
750 static void
751 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
752 HOST_WIDE_INT *post)
754 rtx src = SET_SRC (pattern);
755 rtx dest = SET_DEST (pattern);
756 enum rtx_code code;
758 if (dest == stack_pointer_rtx)
760 /* (set (reg sp) (plus (reg sp) (const_int))) */
761 code = GET_CODE (src);
762 if (! (code == PLUS || code == MINUS)
763 || XEXP (src, 0) != stack_pointer_rtx
764 || !CONST_INT_P (XEXP (src, 1)))
765 return;
767 if (code == MINUS)
768 *post += INTVAL (XEXP (src, 1));
769 else
770 *post -= INTVAL (XEXP (src, 1));
771 return;
773 HOST_WIDE_INT res[2] = { 0, 0 };
774 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
775 *pre += res[0];
776 *post += res[1];
779 /* Given an INSN, calculate the amount of stack adjustment it contains
780 PRE- and POST-modifying stack pointer. */
782 static void
783 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
784 HOST_WIDE_INT *post)
786 rtx pattern;
788 *pre = 0;
789 *post = 0;
791 pattern = PATTERN (insn);
792 if (RTX_FRAME_RELATED_P (insn))
794 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
795 if (expr)
796 pattern = XEXP (expr, 0);
799 if (GET_CODE (pattern) == SET)
800 stack_adjust_offset_pre_post (pattern, pre, post);
801 else if (GET_CODE (pattern) == PARALLEL
802 || GET_CODE (pattern) == SEQUENCE)
804 int i;
806 /* There may be stack adjustments inside compound insns. Search
807 for them. */
808 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
809 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
810 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
814 /* Compute stack adjustments for all blocks by traversing DFS tree.
815 Return true when the adjustments on all incoming edges are consistent.
816 Heavily borrowed from pre_and_rev_post_order_compute. */
818 static bool
819 vt_stack_adjustments (void)
821 edge_iterator *stack;
822 int sp;
824 /* Initialize entry block. */
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
826 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
827 = INCOMING_FRAME_SP_OFFSET;
828 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
829 = INCOMING_FRAME_SP_OFFSET;
831 /* Allocate stack for back-tracking up CFG. */
832 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
833 sp = 0;
835 /* Push the first edge on to the stack. */
836 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
838 while (sp)
840 edge_iterator ei;
841 basic_block src;
842 basic_block dest;
844 /* Look at the edge on the top of the stack. */
845 ei = stack[sp - 1];
846 src = ei_edge (ei)->src;
847 dest = ei_edge (ei)->dest;
849 /* Check if the edge destination has been visited yet. */
850 if (!VTI (dest)->visited)
852 rtx_insn *insn;
853 HOST_WIDE_INT pre, post, offset;
854 VTI (dest)->visited = true;
855 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
857 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
858 for (insn = BB_HEAD (dest);
859 insn != NEXT_INSN (BB_END (dest));
860 insn = NEXT_INSN (insn))
861 if (INSN_P (insn))
863 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
864 offset += pre + post;
867 VTI (dest)->out.stack_adjust = offset;
869 if (EDGE_COUNT (dest->succs) > 0)
870 /* Since the DEST node has been visited for the first
871 time, check its successors. */
872 stack[sp++] = ei_start (dest->succs);
874 else
876 /* We can end up with different stack adjustments for the exit block
877 of a shrink-wrapped function if stack_adjust_offset_pre_post
878 doesn't understand the rtx pattern used to restore the stack
879 pointer in the epilogue. For example, on s390(x), the stack
880 pointer is often restored via a load-multiple instruction
881 and so no stack_adjust offset is recorded for it. This means
882 that the stack offset at the end of the epilogue block is the
883 the same as the offset before the epilogue, whereas other paths
884 to the exit block will have the correct stack_adjust.
886 It is safe to ignore these differences because (a) we never
887 use the stack_adjust for the exit block in this pass and
888 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
889 function are correct.
891 We must check whether the adjustments on other edges are
892 the same though. */
893 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
894 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
896 free (stack);
897 return false;
900 if (! ei_one_before_end_p (ei))
901 /* Go to the next edge. */
902 ei_next (&stack[sp - 1]);
903 else
904 /* Return to previous level if there are no more edges. */
905 sp--;
909 free (stack);
910 return true;
913 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
914 hard_frame_pointer_rtx is being mapped to it and offset for it. */
915 static rtx cfa_base_rtx;
916 static HOST_WIDE_INT cfa_base_offset;
918 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
919 or hard_frame_pointer_rtx. */
921 static inline rtx
922 compute_cfa_pointer (HOST_WIDE_INT adjustment)
924 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
927 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
928 or -1 if the replacement shouldn't be done. */
929 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
931 /* Data for adjust_mems callback. */
933 struct adjust_mem_data
935 bool store;
936 machine_mode mem_mode;
937 HOST_WIDE_INT stack_adjust;
938 rtx_expr_list *side_effects;
941 /* Helper for adjust_mems. Return true if X is suitable for
942 transformation of wider mode arithmetics to narrower mode. */
944 static bool
945 use_narrower_mode_test (rtx x, const_rtx subreg)
947 subrtx_var_iterator::array_type array;
948 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
950 rtx x = *iter;
951 if (CONSTANT_P (x))
952 iter.skip_subrtxes ();
953 else
954 switch (GET_CODE (x))
956 case REG:
957 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
958 return false;
959 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
960 subreg_lowpart_offset (GET_MODE (subreg),
961 GET_MODE (x))))
962 return false;
963 break;
964 case PLUS:
965 case MINUS:
966 case MULT:
967 break;
968 case ASHIFT:
969 iter.substitute (XEXP (x, 0));
970 break;
971 default:
972 return false;
975 return true;
978 /* Transform X into narrower mode MODE from wider mode WMODE. */
980 static rtx
981 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
983 rtx op0, op1;
984 if (CONSTANT_P (x))
985 return lowpart_subreg (mode, x, wmode);
986 switch (GET_CODE (x))
988 case REG:
989 return lowpart_subreg (mode, x, wmode);
990 case PLUS:
991 case MINUS:
992 case MULT:
993 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
994 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
995 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
996 case ASHIFT:
997 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
998 op1 = XEXP (x, 1);
999 /* Ensure shift amount is not wider than mode. */
1000 if (GET_MODE (op1) == VOIDmode)
1001 op1 = lowpart_subreg (mode, op1, wmode);
1002 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
1003 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1004 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1005 default:
1006 gcc_unreachable ();
1010 /* Helper function for adjusting used MEMs. */
1012 static rtx
1013 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1015 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1016 rtx mem, addr = loc, tem;
1017 machine_mode mem_mode_save;
1018 bool store_save;
1019 switch (GET_CODE (loc))
1021 case REG:
1022 /* Don't do any sp or fp replacements outside of MEM addresses
1023 on the LHS. */
1024 if (amd->mem_mode == VOIDmode && amd->store)
1025 return loc;
1026 if (loc == stack_pointer_rtx
1027 && !frame_pointer_needed
1028 && cfa_base_rtx)
1029 return compute_cfa_pointer (amd->stack_adjust);
1030 else if (loc == hard_frame_pointer_rtx
1031 && frame_pointer_needed
1032 && hard_frame_pointer_adjustment != -1
1033 && cfa_base_rtx)
1034 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1035 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1036 return loc;
1037 case MEM:
1038 mem = loc;
1039 if (!amd->store)
1041 mem = targetm.delegitimize_address (mem);
1042 if (mem != loc && !MEM_P (mem))
1043 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1046 addr = XEXP (mem, 0);
1047 mem_mode_save = amd->mem_mode;
1048 amd->mem_mode = GET_MODE (mem);
1049 store_save = amd->store;
1050 amd->store = false;
1051 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1052 amd->store = store_save;
1053 amd->mem_mode = mem_mode_save;
1054 if (mem == loc)
1055 addr = targetm.delegitimize_address (addr);
1056 if (addr != XEXP (mem, 0))
1057 mem = replace_equiv_address_nv (mem, addr);
1058 if (!amd->store)
1059 mem = avoid_constant_pool_reference (mem);
1060 return mem;
1061 case PRE_INC:
1062 case PRE_DEC:
1063 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1064 gen_int_mode (GET_CODE (loc) == PRE_INC
1065 ? GET_MODE_SIZE (amd->mem_mode)
1066 : -GET_MODE_SIZE (amd->mem_mode),
1067 GET_MODE (loc)));
1068 case POST_INC:
1069 case POST_DEC:
1070 if (addr == loc)
1071 addr = XEXP (loc, 0);
1072 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1073 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1074 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1075 gen_int_mode ((GET_CODE (loc) == PRE_INC
1076 || GET_CODE (loc) == POST_INC)
1077 ? GET_MODE_SIZE (amd->mem_mode)
1078 : -GET_MODE_SIZE (amd->mem_mode),
1079 GET_MODE (loc)));
1080 store_save = amd->store;
1081 amd->store = false;
1082 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1083 amd->store = store_save;
1084 amd->side_effects = alloc_EXPR_LIST (0,
1085 gen_rtx_SET (XEXP (loc, 0), tem),
1086 amd->side_effects);
1087 return addr;
1088 case PRE_MODIFY:
1089 addr = XEXP (loc, 1);
1090 case POST_MODIFY:
1091 if (addr == loc)
1092 addr = XEXP (loc, 0);
1093 gcc_assert (amd->mem_mode != VOIDmode);
1094 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1095 store_save = amd->store;
1096 amd->store = false;
1097 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1098 adjust_mems, data);
1099 amd->store = store_save;
1100 amd->side_effects = alloc_EXPR_LIST (0,
1101 gen_rtx_SET (XEXP (loc, 0), tem),
1102 amd->side_effects);
1103 return addr;
1104 case SUBREG:
1105 /* First try without delegitimization of whole MEMs and
1106 avoid_constant_pool_reference, which is more likely to succeed. */
1107 store_save = amd->store;
1108 amd->store = true;
1109 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1110 data);
1111 amd->store = store_save;
1112 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1113 if (mem == SUBREG_REG (loc))
1115 tem = loc;
1116 goto finish_subreg;
1118 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1119 GET_MODE (SUBREG_REG (loc)),
1120 SUBREG_BYTE (loc));
1121 if (tem)
1122 goto finish_subreg;
1123 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1124 GET_MODE (SUBREG_REG (loc)),
1125 SUBREG_BYTE (loc));
1126 if (tem == NULL_RTX)
1127 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1128 finish_subreg:
1129 if (MAY_HAVE_DEBUG_INSNS
1130 && GET_CODE (tem) == SUBREG
1131 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1132 || GET_CODE (SUBREG_REG (tem)) == MINUS
1133 || GET_CODE (SUBREG_REG (tem)) == MULT
1134 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1135 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1136 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1137 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1138 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1139 && GET_MODE_PRECISION (GET_MODE (tem))
1140 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1141 && subreg_lowpart_p (tem)
1142 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1143 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1144 GET_MODE (SUBREG_REG (tem)));
1145 return tem;
1146 case ASM_OPERANDS:
1147 /* Don't do any replacements in second and following
1148 ASM_OPERANDS of inline-asm with multiple sets.
1149 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1150 and ASM_OPERANDS_LABEL_VEC need to be equal between
1151 all the ASM_OPERANDs in the insn and adjust_insn will
1152 fix this up. */
1153 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1154 return loc;
1155 break;
1156 default:
1157 break;
1159 return NULL_RTX;
1162 /* Helper function for replacement of uses. */
1164 static void
1165 adjust_mem_uses (rtx *x, void *data)
1167 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1168 if (new_x != *x)
1169 validate_change (NULL_RTX, x, new_x, true);
1172 /* Helper function for replacement of stores. */
1174 static void
1175 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1177 if (MEM_P (loc))
1179 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1180 adjust_mems, data);
1181 if (new_dest != SET_DEST (expr))
1183 rtx xexpr = CONST_CAST_RTX (expr);
1184 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1189 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1190 replace them with their value in the insn and add the side-effects
1191 as other sets to the insn. */
1193 static void
1194 adjust_insn (basic_block bb, rtx_insn *insn)
1196 struct adjust_mem_data amd;
1197 rtx set;
1199 #ifdef HAVE_window_save
1200 /* If the target machine has an explicit window save instruction, the
1201 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1202 if (RTX_FRAME_RELATED_P (insn)
1203 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1205 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1206 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1207 parm_reg_t *p;
1209 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1211 XVECEXP (rtl, 0, i * 2)
1212 = gen_rtx_SET (p->incoming, p->outgoing);
1213 /* Do not clobber the attached DECL, but only the REG. */
1214 XVECEXP (rtl, 0, i * 2 + 1)
1215 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1216 gen_raw_REG (GET_MODE (p->outgoing),
1217 REGNO (p->outgoing)));
1220 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1221 return;
1223 #endif
1225 amd.mem_mode = VOIDmode;
1226 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1227 amd.side_effects = NULL;
1229 amd.store = true;
1230 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1232 amd.store = false;
1233 if (GET_CODE (PATTERN (insn)) == PARALLEL
1234 && asm_noperands (PATTERN (insn)) > 0
1235 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1237 rtx body, set0;
1238 int i;
1240 /* inline-asm with multiple sets is tiny bit more complicated,
1241 because the 3 vectors in ASM_OPERANDS need to be shared between
1242 all ASM_OPERANDS in the instruction. adjust_mems will
1243 not touch ASM_OPERANDS other than the first one, asm_noperands
1244 test above needs to be called before that (otherwise it would fail)
1245 and afterwards this code fixes it up. */
1246 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1247 body = PATTERN (insn);
1248 set0 = XVECEXP (body, 0, 0);
1249 gcc_checking_assert (GET_CODE (set0) == SET
1250 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1251 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1252 for (i = 1; i < XVECLEN (body, 0); i++)
1253 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1254 break;
1255 else
1257 set = XVECEXP (body, 0, i);
1258 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1259 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1260 == i);
1261 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1262 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1263 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1264 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1265 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1266 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1268 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1269 ASM_OPERANDS_INPUT_VEC (newsrc)
1270 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1271 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1272 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1273 ASM_OPERANDS_LABEL_VEC (newsrc)
1274 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1275 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1279 else
1280 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1282 /* For read-only MEMs containing some constant, prefer those
1283 constants. */
1284 set = single_set (insn);
1285 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1287 rtx note = find_reg_equal_equiv_note (insn);
1289 if (note && CONSTANT_P (XEXP (note, 0)))
1290 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1293 if (amd.side_effects)
1295 rtx *pat, new_pat, s;
1296 int i, oldn, newn;
1298 pat = &PATTERN (insn);
1299 if (GET_CODE (*pat) == COND_EXEC)
1300 pat = &COND_EXEC_CODE (*pat);
1301 if (GET_CODE (*pat) == PARALLEL)
1302 oldn = XVECLEN (*pat, 0);
1303 else
1304 oldn = 1;
1305 for (s = amd.side_effects, newn = 0; s; newn++)
1306 s = XEXP (s, 1);
1307 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1308 if (GET_CODE (*pat) == PARALLEL)
1309 for (i = 0; i < oldn; i++)
1310 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1311 else
1312 XVECEXP (new_pat, 0, 0) = *pat;
1313 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1314 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1315 free_EXPR_LIST_list (&amd.side_effects);
1316 validate_change (NULL_RTX, pat, new_pat, true);
1320 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1321 static inline rtx
1322 dv_as_rtx (decl_or_value dv)
1324 tree decl;
1326 if (dv_is_value_p (dv))
1327 return dv_as_value (dv);
1329 decl = dv_as_decl (dv);
1331 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1332 return DECL_RTL_KNOWN_SET (decl);
1335 /* Return nonzero if a decl_or_value must not have more than one
1336 variable part. The returned value discriminates among various
1337 kinds of one-part DVs ccording to enum onepart_enum. */
1338 static inline onepart_enum_t
1339 dv_onepart_p (decl_or_value dv)
1341 tree decl;
1343 if (!MAY_HAVE_DEBUG_INSNS)
1344 return NOT_ONEPART;
1346 if (dv_is_value_p (dv))
1347 return ONEPART_VALUE;
1349 decl = dv_as_decl (dv);
1351 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1352 return ONEPART_DEXPR;
1354 if (target_for_debug_bind (decl) != NULL_TREE)
1355 return ONEPART_VDECL;
1357 return NOT_ONEPART;
1360 /* Return the variable pool to be used for a dv of type ONEPART. */
1361 static inline pool_allocator &
1362 onepart_pool (onepart_enum_t onepart)
1364 return onepart ? valvar_pool : var_pool;
1367 /* Allocate a variable_def from the corresponding variable pool. */
1368 static inline variable_def *
1369 onepart_pool_allocate (onepart_enum_t onepart)
1371 return (variable_def*) onepart_pool (onepart).allocate ();
1374 /* Build a decl_or_value out of a decl. */
1375 static inline decl_or_value
1376 dv_from_decl (tree decl)
1378 decl_or_value dv;
1379 dv = decl;
1380 gcc_checking_assert (dv_is_decl_p (dv));
1381 return dv;
1384 /* Build a decl_or_value out of a value. */
1385 static inline decl_or_value
1386 dv_from_value (rtx value)
1388 decl_or_value dv;
1389 dv = value;
1390 gcc_checking_assert (dv_is_value_p (dv));
1391 return dv;
1394 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1395 static inline decl_or_value
1396 dv_from_rtx (rtx x)
1398 decl_or_value dv;
1400 switch (GET_CODE (x))
1402 case DEBUG_EXPR:
1403 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1404 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1405 break;
1407 case VALUE:
1408 dv = dv_from_value (x);
1409 break;
1411 default:
1412 gcc_unreachable ();
1415 return dv;
1418 extern void debug_dv (decl_or_value dv);
1420 DEBUG_FUNCTION void
1421 debug_dv (decl_or_value dv)
1423 if (dv_is_value_p (dv))
1424 debug_rtx (dv_as_value (dv));
1425 else
1426 debug_generic_stmt (dv_as_decl (dv));
1429 static void loc_exp_dep_clear (variable var);
1431 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1433 static void
1434 variable_htab_free (void *elem)
1436 int i;
1437 variable var = (variable) elem;
1438 location_chain node, next;
1440 gcc_checking_assert (var->refcount > 0);
1442 var->refcount--;
1443 if (var->refcount > 0)
1444 return;
1446 for (i = 0; i < var->n_var_parts; i++)
1448 for (node = var->var_part[i].loc_chain; node; node = next)
1450 next = node->next;
1451 delete node;
1453 var->var_part[i].loc_chain = NULL;
1455 if (var->onepart && VAR_LOC_1PAUX (var))
1457 loc_exp_dep_clear (var);
1458 if (VAR_LOC_DEP_LST (var))
1459 VAR_LOC_DEP_LST (var)->pprev = NULL;
1460 XDELETE (VAR_LOC_1PAUX (var));
1461 /* These may be reused across functions, so reset
1462 e.g. NO_LOC_P. */
1463 if (var->onepart == ONEPART_DEXPR)
1464 set_dv_changed (var->dv, true);
1466 onepart_pool (var->onepart).remove (var);
1469 /* Initialize the set (array) SET of attrs to empty lists. */
1471 static void
1472 init_attrs_list_set (attrs *set)
1474 int i;
1476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1477 set[i] = NULL;
1480 /* Make the list *LISTP empty. */
1482 static void
1483 attrs_list_clear (attrs *listp)
1485 attrs list, next;
1487 for (list = *listp; list; list = next)
1489 next = list->next;
1490 delete list;
1492 *listp = NULL;
1495 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1497 static attrs
1498 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1500 for (; list; list = list->next)
1501 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1502 return list;
1503 return NULL;
1506 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1508 static void
1509 attrs_list_insert (attrs *listp, decl_or_value dv,
1510 HOST_WIDE_INT offset, rtx loc)
1512 attrs list = new attrs_def;
1513 list->loc = loc;
1514 list->dv = dv;
1515 list->offset = offset;
1516 list->next = *listp;
1517 *listp = list;
1520 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1522 static void
1523 attrs_list_copy (attrs *dstp, attrs src)
1525 attrs_list_clear (dstp);
1526 for (; src; src = src->next)
1528 attrs n = new attrs_def;
1529 n->loc = src->loc;
1530 n->dv = src->dv;
1531 n->offset = src->offset;
1532 n->next = *dstp;
1533 *dstp = n;
1537 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1539 static void
1540 attrs_list_union (attrs *dstp, attrs src)
1542 for (; src; src = src->next)
1544 if (!attrs_list_member (*dstp, src->dv, src->offset))
1545 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1549 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1550 *DSTP. */
1552 static void
1553 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1555 gcc_assert (!*dstp);
1556 for (; src; src = src->next)
1558 if (!dv_onepart_p (src->dv))
1559 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1561 for (src = src2; src; src = src->next)
1563 if (!dv_onepart_p (src->dv)
1564 && !attrs_list_member (*dstp, src->dv, src->offset))
1565 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1569 /* Shared hashtable support. */
1571 /* Return true if VARS is shared. */
1573 static inline bool
1574 shared_hash_shared (shared_hash vars)
1576 return vars->refcount > 1;
1579 /* Return the hash table for VARS. */
1581 static inline variable_table_type *
1582 shared_hash_htab (shared_hash vars)
1584 return vars->htab;
1587 /* Return true if VAR is shared, or maybe because VARS is shared. */
1589 static inline bool
1590 shared_var_p (variable var, shared_hash vars)
1592 /* Don't count an entry in the changed_variables table as a duplicate. */
1593 return ((var->refcount > 1 + (int) var->in_changed_variables)
1594 || shared_hash_shared (vars));
1597 /* Copy variables into a new hash table. */
1599 static shared_hash
1600 shared_hash_unshare (shared_hash vars)
1602 shared_hash new_vars = new shared_hash_def;
1603 gcc_assert (vars->refcount > 1);
1604 new_vars->refcount = 1;
1605 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1606 vars_copy (new_vars->htab, vars->htab);
1607 vars->refcount--;
1608 return new_vars;
1611 /* Increment reference counter on VARS and return it. */
1613 static inline shared_hash
1614 shared_hash_copy (shared_hash vars)
1616 vars->refcount++;
1617 return vars;
1620 /* Decrement reference counter and destroy hash table if not shared
1621 anymore. */
1623 static void
1624 shared_hash_destroy (shared_hash vars)
1626 gcc_checking_assert (vars->refcount > 0);
1627 if (--vars->refcount == 0)
1629 delete vars->htab;
1630 delete vars;
1634 /* Unshare *PVARS if shared and return slot for DV. If INS is
1635 INSERT, insert it if not already present. */
1637 static inline variable_def **
1638 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1639 hashval_t dvhash, enum insert_option ins)
1641 if (shared_hash_shared (*pvars))
1642 *pvars = shared_hash_unshare (*pvars);
1643 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1646 static inline variable_def **
1647 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1648 enum insert_option ins)
1650 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1653 /* Return slot for DV, if it is already present in the hash table.
1654 If it is not present, insert it only VARS is not shared, otherwise
1655 return NULL. */
1657 static inline variable_def **
1658 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1660 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1661 shared_hash_shared (vars)
1662 ? NO_INSERT : INSERT);
1665 static inline variable_def **
1666 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1668 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1671 /* Return slot for DV only if it is already present in the hash table. */
1673 static inline variable_def **
1674 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1675 hashval_t dvhash)
1677 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1680 static inline variable_def **
1681 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1683 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1686 /* Return variable for DV or NULL if not already present in the hash
1687 table. */
1689 static inline variable
1690 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1692 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1695 static inline variable
1696 shared_hash_find (shared_hash vars, decl_or_value dv)
1698 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1701 /* Return true if TVAL is better than CVAL as a canonival value. We
1702 choose lowest-numbered VALUEs, using the RTX address as a
1703 tie-breaker. The idea is to arrange them into a star topology,
1704 such that all of them are at most one step away from the canonical
1705 value, and the canonical value has backlinks to all of them, in
1706 addition to all the actual locations. We don't enforce this
1707 topology throughout the entire dataflow analysis, though.
1710 static inline bool
1711 canon_value_cmp (rtx tval, rtx cval)
1713 return !cval
1714 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1717 static bool dst_can_be_shared;
1719 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1721 static variable_def **
1722 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1723 enum var_init_status initialized)
1725 variable new_var;
1726 int i;
1728 new_var = onepart_pool_allocate (var->onepart);
1729 new_var->dv = var->dv;
1730 new_var->refcount = 1;
1731 var->refcount--;
1732 new_var->n_var_parts = var->n_var_parts;
1733 new_var->onepart = var->onepart;
1734 new_var->in_changed_variables = false;
1736 if (! flag_var_tracking_uninit)
1737 initialized = VAR_INIT_STATUS_INITIALIZED;
1739 for (i = 0; i < var->n_var_parts; i++)
1741 location_chain node;
1742 location_chain *nextp;
1744 if (i == 0 && var->onepart)
1746 /* One-part auxiliary data is only used while emitting
1747 notes, so propagate it to the new variable in the active
1748 dataflow set. If we're not emitting notes, this will be
1749 a no-op. */
1750 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1751 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1752 VAR_LOC_1PAUX (var) = NULL;
1754 else
1755 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1756 nextp = &new_var->var_part[i].loc_chain;
1757 for (node = var->var_part[i].loc_chain; node; node = node->next)
1759 location_chain new_lc;
1761 new_lc = new location_chain_def;
1762 new_lc->next = NULL;
1763 if (node->init > initialized)
1764 new_lc->init = node->init;
1765 else
1766 new_lc->init = initialized;
1767 if (node->set_src && !(MEM_P (node->set_src)))
1768 new_lc->set_src = node->set_src;
1769 else
1770 new_lc->set_src = NULL;
1771 new_lc->loc = node->loc;
1773 *nextp = new_lc;
1774 nextp = &new_lc->next;
1777 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1780 dst_can_be_shared = false;
1781 if (shared_hash_shared (set->vars))
1782 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1783 else if (set->traversed_vars && set->vars != set->traversed_vars)
1784 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1785 *slot = new_var;
1786 if (var->in_changed_variables)
1788 variable_def **cslot
1789 = changed_variables->find_slot_with_hash (var->dv,
1790 dv_htab_hash (var->dv),
1791 NO_INSERT);
1792 gcc_assert (*cslot == (void *) var);
1793 var->in_changed_variables = false;
1794 variable_htab_free (var);
1795 *cslot = new_var;
1796 new_var->in_changed_variables = true;
1798 return slot;
1801 /* Copy all variables from hash table SRC to hash table DST. */
1803 static void
1804 vars_copy (variable_table_type *dst, variable_table_type *src)
1806 variable_iterator_type hi;
1807 variable var;
1809 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1811 variable_def **dstp;
1812 var->refcount++;
1813 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1814 INSERT);
1815 *dstp = var;
1819 /* Map a decl to its main debug decl. */
1821 static inline tree
1822 var_debug_decl (tree decl)
1824 if (decl && TREE_CODE (decl) == VAR_DECL
1825 && DECL_HAS_DEBUG_EXPR_P (decl))
1827 tree debugdecl = DECL_DEBUG_EXPR (decl);
1828 if (DECL_P (debugdecl))
1829 decl = debugdecl;
1832 return decl;
1835 /* Set the register LOC to contain DV, OFFSET. */
1837 static void
1838 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1839 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1840 enum insert_option iopt)
1842 attrs node;
1843 bool decl_p = dv_is_decl_p (dv);
1845 if (decl_p)
1846 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1848 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1849 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1850 && node->offset == offset)
1851 break;
1852 if (!node)
1853 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1854 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1857 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1859 static void
1860 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1861 rtx set_src)
1863 tree decl = REG_EXPR (loc);
1864 HOST_WIDE_INT offset = REG_OFFSET (loc);
1866 var_reg_decl_set (set, loc, initialized,
1867 dv_from_decl (decl), offset, set_src, INSERT);
1870 static enum var_init_status
1871 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1873 variable var;
1874 int i;
1875 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1877 if (! flag_var_tracking_uninit)
1878 return VAR_INIT_STATUS_INITIALIZED;
1880 var = shared_hash_find (set->vars, dv);
1881 if (var)
1883 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1885 location_chain nextp;
1886 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1887 if (rtx_equal_p (nextp->loc, loc))
1889 ret_val = nextp->init;
1890 break;
1895 return ret_val;
1898 /* Delete current content of register LOC in dataflow set SET and set
1899 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1900 MODIFY is true, any other live copies of the same variable part are
1901 also deleted from the dataflow set, otherwise the variable part is
1902 assumed to be copied from another location holding the same
1903 part. */
1905 static void
1906 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1907 enum var_init_status initialized, rtx set_src)
1909 tree decl = REG_EXPR (loc);
1910 HOST_WIDE_INT offset = REG_OFFSET (loc);
1911 attrs node, next;
1912 attrs *nextp;
1914 decl = var_debug_decl (decl);
1916 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1917 initialized = get_init_value (set, loc, dv_from_decl (decl));
1919 nextp = &set->regs[REGNO (loc)];
1920 for (node = *nextp; node; node = next)
1922 next = node->next;
1923 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1925 delete_variable_part (set, node->loc, node->dv, node->offset);
1926 delete node;
1927 *nextp = next;
1929 else
1931 node->loc = loc;
1932 nextp = &node->next;
1935 if (modify)
1936 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1937 var_reg_set (set, loc, initialized, set_src);
1940 /* Delete the association of register LOC in dataflow set SET with any
1941 variables that aren't onepart. If CLOBBER is true, also delete any
1942 other live copies of the same variable part, and delete the
1943 association with onepart dvs too. */
1945 static void
1946 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1948 attrs *nextp = &set->regs[REGNO (loc)];
1949 attrs node, next;
1951 if (clobber)
1953 tree decl = REG_EXPR (loc);
1954 HOST_WIDE_INT offset = REG_OFFSET (loc);
1956 decl = var_debug_decl (decl);
1958 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1961 for (node = *nextp; node; node = next)
1963 next = node->next;
1964 if (clobber || !dv_onepart_p (node->dv))
1966 delete_variable_part (set, node->loc, node->dv, node->offset);
1967 delete node;
1968 *nextp = next;
1970 else
1971 nextp = &node->next;
1975 /* Delete content of register with number REGNO in dataflow set SET. */
1977 static void
1978 var_regno_delete (dataflow_set *set, int regno)
1980 attrs *reg = &set->regs[regno];
1981 attrs node, next;
1983 for (node = *reg; node; node = next)
1985 next = node->next;
1986 delete_variable_part (set, node->loc, node->dv, node->offset);
1987 delete node;
1989 *reg = NULL;
1992 /* Return true if I is the negated value of a power of two. */
1993 static bool
1994 negative_power_of_two_p (HOST_WIDE_INT i)
1996 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1997 return x == (x & -x);
2000 /* Strip constant offsets and alignments off of LOC. Return the base
2001 expression. */
2003 static rtx
2004 vt_get_canonicalize_base (rtx loc)
2006 while ((GET_CODE (loc) == PLUS
2007 || GET_CODE (loc) == AND)
2008 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2009 && (GET_CODE (loc) != AND
2010 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2011 loc = XEXP (loc, 0);
2013 return loc;
2016 /* This caches canonicalized addresses for VALUEs, computed using
2017 information in the global cselib table. */
2018 static hash_map<rtx, rtx> *global_get_addr_cache;
2020 /* This caches canonicalized addresses for VALUEs, computed using
2021 information from the global cache and information pertaining to a
2022 basic block being analyzed. */
2023 static hash_map<rtx, rtx> *local_get_addr_cache;
2025 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2027 /* Return the canonical address for LOC, that must be a VALUE, using a
2028 cached global equivalence or computing it and storing it in the
2029 global cache. */
2031 static rtx
2032 get_addr_from_global_cache (rtx const loc)
2034 rtx x;
2036 gcc_checking_assert (GET_CODE (loc) == VALUE);
2038 bool existed;
2039 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2040 if (existed)
2041 return *slot;
2043 x = canon_rtx (get_addr (loc));
2045 /* Tentative, avoiding infinite recursion. */
2046 *slot = x;
2048 if (x != loc)
2050 rtx nx = vt_canonicalize_addr (NULL, x);
2051 if (nx != x)
2053 /* The table may have moved during recursion, recompute
2054 SLOT. */
2055 *global_get_addr_cache->get (loc) = x = nx;
2059 return x;
2062 /* Return the canonical address for LOC, that must be a VALUE, using a
2063 cached local equivalence or computing it and storing it in the
2064 local cache. */
2066 static rtx
2067 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2069 rtx x;
2070 decl_or_value dv;
2071 variable var;
2072 location_chain l;
2074 gcc_checking_assert (GET_CODE (loc) == VALUE);
2076 bool existed;
2077 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2078 if (existed)
2079 return *slot;
2081 x = get_addr_from_global_cache (loc);
2083 /* Tentative, avoiding infinite recursion. */
2084 *slot = x;
2086 /* Recurse to cache local expansion of X, or if we need to search
2087 for a VALUE in the expansion. */
2088 if (x != loc)
2090 rtx nx = vt_canonicalize_addr (set, x);
2091 if (nx != x)
2093 slot = local_get_addr_cache->get (loc);
2094 *slot = x = nx;
2096 return x;
2099 dv = dv_from_rtx (x);
2100 var = shared_hash_find (set->vars, dv);
2101 if (!var)
2102 return x;
2104 /* Look for an improved equivalent expression. */
2105 for (l = var->var_part[0].loc_chain; l; l = l->next)
2107 rtx base = vt_get_canonicalize_base (l->loc);
2108 if (GET_CODE (base) == VALUE
2109 && canon_value_cmp (base, loc))
2111 rtx nx = vt_canonicalize_addr (set, l->loc);
2112 if (x != nx)
2114 slot = local_get_addr_cache->get (loc);
2115 *slot = x = nx;
2117 break;
2121 return x;
2124 /* Canonicalize LOC using equivalences from SET in addition to those
2125 in the cselib static table. It expects a VALUE-based expression,
2126 and it will only substitute VALUEs with other VALUEs or
2127 function-global equivalences, so that, if two addresses have base
2128 VALUEs that are locally or globally related in ways that
2129 memrefs_conflict_p cares about, they will both canonicalize to
2130 expressions that have the same base VALUE.
