gcc/testsuite/ChangeLog:
[official-gcc.git] / gcc / ada / sem_res.adb
blobb45e917a308b41cab86441e29bbf85a38076200f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
121 -- N is the node for a logical operator. If the operator is predefined, and
122 -- the root type of the operands is Standard.Boolean, then a check is made
123 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
124 -- the style check for Style_Check_Boolean_And_Or.
126 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
127 -- N is either an indexed component or a selected component. This function
128 -- returns true if the prefix refers to an object that has an address
129 -- clause (the case in which we may want to issue a warning).
131 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
132 -- Determine whether E is an access type declared by an access declaration,
133 -- and not an (anonymous) allocator type.
135 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
136 -- Utility to check whether the entity for an operator is a predefined
137 -- operator, in which case the expression is left as an operator in the
138 -- tree (else it is rewritten into a call). An instance of an intrinsic
139 -- conversion operation may be given an operator name, but is not treated
140 -- like an operator. Note that an operator that is an imported back-end
141 -- builtin has convention Intrinsic, but is expected to be rewritten into
142 -- a call, so such an operator is not treated as predefined by this
143 -- predicate.
145 procedure Preanalyze_And_Resolve
146 (N : Node_Id;
147 T : Entity_Id;
148 With_Freezing : Boolean);
149 -- Subsidiary of public versions of Preanalyze_And_Resolve.
151 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
152 -- If a default expression in entry call N depends on the discriminants
153 -- of the task, it must be replaced with a reference to the discriminant
154 -- of the task being called.
156 procedure Resolve_Op_Concat_Arg
157 (N : Node_Id;
158 Arg : Node_Id;
159 Typ : Entity_Id;
160 Is_Comp : Boolean);
161 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
162 -- concatenation operator. The operand is either of the array type or of
163 -- the component type. If the operand is an aggregate, and the component
164 -- type is composite, this is ambiguous if component type has aggregates.
166 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
167 -- Does the first part of the work of Resolve_Op_Concat
169 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
170 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
171 -- has been resolved. See Resolve_Op_Concat for details.
173 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
210 function Operator_Kind
211 (Op_Name : Name_Id;
212 Is_Binary : Boolean) return Node_Kind;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235 -- Ditto, for arithmetic unary operators
237 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
238 -- If an operator node resolves to a call to a user-defined operator,
239 -- rewrite the node as a function call.
241 procedure Make_Call_Into_Operator
242 (N : Node_Id;
243 Typ : Entity_Id;
244 Op_Id : Entity_Id);
245 -- Inverse transformation: if an operator is given in functional notation,
246 -- then after resolving the node, transform into an operator node, so that
247 -- operands are resolved properly. Recall that predefined operators do not
248 -- have a full signature and special resolution rules apply.
250 procedure Rewrite_Renamed_Operator
251 (N : Node_Id;
252 Op : Entity_Id;
253 Typ : Entity_Id);
254 -- An operator can rename another, e.g. in an instantiation. In that
255 -- case, the proper operator node must be constructed and resolved.
257 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
258 -- The String_Literal_Subtype is built for all strings that are not
259 -- operands of a static concatenation operation. If the argument is not
260 -- a N_String_Literal node, then the call has no effect.
262 procedure Set_Slice_Subtype (N : Node_Id);
263 -- Build subtype of array type, with the range specified by the slice
265 procedure Simplify_Type_Conversion (N : Node_Id);
266 -- Called after N has been resolved and evaluated, but before range checks
267 -- have been applied. Currently simplifies a combination of floating-point
268 -- to integer conversion and Rounding or Truncation attribute.
270 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
271 -- A universal_fixed expression in an universal context is unambiguous if
272 -- there is only one applicable fixed point type. Determining whether there
273 -- is only one requires a search over all visible entities, and happens
274 -- only in very pathological cases (see 6115-006).
276 -------------------------
277 -- Ambiguous_Character --
278 -------------------------
280 procedure Ambiguous_Character (C : Node_Id) is
281 E : Entity_Id;
283 begin
284 if Nkind (C) = N_Character_Literal then
285 Error_Msg_N ("ambiguous character literal", C);
287 -- First the ones in Standard
289 Error_Msg_N ("\\possible interpretation: Character!", C);
290 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
292 -- Include Wide_Wide_Character in Ada 2005 mode
294 if Ada_Version >= Ada_2005 then
295 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
296 end if;
298 -- Now any other types that match
300 E := Current_Entity (C);
301 while Present (E) loop
302 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
303 E := Homonym (E);
304 end loop;
305 end if;
306 end Ambiguous_Character;
308 -------------------------
309 -- Analyze_And_Resolve --
310 -------------------------
312 procedure Analyze_And_Resolve (N : Node_Id) is
313 begin
314 Analyze (N);
315 Resolve (N);
316 end Analyze_And_Resolve;
318 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
319 begin
320 Analyze (N);
321 Resolve (N, Typ);
322 end Analyze_And_Resolve;
324 -- Versions with check(s) suppressed
326 procedure Analyze_And_Resolve
327 (N : Node_Id;
328 Typ : Entity_Id;
329 Suppress : Check_Id)
331 Scop : constant Entity_Id := Current_Scope;
333 begin
334 if Suppress = All_Checks then
335 declare
336 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
337 begin
338 Scope_Suppress.Suppress := (others => True);
339 Analyze_And_Resolve (N, Typ);
340 Scope_Suppress.Suppress := Sva;
341 end;
343 else
344 declare
345 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
346 begin
347 Scope_Suppress.Suppress (Suppress) := True;
348 Analyze_And_Resolve (N, Typ);
349 Scope_Suppress.Suppress (Suppress) := Svg;
350 end;
351 end if;
353 if Current_Scope /= Scop
354 and then Scope_Is_Transient
355 then
356 -- This can only happen if a transient scope was created for an inner
357 -- expression, which will be removed upon completion of the analysis
358 -- of an enclosing construct. The transient scope must have the
359 -- suppress status of the enclosing environment, not of this Analyze
360 -- call.
362 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
363 Scope_Suppress;
364 end if;
365 end Analyze_And_Resolve;
367 procedure Analyze_And_Resolve
368 (N : Node_Id;
369 Suppress : Check_Id)
371 Scop : constant Entity_Id := Current_Scope;
373 begin
374 if Suppress = All_Checks then
375 declare
376 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
377 begin
378 Scope_Suppress.Suppress := (others => True);
379 Analyze_And_Resolve (N);
380 Scope_Suppress.Suppress := Sva;
381 end;
383 else
384 declare
385 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
386 begin
387 Scope_Suppress.Suppress (Suppress) := True;
388 Analyze_And_Resolve (N);
389 Scope_Suppress.Suppress (Suppress) := Svg;
390 end;
391 end if;
393 if Current_Scope /= Scop and then Scope_Is_Transient then
394 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
395 Scope_Suppress;
396 end if;
397 end Analyze_And_Resolve;
399 ----------------------------
400 -- Check_Discriminant_Use --
401 ----------------------------
403 procedure Check_Discriminant_Use (N : Node_Id) is
404 PN : constant Node_Id := Parent (N);
405 Disc : constant Entity_Id := Entity (N);
406 P : Node_Id;
407 D : Node_Id;
409 begin
410 -- Any use in a spec-expression is legal
412 if In_Spec_Expression then
413 null;
415 elsif Nkind (PN) = N_Range then
417 -- Discriminant cannot be used to constrain a scalar type
419 P := Parent (PN);
421 if Nkind (P) = N_Range_Constraint
422 and then Nkind (Parent (P)) = N_Subtype_Indication
423 and then Nkind (Parent (Parent (P))) = N_Component_Definition
424 then
425 Error_Msg_N ("discriminant cannot constrain scalar type", N);
427 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
429 -- The following check catches the unusual case where a
430 -- discriminant appears within an index constraint that is part
431 -- of a larger expression within a constraint on a component,
432 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
433 -- check case of record components, and note that a similar check
434 -- should also apply in the case of discriminant constraints
435 -- below. ???
437 -- Note that the check for N_Subtype_Declaration below is to
438 -- detect the valid use of discriminants in the constraints of a
439 -- subtype declaration when this subtype declaration appears
440 -- inside the scope of a record type (which is syntactically
441 -- illegal, but which may be created as part of derived type
442 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
443 -- for more info.
445 if Ekind (Current_Scope) = E_Record_Type
446 and then Scope (Disc) = Current_Scope
447 and then not
448 (Nkind (Parent (P)) = N_Subtype_Indication
449 and then
450 Nkind_In (Parent (Parent (P)), N_Component_Definition,
451 N_Subtype_Declaration)
452 and then Paren_Count (N) = 0)
453 then
454 Error_Msg_N
455 ("discriminant must appear alone in component constraint", N);
456 return;
457 end if;
459 -- Detect a common error:
461 -- type R (D : Positive := 100) is record
462 -- Name : String (1 .. D);
463 -- end record;
465 -- The default value causes an object of type R to be allocated
466 -- with room for Positive'Last characters. The RM does not mandate
467 -- the allocation of the maximum size, but that is what GNAT does
468 -- so we should warn the programmer that there is a problem.
470 Check_Large : declare
471 SI : Node_Id;
472 T : Entity_Id;
473 TB : Node_Id;
474 CB : Entity_Id;
476 function Large_Storage_Type (T : Entity_Id) return Boolean;
477 -- Return True if type T has a large enough range that any
478 -- array whose index type covered the whole range of the type
479 -- would likely raise Storage_Error.
481 ------------------------
482 -- Large_Storage_Type --
483 ------------------------
485 function Large_Storage_Type (T : Entity_Id) return Boolean is
486 begin
487 -- The type is considered large if its bounds are known at
488 -- compile time and if it requires at least as many bits as
489 -- a Positive to store the possible values.
491 return Compile_Time_Known_Value (Type_Low_Bound (T))
492 and then Compile_Time_Known_Value (Type_High_Bound (T))
493 and then
494 Minimum_Size (T, Biased => True) >=
495 RM_Size (Standard_Positive);
496 end Large_Storage_Type;
498 -- Start of processing for Check_Large
500 begin
501 -- Check that the Disc has a large range
503 if not Large_Storage_Type (Etype (Disc)) then
504 goto No_Danger;
505 end if;
507 -- If the enclosing type is limited, we allocate only the
508 -- default value, not the maximum, and there is no need for
509 -- a warning.
511 if Is_Limited_Type (Scope (Disc)) then
512 goto No_Danger;
513 end if;
515 -- Check that it is the high bound
517 if N /= High_Bound (PN)
518 or else No (Discriminant_Default_Value (Disc))
519 then
520 goto No_Danger;
521 end if;
523 -- Check the array allows a large range at this bound. First
524 -- find the array
526 SI := Parent (P);
528 if Nkind (SI) /= N_Subtype_Indication then
529 goto No_Danger;
530 end if;
532 T := Entity (Subtype_Mark (SI));
534 if not Is_Array_Type (T) then
535 goto No_Danger;
536 end if;
538 -- Next, find the dimension
540 TB := First_Index (T);
541 CB := First (Constraints (P));
542 while True
543 and then Present (TB)
544 and then Present (CB)
545 and then CB /= PN
546 loop
547 Next_Index (TB);
548 Next (CB);
549 end loop;
551 if CB /= PN then
552 goto No_Danger;
553 end if;
555 -- Now, check the dimension has a large range
557 if not Large_Storage_Type (Etype (TB)) then
558 goto No_Danger;
559 end if;
561 -- Warn about the danger
563 Error_Msg_N
564 ("??creation of & object may raise Storage_Error!",
565 Scope (Disc));
567 <<No_Danger>>
568 null;
570 end Check_Large;
571 end if;
573 -- Legal case is in index or discriminant constraint
575 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
576 N_Discriminant_Association)
577 then
578 if Paren_Count (N) > 0 then
579 Error_Msg_N
580 ("discriminant in constraint must appear alone", N);
582 elsif Nkind (N) = N_Expanded_Name
583 and then Comes_From_Source (N)
584 then
585 Error_Msg_N
586 ("discriminant must appear alone as a direct name", N);
587 end if;
589 return;
591 -- Otherwise, context is an expression. It should not be within (i.e. a
592 -- subexpression of) a constraint for a component.
594 else
595 D := PN;
596 P := Parent (PN);
597 while not Nkind_In (P, N_Component_Declaration,
598 N_Subtype_Indication,
599 N_Entry_Declaration)
600 loop
601 D := P;
602 P := Parent (P);
603 exit when No (P);
604 end loop;
606 -- If the discriminant is used in an expression that is a bound of a
607 -- scalar type, an Itype is created and the bounds are attached to
608 -- its range, not to the original subtype indication. Such use is of
609 -- course a double fault.
611 if (Nkind (P) = N_Subtype_Indication
612 and then Nkind_In (Parent (P), N_Component_Definition,
613 N_Derived_Type_Definition)
614 and then D = Constraint (P))
616 -- The constraint itself may be given by a subtype indication,
617 -- rather than by a more common discrete range.
619 or else (Nkind (P) = N_Subtype_Indication
620 and then
621 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
622 or else Nkind (P) = N_Entry_Declaration
623 or else Nkind (D) = N_Defining_Identifier
624 then
625 Error_Msg_N
626 ("discriminant in constraint must appear alone", N);
627 end if;
628 end if;
629 end Check_Discriminant_Use;
631 --------------------------------
632 -- Check_For_Visible_Operator --
633 --------------------------------
635 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
636 begin
637 if Is_Invisible_Operator (N, T) then
638 Error_Msg_NE -- CODEFIX
639 ("operator for} is not directly visible!", N, First_Subtype (T));
640 Error_Msg_N -- CODEFIX
641 ("use clause would make operation legal!", N);
642 end if;
643 end Check_For_Visible_Operator;
645 ----------------------------------
646 -- Check_Fully_Declared_Prefix --
647 ----------------------------------
649 procedure Check_Fully_Declared_Prefix
650 (Typ : Entity_Id;
651 Pref : Node_Id)
653 begin
654 -- Check that the designated type of the prefix of a dereference is
655 -- not an incomplete type. This cannot be done unconditionally, because
656 -- dereferences of private types are legal in default expressions. This
657 -- case is taken care of in Check_Fully_Declared, called below. There
658 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
660 -- This consideration also applies to similar checks for allocators,
661 -- qualified expressions, and type conversions.
663 -- An additional exception concerns other per-object expressions that
664 -- are not directly related to component declarations, in particular
665 -- representation pragmas for tasks. These will be per-object
666 -- expressions if they depend on discriminants or some global entity.
667 -- If the task has access discriminants, the designated type may be
668 -- incomplete at the point the expression is resolved. This resolution
669 -- takes place within the body of the initialization procedure, where
670 -- the discriminant is replaced by its discriminal.
672 if Is_Entity_Name (Pref)
673 and then Ekind (Entity (Pref)) = E_In_Parameter
674 then
675 null;
677 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
678 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
679 -- Analyze_Object_Renaming, and Freeze_Entity.
681 elsif Ada_Version >= Ada_2005
682 and then Is_Entity_Name (Pref)
683 and then Is_Access_Type (Etype (Pref))
684 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
685 E_Incomplete_Type
686 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
687 then
688 null;
689 else
690 Check_Fully_Declared (Typ, Parent (Pref));
691 end if;
692 end Check_Fully_Declared_Prefix;
694 ------------------------------
695 -- Check_Infinite_Recursion --
696 ------------------------------
698 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
699 P : Node_Id;
700 C : Node_Id;
702 function Same_Argument_List return Boolean;
703 -- Check whether list of actuals is identical to list of formals of
704 -- called function (which is also the enclosing scope).
706 ------------------------
707 -- Same_Argument_List --
708 ------------------------
710 function Same_Argument_List return Boolean is
711 A : Node_Id;
712 F : Entity_Id;
713 Subp : Entity_Id;
715 begin
716 if not Is_Entity_Name (Name (N)) then
717 return False;
718 else
719 Subp := Entity (Name (N));
720 end if;
722 F := First_Formal (Subp);
723 A := First_Actual (N);
724 while Present (F) and then Present (A) loop
725 if not Is_Entity_Name (A) or else Entity (A) /= F then
726 return False;
727 end if;
729 Next_Actual (A);
730 Next_Formal (F);
731 end loop;
733 return True;
734 end Same_Argument_List;
736 -- Start of processing for Check_Infinite_Recursion
738 begin
739 -- Special case, if this is a procedure call and is a call to the
740 -- current procedure with the same argument list, then this is for
741 -- sure an infinite recursion and we insert a call to raise SE.
743 if Is_List_Member (N)
744 and then List_Length (List_Containing (N)) = 1
745 and then Same_Argument_List
746 then
747 declare
748 P : constant Node_Id := Parent (N);
749 begin
750 if Nkind (P) = N_Handled_Sequence_Of_Statements
751 and then Nkind (Parent (P)) = N_Subprogram_Body
752 and then Is_Empty_List (Declarations (Parent (P)))
753 then
754 Error_Msg_Warn := SPARK_Mode /= On;
755 Error_Msg_N ("!infinite recursion<<", N);
756 Error_Msg_N ("\!Storage_Error [<<", N);
757 Insert_Action (N,
758 Make_Raise_Storage_Error (Sloc (N),
759 Reason => SE_Infinite_Recursion));
760 return True;
761 end if;
762 end;
763 end if;
765 -- If not that special case, search up tree, quitting if we reach a
766 -- construct (e.g. a conditional) that tells us that this is not a
767 -- case for an infinite recursion warning.
769 C := N;
770 loop
771 P := Parent (C);
773 -- If no parent, then we were not inside a subprogram, this can for
774 -- example happen when processing certain pragmas in a spec. Just
775 -- return False in this case.
777 if No (P) then
778 return False;
779 end if;
781 -- Done if we get to subprogram body, this is definitely an infinite
782 -- recursion case if we did not find anything to stop us.
784 exit when Nkind (P) = N_Subprogram_Body;
786 -- If appearing in conditional, result is false
788 if Nkind_In (P, N_Or_Else,
789 N_And_Then,
790 N_Case_Expression,
791 N_Case_Statement,
792 N_If_Expression,
793 N_If_Statement)
794 then
795 return False;
797 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
798 and then C /= First (Statements (P))
799 then
800 -- If the call is the expression of a return statement and the
801 -- actuals are identical to the formals, it's worth a warning.
802 -- However, we skip this if there is an immediately preceding
803 -- raise statement, since the call is never executed.
805 -- Furthermore, this corresponds to a common idiom:
807 -- function F (L : Thing) return Boolean is
808 -- begin
809 -- raise Program_Error;
810 -- return F (L);
811 -- end F;
813 -- for generating a stub function
815 if Nkind (Parent (N)) = N_Simple_Return_Statement
816 and then Same_Argument_List
817 then
818 exit when not Is_List_Member (Parent (N));
820 -- OK, return statement is in a statement list, look for raise
822 declare
823 Nod : Node_Id;
825 begin
826 -- Skip past N_Freeze_Entity nodes generated by expansion
828 Nod := Prev (Parent (N));
829 while Present (Nod)
830 and then Nkind (Nod) = N_Freeze_Entity
831 loop
832 Prev (Nod);
833 end loop;
835 -- If no raise statement, give warning. We look at the
836 -- original node, because in the case of "raise ... with
837 -- ...", the node has been transformed into a call.
839 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
840 and then
841 (Nkind (Nod) not in N_Raise_xxx_Error
842 or else Present (Condition (Nod)));
843 end;
844 end if;
846 return False;
848 else
849 C := P;
850 end if;
851 end loop;
853 Error_Msg_Warn := SPARK_Mode /= On;
854 Error_Msg_N ("!possible infinite recursion<<", N);
855 Error_Msg_N ("\!??Storage_Error ]<<", N);
857 return True;
858 end Check_Infinite_Recursion;
860 ---------------------------------------
861 -- Check_No_Direct_Boolean_Operators --
862 ---------------------------------------
864 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
865 begin
866 if Scope (Entity (N)) = Standard_Standard
867 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
868 then
869 -- Restriction only applies to original source code
871 if Comes_From_Source (N) then
872 Check_Restriction (No_Direct_Boolean_Operators, N);
873 end if;
874 end if;
876 -- Do style check (but skip if in instance, error is on template)
878 if Style_Check then
879 if not In_Instance then
880 Check_Boolean_Operator (N);
881 end if;
882 end if;
883 end Check_No_Direct_Boolean_Operators;
885 ------------------------------
886 -- Check_Parameterless_Call --
887 ------------------------------
889 procedure Check_Parameterless_Call (N : Node_Id) is
890 Nam : Node_Id;
892 function Prefix_Is_Access_Subp return Boolean;
893 -- If the prefix is of an access_to_subprogram type, the node must be
894 -- rewritten as a call. Ditto if the prefix is overloaded and all its
895 -- interpretations are access to subprograms.
897 ---------------------------
898 -- Prefix_Is_Access_Subp --
899 ---------------------------
901 function Prefix_Is_Access_Subp return Boolean is
902 I : Interp_Index;
903 It : Interp;
905 begin
906 -- If the context is an attribute reference that can apply to
907 -- functions, this is never a parameterless call (RM 4.1.4(6)).
909 if Nkind (Parent (N)) = N_Attribute_Reference
910 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
911 Name_Code_Address,
912 Name_Access)
913 then
914 return False;
915 end if;
917 if not Is_Overloaded (N) then
918 return
919 Ekind (Etype (N)) = E_Subprogram_Type
920 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
921 else
922 Get_First_Interp (N, I, It);
923 while Present (It.Typ) loop
924 if Ekind (It.Typ) /= E_Subprogram_Type
925 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
926 then
927 return False;
928 end if;
930 Get_Next_Interp (I, It);
931 end loop;
933 return True;
934 end if;
935 end Prefix_Is_Access_Subp;
937 -- Start of processing for Check_Parameterless_Call
939 begin
940 -- Defend against junk stuff if errors already detected
942 if Total_Errors_Detected /= 0 then
943 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
944 return;
945 elsif Nkind (N) in N_Has_Chars
946 and then not Is_Valid_Name (Chars (N))
947 then
948 return;
949 end if;
951 Require_Entity (N);
952 end if;
954 -- If the context expects a value, and the name is a procedure, this is
955 -- most likely a missing 'Access. Don't try to resolve the parameterless
956 -- call, error will be caught when the outer call is analyzed.
958 if Is_Entity_Name (N)
959 and then Ekind (Entity (N)) = E_Procedure
960 and then not Is_Overloaded (N)
961 and then
962 Nkind_In (Parent (N), N_Parameter_Association,
963 N_Function_Call,
964 N_Procedure_Call_Statement)
965 then
966 return;
967 end if;
969 -- Rewrite as call if overloadable entity that is (or could be, in the
970 -- overloaded case) a function call. If we know for sure that the entity
971 -- is an enumeration literal, we do not rewrite it.
973 -- If the entity is the name of an operator, it cannot be a call because
974 -- operators cannot have default parameters. In this case, this must be
975 -- a string whose contents coincide with an operator name. Set the kind
976 -- of the node appropriately.
978 if (Is_Entity_Name (N)
979 and then Nkind (N) /= N_Operator_Symbol
980 and then Is_Overloadable (Entity (N))
981 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
982 or else Is_Overloaded (N)))
984 -- Rewrite as call if it is an explicit dereference of an expression of
985 -- a subprogram access type, and the subprogram type is not that of a
986 -- procedure or entry.
988 or else
989 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
991 -- Rewrite as call if it is a selected component which is a function,
992 -- this is the case of a call to a protected function (which may be
993 -- overloaded with other protected operations).
995 or else
996 (Nkind (N) = N_Selected_Component
997 and then (Ekind (Entity (Selector_Name (N))) = E_Function
998 or else
999 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1000 E_Procedure)
1001 and then Is_Overloaded (Selector_Name (N)))))
1003 -- If one of the above three conditions is met, rewrite as call. Apply
1004 -- the rewriting only once.
1006 then
1007 if Nkind (Parent (N)) /= N_Function_Call
1008 or else N /= Name (Parent (N))
1009 then
1011 -- This may be a prefixed call that was not fully analyzed, e.g.
1012 -- an actual in an instance.
1014 if Ada_Version >= Ada_2005
1015 and then Nkind (N) = N_Selected_Component
1016 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1017 then
1018 Analyze_Selected_Component (N);
1020 if Nkind (N) /= N_Selected_Component then
1021 return;
1022 end if;
1023 end if;
1025 -- The node is the name of the parameterless call. Preserve its
1026 -- descendants, which may be complex expressions.
1028 Nam := Relocate_Node (N);
1030 -- If overloaded, overload set belongs to new copy
1032 Save_Interps (N, Nam);
1034 -- Change node to parameterless function call (note that the
1035 -- Parameter_Associations associations field is left set to Empty,
1036 -- its normal default value since there are no parameters)
1038 Change_Node (N, N_Function_Call);
1039 Set_Name (N, Nam);
1040 Set_Sloc (N, Sloc (Nam));
1041 Analyze_Call (N);
1042 end if;
1044 elsif Nkind (N) = N_Parameter_Association then
1045 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1047 elsif Nkind (N) = N_Operator_Symbol then
1048 Change_Operator_Symbol_To_String_Literal (N);
1049 Set_Is_Overloaded (N, False);
1050 Set_Etype (N, Any_String);
1051 end if;
1052 end Check_Parameterless_Call;
1054 --------------------------------
1055 -- Is_Atomic_Ref_With_Address --
1056 --------------------------------
1058 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1059 Pref : constant Node_Id := Prefix (N);
1061 begin
1062 if not Is_Entity_Name (Pref) then
1063 return False;
1065 else
1066 declare
1067 Pent : constant Entity_Id := Entity (Pref);
1068 Ptyp : constant Entity_Id := Etype (Pent);
1069 begin
1070 return not Is_Access_Type (Ptyp)
1071 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1072 and then Present (Address_Clause (Pent));
1073 end;
1074 end if;
1075 end Is_Atomic_Ref_With_Address;
1077 -----------------------------
1078 -- Is_Definite_Access_Type --
1079 -----------------------------
1081 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1082 Btyp : constant Entity_Id := Base_Type (E);
1083 begin
1084 return Ekind (Btyp) = E_Access_Type
1085 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1086 and then Comes_From_Source (Btyp));
1087 end Is_Definite_Access_Type;
1089 ----------------------
1090 -- Is_Predefined_Op --
1091 ----------------------
1093 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1094 begin
1095 -- Predefined operators are intrinsic subprograms
1097 if not Is_Intrinsic_Subprogram (Nam) then
1098 return False;
1099 end if;
1101 -- A call to a back-end builtin is never a predefined operator
1103 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1104 return False;
1105 end if;
1107 return not Is_Generic_Instance (Nam)
1108 and then Chars (Nam) in Any_Operator_Name
1109 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1110 end Is_Predefined_Op;
1112 -----------------------------
1113 -- Make_Call_Into_Operator --
1114 -----------------------------
1116 procedure Make_Call_Into_Operator
1117 (N : Node_Id;
1118 Typ : Entity_Id;
1119 Op_Id : Entity_Id)
1121 Op_Name : constant Name_Id := Chars (Op_Id);
1122 Act1 : Node_Id := First_Actual (N);
1123 Act2 : Node_Id := Next_Actual (Act1);
1124 Error : Boolean := False;
1125 Func : constant Entity_Id := Entity (Name (N));
1126 Is_Binary : constant Boolean := Present (Act2);
1127 Op_Node : Node_Id;
1128 Opnd_Type : Entity_Id := Empty;
1129 Orig_Type : Entity_Id := Empty;
1130 Pack : Entity_Id;
1132 type Kind_Test is access function (E : Entity_Id) return Boolean;
1134 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1135 -- If the operand is not universal, and the operator is given by an
1136 -- expanded name, verify that the operand has an interpretation with a
1137 -- type defined in the given scope of the operator.
1139 function Type_In_P (Test : Kind_Test) return Entity_Id;
1140 -- Find a type of the given class in package Pack that contains the
1141 -- operator.
1143 ---------------------------
1144 -- Operand_Type_In_Scope --
1145 ---------------------------
1147 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1148 Nod : constant Node_Id := Right_Opnd (Op_Node);
1149 I : Interp_Index;
1150 It : Interp;
1152 begin
1153 if not Is_Overloaded (Nod) then
1154 return Scope (Base_Type (Etype (Nod))) = S;
1156 else
1157 Get_First_Interp (Nod, I, It);
1158 while Present (It.Typ) loop
1159 if Scope (Base_Type (It.Typ)) = S then
1160 return True;
1161 end if;
1163 Get_Next_Interp (I, It);
1164 end loop;
1166 return False;
1167 end if;
1168 end Operand_Type_In_Scope;
1170 ---------------
1171 -- Type_In_P --
1172 ---------------
1174 function Type_In_P (Test : Kind_Test) return Entity_Id is
1175 E : Entity_Id;
1177 function In_Decl return Boolean;
1178 -- Verify that node is not part of the type declaration for the
1179 -- candidate type, which would otherwise be invisible.
1181 -------------
1182 -- In_Decl --
1183 -------------
1185 function In_Decl return Boolean is
1186 Decl_Node : constant Node_Id := Parent (E);
1187 N2 : Node_Id;
1189 begin
1190 N2 := N;
1192 if Etype (E) = Any_Type then
1193 return True;
1195 elsif No (Decl_Node) then
1196 return False;
1198 else
1199 while Present (N2)
1200 and then Nkind (N2) /= N_Compilation_Unit
1201 loop
1202 if N2 = Decl_Node then
1203 return True;
1204 else
1205 N2 := Parent (N2);
1206 end if;
1207 end loop;
1209 return False;
1210 end if;
1211 end In_Decl;
1213 -- Start of processing for Type_In_P
1215 begin
1216 -- If the context type is declared in the prefix package, this is the
1217 -- desired base type.
1219 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1220 return Base_Type (Typ);
1222 else
1223 E := First_Entity (Pack);
1224 while Present (E) loop
1225 if Test (E) and then not In_Decl then
1226 return E;
1227 end if;
1229 Next_Entity (E);
1230 end loop;
1232 return Empty;
1233 end if;
1234 end Type_In_P;
1236 -- Start of processing for Make_Call_Into_Operator
1238 begin
1239 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1241 -- Ensure that the corresponding operator has the same parent as the
1242 -- original call. This guarantees that parent traversals performed by
1243 -- the ABE mechanism succeed.
1245 Set_Parent (Op_Node, Parent (N));
1247 -- Binary operator
1249 if Is_Binary then
1250 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1251 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1252 Save_Interps (Act1, Left_Opnd (Op_Node));
1253 Save_Interps (Act2, Right_Opnd (Op_Node));
1254 Act1 := Left_Opnd (Op_Node);
1255 Act2 := Right_Opnd (Op_Node);
1257 -- Unary operator
1259 else
1260 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1261 Save_Interps (Act1, Right_Opnd (Op_Node));
1262 Act1 := Right_Opnd (Op_Node);
1263 end if;
1265 -- If the operator is denoted by an expanded name, and the prefix is
1266 -- not Standard, but the operator is a predefined one whose scope is
1267 -- Standard, then this is an implicit_operator, inserted as an
1268 -- interpretation by the procedure of the same name. This procedure
1269 -- overestimates the presence of implicit operators, because it does
1270 -- not examine the type of the operands. Verify now that the operand
1271 -- type appears in the given scope. If right operand is universal,
1272 -- check the other operand. In the case of concatenation, either
1273 -- argument can be the component type, so check the type of the result.
1274 -- If both arguments are literals, look for a type of the right kind
1275 -- defined in the given scope. This elaborate nonsense is brought to
1276 -- you courtesy of b33302a. The type itself must be frozen, so we must
1277 -- find the type of the proper class in the given scope.
1279 -- A final wrinkle is the multiplication operator for fixed point types,
1280 -- which is defined in Standard only, and not in the scope of the
1281 -- fixed point type itself.
1283 if Nkind (Name (N)) = N_Expanded_Name then
1284 Pack := Entity (Prefix (Name (N)));
1286 -- If this is a package renaming, get renamed entity, which will be
1287 -- the scope of the operands if operaton is type-correct.
1289 if Present (Renamed_Entity (Pack)) then
1290 Pack := Renamed_Entity (Pack);
1291 end if;
1293 -- If the entity being called is defined in the given package, it is
1294 -- a renaming of a predefined operator, and known to be legal.
1296 if Scope (Entity (Name (N))) = Pack
1297 and then Pack /= Standard_Standard
1298 then
1299 null;
1301 -- Visibility does not need to be checked in an instance: if the
1302 -- operator was not visible in the generic it has been diagnosed
1303 -- already, else there is an implicit copy of it in the instance.
1305 elsif In_Instance then
1306 null;
1308 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1309 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1310 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1311 then
1312 if Pack /= Standard_Standard then
1313 Error := True;
1314 end if;
1316 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1317 -- available.
1319 elsif Ada_Version >= Ada_2005
1320 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1321 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1322 then
1323 null;
1325 else
1326 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1328 if Op_Name = Name_Op_Concat then
1329 Opnd_Type := Base_Type (Typ);
1331 elsif (Scope (Opnd_Type) = Standard_Standard
1332 and then Is_Binary)
1333 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1334 and then Is_Binary
1335 and then not Comes_From_Source (Opnd_Type))
1336 then
1337 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1338 end if;
1340 if Scope (Opnd_Type) = Standard_Standard then
1342 -- Verify that the scope contains a type that corresponds to
1343 -- the given literal. Optimize the case where Pack is Standard.
1345 if Pack /= Standard_Standard then
1346 if Opnd_Type = Universal_Integer then
1347 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1349 elsif Opnd_Type = Universal_Real then
1350 Orig_Type := Type_In_P (Is_Real_Type'Access);
1352 elsif Opnd_Type = Any_String then
1353 Orig_Type := Type_In_P (Is_String_Type'Access);
1355 elsif Opnd_Type = Any_Access then
1356 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1358 elsif Opnd_Type = Any_Composite then
1359 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1361 if Present (Orig_Type) then
1362 if Has_Private_Component (Orig_Type) then
1363 Orig_Type := Empty;
1364 else
1365 Set_Etype (Act1, Orig_Type);
1367 if Is_Binary then
1368 Set_Etype (Act2, Orig_Type);
1369 end if;
1370 end if;
1371 end if;
1373 else
1374 Orig_Type := Empty;
1375 end if;
1377 Error := No (Orig_Type);
1378 end if;
1380 elsif Ekind (Opnd_Type) = E_Allocator_Type
1381 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1382 then
1383 Error := True;
1385 -- If the type is defined elsewhere, and the operator is not
1386 -- defined in the given scope (by a renaming declaration, e.g.)
1387 -- then this is an error as well. If an extension of System is
1388 -- present, and the type may be defined there, Pack must be
1389 -- System itself.
1391 elsif Scope (Opnd_Type) /= Pack
1392 and then Scope (Op_Id) /= Pack
1393 and then (No (System_Aux_Id)
1394 or else Scope (Opnd_Type) /= System_Aux_Id
1395 or else Pack /= Scope (System_Aux_Id))
1396 then
1397 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1398 Error := True;
1399 else
1400 Error := not Operand_Type_In_Scope (Pack);
1401 end if;
1403 elsif Pack = Standard_Standard
1404 and then not Operand_Type_In_Scope (Standard_Standard)
1405 then
1406 Error := True;
1407 end if;
1408 end if;
1410 if Error then
1411 Error_Msg_Node_2 := Pack;
1412 Error_Msg_NE
1413 ("& not declared in&", N, Selector_Name (Name (N)));
1414 Set_Etype (N, Any_Type);
1415 return;
1417 -- Detect a mismatch between the context type and the result type
1418 -- in the named package, which is otherwise not detected if the
1419 -- operands are universal. Check is only needed if source entity is
1420 -- an operator, not a function that renames an operator.
1422 elsif Nkind (Parent (N)) /= N_Type_Conversion
1423 and then Ekind (Entity (Name (N))) = E_Operator
1424 and then Is_Numeric_Type (Typ)
1425 and then not Is_Universal_Numeric_Type (Typ)
1426 and then Scope (Base_Type (Typ)) /= Pack
1427 and then not In_Instance
1428 then
1429 if Is_Fixed_Point_Type (Typ)
1430 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1431 then
1432 -- Already checked above
1434 null;
1436 -- Operator may be defined in an extension of System
1438 elsif Present (System_Aux_Id)
1439 and then Present (Opnd_Type)
1440 and then Scope (Opnd_Type) = System_Aux_Id
1441 then
1442 null;
1444 else
1445 -- Could we use Wrong_Type here??? (this would require setting
1446 -- Etype (N) to the actual type found where Typ was expected).
1448 Error_Msg_NE ("expect }", N, Typ);
1449 end if;
1450 end if;
1451 end if;
1453 Set_Chars (Op_Node, Op_Name);
1455 if not Is_Private_Type (Etype (N)) then
1456 Set_Etype (Op_Node, Base_Type (Etype (N)));
1457 else
1458 Set_Etype (Op_Node, Etype (N));
1459 end if;
1461 -- If this is a call to a function that renames a predefined equality,
1462 -- the renaming declaration provides a type that must be used to
1463 -- resolve the operands. This must be done now because resolution of
1464 -- the equality node will not resolve any remaining ambiguity, and it
1465 -- assumes that the first operand is not overloaded.
1467 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1468 and then Ekind (Func) = E_Function
1469 and then Is_Overloaded (Act1)
1470 then
1471 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1472 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1473 end if;
1475 Set_Entity (Op_Node, Op_Id);
1476 Generate_Reference (Op_Id, N, ' ');
1478 -- Do rewrite setting Comes_From_Source on the result if the original
1479 -- call came from source. Although it is not strictly the case that the
1480 -- operator as such comes from the source, logically it corresponds
1481 -- exactly to the function call in the source, so it should be marked
1482 -- this way (e.g. to make sure that validity checks work fine).
1484 declare
1485 CS : constant Boolean := Comes_From_Source (N);
1486 begin
1487 Rewrite (N, Op_Node);
1488 Set_Comes_From_Source (N, CS);
1489 end;
1491 -- If this is an arithmetic operator and the result type is private,
1492 -- the operands and the result must be wrapped in conversion to
1493 -- expose the underlying numeric type and expand the proper checks,
1494 -- e.g. on division.
1496 if Is_Private_Type (Typ) then
1497 case Nkind (N) is
1498 when N_Op_Add
1499 | N_Op_Divide
1500 | N_Op_Expon
1501 | N_Op_Mod
1502 | N_Op_Multiply
1503 | N_Op_Rem
1504 | N_Op_Subtract
1506 Resolve_Intrinsic_Operator (N, Typ);
1508 when N_Op_Abs
1509 | N_Op_Minus
1510 | N_Op_Plus
1512 Resolve_Intrinsic_Unary_Operator (N, Typ);
1514 when others =>
1515 Resolve (N, Typ);
1516 end case;
1517 else
1518 Resolve (N, Typ);
1519 end if;
1521 -- If in ASIS_Mode, propagate operand types to original actuals of
1522 -- function call, which would otherwise not be fully resolved. If
1523 -- the call has already been constant-folded, nothing to do. We
1524 -- relocate the operand nodes rather than copy them, to preserve
1525 -- original_node pointers, given that the operands themselves may
1526 -- have been rewritten. If the call was itself a rewriting of an
1527 -- operator node, nothing to do.
1529 if ASIS_Mode
1530 and then Nkind (N) in N_Op
1531 and then Nkind (Original_Node (N)) = N_Function_Call
1532 then
1533 declare
1534 L : Node_Id;
1535 R : constant Node_Id := Right_Opnd (N);
1537 Old_First : constant Node_Id :=
1538 First (Parameter_Associations (Original_Node (N)));
1539 Old_Sec : Node_Id;
1541 begin
1542 if Is_Binary then
1543 L := Left_Opnd (N);
1544 Old_Sec := Next (Old_First);
1546 -- If the original call has named associations, replace the
1547 -- explicit actual parameter in the association with the proper
1548 -- resolved operand.
1550 if Nkind (Old_First) = N_Parameter_Association then
1551 if Chars (Selector_Name (Old_First)) =
1552 Chars (First_Entity (Op_Id))
1553 then
1554 Rewrite (Explicit_Actual_Parameter (Old_First),
1555 Relocate_Node (L));
1556 else
1557 Rewrite (Explicit_Actual_Parameter (Old_First),
1558 Relocate_Node (R));
1559 end if;
1561 else
1562 Rewrite (Old_First, Relocate_Node (L));
1563 end if;
1565 if Nkind (Old_Sec) = N_Parameter_Association then
1566 if Chars (Selector_Name (Old_Sec)) =
1567 Chars (First_Entity (Op_Id))
1568 then
1569 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1570 Relocate_Node (L));
1571 else
1572 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1573 Relocate_Node (R));
1574 end if;
1576 else
1577 Rewrite (Old_Sec, Relocate_Node (R));
1578 end if;
1580 else
1581 if Nkind (Old_First) = N_Parameter_Association then
1582 Rewrite (Explicit_Actual_Parameter (Old_First),
1583 Relocate_Node (R));
1584 else
1585 Rewrite (Old_First, Relocate_Node (R));
1586 end if;
1587 end if;
1588 end;
1590 Set_Parent (Original_Node (N), Parent (N));
1591 end if;
1592 end Make_Call_Into_Operator;
1594 -------------------
1595 -- Operator_Kind --
1596 -------------------
1598 function Operator_Kind
1599 (Op_Name : Name_Id;
1600 Is_Binary : Boolean) return Node_Kind
1602 Kind : Node_Kind;
1604 begin
1605 -- Use CASE statement or array???
1607 if Is_Binary then
1608 if Op_Name = Name_Op_And then
1609 Kind := N_Op_And;
1610 elsif Op_Name = Name_Op_Or then
1611 Kind := N_Op_Or;
1612 elsif Op_Name = Name_Op_Xor then
1613 Kind := N_Op_Xor;
1614 elsif Op_Name = Name_Op_Eq then
1615 Kind := N_Op_Eq;
1616 elsif Op_Name = Name_Op_Ne then
1617 Kind := N_Op_Ne;
1618 elsif Op_Name = Name_Op_Lt then
1619 Kind := N_Op_Lt;
1620 elsif Op_Name = Name_Op_Le then
1621 Kind := N_Op_Le;
1622 elsif Op_Name = Name_Op_Gt then
1623 Kind := N_Op_Gt;
1624 elsif Op_Name = Name_Op_Ge then
1625 Kind := N_Op_Ge;
1626 elsif Op_Name = Name_Op_Add then
1627 Kind := N_Op_Add;
1628 elsif Op_Name = Name_Op_Subtract then
1629 Kind := N_Op_Subtract;
1630 elsif Op_Name = Name_Op_Concat then
1631 Kind := N_Op_Concat;
1632 elsif Op_Name = Name_Op_Multiply then
1633 Kind := N_Op_Multiply;
1634 elsif Op_Name = Name_Op_Divide then
1635 Kind := N_Op_Divide;
1636 elsif Op_Name = Name_Op_Mod then
1637 Kind := N_Op_Mod;
1638 elsif Op_Name = Name_Op_Rem then
1639 Kind := N_Op_Rem;
1640 elsif Op_Name = Name_Op_Expon then
1641 Kind := N_Op_Expon;
1642 else
1643 raise Program_Error;
1644 end if;
1646 -- Unary operators
1648 else
1649 if Op_Name = Name_Op_Add then
1650 Kind := N_Op_Plus;
1651 elsif Op_Name = Name_Op_Subtract then
1652 Kind := N_Op_Minus;
1653 elsif Op_Name = Name_Op_Abs then
1654 Kind := N_Op_Abs;
1655 elsif Op_Name = Name_Op_Not then
1656 Kind := N_Op_Not;
1657 else
1658 raise Program_Error;
1659 end if;
1660 end if;
1662 return Kind;
1663 end Operator_Kind;
1665 ----------------------------
1666 -- Preanalyze_And_Resolve --
1667 ----------------------------
1669 procedure Preanalyze_And_Resolve
1670 (N : Node_Id;
1671 T : Entity_Id;
1672 With_Freezing : Boolean)
1674 Save_Full_Analysis : constant Boolean := Full_Analysis;
1675 Save_Must_Not_Freeze : constant Boolean := Must_Not_Freeze (N);
1677 begin
1678 pragma Assert (Nkind (N) in N_Subexpr);
1680 if not With_Freezing then
1681 Set_Must_Not_Freeze (N);
1682 end if;
1684 Full_Analysis := False;
1685 Expander_Mode_Save_And_Set (False);
1687 -- Normally, we suppress all checks for this preanalysis. There is no
1688 -- point in processing them now, since they will be applied properly
1689 -- and in the proper location when the default expressions reanalyzed
1690 -- and reexpanded later on. We will also have more information at that
1691 -- point for possible suppression of individual checks.
1693 -- However, in SPARK mode, most expansion is suppressed, and this
1694 -- later reanalysis and reexpansion may not occur. SPARK mode does
1695 -- require the setting of checking flags for proof purposes, so we
1696 -- do the SPARK preanalysis without suppressing checks.
1698 -- This special handling for SPARK mode is required for example in the
1699 -- case of Ada 2012 constructs such as quantified expressions, which are
1700 -- expanded in two separate steps.
1702 if GNATprove_Mode then
1703 Analyze_And_Resolve (N, T);
1704 else
1705 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1706 end if;
1708 Expander_Mode_Restore;
1709 Full_Analysis := Save_Full_Analysis;
1710 Set_Must_Not_Freeze (N, Save_Must_Not_Freeze);
1711 end Preanalyze_And_Resolve;
1713 ----------------------------
1714 -- Preanalyze_And_Resolve --
1715 ----------------------------
1717 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1718 begin
1719 Preanalyze_And_Resolve (N, T, With_Freezing => False);
1720 end Preanalyze_And_Resolve;
1722 -- Version without context type
1724 procedure Preanalyze_And_Resolve (N : Node_Id) is
1725 Save_Full_Analysis : constant Boolean := Full_Analysis;
1727 begin
1728 Full_Analysis := False;
1729 Expander_Mode_Save_And_Set (False);
1731 Analyze (N);
1732 Resolve (N, Etype (N), Suppress => All_Checks);
1734 Expander_Mode_Restore;
1735 Full_Analysis := Save_Full_Analysis;
1736 end Preanalyze_And_Resolve;
1738 ------------------------------------------
1739 -- Preanalyze_With_Freezing_And_Resolve --
1740 ------------------------------------------
1742 procedure Preanalyze_With_Freezing_And_Resolve
1743 (N : Node_Id;
1744 T : Entity_Id)
1746 begin
1747 Preanalyze_And_Resolve (N, T, With_Freezing => True);
1748 end Preanalyze_With_Freezing_And_Resolve;
1750 ----------------------------------
1751 -- Replace_Actual_Discriminants --
1752 ----------------------------------
1754 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1755 Loc : constant Source_Ptr := Sloc (N);
1756 Tsk : Node_Id := Empty;
1758 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1759 -- Comment needed???
1761 -------------------
1762 -- Process_Discr --
1763 -------------------
1765 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1766 Ent : Entity_Id;
1768 begin
1769 if Nkind (Nod) = N_Identifier then
1770 Ent := Entity (Nod);
1772 if Present (Ent)
1773 and then Ekind (Ent) = E_Discriminant
1774 then
1775 Rewrite (Nod,
1776 Make_Selected_Component (Loc,
1777 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1778 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1780 Set_Etype (Nod, Etype (Ent));
1781 end if;
1783 end if;
1785 return OK;
1786 end Process_Discr;
1788 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1790 -- Start of processing for Replace_Actual_Discriminants
1792 begin
1793 if Expander_Active then
1794 null;
1796 -- Allow the replacement of concurrent discriminants in GNATprove even
1797 -- though this is a light expansion activity. Note that generic units
1798 -- are not modified.
1800 elsif GNATprove_Mode and not Inside_A_Generic then
1801 null;
1803 else
1804 return;
1805 end if;
1807 if Nkind (Name (N)) = N_Selected_Component then
1808 Tsk := Prefix (Name (N));
1810 elsif Nkind (Name (N)) = N_Indexed_Component then
1811 Tsk := Prefix (Prefix (Name (N)));
1812 end if;
1814 if Present (Tsk) then
1815 Replace_Discrs (Default);
1816 end if;
1817 end Replace_Actual_Discriminants;
1819 -------------
1820 -- Resolve --
1821 -------------
1823 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1824 Ambiguous : Boolean := False;
1825 Ctx_Type : Entity_Id := Typ;
1826 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1827 Err_Type : Entity_Id := Empty;
1828 Found : Boolean := False;
1829 From_Lib : Boolean;
1830 I : Interp_Index;
1831 I1 : Interp_Index := 0; -- prevent junk warning
1832 It : Interp;
1833 It1 : Interp;
1834 Seen : Entity_Id := Empty; -- prevent junk warning
1836 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1837 -- Determine whether a node comes from a predefined library unit or
1838 -- Standard.
1840 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1841 -- Try and fix up a literal so that it matches its expected type. New
1842 -- literals are manufactured if necessary to avoid cascaded errors.
1844 procedure Report_Ambiguous_Argument;
1845 -- Additional diagnostics when an ambiguous call has an ambiguous
1846 -- argument (typically a controlling actual).
