Daily bump.
[official-gcc.git] / gcc / tree-parloops.c
blobd017479ec2e2d83a8827cb00bdb86eb938ff4648
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "alias.h"
26 #include "backend.h"
27 #include "cfghooks.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "hard-reg-set.h"
31 #include "ssa.h"
32 #include "options.h"
33 #include "fold-const.h"
34 #include "internal-fn.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "gimplify-me.h"
38 #include "gimple-walk.h"
39 #include "stor-layout.h"
40 #include "tree-nested.h"
41 #include "tree-cfg.h"
42 #include "tree-ssa-loop-ivopts.h"
43 #include "tree-ssa-loop-manip.h"
44 #include "tree-ssa-loop-niter.h"
45 #include "tree-ssa-loop.h"
46 #include "tree-into-ssa.h"
47 #include "cfgloop.h"
48 #include "tree-data-ref.h"
49 #include "tree-scalar-evolution.h"
50 #include "gimple-pretty-print.h"
51 #include "tree-pass.h"
52 #include "langhooks.h"
53 #include "tree-vectorizer.h"
54 #include "tree-hasher.h"
55 #include "tree-parloops.h"
56 #include "omp-low.h"
57 #include "tree-nested.h"
58 #include "cgraph.h"
59 #include "tree-ssa.h"
61 /* This pass tries to distribute iterations of loops into several threads.
62 The implementation is straightforward -- for each loop we test whether its
63 iterations are independent, and if it is the case (and some additional
64 conditions regarding profitability and correctness are satisfied), we
65 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
66 machinery do its job.
68 The most of the complexity is in bringing the code into shape expected
69 by the omp expanders:
70 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
71 variable and that the exit test is at the start of the loop body
72 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
73 variables by accesses through pointers, and breaking up ssa chains
74 by storing the values incoming to the parallelized loop to a structure
75 passed to the new function as an argument (something similar is done
76 in omp gimplification, unfortunately only a small part of the code
77 can be shared).
79 TODO:
80 -- if there are several parallelizable loops in a function, it may be
81 possible to generate the threads just once (using synchronization to
82 ensure that cross-loop dependences are obeyed).
83 -- handling of common reduction patterns for outer loops.
85 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
87 Reduction handling:
88 currently we use vect_force_simple_reduction() to detect reduction patterns.
89 The code transformation will be introduced by an example.
92 parloop
94 int sum=1;
96 for (i = 0; i < N; i++)
98 x[i] = i + 3;
99 sum+=x[i];
103 gimple-like code:
104 header_bb:
106 # sum_29 = PHI <sum_11(5), 1(3)>
107 # i_28 = PHI <i_12(5), 0(3)>
108 D.1795_8 = i_28 + 3;
109 x[i_28] = D.1795_8;
110 sum_11 = D.1795_8 + sum_29;
111 i_12 = i_28 + 1;
112 if (N_6(D) > i_12)
113 goto header_bb;
116 exit_bb:
118 # sum_21 = PHI <sum_11(4)>
119 printf (&"%d"[0], sum_21);
122 after reduction transformation (only relevant parts):
124 parloop
127 ....
130 # Storing the initial value given by the user. #
132 .paral_data_store.32.sum.27 = 1;
134 #pragma omp parallel num_threads(4)
136 #pragma omp for schedule(static)
138 # The neutral element corresponding to the particular
139 reduction's operation, e.g. 0 for PLUS_EXPR,
140 1 for MULT_EXPR, etc. replaces the user's initial value. #
142 # sum.27_29 = PHI <sum.27_11, 0>
144 sum.27_11 = D.1827_8 + sum.27_29;
146 GIMPLE_OMP_CONTINUE
148 # Adding this reduction phi is done at create_phi_for_local_result() #
149 # sum.27_56 = PHI <sum.27_11, 0>
150 GIMPLE_OMP_RETURN
152 # Creating the atomic operation is done at
153 create_call_for_reduction_1() #
155 #pragma omp atomic_load
156 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
157 D.1840_60 = sum.27_56 + D.1839_59;
158 #pragma omp atomic_store (D.1840_60);
160 GIMPLE_OMP_RETURN
162 # collecting the result after the join of the threads is done at
163 create_loads_for_reductions().
164 The value computed by the threads is loaded from the
165 shared struct. #
168 .paral_data_load.33_52 = &.paral_data_store.32;
169 sum_37 = .paral_data_load.33_52->sum.27;
170 sum_43 = D.1795_41 + sum_37;
172 exit bb:
173 # sum_21 = PHI <sum_43, sum_26>
174 printf (&"%d"[0], sum_21);
182 /* Minimal number of iterations of a loop that should be executed in each
183 thread. */
184 #define MIN_PER_THREAD 100
186 /* Element of the hashtable, representing a
187 reduction in the current loop. */
188 struct reduction_info
190 gimple reduc_stmt; /* reduction statement. */
191 gimple reduc_phi; /* The phi node defining the reduction. */
192 enum tree_code reduction_code;/* code for the reduction operation. */
193 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
194 result. */
195 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
196 of the reduction variable when existing the loop. */
197 tree initial_value; /* The initial value of the reduction var before entering the loop. */
198 tree field; /* the name of the field in the parloop data structure intended for reduction. */
199 tree init; /* reduction initialization value. */
200 gphi *new_phi; /* (helper field) Newly created phi node whose result
201 will be passed to the atomic operation. Represents
202 the local result each thread computed for the reduction
203 operation. */
206 /* Reduction info hashtable helpers. */
208 struct reduction_hasher : free_ptr_hash <reduction_info>
210 static inline hashval_t hash (const reduction_info *);
211 static inline bool equal (const reduction_info *, const reduction_info *);
214 /* Equality and hash functions for hashtab code. */
216 inline bool
217 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
219 return (a->reduc_phi == b->reduc_phi);
222 inline hashval_t
223 reduction_hasher::hash (const reduction_info *a)
225 return a->reduc_version;
228 typedef hash_table<reduction_hasher> reduction_info_table_type;
231 static struct reduction_info *
232 reduction_phi (reduction_info_table_type *reduction_list, gimple phi)
234 struct reduction_info tmpred, *red;
236 if (reduction_list->elements () == 0 || phi == NULL)
237 return NULL;
239 tmpred.reduc_phi = phi;
240 tmpred.reduc_version = gimple_uid (phi);
241 red = reduction_list->find (&tmpred);
243 return red;
246 /* Element of hashtable of names to copy. */
248 struct name_to_copy_elt
250 unsigned version; /* The version of the name to copy. */
251 tree new_name; /* The new name used in the copy. */
252 tree field; /* The field of the structure used to pass the
253 value. */
256 /* Name copies hashtable helpers. */
258 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
260 static inline hashval_t hash (const name_to_copy_elt *);
261 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
264 /* Equality and hash functions for hashtab code. */
266 inline bool
267 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
269 return a->version == b->version;
272 inline hashval_t
273 name_to_copy_hasher::hash (const name_to_copy_elt *a)
275 return (hashval_t) a->version;
278 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
280 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
281 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
282 represents the denominator for every element in the matrix. */
283 typedef struct lambda_trans_matrix_s
285 lambda_matrix matrix;
286 int rowsize;
287 int colsize;
288 int denominator;
289 } *lambda_trans_matrix;
290 #define LTM_MATRIX(T) ((T)->matrix)
291 #define LTM_ROWSIZE(T) ((T)->rowsize)
292 #define LTM_COLSIZE(T) ((T)->colsize)
293 #define LTM_DENOMINATOR(T) ((T)->denominator)
295 /* Allocate a new transformation matrix. */
297 static lambda_trans_matrix
298 lambda_trans_matrix_new (int colsize, int rowsize,
299 struct obstack * lambda_obstack)
301 lambda_trans_matrix ret;
303 ret = (lambda_trans_matrix)
304 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
305 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
306 LTM_ROWSIZE (ret) = rowsize;
307 LTM_COLSIZE (ret) = colsize;
308 LTM_DENOMINATOR (ret) = 1;
309 return ret;
312 /* Multiply a vector VEC by a matrix MAT.
313 MAT is an M*N matrix, and VEC is a vector with length N. The result
314 is stored in DEST which must be a vector of length M. */
316 static void
317 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
318 lambda_vector vec, lambda_vector dest)
320 int i, j;
322 lambda_vector_clear (dest, m);
323 for (i = 0; i < m; i++)
324 for (j = 0; j < n; j++)
325 dest[i] += matrix[i][j] * vec[j];
328 /* Return true if TRANS is a legal transformation matrix that respects
329 the dependence vectors in DISTS and DIRS. The conservative answer
330 is false.