2132 The use of VALUEs as canonical base addresses enables the canonical
2133 RTXs to remain unchanged globally, if they resolve to a constant,
2134 or throughout a basic block otherwise, so that they can be cached
2135 and the cache needs not be invalidated when REGs, MEMs or such
2136 change. */
2138 static rtx
2139 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2141 HOST_WIDE_INT ofst = 0;
2142 machine_mode mode = GET_MODE (oloc);
2143 rtx loc = oloc;
2144 rtx x;
2145 bool retry = true;
2147 while (retry)
2149 while (GET_CODE (loc) == PLUS
2150 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2152 ofst += INTVAL (XEXP (loc, 1));
2153 loc = XEXP (loc, 0);
2156 /* Alignment operations can't normally be combined, so just
2157 canonicalize the base and we're done. We'll normally have
2158 only one stack alignment anyway. */
2159 if (GET_CODE (loc) == AND
2160 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2161 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2163 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2164 if (x != XEXP (loc, 0))
2165 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2166 retry = false;
2169 if (GET_CODE (loc) == VALUE)
2171 if (set)
2172 loc = get_addr_from_local_cache (set, loc);
2173 else
2174 loc = get_addr_from_global_cache (loc);
2176 /* Consolidate plus_constants. */
2177 while (ofst && GET_CODE (loc) == PLUS
2178 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2180 ofst += INTVAL (XEXP (loc, 1));
2181 loc = XEXP (loc, 0);
2184 retry = false;
2186 else
2188 x = canon_rtx (loc);
2189 if (retry)
2190 retry = (x != loc);
2191 loc = x;
2195 /* Add OFST back in. */
2196 if (ofst)
2198 /* Don't build new RTL if we can help it. */
2199 if (GET_CODE (oloc) == PLUS
2200 && XEXP (oloc, 0) == loc
2201 && INTVAL (XEXP (oloc, 1)) == ofst)
2202 return oloc;
2204 loc = plus_constant (mode, loc, ofst);
2207 return loc;
2210 /* Return true iff there's a true dependence between MLOC and LOC.
2211 MADDR must be a canonicalized version of MLOC's address. */
2213 static inline bool
2214 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2216 if (GET_CODE (loc) != MEM)
2217 return false;
2219 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2220 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2221 return false;
2223 return true;
2226 /* Hold parameters for the hashtab traversal function
2227 drop_overlapping_mem_locs, see below. */
2229 struct overlapping_mems
2231 dataflow_set *set;
2232 rtx loc, addr;
2235 /* Remove all MEMs that overlap with COMS->LOC from the location list
2236 of a hash table entry for a value. COMS->ADDR must be a
2237 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2238 canonicalized itself. */
2241 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2243 dataflow_set *set = coms->set;
2244 rtx mloc = coms->loc, addr = coms->addr;
2245 variable var = *slot;
2247 if (var->onepart == ONEPART_VALUE)
2249 location_chain loc, *locp;
2250 bool changed = false;
2251 rtx cur_loc;
2253 gcc_assert (var->n_var_parts == 1);
2255 if (shared_var_p (var, set->vars))
2257 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2258 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2259 break;
2261 if (!loc)
2262 return 1;
2264 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2265 var = *slot;
2266 gcc_assert (var->n_var_parts == 1);
2269 if (VAR_LOC_1PAUX (var))
2270 cur_loc = VAR_LOC_FROM (var);
2271 else
2272 cur_loc = var->var_part[0].cur_loc;
2274 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2275 loc; loc = *locp)
2277 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2279 locp = &loc->next;
2280 continue;
2283 *locp = loc->next;
2284 /* If we have deleted the location which was last emitted
2285 we have to emit new location so add the variable to set
2286 of changed variables. */
2287 if (cur_loc == loc->loc)
2289 changed = true;
2290 var->var_part[0].cur_loc = NULL;
2291 if (VAR_LOC_1PAUX (var))
2292 VAR_LOC_FROM (var) = NULL;
2294 delete loc;
2297 if (!var->var_part[0].loc_chain)
2299 var->n_var_parts--;
2300 changed = true;
2302 if (changed)
2303 variable_was_changed (var, set);
2306 return 1;
2309 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2311 static void
2312 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2314 struct overlapping_mems coms;
2316 gcc_checking_assert (GET_CODE (loc) == MEM);
2318 coms.set = set;
2319 coms.loc = canon_rtx (loc);
2320 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2322 set->traversed_vars = set->vars;
2323 shared_hash_htab (set->vars)
2324 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2325 set->traversed_vars = NULL;
2328 /* Set the location of DV, OFFSET as the MEM LOC. */
2330 static void
2331 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2332 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2333 enum insert_option iopt)
2335 if (dv_is_decl_p (dv))
2336 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2338 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2341 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2342 SET to LOC.
2343 Adjust the address first if it is stack pointer based. */
2345 static void
2346 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2347 rtx set_src)
2349 tree decl = MEM_EXPR (loc);
2350 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2352 var_mem_decl_set (set, loc, initialized,
2353 dv_from_decl (decl), offset, set_src, INSERT);
2356 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2357 dataflow set SET to LOC. If MODIFY is true, any other live copies
2358 of the same variable part are also deleted from the dataflow set,
2359 otherwise the variable part is assumed to be copied from another
2360 location holding the same part.
2361 Adjust the address first if it is stack pointer based. */
2363 static void
2364 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2365 enum var_init_status initialized, rtx set_src)
2367 tree decl = MEM_EXPR (loc);
2368 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2370 clobber_overlapping_mems (set, loc);
2371 decl = var_debug_decl (decl);
2373 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2374 initialized = get_init_value (set, loc, dv_from_decl (decl));
2376 if (modify)
2377 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2378 var_mem_set (set, loc, initialized, set_src);
2381 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2382 true, also delete any other live copies of the same variable part.
2383 Adjust the address first if it is stack pointer based. */
2385 static void
2386 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2388 tree decl = MEM_EXPR (loc);
2389 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2391 clobber_overlapping_mems (set, loc);
2392 decl = var_debug_decl (decl);
2393 if (clobber)
2394 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2395 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2398 /* Return true if LOC should not be expanded for location expressions,
2399 or used in them. */
2401 static inline bool
2402 unsuitable_loc (rtx loc)
2404 switch (GET_CODE (loc))
2406 case PC:
2407 case SCRATCH:
2408 case CC0:
2409 case ASM_INPUT:
2410 case ASM_OPERANDS:
2411 return true;
2413 default:
2414 return false;
2418 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2419 bound to it. */
2421 static inline void
2422 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2424 if (REG_P (loc))
2426 if (modified)
2427 var_regno_delete (set, REGNO (loc));
2428 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2429 dv_from_value (val), 0, NULL_RTX, INSERT);
2431 else if (MEM_P (loc))
2433 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2435 if (modified)
2436 clobber_overlapping_mems (set, loc);
2438 if (l && GET_CODE (l->loc) == VALUE)
2439 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2441 /* If this MEM is a global constant, we don't need it in the
2442 dynamic tables. ??? We should test this before emitting the
2443 micro-op in the first place. */
2444 while (l)
2445 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2446 break;
2447 else
2448 l = l->next;
2450 if (!l)
2451 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2452 dv_from_value (val), 0, NULL_RTX, INSERT);
2454 else
2456 /* Other kinds of equivalences are necessarily static, at least
2457 so long as we do not perform substitutions while merging
2458 expressions. */
2459 gcc_unreachable ();
2460 set_variable_part (set, loc, dv_from_value (val), 0,
2461 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2465 /* Bind a value to a location it was just stored in. If MODIFIED
2466 holds, assume the location was modified, detaching it from any
2467 values bound to it. */
2469 static void
2470 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2471 bool modified)
2473 cselib_val *v = CSELIB_VAL_PTR (val);
2475 gcc_assert (cselib_preserved_value_p (v));
2477 if (dump_file)
2479 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2480 print_inline_rtx (dump_file, loc, 0);
2481 fprintf (dump_file, " evaluates to ");
2482 print_inline_rtx (dump_file, val, 0);
2483 if (v->locs)
2485 struct elt_loc_list *l;
2486 for (l = v->locs; l; l = l->next)
2488 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2489 print_inline_rtx (dump_file, l->loc, 0);
2492 fprintf (dump_file, "\n");
2495 gcc_checking_assert (!unsuitable_loc (loc));
2497 val_bind (set, val, loc, modified);
2500 /* Clear (canonical address) slots that reference X. */
2502 bool
2503 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2505 if (vt_get_canonicalize_base (*slot) == x)
2506 *slot = NULL;
2507 return true;
2510 /* Reset this node, detaching all its equivalences. Return the slot
2511 in the variable hash table that holds dv, if there is one. */
2513 static void
2514 val_reset (dataflow_set *set, decl_or_value dv)
2516 variable var = shared_hash_find (set->vars, dv) ;
2517 location_chain node;
2518 rtx cval;
2520 if (!var || !var->n_var_parts)
2521 return;
2523 gcc_assert (var->n_var_parts == 1);
2525 if (var->onepart == ONEPART_VALUE)
2527 rtx x = dv_as_value (dv);
2529 /* Relationships in the global cache don't change, so reset the
2530 local cache entry only. */
2531 rtx *slot = local_get_addr_cache->get (x);
2532 if (slot)
2534 /* If the value resolved back to itself, odds are that other
2535 values may have cached it too. These entries now refer
2536 to the old X, so detach them too. Entries that used the
2537 old X but resolved to something else remain ok as long as
2538 that something else isn't also reset. */
2539 if (*slot == x)
2540 local_get_addr_cache
2541 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2542 *slot = NULL;
2546 cval = NULL;
2547 for (node = var->var_part[0].loc_chain; node; node = node->next)
2548 if (GET_CODE (node->loc) == VALUE
2549 && canon_value_cmp (node->loc, cval))
2550 cval = node->loc;
2552 for (node = var->var_part[0].loc_chain; node; node = node->next)
2553 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2555 /* Redirect the equivalence link to the new canonical
2556 value, or simply remove it if it would point at
2557 itself. */
2558 if (cval)
2559 set_variable_part (set, cval, dv_from_value (node->loc),
2560 0, node->init, node->set_src, NO_INSERT);
2561 delete_variable_part (set, dv_as_value (dv),
2562 dv_from_value (node->loc), 0);
2565 if (cval)
2567 decl_or_value cdv = dv_from_value (cval);
2569 /* Keep the remaining values connected, accummulating links
2570 in the canonical value. */
2571 for (node = var->var_part[0].loc_chain; node; node = node->next)
2573 if (node->loc == cval)
2574 continue;
2575 else if (GET_CODE (node->loc) == REG)
2576 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2577 node->set_src, NO_INSERT);
2578 else if (GET_CODE (node->loc) == MEM)
2579 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2580 node->set_src, NO_INSERT);
2581 else
2582 set_variable_part (set, node->loc, cdv, 0,
2583 node->init, node->set_src, NO_INSERT);
2587 /* We remove this last, to make sure that the canonical value is not
2588 removed to the point of requiring reinsertion. */
2589 if (cval)
2590 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2592 clobber_variable_part (set, NULL, dv, 0, NULL);
2595 /* Find the values in a given location and map the val to another
2596 value, if it is unique, or add the location as one holding the
2597 value. */
2599 static void
2600 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2602 decl_or_value dv = dv_from_value (val);
2604 if (dump_file && (dump_flags & TDF_DETAILS))
2606 if (insn)
2607 fprintf (dump_file, "%i: ", INSN_UID (insn));
2608 else
2609 fprintf (dump_file, "head: ");
2610 print_inline_rtx (dump_file, val, 0);
2611 fputs (" is at ", dump_file);
2612 print_inline_rtx (dump_file, loc, 0);
2613 fputc ('\n', dump_file);
2616 val_reset (set, dv);
2618 gcc_checking_assert (!unsuitable_loc (loc));
2620 if (REG_P (loc))
2622 attrs node, found = NULL;
2624 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2625 if (dv_is_value_p (node->dv)
2626 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2628 found = node;
2630 /* Map incoming equivalences. ??? Wouldn't it be nice if
2631 we just started sharing the location lists? Maybe a
2632 circular list ending at the value itself or some
2633 such. */
2634 set_variable_part (set, dv_as_value (node->dv),
2635 dv_from_value (val), node->offset,
2636 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2637 set_variable_part (set, val, node->dv, node->offset,
2638 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2641 /* If we didn't find any equivalence, we need to remember that
2642 this value is held in the named register. */
2643 if (found)
2644 return;
2646 /* ??? Attempt to find and merge equivalent MEMs or other
2647 expressions too. */
2649 val_bind (set, val, loc, false);
2652 /* Initialize dataflow set SET to be empty.
2653 VARS_SIZE is the initial size of hash table VARS. */
2655 static void
2656 dataflow_set_init (dataflow_set *set)
2658 init_attrs_list_set (set->regs);
2659 set->vars = shared_hash_copy (empty_shared_hash);
2660 set->stack_adjust = 0;
2661 set->traversed_vars = NULL;
2664 /* Delete the contents of dataflow set SET. */
2666 static void
2667 dataflow_set_clear (dataflow_set *set)
2669 int i;
2671 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2672 attrs_list_clear (&set->regs[i]);
2674 shared_hash_destroy (set->vars);
2675 set->vars = shared_hash_copy (empty_shared_hash);
2678 /* Copy the contents of dataflow set SRC to DST. */
2680 static void
2681 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2683 int i;
2685 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2686 attrs_list_copy (&dst->regs[i], src->regs[i]);
2688 shared_hash_destroy (dst->vars);
2689 dst->vars = shared_hash_copy (src->vars);
2690 dst->stack_adjust = src->stack_adjust;
2693 /* Information for merging lists of locations for a given offset of variable.
2695 struct variable_union_info
2697 /* Node of the location chain. */
2698 location_chain lc;
2700 /* The sum of positions in the input chains. */
2701 int pos;
2703 /* The position in the chain of DST dataflow set. */
2704 int pos_dst;
2707 /* Buffer for location list sorting and its allocated size. */
2708 static struct variable_union_info *vui_vec;
2709 static int vui_allocated;
2711 /* Compare function for qsort, order the structures by POS element. */
2713 static int
2714 variable_union_info_cmp_pos (const void *n1, const void *n2)
2716 const struct variable_union_info *const i1 =
2717 (const struct variable_union_info *) n1;
2718 const struct variable_union_info *const i2 =
2719 ( const struct variable_union_info *) n2;
2721 if (i1->pos != i2->pos)
2722 return i1->pos - i2->pos;
2724 return (i1->pos_dst - i2->pos_dst);
2727 /* Compute union of location parts of variable *SLOT and the same variable
2728 from hash table DATA. Compute "sorted" union of the location chains
2729 for common offsets, i.e. the locations of a variable part are sorted by
2730 a priority where the priority is the sum of the positions in the 2 chains
2731 (if a location is only in one list the position in the second list is
2732 defined to be larger than the length of the chains).
2733 When we are updating the location parts the newest location is in the
2734 beginning of the chain, so when we do the described "sorted" union
2735 we keep the newest locations in the beginning. */
2737 static int
2738 variable_union (variable src, dataflow_set *set)
2740 variable dst;
2741 variable_def **dstp;
2742 int i, j, k;
2744 dstp = shared_hash_find_slot (set->vars, src->dv);
2745 if (!dstp || !*dstp)
2747 src->refcount++;
2749 dst_can_be_shared = false;
2750 if (!dstp)
2751 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2753 *dstp = src;
2755 /* Continue traversing the hash table. */
2756 return 1;
2758 else
2759 dst = *dstp;
2761 gcc_assert (src->n_var_parts);
2762 gcc_checking_assert (src->onepart == dst->onepart);
2764 /* We can combine one-part variables very efficiently, because their
2765 entries are in canonical order. */
2766 if (src->onepart)
2768 location_chain *nodep, dnode, snode;
2770 gcc_assert (src->n_var_parts == 1
2771 && dst->n_var_parts == 1);
2773 snode = src->var_part[0].loc_chain;
2774 gcc_assert (snode);
2776 restart_onepart_unshared:
2777 nodep = &dst->var_part[0].loc_chain;
2778 dnode = *nodep;
2779 gcc_assert (dnode);
2781 while (snode)
2783 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2785 if (r > 0)
2787 location_chain nnode;
2789 if (shared_var_p (dst, set->vars))
2791 dstp = unshare_variable (set, dstp, dst,
2792 VAR_INIT_STATUS_INITIALIZED);
2793 dst = *dstp;
2794 goto restart_onepart_unshared;
2797 *nodep = nnode = new location_chain_def;
2798 nnode->loc = snode->loc;
2799 nnode->init = snode->init;
2800 if (!snode->set_src || MEM_P (snode->set_src))
2801 nnode->set_src = NULL;
2802 else
2803 nnode->set_src = snode->set_src;
2804 nnode->next = dnode;
2805 dnode = nnode;
2807 else if (r == 0)
2808 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2810 if (r >= 0)
2811 snode = snode->next;
2813 nodep = &dnode->next;
2814 dnode = *nodep;
2817 return 1;
2820 gcc_checking_assert (!src->onepart);
2822 /* Count the number of location parts, result is K. */
2823 for (i = 0, j = 0, k = 0;
2824 i < src->n_var_parts && j < dst->n_var_parts; k++)
2826 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2828 i++;
2829 j++;
2831 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2832 i++;
2833 else
2834 j++;
2836 k += src->n_var_parts - i;
2837 k += dst->n_var_parts - j;
2839 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2840 thus there are at most MAX_VAR_PARTS different offsets. */
2841 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2843 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2845 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2846 dst = *dstp;
2849 i = src->n_var_parts - 1;
2850 j = dst->n_var_parts - 1;
2851 dst->n_var_parts = k;
2853 for (k--; k >= 0; k--)
2855 location_chain node, node2;
2857 if (i >= 0 && j >= 0
2858 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2860 /* Compute the "sorted" union of the chains, i.e. the locations which
2861 are in both chains go first, they are sorted by the sum of
2862 positions in the chains. */
2863 int dst_l, src_l;
2864 int ii, jj, n;
2865 struct variable_union_info *vui;
2867 /* If DST is shared compare the location chains.
2868 If they are different we will modify the chain in DST with
2869 high probability so make a copy of DST. */
2870 if (shared_var_p (dst, set->vars))
2872 for (node = src->var_part[i].loc_chain,
2873 node2 = dst->var_part[j].loc_chain; node && node2;
2874 node = node->next, node2 = node2->next)
2876 if (!((REG_P (node2->loc)
2877 && REG_P (node->loc)
2878 && REGNO (node2->loc) == REGNO (node->loc))
2879 || rtx_equal_p (node2->loc, node->loc)))
2881 if (node2->init < node->init)
2882 node2->init = node->init;
2883 break;
2886 if (node || node2)
2888 dstp = unshare_variable (set, dstp, dst,
2889 VAR_INIT_STATUS_UNKNOWN);
2890 dst = (variable)*dstp;
2894 src_l = 0;
2895 for (node = src->var_part[i].loc_chain; node; node = node->next)
2896 src_l++;
2897 dst_l = 0;
2898 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2899 dst_l++;
2901 if (dst_l == 1)
2903 /* The most common case, much simpler, no qsort is needed. */
2904 location_chain dstnode = dst->var_part[j].loc_chain;
2905 dst->var_part[k].loc_chain = dstnode;
2906 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2907 node2 = dstnode;
2908 for (node = src->var_part[i].loc_chain; node; node = node->next)
2909 if (!((REG_P (dstnode->loc)
2910 && REG_P (node->loc)
2911 && REGNO (dstnode->loc) == REGNO (node->loc))
2912 || rtx_equal_p (dstnode->loc, node->loc)))
2914 location_chain new_node;
2916 /* Copy the location from SRC. */
2917 new_node = new location_chain_def;
2918 new_node->loc = node->loc;
2919 new_node->init = node->init;
2920 if (!node->set_src || MEM_P (node->set_src))
2921 new_node->set_src = NULL;
2922 else
2923 new_node->set_src = node->set_src;
2924 node2->next = new_node;
2925 node2 = new_node;
2927 node2->next = NULL;
2929 else
2931 if (src_l + dst_l > vui_allocated)
2933 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2934 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2935 vui_allocated);
2937 vui = vui_vec;
2939 /* Fill in the locations from DST. */
2940 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2941 node = node->next, jj++)
2943 vui[jj].lc = node;
2944 vui[jj].pos_dst = jj;
2946 /* Pos plus value larger than a sum of 2 valid positions. */
2947 vui[jj].pos = jj + src_l + dst_l;
2950 /* Fill in the locations from SRC. */
2951 n = dst_l;
2952 for (node = src->var_part[i].loc_chain, ii = 0; node;
2953 node = node->next, ii++)
2955 /* Find location from NODE. */
2956 for (jj = 0; jj < dst_l; jj++)
2958 if ((REG_P (vui[jj].lc->loc)
2959 && REG_P (node->loc)
2960 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2961 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2963 vui[jj].pos = jj + ii;
2964 break;
2967 if (jj >= dst_l) /* The location has not been found. */
2969 location_chain new_node;
2971 /* Copy the location from SRC. */
2972 new_node = new location_chain_def;
2973 new_node->loc = node->loc;
2974 new_node->init = node->init;
2975 if (!node->set_src || MEM_P (node->set_src))
2976 new_node->set_src = NULL;
2977 else
2978 new_node->set_src = node->set_src;
2979 vui[n].lc = new_node;
2980 vui[n].pos_dst = src_l + dst_l;
2981 vui[n].pos = ii + src_l + dst_l;
2982 n++;
2986 if (dst_l == 2)
2988 /* Special case still very common case. For dst_l == 2
2989 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2990 vui[i].pos == i + src_l + dst_l. */
2991 if (vui[0].pos > vui[1].pos)
2993 /* Order should be 1, 0, 2... */
2994 dst->var_part[k].loc_chain = vui[1].lc;
2995 vui[1].lc->next = vui[0].lc;
2996 if (n >= 3)
2998 vui[0].lc->next = vui[2].lc;
2999 vui[n - 1].lc->next = NULL;
3001 else
3002 vui[0].lc->next = NULL;
3003 ii = 3;
3005 else
3007 dst->var_part[k].loc_chain = vui[0].lc;
3008 if (n >= 3 && vui[2].pos < vui[1].pos)
3010 /* Order should be 0, 2, 1, 3... */
3011 vui[0].lc->next = vui[2].lc;
3012 vui[2].lc->next = vui[1].lc;
3013 if (n >= 4)
3015 vui[1].lc->next = vui[3].lc;
3016 vui[n - 1].lc->next = NULL;
3018 else
3019 vui[1].lc->next = NULL;
3020 ii = 4;
3022 else
3024 /* Order should be 0, 1, 2... */
3025 ii = 1;
3026 vui[n - 1].lc->next = NULL;
3029 for (; ii < n; ii++)
3030 vui[ii - 1].lc->next = vui[ii].lc;
3032 else
3034 qsort (vui, n, sizeof (struct variable_union_info),
3035 variable_union_info_cmp_pos);
3037 /* Reconnect the nodes in sorted order. */
3038 for (ii = 1; ii < n; ii++)
3039 vui[ii - 1].lc->next = vui[ii].lc;
3040 vui[n - 1].lc->next = NULL;
3041 dst->var_part[k].loc_chain = vui[0].lc;
3044 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3046 i--;
3047 j--;
3049 else if ((i >= 0 && j >= 0
3050 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3051 || i < 0)
3053 dst->var_part[k] = dst->var_part[j];
3054 j--;
3056 else if ((i >= 0 && j >= 0
3057 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3058 || j < 0)
3060 location_chain *nextp;
3062 /* Copy the chain from SRC. */
3063 nextp = &dst->var_part[k].loc_chain;
3064 for (node = src->var_part[i].loc_chain; node; node = node->next)
3066 location_chain new_lc;
3068 new_lc = new location_chain_def;
3069 new_lc->next = NULL;
3070 new_lc->init = node->init;
3071 if (!node->set_src || MEM_P (node->set_src))
3072 new_lc->set_src = NULL;
3073 else
3074 new_lc->set_src = node->set_src;
3075 new_lc->loc = node->loc;
3077 *nextp = new_lc;
3078 nextp = &new_lc->next;
3081 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3082 i--;
3084 dst->var_part[k].cur_loc = NULL;
3087 if (flag_var_tracking_uninit)
3088 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3090 location_chain node, node2;
3091 for (node = src->var_part[i].loc_chain; node; node = node->next)
3092 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3093 if (rtx_equal_p (node->loc, node2->loc))
3095 if (node->init > node2->init)
3096 node2->init = node->init;
3100 /* Continue traversing the hash table. */
3101 return 1;
3104 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3106 static void
3107 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3109 int i;
3111 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3112 attrs_list_union (&dst->regs[i], src->regs[i]);
3114 if (dst->vars == empty_shared_hash)
3116 shared_hash_destroy (dst->vars);
3117 dst->vars = shared_hash_copy (src->vars);
3119 else
3121 variable_iterator_type hi;
3122 variable var;
3124 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3125 var, variable, hi)
3126 variable_union (var, dst);
3130 /* Whether the value is currently being expanded. */
3131 #define VALUE_RECURSED_INTO(x) \
3132 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3134 /* Whether no expansion was found, saving useless lookups.