1848 procedure Resolution_Failed;
1849 -- Called when attempt at resolving current expression fails
1851 ------------------------------------
1852 -- Comes_From_Predefined_Lib_Unit --
1853 -------------------------------------
1855 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1856 begin
1857 return
1858 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1859 end Comes_From_Predefined_Lib_Unit;
1861 --------------------
1862 -- Patch_Up_Value --
1863 --------------------
1865 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1866 begin
1867 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1868 Rewrite (N,
1869 Make_Real_Literal (Sloc (N),
1870 Realval => UR_From_Uint (Intval (N))));
1871 Set_Etype (N, Universal_Real);
1872 Set_Is_Static_Expression (N);
1874 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1875 Rewrite (N,
1876 Make_Integer_Literal (Sloc (N),
1877 Intval => UR_To_Uint (Realval (N))));
1878 Set_Etype (N, Universal_Integer);
1879 Set_Is_Static_Expression (N);
1881 elsif Nkind (N) = N_String_Literal
1882 and then Is_Character_Type (Typ)
1883 then
1884 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1885 Rewrite (N,
1886 Make_Character_Literal (Sloc (N),
1887 Chars => Name_Find,
1888 Char_Literal_Value =>
1889 UI_From_Int (Character'Pos ('A'))));
1890 Set_Etype (N, Any_Character);
1891 Set_Is_Static_Expression (N);
1893 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1894 Rewrite (N,
1895 Make_String_Literal (Sloc (N),
1896 Strval => End_String));
1898 elsif Nkind (N) = N_Range then
1899 Patch_Up_Value (Low_Bound (N), Typ);
1900 Patch_Up_Value (High_Bound (N), Typ);
1901 end if;
1902 end Patch_Up_Value;
1904 -------------------------------
1905 -- Report_Ambiguous_Argument --
1906 -------------------------------
1908 procedure Report_Ambiguous_Argument is
1909 Arg : constant Node_Id := First (Parameter_Associations (N));
1910 I : Interp_Index;
1911 It : Interp;
1913 begin
1914 if Nkind (Arg) = N_Function_Call
1915 and then Is_Entity_Name (Name (Arg))
1916 and then Is_Overloaded (Name (Arg))
1917 then
1918 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1920 -- Could use comments on what is going on here???
1922 Get_First_Interp (Name (Arg), I, It);
1923 while Present (It.Nam) loop
1924 Error_Msg_Sloc := Sloc (It.Nam);
1926 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1927 Error_Msg_N ("interpretation (inherited) #!", Arg);
1928 else
1929 Error_Msg_N ("interpretation #!", Arg);
1930 end if;
1932 Get_Next_Interp (I, It);
1933 end loop;
1934 end if;
1935 end Report_Ambiguous_Argument;
1937 -----------------------
1938 -- Resolution_Failed --
1939 -----------------------
1941 procedure Resolution_Failed is
1942 begin
1943 Patch_Up_Value (N, Typ);
1945 -- Set the type to the desired one to minimize cascaded errors. Note
1946 -- that this is an approximation and does not work in all cases.
1948 Set_Etype (N, Typ);
1950 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1951 Set_Is_Overloaded (N, False);
1953 -- The caller will return without calling the expander, so we need
1954 -- to set the analyzed flag. Note that it is fine to set Analyzed
1955 -- to True even if we are in the middle of a shallow analysis,
1956 -- (see the spec of sem for more details) since this is an error
1957 -- situation anyway, and there is no point in repeating the
1958 -- analysis later (indeed it won't work to repeat it later, since
1959 -- we haven't got a clear resolution of which entity is being
1960 -- referenced.)
1962 Set_Analyzed (N, True);
1963 return;
1964 end Resolution_Failed;
1966 -- Start of processing for Resolve
1968 begin
1969 if N = Error then
1970 return;
1971 end if;
1973 -- Access attribute on remote subprogram cannot be used for a non-remote
1974 -- access-to-subprogram type.
1976 if Nkind (N) = N_Attribute_Reference
1977 and then Nam_In (Attribute_Name (N), Name_Access,
1978 Name_Unrestricted_Access,
1979 Name_Unchecked_Access)
1980 and then Comes_From_Source (N)
1981 and then Is_Entity_Name (Prefix (N))
1982 and then Is_Subprogram (Entity (Prefix (N)))
1983 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1984 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1985 then
1986 Error_Msg_N
1987 ("prefix must statically denote a non-remote subprogram", N);
1988 end if;
1990 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1992 -- If the context is a Remote_Access_To_Subprogram, access attributes
1993 -- must be resolved with the corresponding fat pointer. There is no need
1994 -- to check for the attribute name since the return type of an
1995 -- attribute is never a remote type.
1997 if Nkind (N) = N_Attribute_Reference
1998 and then Comes_From_Source (N)
1999 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2000 then
2001 declare
2002 Attr : constant Attribute_Id :=
2003 Get_Attribute_Id (Attribute_Name (N));
2004 Pref : constant Node_Id := Prefix (N);
2005 Decl : Node_Id;
2006 Spec : Node_Id;
2007 Is_Remote : Boolean := True;
2009 begin
2010 -- Check that Typ is a remote access-to-subprogram type
2012 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2014 -- Prefix (N) must statically denote a remote subprogram
2015 -- declared in a package specification.
2017 if Attr = Attribute_Access or else
2018 Attr = Attribute_Unchecked_Access or else
2019 Attr = Attribute_Unrestricted_Access
2020 then
2021 Decl := Unit_Declaration_Node (Entity (Pref));
2023 if Nkind (Decl) = N_Subprogram_Body then
2024 Spec := Corresponding_Spec (Decl);
2026 if Present (Spec) then
2027 Decl := Unit_Declaration_Node (Spec);
2028 end if;
2029 end if;
2031 Spec := Parent (Decl);
2033 if not Is_Entity_Name (Prefix (N))
2034 or else Nkind (Spec) /= N_Package_Specification
2035 or else
2036 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2037 then
2038 Is_Remote := False;
2039 Error_Msg_N
2040 ("prefix must statically denote a remote subprogram ",
2042 end if;
2044 -- If we are generating code in distributed mode, perform
2045 -- semantic checks against corresponding remote entities.
2047 if Expander_Active
2048 and then Get_PCS_Name /= Name_No_DSA
2049 then
2050 Check_Subtype_Conformant
2051 (New_Id => Entity (Prefix (N)),
2052 Old_Id => Designated_Type
2053 (Corresponding_Remote_Type (Typ)),
2054 Err_Loc => N);
2056 if Is_Remote then
2057 Process_Remote_AST_Attribute (N, Typ);
2058 end if;
2059 end if;
2060 end if;
2061 end if;
2062 end;
2063 end if;
2065 Debug_A_Entry ("resolving ", N);
2067 if Debug_Flag_V then
2068 Write_Overloads (N);
2069 end if;
2071 if Comes_From_Source (N) then
2072 if Is_Fixed_Point_Type (Typ) then
2073 Check_Restriction (No_Fixed_Point, N);
2075 elsif Is_Floating_Point_Type (Typ)
2076 and then Typ /= Universal_Real
2077 and then Typ /= Any_Real
2078 then
2079 Check_Restriction (No_Floating_Point, N);
2080 end if;
2081 end if;
2083 -- Return if already analyzed
2085 if Analyzed (N) then
2086 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2087 Analyze_Dimension (N);
2088 return;
2090 -- Any case of Any_Type as the Etype value means that we had a
2091 -- previous error.
2093 elsif Etype (N) = Any_Type then
2094 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2095 return;
2096 end if;
2098 Check_Parameterless_Call (N);
2100 -- The resolution of an Expression_With_Actions is determined by
2101 -- its Expression.
2103 if Nkind (N) = N_Expression_With_Actions then
2104 Resolve (Expression (N), Typ);
2106 Found := True;
2107 Expr_Type := Etype (Expression (N));
2109 -- If not overloaded, then we know the type, and all that needs doing
2110 -- is to check that this type is compatible with the context.
2112 elsif not Is_Overloaded (N) then
2113 Found := Covers (Typ, Etype (N));
2114 Expr_Type := Etype (N);
2116 -- In the overloaded case, we must select the interpretation that
2117 -- is compatible with the context (i.e. the type passed to Resolve)
2119 else
2120 -- Loop through possible interpretations
2122 Get_First_Interp (N, I, It);
2123 Interp_Loop : while Present (It.Typ) loop
2124 if Debug_Flag_V then
2125 Write_Str ("Interp: ");
2126 Write_Interp (It);
2127 end if;
2129 -- We are only interested in interpretations that are compatible
2130 -- with the expected type, any other interpretations are ignored.
2132 if not Covers (Typ, It.Typ) then
2133 if Debug_Flag_V then
2134 Write_Str (" interpretation incompatible with context");
2135 Write_Eol;
2136 end if;
2138 else
2139 -- Skip the current interpretation if it is disabled by an
2140 -- abstract operator. This action is performed only when the
2141 -- type against which we are resolving is the same as the
2142 -- type of the interpretation.
2144 if Ada_Version >= Ada_2005
2145 and then It.Typ = Typ
2146 and then Typ /= Universal_Integer
2147 and then Typ /= Universal_Real
2148 and then Present (It.Abstract_Op)
2149 then
2150 if Debug_Flag_V then
2151 Write_Line ("Skip.");
2152 end if;
2154 goto Continue;
2155 end if;
2157 -- First matching interpretation
2159 if not Found then
2160 Found := True;
2161 I1 := I;
2162 Seen := It.Nam;
2163 Expr_Type := It.Typ;
2165 -- Matching interpretation that is not the first, maybe an
2166 -- error, but there are some cases where preference rules are
2167 -- used to choose between the two possibilities. These and
2168 -- some more obscure cases are handled in Disambiguate.
2170 else
2171 -- If the current statement is part of a predefined library
2172 -- unit, then all interpretations which come from user level
2173 -- packages should not be considered. Check previous and
2174 -- current one.
2176 if From_Lib then
2177 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2178 goto Continue;
2180 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2182 -- Previous interpretation must be discarded
2184 I1 := I;
2185 Seen := It.Nam;
2186 Expr_Type := It.Typ;
2187 Set_Entity (N, Seen);
2188 goto Continue;
2189 end if;
2190 end if;
2192 -- Otherwise apply further disambiguation steps
2194 Error_Msg_Sloc := Sloc (Seen);
2195 It1 := Disambiguate (N, I1, I, Typ);
2197 -- Disambiguation has succeeded. Skip the remaining
2198 -- interpretations.
2200 if It1 /= No_Interp then
2201 Seen := It1.Nam;
2202 Expr_Type := It1.Typ;
2204 while Present (It.Typ) loop
2205 Get_Next_Interp (I, It);
2206 end loop;
2208 else
2209 -- Before we issue an ambiguity complaint, check for the
2210 -- case of a subprogram call where at least one of the
2211 -- arguments is Any_Type, and if so suppress the message,
2212 -- since it is a cascaded error. This can also happen for
2213 -- a generalized indexing operation.
2215 if Nkind (N) in N_Subprogram_Call
2216 or else (Nkind (N) = N_Indexed_Component
2217 and then Present (Generalized_Indexing (N)))
2218 then
2219 declare
2220 A : Node_Id;
2221 E : Node_Id;
2223 begin
2224 if Nkind (N) = N_Indexed_Component then
2225 Rewrite (N, Generalized_Indexing (N));
2226 end if;
2228 A := First_Actual (N);
2229 while Present (A) loop
2230 E := A;
2232 if Nkind (E) = N_Parameter_Association then
2233 E := Explicit_Actual_Parameter (E);
2234 end if;
2236 if Etype (E) = Any_Type then
2237 if Debug_Flag_V then
2238 Write_Str ("Any_Type in call");
2239 Write_Eol;
2240 end if;
2242 exit Interp_Loop;
2243 end if;
2245 Next_Actual (A);
2246 end loop;
2247 end;
2249 elsif Nkind (N) in N_Binary_Op
2250 and then (Etype (Left_Opnd (N)) = Any_Type
2251 or else Etype (Right_Opnd (N)) = Any_Type)
2252 then
2253 exit Interp_Loop;
2255 elsif Nkind (N) in N_Unary_Op
2256 and then Etype (Right_Opnd (N)) = Any_Type
2257 then
2258 exit Interp_Loop;
2259 end if;
2261 -- Not that special case, so issue message using the flag
2262 -- Ambiguous to control printing of the header message
2263 -- only at the start of an ambiguous set.
2265 if not Ambiguous then
2266 if Nkind (N) = N_Function_Call
2267 and then Nkind (Name (N)) = N_Explicit_Dereference
2268 then
2269 Error_Msg_N
2270 ("ambiguous expression (cannot resolve indirect "
2271 & "call)!", N);
2272 else
2273 Error_Msg_NE -- CODEFIX
2274 ("ambiguous expression (cannot resolve&)!",
2275 N, It.Nam);
2276 end if;
2278 Ambiguous := True;
2280 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2281 Error_Msg_N
2282 ("\\possible interpretation (inherited)#!", N);
2283 else
2284 Error_Msg_N -- CODEFIX
2285 ("\\possible interpretation#!", N);
2286 end if;
2288 if Nkind (N) in N_Subprogram_Call
2289 and then Present (Parameter_Associations (N))
2290 then
2291 Report_Ambiguous_Argument;
2292 end if;
2293 end if;
2295 Error_Msg_Sloc := Sloc (It.Nam);
2297 -- By default, the error message refers to the candidate
2298 -- interpretation. But if it is a predefined operator, it
2299 -- is implicitly declared at the declaration of the type
2300 -- of the operand. Recover the sloc of that declaration
2301 -- for the error message.
2303 if Nkind (N) in N_Op
2304 and then Scope (It.Nam) = Standard_Standard
2305 and then not Is_Overloaded (Right_Opnd (N))
2306 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2307 Standard_Standard
2308 then
2309 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2311 if Comes_From_Source (Err_Type)
2312 and then Present (Parent (Err_Type))
2313 then
2314 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2315 end if;
2317 elsif Nkind (N) in N_Binary_Op
2318 and then Scope (It.Nam) = Standard_Standard
2319 and then not Is_Overloaded (Left_Opnd (N))
2320 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2321 Standard_Standard
2322 then
2323 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2325 if Comes_From_Source (Err_Type)
2326 and then Present (Parent (Err_Type))
2327 then
2328 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2329 end if;
2331 -- If this is an indirect call, use the subprogram_type
2332 -- in the message, to have a meaningful location. Also
2333 -- indicate if this is an inherited operation, created
2334 -- by a type declaration.
2336 elsif Nkind (N) = N_Function_Call
2337 and then Nkind (Name (N)) = N_Explicit_Dereference
2338 and then Is_Type (It.Nam)
2339 then
2340 Err_Type := It.Nam;
2341 Error_Msg_Sloc :=
2342 Sloc (Associated_Node_For_Itype (Err_Type));
2343 else
2344 Err_Type := Empty;
2345 end if;
2347 if Nkind (N) in N_Op
2348 and then Scope (It.Nam) = Standard_Standard
2349 and then Present (Err_Type)
2350 then
2351 -- Special-case the message for universal_fixed
2352 -- operators, which are not declared with the type
2353 -- of the operand, but appear forever in Standard.
2355 if It.Typ = Universal_Fixed
2356 and then Scope (It.Nam) = Standard_Standard
2357 then
2358 Error_Msg_N
2359 ("\\possible interpretation as universal_fixed "
2360 & "operation (RM 4.5.5 (19))", N);
2361 else
2362 Error_Msg_N
2363 ("\\possible interpretation (predefined)#!", N);
2364 end if;
2366 elsif
2367 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2368 then
2369 Error_Msg_N
2370 ("\\possible interpretation (inherited)#!", N);
2371 else
2372 Error_Msg_N -- CODEFIX
2373 ("\\possible interpretation#!", N);
2374 end if;
2376 end if;
2377 end if;
2379 -- We have a matching interpretation, Expr_Type is the type
2380 -- from this interpretation, and Seen is the entity.
2382 -- For an operator, just set the entity name. The type will be
2383 -- set by the specific operator resolution routine.
2385 if Nkind (N) in N_Op then
2386 Set_Entity (N, Seen);
2387 Generate_Reference (Seen, N);
2389 elsif Nkind_In (N, N_Case_Expression,
2390 N_Character_Literal,
2391 N_Delta_Aggregate,
2392 N_If_Expression)
2393 then
2394 Set_Etype (N, Expr_Type);
2396 -- AI05-0139-2: Expression is overloaded because type has
2397 -- implicit dereference. If type matches context, no implicit
2398 -- dereference is involved. If the expression is an entity,
2399 -- generate a reference to it, as this is not done for an
2400 -- overloaded construct during analysis.
2402 elsif Has_Implicit_Dereference (Expr_Type) then
2403 Set_Etype (N, Expr_Type);
2404 Set_Is_Overloaded (N, False);
2406 if Is_Entity_Name (N) then
2407 Generate_Reference (Entity (N), N);
2408 end if;
2410 exit Interp_Loop;
2412 elsif Is_Overloaded (N)
2413 and then Present (It.Nam)
2414 and then Ekind (It.Nam) = E_Discriminant
2415 and then Has_Implicit_Dereference (It.Nam)
2416 then
2417 -- If the node is a general indexing, the dereference is
2418 -- is inserted when resolving the rewritten form, else
2419 -- insert it now.
2421 if Nkind (N) /= N_Indexed_Component
2422 or else No (Generalized_Indexing (N))
2423 then
2424 Build_Explicit_Dereference (N, It.Nam);
2425 end if;
2427 -- For an explicit dereference, attribute reference, range,
2428 -- short-circuit form (which is not an operator node), or call
2429 -- with a name that is an explicit dereference, there is
2430 -- nothing to be done at this point.
2432 elsif Nkind_In (N, N_Attribute_Reference,
2433 N_And_Then,
2434 N_Explicit_Dereference,
2435 N_Identifier,
2436 N_Indexed_Component,
2437 N_Or_Else,
2438 N_Range,
2439 N_Selected_Component,
2440 N_Slice)
2441 or else Nkind (Name (N)) = N_Explicit_Dereference
2442 then
2443 null;
2445 -- For procedure or function calls, set the type of the name,
2446 -- and also the entity pointer for the prefix.
2448 elsif Nkind (N) in N_Subprogram_Call
2449 and then Is_Entity_Name (Name (N))
2450 then
2451 Set_Etype (Name (N), Expr_Type);
2452 Set_Entity (Name (N), Seen);
2453 Generate_Reference (Seen, Name (N));
2455 elsif Nkind (N) = N_Function_Call
2456 and then Nkind (Name (N)) = N_Selected_Component
2457 then
2458 Set_Etype (Name (N), Expr_Type);
2459 Set_Entity (Selector_Name (Name (N)), Seen);
2460 Generate_Reference (Seen, Selector_Name (Name (N)));
2462 -- For all other cases, just set the type of the Name
2464 else
2465 Set_Etype (Name (N), Expr_Type);
2466 end if;
2468 end if;
2470 <<Continue>>
2472 -- Move to next interpretation
2474 exit Interp_Loop when No (It.Typ);
2476 Get_Next_Interp (I, It);
2477 end loop Interp_Loop;
2478 end if;
2480 -- At this stage Found indicates whether or not an acceptable
2481 -- interpretation exists. If not, then we have an error, except that if
2482 -- the context is Any_Type as a result of some other error, then we
2483 -- suppress the error report.
2485 if not Found then
2486 if Typ /= Any_Type then
2488 -- If type we are looking for is Void, then this is the procedure
2489 -- call case, and the error is simply that what we gave is not a
2490 -- procedure name (we think of procedure calls as expressions with
2491 -- types internally, but the user doesn't think of them this way).
2493 if Typ = Standard_Void_Type then
2495 -- Special case message if function used as a procedure
2497 if Nkind (N) = N_Procedure_Call_Statement
2498 and then Is_Entity_Name (Name (N))
2499 and then Ekind (Entity (Name (N))) = E_Function
2500 then
2501 Error_Msg_NE
2502 ("cannot use call to function & as a statement",
2503 Name (N), Entity (Name (N)));
2504 Error_Msg_N
2505 ("\return value of a function call cannot be ignored",
2506 Name (N));
2508 -- Otherwise give general message (not clear what cases this
2509 -- covers, but no harm in providing for them).
2511 else
2512 Error_Msg_N ("expect procedure name in procedure call", N);
2513 end if;
2515 Found := True;
2517 -- Otherwise we do have a subexpression with the wrong type
2519 -- Check for the case of an allocator which uses an access type
2520 -- instead of the designated type. This is a common error and we
2521 -- specialize the message, posting an error on the operand of the
2522 -- allocator, complaining that we expected the designated type of
2523 -- the allocator.
2525 elsif Nkind (N) = N_Allocator
2526 and then Is_Access_Type (Typ)
2527 and then Is_Access_Type (Etype (N))
2528 and then Designated_Type (Etype (N)) = Typ
2529 then
2530 Wrong_Type (Expression (N), Designated_Type (Typ));
2531 Found := True;
2533 -- Check for view mismatch on Null in instances, for which the
2534 -- view-swapping mechanism has no identifier.
2536 elsif (In_Instance or else In_Inlined_Body)
2537 and then (Nkind (N) = N_Null)
2538 and then Is_Private_Type (Typ)
2539 and then Is_Access_Type (Full_View (Typ))
2540 then
2541 Resolve (N, Full_View (Typ));
2542 Set_Etype (N, Typ);
2543 return;
2545 -- Check for an aggregate. Sometimes we can get bogus aggregates
2546 -- from misuse of parentheses, and we are about to complain about
2547 -- the aggregate without even looking inside it.
2549 -- Instead, if we have an aggregate of type Any_Composite, then
2550 -- analyze and resolve the component fields, and then only issue
2551 -- another message if we get no errors doing this (otherwise
2552 -- assume that the errors in the aggregate caused the problem).
2554 elsif Nkind (N) = N_Aggregate
2555 and then Etype (N) = Any_Composite
2556 then
2557 -- Disable expansion in any case. If there is a type mismatch
2558 -- it may be fatal to try to expand the aggregate. The flag
2559 -- would otherwise be set to false when the error is posted.
2561 Expander_Active := False;
2563 declare
2564 procedure Check_Aggr (Aggr : Node_Id);
2565 -- Check one aggregate, and set Found to True if we have a
2566 -- definite error in any of its elements
2568 procedure Check_Elmt (Aelmt : Node_Id);
2569 -- Check one element of aggregate and set Found to True if
2570 -- we definitely have an error in the element.
2572 ----------------
2573 -- Check_Aggr --
2574 ----------------
2576 procedure Check_Aggr (Aggr : Node_Id) is
2577 Elmt : Node_Id;
2579 begin
2580 if Present (Expressions (Aggr)) then
2581 Elmt := First (Expressions (Aggr));
2582 while Present (Elmt) loop
2583 Check_Elmt (Elmt);
2584 Next (Elmt);
2585 end loop;
2586 end if;
2588 if Present (Component_Associations (Aggr)) then
2589 Elmt := First (Component_Associations (Aggr));
2590 while Present (Elmt) loop
2592 -- If this is a default-initialized component, then
2593 -- there is nothing to check. The box will be
2594 -- replaced by the appropriate call during late
2595 -- expansion.
2597 if Nkind (Elmt) /= N_Iterated_Component_Association
2598 and then not Box_Present (Elmt)
2599 then
2600 Check_Elmt (Expression (Elmt));
2601 end if;
2603 Next (Elmt);
2604 end loop;
2605 end if;
2606 end Check_Aggr;
2608 ----------------
2609 -- Check_Elmt --
2610 ----------------
2612 procedure Check_Elmt (Aelmt : Node_Id) is
2613 begin
2614 -- If we have a nested aggregate, go inside it (to
2615 -- attempt a naked analyze-resolve of the aggregate can
2616 -- cause undesirable cascaded errors). Do not resolve
2617 -- expression if it needs a type from context, as for
2618 -- integer * fixed expression.
2620 if Nkind (Aelmt) = N_Aggregate then
2621 Check_Aggr (Aelmt);
2623 else
2624 Analyze (Aelmt);
2626 if not Is_Overloaded (Aelmt)
2627 and then Etype (Aelmt) /= Any_Fixed
2628 then
2629 Resolve (Aelmt);
2630 end if;
2632 if Etype (Aelmt) = Any_Type then
2633 Found := True;
2634 end if;
2635 end if;
2636 end Check_Elmt;
2638 begin
2639 Check_Aggr (N);
2640 end;
2641 end if;
2643 -- Looks like we have a type error, but check for special case
2644 -- of Address wanted, integer found, with the configuration pragma
2645 -- Allow_Integer_Address active. If we have this case, introduce
2646 -- an unchecked conversion to allow the integer expression to be
2647 -- treated as an Address. The reverse case of integer wanted,
2648 -- Address found, is treated in an analogous manner.
2650 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2651 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2652 Analyze_And_Resolve (N, Typ);
2653 return;
2655 -- Under relaxed RM semantics silently replace occurrences of null
2656 -- by System.Address_Null.
2658 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2659 Replace_Null_By_Null_Address (N);
2660 Analyze_And_Resolve (N, Typ);
2661 return;
2662 end if;
2664 -- That special Allow_Integer_Address check did not apply, so we
2665 -- have a real type error. If an error message was issued already,
2666 -- Found got reset to True, so if it's still False, issue standard
2667 -- Wrong_Type message.
2669 if not Found then
2670 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2671 declare
2672 Subp_Name : Node_Id;
2674 begin
2675 if Is_Entity_Name (Name (N)) then
2676 Subp_Name := Name (N);
2678 elsif Nkind (Name (N)) = N_Selected_Component then
2680 -- Protected operation: retrieve operation name
2682 Subp_Name := Selector_Name (Name (N));
2684 else
2685 raise Program_Error;
2686 end if;
2688 Error_Msg_Node_2 := Typ;
2689 Error_Msg_NE
2690 ("no visible interpretation of& matches expected type&",
2691 N, Subp_Name);
2692 end;
2694 if All_Errors_Mode then
2695 declare
2696 Index : Interp_Index;
2697 It : Interp;
2699 begin
2700 Error_Msg_N ("\\possible interpretations:", N);
2702 Get_First_Interp (Name (N), Index, It);
2703 while Present (It.Nam) loop
2704 Error_Msg_Sloc := Sloc (It.Nam);
2705 Error_Msg_Node_2 := It.Nam;
2706 Error_Msg_NE
2707 ("\\ type& for & declared#", N, It.Typ);
2708 Get_Next_Interp (Index, It);
2709 end loop;
2710 end;
2712 else
2713 Error_Msg_N ("\use -gnatf for details", N);
2714 end if;
2716 else
2717 Wrong_Type (N, Typ);
2718 end if;
2719 end if;
2720 end if;
2722 Resolution_Failed;
2723 return;
2725 -- Test if we have more than one interpretation for the context
2727 elsif Ambiguous then
2728 Resolution_Failed;
2729 return;
2731 -- Only one intepretation
2733 else
2734 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2735 -- the "+" on T is abstract, and the operands are of universal type,
2736 -- the above code will have (incorrectly) resolved the "+" to the
2737 -- universal one in Standard. Therefore check for this case and give
2738 -- an error. We can't do this earlier, because it would cause legal
2739 -- cases to get errors (when some other type has an abstract "+").
2741 if Ada_Version >= Ada_2005
2742 and then Nkind (N) in N_Op
2743 and then Is_Overloaded (N)
2744 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2745 then
2746 Get_First_Interp (N, I, It);
2747 while Present (It.Typ) loop
2748 if Present (It.Abstract_Op) and then
2749 Etype (It.Abstract_Op) = Typ
2750 then
2751 Error_Msg_NE
2752 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2753 return;
2754 end if;
2756 Get_Next_Interp (I, It);
2757 end loop;
2758 end if;
2760 -- Here we have an acceptable interpretation for the context
2762 -- Propagate type information and normalize tree for various
2763 -- predefined operations. If the context only imposes a class of
2764 -- types, rather than a specific type, propagate the actual type
2765 -- downward.
2767 if Typ = Any_Integer or else
2768 Typ = Any_Boolean or else
2769 Typ = Any_Modular or else
2770 Typ = Any_Real or else
2771 Typ = Any_Discrete
2772 then
2773 Ctx_Type := Expr_Type;
2775 -- Any_Fixed is legal in a real context only if a specific fixed-
2776 -- point type is imposed. If Norman Cohen can be confused by this,
2777 -- it deserves a separate message.
2779 if Typ = Any_Real
2780 and then Expr_Type = Any_Fixed
2781 then
2782 Error_Msg_N ("illegal context for mixed mode operation", N);
2783 Set_Etype (N, Universal_Real);
2784 Ctx_Type := Universal_Real;
2785 end if;
2786 end if;
2788 -- A user-defined operator is transformed into a function call at
2789 -- this point, so that further processing knows that operators are
2790 -- really operators (i.e. are predefined operators). User-defined
2791 -- operators that are intrinsic are just renamings of the predefined
2792 -- ones, and need not be turned into calls either, but if they rename
2793 -- a different operator, we must transform the node accordingly.
2794 -- Instantiations of Unchecked_Conversion are intrinsic but are
2795 -- treated as functions, even if given an operator designator.
2797 if Nkind (N) in N_Op
2798 and then Present (Entity (N))
2799 and then Ekind (Entity (N)) /= E_Operator
2800 then
2801 if not Is_Predefined_Op (Entity (N)) then
2802 Rewrite_Operator_As_Call (N, Entity (N));
2804 elsif Present (Alias (Entity (N)))
2805 and then
2806 Nkind (Parent (Parent (Entity (N)))) =
2807 N_Subprogram_Renaming_Declaration
2808 then
2809 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2811 -- If the node is rewritten, it will be fully resolved in
2812 -- Rewrite_Renamed_Operator.
2814 if Analyzed (N) then
2815 return;
2816 end if;
2817 end if;
2818 end if;
2820 case N_Subexpr'(Nkind (N)) is
2821 when N_Aggregate =>
2822 Resolve_Aggregate (N, Ctx_Type);
2824 when N_Allocator =>
2825 Resolve_Allocator (N, Ctx_Type);
2827 when N_Short_Circuit =>
2828 Resolve_Short_Circuit (N, Ctx_Type);
2830 when N_Attribute_Reference =>
2831 Resolve_Attribute (N, Ctx_Type);
2833 when N_Case_Expression =>
2834 Resolve_Case_Expression (N, Ctx_Type);
2836 when N_Character_Literal =>
2837 Resolve_Character_Literal (N, Ctx_Type);
2839 when N_Delta_Aggregate =>
2840 Resolve_Delta_Aggregate (N, Ctx_Type);
2842 when N_Expanded_Name =>
2843 Resolve_Entity_Name (N, Ctx_Type);
2845 when N_Explicit_Dereference =>
2846 Resolve_Explicit_Dereference (N, Ctx_Type);
2848 when N_Expression_With_Actions =>
2849 Resolve_Expression_With_Actions (N, Ctx_Type);
2851 when N_Extension_Aggregate =>
2852 Resolve_Extension_Aggregate (N, Ctx_Type);
2854 when N_Function_Call =>
2855 Resolve_Call (N, Ctx_Type);
2857 when N_Identifier =>
2858 Resolve_Entity_Name (N, Ctx_Type);
2860 when N_If_Expression =>
2861 Resolve_If_Expression (N, Ctx_Type);
2863 when N_Indexed_Component =>
2864 Resolve_Indexed_Component (N, Ctx_Type);
2866 when N_Integer_Literal =>
2867 Resolve_Integer_Literal (N, Ctx_Type);
2869 when N_Membership_Test =>
2870 Resolve_Membership_Op (N, Ctx_Type);
2872 when N_Null =>
2873 Resolve_Null (N, Ctx_Type);
2875 when N_Op_And
2876 | N_Op_Or
2877 | N_Op_Xor
2879 Resolve_Logical_Op (N, Ctx_Type);
2881 when N_Op_Eq
2882 | N_Op_Ne
2884 Resolve_Equality_Op (N, Ctx_Type);
2886 when N_Op_Ge
2887 | N_Op_Gt
2888 | N_Op_Le
2889 | N_Op_Lt
2891 Resolve_Comparison_Op (N, Ctx_Type);
2893 when N_Op_Not =>
2894 Resolve_Op_Not (N, Ctx_Type);
2896 when N_Op_Add
2897 | N_Op_Divide
2898 | N_Op_Mod
2899 | N_Op_Multiply
2900 | N_Op_Rem
2901 | N_Op_Subtract
2903 Resolve_Arithmetic_Op (N, Ctx_Type);
2905 when N_Op_Concat =>
2906 Resolve_Op_Concat (N, Ctx_Type);
2908 when N_Op_Expon =>
2909 Resolve_Op_Expon (N, Ctx_Type);
2911 when N_Op_Abs
2912 | N_Op_Minus
2913 | N_Op_Plus
2915 Resolve_Unary_Op (N, Ctx_Type);
2917 when N_Op_Shift =>
2918 Resolve_Shift (N, Ctx_Type);
2920 when N_Procedure_Call_Statement =>
2921 Resolve_Call (N, Ctx_Type);
2923 when N_Operator_Symbol =>
2924 Resolve_Operator_Symbol (N, Ctx_Type);
2926 when N_Qualified_Expression =>
2927 Resolve_Qualified_Expression (N, Ctx_Type);
2929 -- Why is the following null, needs a comment ???
2931 when N_Quantified_Expression =>
2932 null;
2934 when N_Raise_Expression =>
2935 Resolve_Raise_Expression (N, Ctx_Type);
2937 when N_Raise_xxx_Error =>
2938 Set_Etype (N, Ctx_Type);
2940 when N_Range =>
2941 Resolve_Range (N, Ctx_Type);
2943 when N_Real_Literal =>
2944 Resolve_Real_Literal (N, Ctx_Type);
2946 when N_Reference =>
2947 Resolve_Reference (N, Ctx_Type);
2949 when N_Selected_Component =>
2950 Resolve_Selected_Component (N, Ctx_Type);
2952 when N_Slice =>
2953 Resolve_Slice (N, Ctx_Type);
2955 when N_String_Literal =>
2956 Resolve_String_Literal (N, Ctx_Type);
2958 when N_Target_Name =>
2959 Resolve_Target_Name (N, Ctx_Type);
2961 when N_Type_Conversion =>
2962 Resolve_Type_Conversion (N, Ctx_Type);
2964 when N_Unchecked_Expression =>
2965 Resolve_Unchecked_Expression (N, Ctx_Type);
2967 when N_Unchecked_Type_Conversion =>
2968 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2969 end case;
2971 -- Mark relevant use-type and use-package clauses as effective using
2972 -- the original node because constant folding may have occured and
2973 -- removed references that need to be examined.
2975 if Nkind (Original_Node (N)) in N_Op then
2976 Mark_Use_Clauses (Original_Node (N));
2977 end if;
2979 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2980 -- expression of an anonymous access type that occurs in the context
2981 -- of a named general access type, except when the expression is that
2982 -- of a membership test. This ensures proper legality checking in
2983 -- terms of allowed conversions (expressions that would be illegal to
2984 -- convert implicitly are allowed in membership tests).
2986 if Ada_Version >= Ada_2012
2987 and then Ekind (Ctx_Type) = E_General_Access_Type
2988 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2989 and then Nkind (Parent (N)) not in N_Membership_Test
2990 then
2991 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2992 Analyze_And_Resolve (N, Ctx_Type);
2993 end if;
2995 -- If the subexpression was replaced by a non-subexpression, then
2996 -- all we do is to expand it. The only legitimate case we know of
2997 -- is converting procedure call statement to entry call statements,
2998 -- but there may be others, so we are making this test general.
3000 if Nkind (N) not in N_Subexpr then
3001 Debug_A_Exit ("resolving ", N, " (done)");
3002 Expand (N);
3003 return;
3004 end if;
3006 -- The expression is definitely NOT overloaded at this point, so
3007 -- we reset the Is_Overloaded flag to avoid any confusion when
3008 -- reanalyzing the node.
3010 Set_Is_Overloaded (N, False);
3012 -- Freeze expression type, entity if it is a name, and designated
3013 -- type if it is an allocator (RM 13.14(10,11,13)).
3015 -- Now that the resolution of the type of the node is complete, and
3016 -- we did not detect an error, we can expand this node. We skip the
3017 -- expand call if we are in a default expression, see section
3018 -- "Handling of Default Expressions" in Sem spec.
3020 Debug_A_Exit ("resolving ", N, " (done)");
3022 -- We unconditionally freeze the expression, even if we are in
3023 -- default expression mode (the Freeze_Expression routine tests this
3024 -- flag and only freezes static types if it is set).
3026 -- Ada 2012 (AI05-177): The declaration of an expression function
3027 -- does not cause freezing, but we never reach here in that case.
3028 -- Here we are resolving the corresponding expanded body, so we do
3029 -- need to perform normal freezing.
3031 -- As elsewhere we do not emit freeze node within a generic. We make
3032 -- an exception for entities that are expressions, only to detect
3033 -- misuses of deferred constants and preserve the output of various
3034 -- tests.
3036 if not Inside_A_Generic or else Is_Entity_Name (N) then
3037 Freeze_Expression (N);
3038 end if;
3040 -- Now we can do the expansion
3042 Expand (N);
3043 end if;
3044 end Resolve;
3046 -------------
3047 -- Resolve --
3048 -------------
3050 -- Version with check(s) suppressed
3052 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3053 begin
3054 if Suppress = All_Checks then
3055 declare
3056 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3057 begin
3058 Scope_Suppress.Suppress := (others => True);
3059 Resolve (N, Typ);
3060 Scope_Suppress.Suppress := Sva;
3061 end;
3063 else
3064 declare
3065 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3066 begin
3067 Scope_Suppress.Suppress (Suppress) := True;
3068 Resolve (N, Typ);
3069 Scope_Suppress.Suppress (Suppress) := Svg;
3070 end;
3071 end if;
3072 end Resolve;
3074 -------------
3075 -- Resolve --
3076 -------------
3078 -- Version with implicit type
3080 procedure Resolve (N : Node_Id) is
3081 begin
3082 Resolve (N, Etype (N));
3083 end Resolve;
3085 ---------------------
3086 -- Resolve_Actuals --
3087 ---------------------
3089 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3090 Loc : constant Source_Ptr := Sloc (N);
3091 A : Node_Id;
3092 A_Id : Entity_Id;
3093 A_Typ : Entity_Id := Empty; -- init to avoid warning
3094 F : Entity_Id;
3095 F_Typ : Entity_Id;
3096 Prev : Node_Id := Empty;
3097 Orig_A : Node_Id;
3098 Real_F : Entity_Id := Empty; -- init to avoid warning
3100 Real_Subp : Entity_Id;
3101 -- If the subprogram being called is an inherited operation for
3102 -- a formal derived type in an instance, Real_Subp is the subprogram
3103 -- that will be called. It may have different formal names than the
3104 -- operation of the formal in the generic, so after actual is resolved
3105 -- the name of the actual in a named association must carry the name
3106 -- of the actual of the subprogram being called.
3108 procedure Check_Aliased_Parameter;
3109 -- Check rules on aliased parameters and related accessibility rules
3110 -- in (RM 3.10.2 (10.2-10.4)).
3112 procedure Check_Argument_Order;
3113 -- Performs a check for the case where the actuals are all simple
3114 -- identifiers that correspond to the formal names, but in the wrong
3115 -- order, which is considered suspicious and cause for a warning.
3117 procedure Check_Prefixed_Call;
3118 -- If the original node is an overloaded call in prefix notation,
3119 -- insert an 'Access or a dereference as needed over the first actual.
3120 -- Try_Object_Operation has already verified that there is a valid
3121 -- interpretation, but the form of the actual can only be determined
3122 -- once the primitive operation is identified.
3124 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3125 -- Emit an error concerning the illegal usage of an effectively volatile
3126 -- object in interfering context (SPARK RM 7.13(12)).
3128 procedure Insert_Default;
3129 -- If the actual is missing in a call, insert in the actuals list
3130 -- an instance of the default expression. The insertion is always
3131 -- a named association.
3133 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3134 -- Check whether T1 and T2, or their full views, are derived from a
3135 -- common type. Used to enforce the restrictions on array conversions
3136 -- of AI95-00246.
3138 function Static_Concatenation (N : Node_Id) return Boolean;
3139 -- Predicate to determine whether an actual that is a concatenation
3140 -- will be evaluated statically and does not need a transient scope.
3141 -- This must be determined before the actual is resolved and expanded
3142 -- because if needed the transient scope must be introduced earlier.
3144 -----------------------------
3145 -- Check_Aliased_Parameter --
3146 -----------------------------
3148 procedure Check_Aliased_Parameter is
3149 Nominal_Subt : Entity_Id;
3151 begin
3152 if Is_Aliased (F) then
3153 if Is_Tagged_Type (A_Typ) then
3154 null;
3156 elsif Is_Aliased_View (A) then
3157 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3158 Nominal_Subt := Base_Type (A_Typ);
3159 else
3160 Nominal_Subt := A_Typ;
3161 end if;
3163 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3164 null;
3166 -- In a generic body assume the worst for generic formals:
3167 -- they can have a constrained partial view (AI05-041).
3169 elsif Has_Discriminants (F_Typ)
3170 and then not Is_Constrained (F_Typ)
3171 and then not Has_Constrained_Partial_View (F_Typ)
3172 and then not Is_Generic_Type (F_Typ)
3173 then
3174 null;
3176 else
3177 Error_Msg_NE ("untagged actual does not match "
3178 & "aliased formal&", A, F);
3179 end if;
3181 else
3182 Error_Msg_NE ("actual for aliased formal& must be "
3183 & "aliased object", A, F);
3184 end if;
3186 if Ekind (Nam) = E_Procedure then
3187 null;
3189 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3190 if Nkind (Parent (N)) = N_Type_Conversion
3191 and then Type_Access_Level (Etype (Parent (N))) <
3192 Object_Access_Level (A)
3193 then
3194 Error_Msg_N ("aliased actual has wrong accessibility", A);
3195 end if;
3197 elsif Nkind (Parent (N)) = N_Qualified_Expression
3198 and then Nkind (Parent (Parent (N))) = N_Allocator
3199 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3200 Object_Access_Level (A)
3201 then
3202 Error_Msg_N
3203 ("aliased actual in allocator has wrong accessibility", A);
3204 end if;
3205 end if;
3206 end Check_Aliased_Parameter;
3208 --------------------------
3209 -- Check_Argument_Order --
3210 --------------------------
3212 procedure Check_Argument_Order is
3213 begin
3214 -- Nothing to do if no parameters, or original node is neither a
3215 -- function call nor a procedure call statement (happens in the
3216 -- operator-transformed-to-function call case), or the call does
3217 -- not come from source, or this warning is off.
3219 if not Warn_On_Parameter_Order
3220 or else No (Parameter_Associations (N))
3221 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3222 or else not Comes_From_Source (N)
3223 then
3224 return;
3225 end if;
3227 declare
3228 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3230 begin
3231 -- Nothing to do if only one parameter
3233 if Nargs < 2 then
3234 return;
3235 end if;
3237 -- Here if at least two arguments
3239 declare
3240 Actuals : array (1 .. Nargs) of Node_Id;
3241 Actual : Node_Id;
3242 Formal : Node_Id;
3244 Wrong_Order : Boolean := False;
3245 -- Set True if an out of order case is found
3247 begin
3248 -- Collect identifier names of actuals, fail if any actual is
3249 -- not a simple identifier, and record max length of name.
3251 Actual := First (Parameter_Associations (N));
3252 for J in Actuals'Range loop
3253 if Nkind (Actual) /= N_Identifier then
3254 return;
3255 else
3256 Actuals (J) := Actual;
3257 Next (Actual);
3258 end if;
3259 end loop;
3261 -- If we got this far, all actuals are identifiers and the list
3262 -- of their names is stored in the Actuals array.
3264 Formal := First_Formal (Nam);
3265 for J in Actuals'Range loop
3267 -- If we ran out of formals, that's odd, probably an error
3268 -- which will be detected elsewhere, but abandon the search.
3270 if No (Formal) then
3271 return;
3272 end if;
3274 -- If name matches and is in order OK
3276 if Chars (Formal) = Chars (Actuals (J)) then
3277 null;
3279 else
3280 -- If no match, see if it is elsewhere in list and if so
3281 -- flag potential wrong order if type is compatible.
3283 for K in Actuals'Range loop
3284 if Chars (Formal) = Chars (Actuals (K))
3285 and then
3286 Has_Compatible_Type (Actuals (K), Etype (Formal))
3287 then
3288 Wrong_Order := True;
3289 goto Continue;
3290 end if;
3291 end loop;
3293 -- No match
3295 return;
3296 end if;
3298 <<Continue>> Next_Formal (Formal);
3299 end loop;
3301 -- If Formals left over, also probably an error, skip warning
3303 if Present (Formal) then
3304 return;
3305 end if;
3307 -- Here we give the warning if something was out of order
3309 if Wrong_Order then
3310 Error_Msg_N
3311 ("?P?actuals for this call may be in wrong order", N);
3312 end if;
3313 end;
3314 end;
3315 end Check_Argument_Order;
3317 -------------------------
3318 -- Check_Prefixed_Call --
3319 -------------------------
3321 procedure Check_Prefixed_Call is
3322 Act : constant Node_Id := First_Actual (N);
3323 A_Type : constant Entity_Id := Etype (Act);
3324 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3325 Orig : constant Node_Id := Original_Node (N);
3326 New_A : Node_Id;
3328 begin
3329 -- Check whether the call is a prefixed call, with or without
3330 -- additional actuals.
3332 if Nkind (Orig) = N_Selected_Component
3333 or else
3334 (Nkind (Orig) = N_Indexed_Component
3335 and then Nkind (Prefix (Orig)) = N_Selected_Component
3336 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3337 and then Is_Entity_Name (Act)
3338 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3339 then
3340 if Is_Access_Type (A_Type)
3341 and then not Is_Access_Type (F_Type)
3342 then
3343 -- Introduce dereference on object in prefix
3345 New_A :=
3346 Make_Explicit_Dereference (Sloc (Act),
3347 Prefix => Relocate_Node (Act));
3348 Rewrite (Act, New_A);
3349 Analyze (Act);
3351 elsif Is_Access_Type (F_Type)
3352 and then not Is_Access_Type (A_Type)
3353 then
3354 -- Introduce an implicit 'Access in prefix
3356 if not Is_Aliased_View (Act) then
3357 Error_Msg_NE
3358 ("object in prefixed call to& must be aliased "
3359 & "(RM 4.1.3 (13 1/2))",
3360 Prefix (Act), Nam);
3361 end if;
3363 Rewrite (Act,
3364 Make_Attribute_Reference (Loc,
3365 Attribute_Name => Name_Access,
3366 Prefix => Relocate_Node (Act)));
3367 end if;
3369 Analyze (Act);
3370 end if;
3371 end Check_Prefixed_Call;
3373 ---------------------------------------
3374 -- Flag_Effectively_Volatile_Objects --
3375 ---------------------------------------
3377 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3378 function Flag_Object (N : Node_Id) return Traverse_Result;
3379 -- Determine whether arbitrary node N denotes an effectively volatile
3380 -- object and if it does, emit an error.
3382 -----------------
3383 -- Flag_Object --
3384 -----------------
3386 function Flag_Object (N : Node_Id) return Traverse_Result is
3387 Id : Entity_Id;
3389 begin
3390 -- Do not consider nested function calls because they have already
3391 -- been processed during their own resolution.
3393 if Nkind (N) = N_Function_Call then
3394 return Skip;
3396 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3397 Id := Entity (N);
3399 if Is_Object (Id)
3400 and then Is_Effectively_Volatile (Id)
3401 and then (Async_Writers_Enabled (Id)
3402 or else Effective_Reads_Enabled (Id))
3403 then
3404 Error_Msg_N
3405 ("volatile object cannot appear in this context (SPARK "
3406 & "RM 7.1.3(11))", N);
3407 return Skip;
3408 end if;
3409 end if;
3411 return OK;
3412 end Flag_Object;
3414 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3416 -- Start of processing for Flag_Effectively_Volatile_Objects
3418 begin
3419 Flag_Objects (Expr);
3420 end Flag_Effectively_Volatile_Objects;
3422 --------------------
3423 -- Insert_Default --
3424 --------------------
3426 procedure Insert_Default is
3427 Actval : Node_Id;
3428 Assoc : Node_Id;
3430 begin
3431 -- Missing argument in call, nothing to insert
3433 if No (Default_Value (F)) then
3434 return;
3436 else
3437 -- Note that we do a full New_Copy_Tree, so that any associated
3438 -- Itypes are properly copied. This may not be needed any more,
3439 -- but it does no harm as a safety measure. Defaults of a generic
3440 -- formal may be out of bounds of the corresponding actual (see
3441 -- cc1311b) and an additional check may be required.
3443 Actval :=
3444 New_Copy_Tree
3445 (Default_Value (F),
3446 New_Scope => Current_Scope,
3447 New_Sloc => Loc);
3449 -- Propagate dimension information, if any.
3451 Copy_Dimensions (Default_Value (F), Actval);
3453 if Is_Concurrent_Type (Scope (Nam))
3454 and then Has_Discriminants (Scope (Nam))
3455 then
3456 Replace_Actual_Discriminants (N, Actval);
3457 end if;
3459 if Is_Overloadable (Nam)
3460 and then Present (Alias (Nam))
3461 then
3462 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3463 and then not Is_Tagged_Type (Etype (F))
3464 then
3465 -- If default is a real literal, do not introduce a
3466 -- conversion whose effect may depend on the run-time
3467 -- size of universal real.
3469 if Nkind (Actval) = N_Real_Literal then
3470 Set_Etype (Actval, Base_Type (Etype (F)));
3471 else
3472 Actval := Unchecked_Convert_To (Etype (F), Actval);
3473 end if;
3474 end if;
3476 if Is_Scalar_Type (Etype (F)) then
3477 Enable_Range_Check (Actval);
3478 end if;
3480 Set_Parent (Actval, N);
3482 -- Resolve aggregates with their base type, to avoid scope
3483 -- anomalies: the subtype was first built in the subprogram
3484 -- declaration, and the current call may be nested.
3486 if Nkind (Actval) = N_Aggregate then
3487 Analyze_And_Resolve (Actval, Etype (F));
3488 else
3489 Analyze_And_Resolve (Actval, Etype (Actval));
3490 end if;
3492 else
3493 Set_Parent (Actval, N);
3495 -- See note above concerning aggregates
3497 if Nkind (Actval) = N_Aggregate
3498 and then Has_Discriminants (Etype (Actval))
3499 then
3500 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3502 -- Resolve entities with their own type, which may differ from
3503 -- the type of a reference in a generic context (the view
3504 -- swapping mechanism did not anticipate the re-analysis of
3505 -- default values in calls).
