2016-10-05 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / modulo-sched.c
blob6e87a6f260711cbb59ad05dcae2bb04bb4e6f411
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "gcov-io.h"
35 #include "profile.h"
36 #include "insn-attr.h"
37 #include "cfgrtl.h"
38 #include "sched-int.h"
39 #include "cfgloop.h"
40 #include "expr.h"
41 #include "params.h"
42 #include "ddg.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "loop-unroll.h"
47 #ifdef INSN_SCHEDULING
49 /* This file contains the implementation of the Swing Modulo Scheduler,
50 described in the following references:
51 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
52 Lifetime--sensitive modulo scheduling in a production environment.
53 IEEE Trans. on Comps., 50(3), March 2001
54 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
55 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
56 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
58 The basic structure is:
59 1. Build a data-dependence graph (DDG) for each loop.
60 2. Use the DDG to order the insns of a loop (not in topological order
61 necessarily, but rather) trying to place each insn after all its
62 predecessors _or_ after all its successors.
63 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
64 4. Use the ordering to perform list-scheduling of the loop:
65 1. Set II = MII. We will try to schedule the loop within II cycles.
66 2. Try to schedule the insns one by one according to the ordering.
67 For each insn compute an interval of cycles by considering already-
68 scheduled preds and succs (and associated latencies); try to place
69 the insn in the cycles of this window checking for potential
70 resource conflicts (using the DFA interface).
71 Note: this is different from the cycle-scheduling of schedule_insns;
72 here the insns are not scheduled monotonically top-down (nor bottom-
73 up).
74 3. If failed in scheduling all insns - bump II++ and try again, unless
75 II reaches an upper bound MaxII, in which case report failure.
76 5. If we succeeded in scheduling the loop within II cycles, we now
77 generate prolog and epilog, decrease the counter of the loop, and
78 perform modulo variable expansion for live ranges that span more than
79 II cycles (i.e. use register copies to prevent a def from overwriting
80 itself before reaching the use).
82 SMS works with countable loops (1) whose control part can be easily
83 decoupled from the rest of the loop and (2) whose loop count can
84 be easily adjusted. This is because we peel a constant number of
85 iterations into a prologue and epilogue for which we want to avoid
86 emitting the control part, and a kernel which is to iterate that
87 constant number of iterations less than the original loop. So the
88 control part should be a set of insns clearly identified and having
89 its own iv, not otherwise used in the loop (at-least for now), which
90 initializes a register before the loop to the number of iterations.
91 Currently SMS relies on the do-loop pattern to recognize such loops,
92 where (1) the control part comprises of all insns defining and/or
93 using a certain 'count' register and (2) the loop count can be
94 adjusted by modifying this register prior to the loop.
95 TODO: Rely on cfgloop analysis instead. */
97 /* This page defines partial-schedule structures and functions for
98 modulo scheduling. */
100 typedef struct partial_schedule *partial_schedule_ptr;
101 typedef struct ps_insn *ps_insn_ptr;
103 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
104 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
106 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
107 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
109 /* Perform signed modulo, always returning a non-negative value. */
110 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
112 /* The number of different iterations the nodes in ps span, assuming
113 the stage boundaries are placed efficiently. */
114 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
115 + 1 + ii - 1) / ii)
116 /* The stage count of ps. */
117 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
119 /* A single instruction in the partial schedule. */
120 struct ps_insn
122 /* Identifies the instruction to be scheduled. Values smaller than
123 the ddg's num_nodes refer directly to ddg nodes. A value of
124 X - num_nodes refers to register move X. */
125 int id;
127 /* The (absolute) cycle in which the PS instruction is scheduled.
128 Same as SCHED_TIME (node). */
129 int cycle;
131 /* The next/prev PS_INSN in the same row. */
132 ps_insn_ptr next_in_row,
133 prev_in_row;
137 /* Information about a register move that has been added to a partial
138 schedule. */
139 struct ps_reg_move_info
141 /* The source of the move is defined by the ps_insn with id DEF.
142 The destination is used by the ps_insns with the ids in USES. */
143 int def;
144 sbitmap uses;
146 /* The original form of USES' instructions used OLD_REG, but they
147 should now use NEW_REG. */
148 rtx old_reg;
149 rtx new_reg;
151 /* The number of consecutive stages that the move occupies. */
152 int num_consecutive_stages;
154 /* An instruction that sets NEW_REG to the correct value. The first
155 move associated with DEF will have an rhs of OLD_REG; later moves
156 use the result of the previous move. */
157 rtx_insn *insn;
160 /* Holds the partial schedule as an array of II rows. Each entry of the
161 array points to a linked list of PS_INSNs, which represents the
162 instructions that are scheduled for that row. */
163 struct partial_schedule
165 int ii; /* Number of rows in the partial schedule. */
166 int history; /* Threshold for conflict checking using DFA. */
168 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
169 ps_insn_ptr *rows;
171 /* All the moves added for this partial schedule. Index X has
172 a ps_insn id of X + g->num_nodes. */
173 vec<ps_reg_move_info> reg_moves;
175 /* rows_length[i] holds the number of instructions in the row.
176 It is used only (as an optimization) to back off quickly from
177 trying to schedule a node in a full row; that is, to avoid running
178 through futile DFA state transitions. */
179 int *rows_length;
181 /* The earliest absolute cycle of an insn in the partial schedule. */
182 int min_cycle;
184 /* The latest absolute cycle of an insn in the partial schedule. */
185 int max_cycle;
187 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
189 int stage_count; /* The stage count of the partial schedule. */
193 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
194 static void free_partial_schedule (partial_schedule_ptr);
195 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
196 void print_partial_schedule (partial_schedule_ptr, FILE *);
197 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
198 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
199 int, int, sbitmap, sbitmap);
200 static void rotate_partial_schedule (partial_schedule_ptr, int);
201 void set_row_column_for_ps (partial_schedule_ptr);
202 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
203 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
206 /* This page defines constants and structures for the modulo scheduling
207 driver. */
209 static int sms_order_nodes (ddg_ptr, int, int *, int *);
210 static void set_node_sched_params (ddg_ptr);
211 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
212 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
213 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
214 rtx, rtx);
215 static int calculate_stage_count (partial_schedule_ptr, int);
216 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
217 int, int, sbitmap, sbitmap, sbitmap);
218 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
219 sbitmap, int, int *, int *, int *);
220 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
221 sbitmap, int *, sbitmap, sbitmap);
222 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
224 #define NODE_ASAP(node) ((node)->aux.count)
226 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
227 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
228 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
229 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
230 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
232 /* The scheduling parameters held for each node. */
233 typedef struct node_sched_params
235 int time; /* The absolute scheduling cycle. */
237 int row; /* Holds time % ii. */
238 int stage; /* Holds time / ii. */
240 /* The column of a node inside the ps. If nodes u, v are on the same row,
241 u will precede v if column (u) < column (v). */
242 int column;
243 } *node_sched_params_ptr;
245 /* The following three functions are copied from the current scheduler
246 code in order to use sched_analyze() for computing the dependencies.
247 They are used when initializing the sched_info structure. */
248 static const char *
249 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
251 static char tmp[80];
253 sprintf (tmp, "i%4d", INSN_UID (insn));
254 return tmp;
257 static void
258 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
259 regset used ATTRIBUTE_UNUSED)
263 static struct common_sched_info_def sms_common_sched_info;
265 static struct sched_deps_info_def sms_sched_deps_info =
267 compute_jump_reg_dependencies,
268 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
269 NULL,
270 0, 0, 0
273 static struct haifa_sched_info sms_sched_info =
275 NULL,
276 NULL,
277 NULL,
278 NULL,
279 NULL,
280 sms_print_insn,
281 NULL,
282 NULL, /* insn_finishes_block_p */
283 NULL, NULL,
284 NULL, NULL,
285 0, 0,
287 NULL, NULL, NULL, NULL,
288 NULL, NULL,
292 /* Partial schedule instruction ID in PS is a register move. Return
293 information about it. */
294 static struct ps_reg_move_info *
295 ps_reg_move (partial_schedule_ptr ps, int id)
297 gcc_checking_assert (id >= ps->g->num_nodes);
298 return &ps->reg_moves[id - ps->g->num_nodes];
301 /* Return the rtl instruction that is being scheduled by partial schedule
302 instruction ID, which belongs to schedule PS. */
303 static rtx_insn *
304 ps_rtl_insn (partial_schedule_ptr ps, int id)
306 if (id < ps->g->num_nodes)
307 return ps->g->nodes[id].insn;
308 else
309 return ps_reg_move (ps, id)->insn;
312 /* Partial schedule instruction ID, which belongs to PS, occurred in
313 the original (unscheduled) loop. Return the first instruction
314 in the loop that was associated with ps_rtl_insn (PS, ID).
315 If the instruction had some notes before it, this is the first
316 of those notes. */
317 static rtx_insn *
318 ps_first_note (partial_schedule_ptr ps, int id)
320 gcc_assert (id < ps->g->num_nodes);
321 return ps->g->nodes[id].first_note;
324 /* Return the number of consecutive stages that are occupied by
325 partial schedule instruction ID in PS. */
326 static int
327 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
329 if (id < ps->g->num_nodes)
330 return 1;
331 else
332 return ps_reg_move (ps, id)->num_consecutive_stages;
335 /* Given HEAD and TAIL which are the first and last insns in a loop;
336 return the register which controls the loop. Return zero if it has
337 more than one occurrence in the loop besides the control part or the
338 do-loop pattern is not of the form we expect. */
339 static rtx
340 doloop_register_get (rtx_insn *head, rtx_insn *tail)
342 rtx reg, condition;
343 rtx_insn *insn, *first_insn_not_to_check;
345 if (!JUMP_P (tail))
346 return NULL_RTX;
348 if (!targetm.code_for_doloop_end)
349 return NULL_RTX;
351 /* TODO: Free SMS's dependence on doloop_condition_get. */
352 condition = doloop_condition_get (tail);
353 if (! condition)
354 return NULL_RTX;
356 if (REG_P (XEXP (condition, 0)))
357 reg = XEXP (condition, 0);
358 else if (GET_CODE (XEXP (condition, 0)) == PLUS
359 && REG_P (XEXP (XEXP (condition, 0), 0)))
360 reg = XEXP (XEXP (condition, 0), 0);
361 else
362 gcc_unreachable ();
364 /* Check that the COUNT_REG has no other occurrences in the loop
365 until the decrement. We assume the control part consists of
366 either a single (parallel) branch-on-count or a (non-parallel)
367 branch immediately preceded by a single (decrement) insn. */
368 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
369 : prev_nondebug_insn (tail));
371 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
372 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
374 if (dump_file)
376 fprintf (dump_file, "SMS count_reg found ");
377 print_rtl_single (dump_file, reg);
378 fprintf (dump_file, " outside control in insn:\n");
379 print_rtl_single (dump_file, insn);
382 return NULL_RTX;
385 return reg;
388 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
389 that the number of iterations is a compile-time constant. If so,
390 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
391 this constant. Otherwise return 0. */
392 static rtx_insn *
393 const_iteration_count (rtx count_reg, basic_block pre_header,
394 int64_t * count)
396 rtx_insn *insn;
397 rtx_insn *head, *tail;
399 if (! pre_header)
400 return NULL;
402 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
404 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
405 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
406 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
408 rtx pat = single_set (insn);
410 if (CONST_INT_P (SET_SRC (pat)))
412 *count = INTVAL (SET_SRC (pat));
413 return insn;
416 return NULL;
419 return NULL;
422 /* A very simple resource-based lower bound on the initiation interval.