3135 It must only be set when VALUE_CHANGED is clear. */
3136 #define NO_LOC_P(x) \
3137 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3139 /* Whether cur_loc in the value needs to be (re)computed. */
3140 #define VALUE_CHANGED(x) \
3141 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3142 /* Whether cur_loc in the decl needs to be (re)computed. */
3143 #define DECL_CHANGED(x) TREE_VISITED (x)
3145 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3146 user DECLs, this means they're in changed_variables. Values and
3147 debug exprs may be left with this flag set if no user variable
3148 requires them to be evaluated. */
3150 static inline void
3151 set_dv_changed (decl_or_value dv, bool newv)
3153 switch (dv_onepart_p (dv))
3155 case ONEPART_VALUE:
3156 if (newv)
3157 NO_LOC_P (dv_as_value (dv)) = false;
3158 VALUE_CHANGED (dv_as_value (dv)) = newv;
3159 break;
3161 case ONEPART_DEXPR:
3162 if (newv)
3163 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3164 /* Fall through... */
3166 default:
3167 DECL_CHANGED (dv_as_decl (dv)) = newv;
3168 break;
3172 /* Return true if DV needs to have its cur_loc recomputed. */
3174 static inline bool
3175 dv_changed_p (decl_or_value dv)
3177 return (dv_is_value_p (dv)
3178 ? VALUE_CHANGED (dv_as_value (dv))
3179 : DECL_CHANGED (dv_as_decl (dv)));
3182 /* Return a location list node whose loc is rtx_equal to LOC, in the
3183 location list of a one-part variable or value VAR, or in that of
3184 any values recursively mentioned in the location lists. VARS must
3185 be in star-canonical form. */
3187 static location_chain
3188 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3190 location_chain node;
3191 enum rtx_code loc_code;
3193 if (!var)
3194 return NULL;
3196 gcc_checking_assert (var->onepart);
3198 if (!var->n_var_parts)
3199 return NULL;
3201 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3203 loc_code = GET_CODE (loc);
3204 for (node = var->var_part[0].loc_chain; node; node = node->next)
3206 decl_or_value dv;
3207 variable rvar;
3209 if (GET_CODE (node->loc) != loc_code)
3211 if (GET_CODE (node->loc) != VALUE)
3212 continue;
3214 else if (loc == node->loc)
3215 return node;
3216 else if (loc_code != VALUE)
3218 if (rtx_equal_p (loc, node->loc))
3219 return node;
3220 continue;
3223 /* Since we're in star-canonical form, we don't need to visit
3224 non-canonical nodes: one-part variables and non-canonical
3225 values would only point back to the canonical node. */
3226 if (dv_is_value_p (var->dv)
3227 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3229 /* Skip all subsequent VALUEs. */
3230 while (node->next && GET_CODE (node->next->loc) == VALUE)
3232 node = node->next;
3233 gcc_checking_assert (!canon_value_cmp (node->loc,
3234 dv_as_value (var->dv)));
3235 if (loc == node->loc)
3236 return node;
3238 continue;
3241 gcc_checking_assert (node == var->var_part[0].loc_chain);
3242 gcc_checking_assert (!node->next);
3244 dv = dv_from_value (node->loc);
3245 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3246 return find_loc_in_1pdv (loc, rvar, vars);
3249 /* ??? Gotta look in cselib_val locations too. */
3251 return NULL;
3254 /* Hash table iteration argument passed to variable_merge. */
3255 struct dfset_merge
3257 /* The set in which the merge is to be inserted. */
3258 dataflow_set *dst;
3259 /* The set that we're iterating in. */
3260 dataflow_set *cur;
3261 /* The set that may contain the other dv we are to merge with. */
3262 dataflow_set *src;
3263 /* Number of onepart dvs in src. */
3264 int src_onepart_cnt;
3267 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3268 loc_cmp order, and it is maintained as such. */
3270 static void
3271 insert_into_intersection (location_chain *nodep, rtx loc,
3272 enum var_init_status status)
3274 location_chain node;
3275 int r;
3277 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3278 if ((r = loc_cmp (node->loc, loc)) == 0)
3280 node->init = MIN (node->init, status);
3281 return;
3283 else if (r > 0)
3284 break;
3286 node = new location_chain_def;
3288 node->loc = loc;
3289 node->set_src = NULL;
3290 node->init = status;
3291 node->next = *nodep;
3292 *nodep = node;
3295 /* Insert in DEST the intersection of the locations present in both
3296 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3297 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3298 DSM->dst. */
3300 static void
3301 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3302 location_chain s1node, variable s2var)
3304 dataflow_set *s1set = dsm->cur;
3305 dataflow_set *s2set = dsm->src;
3306 location_chain found;
3308 if (s2var)
3310 location_chain s2node;
3312 gcc_checking_assert (s2var->onepart);
3314 if (s2var->n_var_parts)
3316 s2node = s2var->var_part[0].loc_chain;
3318 for (; s1node && s2node;
3319 s1node = s1node->next, s2node = s2node->next)
3320 if (s1node->loc != s2node->loc)
3321 break;
3322 else if (s1node->loc == val)
3323 continue;
3324 else
3325 insert_into_intersection (dest, s1node->loc,
3326 MIN (s1node->init, s2node->init));
3330 for (; s1node; s1node = s1node->next)
3332 if (s1node->loc == val)
3333 continue;
3335 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3336 shared_hash_htab (s2set->vars))))
3338 insert_into_intersection (dest, s1node->loc,
3339 MIN (s1node->init, found->init));
3340 continue;
3343 if (GET_CODE (s1node->loc) == VALUE
3344 && !VALUE_RECURSED_INTO (s1node->loc))
3346 decl_or_value dv = dv_from_value (s1node->loc);
3347 variable svar = shared_hash_find (s1set->vars, dv);
3348 if (svar)
3350 if (svar->n_var_parts == 1)
3352 VALUE_RECURSED_INTO (s1node->loc) = true;
3353 intersect_loc_chains (val, dest, dsm,
3354 svar->var_part[0].loc_chain,
3355 s2var);
3356 VALUE_RECURSED_INTO (s1node->loc) = false;
3361 /* ??? gotta look in cselib_val locations too. */
3363 /* ??? if the location is equivalent to any location in src,
3364 searched recursively
3366 add to dst the values needed to represent the equivalence
3368 telling whether locations S is equivalent to another dv's
3369 location list:
3371 for each location D in the list
3373 if S and D satisfy rtx_equal_p, then it is present
3375 else if D is a value, recurse without cycles
3377 else if S and D have the same CODE and MODE
3379 for each operand oS and the corresponding oD
3381 if oS and oD are not equivalent, then S an D are not equivalent
3383 else if they are RTX vectors
3385 if any vector oS element is not equivalent to its respective oD,
3386 then S and D are not equivalent
3394 /* Return -1 if X should be before Y in a location list for a 1-part
3395 variable, 1 if Y should be before X, and 0 if they're equivalent
3396 and should not appear in the list. */
3398 static int
3399 loc_cmp (rtx x, rtx y)
3401 int i, j, r;
3402 RTX_CODE code = GET_CODE (x);
3403 const char *fmt;
3405 if (x == y)
3406 return 0;
3408 if (REG_P (x))
3410 if (!REG_P (y))
3411 return -1;
3412 gcc_assert (GET_MODE (x) == GET_MODE (y));
3413 if (REGNO (x) == REGNO (y))
3414 return 0;
3415 else if (REGNO (x) < REGNO (y))
3416 return -1;
3417 else
3418 return 1;
3421 if (REG_P (y))
3422 return 1;
3424 if (MEM_P (x))
3426 if (!MEM_P (y))
3427 return -1;
3428 gcc_assert (GET_MODE (x) == GET_MODE (y));
3429 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3432 if (MEM_P (y))
3433 return 1;
3435 if (GET_CODE (x) == VALUE)
3437 if (GET_CODE (y) != VALUE)
3438 return -1;
3439 /* Don't assert the modes are the same, that is true only
3440 when not recursing. (subreg:QI (value:SI 1:1) 0)
3441 and (subreg:QI (value:DI 2:2) 0) can be compared,
3442 even when the modes are different. */
3443 if (canon_value_cmp (x, y))
3444 return -1;
3445 else
3446 return 1;
3449 if (GET_CODE (y) == VALUE)
3450 return 1;
3452 /* Entry value is the least preferable kind of expression. */
3453 if (GET_CODE (x) == ENTRY_VALUE)
3455 if (GET_CODE (y) != ENTRY_VALUE)
3456 return 1;
3457 gcc_assert (GET_MODE (x) == GET_MODE (y));
3458 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3461 if (GET_CODE (y) == ENTRY_VALUE)
3462 return -1;
3464 if (GET_CODE (x) == GET_CODE (y))
3465 /* Compare operands below. */;
3466 else if (GET_CODE (x) < GET_CODE (y))
3467 return -1;
3468 else
3469 return 1;
3471 gcc_assert (GET_MODE (x) == GET_MODE (y));
3473 if (GET_CODE (x) == DEBUG_EXPR)
3475 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3476 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3477 return -1;
3478 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3479 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3480 return 1;
3483 fmt = GET_RTX_FORMAT (code);
3484 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3485 switch (fmt[i])
3487 case 'w':
3488 if (XWINT (x, i) == XWINT (y, i))
3489 break;
3490 else if (XWINT (x, i) < XWINT (y, i))
3491 return -1;
3492 else
3493 return 1;
3495 case 'n':
3496 case 'i':
3497 if (XINT (x, i) == XINT (y, i))
3498 break;
3499 else if (XINT (x, i) < XINT (y, i))
3500 return -1;
3501 else
3502 return 1;
3504 case 'V':
3505 case 'E':
3506 /* Compare the vector length first. */
3507 if (XVECLEN (x, i) == XVECLEN (y, i))
3508 /* Compare the vectors elements. */;
3509 else if (XVECLEN (x, i) < XVECLEN (y, i))
3510 return -1;
3511 else
3512 return 1;
3514 for (j = 0; j < XVECLEN (x, i); j++)
3515 if ((r = loc_cmp (XVECEXP (x, i, j),
3516 XVECEXP (y, i, j))))
3517 return r;
3518 break;
3520 case 'e':
3521 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3522 return r;
3523 break;
3525 case 'S':
3526 case 's':
3527 if (XSTR (x, i) == XSTR (y, i))
3528 break;
3529 if (!XSTR (x, i))
3530 return -1;
3531 if (!XSTR (y, i))
3532 return 1;
3533 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3534 break;
3535 else if (r < 0)
3536 return -1;
3537 else
3538 return 1;
3540 case 'u':
3541 /* These are just backpointers, so they don't matter. */
3542 break;
3544 case '0':
3545 case 't':
3546 break;
3548 /* It is believed that rtx's at this level will never
3549 contain anything but integers and other rtx's,
3550 except for within LABEL_REFs and SYMBOL_REFs. */
3551 default:
3552 gcc_unreachable ();
3554 if (CONST_WIDE_INT_P (x))
3556 /* Compare the vector length first. */
3557 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3558 return 1;
3559 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3560 return -1;
3562 /* Compare the vectors elements. */;
3563 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3565 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3566 return -1;
3567 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3568 return 1;
3572 return 0;
3575 #if ENABLE_CHECKING
3576 /* Check the order of entries in one-part variables. */
3579 canonicalize_loc_order_check (variable_def **slot,
3580 dataflow_set *data ATTRIBUTE_UNUSED)
3582 variable var = *slot;
3583 location_chain node, next;
3585 #ifdef ENABLE_RTL_CHECKING
3586 int i;
3587 for (i = 0; i < var->n_var_parts; i++)
3588 gcc_assert (var->var_part[0].cur_loc == NULL);
3589 gcc_assert (!var->in_changed_variables);
3590 #endif
3592 if (!var->onepart)
3593 return 1;
3595 gcc_assert (var->n_var_parts == 1);
3596 node = var->var_part[0].loc_chain;
3597 gcc_assert (node);
3599 while ((next = node->next))
3601 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3602 node = next;
3605 return 1;
3607 #endif
3609 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3610 more likely to be chosen as canonical for an equivalence set.
3611 Ensure less likely values can reach more likely neighbors, making
3612 the connections bidirectional. */
3615 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3617 variable var = *slot;
3618 decl_or_value dv = var->dv;
3619 rtx val;
3620 location_chain node;
3622 if (!dv_is_value_p (dv))
3623 return 1;
3625 gcc_checking_assert (var->n_var_parts == 1);
3627 val = dv_as_value (dv);
3629 for (node = var->var_part[0].loc_chain; node; node = node->next)
3630 if (GET_CODE (node->loc) == VALUE)
3632 if (canon_value_cmp (node->loc, val))
3633 VALUE_RECURSED_INTO (val) = true;
3634 else
3636 decl_or_value odv = dv_from_value (node->loc);
3637 variable_def **oslot;
3638 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3640 set_slot_part (set, val, oslot, odv, 0,
3641 node->init, NULL_RTX);
3643 VALUE_RECURSED_INTO (node->loc) = true;
3647 return 1;
3650 /* Remove redundant entries from equivalence lists in onepart
3651 variables, canonicalizing equivalence sets into star shapes. */
3654 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3656 variable var = *slot;
3657 decl_or_value dv = var->dv;
3658 location_chain node;
3659 decl_or_value cdv;
3660 rtx val, cval;
3661 variable_def **cslot;
3662 bool has_value;
3663 bool has_marks;
3665 if (!var->onepart)
3666 return 1;
3668 gcc_checking_assert (var->n_var_parts == 1);
3670 if (dv_is_value_p (dv))
3672 cval = dv_as_value (dv);
3673 if (!VALUE_RECURSED_INTO (cval))
3674 return 1;
3675 VALUE_RECURSED_INTO (cval) = false;
3677 else
3678 cval = NULL_RTX;
3680 restart:
3681 val = cval;
3682 has_value = false;
3683 has_marks = false;
3685 gcc_assert (var->n_var_parts == 1);
3687 for (node = var->var_part[0].loc_chain; node; node = node->next)
3688 if (GET_CODE (node->loc) == VALUE)
3690 has_value = true;
3691 if (VALUE_RECURSED_INTO (node->loc))
3692 has_marks = true;
3693 if (canon_value_cmp (node->loc, cval))
3694 cval = node->loc;
3697 if (!has_value)
3698 return 1;
3700 if (cval == val)
3702 if (!has_marks || dv_is_decl_p (dv))
3703 return 1;
3705 /* Keep it marked so that we revisit it, either after visiting a
3706 child node, or after visiting a new parent that might be
3707 found out. */
3708 VALUE_RECURSED_INTO (val) = true;
3710 for (node = var->var_part[0].loc_chain; node; node = node->next)
3711 if (GET_CODE (node->loc) == VALUE
3712 && VALUE_RECURSED_INTO (node->loc))
3714 cval = node->loc;
3715 restart_with_cval:
3716 VALUE_RECURSED_INTO (cval) = false;
3717 dv = dv_from_value (cval);
3718 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3719 if (!slot)
3721 gcc_assert (dv_is_decl_p (var->dv));
3722 /* The canonical value was reset and dropped.
3723 Remove it. */
3724 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3725 return 1;
3727 var = *slot;
3728 gcc_assert (dv_is_value_p (var->dv));
3729 if (var->n_var_parts == 0)
3730 return 1;
3731 gcc_assert (var->n_var_parts == 1);
3732 goto restart;
3735 VALUE_RECURSED_INTO (val) = false;
3737 return 1;
3740 /* Push values to the canonical one. */
3741 cdv = dv_from_value (cval);
3742 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3744 for (node = var->var_part[0].loc_chain; node; node = node->next)
3745 if (node->loc != cval)
3747 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3748 node->init, NULL_RTX);
3749 if (GET_CODE (node->loc) == VALUE)
3751 decl_or_value ndv = dv_from_value (node->loc);
3753 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3754 NO_INSERT);
3756 if (canon_value_cmp (node->loc, val))
3758 /* If it could have been a local minimum, it's not any more,
3759 since it's now neighbor to cval, so it may have to push
3760 to it. Conversely, if it wouldn't have prevailed over
3761 val, then whatever mark it has is fine: if it was to
3762 push, it will now push to a more canonical node, but if
3763 it wasn't, then it has already pushed any values it might
3764 have to. */
3765 VALUE_RECURSED_INTO (node->loc) = true;
3766 /* Make sure we visit node->loc by ensuring we cval is
3767 visited too. */
3768 VALUE_RECURSED_INTO (cval) = true;
3770 else if (!VALUE_RECURSED_INTO (node->loc))
3771 /* If we have no need to "recurse" into this node, it's
3772 already "canonicalized", so drop the link to the old
3773 parent. */
3774 clobber_variable_part (set, cval, ndv, 0, NULL);
3776 else if (GET_CODE (node->loc) == REG)
3778 attrs list = set->regs[REGNO (node->loc)], *listp;
3780 /* Change an existing attribute referring to dv so that it
3781 refers to cdv, removing any duplicate this might
3782 introduce, and checking that no previous duplicates
3783 existed, all in a single pass. */
3785 while (list)
3787 if (list->offset == 0
3788 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3789 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3790 break;
3792 list = list->next;
3795 gcc_assert (list);
3796 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3798 list->dv = cdv;
3799 for (listp = &list->next; (list = *listp); listp = &list->next)
3801 if (list->offset)
3802 continue;
3804 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3806 *listp = list->next;
3807 delete list;
3808 list = *listp;
3809 break;
3812 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3815 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3817 for (listp = &list->next; (list = *listp); listp = &list->next)
3819 if (list->offset)
3820 continue;
3822 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3824 *listp = list->next;
3825 delete list;
3826 list = *listp;
3827 break;
3830 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3833 else
3834 gcc_unreachable ();
3836 #if ENABLE_CHECKING
3837 while (list)
3839 if (list->offset == 0
3840 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3841 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3842 gcc_unreachable ();
3844 list = list->next;
3846 #endif
3850 if (val)
3851 set_slot_part (set, val, cslot, cdv, 0,
3852 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3854 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3856 /* Variable may have been unshared. */
3857 var = *slot;
3858 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3859 && var->var_part[0].loc_chain->next == NULL);
3861 if (VALUE_RECURSED_INTO (cval))
3862 goto restart_with_cval;
3864 return 1;
3867 /* Bind one-part variables to the canonical value in an equivalence
3868 set. Not doing this causes dataflow convergence failure in rare
3869 circumstances, see PR42873. Unfortunately we can't do this
3870 efficiently as part of canonicalize_values_star, since we may not
3871 have determined or even seen the canonical value of a set when we
3872 get to a variable that references another member of the set. */
3875 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3877 variable var = *slot;
3878 decl_or_value dv = var->dv;
3879 location_chain node;
3880 rtx cval;
3881 decl_or_value cdv;
3882 variable_def **cslot;
3883 variable cvar;
3884 location_chain cnode;
3886 if (!var->onepart || var->onepart == ONEPART_VALUE)
3887 return 1;
3889 gcc_assert (var->n_var_parts == 1);
3891 node = var->var_part[0].loc_chain;
3893 if (GET_CODE (node->loc) != VALUE)
3894 return 1;
3896 gcc_assert (!node->next);
3897 cval = node->loc;
3899 /* Push values to the canonical one. */
3900 cdv = dv_from_value (cval);
3901 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3902 if (!cslot)
3903 return 1;
3904 cvar = *cslot;
3905 gcc_assert (cvar->n_var_parts == 1);
3907 cnode = cvar->var_part[0].loc_chain;
3909 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3910 that are not “more canonical” than it. */
3911 if (GET_CODE (cnode->loc) != VALUE
3912 || !canon_value_cmp (cnode->loc, cval))
3913 return 1;
3915 /* CVAL was found to be non-canonical. Change the variable to point
3916 to the canonical VALUE. */
3917 gcc_assert (!cnode->next);
3918 cval = cnode->loc;
3920 slot = set_slot_part (set, cval, slot, dv, 0,
3921 node->init, node->set_src);
3922 clobber_slot_part (set, cval, slot, 0, node->set_src);
3924 return 1;
3927 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3928 corresponding entry in DSM->src. Multi-part variables are combined
3929 with variable_union, whereas onepart dvs are combined with
3930 intersection. */
3932 static int
3933 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3935 dataflow_set *dst = dsm->dst;
3936 variable_def **dstslot;
3937 variable s2var, dvar = NULL;
3938 decl_or_value dv = s1var->dv;
3939 onepart_enum_t onepart = s1var->onepart;
3940 rtx val;
3941 hashval_t dvhash;
3942 location_chain node, *nodep;
3944 /* If the incoming onepart variable has an empty location list, then
3945 the intersection will be just as empty. For other variables,
3946 it's always union. */
3947 gcc_checking_assert (s1var->n_var_parts
3948 && s1var->var_part[0].loc_chain);
3950 if (!onepart)
3951 return variable_union (s1var, dst);
3953 gcc_checking_assert (s1var->n_var_parts == 1);
3955 dvhash = dv_htab_hash (dv);
3956 if (dv_is_value_p (dv))
3957 val = dv_as_value (dv);
3958 else
3959 val = NULL;
3961 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3962 if (!s2var)
3964 dst_can_be_shared = false;
3965 return 1;
3968 dsm->src_onepart_cnt--;
3969 gcc_assert (s2var->var_part[0].loc_chain
3970 && s2var->onepart == onepart
3971 && s2var->n_var_parts == 1);
3973 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3974 if (dstslot)
3976 dvar = *dstslot;
3977 gcc_assert (dvar->refcount == 1
3978 && dvar->onepart == onepart
3979 && dvar->n_var_parts == 1);
3980 nodep = &dvar->var_part[0].loc_chain;
3982 else
3984 nodep = &node;
3985 node = NULL;
3988 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3990 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3991 dvhash, INSERT);
3992 *dstslot = dvar = s2var;
3993 dvar->refcount++;
3995 else
3997 dst_can_be_shared = false;
3999 intersect_loc_chains (val, nodep, dsm,
4000 s1var->var_part[0].loc_chain, s2var);
4002 if (!dstslot)
4004 if (node)
4006 dvar = onepart_pool_allocate (onepart);
4007 dvar->dv = dv;
4008 dvar->refcount = 1;
4009 dvar->n_var_parts = 1;
4010 dvar->onepart = onepart;
4011 dvar->in_changed_variables = false;
4012 dvar->var_part[0].loc_chain = node;
4013 dvar->var_part[0].cur_loc = NULL;
4014 if (onepart)
4015 VAR_LOC_1PAUX (dvar) = NULL;
4016 else
4017 VAR_PART_OFFSET (dvar, 0) = 0;
4019 dstslot
4020 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4021 INSERT);
4022 gcc_assert (!*dstslot);
4023 *dstslot = dvar;
4025 else
4026 return 1;
4030 nodep = &dvar->var_part[0].loc_chain;
4031 while ((node = *nodep))
4033 location_chain *nextp = &node->next;
4035 if (GET_CODE (node->loc) == REG)
4037 attrs list;
4039 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4040 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4041 && dv_is_value_p (list->dv))
4042 break;
4044 if (!list)
4045 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4046 dv, 0, node->loc);
4047 /* If this value became canonical for another value that had
4048 this register, we want to leave it alone. */
4049 else if (dv_as_value (list->dv) != val)
4051 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4052 dstslot, dv, 0,
4053 node->init, NULL_RTX);
4054 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4056 /* Since nextp points into the removed node, we can't
4057 use it. The pointer to the next node moved to nodep.