332 "Wolfe proves that a unimodular transformation represented by the
333 matrix T is legal when applied to a loop nest with a set of
334 lexicographically non-negative distance vectors RDG if and only if
335 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
336 i.e.: if and only if it transforms the lexicographically positive
337 distance vectors to lexicographically positive vectors. Note that
338 a unimodular matrix must transform the zero vector (and only it) to
339 the zero vector." S.Muchnick. */
341 static bool
342 lambda_transform_legal_p (lambda_trans_matrix trans,
343 int nb_loops,
344 vec<ddr_p> dependence_relations)
346 unsigned int i, j;
347 lambda_vector distres;
348 struct data_dependence_relation *ddr;
350 gcc_assert (LTM_COLSIZE (trans) == nb_loops
351 && LTM_ROWSIZE (trans) == nb_loops);
353 /* When there are no dependences, the transformation is correct. */
354 if (dependence_relations.length () == 0)
355 return true;
357 ddr = dependence_relations[0];
358 if (ddr == NULL)
359 return true;
361 /* When there is an unknown relation in the dependence_relations, we
362 know that it is no worth looking at this loop nest: give up. */
363 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
364 return false;
366 distres = lambda_vector_new (nb_loops);
368 /* For each distance vector in the dependence graph. */
369 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
371 /* Don't care about relations for which we know that there is no
372 dependence, nor about read-read (aka. output-dependences):
373 these data accesses can happen in any order. */
374 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
375 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
376 continue;
378 /* Conservatively answer: "this transformation is not valid". */
379 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
380 return false;
382 /* If the dependence could not be captured by a distance vector,
383 conservatively answer that the transform is not valid. */
384 if (DDR_NUM_DIST_VECTS (ddr) == 0)
385 return false;
387 /* Compute trans.dist_vect */
388 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
390 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
391 DDR_DIST_VECT (ddr, j), distres);
393 if (!lambda_vector_lexico_pos (distres, nb_loops))
394 return false;
397 return true;
400 /* Data dependency analysis. Returns true if the iterations of LOOP
401 are independent on each other (that is, if we can execute them
402 in parallel). */
404 static bool
405 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
407 vec<ddr_p> dependence_relations;
408 vec<data_reference_p> datarefs;
409 lambda_trans_matrix trans;
410 bool ret = false;
412 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "Considering loop %d\n", loop->num);
415 if (!loop->inner)
416 fprintf (dump_file, "loop is innermost\n");
417 else
418 fprintf (dump_file, "loop NOT innermost\n");
421 /* Check for problems with dependences. If the loop can be reversed,
422 the iterations are independent. */
423 auto_vec<loop_p, 3> loop_nest;
424 datarefs.create (10);
425 dependence_relations.create (100);
426 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
427 &dependence_relations))
429 if (dump_file && (dump_flags & TDF_DETAILS))
430 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
431 ret = false;
432 goto end;
434 if (dump_file && (dump_flags & TDF_DETAILS))
435 dump_data_dependence_relations (dump_file, dependence_relations);
437 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
438 LTM_MATRIX (trans)[0][0] = -1;
440 if (lambda_transform_legal_p (trans, 1, dependence_relations))
442 ret = true;
443 if (dump_file && (dump_flags & TDF_DETAILS))
444 fprintf (dump_file, " SUCCESS: may be parallelized\n");
446 else if (dump_file && (dump_flags & TDF_DETAILS))
447 fprintf (dump_file,
448 " FAILED: data dependencies exist across iterations\n");
450 end:
451 free_dependence_relations (dependence_relations);
452 free_data_refs (datarefs);
454 return ret;
457 /* Return true when LOOP contains basic blocks marked with the
458 BB_IRREDUCIBLE_LOOP flag. */
460 static inline bool
461 loop_has_blocks_with_irreducible_flag (struct loop *loop)
463 unsigned i;
464 basic_block *bbs = get_loop_body_in_dom_order (loop);
465 bool res = true;
467 for (i = 0; i < loop->num_nodes; i++)
468 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
469 goto end;
471 res = false;
472 end:
473 free (bbs);
474 return res;
477 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
478 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
479 to their addresses that can be reused. The address of OBJ is known to
480 be invariant in the whole function. Other needed statements are placed
481 right before GSI. */
483 static tree
484 take_address_of (tree obj, tree type, edge entry,
485 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
487 int uid;
488 tree *var_p, name, addr;
489 gassign *stmt;
490 gimple_seq stmts;
492 /* Since the address of OBJ is invariant, the trees may be shared.
493 Avoid rewriting unrelated parts of the code. */
494 obj = unshare_expr (obj);
495 for (var_p = &obj;
496 handled_component_p (*var_p);
497 var_p = &TREE_OPERAND (*var_p, 0))
498 continue;
500 /* Canonicalize the access to base on a MEM_REF. */
501 if (DECL_P (*var_p))
502 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
504 /* Assign a canonical SSA name to the address of the base decl used
505 in the address and share it for all accesses and addresses based
506 on it. */
507 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
508 int_tree_map elt;
509 elt.uid = uid;
510 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
511 if (!slot->to)
513 if (gsi == NULL)
514 return NULL;
515 addr = TREE_OPERAND (*var_p, 0);
516 const char *obj_name
517 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
518 if (obj_name)
519 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
520 else
521 name = make_ssa_name (TREE_TYPE (addr));
522 stmt = gimple_build_assign (name, addr);
523 gsi_insert_on_edge_immediate (entry, stmt);
525 slot->uid = uid;
526 slot->to = name;
528 else
529 name = slot->to;
531 /* Express the address in terms of the canonical SSA name. */
532 TREE_OPERAND (*var_p, 0) = name;
533 if (gsi == NULL)
534 return build_fold_addr_expr_with_type (obj, type);
536 name = force_gimple_operand (build_addr (obj, current_function_decl),
537 &stmts, true, NULL_TREE);
538 if (!gimple_seq_empty_p (stmts))
539 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
541 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
543 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
544 NULL_TREE);
545 if (!gimple_seq_empty_p (stmts))
546 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
549 return name;
552 static tree
553 reduc_stmt_res (gimple stmt)
555 return (gimple_code (stmt) == GIMPLE_PHI
556 ? gimple_phi_result (stmt)
557 : gimple_assign_lhs (stmt));
560 /* Callback for htab_traverse. Create the initialization statement
561 for reduction described in SLOT, and place it at the preheader of
562 the loop described in DATA. */
565 initialize_reductions (reduction_info **slot, struct loop *loop)
567 tree init, c;
568 tree bvar, type, arg;
569 edge e;
571 struct reduction_info *const reduc = *slot;
573 /* Create initialization in preheader:
574 reduction_variable = initialization value of reduction. */
576 /* In the phi node at the header, replace the argument coming
577 from the preheader with the reduction initialization value. */
579 /* Create a new variable to initialize the reduction. */
580 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
581 bvar = create_tmp_var (type, "reduction");
583 c = build_omp_clause (gimple_location (reduc->reduc_stmt),
584 OMP_CLAUSE_REDUCTION);
585 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
586 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (reduc_stmt_res (reduc->reduc_stmt));
588 init = omp_reduction_init (c, TREE_TYPE (bvar));
589 reduc->init = init;
591 /* Replace the argument representing the initialization value
592 with the initialization value for the reduction (neutral
593 element for the particular operation, e.g. 0 for PLUS_EXPR,
594 1 for MULT_EXPR, etc).
595 Keep the old value in a new variable "reduction_initial",
596 that will be taken in consideration after the parallel
597 computing is done. */
599 e = loop_preheader_edge (loop);
600 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
601 /* Create new variable to hold the initial value. */
603 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
604 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
605 reduc->initial_value = arg;
606 return 1;
609 struct elv_data
611 struct walk_stmt_info info;
612 edge entry;
613 int_tree_htab_type *decl_address;
614 gimple_stmt_iterator *gsi;
615 bool changed;
616 bool reset;
619 /* Eliminates references to local variables in *TP out of the single
620 entry single exit region starting at DTA->ENTRY.
621 DECL_ADDRESS contains addresses of the references that had their
622 address taken already. If the expression is changed, CHANGED is
623 set to true. Callback for walk_tree. */
625 static tree
626 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
628 struct elv_data *const dta = (struct elv_data *) data;
629 tree t = *tp, var, addr, addr_type, type, obj;
631 if (DECL_P (t))
633 *walk_subtrees = 0;
635 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
636 return NULL_TREE;
638 type = TREE_TYPE (t);
639 addr_type = build_pointer_type (type);
640 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
641 dta->gsi);
642 if (dta->gsi == NULL && addr == NULL_TREE)
644 dta->reset = true;
645 return NULL_TREE;
648 *tp = build_simple_mem_ref (addr);
650 dta->changed = true;
651 return NULL_TREE;
654 if (TREE_CODE (t) == ADDR_EXPR)
656 /* ADDR_EXPR may appear in two contexts:
657 -- as a gimple operand, when the address taken is a function invariant
658 -- as gimple rhs, when the resulting address in not a function
659 invariant
660 We do not need to do anything special in the latter case (the base of
661 the memory reference whose address is taken may be replaced in the
662 DECL_P case). The former case is more complicated, as we need to
663 ensure that the new address is still a gimple operand. Thus, it
664 is not sufficient to replace just the base of the memory reference --
665 we need to move the whole computation of the address out of the
666 loop. */
667 if (!is_gimple_val (t))
668 return NULL_TREE;
670 *walk_subtrees = 0;
671 obj = TREE_OPERAND (t, 0);
672 var = get_base_address (obj);
673 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
674 return NULL_TREE;
676 addr_type = TREE_TYPE (t);
677 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
678 dta->gsi);
679 if (dta->gsi == NULL && addr == NULL_TREE)
681 dta->reset = true;
682 return NULL_TREE;
684 *tp = addr;
686 dta->changed = true;
687 return NULL_TREE;
690 if (!EXPR_P (t))
691 *walk_subtrees = 0;
693 return NULL_TREE;
696 /* Moves the references to local variables in STMT at *GSI out of the single
697 entry single exit region starting at ENTRY. DECL_ADDRESS contains
698 addresses of the references that had their address taken
699 already. */
701 static void
702 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
703 int_tree_htab_type *decl_address)
705 struct elv_data dta;
706 gimple stmt = gsi_stmt (*gsi);
708 memset (&dta.info, '\0', sizeof (dta.info));
709 dta.entry = entry;
710 dta.decl_address = decl_address;
711 dta.changed = false;
712 dta.reset = false;
714 if (gimple_debug_bind_p (stmt))
716 dta.gsi = NULL;
717 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
718 eliminate_local_variables_1, &dta.info, NULL);
719 if (dta.reset)
721 gimple_debug_bind_reset_value (stmt);
722 dta.changed = true;
725 else if (gimple_clobber_p (stmt))
727 stmt = gimple_build_nop ();
728 gsi_replace (gsi, stmt, false);
729 dta.changed = true;
731 else
733 dta.gsi = gsi;
734 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
737 if (dta.changed)
738 update_stmt (stmt);
741 /* Eliminates the references to local variables from the single entry
742 single exit region between the ENTRY and EXIT edges.