423 ??? Improve the accuracy of this bound by considering the
424 utilization of various units. */
425 static int
426 res_MII (ddg_ptr g)
428 if (targetm.sched.sms_res_mii)
429 return targetm.sched.sms_res_mii (g);
431 return ((g->num_nodes - g->num_debug) / issue_rate);
435 /* A vector that contains the sched data for each ps_insn. */
436 static vec<node_sched_params> node_sched_param_vec;
438 /* Allocate sched_params for each node and initialize it. */
439 static void
440 set_node_sched_params (ddg_ptr g)
442 node_sched_param_vec.truncate (0);
443 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
446 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
447 static void
448 extend_node_sched_params (partial_schedule_ptr ps)
450 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
451 + ps->reg_moves.length ());
454 /* Update the sched_params (time, row and stage) for node U using the II,
455 the CYCLE of U and MIN_CYCLE.
456 We're not simply taking the following
457 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
458 because the stages may not be aligned on cycle 0. */
459 static void
460 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
462 int sc_until_cycle_zero;
463 int stage;
465 SCHED_TIME (u) = cycle;
466 SCHED_ROW (u) = SMODULO (cycle, ii);
468 /* The calculation of stage count is done adding the number
469 of stages before cycle zero and after cycle zero. */
470 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
472 if (SCHED_TIME (u) < 0)
474 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
475 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
477 else
479 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
480 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
484 static void
485 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
487 int i;
489 if (! file)
490 return;
491 for (i = 0; i < num_nodes; i++)
493 node_sched_params_ptr nsp = SCHED_PARAMS (i);
495 fprintf (file, "Node = %d; INSN = %d\n", i,
496 INSN_UID (ps_rtl_insn (ps, i)));
497 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
498 fprintf (file, " time = %d:\n", nsp->time);
499 fprintf (file, " stage = %d:\n", nsp->stage);
503 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
504 static void
505 set_columns_for_row (partial_schedule_ptr ps, int row)
507 ps_insn_ptr cur_insn;
508 int column;
510 column = 0;
511 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
512 SCHED_COLUMN (cur_insn->id) = column++;
515 /* Set SCHED_COLUMN for each instruction in PS. */
516 static void
517 set_columns_for_ps (partial_schedule_ptr ps)
519 int row;
521 for (row = 0; row < ps->ii; row++)
522 set_columns_for_row (ps, row);
525 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
526 Its single predecessor has already been scheduled, as has its
527 ddg node successors. (The move may have also another move as its
528 successor, in which case that successor will be scheduled later.)
530 The move is part of a chain that satisfies register dependencies
531 between a producing ddg node and various consuming ddg nodes.
532 If some of these dependencies have a distance of 1 (meaning that
533 the use is upward-exposed) then DISTANCE1_USES is nonnull and
534 contains the set of uses with distance-1 dependencies.
535 DISTANCE1_USES is null otherwise.
537 MUST_FOLLOW is a scratch bitmap that is big enough to hold
538 all current ps_insn ids.
540 Return true on success. */
541 static bool
542 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
543 sbitmap distance1_uses, sbitmap must_follow)
545 unsigned int u;
546 int this_time, this_distance, this_start, this_end, this_latency;
547 int start, end, c, ii;
548 sbitmap_iterator sbi;
549 ps_reg_move_info *move;
550 rtx_insn *this_insn;
551 ps_insn_ptr psi;
553 move = ps_reg_move (ps, i_reg_move);
554 ii = ps->ii;
555 if (dump_file)
557 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
558 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
559 PS_MIN_CYCLE (ps));
560 print_rtl_single (dump_file, move->insn);
561 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
562 fprintf (dump_file, "=========== =========== =====\n");
565 start = INT_MIN;
566 end = INT_MAX;
568 /* For dependencies of distance 1 between a producer ddg node A
569 and consumer ddg node B, we have a chain of dependencies:
571 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
573 where Mi is the ith move. For dependencies of distance 0 between
574 a producer ddg node A and consumer ddg node C, we have a chain of
575 dependencies:
577 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
579 where Mi' occupies the same position as Mi but occurs a stage later.
580 We can only schedule each move once, so if we have both types of
581 chain, we model the second as:
583 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
585 First handle the dependencies between the previously-scheduled
586 predecessor and the move. */
587 this_insn = ps_rtl_insn (ps, move->def);
588 this_latency = insn_latency (this_insn, move->insn);
589 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
590 this_time = SCHED_TIME (move->def) - this_distance * ii;
591 this_start = this_time + this_latency;
592 this_end = this_time + ii;
593 if (dump_file)
594 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
595 this_start, this_end, SCHED_TIME (move->def),
596 INSN_UID (this_insn), this_latency, this_distance,
597 INSN_UID (move->insn));
599 if (start < this_start)
600 start = this_start;
601 if (end > this_end)
602 end = this_end;
604 /* Handle the dependencies between the move and previously-scheduled
605 successors. */
606 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
608 this_insn = ps_rtl_insn (ps, u);
609 this_latency = insn_latency (move->insn, this_insn);
610 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
611 this_distance = -1;
612 else
613 this_distance = 0;
614 this_time = SCHED_TIME (u) + this_distance * ii;
615 this_start = this_time - ii;
616 this_end = this_time - this_latency;
617 if (dump_file)
618 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
619 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
620 this_latency, this_distance, INSN_UID (this_insn));
622 if (start < this_start)
623 start = this_start;
624 if (end > this_end)
625 end = this_end;
628 if (dump_file)
630 fprintf (dump_file, "----------- ----------- -----\n");
631 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
634 bitmap_clear (must_follow);
635 bitmap_set_bit (must_follow, move->def);
637 start = MAX (start, end - (ii - 1));
638 for (c = end; c >= start; c--)
640 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
641 move->uses, must_follow);
642 if (psi)
644 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
645 if (dump_file)
646 fprintf (dump_file, "\nScheduled register move INSN %d at"
647 " time %d, row %d\n\n", INSN_UID (move->insn), c,
648 SCHED_ROW (i_reg_move));
649 return true;
653 if (dump_file)
654 fprintf (dump_file, "\nNo available slot\n\n");
656 return false;
660 Breaking intra-loop register anti-dependences:
661 Each intra-loop register anti-dependence implies a cross-iteration true
662 dependence of distance 1. Therefore, we can remove such false dependencies
663 and figure out if the partial schedule broke them by checking if (for a
664 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
665 if so generate a register move. The number of such moves is equal to:
666 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
667 nreg_moves = ----------------------------------- + 1 - { dependence.
668 ii { 1 if not.
670 static bool
671 schedule_reg_moves (partial_schedule_ptr ps)
673 ddg_ptr g = ps->g;
674 int ii = ps->ii;
675 int i;
677 for (i = 0; i < g->num_nodes; i++)
679 ddg_node_ptr u = &g->nodes[i];
680 ddg_edge_ptr e;
681 int nreg_moves = 0, i_reg_move;
682 rtx prev_reg, old_reg;
683 int first_move;
684 int distances[2];
685 sbitmap distance1_uses;
686 rtx set = single_set (u->insn);
688 /* Skip instructions that do not set a register. */
689 if ((set && !REG_P (SET_DEST (set))))
690 continue;
692 /* Compute the number of reg_moves needed for u, by looking at life
693 ranges started at u (excluding self-loops). */
694 distances[0] = distances[1] = false;
695 for (e = u->out; e; e = e->next_out)
696 if (e->type == TRUE_DEP && e->dest != e->src)
698 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
699 - SCHED_TIME (e->src->cuid)) / ii;
701 if (e->distance == 1)
702 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
703 - SCHED_TIME (e->src->cuid) + ii) / ii;
705 /* If dest precedes src in the schedule of the kernel, then dest
706 will read before src writes and we can save one reg_copy. */
707 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
708 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
709 nreg_moves4e--;
711 if (nreg_moves4e >= 1)
713 /* !single_set instructions are not supported yet and
714 thus we do not except to encounter them in the loop
715 except from the doloop part. For the latter case
716 we assume no regmoves are generated as the doloop
717 instructions are tied to the branch with an edge. */
718 gcc_assert (set);
719 /* If the instruction contains auto-inc register then
720 validate that the regmov is being generated for the
721 target regsiter rather then the inc'ed register. */
722 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
725 if (nreg_moves4e)
727 gcc_assert (e->distance < 2);
728 distances[e->distance] = true;
730 nreg_moves = MAX (nreg_moves, nreg_moves4e);
733 if (nreg_moves == 0)
734 continue;
736 /* Create NREG_MOVES register moves. */
737 first_move = ps->reg_moves.length ();
738 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
739 extend_node_sched_params (ps);
741 /* Record the moves associated with this node. */
742 first_move += ps->g->num_nodes;
744 /* Generate each move. */
745 old_reg = prev_reg = SET_DEST (single_set (u->insn));
746 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
748 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
750 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
751 move->uses = sbitmap_alloc (first_move + nreg_moves);
752 move->old_reg = old_reg;
753 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
754 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
755 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
756 bitmap_clear (move->uses);
758 prev_reg = move->new_reg;
761 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
763 if (distance1_uses)
764 bitmap_clear (distance1_uses);
766 /* Every use of the register defined by node may require a different
767 copy of this register, depending on the time the use is scheduled.