3507 elsif Is_Entity_Name (Actval) then
3508 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3510 else
3511 Analyze_And_Resolve (Actval, Etype (Actval));
3512 end if;
3513 end if;
3515 -- If default is a tag indeterminate function call, propagate tag
3516 -- to obtain proper dispatching.
3518 if Is_Controlling_Formal (F)
3519 and then Nkind (Default_Value (F)) = N_Function_Call
3520 then
3521 Set_Is_Controlling_Actual (Actval);
3522 end if;
3523 end if;
3525 -- If the default expression raises constraint error, then just
3526 -- silently replace it with an N_Raise_Constraint_Error node, since
3527 -- we already gave the warning on the subprogram spec. If node is
3528 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3529 -- the warnings removal machinery.
3531 if Raises_Constraint_Error (Actval)
3532 and then Nkind (Actval) /= N_Raise_Constraint_Error
3533 then
3534 Rewrite (Actval,
3535 Make_Raise_Constraint_Error (Loc,
3536 Reason => CE_Range_Check_Failed));
3538 Set_Raises_Constraint_Error (Actval);
3539 Set_Etype (Actval, Etype (F));
3540 end if;
3542 Assoc :=
3543 Make_Parameter_Association (Loc,
3544 Explicit_Actual_Parameter => Actval,
3545 Selector_Name => Make_Identifier (Loc, Chars (F)));
3547 -- Case of insertion is first named actual
3549 if No (Prev)
3550 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3551 then
3552 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3553 Set_First_Named_Actual (N, Actval);
3555 if No (Prev) then
3556 if No (Parameter_Associations (N)) then
3557 Set_Parameter_Associations (N, New_List (Assoc));
3558 else
3559 Append (Assoc, Parameter_Associations (N));
3560 end if;
3562 else
3563 Insert_After (Prev, Assoc);
3564 end if;
3566 -- Case of insertion is not first named actual
3568 else
3569 Set_Next_Named_Actual
3570 (Assoc, Next_Named_Actual (Parent (Prev)));
3571 Set_Next_Named_Actual (Parent (Prev), Actval);
3572 Append (Assoc, Parameter_Associations (N));
3573 end if;
3575 Mark_Rewrite_Insertion (Assoc);
3576 Mark_Rewrite_Insertion (Actval);
3578 Prev := Actval;
3579 end Insert_Default;
3581 -------------------
3582 -- Same_Ancestor --
3583 -------------------
3585 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3586 FT1 : Entity_Id := T1;
3587 FT2 : Entity_Id := T2;
3589 begin
3590 if Is_Private_Type (T1)
3591 and then Present (Full_View (T1))
3592 then
3593 FT1 := Full_View (T1);
3594 end if;
3596 if Is_Private_Type (T2)
3597 and then Present (Full_View (T2))
3598 then
3599 FT2 := Full_View (T2);
3600 end if;
3602 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3603 end Same_Ancestor;
3605 --------------------------
3606 -- Static_Concatenation --
3607 --------------------------
3609 function Static_Concatenation (N : Node_Id) return Boolean is
3610 begin
3611 case Nkind (N) is
3612 when N_String_Literal =>
3613 return True;
3615 when N_Op_Concat =>
3617 -- Concatenation is static when both operands are static and
3618 -- the concatenation operator is a predefined one.
3620 return Scope (Entity (N)) = Standard_Standard
3621 and then
3622 Static_Concatenation (Left_Opnd (N))
3623 and then
3624 Static_Concatenation (Right_Opnd (N));
3626 when others =>
3627 if Is_Entity_Name (N) then
3628 declare
3629 Ent : constant Entity_Id := Entity (N);
3630 begin
3631 return Ekind (Ent) = E_Constant
3632 and then Present (Constant_Value (Ent))
3633 and then
3634 Is_OK_Static_Expression (Constant_Value (Ent));
3635 end;
3637 else
3638 return False;
3639 end if;
3640 end case;
3641 end Static_Concatenation;
3643 -- Start of processing for Resolve_Actuals
3645 begin
3646 Check_Argument_Order;
3648 if Is_Overloadable (Nam)
3649 and then Is_Inherited_Operation (Nam)
3650 and then In_Instance
3651 and then Present (Alias (Nam))
3652 and then Present (Overridden_Operation (Alias (Nam)))
3653 then
3654 Real_Subp := Alias (Nam);
3655 else
3656 Real_Subp := Empty;
3657 end if;
3659 if Present (First_Actual (N)) then
3660 Check_Prefixed_Call;
3661 end if;
3663 A := First_Actual (N);
3664 F := First_Formal (Nam);
3666 if Present (Real_Subp) then
3667 Real_F := First_Formal (Real_Subp);
3668 end if;
3670 while Present (F) loop
3671 if No (A) and then Needs_No_Actuals (Nam) then
3672 null;
3674 -- If we have an error in any actual or formal, indicated by a type
3675 -- of Any_Type, then abandon resolution attempt, and set result type
3676 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3677 -- type is imposed from context.
3679 elsif (Present (A) and then Etype (A) = Any_Type)
3680 or else Etype (F) = Any_Type
3681 then
3682 if Nkind (A) /= N_Raise_Expression then
3683 Set_Etype (N, Any_Type);
3684 return;
3685 end if;
3686 end if;
3688 -- Case where actual is present
3690 -- If the actual is an entity, generate a reference to it now. We
3691 -- do this before the actual is resolved, because a formal of some
3692 -- protected subprogram, or a task discriminant, will be rewritten
3693 -- during expansion, and the source entity reference may be lost.
3695 if Present (A)
3696 and then Is_Entity_Name (A)
3697 and then Comes_From_Source (A)
3698 then
3699 -- Annotate the tree by creating a variable reference marker when
3700 -- the actual denotes a variable reference, in case the reference
3701 -- is folded or optimized away. The variable reference marker is
3702 -- automatically saved for later examination by the ABE Processing
3703 -- phase. The status of the reference is set as follows:
3705 -- status mode
3706 -- read IN, IN OUT
3707 -- write IN OUT, OUT
3709 if Needs_Variable_Reference_Marker
3710 (N => A,
3711 Calls_OK => True)
3712 then
3713 Build_Variable_Reference_Marker
3714 (N => A,
3715 Read => Ekind (F) /= E_Out_Parameter,
3716 Write => Ekind (F) /= E_In_Parameter);
3717 end if;
3719 Orig_A := Entity (A);
3721 if Present (Orig_A) then
3722 if Is_Formal (Orig_A)
3723 and then Ekind (F) /= E_In_Parameter
3724 then
3725 Generate_Reference (Orig_A, A, 'm');
3727 elsif not Is_Overloaded (A) then
3728 if Ekind (F) /= E_Out_Parameter then
3729 Generate_Reference (Orig_A, A);
3731 -- RM 6.4.1(12): For an out parameter that is passed by
3732 -- copy, the formal parameter object is created, and:
3734 -- * For an access type, the formal parameter is initialized
3735 -- from the value of the actual, without checking that the
3736 -- value satisfies any constraint, any predicate, or any
3737 -- exclusion of the null value.
3739 -- * For a scalar type that has the Default_Value aspect
3740 -- specified, the formal parameter is initialized from the
3741 -- value of the actual, without checking that the value
3742 -- satisfies any constraint or any predicate.
3743 -- I do not understand why this case is included??? this is
3744 -- not a case where an OUT parameter is treated as IN OUT.
3746 -- * For a composite type with discriminants or that has
3747 -- implicit initial values for any subcomponents, the
3748 -- behavior is as for an in out parameter passed by copy.
3750 -- Hence for these cases we generate the read reference now
3751 -- (the write reference will be generated later by
3752 -- Note_Possible_Modification).
3754 elsif Is_By_Copy_Type (Etype (F))
3755 and then
3756 (Is_Access_Type (Etype (F))
3757 or else
3758 (Is_Scalar_Type (Etype (F))
3759 and then
3760 Present (Default_Aspect_Value (Etype (F))))
3761 or else
3762 (Is_Composite_Type (Etype (F))
3763 and then (Has_Discriminants (Etype (F))
3764 or else Is_Partially_Initialized_Type
3765 (Etype (F)))))
3766 then
3767 Generate_Reference (Orig_A, A);
3768 end if;
3769 end if;
3770 end if;
3771 end if;
3773 if Present (A)
3774 and then (Nkind (Parent (A)) /= N_Parameter_Association
3775 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3776 then
3777 -- If style checking mode on, check match of formal name
3779 if Style_Check then
3780 if Nkind (Parent (A)) = N_Parameter_Association then
3781 Check_Identifier (Selector_Name (Parent (A)), F);
3782 end if;
3783 end if;
3785 -- If the formal is Out or In_Out, do not resolve and expand the
3786 -- conversion, because it is subsequently expanded into explicit
3787 -- temporaries and assignments. However, the object of the
3788 -- conversion can be resolved. An exception is the case of tagged
3789 -- type conversion with a class-wide actual. In that case we want
3790 -- the tag check to occur and no temporary will be needed (no
3791 -- representation change can occur) and the parameter is passed by
3792 -- reference, so we go ahead and resolve the type conversion.
3793 -- Another exception is the case of reference to component or
3794 -- subcomponent of a bit-packed array, in which case we want to
3795 -- defer expansion to the point the in and out assignments are
3796 -- performed.
3798 if Ekind (F) /= E_In_Parameter
3799 and then Nkind (A) = N_Type_Conversion
3800 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3801 then
3802 if Ekind (F) = E_In_Out_Parameter
3803 and then Is_Array_Type (Etype (F))
3804 then
3805 -- In a view conversion, the conversion must be legal in
3806 -- both directions, and thus both component types must be
3807 -- aliased, or neither (4.6 (8)).
3809 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3810 -- the privacy requirement should not apply to generic
3811 -- types, and should be checked in an instance. ARG query
3812 -- is in order ???
3814 if Has_Aliased_Components (Etype (Expression (A))) /=
3815 Has_Aliased_Components (Etype (F))
3816 then
3817 Error_Msg_N
3818 ("both component types in a view conversion must be"
3819 & " aliased, or neither", A);
3821 -- Comment here??? what set of cases???
3823 elsif
3824 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3825 then
3826 -- Check view conv between unrelated by ref array types
3828 if Is_By_Reference_Type (Etype (F))
3829 or else Is_By_Reference_Type (Etype (Expression (A)))
3830 then
3831 Error_Msg_N
3832 ("view conversion between unrelated by reference "
3833 & "array types not allowed (\'A'I-00246)", A);
3835 -- In Ada 2005 mode, check view conversion component
3836 -- type cannot be private, tagged, or volatile. Note
3837 -- that we only apply this to source conversions. The
3838 -- generated code can contain conversions which are
3839 -- not subject to this test, and we cannot extract the
3840 -- component type in such cases since it is not present.
3842 elsif Comes_From_Source (A)
3843 and then Ada_Version >= Ada_2005
3844 then
3845 declare
3846 Comp_Type : constant Entity_Id :=
3847 Component_Type
3848 (Etype (Expression (A)));
3849 begin
3850 if (Is_Private_Type (Comp_Type)
3851 and then not Is_Generic_Type (Comp_Type))
3852 or else Is_Tagged_Type (Comp_Type)
3853 or else Is_Volatile (Comp_Type)
3854 then
3855 Error_Msg_N
3856 ("component type of a view conversion cannot"
3857 & " be private, tagged, or volatile"
3858 & " (RM 4.6 (24))",
3859 Expression (A));
3860 end if;
3861 end;
3862 end if;
3863 end if;
3864 end if;
3866 -- Resolve expression if conversion is all OK
3868 if (Conversion_OK (A)
3869 or else Valid_Conversion (A, Etype (A), Expression (A)))
3870 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3871 then
3872 Resolve (Expression (A));
3873 end if;
3875 -- If the actual is a function call that returns a limited
3876 -- unconstrained object that needs finalization, create a
3877 -- transient scope for it, so that it can receive the proper
3878 -- finalization list.
3880 elsif Expander_Active
3881 and then Nkind (A) = N_Function_Call
3882 and then Is_Limited_Record (Etype (F))
3883 and then not Is_Constrained (Etype (F))
3884 and then (Needs_Finalization (Etype (F))
3885 or else Has_Task (Etype (F)))
3886 then
3887 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3888 Resolve (A, Etype (F));
3890 -- A small optimization: if one of the actuals is a concatenation
3891 -- create a block around a procedure call to recover stack space.
3892 -- This alleviates stack usage when several procedure calls in
3893 -- the same statement list use concatenation. We do not perform
3894 -- this wrapping for code statements, where the argument is a
3895 -- static string, and we want to preserve warnings involving
3896 -- sequences of such statements.
3898 elsif Expander_Active
3899 and then Nkind (A) = N_Op_Concat
3900 and then Nkind (N) = N_Procedure_Call_Statement
3901 and then not (Is_Intrinsic_Subprogram (Nam)
3902 and then Chars (Nam) = Name_Asm)
3903 and then not Static_Concatenation (A)
3904 then
3905 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3906 Resolve (A, Etype (F));
3908 else
3909 if Nkind (A) = N_Type_Conversion
3910 and then Is_Array_Type (Etype (F))
3911 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3912 and then
3913 (Is_Limited_Type (Etype (F))
3914 or else Is_Limited_Type (Etype (Expression (A))))
3915 then
3916 Error_Msg_N
3917 ("conversion between unrelated limited array types not "
3918 & "allowed ('A'I-00246)", A);
3920 if Is_Limited_Type (Etype (F)) then
3921 Explain_Limited_Type (Etype (F), A);
3922 end if;
3924 if Is_Limited_Type (Etype (Expression (A))) then
3925 Explain_Limited_Type (Etype (Expression (A)), A);
3926 end if;
3927 end if;
3929 -- (Ada 2005: AI-251): If the actual is an allocator whose
3930 -- directly designated type is a class-wide interface, we build
3931 -- an anonymous access type to use it as the type of the
3932 -- allocator. Later, when the subprogram call is expanded, if
3933 -- the interface has a secondary dispatch table the expander
3934 -- will add a type conversion to force the correct displacement
3935 -- of the pointer.
3937 if Nkind (A) = N_Allocator then
3938 declare
3939 DDT : constant Entity_Id :=
3940 Directly_Designated_Type (Base_Type (Etype (F)));
3942 New_Itype : Entity_Id;
3944 begin
3945 if Is_Class_Wide_Type (DDT)
3946 and then Is_Interface (DDT)
3947 then
3948 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3949 Set_Etype (New_Itype, Etype (A));
3950 Set_Directly_Designated_Type
3951 (New_Itype, Directly_Designated_Type (Etype (A)));
3952 Set_Etype (A, New_Itype);
3953 end if;
3955 -- Ada 2005, AI-162:If the actual is an allocator, the
3956 -- innermost enclosing statement is the master of the
3957 -- created object. This needs to be done with expansion
3958 -- enabled only, otherwise the transient scope will not
3959 -- be removed in the expansion of the wrapped construct.
3961 if Expander_Active
3962 and then (Needs_Finalization (DDT)
3963 or else Has_Task (DDT))
3964 then
3965 Establish_Transient_Scope
3966 (A, Manage_Sec_Stack => False);
3967 end if;
3968 end;
3970 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3971 Check_Restriction (No_Access_Parameter_Allocators, A);
3972 end if;
3973 end if;
3975 -- (Ada 2005): The call may be to a primitive operation of a
3976 -- tagged synchronized type, declared outside of the type. In
3977 -- this case the controlling actual must be converted to its
3978 -- corresponding record type, which is the formal type. The
3979 -- actual may be a subtype, either because of a constraint or
3980 -- because it is a generic actual, so use base type to locate
3981 -- concurrent type.
3983 F_Typ := Base_Type (Etype (F));
3985 if Is_Tagged_Type (F_Typ)
3986 and then (Is_Concurrent_Type (F_Typ)
3987 or else Is_Concurrent_Record_Type (F_Typ))
3988 then
3989 -- If the actual is overloaded, look for an interpretation
3990 -- that has a synchronized type.
3992 if not Is_Overloaded (A) then
3993 A_Typ := Base_Type (Etype (A));
3995 else
3996 declare
3997 Index : Interp_Index;
3998 It : Interp;
4000 begin
4001 Get_First_Interp (A, Index, It);
4002 while Present (It.Typ) loop
4003 if Is_Concurrent_Type (It.Typ)
4004 or else Is_Concurrent_Record_Type (It.Typ)
4005 then
4006 A_Typ := Base_Type (It.Typ);
4007 exit;
4008 end if;
4010 Get_Next_Interp (Index, It);
4011 end loop;
4012 end;
4013 end if;
4015 declare
4016 Full_A_Typ : Entity_Id;
4018 begin
4019 if Present (Full_View (A_Typ)) then
4020 Full_A_Typ := Base_Type (Full_View (A_Typ));
4021 else
4022 Full_A_Typ := A_Typ;
4023 end if;
4025 -- Tagged synchronized type (case 1): the actual is a
4026 -- concurrent type.
4028 if Is_Concurrent_Type (A_Typ)
4029 and then Corresponding_Record_Type (A_Typ) = F_Typ
4030 then
4031 Rewrite (A,
4032 Unchecked_Convert_To
4033 (Corresponding_Record_Type (A_Typ), A));
4034 Resolve (A, Etype (F));
4036 -- Tagged synchronized type (case 2): the formal is a
4037 -- concurrent type.
4039 elsif Ekind (Full_A_Typ) = E_Record_Type
4040 and then Present
4041 (Corresponding_Concurrent_Type (Full_A_Typ))
4042 and then Is_Concurrent_Type (F_Typ)
4043 and then Present (Corresponding_Record_Type (F_Typ))
4044 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4045 then
4046 Resolve (A, Corresponding_Record_Type (F_Typ));
4048 -- Common case
4050 else
4051 Resolve (A, Etype (F));
4052 end if;
4053 end;
4055 -- Not a synchronized operation
4057 else
4058 Resolve (A, Etype (F));
4059 end if;
4060 end if;
4062 A_Typ := Etype (A);
4063 F_Typ := Etype (F);
4065 -- An actual cannot be an untagged formal incomplete type
4067 if Ekind (A_Typ) = E_Incomplete_Type
4068 and then not Is_Tagged_Type (A_Typ)
4069 and then Is_Generic_Type (A_Typ)
4070 then
4071 Error_Msg_N
4072 ("invalid use of untagged formal incomplete type", A);
4073 end if;
4075 if Comes_From_Source (Original_Node (N))
4076 and then Nkind_In (Original_Node (N), N_Function_Call,
4077 N_Procedure_Call_Statement)
4078 then
4079 -- In formal mode, check that actual parameters matching
4080 -- formals of tagged types are objects (or ancestor type
4081 -- conversions of objects), not general expressions.
4083 if Is_Actual_Tagged_Parameter (A) then
4084 if Is_SPARK_05_Object_Reference (A) then
4085 null;
4087 elsif Nkind (A) = N_Type_Conversion then
4088 declare
4089 Operand : constant Node_Id := Expression (A);
4090 Operand_Typ : constant Entity_Id := Etype (Operand);
4091 Target_Typ : constant Entity_Id := A_Typ;
4093 begin
4094 if not Is_SPARK_05_Object_Reference (Operand) then
4095 Check_SPARK_05_Restriction
4096 ("object required", Operand);
4098 -- In formal mode, the only view conversions are those
4099 -- involving ancestor conversion of an extended type.
4101 elsif not
4102 (Is_Tagged_Type (Target_Typ)
4103 and then not Is_Class_Wide_Type (Target_Typ)
4104 and then Is_Tagged_Type (Operand_Typ)
4105 and then not Is_Class_Wide_Type (Operand_Typ)
4106 and then Is_Ancestor (Target_Typ, Operand_Typ))
4107 then
4108 if Ekind_In
4109 (F, E_Out_Parameter, E_In_Out_Parameter)
4110 then
4111 Check_SPARK_05_Restriction
4112 ("ancestor conversion is the only permitted "
4113 & "view conversion", A);
4114 else
4115 Check_SPARK_05_Restriction
4116 ("ancestor conversion required", A);
4117 end if;
4119 else
4120 null;
4121 end if;
4122 end;
4124 else
4125 Check_SPARK_05_Restriction ("object required", A);
4126 end if;
4128 -- In formal mode, the only view conversions are those
4129 -- involving ancestor conversion of an extended type.
4131 elsif Nkind (A) = N_Type_Conversion
4132 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4133 then
4134 Check_SPARK_05_Restriction
4135 ("ancestor conversion is the only permitted view "
4136 & "conversion", A);
4137 end if;
4138 end if;
4140 -- has warnings suppressed, then we reset Never_Set_In_Source for
4141 -- the calling entity. The reason for this is to catch cases like
4142 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4143 -- uses trickery to modify an IN parameter.
4145 if Ekind (F) = E_In_Parameter
4146 and then Is_Entity_Name (A)
4147 and then Present (Entity (A))
4148 and then Ekind (Entity (A)) = E_Variable
4149 and then Has_Warnings_Off (F_Typ)
4150 then
4151 Set_Never_Set_In_Source (Entity (A), False);
4152 end if;
4154 -- Perform error checks for IN and IN OUT parameters
4156 if Ekind (F) /= E_Out_Parameter then
4158 -- Check unset reference. For scalar parameters, it is clearly
4159 -- wrong to pass an uninitialized value as either an IN or
4160 -- IN-OUT parameter. For composites, it is also clearly an
4161 -- error to pass a completely uninitialized value as an IN
4162 -- parameter, but the case of IN OUT is trickier. We prefer
4163 -- not to give a warning here. For example, suppose there is
4164 -- a routine that sets some component of a record to False.
4165 -- It is perfectly reasonable to make this IN-OUT and allow
4166 -- either initialized or uninitialized records to be passed
4167 -- in this case.
4169 -- For partially initialized composite values, we also avoid
4170 -- warnings, since it is quite likely that we are passing a
4171 -- partially initialized value and only the initialized fields
4172 -- will in fact be read in the subprogram.
4174 if Is_Scalar_Type (A_Typ)
4175 or else (Ekind (F) = E_In_Parameter
4176 and then not Is_Partially_Initialized_Type (A_Typ))
4177 then
4178 Check_Unset_Reference (A);
4179 end if;
4181 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4182 -- actual to a nested call, since this constitutes a reading of
4183 -- the parameter, which is not allowed.
4185 if Ada_Version = Ada_83
4186 and then Is_Entity_Name (A)
4187 and then Ekind (Entity (A)) = E_Out_Parameter
4188 then
4189 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4190 end if;
4191 end if;
4193 -- In -gnatd.q mode, forget that a given array is constant when
4194 -- it is passed as an IN parameter to a foreign-convention
4195 -- subprogram. This is in case the subprogram evilly modifies the
4196 -- object. Of course, correct code would use IN OUT.
4198 if Debug_Flag_Dot_Q
4199 and then Ekind (F) = E_In_Parameter
4200 and then Has_Foreign_Convention (Nam)
4201 and then Is_Array_Type (F_Typ)
4202 and then Nkind (A) in N_Has_Entity
4203 and then Present (Entity (A))
4204 then
4205 Set_Is_True_Constant (Entity (A), False);
4206 end if;
4208 -- Case of OUT or IN OUT parameter
4210 if Ekind (F) /= E_In_Parameter then
4212 -- For an Out parameter, check for useless assignment. Note
4213 -- that we can't set Last_Assignment this early, because we may
4214 -- kill current values in Resolve_Call, and that call would
4215 -- clobber the Last_Assignment field.
4217 -- Note: call Warn_On_Useless_Assignment before doing the check
4218 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4219 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4220 -- reflects the last assignment, not this one.
4222 if Ekind (F) = E_Out_Parameter then
4223 if Warn_On_Modified_As_Out_Parameter (F)
4224 and then Is_Entity_Name (A)
4225 and then Present (Entity (A))
4226 and then Comes_From_Source (N)
4227 then
4228 Warn_On_Useless_Assignment (Entity (A), A);
4229 end if;
4230 end if;
4232 -- Validate the form of the actual. Note that the call to
4233 -- Is_OK_Variable_For_Out_Formal generates the required
4234 -- reference in this case.
4236 -- A call to an initialization procedure for an aggregate
4237 -- component may initialize a nested component of a constant
4238 -- designated object. In this context the object is variable.
4240 if not Is_OK_Variable_For_Out_Formal (A)
4241 and then not Is_Init_Proc (Nam)
4242 then
4243 Error_Msg_NE ("actual for& must be a variable", A, F);
4245 if Is_Subprogram (Current_Scope) then
4246 if Is_Invariant_Procedure (Current_Scope)
4247 or else Is_Partial_Invariant_Procedure (Current_Scope)
4248 then
4249 Error_Msg_N
4250 ("function used in invariant cannot modify its "
4251 & "argument", F);
4253 elsif Is_Predicate_Function (Current_Scope) then
4254 Error_Msg_N
4255 ("function used in predicate cannot modify its "
4256 & "argument", F);
4257 end if;
4258 end if;
4259 end if;
4261 -- What's the following about???
4263 if Is_Entity_Name (A) then
4264 Kill_Checks (Entity (A));
4265 else
4266 Kill_All_Checks;
4267 end if;
4268 end if;
4270 if Etype (A) = Any_Type then
4271 Set_Etype (N, Any_Type);
4272 return;
4273 end if;
4275 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4277 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4279 -- Apply predicate tests except in certain special cases. Note
4280 -- that it might be more consistent to apply these only when
4281 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4282 -- for the outbound predicate tests ??? In any case indicate
4283 -- the function being called, for better warnings if the call
4284 -- leads to an infinite recursion.
4286 if Predicate_Tests_On_Arguments (Nam) then
4287 Apply_Predicate_Check (A, F_Typ, Nam);
4288 end if;
4290 -- Apply required constraint checks
4292 -- Gigi looks at the check flag and uses the appropriate types.
4293 -- For now since one flag is used there is an optimization
4294 -- which might not be done in the IN OUT case since Gigi does
4295 -- not do any analysis. More thought required about this ???
4297 -- In fact is this comment obsolete??? doesn't the expander now
4298 -- generate all these tests anyway???
4300 if Is_Scalar_Type (Etype (A)) then
4301 Apply_Scalar_Range_Check (A, F_Typ);
4303 elsif Is_Array_Type (Etype (A)) then
4304 Apply_Length_Check (A, F_Typ);
4306 elsif Is_Record_Type (F_Typ)
4307 and then Has_Discriminants (F_Typ)
4308 and then Is_Constrained (F_Typ)
4309 and then (not Is_Derived_Type (F_Typ)
4310 or else Comes_From_Source (Nam))
4311 then
4312 Apply_Discriminant_Check (A, F_Typ);
4314 -- For view conversions of a discriminated object, apply
4315 -- check to object itself, the conversion alreay has the
4316 -- proper type.
4318 if Nkind (A) = N_Type_Conversion
4319 and then Is_Constrained (Etype (Expression (A)))
4320 then
4321 Apply_Discriminant_Check (Expression (A), F_Typ);
4322 end if;
4324 elsif Is_Access_Type (F_Typ)
4325 and then Is_Array_Type (Designated_Type (F_Typ))
4326 and then Is_Constrained (Designated_Type (F_Typ))
4327 then
4328 Apply_Length_Check (A, F_Typ);
4330 elsif Is_Access_Type (F_Typ)
4331 and then Has_Discriminants (Designated_Type (F_Typ))
4332 and then Is_Constrained (Designated_Type (F_Typ))
4333 then
4334 Apply_Discriminant_Check (A, F_Typ);
4336 else
4337 Apply_Range_Check (A, F_Typ);
4338 end if;
4340 -- Ada 2005 (AI-231): Note that the controlling parameter case
4341 -- already existed in Ada 95, which is partially checked
4342 -- elsewhere (see Checks), and we don't want the warning
4343 -- message to differ.
4345 if Is_Access_Type (F_Typ)
4346 and then Can_Never_Be_Null (F_Typ)
4347 and then Known_Null (A)
4348 then
4349 if Is_Controlling_Formal (F) then
4350 Apply_Compile_Time_Constraint_Error
4351 (N => A,
4352 Msg => "null value not allowed here??",
4353 Reason => CE_Access_Check_Failed);
4355 elsif Ada_Version >= Ada_2005 then
4356 Apply_Compile_Time_Constraint_Error
4357 (N => A,
4358 Msg => "(Ada 2005) null not allowed in "
4359 & "null-excluding formal??",
4360 Reason => CE_Null_Not_Allowed);
4361 end if;
4362 end if;
4363 end if;
4365 -- Checks for OUT parameters and IN OUT parameters
4367 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4369 -- If there is a type conversion, make sure the return value
4370 -- meets the constraints of the variable before the conversion.
4372 if Nkind (A) = N_Type_Conversion then
4373 if Is_Scalar_Type (A_Typ) then
4374 Apply_Scalar_Range_Check
4375 (Expression (A), Etype (Expression (A)), A_Typ);
4377 -- In addition, the returned value of the parameter must
4378 -- satisfy the bounds of the object type (see comment
4379 -- below).
4381 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4383 else
4384 Apply_Range_Check
4385 (Expression (A), Etype (Expression (A)), A_Typ);
4386 end if;
4388 -- If no conversion, apply scalar range checks and length check
4389 -- based on the subtype of the actual (NOT that of the formal).
4390 -- This indicates that the check takes place on return from the
4391 -- call. During expansion the required constraint checks are
4392 -- inserted. In GNATprove mode, in the absence of expansion,
4393 -- the flag indicates that the returned value is valid.
4395 else
4396 if Is_Scalar_Type (F_Typ) then
4397 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4399 elsif Is_Array_Type (F_Typ)
4400 and then Ekind (F) = E_Out_Parameter
4401 then
4402 Apply_Length_Check (A, F_Typ);
4403 else
4404 Apply_Range_Check (A, A_Typ, F_Typ);
4405 end if;
4406 end if;
4408 -- Note: we do not apply the predicate checks for the case of
4409 -- OUT and IN OUT parameters. They are instead applied in the
4410 -- Expand_Actuals routine in Exp_Ch6.
4411 end if;
4413 -- An actual associated with an access parameter is implicitly
4414 -- converted to the anonymous access type of the formal and must
4415 -- satisfy the legality checks for access conversions.
4417 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4418 if not Valid_Conversion (A, F_Typ, A) then
4419 Error_Msg_N
4420 ("invalid implicit conversion for access parameter", A);
4421 end if;
4423 -- If the actual is an access selected component of a variable,
4424 -- the call may modify its designated object. It is reasonable
4425 -- to treat this as a potential modification of the enclosing
4426 -- record, to prevent spurious warnings that it should be
4427 -- declared as a constant, because intuitively programmers
4428 -- regard the designated subcomponent as part of the record.
4430 if Nkind (A) = N_Selected_Component
4431 and then Is_Entity_Name (Prefix (A))
4432 and then not Is_Constant_Object (Entity (Prefix (A)))
4433 then
4434 Note_Possible_Modification (A, Sure => False);
4435 end if;
4436 end if;
4438 -- Check bad case of atomic/volatile argument (RM C.6(12))
4440 if Is_By_Reference_Type (Etype (F))
4441 and then Comes_From_Source (N)
4442 then
4443 if Is_Atomic_Object (A)
4444 and then not Is_Atomic (Etype (F))
4445 then
4446 Error_Msg_NE
4447 ("cannot pass atomic argument to non-atomic formal&",
4448 A, F);
4450 elsif Is_Volatile_Object (A)
4451 and then not Is_Volatile (Etype (F))
4452 then
4453 Error_Msg_NE
4454 ("cannot pass volatile argument to non-volatile formal&",
4455 A, F);
4456 end if;
4457 end if;
4459 -- Check that subprograms don't have improper controlling
4460 -- arguments (RM 3.9.2 (9)).
4462 -- A primitive operation may have an access parameter of an
4463 -- incomplete tagged type, but a dispatching call is illegal
4464 -- if the type is still incomplete.
4466 if Is_Controlling_Formal (F) then
4467 Set_Is_Controlling_Actual (A);
4469 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4470 declare
4471 Desig : constant Entity_Id := Designated_Type (Etype (F));
4472 begin
4473 if Ekind (Desig) = E_Incomplete_Type
4474 and then No (Full_View (Desig))
4475 and then No (Non_Limited_View (Desig))
4476 then
4477 Error_Msg_NE
4478 ("premature use of incomplete type& "
4479 & "in dispatching call", A, Desig);
4480 end if;
4481 end;
4482 end if;
4484 elsif Nkind (A) = N_Explicit_Dereference then
4485 Validate_Remote_Access_To_Class_Wide_Type (A);
4486 end if;
4488 -- Apply legality rule 3.9.2 (9/1)
4490 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4491 and then not Is_Class_Wide_Type (F_Typ)
4492 and then not Is_Controlling_Formal (F)
4493 and then not In_Instance
4494 then
4495 Error_Msg_N ("class-wide argument not allowed here!", A);
4497 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4498 Error_Msg_Node_2 := F_Typ;
4499 Error_Msg_NE
4500 ("& is not a dispatching operation of &!", A, Nam);
4501 end if;
4503 -- Apply the checks described in 3.10.2(27): if the context is a
4504 -- specific access-to-object, the actual cannot be class-wide.
4505 -- Use base type to exclude access_to_subprogram cases.
4507 elsif Is_Access_Type (A_Typ)
4508 and then Is_Access_Type (F_Typ)
4509 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4510 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4511 or else (Nkind (A) = N_Attribute_Reference
4512 and then
4513 Is_Class_Wide_Type (Etype (Prefix (A)))))
4514 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4515 and then not Is_Controlling_Formal (F)
4517 -- Disable these checks for call to imported C++ subprograms
4519 and then not
4520 (Is_Entity_Name (Name (N))
4521 and then Is_Imported (Entity (Name (N)))
4522 and then Convention (Entity (Name (N))) = Convention_CPP)
4523 then
4524 Error_Msg_N
4525 ("access to class-wide argument not allowed here!", A);
4527 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4528 Error_Msg_Node_2 := Designated_Type (F_Typ);
4529 Error_Msg_NE
4530 ("& is not a dispatching operation of &!", A, Nam);
4531 end if;
4532 end if;
4534 Check_Aliased_Parameter;
4536 Eval_Actual (A);
4538 -- If it is a named association, treat the selector_name as a
4539 -- proper identifier, and mark the corresponding entity.
4541 if Nkind (Parent (A)) = N_Parameter_Association
4543 -- Ignore reference in SPARK mode, as it refers to an entity not
4544 -- in scope at the point of reference, so the reference should
4545 -- be ignored for computing effects of subprograms.
4547 and then not GNATprove_Mode
4548 then
4549 -- If subprogram is overridden, use name of formal that
4550 -- is being called.
4552 if Present (Real_Subp) then
4553 Set_Entity (Selector_Name (Parent (A)), Real_F);
4554 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4556 else
4557 Set_Entity (Selector_Name (Parent (A)), F);
4558 Generate_Reference (F, Selector_Name (Parent (A)));
4559 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4560 Generate_Reference (F_Typ, N, ' ');
4561 end if;
4562 end if;
4564 Prev := A;
4566 if Ekind (F) /= E_Out_Parameter then
4567 Check_Unset_Reference (A);
4568 end if;
4570 -- The following checks are only relevant when SPARK_Mode is on as
4571 -- they are not standard Ada legality rule. Internally generated
4572 -- temporaries are ignored.
4574 if SPARK_Mode = On and then Comes_From_Source (A) then
4576 -- An effectively volatile object may act as an actual when the
4577 -- corresponding formal is of a non-scalar effectively volatile
4578 -- type (SPARK RM 7.1.3(11)).
4580 if not Is_Scalar_Type (Etype (F))
4581 and then Is_Effectively_Volatile (Etype (F))
4582 then
4583 null;
4585 -- An effectively volatile object may act as an actual in a
4586 -- call to an instance of Unchecked_Conversion.
4587 -- (SPARK RM 7.1.3(11)).
4589 elsif Is_Unchecked_Conversion_Instance (Nam) then
4590 null;
4592 -- The actual denotes an object
4594 elsif Is_Effectively_Volatile_Object (A) then
4595 Error_Msg_N
4596 ("volatile object cannot act as actual in a call (SPARK "
4597 & "RM 7.1.3(11))", A);
4599 -- Otherwise the actual denotes an expression. Inspect the
4600 -- expression and flag each effectively volatile object with
4601 -- enabled property Async_Writers or Effective_Reads as illegal
4602 -- because it apprears within an interfering context. Note that
4603 -- this is usually done in Resolve_Entity_Name, but when the
4604 -- effectively volatile object appears as an actual in a call,
4605 -- the call must be resolved first.
4607 else
4608 Flag_Effectively_Volatile_Objects (A);
4609 end if;
4611 -- An effectively volatile variable cannot act as an actual
4612 -- parameter in a procedure call when the variable has enabled
4613 -- property Effective_Reads and the corresponding formal is of
4614 -- mode IN (SPARK RM 7.1.3(10)).
4616 if Ekind (Nam) = E_Procedure
4617 and then Ekind (F) = E_In_Parameter
4618 and then Is_Entity_Name (A)
4619 then
4620 A_Id := Entity (A);
4622 if Ekind (A_Id) = E_Variable
4623 and then Is_Effectively_Volatile (Etype (A_Id))
4624 and then Effective_Reads_Enabled (A_Id)
4625 then
4626 Error_Msg_NE
4627 ("effectively volatile variable & cannot appear as "
4628 & "actual in procedure call", A, A_Id);
4630 Error_Msg_Name_1 := Name_Effective_Reads;
4631 Error_Msg_N ("\\variable has enabled property %", A);
4632 Error_Msg_N ("\\corresponding formal has mode IN", A);
4633 end if;
4634 end if;
4635 end if;
4637 -- A formal parameter of a specific tagged type whose related
4638 -- subprogram is subject to pragma Extensions_Visible with value
4639 -- "False" cannot act as an actual in a subprogram with value
4640 -- "True" (SPARK RM 6.1.7(3)).
4642 if Is_EVF_Expression (A)
4643 and then Extensions_Visible_Status (Nam) =
4644 Extensions_Visible_True
4645 then
4646 Error_Msg_N
4647 ("formal parameter cannot act as actual parameter when "
4648 & "Extensions_Visible is False", A);
4649 Error_Msg_NE
4650 ("\subprogram & has Extensions_Visible True", A, Nam);
4651 end if;
4653 -- The actual parameter of a Ghost subprogram whose formal is of
4654 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4656 if Comes_From_Source (Nam)
4657 and then Is_Ghost_Entity (Nam)
4658 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4659 and then Is_Entity_Name (A)
4660 and then Present (Entity (A))
4661 and then not Is_Ghost_Entity (Entity (A))
4662 then
4663 Error_Msg_NE
4664 ("non-ghost variable & cannot appear as actual in call to "
4665 & "ghost procedure", A, Entity (A));
4667 if Ekind (F) = E_In_Out_Parameter then
4668 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4669 else
4670 Error_Msg_N ("\corresponding formal has mode OUT", A);
4671 end if;
4672 end if;
4674 Next_Actual (A);
4676 -- Case where actual is not present
4678 else
4679 Insert_Default;
4680 end if;
4682 Next_Formal (F);
4684 if Present (Real_Subp) then
4685 Next_Formal (Real_F);
4686 end if;
4687 end loop;
4688 end Resolve_Actuals;
4690 -----------------------
4691 -- Resolve_Allocator --
4692 -----------------------
4694 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4695 Desig_T : constant Entity_Id := Designated_Type (Typ);
4696 E : constant Node_Id := Expression (N);
4697 Subtyp : Entity_Id;
4698 Discrim : Entity_Id;
4699 Constr : Node_Id;
4700 Aggr : Node_Id;
4701 Assoc : Node_Id := Empty;
4702 Disc_Exp : Node_Id;
4704 procedure Check_Allocator_Discrim_Accessibility
4705 (Disc_Exp : Node_Id;
4706 Alloc_Typ : Entity_Id);
4707 -- Check that accessibility level associated with an access discriminant
4708 -- initialized in an allocator by the expression Disc_Exp is not deeper
4709 -- than the level of the allocator type Alloc_Typ. An error message is
4710 -- issued if this condition is violated. Specialized checks are done for
4711 -- the cases of a constraint expression which is an access attribute or
4712 -- an access discriminant.
4714 function In_Dispatching_Context return Boolean;
4715 -- If the allocator is an actual in a call, it is allowed to be class-
4716 -- wide when the context is not because it is a controlling actual.
4718 -------------------------------------------
4719 -- Check_Allocator_Discrim_Accessibility --
4720 -------------------------------------------
4722 procedure Check_Allocator_Discrim_Accessibility
4723 (Disc_Exp : Node_Id;
4724 Alloc_Typ : Entity_Id)
4726 begin
4727 if Type_Access_Level (Etype (Disc_Exp)) >
4728 Deepest_Type_Access_Level (Alloc_Typ)
4729 then
4730 Error_Msg_N
4731 ("operand type has deeper level than allocator type", Disc_Exp);
4733 -- When the expression is an Access attribute the level of the prefix
4734 -- object must not be deeper than that of the allocator's type.
4736 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4737 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4738 Attribute_Access
4739 and then Object_Access_Level (Prefix (Disc_Exp)) >
4740 Deepest_Type_Access_Level (Alloc_Typ)
4741 then
4742 Error_Msg_N
4743 ("prefix of attribute has deeper level than allocator type",
4744 Disc_Exp);
4746 -- When the expression is an access discriminant the check is against
4747 -- the level of the prefix object.
4749 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4750 and then Nkind (Disc_Exp) = N_Selected_Component
4751 and then Object_Access_Level (Prefix (Disc_Exp)) >
4752 Deepest_Type_Access_Level (Alloc_Typ)
4753 then
4754 Error_Msg_N
4755 ("access discriminant has deeper level than allocator type",
4756 Disc_Exp);
4758 -- All other cases are legal
4760 else
4761 null;
4762 end if;
4763 end Check_Allocator_Discrim_Accessibility;
4765 ----------------------------
4766 -- In_Dispatching_Context --
4767 ----------------------------
4769 function In_Dispatching_Context return Boolean is
4770 Par : constant Node_Id := Parent (N);
4772 begin
4773 return Nkind (Par) in N_Subprogram_Call
4774 and then Is_Entity_Name (Name (Par))
4775 and then Is_Dispatching_Operation (Entity (Name (Par)));
4776 end In_Dispatching_Context;
4778 -- Start of processing for Resolve_Allocator
4780 begin
4781 -- Replace general access with specific type
4783 if Ekind (Etype (N)) = E_Allocator_Type then
4784 Set_Etype (N, Base_Type (Typ));
4785 end if;
4787 if Is_Abstract_Type (Typ) then
4788 Error_Msg_N ("type of allocator cannot be abstract", N);
4789 end if;
4791 -- For qualified expression, resolve the expression using the given
4792 -- subtype (nothing to do for type mark, subtype indication)
4794 if Nkind (E) = N_Qualified_Expression then
4795 if Is_Class_Wide_Type (Etype (E))
4796 and then not Is_Class_Wide_Type (Desig_T)
4797 and then not In_Dispatching_Context
4798 then
4799 Error_Msg_N
4800 ("class-wide allocator not allowed for this access type", N);
4801 end if;
4803 Resolve (Expression (E), Etype (E));
4804 Check_Non_Static_Context (Expression (E));
4805 Check_Unset_Reference (Expression (E));
4807 -- Allocators generated by the build-in-place expansion mechanism
4808 -- are explicitly marked as coming from source but do not need to be
4809 -- checked for limited initialization. To exclude this case, ensure
4810 -- that the parent of the allocator is a source node.
4811 -- The return statement constructed for an Expression_Function does
4812 -- not come from source but requires a limited check.
4814 if Is_Limited_Type (Etype (E))
4815 and then Comes_From_Source (N)
4816 and then
4817 (Comes_From_Source (Parent (N))
4818 or else
4819 (Ekind (Current_Scope) = E_Function
4820 and then Nkind (Original_Node (Unit_Declaration_Node
4821 (Current_Scope))) = N_Expression_Function))
4822 and then not In_Instance_Body
4823 then
4824 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4825 if Nkind (Parent (N)) = N_Assignment_Statement then
4826 Error_Msg_N
4827 ("illegal expression for initialized allocator of a "
4828 & "limited type (RM 7.5 (2.7/2))", N);
4829 else
4830 Error_Msg_N
4831 ("initialization not allowed for limited types", N);
4832 end if;
4834 Explain_Limited_Type (Etype (E), N);
4835 end if;
4836 end if;
4838 -- A qualified expression requires an exact match of the type. Class-
4839 -- wide matching is not allowed.
4841 if (Is_Class_Wide_Type (Etype (Expression (E)))
4842 or else Is_Class_Wide_Type (Etype (E)))
4843 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4844 then
4845 Wrong_Type (Expression (E), Etype (E));
4846 end if;
4848 -- Calls to build-in-place functions are not currently supported in
4849 -- allocators for access types associated with a simple storage pool.
4850 -- Supporting such allocators may require passing additional implicit
4851 -- parameters to build-in-place functions (or a significant revision
4852 -- of the current b-i-p implementation to unify the handling for
4853 -- multiple kinds of storage pools). ???
4855 if Is_Limited_View (Desig_T)
4856 and then Nkind (Expression (E)) = N_Function_Call
4857 then
4858 declare
4859 Pool : constant Entity_Id :=
4860 Associated_Storage_Pool (Root_Type (Typ));
4861 begin
4862 if Present (Pool)
4863 and then
4864 Present (Get_Rep_Pragma
4865 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4866 then
4867 Error_Msg_N
4868 ("limited function calls not yet supported in simple "
4869 & "storage pool allocators", Expression (E));
4870 end if;
4871 end;
4872 end if;
4874 -- A special accessibility check is needed for allocators that
4875 -- constrain access discriminants. The level of the type of the
4876 -- expression used to constrain an access discriminant cannot be
4877 -- deeper than the type of the allocator (in contrast to access
4878 -- parameters, where the level of the actual can be arbitrary).
4880 -- We can't use Valid_Conversion to perform this check because in
4881 -- general the type of the allocator is unrelated to the type of
4882 -- the access discriminant.
4884 if Ekind (Typ) /= E_Anonymous_Access_Type
4885 or else Is_Local_Anonymous_Access (Typ)
4886 then
4887 Subtyp := Entity (Subtype_Mark (E));
4889 Aggr := Original_Node (Expression (E));
4891 if Has_Discriminants (Subtyp)
4892 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4893 then
4894 Discrim := First_Discriminant (Base_Type (Subtyp));
4896 -- Get the first component expression of the aggregate
4898 if Present (Expressions (Aggr)) then
4899 Disc_Exp := First (Expressions (Aggr));
4901 elsif Present (Component_Associations (Aggr)) then
4902 Assoc := First (Component_Associations (Aggr));
4904 if Present (Assoc) then
4905 Disc_Exp := Expression (Assoc);
4906 else
4907 Disc_Exp := Empty;
4908 end if;
4910 else
4911 Disc_Exp := Empty;
4912 end if;
4914 while Present (Discrim) and then Present (Disc_Exp) loop
4915 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4916 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4917 end if;
4919 Next_Discriminant (Discrim);
4921 if Present (Discrim) then
4922 if Present (Assoc) then
4923 Next (Assoc);
4924 Disc_Exp := Expression (Assoc);
4926 elsif Present (Next (Disc_Exp)) then
4927 Next (Disc_Exp);
4929 else
4930 Assoc := First (Component_Associations (Aggr));
4932 if Present (Assoc) then
4933 Disc_Exp := Expression (Assoc);
4934 else
4935 Disc_Exp := Empty;
4936 end if;
4937 end if;
4938 end if;
4939 end loop;
4940 end if;
4941 end if;
4943 -- For a subtype mark or subtype indication, freeze the subtype
4945 else
4946 Freeze_Expression (E);
4948 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4949 Error_Msg_N
4950 ("initialization required for access-to-constant allocator", N);
4951 end if;
4953 -- A special accessibility check is needed for allocators that
4954 -- constrain access discriminants. The level of the type of the
4955 -- expression used to constrain an access discriminant cannot be
4956 -- deeper than the type of the allocator (in contrast to access
4957 -- parameters, where the level of the actual can be arbitrary).
4958 -- We can't use Valid_Conversion to perform this check because
4959 -- in general the type of the allocator is unrelated to the type
4960 -- of the access discriminant.
4962 if Nkind (Original_Node (E)) = N_Subtype_Indication
4963 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4964 or else Is_Local_Anonymous_Access (Typ))
4965 then
4966 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4968 if Has_Discriminants (Subtyp) then
4969 Discrim := First_Discriminant (Base_Type (Subtyp));
4970 Constr := First (Constraints (Constraint (Original_Node (E))));
4971 while Present (Discrim) and then Present (Constr) loop
4972 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4973 if Nkind (Constr) = N_Discriminant_Association then
4974 Disc_Exp := Original_Node (Expression (Constr));
4975 else
4976 Disc_Exp := Original_Node (Constr);
4977 end if;
4979 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4980 end if;
4982 Next_Discriminant (Discrim);
4983 Next (Constr);
4984 end loop;
4985 end if;
4986 end if;
4987 end if;
4989 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4990 -- check that the level of the type of the created object is not deeper
4991 -- than the level of the allocator's access type, since extensions can
4992 -- now occur at deeper levels than their ancestor types. This is a
4993 -- static accessibility level check; a run-time check is also needed in
4994 -- the case of an initialized allocator with a class-wide argument (see
4995 -- Expand_Allocator_Expression).
4997 if Ada_Version >= Ada_2005
4998 and then Is_Class_Wide_Type (Desig_T)
4999 then
5000 declare
5001 Exp_Typ : Entity_Id;
5003 begin
5004 if Nkind (E) = N_Qualified_Expression then
5005 Exp_Typ := Etype (E);
5006 elsif Nkind (E) = N_Subtype_Indication then
5007 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5008 else
5009 Exp_Typ := Entity (E);
5010 end if;
5012 if Type_Access_Level (Exp_Typ) >
5013 Deepest_Type_Access_Level (Typ)
5014 then
5015 if In_Instance_Body then
5016 Error_Msg_Warn := SPARK_Mode /= On;
5017 Error_Msg_N
5018 ("type in allocator has deeper level than "
5019 & "designated class-wide type<<", E);
5020 Error_Msg_N ("\Program_Error [<<", E);
5021 Rewrite (N,
5022 Make_Raise_Program_Error (Sloc (N),
5023 Reason => PE_Accessibility_Check_Failed));
5024 Set_Etype (N, Typ);
5026 -- Do not apply Ada 2005 accessibility checks on a class-wide
5027 -- allocator if the type given in the allocator is a formal
5028 -- type. A run-time check will be performed in the instance.