744 This includes:
745 1) Taking address of a local variable -- these are moved out of the
746 region (and temporary variable is created to hold the address if
747 necessary).
749 2) Dereferencing a local variable -- these are replaced with indirect
750 references. */
752 static void
753 eliminate_local_variables (edge entry, edge exit)
755 basic_block bb;
756 auto_vec<basic_block, 3> body;
757 unsigned i;
758 gimple_stmt_iterator gsi;
759 bool has_debug_stmt = false;
760 int_tree_htab_type decl_address (10);
761 basic_block entry_bb = entry->src;
762 basic_block exit_bb = exit->dest;
764 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
766 FOR_EACH_VEC_ELT (body, i, bb)
767 if (bb != entry_bb && bb != exit_bb)
768 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
769 if (is_gimple_debug (gsi_stmt (gsi)))
771 if (gimple_debug_bind_p (gsi_stmt (gsi)))
772 has_debug_stmt = true;
774 else
775 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
777 if (has_debug_stmt)
778 FOR_EACH_VEC_ELT (body, i, bb)
779 if (bb != entry_bb && bb != exit_bb)
780 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
781 if (gimple_debug_bind_p (gsi_stmt (gsi)))
782 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
785 /* Returns true if expression EXPR is not defined between ENTRY and
786 EXIT, i.e. if all its operands are defined outside of the region. */
788 static bool
789 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
791 basic_block entry_bb = entry->src;
792 basic_block exit_bb = exit->dest;
793 basic_block def_bb;
795 if (is_gimple_min_invariant (expr))
796 return true;
798 if (TREE_CODE (expr) == SSA_NAME)
800 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
801 if (def_bb
802 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
803 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
804 return false;
806 return true;
809 return false;
812 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
813 The copies are stored to NAME_COPIES, if NAME was already duplicated,
814 its duplicate stored in NAME_COPIES is returned.
816 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
817 duplicated, storing the copies in DECL_COPIES. */
819 static tree
820 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
821 int_tree_htab_type *decl_copies,
822 bool copy_name_p)
824 tree copy, var, var_copy;
825 unsigned idx, uid, nuid;
826 struct int_tree_map ielt;
827 struct name_to_copy_elt elt, *nelt;
828 name_to_copy_elt **slot;
829 int_tree_map *dslot;
831 if (TREE_CODE (name) != SSA_NAME)
832 return name;
834 idx = SSA_NAME_VERSION (name);
835 elt.version = idx;
836 slot = name_copies->find_slot_with_hash (&elt, idx,
837 copy_name_p ? INSERT : NO_INSERT);
838 if (slot && *slot)
839 return (*slot)->new_name;
841 if (copy_name_p)
843 copy = duplicate_ssa_name (name, NULL);
844 nelt = XNEW (struct name_to_copy_elt);
845 nelt->version = idx;
846 nelt->new_name = copy;
847 nelt->field = NULL_TREE;
848 *slot = nelt;
850 else
852 gcc_assert (!slot);
853 copy = name;
856 var = SSA_NAME_VAR (name);
857 if (!var)
858 return copy;
860 uid = DECL_UID (var);
861 ielt.uid = uid;
862 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
863 if (!dslot->to)
865 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
866 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
867 dslot->uid = uid;
868 dslot->to = var_copy;
870 /* Ensure that when we meet this decl next time, we won't duplicate
871 it again. */
872 nuid = DECL_UID (var_copy);
873 ielt.uid = nuid;
874 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
875 gcc_assert (!dslot->to);
876 dslot->uid = nuid;
877 dslot->to = var_copy;
879 else
880 var_copy = dslot->to;
882 replace_ssa_name_symbol (copy, var_copy);
883 return copy;
886 /* Finds the ssa names used in STMT that are defined outside the
887 region between ENTRY and EXIT and replaces such ssa names with
888 their duplicates. The duplicates are stored to NAME_COPIES. Base
889 decls of all ssa names used in STMT (including those defined in
890 LOOP) are replaced with the new temporary variables; the
891 replacement decls are stored in DECL_COPIES. */
893 static void
894 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
895 name_to_copy_table_type *name_copies,
896 int_tree_htab_type *decl_copies)
898 use_operand_p use;
899 def_operand_p def;
900 ssa_op_iter oi;
901 tree name, copy;
902 bool copy_name_p;
904 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
906 name = DEF_FROM_PTR (def);
907 gcc_assert (TREE_CODE (name) == SSA_NAME);
908 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
909 false);
910 gcc_assert (copy == name);
913 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
915 name = USE_FROM_PTR (use);
916 if (TREE_CODE (name) != SSA_NAME)
917 continue;
919 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
920 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
921 copy_name_p);
922 SET_USE (use, copy);
926 /* Finds the ssa names used in STMT that are defined outside the
927 region between ENTRY and EXIT and replaces such ssa names with
928 their duplicates. The duplicates are stored to NAME_COPIES. Base
929 decls of all ssa names used in STMT (including those defined in
930 LOOP) are replaced with the new temporary variables; the
931 replacement decls are stored in DECL_COPIES. */
933 static bool
934 separate_decls_in_region_debug (gimple stmt,
935 name_to_copy_table_type *name_copies,
936 int_tree_htab_type *decl_copies)
938 use_operand_p use;
939 ssa_op_iter oi;
940 tree var, name;
941 struct int_tree_map ielt;
942 struct name_to_copy_elt elt;
943 name_to_copy_elt **slot;
944 int_tree_map *dslot;
946 if (gimple_debug_bind_p (stmt))
947 var = gimple_debug_bind_get_var (stmt);
948 else if (gimple_debug_source_bind_p (stmt))
949 var = gimple_debug_source_bind_get_var (stmt);
950 else
951 return true;
952 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
953 return true;
954 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
955 ielt.uid = DECL_UID (var);
956 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
957 if (!dslot)
958 return true;
959 if (gimple_debug_bind_p (stmt))
960 gimple_debug_bind_set_var (stmt, dslot->to);
961 else if (gimple_debug_source_bind_p (stmt))
962 gimple_debug_source_bind_set_var (stmt, dslot->to);
964 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
966 name = USE_FROM_PTR (use);
967 if (TREE_CODE (name) != SSA_NAME)
968 continue;
970 elt.version = SSA_NAME_VERSION (name);
971 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
972 if (!slot)
974 gimple_debug_bind_reset_value (stmt);
975 update_stmt (stmt);
976 break;
979 SET_USE (use, (*slot)->new_name);
982 return false;
985 /* Callback for htab_traverse. Adds a field corresponding to the reduction
986 specified in SLOT. The type is passed in DATA. */
989 add_field_for_reduction (reduction_info **slot, tree type)
992 struct reduction_info *const red = *slot;
993 tree var = reduc_stmt_res (red->reduc_stmt);
994 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
995 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
997 insert_field_into_struct (type, field);
999 red->field = field;
1001 return 1;
1004 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1005 described in SLOT. The type is passed in DATA. */
1008 add_field_for_name (name_to_copy_elt **slot, tree type)
1010 struct name_to_copy_elt *const elt = *slot;
1011 tree name = ssa_name (elt->version);
1012 tree field = build_decl (UNKNOWN_LOCATION,
1013 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1014 TREE_TYPE (name));
1016 insert_field_into_struct (type, field);
1017 elt->field = field;
1019 return 1;
1022 /* Callback for htab_traverse. A local result is the intermediate result
1023 computed by a single
1024 thread, or the initial value in case no iteration was executed.
1025 This function creates a phi node reflecting these values.
1026 The phi's result will be stored in NEW_PHI field of the
1027 reduction's data structure. */
1030 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1032 struct reduction_info *const reduc = *slot;
1033 edge e;
1034 gphi *new_phi;
1035 basic_block store_bb, continue_bb;
1036 tree local_res;
1037 source_location locus;
1039 /* STORE_BB is the block where the phi
1040 should be stored. It is the destination of the loop exit.
1041 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1042 continue_bb = single_pred (loop->latch);
1043 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
1045 /* STORE_BB has two predecessors. One coming from the loop
1046 (the reduction's result is computed at the loop),
1047 and another coming from a block preceding the loop,
1048 when no iterations
1049 are executed (the initial value should be taken). */
1050 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
1051 e = EDGE_PRED (store_bb, 1);
1052 else
1053 e = EDGE_PRED (store_bb, 0);
1054 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1055 local_res = copy_ssa_name (lhs);
1056 locus = gimple_location (reduc->reduc_stmt);
1057 new_phi = create_phi_node (local_res, store_bb);
1058 add_phi_arg (new_phi, reduc->init, e, locus);
1059 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
1060 reduc->new_phi = new_phi;
1062 return 1;
1065 struct clsn_data
1067 tree store;
1068 tree load;
1070 basic_block store_bb;
1071 basic_block load_bb;
1074 /* Callback for htab_traverse. Create an atomic instruction for the
1075 reduction described in SLOT.