768 Record which uses require which move results. */
769 for (e = u->out; e; e = e->next_out)
770 if (e->type == TRUE_DEP && e->dest != e->src)
772 int dest_copy = (SCHED_TIME (e->dest->cuid)
773 - SCHED_TIME (e->src->cuid)) / ii;
775 if (e->distance == 1)
776 dest_copy = (SCHED_TIME (e->dest->cuid)
777 - SCHED_TIME (e->src->cuid) + ii) / ii;
779 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
780 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
781 dest_copy--;
783 if (dest_copy)
785 ps_reg_move_info *move;
787 move = ps_reg_move (ps, first_move + dest_copy - 1);
788 bitmap_set_bit (move->uses, e->dest->cuid);
789 if (e->distance == 1)
790 bitmap_set_bit (distance1_uses, e->dest->cuid);
794 auto_sbitmap must_follow (first_move + nreg_moves);
795 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
796 if (!schedule_reg_move (ps, first_move + i_reg_move,
797 distance1_uses, must_follow))
798 break;
799 if (distance1_uses)
800 sbitmap_free (distance1_uses);
801 if (i_reg_move < nreg_moves)
802 return false;
804 return true;
807 /* Emit the moves associatied with PS. Apply the substitutions
808 associated with them. */
809 static void
810 apply_reg_moves (partial_schedule_ptr ps)
812 ps_reg_move_info *move;
813 int i;
815 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
817 unsigned int i_use;
818 sbitmap_iterator sbi;
820 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
822 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
823 df_insn_rescan (ps->g->nodes[i_use].insn);
828 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
829 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
830 will move to cycle zero. */
831 static void
832 reset_sched_times (partial_schedule_ptr ps, int amount)
834 int row;
835 int ii = ps->ii;
836 ps_insn_ptr crr_insn;
838 for (row = 0; row < ii; row++)
839 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
841 int u = crr_insn->id;
842 int normalized_time = SCHED_TIME (u) - amount;
843 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
845 if (dump_file)
847 /* Print the scheduling times after the rotation. */
848 rtx_insn *insn = ps_rtl_insn (ps, u);
850 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
851 "crr_insn->cycle=%d, min_cycle=%d", u,
852 INSN_UID (insn), normalized_time, new_min_cycle);
853 if (JUMP_P (insn))
854 fprintf (dump_file, " (branch)");
855 fprintf (dump_file, "\n");
858 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
859 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
861 crr_insn->cycle = normalized_time;
862 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
866 /* Permute the insns according to their order in PS, from row 0 to
867 row ii-1, and position them right before LAST. This schedules
868 the insns of the loop kernel. */
869 static void
870 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
872 int ii = ps->ii;
873 int row;
874 ps_insn_ptr ps_ij;
876 for (row = 0; row < ii ; row++)
877 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
879 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
881 if (PREV_INSN (last) != insn)
883 if (ps_ij->id < ps->g->num_nodes)
884 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
885 PREV_INSN (last));
886 else
887 add_insn_before (insn, last, NULL);
892 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
893 respectively only if cycle C falls on the border of the scheduling
894 window boundaries marked by START and END cycles. STEP is the
895 direction of the window. */
896 static inline void
897 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
898 sbitmap *tmp_precede, sbitmap must_precede, int c,
899 int start, int end, int step)
901 *tmp_precede = NULL;
902 *tmp_follow = NULL;
904 if (c == start)
906 if (step == 1)
907 *tmp_precede = must_precede;
908 else /* step == -1. */
909 *tmp_follow = must_follow;
911 if (c == end - step)
913 if (step == 1)
914 *tmp_follow = must_follow;
915 else /* step == -1. */
916 *tmp_precede = must_precede;
921 /* Return True if the branch can be moved to row ii-1 while
922 normalizing the partial schedule PS to start from cycle zero and thus
923 optimize the SC. Otherwise return False. */
924 static bool
925 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
927 int amount = PS_MIN_CYCLE (ps);
928 int start, end, step;
929 int ii = ps->ii;
930 bool ok = false;
931 int stage_count, stage_count_curr;
933 /* Compare the SC after normalization and SC after bringing the branch
934 to row ii-1. If they are equal just bail out. */
935 stage_count = calculate_stage_count (ps, amount);
936 stage_count_curr =
937 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
939 if (stage_count == stage_count_curr)
941 if (dump_file)
942 fprintf (dump_file, "SMS SC already optimized.\n");
944 return false;
947 if (dump_file)
949 fprintf (dump_file, "SMS Trying to optimize branch location\n");
950 fprintf (dump_file, "SMS partial schedule before trial:\n");
951 print_partial_schedule (ps, dump_file);
954 /* First, normalize the partial scheduling. */
955 reset_sched_times (ps, amount);
956 rotate_partial_schedule (ps, amount);
957 if (dump_file)
959 fprintf (dump_file,
960 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
961 ii, stage_count);
962 print_partial_schedule (ps, dump_file);
965 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
966 return true;
968 auto_sbitmap sched_nodes (g->num_nodes);
969 bitmap_ones (sched_nodes);
971 /* Calculate the new placement of the branch. It should be in row
972 ii-1 and fall into it's scheduling window. */
973 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
974 &step, &end) == 0)
976 bool success;
977 ps_insn_ptr next_ps_i;
978 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
979 int row = SMODULO (branch_cycle, ps->ii);
980 int num_splits = 0;
981 sbitmap tmp_precede, tmp_follow;
982 int min_cycle, c;
984 if (dump_file)
985 fprintf (dump_file, "\nTrying to schedule node %d "
986 "INSN = %d in (%d .. %d) step %d\n",
987 g->closing_branch->cuid,
988 (INSN_UID (g->closing_branch->insn)), start, end, step);
990 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
991 if (step == 1)
993 c = start + ii - SMODULO (start, ii) - 1;
994 gcc_assert (c >= start);
995 if (c >= end)
997 if (dump_file)
998 fprintf (dump_file,
999 "SMS failed to schedule branch at cycle: %d\n", c);
1000 return false;
1003 else
1005 c = start - SMODULO (start, ii) - 1;
1006 gcc_assert (c <= start);
1008 if (c <= end)
1010 if (dump_file)
1011 fprintf (dump_file,
1012 "SMS failed to schedule branch at cycle: %d\n", c);
1013 return false;
1017 auto_sbitmap must_precede (g->num_nodes);
1018 auto_sbitmap must_follow (g->num_nodes);
1020 /* Try to schedule the branch is it's new cycle. */
1021 calculate_must_precede_follow (g->closing_branch, start, end,
1022 step, ii, sched_nodes,
1023 must_precede, must_follow);
1025 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1026 must_precede, c, start, end, step);
1028 /* Find the element in the partial schedule related to the closing
1029 branch so we can remove it from it's current cycle. */
1030 for (next_ps_i = ps->rows[row];
1031 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1032 if (next_ps_i->id == g->closing_branch->cuid)
1033 break;
1035 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1036 remove_node_from_ps (ps, next_ps_i);
1037 success =
1038 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1039 sched_nodes, &num_splits,
1040 tmp_precede, tmp_follow);
1041 gcc_assert (num_splits == 0);
1042 if (!success)
1044 if (dump_file)
1045 fprintf (dump_file,
1046 "SMS failed to schedule branch at cycle: %d, "
1047 "bringing it back to cycle %d\n", c, branch_cycle);
1049 /* The branch was failed to be placed in row ii - 1.
1050 Put it back in it's original place in the partial
1051 schedualing. */
1052 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1053 must_precede, branch_cycle, start, end,
1054 step);
1055 success =
1056 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1057 branch_cycle, sched_nodes,
1058 &num_splits, tmp_precede,
1059 tmp_follow);
1060 gcc_assert (success && (num_splits == 0));
1061 ok = false;
1063 else
1065 /* The branch is placed in row ii - 1. */
1066 if (dump_file)
1067 fprintf (dump_file,
1068 "SMS success in moving branch to cycle %d\n", c);
1070 update_node_sched_params (g->closing_branch->cuid, ii, c,
1071 PS_MIN_CYCLE (ps));
1072 ok = true;
1075 /* This might have been added to a new first stage. */
1076 if (PS_MIN_CYCLE (ps) < min_cycle)
1077 reset_sched_times (ps, 0);
1080 return ok;
1083 static void
1084 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1085 int to_stage, rtx count_reg)
1087 int row;
1088 ps_insn_ptr ps_ij;
1090 for (row = 0; row < ps->ii; row++)
1091 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1093 int u = ps_ij->id;
1094 int first_u, last_u;
1095 rtx_insn *u_insn;
1097 /* Do not duplicate any insn which refers to count_reg as it
1098 belongs to the control part.
1099 The closing branch is scheduled as well and thus should
1100 be ignored.
1101 TODO: This should be done by analyzing the control part of
1102 the loop. */
1103 u_insn = ps_rtl_insn (ps, u);
1104 if (reg_mentioned_p (count_reg, u_insn)
1105 || JUMP_P (u_insn))
1106 continue;
1108 first_u = SCHED_STAGE (u);
1109 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1110 if (from_stage <= last_u && to_stage >= first_u)
1112 if (u < ps->g->num_nodes)
1113 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1114 else
1115 emit_insn (copy_rtx (PATTERN (u_insn)));
1121 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1122 static void
1123 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1124 rtx count_reg, rtx count_init)
1126 int i;
1127 int last_stage = PS_STAGE_COUNT (ps) - 1;
1128 edge e;
1130 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1131 start_sequence ();
1133 if (!count_init)
1135 /* Generate instructions at the beginning of the prolog to
1136 adjust the loop count by STAGE_COUNT. If loop count is constant
1137 (count_init), this constant is adjusted by STAGE_COUNT in
1138 generate_prolog_epilog function. */
1139 rtx sub_reg = NULL_RTX;
1141 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1142 gen_int_mode (last_stage,
1143 GET_MODE (count_reg)),
1144 count_reg, 1, OPTAB_DIRECT);
1145 gcc_assert (REG_P (sub_reg));
1146 if (REGNO (sub_reg) != REGNO (count_reg))
1147 emit_move_insn (count_reg, sub_reg);
1150 for (i = 0; i < last_stage; i++)
1151 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1153 /* Put the prolog on the entry edge. */
1154 e = loop_preheader_edge (loop);
1155 split_edge_and_insert (e, get_insns ());
1156 if (!flag_resched_modulo_sched)
1157 e->dest->flags |= BB_DISABLE_SCHEDULE;
1159 end_sequence ();
1161 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1162 start_sequence ();
1164 for (i = 0; i < last_stage; i++)
1165 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1167 /* Put the epilogue on the exit edge. */
1168 gcc_assert (single_exit (loop));
1169 e = single_exit (loop);
1170 split_edge_and_insert (e, get_insns ());
1171 if (!flag_resched_modulo_sched)
1172 e->dest->flags |= BB_DISABLE_SCHEDULE;
1174 end_sequence ();
1177 /* Mark LOOP as software pipelined so the later
1178 scheduling passes don't touch it. */
1179 static void
1180 mark_loop_unsched (struct loop *loop)
1182 unsigned i;
1183 basic_block *bbs = get_loop_body (loop);
1185 for (i = 0; i < loop->num_nodes; i++)
1186 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1188 free (bbs);
1191 /* Return true if all the BBs of the loop are empty except the
1192 loop header. */
1193 static bool
1194 loop_single_full_bb_p (struct loop *loop)
1196 unsigned i;
1197 basic_block *bbs = get_loop_body (loop);
1199 for (i = 0; i < loop->num_nodes ; i++)
1201 rtx_insn *head, *tail;
1202 bool empty_bb = true;
1204 if (bbs[i] == loop->header)
1205 continue;
1207 /* Make sure that basic blocks other than the header
1208 have only notes labels or jumps. */
1209 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1210 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1212 if (NOTE_P (head) || LABEL_P (head)
1213 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1214 continue;
1215 empty_bb = false;
1216 break;
1219 if (! empty_bb)
1221 free (bbs);
1222 return false;
1225 free (bbs);
1226 return true;
1229 /* Dump file:line from INSN's location info to dump_file. */
1231 static void
1232 dump_insn_location (rtx_insn *insn)
1234 if (dump_file && INSN_HAS_LOCATION (insn))
1236 expanded_location xloc = insn_location (insn);
1237 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1241 /* A simple loop from SMS point of view; it is a loop that is composed of
1242 either a single basic block or two BBs - a header and a latch. */
1243 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1244 && (EDGE_COUNT (loop->latch->preds) == 1) \
1245 && (EDGE_COUNT (loop->latch->succs) == 1))
1247 /* Return true if the loop is in its canonical form and false if not.