5030 elsif not Is_Generic_Type (Exp_Typ) then
5031 Error_Msg_N ("type in allocator has deeper level than "
5032 & "designated class-wide type", E);
5033 end if;
5034 end if;
5035 end;
5036 end if;
5038 -- Check for allocation from an empty storage pool
5040 if No_Pool_Assigned (Typ) then
5041 Error_Msg_N ("allocation from empty storage pool!", N);
5043 -- If the context is an unchecked conversion, as may happen within an
5044 -- inlined subprogram, the allocator is being resolved with its own
5045 -- anonymous type. In that case, if the target type has a specific
5046 -- storage pool, it must be inherited explicitly by the allocator type.
5048 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5049 and then No (Associated_Storage_Pool (Typ))
5050 then
5051 Set_Associated_Storage_Pool
5052 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5053 end if;
5055 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5056 Check_Restriction (No_Anonymous_Allocators, N);
5057 end if;
5059 -- Check that an allocator with task parts isn't for a nested access
5060 -- type when restriction No_Task_Hierarchy applies.
5062 if not Is_Library_Level_Entity (Base_Type (Typ))
5063 and then Has_Task (Base_Type (Desig_T))
5064 then
5065 Check_Restriction (No_Task_Hierarchy, N);
5066 end if;
5068 -- An illegal allocator may be rewritten as a raise Program_Error
5069 -- statement.
5071 if Nkind (N) = N_Allocator then
5073 -- Avoid coextension processing for an allocator that is the
5074 -- expansion of a build-in-place function call.
5076 if Nkind (Original_Node (N)) = N_Allocator
5077 and then Nkind (Expression (Original_Node (N))) =
5078 N_Qualified_Expression
5079 and then Nkind (Expression (Expression (Original_Node (N)))) =
5080 N_Function_Call
5081 and then Is_Expanded_Build_In_Place_Call
5082 (Expression (Expression (Original_Node (N))))
5083 then
5084 null; -- b-i-p function call case
5086 else
5087 -- An anonymous access discriminant is the definition of a
5088 -- coextension.
5090 if Ekind (Typ) = E_Anonymous_Access_Type
5091 and then Nkind (Associated_Node_For_Itype (Typ)) =
5092 N_Discriminant_Specification
5093 then
5094 declare
5095 Discr : constant Entity_Id :=
5096 Defining_Identifier (Associated_Node_For_Itype (Typ));
5098 begin
5099 Check_Restriction (No_Coextensions, N);
5101 -- Ada 2012 AI05-0052: If the designated type of the
5102 -- allocator is limited, then the allocator shall not
5103 -- be used to define the value of an access discriminant
5104 -- unless the discriminated type is immutably limited.
5106 if Ada_Version >= Ada_2012
5107 and then Is_Limited_Type (Desig_T)
5108 and then not Is_Limited_View (Scope (Discr))
5109 then
5110 Error_Msg_N
5111 ("only immutably limited types can have anonymous "
5112 & "access discriminants designating a limited type",
5114 end if;
5115 end;
5117 -- Avoid marking an allocator as a dynamic coextension if it is
5118 -- within a static construct.
5120 if not Is_Static_Coextension (N) then
5121 Set_Is_Dynamic_Coextension (N);
5123 -- Finalization and deallocation of coextensions utilizes an
5124 -- approximate implementation which does not directly adhere
5125 -- to the semantic rules. Warn on potential issues involving
5126 -- coextensions.
5128 if Is_Controlled (Desig_T) then
5129 Error_Msg_N
5130 ("??coextension will not be finalized when its "
5131 & "associated owner is deallocated or finalized", N);
5132 else
5133 Error_Msg_N
5134 ("??coextension will not be deallocated when its "
5135 & "associated owner is deallocated", N);
5136 end if;
5137 end if;
5139 -- Cleanup for potential static coextensions
5141 else
5142 Set_Is_Dynamic_Coextension (N, False);
5143 Set_Is_Static_Coextension (N, False);
5145 -- Anonymous access-to-controlled objects are not finalized on
5146 -- time because this involves run-time ownership and currently
5147 -- this property is not available. In rare cases the object may
5148 -- not be finalized at all. Warn on potential issues involving
5149 -- anonymous access-to-controlled objects.
5151 if Ekind (Typ) = E_Anonymous_Access_Type
5152 and then Is_Controlled_Active (Desig_T)
5153 then
5154 Error_Msg_N
5155 ("??object designated by anonymous access object might "
5156 & "not be finalized until its enclosing library unit "
5157 & "goes out of scope", N);
5158 Error_Msg_N ("\use named access type instead", N);
5159 end if;
5160 end if;
5161 end if;
5162 end if;
5164 -- Report a simple error: if the designated object is a local task,
5165 -- its body has not been seen yet, and its activation will fail an
5166 -- elaboration check.
5168 if Is_Task_Type (Desig_T)
5169 and then Scope (Base_Type (Desig_T)) = Current_Scope
5170 and then Is_Compilation_Unit (Current_Scope)
5171 and then Ekind (Current_Scope) = E_Package
5172 and then not In_Package_Body (Current_Scope)
5173 then
5174 Error_Msg_Warn := SPARK_Mode /= On;
5175 Error_Msg_N ("cannot activate task before body seen<<", N);
5176 Error_Msg_N ("\Program_Error [<<", N);
5177 end if;
5179 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5180 -- type with a task component on a subpool. This action must raise
5181 -- Program_Error at runtime.
5183 if Ada_Version >= Ada_2012
5184 and then Nkind (N) = N_Allocator
5185 and then Present (Subpool_Handle_Name (N))
5186 and then Has_Task (Desig_T)
5187 then
5188 Error_Msg_Warn := SPARK_Mode /= On;
5189 Error_Msg_N ("cannot allocate task on subpool<<", N);
5190 Error_Msg_N ("\Program_Error [<<", N);
5192 Rewrite (N,
5193 Make_Raise_Program_Error (Sloc (N),
5194 Reason => PE_Explicit_Raise));
5195 Set_Etype (N, Typ);
5196 end if;
5197 end Resolve_Allocator;
5199 ---------------------------
5200 -- Resolve_Arithmetic_Op --
5201 ---------------------------
5203 -- Used for resolving all arithmetic operators except exponentiation
5205 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5206 L : constant Node_Id := Left_Opnd (N);
5207 R : constant Node_Id := Right_Opnd (N);
5208 TL : constant Entity_Id := Base_Type (Etype (L));
5209 TR : constant Entity_Id := Base_Type (Etype (R));
5210 T : Entity_Id;
5211 Rop : Node_Id;
5213 B_Typ : constant Entity_Id := Base_Type (Typ);
5214 -- We do the resolution using the base type, because intermediate values
5215 -- in expressions always are of the base type, not a subtype of it.
5217 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5218 -- Returns True if N is in a context that expects "any real type"
5220 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5221 -- Return True iff given type is Integer or universal real/integer
5223 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5224 -- Choose type of integer literal in fixed-point operation to conform
5225 -- to available fixed-point type. T is the type of the other operand,
5226 -- which is needed to determine the expected type of N.
5228 procedure Set_Operand_Type (N : Node_Id);
5229 -- Set operand type to T if universal
5231 -------------------------------
5232 -- Expected_Type_Is_Any_Real --
5233 -------------------------------
5235 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5236 begin
5237 -- N is the expression after "delta" in a fixed_point_definition;
5238 -- see RM-3.5.9(6):
5240 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5241 N_Decimal_Fixed_Point_Definition,
5243 -- N is one of the bounds in a real_range_specification;
5244 -- see RM-3.5.7(5):
5246 N_Real_Range_Specification,
5248 -- N is the expression of a delta_constraint;
5249 -- see RM-J.3(3):
5251 N_Delta_Constraint);
5252 end Expected_Type_Is_Any_Real;
5254 -----------------------------
5255 -- Is_Integer_Or_Universal --
5256 -----------------------------
5258 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5259 T : Entity_Id;
5260 Index : Interp_Index;
5261 It : Interp;
5263 begin
5264 if not Is_Overloaded (N) then
5265 T := Etype (N);
5266 return Base_Type (T) = Base_Type (Standard_Integer)
5267 or else T = Universal_Integer
5268 or else T = Universal_Real;
5269 else
5270 Get_First_Interp (N, Index, It);
5271 while Present (It.Typ) loop
5272 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5273 or else It.Typ = Universal_Integer
5274 or else It.Typ = Universal_Real
5275 then
5276 return True;
5277 end if;
5279 Get_Next_Interp (Index, It);
5280 end loop;
5281 end if;
5283 return False;
5284 end Is_Integer_Or_Universal;
5286 ----------------------------
5287 -- Set_Mixed_Mode_Operand --
5288 ----------------------------
5290 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5291 Index : Interp_Index;
5292 It : Interp;
5294 begin
5295 if Universal_Interpretation (N) = Universal_Integer then
5297 -- A universal integer literal is resolved as standard integer
5298 -- except in the case of a fixed-point result, where we leave it
5299 -- as universal (to be handled by Exp_Fixd later on)
5301 if Is_Fixed_Point_Type (T) then
5302 Resolve (N, Universal_Integer);
5303 else
5304 Resolve (N, Standard_Integer);
5305 end if;
5307 elsif Universal_Interpretation (N) = Universal_Real
5308 and then (T = Base_Type (Standard_Integer)
5309 or else T = Universal_Integer
5310 or else T = Universal_Real)
5311 then
5312 -- A universal real can appear in a fixed-type context. We resolve
5313 -- the literal with that context, even though this might raise an
5314 -- exception prematurely (the other operand may be zero).
5316 Resolve (N, B_Typ);
5318 elsif Etype (N) = Base_Type (Standard_Integer)
5319 and then T = Universal_Real
5320 and then Is_Overloaded (N)
5321 then
5322 -- Integer arg in mixed-mode operation. Resolve with universal
5323 -- type, in case preference rule must be applied.
5325 Resolve (N, Universal_Integer);
5327 elsif Etype (N) = T and then B_Typ /= Universal_Fixed then
5329 -- If the operand is part of a fixed multiplication operation,
5330 -- a conversion will be applied to each operand, so resolve it
5331 -- with its own type.
5333 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
5334 Resolve (N);
5336 else
5337 -- Not a mixed-mode operation, resolve with context
5339 Resolve (N, B_Typ);
5340 end if;
5342 elsif Etype (N) = Any_Fixed then
5344 -- N may itself be a mixed-mode operation, so use context type
5346 Resolve (N, B_Typ);
5348 elsif Is_Fixed_Point_Type (T)
5349 and then B_Typ = Universal_Fixed
5350 and then Is_Overloaded (N)
5351 then
5352 -- Must be (fixed * fixed) operation, operand must have one
5353 -- compatible interpretation.
5355 Resolve (N, Any_Fixed);
5357 elsif Is_Fixed_Point_Type (B_Typ)
5358 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5359 and then Is_Overloaded (N)
5360 then
5361 -- C * F(X) in a fixed context, where C is a real literal or a
5362 -- fixed-point expression. F must have either a fixed type
5363 -- interpretation or an integer interpretation, but not both.
5365 Get_First_Interp (N, Index, It);
5366 while Present (It.Typ) loop
5367 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5368 if Analyzed (N) then
5369 Error_Msg_N ("ambiguous operand in fixed operation", N);
5370 else
5371 Resolve (N, Standard_Integer);
5372 end if;
5374 elsif Is_Fixed_Point_Type (It.Typ) then
5375 if Analyzed (N) then
5376 Error_Msg_N ("ambiguous operand in fixed operation", N);
5377 else
5378 Resolve (N, It.Typ);
5379 end if;
5380 end if;
5382 Get_Next_Interp (Index, It);
5383 end loop;
5385 -- Reanalyze the literal with the fixed type of the context. If
5386 -- context is Universal_Fixed, we are within a conversion, leave
5387 -- the literal as a universal real because there is no usable
5388 -- fixed type, and the target of the conversion plays no role in
5389 -- the resolution.
5391 declare
5392 Op2 : Node_Id;
5393 T2 : Entity_Id;
5395 begin
5396 if N = L then
5397 Op2 := R;
5398 else
5399 Op2 := L;
5400 end if;
5402 if B_Typ = Universal_Fixed
5403 and then Nkind (Op2) = N_Real_Literal
5404 then
5405 T2 := Universal_Real;
5406 else
5407 T2 := B_Typ;
5408 end if;
5410 Set_Analyzed (Op2, False);
5411 Resolve (Op2, T2);
5412 end;
5414 -- A universal real conditional expression can appear in a fixed-type
5415 -- context and must be resolved with that context to facilitate the
5416 -- code generation in the back end.
5418 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5419 and then Etype (N) = Universal_Real
5420 and then Is_Fixed_Point_Type (B_Typ)
5421 then
5422 Resolve (N, B_Typ);
5424 else
5425 Resolve (N);
5426 end if;
5427 end Set_Mixed_Mode_Operand;
5429 ----------------------
5430 -- Set_Operand_Type --
5431 ----------------------
5433 procedure Set_Operand_Type (N : Node_Id) is
5434 begin
5435 if Etype (N) = Universal_Integer
5436 or else Etype (N) = Universal_Real
5437 then
5438 Set_Etype (N, T);
5439 end if;
5440 end Set_Operand_Type;
5442 -- Start of processing for Resolve_Arithmetic_Op
5444 begin
5445 if Comes_From_Source (N)
5446 and then Ekind (Entity (N)) = E_Function
5447 and then Is_Imported (Entity (N))
5448 and then Is_Intrinsic_Subprogram (Entity (N))
5449 then
5450 Resolve_Intrinsic_Operator (N, Typ);
5451 return;
5453 -- Special-case for mixed-mode universal expressions or fixed point type
5454 -- operation: each argument is resolved separately. The same treatment
5455 -- is required if one of the operands of a fixed point operation is
5456 -- universal real, since in this case we don't do a conversion to a
5457 -- specific fixed-point type (instead the expander handles the case).
5459 -- Set the type of the node to its universal interpretation because
5460 -- legality checks on an exponentiation operand need the context.
5462 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5463 and then Present (Universal_Interpretation (L))
5464 and then Present (Universal_Interpretation (R))
5465 then
5466 Set_Etype (N, B_Typ);
5467 Resolve (L, Universal_Interpretation (L));
5468 Resolve (R, Universal_Interpretation (R));
5470 elsif (B_Typ = Universal_Real
5471 or else Etype (N) = Universal_Fixed
5472 or else (Etype (N) = Any_Fixed
5473 and then Is_Fixed_Point_Type (B_Typ))
5474 or else (Is_Fixed_Point_Type (B_Typ)
5475 and then (Is_Integer_Or_Universal (L)
5476 or else
5477 Is_Integer_Or_Universal (R))))
5478 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5479 then
5480 if TL = Universal_Integer or else TR = Universal_Integer then
5481 Check_For_Visible_Operator (N, B_Typ);
5482 end if;
5484 -- If context is a fixed type and one operand is integer, the other
5485 -- is resolved with the type of the context.
5487 if Is_Fixed_Point_Type (B_Typ)
5488 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5489 or else TL = Universal_Integer)
5490 then
5491 Resolve (R, B_Typ);
5492 Resolve (L, TL);
5494 elsif Is_Fixed_Point_Type (B_Typ)
5495 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5496 or else TR = Universal_Integer)
5497 then
5498 Resolve (L, B_Typ);
5499 Resolve (R, TR);
5501 -- If both operands are universal and the context is a floating
5502 -- point type, the operands are resolved to the type of the context.
5504 elsif Is_Floating_Point_Type (B_Typ) then
5505 Resolve (L, B_Typ);
5506 Resolve (R, B_Typ);
5508 else
5509 Set_Mixed_Mode_Operand (L, TR);
5510 Set_Mixed_Mode_Operand (R, TL);
5511 end if;
5513 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5514 -- multiplying operators from being used when the expected type is
5515 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5516 -- some cases where the expected type is actually Any_Real;
5517 -- Expected_Type_Is_Any_Real takes care of that case.
5519 if Etype (N) = Universal_Fixed
5520 or else Etype (N) = Any_Fixed
5521 then
5522 if B_Typ = Universal_Fixed
5523 and then not Expected_Type_Is_Any_Real (N)
5524 and then not Nkind_In (Parent (N), N_Type_Conversion,
5525 N_Unchecked_Type_Conversion)
5526 then
5527 Error_Msg_N ("type cannot be determined from context!", N);
5528 Error_Msg_N ("\explicit conversion to result type required", N);
5530 Set_Etype (L, Any_Type);
5531 Set_Etype (R, Any_Type);
5533 else
5534 if Ada_Version = Ada_83
5535 and then Etype (N) = Universal_Fixed
5536 and then not
5537 Nkind_In (Parent (N), N_Type_Conversion,
5538 N_Unchecked_Type_Conversion)
5539 then
5540 Error_Msg_N
5541 ("(Ada 83) fixed-point operation needs explicit "
5542 & "conversion", N);
5543 end if;
5545 -- The expected type is "any real type" in contexts like
5547 -- type T is delta <universal_fixed-expression> ...
5549 -- in which case we need to set the type to Universal_Real
5550 -- so that static expression evaluation will work properly.
5552 if Expected_Type_Is_Any_Real (N) then
5553 Set_Etype (N, Universal_Real);
5554 else
5555 Set_Etype (N, B_Typ);
5556 end if;
5557 end if;
5559 elsif Is_Fixed_Point_Type (B_Typ)
5560 and then (Is_Integer_Or_Universal (L)
5561 or else Nkind (L) = N_Real_Literal
5562 or else Nkind (R) = N_Real_Literal
5563 or else Is_Integer_Or_Universal (R))
5564 then
5565 Set_Etype (N, B_Typ);
5567 elsif Etype (N) = Any_Fixed then
5569 -- If no previous errors, this is only possible if one operand is
5570 -- overloaded and the context is universal. Resolve as such.
5572 Set_Etype (N, B_Typ);
5573 end if;
5575 else
5576 if (TL = Universal_Integer or else TL = Universal_Real)
5577 and then
5578 (TR = Universal_Integer or else TR = Universal_Real)
5579 then
5580 Check_For_Visible_Operator (N, B_Typ);
5581 end if;
5583 -- If the context is Universal_Fixed and the operands are also
5584 -- universal fixed, this is an error, unless there is only one
5585 -- applicable fixed_point type (usually Duration).
5587 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5588 T := Unique_Fixed_Point_Type (N);
5590 if T = Any_Type then
5591 Set_Etype (N, T);
5592 return;
5593 else
5594 Resolve (L, T);
5595 Resolve (R, T);
5596 end if;
5598 else
5599 Resolve (L, B_Typ);
5600 Resolve (R, B_Typ);
5601 end if;
5603 -- If one of the arguments was resolved to a non-universal type.
5604 -- label the result of the operation itself with the same type.
5605 -- Do the same for the universal argument, if any.
5607 T := Intersect_Types (L, R);
5608 Set_Etype (N, Base_Type (T));
5609 Set_Operand_Type (L);
5610 Set_Operand_Type (R);
5611 end if;
5613 Generate_Operator_Reference (N, Typ);
5614 Analyze_Dimension (N);
5615 Eval_Arithmetic_Op (N);
5617 -- In SPARK, a multiplication or division with operands of fixed point
5618 -- types must be qualified or explicitly converted to identify the
5619 -- result type.
5621 if (Is_Fixed_Point_Type (Etype (L))
5622 or else Is_Fixed_Point_Type (Etype (R)))
5623 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5624 and then
5625 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5626 then
5627 Check_SPARK_05_Restriction
5628 ("operation should be qualified or explicitly converted", N);
5629 end if;
5631 -- Set overflow and division checking bit
5633 if Nkind (N) in N_Op then
5634 if not Overflow_Checks_Suppressed (Etype (N)) then
5635 Enable_Overflow_Check (N);
5636 end if;
5638 -- Give warning if explicit division by zero
5640 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5641 and then not Division_Checks_Suppressed (Etype (N))
5642 then
5643 Rop := Right_Opnd (N);
5645 if Compile_Time_Known_Value (Rop)
5646 and then ((Is_Integer_Type (Etype (Rop))
5647 and then Expr_Value (Rop) = Uint_0)
5648 or else
5649 (Is_Real_Type (Etype (Rop))
5650 and then Expr_Value_R (Rop) = Ureal_0))
5651 then
5652 -- Specialize the warning message according to the operation.
5653 -- When SPARK_Mode is On, force a warning instead of an error
5654 -- in that case, as this likely corresponds to deactivated
5655 -- code. The following warnings are for the case
5657 case Nkind (N) is
5658 when N_Op_Divide =>
5660 -- For division, we have two cases, for float division
5661 -- of an unconstrained float type, on a machine where
5662 -- Machine_Overflows is false, we don't get an exception
5663 -- at run-time, but rather an infinity or Nan. The Nan
5664 -- case is pretty obscure, so just warn about infinities.
5666 if Is_Floating_Point_Type (Typ)
5667 and then not Is_Constrained (Typ)
5668 and then not Machine_Overflows_On_Target
5669 then
5670 Error_Msg_N
5671 ("float division by zero, may generate "
5672 & "'+'/'- infinity??", Right_Opnd (N));
5674 -- For all other cases, we get a Constraint_Error
5676 else
5677 Apply_Compile_Time_Constraint_Error
5678 (N, "division by zero??", CE_Divide_By_Zero,
5679 Loc => Sloc (Right_Opnd (N)),
5680 Warn => SPARK_Mode = On);
5681 end if;
5683 when N_Op_Rem =>
5684 Apply_Compile_Time_Constraint_Error
5685 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5686 Loc => Sloc (Right_Opnd (N)),
5687 Warn => SPARK_Mode = On);
5689 when N_Op_Mod =>
5690 Apply_Compile_Time_Constraint_Error
5691 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5692 Loc => Sloc (Right_Opnd (N)),
5693 Warn => SPARK_Mode = On);
5695 -- Division by zero can only happen with division, rem,
5696 -- and mod operations.
5698 when others =>
5699 raise Program_Error;
5700 end case;
5702 -- In GNATprove mode, we enable the division check so that
5703 -- GNATprove will issue a message if it cannot be proved.
5705 if GNATprove_Mode then
5706 Activate_Division_Check (N);
5707 end if;
5709 -- Otherwise just set the flag to check at run time
5711 else
5712 Activate_Division_Check (N);
5713 end if;
5714 end if;
5716 -- If Restriction No_Implicit_Conditionals is active, then it is
5717 -- violated if either operand can be negative for mod, or for rem
5718 -- if both operands can be negative.
5720 if Restriction_Check_Required (No_Implicit_Conditionals)
5721 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5722 then
5723 declare
5724 Lo : Uint;
5725 Hi : Uint;
5726 OK : Boolean;
5728 LNeg : Boolean;
5729 RNeg : Boolean;
5730 -- Set if corresponding operand might be negative
5732 begin
5733 Determine_Range
5734 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5735 LNeg := (not OK) or else Lo < 0;
5737 Determine_Range
5738 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5739 RNeg := (not OK) or else Lo < 0;
5741 -- Check if we will be generating conditionals. There are two
5742 -- cases where that can happen, first for REM, the only case
5743 -- is largest negative integer mod -1, where the division can
5744 -- overflow, but we still have to give the right result. The
5745 -- front end generates a test for this annoying case. Here we
5746 -- just test if both operands can be negative (that's what the
5747 -- expander does, so we match its logic here).
5749 -- The second case is mod where either operand can be negative.
5750 -- In this case, the back end has to generate additional tests.
5752 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5753 or else
5754 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5755 then
5756 Check_Restriction (No_Implicit_Conditionals, N);
5757 end if;
5758 end;
5759 end if;
5760 end if;
5762 Check_Unset_Reference (L);
5763 Check_Unset_Reference (R);
5764 end Resolve_Arithmetic_Op;
5766 ------------------
5767 -- Resolve_Call --
5768 ------------------
5770 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5771 function Same_Or_Aliased_Subprograms
5772 (S : Entity_Id;
5773 E : Entity_Id) return Boolean;
5774 -- Returns True if the subprogram entity S is the same as E or else
5775 -- S is an alias of E.
5777 ---------------------------------
5778 -- Same_Or_Aliased_Subprograms --
5779 ---------------------------------
5781 function Same_Or_Aliased_Subprograms
5782 (S : Entity_Id;
5783 E : Entity_Id) return Boolean
5785 Subp_Alias : constant Entity_Id := Alias (S);
5786 begin
5787 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5788 end Same_Or_Aliased_Subprograms;
5790 -- Local variables
5792 Loc : constant Source_Ptr := Sloc (N);
5793 Subp : constant Node_Id := Name (N);
5794 Body_Id : Entity_Id;
5795 I : Interp_Index;
5796 It : Interp;
5797 Nam : Entity_Id;
5798 Nam_Decl : Node_Id;
5799 Nam_UA : Entity_Id;
5800 Norm_OK : Boolean;
5801 Rtype : Entity_Id;
5802 Scop : Entity_Id;
5804 -- Start of processing for Resolve_Call
5806 begin
5807 -- Preserve relevant elaboration-related attributes of the context which
5808 -- are no longer available or very expensive to recompute once analysis,
5809 -- resolution, and expansion are over.
5811 Mark_Elaboration_Attributes
5812 (N_Id => N,
5813 Checks => True,
5814 Modes => True,
5815 Warnings => True);
5817 -- The context imposes a unique interpretation with type Typ on a
5818 -- procedure or function call. Find the entity of the subprogram that
5819 -- yields the expected type, and propagate the corresponding formal
5820 -- constraints on the actuals. The caller has established that an
5821 -- interpretation exists, and emitted an error if not unique.
5823 -- First deal with the case of a call to an access-to-subprogram,
5824 -- dereference made explicit in Analyze_Call.
5826 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5827 if not Is_Overloaded (Subp) then
5828 Nam := Etype (Subp);
5830 else
5831 -- Find the interpretation whose type (a subprogram type) has a
5832 -- return type that is compatible with the context. Analysis of
5833 -- the node has established that one exists.
5835 Nam := Empty;
5837 Get_First_Interp (Subp, I, It);
5838 while Present (It.Typ) loop
5839 if Covers (Typ, Etype (It.Typ)) then
5840 Nam := It.Typ;
5841 exit;
5842 end if;
5844 Get_Next_Interp (I, It);
5845 end loop;
5847 if No (Nam) then
5848 raise Program_Error;
5849 end if;
5850 end if;
5852 -- If the prefix is not an entity, then resolve it
5854 if not Is_Entity_Name (Subp) then
5855 Resolve (Subp, Nam);
5856 end if;
5858 -- For an indirect call, we always invalidate checks, since we do not
5859 -- know whether the subprogram is local or global. Yes we could do
5860 -- better here, e.g. by knowing that there are no local subprograms,
5861 -- but it does not seem worth the effort. Similarly, we kill all
5862 -- knowledge of current constant values.
5864 Kill_Current_Values;
5866 -- If this is a procedure call which is really an entry call, do
5867 -- the conversion of the procedure call to an entry call. Protected
5868 -- operations use the same circuitry because the name in the call
5869 -- can be an arbitrary expression with special resolution rules.
5871 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5872 or else (Is_Entity_Name (Subp)
5873 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5874 then
5875 Resolve_Entry_Call (N, Typ);
5877 if Legacy_Elaboration_Checks then
5878 Check_Elab_Call (N);
5879 end if;
5881 -- Annotate the tree by creating a call marker in case the original
5882 -- call is transformed by expansion. The call marker is automatically
5883 -- saved for later examination by the ABE Processing phase.
5885 Build_Call_Marker (N);
5887 -- Kill checks and constant values, as above for indirect case
5888 -- Who knows what happens when another task is activated?
5890 Kill_Current_Values;
5891 return;
5893 -- Normal subprogram call with name established in Resolve
5895 elsif not (Is_Type (Entity (Subp))) then
5896 Nam := Entity (Subp);
5897 Set_Entity_With_Checks (Subp, Nam);
5899 -- Otherwise we must have the case of an overloaded call
5901 else
5902 pragma Assert (Is_Overloaded (Subp));
5904 -- Initialize Nam to prevent warning (we know it will be assigned
5905 -- in the loop below, but the compiler does not know that).
5907 Nam := Empty;
5909 Get_First_Interp (Subp, I, It);
5910 while Present (It.Typ) loop
5911 if Covers (Typ, It.Typ) then
5912 Nam := It.Nam;
5913 Set_Entity_With_Checks (Subp, Nam);
5914 exit;
5915 end if;
5917 Get_Next_Interp (I, It);
5918 end loop;
5919 end if;
5921 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5922 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5923 and then Nkind (Subp) /= N_Explicit_Dereference
5924 and then Present (Parameter_Associations (N))
5925 then
5926 -- The prefix is a parameterless function call that returns an access
5927 -- to subprogram. If parameters are present in the current call, add
5928 -- add an explicit dereference. We use the base type here because
5929 -- within an instance these may be subtypes.
5931 -- The dereference is added either in Analyze_Call or here. Should
5932 -- be consolidated ???
5934 Set_Is_Overloaded (Subp, False);
5935 Set_Etype (Subp, Etype (Nam));
5936 Insert_Explicit_Dereference (Subp);
5937 Nam := Designated_Type (Etype (Nam));
5938 Resolve (Subp, Nam);
5939 end if;
5941 -- Check that a call to Current_Task does not occur in an entry body
5943 if Is_RTE (Nam, RE_Current_Task) then
5944 declare
5945 P : Node_Id;
5947 begin
5948 P := N;
5949 loop
5950 P := Parent (P);
5952 -- Exclude calls that occur within the default of a formal
5953 -- parameter of the entry, since those are evaluated outside
5954 -- of the body.
5956 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5958 if Nkind (P) = N_Entry_Body
5959 or else (Nkind (P) = N_Subprogram_Body
5960 and then Is_Entry_Barrier_Function (P))
5961 then
5962 Rtype := Etype (N);
5963 Error_Msg_Warn := SPARK_Mode /= On;
5964 Error_Msg_NE
5965 ("& should not be used in entry body (RM C.7(17))<<",
5966 N, Nam);
5967 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5968 Rewrite (N,
5969 Make_Raise_Program_Error (Loc,
5970 Reason => PE_Current_Task_In_Entry_Body));
5971 Set_Etype (N, Rtype);
5972 return;
5973 end if;
5974 end loop;
5975 end;
5976 end if;
5978 -- Check that a procedure call does not occur in the context of the
5979 -- entry call statement of a conditional or timed entry call. Note that
5980 -- the case of a call to a subprogram renaming of an entry will also be
5981 -- rejected. The test for N not being an N_Entry_Call_Statement is
5982 -- defensive, covering the possibility that the processing of entry
5983 -- calls might reach this point due to later modifications of the code
5984 -- above.
5986 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5987 and then Nkind (N) /= N_Entry_Call_Statement
5988 and then Entry_Call_Statement (Parent (N)) = N
5989 then
5990 if Ada_Version < Ada_2005 then
5991 Error_Msg_N ("entry call required in select statement", N);
5993 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5994 -- for a procedure_or_entry_call, the procedure_name or
5995 -- procedure_prefix of the procedure_call_statement shall denote
5996 -- an entry renamed by a procedure, or (a view of) a primitive
5997 -- subprogram of a limited interface whose first parameter is
5998 -- a controlling parameter.
6000 elsif Nkind (N) = N_Procedure_Call_Statement
6001 and then not Is_Renamed_Entry (Nam)
6002 and then not Is_Controlling_Limited_Procedure (Nam)
6003 then
6004 Error_Msg_N
6005 ("entry call or dispatching primitive of interface required", N);
6006 end if;
6007 end if;
6009 -- If the SPARK_05 restriction is active, we are not allowed
6010 -- to have a call to a subprogram before we see its completion.
6012 if not Has_Completion (Nam)
6013 and then Restriction_Check_Required (SPARK_05)
6015 -- Don't flag strange internal calls
6017 and then Comes_From_Source (N)
6018 and then Comes_From_Source (Nam)
6020 -- Only flag calls in extended main source
6022 and then In_Extended_Main_Source_Unit (Nam)
6023 and then In_Extended_Main_Source_Unit (N)
6025 -- Exclude enumeration literals from this processing
6027 and then Ekind (Nam) /= E_Enumeration_Literal
6028 then
6029 Check_SPARK_05_Restriction
6030 ("call to subprogram cannot appear before its body", N);
6031 end if;
6033 -- Check that this is not a call to a protected procedure or entry from
6034 -- within a protected function.
6036 Check_Internal_Protected_Use (N, Nam);
6038 -- Freeze the subprogram name if not in a spec-expression. Note that
6039 -- we freeze procedure calls as well as function calls. Procedure calls
6040 -- are not frozen according to the rules (RM 13.14(14)) because it is
6041 -- impossible to have a procedure call to a non-frozen procedure in
6042 -- pure Ada, but in the code that we generate in the expander, this
6043 -- rule needs extending because we can generate procedure calls that
6044 -- need freezing.
6046 -- In Ada 2012, expression functions may be called within pre/post
6047 -- conditions of subsequent functions or expression functions. Such
6048 -- calls do not freeze when they appear within generated bodies,
6049 -- (including the body of another expression function) which would
6050 -- place the freeze node in the wrong scope. An expression function
6051 -- is frozen in the usual fashion, by the appearance of a real body,
6052 -- or at the end of a declarative part.
6054 if Is_Entity_Name (Subp)
6055 and then not In_Spec_Expression
6056 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6057 and then
6058 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6059 or else Scope (Entity (Subp)) = Current_Scope)
6060 then
6061 Freeze_Expression (Subp);
6062 end if;
6064 -- For a predefined operator, the type of the result is the type imposed
6065 -- by context, except for a predefined operation on universal fixed.
6066 -- Otherwise The type of the call is the type returned by the subprogram
6067 -- being called.
6069 if Is_Predefined_Op (Nam) then
6070 if Etype (N) /= Universal_Fixed then
6071 Set_Etype (N, Typ);
6072 end if;
6074 -- If the subprogram returns an array type, and the context requires the
6075 -- component type of that array type, the node is really an indexing of
6076 -- the parameterless call. Resolve as such. A pathological case occurs
6077 -- when the type of the component is an access to the array type. In
6078 -- this case the call is truly ambiguous. If the call is to an intrinsic
6079 -- subprogram, it can't be an indexed component. This check is necessary
6080 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6081 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6082 -- pointers to the same array), the compiler gets confused and does an
6083 -- infinite recursion.
6085 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6086 and then
6087 ((Is_Array_Type (Etype (Nam))
6088 and then Covers (Typ, Component_Type (Etype (Nam))))
6089 or else
6090 (Is_Access_Type (Etype (Nam))
6091 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6092 and then
6093 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6094 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6095 then
6096 declare
6097 Index_Node : Node_Id;
6098 New_Subp : Node_Id;
6099 Ret_Type : constant Entity_Id := Etype (Nam);
6101 begin
6102 if Is_Access_Type (Ret_Type)
6103 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6104 then
6105 Error_Msg_N
6106 ("cannot disambiguate function call and indexing", N);
6107 else
6108 New_Subp := Relocate_Node (Subp);
6110 -- The called entity may be an explicit dereference, in which
6111 -- case there is no entity to set.
6113 if Nkind (New_Subp) /= N_Explicit_Dereference then
6114 Set_Entity (Subp, Nam);
6115 end if;
6117 if (Is_Array_Type (Ret_Type)
6118 and then Component_Type (Ret_Type) /= Any_Type)
6119 or else
6120 (Is_Access_Type (Ret_Type)
6121 and then
6122 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6123 then
6124 if Needs_No_Actuals (Nam) then
6126 -- Indexed call to a parameterless function
6128 Index_Node :=
6129 Make_Indexed_Component (Loc,
6130 Prefix =>
6131 Make_Function_Call (Loc, Name => New_Subp),
6132 Expressions => Parameter_Associations (N));
6133 else
6134 -- An Ada 2005 prefixed call to a primitive operation
6135 -- whose first parameter is the prefix. This prefix was
6136 -- prepended to the parameter list, which is actually a
6137 -- list of indexes. Remove the prefix in order to build
6138 -- the proper indexed component.
6140 Index_Node :=
6141 Make_Indexed_Component (Loc,
6142 Prefix =>
6143 Make_Function_Call (Loc,
6144 Name => New_Subp,
6145 Parameter_Associations =>
6146 New_List
6147 (Remove_Head (Parameter_Associations (N)))),
6148 Expressions => Parameter_Associations (N));
6149 end if;
6151 -- Preserve the parenthesis count of the node
6153 Set_Paren_Count (Index_Node, Paren_Count (N));
6155 -- Since we are correcting a node classification error made
6156 -- by the parser, we call Replace rather than Rewrite.
6158 Replace (N, Index_Node);
6160 Set_Etype (Prefix (N), Ret_Type);
6161 Set_Etype (N, Typ);
6162 Resolve_Indexed_Component (N, Typ);
6164 if Legacy_Elaboration_Checks then
6165 Check_Elab_Call (Prefix (N));
6166 end if;
6168 -- Annotate the tree by creating a call marker in case
6169 -- the original call is transformed by expansion. The call
6170 -- marker is automatically saved for later examination by
6171 -- the ABE Processing phase.
6173 Build_Call_Marker (Prefix (N));
6174 end if;
6175 end if;
6177 return;
6178 end;
6180 else
6181 -- If the called function is not declared in the main unit and it
6182 -- returns the limited view of type then use the available view (as
6183 -- is done in Try_Object_Operation) to prevent back-end confusion;
6184 -- for the function entity itself. The call must appear in a context
6185 -- where the nonlimited view is available. If the function entity is
6186 -- in the extended main unit then no action is needed, because the
6187 -- back end handles this case. In either case the type of the call
6188 -- is the nonlimited view.
6190 if From_Limited_With (Etype (Nam))
6191 and then Present (Available_View (Etype (Nam)))
6192 then
6193 Set_Etype (N, Available_View (Etype (Nam)));
6195 if not In_Extended_Main_Code_Unit (Nam) then
6196 Set_Etype (Nam, Available_View (Etype (Nam)));
6197 end if;
6199 else
6200 Set_Etype (N, Etype (Nam));
6201 end if;
6202 end if;
6204 -- In the case where the call is to an overloaded subprogram, Analyze
6205 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6206 -- such a case Normalize_Actuals needs to be called once more to order
6207 -- the actuals correctly. Otherwise the call will have the ordering
6208 -- given by the last overloaded subprogram whether this is the correct
6209 -- one being called or not.
6211 if Is_Overloaded (Subp) then
6212 Normalize_Actuals (N, Nam, False, Norm_OK);
6213 pragma Assert (Norm_OK);
6214 end if;
6216 -- In any case, call is fully resolved now. Reset Overload flag, to
6217 -- prevent subsequent overload resolution if node is analyzed again
6219 Set_Is_Overloaded (Subp, False);
6220 Set_Is_Overloaded (N, False);
6222 -- A Ghost entity must appear in a specific context
6224 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6225 Check_Ghost_Context (Nam, N);
6226 end if;
6228 -- If we are calling the current subprogram from immediately within its
6229 -- body, then that is the case where we can sometimes detect cases of
6230 -- infinite recursion statically. Do not try this in case restriction
6231 -- No_Recursion is in effect anyway, and do it only for source calls.
6233 if Comes_From_Source (N) then
6234 Scop := Current_Scope;
6236 -- Check violation of SPARK_05 restriction which does not permit
6237 -- a subprogram body to contain a call to the subprogram directly.
6239 if Restriction_Check_Required (SPARK_05)
6240 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6241 then
6242 Check_SPARK_05_Restriction
6243 ("subprogram may not contain direct call to itself", N);
6244 end if;
6246 -- Issue warning for possible infinite recursion in the absence
6247 -- of the No_Recursion restriction.
6249 if Same_Or_Aliased_Subprograms (Nam, Scop)
6250 and then not Restriction_Active (No_Recursion)
6251 and then Check_Infinite_Recursion (N)
6252 then
6253 -- Here we detected and flagged an infinite recursion, so we do
6254 -- not need to test the case below for further warnings. Also we
6255 -- are all done if we now have a raise SE node.
6257 if Nkind (N) = N_Raise_Storage_Error then
6258 return;
6259 end if;
6261 -- If call is to immediately containing subprogram, then check for
6262 -- the case of a possible run-time detectable infinite recursion.
6264 else
6265 Scope_Loop : while Scop /= Standard_Standard loop
6266 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6268 -- Although in general case, recursion is not statically
6269 -- checkable, the case of calling an immediately containing
6270 -- subprogram is easy to catch.
6272 Check_Restriction (No_Recursion, N);
6274 -- If the recursive call is to a parameterless subprogram,
6275 -- then even if we can't statically detect infinite
6276 -- recursion, this is pretty suspicious, and we output a
6277 -- warning. Furthermore, we will try later to detect some
6278 -- cases here at run time by expanding checking code (see
6279 -- Detect_Infinite_Recursion in package Exp_Ch6).
6281 -- If the recursive call is within a handler, do not emit a
6282 -- warning, because this is a common idiom: loop until input
6283 -- is correct, catch illegal input in handler and restart.
6285 if No (First_Formal (Nam))
6286 and then Etype (Nam) = Standard_Void_Type
6287 and then not Error_Posted (N)
6288 and then Nkind (Parent (N)) /= N_Exception_Handler
6289 then
6290 -- For the case of a procedure call. We give the message
6291 -- only if the call is the first statement in a sequence
6292 -- of statements, or if all previous statements are
6293 -- simple assignments. This is simply a heuristic to
6294 -- decrease false positives, without losing too many good
6295 -- warnings. The idea is that these previous statements
6296 -- may affect global variables the procedure depends on.
6297 -- We also exclude raise statements, that may arise from
6298 -- constraint checks and are probably unrelated to the
6299 -- intended control flow.
6301 if Nkind (N) = N_Procedure_Call_Statement
6302 and then Is_List_Member (N)
6303 then
6304 declare
6305 P : Node_Id;
6306 begin
6307 P := Prev (N);
6308 while Present (P) loop
6309 if not Nkind_In (P, N_Assignment_Statement,
6310 N_Raise_Constraint_Error)
6311 then
6312 exit Scope_Loop;
6313 end if;
6315 Prev (P);
6316 end loop;
6317 end;
6318 end if;
6320 -- Do not give warning if we are in a conditional context
6322 declare
6323 K : constant Node_Kind := Nkind (Parent (N));
6324 begin
6325 if (K = N_Loop_Statement
6326 and then Present (Iteration_Scheme (Parent (N))))
6327 or else K = N_If_Statement
6328 or else K = N_Elsif_Part
6329 or else K = N_Case_Statement_Alternative
6330 then
6331 exit Scope_Loop;
6332 end if;
6333 end;
6335 -- Here warning is to be issued
6337 Set_Has_Recursive_Call (Nam);
6338 Error_Msg_Warn := SPARK_Mode /= On;
6339 Error_Msg_N ("possible infinite recursion<<!", N);
6340 Error_Msg_N ("\Storage_Error ]<<!", N);
6341 end if;
6343 exit Scope_Loop;
6344 end if;
6346 Scop := Scope (Scop);
6347 end loop Scope_Loop;
6348 end if;
6349 end if;
6351 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6353 Check_Obsolescent_2005_Entity (Nam, Subp);
6355 -- If subprogram name is a predefined operator, it was given in
6356 -- functional notation. Replace call node with operator node, so
6357 -- that actuals can be resolved appropriately.
6359 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6360 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6361 return;
6363 elsif Present (Alias (Nam))
6364 and then Is_Predefined_Op (Alias (Nam))
6365 then
6366 Resolve_Actuals (N, Nam);
6367 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6368 return;
6369 end if;
6371 -- Create a transient scope if the resulting type requires it
6373 -- There are several notable exceptions:
6375 -- a) In init procs, the transient scope overhead is not needed, and is
6376 -- even incorrect when the call is a nested initialization call for a
6377 -- component whose expansion may generate adjust calls. However, if the
6378 -- call is some other procedure call within an initialization procedure
6379 -- (for example a call to Create_Task in the init_proc of the task
6380 -- run-time record) a transient scope must be created around this call.
6382 -- b) Enumeration literal pseudo-calls need no transient scope
6384 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6385 -- functions) do not use the secondary stack even though the return
6386 -- type may be unconstrained.
6388 -- d) Calls to a build-in-place function, since such functions may
6389 -- allocate their result directly in a target object, and cases where
6390 -- the result does get allocated in the secondary stack are checked for
6391 -- within the specialized Exp_Ch6 procedures for expanding those
6392 -- build-in-place calls.
6394 -- e) Calls to inlinable expression functions do not use the secondary
6395 -- stack (since the call will be replaced by its returned object).
6397 -- f) If the subprogram is marked Inline_Always, then even if it returns
6398 -- an unconstrained type the call does not require use of the secondary
6399 -- stack. However, inlining will only take place if the body to inline
6400 -- is already present. It may not be available if e.g. the subprogram is
6401 -- declared in a child instance.
6403 if Is_Inlined (Nam)
6404 and then Has_Pragma_Inline (Nam)
6405 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6406 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6407 then
6408 null;
6410 elsif Ekind (Nam) = E_Enumeration_Literal
6411 or else Is_Build_In_Place_Function (Nam)
6412 or else Is_Intrinsic_Subprogram (Nam)
6413 or else Is_Inlinable_Expression_Function (Nam)
6414 then
6415 null;
6417 elsif Expander_Active
6418 and then Ekind (Nam) = E_Function
6419 and then Requires_Transient_Scope (Etype (Nam))
6420 then
6421 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6423 -- If the call appears within the bounds of a loop, it will be
6424 -- rewritten and reanalyzed, nothing left to do here.
6426 if Nkind (N) /= N_Function_Call then
6427 return;
6428 end if;
6429 end if;
6431 -- A protected function cannot be called within the definition of the
6432 -- enclosing protected type, unless it is part of a pre/postcondition
6433 -- on another protected operation. This may appear in the entry wrapper
6434 -- created for an entry with preconditions.
6436 if Is_Protected_Type (Scope (Nam))
6437 and then In_Open_Scopes (Scope (Nam))
6438 and then not Has_Completion (Scope (Nam))
6439 and then not In_Spec_Expression
6440 and then not Is_Entry_Wrapper (Current_Scope)
6441 then
6442 Error_Msg_NE
6443 ("& cannot be called before end of protected definition", N, Nam);
6444 end if;
6446 -- Propagate interpretation to actuals, and add default expressions
6447 -- where needed.
6449 if Present (First_Formal (Nam)) then
6450 Resolve_Actuals (N, Nam);
6452 -- Overloaded literals are rewritten as function calls, for purpose of
6453 -- resolution. After resolution, we can replace the call with the
6454 -- literal itself.
6456 elsif Ekind (Nam) = E_Enumeration_Literal then
6457 Copy_Node (Subp, N);
6458 Resolve_Entity_Name (N, Typ);
6460 -- Avoid validation, since it is a static function call
6462 Generate_Reference (Nam, Subp);
6463 return;
6464 end if;
6466 -- If the subprogram is not global, then kill all saved values and
6467 -- checks. This is a bit conservative, since in many cases we could do
6468 -- better, but it is not worth the effort. Similarly, we kill constant
6469 -- values. However we do not need to do this for internal entities
6470 -- (unless they are inherited user-defined subprograms), since they
6471 -- are not in the business of molesting local values.
6473 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6474 -- kill all checks and values for calls to global subprograms. This
6475 -- takes care of the case where an access to a local subprogram is
6476 -- taken, and could be passed directly or indirectly and then called
6477 -- from almost any context.
6479 -- Note: we do not do this step till after resolving the actuals. That
6480 -- way we still take advantage of the current value information while
6481 -- scanning the actuals.
6483 -- We suppress killing values if we are processing the nodes associated
6484 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6485 -- type kills all the values as part of analyzing the code that
6486 -- initializes the dispatch tables.
6488 if Inside_Freezing_Actions = 0
6489 and then (not Is_Library_Level_Entity (Nam)
6490 or else Suppress_Value_Tracking_On_Call
6491 (Nearest_Dynamic_Scope (Current_Scope)))
6492 and then (Comes_From_Source (Nam)
6493 or else (Present (Alias (Nam))
6494 and then Comes_From_Source (Alias (Nam))))
6495 then
6496 Kill_Current_Values;
6497 end if;
6499 -- If we are warning about unread OUT parameters, this is the place to
6500 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6501 -- after the above call to Kill_Current_Values (since that call clears
6502 -- the Last_Assignment field of all local variables).
6504 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6505 and then Comes_From_Source (N)
6506 and then In_Extended_Main_Source_Unit (N)
6507 then
6508 declare
6509 F : Entity_Id;
6510 A : Node_Id;
6512 begin
6513 F := First_Formal (Nam);
6514 A := First_Actual (N);
6515 while Present (F) and then Present (A) loop
6516 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6517 and then Warn_On_Modified_As_Out_Parameter (F)
6518 and then Is_Entity_Name (A)
6519 and then Present (Entity (A))
6520 and then Comes_From_Source (N)
6521 and then Safe_To_Capture_Value (N, Entity (A))
6522 then
6523 Set_Last_Assignment (Entity (A), A);
6524 end if;
6526 Next_Formal (F);
6527 Next_Actual (A);
6528 end loop;
6529 end;
6530 end if;
6532 -- If the subprogram is a primitive operation, check whether or not
6533 -- it is a correct dispatching call.