1076 DATA annotates the place in memory the atomic operation relates to,
1077 and the basic block it needs to be generated in. */
1080 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1082 struct reduction_info *const reduc = *slot;
1083 gimple_stmt_iterator gsi;
1084 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1085 tree load_struct;
1086 basic_block bb;
1087 basic_block new_bb;
1088 edge e;
1089 tree t, addr, ref, x;
1090 tree tmp_load, name;
1091 gimple load;
1093 load_struct = build_simple_mem_ref (clsn_data->load);
1094 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1096 addr = build_addr (t, current_function_decl);
1098 /* Create phi node. */
1099 bb = clsn_data->load_bb;
1101 gsi = gsi_last_bb (bb);
1102 e = split_block (bb, gsi_stmt (gsi));
1103 new_bb = e->dest;
1105 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1106 tmp_load = make_ssa_name (tmp_load);
1107 load = gimple_build_omp_atomic_load (tmp_load, addr);
1108 SSA_NAME_DEF_STMT (tmp_load) = load;
1109 gsi = gsi_start_bb (new_bb);
1110 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1112 e = split_block (new_bb, load);
1113 new_bb = e->dest;
1114 gsi = gsi_start_bb (new_bb);
1115 ref = tmp_load;
1116 x = fold_build2 (reduc->reduction_code,
1117 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1118 PHI_RESULT (reduc->new_phi));
1120 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1121 GSI_CONTINUE_LINKING);
1123 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1124 return 1;
1127 /* Create the atomic operation at the join point of the threads.
1128 REDUCTION_LIST describes the reductions in the LOOP.
1129 LD_ST_DATA describes the shared data structure where
1130 shared data is stored in and loaded from. */
1131 static void
1132 create_call_for_reduction (struct loop *loop,
1133 reduction_info_table_type *reduction_list,
1134 struct clsn_data *ld_st_data)
1136 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1137 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1138 basic_block continue_bb = single_pred (loop->latch);
1139 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
1140 reduction_list
1141 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1144 /* Callback for htab_traverse. Loads the final reduction value at the
1145 join point of all threads, and inserts it in the right place. */
1148 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1150 struct reduction_info *const red = *slot;
1151 gimple stmt;
1152 gimple_stmt_iterator gsi;
1153 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1154 tree load_struct;
1155 tree name;
1156 tree x;
1158 /* If there's no exit phi, the result of the reduction is unused. */
1159 if (red->keep_res == NULL)
1160 return 1;
1162 gsi = gsi_after_labels (clsn_data->load_bb);
1163 load_struct = build_simple_mem_ref (clsn_data->load);
1164 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1165 NULL_TREE);
1167 x = load_struct;
1168 name = PHI_RESULT (red->keep_res);
1169 stmt = gimple_build_assign (name, x);
1171 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1173 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1174 !gsi_end_p (gsi); gsi_next (&gsi))
1175 if (gsi_stmt (gsi) == red->keep_res)
1177 remove_phi_node (&gsi, false);
1178 return 1;
1180 gcc_unreachable ();
1183 /* Load the reduction result that was stored in LD_ST_DATA.
1184 REDUCTION_LIST describes the list of reductions that the
1185 loads should be generated for. */
1186 static void
1187 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1188 struct clsn_data *ld_st_data)
1190 gimple_stmt_iterator gsi;
1191 tree t;
1192 gimple stmt;
1194 gsi = gsi_after_labels (ld_st_data->load_bb);
1195 t = build_fold_addr_expr (ld_st_data->store);
1196 stmt = gimple_build_assign (ld_st_data->load, t);
1198 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1200 reduction_list
1201 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1205 /* Callback for htab_traverse. Store the neutral value for the
1206 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1207 1 for MULT_EXPR, etc. into the reduction field.
1208 The reduction is specified in SLOT. The store information is
1209 passed in DATA. */
1212 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1214 struct reduction_info *const red = *slot;
1215 tree t;
1216 gimple stmt;
1217 gimple_stmt_iterator gsi;
1218 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1220 gsi = gsi_last_bb (clsn_data->store_bb);
1221 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1222 stmt = gimple_build_assign (t, red->initial_value);
1223 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1225 return 1;
1228 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1229 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1230 specified in SLOT. */
1233 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1234 struct clsn_data *clsn_data)
1236 struct name_to_copy_elt *const elt = *slot;
1237 tree t;
1238 gimple stmt;
1239 gimple_stmt_iterator gsi;
1240 tree type = TREE_TYPE (elt->new_name);
1241 tree load_struct;
1243 gsi = gsi_last_bb (clsn_data->store_bb);
1244 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1245 stmt = gimple_build_assign (t, ssa_name (elt->version));
1246 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1248 gsi = gsi_last_bb (clsn_data->load_bb);
1249 load_struct = build_simple_mem_ref (clsn_data->load);
1250 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1251 stmt = gimple_build_assign (elt->new_name, t);
1252 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1254 return 1;
1257 /* Moves all the variables used in LOOP and defined outside of it (including
1258 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1259 name) to a structure created for this purpose. The code
1261 while (1)
1263 use (a);
1264 use (b);
1267 is transformed this way:
1269 bb0:
1270 old.a = a;
1271 old.b = b;
1273 bb1:
1274 a' = new->a;
1275 b' = new->b;
1276 while (1)
1278 use (a');
1279 use (b');
1282 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1283 pointer `new' is intentionally not initialized (the loop will be split to a
1284 separate function later, and `new' will be initialized from its arguments).
1285 LD_ST_DATA holds information about the shared data structure used to pass
1286 information among the threads. It is initialized here, and
1287 gen_parallel_loop will pass it to create_call_for_reduction that
1288 needs this information. REDUCTION_LIST describes the reductions
1289 in LOOP. */
1291 static void
1292 separate_decls_in_region (edge entry, edge exit,
1293 reduction_info_table_type *reduction_list,
1294 tree *arg_struct, tree *new_arg_struct,
1295 struct clsn_data *ld_st_data)
1298 basic_block bb1 = split_edge (entry);
1299 basic_block bb0 = single_pred (bb1);
1300 name_to_copy_table_type name_copies (10);
1301 int_tree_htab_type decl_copies (10);
1302 unsigned i;
1303 tree type, type_name, nvar;
1304 gimple_stmt_iterator gsi;
1305 struct clsn_data clsn_data;
1306 auto_vec<basic_block, 3> body;
1307 basic_block bb;
1308 basic_block entry_bb = bb1;
1309 basic_block exit_bb = exit->dest;
1310 bool has_debug_stmt = false;
1312 entry = single_succ_edge (entry_bb);
1313 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1315 FOR_EACH_VEC_ELT (body, i, bb)
1317 if (bb != entry_bb && bb != exit_bb)
1319 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1320 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1321 &name_copies, &decl_copies);
1323 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1325 gimple stmt = gsi_stmt (gsi);
1327 if (is_gimple_debug (stmt))
1328 has_debug_stmt = true;
1329 else
1330 separate_decls_in_region_stmt (entry, exit, stmt,
1331 &name_copies, &decl_copies);
1336 /* Now process debug bind stmts. We must not create decls while
1337 processing debug stmts, so we defer their processing so as to
1338 make sure we will have debug info for as many variables as
1339 possible (all of those that were dealt with in the loop above),
1340 and discard those for which we know there's nothing we can
1341 do. */
1342 if (has_debug_stmt)
1343 FOR_EACH_VEC_ELT (body, i, bb)
1344 if (bb != entry_bb && bb != exit_bb)
1346 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1348 gimple stmt = gsi_stmt (gsi);
1350 if (is_gimple_debug (stmt))
1352 if (separate_decls_in_region_debug (stmt, &name_copies,
1353 &decl_copies))
1355 gsi_remove (&gsi, true);
1356 continue;
1360 gsi_next (&gsi);
1364 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1366 /* It may happen that there is nothing to copy (if there are only
1367 loop carried and external variables in the loop). */
1368 *arg_struct = NULL;
1369 *new_arg_struct = NULL;
1371 else
1373 /* Create the type for the structure to store the ssa names to. */
1374 type = lang_hooks.types.make_type (RECORD_TYPE);
1375 type_name = build_decl (UNKNOWN_LOCATION,
1376 TYPE_DECL, create_tmp_var_name (".paral_data"),
1377 type);
1378 TYPE_NAME (type) = type_name;
1380 name_copies.traverse <tree, add_field_for_name> (type);
1381 if (reduction_list && reduction_list->elements () > 0)
1383 /* Create the fields for reductions. */
1384 reduction_list->traverse <tree, add_field_for_reduction> (type);
1386 layout_type (type);
1388 /* Create the loads and stores. */
1389 *arg_struct = create_tmp_var (type, ".paral_data_store");
1390 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1391 *new_arg_struct = make_ssa_name (nvar);
1393 ld_st_data->store = *arg_struct;
1394 ld_st_data->load = *new_arg_struct;
1395 ld_st_data->store_bb = bb0;
1396 ld_st_data->load_bb = bb1;
1398 name_copies
1399 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1400 (ld_st_data);
1402 /* Load the calculation from memory (after the join of the threads). */
1404 if (reduction_list && reduction_list->elements () > 0)
1406 reduction_list
1407 ->traverse <struct clsn_data *, create_stores_for_reduction>
1408 (ld_st_data);
1409 clsn_data.load = make_ssa_name (nvar);
1410 clsn_data.load_bb = exit->dest;
1411 clsn_data.store = ld_st_data->store;
1412 create_final_loads_for_reduction (reduction_list, &clsn_data);
1417 /* Returns true if FN was created to run in parallel. */
1419 bool
1420 parallelized_function_p (tree fndecl)
1422 cgraph_node *node = cgraph_node::get (fndecl);
1423 gcc_assert (node != NULL);
1424 return node->parallelized_function;
1427 /* Creates and returns an empty function that will receive the body of
1428 a parallelized loop. */
1430 static tree
1431 create_loop_fn (location_t loc)
1433 char buf[100];
1434 char *tname;
1435 tree decl, type, name, t;
1436 struct function *act_cfun = cfun;
1437 static unsigned loopfn_num;
1439 loc = LOCATION_LOCUS (loc);
1440 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1441 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1442 clean_symbol_name (tname);
1443 name = get_identifier (tname);
1444 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1446 decl = build_decl (loc, FUNCTION_DECL, name, type);
1447 TREE_STATIC (decl) = 1;
1448 TREE_USED (decl) = 1;
1449 DECL_ARTIFICIAL (decl) = 1;
1450 DECL_IGNORED_P (decl) = 0;
1451 TREE_PUBLIC (decl) = 0;
1452 DECL_UNINLINABLE (decl) = 1;
1453 DECL_EXTERNAL (decl) = 0;
1454 DECL_CONTEXT (decl) = NULL_TREE;
1455 DECL_INITIAL (decl) = make_node (BLOCK);
1457 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1458 DECL_ARTIFICIAL (t) = 1;
1459 DECL_IGNORED_P (t) = 1;
1460 DECL_RESULT (decl) = t;
1462 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1463 ptr_type_node);
1464 DECL_ARTIFICIAL (t) = 1;
1465 DECL_ARG_TYPE (t) = ptr_type_node;
1466 DECL_CONTEXT (t) = decl;
1467 TREE_USED (t) = 1;
1468 DECL_ARGUMENTS (decl) = t;
1470 allocate_struct_function (decl, false);
1472 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1473 it. */
1474 set_cfun (act_cfun);
1476 return decl;
1479 /* Replace uses of NAME by VAL in block BB. */
1481 static void
1482 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1484 gimple use_stmt;
1485 imm_use_iterator imm_iter;
1487 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1489 if (gimple_bb (use_stmt) != bb)
1490 continue;
1492 use_operand_p use_p;
1493 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1494 SET_USE (use_p, val);
1498 /* Do transformation from:
1500 <bb preheader>:
1502 goto <bb header>
1504 <bb header>:
1505 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1506 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1508 use (ivtmp_a)
1510 sum_b = sum_a + sum_update
1512 if (ivtmp_a < n)
1513 goto <bb latch>;
1514 else
1515 goto <bb exit>;
1517 <bb latch>:
1518 ivtmp_b = ivtmp_a + 1;
1519 goto <bb header>
1521 <bb exit>:
1522 sum_z = PHI <sum_b (cond[1]), ...>
1524 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1525 that's <bb header>.