1248 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1249 static bool
1250 loop_canon_p (struct loop *loop)
1253 if (loop->inner || !loop_outer (loop))
1255 if (dump_file)
1256 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1257 return false;
1260 if (!single_exit (loop))
1262 if (dump_file)
1264 rtx_insn *insn = BB_END (loop->header);
1266 fprintf (dump_file, "SMS loop many exits");
1267 dump_insn_location (insn);
1268 fprintf (dump_file, "\n");
1270 return false;
1273 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1275 if (dump_file)
1277 rtx_insn *insn = BB_END (loop->header);
1279 fprintf (dump_file, "SMS loop many BBs.");
1280 dump_insn_location (insn);
1281 fprintf (dump_file, "\n");
1283 return false;
1286 return true;
1289 /* If there are more than one entry for the loop,
1290 make it one by splitting the first entry edge and
1291 redirecting the others to the new BB. */
1292 static void
1293 canon_loop (struct loop *loop)
1295 edge e;
1296 edge_iterator i;
1298 /* Avoid annoying special cases of edges going to exit
1299 block. */
1300 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1301 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1302 split_edge (e);
1304 if (loop->latch == loop->header
1305 || EDGE_COUNT (loop->latch->succs) > 1)
1307 FOR_EACH_EDGE (e, i, loop->header->preds)
1308 if (e->src == loop->latch)
1309 break;
1310 split_edge (e);
1314 /* Setup infos. */
1315 static void
1316 setup_sched_infos (void)
1318 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1319 sizeof (sms_common_sched_info));
1320 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1321 common_sched_info = &sms_common_sched_info;
1323 sched_deps_info = &sms_sched_deps_info;
1324 current_sched_info = &sms_sched_info;
1327 /* Probability in % that the sms-ed loop rolls enough so that optimized
1328 version may be entered. Just a guess. */
1329 #define PROB_SMS_ENOUGH_ITERATIONS 80
1331 /* Used to calculate the upper bound of ii. */
1332 #define MAXII_FACTOR 2
1334 /* Main entry point, perform SMS scheduling on the loops of the function
1335 that consist of single basic blocks. */
1336 static void
1337 sms_schedule (void)
1339 rtx_insn *insn;
1340 ddg_ptr *g_arr, g;
1341 int * node_order;
1342 int maxii, max_asap;
1343 partial_schedule_ptr ps;
1344 basic_block bb = NULL;
1345 struct loop *loop;
1346 basic_block condition_bb = NULL;
1347 edge latch_edge;
1348 gcov_type trip_count = 0;
1350 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1351 | LOOPS_HAVE_RECORDED_EXITS);
1352 if (number_of_loops (cfun) <= 1)
1354 loop_optimizer_finalize ();
1355 return; /* There are no loops to schedule. */
1358 /* Initialize issue_rate. */
1359 if (targetm.sched.issue_rate)
1361 int temp = reload_completed;
1363 reload_completed = 1;
1364 issue_rate = targetm.sched.issue_rate ();
1365 reload_completed = temp;
1367 else
1368 issue_rate = 1;
1370 /* Initialize the scheduler. */
1371 setup_sched_infos ();
1372 haifa_sched_init ();
1374 /* Allocate memory to hold the DDG array one entry for each loop.
1375 We use loop->num as index into this array. */
1376 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1378 if (dump_file)
1380 fprintf (dump_file, "\n\nSMS analysis phase\n");
1381 fprintf (dump_file, "===================\n\n");
1384 /* Build DDGs for all the relevant loops and hold them in G_ARR
1385 indexed by the loop index. */
1386 FOR_EACH_LOOP (loop, 0)
1388 rtx_insn *head, *tail;
1389 rtx count_reg;
1391 /* For debugging. */
1392 if (dbg_cnt (sms_sched_loop) == false)
1394 if (dump_file)
1395 fprintf (dump_file, "SMS reached max limit... \n");
1397 break;
1400 if (dump_file)
1402 rtx_insn *insn = BB_END (loop->header);
1404 fprintf (dump_file, "SMS loop num: %d", loop->num);
1405 dump_insn_location (insn);
1406 fprintf (dump_file, "\n");
1409 if (! loop_canon_p (loop))
1410 continue;
1412 if (! loop_single_full_bb_p (loop))
1414 if (dump_file)
1415 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1416 continue;
1419 bb = loop->header;
1421 get_ebb_head_tail (bb, bb, &head, &tail);
1422 latch_edge = loop_latch_edge (loop);
1423 gcc_assert (single_exit (loop));
1424 if (single_exit (loop)->count)
1425 trip_count = latch_edge->count / single_exit (loop)->count;
1427 /* Perform SMS only on loops that their average count is above threshold. */
1429 if ( latch_edge->count
1430 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1432 if (dump_file)
1434 dump_insn_location (tail);
1435 fprintf (dump_file, "\nSMS single-bb-loop\n");
1436 if (profile_info && flag_branch_probabilities)
1438 fprintf (dump_file, "SMS loop-count ");
1439 fprintf (dump_file, "%" PRId64,
1440 (int64_t) bb->count);
1441 fprintf (dump_file, "\n");
1442 fprintf (dump_file, "SMS trip-count ");
1443 fprintf (dump_file, "%" PRId64,
1444 (int64_t) trip_count);
1445 fprintf (dump_file, "\n");
1446 fprintf (dump_file, "SMS profile-sum-max ");
1447 fprintf (dump_file, "%" PRId64,
1448 (int64_t) profile_info->sum_max);
1449 fprintf (dump_file, "\n");
1452 continue;
1455 /* Make sure this is a doloop. */
1456 if ( !(count_reg = doloop_register_get (head, tail)))
1458 if (dump_file)
1459 fprintf (dump_file, "SMS doloop_register_get failed\n");
1460 continue;
1463 /* Don't handle BBs with calls or barriers
1464 or !single_set with the exception of instructions that include
1465 count_reg---these instructions are part of the control part
1466 that do-loop recognizes.
1467 ??? Should handle insns defining subregs. */
1468 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1470 rtx set;
1472 if (CALL_P (insn)
1473 || BARRIER_P (insn)
1474 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1475 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1476 && !reg_mentioned_p (count_reg, insn))
1477 || (INSN_P (insn) && (set = single_set (insn))
1478 && GET_CODE (SET_DEST (set)) == SUBREG))
1479 break;
1482 if (insn != NEXT_INSN (tail))
1484 if (dump_file)
1486 if (CALL_P (insn))
1487 fprintf (dump_file, "SMS loop-with-call\n");
1488 else if (BARRIER_P (insn))
1489 fprintf (dump_file, "SMS loop-with-barrier\n");
1490 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1491 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1492 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1493 else
1494 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1495 print_rtl_single (dump_file, insn);
1498 continue;
1501 /* Always schedule the closing branch with the rest of the
1502 instructions. The branch is rotated to be in row ii-1 at the
1503 end of the scheduling procedure to make sure it's the last
1504 instruction in the iteration. */
1505 if (! (g = create_ddg (bb, 1)))
1507 if (dump_file)
1508 fprintf (dump_file, "SMS create_ddg failed\n");
1509 continue;
1512 g_arr[loop->num] = g;
1513 if (dump_file)
1514 fprintf (dump_file, "...OK\n");
1517 if (dump_file)
1519 fprintf (dump_file, "\nSMS transformation phase\n");
1520 fprintf (dump_file, "=========================\n\n");
1523 /* We don't want to perform SMS on new loops - created by versioning. */
1524 FOR_EACH_LOOP (loop, 0)
1526 rtx_insn *head, *tail;
1527 rtx count_reg;
1528 rtx_insn *count_init;
1529 int mii, rec_mii, stage_count, min_cycle;
1530 int64_t loop_count = 0;
1531 bool opt_sc_p;
1533 if (! (g = g_arr[loop->num]))
1534 continue;
1536 if (dump_file)
1538 rtx_insn *insn = BB_END (loop->header);
1540 fprintf (dump_file, "SMS loop num: %d", loop->num);
1541 dump_insn_location (insn);
1542 fprintf (dump_file, "\n");
1544 print_ddg (dump_file, g);
1547 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1549 latch_edge = loop_latch_edge (loop);
1550 gcc_assert (single_exit (loop));
1551 if (single_exit (loop)->count)
1552 trip_count = latch_edge->count / single_exit (loop)->count;
1554 if (dump_file)
1556 dump_insn_location (tail);
1557 fprintf (dump_file, "\nSMS single-bb-loop\n");
1558 if (profile_info && flag_branch_probabilities)
1560 fprintf (dump_file, "SMS loop-count ");
1561 fprintf (dump_file, "%" PRId64,
1562 (int64_t) bb->count);
1563 fprintf (dump_file, "\n");
1564 fprintf (dump_file, "SMS profile-sum-max ");
1565 fprintf (dump_file, "%" PRId64,
1566 (int64_t) profile_info->sum_max);
1567 fprintf (dump_file, "\n");
1569 fprintf (dump_file, "SMS doloop\n");
1570 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1571 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1572 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1576 /* In case of th loop have doloop register it gets special
1577 handling. */
1578 count_init = NULL;
1579 if ((count_reg = doloop_register_get (head, tail)))
1581 basic_block pre_header;
1583 pre_header = loop_preheader_edge (loop)->src;
1584 count_init = const_iteration_count (count_reg, pre_header,
1585 &loop_count);
1587 gcc_assert (count_reg);
1589 if (dump_file && count_init)
1591 fprintf (dump_file, "SMS const-doloop ");
1592 fprintf (dump_file, "%" PRId64,
1593 loop_count);
1594 fprintf (dump_file, "\n");
1597 node_order = XNEWVEC (int, g->num_nodes);
1599 mii = 1; /* Need to pass some estimate of mii. */
1600 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1601 mii = MAX (res_MII (g), rec_mii);
1602 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1604 if (dump_file)
1605 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1606 rec_mii, mii, maxii);
1608 for (;;)
1610 set_node_sched_params (g);
1612 stage_count = 0;
1613 opt_sc_p = false;
1614 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1616 if (ps)
1618 /* Try to achieve optimized SC by normalizing the partial
1619 schedule (having the cycles start from cycle zero).
1620 The branch location must be placed in row ii-1 in the
1621 final scheduling. If failed, shift all instructions to
1622 position the branch in row ii-1. */
1623 opt_sc_p = optimize_sc (ps, g);
1624 if (opt_sc_p)
1625 stage_count = calculate_stage_count (ps, 0);
1626 else
1628 /* Bring the branch to cycle ii-1. */
1629 int amount = (SCHED_TIME (g->closing_branch->cuid)
1630 - (ps->ii - 1));
1632 if (dump_file)
1633 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1635 stage_count = calculate_stage_count (ps, amount);
1638 gcc_assert (stage_count >= 1);
1641 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1642 1 means that there is no interleaving between iterations thus
1643 we let the scheduling passes do the job in this case. */
1644 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1645 || (count_init && (loop_count <= stage_count))
1646 || (flag_branch_probabilities && (trip_count <= stage_count)))
1648 if (dump_file)
1650 fprintf (dump_file, "SMS failed... \n");
1651 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1652 " loop-count=", stage_count);
1653 fprintf (dump_file, "%" PRId64, loop_count);
1654 fprintf (dump_file, ", trip-count=");
1655 fprintf (dump_file, "%" PRId64, trip_count);
1656 fprintf (dump_file, ")\n");
1658 break;
1661 if (!opt_sc_p)
1663 /* Rotate the partial schedule to have the branch in row ii-1. */
1664 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1666 reset_sched_times (ps, amount);
1667 rotate_partial_schedule (ps, amount);
1670 set_columns_for_ps (ps);
1672 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1673 if (!schedule_reg_moves (ps))
1675 mii = ps->ii + 1;
1676 free_partial_schedule (ps);
1677 continue;
1680 /* Moves that handle incoming values might have been added
1681 to a new first stage. Bump the stage count if so.