4058 However, if the variable we're walking is unshared
4059 during our walk, we'll keep walking the location list
4060 of the previously-shared variable, in which case the
4061 node won't have been removed, and we'll want to skip
4062 it. That's why we test *nodep here. */
4063 if (*nodep != node)
4064 nextp = nodep;
4067 else
4068 /* Canonicalization puts registers first, so we don't have to
4069 walk it all. */
4070 break;
4071 nodep = nextp;
4074 if (dvar != *dstslot)
4075 dvar = *dstslot;
4076 nodep = &dvar->var_part[0].loc_chain;
4078 if (val)
4080 /* Mark all referenced nodes for canonicalization, and make sure
4081 we have mutual equivalence links. */
4082 VALUE_RECURSED_INTO (val) = true;
4083 for (node = *nodep; node; node = node->next)
4084 if (GET_CODE (node->loc) == VALUE)
4086 VALUE_RECURSED_INTO (node->loc) = true;
4087 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4088 node->init, NULL, INSERT);
4091 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4092 gcc_assert (*dstslot == dvar);
4093 canonicalize_values_star (dstslot, dst);
4094 gcc_checking_assert (dstslot
4095 == shared_hash_find_slot_noinsert_1 (dst->vars,
4096 dv, dvhash));
4097 dvar = *dstslot;
4099 else
4101 bool has_value = false, has_other = false;
4103 /* If we have one value and anything else, we're going to
4104 canonicalize this, so make sure all values have an entry in
4105 the table and are marked for canonicalization. */
4106 for (node = *nodep; node; node = node->next)
4108 if (GET_CODE (node->loc) == VALUE)
4110 /* If this was marked during register canonicalization,
4111 we know we have to canonicalize values. */
4112 if (has_value)
4113 has_other = true;
4114 has_value = true;
4115 if (has_other)
4116 break;
4118 else
4120 has_other = true;
4121 if (has_value)
4122 break;
4126 if (has_value && has_other)
4128 for (node = *nodep; node; node = node->next)
4130 if (GET_CODE (node->loc) == VALUE)
4132 decl_or_value dv = dv_from_value (node->loc);
4133 variable_def **slot = NULL;
4135 if (shared_hash_shared (dst->vars))
4136 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4137 if (!slot)
4138 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4139 INSERT);
4140 if (!*slot)
4142 variable var = onepart_pool_allocate (ONEPART_VALUE);
4143 var->dv = dv;
4144 var->refcount = 1;
4145 var->n_var_parts = 1;
4146 var->onepart = ONEPART_VALUE;
4147 var->in_changed_variables = false;
4148 var->var_part[0].loc_chain = NULL;
4149 var->var_part[0].cur_loc = NULL;
4150 VAR_LOC_1PAUX (var) = NULL;
4151 *slot = var;
4154 VALUE_RECURSED_INTO (node->loc) = true;
4158 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4159 gcc_assert (*dstslot == dvar);
4160 canonicalize_values_star (dstslot, dst);
4161 gcc_checking_assert (dstslot
4162 == shared_hash_find_slot_noinsert_1 (dst->vars,
4163 dv, dvhash));
4164 dvar = *dstslot;
4168 if (!onepart_variable_different_p (dvar, s2var))
4170 variable_htab_free (dvar);
4171 *dstslot = dvar = s2var;
4172 dvar->refcount++;
4174 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4176 variable_htab_free (dvar);
4177 *dstslot = dvar = s1var;
4178 dvar->refcount++;
4179 dst_can_be_shared = false;
4181 else
4182 dst_can_be_shared = false;
4184 return 1;
4187 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4188 multi-part variable. Unions of multi-part variables and
4189 intersections of one-part ones will be handled in
4190 variable_merge_over_cur(). */
4192 static int
4193 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4195 dataflow_set *dst = dsm->dst;
4196 decl_or_value dv = s2var->dv;
4198 if (!s2var->onepart)
4200 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4201 *dstp = s2var;
4202 s2var->refcount++;
4203 return 1;
4206 dsm->src_onepart_cnt++;
4207 return 1;
4210 /* Combine dataflow set information from SRC2 into DST, using PDST
4211 to carry over information across passes. */
4213 static void
4214 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4216 dataflow_set cur = *dst;
4217 dataflow_set *src1 = &cur;
4218 struct dfset_merge dsm;
4219 int i;
4220 size_t src1_elems, src2_elems;
4221 variable_iterator_type hi;
4222 variable var;
4224 src1_elems = shared_hash_htab (src1->vars)->elements ();
4225 src2_elems = shared_hash_htab (src2->vars)->elements ();
4226 dataflow_set_init (dst);
4227 dst->stack_adjust = cur.stack_adjust;
4228 shared_hash_destroy (dst->vars);
4229 dst->vars = new shared_hash_def;
4230 dst->vars->refcount = 1;
4231 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4233 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4234 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4236 dsm.dst = dst;
4237 dsm.src = src2;
4238 dsm.cur = src1;
4239 dsm.src_onepart_cnt = 0;
4241 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4242 var, variable, hi)
4243 variable_merge_over_src (var, &dsm);
4244 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4245 var, variable, hi)
4246 variable_merge_over_cur (var, &dsm);
4248 if (dsm.src_onepart_cnt)
4249 dst_can_be_shared = false;
4251 dataflow_set_destroy (src1);
4254 /* Mark register equivalences. */
4256 static void
4257 dataflow_set_equiv_regs (dataflow_set *set)
4259 int i;
4260 attrs list, *listp;
4262 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4264 rtx canon[NUM_MACHINE_MODES];
4266 /* If the list is empty or one entry, no need to canonicalize
4267 anything. */
4268 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4269 continue;
4271 memset (canon, 0, sizeof (canon));
4273 for (list = set->regs[i]; list; list = list->next)
4274 if (list->offset == 0 && dv_is_value_p (list->dv))
4276 rtx val = dv_as_value (list->dv);
4277 rtx *cvalp = &canon[(int)GET_MODE (val)];
4278 rtx cval = *cvalp;
4280 if (canon_value_cmp (val, cval))
4281 *cvalp = val;
4284 for (list = set->regs[i]; list; list = list->next)
4285 if (list->offset == 0 && dv_onepart_p (list->dv))
4287 rtx cval = canon[(int)GET_MODE (list->loc)];
4289 if (!cval)
4290 continue;
4292 if (dv_is_value_p (list->dv))
4294 rtx val = dv_as_value (list->dv);
4296 if (val == cval)
4297 continue;
4299 VALUE_RECURSED_INTO (val) = true;
4300 set_variable_part (set, val, dv_from_value (cval), 0,
4301 VAR_INIT_STATUS_INITIALIZED,
4302 NULL, NO_INSERT);
4305 VALUE_RECURSED_INTO (cval) = true;
4306 set_variable_part (set, cval, list->dv, 0,
4307 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4310 for (listp = &set->regs[i]; (list = *listp);
4311 listp = list ? &list->next : listp)
4312 if (list->offset == 0 && dv_onepart_p (list->dv))
4314 rtx cval = canon[(int)GET_MODE (list->loc)];
4315 variable_def **slot;
4317 if (!cval)
4318 continue;
4320 if (dv_is_value_p (list->dv))
4322 rtx val = dv_as_value (list->dv);
4323 if (!VALUE_RECURSED_INTO (val))
4324 continue;
4327 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4328 canonicalize_values_star (slot, set);
4329 if (*listp != list)
4330 list = NULL;
4335 /* Remove any redundant values in the location list of VAR, which must
4336 be unshared and 1-part. */
4338 static void
4339 remove_duplicate_values (variable var)
4341 location_chain node, *nodep;
4343 gcc_assert (var->onepart);
4344 gcc_assert (var->n_var_parts == 1);
4345 gcc_assert (var->refcount == 1);
4347 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4349 if (GET_CODE (node->loc) == VALUE)
4351 if (VALUE_RECURSED_INTO (node->loc))
4353 /* Remove duplicate value node. */
4354 *nodep = node->next;
4355 delete node;
4356 continue;
4358 else
4359 VALUE_RECURSED_INTO (node->loc) = true;
4361 nodep = &node->next;
4364 for (node = var->var_part[0].loc_chain; node; node = node->next)
4365 if (GET_CODE (node->loc) == VALUE)
4367 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4368 VALUE_RECURSED_INTO (node->loc) = false;
4373 /* Hash table iteration argument passed to variable_post_merge. */
4374 struct dfset_post_merge
4376 /* The new input set for the current block. */
4377 dataflow_set *set;
4378 /* Pointer to the permanent input set for the current block, or
4379 NULL. */
4380 dataflow_set **permp;
4383 /* Create values for incoming expressions associated with one-part
4384 variables that don't have value numbers for them. */
4387 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4389 dataflow_set *set = dfpm->set;
4390 variable var = *slot;
4391 location_chain node;
4393 if (!var->onepart || !var->n_var_parts)
4394 return 1;
4396 gcc_assert (var->n_var_parts == 1);
4398 if (dv_is_decl_p (var->dv))
4400 bool check_dupes = false;
4402 restart:
4403 for (node = var->var_part[0].loc_chain; node; node = node->next)
4405 if (GET_CODE (node->loc) == VALUE)
4406 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4407 else if (GET_CODE (node->loc) == REG)
4409 attrs att, *attp, *curp = NULL;
4411 if (var->refcount != 1)
4413 slot = unshare_variable (set, slot, var,
4414 VAR_INIT_STATUS_INITIALIZED);
4415 var = *slot;
4416 goto restart;
4419 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4420 attp = &att->next)
4421 if (att->offset == 0
4422 && GET_MODE (att->loc) == GET_MODE (node->loc))
4424 if (dv_is_value_p (att->dv))
4426 rtx cval = dv_as_value (att->dv);
4427 node->loc = cval;
4428 check_dupes = true;
4429 break;
4431 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4432 curp = attp;
4435 if (!curp)
4437 curp = attp;
4438 while (*curp)
4439 if ((*curp)->offset == 0
4440 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4441 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4442 break;
4443 else
4444 curp = &(*curp)->next;
4445 gcc_assert (*curp);
4448 if (!att)
4450 decl_or_value cdv;
4451 rtx cval;
4453 if (!*dfpm->permp)
4455 *dfpm->permp = XNEW (dataflow_set);
4456 dataflow_set_init (*dfpm->permp);
4459 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4460 att; att = att->next)
4461 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4463 gcc_assert (att->offset == 0
4464 && dv_is_value_p (att->dv));
4465 val_reset (set, att->dv);
4466 break;
4469 if (att)
4471 cdv = att->dv;
4472 cval = dv_as_value (cdv);
4474 else
4476 /* Create a unique value to hold this register,
4477 that ought to be found and reused in
4478 subsequent rounds. */
4479 cselib_val *v;
4480 gcc_assert (!cselib_lookup (node->loc,
4481 GET_MODE (node->loc), 0,
4482 VOIDmode));
4483 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4484 VOIDmode);
4485 cselib_preserve_value (v);
4486 cselib_invalidate_rtx (node->loc);
4487 cval = v->val_rtx;
4488 cdv = dv_from_value (cval);
4489 if (dump_file)
4490 fprintf (dump_file,
4491 "Created new value %u:%u for reg %i\n",
4492 v->uid, v->hash, REGNO (node->loc));
4495 var_reg_decl_set (*dfpm->permp, node->loc,
4496 VAR_INIT_STATUS_INITIALIZED,
4497 cdv, 0, NULL, INSERT);
4499 node->loc = cval;
4500 check_dupes = true;
4503 /* Remove attribute referring to the decl, which now
4504 uses the value for the register, already existing or
4505 to be added when we bring perm in. */
4506 att = *curp;
4507 *curp = att->next;
4508 delete att;
4512 if (check_dupes)
4513 remove_duplicate_values (var);
4516 return 1;
4519 /* Reset values in the permanent set that are not associated with the
4520 chosen expression. */
4523 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4525 dataflow_set *set = dfpm->set;
4526 variable pvar = *pslot, var;
4527 location_chain pnode;
4528 decl_or_value dv;
4529 attrs att;
4531 gcc_assert (dv_is_value_p (pvar->dv)
4532 && pvar->n_var_parts == 1);
4533 pnode = pvar->var_part[0].loc_chain;
4534 gcc_assert (pnode
4535 && !pnode->next
4536 && REG_P (pnode->loc));
4538 dv = pvar->dv;
4540 var = shared_hash_find (set->vars, dv);
4541 if (var)
4543 /* Although variable_post_merge_new_vals may have made decls
4544 non-star-canonical, values that pre-existed in canonical form
4545 remain canonical, and newly-created values reference a single
4546 REG, so they are canonical as well. Since VAR has the
4547 location list for a VALUE, using find_loc_in_1pdv for it is
4548 fine, since VALUEs don't map back to DECLs. */
4549 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4550 return 1;
4551 val_reset (set, dv);
4554 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4555 if (att->offset == 0
4556 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4557 && dv_is_value_p (att->dv))
4558 break;
4560 /* If there is a value associated with this register already, create
4561 an equivalence. */
4562 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4564 rtx cval = dv_as_value (att->dv);
4565 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4566 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4567 NULL, INSERT);
4569 else if (!att)
4571 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4572 dv, 0, pnode->loc);
4573 variable_union (pvar, set);
4576 return 1;
4579 /* Just checking stuff and registering register attributes for
4580 now. */
4582 static void
4583 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4585 struct dfset_post_merge dfpm;
4587 dfpm.set = set;
4588 dfpm.permp = permp;
4590 shared_hash_htab (set->vars)
4591 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4592 if (*permp)
4593 shared_hash_htab ((*permp)->vars)
4594 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4595 shared_hash_htab (set->vars)
4596 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4597 shared_hash_htab (set->vars)
4598 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4601 /* Return a node whose loc is a MEM that refers to EXPR in the
4602 location list of a one-part variable or value VAR, or in that of
4603 any values recursively mentioned in the location lists. */
4605 static location_chain
4606 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4608 location_chain node;
4609 decl_or_value dv;
4610 variable var;
4611 location_chain where = NULL;
4613 if (!val)
4614 return NULL;
4616 gcc_assert (GET_CODE (val) == VALUE
4617 && !VALUE_RECURSED_INTO (val));
4619 dv = dv_from_value (val);
4620 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4622 if (!var)
4623 return NULL;
4625 gcc_assert (var->onepart);
4627 if (!var->n_var_parts)
4628 return NULL;
4630 VALUE_RECURSED_INTO (val) = true;
4632 for (node = var->var_part[0].loc_chain; node; node = node->next)
4633 if (MEM_P (node->loc)
4634 && MEM_EXPR (node->loc) == expr
4635 && INT_MEM_OFFSET (node->loc) == 0)
4637 where = node;
4638 break;
4640 else if (GET_CODE (node->loc) == VALUE
4641 && !VALUE_RECURSED_INTO (node->loc)
4642 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4643 break;
4645 VALUE_RECURSED_INTO (val) = false;
4647 return where;
4650 /* Return TRUE if the value of MEM may vary across a call. */
4652 static bool
4653 mem_dies_at_call (rtx mem)
4655 tree expr = MEM_EXPR (mem);
4656 tree decl;
4658 if (!expr)
4659 return true;
4661 decl = get_base_address (expr);
4663 if (!decl)
4664 return true;
4666 if (!DECL_P (decl))
4667 return true;
4669 return (may_be_aliased (decl)
4670 || (!TREE_READONLY (decl) && is_global_var (decl)));
4673 /* Remove all MEMs from the location list of a hash table entry for a
4674 one-part variable, except those whose MEM attributes map back to
4675 the variable itself, directly or within a VALUE. */
4678 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4680 variable var = *slot;
4682 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4684 tree decl = dv_as_decl (var->dv);
4685 location_chain loc, *locp;
4686 bool changed = false;
4688 if (!var->n_var_parts)
4689 return 1;
4691 gcc_assert (var->n_var_parts == 1);
4693 if (shared_var_p (var, set->vars))
4695 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4697 /* We want to remove dying MEMs that doesn't refer to DECL. */
4698 if (GET_CODE (loc->loc) == MEM
4699 && (MEM_EXPR (loc->loc) != decl
4700 || INT_MEM_OFFSET (loc->loc) != 0)
4701 && !mem_dies_at_call (loc->loc))
4702 break;
4703 /* We want to move here MEMs that do refer to DECL. */
4704 else if (GET_CODE (loc->loc) == VALUE
4705 && find_mem_expr_in_1pdv (decl, loc->loc,
4706 shared_hash_htab (set->vars)))
4707 break;
4710 if (!loc)
4711 return 1;
4713 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4714 var = *slot;
4715 gcc_assert (var->n_var_parts == 1);
4718 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4719 loc; loc = *locp)
4721 rtx old_loc = loc->loc;
4722 if (GET_CODE (old_loc) == VALUE)
4724 location_chain mem_node
4725 = find_mem_expr_in_1pdv (decl, loc->loc,
4726 shared_hash_htab (set->vars));
4728 /* ??? This picks up only one out of multiple MEMs that
4729 refer to the same variable. Do we ever need to be
4730 concerned about dealing with more than one, or, given
4731 that they should all map to the same variable
4732 location, their addresses will have been merged and
4733 they will be regarded as equivalent? */
4734 if (mem_node)
4736 loc->loc = mem_node->loc;
4737 loc->set_src = mem_node->set_src;
4738 loc->init = MIN (loc->init, mem_node->init);
4742 if (GET_CODE (loc->loc) != MEM
4743 || (MEM_EXPR (loc->loc) == decl
4744 && INT_MEM_OFFSET (loc->loc) == 0)
4745 || !mem_dies_at_call (loc->loc))
4747 if (old_loc != loc->loc && emit_notes)
4749 if (old_loc == var->var_part[0].cur_loc)
4751 changed = true;
4752 var->var_part[0].cur_loc = NULL;
4755 locp = &loc->next;
4756 continue;
4759 if (emit_notes)
4761 if (old_loc == var->var_part[0].cur_loc)
4763 changed = true;
4764 var->var_part[0].cur_loc = NULL;
4767 *locp = loc->next;
4768 delete loc;
4771 if (!var->var_part[0].loc_chain)
4773 var->n_var_parts--;
4774 changed = true;
4776 if (changed)
4777 variable_was_changed (var, set);
4780 return 1;
4783 /* Remove all MEMs from the location list of a hash table entry for a
4784 value. */
4787 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4789 variable var = *slot;
4791 if (var->onepart == ONEPART_VALUE)
4793 location_chain loc, *locp;
4794 bool changed = false;
4795 rtx cur_loc;
4797 gcc_assert (var->n_var_parts == 1);
4799 if (shared_var_p (var, set->vars))
4801 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4802 if (GET_CODE (loc->loc) == MEM
4803 && mem_dies_at_call (loc->loc))
4804 break;
4806 if (!loc)
4807 return 1;
4809 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4810 var = *slot;
4811 gcc_assert (var->n_var_parts == 1);
4814 if (VAR_LOC_1PAUX (var))
4815 cur_loc = VAR_LOC_FROM (var);
4816 else
4817 cur_loc = var->var_part[0].cur_loc;
4819 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4820 loc; loc = *locp)
4822 if (GET_CODE (loc->loc) != MEM
4823 || !mem_dies_at_call (loc->loc))
4825 locp = &loc->next;
4826 continue;
4829 *locp = loc->next;
4830 /* If we have deleted the location which was last emitted
4831 we have to emit new location so add the variable to set
4832 of changed variables. */
4833 if (cur_loc == loc->loc)
4835 changed = true;
4836 var->var_part[0].cur_loc = NULL;
4837 if (VAR_LOC_1PAUX (var))
4838 VAR_LOC_FROM (var) = NULL;
4840 delete loc;
4843 if (!var->var_part[0].loc_chain)
4845 var->n_var_parts--;
4846 changed = true;
4848 if (changed)
4849 variable_was_changed (var, set);
4852 return 1;
4855 /* Remove all variable-location information about call-clobbered
4856 registers, as well as associations between MEMs and VALUEs. */
4858 static void
4859 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4861 unsigned int r;
4862 hard_reg_set_iterator hrsi;
4863 HARD_REG_SET invalidated_regs;
4865 get_call_reg_set_usage (call_insn, &invalidated_regs,
4866 regs_invalidated_by_call);
4868 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4869 var_regno_delete (set, r);
4871 if (MAY_HAVE_DEBUG_INSNS)
4873 set->traversed_vars = set->vars;
4874 shared_hash_htab (set->vars)
4875 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4876 set->traversed_vars = set->vars;
4877 shared_hash_htab (set->vars)
4878 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4879 set->traversed_vars = NULL;
4883 static bool
4884 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4886 location_chain lc1, lc2;
4888 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4890 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4892 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4894 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4895 break;
4897 if (rtx_equal_p (lc1->loc, lc2->loc))
4898 break;
4900 if (!lc2)
4901 return true;
4903 return false;
4906 /* Return true if one-part variables VAR1 and VAR2 are different.
4907 They must be in canonical order. */
4909 static bool
4910 onepart_variable_different_p (variable var1, variable var2)
4912 location_chain lc1, lc2;
4914 if (var1 == var2)
4915 return false;
4917 gcc_assert (var1->n_var_parts == 1
4918 && var2->n_var_parts == 1);
4920 lc1 = var1->var_part[0].loc_chain;
4921 lc2 = var2->var_part[0].loc_chain;
4923 gcc_assert (lc1 && lc2);
4925 while (lc1 && lc2)
4927 if (loc_cmp (lc1->loc, lc2->loc))
4928 return true;
4929 lc1 = lc1->next;
4930 lc2 = lc2->next;
4933 return lc1 != lc2;
4936 /* Return true if variables VAR1 and VAR2 are different. */
4938 static bool
4939 variable_different_p (variable var1, variable var2)
4941 int i;
4943 if (var1 == var2)
4944 return false;
4946 if (var1->onepart != var2->onepart)
4947 return true;
4949 if (var1->n_var_parts != var2->n_var_parts)
4950 return true;
4952 if (var1->onepart && var1->n_var_parts)
4954 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4955 && var1->n_var_parts == 1);
4956 /* One-part values have locations in a canonical order. */
4957 return onepart_variable_different_p (var1, var2);
4960 for (i = 0; i < var1->n_var_parts; i++)
4962 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4963 return true;
4964 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4965 return true;
4966 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4967 return true;
4969 return false;
4972 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4974 static bool
4975 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4977 variable_iterator_type hi;
4978 variable var1;
4980 if (old_set->vars == new_set->vars)
4981 return false;
4983 if (shared_hash_htab (old_set->vars)->elements ()
4984 != shared_hash_htab (new_set->vars)->elements ())
4985 return true;
4987 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4988 var1, variable, hi)
4990 variable_table_type *htab = shared_hash_htab (new_set->vars);
4991 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4992 if (!var2)
4994 if (dump_file && (dump_flags & TDF_DETAILS))
4996 fprintf (dump_file, "dataflow difference found: removal of:\n");
4997 dump_var (var1);
4999 return true;
5002 if (variable_different_p (var1, var2))
5004 if (dump_file && (dump_flags & TDF_DETAILS))
5006 fprintf (dump_file, "dataflow difference found: "
5007 "old and new follow:\n");
5008 dump_var (var1);
5009 dump_var (var2);
5011 return true;
5015 /* No need to traverse the second hashtab, if both have the same number
5016 of elements and the second one had all entries found in the first one,
5017 then it can't have any extra entries. */
5018 return false;
5021 /* Free the contents of dataflow set SET. */
5023 static void
5024 dataflow_set_destroy (dataflow_set *set)
5026 int i;
5028 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5029 attrs_list_clear (&set->regs[i]);
5031 shared_hash_destroy (set->vars);
5032 set->vars = NULL;
5035 /* Return true if RTL X contains a SYMBOL_REF. */
5037 static bool
5038 contains_symbol_ref (rtx x)
5040 const char *fmt;
5041 RTX_CODE code;
5042 int i;
5044 if (!x)
5045 return false;
5047 code = GET_CODE (x);
5048 if (code == SYMBOL_REF)
5049 return true;
5051 fmt = GET_RTX_FORMAT (code);
5052 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5054 if (fmt[i] == 'e')
5056 if (contains_symbol_ref (XEXP (x, i)))
5057 return true;
5059 else if (fmt[i] == 'E')
5061 int j;
5062 for (j = 0; j < XVECLEN (x, i); j++)
5063 if (contains_symbol_ref (XVECEXP (x, i, j)))
5064 return true;
5068 return false;
5071 /* Shall EXPR be tracked? */
5073 static bool
5074 track_expr_p (tree expr, bool need_rtl)
5076 rtx decl_rtl;
5077 tree realdecl;
5079 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5080 return DECL_RTL_SET_P (expr);
5082 /* If EXPR is not a parameter or a variable do not track it. */
5083 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5084 return 0;
5086 /* It also must have a name... */
5087 if (!DECL_NAME (expr) && need_rtl)
5088 return 0;
5090 /* ... and a RTL assigned to it. */
5091 decl_rtl = DECL_RTL_IF_SET (expr);
5092 if (!decl_rtl && need_rtl)
5093 return 0;
5095 /* If this expression is really a debug alias of some other declaration, we
5096 don't need to track this expression if the ultimate declaration is
5097 ignored. */
5098 realdecl = expr;
5099 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5101 realdecl = DECL_DEBUG_EXPR (realdecl);
5102 if (!DECL_P (realdecl))
5104 if (handled_component_p (realdecl)
5105 || (TREE_CODE (realdecl) == MEM_REF
5106 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5108 HOST_WIDE_INT bitsize, bitpos, maxsize;
5109 tree innerdecl
5110 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5111 &maxsize);
5112 if (!DECL_P (innerdecl)
5113 || DECL_IGNORED_P (innerdecl)
5114 /* Do not track declarations for parts of tracked parameters
5115 since we want to track them as a whole instead. */
5116 || (TREE_CODE (innerdecl) == PARM_DECL
5117 && DECL_MODE (innerdecl) != BLKmode
5118 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5119 || TREE_STATIC (innerdecl)
5120 || bitsize <= 0
5121 || bitpos + bitsize > 256
5122 || bitsize != maxsize)
5123 return 0;
5124 else
5125 realdecl = expr;
5127 else
5128 return 0;
5132 /* Do not track EXPR if REALDECL it should be ignored for debugging
5133 purposes. */
5134 if (DECL_IGNORED_P (realdecl))
5135 return 0;
5137 /* Do not track global variables until we are able to emit correct location
5138 list for them. */
5139 if (TREE_STATIC (realdecl))
5140 return 0;
5142 /* When the EXPR is a DECL for alias of some variable (see example)
5143 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5144 DECL_RTL contains SYMBOL_REF.
5146 Example:
5147 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5148 char **_dl_argv;
5150 if (decl_rtl && MEM_P (decl_rtl)
5151 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5152 return 0;
5154 /* If RTX is a memory it should not be very large (because it would be
5155 an array or struct). */
5156 if (decl_rtl && MEM_P (decl_rtl))
5158 /* Do not track structures and arrays. */
5159 if (GET_MODE (decl_rtl) == BLKmode
5160 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5161 return 0;
5162 if (MEM_SIZE_KNOWN_P (decl_rtl)
5163 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5164 return 0;
5167 DECL_CHANGED (expr) = 0;
5168 DECL_CHANGED (realdecl) = 0;
5169 return 1;
5172 /* Determine whether a given LOC refers to the same variable part as
5173 EXPR+OFFSET. */
5175 static bool
5176 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5178 tree expr2;
5179 HOST_WIDE_INT offset2;
5181 if (! DECL_P (expr))
5182 return false;
5184 if (REG_P (loc))
5186 expr2 = REG_EXPR (loc);
5187 offset2 = REG_OFFSET (loc);
5189 else if (MEM_P (loc))
5191 expr2 = MEM_EXPR (loc);
5192 offset2 = INT_MEM_OFFSET (loc);
5194 else
5195 return false;
5197 if (! expr2 || ! DECL_P (expr2))
5198 return false;
5200 expr = var_debug_decl (expr);
5201 expr2 = var_debug_decl (expr2);
5203 return (expr == expr2 && offset == offset2);
5206 /* LOC is a REG or MEM that we would like to track if possible.
5207 If EXPR is null, we don't know what expression LOC refers to,
5208 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5209 LOC is an lvalue register.
5211 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5212 is something we can track. When returning true, store the mode of
5213 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5214 from EXPR in *OFFSET_OUT (if nonnull). */
5216 static bool
5217 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5218 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5220 machine_mode mode;
5222 if (expr == NULL || !track_expr_p (expr, true))
5223 return false;
5225 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5226 whole subreg, but only the old inner part is really relevant. */
5227 mode = GET_MODE (loc);
5228 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5230 machine_mode pseudo_mode;
5232 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5233 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5235 offset += byte_lowpart_offset (pseudo_mode, mode);
5236 mode = pseudo_mode;
5240 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5241 Do the same if we are storing to a register and EXPR occupies
5242 the whole of register LOC; in that case, the whole of EXPR is
5243 being changed. We exclude complex modes from the second case
5244 because the real and imaginary parts are represented as separate
5245 pseudo registers, even if the whole complex value fits into one
5246 hard register. */
5247 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5248 || (store_reg_p
5249 && !COMPLEX_MODE_P (DECL_MODE (expr))
5250 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5251 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5253 mode = DECL_MODE (expr);
5254 offset = 0;
5257 if (offset < 0 || offset >= MAX_VAR_PARTS)
5258 return false;
5260 if (mode_out)
5261 *mode_out = mode;
5262 if (offset_out)
5263 *offset_out = offset;
5264 return true;
5267 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5268 want to track. When returning nonnull, make sure that the attributes
5269 on the returned value are updated. */
5271 static rtx
5272 var_lowpart (machine_mode mode, rtx loc)
5274 unsigned int offset, reg_offset, regno;
5276 if (GET_MODE (loc) == mode)
5277 return loc;
5279 if (!REG_P (loc) && !MEM_P (loc))
5280 return NULL;
5282 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5284 if (MEM_P (loc))
5285 return adjust_address_nv (loc, mode, offset);
5287 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5288 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5289 reg_offset, mode);
5290 return gen_rtx_REG_offset (loc, mode, regno, offset);
5293 /* Carry information about uses and stores while walking rtx. */
5295 struct count_use_info
5297 /* The insn where the RTX is. */
5298 rtx_insn *insn;
5300 /* The basic block where insn is. */
5301 basic_block bb;
5303 /* The array of n_sets sets in the insn, as determined by cselib. */
5304 struct cselib_set *sets;
5305 int n_sets;
5307 /* True if we're counting stores, false otherwise. */
5308 bool store_p;
5311 /* Find a VALUE corresponding to X. */
5313 static inline cselib_val *
5314 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5316 int i;
5318 if (cui->sets)
5320 /* This is called after uses are set up and before stores are
5321 processed by cselib, so it's safe to look up srcs, but not
5322 dsts. So we look up expressions that appear in srcs or in
5323 dest expressions, but we search the sets array for dests of
5324 stores. */
5325 if (cui->store_p)
5327 /* Some targets represent memset and memcpy patterns
5328 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5329 (set (mem:BLK ...) (const_int ...)) or
5330 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5331 in that case, otherwise we end up with mode mismatches. */
5332 if (mode == BLKmode && MEM_P (x))
5333 return NULL;
5334 for (i = 0; i < cui->n_sets; i++)
5335 if (cui->sets[i].dest == x)
5336 return cui->sets[i].src_elt;
5338 else
5339 return cselib_lookup (x, mode, 0, VOIDmode);
5342 return NULL;
5345 /* Replace all registers and addresses in an expression with VALUE
5346 expressions that map back to them, unless the expression is a
5347 register. If no mapping is or can be performed, returns NULL. */
5349 static rtx
5350 replace_expr_with_values (rtx loc)
5352 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5353 return NULL;
5354 else if (MEM_P (loc))
5356 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5357 get_address_mode (loc), 0,
5358 GET_MODE (loc));
5359 if (addr)
5360 return replace_equiv_address_nv (loc, addr->val_rtx);
5361 else
5362 return NULL;
5364 else
5365 return cselib_subst_to_values (loc, VOIDmode);
5368 /* Return true if X contains a DEBUG_EXPR. */
5370 static bool
5371 rtx_debug_expr_p (const_rtx x)
5373 subrtx_iterator::array_type array;
5374 FOR_EACH_SUBRTX (iter, array, x, ALL)
5375 if (GET_CODE (*iter) == DEBUG_EXPR)
5376 return true;
5377 return false;
5380 /* Determine what kind of micro operation to choose for a USE. Return
5381 MO_CLOBBER if no micro operation is to be generated. */
5383 static enum micro_operation_type
5384 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5386 tree expr;
5388 if (cui && cui->sets)
5390 if (GET_CODE (loc) == VAR_LOCATION)
5392 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5394 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5395 if (! VAR_LOC_UNKNOWN_P (ploc))
5397 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5398 VOIDmode);
5400 /* ??? flag_float_store and volatile mems are never
5401 given values, but we could in theory use them for
5402 locations. */
5403 gcc_assert (val || 1);
5405 return MO_VAL_LOC;
5407 else
5408 return MO_CLOBBER;
5411 if (REG_P (loc) || MEM_P (loc))
5413 if (modep)
5414 *modep = GET_MODE (loc);
5415 if (cui->store_p)
5417 if (REG_P (loc)
5418 || (find_use_val (loc, GET_MODE (loc), cui)
5419 && cselib_lookup (XEXP (loc, 0),
5420 get_address_mode (loc), 0,
5421 GET_MODE (loc))))
5422 return MO_VAL_SET;
5424 else
5426 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5428 if (val && !cselib_preserved_value_p (val))
5429 return MO_VAL_USE;
5434 if (REG_P (loc))
5436 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5438 if (loc == cfa_base_rtx)
5439 return MO_CLOBBER;
5440 expr = REG_EXPR (loc);
5442 if (!expr)
5443 return MO_USE_NO_VAR;
5444 else if (target_for_debug_bind (var_debug_decl (expr)))
5445 return MO_CLOBBER;
5446 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5447 false, modep, NULL))
5448 return MO_USE;
5449 else
5450 return MO_USE_NO_VAR;
5452 else if (MEM_P (loc))
5454 expr = MEM_EXPR (loc);
5456 if (!expr)
5457 return MO_CLOBBER;
5458 else if (target_for_debug_bind (var_debug_decl (expr)))
5459 return MO_CLOBBER;
5460 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5461 false, modep, NULL)
5462 /* Multi-part variables shouldn't refer to one-part
5463 variable names such as VALUEs (never happens) or
5464 DEBUG_EXPRs (only happens in the presence of debug
5465 insns). */
5466 && (!MAY_HAVE_DEBUG_INSNS
5467 || !rtx_debug_expr_p (XEXP (loc, 0))))
5468 return MO_USE;
5469 else
5470 return MO_CLOBBER;
5473 return MO_CLOBBER;
5476 /* Log to OUT information about micro-operation MOPT involving X in
5477 INSN of BB. */
5479 static inline void
5480 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5481 enum micro_operation_type mopt, FILE *out)
5483 fprintf (out, "bb %i op %i insn %i %s ",
5484 bb->index, VTI (bb)->mos.length (),
5485 INSN_UID (insn), micro_operation_type_name[mopt]);
5486 print_inline_rtx (out, x, 2);
5487 fputc ('\n', out);
5490 /* Tell whether the CONCAT used to holds a VALUE and its location
5491 needs value resolution, i.e., an attempt of mapping the location
5492 back to other incoming values. */
5493 #define VAL_NEEDS_RESOLUTION(x) \
5494 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5495 /* Whether the location in the CONCAT is a tracked expression, that
5496 should also be handled like a MO_USE. */
5497 #define VAL_HOLDS_TRACK_EXPR(x) \
5498 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5499 /* Whether the location in the CONCAT should be handled like a MO_COPY
5500 as well. */
5501 #define VAL_EXPR_IS_COPIED(x) \
5502 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5503 /* Whether the location in the CONCAT should be handled like a
5504 MO_CLOBBER as well. */
5505 #define VAL_EXPR_IS_CLOBBERED(x) \
5506 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5508 /* All preserved VALUEs. */
5509 static vec<rtx> preserved_values;
5511 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5513 static void
5514 preserve_value (cselib_val *val)
5516 cselib_preserve_value (val);
5517 preserved_values.safe_push (val->val_rtx);
5520 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5521 any rtxes not suitable for CONST use not replaced by VALUEs
5522 are discovered. */
5524 static bool
5525 non_suitable_const (const_rtx x)
5527 subrtx_iterator::array_type array;
5528 FOR_EACH_SUBRTX (iter, array, x, ALL)
5530 const_rtx x = *iter;
5531 switch (GET_CODE (x))
5533 case REG:
5534 case DEBUG_EXPR:
5535 case PC:
5536 case SCRATCH:
5537 case CC0:
5538 case ASM_INPUT:
5539 case ASM_OPERANDS:
5540 return true;
5541 case MEM:
5542 if (!MEM_READONLY_P (x))
5543 return true;
5544 break;
5545 default:
5546 break;
5549 return false;
5552 /* Add uses (register and memory references) LOC which will be tracked
5553 to VTI (bb)->mos. */
5555 static void
5556 add_uses (rtx loc, struct count_use_info *cui)
5558 machine_mode mode = VOIDmode;
5559 enum micro_operation_type type = use_type (loc, cui, &mode);
5561 if (type != MO_CLOBBER)
5563 basic_block bb = cui->bb;
5564 micro_operation mo;
5566 mo.type = type;
5567 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5568 mo.insn = cui->insn;
5570 if (type == MO_VAL_LOC)
5572 rtx oloc = loc;
5573 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5574 cselib_val *val;
5576 gcc_assert (cui->sets);
5578 if (MEM_P (vloc)
5579 && !REG_P (XEXP (vloc, 0))
5580 && !MEM_P (XEXP (vloc, 0)))
5582 rtx mloc = vloc;
5583 machine_mode address_mode = get_address_mode (mloc);
5584 cselib_val *val
5585 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5586 GET_MODE (mloc));
5588 if (val && !cselib_preserved_value_p (val))
5589 preserve_value (val);
5592 if (CONSTANT_P (vloc)
5593 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5594 /* For constants don't look up any value. */;
5595 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5596 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5598 machine_mode mode2;
5599 enum micro_operation_type type2;
5600 rtx nloc = NULL;
5601 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5603 if (resolvable)
5604 nloc = replace_expr_with_values (vloc);
5606 if (nloc)
5608 oloc = shallow_copy_rtx (oloc);
5609 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5612 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5614 type2 = use_type (vloc, 0, &mode2);
5616 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5617 || type2 == MO_CLOBBER);
5619 if (type2 == MO_CLOBBER
5620 && !cselib_preserved_value_p (val))
5622 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5623 preserve_value (val);
5626 else if (!VAR_LOC_UNKNOWN_P (vloc))
5628 oloc = shallow_copy_rtx (oloc);
5629 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5632 mo.u.loc = oloc;
5634 else if (type == MO_VAL_USE)
5636 machine_mode mode2 = VOIDmode;
5637 enum micro_operation_type type2;
5638 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5639 rtx vloc, oloc = loc, nloc;
5641 gcc_assert (cui->sets);
5643 if (MEM_P (oloc)
5644 && !REG_P (XEXP (oloc, 0))
5645 && !MEM_P (XEXP (oloc, 0)))
5647 rtx mloc = oloc;
5648 machine_mode address_mode = get_address_mode (mloc);
5649 cselib_val *val
5650 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5651 GET_MODE (mloc));
5653 if (val && !cselib_preserved_value_p (val))
5654 preserve_value (val);
5657 type2 = use_type (loc, 0, &mode2);
5659 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5660 || type2 == MO_CLOBBER);
5662 if (type2 == MO_USE)
5663 vloc = var_lowpart (mode2, loc);
5664 else
5665 vloc = oloc;
5667 /* The loc of a MO_VAL_USE may have two forms:
5669 (concat val src): val is at src, a value-based
5670 representation.