1529 <bb preheader>:
1531 goto <bb newheader>
1533 <bb header>:
1534 ivtmp_a = PHI <ivtmp_c (latch)>
1535 sum_a = PHI <sum_c (latch)>
1537 use (ivtmp_a)
1539 sum_b = sum_a + sum_update
1541 goto <bb latch>;
1543 <bb newheader>:
1544 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1545 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1546 if (ivtmp_c < n + 1)
1547 goto <bb header>;
1548 else
1549 goto <bb newexit>;
1551 <bb latch>:
1552 ivtmp_b = ivtmp_a + 1;
1553 goto <bb newheader>
1555 <bb newexit>:
1556 sum_y = PHI <sum_c (newheader)>
1558 <bb exit>:
1559 sum_z = PHI <sum_y (newexit), ...>
1562 In unified diff format:
1564 <bb preheader>:
1566 - goto <bb header>
1567 + goto <bb newheader>
1569 <bb header>:
1570 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1571 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1572 + ivtmp_a = PHI <ivtmp_c (latch)>
1573 + sum_a = PHI <sum_c (latch)>
1575 use (ivtmp_a)
1577 sum_b = sum_a + sum_update
1579 - if (ivtmp_a < n)
1580 - goto <bb latch>;
1581 + goto <bb latch>;
1583 + <bb newheader>:
1584 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1585 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1586 + if (ivtmp_c < n + 1)
1587 + goto <bb header>;
1588 else
1589 goto <bb exit>;
1591 <bb latch>:
1592 ivtmp_b = ivtmp_a + 1;
1593 - goto <bb header>
1594 + goto <bb newheader>
1596 + <bb newexit>:
1597 + sum_y = PHI <sum_c (newheader)>
1599 <bb exit>:
1600 - sum_z = PHI <sum_b (cond[1]), ...>
1601 + sum_z = PHI <sum_y (newexit), ...>
1603 Note: the example does not show any virtual phis, but these are handled more
1604 or less as reductions.
1607 Moves the exit condition of LOOP to the beginning of its header.
1608 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1609 bound. */
1611 static void
1612 transform_to_exit_first_loop_alt (struct loop *loop,
1613 reduction_info_table_type *reduction_list,
1614 tree bound)
1616 basic_block header = loop->header;
1617 basic_block latch = loop->latch;
1618 edge exit = single_dom_exit (loop);
1619 basic_block exit_block = exit->dest;
1620 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1621 tree control = gimple_cond_lhs (cond_stmt);
1622 edge e;
1624 /* Rewriting virtuals into loop-closed ssa normal form makes this
1625 transformation simpler. It also ensures that the virtuals are in
1626 loop-closed ssa normal from after the transformation, which is required by
1627 create_parallel_loop. */
1628 rewrite_virtuals_into_loop_closed_ssa (loop);
1630 /* Create the new_header block. */
1631 basic_block new_header = split_block_before_cond_jump (exit->src);
1632 edge edge_at_split = single_pred_edge (new_header);
1634 /* Redirect entry edge to new_header. */
1635 edge entry = loop_preheader_edge (loop);
1636 e = redirect_edge_and_branch (entry, new_header);
1637 gcc_assert (e == entry);
1639 /* Redirect post_inc_edge to new_header. */
1640 edge post_inc_edge = single_succ_edge (latch);
1641 e = redirect_edge_and_branch (post_inc_edge, new_header);
1642 gcc_assert (e == post_inc_edge);
1644 /* Redirect post_cond_edge to header. */
1645 edge post_cond_edge = single_pred_edge (latch);
1646 e = redirect_edge_and_branch (post_cond_edge, header);
1647 gcc_assert (e == post_cond_edge);
1649 /* Redirect edge_at_split to latch. */
1650 e = redirect_edge_and_branch (edge_at_split, latch);
1651 gcc_assert (e == edge_at_split);
1653 /* Set the new loop bound. */
1654 gimple_cond_set_rhs (cond_stmt, bound);
1655 update_stmt (cond_stmt);
1657 /* Repair the ssa. */
1658 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1659 edge_var_map *vm;
1660 gphi_iterator gsi;
1661 int i;
1662 for (gsi = gsi_start_phis (header), i = 0;
1663 !gsi_end_p (gsi) && v->iterate (i, &vm);
1664 gsi_next (&gsi), i++)
1666 gphi *phi = gsi.phi ();
1667 tree res_a = PHI_RESULT (phi);
1669 /* Create new phi. */
1670 tree res_c = copy_ssa_name (res_a, phi);
1671 gphi *nphi = create_phi_node (res_c, new_header);
1673 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1674 replace_uses_in_bb_by (res_a, res_c, new_header);
1676 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1677 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1679 /* Replace sum_b with sum_c in exit phi. */
1680 tree res_b = redirect_edge_var_map_def (vm);
1681 replace_uses_in_bb_by (res_b, res_c, exit_block);
1683 struct reduction_info *red = reduction_phi (reduction_list, phi);
1684 gcc_assert (virtual_operand_p (res_a)
1685 || res_a == control
1686 || red != NULL);
1688 if (red)
1690 /* Register the new reduction phi. */
1691 red->reduc_phi = nphi;
1692 gimple_set_uid (red->reduc_phi, red->reduc_version);
1695 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1697 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1698 flush_pending_stmts (entry);
1700 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1701 flush_pending_stmts (post_inc_edge);
1703 /* Create a new empty exit block, inbetween the new loop header and the old
1704 exit block. The function separate_decls_in_region needs this block to
1705 insert code that is active on loop exit, but not any other path. */
1706 basic_block new_exit_block = split_edge (exit);
1708 /* Insert and register the reduction exit phis. */
1709 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1710 !gsi_end_p (gsi);
1711 gsi_next (&gsi))
1713 gphi *phi = gsi.phi ();
1714 tree res_z = PHI_RESULT (phi);
1716 /* Now that we have a new exit block, duplicate the phi of the old exit
1717 block in the new exit block to preserve loop-closed ssa. */
1718 edge succ_new_exit_block = single_succ_edge (new_exit_block);
1719 edge pred_new_exit_block = single_pred_edge (new_exit_block);
1720 tree res_y = copy_ssa_name (res_z, phi);
1721 gphi *nphi = create_phi_node (res_y, new_exit_block);
1722 tree res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
1723 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
1724 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
1726 if (virtual_operand_p (res_z))
1727 continue;
1729 gimple reduc_phi = SSA_NAME_DEF_STMT (res_c);
1730 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1731 if (red != NULL)
1732 red->keep_res = nphi;
1735 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1736 then we're still using some fields, so only bother about fields that are
1737 still used: header and latch.