1683 ??? Perhaps we could consider rotating the schedule here
1684 instead? */
1685 if (PS_MIN_CYCLE (ps) < min_cycle)
1687 reset_sched_times (ps, 0);
1688 stage_count++;
1691 /* The stage count should now be correct without rotation. */
1692 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1693 PS_STAGE_COUNT (ps) = stage_count;
1695 canon_loop (loop);
1697 if (dump_file)
1699 dump_insn_location (tail);
1700 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1701 ps->ii, stage_count);
1702 print_partial_schedule (ps, dump_file);
1705 /* case the BCT count is not known , Do loop-versioning */
1706 if (count_reg && ! count_init)
1708 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1709 gen_int_mode (stage_count,
1710 GET_MODE (count_reg)));
1711 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1712 * REG_BR_PROB_BASE) / 100;
1714 loop_version (loop, comp_rtx, &condition_bb,
1715 prob, prob, REG_BR_PROB_BASE - prob,
1716 true);
1719 /* Set new iteration count of loop kernel. */
1720 if (count_reg && count_init)
1721 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1722 - stage_count + 1);
1724 /* Now apply the scheduled kernel to the RTL of the loop. */
1725 permute_partial_schedule (ps, g->closing_branch->first_note);
1727 /* Mark this loop as software pipelined so the later
1728 scheduling passes don't touch it. */
1729 if (! flag_resched_modulo_sched)
1730 mark_loop_unsched (loop);
1732 /* The life-info is not valid any more. */
1733 df_set_bb_dirty (g->bb);
1735 apply_reg_moves (ps);
1736 if (dump_file)
1737 print_node_sched_params (dump_file, g->num_nodes, ps);
1738 /* Generate prolog and epilog. */
1739 generate_prolog_epilog (ps, loop, count_reg, count_init);
1740 break;
1743 free_partial_schedule (ps);
1744 node_sched_param_vec.release ();
1745 free (node_order);
1746 free_ddg (g);
1749 free (g_arr);
1751 /* Release scheduler data, needed until now because of DFA. */
1752 haifa_sched_finish ();
1753 loop_optimizer_finalize ();
1756 /* The SMS scheduling algorithm itself
1757 -----------------------------------
1758 Input: 'O' an ordered list of insns of a loop.
1759 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1761 'Q' is the empty Set
1762 'PS' is the partial schedule; it holds the currently scheduled nodes with
1763 their cycle/slot.
1764 'PSP' previously scheduled predecessors.
1765 'PSS' previously scheduled successors.
1766 't(u)' the cycle where u is scheduled.
1767 'l(u)' is the latency of u.
1768 'd(v,u)' is the dependence distance from v to u.
1769 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1770 the node ordering phase.
1771 'check_hardware_resources_conflicts(u, PS, c)'
1772 run a trace around cycle/slot through DFA model
1773 to check resource conflicts involving instruction u
1774 at cycle c given the partial schedule PS.
1775 'add_to_partial_schedule_at_time(u, PS, c)'
1776 Add the node/instruction u to the partial schedule
1777 PS at time c.
1778 'calculate_register_pressure(PS)'
1779 Given a schedule of instructions, calculate the register
1780 pressure it implies. One implementation could be the
1781 maximum number of overlapping live ranges.
1782 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1783 registers available in the hardware.
1785 1. II = MII.
1786 2. PS = empty list
1787 3. for each node u in O in pre-computed order
1788 4. if (PSP(u) != Q && PSS(u) == Q) then
1789 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1790 6. start = Early_start; end = Early_start + II - 1; step = 1
1791 11. else if (PSP(u) == Q && PSS(u) != Q) then
1792 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1793 13. start = Late_start; end = Late_start - II + 1; step = -1
1794 14. else if (PSP(u) != Q && PSS(u) != Q) then
1795 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1796 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1797 17. start = Early_start;
1798 18. end = min(Early_start + II - 1 , Late_start);
1799 19. step = 1
1800 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1801 21. start = ASAP(u); end = start + II - 1; step = 1
1802 22. endif
1804 23. success = false
1805 24. for (c = start ; c != end ; c += step)
1806 25. if check_hardware_resources_conflicts(u, PS, c) then
1807 26. add_to_partial_schedule_at_time(u, PS, c)
1808 27. success = true
1809 28. break
1810 29. endif
1811 30. endfor
1812 31. if (success == false) then
1813 32. II = II + 1
1814 33. if (II > maxII) then
1815 34. finish - failed to schedule
1816 35. endif
1817 36. goto 2.
1818 37. endif
1819 38. endfor
1820 39. if (calculate_register_pressure(PS) > maxRP) then
1821 40. goto 32.
1822 41. endif
1823 42. compute epilogue & prologue
1824 43. finish - succeeded to schedule
1826 ??? The algorithm restricts the scheduling window to II cycles.
1827 In rare cases, it may be better to allow windows of II+1 cycles.
1828 The window would then start and end on the same row, but with
1829 different "must precede" and "must follow" requirements. */
1831 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1832 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1833 set to 0 to save compile time. */
1834 #define DFA_HISTORY SMS_DFA_HISTORY
1836 /* A threshold for the number of repeated unsuccessful attempts to insert
1837 an empty row, before we flush the partial schedule and start over. */
1838 #define MAX_SPLIT_NUM 10
1839 /* Given the partial schedule PS, this function calculates and returns the
1840 cycles in which we can schedule the node with the given index I.
1841 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1842 noticed that there are several cases in which we fail to SMS the loop
1843 because the sched window of a node is empty due to tight data-deps. In
1844 such cases we want to unschedule some of the predecessors/successors
1845 until we get non-empty scheduling window. It returns -1 if the
1846 scheduling window is empty and zero otherwise. */
1848 static int
1849 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1850 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1851 int *end_p)
1853 int start, step, end;
1854 int early_start, late_start;
1855 ddg_edge_ptr e;
1856 auto_sbitmap psp (ps->g->num_nodes);
1857 auto_sbitmap pss (ps->g->num_nodes);
1858 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1859 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1860 int psp_not_empty;
1861 int pss_not_empty;
1862 int count_preds;
1863 int count_succs;
1865 /* 1. compute sched window for u (start, end, step). */
1866 bitmap_clear (psp);
1867 bitmap_clear (pss);
1868 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1869 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1871 /* We first compute a forward range (start <= end), then decide whether
1872 to reverse it. */
1873 early_start = INT_MIN;
1874 late_start = INT_MAX;
1875 start = INT_MIN;
1876 end = INT_MAX;
1877 step = 1;
1879 count_preds = 0;
1880 count_succs = 0;
1882 if (dump_file && (psp_not_empty || pss_not_empty))
1884 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1885 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1886 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1887 "start", "early start", "late start", "end", "time");
1888 fprintf (dump_file, "=========== =========== =========== ==========="
1889 " =====\n");
1891 /* Calculate early_start and limit end. Both bounds are inclusive. */
1892 if (psp_not_empty)
1893 for (e = u_node->in; e != 0; e = e->next_in)
1895 int v = e->src->cuid;
1897 if (bitmap_bit_p (sched_nodes, v))
1899 int p_st = SCHED_TIME (v);
1900 int earliest = p_st + e->latency - (e->distance * ii);
1901 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1903 if (dump_file)
1905 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1906 "", earliest, "", latest, p_st);
1907 print_ddg_edge (dump_file, e);
1908 fprintf (dump_file, "\n");
1911 early_start = MAX (early_start, earliest);
1912 end = MIN (end, latest);
1914 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1915 count_preds++;
1919 /* Calculate late_start and limit start. Both bounds are inclusive. */
1920 if (pss_not_empty)
1921 for (e = u_node->out; e != 0; e = e->next_out)
1923 int v = e->dest->cuid;
1925 if (bitmap_bit_p (sched_nodes, v))
1927 int s_st = SCHED_TIME (v);
1928 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1929 int latest = s_st - e->latency + (e->distance * ii);
1931 if (dump_file)
1933 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1934 earliest, "", latest, "", s_st);
1935 print_ddg_edge (dump_file, e);
1936 fprintf (dump_file, "\n");
1939 start = MAX (start, earliest);
1940 late_start = MIN (late_start, latest);
1942 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1943 count_succs++;
1947 if (dump_file && (psp_not_empty || pss_not_empty))
1949 fprintf (dump_file, "----------- ----------- ----------- -----------"
1950 " -----\n");
1951 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1952 start, early_start, late_start, end, "",
1953 "(max, max, min, min)");
1956 /* Get a target scheduling window no bigger than ii. */
1957 if (early_start == INT_MIN && late_start == INT_MAX)
1958 early_start = NODE_ASAP (u_node);
1959 else if (early_start == INT_MIN)
1960 early_start = late_start - (ii - 1);
1961 late_start = MIN (late_start, early_start + (ii - 1));
1963 /* Apply memory dependence limits. */
1964 start = MAX (start, early_start);
1965 end = MIN (end, late_start);
1967 if (dump_file && (psp_not_empty || pss_not_empty))
1968 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1969 "", start, end, "", "");
1971 /* If there are at least as many successors as predecessors, schedule the
1972 node close to its successors. */
1973 if (pss_not_empty && count_succs >= count_preds)
1975 std::swap (start, end);
1976 step = -1;
1979 /* Now that we've finalized the window, make END an exclusive rather
1980 than an inclusive bound. */
1981 end += step;
1983 *start_p = start;
1984 *step_p = step;
1985 *end_p = end;
1987 if ((start >= end && step == 1) || (start <= end && step == -1))
1989 if (dump_file)
1990 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1991 start, end, step);
1992 return -1;
1995 return 0;
1998 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
1999 node currently been scheduled. At the end of the calculation
2000 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2001 U_NODE which are (1) already scheduled in the first/last row of
2002 U_NODE's scheduling window, (2) whose dependence inequality with U
2003 becomes an equality when U is scheduled in this same row, and (3)
2004 whose dependence latency is zero.
2006 The first and last rows are calculated using the following parameters:
2007 START/END rows - The cycles that begins/ends the traversal on the window;
2008 searching for an empty cycle to schedule U_NODE.
2009 STEP - The direction in which we traverse the window.
2010 II - The initiation interval. */
2012 static void
2013 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2014 int step, int ii, sbitmap sched_nodes,
2015 sbitmap must_precede, sbitmap must_follow)
2017 ddg_edge_ptr e;
2018 int first_cycle_in_window, last_cycle_in_window;
2020 gcc_assert (must_precede && must_follow);
2022 /* Consider the following scheduling window:
2023 {first_cycle_in_window, first_cycle_in_window+1, ...,
2024 last_cycle_in_window}. If step is 1 then the following will be
2025 the order we traverse the window: {start=first_cycle_in_window,
2026 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2027 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2028 end=first_cycle_in_window-1} if step is -1. */
2029 first_cycle_in_window = (step == 1) ? start : end - step;
2030 last_cycle_in_window = (step == 1) ? end - step : start;
2032 bitmap_clear (must_precede);
2033 bitmap_clear (must_follow);
2035 if (dump_file)
2036 fprintf (dump_file, "\nmust_precede: ");
2038 /* Instead of checking if:
2039 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2040 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2041 first_cycle_in_window)
2042 && e->latency == 0
2043 we use the fact that latency is non-negative:
2044 SCHED_TIME (e->src) - (e->distance * ii) <=
2045 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2046 first_cycle_in_window
2047 and check only if
2048 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2049 for (e = u_node->in; e != 0; e = e->next_in)
2050 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2051 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2052 first_cycle_in_window))
2054 if (dump_file)
2055 fprintf (dump_file, "%d ", e->src->cuid);
2057 bitmap_set_bit (must_precede, e->src->cuid);
2060 if (dump_file)
2061 fprintf (dump_file, "\nmust_follow: ");
2063 /* Instead of checking if:
2064 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2065 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2066 last_cycle_in_window)
2067 && e->latency == 0
2068 we use the fact that latency is non-negative:
2069 SCHED_TIME (e->dest) + (e->distance * ii) >=
2070 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2071 last_cycle_in_window
2072 and check only if
2073 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2074 for (e = u_node->out; e != 0; e = e->next_out)
2075 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2076 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2077 last_cycle_in_window))
2079 if (dump_file)
2080 fprintf (dump_file, "%d ", e->dest->cuid);
2082 bitmap_set_bit (must_follow, e->dest->cuid);
2085 if (dump_file)
2086 fprintf (dump_file, "\n");
2089 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2090 parameters to decide if that's possible:
2091 PS - The partial schedule.
2092 U - The serial number of U_NODE.
2093 NUM_SPLITS - The number of row splits made so far.
2094 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2095 the first row of the scheduling window)
2096 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2097 last row of the scheduling window) */
2099 static bool
2100 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2101 int u, int cycle, sbitmap sched_nodes,
2102 int *num_splits, sbitmap must_precede,
2103 sbitmap must_follow)
2105 ps_insn_ptr psi;
2106 bool success = 0;
2108 verify_partial_schedule (ps, sched_nodes);
2109 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2110 if (psi)
2112 SCHED_TIME (u) = cycle;
2113 bitmap_set_bit (sched_nodes, u);
2114 success = 1;
2115 *num_splits = 0;
2116 if (dump_file)
2117 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2121 return success;
2124 /* This function implements the scheduling algorithm for SMS according to the
2125 above algorithm. */
2126 static partial_schedule_ptr
2127 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2129 int ii = mii;
2130 int i, c, success, num_splits = 0;
2131 int flush_and_start_over = true;
2132 int num_nodes = g->num_nodes;
2133 int start, end, step; /* Place together into one struct? */
2134 auto_sbitmap sched_nodes (num_nodes);
2135 auto_sbitmap must_precede (num_nodes);
2136 auto_sbitmap must_follow (num_nodes);
2137 auto_sbitmap tobe_scheduled (num_nodes);
2139 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2141 bitmap_ones (tobe_scheduled);
2142 bitmap_clear (sched_nodes);
2144 while (flush_and_start_over && (ii < maxii))
2147 if (dump_file)
2148 fprintf (dump_file, "Starting with ii=%d\n", ii);
2149 flush_and_start_over = false;
2150 bitmap_clear (sched_nodes);
2152 for (i = 0; i < num_nodes; i++)
2154 int u = nodes_order[i];
2155 ddg_node_ptr u_node = &ps->g->nodes[u];
2156 rtx_insn *insn = u_node->insn;
2158 if (!NONDEBUG_INSN_P (insn))
2160 bitmap_clear_bit (tobe_scheduled, u);
2161 continue;
2164 if (bitmap_bit_p (sched_nodes, u))
2165 continue;
2167 /* Try to get non-empty scheduling window. */
2168 success = 0;
2169 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2170 &step, &end) == 0)
2172 if (dump_file)
2173 fprintf (dump_file, "\nTrying to schedule node %d "
2174 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2175 (g->nodes[u].insn)), start, end, step);
2177 gcc_assert ((step > 0 && start < end)
2178 || (step < 0 && start > end));
2180 calculate_must_precede_follow (u_node, start, end, step, ii,
2181 sched_nodes, must_precede,
2182 must_follow);
2184 for (c = start; c != end; c += step)
2186 sbitmap tmp_precede, tmp_follow;
2188 set_must_precede_follow (&tmp_follow, must_follow,
2189 &tmp_precede, must_precede,
2190 c, start, end, step);
2191 success =
2192 try_scheduling_node_in_cycle (ps, u, c,
2193 sched_nodes,
2194 &num_splits, tmp_precede,
2195 tmp_follow);
2196 if (success)
2197 break;
2200 verify_partial_schedule (ps, sched_nodes);
2202 if (!success)
2204 int split_row;
2206 if (ii++ == maxii)
2207 break;
2209 if (num_splits >= MAX_SPLIT_NUM)
2211 num_splits = 0;
2212 flush_and_start_over = true;
2213 verify_partial_schedule (ps, sched_nodes);
2214 reset_partial_schedule (ps, ii);
2215 verify_partial_schedule (ps, sched_nodes);
2216 break;
2219 num_splits++;
2220 /* The scheduling window is exclusive of 'end'
2221 whereas compute_split_window() expects an inclusive,
2222 ordered range. */
2223 if (step == 1)
2224 split_row = compute_split_row (sched_nodes, start, end - 1,
2225 ps->ii, u_node);
2226 else
2227 split_row = compute_split_row (sched_nodes, end + 1, start,
2228 ps->ii, u_node);
2230 ps_insert_empty_row (ps, split_row, sched_nodes);
2231 i--; /* Go back and retry node i. */
2233 if (dump_file)
2234 fprintf (dump_file, "num_splits=%d\n", num_splits);
2237 /* ??? If (success), check register pressure estimates. */
2238 } /* Continue with next node. */
2239 } /* While flush_and_start_over. */
2240 if (ii >= maxii)
2242 free_partial_schedule (ps);
2243 ps = NULL;
2245 else
2246 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2248 return ps;
2251 /* This function inserts a new empty row into PS at the position
2252 according to SPLITROW, keeping all already scheduled instructions
2253 intact and updating their SCHED_TIME and cycle accordingly. */
2254 static void
2255 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2256 sbitmap sched_nodes)
2258 ps_insn_ptr crr_insn;
2259 ps_insn_ptr *rows_new;
2260 int ii = ps->ii;
2261 int new_ii = ii + 1;
2262 int row;
2263 int *rows_length_new;
2265 verify_partial_schedule (ps, sched_nodes);
2267 /* We normalize sched_time and rotate ps to have only non-negative sched
2268 times, for simplicity of updating cycles after inserting new row. */
2269 split_row -= ps->min_cycle;
2270 split_row = SMODULO (split_row, ii);
2271 if (dump_file)
2272 fprintf (dump_file, "split_row=%d\n", split_row);
2274 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2275 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2277 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2278 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2279 for (row = 0; row < split_row; row++)
2281 rows_new[row] = ps->rows[row];
2282 rows_length_new[row] = ps->rows_length[row];
2283 ps->rows[row] = NULL;
2284 for (crr_insn = rows_new[row];
2285 crr_insn; crr_insn = crr_insn->next_in_row)
2287 int u = crr_insn->id;
2288 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2290 SCHED_TIME (u) = new_time;
2291 crr_insn->cycle = new_time;
2292 SCHED_ROW (u) = new_time % new_ii;
2293 SCHED_STAGE (u) = new_time / new_ii;
2298 rows_new[split_row] = NULL;
2300 for (row = split_row; row < ii; row++)
2302 rows_new[row + 1] = ps->rows[row];
2303 rows_length_new[row + 1] = ps->rows_length[row];
2304 ps->rows[row] = NULL;
2305 for (crr_insn = rows_new[row + 1];
2306 crr_insn; crr_insn = crr_insn->next_in_row)
2308 int u = crr_insn->id;
2309 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2311 SCHED_TIME (u) = new_time;
2312 crr_insn->cycle = new_time;
2313 SCHED_ROW (u) = new_time % new_ii;
2314 SCHED_STAGE (u) = new_time / new_ii;
2318 /* Updating ps. */
2319 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2320 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2321 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2322 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2323 free (ps->rows);
2324 ps->rows = rows_new;
2325 free (ps->rows_length);
2326 ps->rows_length = rows_length_new;
2327 ps->ii = new_ii;
2328 gcc_assert (ps->min_cycle >= 0);
2330 verify_partial_schedule (ps, sched_nodes);
2332 if (dump_file)
2333 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2334 ps->max_cycle);
2337 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2338 UP which are the boundaries of it's scheduling window; compute using
2339 SCHED_NODES and II a row in the partial schedule that can be split
2340 which will separate a critical predecessor from a critical successor
2341 thereby expanding the window, and return it. */
2342 static int
2343 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2344 ddg_node_ptr u_node)
2346 ddg_edge_ptr e;
2347 int lower = INT_MIN, upper = INT_MAX;
2348 int crit_pred = -1;
2349 int crit_succ = -1;
2350 int crit_cycle;
2352 for (e = u_node->in; e != 0; e = e->next_in)
2354 int v = e->src->cuid;
2356 if (bitmap_bit_p (sched_nodes, v)
2357 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2358 if (SCHED_TIME (v) > lower)
2360 crit_pred = v;
2361 lower = SCHED_TIME (v);
2365 if (crit_pred >= 0)
2367 crit_cycle = SCHED_TIME (crit_pred) + 1;
2368 return SMODULO (crit_cycle, ii);
2371 for (e = u_node->out; e != 0; e = e->next_out)
2373 int v = e->dest->cuid;
2375 if (bitmap_bit_p (sched_nodes, v)
2376 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2377 if (SCHED_TIME (v) < upper)
2379 crit_succ = v;
2380 upper = SCHED_TIME (v);
2384 if (crit_succ >= 0)
2386 crit_cycle = SCHED_TIME (crit_succ);
2387 return SMODULO (crit_cycle, ii);
2390 if (dump_file)
2391 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2393 return SMODULO ((low + up + 1) / 2, ii);
2396 static void
2397 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2399 int row;
2400 ps_insn_ptr crr_insn;
2402 for (row = 0; row < ps->ii; row++)
2404 int length = 0;
2406 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2408 int u = crr_insn->id;
2410 length++;
2411 gcc_assert (bitmap_bit_p (sched_nodes, u));
2412 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2413 popcount (sched_nodes) == number of insns in ps. */
2414 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2415 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2418 gcc_assert (ps->rows_length[row] == length);
2423 /* This page implements the algorithm for ordering the nodes of a DDG
2424 for modulo scheduling, activated through the
2425 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2427 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2428 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2429 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2430 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2431 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2432 #define DEPTH(x) (ASAP ((x)))
2434 typedef struct node_order_params * nopa;
2436 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2437 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2438 static nopa calculate_order_params (ddg_ptr, int, int *);
2439 static int find_max_asap (ddg_ptr, sbitmap);
2440 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2441 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2443 enum sms_direction {BOTTOMUP, TOPDOWN};
2445 struct node_order_params
2447 int asap;
2448 int alap;
2449 int height;
2452 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2453 static void
2454 check_nodes_order (int *node_order, int num_nodes)
2456 int i;
2457 auto_sbitmap tmp (num_nodes);
2459 bitmap_clear (tmp);
2461 if (dump_file)
2462 fprintf (dump_file, "SMS final nodes order: \n");
2464 for (i = 0; i < num_nodes; i++)
2466 int u = node_order[i];
2468 if (dump_file)
2469 fprintf (dump_file, "%d ", u);
2470 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2472 bitmap_set_bit (tmp, u);
2475 if (dump_file)
2476 fprintf (dump_file, "\n");
2479 /* Order the nodes of G for scheduling and pass the result in
2480 NODE_ORDER. Also set aux.count of each node to ASAP.
2481 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2482 static int
2483 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2485 int i;
2486 int rec_mii = 0;
2487 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2489 nopa nops = calculate_order_params (g, mii, pmax_asap);
2491 if (dump_file)
2492 print_sccs (dump_file, sccs, g);
2494 order_nodes_of_sccs (sccs, node_order);
2496 if (sccs->num_sccs > 0)
2497 /* First SCC has the largest recurrence_length. */
2498 rec_mii = sccs->sccs[0]->recurrence_length;
2500 /* Save ASAP before destroying node_order_params. */
2501 for (i = 0; i < g->num_nodes; i++)
2503 ddg_node_ptr v = &g->nodes[i];
2504 v->aux.count = ASAP (v);
2507 free (nops);
2508 free_ddg_all_sccs (sccs);
2509 check_nodes_order (node_order, g->num_nodes);
2511 return rec_mii;
2514 static void
2515 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2517 int i, pos = 0;
2518 ddg_ptr g = all_sccs->ddg;
2519 int num_nodes = g->num_nodes;
2520 auto_sbitmap prev_sccs (num_nodes);
2521 auto_sbitmap on_path (num_nodes);
2522 auto_sbitmap tmp (num_nodes);
2523 auto_sbitmap ones (num_nodes);
2525 bitmap_clear (prev_sccs);
2526 bitmap_ones (ones);
2528 /* Perform the node ordering starting from the SCC with the highest recMII.