5672 (concat (concat val use) src): same as above, with use as
5673 the MO_USE tracked value, if it differs from src.
5677 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5678 nloc = replace_expr_with_values (loc);
5679 if (!nloc)
5680 nloc = oloc;
5682 if (vloc != nloc)
5683 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5684 else
5685 oloc = val->val_rtx;
5687 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5689 if (type2 == MO_USE)
5690 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5691 if (!cselib_preserved_value_p (val))
5693 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5694 preserve_value (val);
5697 else
5698 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5700 if (dump_file && (dump_flags & TDF_DETAILS))
5701 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5702 VTI (bb)->mos.safe_push (mo);
5706 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5708 static void
5709 add_uses_1 (rtx *x, void *cui)
5711 subrtx_var_iterator::array_type array;
5712 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5713 add_uses (*iter, (struct count_use_info *) cui);
5716 /* This is the value used during expansion of locations. We want it
5717 to be unbounded, so that variables expanded deep in a recursion
5718 nest are fully evaluated, so that their values are cached
5719 correctly. We avoid recursion cycles through other means, and we
5720 don't unshare RTL, so excess complexity is not a problem. */
5721 #define EXPR_DEPTH (INT_MAX)
5722 /* We use this to keep too-complex expressions from being emitted as
5723 location notes, and then to debug information. Users can trade
5724 compile time for ridiculously complex expressions, although they're
5725 seldom useful, and they may often have to be discarded as not
5726 representable anyway. */
5727 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5729 /* Attempt to reverse the EXPR operation in the debug info and record
5730 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5731 no longer live we can express its value as VAL - 6. */
5733 static void
5734 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5736 rtx src, arg, ret;
5737 cselib_val *v;
5738 struct elt_loc_list *l;
5739 enum rtx_code code;
5740 int count;
5742 if (GET_CODE (expr) != SET)
5743 return;
5745 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5746 return;
5748 src = SET_SRC (expr);
5749 switch (GET_CODE (src))
5751 case PLUS:
5752 case MINUS:
5753 case XOR:
5754 case NOT:
5755 case NEG:
5756 if (!REG_P (XEXP (src, 0)))
5757 return;
5758 break;
5759 case SIGN_EXTEND:
5760 case ZERO_EXTEND:
5761 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5762 return;
5763 break;
5764 default:
5765 return;
5768 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5769 return;
5771 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5772 if (!v || !cselib_preserved_value_p (v))
5773 return;
5775 /* Use canonical V to avoid creating multiple redundant expressions
5776 for different VALUES equivalent to V. */
5777 v = canonical_cselib_val (v);
5779 /* Adding a reverse op isn't useful if V already has an always valid
5780 location. Ignore ENTRY_VALUE, while it is always constant, we should
5781 prefer non-ENTRY_VALUE locations whenever possible. */
5782 for (l = v->locs, count = 0; l; l = l->next, count++)
5783 if (CONSTANT_P (l->loc)
5784 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5785 return;
5786 /* Avoid creating too large locs lists. */
5787 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5788 return;
5790 switch (GET_CODE (src))
5792 case NOT:
5793 case NEG:
5794 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5795 return;
5796 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5797 break;
5798 case SIGN_EXTEND:
5799 case ZERO_EXTEND:
5800 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5801 break;
5802 case XOR:
5803 code = XOR;
5804 goto binary;
5805 case PLUS:
5806 code = MINUS;
5807 goto binary;
5808 case MINUS:
5809 code = PLUS;
5810 goto binary;
5811 binary:
5812 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5813 return;
5814 arg = XEXP (src, 1);
5815 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5817 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5818 if (arg == NULL_RTX)
5819 return;
5820 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5821 return;
5823 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5824 if (ret == val)
5825 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5826 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5827 breaks a lot of routines during var-tracking. */
5828 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5829 break;
5830 default:
5831 gcc_unreachable ();
5834 cselib_add_permanent_equiv (v, ret, insn);
5837 /* Add stores (register and memory references) LOC which will be tracked
5838 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5839 CUIP->insn is instruction which the LOC is part of. */
5841 static void
5842 add_stores (rtx loc, const_rtx expr, void *cuip)
5844 machine_mode mode = VOIDmode, mode2;
5845 struct count_use_info *cui = (struct count_use_info *)cuip;
5846 basic_block bb = cui->bb;
5847 micro_operation mo;
5848 rtx oloc = loc, nloc, src = NULL;
5849 enum micro_operation_type type = use_type (loc, cui, &mode);
5850 bool track_p = false;
5851 cselib_val *v;
5852 bool resolve, preserve;
5854 if (type == MO_CLOBBER)
5855 return;
5857 mode2 = mode;
5859 if (REG_P (loc))
5861 gcc_assert (loc != cfa_base_rtx);
5862 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5863 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5864 || GET_CODE (expr) == CLOBBER)
5866 mo.type = MO_CLOBBER;
5867 mo.u.loc = loc;
5868 if (GET_CODE (expr) == SET
5869 && SET_DEST (expr) == loc
5870 && !unsuitable_loc (SET_SRC (expr))
5871 && find_use_val (loc, mode, cui))
5873 gcc_checking_assert (type == MO_VAL_SET);
5874 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5877 else
5879 if (GET_CODE (expr) == SET
5880 && SET_DEST (expr) == loc
5881 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5882 src = var_lowpart (mode2, SET_SRC (expr));
5883 loc = var_lowpart (mode2, loc);
5885 if (src == NULL)
5887 mo.type = MO_SET;
5888 mo.u.loc = loc;
5890 else
5892 rtx xexpr = gen_rtx_SET (loc, src);
5893 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5895 /* If this is an instruction copying (part of) a parameter
5896 passed by invisible reference to its register location,
5897 pretend it's a SET so that the initial memory location
5898 is discarded, as the parameter register can be reused
5899 for other purposes and we do not track locations based
5900 on generic registers. */
5901 if (MEM_P (src)
5902 && REG_EXPR (loc)
5903 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5904 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5905 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5906 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5907 != arg_pointer_rtx)
5908 mo.type = MO_SET;
5909 else
5910 mo.type = MO_COPY;
5912 else
5913 mo.type = MO_SET;
5914 mo.u.loc = xexpr;
5917 mo.insn = cui->insn;
5919 else if (MEM_P (loc)
5920 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5921 || cui->sets))
5923 if (MEM_P (loc) && type == MO_VAL_SET
5924 && !REG_P (XEXP (loc, 0))
5925 && !MEM_P (XEXP (loc, 0)))
5927 rtx mloc = loc;
5928 machine_mode address_mode = get_address_mode (mloc);
5929 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5930 address_mode, 0,
5931 GET_MODE (mloc));
5933 if (val && !cselib_preserved_value_p (val))
5934 preserve_value (val);
5937 if (GET_CODE (expr) == CLOBBER || !track_p)
5939 mo.type = MO_CLOBBER;
5940 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5942 else
5944 if (GET_CODE (expr) == SET
5945 && SET_DEST (expr) == loc
5946 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5947 src = var_lowpart (mode2, SET_SRC (expr));
5948 loc = var_lowpart (mode2, loc);
5950 if (src == NULL)
5952 mo.type = MO_SET;
5953 mo.u.loc = loc;
5955 else
5957 rtx xexpr = gen_rtx_SET (loc, src);
5958 if (same_variable_part_p (SET_SRC (xexpr),
5959 MEM_EXPR (loc),
5960 INT_MEM_OFFSET (loc)))
5961 mo.type = MO_COPY;
5962 else
5963 mo.type = MO_SET;
5964 mo.u.loc = xexpr;
5967 mo.insn = cui->insn;
5969 else
5970 return;
5972 if (type != MO_VAL_SET)
5973 goto log_and_return;
5975 v = find_use_val (oloc, mode, cui);
5977 if (!v)
5978 goto log_and_return;
5980 resolve = preserve = !cselib_preserved_value_p (v);
5982 /* We cannot track values for multiple-part variables, so we track only
5983 locations for tracked parameters passed either by invisible reference
5984 or directly in multiple locations. */
5985 if (track_p
5986 && REG_P (loc)
5987 && REG_EXPR (loc)
5988 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5989 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5990 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5991 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5992 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5993 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5994 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5996 /* Although we don't use the value here, it could be used later by the
5997 mere virtue of its existence as the operand of the reverse operation
5998 that gave rise to it (typically extension/truncation). Make sure it
5999 is preserved as required by vt_expand_var_loc_chain. */
6000 if (preserve)
6001 preserve_value (v);
6002 goto log_and_return;
6005 if (loc == stack_pointer_rtx
6006 && hard_frame_pointer_adjustment != -1
6007 && preserve)
6008 cselib_set_value_sp_based (v);
6010 nloc = replace_expr_with_values (oloc);
6011 if (nloc)
6012 oloc = nloc;
6014 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6016 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6018 if (oval == v)
6019 return;
6020 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6022 if (oval && !cselib_preserved_value_p (oval))
6024 micro_operation moa;
6026 preserve_value (oval);
6028 moa.type = MO_VAL_USE;
6029 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6030 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6031 moa.insn = cui->insn;
6033 if (dump_file && (dump_flags & TDF_DETAILS))
6034 log_op_type (moa.u.loc, cui->bb, cui->insn,
6035 moa.type, dump_file);
6036 VTI (bb)->mos.safe_push (moa);
6039 resolve = false;
6041 else if (resolve && GET_CODE (mo.u.loc) == SET)
6043 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6044 nloc = replace_expr_with_values (SET_SRC (expr));
6045 else
6046 nloc = NULL_RTX;
6048 /* Avoid the mode mismatch between oexpr and expr. */
6049 if (!nloc && mode != mode2)
6051 nloc = SET_SRC (expr);
6052 gcc_assert (oloc == SET_DEST (expr));
6055 if (nloc && nloc != SET_SRC (mo.u.loc))
6056 oloc = gen_rtx_SET (oloc, nloc);
6057 else
6059 if (oloc == SET_DEST (mo.u.loc))
6060 /* No point in duplicating. */
6061 oloc = mo.u.loc;
6062 if (!REG_P (SET_SRC (mo.u.loc)))
6063 resolve = false;
6066 else if (!resolve)
6068 if (GET_CODE (mo.u.loc) == SET
6069 && oloc == SET_DEST (mo.u.loc))
6070 /* No point in duplicating. */
6071 oloc = mo.u.loc;
6073 else
6074 resolve = false;
6076 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6078 if (mo.u.loc != oloc)
6079 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6081 /* The loc of a MO_VAL_SET may have various forms:
6083 (concat val dst): dst now holds val
6085 (concat val (set dst src)): dst now holds val, copied from src
6087 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6088 after replacing mems and non-top-level regs with values.
6090 (concat (concat val dstv) (set dst src)): dst now holds val,
6091 copied from src. dstv is a value-based representation of dst, if
6092 it differs from dst. If resolution is needed, src is a REG, and
6093 its mode is the same as that of val.
6095 (concat (concat val (set dstv srcv)) (set dst src)): src
6096 copied to dst, holding val. dstv and srcv are value-based
6097 representations of dst and src, respectively.
6101 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6102 reverse_op (v->val_rtx, expr, cui->insn);
6104 mo.u.loc = loc;
6106 if (track_p)
6107 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6108 if (preserve)
6110 VAL_NEEDS_RESOLUTION (loc) = resolve;
6111 preserve_value (v);
6113 if (mo.type == MO_CLOBBER)
6114 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6115 if (mo.type == MO_COPY)
6116 VAL_EXPR_IS_COPIED (loc) = 1;
6118 mo.type = MO_VAL_SET;
6120 log_and_return:
6121 if (dump_file && (dump_flags & TDF_DETAILS))
6122 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6123 VTI (bb)->mos.safe_push (mo);
6126 /* Arguments to the call. */
6127 static rtx call_arguments;
6129 /* Compute call_arguments. */
6131 static void
6132 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6134 rtx link, x, call;
6135 rtx prev, cur, next;
6136 rtx this_arg = NULL_RTX;
6137 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6138 tree obj_type_ref = NULL_TREE;
6139 CUMULATIVE_ARGS args_so_far_v;
6140 cumulative_args_t args_so_far;
6142 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6143 args_so_far = pack_cumulative_args (&args_so_far_v);
6144 call = get_call_rtx_from (insn);
6145 if (call)
6147 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6149 rtx symbol = XEXP (XEXP (call, 0), 0);
6150 if (SYMBOL_REF_DECL (symbol))
6151 fndecl = SYMBOL_REF_DECL (symbol);
6153 if (fndecl == NULL_TREE)
6154 fndecl = MEM_EXPR (XEXP (call, 0));
6155 if (fndecl
6156 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6157 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6158 fndecl = NULL_TREE;
6159 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6160 type = TREE_TYPE (fndecl);
6161 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6163 if (TREE_CODE (fndecl) == INDIRECT_REF
6164 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6165 obj_type_ref = TREE_OPERAND (fndecl, 0);
6166 fndecl = NULL_TREE;
6168 if (type)
6170 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6171 t = TREE_CHAIN (t))
6172 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6173 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6174 break;
6175 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6176 type = NULL;
6177 else
6179 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6180 link = CALL_INSN_FUNCTION_USAGE (insn);
6181 #ifndef PCC_STATIC_STRUCT_RETURN
6182 if (aggregate_value_p (TREE_TYPE (type), type)
6183 && targetm.calls.struct_value_rtx (type, 0) == 0)
6185 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6186 machine_mode mode = TYPE_MODE (struct_addr);
6187 rtx reg;
6188 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6189 nargs + 1);
6190 reg = targetm.calls.function_arg (args_so_far, mode,
6191 struct_addr, true);
6192 targetm.calls.function_arg_advance (args_so_far, mode,
6193 struct_addr, true);
6194 if (reg == NULL_RTX)
6196 for (; link; link = XEXP (link, 1))
6197 if (GET_CODE (XEXP (link, 0)) == USE
6198 && MEM_P (XEXP (XEXP (link, 0), 0)))
6200 link = XEXP (link, 1);
6201 break;
6205 else
6206 #endif
6207 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6208 nargs);
6209 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6211 machine_mode mode;
6212 t = TYPE_ARG_TYPES (type);
6213 mode = TYPE_MODE (TREE_VALUE (t));
6214 this_arg = targetm.calls.function_arg (args_so_far, mode,
6215 TREE_VALUE (t), true);
6216 if (this_arg && !REG_P (this_arg))
6217 this_arg = NULL_RTX;
6218 else if (this_arg == NULL_RTX)
6220 for (; link; link = XEXP (link, 1))
6221 if (GET_CODE (XEXP (link, 0)) == USE
6222 && MEM_P (XEXP (XEXP (link, 0), 0)))
6224 this_arg = XEXP (XEXP (link, 0), 0);
6225 break;
6232 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6234 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6235 if (GET_CODE (XEXP (link, 0)) == USE)
6237 rtx item = NULL_RTX;
6238 x = XEXP (XEXP (link, 0), 0);
6239 if (GET_MODE (link) == VOIDmode
6240 || GET_MODE (link) == BLKmode
6241 || (GET_MODE (link) != GET_MODE (x)
6242 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6243 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6244 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6245 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6246 /* Can't do anything for these, if the original type mode
6247 isn't known or can't be converted. */;
6248 else if (REG_P (x))
6250 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6251 if (val && cselib_preserved_value_p (val))
6252 item = val->val_rtx;
6253 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6254 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6256 machine_mode mode = GET_MODE (x);
6258 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6259 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6261 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6263 if (reg == NULL_RTX || !REG_P (reg))
6264 continue;
6265 val = cselib_lookup (reg, mode, 0, VOIDmode);
6266 if (val && cselib_preserved_value_p (val))
6268 item = val->val_rtx;
6269 break;
6274 else if (MEM_P (x))
6276 rtx mem = x;
6277 cselib_val *val;
6279 if (!frame_pointer_needed)
6281 struct adjust_mem_data amd;
6282 amd.mem_mode = VOIDmode;
6283 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6284 amd.side_effects = NULL;
6285 amd.store = true;
6286 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6287 &amd);
6288 gcc_assert (amd.side_effects == NULL_RTX);
6290 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6291 if (val && cselib_preserved_value_p (val))
6292 item = val->val_rtx;
6293 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6294 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6296 /* For non-integer stack argument see also if they weren't
6297 initialized by integers. */
6298 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6299 if (imode != GET_MODE (mem) && imode != BLKmode)
6301 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6302 imode, 0, VOIDmode);
6303 if (val && cselib_preserved_value_p (val))
6304 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6305 imode);
6309 if (item)
6311 rtx x2 = x;
6312 if (GET_MODE (item) != GET_MODE (link))
6313 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6314 if (GET_MODE (x2) != GET_MODE (link))
6315 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6316 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6317 call_arguments
6318 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6320 if (t && t != void_list_node)
6322 tree argtype = TREE_VALUE (t);
6323 machine_mode mode = TYPE_MODE (argtype);
6324 rtx reg;
6325 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6327 argtype = build_pointer_type (argtype);
6328 mode = TYPE_MODE (argtype);
6330 reg = targetm.calls.function_arg (args_so_far, mode,
6331 argtype, true);
6332 if (TREE_CODE (argtype) == REFERENCE_TYPE
6333 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6334 && reg
6335 && REG_P (reg)
6336 && GET_MODE (reg) == mode
6337 && (GET_MODE_CLASS (mode) == MODE_INT
6338 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6339 && REG_P (x)
6340 && REGNO (x) == REGNO (reg)
6341 && GET_MODE (x) == mode
6342 && item)
6344 machine_mode indmode
6345 = TYPE_MODE (TREE_TYPE (argtype));
6346 rtx mem = gen_rtx_MEM (indmode, x);
6347 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6348 if (val && cselib_preserved_value_p (val))
6350 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6351 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6352 call_arguments);
6354 else
6356 struct elt_loc_list *l;
6357 tree initial;
6359 /* Try harder, when passing address of a constant
6360 pool integer it can be easily read back. */
6361 item = XEXP (item, 1);
6362 if (GET_CODE (item) == SUBREG)
6363 item = SUBREG_REG (item);
6364 gcc_assert (GET_CODE (item) == VALUE);
6365 val = CSELIB_VAL_PTR (item);
6366 for (l = val->locs; l; l = l->next)
6367 if (GET_CODE (l->loc) == SYMBOL_REF
6368 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6369 && SYMBOL_REF_DECL (l->loc)
6370 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6372 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6373 if (tree_fits_shwi_p (initial))
6375 item = GEN_INT (tree_to_shwi (initial));
6376 item = gen_rtx_CONCAT (indmode, mem, item);
6377 call_arguments
6378 = gen_rtx_EXPR_LIST (VOIDmode, item,
6379 call_arguments);
6381 break;
6385 targetm.calls.function_arg_advance (args_so_far, mode,
6386 argtype, true);
6387 t = TREE_CHAIN (t);
6391 /* Add debug arguments. */
6392 if (fndecl
6393 && TREE_CODE (fndecl) == FUNCTION_DECL
6394 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6396 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6397 if (debug_args)
6399 unsigned int ix;
6400 tree param;
6401 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6403 rtx item;
6404 tree dtemp = (**debug_args)[ix + 1];
6405 machine_mode mode = DECL_MODE (dtemp);
6406 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6407 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6408 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6409 call_arguments);
6414 /* Reverse call_arguments chain. */
6415 prev = NULL_RTX;
6416 for (cur = call_arguments; cur; cur = next)
6418 next = XEXP (cur, 1);
6419 XEXP (cur, 1) = prev;
6420 prev = cur;
6422 call_arguments = prev;
6424 x = get_call_rtx_from (insn);
6425 if (x)
6427 x = XEXP (XEXP (x, 0), 0);
6428 if (GET_CODE (x) == SYMBOL_REF)
6429 /* Don't record anything. */;
6430 else if (CONSTANT_P (x))
6432 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6433 pc_rtx, x);
6434 call_arguments
6435 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6437 else
6439 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6440 if (val && cselib_preserved_value_p (val))
6442 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6443 call_arguments
6444 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6448 if (this_arg)
6450 machine_mode mode
6451 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6452 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6453 HOST_WIDE_INT token
6454 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6455 if (token)
6456 clobbered = plus_constant (mode, clobbered,
6457 token * GET_MODE_SIZE (mode));
6458 clobbered = gen_rtx_MEM (mode, clobbered);
6459 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6460 call_arguments
6461 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6465 /* Callback for cselib_record_sets_hook, that records as micro
6466 operations uses and stores in an insn after cselib_record_sets has
6467 analyzed the sets in an insn, but before it modifies the stored
6468 values in the internal tables, unless cselib_record_sets doesn't
6469 call it directly (perhaps because we're not doing cselib in the
6470 first place, in which case sets and n_sets will be 0). */
6472 static void
6473 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6475 basic_block bb = BLOCK_FOR_INSN (insn);
6476 int n1, n2;
6477 struct count_use_info cui;
6478 micro_operation *mos;
6480 cselib_hook_called = true;
6482 cui.insn = insn;
6483 cui.bb = bb;
6484 cui.sets = sets;
6485 cui.n_sets = n_sets;
6487 n1 = VTI (bb)->mos.length ();
6488 cui.store_p = false;
6489 note_uses (&PATTERN (insn), add_uses_1, &cui);
6490 n2 = VTI (bb)->mos.length () - 1;
6491 mos = VTI (bb)->mos.address ();
6493 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6494 MO_VAL_LOC last. */
6495 while (n1 < n2)
6497 while (n1 < n2 && mos[n1].type == MO_USE)
6498 n1++;
6499 while (n1 < n2 && mos[n2].type != MO_USE)
6500 n2--;
6501 if (n1 < n2)
6502 std::swap (mos[n1], mos[n2]);
6505 n2 = VTI (bb)->mos.length () - 1;
6506 while (n1 < n2)
6508 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6509 n1++;
6510 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6511 n2--;
6512 if (n1 < n2)
6513 std::swap (mos[n1], mos[n2]);
6516 if (CALL_P (insn))
6518 micro_operation mo;
6520 mo.type = MO_CALL;
6521 mo.insn = insn;
6522 mo.u.loc = call_arguments;
6523 call_arguments = NULL_RTX;
6525 if (dump_file && (dump_flags & TDF_DETAILS))
6526 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6527 VTI (bb)->mos.safe_push (mo);
6530 n1 = VTI (bb)->mos.length ();
6531 /* This will record NEXT_INSN (insn), such that we can
6532 insert notes before it without worrying about any
6533 notes that MO_USEs might emit after the insn. */
6534 cui.store_p = true;
6535 note_stores (PATTERN (insn), add_stores, &cui);
6536 n2 = VTI (bb)->mos.length () - 1;
6537 mos = VTI (bb)->mos.address ();
6539 /* Order the MO_VAL_USEs first (note_stores does nothing
6540 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6541 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6542 while (n1 < n2)
6544 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6545 n1++;
6546 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6547 n2--;
6548 if (n1 < n2)
6549 std::swap (mos[n1], mos[n2]);
6552 n2 = VTI (bb)->mos.length () - 1;
6553 while (n1 < n2)
6555 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6556 n1++;
6557 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6558 n2--;
6559 if (n1 < n2)
6560 std::swap (mos[n1], mos[n2]);
6564 static enum var_init_status
6565 find_src_status (dataflow_set *in, rtx src)
6567 tree decl = NULL_TREE;
6568 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6570 if (! flag_var_tracking_uninit)
6571 status = VAR_INIT_STATUS_INITIALIZED;
6573 if (src && REG_P (src))
6574 decl = var_debug_decl (REG_EXPR (src));
6575 else if (src && MEM_P (src))
6576 decl = var_debug_decl (MEM_EXPR (src));
6578 if (src && decl)
6579 status = get_init_value (in, src, dv_from_decl (decl));
6581 return status;
6584 /* SRC is the source of an assignment. Use SET to try to find what
6585 was ultimately assigned to SRC. Return that value if known,
6586 otherwise return SRC itself. */
6588 static rtx
6589 find_src_set_src (dataflow_set *set, rtx src)
6591 tree decl = NULL_TREE; /* The variable being copied around. */
6592 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6593 variable var;
6594 location_chain nextp;
6595 int i;
6596 bool found;
6598 if (src && REG_P (src))
6599 decl = var_debug_decl (REG_EXPR (src));
6600 else if (src && MEM_P (src))
6601 decl = var_debug_decl (MEM_EXPR (src));
6603 if (src && decl)
6605 decl_or_value dv = dv_from_decl (decl);
6607 var = shared_hash_find (set->vars, dv);
6608 if (var)
6610 found = false;
6611 for (i = 0; i < var->n_var_parts && !found; i++)
6612 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6613 nextp = nextp->next)
6614 if (rtx_equal_p (nextp->loc, src))
6616 set_src = nextp->set_src;
6617 found = true;
6623 return set_src;
6626 /* Compute the changes of variable locations in the basic block BB. */
6628 static bool
6629 compute_bb_dataflow (basic_block bb)
6631 unsigned int i;
6632 micro_operation *mo;
6633 bool changed;
6634 dataflow_set old_out;
6635 dataflow_set *in = &VTI (bb)->in;
6636 dataflow_set *out = &VTI (bb)->out;
6638 dataflow_set_init (&old_out);
6639 dataflow_set_copy (&old_out, out);
6640 dataflow_set_copy (out, in);
6642 if (MAY_HAVE_DEBUG_INSNS)
6643 local_get_addr_cache = new hash_map<rtx, rtx>;
6645 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6647 rtx_insn *insn = mo->insn;
6649 switch (mo->type)
6651 case MO_CALL:
6652 dataflow_set_clear_at_call (out, insn);
6653 break;
6655 case MO_USE:
6657 rtx loc = mo->u.loc;
6659 if (REG_P (loc))
6660 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6661 else if (MEM_P (loc))
6662 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6664 break;
6666 case MO_VAL_LOC:
6668 rtx loc = mo->u.loc;
6669 rtx val, vloc;
6670 tree var;
6672 if (GET_CODE (loc) == CONCAT)
6674 val = XEXP (loc, 0);
6675 vloc = XEXP (loc, 1);
6677 else
6679 val = NULL_RTX;
6680 vloc = loc;
6683 var = PAT_VAR_LOCATION_DECL (vloc);
6685 clobber_variable_part (out, NULL_RTX,
6686 dv_from_decl (var), 0, NULL_RTX);
6687 if (val)
6689 if (VAL_NEEDS_RESOLUTION (loc))
6690 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6691 set_variable_part (out, val, dv_from_decl (var), 0,
6692 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6693 INSERT);
6695 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6696 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6697 dv_from_decl (var), 0,
6698 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6699 INSERT);
6701 break;
6703 case MO_VAL_USE:
6705 rtx loc = mo->u.loc;
6706 rtx val, vloc, uloc;
6708 vloc = uloc = XEXP (loc, 1);
6709 val = XEXP (loc, 0);
6711 if (GET_CODE (val) == CONCAT)
6713 uloc = XEXP (val, 1);
6714 val = XEXP (val, 0);
6717 if (VAL_NEEDS_RESOLUTION (loc))
6718 val_resolve (out, val, vloc, insn);
6719 else
6720 val_store (out, val, uloc, insn, false);
6722 if (VAL_HOLDS_TRACK_EXPR (loc))
6724 if (GET_CODE (uloc) == REG)
6725 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6726 NULL);
6727 else if (GET_CODE (uloc) == MEM)
6728 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6729 NULL);
6732 break;
6734 case MO_VAL_SET:
6736 rtx loc = mo->u.loc;
6737 rtx val, vloc, uloc;
6738 rtx dstv, srcv;
6740 vloc = loc;
6741 uloc = XEXP (vloc, 1);