1738 The loop has a new header bb, so we update it. The latch bb stays the
1739 same. */
1740 loop->header = new_header;
1742 /* Recalculate dominance info. */
1743 free_dominance_info (CDI_DOMINATORS);
1744 calculate_dominance_info (CDI_DOMINATORS);
1747 /* Tries to moves the exit condition of LOOP to the beginning of its header
1748 without duplication of the loop body. NIT is the number of iterations of the
1749 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1750 transformation is successful. */
1752 static bool
1753 try_transform_to_exit_first_loop_alt (struct loop *loop,
1754 reduction_info_table_type *reduction_list,
1755 tree nit)
1757 /* Check whether the latch contains a single statement. */
1758 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1759 return false;
1761 /* Check whether the latch contains the loop iv increment. */
1762 edge back = single_succ_edge (loop->latch);
1763 edge exit = single_dom_exit (loop);
1764 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1765 tree control = gimple_cond_lhs (cond_stmt);
1766 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1767 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1768 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1769 return false;
1771 /* Check whether there's no code between the loop condition and the latch. */
1772 if (!single_pred_p (loop->latch)
1773 || single_pred (loop->latch) != exit->src)
1774 return false;
1776 tree alt_bound = NULL_TREE;
1777 tree nit_type = TREE_TYPE (nit);
1779 /* Figure out whether nit + 1 overflows. */
1780 if (TREE_CODE (nit) == INTEGER_CST)
1782 if (!tree_int_cst_equal (nit, TYPE_MAXVAL (nit_type)))
1784 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1785 nit, build_one_cst (nit_type));
1787 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1788 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1789 return true;
1791 else
1793 /* Todo: Figure out if we can trigger this, if it's worth to handle
1794 optimally, and if we can handle it optimally. */
1795 return false;
1799 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1801 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1802 iv with base 0 and step 1 that is incremented in the latch, like this:
1804 <bb header>:
1805 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1807 if (iv_1 < nit)
1808 goto <bb latch>;
1809 else
1810 goto <bb exit>;
1812 <bb latch>:
1813 iv_2 = iv_1 + 1;
1814 goto <bb header>;
1816 The range of iv_1 is [0, nit]. The latch edge is taken for
1817 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1818 number of latch executions is equal to nit.
1820 The function max_loop_iterations gives us the maximum number of latch
1821 executions, so it gives us the maximum value of nit. */
1822 widest_int nit_max;
1823 if (!max_loop_iterations (loop, &nit_max))
1824 return false;
1826 /* Check if nit + 1 overflows. */
1827 widest_int type_max = wi::to_widest (TYPE_MAXVAL (nit_type));
1828 if (!wi::lts_p (nit_max, type_max))
1829 return false;
1831 gimple def = SSA_NAME_DEF_STMT (nit);
1833 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1834 if (def
1835 && is_gimple_assign (def)
1836 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1838 tree op1 = gimple_assign_rhs1 (def);
1839 tree op2 = gimple_assign_rhs2 (def);
1840 if (integer_minus_onep (op1))
1841 alt_bound = op2;
1842 else if (integer_minus_onep (op2))
1843 alt_bound = op1;
1846 /* If not found, insert nit + 1. */
1847 if (alt_bound == NULL_TREE)
1849 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
1850 build_int_cst_type (nit_type, 1));
1852 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1854 alt_bound
1855 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
1856 GSI_CONTINUE_LINKING);
1859 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1860 return true;
1863 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1864 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1865 LOOP. */
1867 static void
1868 transform_to_exit_first_loop (struct loop *loop,
1869 reduction_info_table_type *reduction_list,
1870 tree nit)
1872 basic_block *bbs, *nbbs, ex_bb, orig_header;
1873 unsigned n;
1874 bool ok;
1875 edge exit = single_dom_exit (loop), hpred;
1876 tree control, control_name, res, t;
1877 gphi *phi, *nphi;
1878 gassign *stmt;
1879 gcond *cond_stmt, *cond_nit;
1880 tree nit_1;
1882 split_block_after_labels (loop->header);
1883 orig_header = single_succ (loop->header);
1884 hpred = single_succ_edge (loop->header);
1886 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1887 control = gimple_cond_lhs (cond_stmt);
1888 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1890 /* Make sure that we have phi nodes on exit for all loop header phis
1891 (create_parallel_loop requires that). */
1892 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1893 !gsi_end_p (gsi);
1894 gsi_next (&gsi))
1896 phi = gsi.phi ();
1897 res = PHI_RESULT (phi);
1898 t = copy_ssa_name (res, phi);
1899 SET_PHI_RESULT (phi, t);
1900 nphi = create_phi_node (res, orig_header);
1901 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1903 if (res == control)
1905 gimple_cond_set_lhs (cond_stmt, t);
1906 update_stmt (cond_stmt);
1907 control = t;
1911 bbs = get_loop_body_in_dom_order (loop);
1913 for (n = 0; bbs[n] != exit->src; n++)
1914 continue;
1915 nbbs = XNEWVEC (basic_block, n);
1916 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1917 bbs + 1, n, nbbs);
1918 gcc_assert (ok);
1919 free (bbs);
1920 ex_bb = nbbs[0];
1921 free (nbbs);
1923 /* Other than reductions, the only gimple reg that should be copied
1924 out of the loop is the control variable. */
1925 exit = single_dom_exit (loop);
1926 control_name = NULL_TREE;
1927 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1928 !gsi_end_p (gsi); )
1930 phi = gsi.phi ();
1931 res = PHI_RESULT (phi);
1932 if (virtual_operand_p (res))
1934 gsi_next (&gsi);
1935 continue;
1938 /* Check if it is a part of reduction. If it is,
1939 keep the phi at the reduction's keep_res field. The
1940 PHI_RESULT of this phi is the resulting value of the reduction
1941 variable when exiting the loop. */
1943 if (reduction_list->elements () > 0)
1945 struct reduction_info *red;
1947 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1948 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1949 if (red)
1951 red->keep_res = phi;
1952 gsi_next (&gsi);
1953 continue;
1956 gcc_assert (control_name == NULL_TREE
1957 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1958 control_name = res;
1959 remove_phi_node (&gsi, false);
1961 gcc_assert (control_name != NULL_TREE);
1963 /* Initialize the control variable to number of iterations
1964 according to the rhs of the exit condition. */
1965 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
1966 cond_nit = as_a <gcond *> (last_stmt (exit->src));
1967 nit_1 = gimple_cond_rhs (cond_nit);
1968 nit_1 = force_gimple_operand_gsi (&gsi,
1969 fold_convert (TREE_TYPE (control_name), nit_1),
1970 false, NULL_TREE, false, GSI_SAME_STMT);
1971 stmt = gimple_build_assign (control_name, nit_1);
1972 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1975 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1976 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1977 NEW_DATA is the variable that should be initialized from the argument
1978 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1979 basic block containing GIMPLE_OMP_PARALLEL tree. */
1981 static basic_block
1982 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1983 tree new_data, unsigned n_threads, location_t loc)
1985 gimple_stmt_iterator gsi;
1986 basic_block bb, paral_bb, for_bb, ex_bb, continue_bb;
1987 tree t, param;
1988 gomp_parallel *omp_par_stmt;
1989 gimple omp_return_stmt1, omp_return_stmt2;
1990 gimple phi;
1991 gcond *cond_stmt;
1992 gomp_for *for_stmt;
1993 gomp_continue *omp_cont_stmt;
1994 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1995 edge exit, nexit, guard, end, e;
1997 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1998 bb = loop_preheader_edge (loop)->src;
1999 paral_bb = single_pred (bb);
2000 gsi = gsi_last_bb (paral_bb);
2002 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
2003 OMP_CLAUSE_NUM_THREADS_EXPR (t)
2004 = build_int_cst (integer_type_node, n_threads);
2005 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2006 gimple_set_location (omp_par_stmt, loc);
2008 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2010 /* Initialize NEW_DATA. */
2011 if (data)
2013 gassign *assign_stmt;
2015 gsi = gsi_after_labels (bb);
2017 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2018 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2019 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2021 assign_stmt = gimple_build_assign (new_data,
2022 fold_convert (TREE_TYPE (new_data), param));
2023 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2026 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2027 bb = split_loop_exit_edge (single_dom_exit (loop));
2028 gsi = gsi_last_bb (bb);
2029 omp_return_stmt1 = gimple_build_omp_return (false);
2030 gimple_set_location (omp_return_stmt1, loc);
2031 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2033 /* Extract data for GIMPLE_OMP_FOR. */
2034 gcc_assert (loop->header == single_dom_exit (loop)->src);
2035 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2037 cvar = gimple_cond_lhs (cond_stmt);
2038 cvar_base = SSA_NAME_VAR (cvar);
2039 phi = SSA_NAME_DEF_STMT (cvar);
2040 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2041 initvar = copy_ssa_name (cvar);
2042 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2043 initvar);
2044 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2046 gsi = gsi_last_nondebug_bb (loop->latch);
2047 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2048 gsi_remove (&gsi, true);
2050 /* Prepare cfg. */
2051 for_bb = split_edge (loop_preheader_edge (loop));
2052 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2053 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2054 gcc_assert (exit == single_dom_exit (loop));
2056 guard = make_edge (for_bb, ex_bb, 0);
2057 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2058 loop->latch = split_edge (single_succ_edge (loop->latch));
2059 single_pred_edge (loop->latch)->flags = 0;
2060 end = make_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
2061 rescan_loop_exit (end, true, false);
2063 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2064 !gsi_end_p (gpi); gsi_next (&gpi))
2066 source_location locus;
2067 gphi *phi = gpi.phi ();
2068 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2069 gimple def_stmt = SSA_NAME_DEF_STMT (def);
2071 /* If the exit phi is not connected to a header phi in the same loop, this
2072 value is not modified in the loop, and we're done with this phi. */
2073 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2074 && gimple_bb (def_stmt) == loop->header))
2075 continue;
2077 gphi *stmt = as_a <gphi *> (def_stmt);
2078 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2079 locus = gimple_phi_arg_location_from_edge (stmt,
2080 loop_preheader_edge (loop));
2081 add_phi_arg (phi, def, guard, locus);
2083 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2084 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2085 add_phi_arg (phi, def, end, locus);
2087 e = redirect_edge_and_branch (exit, nexit->dest);
2088 PENDING_STMT (e) = NULL;
2090 /* Emit GIMPLE_OMP_FOR. */
2091 gimple_cond_set_lhs (cond_stmt, cvar_base);
2092 type = TREE_TYPE (cvar);
2093 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2094 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2096 for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL);
2097 gimple_set_location (for_stmt, loc);
2098 gimple_omp_for_set_index (for_stmt, 0, initvar);
2099 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2100 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2101 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2102 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2103 cvar_base,
2104 build_int_cst (type, 1)));
2106 gsi = gsi_last_bb (for_bb);
2107 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2108 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2110 /* Emit GIMPLE_OMP_CONTINUE. */
2111 continue_bb = single_pred (loop->latch);
2112 gsi = gsi_last_bb (continue_bb);
2113 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2114 gimple_set_location (omp_cont_stmt, loc);
2115 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2116 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2118 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2119 gsi = gsi_last_bb (ex_bb);
2120 omp_return_stmt2 = gimple_build_omp_return (true);
2121 gimple_set_location (omp_return_stmt2, loc);
2122 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2124 /* After the above dom info is hosed. Re-compute it. */
2125 free_dominance_info (CDI_DOMINATORS);
2126 calculate_dominance_info (CDI_DOMINATORS);
2128 return paral_bb;
2131 /* Generates code to execute the iterations of LOOP in N_THREADS
2132 threads in parallel.