6535 if Is_Overloadable (Nam)
6536 and then Is_Dispatching_Operation (Nam)
6537 then
6538 Check_Dispatching_Call (N);
6540 elsif Ekind (Nam) /= E_Subprogram_Type
6541 and then Is_Abstract_Subprogram (Nam)
6542 and then not In_Instance
6543 then
6544 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6545 end if;
6547 -- If this is a dispatching call, generate the appropriate reference,
6548 -- for better source navigation in GPS.
6550 if Is_Overloadable (Nam)
6551 and then Present (Controlling_Argument (N))
6552 then
6553 Generate_Reference (Nam, Subp, 'R');
6555 -- Normal case, not a dispatching call: generate a call reference
6557 else
6558 Generate_Reference (Nam, Subp, 's');
6559 end if;
6561 if Is_Intrinsic_Subprogram (Nam) then
6562 Check_Intrinsic_Call (N);
6563 end if;
6565 -- Check for violation of restriction No_Specific_Termination_Handlers
6566 -- and warn on a potentially blocking call to Abort_Task.
6568 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6569 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6570 or else
6571 Is_RTE (Nam, RE_Specific_Handler))
6572 then
6573 Check_Restriction (No_Specific_Termination_Handlers, N);
6575 elsif Is_RTE (Nam, RE_Abort_Task) then
6576 Check_Potentially_Blocking_Operation (N);
6577 end if;
6579 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6580 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6581 -- need to check the second argument to determine whether it is an
6582 -- absolute or relative timing event.
6584 if Restriction_Check_Required (No_Relative_Delay)
6585 and then Is_RTE (Nam, RE_Set_Handler)
6586 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6587 then
6588 Check_Restriction (No_Relative_Delay, N);
6589 end if;
6591 -- Issue an error for a call to an eliminated subprogram. This routine
6592 -- will not perform the check if the call appears within a default
6593 -- expression.
6595 Check_For_Eliminated_Subprogram (Subp, Nam);
6597 -- In formal mode, the primitive operations of a tagged type or type
6598 -- extension do not include functions that return the tagged type.
6600 if Nkind (N) = N_Function_Call
6601 and then Is_Tagged_Type (Etype (N))
6602 and then Is_Entity_Name (Name (N))
6603 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6604 then
6605 Check_SPARK_05_Restriction ("function not inherited", N);
6606 end if;
6608 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6609 -- class-wide and the call dispatches on result in a context that does
6610 -- not provide a tag, the call raises Program_Error.
6612 if Nkind (N) = N_Function_Call
6613 and then In_Instance
6614 and then Is_Generic_Actual_Type (Typ)
6615 and then Is_Class_Wide_Type (Typ)
6616 and then Has_Controlling_Result (Nam)
6617 and then Nkind (Parent (N)) = N_Object_Declaration
6618 then
6619 -- Verify that none of the formals are controlling
6621 declare
6622 Call_OK : Boolean := False;
6623 F : Entity_Id;
6625 begin
6626 F := First_Formal (Nam);
6627 while Present (F) loop
6628 if Is_Controlling_Formal (F) then
6629 Call_OK := True;
6630 exit;
6631 end if;
6633 Next_Formal (F);
6634 end loop;
6636 if not Call_OK then
6637 Error_Msg_Warn := SPARK_Mode /= On;
6638 Error_Msg_N ("!cannot determine tag of result<<", N);
6639 Error_Msg_N ("\Program_Error [<<!", N);
6640 Insert_Action (N,
6641 Make_Raise_Program_Error (Sloc (N),
6642 Reason => PE_Explicit_Raise));
6643 end if;
6644 end;
6645 end if;
6647 -- Check for calling a function with OUT or IN OUT parameter when the
6648 -- calling context (us right now) is not Ada 2012, so does not allow
6649 -- OUT or IN OUT parameters in function calls. Functions declared in
6650 -- a predefined unit are OK, as they may be called indirectly from a
6651 -- user-declared instantiation.
6653 if Ada_Version < Ada_2012
6654 and then Ekind (Nam) = E_Function
6655 and then Has_Out_Or_In_Out_Parameter (Nam)
6656 and then not In_Predefined_Unit (Nam)
6657 then
6658 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6659 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6660 end if;
6662 -- Check the dimensions of the actuals in the call. For function calls,
6663 -- propagate the dimensions from the returned type to N.
6665 Analyze_Dimension_Call (N, Nam);
6667 -- All done, evaluate call and deal with elaboration issues
6669 Eval_Call (N);
6671 if Legacy_Elaboration_Checks then
6672 Check_Elab_Call (N);
6673 end if;
6675 -- Annotate the tree by creating a call marker in case the original call
6676 -- is transformed by expansion. The call marker is automatically saved
6677 -- for later examination by the ABE Processing phase.
6679 Build_Call_Marker (N);
6681 -- In GNATprove mode, expansion is disabled, but we want to inline some
6682 -- subprograms to facilitate formal verification. Indirect calls through
6683 -- a subprogram type or within a generic cannot be inlined. Inlining is
6684 -- performed only for calls subject to SPARK_Mode on.
6686 if GNATprove_Mode
6687 and then SPARK_Mode = On
6688 and then Is_Overloadable (Nam)
6689 and then not Inside_A_Generic
6690 then
6691 Nam_UA := Ultimate_Alias (Nam);
6692 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6694 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6695 Body_Id := Corresponding_Body (Nam_Decl);
6697 -- Nothing to do if the subprogram is not eligible for inlining in
6698 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6700 if not Is_Inlined_Always (Nam_UA)
6701 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6702 or else Debug_Flag_M
6703 then
6704 null;
6706 -- Calls cannot be inlined inside assertions, as GNATprove treats
6707 -- assertions as logic expressions. Only issue a message when the
6708 -- body has been seen, otherwise this leads to spurious messages
6709 -- on expression functions.
6711 elsif In_Assertion_Expr /= 0 then
6712 if Present (Body_Id) then
6713 Cannot_Inline
6714 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6715 end if;
6717 -- Calls cannot be inlined inside default expressions
6719 elsif In_Default_Expr then
6720 Cannot_Inline
6721 ("cannot inline & (in default expression)?", N, Nam_UA);
6723 -- Inlining should not be performed during preanalysis
6725 elsif Full_Analysis then
6727 -- Do not inline calls inside expression functions or functions
6728 -- generated by the front end for subtype predicates, as this
6729 -- would prevent interpreting them as logical formulas in
6730 -- GNATprove. Only issue a message when the body has been seen,
6731 -- otherwise this leads to spurious messages on callees that
6732 -- are themselves expression functions.
6734 if Present (Current_Subprogram)
6735 and then
6736 (Is_Expression_Function_Or_Completion (Current_Subprogram)
6737 or else Is_Predicate_Function (Current_Subprogram)
6738 or else Is_Invariant_Procedure (Current_Subprogram)
6739 or else Is_DIC_Procedure (Current_Subprogram))
6740 then
6741 if Present (Body_Id)
6742 and then Present (Body_To_Inline (Nam_Decl))
6743 then
6744 if Is_Predicate_Function (Current_Subprogram) then
6745 Cannot_Inline
6746 ("cannot inline & (inside predicate)?",
6747 N, Nam_UA);
6749 elsif Is_Invariant_Procedure (Current_Subprogram) then
6750 Cannot_Inline
6751 ("cannot inline & (inside invariant)?",
6752 N, Nam_UA);
6754 elsif Is_DIC_Procedure (Current_Subprogram) then
6755 Cannot_Inline
6756 ("cannot inline & (inside Default_Initial_Condition)?",
6757 N, Nam_UA);
6759 else
6760 Cannot_Inline
6761 ("cannot inline & (inside expression function)?",
6762 N, Nam_UA);
6763 end if;
6764 end if;
6766 -- With the one-pass inlining technique, a call cannot be
6767 -- inlined if the corresponding body has not been seen yet.
6769 elsif No (Body_Id) then
6770 Cannot_Inline
6771 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6773 -- Nothing to do if there is no body to inline, indicating that
6774 -- the subprogram is not suitable for inlining in GNATprove
6775 -- mode.
6777 elsif No (Body_To_Inline (Nam_Decl)) then
6778 null;
6780 -- Calls cannot be inlined inside potentially unevaluated
6781 -- expressions, as this would create complex actions inside
6782 -- expressions, that are not handled by GNATprove.
6784 elsif Is_Potentially_Unevaluated (N) then
6785 Cannot_Inline
6786 ("cannot inline & (in potentially unevaluated context)?",
6787 N, Nam_UA);
6789 -- Do not inline calls which would possibly lead to missing a
6790 -- type conversion check on an input parameter.
6792 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6793 Cannot_Inline
6794 ("cannot inline & (possible check on input parameters)?",
6795 N, Nam_UA);
6797 -- Otherwise, inline the call
6799 else
6800 Expand_Inlined_Call (N, Nam_UA, Nam);
6801 end if;
6802 end if;
6803 end if;
6804 end if;
6806 Mark_Use_Clauses (Subp);
6808 Warn_On_Overlapping_Actuals (Nam, N);
6809 end Resolve_Call;
6811 -----------------------------
6812 -- Resolve_Case_Expression --
6813 -----------------------------
6815 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6816 Alt : Node_Id;
6817 Alt_Expr : Node_Id;
6818 Alt_Typ : Entity_Id;
6819 Is_Dyn : Boolean;
6821 begin
6822 Alt := First (Alternatives (N));
6823 while Present (Alt) loop
6824 Alt_Expr := Expression (Alt);
6826 if Error_Posted (Alt_Expr) then
6827 return;
6828 end if;
6830 Resolve (Alt_Expr, Typ);
6831 Alt_Typ := Etype (Alt_Expr);
6833 -- When the expression is of a scalar subtype different from the
6834 -- result subtype, then insert a conversion to ensure the generation
6835 -- of a constraint check.
6837 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6838 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6839 Analyze_And_Resolve (Alt_Expr, Typ);
6840 end if;
6842 Next (Alt);
6843 end loop;
6845 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6846 -- dynamically tagged must be known statically.
6848 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6849 Alt := First (Alternatives (N));
6850 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6852 while Present (Alt) loop
6853 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6854 Error_Msg_N
6855 ("all or none of the dependent expressions can be "
6856 & "dynamically tagged", N);
6857 end if;
6859 Next (Alt);
6860 end loop;
6861 end if;
6863 Set_Etype (N, Typ);
6864 Eval_Case_Expression (N);
6865 Analyze_Dimension (N);
6866 end Resolve_Case_Expression;
6868 -------------------------------
6869 -- Resolve_Character_Literal --
6870 -------------------------------
6872 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6873 B_Typ : constant Entity_Id := Base_Type (Typ);
6874 C : Entity_Id;
6876 begin
6877 -- Verify that the character does belong to the type of the context
6879 Set_Etype (N, B_Typ);
6880 Eval_Character_Literal (N);
6882 -- Wide_Wide_Character literals must always be defined, since the set
6883 -- of wide wide character literals is complete, i.e. if a character
6884 -- literal is accepted by the parser, then it is OK for wide wide
6885 -- character (out of range character literals are rejected).
6887 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6888 return;
6890 -- Always accept character literal for type Any_Character, which
6891 -- occurs in error situations and in comparisons of literals, both
6892 -- of which should accept all literals.
6894 elsif B_Typ = Any_Character then
6895 return;
6897 -- For Standard.Character or a type derived from it, check that the
6898 -- literal is in range.
6900 elsif Root_Type (B_Typ) = Standard_Character then
6901 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6902 return;
6903 end if;
6905 -- For Standard.Wide_Character or a type derived from it, check that the
6906 -- literal is in range.
6908 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6909 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6910 return;
6911 end if;
6913 -- If the entity is already set, this has already been resolved in a
6914 -- generic context, or comes from expansion. Nothing else to do.
6916 elsif Present (Entity (N)) then
6917 return;
6919 -- Otherwise we have a user defined character type, and we can use the
6920 -- standard visibility mechanisms to locate the referenced entity.
6922 else
6923 C := Current_Entity (N);
6924 while Present (C) loop
6925 if Etype (C) = B_Typ then
6926 Set_Entity_With_Checks (N, C);
6927 Generate_Reference (C, N);
6928 return;
6929 end if;
6931 C := Homonym (C);
6932 end loop;
6933 end if;
6935 -- If we fall through, then the literal does not match any of the
6936 -- entries of the enumeration type. This isn't just a constraint error
6937 -- situation, it is an illegality (see RM 4.2).
6939 Error_Msg_NE
6940 ("character not defined for }", N, First_Subtype (B_Typ));
6941 end Resolve_Character_Literal;
6943 ---------------------------
6944 -- Resolve_Comparison_Op --
6945 ---------------------------
6947 -- Context requires a boolean type, and plays no role in resolution.
6948 -- Processing identical to that for equality operators. The result type is
6949 -- the base type, which matters when pathological subtypes of booleans with
6950 -- limited ranges are used.
6952 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6953 L : constant Node_Id := Left_Opnd (N);
6954 R : constant Node_Id := Right_Opnd (N);
6955 T : Entity_Id;
6957 begin
6958 -- If this is an intrinsic operation which is not predefined, use the
6959 -- types of its declared arguments to resolve the possibly overloaded
6960 -- operands. Otherwise the operands are unambiguous and specify the
6961 -- expected type.
6963 if Scope (Entity (N)) /= Standard_Standard then
6964 T := Etype (First_Entity (Entity (N)));
6966 else
6967 T := Find_Unique_Type (L, R);
6969 if T = Any_Fixed then
6970 T := Unique_Fixed_Point_Type (L);
6971 end if;
6972 end if;
6974 Set_Etype (N, Base_Type (Typ));
6975 Generate_Reference (T, N, ' ');
6977 -- Skip remaining processing if already set to Any_Type
6979 if T = Any_Type then
6980 return;
6981 end if;
6983 -- Deal with other error cases
6985 if T = Any_String or else
6986 T = Any_Composite or else
6987 T = Any_Character
6988 then
6989 if T = Any_Character then
6990 Ambiguous_Character (L);
6991 else
6992 Error_Msg_N ("ambiguous operands for comparison", N);
6993 end if;
6995 Set_Etype (N, Any_Type);
6996 return;
6997 end if;
6999 -- Resolve the operands if types OK
7001 Resolve (L, T);
7002 Resolve (R, T);
7003 Check_Unset_Reference (L);
7004 Check_Unset_Reference (R);
7005 Generate_Operator_Reference (N, T);
7006 Check_Low_Bound_Tested (N);
7008 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
7009 -- types or array types except String.
7011 if Is_Boolean_Type (T) then
7012 Check_SPARK_05_Restriction
7013 ("comparison is not defined on Boolean type", N);
7015 elsif Is_Array_Type (T)
7016 and then Base_Type (T) /= Standard_String
7017 then
7018 Check_SPARK_05_Restriction
7019 ("comparison is not defined on array types other than String", N);
7020 end if;
7022 -- Check comparison on unordered enumeration
7024 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
7025 Error_Msg_Sloc := Sloc (Etype (L));
7026 Error_Msg_NE
7027 ("comparison on unordered enumeration type& declared#?U?",
7028 N, Etype (L));
7029 end if;
7031 Analyze_Dimension (N);
7033 -- Evaluate the relation (note we do this after the above check since
7034 -- this Eval call may change N to True/False. Skip this evaluation
7035 -- inside assertions, in order to keep assertions as written by users
7036 -- for tools that rely on these, e.g. GNATprove for loop invariants.
7037 -- Except evaluation is still performed even inside assertions for
7038 -- comparisons between values of universal type, which are useless
7039 -- for static analysis tools, and not supported even by GNATprove.
7041 if In_Assertion_Expr = 0
7042 or else (Is_Universal_Numeric_Type (Etype (L))
7043 and then
7044 Is_Universal_Numeric_Type (Etype (R)))
7045 then
7046 Eval_Relational_Op (N);
7047 end if;
7048 end Resolve_Comparison_Op;
7050 -----------------------------------------
7051 -- Resolve_Discrete_Subtype_Indication --
7052 -----------------------------------------
7054 procedure Resolve_Discrete_Subtype_Indication
7055 (N : Node_Id;
7056 Typ : Entity_Id)
7058 R : Node_Id;
7059 S : Entity_Id;
7061 begin
7062 Analyze (Subtype_Mark (N));
7063 S := Entity (Subtype_Mark (N));
7065 if Nkind (Constraint (N)) /= N_Range_Constraint then
7066 Error_Msg_N ("expect range constraint for discrete type", N);
7067 Set_Etype (N, Any_Type);
7069 else
7070 R := Range_Expression (Constraint (N));
7072 if R = Error then
7073 return;
7074 end if;
7076 Analyze (R);
7078 if Base_Type (S) /= Base_Type (Typ) then
7079 Error_Msg_NE
7080 ("expect subtype of }", N, First_Subtype (Typ));
7082 -- Rewrite the constraint as a range of Typ
7083 -- to allow compilation to proceed further.
7085 Set_Etype (N, Typ);
7086 Rewrite (Low_Bound (R),
7087 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7088 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7089 Attribute_Name => Name_First));
7090 Rewrite (High_Bound (R),
7091 Make_Attribute_Reference (Sloc (High_Bound (R)),
7092 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7093 Attribute_Name => Name_First));
7095 else
7096 Resolve (R, Typ);
7097 Set_Etype (N, Etype (R));
7099 -- Additionally, we must check that the bounds are compatible
7100 -- with the given subtype, which might be different from the
7101 -- type of the context.
7103 Apply_Range_Check (R, S);
7105 -- ??? If the above check statically detects a Constraint_Error
7106 -- it replaces the offending bound(s) of the range R with a
7107 -- Constraint_Error node. When the itype which uses these bounds
7108 -- is frozen the resulting call to Duplicate_Subexpr generates
7109 -- a new temporary for the bounds.
7111 -- Unfortunately there are other itypes that are also made depend
7112 -- on these bounds, so when Duplicate_Subexpr is called they get
7113 -- a forward reference to the newly created temporaries and Gigi
7114 -- aborts on such forward references. This is probably sign of a
7115 -- more fundamental problem somewhere else in either the order of
7116 -- itype freezing or the way certain itypes are constructed.
7118 -- To get around this problem we call Remove_Side_Effects right
7119 -- away if either bounds of R are a Constraint_Error.
7121 declare
7122 L : constant Node_Id := Low_Bound (R);
7123 H : constant Node_Id := High_Bound (R);
7125 begin
7126 if Nkind (L) = N_Raise_Constraint_Error then
7127 Remove_Side_Effects (L);
7128 end if;
7130 if Nkind (H) = N_Raise_Constraint_Error then
7131 Remove_Side_Effects (H);
7132 end if;
7133 end;
7135 Check_Unset_Reference (Low_Bound (R));
7136 Check_Unset_Reference (High_Bound (R));
7137 end if;
7138 end if;
7139 end Resolve_Discrete_Subtype_Indication;
7141 -------------------------
7142 -- Resolve_Entity_Name --
7143 -------------------------
7145 -- Used to resolve identifiers and expanded names
7147 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7148 function Is_Assignment_Or_Object_Expression
7149 (Context : Node_Id;
7150 Expr : Node_Id) return Boolean;
7151 -- Determine whether node Context denotes an assignment statement or an
7152 -- object declaration whose expression is node Expr.
7154 ----------------------------------------
7155 -- Is_Assignment_Or_Object_Expression --
7156 ----------------------------------------
7158 function Is_Assignment_Or_Object_Expression
7159 (Context : Node_Id;
7160 Expr : Node_Id) return Boolean
7162 begin
7163 if Nkind_In (Context, N_Assignment_Statement,
7164 N_Object_Declaration)
7165 and then Expression (Context) = Expr
7166 then
7167 return True;
7169 -- Check whether a construct that yields a name is the expression of
7170 -- an assignment statement or an object declaration.
7172 elsif (Nkind_In (Context, N_Attribute_Reference,
7173 N_Explicit_Dereference,
7174 N_Indexed_Component,
7175 N_Selected_Component,
7176 N_Slice)
7177 and then Prefix (Context) = Expr)
7178 or else
7179 (Nkind_In (Context, N_Type_Conversion,
7180 N_Unchecked_Type_Conversion)
7181 and then Expression (Context) = Expr)
7182 then
7183 return
7184 Is_Assignment_Or_Object_Expression
7185 (Context => Parent (Context),
7186 Expr => Context);
7188 -- Otherwise the context is not an assignment statement or an object
7189 -- declaration.
7191 else
7192 return False;
7193 end if;
7194 end Is_Assignment_Or_Object_Expression;
7196 -- Local variables
7198 E : constant Entity_Id := Entity (N);
7199 Par : Node_Id;
7201 -- Start of processing for Resolve_Entity_Name
7203 begin
7204 -- If garbage from errors, set to Any_Type and return
7206 if No (E) and then Total_Errors_Detected /= 0 then
7207 Set_Etype (N, Any_Type);
7208 return;
7209 end if;
7211 -- Replace named numbers by corresponding literals. Note that this is
7212 -- the one case where Resolve_Entity_Name must reset the Etype, since
7213 -- it is currently marked as universal.
7215 if Ekind (E) = E_Named_Integer then
7216 Set_Etype (N, Typ);
7217 Eval_Named_Integer (N);
7219 elsif Ekind (E) = E_Named_Real then
7220 Set_Etype (N, Typ);
7221 Eval_Named_Real (N);
7223 -- For enumeration literals, we need to make sure that a proper style
7224 -- check is done, since such literals are overloaded, and thus we did
7225 -- not do a style check during the first phase of analysis.
7227 elsif Ekind (E) = E_Enumeration_Literal then
7228 Set_Entity_With_Checks (N, E);
7229 Eval_Entity_Name (N);
7231 -- Case of (sub)type name appearing in a context where an expression
7232 -- is expected. This is legal if occurrence is a current instance.
7233 -- See RM 8.6 (17/3).
7235 elsif Is_Type (E) then
7236 if Is_Current_Instance (N) then
7237 null;
7239 -- Any other use is an error
7241 else
7242 Error_Msg_N
7243 ("invalid use of subtype mark in expression or call", N);
7244 end if;
7246 -- Check discriminant use if entity is discriminant in current scope,
7247 -- i.e. discriminant of record or concurrent type currently being
7248 -- analyzed. Uses in corresponding body are unrestricted.
7250 elsif Ekind (E) = E_Discriminant
7251 and then Scope (E) = Current_Scope
7252 and then not Has_Completion (Current_Scope)
7253 then
7254 Check_Discriminant_Use (N);
7256 -- A parameterless generic function cannot appear in a context that
7257 -- requires resolution.
7259 elsif Ekind (E) = E_Generic_Function then
7260 Error_Msg_N ("illegal use of generic function", N);
7262 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7263 -- array types (i.e. bounds and length) are legal.
7265 elsif Ekind (E) = E_Out_Parameter
7266 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7267 or else Is_Scalar_Type (Etype (E)))
7269 and then (Nkind (Parent (N)) in N_Op
7270 or else Nkind (Parent (N)) = N_Explicit_Dereference
7271 or else Is_Assignment_Or_Object_Expression
7272 (Context => Parent (N),
7273 Expr => N))
7274 then
7275 if Ada_Version = Ada_83 then
7276 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7277 end if;
7279 -- In all other cases, just do the possible static evaluation
7281 else
7282 -- A deferred constant that appears in an expression must have a
7283 -- completion, unless it has been removed by in-place expansion of
7284 -- an aggregate. A constant that is a renaming does not need
7285 -- initialization.
7287 if Ekind (E) = E_Constant
7288 and then Comes_From_Source (E)
7289 and then No (Constant_Value (E))
7290 and then Is_Frozen (Etype (E))
7291 and then not In_Spec_Expression
7292 and then not Is_Imported (E)
7293 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7294 then
7295 if No_Initialization (Parent (E))
7296 or else (Present (Full_View (E))
7297 and then No_Initialization (Parent (Full_View (E))))
7298 then
7299 null;
7300 else
7301 Error_Msg_N
7302 ("deferred constant is frozen before completion", N);
7303 end if;
7304 end if;
7306 Eval_Entity_Name (N);
7307 end if;
7309 Par := Parent (N);
7311 -- When the entity appears in a parameter association, retrieve the
7312 -- related subprogram call.
7314 if Nkind (Par) = N_Parameter_Association then
7315 Par := Parent (Par);
7316 end if;
7318 if Comes_From_Source (N) then
7320 -- The following checks are only relevant when SPARK_Mode is on as
7321 -- they are not standard Ada legality rules.
7323 if SPARK_Mode = On then
7325 -- An effectively volatile object subject to enabled properties
7326 -- Async_Writers or Effective_Reads must appear in non-interfering
7327 -- context (SPARK RM 7.1.3(12)).
7329 if Is_Object (E)
7330 and then Is_Effectively_Volatile (E)
7331 and then (Async_Writers_Enabled (E)
7332 or else Effective_Reads_Enabled (E))
7333 and then not Is_OK_Volatile_Context (Par, N)
7334 then
7335 SPARK_Msg_N
7336 ("volatile object cannot appear in this context "
7337 & "(SPARK RM 7.1.3(12))", N);
7338 end if;
7340 -- Check for possible elaboration issues with respect to reads of
7341 -- variables. The act of renaming the variable is not considered a
7342 -- read as it simply establishes an alias.
7344 if Legacy_Elaboration_Checks
7345 and then Ekind (E) = E_Variable
7346 and then Dynamic_Elaboration_Checks
7347 and then Nkind (Par) /= N_Object_Renaming_Declaration
7348 then
7349 Check_Elab_Call (N);
7350 end if;
7351 end if;
7353 -- The variable may eventually become a constituent of a single
7354 -- protected/task type. Record the reference now and verify its
7355 -- legality when analyzing the contract of the variable
7356 -- (SPARK RM 9.3).
7358 if Ekind (E) = E_Variable then
7359 Record_Possible_Part_Of_Reference (E, N);
7360 end if;
7362 -- A Ghost entity must appear in a specific context
7364 if Is_Ghost_Entity (E) then
7365 Check_Ghost_Context (E, N);
7366 end if;
7367 end if;
7369 -- We may be resolving an entity within expanded code, so a reference to
7370 -- an entity should be ignored when calculating effective use clauses to
7371 -- avoid inappropriate marking.
7373 if Comes_From_Source (N) then
7374 Mark_Use_Clauses (E);
7375 end if;
7376 end Resolve_Entity_Name;
7378 -------------------
7379 -- Resolve_Entry --
7380 -------------------
7382 procedure Resolve_Entry (Entry_Name : Node_Id) is
7383 Loc : constant Source_Ptr := Sloc (Entry_Name);
7384 Nam : Entity_Id;
7385 New_N : Node_Id;
7386 S : Entity_Id;
7387 Tsk : Entity_Id;
7388 E_Name : Node_Id;
7389 Index : Node_Id;
7391 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7392 -- If the bounds of the entry family being called depend on task
7393 -- discriminants, build a new index subtype where a discriminant is
7394 -- replaced with the value of the discriminant of the target task.
7395 -- The target task is the prefix of the entry name in the call.
7397 -----------------------
7398 -- Actual_Index_Type --
7399 -----------------------
7401 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7402 Typ : constant Entity_Id := Entry_Index_Type (E);
7403 Tsk : constant Entity_Id := Scope (E);
7404 Lo : constant Node_Id := Type_Low_Bound (Typ);
7405 Hi : constant Node_Id := Type_High_Bound (Typ);
7406 New_T : Entity_Id;
7408 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7409 -- If the bound is given by a discriminant, replace with a reference
7410 -- to the discriminant of the same name in the target task. If the
7411 -- entry name is the target of a requeue statement and the entry is
7412 -- in the current protected object, the bound to be used is the
7413 -- discriminal of the object (see Apply_Range_Checks for details of
7414 -- the transformation).
7416 -----------------------------
7417 -- Actual_Discriminant_Ref --
7418 -----------------------------
7420 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7421 Typ : constant Entity_Id := Etype (Bound);
7422 Ref : Node_Id;
7424 begin
7425 Remove_Side_Effects (Bound);
7427 if not Is_Entity_Name (Bound)
7428 or else Ekind (Entity (Bound)) /= E_Discriminant
7429 then
7430 return Bound;
7432 elsif Is_Protected_Type (Tsk)
7433 and then In_Open_Scopes (Tsk)
7434 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7435 then
7436 -- Note: here Bound denotes a discriminant of the corresponding
7437 -- record type tskV, whose discriminal is a formal of the
7438 -- init-proc tskVIP. What we want is the body discriminal,
7439 -- which is associated to the discriminant of the original
7440 -- concurrent type tsk.
7442 return New_Occurrence_Of
7443 (Find_Body_Discriminal (Entity (Bound)), Loc);
7445 else
7446 Ref :=
7447 Make_Selected_Component (Loc,
7448 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7449 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7450 Analyze (Ref);
7451 Resolve (Ref, Typ);
7452 return Ref;
7453 end if;
7454 end Actual_Discriminant_Ref;
7456 -- Start of processing for Actual_Index_Type
7458 begin
7459 if not Has_Discriminants (Tsk)
7460 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7461 then
7462 return Entry_Index_Type (E);
7464 else
7465 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7466 Set_Etype (New_T, Base_Type (Typ));
7467 Set_Size_Info (New_T, Typ);
7468 Set_RM_Size (New_T, RM_Size (Typ));
7469 Set_Scalar_Range (New_T,
7470 Make_Range (Sloc (Entry_Name),
7471 Low_Bound => Actual_Discriminant_Ref (Lo),
7472 High_Bound => Actual_Discriminant_Ref (Hi)));
7474 return New_T;
7475 end if;
7476 end Actual_Index_Type;
7478 -- Start of processing for Resolve_Entry
7480 begin
7481 -- Find name of entry being called, and resolve prefix of name with its
7482 -- own type. The prefix can be overloaded, and the name and signature of
7483 -- the entry must be taken into account.
7485 if Nkind (Entry_Name) = N_Indexed_Component then
7487 -- Case of dealing with entry family within the current tasks
7489 E_Name := Prefix (Entry_Name);
7491 else
7492 E_Name := Entry_Name;
7493 end if;
7495 if Is_Entity_Name (E_Name) then
7497 -- Entry call to an entry (or entry family) in the current task. This
7498 -- is legal even though the task will deadlock. Rewrite as call to
7499 -- current task.
7501 -- This can also be a call to an entry in an enclosing task. If this
7502 -- is a single task, we have to retrieve its name, because the scope
7503 -- of the entry is the task type, not the object. If the enclosing
7504 -- task is a task type, the identity of the task is given by its own
7505 -- self variable.
7507 -- Finally this can be a requeue on an entry of the same task or
7508 -- protected object.
7510 S := Scope (Entity (E_Name));
7512 for J in reverse 0 .. Scope_Stack.Last loop
7513 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7514 and then not Comes_From_Source (S)
7515 then
7516 -- S is an enclosing task or protected object. The concurrent
7517 -- declaration has been converted into a type declaration, and
7518 -- the object itself has an object declaration that follows
7519 -- the type in the same declarative part.
7521 Tsk := Next_Entity (S);
7522 while Etype (Tsk) /= S loop
7523 Next_Entity (Tsk);
7524 end loop;
7526 S := Tsk;
7527 exit;
7529 elsif S = Scope_Stack.Table (J).Entity then
7531 -- Call to current task. Will be transformed into call to Self
7533 exit;
7535 end if;
7536 end loop;
7538 New_N :=
7539 Make_Selected_Component (Loc,
7540 Prefix => New_Occurrence_Of (S, Loc),
7541 Selector_Name =>
7542 New_Occurrence_Of (Entity (E_Name), Loc));
7543 Rewrite (E_Name, New_N);
7544 Analyze (E_Name);
7546 elsif Nkind (Entry_Name) = N_Selected_Component
7547 and then Is_Overloaded (Prefix (Entry_Name))
7548 then
7549 -- Use the entry name (which must be unique at this point) to find
7550 -- the prefix that returns the corresponding task/protected type.
7552 declare
7553 Pref : constant Node_Id := Prefix (Entry_Name);
7554 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7555 I : Interp_Index;
7556 It : Interp;
7558 begin
7559 Get_First_Interp (Pref, I, It);
7560 while Present (It.Typ) loop
7561 if Scope (Ent) = It.Typ then
7562 Set_Etype (Pref, It.Typ);
7563 exit;
7564 end if;
7566 Get_Next_Interp (I, It);
7567 end loop;
7568 end;
7569 end if;
7571 if Nkind (Entry_Name) = N_Selected_Component then
7572 Resolve (Prefix (Entry_Name));
7574 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7575 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7576 Resolve (Prefix (Prefix (Entry_Name)));
7577 Index := First (Expressions (Entry_Name));
7578 Resolve (Index, Entry_Index_Type (Nam));
7580 -- Generate a reference for the index when it denotes an entity
7582 if Is_Entity_Name (Index) then
7583 Generate_Reference (Entity (Index), Nam);
7584 end if;
7586 -- Up to this point the expression could have been the actual in a
7587 -- simple entry call, and be given by a named association.
7589 if Nkind (Index) = N_Parameter_Association then
7590 Error_Msg_N ("expect expression for entry index", Index);
7591 else
7592 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7593 end if;
7594 end if;
7595 end Resolve_Entry;
7597 ------------------------
7598 -- Resolve_Entry_Call --
7599 ------------------------
7601 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7602 Entry_Name : constant Node_Id := Name (N);
7603 Loc : constant Source_Ptr := Sloc (Entry_Name);
7605 Nam : Entity_Id;
7606 Norm_OK : Boolean;
7607 Obj : Node_Id;
7608 Was_Over : Boolean;
7610 begin
7611 -- We kill all checks here, because it does not seem worth the effort to
7612 -- do anything better, an entry call is a big operation.
7614 Kill_All_Checks;
7616 -- Processing of the name is similar for entry calls and protected
7617 -- operation calls. Once the entity is determined, we can complete
7618 -- the resolution of the actuals.
7620 -- The selector may be overloaded, in the case of a protected object
7621 -- with overloaded functions. The type of the context is used for
7622 -- resolution.
7624 if Nkind (Entry_Name) = N_Selected_Component
7625 and then Is_Overloaded (Selector_Name (Entry_Name))
7626 and then Typ /= Standard_Void_Type
7627 then
7628 declare
7629 I : Interp_Index;
7630 It : Interp;
7632 begin
7633 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7634 while Present (It.Typ) loop
7635 if Covers (Typ, It.Typ) then
7636 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7637 Set_Etype (Entry_Name, It.Typ);
7639 Generate_Reference (It.Typ, N, ' ');
7640 end if;
7642 Get_Next_Interp (I, It);
7643 end loop;
7644 end;
7645 end if;
7647 Resolve_Entry (Entry_Name);
7649 if Nkind (Entry_Name) = N_Selected_Component then
7651 -- Simple entry or protected operation call
7653 Nam := Entity (Selector_Name (Entry_Name));
7654 Obj := Prefix (Entry_Name);
7656 if Is_Subprogram (Nam) then
7657 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7658 end if;
7660 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7662 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7664 -- Call to member of entry family
7666 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7667 Obj := Prefix (Prefix (Entry_Name));
7668 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7669 end if;
7671 -- We cannot in general check the maximum depth of protected entry calls
7672 -- at compile time. But we can tell that any protected entry call at all
7673 -- violates a specified nesting depth of zero.
7675 if Is_Protected_Type (Scope (Nam)) then
7676 Check_Restriction (Max_Entry_Queue_Length, N);
7677 end if;
7679 -- Use context type to disambiguate a protected function that can be
7680 -- called without actuals and that returns an array type, and where the
7681 -- argument list may be an indexing of the returned value.
7683 if Ekind (Nam) = E_Function
7684 and then Needs_No_Actuals (Nam)
7685 and then Present (Parameter_Associations (N))
7686 and then
7687 ((Is_Array_Type (Etype (Nam))
7688 and then Covers (Typ, Component_Type (Etype (Nam))))
7690 or else (Is_Access_Type (Etype (Nam))
7691 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7692 and then
7693 Covers
7694 (Typ,
7695 Component_Type (Designated_Type (Etype (Nam))))))
7696 then
7697 declare
7698 Index_Node : Node_Id;
7700 begin
7701 Index_Node :=
7702 Make_Indexed_Component (Loc,
7703 Prefix =>
7704 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7705 Expressions => Parameter_Associations (N));
7707 -- Since we are correcting a node classification error made by the
7708 -- parser, we call Replace rather than Rewrite.
7710 Replace (N, Index_Node);
7711 Set_Etype (Prefix (N), Etype (Nam));
7712 Set_Etype (N, Typ);
7713 Resolve_Indexed_Component (N, Typ);
7714 return;
7715 end;
7716 end if;
7718 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7719 and then Present (Contract_Wrapper (Nam))
7720 and then Current_Scope /= Contract_Wrapper (Nam)
7721 then
7722 -- Note the entity being called before rewriting the call, so that
7723 -- it appears used at this point.
7725 Generate_Reference (Nam, Entry_Name, 'r');
7727 -- Rewrite as call to the precondition wrapper, adding the task
7728 -- object to the list of actuals. If the call is to a member of an
7729 -- entry family, include the index as well.
7731 declare
7732 New_Call : Node_Id;
7733 New_Actuals : List_Id;
7735 begin
7736 New_Actuals := New_List (Obj);
7738 if Nkind (Entry_Name) = N_Indexed_Component then
7739 Append_To (New_Actuals,
7740 New_Copy_Tree (First (Expressions (Entry_Name))));
7741 end if;
7743 Append_List (Parameter_Associations (N), New_Actuals);
7744 New_Call :=
7745 Make_Procedure_Call_Statement (Loc,
7746 Name =>
7747 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7748 Parameter_Associations => New_Actuals);
7749 Rewrite (N, New_Call);
7751 -- Preanalyze and resolve new call. Current procedure is called
7752 -- from Resolve_Call, after which expansion will take place.
7754 Preanalyze_And_Resolve (N);
7755 return;
7756 end;
7757 end if;
7759 -- The operation name may have been overloaded. Order the actuals
7760 -- according to the formals of the resolved entity, and set the return
7761 -- type to that of the operation.
7763 if Was_Over then
7764 Normalize_Actuals (N, Nam, False, Norm_OK);
7765 pragma Assert (Norm_OK);
7766 Set_Etype (N, Etype (Nam));
7768 -- Reset the Is_Overloaded flag, since resolution is now completed
7770 -- Simple entry call
7772 if Nkind (Entry_Name) = N_Selected_Component then
7773 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7775 -- Call to a member of an entry family
7777 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7778 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7779 end if;
7780 end if;
7782 Resolve_Actuals (N, Nam);
7783 Check_Internal_Protected_Use (N, Nam);
7785 -- Create a call reference to the entry
7787 Generate_Reference (Nam, Entry_Name, 's');
7789 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7790 Check_Potentially_Blocking_Operation (N);
7791 end if;
7793 -- Verify that a procedure call cannot masquerade as an entry
7794 -- call where an entry call is expected.
7796 if Ekind (Nam) = E_Procedure then
7797 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7798 and then N = Entry_Call_Statement (Parent (N))
7799 then
7800 Error_Msg_N ("entry call required in select statement", N);
7802 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7803 and then N = Triggering_Statement (Parent (N))
7804 then
7805 Error_Msg_N ("triggering statement cannot be procedure call", N);
7807 elsif Ekind (Scope (Nam)) = E_Task_Type
7808 and then not In_Open_Scopes (Scope (Nam))
7809 then
7810 Error_Msg_N ("task has no entry with this name", Entry_Name);
7811 end if;
7812 end if;
7814 -- After resolution, entry calls and protected procedure calls are
7815 -- changed into entry calls, for expansion. The structure of the node
7816 -- does not change, so it can safely be done in place. Protected
7817 -- function calls must keep their structure because they are
7818 -- subexpressions.
7820 if Ekind (Nam) /= E_Function then
7822 -- A protected operation that is not a function may modify the
7823 -- corresponding object, and cannot apply to a constant. If this
7824 -- is an internal call, the prefix is the type itself.
7826 if Is_Protected_Type (Scope (Nam))
7827 and then not Is_Variable (Obj)
7828 and then (not Is_Entity_Name (Obj)
7829 or else not Is_Type (Entity (Obj)))
7830 then
7831 Error_Msg_N
7832 ("prefix of protected procedure or entry call must be variable",
7833 Entry_Name);
7834 end if;
7836 declare
7837 Entry_Call : Node_Id;
7839 begin
7840 Entry_Call :=
7841 Make_Entry_Call_Statement (Loc,
7842 Name => Entry_Name,
7843 Parameter_Associations => Parameter_Associations (N));
7845 -- Inherit relevant attributes from the original call
7847 Set_First_Named_Actual
7848 (Entry_Call, First_Named_Actual (N));
7850 Set_Is_Elaboration_Checks_OK_Node
7851 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7853 Set_Is_Elaboration_Warnings_OK_Node
7854 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7856 Set_Is_SPARK_Mode_On_Node
7857 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7859 Rewrite (N, Entry_Call);
7860 Set_Analyzed (N, True);
7861 end;
7863 -- Protected functions can return on the secondary stack, in which case
7864 -- we must trigger the transient scope mechanism.
7866 elsif Expander_Active
7867 and then Requires_Transient_Scope (Etype (Nam))
7868 then
7869 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
7870 end if;
7871 end Resolve_Entry_Call;
7873 -------------------------
7874 -- Resolve_Equality_Op --
7875 -------------------------
7877 -- Both arguments must have the same type, and the boolean context does
7878 -- not participate in the resolution. The first pass verifies that the
7879 -- interpretation is not ambiguous, and the type of the left argument is
7880 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7881 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7882 -- though they carry a single (universal) type. Diagnose this case here.
7884 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7885 L : constant Node_Id := Left_Opnd (N);
7886 R : constant Node_Id := Right_Opnd (N);
7887 T : Entity_Id := Find_Unique_Type (L, R);
7889 procedure Check_If_Expression (Cond : Node_Id);
7890 -- The resolution rule for if expressions requires that each such must
7891 -- have a unique type. This means that if several dependent expressions
7892 -- are of a non-null anonymous access type, and the context does not
7893 -- impose an expected type (as can be the case in an equality operation)
7894 -- the expression must be rejected.
7896 procedure Explain_Redundancy (N : Node_Id);
7897 -- Attempt to explain the nature of a redundant comparison with True. If
7898 -- the expression N is too complex, this routine issues a general error
7899 -- message.
7901 function Find_Unique_Access_Type return Entity_Id;
7902 -- In the case of allocators and access attributes, the context must
7903 -- provide an indication of the specific access type to be used. If
7904 -- one operand is of such a "generic" access type, check whether there
7905 -- is a specific visible access type that has the same designated type.
7906 -- This is semantically dubious, and of no interest to any real code,
7907 -- but c48008a makes it all worthwhile.
7909 -------------------------
7910 -- Check_If_Expression --
7911 -------------------------
7913 procedure Check_If_Expression (Cond : Node_Id) is
7914 Then_Expr : Node_Id;
7915 Else_Expr : Node_Id;
7917 begin
7918 if Nkind (Cond) = N_If_Expression then
7919 Then_Expr := Next (First (Expressions (Cond)));
7920 Else_Expr := Next (Then_Expr);
7922 if Nkind (Then_Expr) /= N_Null
7923 and then Nkind (Else_Expr) /= N_Null
7924 then
7925 Error_Msg_N ("cannot determine type of if expression", Cond);
7926 end if;
7927 end if;
7928 end Check_If_Expression;
7930 ------------------------
7931 -- Explain_Redundancy --
7932 ------------------------
7934 procedure Explain_Redundancy (N : Node_Id) is
7935 Error : Name_Id;
7936 Val : Node_Id;
7937 Val_Id : Entity_Id;
7939 begin
7940 Val := N;
7942 -- Strip the operand down to an entity
7944 loop
7945 if Nkind (Val) = N_Selected_Component then
7946 Val := Selector_Name (Val);
7947 else
7948 exit;
7949 end if;
7950 end loop;
7952 -- The construct denotes an entity
7954 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7955 Val_Id := Entity (Val);
7957 -- Do not generate an error message when the comparison is done
7958 -- against the enumeration literal Standard.True.
7960 if Ekind (Val_Id) /= E_Enumeration_Literal then
7962 -- Build a customized error message
7964 Name_Len := 0;
7965 Add_Str_To_Name_Buffer ("?r?");
7967 if Ekind (Val_Id) = E_Component then
7968 Add_Str_To_Name_Buffer ("component ");
7970 elsif Ekind (Val_Id) = E_Constant then
7971 Add_Str_To_Name_Buffer ("constant ");
7973 elsif Ekind (Val_Id) = E_Discriminant then
7974 Add_Str_To_Name_Buffer ("discriminant ");
7976 elsif Is_Formal (Val_Id) then
7977 Add_Str_To_Name_Buffer ("parameter ");
7979 elsif Ekind (Val_Id) = E_Variable then
7980 Add_Str_To_Name_Buffer ("variable ");
7981 end if;
7983 Add_Str_To_Name_Buffer ("& is always True!");
7984 Error := Name_Find;
7986 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7987 end if;
7989 -- The construct is too complex to disect, issue a general message
7991 else
7992 Error_Msg_N ("?r?expression is always True!", Val);
7993 end if;
7994 end Explain_Redundancy;
7996 -----------------------------
7997 -- Find_Unique_Access_Type --
7998 -----------------------------
8000 function Find_Unique_Access_Type return Entity_Id is
8001 Acc : Entity_Id;
8002 E : Entity_Id;
8003 S : Entity_Id;
8005 begin
8006 if Ekind_In (Etype (R), E_Allocator_Type,
8007 E_Access_Attribute_Type)
8008 then
8009 Acc := Designated_Type (Etype (R));
8011 elsif Ekind_In (Etype (L), E_Allocator_Type,
8012 E_Access_Attribute_Type)
8013 then
8014 Acc := Designated_Type (Etype (L));
8015 else
8016 return Empty;
8017 end if;
8019 S := Current_Scope;
8020 while S /= Standard_Standard loop
8021 E := First_Entity (S);
8022 while Present (E) loop
8023 if Is_Type (E)
8024 and then Is_Access_Type (E)
8025 and then Ekind (E) /= E_Allocator_Type
8026 and then Designated_Type (E) = Base_Type (Acc)
8027 then
8028 return E;
8029 end if;
8031 Next_Entity (E);
8032 end loop;
8034 S := Scope (S);
8035 end loop;
8037 return Empty;
8038 end Find_Unique_Access_Type;
8040 -- Start of processing for Resolve_Equality_Op
8042 begin
8043 Set_Etype (N, Base_Type (Typ));
8044 Generate_Reference (T, N, ' ');
8046 if T = Any_Fixed then
8047 T := Unique_Fixed_Point_Type (L);
8048 end if;
8050 if T /= Any_Type then
8051 if T = Any_String or else
8052 T = Any_Composite or else
8053 T = Any_Character
8054 then
8055 if T = Any_Character then
8056 Ambiguous_Character (L);
8057 else
8058 Error_Msg_N ("ambiguous operands for equality", N);
8059 end if;
8061 Set_Etype (N, Any_Type);
8062 return;
8064 elsif T = Any_Access
8065 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
8066 then
8067 T := Find_Unique_Access_Type;
8069 if No (T) then
8070 Error_Msg_N ("ambiguous operands for equality", N);
8071 Set_Etype (N, Any_Type);
8072 return;
8073 end if;
8075 -- If expressions must have a single type, and if the context does
8076 -- not impose one the dependent expressions cannot be anonymous
8077 -- access types.
8079 -- Why no similar processing for case expressions???
8081 elsif Ada_Version >= Ada_2012
8082 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8083 E_Anonymous_Access_Subprogram_Type)
8084 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8085 E_Anonymous_Access_Subprogram_Type)
8086 then
8087 Check_If_Expression (L);
8088 Check_If_Expression (R);
8089 end if;
8091 Resolve (L, T);
8092 Resolve (R, T);
8094 -- In SPARK, equality operators = and /= for array types other than
8095 -- String are only defined when, for each index position, the
8096 -- operands have equal static bounds.
8098 if Is_Array_Type (T) then
8100 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8101 -- operation if not needed.
8103 if Restriction_Check_Required (SPARK_05)
8104 and then Base_Type (T) /= Standard_String
8105 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8106 and then Etype (L) /= Any_Composite -- or else L in error
8107 and then Etype (R) /= Any_Composite -- or else R in error
8108 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8109 then
8110 Check_SPARK_05_Restriction
8111 ("array types should have matching static bounds", N);
8112 end if;
8113 end if;
8115 -- If the unique type is a class-wide type then it will be expanded
8116 -- into a dispatching call to the predefined primitive. Therefore we
8117 -- check here for potential violation of such restriction.
8119 if Is_Class_Wide_Type (T) then
8120 Check_Restriction (No_Dispatching_Calls, N);
8121 end if;
8123 -- Only warn for redundant equality comparison to True for objects
8124 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8125 -- other expressions, it may be a matter of preference to write
8126 -- "Expr = True" or "Expr".
8128 if Warn_On_Redundant_Constructs
8129 and then Comes_From_Source (N)
8130 and then Comes_From_Source (R)
8131 and then Is_Entity_Name (R)
8132 and then Entity (R) = Standard_True
8133 and then
8134 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8135 or else
8136 Nkind (L) in N_Op)
8137 then
8138 Error_Msg_N -- CODEFIX
8139 ("?r?comparison with True is redundant!", N);
8140 Explain_Redundancy (Original_Node (R));
8141 end if;
8143 Check_Unset_Reference (L);
8144 Check_Unset_Reference (R);
8145 Generate_Operator_Reference (N, T);
8146 Check_Low_Bound_Tested (N);
8148 -- If this is an inequality, it may be the implicit inequality
8149 -- created for a user-defined operation, in which case the corres-
8150 -- ponding equality operation is not intrinsic, and the operation
8151 -- cannot be constant-folded. Else fold.