6742 val = XEXP (vloc, 0);
6743 vloc = uloc;
6745 if (GET_CODE (uloc) == SET)
6747 dstv = SET_DEST (uloc);
6748 srcv = SET_SRC (uloc);
6750 else
6752 dstv = uloc;
6753 srcv = NULL;
6756 if (GET_CODE (val) == CONCAT)
6758 dstv = vloc = XEXP (val, 1);
6759 val = XEXP (val, 0);
6762 if (GET_CODE (vloc) == SET)
6764 srcv = SET_SRC (vloc);
6766 gcc_assert (val != srcv);
6767 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6769 dstv = vloc = SET_DEST (vloc);
6771 if (VAL_NEEDS_RESOLUTION (loc))
6772 val_resolve (out, val, srcv, insn);
6774 else if (VAL_NEEDS_RESOLUTION (loc))
6776 gcc_assert (GET_CODE (uloc) == SET
6777 && GET_CODE (SET_SRC (uloc)) == REG);
6778 val_resolve (out, val, SET_SRC (uloc), insn);
6781 if (VAL_HOLDS_TRACK_EXPR (loc))
6783 if (VAL_EXPR_IS_CLOBBERED (loc))
6785 if (REG_P (uloc))
6786 var_reg_delete (out, uloc, true);
6787 else if (MEM_P (uloc))
6789 gcc_assert (MEM_P (dstv));
6790 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6791 var_mem_delete (out, dstv, true);
6794 else
6796 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6797 rtx src = NULL, dst = uloc;
6798 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6800 if (GET_CODE (uloc) == SET)
6802 src = SET_SRC (uloc);
6803 dst = SET_DEST (uloc);
6806 if (copied_p)
6808 if (flag_var_tracking_uninit)
6810 status = find_src_status (in, src);
6812 if (status == VAR_INIT_STATUS_UNKNOWN)
6813 status = find_src_status (out, src);
6816 src = find_src_set_src (in, src);
6819 if (REG_P (dst))
6820 var_reg_delete_and_set (out, dst, !copied_p,
6821 status, srcv);
6822 else if (MEM_P (dst))
6824 gcc_assert (MEM_P (dstv));
6825 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6826 var_mem_delete_and_set (out, dstv, !copied_p,
6827 status, srcv);
6831 else if (REG_P (uloc))
6832 var_regno_delete (out, REGNO (uloc));
6833 else if (MEM_P (uloc))
6835 gcc_checking_assert (GET_CODE (vloc) == MEM);
6836 gcc_checking_assert (dstv == vloc);
6837 if (dstv != vloc)
6838 clobber_overlapping_mems (out, vloc);
6841 val_store (out, val, dstv, insn, true);
6843 break;
6845 case MO_SET:
6847 rtx loc = mo->u.loc;
6848 rtx set_src = NULL;
6850 if (GET_CODE (loc) == SET)
6852 set_src = SET_SRC (loc);
6853 loc = SET_DEST (loc);
6856 if (REG_P (loc))
6857 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6858 set_src);
6859 else if (MEM_P (loc))
6860 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6861 set_src);
6863 break;
6865 case MO_COPY:
6867 rtx loc = mo->u.loc;
6868 enum var_init_status src_status;
6869 rtx set_src = NULL;
6871 if (GET_CODE (loc) == SET)
6873 set_src = SET_SRC (loc);
6874 loc = SET_DEST (loc);
6877 if (! flag_var_tracking_uninit)
6878 src_status = VAR_INIT_STATUS_INITIALIZED;
6879 else
6881 src_status = find_src_status (in, set_src);
6883 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6884 src_status = find_src_status (out, set_src);
6887 set_src = find_src_set_src (in, set_src);
6889 if (REG_P (loc))
6890 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6891 else if (MEM_P (loc))
6892 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6894 break;
6896 case MO_USE_NO_VAR:
6898 rtx loc = mo->u.loc;
6900 if (REG_P (loc))
6901 var_reg_delete (out, loc, false);
6902 else if (MEM_P (loc))
6903 var_mem_delete (out, loc, false);
6905 break;
6907 case MO_CLOBBER:
6909 rtx loc = mo->u.loc;
6911 if (REG_P (loc))
6912 var_reg_delete (out, loc, true);
6913 else if (MEM_P (loc))
6914 var_mem_delete (out, loc, true);
6916 break;
6918 case MO_ADJUST:
6919 out->stack_adjust += mo->u.adjust;
6920 break;
6924 if (MAY_HAVE_DEBUG_INSNS)
6926 delete local_get_addr_cache;
6927 local_get_addr_cache = NULL;
6929 dataflow_set_equiv_regs (out);
6930 shared_hash_htab (out->vars)
6931 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6932 shared_hash_htab (out->vars)
6933 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6934 #if ENABLE_CHECKING
6935 shared_hash_htab (out->vars)
6936 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6937 #endif
6939 changed = dataflow_set_different (&old_out, out);
6940 dataflow_set_destroy (&old_out);
6941 return changed;
6944 /* Find the locations of variables in the whole function. */
6946 static bool
6947 vt_find_locations (void)
6949 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6950 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6951 sbitmap visited, in_worklist, in_pending;
6952 basic_block bb;
6953 edge e;
6954 int *bb_order;
6955 int *rc_order;
6956 int i;
6957 int htabsz = 0;
6958 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6959 bool success = true;
6961 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6962 /* Compute reverse completion order of depth first search of the CFG
6963 so that the data-flow runs faster. */
6964 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6965 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6966 pre_and_rev_post_order_compute (NULL, rc_order, false);
6967 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6968 bb_order[rc_order[i]] = i;
6969 free (rc_order);
6971 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6972 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6973 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6974 bitmap_clear (in_worklist);
6976 FOR_EACH_BB_FN (bb, cfun)
6977 pending->insert (bb_order[bb->index], bb);
6978 bitmap_ones (in_pending);
6980 while (success && !pending->empty ())
6982 std::swap (worklist, pending);
6983 std::swap (in_worklist, in_pending);
6985 bitmap_clear (visited);
6987 while (!worklist->empty ())
6989 bb = worklist->extract_min ();
6990 bitmap_clear_bit (in_worklist, bb->index);
6991 gcc_assert (!bitmap_bit_p (visited, bb->index));
6992 if (!bitmap_bit_p (visited, bb->index))
6994 bool changed;
6995 edge_iterator ei;
6996 int oldinsz, oldoutsz;
6998 bitmap_set_bit (visited, bb->index);
7000 if (VTI (bb)->in.vars)
7002 htabsz
7003 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7004 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7005 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7006 oldoutsz
7007 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7009 else
7010 oldinsz = oldoutsz = 0;
7012 if (MAY_HAVE_DEBUG_INSNS)
7014 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7015 bool first = true, adjust = false;
7017 /* Calculate the IN set as the intersection of
7018 predecessor OUT sets. */
7020 dataflow_set_clear (in);
7021 dst_can_be_shared = true;
7023 FOR_EACH_EDGE (e, ei, bb->preds)
7024 if (!VTI (e->src)->flooded)
7025 gcc_assert (bb_order[bb->index]
7026 <= bb_order[e->src->index]);
7027 else if (first)
7029 dataflow_set_copy (in, &VTI (e->src)->out);
7030 first_out = &VTI (e->src)->out;
7031 first = false;
7033 else
7035 dataflow_set_merge (in, &VTI (e->src)->out);
7036 adjust = true;
7039 if (adjust)
7041 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7042 #if ENABLE_CHECKING
7043 /* Merge and merge_adjust should keep entries in
7044 canonical order. */
7045 shared_hash_htab (in->vars)
7046 ->traverse <dataflow_set *,
7047 canonicalize_loc_order_check> (in);
7048 #endif
7049 if (dst_can_be_shared)
7051 shared_hash_destroy (in->vars);
7052 in->vars = shared_hash_copy (first_out->vars);
7056 VTI (bb)->flooded = true;
7058 else
7060 /* Calculate the IN set as union of predecessor OUT sets. */
7061 dataflow_set_clear (&VTI (bb)->in);
7062 FOR_EACH_EDGE (e, ei, bb->preds)
7063 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7066 changed = compute_bb_dataflow (bb);
7067 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7068 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7070 if (htabmax && htabsz > htabmax)
7072 if (MAY_HAVE_DEBUG_INSNS)
7073 inform (DECL_SOURCE_LOCATION (cfun->decl),
7074 "variable tracking size limit exceeded with "
7075 "-fvar-tracking-assignments, retrying without");
7076 else
7077 inform (DECL_SOURCE_LOCATION (cfun->decl),
7078 "variable tracking size limit exceeded");
7079 success = false;
7080 break;
7083 if (changed)
7085 FOR_EACH_EDGE (e, ei, bb->succs)
7087 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7088 continue;
7090 if (bitmap_bit_p (visited, e->dest->index))
7092 if (!bitmap_bit_p (in_pending, e->dest->index))
7094 /* Send E->DEST to next round. */
7095 bitmap_set_bit (in_pending, e->dest->index);
7096 pending->insert (bb_order[e->dest->index],
7097 e->dest);
7100 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7102 /* Add E->DEST to current round. */
7103 bitmap_set_bit (in_worklist, e->dest->index);
7104 worklist->insert (bb_order[e->dest->index],
7105 e->dest);
7110 if (dump_file)
7111 fprintf (dump_file,
7112 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7113 bb->index,
7114 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7115 oldinsz,
7116 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7117 oldoutsz,
7118 (int)worklist->nodes (), (int)pending->nodes (),
7119 htabsz);
7121 if (dump_file && (dump_flags & TDF_DETAILS))
7123 fprintf (dump_file, "BB %i IN:\n", bb->index);
7124 dump_dataflow_set (&VTI (bb)->in);
7125 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7126 dump_dataflow_set (&VTI (bb)->out);
7132 if (success && MAY_HAVE_DEBUG_INSNS)
7133 FOR_EACH_BB_FN (bb, cfun)
7134 gcc_assert (VTI (bb)->flooded);
7136 free (bb_order);
7137 delete worklist;
7138 delete pending;
7139 sbitmap_free (visited);
7140 sbitmap_free (in_worklist);
7141 sbitmap_free (in_pending);
7143 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7144 return success;
7147 /* Print the content of the LIST to dump file. */
7149 static void
7150 dump_attrs_list (attrs list)
7152 for (; list; list = list->next)
7154 if (dv_is_decl_p (list->dv))
7155 print_mem_expr (dump_file, dv_as_decl (list->dv));
7156 else
7157 print_rtl_single (dump_file, dv_as_value (list->dv));
7158 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7160 fprintf (dump_file, "\n");
7163 /* Print the information about variable *SLOT to dump file. */
7166 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7168 variable var = *slot;
7170 dump_var (var);
7172 /* Continue traversing the hash table. */
7173 return 1;
7176 /* Print the information about variable VAR to dump file. */
7178 static void
7179 dump_var (variable var)
7181 int i;
7182 location_chain node;
7184 if (dv_is_decl_p (var->dv))
7186 const_tree decl = dv_as_decl (var->dv);
7188 if (DECL_NAME (decl))
7190 fprintf (dump_file, " name: %s",
7191 IDENTIFIER_POINTER (DECL_NAME (decl)));
7192 if (dump_flags & TDF_UID)
7193 fprintf (dump_file, "D.%u", DECL_UID (decl));
7195 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7196 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7197 else
7198 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7199 fprintf (dump_file, "\n");
7201 else
7203 fputc (' ', dump_file);
7204 print_rtl_single (dump_file, dv_as_value (var->dv));
7207 for (i = 0; i < var->n_var_parts; i++)
7209 fprintf (dump_file, " offset %ld\n",
7210 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7211 for (node = var->var_part[i].loc_chain; node; node = node->next)
7213 fprintf (dump_file, " ");
7214 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7215 fprintf (dump_file, "[uninit]");
7216 print_rtl_single (dump_file, node->loc);
7221 /* Print the information about variables from hash table VARS to dump file. */
7223 static void
7224 dump_vars (variable_table_type *vars)
7226 if (vars->elements () > 0)
7228 fprintf (dump_file, "Variables:\n");
7229 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7233 /* Print the dataflow set SET to dump file. */
7235 static void
7236 dump_dataflow_set (dataflow_set *set)
7238 int i;
7240 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7241 set->stack_adjust);
7242 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7244 if (set->regs[i])
7246 fprintf (dump_file, "Reg %d:", i);
7247 dump_attrs_list (set->regs[i]);
7250 dump_vars (shared_hash_htab (set->vars));
7251 fprintf (dump_file, "\n");
7254 /* Print the IN and OUT sets for each basic block to dump file. */
7256 static void
7257 dump_dataflow_sets (void)
7259 basic_block bb;
7261 FOR_EACH_BB_FN (bb, cfun)
7263 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7264 fprintf (dump_file, "IN:\n");
7265 dump_dataflow_set (&VTI (bb)->in);
7266 fprintf (dump_file, "OUT:\n");
7267 dump_dataflow_set (&VTI (bb)->out);
7271 /* Return the variable for DV in dropped_values, inserting one if
7272 requested with INSERT. */
7274 static inline variable
7275 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7277 variable_def **slot;
7278 variable empty_var;
7279 onepart_enum_t onepart;
7281 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7283 if (!slot)
7284 return NULL;
7286 if (*slot)
7287 return *slot;
7289 gcc_checking_assert (insert == INSERT);
7291 onepart = dv_onepart_p (dv);
7293 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7295 empty_var = onepart_pool_allocate (onepart);
7296 empty_var->dv = dv;
7297 empty_var->refcount = 1;
7298 empty_var->n_var_parts = 0;
7299 empty_var->onepart = onepart;
7300 empty_var->in_changed_variables = false;
7301 empty_var->var_part[0].loc_chain = NULL;
7302 empty_var->var_part[0].cur_loc = NULL;
7303 VAR_LOC_1PAUX (empty_var) = NULL;
7304 set_dv_changed (dv, true);
7306 *slot = empty_var;
7308 return empty_var;
7311 /* Recover the one-part aux from dropped_values. */
7313 static struct onepart_aux *
7314 recover_dropped_1paux (variable var)
7316 variable dvar;
7318 gcc_checking_assert (var->onepart);
7320 if (VAR_LOC_1PAUX (var))
7321 return VAR_LOC_1PAUX (var);
7323 if (var->onepart == ONEPART_VDECL)
7324 return NULL;
7326 dvar = variable_from_dropped (var->dv, NO_INSERT);
7328 if (!dvar)
7329 return NULL;
7331 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7332 VAR_LOC_1PAUX (dvar) = NULL;
7334 return VAR_LOC_1PAUX (var);
7337 /* Add variable VAR to the hash table of changed variables and
7338 if it has no locations delete it from SET's hash table. */
7340 static void
7341 variable_was_changed (variable var, dataflow_set *set)
7343 hashval_t hash = dv_htab_hash (var->dv);
7345 if (emit_notes)
7347 variable_def **slot;
7349 /* Remember this decl or VALUE has been added to changed_variables. */
7350 set_dv_changed (var->dv, true);
7352 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7354 if (*slot)
7356 variable old_var = *slot;
7357 gcc_assert (old_var->in_changed_variables);
7358 old_var->in_changed_variables = false;
7359 if (var != old_var && var->onepart)
7361 /* Restore the auxiliary info from an empty variable
7362 previously created for changed_variables, so it is
7363 not lost. */
7364 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7365 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7366 VAR_LOC_1PAUX (old_var) = NULL;
7368 variable_htab_free (*slot);
7371 if (set && var->n_var_parts == 0)
7373 onepart_enum_t onepart = var->onepart;
7374 variable empty_var = NULL;
7375 variable_def **dslot = NULL;
7377 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7379 dslot = dropped_values->find_slot_with_hash (var->dv,
7380 dv_htab_hash (var->dv),
7381 INSERT);
7382 empty_var = *dslot;
7384 if (empty_var)
7386 gcc_checking_assert (!empty_var->in_changed_variables);
7387 if (!VAR_LOC_1PAUX (var))
7389 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7390 VAR_LOC_1PAUX (empty_var) = NULL;
7392 else
7393 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7397 if (!empty_var)
7399 empty_var = onepart_pool_allocate (onepart);
7400 empty_var->dv = var->dv;
7401 empty_var->refcount = 1;
7402 empty_var->n_var_parts = 0;
7403 empty_var->onepart = onepart;
7404 if (dslot)
7406 empty_var->refcount++;
7407 *dslot = empty_var;
7410 else
7411 empty_var->refcount++;
7412 empty_var->in_changed_variables = true;
7413 *slot = empty_var;
7414 if (onepart)
7416 empty_var->var_part[0].loc_chain = NULL;
7417 empty_var->var_part[0].cur_loc = NULL;
7418 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7419 VAR_LOC_1PAUX (var) = NULL;
7421 goto drop_var;
7423 else
7425 if (var->onepart && !VAR_LOC_1PAUX (var))
7426 recover_dropped_1paux (var);
7427 var->refcount++;
7428 var->in_changed_variables = true;
7429 *slot = var;
7432 else
7434 gcc_assert (set);
7435 if (var->n_var_parts == 0)
7437 variable_def **slot;
7439 drop_var:
7440 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7441 if (slot)
7443 if (shared_hash_shared (set->vars))
7444 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7445 NO_INSERT);
7446 shared_hash_htab (set->vars)->clear_slot (slot);
7452 /* Look for the index in VAR->var_part corresponding to OFFSET.
7453 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7454 referenced int will be set to the index that the part has or should
7455 have, if it should be inserted. */
7457 static inline int
7458 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7459 int *insertion_point)
7461 int pos, low, high;
7463 if (var->onepart)
7465 if (offset != 0)
7466 return -1;
7468 if (insertion_point)
7469 *insertion_point = 0;
7471 return var->n_var_parts - 1;
7474 /* Find the location part. */
7475 low = 0;
7476 high = var->n_var_parts;
7477 while (low != high)
7479 pos = (low + high) / 2;
7480 if (VAR_PART_OFFSET (var, pos) < offset)
7481 low = pos + 1;
7482 else
7483 high = pos;
7485 pos = low;
7487 if (insertion_point)
7488 *insertion_point = pos;
7490 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7491 return pos;
7493 return -1;
7496 static variable_def **
7497 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7498 decl_or_value dv, HOST_WIDE_INT offset,
7499 enum var_init_status initialized, rtx set_src)
7501 int pos;
7502 location_chain node, next;
7503 location_chain *nextp;
7504 variable var;
7505 onepart_enum_t onepart;
7507 var = *slot;
7509 if (var)
7510 onepart = var->onepart;
7511 else
7512 onepart = dv_onepart_p (dv);
7514 gcc_checking_assert (offset == 0 || !onepart);
7515 gcc_checking_assert (loc != dv_as_opaque (dv));
7517 if (! flag_var_tracking_uninit)
7518 initialized = VAR_INIT_STATUS_INITIALIZED;
7520 if (!var)
7522 /* Create new variable information. */
7523 var = onepart_pool_allocate (onepart);
7524 var->dv = dv;
7525 var->refcount = 1;
7526 var->n_var_parts = 1;
7527 var->onepart = onepart;
7528 var->in_changed_variables = false;
7529 if (var->onepart)
7530 VAR_LOC_1PAUX (var) = NULL;
7531 else
7532 VAR_PART_OFFSET (var, 0) = offset;
7533 var->var_part[0].loc_chain = NULL;
7534 var->var_part[0].cur_loc = NULL;
7535 *slot = var;
7536 pos = 0;
7537 nextp = &var->var_part[0].loc_chain;
7539 else if (onepart)
7541 int r = -1, c = 0;
7543 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7545 pos = 0;
7547 if (GET_CODE (loc) == VALUE)
7549 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7550 nextp = &node->next)
7551 if (GET_CODE (node->loc) == VALUE)
7553 if (node->loc == loc)
7555 r = 0;
7556 break;
7558 if (canon_value_cmp (node->loc, loc))
7559 c++;
7560 else
7562 r = 1;
7563 break;
7566 else if (REG_P (node->loc) || MEM_P (node->loc))
7567 c++;
7568 else
7570 r = 1;
7571 break;
7574 else if (REG_P (loc))
7576 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7577 nextp = &node->next)
7578 if (REG_P (node->loc))
7580 if (REGNO (node->loc) < REGNO (loc))
7581 c++;
7582 else
7584 if (REGNO (node->loc) == REGNO (loc))
7585 r = 0;
7586 else
7587 r = 1;
7588 break;
7591 else
7593 r = 1;
7594 break;
7597 else if (MEM_P (loc))
7599 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7600 nextp = &node->next)
7601 if (REG_P (node->loc))
7602 c++;
7603 else if (MEM_P (node->loc))
7605 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7606 break;
7607 else
7608 c++;
7610 else
7612 r = 1;
7613 break;
7616 else
7617 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7618 nextp = &node->next)
7619 if ((r = loc_cmp (node->loc, loc)) >= 0)
7620 break;
7621 else
7622 c++;
7624 if (r == 0)
7625 return slot;
7627 if (shared_var_p (var, set->vars))
7629 slot = unshare_variable (set, slot, var, initialized);
7630 var = *slot;
7631 for (nextp = &var->var_part[0].loc_chain; c;
7632 nextp = &(*nextp)->next)
7633 c--;
7634 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7637 else
7639 int inspos = 0;
7641 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7643 pos = find_variable_location_part (var, offset, &inspos);
7645 if (pos >= 0)
7647 node = var->var_part[pos].loc_chain;
7649 if (node
7650 && ((REG_P (node->loc) && REG_P (loc)
7651 && REGNO (node->loc) == REGNO (loc))
7652 || rtx_equal_p (node->loc, loc)))
7654 /* LOC is in the beginning of the chain so we have nothing
7655 to do. */
7656 if (node->init < initialized)
7657 node->init = initialized;
7658 if (set_src != NULL)
7659 node->set_src = set_src;
7661 return slot;
7663 else
7665 /* We have to make a copy of a shared variable. */
7666 if (shared_var_p (var, set->vars))
7668 slot = unshare_variable (set, slot, var, initialized);
7669 var = *slot;
7673 else
7675 /* We have not found the location part, new one will be created. */
7677 /* We have to make a copy of the shared variable. */
7678 if (shared_var_p (var, set->vars))
7680 slot = unshare_variable (set, slot, var, initialized);
7681 var = *slot;
7684 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7685 thus there are at most MAX_VAR_PARTS different offsets. */
7686 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7687 && (!var->n_var_parts || !onepart));
7689 /* We have to move the elements of array starting at index
7690 inspos to the next position. */
7691 for (pos = var->n_var_parts; pos > inspos; pos--)
7692 var->var_part[pos] = var->var_part[pos - 1];
7694 var->n_var_parts++;
7695 gcc_checking_assert (!onepart);
7696 VAR_PART_OFFSET (var, pos) = offset;
7697 var->var_part[pos].loc_chain = NULL;
7698 var->var_part[pos].cur_loc = NULL;
7701 /* Delete the location from the list. */
7702 nextp = &var->var_part[pos].loc_chain;
7703 for (node = var->var_part[pos].loc_chain; node; node = next)
7705 next = node->next;
7706 if ((REG_P (node->loc) && REG_P (loc)
7707 && REGNO (node->loc) == REGNO (loc))
7708 || rtx_equal_p (node->loc, loc))
7710 /* Save these values, to assign to the new node, before
7711 deleting this one. */
7712 if (node->init > initialized)
7713 initialized = node->init;
7714 if (node->set_src != NULL && set_src == NULL)
7715 set_src = node->set_src;
7716 if (var->var_part[pos].cur_loc == node->loc)
7717 var->var_part[pos].cur_loc = NULL;
7718 delete node;
7719 *nextp = next;
7720 break;
7722 else
7723 nextp = &node->next;
7726 nextp = &var->var_part[pos].loc_chain;
7729 /* Add the location to the beginning. */
7730 node = new location_chain_def;
7731 node->loc = loc;
7732 node->init = initialized;
7733 node->set_src = set_src;
7734 node->next = *nextp;
7735 *nextp = node;
7737 /* If no location was emitted do so. */
7738 if (var->var_part[pos].cur_loc == NULL)
7739 variable_was_changed (var, set);
7741 return slot;
7744 /* Set the part of variable's location in the dataflow set SET. The
7745 variable part is specified by variable's declaration in DV and
7746 offset OFFSET and the part's location by LOC. IOPT should be
7747 NO_INSERT if the variable is known to be in SET already and the
7748 variable hash table must not be resized, and INSERT otherwise. */
7750 static void
7751 set_variable_part (dataflow_set *set, rtx loc,
7752 decl_or_value dv, HOST_WIDE_INT offset,
7753 enum var_init_status initialized, rtx set_src,
7754 enum insert_option iopt)
7756 variable_def **slot;
7758 if (iopt == NO_INSERT)
7759 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7760 else
7762 slot = shared_hash_find_slot (set->vars, dv);
7763 if (!slot)
7764 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7766 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7769 /* Remove all recorded register locations for the given variable part
7770 from dataflow set SET, except for those that are identical to loc.
7771 The variable part is specified by variable's declaration or value
7772 DV and offset OFFSET. */
7774 static variable_def **
7775 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7776 HOST_WIDE_INT offset, rtx set_src)
7778 variable var = *slot;
7779 int pos = find_variable_location_part (var, offset, NULL);
7781 if (pos >= 0)
7783 location_chain node, next;
7785 /* Remove the register locations from the dataflow set. */
7786 next = var->var_part[pos].loc_chain;
7787 for (node = next; node; node = next)
7789 next = node->next;
7790 if (node->loc != loc
7791 && (!flag_var_tracking_uninit
7792 || !set_src
7793 || MEM_P (set_src)
7794 || !rtx_equal_p (set_src, node->set_src)))
7796 if (REG_P (node->loc))
7798 attrs anode, anext;
7799 attrs *anextp;
7801 /* Remove the variable part from the register's
7802 list, but preserve any other variable parts
7803 that might be regarded as live in that same
7804 register. */
7805 anextp = &set->regs[REGNO (node->loc)];
7806 for (anode = *anextp; anode; anode = anext)
7808 anext = anode->next;
7809 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7810 && anode->offset == offset)
7812 delete anode;
7813 *anextp = anext;
7815 else
7816 anextp = &anode->next;
7820 slot = delete_slot_part (set, node->loc, slot, offset);
7825 return slot;
7828 /* Remove all recorded register locations for the given variable part
7829 from dataflow set SET, except for those that are identical to loc.
7830 The variable part is specified by variable's declaration or value
7831 DV and offset OFFSET. */
7833 static void
7834 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7835 HOST_WIDE_INT offset, rtx set_src)
7837 variable_def **slot;
7839 if (!dv_as_opaque (dv)
7840 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7841 return;
7843 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7844 if (!slot)
7845 return;
7847 clobber_slot_part (set, loc, slot, offset, set_src);
7850 /* Delete the part of variable's location from dataflow set SET. The
7851 variable part is specified by its SET->vars slot SLOT and offset
7852 OFFSET and the part's location by LOC. */
7854 static variable_def **
7855 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7856 HOST_WIDE_INT offset)
7858 variable var = *slot;
7859 int pos = find_variable_location_part (var, offset, NULL);
7861 if (pos >= 0)
7863 location_chain node, next;
7864 location_chain *nextp;
7865 bool changed;
7866 rtx cur_loc;
7868 if (shared_var_p (var, set->vars))
7870 /* If the variable contains the location part we have to
7871 make a copy of the variable. */
7872 for (node = var->var_part[pos].loc_chain; node;
7873 node = node->next)
7875 if ((REG_P (node->loc) && REG_P (loc)
7876 && REGNO (node->loc) == REGNO (loc))
7877 || rtx_equal_p (node->loc, loc))
7879 slot = unshare_variable (set, slot, var,
7880 VAR_INIT_STATUS_UNKNOWN);
7881 var = *slot;
7882 break;
7887 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7888 cur_loc = VAR_LOC_FROM (var);
7889 else
7890 cur_loc = var->var_part[pos].cur_loc;
7892 /* Delete the location part. */
7893 changed = false;
7894 nextp = &var->var_part[pos].loc_chain;
7895 for (node = *nextp; node; node = next)
7897 next = node->next;
7898 if ((REG_P (node->loc) && REG_P (loc)
7899 && REGNO (node->loc) == REGNO (loc))
7900 || rtx_equal_p (node->loc, loc))
7902 /* If we have deleted the location which was last emitted
7903 we have to emit new location so add the variable to set
7904 of changed variables. */
7905 if (cur_loc == node->loc)
7907 changed = true;
7908 var->var_part[pos].cur_loc = NULL;
7909 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7910 VAR_LOC_FROM (var) = NULL;
7912 delete node;
7913 *nextp = next;
7914 break;
7916 else
7917 nextp = &node->next;
7920 if (var->var_part[pos].loc_chain == NULL)
7922 changed = true;
7923 var->n_var_parts--;
7924 while (pos < var->n_var_parts)
7926 var->var_part[pos] = var->var_part[pos + 1];
7927 pos++;
7930 if (changed)
7931 variable_was_changed (var, set);
7934 return slot;
7937 /* Delete the part of variable's location from dataflow set SET. The
7938 variable part is specified by variable's declaration or value DV
7939 and offset OFFSET and the part's location by LOC. */
7941 static void
7942 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7943 HOST_WIDE_INT offset)
7945 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7946 if (!slot)
7947 return;
7949 delete_slot_part (set, loc, slot, offset);
7953 /* Structure for passing some other parameters to function
7954 vt_expand_loc_callback. */
7955 struct expand_loc_callback_data
7957 /* The variables and values active at this point. */
7958 variable_table_type *vars;
7960 /* Stack of values and debug_exprs under expansion, and their
7961 children. */
7962 auto_vec<rtx, 4> expanding;
7964 /* Stack of values and debug_exprs whose expansion hit recursion
7965 cycles. They will have VALUE_RECURSED_INTO marked when added to
7966 this list. This flag will be cleared if any of its dependencies
7967 resolves to a valid location. So, if the flag remains set at the
7968 end of the search, we know no valid location for this one can
7969 possibly exist. */
7970 auto_vec<rtx, 4> pending;
7972 /* The maximum depth among the sub-expressions under expansion.