2134 NITER describes number of iterations of LOOP.
2135 REDUCTION_LIST describes the reductions existent in the LOOP. */
2137 static void
2138 gen_parallel_loop (struct loop *loop,
2139 reduction_info_table_type *reduction_list,
2140 unsigned n_threads, struct tree_niter_desc *niter)
2142 tree many_iterations_cond, type, nit;
2143 tree arg_struct, new_arg_struct;
2144 gimple_seq stmts;
2145 edge entry, exit;
2146 struct clsn_data clsn_data;
2147 unsigned prob;
2148 location_t loc;
2149 gimple cond_stmt;
2150 unsigned int m_p_thread=2;
2152 /* From
2154 ---------------------------------------------------------------------
2155 loop
2157 IV = phi (INIT, IV + STEP)
2158 BODY1;
2159 if (COND)
2160 break;
2161 BODY2;
2163 ---------------------------------------------------------------------
2165 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2166 we generate the following code:
2168 ---------------------------------------------------------------------
2170 if (MAY_BE_ZERO
2171 || NITER < MIN_PER_THREAD * N_THREADS)
2172 goto original;
2174 BODY1;
2175 store all local loop-invariant variables used in body of the loop to DATA.
2176 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2177 load the variables from DATA.
2178 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2179 BODY2;
2180 BODY1;
2181 GIMPLE_OMP_CONTINUE;
2182 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2183 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2184 goto end;
2186 original:
2187 loop
2189 IV = phi (INIT, IV + STEP)
2190 BODY1;
2191 if (COND)
2192 break;
2193 BODY2;
2196 end:
2200 /* Create two versions of the loop -- in the old one, we know that the
2201 number of iterations is large enough, and we will transform it into the
2202 loop that will be split to loop_fn, the new one will be used for the
2203 remaining iterations. */
2205 /* We should compute a better number-of-iterations value for outer loops.
2206 That is, if we have
2208 for (i = 0; i < n; ++i)
2209 for (j = 0; j < m; ++j)
2212 we should compute nit = n * m, not nit = n.
2213 Also may_be_zero handling would need to be adjusted. */
2215 type = TREE_TYPE (niter->niter);
2216 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2217 NULL_TREE);
2218 if (stmts)
2219 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2221 if (loop->inner)
2222 m_p_thread=2;
2223 else
2224 m_p_thread=MIN_PER_THREAD;
2226 many_iterations_cond =
2227 fold_build2 (GE_EXPR, boolean_type_node,
2228 nit, build_int_cst (type, m_p_thread * n_threads));
2230 many_iterations_cond
2231 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2232 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2233 many_iterations_cond);
2234 many_iterations_cond
2235 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2236 if (stmts)
2237 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2238 if (!is_gimple_condexpr (many_iterations_cond))
2240 many_iterations_cond
2241 = force_gimple_operand (many_iterations_cond, &stmts,
2242 true, NULL_TREE);
2243 if (stmts)
2244 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2247 initialize_original_copy_tables ();
2249 /* We assume that the loop usually iterates a lot. */
2250 prob = 4 * REG_BR_PROB_BASE / 5;
2251 loop_version (loop, many_iterations_cond, NULL,
2252 prob, prob, REG_BR_PROB_BASE - prob, true);
2253 update_ssa (TODO_update_ssa);
2254 free_original_copy_tables ();
2256 /* Base all the induction variables in LOOP on a single control one. */
2257 canonicalize_loop_ivs (loop, &nit, true);
2259 /* Ensure that the exit condition is the first statement in the loop.
2260 The common case is that latch of the loop is empty (apart from the
2261 increment) and immediately follows the loop exit test. Attempt to move the
2262 entry of the loop directly before the exit check and increase the number of
2263 iterations of the loop by one. */
2264 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2266 if (dump_file
2267 && (dump_flags & TDF_DETAILS))
2268 fprintf (dump_file,
2269 "alternative exit-first loop transform succeeded"
2270 " for loop %d\n", loop->num);
2272 else
2274 /* Fall back on the method that handles more cases, but duplicates the
2275 loop body: move the exit condition of LOOP to the beginning of its
2276 header, and duplicate the part of the last iteration that gets disabled
2277 to the exit of the loop. */
2278 transform_to_exit_first_loop (loop, reduction_list, nit);
2281 /* Generate initializations for reductions. */
2282 if (reduction_list->elements () > 0)
2283 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2285 /* Eliminate the references to local variables from the loop. */
2286 gcc_assert (single_exit (loop));
2287 entry = loop_preheader_edge (loop);
2288 exit = single_dom_exit (loop);
2290 eliminate_local_variables (entry, exit);
2291 /* In the old loop, move all variables non-local to the loop to a structure
2292 and back, and create separate decls for the variables used in loop. */
2293 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2294 &new_arg_struct, &clsn_data);
2296 /* Create the parallel constructs. */
2297 loc = UNKNOWN_LOCATION;
2298 cond_stmt = last_stmt (loop->header);
2299 if (cond_stmt)
2300 loc = gimple_location (cond_stmt);
2301 create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
2302 new_arg_struct, n_threads, loc);
2303 if (reduction_list->elements () > 0)
2304 create_call_for_reduction (loop, reduction_list, &clsn_data);
2306 scev_reset ();
2308 /* Free loop bound estimations that could contain references to
2309 removed statements. */
2310 FOR_EACH_LOOP (loop, 0)
2311 free_numbers_of_iterations_estimates_loop (loop);
2314 /* Returns true when LOOP contains vector phi nodes. */
2316 static bool
2317 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2319 unsigned i;
2320 basic_block *bbs = get_loop_body_in_dom_order (loop);
2321 gphi_iterator gsi;
2322 bool res = true;
2324 for (i = 0; i < loop->num_nodes; i++)
2325 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2326 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2327 goto end;
2329 res = false;
2330 end:
2331 free (bbs);
2332 return res;
2335 /* Create a reduction_info struct, initialize it with REDUC_STMT
2336 and PHI, insert it to the REDUCTION_LIST. */
2338 static void
2339 build_new_reduction (reduction_info_table_type *reduction_list,
2340 gimple reduc_stmt, gphi *phi)
2342 reduction_info **slot;
2343 struct reduction_info *new_reduction;
2344 enum tree_code reduction_code;
2346 gcc_assert (reduc_stmt);
2348 if (dump_file && (dump_flags & TDF_DETAILS))
2350 fprintf (dump_file,
2351 "Detected reduction. reduction stmt is: \n");
2352 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
2353 fprintf (dump_file, "\n");
2356 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
2358 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
2359 gimple def1 = SSA_NAME_DEF_STMT (op1);
2360 reduction_code = gimple_assign_rhs_code (def1);
2363 else
2364 reduction_code = gimple_assign_rhs_code (reduc_stmt);
2366 new_reduction = XCNEW (struct reduction_info);
2368 new_reduction->reduc_stmt = reduc_stmt;
2369 new_reduction->reduc_phi = phi;
2370 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2371 new_reduction->reduction_code = reduction_code;
2372 slot = reduction_list->find_slot (new_reduction, INSERT);
2373 *slot = new_reduction;
2376 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2379 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2381 struct reduction_info *const red = *slot;
2382 gimple_set_uid (red->reduc_phi, red->reduc_version);
2383 return 1;
2386 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2388 static void
2389 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2391 gphi_iterator gsi;
2392 loop_vec_info simple_loop_info;
2393 loop_vec_info simple_inner_loop_info = NULL;
2394 bool allow_double_reduc = true;
2396 simple_loop_info = vect_analyze_loop_form (loop);
2397 if (simple_loop_info == NULL)
2398 return;
2400 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2402 gphi *phi = gsi.phi ();
2403 affine_iv iv;
2404 tree res = PHI_RESULT (phi);
2405 bool double_reduc;
2407 if (virtual_operand_p (res))
2408 continue;
2410 if (simple_iv (loop, loop, res, &iv, true))
2411 continue;
2413 gimple reduc_stmt
2414 = vect_force_simple_reduction (simple_loop_info, phi, true,
2415 &double_reduc, true);
2416 if (!reduc_stmt)
2417 continue;
2419 if (double_reduc)
2421 if (!allow_double_reduc
2422 || loop->inner->inner != NULL)
2423 continue;
2425 if (!simple_inner_loop_info)
2427 simple_inner_loop_info = vect_analyze_loop_form (loop->inner);
2428 if (!simple_inner_loop_info)
2430 allow_double_reduc = false;
2431 continue;
2435 use_operand_p use_p;
2436 gimple inner_stmt;
2437 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
2438 gcc_assert (single_use_p);
2439 gphi *inner_phi = as_a <gphi *> (inner_stmt);
2440 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
2441 &iv, true))
2442 continue;
2444 gimple inner_reduc_stmt
2445 = vect_force_simple_reduction (simple_inner_loop_info, inner_phi,
2446 true, &double_reduc, true);
2447 gcc_assert (!double_reduc);
2448 if (inner_reduc_stmt == NULL)
2449 continue;
2452 build_new_reduction (reduction_list, reduc_stmt, phi);
2454 destroy_loop_vec_info (simple_loop_info, true);
2455 destroy_loop_vec_info (simple_inner_loop_info, true);
2457 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2458 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
2459 only now. */
2460 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2463 /* Try to initialize NITER for code generation part. */
2465 static bool
2466 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2468 edge exit = single_dom_exit (loop);
2470 gcc_assert (exit);
2472 /* We need to know # of iterations, and there should be no uses of values
2473 defined inside loop outside of it, unless the values are invariants of
2474 the loop. */
2475 if (!number_of_iterations_exit (loop, exit, niter, false))
2477 if (dump_file && (dump_flags & TDF_DETAILS))
2478 fprintf (dump_file, " FAILED: number of iterations not known\n");
2479 return false;
2482 return true;
2485 /* Try to initialize REDUCTION_LIST for code generation part.