8153 if Nkind (N) = N_Op_Eq
8154 or else Comes_From_Source (Entity (N))
8155 or else Ekind (Entity (N)) = E_Operator
8156 or else Is_Intrinsic_Subprogram
8157 (Corresponding_Equality (Entity (N)))
8158 then
8159 Analyze_Dimension (N);
8160 Eval_Relational_Op (N);
8162 elsif Nkind (N) = N_Op_Ne
8163 and then Is_Abstract_Subprogram (Entity (N))
8164 then
8165 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8166 end if;
8168 -- Ada 2005: If one operand is an anonymous access type, convert the
8169 -- other operand to it, to ensure that the underlying types match in
8170 -- the back-end. Same for access_to_subprogram, and the conversion
8171 -- verifies that the types are subtype conformant.
8173 -- We apply the same conversion in the case one of the operands is a
8174 -- private subtype of the type of the other.
8176 -- Why the Expander_Active test here ???
8178 if Expander_Active
8179 and then
8180 (Ekind_In (T, E_Anonymous_Access_Type,
8181 E_Anonymous_Access_Subprogram_Type)
8182 or else Is_Private_Type (T))
8183 then
8184 if Etype (L) /= T then
8185 Rewrite (L,
8186 Make_Unchecked_Type_Conversion (Sloc (L),
8187 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8188 Expression => Relocate_Node (L)));
8189 Analyze_And_Resolve (L, T);
8190 end if;
8192 if (Etype (R)) /= T then
8193 Rewrite (R,
8194 Make_Unchecked_Type_Conversion (Sloc (R),
8195 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8196 Expression => Relocate_Node (R)));
8197 Analyze_And_Resolve (R, T);
8198 end if;
8199 end if;
8200 end if;
8201 end Resolve_Equality_Op;
8203 ----------------------------------
8204 -- Resolve_Explicit_Dereference --
8205 ----------------------------------
8207 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8208 Loc : constant Source_Ptr := Sloc (N);
8209 New_N : Node_Id;
8210 P : constant Node_Id := Prefix (N);
8212 P_Typ : Entity_Id;
8213 -- The candidate prefix type, if overloaded
8215 I : Interp_Index;
8216 It : Interp;
8218 begin
8219 Check_Fully_Declared_Prefix (Typ, P);
8220 P_Typ := Empty;
8222 -- A useful optimization: check whether the dereference denotes an
8223 -- element of a container, and if so rewrite it as a call to the
8224 -- corresponding Element function.
8226 -- Disabled for now, on advice of ARG. A more restricted form of the
8227 -- predicate might be acceptable ???
8229 -- if Is_Container_Element (N) then
8230 -- return;
8231 -- end if;
8233 if Is_Overloaded (P) then
8235 -- Use the context type to select the prefix that has the correct
8236 -- designated type. Keep the first match, which will be the inner-
8237 -- most.
8239 Get_First_Interp (P, I, It);
8241 while Present (It.Typ) loop
8242 if Is_Access_Type (It.Typ)
8243 and then Covers (Typ, Designated_Type (It.Typ))
8244 then
8245 if No (P_Typ) then
8246 P_Typ := It.Typ;
8247 end if;
8249 -- Remove access types that do not match, but preserve access
8250 -- to subprogram interpretations, in case a further dereference
8251 -- is needed (see below).
8253 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8254 Remove_Interp (I);
8255 end if;
8257 Get_Next_Interp (I, It);
8258 end loop;
8260 if Present (P_Typ) then
8261 Resolve (P, P_Typ);
8262 Set_Etype (N, Designated_Type (P_Typ));
8264 else
8265 -- If no interpretation covers the designated type of the prefix,
8266 -- this is the pathological case where not all implementations of
8267 -- the prefix allow the interpretation of the node as a call. Now
8268 -- that the expected type is known, Remove other interpretations
8269 -- from prefix, rewrite it as a call, and resolve again, so that
8270 -- the proper call node is generated.
8272 Get_First_Interp (P, I, It);
8273 while Present (It.Typ) loop
8274 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8275 Remove_Interp (I);
8276 end if;
8278 Get_Next_Interp (I, It);
8279 end loop;
8281 New_N :=
8282 Make_Function_Call (Loc,
8283 Name =>
8284 Make_Explicit_Dereference (Loc,
8285 Prefix => P),
8286 Parameter_Associations => New_List);
8288 Save_Interps (N, New_N);
8289 Rewrite (N, New_N);
8290 Analyze_And_Resolve (N, Typ);
8291 return;
8292 end if;
8294 -- If not overloaded, resolve P with its own type
8296 else
8297 Resolve (P);
8298 end if;
8300 -- If the prefix might be null, add an access check
8302 if Is_Access_Type (Etype (P))
8303 and then not Can_Never_Be_Null (Etype (P))
8304 then
8305 Apply_Access_Check (N);
8306 end if;
8308 -- If the designated type is a packed unconstrained array type, and the
8309 -- explicit dereference is not in the context of an attribute reference,
8310 -- then we must compute and set the actual subtype, since it is needed
8311 -- by Gigi. The reason we exclude the attribute case is that this is
8312 -- handled fine by Gigi, and in fact we use such attributes to build the
8313 -- actual subtype. We also exclude generated code (which builds actual
8314 -- subtypes directly if they are needed).
8316 if Is_Array_Type (Etype (N))
8317 and then Is_Packed (Etype (N))
8318 and then not Is_Constrained (Etype (N))
8319 and then Nkind (Parent (N)) /= N_Attribute_Reference
8320 and then Comes_From_Source (N)
8321 then
8322 Set_Etype (N, Get_Actual_Subtype (N));
8323 end if;
8325 Analyze_Dimension (N);
8327 -- Note: No Eval processing is required for an explicit dereference,
8328 -- because such a name can never be static.
8330 end Resolve_Explicit_Dereference;
8332 -------------------------------------
8333 -- Resolve_Expression_With_Actions --
8334 -------------------------------------
8336 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8337 begin
8338 Set_Etype (N, Typ);
8340 -- If N has no actions, and its expression has been constant folded,
8341 -- then rewrite N as just its expression. Note, we can't do this in
8342 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8343 -- Expression (N) to be expanded again.
8345 if Is_Empty_List (Actions (N))
8346 and then Compile_Time_Known_Value (Expression (N))
8347 then
8348 Rewrite (N, Expression (N));
8349 end if;
8350 end Resolve_Expression_With_Actions;
8352 ----------------------------------
8353 -- Resolve_Generalized_Indexing --
8354 ----------------------------------
8356 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8357 Indexing : constant Node_Id := Generalized_Indexing (N);
8358 Call : Node_Id;
8359 Indexes : List_Id;
8360 Pref : Node_Id;
8362 begin
8363 -- In ASIS mode, propagate the information about the indexes back to
8364 -- to the original indexing node. The generalized indexing is either
8365 -- a function call, or a dereference of one. The actuals include the
8366 -- prefix of the original node, which is the container expression.
8368 if ASIS_Mode then
8369 Resolve (Indexing, Typ);
8370 Set_Etype (N, Etype (Indexing));
8371 Set_Is_Overloaded (N, False);
8373 Call := Indexing;
8374 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8375 loop
8376 Call := Prefix (Call);
8377 end loop;
8379 if Nkind (Call) = N_Function_Call then
8380 Indexes := New_Copy_List (Parameter_Associations (Call));
8381 Pref := Remove_Head (Indexes);
8382 Set_Expressions (N, Indexes);
8384 -- If expression is to be reanalyzed, reset Generalized_Indexing
8385 -- to recreate call node, as is the case when the expression is
8386 -- part of an expression function.
8388 if In_Spec_Expression then
8389 Set_Generalized_Indexing (N, Empty);
8390 end if;
8392 Set_Prefix (N, Pref);
8393 end if;
8395 else
8396 Rewrite (N, Indexing);
8397 Resolve (N, Typ);
8398 end if;
8399 end Resolve_Generalized_Indexing;
8401 ---------------------------
8402 -- Resolve_If_Expression --
8403 ---------------------------
8405 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8406 Condition : constant Node_Id := First (Expressions (N));
8407 Then_Expr : Node_Id;
8408 Else_Expr : Node_Id;
8409 Else_Typ : Entity_Id;
8410 Then_Typ : Entity_Id;
8412 begin
8413 -- Defend against malformed expressions
8415 if No (Condition) then
8416 return;
8417 end if;
8419 Then_Expr := Next (Condition);
8421 if No (Then_Expr) then
8422 return;
8423 end if;
8425 Else_Expr := Next (Then_Expr);
8427 Resolve (Condition, Any_Boolean);
8428 Resolve (Then_Expr, Typ);
8429 Then_Typ := Etype (Then_Expr);
8431 -- When the "then" expression is of a scalar subtype different from the
8432 -- result subtype, then insert a conversion to ensure the generation of
8433 -- a constraint check. The same is done for the else part below, again
8434 -- comparing subtypes rather than base types.
8436 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8437 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8438 Analyze_And_Resolve (Then_Expr, Typ);
8439 end if;
8441 -- If ELSE expression present, just resolve using the determined type
8442 -- If type is universal, resolve to any member of the class.
8444 if Present (Else_Expr) then
8445 if Typ = Universal_Integer then
8446 Resolve (Else_Expr, Any_Integer);
8448 elsif Typ = Universal_Real then
8449 Resolve (Else_Expr, Any_Real);
8451 else
8452 Resolve (Else_Expr, Typ);
8453 end if;
8455 Else_Typ := Etype (Else_Expr);
8457 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8458 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8459 Analyze_And_Resolve (Else_Expr, Typ);
8461 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8462 -- dynamically tagged must be known statically.
8464 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8465 if Is_Dynamically_Tagged (Then_Expr) /=
8466 Is_Dynamically_Tagged (Else_Expr)
8467 then
8468 Error_Msg_N ("all or none of the dependent expressions "
8469 & "can be dynamically tagged", N);
8470 end if;
8471 end if;
8473 -- If no ELSE expression is present, root type must be Standard.Boolean
8474 -- and we provide a Standard.True result converted to the appropriate
8475 -- Boolean type (in case it is a derived boolean type).
8477 elsif Root_Type (Typ) = Standard_Boolean then
8478 Else_Expr :=
8479 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8480 Analyze_And_Resolve (Else_Expr, Typ);
8481 Append_To (Expressions (N), Else_Expr);
8483 else
8484 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8485 Append_To (Expressions (N), Error);
8486 end if;
8488 Set_Etype (N, Typ);
8490 if not Error_Posted (N) then
8491 Eval_If_Expression (N);
8492 end if;
8494 Analyze_Dimension (N);
8495 end Resolve_If_Expression;
8497 -------------------------------
8498 -- Resolve_Indexed_Component --
8499 -------------------------------
8501 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8502 Name : constant Node_Id := Prefix (N);
8503 Expr : Node_Id;
8504 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8505 Index : Node_Id;
8507 begin
8508 if Present (Generalized_Indexing (N)) then
8509 Resolve_Generalized_Indexing (N, Typ);
8510 return;
8511 end if;
8513 if Is_Overloaded (Name) then
8515 -- Use the context type to select the prefix that yields the correct
8516 -- component type.
8518 declare
8519 I : Interp_Index;
8520 It : Interp;
8521 I1 : Interp_Index := 0;
8522 P : constant Node_Id := Prefix (N);
8523 Found : Boolean := False;
8525 begin
8526 Get_First_Interp (P, I, It);
8527 while Present (It.Typ) loop
8528 if (Is_Array_Type (It.Typ)
8529 and then Covers (Typ, Component_Type (It.Typ)))
8530 or else (Is_Access_Type (It.Typ)
8531 and then Is_Array_Type (Designated_Type (It.Typ))
8532 and then
8533 Covers
8534 (Typ,
8535 Component_Type (Designated_Type (It.Typ))))
8536 then
8537 if Found then
8538 It := Disambiguate (P, I1, I, Any_Type);
8540 if It = No_Interp then
8541 Error_Msg_N ("ambiguous prefix for indexing", N);
8542 Set_Etype (N, Typ);
8543 return;
8545 else
8546 Found := True;
8547 Array_Type := It.Typ;
8548 I1 := I;
8549 end if;
8551 else
8552 Found := True;
8553 Array_Type := It.Typ;
8554 I1 := I;
8555 end if;
8556 end if;
8558 Get_Next_Interp (I, It);
8559 end loop;
8560 end;
8562 else
8563 Array_Type := Etype (Name);
8564 end if;
8566 Resolve (Name, Array_Type);
8567 Array_Type := Get_Actual_Subtype_If_Available (Name);
8569 -- If prefix is access type, dereference to get real array type.
8570 -- Note: we do not apply an access check because the expander always
8571 -- introduces an explicit dereference, and the check will happen there.
8573 if Is_Access_Type (Array_Type) then
8574 Array_Type := Designated_Type (Array_Type);
8575 end if;
8577 -- If name was overloaded, set component type correctly now
8578 -- If a misplaced call to an entry family (which has no index types)
8579 -- return. Error will be diagnosed from calling context.
8581 if Is_Array_Type (Array_Type) then
8582 Set_Etype (N, Component_Type (Array_Type));
8583 else
8584 return;
8585 end if;
8587 Index := First_Index (Array_Type);
8588 Expr := First (Expressions (N));
8590 -- The prefix may have resolved to a string literal, in which case its
8591 -- etype has a special representation. This is only possible currently
8592 -- if the prefix is a static concatenation, written in functional
8593 -- notation.
8595 if Ekind (Array_Type) = E_String_Literal_Subtype then
8596 Resolve (Expr, Standard_Positive);
8598 else
8599 while Present (Index) and Present (Expr) loop
8600 Resolve (Expr, Etype (Index));
8601 Check_Unset_Reference (Expr);
8603 if Is_Scalar_Type (Etype (Expr)) then
8604 Apply_Scalar_Range_Check (Expr, Etype (Index));
8605 else
8606 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8607 end if;
8609 Next_Index (Index);
8610 Next (Expr);
8611 end loop;
8612 end if;
8614 Analyze_Dimension (N);
8616 -- Do not generate the warning on suspicious index if we are analyzing
8617 -- package Ada.Tags; otherwise we will report the warning with the
8618 -- Prims_Ptr field of the dispatch table.
8620 if Scope (Etype (Prefix (N))) = Standard_Standard
8621 or else not
8622 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8623 Ada_Tags)
8624 then
8625 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8626 Eval_Indexed_Component (N);
8627 end if;
8629 -- If the array type is atomic, and the component is not atomic, then
8630 -- this is worth a warning, since we have a situation where the access
8631 -- to the component may cause extra read/writes of the atomic array
8632 -- object, or partial word accesses, which could be unexpected.
8634 if Nkind (N) = N_Indexed_Component
8635 and then Is_Atomic_Ref_With_Address (N)
8636 and then not (Has_Atomic_Components (Array_Type)
8637 or else (Is_Entity_Name (Prefix (N))
8638 and then Has_Atomic_Components
8639 (Entity (Prefix (N)))))
8640 and then not Is_Atomic (Component_Type (Array_Type))
8641 then
8642 Error_Msg_N
8643 ("??access to non-atomic component of atomic array", Prefix (N));
8644 Error_Msg_N
8645 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8646 end if;
8647 end Resolve_Indexed_Component;
8649 -----------------------------
8650 -- Resolve_Integer_Literal --
8651 -----------------------------
8653 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8654 begin
8655 Set_Etype (N, Typ);
8656 Eval_Integer_Literal (N);
8657 end Resolve_Integer_Literal;
8659 --------------------------------
8660 -- Resolve_Intrinsic_Operator --
8661 --------------------------------
8663 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8664 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8665 Op : Entity_Id;
8666 Arg1 : Node_Id;
8667 Arg2 : Node_Id;
8669 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8670 -- If the operand is a literal, it cannot be the expression in a
8671 -- conversion. Use a qualified expression instead.
8673 ---------------------
8674 -- Convert_Operand --
8675 ---------------------
8677 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8678 Loc : constant Source_Ptr := Sloc (Opnd);
8679 Res : Node_Id;
8681 begin
8682 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8683 Res :=
8684 Make_Qualified_Expression (Loc,
8685 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8686 Expression => Relocate_Node (Opnd));
8687 Analyze (Res);
8689 else
8690 Res := Unchecked_Convert_To (Btyp, Opnd);
8691 end if;
8693 return Res;
8694 end Convert_Operand;
8696 -- Start of processing for Resolve_Intrinsic_Operator
8698 begin
8699 -- We must preserve the original entity in a generic setting, so that
8700 -- the legality of the operation can be verified in an instance.
8702 if not Expander_Active then
8703 return;
8704 end if;
8706 Op := Entity (N);
8707 while Scope (Op) /= Standard_Standard loop
8708 Op := Homonym (Op);
8709 pragma Assert (Present (Op));
8710 end loop;
8712 Set_Entity (N, Op);
8713 Set_Is_Overloaded (N, False);
8715 -- If the result or operand types are private, rewrite with unchecked
8716 -- conversions on the operands and the result, to expose the proper
8717 -- underlying numeric type.
8719 if Is_Private_Type (Typ)
8720 or else Is_Private_Type (Etype (Left_Opnd (N)))
8721 or else Is_Private_Type (Etype (Right_Opnd (N)))
8722 then
8723 Arg1 := Convert_Operand (Left_Opnd (N));
8725 if Nkind (N) = N_Op_Expon then
8726 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8727 else
8728 Arg2 := Convert_Operand (Right_Opnd (N));
8729 end if;
8731 if Nkind (Arg1) = N_Type_Conversion then
8732 Save_Interps (Left_Opnd (N), Expression (Arg1));
8733 end if;
8735 if Nkind (Arg2) = N_Type_Conversion then
8736 Save_Interps (Right_Opnd (N), Expression (Arg2));
8737 end if;
8739 Set_Left_Opnd (N, Arg1);
8740 Set_Right_Opnd (N, Arg2);
8742 Set_Etype (N, Btyp);
8743 Rewrite (N, Unchecked_Convert_To (Typ, N));
8744 Resolve (N, Typ);
8746 elsif Typ /= Etype (Left_Opnd (N))
8747 or else Typ /= Etype (Right_Opnd (N))
8748 then
8749 -- Add explicit conversion where needed, and save interpretations in
8750 -- case operands are overloaded.
8752 Arg1 := Convert_To (Typ, Left_Opnd (N));
8753 Arg2 := Convert_To (Typ, Right_Opnd (N));
8755 if Nkind (Arg1) = N_Type_Conversion then
8756 Save_Interps (Left_Opnd (N), Expression (Arg1));
8757 else
8758 Save_Interps (Left_Opnd (N), Arg1);
8759 end if;
8761 if Nkind (Arg2) = N_Type_Conversion then
8762 Save_Interps (Right_Opnd (N), Expression (Arg2));
8763 else
8764 Save_Interps (Right_Opnd (N), Arg2);
8765 end if;
8767 Rewrite (Left_Opnd (N), Arg1);
8768 Rewrite (Right_Opnd (N), Arg2);
8769 Analyze (Arg1);
8770 Analyze (Arg2);
8771 Resolve_Arithmetic_Op (N, Typ);
8773 else
8774 Resolve_Arithmetic_Op (N, Typ);
8775 end if;
8776 end Resolve_Intrinsic_Operator;
8778 --------------------------------------
8779 -- Resolve_Intrinsic_Unary_Operator --
8780 --------------------------------------
8782 procedure Resolve_Intrinsic_Unary_Operator
8783 (N : Node_Id;
8784 Typ : Entity_Id)
8786 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8787 Op : Entity_Id;
8788 Arg2 : Node_Id;
8790 begin
8791 Op := Entity (N);
8792 while Scope (Op) /= Standard_Standard loop
8793 Op := Homonym (Op);
8794 pragma Assert (Present (Op));
8795 end loop;
8797 Set_Entity (N, Op);
8799 if Is_Private_Type (Typ) then
8800 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8801 Save_Interps (Right_Opnd (N), Expression (Arg2));
8803 Set_Right_Opnd (N, Arg2);
8805 Set_Etype (N, Btyp);
8806 Rewrite (N, Unchecked_Convert_To (Typ, N));
8807 Resolve (N, Typ);
8809 else
8810 Resolve_Unary_Op (N, Typ);
8811 end if;
8812 end Resolve_Intrinsic_Unary_Operator;
8814 ------------------------
8815 -- Resolve_Logical_Op --
8816 ------------------------
8818 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8819 B_Typ : Entity_Id;
8821 begin
8822 Check_No_Direct_Boolean_Operators (N);
8824 -- Predefined operations on scalar types yield the base type. On the
8825 -- other hand, logical operations on arrays yield the type of the
8826 -- arguments (and the context).
8828 if Is_Array_Type (Typ) then
8829 B_Typ := Typ;
8830 else
8831 B_Typ := Base_Type (Typ);
8832 end if;
8834 -- The following test is required because the operands of the operation
8835 -- may be literals, in which case the resulting type appears to be
8836 -- compatible with a signed integer type, when in fact it is compatible
8837 -- only with modular types. If the context itself is universal, the
8838 -- operation is illegal.
8840 if not Valid_Boolean_Arg (Typ) then
8841 Error_Msg_N ("invalid context for logical operation", N);
8842 Set_Etype (N, Any_Type);
8843 return;
8845 elsif Typ = Any_Modular then
8846 Error_Msg_N
8847 ("no modular type available in this context", N);
8848 Set_Etype (N, Any_Type);
8849 return;
8851 elsif Is_Modular_Integer_Type (Typ)
8852 and then Etype (Left_Opnd (N)) = Universal_Integer
8853 and then Etype (Right_Opnd (N)) = Universal_Integer
8854 then
8855 Check_For_Visible_Operator (N, B_Typ);
8856 end if;
8858 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8859 -- is active and the result type is standard Boolean (do not mess with
8860 -- ops that return a nonstandard Boolean type, because something strange
8861 -- is going on).
8863 -- Note: you might expect this replacement to be done during expansion,
8864 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8865 -- is used, no part of the right operand of an "and" or "or" operator
8866 -- should be executed if the left operand would short-circuit the
8867 -- evaluation of the corresponding "and then" or "or else". If we left
8868 -- the replacement to expansion time, then run-time checks associated
8869 -- with such operands would be evaluated unconditionally, due to being
8870 -- before the condition prior to the rewriting as short-circuit forms
8871 -- during expansion.
8873 if Short_Circuit_And_Or
8874 and then B_Typ = Standard_Boolean
8875 and then Nkind_In (N, N_Op_And, N_Op_Or)
8876 then
8877 -- Mark the corresponding putative SCO operator as truly a logical
8878 -- (and short-circuit) operator.
8880 if Generate_SCO and then Comes_From_Source (N) then
8881 Set_SCO_Logical_Operator (N);
8882 end if;
8884 if Nkind (N) = N_Op_And then
8885 Rewrite (N,
8886 Make_And_Then (Sloc (N),
8887 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8888 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8889 Analyze_And_Resolve (N, B_Typ);
8891 -- Case of OR changed to OR ELSE
8893 else
8894 Rewrite (N,
8895 Make_Or_Else (Sloc (N),
8896 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8897 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8898 Analyze_And_Resolve (N, B_Typ);
8899 end if;
8901 -- Return now, since analysis of the rewritten ops will take care of
8902 -- other reference bookkeeping and expression folding.
8904 return;
8905 end if;
8907 Resolve (Left_Opnd (N), B_Typ);
8908 Resolve (Right_Opnd (N), B_Typ);
8910 Check_Unset_Reference (Left_Opnd (N));
8911 Check_Unset_Reference (Right_Opnd (N));
8913 Set_Etype (N, B_Typ);
8914 Generate_Operator_Reference (N, B_Typ);
8915 Eval_Logical_Op (N);
8917 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8918 -- only when both operands have same static lower and higher bounds. Of
8919 -- course the types have to match, so only check if operands are
8920 -- compatible and the node itself has no errors.
8922 if Is_Array_Type (B_Typ)
8923 and then Nkind (N) in N_Binary_Op
8924 then
8925 declare
8926 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8927 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8929 begin
8930 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8931 -- operation if not needed.
8933 if Restriction_Check_Required (SPARK_05)
8934 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8935 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8936 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8937 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8938 then
8939 Check_SPARK_05_Restriction
8940 ("array types should have matching static bounds", N);
8941 end if;
8942 end;
8943 end if;
8944 end Resolve_Logical_Op;
8946 ---------------------------
8947 -- Resolve_Membership_Op --
8948 ---------------------------
8950 -- The context can only be a boolean type, and does not determine the
8951 -- arguments. Arguments should be unambiguous, but the preference rule for
8952 -- universal types applies.
8954 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8955 pragma Warnings (Off, Typ);
8957 L : constant Node_Id := Left_Opnd (N);
8958 R : constant Node_Id := Right_Opnd (N);
8959 T : Entity_Id;
8961 procedure Resolve_Set_Membership;
8962 -- Analysis has determined a unique type for the left operand. Use it to
8963 -- resolve the disjuncts.
8965 ----------------------------
8966 -- Resolve_Set_Membership --
8967 ----------------------------
8969 procedure Resolve_Set_Membership is
8970 Alt : Node_Id;
8971 Ltyp : Entity_Id;
8973 begin
8974 -- If the left operand is overloaded, find type compatible with not
8975 -- overloaded alternative of the right operand.
8977 if Is_Overloaded (L) then
8978 Ltyp := Empty;
8979 Alt := First (Alternatives (N));
8980 while Present (Alt) loop
8981 if not Is_Overloaded (Alt) then
8982 Ltyp := Intersect_Types (L, Alt);
8983 exit;
8984 else
8985 Next (Alt);
8986 end if;
8987 end loop;
8989 -- Unclear how to resolve expression if all alternatives are also
8990 -- overloaded.
8992 if No (Ltyp) then
8993 Error_Msg_N ("ambiguous expression", N);
8994 end if;
8996 else
8997 Ltyp := Etype (L);
8998 end if;
9000 Resolve (L, Ltyp);
9002 Alt := First (Alternatives (N));
9003 while Present (Alt) loop
9005 -- Alternative is an expression, a range
9006 -- or a subtype mark.
9008 if not Is_Entity_Name (Alt)
9009 or else not Is_Type (Entity (Alt))
9010 then
9011 Resolve (Alt, Ltyp);
9012 end if;
9014 Next (Alt);
9015 end loop;
9017 -- Check for duplicates for discrete case
9019 if Is_Discrete_Type (Ltyp) then
9020 declare
9021 type Ent is record
9022 Alt : Node_Id;
9023 Val : Uint;
9024 end record;
9026 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
9027 Nalts : Nat;
9029 begin
9030 -- Loop checking duplicates. This is quadratic, but giant sets
9031 -- are unlikely in this context so it's a reasonable choice.
9033 Nalts := 0;
9034 Alt := First (Alternatives (N));
9035 while Present (Alt) loop
9036 if Is_OK_Static_Expression (Alt)
9037 and then (Nkind_In (Alt, N_Integer_Literal,
9038 N_Character_Literal)
9039 or else Nkind (Alt) in N_Has_Entity)
9040 then
9041 Nalts := Nalts + 1;
9042 Alts (Nalts) := (Alt, Expr_Value (Alt));
9044 for J in 1 .. Nalts - 1 loop
9045 if Alts (J).Val = Alts (Nalts).Val then
9046 Error_Msg_Sloc := Sloc (Alts (J).Alt);
9047 Error_Msg_N ("duplicate of value given#??", Alt);
9048 end if;
9049 end loop;
9050 end if;
9052 Alt := Next (Alt);
9053 end loop;
9054 end;
9055 end if;
9057 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
9058 -- limited types, evaluation of a membership test uses the predefined
9059 -- equality for the type. This may be confusing to users, and the
9060 -- following warning appears useful for the most common case.
9062 if Is_Scalar_Type (Ltyp)
9063 and then Present (Get_User_Defined_Eq (Ltyp))
9064 then
9065 Error_Msg_NE
9066 ("membership test on& uses predefined equality?", N, Ltyp);
9067 Error_Msg_N
9068 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
9069 end if;
9070 end Resolve_Set_Membership;
9072 -- Start of processing for Resolve_Membership_Op
9074 begin
9075 if L = Error or else R = Error then
9076 return;
9077 end if;
9079 if Present (Alternatives (N)) then
9080 Resolve_Set_Membership;
9081 goto SM_Exit;
9083 elsif not Is_Overloaded (R)
9084 and then
9085 (Etype (R) = Universal_Integer
9086 or else
9087 Etype (R) = Universal_Real)
9088 and then Is_Overloaded (L)
9089 then
9090 T := Etype (R);
9092 -- Ada 2005 (AI-251): Support the following case:
9094 -- type I is interface;
9095 -- type T is tagged ...
9097 -- function Test (O : I'Class) is
9098 -- begin
9099 -- return O in T'Class.
9100 -- end Test;
9102 -- In this case we have nothing else to do. The membership test will be
9103 -- done at run time.
9105 elsif Ada_Version >= Ada_2005
9106 and then Is_Class_Wide_Type (Etype (L))
9107 and then Is_Interface (Etype (L))
9108 and then not Is_Interface (Etype (R))
9109 then
9110 return;
9111 else
9112 T := Intersect_Types (L, R);
9113 end if;
9115 -- If mixed-mode operations are present and operands are all literal,
9116 -- the only interpretation involves Duration, which is probably not
9117 -- the intention of the programmer.
9119 if T = Any_Fixed then
9120 T := Unique_Fixed_Point_Type (N);
9122 if T = Any_Type then
9123 return;
9124 end if;
9125 end if;
9127 Resolve (L, T);
9128 Check_Unset_Reference (L);
9130 if Nkind (R) = N_Range
9131 and then not Is_Scalar_Type (T)
9132 then
9133 Error_Msg_N ("scalar type required for range", R);
9134 end if;
9136 if Is_Entity_Name (R) then
9137 Freeze_Expression (R);
9138 else
9139 Resolve (R, T);
9140 Check_Unset_Reference (R);
9141 end if;
9143 -- Here after resolving membership operation
9145 <<SM_Exit>>
9147 Eval_Membership_Op (N);
9148 end Resolve_Membership_Op;
9150 ------------------
9151 -- Resolve_Null --
9152 ------------------
9154 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9155 Loc : constant Source_Ptr := Sloc (N);
9157 begin
9158 -- Handle restriction against anonymous null access values This
9159 -- restriction can be turned off using -gnatdj.
9161 -- Ada 2005 (AI-231): Remove restriction
9163 if Ada_Version < Ada_2005
9164 and then not Debug_Flag_J
9165 and then Ekind (Typ) = E_Anonymous_Access_Type
9166 and then Comes_From_Source (N)
9167 then
9168 -- In the common case of a call which uses an explicitly null value
9169 -- for an access parameter, give specialized error message.
9171 if Nkind (Parent (N)) in N_Subprogram_Call then
9172 Error_Msg_N
9173 ("null is not allowed as argument for an access parameter", N);
9175 -- Standard message for all other cases (are there any?)
9177 else
9178 Error_Msg_N
9179 ("null cannot be of an anonymous access type", N);
9180 end if;
9181 end if;
9183 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9184 -- assignment to a null-excluding object.
9186 if Ada_Version >= Ada_2005
9187 and then Can_Never_Be_Null (Typ)
9188 and then Nkind (Parent (N)) = N_Assignment_Statement
9189 then
9190 if Inside_Init_Proc then
9192 -- Decide whether to generate an if_statement around our
9193 -- null-excluding check to avoid them on certain internal object
9194 -- declarations by looking at the type the current Init_Proc
9195 -- belongs to.
9197 -- Generate:
9198 -- if T1b_skip_null_excluding_check then
9199 -- [constraint_error "access check failed"]
9200 -- end if;
9202 if Needs_Conditional_Null_Excluding_Check
9203 (Etype (First_Formal (Enclosing_Init_Proc)))
9204 then
9205 Insert_Action (N,
9206 Make_If_Statement (Loc,
9207 Condition =>
9208 Make_Identifier (Loc,
9209 New_External_Name
9210 (Chars (Typ), "_skip_null_excluding_check")),
9211 Then_Statements =>
9212 New_List (
9213 Make_Raise_Constraint_Error (Loc,
9214 Reason => CE_Access_Check_Failed))));
9216 -- Otherwise, simply create the check
9218 else
9219 Insert_Action (N,
9220 Make_Raise_Constraint_Error (Loc,
9221 Reason => CE_Access_Check_Failed));
9222 end if;
9223 else
9224 Insert_Action
9225 (Compile_Time_Constraint_Error (N,
9226 "(Ada 2005) null not allowed in null-excluding objects??"),
9227 Make_Raise_Constraint_Error (Loc,
9228 Reason => CE_Access_Check_Failed));
9229 end if;
9230 end if;
9232 -- In a distributed context, null for a remote access to subprogram may
9233 -- need to be replaced with a special record aggregate. In this case,
9234 -- return after having done the transformation.
9236 if (Ekind (Typ) = E_Record_Type
9237 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9238 and then Remote_AST_Null_Value (N, Typ)
9239 then
9240 return;
9241 end if;
9243 -- The null literal takes its type from the context
9245 Set_Etype (N, Typ);
9246 end Resolve_Null;
9248 -----------------------
9249 -- Resolve_Op_Concat --
9250 -----------------------
9252 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9254 -- We wish to avoid deep recursion, because concatenations are often
9255 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9256 -- operands nonrecursively until we find something that is not a simple
9257 -- concatenation (A in this case). We resolve that, and then walk back
9258 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9259 -- to do the rest of the work at each level. The Parent pointers allow
9260 -- us to avoid recursion, and thus avoid running out of memory. See also
9261 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9263 NN : Node_Id := N;
9264 Op1 : Node_Id;
9266 begin
9267 -- The following code is equivalent to:
9269 -- Resolve_Op_Concat_First (NN, Typ);
9270 -- Resolve_Op_Concat_Arg (N, ...);
9271 -- Resolve_Op_Concat_Rest (N, Typ);
9273 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9274 -- operand is a concatenation.
9276 -- Walk down left operands
9278 loop
9279 Resolve_Op_Concat_First (NN, Typ);
9280 Op1 := Left_Opnd (NN);
9281 exit when not (Nkind (Op1) = N_Op_Concat
9282 and then not Is_Array_Type (Component_Type (Typ))
9283 and then Entity (Op1) = Entity (NN));
9284 NN := Op1;
9285 end loop;
9287 -- Now (given the above example) NN is A&B and Op1 is A
9289 -- First resolve Op1 ...
9291 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9293 -- ... then walk NN back up until we reach N (where we started), calling
9294 -- Resolve_Op_Concat_Rest along the way.
9296 loop
9297 Resolve_Op_Concat_Rest (NN, Typ);
9298 exit when NN = N;
9299 NN := Parent (NN);
9300 end loop;
9302 if Base_Type (Etype (N)) /= Standard_String then
9303 Check_SPARK_05_Restriction
9304 ("result of concatenation should have type String", N);
9305 end if;
9306 end Resolve_Op_Concat;
9308 ---------------------------
9309 -- Resolve_Op_Concat_Arg --
9310 ---------------------------
9312 procedure Resolve_Op_Concat_Arg
9313 (N : Node_Id;
9314 Arg : Node_Id;
9315 Typ : Entity_Id;
9316 Is_Comp : Boolean)
9318 Btyp : constant Entity_Id := Base_Type (Typ);
9319 Ctyp : constant Entity_Id := Component_Type (Typ);
9321 begin
9322 if In_Instance then
9323 if Is_Comp
9324 or else (not Is_Overloaded (Arg)
9325 and then Etype (Arg) /= Any_Composite
9326 and then Covers (Ctyp, Etype (Arg)))
9327 then
9328 Resolve (Arg, Ctyp);
9329 else
9330 Resolve (Arg, Btyp);
9331 end if;
9333 -- If both Array & Array and Array & Component are visible, there is a
9334 -- potential ambiguity that must be reported.
9336 elsif Has_Compatible_Type (Arg, Ctyp) then
9337 if Nkind (Arg) = N_Aggregate
9338 and then Is_Composite_Type (Ctyp)
9339 then
9340 if Is_Private_Type (Ctyp) then
9341 Resolve (Arg, Btyp);
9343 -- If the operation is user-defined and not overloaded use its
9344 -- profile. The operation may be a renaming, in which case it has
9345 -- been rewritten, and we want the original profile.
9347 elsif not Is_Overloaded (N)
9348 and then Comes_From_Source (Entity (Original_Node (N)))
9349 and then Ekind (Entity (Original_Node (N))) = E_Function
9350 then
9351 Resolve (Arg,
9352 Etype
9353 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9354 return;
9356 -- Otherwise an aggregate may match both the array type and the
9357 -- component type.
9359 else
9360 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9361 Set_Etype (Arg, Any_Type);
9362 end if;
9364 else
9365 if Is_Overloaded (Arg)
9366 and then Has_Compatible_Type (Arg, Typ)
9367 and then Etype (Arg) /= Any_Type
9368 then
9369 declare
9370 I : Interp_Index;
9371 It : Interp;
9372 Func : Entity_Id;
9374 begin
9375 Get_First_Interp (Arg, I, It);
9376 Func := It.Nam;
9377 Get_Next_Interp (I, It);
9379 -- Special-case the error message when the overloading is
9380 -- caused by a function that yields an array and can be
9381 -- called without parameters.
9383 if It.Nam = Func then
9384 Error_Msg_Sloc := Sloc (Func);
9385 Error_Msg_N ("ambiguous call to function#", Arg);
9386 Error_Msg_NE
9387 ("\\interpretation as call yields&", Arg, Typ);
9388 Error_Msg_NE
9389 ("\\interpretation as indexing of call yields&",
9390 Arg, Component_Type (Typ));
9392 else
9393 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9395 Get_First_Interp (Arg, I, It);
9396 while Present (It.Nam) loop
9397 Error_Msg_Sloc := Sloc (It.Nam);
9399 if Base_Type (It.Typ) = Btyp
9400 or else
9401 Base_Type (It.Typ) = Base_Type (Ctyp)
9402 then
9403 Error_Msg_N -- CODEFIX
9404 ("\\possible interpretation#", Arg);
9405 end if;
9407 Get_Next_Interp (I, It);
9408 end loop;
9409 end if;
9410 end;
9411 end if;
9413 Resolve (Arg, Component_Type (Typ));
9415 if Nkind (Arg) = N_String_Literal then
9416 Set_Etype (Arg, Component_Type (Typ));
9417 end if;
9419 if Arg = Left_Opnd (N) then
9420 Set_Is_Component_Left_Opnd (N);
9421 else
9422 Set_Is_Component_Right_Opnd (N);
9423 end if;
9424 end if;
9426 else
9427 Resolve (Arg, Btyp);
9428 end if;
9430 -- Concatenation is restricted in SPARK: each operand must be either a
9431 -- string literal, the name of a string constant, a static character or
9432 -- string expression, or another concatenation. Arg cannot be a
9433 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9434 -- separately on each final operand, past concatenation operations.
9436 if Is_Character_Type (Etype (Arg)) then
9437 if not Is_OK_Static_Expression (Arg) then
9438 Check_SPARK_05_Restriction
9439 ("character operand for concatenation should be static", Arg);
9440 end if;
9442 elsif Is_String_Type (Etype (Arg)) then
9443 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9444 and then Is_Constant_Object (Entity (Arg)))
9445 and then not Is_OK_Static_Expression (Arg)
9446 then
9447 Check_SPARK_05_Restriction
9448 ("string operand for concatenation should be static", Arg);
9449 end if;
9451 -- Do not issue error on an operand that is neither a character nor a
9452 -- string, as the error is issued in Resolve_Op_Concat.
9454 else
9455 null;
9456 end if;
9458 Check_Unset_Reference (Arg);
9459 end Resolve_Op_Concat_Arg;
9461 -----------------------------
9462 -- Resolve_Op_Concat_First --
9463 -----------------------------
9465 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9466 Btyp : constant Entity_Id := Base_Type (Typ);
9467 Op1 : constant Node_Id := Left_Opnd (N);
9468 Op2 : constant Node_Id := Right_Opnd (N);
9470 begin
9471 -- The parser folds an enormous sequence of concatenations of string
9472 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9473 -- in the right operand. If the expression resolves to a predefined "&"
9474 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9475 -- we give an error. See P_Simple_Expression in Par.Ch4.
9477 if Nkind (Op2) = N_String_Literal
9478 and then Is_Folded_In_Parser (Op2)
9479 and then Ekind (Entity (N)) = E_Function
9480 then
9481 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9482 and then String_Length (Strval (Op1)) = 0);
9483 Error_Msg_N ("too many user-defined concatenations", N);
9484 return;
9485 end if;
9487 Set_Etype (N, Btyp);
9489 if Is_Limited_Composite (Btyp) then
9490 Error_Msg_N ("concatenation not available for limited array", N);
9491 Explain_Limited_Type (Btyp, N);
9492 end if;
9493 end Resolve_Op_Concat_First;
9495 ----------------------------
9496 -- Resolve_Op_Concat_Rest --
9497 ----------------------------
9499 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9500 Op1 : constant Node_Id := Left_Opnd (N);
9501 Op2 : constant Node_Id := Right_Opnd (N);
9503 begin
9504 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9506 Generate_Operator_Reference (N, Typ);
9508 if Is_String_Type (Typ) then
9509 Eval_Concatenation (N);
9510 end if;
9512 -- If this is not a static concatenation, but the result is a string
9513 -- type (and not an array of strings) ensure that static string operands
9514 -- have their subtypes properly constructed.
9516 if Nkind (N) /= N_String_Literal
9517 and then Is_Character_Type (Component_Type (Typ))
9518 then
9519 Set_String_Literal_Subtype (Op1, Typ);
9520 Set_String_Literal_Subtype (Op2, Typ);
9521 end if;
9522 end Resolve_Op_Concat_Rest;
9524 ----------------------
9525 -- Resolve_Op_Expon --
9526 ----------------------
9528 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9529 B_Typ : constant Entity_Id := Base_Type (Typ);
9531 begin
9532 -- Catch attempts to do fixed-point exponentiation with universal
9533 -- operands, which is a case where the illegality is not caught during
9534 -- normal operator analysis. This is not done in preanalysis mode
9535 -- since the tree is not fully decorated during preanalysis.
9537 if Full_Analysis then
9538 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9539 Error_Msg_N ("exponentiation not available for fixed point", N);
9540 return;
9542 elsif Nkind (Parent (N)) in N_Op
9543 and then Present (Etype (Parent (N)))
9544 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9545 and then Etype (N) = Universal_Real
9546 and then Comes_From_Source (N)
9547 then
9548 Error_Msg_N ("exponentiation not available for fixed point", N);
9549 return;
9550 end if;
9551 end if;
9553 if Comes_From_Source (N)
9554 and then Ekind (Entity (N)) = E_Function
9555 and then Is_Imported (Entity (N))
9556 and then Is_Intrinsic_Subprogram (Entity (N))
9557 then
9558 Resolve_Intrinsic_Operator (N, Typ);
9559 return;
9560 end if;
9562 if Etype (Left_Opnd (N)) = Universal_Integer
9563 or else Etype (Left_Opnd (N)) = Universal_Real
9564 then
9565 Check_For_Visible_Operator (N, B_Typ);
9566 end if;
9568 -- We do the resolution using the base type, because intermediate values
9569 -- in expressions are always of the base type, not a subtype of it.
9571 Resolve (Left_Opnd (N), B_Typ);
9572 Resolve (Right_Opnd (N), Standard_Integer);
9574 -- For integer types, right argument must be in Natural range
9576 if Is_Integer_Type (Typ) then
9577 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9578 end if;
9580 Check_Unset_Reference (Left_Opnd (N));
9581 Check_Unset_Reference (Right_Opnd (N));
9583 Set_Etype (N, B_Typ);
9584 Generate_Operator_Reference (N, B_Typ);
9586 Analyze_Dimension (N);
9588 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9589 -- Evaluate the exponentiation operator for dimensioned type
9591 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9592 else
9593 Eval_Op_Expon (N);
9594 end if;
9596 -- Set overflow checking bit. Much cleverer code needed here eventually
9597 -- and perhaps the Resolve routines should be separated for the various
9598 -- arithmetic operations, since they will need different processing. ???
9600 if Nkind (N) in N_Op then
9601 if not Overflow_Checks_Suppressed (Etype (N)) then
9602 Enable_Overflow_Check (N);
9603 end if;
9604 end if;
9605 end Resolve_Op_Expon;
9607 --------------------
9608 -- Resolve_Op_Not --
9609 --------------------
9611 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9612 B_Typ : Entity_Id;
9614 function Parent_Is_Boolean return Boolean;
9615 -- This function determines if the parent node is a boolean operator or
9616 -- operation (comparison op, membership test, or short circuit form) and
9617 -- the not in question is the left operand of this operation. Note that
9618 -- if the not is in parens, then false is returned.
9620 -----------------------
9621 -- Parent_Is_Boolean --
9622 -----------------------
9624 function Parent_Is_Boolean return Boolean is
9625 begin
9626 if Paren_Count (N) /= 0 then
9627 return False;
9629 else
9630 case Nkind (Parent (N)) is
9631 when N_And_Then
9632 | N_In
9633 | N_Not_In
9634 | N_Op_And
9635 | N_Op_Eq
9636 | N_Op_Ge
9637 | N_Op_Gt
9638 | N_Op_Le
9639 | N_Op_Lt
9640 | N_Op_Ne
9641 | N_Op_Or
9642 | N_Op_Xor
9643 | N_Or_Else
9645 return Left_Opnd (Parent (N)) = N;
9647 when others =>
9648 return False;
9649 end case;
9650 end if;
9651 end Parent_Is_Boolean;
9653 -- Start of processing for Resolve_Op_Not
9655 begin
9656 -- Predefined operations on scalar types yield the base type. On the
9657 -- other hand, logical operations on arrays yield the type of the
9658 -- arguments (and the context).
9660 if Is_Array_Type (Typ) then
9661 B_Typ := Typ;
9662 else
9663 B_Typ := Base_Type (Typ);
9664 end if;
9666 -- Straightforward case of incorrect arguments
9668 if not Valid_Boolean_Arg (Typ) then
9669 Error_Msg_N ("invalid operand type for operator&", N);
9670 Set_Etype (N, Any_Type);
9671 return;
9673 -- Special case of probable missing parens
9675 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9676 if Parent_Is_Boolean then
9677 Error_Msg_N
9678 ("operand of not must be enclosed in parentheses",
9679 Right_Opnd (N));
9680 else
9681 Error_Msg_N
9682 ("no modular type available in this context", N);
9683 end if;
9685 Set_Etype (N, Any_Type);
9686 return;
9688 -- OK resolution of NOT
9690 else
9691 -- Warn if non-boolean types involved. This is a case like not a < b
9692 -- where a and b are modular, where we will get (not a) < b and most
9693 -- likely not (a < b) was intended.
9695 if Warn_On_Questionable_Missing_Parens
9696 and then not Is_Boolean_Type (Typ)
9697 and then Parent_Is_Boolean
9698 then
9699 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9700 end if;
9702 -- Warn on double negation if checking redundant constructs
9704 if Warn_On_Redundant_Constructs
9705 and then Comes_From_Source (N)
9706 and then Comes_From_Source (Right_Opnd (N))
9707 and then Root_Type (Typ) = Standard_Boolean
9708 and then Nkind (Right_Opnd (N)) = N_Op_Not
9709 then
9710 Error_Msg_N ("redundant double negation?r?", N);
9711 end if;
9713 -- Complete resolution and evaluation of NOT
9715 Resolve (Right_Opnd (N), B_Typ);
9716 Check_Unset_Reference (Right_Opnd (N));
9717 Set_Etype (N, B_Typ);
9718 Generate_Operator_Reference (N, B_Typ);
9719 Eval_Op_Not (N);
9720 end if;
9721 end Resolve_Op_Not;
9723 -----------------------------
9724 -- Resolve_Operator_Symbol --
9725 -----------------------------
9727 -- Nothing to be done, all resolved already
9729 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9730 pragma Warnings (Off, N);
9731 pragma Warnings (Off, Typ);
9733 begin
9734 null;
9735 end Resolve_Operator_Symbol;
9737 ----------------------------------
9738 -- Resolve_Qualified_Expression --
9739 ----------------------------------
9741 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9742 pragma Warnings (Off, Typ);
9744 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9745 Expr : constant Node_Id := Expression (N);
9747 begin
9748 Resolve (Expr, Target_Typ);
9750 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9751 -- operation if not needed.
9753 if Restriction_Check_Required (SPARK_05)
9754 and then Is_Array_Type (Target_Typ)
9755 and then Is_Array_Type (Etype (Expr))
9756 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9757 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9758 then
9759 Check_SPARK_05_Restriction
9760 ("array types should have matching static bounds", N);
9761 end if;
9763 -- A qualified expression requires an exact match of the type, class-
9764 -- wide matching is not allowed. However, if the qualifying type is
9765 -- specific and the expression has a class-wide type, it may still be
9766 -- okay, since it can be the result of the expansion of a call to a
9767 -- dispatching function, so we also have to check class-wideness of the
9768 -- type of the expression's original node.
9770 if (Is_Class_Wide_Type (Target_Typ)
9771 or else
9772 (Is_Class_Wide_Type (Etype (Expr))
9773 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9774 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9775 then
9776 Wrong_Type (Expr, Target_Typ);
9777 end if;
9779 -- If the target type is unconstrained, then we reset the type of the
9780 -- result from the type of the expression. For other cases, the actual
9781 -- subtype of the expression is the target type.
9783 if Is_Composite_Type (Target_Typ)
9784 and then not Is_Constrained (Target_Typ)
9785 then
9786 Set_Etype (N, Etype (Expr));
9787 end if;
9789 Analyze_Dimension (N);
9790 Eval_Qualified_Expression (N);
9792 -- If we still have a qualified expression after the static evaluation,
9793 -- then apply a scalar range check if needed. The reason that we do this
9794 -- after the Eval call is that otherwise, the application of the range
9795 -- check may convert an illegal static expression and result in warning
9796 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9798 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9799 Apply_Scalar_Range_Check (Expr, Typ);
9800 end if;
9802 -- Finally, check whether a predicate applies to the target type. This
9803 -- comes from AI12-0100. As for type conversions, check the enclosing
9804 -- context to prevent an infinite expansion.