7973 Zero indicates no expansion so far. */
7974 expand_depth depth;
7977 /* Allocate the one-part auxiliary data structure for VAR, with enough
7978 room for COUNT dependencies. */
7980 static void
7981 loc_exp_dep_alloc (variable var, int count)
7983 size_t allocsize;
7985 gcc_checking_assert (var->onepart);
7987 /* We can be called with COUNT == 0 to allocate the data structure
7988 without any dependencies, e.g. for the backlinks only. However,
7989 if we are specifying a COUNT, then the dependency list must have
7990 been emptied before. It would be possible to adjust pointers or
7991 force it empty here, but this is better done at an earlier point
7992 in the algorithm, so we instead leave an assertion to catch
7993 errors. */
7994 gcc_checking_assert (!count
7995 || VAR_LOC_DEP_VEC (var) == NULL
7996 || VAR_LOC_DEP_VEC (var)->is_empty ());
7998 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7999 return;
8001 allocsize = offsetof (struct onepart_aux, deps)
8002 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8004 if (VAR_LOC_1PAUX (var))
8006 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8007 VAR_LOC_1PAUX (var), allocsize);
8008 /* If the reallocation moves the onepaux structure, the
8009 back-pointer to BACKLINKS in the first list member will still
8010 point to its old location. Adjust it. */
8011 if (VAR_LOC_DEP_LST (var))
8012 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8014 else
8016 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8017 *VAR_LOC_DEP_LSTP (var) = NULL;
8018 VAR_LOC_FROM (var) = NULL;
8019 VAR_LOC_DEPTH (var).complexity = 0;
8020 VAR_LOC_DEPTH (var).entryvals = 0;
8022 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8025 /* Remove all entries from the vector of active dependencies of VAR,
8026 removing them from the back-links lists too. */
8028 static void
8029 loc_exp_dep_clear (variable var)
8031 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8033 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8034 if (led->next)
8035 led->next->pprev = led->pprev;
8036 if (led->pprev)
8037 *led->pprev = led->next;
8038 VAR_LOC_DEP_VEC (var)->pop ();
8042 /* Insert an active dependency from VAR on X to the vector of
8043 dependencies, and add the corresponding back-link to X's list of
8044 back-links in VARS. */
8046 static void
8047 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8049 decl_or_value dv;
8050 variable xvar;
8051 loc_exp_dep *led;
8053 dv = dv_from_rtx (x);
8055 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8056 an additional look up? */
8057 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8059 if (!xvar)
8061 xvar = variable_from_dropped (dv, NO_INSERT);
8062 gcc_checking_assert (xvar);
8065 /* No point in adding the same backlink more than once. This may
8066 arise if say the same value appears in two complex expressions in
8067 the same loc_list, or even more than once in a single
8068 expression. */
8069 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8070 return;
8072 if (var->onepart == NOT_ONEPART)
8073 led = new loc_exp_dep;
8074 else
8076 loc_exp_dep empty;
8077 memset (&empty, 0, sizeof (empty));
8078 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8079 led = &VAR_LOC_DEP_VEC (var)->last ();
8081 led->dv = var->dv;
8082 led->value = x;
8084 loc_exp_dep_alloc (xvar, 0);
8085 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8086 led->next = *led->pprev;
8087 if (led->next)
8088 led->next->pprev = &led->next;
8089 *led->pprev = led;
8092 /* Create active dependencies of VAR on COUNT values starting at
8093 VALUE, and corresponding back-links to the entries in VARS. Return
8094 true if we found any pending-recursion results. */
8096 static bool
8097 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8098 variable_table_type *vars)
8100 bool pending_recursion = false;
8102 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8103 || VAR_LOC_DEP_VEC (var)->is_empty ());
8105 /* Set up all dependencies from last_child (as set up at the end of
8106 the loop above) to the end. */
8107 loc_exp_dep_alloc (var, count);
8109 while (count--)
8111 rtx x = *value++;
8113 if (!pending_recursion)
8114 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8116 loc_exp_insert_dep (var, x, vars);
8119 return pending_recursion;
8122 /* Notify the back-links of IVAR that are pending recursion that we
8123 have found a non-NIL value for it, so they are cleared for another
8124 attempt to compute a current location. */
8126 static void
8127 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8129 loc_exp_dep *led, *next;
8131 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8133 decl_or_value dv = led->dv;
8134 variable var;
8136 next = led->next;
8138 if (dv_is_value_p (dv))
8140 rtx value = dv_as_value (dv);
8142 /* If we have already resolved it, leave it alone. */
8143 if (!VALUE_RECURSED_INTO (value))
8144 continue;
8146 /* Check that VALUE_RECURSED_INTO, true from the test above,
8147 implies NO_LOC_P. */
8148 gcc_checking_assert (NO_LOC_P (value));
8150 /* We won't notify variables that are being expanded,
8151 because their dependency list is cleared before
8152 recursing. */
8153 NO_LOC_P (value) = false;
8154 VALUE_RECURSED_INTO (value) = false;
8156 gcc_checking_assert (dv_changed_p (dv));
8158 else
8160 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8161 if (!dv_changed_p (dv))
8162 continue;
8165 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8167 if (!var)
8168 var = variable_from_dropped (dv, NO_INSERT);
8170 if (var)
8171 notify_dependents_of_resolved_value (var, vars);
8173 if (next)
8174 next->pprev = led->pprev;
8175 if (led->pprev)
8176 *led->pprev = next;
8177 led->next = NULL;
8178 led->pprev = NULL;
8182 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8183 int max_depth, void *data);
8185 /* Return the combined depth, when one sub-expression evaluated to
8186 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8188 static inline expand_depth
8189 update_depth (expand_depth saved_depth, expand_depth best_depth)
8191 /* If we didn't find anything, stick with what we had. */
8192 if (!best_depth.complexity)
8193 return saved_depth;
8195 /* If we found hadn't found anything, use the depth of the current
8196 expression. Do NOT add one extra level, we want to compute the
8197 maximum depth among sub-expressions. We'll increment it later,
8198 if appropriate. */
8199 if (!saved_depth.complexity)
8200 return best_depth;
8202 /* Combine the entryval count so that regardless of which one we
8203 return, the entryval count is accurate. */
8204 best_depth.entryvals = saved_depth.entryvals
8205 = best_depth.entryvals + saved_depth.entryvals;
8207 if (saved_depth.complexity < best_depth.complexity)
8208 return best_depth;
8209 else
8210 return saved_depth;
8213 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8214 DATA for cselib expand callback. If PENDRECP is given, indicate in
8215 it whether any sub-expression couldn't be fully evaluated because
8216 it is pending recursion resolution. */
8218 static inline rtx
8219 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8221 struct expand_loc_callback_data *elcd
8222 = (struct expand_loc_callback_data *) data;
8223 location_chain loc, next;
8224 rtx result = NULL;
8225 int first_child, result_first_child, last_child;
8226 bool pending_recursion;
8227 rtx loc_from = NULL;
8228 struct elt_loc_list *cloc = NULL;
8229 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8230 int wanted_entryvals, found_entryvals = 0;
8232 /* Clear all backlinks pointing at this, so that we're not notified
8233 while we're active. */
8234 loc_exp_dep_clear (var);
8236 retry:
8237 if (var->onepart == ONEPART_VALUE)
8239 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8241 gcc_checking_assert (cselib_preserved_value_p (val));
8243 cloc = val->locs;
8246 first_child = result_first_child = last_child
8247 = elcd->expanding.length ();
8249 wanted_entryvals = found_entryvals;
8251 /* Attempt to expand each available location in turn. */
8252 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8253 loc || cloc; loc = next)
8255 result_first_child = last_child;
8257 if (!loc)
8259 loc_from = cloc->loc;
8260 next = loc;
8261 cloc = cloc->next;
8262 if (unsuitable_loc (loc_from))
8263 continue;
8265 else
8267 loc_from = loc->loc;
8268 next = loc->next;
8271 gcc_checking_assert (!unsuitable_loc (loc_from));
8273 elcd->depth.complexity = elcd->depth.entryvals = 0;
8274 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8275 vt_expand_loc_callback, data);
8276 last_child = elcd->expanding.length ();
8278 if (result)
8280 depth = elcd->depth;
8282 gcc_checking_assert (depth.complexity
8283 || result_first_child == last_child);
8285 if (last_child - result_first_child != 1)
8287 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8288 depth.entryvals++;
8289 depth.complexity++;
8292 if (depth.complexity <= EXPR_USE_DEPTH)
8294 if (depth.entryvals <= wanted_entryvals)
8295 break;
8296 else if (!found_entryvals || depth.entryvals < found_entryvals)
8297 found_entryvals = depth.entryvals;
8300 result = NULL;
8303 /* Set it up in case we leave the loop. */
8304 depth.complexity = depth.entryvals = 0;
8305 loc_from = NULL;
8306 result_first_child = first_child;
8309 if (!loc_from && wanted_entryvals < found_entryvals)
8311 /* We found entries with ENTRY_VALUEs and skipped them. Since
8312 we could not find any expansions without ENTRY_VALUEs, but we
8313 found at least one with them, go back and get an entry with
8314 the minimum number ENTRY_VALUE count that we found. We could
8315 avoid looping, but since each sub-loc is already resolved,
8316 the re-expansion should be trivial. ??? Should we record all
8317 attempted locs as dependencies, so that we retry the
8318 expansion should any of them change, in the hope it can give
8319 us a new entry without an ENTRY_VALUE? */
8320 elcd->expanding.truncate (first_child);
8321 goto retry;
8324 /* Register all encountered dependencies as active. */
8325 pending_recursion = loc_exp_dep_set
8326 (var, result, elcd->expanding.address () + result_first_child,
8327 last_child - result_first_child, elcd->vars);
8329 elcd->expanding.truncate (first_child);
8331 /* Record where the expansion came from. */
8332 gcc_checking_assert (!result || !pending_recursion);
8333 VAR_LOC_FROM (var) = loc_from;
8334 VAR_LOC_DEPTH (var) = depth;
8336 gcc_checking_assert (!depth.complexity == !result);
8338 elcd->depth = update_depth (saved_depth, depth);
8340 /* Indicate whether any of the dependencies are pending recursion
8341 resolution. */
8342 if (pendrecp)
8343 *pendrecp = pending_recursion;
8345 if (!pendrecp || !pending_recursion)
8346 var->var_part[0].cur_loc = result;
8348 return result;
8351 /* Callback for cselib_expand_value, that looks for expressions
8352 holding the value in the var-tracking hash tables. Return X for
8353 standard processing, anything else is to be used as-is. */
8355 static rtx
8356 vt_expand_loc_callback (rtx x, bitmap regs,
8357 int max_depth ATTRIBUTE_UNUSED,
8358 void *data)
8360 struct expand_loc_callback_data *elcd
8361 = (struct expand_loc_callback_data *) data;
8362 decl_or_value dv;
8363 variable var;
8364 rtx result, subreg;
8365 bool pending_recursion = false;
8366 bool from_empty = false;
8368 switch (GET_CODE (x))
8370 case SUBREG:
8371 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8372 EXPR_DEPTH,
8373 vt_expand_loc_callback, data);
8375 if (!subreg)
8376 return NULL;
8378 result = simplify_gen_subreg (GET_MODE (x), subreg,
8379 GET_MODE (SUBREG_REG (x)),
8380 SUBREG_BYTE (x));
8382 /* Invalid SUBREGs are ok in debug info. ??? We could try
8383 alternate expansions for the VALUE as well. */
8384 if (!result)
8385 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8387 return result;
8389 case DEBUG_EXPR:
8390 case VALUE:
8391 dv = dv_from_rtx (x);
8392 break;
8394 default:
8395 return x;
8398 elcd->expanding.safe_push (x);
8400 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8401 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8403 if (NO_LOC_P (x))
8405 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8406 return NULL;
8409 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8411 if (!var)
8413 from_empty = true;
8414 var = variable_from_dropped (dv, INSERT);
8417 gcc_checking_assert (var);
8419 if (!dv_changed_p (dv))
8421 gcc_checking_assert (!NO_LOC_P (x));
8422 gcc_checking_assert (var->var_part[0].cur_loc);
8423 gcc_checking_assert (VAR_LOC_1PAUX (var));
8424 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8426 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8428 return var->var_part[0].cur_loc;
8431 VALUE_RECURSED_INTO (x) = true;
8432 /* This is tentative, but it makes some tests simpler. */
8433 NO_LOC_P (x) = true;
8435 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8437 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8439 if (pending_recursion)
8441 gcc_checking_assert (!result);
8442 elcd->pending.safe_push (x);
8444 else
8446 NO_LOC_P (x) = !result;
8447 VALUE_RECURSED_INTO (x) = false;
8448 set_dv_changed (dv, false);
8450 if (result)
8451 notify_dependents_of_resolved_value (var, elcd->vars);
8454 return result;
8457 /* While expanding variables, we may encounter recursion cycles
8458 because of mutual (possibly indirect) dependencies between two
8459 particular variables (or values), say A and B. If we're trying to
8460 expand A when we get to B, which in turn attempts to expand A, if
8461 we can't find any other expansion for B, we'll add B to this
8462 pending-recursion stack, and tentatively return NULL for its
8463 location. This tentative value will be used for any other
8464 occurrences of B, unless A gets some other location, in which case
8465 it will notify B that it is worth another try at computing a
8466 location for it, and it will use the location computed for A then.
8467 At the end of the expansion, the tentative NULL locations become
8468 final for all members of PENDING that didn't get a notification.
8469 This function performs this finalization of NULL locations. */
8471 static void
8472 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8474 while (!pending->is_empty ())
8476 rtx x = pending->pop ();
8477 decl_or_value dv;
8479 if (!VALUE_RECURSED_INTO (x))
8480 continue;
8482 gcc_checking_assert (NO_LOC_P (x));
8483 VALUE_RECURSED_INTO (x) = false;
8484 dv = dv_from_rtx (x);
8485 gcc_checking_assert (dv_changed_p (dv));
8486 set_dv_changed (dv, false);
8490 /* Initialize expand_loc_callback_data D with variable hash table V.
8491 It must be a macro because of alloca (vec stack). */
8492 #define INIT_ELCD(d, v) \
8493 do \
8495 (d).vars = (v); \
8496 (d).depth.complexity = (d).depth.entryvals = 0; \
8498 while (0)
8499 /* Finalize expand_loc_callback_data D, resolved to location L. */
8500 #define FINI_ELCD(d, l) \
8501 do \
8503 resolve_expansions_pending_recursion (&(d).pending); \
8504 (d).pending.release (); \
8505 (d).expanding.release (); \
8507 if ((l) && MEM_P (l)) \
8508 (l) = targetm.delegitimize_address (l); \
8510 while (0)
8512 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8513 equivalences in VARS, updating their CUR_LOCs in the process. */
8515 static rtx
8516 vt_expand_loc (rtx loc, variable_table_type *vars)
8518 struct expand_loc_callback_data data;
8519 rtx result;
8521 if (!MAY_HAVE_DEBUG_INSNS)
8522 return loc;
8524 INIT_ELCD (data, vars);
8526 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8527 vt_expand_loc_callback, &data);
8529 FINI_ELCD (data, result);
8531 return result;
8534 /* Expand the one-part VARiable to a location, using the equivalences
8535 in VARS, updating their CUR_LOCs in the process. */
8537 static rtx
8538 vt_expand_1pvar (variable var, variable_table_type *vars)
8540 struct expand_loc_callback_data data;
8541 rtx loc;
8543 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8545 if (!dv_changed_p (var->dv))
8546 return var->var_part[0].cur_loc;
8548 INIT_ELCD (data, vars);
8550 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8552 gcc_checking_assert (data.expanding.is_empty ());
8554 FINI_ELCD (data, loc);
8556 return loc;
8559 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8560 additional parameters: WHERE specifies whether the note shall be emitted
8561 before or after instruction INSN. */
8564 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8566 variable var = *varp;
8567 rtx_insn *insn = data->insn;
8568 enum emit_note_where where = data->where;
8569 variable_table_type *vars = data->vars;
8570 rtx_note *note;
8571 rtx note_vl;
8572 int i, j, n_var_parts;
8573 bool complete;
8574 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8575 HOST_WIDE_INT last_limit;
8576 tree type_size_unit;
8577 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8578 rtx loc[MAX_VAR_PARTS];
8579 tree decl;
8580 location_chain lc;
8582 gcc_checking_assert (var->onepart == NOT_ONEPART
8583 || var->onepart == ONEPART_VDECL);
8585 decl = dv_as_decl (var->dv);
8587 complete = true;
8588 last_limit = 0;
8589 n_var_parts = 0;
8590 if (!var->onepart)
8591 for (i = 0; i < var->n_var_parts; i++)
8592 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8593 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8594 for (i = 0; i < var->n_var_parts; i++)
8596 machine_mode mode, wider_mode;
8597 rtx loc2;
8598 HOST_WIDE_INT offset;
8600 if (i == 0 && var->onepart)
8602 gcc_checking_assert (var->n_var_parts == 1);
8603 offset = 0;
8604 initialized = VAR_INIT_STATUS_INITIALIZED;
8605 loc2 = vt_expand_1pvar (var, vars);
8607 else
8609 if (last_limit < VAR_PART_OFFSET (var, i))
8611 complete = false;
8612 break;
8614 else if (last_limit > VAR_PART_OFFSET (var, i))
8615 continue;
8616 offset = VAR_PART_OFFSET (var, i);
8617 loc2 = var->var_part[i].cur_loc;
8618 if (loc2 && GET_CODE (loc2) == MEM
8619 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8621 rtx depval = XEXP (loc2, 0);
8623 loc2 = vt_expand_loc (loc2, vars);
8625 if (loc2)
8626 loc_exp_insert_dep (var, depval, vars);
8628 if (!loc2)
8630 complete = false;
8631 continue;
8633 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8634 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8635 if (var->var_part[i].cur_loc == lc->loc)
8637 initialized = lc->init;
8638 break;
8640 gcc_assert (lc);
8643 offsets[n_var_parts] = offset;
8644 if (!loc2)
8646 complete = false;
8647 continue;
8649 loc[n_var_parts] = loc2;
8650 mode = GET_MODE (var->var_part[i].cur_loc);
8651 if (mode == VOIDmode && var->onepart)
8652 mode = DECL_MODE (decl);
8653 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8655 /* Attempt to merge adjacent registers or memory. */
8656 wider_mode = GET_MODE_WIDER_MODE (mode);
8657 for (j = i + 1; j < var->n_var_parts; j++)
8658 if (last_limit <= VAR_PART_OFFSET (var, j))
8659 break;
8660 if (j < var->n_var_parts
8661 && wider_mode != VOIDmode
8662 && var->var_part[j].cur_loc
8663 && mode == GET_MODE (var->var_part[j].cur_loc)
8664 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8665 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8666 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8667 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8669 rtx new_loc = NULL;
8671 if (REG_P (loc[n_var_parts])
8672 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8673 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8674 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8675 == REGNO (loc2))
8677 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8678 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8679 mode, 0);
8680 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8681 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8682 if (new_loc)
8684 if (!REG_P (new_loc)
8685 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8686 new_loc = NULL;
8687 else
8688 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8691 else if (MEM_P (loc[n_var_parts])
8692 && GET_CODE (XEXP (loc2, 0)) == PLUS
8693 && REG_P (XEXP (XEXP (loc2, 0), 0))
8694 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8696 if ((REG_P (XEXP (loc[n_var_parts], 0))
8697 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8698 XEXP (XEXP (loc2, 0), 0))
8699 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8700 == GET_MODE_SIZE (mode))
8701 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8702 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8703 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8704 XEXP (XEXP (loc2, 0), 0))
8705 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8706 + GET_MODE_SIZE (mode)
8707 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8708 new_loc = adjust_address_nv (loc[n_var_parts],
8709 wider_mode, 0);
8712 if (new_loc)
8714 loc[n_var_parts] = new_loc;
8715 mode = wider_mode;
8716 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8717 i = j;
8720 ++n_var_parts;
8722 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8723 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8724 complete = false;
8726 if (! flag_var_tracking_uninit)
8727 initialized = VAR_INIT_STATUS_INITIALIZED;
8729 note_vl = NULL_RTX;
8730 if (!complete)
8731 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8732 else if (n_var_parts == 1)
8734 rtx expr_list;
8736 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8737 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8738 else
8739 expr_list = loc[0];
8741 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8743 else if (n_var_parts)
8745 rtx parallel;
8747 for (i = 0; i < n_var_parts; i++)
8748 loc[i]
8749 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8751 parallel = gen_rtx_PARALLEL (VOIDmode,
8752 gen_rtvec_v (n_var_parts, loc));
8753 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8754 parallel, initialized);
8757 if (where != EMIT_NOTE_BEFORE_INSN)
8759 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8760 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8761 NOTE_DURING_CALL_P (note) = true;
8763 else
8765 /* Make sure that the call related notes come first. */
8766 while (NEXT_INSN (insn)
8767 && NOTE_P (insn)
8768 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8769 && NOTE_DURING_CALL_P (insn))
8770 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8771 insn = NEXT_INSN (insn);
8772 if (NOTE_P (insn)
8773 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8774 && NOTE_DURING_CALL_P (insn))
8775 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8776 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8777 else
8778 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8780 NOTE_VAR_LOCATION (note) = note_vl;
8782 set_dv_changed (var->dv, false);
8783 gcc_assert (var->in_changed_variables);
8784 var->in_changed_variables = false;
8785 changed_variables->clear_slot (varp);
8787 /* Continue traversing the hash table. */
8788 return 1;
8791 /* While traversing changed_variables, push onto DATA (a stack of RTX
8792 values) entries that aren't user variables. */
8795 var_track_values_to_stack (variable_def **slot,
8796 vec<rtx, va_heap> *changed_values_stack)
8798 variable var = *slot;
8800 if (var->onepart == ONEPART_VALUE)
8801 changed_values_stack->safe_push (dv_as_value (var->dv));
8802 else if (var->onepart == ONEPART_DEXPR)
8803 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8805 return 1;
8808 /* Remove from changed_variables the entry whose DV corresponds to
8809 value or debug_expr VAL. */
8810 static void
8811 remove_value_from_changed_variables (rtx val)
8813 decl_or_value dv = dv_from_rtx (val);
8814 variable_def **slot;
8815 variable var;
8817 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8818 NO_INSERT);
8819 var = *slot;
8820 var->in_changed_variables = false;
8821 changed_variables->clear_slot (slot);
8824 /* If VAL (a value or debug_expr) has backlinks to variables actively
8825 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8826 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8827 have dependencies of their own to notify. */
8829 static void
8830 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8831 vec<rtx, va_heap> *changed_values_stack)
8833 variable_def **slot;
8834 variable var;
8835 loc_exp_dep *led;
8836 decl_or_value dv = dv_from_rtx (val);
8838 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8839 NO_INSERT);
8840 if (!slot)
8841 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8842 if (!slot)
8843 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8844 NO_INSERT);
8845 var = *slot;
8847 while ((led = VAR_LOC_DEP_LST (var)))
8849 decl_or_value ldv = led->dv;
8850 variable ivar;
8852 /* Deactivate and remove the backlink, as it was “used up”. It
8853 makes no sense to attempt to notify the same entity again:
8854 either it will be recomputed and re-register an active
8855 dependency, or it will still have the changed mark. */
8856 if (led->next)
8857 led->next->pprev = led->pprev;
8858 if (led->pprev)
8859 *led->pprev = led->next;
8860 led->next = NULL;
8861 led->pprev = NULL;
8863 if (dv_changed_p (ldv))
8864 continue;
8866 switch (dv_onepart_p (ldv))
8868 case ONEPART_VALUE:
8869 case ONEPART_DEXPR:
8870 set_dv_changed (ldv, true);
8871 changed_values_stack->safe_push (dv_as_rtx (ldv));
8872 break;
8874 case ONEPART_VDECL:
8875 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8876 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8877 variable_was_changed (ivar, NULL);
8878 break;
8880 case NOT_ONEPART:
8881 delete led;
8882 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8883 if (ivar)
8885 int i = ivar->n_var_parts;
8886 while (i--)
8888 rtx loc = ivar->var_part[i].cur_loc;
8890 if (loc && GET_CODE (loc) == MEM
8891 && XEXP (loc, 0) == val)
8893 variable_was_changed (ivar, NULL);
8894 break;
8898 break;
8900 default:
8901 gcc_unreachable ();
8906 /* Take out of changed_variables any entries that don't refer to use
8907 variables. Back-propagate change notifications from values and
8908 debug_exprs to their active dependencies in HTAB or in
8909 CHANGED_VARIABLES. */
8911 static void
8912 process_changed_values (variable_table_type *htab)
8914 int i, n;
8915 rtx val;
8916 auto_vec<rtx, 20> changed_values_stack;
8918 /* Move values from changed_variables to changed_values_stack. */
8919 changed_variables
8920 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8921 (&changed_values_stack);
8923 /* Back-propagate change notifications in values while popping
8924 them from the stack. */
8925 for (n = i = changed_values_stack.length ();
8926 i > 0; i = changed_values_stack.length ())
8928 val = changed_values_stack.pop ();
8929 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8931 /* This condition will hold when visiting each of the entries
8932 originally in changed_variables. We can't remove them
8933 earlier because this could drop the backlinks before we got a
8934 chance to use them. */
8935 if (i == n)
8937 remove_value_from_changed_variables (val);
8938 n--;
8943 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8944 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8945 the notes shall be emitted before of after instruction INSN. */
8947 static void
8948 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8949 shared_hash vars)
8951 emit_note_data data;
8952 variable_table_type *htab = shared_hash_htab (vars);
8954 if (!changed_variables->elements ())
8955 return;
8957 if (MAY_HAVE_DEBUG_INSNS)
8958 process_changed_values (htab);
8960 data.insn = insn;
8961 data.where = where;
8962 data.vars = htab;
8964 changed_variables
8965 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8968 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8969 same variable in hash table DATA or is not there at all. */
8972 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
8974 variable old_var, new_var;
8976 old_var = *slot;
8977 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8979 if (!new_var)
8981 /* Variable has disappeared. */
8982 variable empty_var = NULL;
8984 if (old_var->onepart == ONEPART_VALUE
8985 || old_var->onepart == ONEPART_DEXPR)
8987 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8988 if (empty_var)
8990 gcc_checking_assert (!empty_var->in_changed_variables);
8991 if (!VAR_LOC_1PAUX (old_var))
8993 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8994 VAR_LOC_1PAUX (empty_var) = NULL;
8996 else
8997 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9001 if (!empty_var)
9003 empty_var = onepart_pool_allocate (old_var->onepart);
9004 empty_var->dv = old_var->dv;
9005 empty_var->refcount = 0;
9006 empty_var->n_var_parts = 0;
9007 empty_var->onepart = old_var->onepart;
9008 empty_var->in_changed_variables = false;
9011 if (empty_var->onepart)
9013 /* Propagate the auxiliary data to (ultimately)
9014 changed_variables. */
9015 empty_var->var_part[0].loc_chain = NULL;
9016 empty_var->var_part[0].cur_loc = NULL;
9017 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9018 VAR_LOC_1PAUX (old_var) = NULL;
9020 variable_was_changed (empty_var, NULL);
9021 /* Continue traversing the hash table. */
9022 return 1;
9024 /* Update cur_loc and one-part auxiliary data, before new_var goes
9025 through variable_was_changed. */
9026 if (old_var != new_var && new_var->onepart)
9028 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9029 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9030 VAR_LOC_1PAUX (old_var) = NULL;
9031 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9033 if (variable_different_p (old_var, new_var))
9034 variable_was_changed (new_var, NULL);
9036 /* Continue traversing the hash table. */
9037 return 1;
9040 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9041 table DATA. */
9044 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9046 variable old_var, new_var;
9048 new_var = *slot;
9049 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9050 if (!old_var)
9052 int i;
9053 for (i = 0; i < new_var->n_var_parts; i++)
9054 new_var->var_part[i].cur_loc = NULL;
9055 variable_was_changed (new_var, NULL);
9058 /* Continue traversing the hash table. */
9059 return 1;
9062 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9063 NEW_SET. */
9065 static void
9066 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9067 dataflow_set *new_set)
9069 shared_hash_htab (old_set->vars)
9070 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9071 (shared_hash_htab (new_set->vars));
9072 shared_hash_htab (new_set->vars)
9073 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9074 (shared_hash_htab (old_set->vars));
9075 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9078 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9080 static rtx_insn *
9081 next_non_note_insn_var_location (rtx_insn *insn)
9083 while (insn)
9085 insn = NEXT_INSN (insn);
9086 if (insn == 0
9087 || !NOTE_P (insn)
9088 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9089 break;
9092 return insn;
9095 /* Emit the notes for changes of location parts in the basic block BB. */
9097 static void
9098 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9100 unsigned int i;
9101 micro_operation *mo;
9103 dataflow_set_clear (set);