2529 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2530 for (i = 0; i < all_sccs->num_sccs; i++)
2532 ddg_scc_ptr scc = all_sccs->sccs[i];
2534 /* Add nodes on paths from previous SCCs to the current SCC. */
2535 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2536 bitmap_ior (tmp, scc->nodes, on_path);
2538 /* Add nodes on paths from the current SCC to previous SCCs. */
2539 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2540 bitmap_ior (tmp, tmp, on_path);
2542 /* Remove nodes of previous SCCs from current extended SCC. */
2543 bitmap_and_compl (tmp, tmp, prev_sccs);
2545 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2546 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2549 /* Handle the remaining nodes that do not belong to any scc. Each call
2550 to order_nodes_in_scc handles a single connected component. */
2551 while (pos < g->num_nodes)
2553 bitmap_and_compl (tmp, ones, prev_sccs);
2554 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2558 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2559 static struct node_order_params *
2560 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2562 int u;
2563 int max_asap;
2564 int num_nodes = g->num_nodes;
2565 ddg_edge_ptr e;
2566 /* Allocate a place to hold ordering params for each node in the DDG. */
2567 nopa node_order_params_arr;
2569 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2570 node_order_params_arr = (nopa) xcalloc (num_nodes,
2571 sizeof (struct node_order_params));
2573 /* Set the aux pointer of each node to point to its order_params structure. */
2574 for (u = 0; u < num_nodes; u++)
2575 g->nodes[u].aux.info = &node_order_params_arr[u];
2577 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2578 calculate ASAP, ALAP, mobility, distance, and height for each node
2579 in the dependence (direct acyclic) graph. */
2581 /* We assume that the nodes in the array are in topological order. */
2583 max_asap = 0;
2584 for (u = 0; u < num_nodes; u++)
2586 ddg_node_ptr u_node = &g->nodes[u];
2588 ASAP (u_node) = 0;
2589 for (e = u_node->in; e; e = e->next_in)
2590 if (e->distance == 0)
2591 ASAP (u_node) = MAX (ASAP (u_node),
2592 ASAP (e->src) + e->latency);
2593 max_asap = MAX (max_asap, ASAP (u_node));
2596 for (u = num_nodes - 1; u > -1; u--)
2598 ddg_node_ptr u_node = &g->nodes[u];
2600 ALAP (u_node) = max_asap;
2601 HEIGHT (u_node) = 0;
2602 for (e = u_node->out; e; e = e->next_out)
2603 if (e->distance == 0)
2605 ALAP (u_node) = MIN (ALAP (u_node),
2606 ALAP (e->dest) - e->latency);
2607 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2608 HEIGHT (e->dest) + e->latency);
2611 if (dump_file)
2613 fprintf (dump_file, "\nOrder params\n");
2614 for (u = 0; u < num_nodes; u++)
2616 ddg_node_ptr u_node = &g->nodes[u];
2618 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2619 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2623 *pmax_asap = max_asap;
2624 return node_order_params_arr;
2627 static int
2628 find_max_asap (ddg_ptr g, sbitmap nodes)
2630 unsigned int u = 0;
2631 int max_asap = -1;
2632 int result = -1;
2633 sbitmap_iterator sbi;
2635 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2637 ddg_node_ptr u_node = &g->nodes[u];
2639 if (max_asap < ASAP (u_node))
2641 max_asap = ASAP (u_node);
2642 result = u;
2645 return result;
2648 static int
2649 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2651 unsigned int u = 0;
2652 int max_hv = -1;
2653 int min_mob = INT_MAX;
2654 int result = -1;
2655 sbitmap_iterator sbi;
2657 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2659 ddg_node_ptr u_node = &g->nodes[u];
2661 if (max_hv < HEIGHT (u_node))
2663 max_hv = HEIGHT (u_node);
2664 min_mob = MOB (u_node);
2665 result = u;
2667 else if ((max_hv == HEIGHT (u_node))
2668 && (min_mob > MOB (u_node)))
2670 min_mob = MOB (u_node);
2671 result = u;
2674 return result;
2677 static int
2678 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2680 unsigned int u = 0;
2681 int max_dv = -1;
2682 int min_mob = INT_MAX;
2683 int result = -1;
2684 sbitmap_iterator sbi;
2686 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2688 ddg_node_ptr u_node = &g->nodes[u];
2690 if (max_dv < DEPTH (u_node))
2692 max_dv = DEPTH (u_node);
2693 min_mob = MOB (u_node);
2694 result = u;
2696 else if ((max_dv == DEPTH (u_node))
2697 && (min_mob > MOB (u_node)))
2699 min_mob = MOB (u_node);
2700 result = u;
2703 return result;
2706 /* Places the nodes of SCC into the NODE_ORDER array starting
2707 at position POS, according to the SMS ordering algorithm.
2708 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2709 the NODE_ORDER array, starting from position zero. */
2710 static int
2711 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2712 int * node_order, int pos)
2714 enum sms_direction dir;
2715 int num_nodes = g->num_nodes;
2716 auto_sbitmap workset (num_nodes);
2717 auto_sbitmap tmp (num_nodes);
2718 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2719 auto_sbitmap predecessors (num_nodes);
2720 auto_sbitmap successors (num_nodes);
2722 bitmap_clear (predecessors);
2723 find_predecessors (predecessors, g, nodes_ordered);
2725 bitmap_clear (successors);
2726 find_successors (successors, g, nodes_ordered);
2728 bitmap_clear (tmp);
2729 if (bitmap_and (tmp, predecessors, scc))
2731 bitmap_copy (workset, tmp);
2732 dir = BOTTOMUP;
2734 else if (bitmap_and (tmp, successors, scc))
2736 bitmap_copy (workset, tmp);
2737 dir = TOPDOWN;
2739 else
2741 int u;
2743 bitmap_clear (workset);
2744 if ((u = find_max_asap (g, scc)) >= 0)
2745 bitmap_set_bit (workset, u);
2746 dir = BOTTOMUP;
2749 bitmap_clear (zero_bitmap);
2750 while (!bitmap_equal_p (workset, zero_bitmap))
2752 int v;
2753 ddg_node_ptr v_node;
2754 sbitmap v_node_preds;
2755 sbitmap v_node_succs;
2757 if (dir == TOPDOWN)
2759 while (!bitmap_equal_p (workset, zero_bitmap))
2761 v = find_max_hv_min_mob (g, workset);
2762 v_node = &g->nodes[v];
2763 node_order[pos++] = v;
2764 v_node_succs = NODE_SUCCESSORS (v_node);
2765 bitmap_and (tmp, v_node_succs, scc);
2767 /* Don't consider the already ordered successors again. */
2768 bitmap_and_compl (tmp, tmp, nodes_ordered);
2769 bitmap_ior (workset, workset, tmp);
2770 bitmap_clear_bit (workset, v);
2771 bitmap_set_bit (nodes_ordered, v);
2773 dir = BOTTOMUP;
2774 bitmap_clear (predecessors);
2775 find_predecessors (predecessors, g, nodes_ordered);
2776 bitmap_and (workset, predecessors, scc);
2778 else
2780 while (!bitmap_equal_p (workset, zero_bitmap))
2782 v = find_max_dv_min_mob (g, workset);
2783 v_node = &g->nodes[v];
2784 node_order[pos++] = v;
2785 v_node_preds = NODE_PREDECESSORS (v_node);
2786 bitmap_and (tmp, v_node_preds, scc);
2788 /* Don't consider the already ordered predecessors again. */
2789 bitmap_and_compl (tmp, tmp, nodes_ordered);
2790 bitmap_ior (workset, workset, tmp);
2791 bitmap_clear_bit (workset, v);
2792 bitmap_set_bit (nodes_ordered, v);
2794 dir = TOPDOWN;
2795 bitmap_clear (successors);
2796 find_successors (successors, g, nodes_ordered);
2797 bitmap_and (workset, successors, scc);
2800 sbitmap_free (zero_bitmap);
2801 return pos;
2805 /* This page contains functions for manipulating partial-schedules during
2806 modulo scheduling. */
2808 /* Create a partial schedule and allocate a memory to hold II rows. */
2810 static partial_schedule_ptr
2811 create_partial_schedule (int ii, ddg_ptr g, int history)
2813 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2814 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2815 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2816 ps->reg_moves.create (0);
2817 ps->ii = ii;
2818 ps->history = history;
2819 ps->min_cycle = INT_MAX;
2820 ps->max_cycle = INT_MIN;
2821 ps->g = g;
2823 return ps;
2826 /* Free the PS_INSNs in rows array of the given partial schedule.