9806 if Has_Predicates (Target_Typ) then
9807 if Nkind (Parent (N)) = N_Function_Call
9808 and then Present (Name (Parent (N)))
9809 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9810 or else
9811 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9812 then
9813 null;
9815 -- In the case of a qualified expression in an allocator, the check
9816 -- is applied when expanding the allocator, so avoid redundant check.
9818 elsif Nkind (N) = N_Qualified_Expression
9819 and then Nkind (Parent (N)) /= N_Allocator
9820 then
9821 Apply_Predicate_Check (N, Target_Typ);
9822 end if;
9823 end if;
9824 end Resolve_Qualified_Expression;
9826 ------------------------------
9827 -- Resolve_Raise_Expression --
9828 ------------------------------
9830 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9831 begin
9832 if Typ = Raise_Type then
9833 Error_Msg_N ("cannot find unique type for raise expression", N);
9834 Set_Etype (N, Any_Type);
9835 else
9836 Set_Etype (N, Typ);
9837 end if;
9838 end Resolve_Raise_Expression;
9840 -------------------
9841 -- Resolve_Range --
9842 -------------------
9844 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9845 L : constant Node_Id := Low_Bound (N);
9846 H : constant Node_Id := High_Bound (N);
9848 function First_Last_Ref return Boolean;
9849 -- Returns True if N is of the form X'First .. X'Last where X is the
9850 -- same entity for both attributes.
9852 --------------------
9853 -- First_Last_Ref --
9854 --------------------
9856 function First_Last_Ref return Boolean is
9857 Lorig : constant Node_Id := Original_Node (L);
9858 Horig : constant Node_Id := Original_Node (H);
9860 begin
9861 if Nkind (Lorig) = N_Attribute_Reference
9862 and then Nkind (Horig) = N_Attribute_Reference
9863 and then Attribute_Name (Lorig) = Name_First
9864 and then Attribute_Name (Horig) = Name_Last
9865 then
9866 declare
9867 PL : constant Node_Id := Prefix (Lorig);
9868 PH : constant Node_Id := Prefix (Horig);
9869 begin
9870 if Is_Entity_Name (PL)
9871 and then Is_Entity_Name (PH)
9872 and then Entity (PL) = Entity (PH)
9873 then
9874 return True;
9875 end if;
9876 end;
9877 end if;
9879 return False;
9880 end First_Last_Ref;
9882 -- Start of processing for Resolve_Range
9884 begin
9885 Set_Etype (N, Typ);
9887 -- The lower bound should be in Typ. The higher bound can be in Typ's
9888 -- base type if the range is null. It may still be invalid if it is
9889 -- higher than the lower bound. This is checked later in the context in
9890 -- which the range appears.
9892 Resolve (L, Typ);
9893 Resolve (H, Base_Type (Typ));
9895 -- Reanalyze the lower bound after both bounds have been analyzed, so
9896 -- that the range is known to be static or not by now. This may trigger
9897 -- more compile-time evaluation, which is useful for static analysis
9898 -- with GNATprove. This is not needed for compilation or static analysis
9899 -- with CodePeer, as full expansion does that evaluation then.
9901 if GNATprove_Mode then
9902 Set_Analyzed (L, False);
9903 Resolve (L, Typ);
9904 end if;
9906 -- Check for inappropriate range on unordered enumeration type
9908 if Bad_Unordered_Enumeration_Reference (N, Typ)
9910 -- Exclude X'First .. X'Last if X is the same entity for both
9912 and then not First_Last_Ref
9913 then
9914 Error_Msg_Sloc := Sloc (Typ);
9915 Error_Msg_NE
9916 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9917 end if;
9919 Check_Unset_Reference (L);
9920 Check_Unset_Reference (H);
9922 -- We have to check the bounds for being within the base range as
9923 -- required for a non-static context. Normally this is automatic and
9924 -- done as part of evaluating expressions, but the N_Range node is an
9925 -- exception, since in GNAT we consider this node to be a subexpression,
9926 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9927 -- this, but that would put the test on the main evaluation path for
9928 -- expressions.
9930 Check_Non_Static_Context (L);
9931 Check_Non_Static_Context (H);
9933 -- Check for an ambiguous range over character literals. This will
9934 -- happen with a membership test involving only literals.
9936 if Typ = Any_Character then
9937 Ambiguous_Character (L);
9938 Set_Etype (N, Any_Type);
9939 return;
9940 end if;
9942 -- If bounds are static, constant-fold them, so size computations are
9943 -- identical between front-end and back-end. Do not perform this
9944 -- transformation while analyzing generic units, as type information
9945 -- would be lost when reanalyzing the constant node in the instance.
9947 if Is_Discrete_Type (Typ) and then Expander_Active then
9948 if Is_OK_Static_Expression (L) then
9949 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9950 end if;
9952 if Is_OK_Static_Expression (H) then
9953 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9954 end if;
9955 end if;
9956 end Resolve_Range;
9958 --------------------------
9959 -- Resolve_Real_Literal --
9960 --------------------------
9962 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9963 Actual_Typ : constant Entity_Id := Etype (N);
9965 begin
9966 -- Special processing for fixed-point literals to make sure that the
9967 -- value is an exact multiple of small where this is required. We skip
9968 -- this for the universal real case, and also for generic types.
9970 if Is_Fixed_Point_Type (Typ)
9971 and then Typ /= Universal_Fixed
9972 and then Typ /= Any_Fixed
9973 and then not Is_Generic_Type (Typ)
9974 then
9975 declare
9976 Val : constant Ureal := Realval (N);
9977 Cintr : constant Ureal := Val / Small_Value (Typ);
9978 Cint : constant Uint := UR_Trunc (Cintr);
9979 Den : constant Uint := Norm_Den (Cintr);
9980 Stat : Boolean;
9982 begin
9983 -- Case of literal is not an exact multiple of the Small
9985 if Den /= 1 then
9987 -- For a source program literal for a decimal fixed-point type,
9988 -- this is statically illegal (RM 4.9(36)).
9990 if Is_Decimal_Fixed_Point_Type (Typ)
9991 and then Actual_Typ = Universal_Real
9992 and then Comes_From_Source (N)
9993 then
9994 Error_Msg_N ("value has extraneous low order digits", N);
9995 end if;
9997 -- Generate a warning if literal from source
9999 if Is_OK_Static_Expression (N)
10000 and then Warn_On_Bad_Fixed_Value
10001 then
10002 Error_Msg_N
10003 ("?b?static fixed-point value is not a multiple of Small!",
10005 end if;
10007 -- Replace literal by a value that is the exact representation
10008 -- of a value of the type, i.e. a multiple of the small value,
10009 -- by truncation, since Machine_Rounds is false for all GNAT
10010 -- fixed-point types (RM 4.9(38)).
10012 Stat := Is_OK_Static_Expression (N);
10013 Rewrite (N,
10014 Make_Real_Literal (Sloc (N),
10015 Realval => Small_Value (Typ) * Cint));
10017 Set_Is_Static_Expression (N, Stat);
10018 end if;
10020 -- In all cases, set the corresponding integer field
10022 Set_Corresponding_Integer_Value (N, Cint);
10023 end;
10024 end if;
10026 -- Now replace the actual type by the expected type as usual
10028 Set_Etype (N, Typ);
10029 Eval_Real_Literal (N);
10030 end Resolve_Real_Literal;
10032 -----------------------
10033 -- Resolve_Reference --
10034 -----------------------
10036 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
10037 P : constant Node_Id := Prefix (N);
10039 begin
10040 -- Replace general access with specific type
10042 if Ekind (Etype (N)) = E_Allocator_Type then
10043 Set_Etype (N, Base_Type (Typ));
10044 end if;
10046 Resolve (P, Designated_Type (Etype (N)));
10048 -- If we are taking the reference of a volatile entity, then treat it as
10049 -- a potential modification of this entity. This is too conservative,
10050 -- but necessary because remove side effects can cause transformations
10051 -- of normal assignments into reference sequences that otherwise fail to
10052 -- notice the modification.
10054 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
10055 Note_Possible_Modification (P, Sure => False);
10056 end if;
10057 end Resolve_Reference;
10059 --------------------------------
10060 -- Resolve_Selected_Component --
10061 --------------------------------
10063 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
10064 Comp : Entity_Id;
10065 Comp1 : Entity_Id := Empty; -- prevent junk warning
10066 P : constant Node_Id := Prefix (N);
10067 S : constant Node_Id := Selector_Name (N);
10068 T : Entity_Id := Etype (P);
10069 I : Interp_Index;
10070 I1 : Interp_Index := 0; -- prevent junk warning
10071 It : Interp;
10072 It1 : Interp;
10073 Found : Boolean;
10075 function Init_Component return Boolean;
10076 -- Check whether this is the initialization of a component within an
10077 -- init proc (by assignment or call to another init proc). If true,
10078 -- there is no need for a discriminant check.
10080 --------------------
10081 -- Init_Component --
10082 --------------------
10084 function Init_Component return Boolean is
10085 begin
10086 return Inside_Init_Proc
10087 and then Nkind (Prefix (N)) = N_Identifier
10088 and then Chars (Prefix (N)) = Name_uInit
10089 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10090 end Init_Component;
10092 -- Start of processing for Resolve_Selected_Component
10094 begin
10095 if Is_Overloaded (P) then
10097 -- Use the context type to select the prefix that has a selector
10098 -- of the correct name and type.
10100 Found := False;
10101 Get_First_Interp (P, I, It);
10103 Search : while Present (It.Typ) loop
10104 if Is_Access_Type (It.Typ) then
10105 T := Designated_Type (It.Typ);
10106 else
10107 T := It.Typ;
10108 end if;
10110 -- Locate selected component. For a private prefix the selector
10111 -- can denote a discriminant.
10113 if Is_Record_Type (T) or else Is_Private_Type (T) then
10115 -- The visible components of a class-wide type are those of
10116 -- the root type.
10118 if Is_Class_Wide_Type (T) then
10119 T := Etype (T);
10120 end if;
10122 Comp := First_Entity (T);
10123 while Present (Comp) loop
10124 if Chars (Comp) = Chars (S)
10125 and then Covers (Typ, Etype (Comp))
10126 then
10127 if not Found then
10128 Found := True;
10129 I1 := I;
10130 It1 := It;
10131 Comp1 := Comp;
10133 else
10134 It := Disambiguate (P, I1, I, Any_Type);
10136 if It = No_Interp then
10137 Error_Msg_N
10138 ("ambiguous prefix for selected component", N);
10139 Set_Etype (N, Typ);
10140 return;
10142 else
10143 It1 := It;
10145 -- There may be an implicit dereference. Retrieve
10146 -- designated record type.
10148 if Is_Access_Type (It1.Typ) then
10149 T := Designated_Type (It1.Typ);
10150 else
10151 T := It1.Typ;
10152 end if;
10154 if Scope (Comp1) /= T then
10156 -- Resolution chooses the new interpretation.
10157 -- Find the component with the right name.
10159 Comp1 := First_Entity (T);
10160 while Present (Comp1)
10161 and then Chars (Comp1) /= Chars (S)
10162 loop
10163 Comp1 := Next_Entity (Comp1);
10164 end loop;
10165 end if;
10167 exit Search;
10168 end if;
10169 end if;
10170 end if;
10172 Comp := Next_Entity (Comp);
10173 end loop;
10174 end if;
10176 Get_Next_Interp (I, It);
10177 end loop Search;
10179 -- There must be a legal interpretation at this point
10181 pragma Assert (Found);
10182 Resolve (P, It1.Typ);
10183 Set_Etype (N, Typ);
10184 Set_Entity_With_Checks (S, Comp1);
10186 -- The type of the context and that of the component are
10187 -- compatible and in general identical, but if they are anonymous
10188 -- access-to-subprogram types, the relevant type is that of the
10189 -- component. This matters in Unnest_Subprograms mode, where the
10190 -- relevant context is the one in which the type is declared, not
10191 -- the point of use. This determines what activation record to use.
10193 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
10194 Set_Etype (N, Etype (Comp1));
10195 end if;
10197 else
10198 -- Resolve prefix with its type
10200 Resolve (P, T);
10201 end if;
10203 -- Generate cross-reference. We needed to wait until full overloading
10204 -- resolution was complete to do this, since otherwise we can't tell if
10205 -- we are an lvalue or not.
10207 if May_Be_Lvalue (N) then
10208 Generate_Reference (Entity (S), S, 'm');
10209 else
10210 Generate_Reference (Entity (S), S, 'r');
10211 end if;
10213 -- If prefix is an access type, the node will be transformed into an
10214 -- explicit dereference during expansion. The type of the node is the
10215 -- designated type of that of the prefix.
10217 if Is_Access_Type (Etype (P)) then
10218 T := Designated_Type (Etype (P));
10219 Check_Fully_Declared_Prefix (T, P);
10220 else
10221 T := Etype (P);
10222 end if;
10224 -- Set flag for expander if discriminant check required on a component
10225 -- appearing within a variant.
10227 if Has_Discriminants (T)
10228 and then Ekind (Entity (S)) = E_Component
10229 and then Present (Original_Record_Component (Entity (S)))
10230 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10231 and then
10232 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10233 and then not Discriminant_Checks_Suppressed (T)
10234 and then not Init_Component
10235 then
10236 Set_Do_Discriminant_Check (N);
10237 end if;
10239 if Ekind (Entity (S)) = E_Void then
10240 Error_Msg_N ("premature use of component", S);
10241 end if;
10243 -- If the prefix is a record conversion, this may be a renamed
10244 -- discriminant whose bounds differ from those of the original
10245 -- one, so we must ensure that a range check is performed.
10247 if Nkind (P) = N_Type_Conversion
10248 and then Ekind (Entity (S)) = E_Discriminant
10249 and then Is_Discrete_Type (Typ)
10250 then
10251 Set_Etype (N, Base_Type (Typ));
10252 end if;
10254 -- Note: No Eval processing is required, because the prefix is of a
10255 -- record type, or protected type, and neither can possibly be static.
10257 -- If the record type is atomic, and the component is non-atomic, then
10258 -- this is worth a warning, since we have a situation where the access
10259 -- to the component may cause extra read/writes of the atomic array
10260 -- object, or partial word accesses, both of which may be unexpected.
10262 if Nkind (N) = N_Selected_Component
10263 and then Is_Atomic_Ref_With_Address (N)
10264 and then not Is_Atomic (Entity (S))
10265 and then not Is_Atomic (Etype (Entity (S)))
10266 then
10267 Error_Msg_N
10268 ("??access to non-atomic component of atomic record",
10269 Prefix (N));
10270 Error_Msg_N
10271 ("\??may cause unexpected accesses to atomic object",
10272 Prefix (N));
10273 end if;
10275 Analyze_Dimension (N);
10276 end Resolve_Selected_Component;
10278 -------------------
10279 -- Resolve_Shift --
10280 -------------------
10282 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10283 B_Typ : constant Entity_Id := Base_Type (Typ);
10284 L : constant Node_Id := Left_Opnd (N);
10285 R : constant Node_Id := Right_Opnd (N);
10287 begin
10288 -- We do the resolution using the base type, because intermediate values
10289 -- in expressions always are of the base type, not a subtype of it.
10291 Resolve (L, B_Typ);
10292 Resolve (R, Standard_Natural);
10294 Check_Unset_Reference (L);
10295 Check_Unset_Reference (R);
10297 Set_Etype (N, B_Typ);
10298 Generate_Operator_Reference (N, B_Typ);
10299 Eval_Shift (N);
10300 end Resolve_Shift;
10302 ---------------------------
10303 -- Resolve_Short_Circuit --
10304 ---------------------------
10306 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10307 B_Typ : constant Entity_Id := Base_Type (Typ);
10308 L : constant Node_Id := Left_Opnd (N);
10309 R : constant Node_Id := Right_Opnd (N);
10311 begin
10312 -- Ensure all actions associated with the left operand (e.g.
10313 -- finalization of transient objects) are fully evaluated locally within
10314 -- an expression with actions. This is particularly helpful for coverage
10315 -- analysis. However this should not happen in generics or if option
10316 -- Minimize_Expression_With_Actions is set.
10318 if Expander_Active and not Minimize_Expression_With_Actions then
10319 declare
10320 Reloc_L : constant Node_Id := Relocate_Node (L);
10321 begin
10322 Save_Interps (Old_N => L, New_N => Reloc_L);
10324 Rewrite (L,
10325 Make_Expression_With_Actions (Sloc (L),
10326 Actions => New_List,
10327 Expression => Reloc_L));
10329 -- Set Comes_From_Source on L to preserve warnings for unset
10330 -- reference.
10332 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10333 end;
10334 end if;
10336 Resolve (L, B_Typ);
10337 Resolve (R, B_Typ);
10339 -- Check for issuing warning for always False assert/check, this happens
10340 -- when assertions are turned off, in which case the pragma Assert/Check
10341 -- was transformed into:
10343 -- if False and then <condition> then ...
10345 -- and we detect this pattern
10347 if Warn_On_Assertion_Failure
10348 and then Is_Entity_Name (R)
10349 and then Entity (R) = Standard_False
10350 and then Nkind (Parent (N)) = N_If_Statement
10351 and then Nkind (N) = N_And_Then
10352 and then Is_Entity_Name (L)
10353 and then Entity (L) = Standard_False
10354 then
10355 declare
10356 Orig : constant Node_Id := Original_Node (Parent (N));
10358 begin
10359 -- Special handling of Asssert pragma
10361 if Nkind (Orig) = N_Pragma
10362 and then Pragma_Name (Orig) = Name_Assert
10363 then
10364 declare
10365 Expr : constant Node_Id :=
10366 Original_Node
10367 (Expression
10368 (First (Pragma_Argument_Associations (Orig))));
10370 begin
10371 -- Don't warn if original condition is explicit False,
10372 -- since obviously the failure is expected in this case.
10374 if Is_Entity_Name (Expr)
10375 and then Entity (Expr) = Standard_False
10376 then
10377 null;
10379 -- Issue warning. We do not want the deletion of the
10380 -- IF/AND-THEN to take this message with it. We achieve this
10381 -- by making sure that the expanded code points to the Sloc
10382 -- of the expression, not the original pragma.
10384 else
10385 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10386 -- The source location of the expression is not usually
10387 -- the best choice here. For example, it gets located on
10388 -- the last AND keyword in a chain of boolean expressiond
10389 -- AND'ed together. It is best to put the message on the
10390 -- first character of the assertion, which is the effect
10391 -- of the First_Node call here.
10393 Error_Msg_F
10394 ("?A?assertion would fail at run time!",
10395 Expression
10396 (First (Pragma_Argument_Associations (Orig))));
10397 end if;
10398 end;
10400 -- Similar processing for Check pragma
10402 elsif Nkind (Orig) = N_Pragma
10403 and then Pragma_Name (Orig) = Name_Check
10404 then
10405 -- Don't want to warn if original condition is explicit False
10407 declare
10408 Expr : constant Node_Id :=
10409 Original_Node
10410 (Expression
10411 (Next (First (Pragma_Argument_Associations (Orig)))));
10412 begin
10413 if Is_Entity_Name (Expr)
10414 and then Entity (Expr) = Standard_False
10415 then
10416 null;
10418 -- Post warning
10420 else
10421 -- Again use Error_Msg_F rather than Error_Msg_N, see
10422 -- comment above for an explanation of why we do this.
10424 Error_Msg_F
10425 ("?A?check would fail at run time!",
10426 Expression
10427 (Last (Pragma_Argument_Associations (Orig))));
10428 end if;
10429 end;
10430 end if;
10431 end;
10432 end if;
10434 -- Continue with processing of short circuit
10436 Check_Unset_Reference (L);
10437 Check_Unset_Reference (R);
10439 Set_Etype (N, B_Typ);
10440 Eval_Short_Circuit (N);
10441 end Resolve_Short_Circuit;
10443 -------------------
10444 -- Resolve_Slice --
10445 -------------------
10447 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10448 Drange : constant Node_Id := Discrete_Range (N);
10449 Name : constant Node_Id := Prefix (N);
10450 Array_Type : Entity_Id := Empty;
10451 Dexpr : Node_Id := Empty;
10452 Index_Type : Entity_Id;
10454 begin
10455 if Is_Overloaded (Name) then
10457 -- Use the context type to select the prefix that yields the correct
10458 -- array type.
10460 declare
10461 I : Interp_Index;
10462 I1 : Interp_Index := 0;
10463 It : Interp;
10464 P : constant Node_Id := Prefix (N);
10465 Found : Boolean := False;
10467 begin
10468 Get_First_Interp (P, I, It);
10469 while Present (It.Typ) loop
10470 if (Is_Array_Type (It.Typ)
10471 and then Covers (Typ, It.Typ))
10472 or else (Is_Access_Type (It.Typ)
10473 and then Is_Array_Type (Designated_Type (It.Typ))
10474 and then Covers (Typ, Designated_Type (It.Typ)))
10475 then
10476 if Found then
10477 It := Disambiguate (P, I1, I, Any_Type);
10479 if It = No_Interp then
10480 Error_Msg_N ("ambiguous prefix for slicing", N);
10481 Set_Etype (N, Typ);
10482 return;
10483 else
10484 Found := True;
10485 Array_Type := It.Typ;
10486 I1 := I;
10487 end if;
10488 else
10489 Found := True;
10490 Array_Type := It.Typ;
10491 I1 := I;
10492 end if;
10493 end if;
10495 Get_Next_Interp (I, It);
10496 end loop;
10497 end;
10499 else
10500 Array_Type := Etype (Name);
10501 end if;
10503 Resolve (Name, Array_Type);
10505 if Is_Access_Type (Array_Type) then
10506 Apply_Access_Check (N);
10507 Array_Type := Designated_Type (Array_Type);
10509 -- If the prefix is an access to an unconstrained array, we must use
10510 -- the actual subtype of the object to perform the index checks. The
10511 -- object denoted by the prefix is implicit in the node, so we build
10512 -- an explicit representation for it in order to compute the actual
10513 -- subtype.
10515 if not Is_Constrained (Array_Type) then
10516 Remove_Side_Effects (Prefix (N));
10518 declare
10519 Obj : constant Node_Id :=
10520 Make_Explicit_Dereference (Sloc (N),
10521 Prefix => New_Copy_Tree (Prefix (N)));
10522 begin
10523 Set_Etype (Obj, Array_Type);
10524 Set_Parent (Obj, Parent (N));
10525 Array_Type := Get_Actual_Subtype (Obj);
10526 end;
10527 end if;
10529 elsif Is_Entity_Name (Name)
10530 or else Nkind (Name) = N_Explicit_Dereference
10531 or else (Nkind (Name) = N_Function_Call
10532 and then not Is_Constrained (Etype (Name)))
10533 then
10534 Array_Type := Get_Actual_Subtype (Name);
10536 -- If the name is a selected component that depends on discriminants,
10537 -- build an actual subtype for it. This can happen only when the name
10538 -- itself is overloaded; otherwise the actual subtype is created when
10539 -- the selected component is analyzed.
10541 elsif Nkind (Name) = N_Selected_Component
10542 and then Full_Analysis
10543 and then Depends_On_Discriminant (First_Index (Array_Type))
10544 then
10545 declare
10546 Act_Decl : constant Node_Id :=
10547 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10548 begin
10549 Insert_Action (N, Act_Decl);
10550 Array_Type := Defining_Identifier (Act_Decl);
10551 end;
10553 -- Maybe this should just be "else", instead of checking for the
10554 -- specific case of slice??? This is needed for the case where the
10555 -- prefix is an Image attribute, which gets expanded to a slice, and so
10556 -- has a constrained subtype which we want to use for the slice range
10557 -- check applied below (the range check won't get done if the
10558 -- unconstrained subtype of the 'Image is used).
10560 elsif Nkind (Name) = N_Slice then
10561 Array_Type := Etype (Name);
10562 end if;
10564 -- Obtain the type of the array index
10566 if Ekind (Array_Type) = E_String_Literal_Subtype then
10567 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10568 else
10569 Index_Type := Etype (First_Index (Array_Type));
10570 end if;
10572 -- If name was overloaded, set slice type correctly now
10574 Set_Etype (N, Array_Type);
10576 -- Handle the generation of a range check that compares the array index
10577 -- against the discrete_range. The check is not applied to internally
10578 -- built nodes associated with the expansion of dispatch tables. Check
10579 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10580 -- the unit.
10582 if Tagged_Type_Expansion
10583 and then RTU_Loaded (Ada_Tags)
10584 and then Nkind (Prefix (N)) = N_Selected_Component
10585 and then Present (Entity (Selector_Name (Prefix (N))))
10586 and then Entity (Selector_Name (Prefix (N))) =
10587 RTE_Record_Component (RE_Prims_Ptr)
10588 then
10589 null;
10591 -- The discrete_range is specified by a subtype indication. Create a
10592 -- shallow copy and inherit the type, parent and source location from
10593 -- the discrete_range. This ensures that the range check is inserted
10594 -- relative to the slice and that the runtime exception points to the
10595 -- proper construct.
10597 elsif Is_Entity_Name (Drange) then
10598 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10600 Set_Etype (Dexpr, Etype (Drange));
10601 Set_Parent (Dexpr, Parent (Drange));
10602 Set_Sloc (Dexpr, Sloc (Drange));
10604 -- The discrete_range is a regular range. Resolve the bounds and remove
10605 -- their side effects.
10607 else
10608 Resolve (Drange, Base_Type (Index_Type));
10610 if Nkind (Drange) = N_Range then
10611 Force_Evaluation (Low_Bound (Drange));
10612 Force_Evaluation (High_Bound (Drange));
10614 Dexpr := Drange;
10615 end if;
10616 end if;
10618 if Present (Dexpr) then
10619 Apply_Range_Check (Dexpr, Index_Type);
10620 end if;
10622 Set_Slice_Subtype (N);
10624 -- Check bad use of type with predicates
10626 declare
10627 Subt : Entity_Id;
10629 begin
10630 if Nkind (Drange) = N_Subtype_Indication
10631 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10632 then
10633 Subt := Entity (Subtype_Mark (Drange));
10634 else
10635 Subt := Etype (Drange);
10636 end if;
10638 if Has_Predicates (Subt) then
10639 Bad_Predicated_Subtype_Use
10640 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10641 end if;
10642 end;
10644 -- Otherwise here is where we check suspicious indexes
10646 if Nkind (Drange) = N_Range then
10647 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10648 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10649 end if;
10651 Analyze_Dimension (N);
10652 Eval_Slice (N);
10653 end Resolve_Slice;
10655 ----------------------------
10656 -- Resolve_String_Literal --
10657 ----------------------------
10659 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10660 C_Typ : constant Entity_Id := Component_Type (Typ);
10661 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10662 Loc : constant Source_Ptr := Sloc (N);
10663 Str : constant String_Id := Strval (N);
10664 Strlen : constant Nat := String_Length (Str);
10665 Subtype_Id : Entity_Id;
10666 Need_Check : Boolean;
10668 begin
10669 -- For a string appearing in a concatenation, defer creation of the
10670 -- string_literal_subtype until the end of the resolution of the
10671 -- concatenation, because the literal may be constant-folded away. This
10672 -- is a useful optimization for long concatenation expressions.
10674 -- If the string is an aggregate built for a single character (which
10675 -- happens in a non-static context) or a is null string to which special
10676 -- checks may apply, we build the subtype. Wide strings must also get a
10677 -- string subtype if they come from a one character aggregate. Strings
10678 -- generated by attributes might be static, but it is often hard to
10679 -- determine whether the enclosing context is static, so we generate
10680 -- subtypes for them as well, thus losing some rarer optimizations ???
10681 -- Same for strings that come from a static conversion.
10683 Need_Check :=
10684 (Strlen = 0 and then Typ /= Standard_String)
10685 or else Nkind (Parent (N)) /= N_Op_Concat
10686 or else (N /= Left_Opnd (Parent (N))
10687 and then N /= Right_Opnd (Parent (N)))
10688 or else ((Typ = Standard_Wide_String
10689 or else Typ = Standard_Wide_Wide_String)
10690 and then Nkind (Original_Node (N)) /= N_String_Literal);
10692 -- If the resolving type is itself a string literal subtype, we can just
10693 -- reuse it, since there is no point in creating another.
10695 if Ekind (Typ) = E_String_Literal_Subtype then
10696 Subtype_Id := Typ;
10698 elsif Nkind (Parent (N)) = N_Op_Concat
10699 and then not Need_Check
10700 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10701 N_Attribute_Reference,
10702 N_Qualified_Expression,
10703 N_Type_Conversion)
10704 then
10705 Subtype_Id := Typ;
10707 -- Do not generate a string literal subtype for the default expression
10708 -- of a formal parameter in GNATprove mode. This is because the string
10709 -- subtype is associated with the freezing actions of the subprogram,
10710 -- however freezing is disabled in GNATprove mode and as a result the
10711 -- subtype is unavailable.
10713 elsif GNATprove_Mode
10714 and then Nkind (Parent (N)) = N_Parameter_Specification
10715 then
10716 Subtype_Id := Typ;
10718 -- Otherwise we must create a string literal subtype. Note that the
10719 -- whole idea of string literal subtypes is simply to avoid the need
10720 -- for building a full fledged array subtype for each literal.
10722 else
10723 Set_String_Literal_Subtype (N, Typ);
10724 Subtype_Id := Etype (N);
10725 end if;
10727 if Nkind (Parent (N)) /= N_Op_Concat
10728 or else Need_Check
10729 then
10730 Set_Etype (N, Subtype_Id);
10731 Eval_String_Literal (N);
10732 end if;
10734 if Is_Limited_Composite (Typ)
10735 or else Is_Private_Composite (Typ)
10736 then
10737 Error_Msg_N ("string literal not available for private array", N);
10738 Set_Etype (N, Any_Type);
10739 return;
10740 end if;
10742 -- The validity of a null string has been checked in the call to
10743 -- Eval_String_Literal.
10745 if Strlen = 0 then
10746 return;
10748 -- Always accept string literal with component type Any_Character, which
10749 -- occurs in error situations and in comparisons of literals, both of
10750 -- which should accept all literals.
10752 elsif R_Typ = Any_Character then
10753 return;
10755 -- If the type is bit-packed, then we always transform the string
10756 -- literal into a full fledged aggregate.
10758 elsif Is_Bit_Packed_Array (Typ) then
10759 null;
10761 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10763 else
10764 -- For Standard.Wide_Wide_String, or any other type whose component
10765 -- type is Standard.Wide_Wide_Character, we know that all the
10766 -- characters in the string must be acceptable, since the parser
10767 -- accepted the characters as valid character literals.
10769 if R_Typ = Standard_Wide_Wide_Character then
10770 null;
10772 -- For the case of Standard.String, or any other type whose component
10773 -- type is Standard.Character, we must make sure that there are no
10774 -- wide characters in the string, i.e. that it is entirely composed
10775 -- of characters in range of type Character.
10777 -- If the string literal is the result of a static concatenation, the
10778 -- test has already been performed on the components, and need not be
10779 -- repeated.
10781 elsif R_Typ = Standard_Character
10782 and then Nkind (Original_Node (N)) /= N_Op_Concat
10783 then
10784 for J in 1 .. Strlen loop
10785 if not In_Character_Range (Get_String_Char (Str, J)) then
10787 -- If we are out of range, post error. This is one of the
10788 -- very few places that we place the flag in the middle of
10789 -- a token, right under the offending wide character. Not
10790 -- quite clear if this is right wrt wide character encoding
10791 -- sequences, but it's only an error message.
10793 Error_Msg
10794 ("literal out of range of type Standard.Character",
10795 Source_Ptr (Int (Loc) + J));
10796 return;
10797 end if;
10798 end loop;
10800 -- For the case of Standard.Wide_String, or any other type whose
10801 -- component type is Standard.Wide_Character, we must make sure that
10802 -- there are no wide characters in the string, i.e. that it is
10803 -- entirely composed of characters in range of type Wide_Character.
10805 -- If the string literal is the result of a static concatenation,
10806 -- the test has already been performed on the components, and need
10807 -- not be repeated.
10809 elsif R_Typ = Standard_Wide_Character
10810 and then Nkind (Original_Node (N)) /= N_Op_Concat
10811 then
10812 for J in 1 .. Strlen loop
10813 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10815 -- If we are out of range, post error. This is one of the
10816 -- very few places that we place the flag in the middle of
10817 -- a token, right under the offending wide character.
10819 -- This is not quite right, because characters in general
10820 -- will take more than one character position ???
10822 Error_Msg
10823 ("literal out of range of type Standard.Wide_Character",
10824 Source_Ptr (Int (Loc) + J));
10825 return;
10826 end if;
10827 end loop;
10829 -- If the root type is not a standard character, then we will convert
10830 -- the string into an aggregate and will let the aggregate code do
10831 -- the checking. Standard Wide_Wide_Character is also OK here.
10833 else
10834 null;
10835 end if;
10837 -- See if the component type of the array corresponding to the string
10838 -- has compile time known bounds. If yes we can directly check
10839 -- whether the evaluation of the string will raise constraint error.
10840 -- Otherwise we need to transform the string literal into the
10841 -- corresponding character aggregate and let the aggregate code do
10842 -- the checking. We use the same transformation if the component
10843 -- type has a static predicate, which will be applied to each
10844 -- character when the aggregate is resolved.
10846 if Is_Standard_Character_Type (R_Typ) then
10848 -- Check for the case of full range, where we are definitely OK
10850 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10851 return;
10852 end if;
10854 -- Here the range is not the complete base type range, so check
10856 declare
10857 Comp_Typ_Lo : constant Node_Id :=
10858 Type_Low_Bound (Component_Type (Typ));
10859 Comp_Typ_Hi : constant Node_Id :=
10860 Type_High_Bound (Component_Type (Typ));
10862 Char_Val : Uint;
10864 begin
10865 if Compile_Time_Known_Value (Comp_Typ_Lo)
10866 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10867 then
10868 for J in 1 .. Strlen loop
10869 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10871 if Char_Val < Expr_Value (Comp_Typ_Lo)
10872 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10873 then
10874 Apply_Compile_Time_Constraint_Error
10875 (N, "character out of range??",
10876 CE_Range_Check_Failed,
10877 Loc => Source_Ptr (Int (Loc) + J));
10878 end if;
10879 end loop;
10881 if not Has_Static_Predicate (C_Typ) then
10882 return;
10883 end if;
10884 end if;
10885 end;
10886 end if;
10887 end if;
10889 -- If we got here we meed to transform the string literal into the
10890 -- equivalent qualified positional array aggregate. This is rather
10891 -- heavy artillery for this situation, but it is hard work to avoid.
10893 declare
10894 Lits : constant List_Id := New_List;
10895 P : Source_Ptr := Loc + 1;
10896 C : Char_Code;
10898 begin
10899 -- Build the character literals, we give them source locations that
10900 -- correspond to the string positions, which is a bit tricky given
10901 -- the possible presence of wide character escape sequences.
10903 for J in 1 .. Strlen loop
10904 C := Get_String_Char (Str, J);
10905 Set_Character_Literal_Name (C);
10907 Append_To (Lits,
10908 Make_Character_Literal (P,
10909 Chars => Name_Find,
10910 Char_Literal_Value => UI_From_CC (C)));
10912 if In_Character_Range (C) then
10913 P := P + 1;
10915 -- Should we have a call to Skip_Wide here ???
10917 -- ??? else
10918 -- Skip_Wide (P);
10920 end if;
10921 end loop;
10923 Rewrite (N,
10924 Make_Qualified_Expression (Loc,
10925 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10926 Expression =>
10927 Make_Aggregate (Loc, Expressions => Lits)));
10929 Analyze_And_Resolve (N, Typ);
10930 end;
10931 end Resolve_String_Literal;
10933 -------------------------
10934 -- Resolve_Target_Name --
10935 -------------------------
10937 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10938 begin
10939 Set_Etype (N, Typ);
10940 end Resolve_Target_Name;
10942 -----------------------------
10943 -- Resolve_Type_Conversion --
10944 -----------------------------
10946 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10947 Conv_OK : constant Boolean := Conversion_OK (N);
10948 Operand : constant Node_Id := Expression (N);
10949 Operand_Typ : constant Entity_Id := Etype (Operand);
10950 Target_Typ : constant Entity_Id := Etype (N);
10951 Rop : Node_Id;
10952 Orig_N : Node_Id;
10953 Orig_T : Node_Id;
10955 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10956 -- Set to False to suppress cases where we want to suppress the test
10957 -- for redundancy to avoid possible false positives on this warning.
10959 begin
10960 if not Conv_OK
10961 and then not Valid_Conversion (N, Target_Typ, Operand)
10962 then
10963 return;
10964 end if;
10966 -- If the Operand Etype is Universal_Fixed, then the conversion is
10967 -- never redundant. We need this check because by the time we have
10968 -- finished the rather complex transformation, the conversion looks
10969 -- redundant when it is not.
10971 if Operand_Typ = Universal_Fixed then
10972 Test_Redundant := False;
10974 -- If the operand is marked as Any_Fixed, then special processing is
10975 -- required. This is also a case where we suppress the test for a
10976 -- redundant conversion, since most certainly it is not redundant.
10978 elsif Operand_Typ = Any_Fixed then
10979 Test_Redundant := False;
10981 -- Mixed-mode operation involving a literal. Context must be a fixed
10982 -- type which is applied to the literal subsequently.
10984 -- Multiplication and division involving two fixed type operands must
10985 -- yield a universal real because the result is computed in arbitrary
10986 -- precision.
10988 if Is_Fixed_Point_Type (Typ)
10989 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10990 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10991 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10992 then
10993 Set_Etype (Operand, Universal_Real);
10995 elsif Is_Numeric_Type (Typ)
10996 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10997 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10998 or else
10999 Etype (Left_Opnd (Operand)) = Universal_Real)
11000 then
11001 -- Return if expression is ambiguous
11003 if Unique_Fixed_Point_Type (N) = Any_Type then
11004 return;
11006 -- If nothing else, the available fixed type is Duration
11008 else
11009 Set_Etype (Operand, Standard_Duration);
11010 end if;
11012 -- Resolve the real operand with largest available precision
11014 if Etype (Right_Opnd (Operand)) = Universal_Real then
11015 Rop := New_Copy_Tree (Right_Opnd (Operand));
11016 else
11017 Rop := New_Copy_Tree (Left_Opnd (Operand));
11018 end if;
11020 Resolve (Rop, Universal_Real);
11022 -- If the operand is a literal (it could be a non-static and
11023 -- illegal exponentiation) check whether the use of Duration
11024 -- is potentially inaccurate.
11026 if Nkind (Rop) = N_Real_Literal
11027 and then Realval (Rop) /= Ureal_0
11028 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
11029 then
11030 Error_Msg_N
11031 ("??universal real operand can only "
11032 & "be interpreted as Duration!", Rop);
11033 Error_Msg_N
11034 ("\??precision will be lost in the conversion!", Rop);
11035 end if;
11037 elsif Is_Numeric_Type (Typ)
11038 and then Nkind (Operand) in N_Op
11039 and then Unique_Fixed_Point_Type (N) /= Any_Type
11040 then
11041 Set_Etype (Operand, Standard_Duration);
11043 else
11044 Error_Msg_N ("invalid context for mixed mode operation", N);
11045 Set_Etype (Operand, Any_Type);
11046 return;
11047 end if;
11048 end if;
11050 Resolve (Operand);
11052 -- In SPARK, a type conversion between array types should be restricted
11053 -- to types which have matching static bounds.
11055 -- Protect call to Matching_Static_Array_Bounds to avoid costly
11056 -- operation if not needed.
11058 if Restriction_Check_Required (SPARK_05)
11059 and then Is_Array_Type (Target_Typ)
11060 and then Is_Array_Type (Operand_Typ)
11061 and then Operand_Typ /= Any_Composite -- or else Operand in error
11062 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
11063 then
11064 Check_SPARK_05_Restriction
11065 ("array types should have matching static bounds", N);
11066 end if;
11068 -- In formal mode, the operand of an ancestor type conversion must be an
11069 -- object (not an expression).
11071 if Is_Tagged_Type (Target_Typ)
11072 and then not Is_Class_Wide_Type (Target_Typ)
11073 and then Is_Tagged_Type (Operand_Typ)
11074 and then not Is_Class_Wide_Type (Operand_Typ)
11075 and then Is_Ancestor (Target_Typ, Operand_Typ)
11076 and then not Is_SPARK_05_Object_Reference (Operand)
11077 then
11078 Check_SPARK_05_Restriction ("object required", Operand);
11079 end if;
11081 Analyze_Dimension (N);
11083 -- Note: we do the Eval_Type_Conversion call before applying the
11084 -- required checks for a subtype conversion. This is important, since
11085 -- both are prepared under certain circumstances to change the type
11086 -- conversion to a constraint error node, but in the case of
11087 -- Eval_Type_Conversion this may reflect an illegality in the static
11088 -- case, and we would miss the illegality (getting only a warning
11089 -- message), if we applied the type conversion checks first.
11091 Eval_Type_Conversion (N);
11093 -- Even when evaluation is not possible, we may be able to simplify the
11094 -- conversion or its expression. This needs to be done before applying
11095 -- checks, since otherwise the checks may use the original expression
11096 -- and defeat the simplifications. This is specifically the case for
11097 -- elimination of the floating-point Truncation attribute in
11098 -- float-to-int conversions.
11100 Simplify_Type_Conversion (N);
11102 -- If after evaluation we still have a type conversion, then we may need
11103 -- to apply checks required for a subtype conversion.
11105 -- Skip these type conversion checks if universal fixed operands
11106 -- operands involved, since range checks are handled separately for
11107 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
11109 if Nkind (N) = N_Type_Conversion
11110 and then not Is_Generic_Type (Root_Type (Target_Typ))
11111 and then Target_Typ /= Universal_Fixed
11112 and then Operand_Typ /= Universal_Fixed
11113 then
11114 Apply_Type_Conversion_Checks (N);
11115 end if;
11117 -- Issue warning for conversion of simple object to its own type. We
11118 -- have to test the original nodes, since they may have been rewritten
11119 -- by various optimizations.
11121 Orig_N := Original_Node (N);
11123 -- Here we test for a redundant conversion if the warning mode is
11124 -- active (and was not locally reset), and we have a type conversion
11125 -- from source not appearing in a generic instance.
11127 if Test_Redundant
11128 and then Nkind (Orig_N) = N_Type_Conversion
11129 and then Comes_From_Source (Orig_N)
11130 and then not In_Instance
11131 then
11132 Orig_N := Original_Node (Expression (Orig_N));
11133 Orig_T := Target_Typ;
11135 -- If the node is part of a larger expression, the Target_Type
11136 -- may not be the original type of the node if the context is a
11137 -- condition. Recover original type to see if conversion is needed.
11139 if Is_Boolean_Type (Orig_T)
11140 and then Nkind (Parent (N)) in N_Op
11141 then
11142 Orig_T := Etype (Parent (N));
11143 end if;
11145 -- If we have an entity name, then give the warning if the entity
11146 -- is the right type, or if it is a loop parameter covered by the
11147 -- original type (that's needed because loop parameters have an
11148 -- odd subtype coming from the bounds).
11150 if (Is_Entity_Name (Orig_N)
11151 and then
11152 (Etype (Entity (Orig_N)) = Orig_T
11153 or else
11154 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11155 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11157 -- If not an entity, then type of expression must match
11159 or else Etype (Orig_N) = Orig_T
11160 then
11161 -- One more check, do not give warning if the analyzed conversion
11162 -- has an expression with non-static bounds, and the bounds of the
11163 -- target are static. This avoids junk warnings in cases where the
11164 -- conversion is necessary to establish staticness, for example in
11165 -- a case statement.
11167 if not Is_OK_Static_Subtype (Operand_Typ)
11168 and then Is_OK_Static_Subtype (Target_Typ)
11169 then
11170 null;
11172 -- Finally, if this type conversion occurs in a context requiring
11173 -- a prefix, and the expression is a qualified expression then the
11174 -- type conversion is not redundant, since a qualified expression
11175 -- is not a prefix, whereas a type conversion is. For example, "X
11176 -- := T'(Funx(...)).Y;" is illegal because a selected component
11177 -- requires a prefix, but a type conversion makes it legal: "X :=
11178 -- T(T'(Funx(...))).Y;"
11180 -- In Ada 2012, a qualified expression is a name, so this idiom is
11181 -- no longer needed, but we still suppress the warning because it
11182 -- seems unfriendly for warnings to pop up when you switch to the
11183 -- newer language version.
11185 elsif Nkind (Orig_N) = N_Qualified_Expression
11186 and then Nkind_In (Parent (N), N_Attribute_Reference,
11187 N_Indexed_Component,
11188 N_Selected_Component,
11189 N_Slice,
11190 N_Explicit_Dereference)
11191 then
11192 null;
11194 -- Never warn on conversion to Long_Long_Integer'Base since
11195 -- that is most likely an artifact of the extended overflow
11196 -- checking and comes from complex expanded code.
11198 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11199 null;
11201 -- Here we give the redundant conversion warning. If it is an
11202 -- entity, give the name of the entity in the message. If not,
11203 -- just mention the expression.
11205 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11207 else
11208 if Is_Entity_Name (Orig_N) then
11209 Error_Msg_Node_2 := Orig_T;
11210 Error_Msg_NE -- CODEFIX
11211 ("??redundant conversion, & is of type &!",
11212 N, Entity (Orig_N));
11213 else
11214 Error_Msg_NE
11215 ("??redundant conversion, expression is of type&!",
11216 N, Orig_T);
11217 end if;
11218 end if;
11219 end if;
11220 end if;
11222 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11223 -- No need to perform any interface conversion if the type of the
11224 -- expression coincides with the target type.
11226 if Ada_Version >= Ada_2005
11227 and then Expander_Active
11228 and then Operand_Typ /= Target_Typ
11229 then
11230 declare
11231 Opnd : Entity_Id := Operand_Typ;
11232 Target : Entity_Id := Target_Typ;
11234 begin
11235 -- If the type of the operand is a limited view, use nonlimited
11236 -- view when available. If it is a class-wide type, recover the
11237 -- class-wide type of the nonlimited view.
11239 if From_Limited_With (Opnd)
11240 and then Has_Non_Limited_View (Opnd)
11241 then
11242 Opnd := Non_Limited_View (Opnd);
11243 Set_Etype (Expression (N), Opnd);
11244 end if;
11246 if Is_Access_Type (Opnd) then
11247 Opnd := Designated_Type (Opnd);
11248 end if;
11250 if Is_Access_Type (Target_Typ) then
11251 Target := Designated_Type (Target);
11252 end if;
11254 if Opnd = Target then
11255 null;
11257 -- Conversion from interface type
11259 elsif Is_Interface (Opnd) then
11261 -- Ada 2005 (AI-217): Handle entities from limited views
11263 if From_Limited_With (Opnd) then
11264 Error_Msg_Qual_Level := 99;
11265 Error_Msg_NE -- CODEFIX
11266 ("missing WITH clause on package &", N,
11267 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11268 Error_Msg_N
11269 ("type conversions require visibility of the full view",
11272 elsif From_Limited_With (Target)
11273 and then not
11274 (Is_Access_Type (Target_Typ)
11275 and then Present (Non_Limited_View (Etype (Target))))
11276 then
11277 Error_Msg_Qual_Level := 99;
11278 Error_Msg_NE -- CODEFIX
11279 ("missing WITH clause on package &", N,
11280 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11281 Error_Msg_N
11282 ("type conversions require visibility of the full view",
11285 else
11286 Expand_Interface_Conversion (N);
11287 end if;
11289 -- Conversion to interface type
11291 elsif Is_Interface (Target) then
11293 -- Handle subtypes
11295 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11296 Opnd := Etype (Opnd);
11297 end if;
11299 if Is_Class_Wide_Type (Opnd)
11300 or else Interface_Present_In_Ancestor
11301 (Typ => Opnd,
11302 Iface => Target)
11303 then
11304 Expand_Interface_Conversion (N);
11305 else
11306 Error_Msg_Name_1 := Chars (Etype (Target));
11307 Error_Msg_Name_2 := Chars (Opnd);
11308 Error_Msg_N
11309 ("wrong interface conversion (% is not a progenitor "
11310 & "of %)", N);
11311 end if;
11312 end if;
11313 end;
11314 end if;
11316 -- Ada 2012: once the type conversion is resolved, check whether the
11317 -- operand statisfies the static predicate of the target type.
11319 if Has_Predicates (Target_Typ) then
11320 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11321 end if;
11323 -- If at this stage we have a real to integer conversion, make sure that
11324 -- the Do_Range_Check flag is set, because such conversions in general
11325 -- need a range check. We only need this if expansion is off.
11326 -- In GNATprove mode, we only do that when converting from fixed-point
11327 -- (as floating-point to integer conversions are now handled in
11328 -- GNATprove mode).
11330 if Nkind (N) = N_Type_Conversion
11331 and then not Expander_Active
11332 and then Is_Integer_Type (Target_Typ)
11333 and then (Is_Fixed_Point_Type (Operand_Typ)
11334 or else (not GNATprove_Mode
11335 and then Is_Floating_Point_Type (Operand_Typ)))
11336 then
11337 Set_Do_Range_Check (Operand);
11338 end if;
11340 -- Generating C code a type conversion of an access to constrained
11341 -- array type to access to unconstrained array type involves building
11342 -- a fat pointer which in general cannot be generated on the fly. We
11343 -- remove side effects in order to store the result of the conversion
11344 -- into a temporary.