9104 dataflow_set_copy (set, &VTI (bb)->in);
9106 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9108 rtx_insn *insn = mo->insn;
9109 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9111 switch (mo->type)
9113 case MO_CALL:
9114 dataflow_set_clear_at_call (set, insn);
9115 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9117 rtx arguments = mo->u.loc, *p = &arguments;
9118 rtx_note *note;
9119 while (*p)
9121 XEXP (XEXP (*p, 0), 1)
9122 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9123 shared_hash_htab (set->vars));
9124 /* If expansion is successful, keep it in the list. */
9125 if (XEXP (XEXP (*p, 0), 1))
9126 p = &XEXP (*p, 1);
9127 /* Otherwise, if the following item is data_value for it,
9128 drop it too too. */
9129 else if (XEXP (*p, 1)
9130 && REG_P (XEXP (XEXP (*p, 0), 0))
9131 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9132 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9134 && REGNO (XEXP (XEXP (*p, 0), 0))
9135 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9136 0), 0)))
9137 *p = XEXP (XEXP (*p, 1), 1);
9138 /* Just drop this item. */
9139 else
9140 *p = XEXP (*p, 1);
9142 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9143 NOTE_VAR_LOCATION (note) = arguments;
9145 break;
9147 case MO_USE:
9149 rtx loc = mo->u.loc;
9151 if (REG_P (loc))
9152 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9153 else
9154 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9156 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9158 break;
9160 case MO_VAL_LOC:
9162 rtx loc = mo->u.loc;
9163 rtx val, vloc;
9164 tree var;
9166 if (GET_CODE (loc) == CONCAT)
9168 val = XEXP (loc, 0);
9169 vloc = XEXP (loc, 1);
9171 else
9173 val = NULL_RTX;
9174 vloc = loc;
9177 var = PAT_VAR_LOCATION_DECL (vloc);
9179 clobber_variable_part (set, NULL_RTX,
9180 dv_from_decl (var), 0, NULL_RTX);
9181 if (val)
9183 if (VAL_NEEDS_RESOLUTION (loc))
9184 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9185 set_variable_part (set, val, dv_from_decl (var), 0,
9186 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9187 INSERT);
9189 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9190 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9191 dv_from_decl (var), 0,
9192 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9193 INSERT);
9195 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9197 break;
9199 case MO_VAL_USE:
9201 rtx loc = mo->u.loc;
9202 rtx val, vloc, uloc;
9204 vloc = uloc = XEXP (loc, 1);
9205 val = XEXP (loc, 0);
9207 if (GET_CODE (val) == CONCAT)
9209 uloc = XEXP (val, 1);
9210 val = XEXP (val, 0);
9213 if (VAL_NEEDS_RESOLUTION (loc))
9214 val_resolve (set, val, vloc, insn);
9215 else
9216 val_store (set, val, uloc, insn, false);
9218 if (VAL_HOLDS_TRACK_EXPR (loc))
9220 if (GET_CODE (uloc) == REG)
9221 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9222 NULL);
9223 else if (GET_CODE (uloc) == MEM)
9224 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9225 NULL);
9228 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9230 break;
9232 case MO_VAL_SET:
9234 rtx loc = mo->u.loc;
9235 rtx val, vloc, uloc;
9236 rtx dstv, srcv;
9238 vloc = loc;
9239 uloc = XEXP (vloc, 1);
9240 val = XEXP (vloc, 0);
9241 vloc = uloc;
9243 if (GET_CODE (uloc) == SET)
9245 dstv = SET_DEST (uloc);
9246 srcv = SET_SRC (uloc);
9248 else
9250 dstv = uloc;
9251 srcv = NULL;
9254 if (GET_CODE (val) == CONCAT)
9256 dstv = vloc = XEXP (val, 1);
9257 val = XEXP (val, 0);
9260 if (GET_CODE (vloc) == SET)
9262 srcv = SET_SRC (vloc);
9264 gcc_assert (val != srcv);
9265 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9267 dstv = vloc = SET_DEST (vloc);
9269 if (VAL_NEEDS_RESOLUTION (loc))
9270 val_resolve (set, val, srcv, insn);
9272 else if (VAL_NEEDS_RESOLUTION (loc))
9274 gcc_assert (GET_CODE (uloc) == SET
9275 && GET_CODE (SET_SRC (uloc)) == REG);
9276 val_resolve (set, val, SET_SRC (uloc), insn);
9279 if (VAL_HOLDS_TRACK_EXPR (loc))
9281 if (VAL_EXPR_IS_CLOBBERED (loc))
9283 if (REG_P (uloc))
9284 var_reg_delete (set, uloc, true);
9285 else if (MEM_P (uloc))
9287 gcc_assert (MEM_P (dstv));
9288 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9289 var_mem_delete (set, dstv, true);
9292 else
9294 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9295 rtx src = NULL, dst = uloc;
9296 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9298 if (GET_CODE (uloc) == SET)
9300 src = SET_SRC (uloc);
9301 dst = SET_DEST (uloc);
9304 if (copied_p)
9306 status = find_src_status (set, src);
9308 src = find_src_set_src (set, src);
9311 if (REG_P (dst))
9312 var_reg_delete_and_set (set, dst, !copied_p,
9313 status, srcv);
9314 else if (MEM_P (dst))
9316 gcc_assert (MEM_P (dstv));
9317 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9318 var_mem_delete_and_set (set, dstv, !copied_p,
9319 status, srcv);
9323 else if (REG_P (uloc))
9324 var_regno_delete (set, REGNO (uloc));
9325 else if (MEM_P (uloc))
9327 gcc_checking_assert (GET_CODE (vloc) == MEM);
9328 gcc_checking_assert (vloc == dstv);
9329 if (vloc != dstv)
9330 clobber_overlapping_mems (set, vloc);
9333 val_store (set, val, dstv, insn, true);
9335 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9336 set->vars);
9338 break;
9340 case MO_SET:
9342 rtx loc = mo->u.loc;
9343 rtx set_src = NULL;
9345 if (GET_CODE (loc) == SET)
9347 set_src = SET_SRC (loc);
9348 loc = SET_DEST (loc);
9351 if (REG_P (loc))
9352 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9353 set_src);
9354 else
9355 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9356 set_src);
9358 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9359 set->vars);
9361 break;
9363 case MO_COPY:
9365 rtx loc = mo->u.loc;
9366 enum var_init_status src_status;
9367 rtx set_src = NULL;
9369 if (GET_CODE (loc) == SET)
9371 set_src = SET_SRC (loc);
9372 loc = SET_DEST (loc);
9375 src_status = find_src_status (set, set_src);
9376 set_src = find_src_set_src (set, set_src);
9378 if (REG_P (loc))
9379 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9380 else
9381 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9383 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9384 set->vars);
9386 break;
9388 case MO_USE_NO_VAR:
9390 rtx loc = mo->u.loc;
9392 if (REG_P (loc))
9393 var_reg_delete (set, loc, false);
9394 else
9395 var_mem_delete (set, loc, false);
9397 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9399 break;
9401 case MO_CLOBBER:
9403 rtx loc = mo->u.loc;
9405 if (REG_P (loc))
9406 var_reg_delete (set, loc, true);
9407 else
9408 var_mem_delete (set, loc, true);
9410 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9411 set->vars);
9413 break;
9415 case MO_ADJUST:
9416 set->stack_adjust += mo->u.adjust;
9417 break;
9422 /* Emit notes for the whole function. */
9424 static void
9425 vt_emit_notes (void)
9427 basic_block bb;
9428 dataflow_set cur;
9430 gcc_assert (!changed_variables->elements ());
9432 /* Free memory occupied by the out hash tables, as they aren't used
9433 anymore. */
9434 FOR_EACH_BB_FN (bb, cfun)
9435 dataflow_set_clear (&VTI (bb)->out);
9437 /* Enable emitting notes by functions (mainly by set_variable_part and
9438 delete_variable_part). */
9439 emit_notes = true;
9441 if (MAY_HAVE_DEBUG_INSNS)
9443 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9446 dataflow_set_init (&cur);
9448 FOR_EACH_BB_FN (bb, cfun)
9450 /* Emit the notes for changes of variable locations between two
9451 subsequent basic blocks. */
9452 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9454 if (MAY_HAVE_DEBUG_INSNS)
9455 local_get_addr_cache = new hash_map<rtx, rtx>;
9457 /* Emit the notes for the changes in the basic block itself. */
9458 emit_notes_in_bb (bb, &cur);
9460 if (MAY_HAVE_DEBUG_INSNS)
9461 delete local_get_addr_cache;
9462 local_get_addr_cache = NULL;
9464 /* Free memory occupied by the in hash table, we won't need it
9465 again. */
9466 dataflow_set_clear (&VTI (bb)->in);
9468 #ifdef ENABLE_CHECKING
9469 shared_hash_htab (cur.vars)
9470 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9471 (shared_hash_htab (empty_shared_hash));
9472 #endif
9473 dataflow_set_destroy (&cur);
9475 if (MAY_HAVE_DEBUG_INSNS)
9476 delete dropped_values;
9477 dropped_values = NULL;
9479 emit_notes = false;
9482 /* If there is a declaration and offset associated with register/memory RTL
9483 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9485 static bool
9486 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9488 if (REG_P (rtl))
9490 if (REG_ATTRS (rtl))
9492 *declp = REG_EXPR (rtl);
9493 *offsetp = REG_OFFSET (rtl);
9494 return true;
9497 else if (GET_CODE (rtl) == PARALLEL)
9499 tree decl = NULL_TREE;
9500 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9501 int len = XVECLEN (rtl, 0), i;
9503 for (i = 0; i < len; i++)
9505 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9506 if (!REG_P (reg) || !REG_ATTRS (reg))
9507 break;
9508 if (!decl)
9509 decl = REG_EXPR (reg);
9510 if (REG_EXPR (reg) != decl)
9511 break;
9512 if (REG_OFFSET (reg) < offset)
9513 offset = REG_OFFSET (reg);
9516 if (i == len)
9518 *declp = decl;
9519 *offsetp = offset;
9520 return true;
9523 else if (MEM_P (rtl))
9525 if (MEM_ATTRS (rtl))
9527 *declp = MEM_EXPR (rtl);
9528 *offsetp = INT_MEM_OFFSET (rtl);
9529 return true;
9532 return false;
9535 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9536 of VAL. */
9538 static void
9539 record_entry_value (cselib_val *val, rtx rtl)
9541 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9543 ENTRY_VALUE_EXP (ev) = rtl;
9545 cselib_add_permanent_equiv (val, ev, get_insns ());
9548 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9550 static void
9551 vt_add_function_parameter (tree parm)
9553 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9554 rtx incoming = DECL_INCOMING_RTL (parm);
9555 tree decl;
9556 machine_mode mode;
9557 HOST_WIDE_INT offset;
9558 dataflow_set *out;
9559 decl_or_value dv;
9561 if (TREE_CODE (parm) != PARM_DECL)
9562 return;
9564 if (!decl_rtl || !incoming)
9565 return;
9567 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9568 return;
9570 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9571 rewrite the incoming location of parameters passed on the stack
9572 into MEMs based on the argument pointer, so that incoming doesn't
9573 depend on a pseudo. */
9574 if (MEM_P (incoming)
9575 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9576 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9577 && XEXP (XEXP (incoming, 0), 0)
9578 == crtl->args.internal_arg_pointer
9579 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9581 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9582 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9583 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9584 incoming
9585 = replace_equiv_address_nv (incoming,
9586 plus_constant (Pmode,
9587 arg_pointer_rtx, off));
9590 #ifdef HAVE_window_save
9591 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9592 If the target machine has an explicit window save instruction, the
9593 actual entry value is the corresponding OUTGOING_REGNO instead. */
9594 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9596 if (REG_P (incoming)
9597 && HARD_REGISTER_P (incoming)
9598 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9600 parm_reg_t p;
9601 p.incoming = incoming;
9602 incoming
9603 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9604 OUTGOING_REGNO (REGNO (incoming)), 0);
9605 p.outgoing = incoming;
9606 vec_safe_push (windowed_parm_regs, p);
9608 else if (GET_CODE (incoming) == PARALLEL)
9610 rtx outgoing
9611 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9612 int i;
9614 for (i = 0; i < XVECLEN (incoming, 0); i++)
9616 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9617 parm_reg_t p;
9618 p.incoming = reg;
9619 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9620 OUTGOING_REGNO (REGNO (reg)), 0);
9621 p.outgoing = reg;
9622 XVECEXP (outgoing, 0, i)
9623 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9624 XEXP (XVECEXP (incoming, 0, i), 1));
9625 vec_safe_push (windowed_parm_regs, p);
9628 incoming = outgoing;
9630 else if (MEM_P (incoming)
9631 && REG_P (XEXP (incoming, 0))
9632 && HARD_REGISTER_P (XEXP (incoming, 0)))
9634 rtx reg = XEXP (incoming, 0);
9635 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9637 parm_reg_t p;
9638 p.incoming = reg;
9639 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9640 p.outgoing = reg;
9641 vec_safe_push (windowed_parm_regs, p);
9642 incoming = replace_equiv_address_nv (incoming, reg);
9646 #endif
9648 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9650 if (MEM_P (incoming))
9652 /* This means argument is passed by invisible reference. */
9653 offset = 0;
9654 decl = parm;
9656 else
9658 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9659 return;
9660 offset += byte_lowpart_offset (GET_MODE (incoming),
9661 GET_MODE (decl_rtl));
9665 if (!decl)
9666 return;
9668 if (parm != decl)
9670 /* If that DECL_RTL wasn't a pseudo that got spilled to
9671 memory, bail out. Otherwise, the spill slot sharing code
9672 will force the memory to reference spill_slot_decl (%sfp),
9673 so we don't match above. That's ok, the pseudo must have
9674 referenced the entire parameter, so just reset OFFSET. */
9675 if (decl != get_spill_slot_decl (false))
9676 return;
9677 offset = 0;
9680 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9681 return;
9683 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9685 dv = dv_from_decl (parm);
9687 if (target_for_debug_bind (parm)
9688 /* We can't deal with these right now, because this kind of
9689 variable is single-part. ??? We could handle parallels
9690 that describe multiple locations for the same single
9691 value, but ATM we don't. */
9692 && GET_CODE (incoming) != PARALLEL)
9694 cselib_val *val;
9695 rtx lowpart;
9697 /* ??? We shouldn't ever hit this, but it may happen because
9698 arguments passed by invisible reference aren't dealt with
9699 above: incoming-rtl will have Pmode rather than the
9700 expected mode for the type. */
9701 if (offset)
9702 return;
9704 lowpart = var_lowpart (mode, incoming);
9705 if (!lowpart)
9706 return;
9708 val = cselib_lookup_from_insn (lowpart, mode, true,
9709 VOIDmode, get_insns ());
9711 /* ??? Float-typed values in memory are not handled by
9712 cselib. */
9713 if (val)
9715 preserve_value (val);
9716 set_variable_part (out, val->val_rtx, dv, offset,
9717 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9718 dv = dv_from_value (val->val_rtx);
9721 if (MEM_P (incoming))
9723 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9724 VOIDmode, get_insns ());
9725 if (val)
9727 preserve_value (val);
9728 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9733 if (REG_P (incoming))
9735 incoming = var_lowpart (mode, incoming);
9736 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9737 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9738 incoming);
9739 set_variable_part (out, incoming, dv, offset,
9740 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9741 if (dv_is_value_p (dv))
9743 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9744 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9745 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9747 machine_mode indmode
9748 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9749 rtx mem = gen_rtx_MEM (indmode, incoming);
9750 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9751 VOIDmode,
9752 get_insns ());
9753 if (val)
9755 preserve_value (val);
9756 record_entry_value (val, mem);
9757 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9758 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9763 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9765 int i;
9767 for (i = 0; i < XVECLEN (incoming, 0); i++)
9769 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9770 offset = REG_OFFSET (reg);
9771 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9772 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9773 set_variable_part (out, reg, dv, offset,
9774 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9777 else if (MEM_P (incoming))
9779 incoming = var_lowpart (mode, incoming);
9780 set_variable_part (out, incoming, dv, offset,
9781 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9785 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9787 static void
9788 vt_add_function_parameters (void)
9790 tree parm;
9792 for (parm = DECL_ARGUMENTS (current_function_decl);
9793 parm; parm = DECL_CHAIN (parm))
9794 if (!POINTER_BOUNDS_P (parm))
9795 vt_add_function_parameter (parm);
9797 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9799 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9801 if (TREE_CODE (vexpr) == INDIRECT_REF)
9802 vexpr = TREE_OPERAND (vexpr, 0);
9804 if (TREE_CODE (vexpr) == PARM_DECL
9805 && DECL_ARTIFICIAL (vexpr)
9806 && !DECL_IGNORED_P (vexpr)
9807 && DECL_NAMELESS (vexpr))
9808 vt_add_function_parameter (vexpr);
9812 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9813 ensure it isn't flushed during cselib_reset_table.
9814 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9815 has been eliminated. */
9817 static void
9818 vt_init_cfa_base (void)
9820 cselib_val *val;
9822 #ifdef FRAME_POINTER_CFA_OFFSET
9823 cfa_base_rtx = frame_pointer_rtx;
9824 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9825 #else
9826 cfa_base_rtx = arg_pointer_rtx;
9827 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9828 #endif
9829 if (cfa_base_rtx == hard_frame_pointer_rtx
9830 || !fixed_regs[REGNO (cfa_base_rtx)])
9832 cfa_base_rtx = NULL_RTX;
9833 return;
9835 if (!MAY_HAVE_DEBUG_INSNS)
9836 return;
9838 /* Tell alias analysis that cfa_base_rtx should share
9839 find_base_term value with stack pointer or hard frame pointer. */
9840 if (!frame_pointer_needed)
9841 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9842 else if (!crtl->stack_realign_tried)
9843 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9845 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9846 VOIDmode, get_insns ());
9847 preserve_value (val);
9848 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9851 /* Allocate and initialize the data structures for variable tracking
9852 and parse the RTL to get the micro operations. */
9854 static bool
9855 vt_initialize (void)
9857 basic_block bb;
9858 HOST_WIDE_INT fp_cfa_offset = -1;
9860 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9862 empty_shared_hash = new shared_hash_def;
9863 empty_shared_hash->refcount = 1;
9864 empty_shared_hash->htab = new variable_table_type (1);
9865 changed_variables = new variable_table_type (10);
9867 /* Init the IN and OUT sets. */
9868 FOR_ALL_BB_FN (bb, cfun)
9870 VTI (bb)->visited = false;
9871 VTI (bb)->flooded = false;
9872 dataflow_set_init (&VTI (bb)->in);
9873 dataflow_set_init (&VTI (bb)->out);
9874 VTI (bb)->permp = NULL;
9877 if (MAY_HAVE_DEBUG_INSNS)
9879 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9880 scratch_regs = BITMAP_ALLOC (NULL);
9881 preserved_values.create (256);
9882 global_get_addr_cache = new hash_map<rtx, rtx>;
9884 else
9886 scratch_regs = NULL;
9887 global_get_addr_cache = NULL;
9890 if (MAY_HAVE_DEBUG_INSNS)
9892 rtx reg, expr;
9893 int ofst;
9894 cselib_val *val;
9896 #ifdef FRAME_POINTER_CFA_OFFSET
9897 reg = frame_pointer_rtx;
9898 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9899 #else
9900 reg = arg_pointer_rtx;
9901 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9902 #endif
9904 ofst -= INCOMING_FRAME_SP_OFFSET;
9906 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9907 VOIDmode, get_insns ());
9908 preserve_value (val);
9909 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9910 cselib_preserve_cfa_base_value (val, REGNO (reg));
9911 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9912 stack_pointer_rtx, -ofst);
9913 cselib_add_permanent_equiv (val, expr, get_insns ());
9915 if (ofst)
9917 val = cselib_lookup_from_insn (stack_pointer_rtx,
9918 GET_MODE (stack_pointer_rtx), 1,
9919 VOIDmode, get_insns ());
9920 preserve_value (val);
9921 expr = plus_constant (GET_MODE (reg), reg, ofst);
9922 cselib_add_permanent_equiv (val, expr, get_insns ());
9926 /* In order to factor out the adjustments made to the stack pointer or to
9927 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9928 instead of individual location lists, we're going to rewrite MEMs based
9929 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9930 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9931 resp. arg_pointer_rtx. We can do this either when there is no frame
9932 pointer in the function and stack adjustments are consistent for all
9933 basic blocks or when there is a frame pointer and no stack realignment.
9934 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9935 has been eliminated. */
9936 if (!frame_pointer_needed)
9938 rtx reg, elim;
9940 if (!vt_stack_adjustments ())
9941 return false;
9943 #ifdef FRAME_POINTER_CFA_OFFSET
9944 reg = frame_pointer_rtx;
9945 #else
9946 reg = arg_pointer_rtx;
9947 #endif
9948 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9949 if (elim != reg)
9951 if (GET_CODE (elim) == PLUS)
9952 elim = XEXP (elim, 0);
9953 if (elim == stack_pointer_rtx)
9954 vt_init_cfa_base ();
9957 else if (!crtl->stack_realign_tried)
9959 rtx reg, elim;
9961 #ifdef FRAME_POINTER_CFA_OFFSET
9962 reg = frame_pointer_rtx;
9963 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9964 #else
9965 reg = arg_pointer_rtx;
9966 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9967 #endif
9968 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9969 if (elim != reg)
9971 if (GET_CODE (elim) == PLUS)
9973 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9974 elim = XEXP (elim, 0);
9976 if (elim != hard_frame_pointer_rtx)
9977 fp_cfa_offset = -1;
9979 else
9980 fp_cfa_offset = -1;
9983 /* If the stack is realigned and a DRAP register is used, we're going to
9984 rewrite MEMs based on it representing incoming locations of parameters
9985 passed on the stack into MEMs based on the argument pointer. Although
9986 we aren't going to rewrite other MEMs, we still need to initialize the
9987 virtual CFA pointer in order to ensure that the argument pointer will
9988 be seen as a constant throughout the function.
9990 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9991 else if (stack_realign_drap)
9993 rtx reg, elim;
9995 #ifdef FRAME_POINTER_CFA_OFFSET
9996 reg = frame_pointer_rtx;
9997 #else
9998 reg = arg_pointer_rtx;
9999 #endif
10000 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10001 if (elim != reg)
10003 if (GET_CODE (elim) == PLUS)
10004 elim = XEXP (elim, 0);
10005 if (elim == hard_frame_pointer_rtx)
10006 vt_init_cfa_base ();
10010 hard_frame_pointer_adjustment = -1;
10012 vt_add_function_parameters ();
10014 FOR_EACH_BB_FN (bb, cfun)
10016 rtx_insn *insn;
10017 HOST_WIDE_INT pre, post = 0;
10018 basic_block first_bb, last_bb;
10020 if (MAY_HAVE_DEBUG_INSNS)
10022 cselib_record_sets_hook = add_with_sets;
10023 if (dump_file && (dump_flags & TDF_DETAILS))
10024 fprintf (dump_file, "first value: %i\n",
10025 cselib_get_next_uid ());
10028 first_bb = bb;
10029 for (;;)
10031 edge e;
10032 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10033 || ! single_pred_p (bb->next_bb))
10034 break;
10035 e = find_edge (bb, bb->next_bb);
10036 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10037 break;
10038 bb = bb->next_bb;
10040 last_bb = bb;
10042 /* Add the micro-operations to the vector. */
10043 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10045 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10046 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10047 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10048 insn = NEXT_INSN (insn))
10050 if (INSN_P (insn))
10052 if (!frame_pointer_needed)
10054 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10055 if (pre)
10057 micro_operation mo;
10058 mo.type = MO_ADJUST;
10059 mo.u.adjust = pre;
10060 mo.insn = insn;
10061 if (dump_file && (dump_flags & TDF_DETAILS))
10062 log_op_type (PATTERN (insn), bb, insn,
10063 MO_ADJUST, dump_file);
10064 VTI (bb)->mos.safe_push (mo);
10065 VTI (bb)->out.stack_adjust += pre;
10069 cselib_hook_called = false;
10070 adjust_insn (bb, insn);
10071 if (MAY_HAVE_DEBUG_INSNS)
10073 if (CALL_P (insn))
10074 prepare_call_arguments (bb, insn);
10075 cselib_process_insn (insn);
10076 if (dump_file && (dump_flags & TDF_DETAILS))
10078 print_rtl_single (dump_file, insn);
10079 dump_cselib_table (dump_file);
10082 if (!cselib_hook_called)
10083 add_with_sets (insn, 0, 0);
10084 cancel_changes (0);
10086 if (!frame_pointer_needed && post)
10088 micro_operation mo;
10089 mo.type = MO_ADJUST;
10090 mo.u.adjust = post;
10091 mo.insn = insn;
10092 if (dump_file && (dump_flags & TDF_DETAILS))
10093 log_op_type (PATTERN (insn), bb, insn,
10094 MO_ADJUST, dump_file);
10095 VTI (bb)->mos.safe_push (mo);
10096 VTI (bb)->out.stack_adjust += post;
10099 if (fp_cfa_offset != -1
10100 && hard_frame_pointer_adjustment == -1
10101 && fp_setter_insn (insn))
10103 vt_init_cfa_base ();
10104 hard_frame_pointer_adjustment = fp_cfa_offset;
10105 /* Disassociate sp from fp now. */
10106 if (MAY_HAVE_DEBUG_INSNS)
10108 cselib_val *v;
10109 cselib_invalidate_rtx (stack_pointer_rtx);
10110 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10111 VOIDmode);
10112 if (v && !cselib_preserved_value_p (v))
10114 cselib_set_value_sp_based (v);
10115 preserve_value (v);
10121 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10124 bb = last_bb;
10126 if (MAY_HAVE_DEBUG_INSNS)
10128 cselib_preserve_only_values ();
10129 cselib_reset_table (cselib_get_next_uid ());
10130 cselib_record_sets_hook = NULL;
10134 hard_frame_pointer_adjustment = -1;
10135 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10136 cfa_base_rtx = NULL_RTX;
10137 return true;
10140 /* This is *not* reset after each function. It gives each
10141 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10142 a unique label number. */
10144 static int debug_label_num = 1;
10146 /* Get rid of all debug insns from the insn stream. */
10148 static void
10149 delete_debug_insns (void)
10151 basic_block bb;
10152 rtx_insn *insn, *next;
10154 if (!MAY_HAVE_DEBUG_INSNS)
10155 return;
10157 FOR_EACH_BB_FN (bb, cfun)
10159 FOR_BB_INSNS_SAFE (bb, insn, next)
10160 if (DEBUG_INSN_P (insn))
10162 tree decl = INSN_VAR_LOCATION_DECL (insn);
10163 if (TREE_CODE (decl) == LABEL_DECL
10164 && DECL_NAME (decl)
10165 && !DECL_RTL_SET_P (decl))
10167 PUT_CODE (insn, NOTE);
10168 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10169 NOTE_DELETED_LABEL_NAME (insn)
10170 = IDENTIFIER_POINTER (DECL_NAME (decl));
10171 SET_DECL_RTL (decl, insn);
10172 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10174 else
10175 delete_insn (insn);
10180 /* Run a fast, BB-local only version of var tracking, to take care of
10181 information that we don't do global analysis on, such that not all
10182 information is lost. If SKIPPED holds, we're skipping the global
10183 pass entirely, so we should try to use information it would have
10184 handled as well.. */
10186 static void
10187 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10189 /* ??? Just skip it all for now. */
10190 delete_debug_insns ();
10193 /* Free the data structures needed for variable tracking. */
10195 static void
10196 vt_finalize (void)
10198 basic_block bb;
10200 FOR_EACH_BB_FN (bb, cfun)
10202 VTI (bb)->mos.release ();
10205 FOR_ALL_BB_FN (bb, cfun)
10207 dataflow_set_destroy (&VTI (bb)->in);
10208 dataflow_set_destroy (&VTI (bb)->out);
10209 if (VTI (bb)->permp)
10211 dataflow_set_destroy (VTI (bb)->permp);
10212 XDELETE (VTI (bb)->permp);
10215 free_aux_for_blocks ();
10216 delete empty_shared_hash->htab;
10217 empty_shared_hash->htab = NULL;
10218 delete changed_variables;
10219 changed_variables = NULL;
10220 attrs_def_pool.release ();
10221 var_pool.release ();
10222 location_chain_def_pool.release ();
10223 shared_hash_def_pool.release ();
10225 if (MAY_HAVE_DEBUG_INSNS)
10227 if (global_get_addr_cache)
10228 delete global_get_addr_cache;
10229 global_get_addr_cache = NULL;
10230 loc_exp_dep_pool.release ();
10231 valvar_pool.release ();
10232 preserved_values.release ();
10233 cselib_finish ();
10234 BITMAP_FREE (scratch_regs);
10235 scratch_regs = NULL;
10238 #ifdef HAVE_window_save
10239 vec_free (windowed_parm_regs);
10240 #endif
10242 if (vui_vec)
10243 XDELETEVEC (vui_vec);
10244 vui_vec = NULL;
10245 vui_allocated = 0;
10248 /* The entry point to variable tracking pass. */
10250 static inline unsigned int
10251 variable_tracking_main_1 (void)
10253 bool success;
10255 if (flag_var_tracking_assignments < 0
10256 /* Var-tracking right now assumes the IR doesn't contain
10257 any pseudos at this point. */
10258 || targetm.no_register_allocation)
10260 delete_debug_insns ();
10261 return 0;
10264 if (n_basic_blocks_for_fn (cfun) > 500 &&
10265 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10267 vt_debug_insns_local (true);
10268 return 0;
10271 mark_dfs_back_edges ();
10272 if (!vt_initialize ())
10274 vt_finalize ();
10275 vt_debug_insns_local (true);
10276 return 0;
10279 success = vt_find_locations ();
10281 if (!success && flag_var_tracking_assignments > 0)
10283 vt_finalize ();
10285 delete_debug_insns ();
10287 /* This is later restored by our caller. */
10288 flag_var_tracking_assignments = 0;
10290 success = vt_initialize ();
10291 gcc_assert (success);
10293 success = vt_find_locations ();
10296 if (!success)
10298 vt_finalize ();
10299 vt_debug_insns_local (false);
10300 return 0;
10303 if (dump_file && (dump_flags & TDF_DETAILS))
10305 dump_dataflow_sets ();
10306 dump_reg_info (dump_file);
10307 dump_flow_info (dump_file, dump_flags);
10310 timevar_push (TV_VAR_TRACKING_EMIT);
10311 vt_emit_notes ();
10312 timevar_pop (TV_VAR_TRACKING_EMIT);
10314 vt_finalize ();
10315 vt_debug_insns_local (false);
10316 return 0;
10319 unsigned int
10320 variable_tracking_main (void)
10322 unsigned int ret;
10323 int save = flag_var_tracking_assignments;
10325 ret = variable_tracking_main_1 ();
10327 flag_var_tracking_assignments = save;
10329 return ret;
10332 namespace {
10334 const pass_data pass_data_variable_tracking =
10336 RTL_PASS, /* type */
10337 "vartrack", /* name */
10338 OPTGROUP_NONE, /* optinfo_flags */
10339 TV_VAR_TRACKING, /* tv_id */
10340 0, /* properties_required */
10341 0, /* properties_provided */
10342 0, /* properties_destroyed */
10343 0, /* todo_flags_start */
10344 0, /* todo_flags_finish */
10347 class pass_variable_tracking : public rtl_opt_pass
10349 public:
10350 pass_variable_tracking (gcc::context *ctxt)
10351 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10354 /* opt_pass methods: */
10355 virtual bool gate (function *)
10357 return (flag_var_tracking && !targetm.delay_vartrack);
10360 virtual unsigned int execute (function *)
10362 return variable_tracking_main ();
10365 }; // class pass_variable_tracking
10367 } // anon namespace
10369 rtl_opt_pass *
10370 make_pass_variable_tracking (gcc::context *ctxt)
10372 return new pass_variable_tracking (ctxt);