2486 REDUCTION_LIST describes the reductions. */
2488 static bool
2489 try_create_reduction_list (loop_p loop,
2490 reduction_info_table_type *reduction_list)
2492 edge exit = single_dom_exit (loop);
2493 gphi_iterator gsi;
2495 gcc_assert (exit);
2497 gather_scalar_reductions (loop, reduction_list);
2500 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2502 gphi *phi = gsi.phi ();
2503 struct reduction_info *red;
2504 imm_use_iterator imm_iter;
2505 use_operand_p use_p;
2506 gimple reduc_phi;
2507 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2509 if (!virtual_operand_p (val))
2511 if (dump_file && (dump_flags & TDF_DETAILS))
2513 fprintf (dump_file, "phi is ");
2514 print_gimple_stmt (dump_file, phi, 0, 0);
2515 fprintf (dump_file, "arg of phi to exit: value ");
2516 print_generic_expr (dump_file, val, 0);
2517 fprintf (dump_file, " used outside loop\n");
2518 fprintf (dump_file,
2519 " checking if it a part of reduction pattern: \n");
2521 if (reduction_list->elements () == 0)
2523 if (dump_file && (dump_flags & TDF_DETAILS))
2524 fprintf (dump_file,
2525 " FAILED: it is not a part of reduction.\n");
2526 return false;
2528 reduc_phi = NULL;
2529 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2531 if (!gimple_debug_bind_p (USE_STMT (use_p))
2532 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2534 reduc_phi = USE_STMT (use_p);
2535 break;
2538 red = reduction_phi (reduction_list, reduc_phi);
2539 if (red == NULL)
2541 if (dump_file && (dump_flags & TDF_DETAILS))
2542 fprintf (dump_file,
2543 " FAILED: it is not a part of reduction.\n");
2544 return false;
2546 if (dump_file && (dump_flags & TDF_DETAILS))
2548 fprintf (dump_file, "reduction phi is ");
2549 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2550 fprintf (dump_file, "reduction stmt is ");
2551 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2556 /* The iterations of the loop may communicate only through bivs whose
2557 iteration space can be distributed efficiently. */
2558 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2560 gphi *phi = gsi.phi ();
2561 tree def = PHI_RESULT (phi);
2562 affine_iv iv;
2564 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2566 struct reduction_info *red;
2568 red = reduction_phi (reduction_list, phi);
2569 if (red == NULL)
2571 if (dump_file && (dump_flags & TDF_DETAILS))
2572 fprintf (dump_file,
2573 " FAILED: scalar dependency between iterations\n");
2574 return false;
2580 return true;
2583 /* Detect parallel loops and generate parallel code using libgomp
2584 primitives. Returns true if some loop was parallelized, false
2585 otherwise. */
2587 static bool
2588 parallelize_loops (void)
2590 unsigned n_threads = flag_tree_parallelize_loops;
2591 bool changed = false;
2592 struct loop *loop;
2593 struct loop *skip_loop = NULL;
2594 struct tree_niter_desc niter_desc;
2595 struct obstack parloop_obstack;
2596 HOST_WIDE_INT estimated;
2597 source_location loop_loc;
2599 /* Do not parallelize loops in the functions created by parallelization. */
2600 if (parallelized_function_p (cfun->decl))
2601 return false;
2602 if (cfun->has_nonlocal_label)
2603 return false;
2605 gcc_obstack_init (&parloop_obstack);
2606 reduction_info_table_type reduction_list (10);
2607 init_stmt_vec_info_vec ();
2609 FOR_EACH_LOOP (loop, 0)
2611 if (loop == skip_loop)
2613 if (dump_file && (dump_flags & TDF_DETAILS))
2614 fprintf (dump_file,
2615 "Skipping loop %d as inner loop of parallelized loop\n",
2616 loop->num);
2618 skip_loop = loop->inner;
2619 continue;
2621 else
2622 skip_loop = NULL;
2624 reduction_list.empty ();
2625 if (dump_file && (dump_flags & TDF_DETAILS))
2627 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2628 if (loop->inner)
2629 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2630 else
2631 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2634 /* If we use autopar in graphite pass, we use its marked dependency
2635 checking results. */
2636 if (flag_loop_parallelize_all && !loop->can_be_parallel)
2638 if (dump_file && (dump_flags & TDF_DETAILS))
2639 fprintf (dump_file, "loop is not parallel according to graphite\n");
2640 continue;
2643 if (!single_dom_exit (loop))
2646 if (dump_file && (dump_flags & TDF_DETAILS))
2647 fprintf (dump_file, "loop is !single_dom_exit\n");
2649 continue;
2652 if (/* And of course, the loop must be parallelizable. */
2653 !can_duplicate_loop_p (loop)
2654 || loop_has_blocks_with_irreducible_flag (loop)
2655 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2656 /* FIXME: the check for vector phi nodes could be removed. */
2657 || loop_has_vector_phi_nodes (loop))
2658 continue;
2660 estimated = estimated_stmt_executions_int (loop);
2661 if (estimated == -1)
2662 estimated = max_stmt_executions_int (loop);
2663 /* FIXME: Bypass this check as graphite doesn't update the
2664 count and frequency correctly now. */
2665 if (!flag_loop_parallelize_all
2666 && ((estimated != -1
2667 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2668 /* Do not bother with loops in cold areas. */
2669 || optimize_loop_nest_for_size_p (loop)))
2670 continue;
2672 if (!try_get_loop_niter (loop, &niter_desc))
2673 continue;
2675 if (!try_create_reduction_list (loop, &reduction_list))
2676 continue;
2678 if (!flag_loop_parallelize_all
2679 && !loop_parallel_p (loop, &parloop_obstack))
2680 continue;
2682 changed = true;
2683 skip_loop = loop->inner;
2684 if (dump_file && (dump_flags & TDF_DETAILS))
2686 if (loop->inner)
2687 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2688 else
2689 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2690 loop_loc = find_loop_location (loop);
2691 if (loop_loc != UNKNOWN_LOCATION)
2692 fprintf (dump_file, "\nloop at %s:%d: ",
2693 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
2695 gen_parallel_loop (loop, &reduction_list,
2696 n_threads, &niter_desc);
2699 free_stmt_vec_info_vec ();
2700 obstack_free (&parloop_obstack, NULL);
2702 /* Parallelization will cause new function calls to be inserted through
2703 which local variables will escape. Reset the points-to solution
2704 for ESCAPED. */
2705 if (changed)
2706 pt_solution_reset (&cfun->gimple_df->escaped);
2708 return changed;
2711 /* Parallelization. */
2713 namespace {
2715 const pass_data pass_data_parallelize_loops =
2717 GIMPLE_PASS, /* type */
2718 "parloops", /* name */
2719 OPTGROUP_LOOP, /* optinfo_flags */
2720 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
2721 ( PROP_cfg | PROP_ssa ), /* properties_required */
2722 0, /* properties_provided */
2723 0, /* properties_destroyed */
2724 0, /* todo_flags_start */
2725 0, /* todo_flags_finish */
2728 class pass_parallelize_loops : public gimple_opt_pass
2730 public:
2731 pass_parallelize_loops (gcc::context *ctxt)
2732 : gimple_opt_pass (pass_data_parallelize_loops, ctxt)
2735 /* opt_pass methods: */
2736 virtual bool gate (function *) { return flag_tree_parallelize_loops > 1; }
2737 virtual unsigned int execute (function *);
2739 }; // class pass_parallelize_loops
2741 unsigned
2742 pass_parallelize_loops::execute (function *fun)
2744 if (number_of_loops (fun) <= 1)
2745 return 0;
2747 if (parallelize_loops ())
2749 fun->curr_properties &= ~(PROP_gimple_eomp);
2751 #ifdef ENABLE_CHECKING
2752 verify_loop_structure ();
2753 #endif
2755 return TODO_update_ssa;
2758 return 0;
2761 } // anon namespace
2763 gimple_opt_pass *
2764 make_pass_parallelize_loops (gcc::context *ctxt)
2766 return new pass_parallelize_loops (ctxt);