2827 ??? Consider caching the PS_INSN's. */
2828 static void
2829 free_ps_insns (partial_schedule_ptr ps)
2831 int i;
2833 for (i = 0; i < ps->ii; i++)
2835 while (ps->rows[i])
2837 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2839 free (ps->rows[i]);
2840 ps->rows[i] = ps_insn;
2842 ps->rows[i] = NULL;
2846 /* Free all the memory allocated to the partial schedule. */
2848 static void
2849 free_partial_schedule (partial_schedule_ptr ps)
2851 ps_reg_move_info *move;
2852 unsigned int i;
2854 if (!ps)
2855 return;
2857 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2858 sbitmap_free (move->uses);
2859 ps->reg_moves.release ();
2861 free_ps_insns (ps);
2862 free (ps->rows);
2863 free (ps->rows_length);
2864 free (ps);
2867 /* Clear the rows array with its PS_INSNs, and create a new one with
2868 NEW_II rows. */
2870 static void
2871 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2873 if (!ps)
2874 return;
2875 free_ps_insns (ps);
2876 if (new_ii == ps->ii)
2877 return;
2878 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2879 * sizeof (ps_insn_ptr));
2880 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2881 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2882 memset (ps->rows_length, 0, new_ii * sizeof (int));
2883 ps->ii = new_ii;
2884 ps->min_cycle = INT_MAX;
2885 ps->max_cycle = INT_MIN;
2888 /* Prints the partial schedule as an ii rows array, for each rows
2889 print the ids of the insns in it. */
2890 void
2891 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2893 int i;
2895 for (i = 0; i < ps->ii; i++)
2897 ps_insn_ptr ps_i = ps->rows[i];
2899 fprintf (dump, "\n[ROW %d ]: ", i);
2900 while (ps_i)
2902 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2904 if (JUMP_P (insn))
2905 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2906 else
2907 fprintf (dump, "%d, ", INSN_UID (insn));
2909 ps_i = ps_i->next_in_row;
2914 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2915 static ps_insn_ptr
2916 create_ps_insn (int id, int cycle)
2918 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2920 ps_i->id = id;
2921 ps_i->next_in_row = NULL;
2922 ps_i->prev_in_row = NULL;
2923 ps_i->cycle = cycle;
2925 return ps_i;
2929 /* Removes the given PS_INSN from the partial schedule. */
2930 static void
2931 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2933 int row;
2935 gcc_assert (ps && ps_i);
2937 row = SMODULO (ps_i->cycle, ps->ii);
2938 if (! ps_i->prev_in_row)
2940 gcc_assert (ps_i == ps->rows[row]);
2941 ps->rows[row] = ps_i->next_in_row;
2942 if (ps->rows[row])
2943 ps->rows[row]->prev_in_row = NULL;
2945 else
2947 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2948 if (ps_i->next_in_row)
2949 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2952 ps->rows_length[row] -= 1;
2953 free (ps_i);
2954 return;
2957 /* Unlike what literature describes for modulo scheduling (which focuses
2958 on VLIW machines) the order of the instructions inside a cycle is
2959 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2960 where the current instruction should go relative to the already
2961 scheduled instructions in the given cycle. Go over these
2962 instructions and find the first possible column to put it in. */
2963 static bool
2964 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2965 sbitmap must_precede, sbitmap must_follow)
2967 ps_insn_ptr next_ps_i;
2968 ps_insn_ptr first_must_follow = NULL;
2969 ps_insn_ptr last_must_precede = NULL;
2970 ps_insn_ptr last_in_row = NULL;
2971 int row;
2973 if (! ps_i)
2974 return false;
2976 row = SMODULO (ps_i->cycle, ps->ii);
2978 /* Find the first must follow and the last must precede
2979 and insert the node immediately after the must precede
2980 but make sure that it there is no must follow after it. */
2981 for (next_ps_i = ps->rows[row];
2982 next_ps_i;
2983 next_ps_i = next_ps_i->next_in_row)
2985 if (must_follow
2986 && bitmap_bit_p (must_follow, next_ps_i->id)
2987 && ! first_must_follow)
2988 first_must_follow = next_ps_i;
2989 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
2991 /* If we have already met a node that must follow, then
2992 there is no possible column. */
2993 if (first_must_follow)
2994 return false;
2995 else
2996 last_must_precede = next_ps_i;
2998 /* The closing branch must be the last in the row. */
2999 if (must_precede
3000 && bitmap_bit_p (must_precede, next_ps_i->id)
3001 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3002 return false;
3004 last_in_row = next_ps_i;
3007 /* The closing branch is scheduled as well. Make sure there is no
3008 dependent instruction after it as the branch should be the last
3009 instruction in the row. */
3010 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3012 if (first_must_follow)
3013 return false;
3014 if (last_in_row)
3016 /* Make the branch the last in the row. New instructions
3017 will be inserted at the beginning of the row or after the
3018 last must_precede instruction thus the branch is guaranteed
3019 to remain the last instruction in the row. */
3020 last_in_row->next_in_row = ps_i;
3021 ps_i->prev_in_row = last_in_row;
3022 ps_i->next_in_row = NULL;
3024 else
3025 ps->rows[row] = ps_i;
3026 return true;
3029 /* Now insert the node after INSERT_AFTER_PSI. */
3031 if (! last_must_precede)
3033 ps_i->next_in_row = ps->rows[row];
3034 ps_i->prev_in_row = NULL;
3035 if (ps_i->next_in_row)
3036 ps_i->next_in_row->prev_in_row = ps_i;
3037 ps->rows[row] = ps_i;
3039 else
3041 ps_i->next_in_row = last_must_precede->next_in_row;
3042 last_must_precede->next_in_row = ps_i;
3043 ps_i->prev_in_row = last_must_precede;
3044 if (ps_i->next_in_row)
3045 ps_i->next_in_row->prev_in_row = ps_i;
3048 return true;
3051 /* Advances the PS_INSN one column in its current row; returns false
3052 in failure and true in success. Bit N is set in MUST_FOLLOW if
3053 the node with cuid N must be come after the node pointed to by
3054 PS_I when scheduled in the same cycle. */
3055 static int
3056 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3057 sbitmap must_follow)
3059 ps_insn_ptr prev, next;
3060 int row;
3062 if (!ps || !ps_i)
3063 return false;
3065 row = SMODULO (ps_i->cycle, ps->ii);
3067 if (! ps_i->next_in_row)
3068 return false;
3070 /* Check if next_in_row is dependent on ps_i, both having same sched
3071 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3072 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3073 return false;
3075 /* Advance PS_I over its next_in_row in the doubly linked list. */
3076 prev = ps_i->prev_in_row;
3077 next = ps_i->next_in_row;
3079 if (ps_i == ps->rows[row])
3080 ps->rows[row] = next;
3082 ps_i->next_in_row = next->next_in_row;
3084 if (next->next_in_row)
3085 next->next_in_row->prev_in_row = ps_i;
3087 next->next_in_row = ps_i;
3088 ps_i->prev_in_row = next;
3090 next->prev_in_row = prev;
3091 if (prev)
3092 prev->next_in_row = next;
3094 return true;
3097 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3098 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3099 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3100 before/after (respectively) the node pointed to by PS_I when scheduled
3101 in the same cycle. */
3102 static ps_insn_ptr
3103 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3104 sbitmap must_precede, sbitmap must_follow)
3106 ps_insn_ptr ps_i;
3107 int row = SMODULO (cycle, ps->ii);
3109 if (ps->rows_length[row] >= issue_rate)
3110 return NULL;
3112 ps_i = create_ps_insn (id, cycle);
3114 /* Finds and inserts PS_I according to MUST_FOLLOW and
3115 MUST_PRECEDE. */
3116 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3118 free (ps_i);
3119 return NULL;
3122 ps->rows_length[row] += 1;
3123 return ps_i;
3126 /* Advance time one cycle. Assumes DFA is being used. */
3127 static void
3128 advance_one_cycle (void)
3130 if (targetm.sched.dfa_pre_cycle_insn)
3131 state_transition (curr_state,
3132 targetm.sched.dfa_pre_cycle_insn ());
3134 state_transition (curr_state, NULL);
3136 if (targetm.sched.dfa_post_cycle_insn)
3137 state_transition (curr_state,
3138 targetm.sched.dfa_post_cycle_insn ());
3143 /* Checks if PS has resource conflicts according to DFA, starting from
3144 FROM cycle to TO cycle; returns true if there are conflicts and false
3145 if there are no conflicts. Assumes DFA is being used. */
3146 static int
3147 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3149 int cycle;
3151 state_reset (curr_state);
3153 for (cycle = from; cycle <= to; cycle++)
3155 ps_insn_ptr crr_insn;
3156 /* Holds the remaining issue slots in the current row. */
3157 int can_issue_more = issue_rate;
3159 /* Walk through the DFA for the current row. */
3160 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3161 crr_insn;
3162 crr_insn = crr_insn->next_in_row)
3164 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3166 if (!NONDEBUG_INSN_P (insn))
3167 continue;
3169 /* Check if there is room for the current insn. */
3170 if (!can_issue_more || state_dead_lock_p (curr_state))
3171 return true;
3173 /* Update the DFA state and return with failure if the DFA found
3174 resource conflicts. */
3175 if (state_transition (curr_state, insn) >= 0)
3176 return true;
3178 if (targetm.sched.variable_issue)
3179 can_issue_more =
3180 targetm.sched.variable_issue (sched_dump, sched_verbose,
3181 insn, can_issue_more);
3182 /* A naked CLOBBER or USE generates no instruction, so don't
3183 let them consume issue slots. */
3184 else if (GET_CODE (PATTERN (insn)) != USE
3185 && GET_CODE (PATTERN (insn)) != CLOBBER)
3186 can_issue_more--;
3189 /* Advance the DFA to the next cycle. */
3190 advance_one_cycle ();
3192 return false;
3195 /* Checks if the given node causes resource conflicts when added to PS at
3196 cycle C. If not the node is added to PS and returned; otherwise zero
3197 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3198 cuid N must be come before/after (respectively) the node pointed to by
3199 PS_I when scheduled in the same cycle. */
3200 ps_insn_ptr
3201 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3202 int c, sbitmap must_precede,
3203 sbitmap must_follow)
3205 int has_conflicts = 0;
3206 ps_insn_ptr ps_i;
3208 /* First add the node to the PS, if this succeeds check for
3209 conflicts, trying different issue slots in the same row. */
3210 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3211 return NULL; /* Failed to insert the node at the given cycle. */
3213 has_conflicts = ps_has_conflicts (ps, c, c)
3214 || (ps->history > 0
3215 && ps_has_conflicts (ps,
3216 c - ps->history,
3217 c + ps->history));
3219 /* Try different issue slots to find one that the given node can be
3220 scheduled in without conflicts. */
3221 while (has_conflicts)
3223 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3224 break;
3225 has_conflicts = ps_has_conflicts (ps, c, c)
3226 || (ps->history > 0
3227 && ps_has_conflicts (ps,
3228 c - ps->history,
3229 c + ps->history));
3232 if (has_conflicts)
3234 remove_node_from_ps (ps, ps_i);
3235 return NULL;
3238 ps->min_cycle = MIN (ps->min_cycle, c);
3239 ps->max_cycle = MAX (ps->max_cycle, c);
3240 return ps_i;
3243 /* Calculate the stage count of the partial schedule PS. The calculation
3244 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3246 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3248 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3249 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3250 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3252 /* The calculation of stage count is done adding the number of stages
3253 before cycle zero and after cycle zero. */
3254 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3256 return stage_count;
3259 /* Rotate the rows of PS such that insns scheduled at time
3260 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3261 void
3262 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3264 int i, row, backward_rotates;
3265 int last_row = ps->ii - 1;
3267 if (start_cycle == 0)
3268 return;
3270 backward_rotates = SMODULO (start_cycle, ps->ii);
3272 /* Revisit later and optimize this into a single loop. */
3273 for (i = 0; i < backward_rotates; i++)
3275 ps_insn_ptr first_row = ps->rows[0];
3276 int first_row_length = ps->rows_length[0];
3278 for (row = 0; row < last_row; row++)
3280 ps->rows[row] = ps->rows[row + 1];
3281 ps->rows_length[row] = ps->rows_length[row + 1];
3284 ps->rows[last_row] = first_row;
3285 ps->rows_length[last_row] = first_row_length;
3288 ps->max_cycle -= start_cycle;
3289 ps->min_cycle -= start_cycle;
3292 #endif /* INSN_SCHEDULING */
3294 /* Run instruction scheduler. */
3295 /* Perform SMS module scheduling. */
3297 namespace {
3299 const pass_data pass_data_sms =
3301 RTL_PASS, /* type */
3302 "sms", /* name */
3303 OPTGROUP_NONE, /* optinfo_flags */
3304 TV_SMS, /* tv_id */
3305 0, /* properties_required */
3306 0, /* properties_provided */
3307 0, /* properties_destroyed */
3308 0, /* todo_flags_start */
3309 TODO_df_finish, /* todo_flags_finish */
3312 class pass_sms : public rtl_opt_pass
3314 public:
3315 pass_sms (gcc::context *ctxt)
3316 : rtl_opt_pass (pass_data_sms, ctxt)
3319 /* opt_pass methods: */
3320 virtual bool gate (function *)
3322 return (optimize > 0 && flag_modulo_sched);
3325 virtual unsigned int execute (function *);
3327 }; // class pass_sms
3329 unsigned int
3330 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3332 #ifdef INSN_SCHEDULING
3333 basic_block bb;
3335 /* Collect loop information to be used in SMS. */
3336 cfg_layout_initialize (0);
3337 sms_schedule ();
3339 /* Update the life information, because we add pseudos. */
3340 max_regno = max_reg_num ();
3342 /* Finalize layout changes. */
3343 FOR_EACH_BB_FN (bb, fun)
3344 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3345 bb->aux = bb->next_bb;
3346 free_dominance_info (CDI_DOMINATORS);
3347 cfg_layout_finalize ();
3348 #endif /* INSN_SCHEDULING */
3349 return 0;
3352 } // anon namespace
3354 rtl_opt_pass *
3355 make_pass_sms (gcc::context *ctxt)
3357 return new pass_sms (ctxt);