11346 if Modify_Tree_For_C
11347 and then Nkind (N) = N_Type_Conversion
11348 and then Nkind (Parent (N)) /= N_Object_Declaration
11349 and then Is_Access_Type (Etype (N))
11350 and then Is_Array_Type (Designated_Type (Etype (N)))
11351 and then not Is_Constrained (Designated_Type (Etype (N)))
11352 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11353 then
11354 Remove_Side_Effects (N);
11355 end if;
11356 end Resolve_Type_Conversion;
11358 ----------------------
11359 -- Resolve_Unary_Op --
11360 ----------------------
11362 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11363 B_Typ : constant Entity_Id := Base_Type (Typ);
11364 R : constant Node_Id := Right_Opnd (N);
11365 OK : Boolean;
11366 Lo : Uint;
11367 Hi : Uint;
11369 begin
11370 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11371 Error_Msg_Name_1 := Chars (Typ);
11372 Check_SPARK_05_Restriction
11373 ("unary operator not defined for modular type%", N);
11374 end if;
11376 -- Deal with intrinsic unary operators
11378 if Comes_From_Source (N)
11379 and then Ekind (Entity (N)) = E_Function
11380 and then Is_Imported (Entity (N))
11381 and then Is_Intrinsic_Subprogram (Entity (N))
11382 then
11383 Resolve_Intrinsic_Unary_Operator (N, Typ);
11384 return;
11385 end if;
11387 -- Deal with universal cases
11389 if Etype (R) = Universal_Integer
11390 or else
11391 Etype (R) = Universal_Real
11392 then
11393 Check_For_Visible_Operator (N, B_Typ);
11394 end if;
11396 Set_Etype (N, B_Typ);
11397 Resolve (R, B_Typ);
11399 -- Generate warning for expressions like abs (x mod 2)
11401 if Warn_On_Redundant_Constructs
11402 and then Nkind (N) = N_Op_Abs
11403 then
11404 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11406 if OK and then Hi >= Lo and then Lo >= 0 then
11407 Error_Msg_N -- CODEFIX
11408 ("?r?abs applied to known non-negative value has no effect", N);
11409 end if;
11410 end if;
11412 -- Deal with reference generation
11414 Check_Unset_Reference (R);
11415 Generate_Operator_Reference (N, B_Typ);
11416 Analyze_Dimension (N);
11417 Eval_Unary_Op (N);
11419 -- Set overflow checking bit. Much cleverer code needed here eventually
11420 -- and perhaps the Resolve routines should be separated for the various
11421 -- arithmetic operations, since they will need different processing ???
11423 if Nkind (N) in N_Op then
11424 if not Overflow_Checks_Suppressed (Etype (N)) then
11425 Enable_Overflow_Check (N);
11426 end if;
11427 end if;
11429 -- Generate warning for expressions like -5 mod 3 for integers. No need
11430 -- to worry in the floating-point case, since parens do not affect the
11431 -- result so there is no point in giving in a warning.
11433 declare
11434 Norig : constant Node_Id := Original_Node (N);
11435 Rorig : Node_Id;
11436 Val : Uint;
11437 HB : Uint;
11438 LB : Uint;
11439 Lval : Uint;
11440 Opnd : Node_Id;
11442 begin
11443 if Warn_On_Questionable_Missing_Parens
11444 and then Comes_From_Source (Norig)
11445 and then Is_Integer_Type (Typ)
11446 and then Nkind (Norig) = N_Op_Minus
11447 then
11448 Rorig := Original_Node (Right_Opnd (Norig));
11450 -- We are looking for cases where the right operand is not
11451 -- parenthesized, and is a binary operator, multiply, divide, or
11452 -- mod. These are the cases where the grouping can affect results.
11454 if Paren_Count (Rorig) = 0
11455 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11456 then
11457 -- For mod, we always give the warning, since the value is
11458 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11459 -- -(5 mod 315)). But for the other cases, the only concern is
11460 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11461 -- overflows, but (-2) * 64 does not). So we try to give the
11462 -- message only when overflow is possible.
11464 if Nkind (Rorig) /= N_Op_Mod
11465 and then Compile_Time_Known_Value (R)
11466 then
11467 Val := Expr_Value (R);
11469 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11470 HB := Expr_Value (Type_High_Bound (Typ));
11471 else
11472 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11473 end if;
11475 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11476 LB := Expr_Value (Type_Low_Bound (Typ));
11477 else
11478 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11479 end if;
11481 -- Note that the test below is deliberately excluding the
11482 -- largest negative number, since that is a potentially
11483 -- troublesome case (e.g. -2 * x, where the result is the
11484 -- largest negative integer has an overflow with 2 * x).
11486 if Val > LB and then Val <= HB then
11487 return;
11488 end if;
11489 end if;
11491 -- For the multiplication case, the only case we have to worry
11492 -- about is when (-a)*b is exactly the largest negative number
11493 -- so that -(a*b) can cause overflow. This can only happen if
11494 -- a is a power of 2, and more generally if any operand is a
11495 -- constant that is not a power of 2, then the parentheses
11496 -- cannot affect whether overflow occurs. We only bother to
11497 -- test the left most operand
11499 -- Loop looking at left operands for one that has known value
11501 Opnd := Rorig;
11502 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11503 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11504 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11506 -- Operand value of 0 or 1 skips warning
11508 if Lval <= 1 then
11509 return;
11511 -- Otherwise check power of 2, if power of 2, warn, if
11512 -- anything else, skip warning.
11514 else
11515 while Lval /= 2 loop
11516 if Lval mod 2 = 1 then
11517 return;
11518 else
11519 Lval := Lval / 2;
11520 end if;
11521 end loop;
11523 exit Opnd_Loop;
11524 end if;
11525 end if;
11527 -- Keep looking at left operands
11529 Opnd := Left_Opnd (Opnd);
11530 end loop Opnd_Loop;
11532 -- For rem or "/" we can only have a problematic situation
11533 -- if the divisor has a value of minus one or one. Otherwise
11534 -- overflow is impossible (divisor > 1) or we have a case of
11535 -- division by zero in any case.
11537 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11538 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11539 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11540 then
11541 return;
11542 end if;
11544 -- If we fall through warning should be issued
11546 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11548 Error_Msg_N
11549 ("??unary minus expression should be parenthesized here!", N);
11550 end if;
11551 end if;
11552 end;
11553 end Resolve_Unary_Op;
11555 ----------------------------------
11556 -- Resolve_Unchecked_Expression --
11557 ----------------------------------
11559 procedure Resolve_Unchecked_Expression
11560 (N : Node_Id;
11561 Typ : Entity_Id)
11563 begin
11564 Resolve (Expression (N), Typ, Suppress => All_Checks);
11565 Set_Etype (N, Typ);
11566 end Resolve_Unchecked_Expression;
11568 ---------------------------------------
11569 -- Resolve_Unchecked_Type_Conversion --
11570 ---------------------------------------
11572 procedure Resolve_Unchecked_Type_Conversion
11573 (N : Node_Id;
11574 Typ : Entity_Id)
11576 pragma Warnings (Off, Typ);
11578 Operand : constant Node_Id := Expression (N);
11579 Opnd_Type : constant Entity_Id := Etype (Operand);
11581 begin
11582 -- Resolve operand using its own type
11584 Resolve (Operand, Opnd_Type);
11586 -- In an inlined context, the unchecked conversion may be applied
11587 -- to a literal, in which case its type is the type of the context.
11588 -- (In other contexts conversions cannot apply to literals).
11590 if In_Inlined_Body
11591 and then (Opnd_Type = Any_Character or else
11592 Opnd_Type = Any_Integer or else
11593 Opnd_Type = Any_Real)
11594 then
11595 Set_Etype (Operand, Typ);
11596 end if;
11598 Analyze_Dimension (N);
11599 Eval_Unchecked_Conversion (N);
11600 end Resolve_Unchecked_Type_Conversion;
11602 ------------------------------
11603 -- Rewrite_Operator_As_Call --
11604 ------------------------------
11606 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11607 Loc : constant Source_Ptr := Sloc (N);
11608 Actuals : constant List_Id := New_List;
11609 New_N : Node_Id;
11611 begin
11612 if Nkind (N) in N_Binary_Op then
11613 Append (Left_Opnd (N), Actuals);
11614 end if;
11616 Append (Right_Opnd (N), Actuals);
11618 New_N :=
11619 Make_Function_Call (Sloc => Loc,
11620 Name => New_Occurrence_Of (Nam, Loc),
11621 Parameter_Associations => Actuals);
11623 Preserve_Comes_From_Source (New_N, N);
11624 Preserve_Comes_From_Source (Name (New_N), N);
11625 Rewrite (N, New_N);
11626 Set_Etype (N, Etype (Nam));
11627 end Rewrite_Operator_As_Call;
11629 ------------------------------
11630 -- Rewrite_Renamed_Operator --
11631 ------------------------------
11633 procedure Rewrite_Renamed_Operator
11634 (N : Node_Id;
11635 Op : Entity_Id;
11636 Typ : Entity_Id)
11638 Nam : constant Name_Id := Chars (Op);
11639 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11640 Op_Node : Node_Id;
11642 begin
11643 -- Do not perform this transformation within a pre/postcondition,
11644 -- because the expression will be reanalyzed, and the transformation
11645 -- might affect the visibility of the operator, e.g. in an instance.
11646 -- Note that fully analyzed and expanded pre/postconditions appear as
11647 -- pragma Check equivalents.
11649 if In_Pre_Post_Condition (N) then
11650 return;
11651 end if;
11653 -- Likewise when an expression function is being preanalyzed, since the
11654 -- expression will be reanalyzed as part of the generated body.
11656 if In_Spec_Expression then
11657 declare
11658 S : constant Entity_Id := Current_Scope_No_Loops;
11659 begin
11660 if Ekind (S) = E_Function
11661 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11662 N_Expression_Function
11663 then
11664 return;
11665 end if;
11666 end;
11667 end if;
11669 -- Rewrite the operator node using the real operator, not its renaming.
11670 -- Exclude user-defined intrinsic operations of the same name, which are
11671 -- treated separately and rewritten as calls.
11673 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11674 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11675 Set_Chars (Op_Node, Nam);
11676 Set_Etype (Op_Node, Etype (N));
11677 Set_Entity (Op_Node, Op);
11678 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11680 -- Indicate that both the original entity and its renaming are
11681 -- referenced at this point.
11683 Generate_Reference (Entity (N), N);
11684 Generate_Reference (Op, N);
11686 if Is_Binary then
11687 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11688 end if;
11690 Rewrite (N, Op_Node);
11692 -- If the context type is private, add the appropriate conversions so
11693 -- that the operator is applied to the full view. This is done in the
11694 -- routines that resolve intrinsic operators.
11696 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11697 case Nkind (N) is
11698 when N_Op_Add
11699 | N_Op_Divide
11700 | N_Op_Expon
11701 | N_Op_Mod
11702 | N_Op_Multiply
11703 | N_Op_Rem
11704 | N_Op_Subtract
11706 Resolve_Intrinsic_Operator (N, Typ);
11708 when N_Op_Abs
11709 | N_Op_Minus
11710 | N_Op_Plus
11712 Resolve_Intrinsic_Unary_Operator (N, Typ);
11714 when others =>
11715 Resolve (N, Typ);
11716 end case;
11717 end if;
11719 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11721 -- Operator renames a user-defined operator of the same name. Use the
11722 -- original operator in the node, which is the one Gigi knows about.
11724 Set_Entity (N, Op);
11725 Set_Is_Overloaded (N, False);
11726 end if;
11727 end Rewrite_Renamed_Operator;
11729 -----------------------
11730 -- Set_Slice_Subtype --
11731 -----------------------
11733 -- Build an implicit subtype declaration to represent the type delivered by
11734 -- the slice. This is an abbreviated version of an array subtype. We define
11735 -- an index subtype for the slice, using either the subtype name or the
11736 -- discrete range of the slice. To be consistent with index usage elsewhere
11737 -- we create a list header to hold the single index. This list is not
11738 -- otherwise attached to the syntax tree.
11740 procedure Set_Slice_Subtype (N : Node_Id) is
11741 Loc : constant Source_Ptr := Sloc (N);
11742 Index_List : constant List_Id := New_List;
11743 Index : Node_Id;
11744 Index_Subtype : Entity_Id;
11745 Index_Type : Entity_Id;
11746 Slice_Subtype : Entity_Id;
11747 Drange : constant Node_Id := Discrete_Range (N);
11749 begin
11750 Index_Type := Base_Type (Etype (Drange));
11752 if Is_Entity_Name (Drange) then
11753 Index_Subtype := Entity (Drange);
11755 else
11756 -- We force the evaluation of a range. This is definitely needed in
11757 -- the renamed case, and seems safer to do unconditionally. Note in
11758 -- any case that since we will create and insert an Itype referring
11759 -- to this range, we must make sure any side effect removal actions
11760 -- are inserted before the Itype definition.
11762 if Nkind (Drange) = N_Range then
11763 Force_Evaluation (Low_Bound (Drange));
11764 Force_Evaluation (High_Bound (Drange));
11766 -- If the discrete range is given by a subtype indication, the
11767 -- type of the slice is the base of the subtype mark.
11769 elsif Nkind (Drange) = N_Subtype_Indication then
11770 declare
11771 R : constant Node_Id := Range_Expression (Constraint (Drange));
11772 begin
11773 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11774 Force_Evaluation (Low_Bound (R));
11775 Force_Evaluation (High_Bound (R));
11776 end;
11777 end if;
11779 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11781 -- Take a new copy of Drange (where bounds have been rewritten to
11782 -- reference side-effect-free names). Using a separate tree ensures
11783 -- that further expansion (e.g. while rewriting a slice assignment
11784 -- into a FOR loop) does not attempt to remove side effects on the
11785 -- bounds again (which would cause the bounds in the index subtype
11786 -- definition to refer to temporaries before they are defined) (the
11787 -- reason is that some names are considered side effect free here
11788 -- for the subtype, but not in the context of a loop iteration
11789 -- scheme).
11791 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11792 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11793 Set_Etype (Index_Subtype, Index_Type);
11794 Set_Size_Info (Index_Subtype, Index_Type);
11795 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11796 end if;
11798 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11800 Index := New_Occurrence_Of (Index_Subtype, Loc);
11801 Set_Etype (Index, Index_Subtype);
11802 Append (Index, Index_List);
11804 Set_First_Index (Slice_Subtype, Index);
11805 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11806 Set_Is_Constrained (Slice_Subtype, True);
11808 Check_Compile_Time_Size (Slice_Subtype);
11810 -- The Etype of the existing Slice node is reset to this slice subtype.
11811 -- Its bounds are obtained from its first index.
11813 Set_Etype (N, Slice_Subtype);
11815 -- For bit-packed slice subtypes, freeze immediately (except in the case
11816 -- of being in a "spec expression" where we never freeze when we first
11817 -- see the expression).
11819 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11820 Freeze_Itype (Slice_Subtype, N);
11822 -- For all other cases insert an itype reference in the slice's actions
11823 -- so that the itype is frozen at the proper place in the tree (i.e. at
11824 -- the point where actions for the slice are analyzed). Note that this
11825 -- is different from freezing the itype immediately, which might be
11826 -- premature (e.g. if the slice is within a transient scope). This needs
11827 -- to be done only if expansion is enabled.
11829 elsif Expander_Active then
11830 Ensure_Defined (Typ => Slice_Subtype, N => N);
11831 end if;
11832 end Set_Slice_Subtype;
11834 --------------------------------
11835 -- Set_String_Literal_Subtype --
11836 --------------------------------
11838 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11839 Loc : constant Source_Ptr := Sloc (N);
11840 Low_Bound : constant Node_Id :=
11841 Type_Low_Bound (Etype (First_Index (Typ)));
11842 Subtype_Id : Entity_Id;
11844 begin
11845 if Nkind (N) /= N_String_Literal then
11846 return;
11847 end if;
11849 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11850 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11851 (String_Length (Strval (N))));
11852 Set_Etype (Subtype_Id, Base_Type (Typ));
11853 Set_Is_Constrained (Subtype_Id);
11854 Set_Etype (N, Subtype_Id);
11856 -- The low bound is set from the low bound of the corresponding index
11857 -- type. Note that we do not store the high bound in the string literal
11858 -- subtype, but it can be deduced if necessary from the length and the
11859 -- low bound.
11861 if Is_OK_Static_Expression (Low_Bound) then
11862 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11864 -- If the lower bound is not static we create a range for the string
11865 -- literal, using the index type and the known length of the literal.
11866 -- The index type is not necessarily Positive, so the upper bound is
11867 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11869 else
11870 declare
11871 Index_List : constant List_Id := New_List;
11872 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11873 High_Bound : constant Node_Id :=
11874 Make_Attribute_Reference (Loc,
11875 Attribute_Name => Name_Val,
11876 Prefix =>
11877 New_Occurrence_Of (Index_Type, Loc),
11878 Expressions => New_List (
11879 Make_Op_Add (Loc,
11880 Left_Opnd =>
11881 Make_Attribute_Reference (Loc,
11882 Attribute_Name => Name_Pos,
11883 Prefix =>
11884 New_Occurrence_Of (Index_Type, Loc),
11885 Expressions =>
11886 New_List (New_Copy_Tree (Low_Bound))),
11887 Right_Opnd =>
11888 Make_Integer_Literal (Loc,
11889 String_Length (Strval (N)) - 1))));
11891 Array_Subtype : Entity_Id;
11892 Drange : Node_Id;
11893 Index : Node_Id;
11894 Index_Subtype : Entity_Id;
11896 begin
11897 if Is_Integer_Type (Index_Type) then
11898 Set_String_Literal_Low_Bound
11899 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11901 else
11902 -- If the index type is an enumeration type, build bounds
11903 -- expression with attributes.
11905 Set_String_Literal_Low_Bound
11906 (Subtype_Id,
11907 Make_Attribute_Reference (Loc,
11908 Attribute_Name => Name_First,
11909 Prefix =>
11910 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11911 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11912 end if;
11914 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11916 -- Build bona fide subtype for the string, and wrap it in an
11917 -- unchecked conversion, because the back end expects the
11918 -- String_Literal_Subtype to have a static lower bound.
11920 Index_Subtype :=
11921 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11922 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11923 Set_Scalar_Range (Index_Subtype, Drange);
11924 Set_Parent (Drange, N);
11925 Analyze_And_Resolve (Drange, Index_Type);
11927 -- In this context, the Index_Type may already have a constraint,
11928 -- so use common base type on string subtype. The base type may
11929 -- be used when generating attributes of the string, for example
11930 -- in the context of a slice assignment.
11932 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11933 Set_Size_Info (Index_Subtype, Index_Type);
11934 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11936 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11938 Index := New_Occurrence_Of (Index_Subtype, Loc);
11939 Set_Etype (Index, Index_Subtype);
11940 Append (Index, Index_List);
11942 Set_First_Index (Array_Subtype, Index);
11943 Set_Etype (Array_Subtype, Base_Type (Typ));
11944 Set_Is_Constrained (Array_Subtype, True);
11946 Rewrite (N,
11947 Make_Unchecked_Type_Conversion (Loc,
11948 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11949 Expression => Relocate_Node (N)));
11950 Set_Etype (N, Array_Subtype);
11951 end;
11952 end if;
11953 end Set_String_Literal_Subtype;
11955 ------------------------------
11956 -- Simplify_Type_Conversion --
11957 ------------------------------
11959 procedure Simplify_Type_Conversion (N : Node_Id) is
11960 begin
11961 if Nkind (N) = N_Type_Conversion then
11962 declare
11963 Operand : constant Node_Id := Expression (N);
11964 Target_Typ : constant Entity_Id := Etype (N);
11965 Opnd_Typ : constant Entity_Id := Etype (Operand);
11967 begin
11968 -- Special processing if the conversion is the expression of a
11969 -- Rounding or Truncation attribute reference. In this case we
11970 -- replace:
11972 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11974 -- by
11976 -- ityp (x)
11978 -- with the Float_Truncate flag set to False or True respectively,
11979 -- which is more efficient.
11981 if Is_Floating_Point_Type (Opnd_Typ)
11982 and then
11983 (Is_Integer_Type (Target_Typ)
11984 or else (Is_Fixed_Point_Type (Target_Typ)
11985 and then Conversion_OK (N)))
11986 and then Nkind (Operand) = N_Attribute_Reference
11987 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11988 Name_Truncation)
11989 then
11990 declare
11991 Truncate : constant Boolean :=
11992 Attribute_Name (Operand) = Name_Truncation;
11993 begin
11994 Rewrite (Operand,
11995 Relocate_Node (First (Expressions (Operand))));
11996 Set_Float_Truncate (N, Truncate);
11997 end;
11998 end if;
11999 end;
12000 end if;
12001 end Simplify_Type_Conversion;
12003 -----------------------------
12004 -- Unique_Fixed_Point_Type --
12005 -----------------------------
12007 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
12008 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
12009 -- Give error messages for true ambiguity. Messages are posted on node
12010 -- N, and entities T1, T2 are the possible interpretations.
12012 -----------------------
12013 -- Fixed_Point_Error --
12014 -----------------------
12016 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
12017 begin
12018 Error_Msg_N ("ambiguous universal_fixed_expression", N);
12019 Error_Msg_NE ("\\possible interpretation as}", N, T1);
12020 Error_Msg_NE ("\\possible interpretation as}", N, T2);
12021 end Fixed_Point_Error;
12023 -- Local variables
12025 ErrN : Node_Id;
12026 Item : Node_Id;
12027 Scop : Entity_Id;
12028 T1 : Entity_Id;
12029 T2 : Entity_Id;
12031 -- Start of processing for Unique_Fixed_Point_Type
12033 begin
12034 -- The operations on Duration are visible, so Duration is always a
12035 -- possible interpretation.
12037 T1 := Standard_Duration;
12039 -- Look for fixed-point types in enclosing scopes
12041 Scop := Current_Scope;
12042 while Scop /= Standard_Standard loop
12043 T2 := First_Entity (Scop);
12044 while Present (T2) loop
12045 if Is_Fixed_Point_Type (T2)
12046 and then Current_Entity (T2) = T2
12047 and then Scope (Base_Type (T2)) = Scop
12048 then
12049 if Present (T1) then
12050 Fixed_Point_Error (T1, T2);
12051 return Any_Type;
12052 else
12053 T1 := T2;
12054 end if;
12055 end if;
12057 Next_Entity (T2);
12058 end loop;
12060 Scop := Scope (Scop);
12061 end loop;
12063 -- Look for visible fixed type declarations in the context
12065 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
12066 while Present (Item) loop
12067 if Nkind (Item) = N_With_Clause then
12068 Scop := Entity (Name (Item));
12069 T2 := First_Entity (Scop);
12070 while Present (T2) loop
12071 if Is_Fixed_Point_Type (T2)
12072 and then Scope (Base_Type (T2)) = Scop
12073 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
12074 then
12075 if Present (T1) then
12076 Fixed_Point_Error (T1, T2);
12077 return Any_Type;
12078 else
12079 T1 := T2;
12080 end if;
12081 end if;
12083 Next_Entity (T2);
12084 end loop;
12085 end if;
12087 Next (Item);
12088 end loop;
12090 if Nkind (N) = N_Real_Literal then
12091 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
12093 else
12094 -- When the context is a type conversion, issue the warning on the
12095 -- expression of the conversion because it is the actual operation.
12097 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
12098 ErrN := Expression (N);
12099 else
12100 ErrN := N;
12101 end if;
12103 Error_Msg_NE
12104 ("??universal_fixed expression interpreted as }!", ErrN, T1);
12105 end if;
12107 return T1;
12108 end Unique_Fixed_Point_Type;
12110 ----------------------
12111 -- Valid_Conversion --
12112 ----------------------
12114 function Valid_Conversion
12115 (N : Node_Id;
12116 Target : Entity_Id;
12117 Operand : Node_Id;
12118 Report_Errs : Boolean := True) return Boolean
12120 Target_Type : constant Entity_Id := Base_Type (Target);
12121 Opnd_Type : Entity_Id := Etype (Operand);
12122 Inc_Ancestor : Entity_Id;
12124 function Conversion_Check
12125 (Valid : Boolean;
12126 Msg : String) return Boolean;
12127 -- Little routine to post Msg if Valid is False, returns Valid value
12129 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12130 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12132 procedure Conversion_Error_NE
12133 (Msg : String;
12134 N : Node_Or_Entity_Id;
12135 E : Node_Or_Entity_Id);
12136 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12138 function In_Instance_Code return Boolean;
12139 -- Return True if expression is within an instance but is not in one of
12140 -- the actuals of the instantiation. Type conversions within an instance
12141 -- are not rechecked because type visbility may lead to spurious errors,
12142 -- but conversions in an actual for a formal object must be checked.
12144 function Valid_Tagged_Conversion
12145 (Target_Type : Entity_Id;
12146 Opnd_Type : Entity_Id) return Boolean;
12147 -- Specifically test for validity of tagged conversions
12149 function Valid_Array_Conversion return Boolean;
12150 -- Check index and component conformance, and accessibility levels if
12151 -- the component types are anonymous access types (Ada 2005).
12153 ----------------------
12154 -- Conversion_Check --
12155 ----------------------
12157 function Conversion_Check
12158 (Valid : Boolean;
12159 Msg : String) return Boolean
12161 begin
12162 if not Valid
12164 -- A generic unit has already been analyzed and we have verified
12165 -- that a particular conversion is OK in that context. Since the
12166 -- instance is reanalyzed without relying on the relationships
12167 -- established during the analysis of the generic, it is possible
12168 -- to end up with inconsistent views of private types. Do not emit
12169 -- the error message in such cases. The rest of the machinery in
12170 -- Valid_Conversion still ensures the proper compatibility of
12171 -- target and operand types.
12173 and then not In_Instance_Code
12174 then
12175 Conversion_Error_N (Msg, Operand);
12176 end if;
12178 return Valid;
12179 end Conversion_Check;
12181 ------------------------
12182 -- Conversion_Error_N --
12183 ------------------------
12185 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12186 begin
12187 if Report_Errs then
12188 Error_Msg_N (Msg, N);
12189 end if;
12190 end Conversion_Error_N;
12192 -------------------------
12193 -- Conversion_Error_NE --
12194 -------------------------
12196 procedure Conversion_Error_NE
12197 (Msg : String;
12198 N : Node_Or_Entity_Id;
12199 E : Node_Or_Entity_Id)
12201 begin
12202 if Report_Errs then
12203 Error_Msg_NE (Msg, N, E);
12204 end if;
12205 end Conversion_Error_NE;
12207 ----------------------
12208 -- In_Instance_Code --
12209 ----------------------
12211 function In_Instance_Code return Boolean is
12212 Par : Node_Id;
12214 begin
12215 if not In_Instance then
12216 return False;
12218 else
12219 Par := Parent (N);
12220 while Present (Par) loop
12222 -- The expression is part of an actual object if it appears in
12223 -- the generated object declaration in the instance.
12225 if Nkind (Par) = N_Object_Declaration
12226 and then Present (Corresponding_Generic_Association (Par))
12227 then
12228 return False;
12230 else
12231 exit when
12232 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12233 or else Nkind (Par) in N_Subprogram_Call
12234 or else Nkind (Par) in N_Declaration;
12235 end if;
12237 Par := Parent (Par);
12238 end loop;
12240 -- Otherwise the expression appears within the instantiated unit
12242 return True;
12243 end if;
12244 end In_Instance_Code;
12246 ----------------------------
12247 -- Valid_Array_Conversion --
12248 ----------------------------
12250 function Valid_Array_Conversion return Boolean is
12251 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12252 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12254 Opnd_Index : Node_Id;
12255 Opnd_Index_Type : Entity_Id;
12257 Target_Comp_Type : constant Entity_Id :=
12258 Component_Type (Target_Type);
12259 Target_Comp_Base : constant Entity_Id :=
12260 Base_Type (Target_Comp_Type);
12262 Target_Index : Node_Id;
12263 Target_Index_Type : Entity_Id;
12265 begin
12266 -- Error if wrong number of dimensions
12269 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12270 then
12271 Conversion_Error_N
12272 ("incompatible number of dimensions for conversion", Operand);
12273 return False;
12275 -- Number of dimensions matches
12277 else
12278 -- Loop through indexes of the two arrays
12280 Target_Index := First_Index (Target_Type);
12281 Opnd_Index := First_Index (Opnd_Type);
12282 while Present (Target_Index) and then Present (Opnd_Index) loop
12283 Target_Index_Type := Etype (Target_Index);
12284 Opnd_Index_Type := Etype (Opnd_Index);
12286 -- Error if index types are incompatible
12288 if not (Is_Integer_Type (Target_Index_Type)
12289 and then Is_Integer_Type (Opnd_Index_Type))
12290 and then (Root_Type (Target_Index_Type)
12291 /= Root_Type (Opnd_Index_Type))
12292 then
12293 Conversion_Error_N
12294 ("incompatible index types for array conversion",
12295 Operand);
12296 return False;
12297 end if;
12299 Next_Index (Target_Index);
12300 Next_Index (Opnd_Index);
12301 end loop;
12303 -- If component types have same base type, all set
12305 if Target_Comp_Base = Opnd_Comp_Base then
12306 null;
12308 -- Here if base types of components are not the same. The only
12309 -- time this is allowed is if we have anonymous access types.
12311 -- The conversion of arrays of anonymous access types can lead
12312 -- to dangling pointers. AI-392 formalizes the accessibility
12313 -- checks that must be applied to such conversions to prevent
12314 -- out-of-scope references.
12316 elsif Ekind_In
12317 (Target_Comp_Base, E_Anonymous_Access_Type,
12318 E_Anonymous_Access_Subprogram_Type)
12319 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12320 and then
12321 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12322 then
12323 if Type_Access_Level (Target_Type) <
12324 Deepest_Type_Access_Level (Opnd_Type)
12325 then
12326 if In_Instance_Body then
12327 Error_Msg_Warn := SPARK_Mode /= On;
12328 Conversion_Error_N
12329 ("source array type has deeper accessibility "
12330 & "level than target<<", Operand);
12331 Conversion_Error_N ("\Program_Error [<<", Operand);
12332 Rewrite (N,
12333 Make_Raise_Program_Error (Sloc (N),
12334 Reason => PE_Accessibility_Check_Failed));
12335 Set_Etype (N, Target_Type);
12336 return False;
12338 -- Conversion not allowed because of accessibility levels
12340 else
12341 Conversion_Error_N
12342 ("source array type has deeper accessibility "
12343 & "level than target", Operand);
12344 return False;
12345 end if;
12347 else
12348 null;
12349 end if;
12351 -- All other cases where component base types do not match
12353 else
12354 Conversion_Error_N
12355 ("incompatible component types for array conversion",
12356 Operand);
12357 return False;
12358 end if;
12360 -- Check that component subtypes statically match. For numeric
12361 -- types this means that both must be either constrained or
12362 -- unconstrained. For enumeration types the bounds must match.
12363 -- All of this is checked in Subtypes_Statically_Match.
12365 if not Subtypes_Statically_Match
12366 (Target_Comp_Type, Opnd_Comp_Type)
12367 then
12368 Conversion_Error_N
12369 ("component subtypes must statically match", Operand);
12370 return False;
12371 end if;
12372 end if;
12374 return True;
12375 end Valid_Array_Conversion;
12377 -----------------------------
12378 -- Valid_Tagged_Conversion --
12379 -----------------------------
12381 function Valid_Tagged_Conversion
12382 (Target_Type : Entity_Id;
12383 Opnd_Type : Entity_Id) return Boolean
12385 begin
12386 -- Upward conversions are allowed (RM 4.6(22))
12388 if Covers (Target_Type, Opnd_Type)
12389 or else Is_Ancestor (Target_Type, Opnd_Type)
12390 then
12391 return True;
12393 -- Downward conversion are allowed if the operand is class-wide
12394 -- (RM 4.6(23)).
12396 elsif Is_Class_Wide_Type (Opnd_Type)
12397 and then Covers (Opnd_Type, Target_Type)
12398 then
12399 return True;
12401 elsif Covers (Opnd_Type, Target_Type)
12402 or else Is_Ancestor (Opnd_Type, Target_Type)
12403 then
12404 return
12405 Conversion_Check (False,
12406 "downward conversion of tagged objects not allowed");
12408 -- Ada 2005 (AI-251): The conversion to/from interface types is
12409 -- always valid. The types involved may be class-wide (sub)types.
12411 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12412 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12413 then
12414 return True;
12416 -- If the operand is a class-wide type obtained through a limited_
12417 -- with clause, and the context includes the nonlimited view, use
12418 -- it to determine whether the conversion is legal.
12420 elsif Is_Class_Wide_Type (Opnd_Type)
12421 and then From_Limited_With (Opnd_Type)
12422 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12423 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12424 then
12425 return True;
12427 elsif Is_Access_Type (Opnd_Type)
12428 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12429 then
12430 return True;
12432 else
12433 Conversion_Error_NE
12434 ("invalid tagged conversion, not compatible with}",
12435 N, First_Subtype (Opnd_Type));
12436 return False;
12437 end if;
12438 end Valid_Tagged_Conversion;
12440 -- Start of processing for Valid_Conversion
12442 begin
12443 Check_Parameterless_Call (Operand);
12445 if Is_Overloaded (Operand) then
12446 declare
12447 I : Interp_Index;
12448 I1 : Interp_Index;
12449 It : Interp;
12450 It1 : Interp;
12451 N1 : Entity_Id;
12452 T1 : Entity_Id;
12454 begin
12455 -- Remove procedure calls, which syntactically cannot appear in
12456 -- this context, but which cannot be removed by type checking,
12457 -- because the context does not impose a type.
12459 -- The node may be labelled overloaded, but still contain only one
12460 -- interpretation because others were discarded earlier. If this
12461 -- is the case, retain the single interpretation if legal.
12463 Get_First_Interp (Operand, I, It);
12464 Opnd_Type := It.Typ;
12465 Get_Next_Interp (I, It);
12467 if Present (It.Typ)
12468 and then Opnd_Type /= Standard_Void_Type
12469 then
12470 -- More than one candidate interpretation is available
12472 Get_First_Interp (Operand, I, It);
12473 while Present (It.Typ) loop
12474 if It.Typ = Standard_Void_Type then
12475 Remove_Interp (I);
12476 end if;
12478 -- When compiling for a system where Address is of a visible
12479 -- integer type, spurious ambiguities can be produced when
12480 -- arithmetic operations have a literal operand and return
12481 -- System.Address or a descendant of it. These ambiguities
12482 -- are usually resolved by the context, but for conversions
12483 -- there is no context type and the removal of the spurious
12484 -- operations must be done explicitly here.
12486 if not Address_Is_Private
12487 and then Is_Descendant_Of_Address (It.Typ)
12488 then
12489 Remove_Interp (I);
12490 end if;
12492 Get_Next_Interp (I, It);
12493 end loop;
12494 end if;
12496 Get_First_Interp (Operand, I, It);
12497 I1 := I;
12498 It1 := It;
12500 if No (It.Typ) then
12501 Conversion_Error_N ("illegal operand in conversion", Operand);
12502 return False;
12503 end if;
12505 Get_Next_Interp (I, It);
12507 if Present (It.Typ) then
12508 N1 := It1.Nam;
12509 T1 := It1.Typ;
12510 It1 := Disambiguate (Operand, I1, I, Any_Type);
12512 if It1 = No_Interp then
12513 Conversion_Error_N
12514 ("ambiguous operand in conversion", Operand);
12516 -- If the interpretation involves a standard operator, use
12517 -- the location of the type, which may be user-defined.
12519 if Sloc (It.Nam) = Standard_Location then
12520 Error_Msg_Sloc := Sloc (It.Typ);
12521 else
12522 Error_Msg_Sloc := Sloc (It.Nam);
12523 end if;
12525 Conversion_Error_N -- CODEFIX
12526 ("\\possible interpretation#!", Operand);
12528 if Sloc (N1) = Standard_Location then
12529 Error_Msg_Sloc := Sloc (T1);
12530 else
12531 Error_Msg_Sloc := Sloc (N1);
12532 end if;
12534 Conversion_Error_N -- CODEFIX
12535 ("\\possible interpretation#!", Operand);
12537 return False;
12538 end if;
12539 end if;
12541 Set_Etype (Operand, It1.Typ);
12542 Opnd_Type := It1.Typ;
12543 end;
12544 end if;
12546 -- Deal with conversion of integer type to address if the pragma
12547 -- Allow_Integer_Address is in effect. We convert the conversion to
12548 -- an unchecked conversion in this case and we are all done.
12550 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12551 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12552 Analyze_And_Resolve (N, Target_Type);
12553 return True;
12554 end if;
12556 -- If we are within a child unit, check whether the type of the
12557 -- expression has an ancestor in a parent unit, in which case it
12558 -- belongs to its derivation class even if the ancestor is private.
12559 -- See RM 7.3.1 (5.2/3).
12561 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12563 -- Numeric types
12565 if Is_Numeric_Type (Target_Type) then
12567 -- A universal fixed expression can be converted to any numeric type
12569 if Opnd_Type = Universal_Fixed then
12570 return True;
12572 -- Also no need to check when in an instance or inlined body, because
12573 -- the legality has been established when the template was analyzed.
12574 -- Furthermore, numeric conversions may occur where only a private
12575 -- view of the operand type is visible at the instantiation point.
12576 -- This results in a spurious error if we check that the operand type
12577 -- is a numeric type.
12579 -- Note: in a previous version of this unit, the following tests were
12580 -- applied only for generated code (Comes_From_Source set to False),
12581 -- but in fact the test is required for source code as well, since
12582 -- this situation can arise in source code.
12584 elsif In_Instance_Code or else In_Inlined_Body then
12585 return True;
12587 -- Otherwise we need the conversion check
12589 else
12590 return Conversion_Check
12591 (Is_Numeric_Type (Opnd_Type)
12592 or else
12593 (Present (Inc_Ancestor)
12594 and then Is_Numeric_Type (Inc_Ancestor)),
12595 "illegal operand for numeric conversion");
12596 end if;
12598 -- Array types
12600 elsif Is_Array_Type (Target_Type) then
12601 if not Is_Array_Type (Opnd_Type)
12602 or else Opnd_Type = Any_Composite
12603 or else Opnd_Type = Any_String
12604 then
12605 Conversion_Error_N
12606 ("illegal operand for array conversion", Operand);
12607 return False;
12609 else
12610 return Valid_Array_Conversion;
12611 end if;
12613 -- Ada 2005 (AI-251): Internally generated conversions of access to
12614 -- interface types added to force the displacement of the pointer to
12615 -- reference the corresponding dispatch table.
12617 elsif not Comes_From_Source (N)
12618 and then Is_Access_Type (Target_Type)
12619 and then Is_Interface (Designated_Type (Target_Type))
12620 then
12621 return True;
12623 -- Ada 2005 (AI-251): Anonymous access types where target references an
12624 -- interface type.
12626 elsif Is_Access_Type (Opnd_Type)
12627 and then Ekind_In (Target_Type, E_General_Access_Type,
12628 E_Anonymous_Access_Type)
12629 and then Is_Interface (Directly_Designated_Type (Target_Type))
12630 then
12631 -- Check the static accessibility rule of 4.6(17). Note that the
12632 -- check is not enforced when within an instance body, since the
12633 -- RM requires such cases to be caught at run time.
12635 -- If the operand is a rewriting of an allocator no check is needed
12636 -- because there are no accessibility issues.
12638 if Nkind (Original_Node (N)) = N_Allocator then
12639 null;
12641 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12642 if Type_Access_Level (Opnd_Type) >
12643 Deepest_Type_Access_Level (Target_Type)
12644 then
12645 -- In an instance, this is a run-time check, but one we know
12646 -- will fail, so generate an appropriate warning. The raise
12647 -- will be generated by Expand_N_Type_Conversion.
12649 if In_Instance_Body then
12650 Error_Msg_Warn := SPARK_Mode /= On;
12651 Conversion_Error_N
12652 ("cannot convert local pointer to non-local access type<<",
12653 Operand);
12654 Conversion_Error_N ("\Program_Error [<<", Operand);
12656 else
12657 Conversion_Error_N
12658 ("cannot convert local pointer to non-local access type",
12659 Operand);
12660 return False;
12661 end if;
12663 -- Special accessibility checks are needed in the case of access
12664 -- discriminants declared for a limited type.
12666 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12667 and then not Is_Local_Anonymous_Access (Opnd_Type)
12668 then
12669 -- When the operand is a selected access discriminant the check
12670 -- needs to be made against the level of the object denoted by
12671 -- the prefix of the selected name (Object_Access_Level handles
12672 -- checking the prefix of the operand for this case).
12674 if Nkind (Operand) = N_Selected_Component
12675 and then Object_Access_Level (Operand) >
12676 Deepest_Type_Access_Level (Target_Type)
12677 then
12678 -- In an instance, this is a run-time check, but one we know
12679 -- will fail, so generate an appropriate warning. The raise
12680 -- will be generated by Expand_N_Type_Conversion.
12682 if In_Instance_Body then
12683 Error_Msg_Warn := SPARK_Mode /= On;
12684 Conversion_Error_N
12685 ("cannot convert access discriminant to non-local "
12686 & "access type<<", Operand);
12687 Conversion_Error_N ("\Program_Error [<<", Operand);
12689 -- Real error if not in instance body
12691 else
12692 Conversion_Error_N
12693 ("cannot convert access discriminant to non-local "
12694 & "access type", Operand);
12695 return False;
12696 end if;
12697 end if;
12699 -- The case of a reference to an access discriminant from
12700 -- within a limited type declaration (which will appear as
12701 -- a discriminal) is always illegal because the level of the
12702 -- discriminant is considered to be deeper than any (nameable)
12703 -- access type.
12705 if Is_Entity_Name (Operand)
12706 and then not Is_Local_Anonymous_Access (Opnd_Type)
12707 and then
12708 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12709 and then Present (Discriminal_Link (Entity (Operand)))
12710 then
12711 Conversion_Error_N
12712 ("discriminant has deeper accessibility level than target",
12713 Operand);
12714 return False;
12715 end if;
12716 end if;
12717 end if;
12719 return True;
12721 -- General and anonymous access types
12723 elsif Ekind_In (Target_Type, E_General_Access_Type,
12724 E_Anonymous_Access_Type)
12725 and then
12726 Conversion_Check
12727 (Is_Access_Type (Opnd_Type)
12728 and then not
12729 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12730 E_Access_Protected_Subprogram_Type),
12731 "must be an access-to-object type")
12732 then
12733 if Is_Access_Constant (Opnd_Type)
12734 and then not Is_Access_Constant (Target_Type)
12735 then
12736 Conversion_Error_N
12737 ("access-to-constant operand type not allowed", Operand);
12738 return False;
12739 end if;
12741 -- Check the static accessibility rule of 4.6(17). Note that the
12742 -- check is not enforced when within an instance body, since the RM
12743 -- requires such cases to be caught at run time.
12745 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12746 or else Is_Local_Anonymous_Access (Target_Type)
12747 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12748 N_Object_Declaration
12749 then
12750 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12751 -- conversions from an anonymous access type to a named general
12752 -- access type. Such conversions are not allowed in the case of
12753 -- access parameters and stand-alone objects of an anonymous
12754 -- access type. The implicit conversion case is recognized by
12755 -- testing that Comes_From_Source is False and that it's been
12756 -- rewritten. The Comes_From_Source test isn't sufficient because
12757 -- nodes in inlined calls to predefined library routines can have
12758 -- Comes_From_Source set to False. (Is there a better way to test
12759 -- for implicit conversions???)
12761 if Ada_Version >= Ada_2012
12762 and then not Comes_From_Source (N)
12763 and then Is_Rewrite_Substitution (N)
12764 and then Ekind (Target_Type) = E_General_Access_Type
12765 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12766 then
12767 if Is_Itype (Opnd_Type) then
12769 -- Implicit conversions aren't allowed for objects of an
12770 -- anonymous access type, since such objects have nonstatic
12771 -- levels in Ada 2012.
12773 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12774 N_Object_Declaration
12775 then
12776 Conversion_Error_N
12777 ("implicit conversion of stand-alone anonymous "
12778 & "access object not allowed", Operand);
12779 return False;
12781 -- Implicit conversions aren't allowed for anonymous access
12782 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12783 -- is done to exclude anonymous access results.
12785 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12786 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12787 N_Function_Specification,
12788 N_Procedure_Specification)
12789 then
12790 Conversion_Error_N
12791 ("implicit conversion of anonymous access formal "
12792 & "not allowed", Operand);
12793 return False;
12795 -- This is a case where there's an enclosing object whose
12796 -- to which the "statically deeper than" relationship does
12797 -- not apply (such as an access discriminant selected from
12798 -- a dereference of an access parameter).
12800 elsif Object_Access_Level (Operand)
12801 = Scope_Depth (Standard_Standard)
12802 then
12803 Conversion_Error_N
12804 ("implicit conversion of anonymous access value "
12805 & "not allowed", Operand);
12806 return False;
12808 -- In other cases, the level of the operand's type must be
12809 -- statically less deep than that of the target type, else
12810 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12812 elsif Type_Access_Level (Opnd_Type) >
12813 Deepest_Type_Access_Level (Target_Type)
12814 then
12815 Conversion_Error_N
12816 ("implicit conversion of anonymous access value "
12817 & "violates accessibility", Operand);
12818 return False;
12819 end if;
12820 end if;
12822 elsif Type_Access_Level (Opnd_Type) >
12823 Deepest_Type_Access_Level (Target_Type)
12824 then
12825 -- In an instance, this is a run-time check, but one we know
12826 -- will fail, so generate an appropriate warning. The raise
12827 -- will be generated by Expand_N_Type_Conversion.
12829 if In_Instance_Body then
12830 Error_Msg_Warn := SPARK_Mode /= On;
12831 Conversion_Error_N
12832 ("cannot convert local pointer to non-local access type<<",
12833 Operand);
12834 Conversion_Error_N ("\Program_Error [<<", Operand);
12836 -- If not in an instance body, this is a real error
12838 else
12839 -- Avoid generation of spurious error message
12841 if not Error_Posted (N) then
12842 Conversion_Error_N
12843 ("cannot convert local pointer to non-local access type",
12844 Operand);
12845 end if;
12847 return False;
12848 end if;
12850 -- Special accessibility checks are needed in the case of access
12851 -- discriminants declared for a limited type.
12853 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12854 and then not Is_Local_Anonymous_Access (Opnd_Type)
12855 then
12856 -- When the operand is a selected access discriminant the check
12857 -- needs to be made against the level of the object denoted by
12858 -- the prefix of the selected name (Object_Access_Level handles
12859 -- checking the prefix of the operand for this case).
12861 if Nkind (Operand) = N_Selected_Component
12862 and then Object_Access_Level (Operand) >
12863 Deepest_Type_Access_Level (Target_Type)
12864 then
12865 -- In an instance, this is a run-time check, but one we know
12866 -- will fail, so generate an appropriate warning. The raise
12867 -- will be generated by Expand_N_Type_Conversion.
12869 if In_Instance_Body then
12870 Error_Msg_Warn := SPARK_Mode /= On;
12871 Conversion_Error_N
12872 ("cannot convert access discriminant to non-local "
12873 & "access type<<", Operand);
12874 Conversion_Error_N ("\Program_Error [<<", Operand);
12876 -- If not in an instance body, this is a real error
12878 else
12879 Conversion_Error_N
12880 ("cannot convert access discriminant to non-local "
12881 & "access type", Operand);
12882 return False;
12883 end if;
12884 end if;
12886 -- The case of a reference to an access discriminant from
12887 -- within a limited type declaration (which will appear as
12888 -- a discriminal) is always illegal because the level of the
12889 -- discriminant is considered to be deeper than any (nameable)
12890 -- access type.
12892 if Is_Entity_Name (Operand)
12893 and then
12894 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12895 and then Present (Discriminal_Link (Entity (Operand)))
12896 then
12897 Conversion_Error_N
12898 ("discriminant has deeper accessibility level than target",
12899 Operand);
12900 return False;
12901 end if;
12902 end if;
12903 end if;
12905 -- In the presence of limited_with clauses we have to use nonlimited
12906 -- views, if available.
12908 Check_Limited : declare
12909 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12910 -- Helper function to handle limited views
12912 --------------------------
12913 -- Full_Designated_Type --
12914 --------------------------
12916 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12917 Desig : constant Entity_Id := Designated_Type (T);
12919 begin
12920 -- Handle the limited view of a type
12922 if From_Limited_With (Desig)
12923 and then Has_Non_Limited_View (Desig)
12924 then
12925 return Available_View (Desig);
12926 else
12927 return Desig;
12928 end if;
12929 end Full_Designated_Type;
12931 -- Local Declarations
12933 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12934 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12936 Same_Base : constant Boolean :=
12937 Base_Type (Target) = Base_Type (Opnd);
12939 -- Start of processing for Check_Limited
12941 begin
12942 if Is_Tagged_Type (Target) then
12943 return Valid_Tagged_Conversion (Target, Opnd);
12945 else
12946 if not Same_Base then
12947 Conversion_Error_NE
12948 ("target designated type not compatible with }",
12949 N, Base_Type (Opnd));
12950 return False;
12952 -- Ada 2005 AI-384: legality rule is symmetric in both
12953 -- designated types. The conversion is legal (with possible
12954 -- constraint check) if either designated type is
12955 -- unconstrained.
12957 elsif Subtypes_Statically_Match (Target, Opnd)
12958 or else
12959 (Has_Discriminants (Target)
12960 and then
12961 (not Is_Constrained (Opnd)
12962 or else not Is_Constrained (Target)))
12963 then
12964 -- Special case, if Value_Size has been used to make the
12965 -- sizes different, the conversion is not allowed even
12966 -- though the subtypes statically match.
12968 if Known_Static_RM_Size (Target)
12969 and then Known_Static_RM_Size (Opnd)
12970 and then RM_Size (Target) /= RM_Size (Opnd)
12971 then
12972 Conversion_Error_NE
12973 ("target designated subtype not compatible with }",
12974 N, Opnd);
12975 Conversion_Error_NE
12976 ("\because sizes of the two designated subtypes differ",
12977 N, Opnd);
12978 return False;
12980 -- Normal case where conversion is allowed
12982 else
12983 return True;
12984 end if;
12986 else
12987 Error_Msg_NE
12988 ("target designated subtype not compatible with }",
12989 N, Opnd);
12990 return False;
12991 end if;
12992 end if;
12993 end Check_Limited;
12995 -- Access to subprogram types. If the operand is an access parameter,
12996 -- the type has a deeper accessibility that any master, and cannot be
12997 -- assigned. We must make an exception if the conversion is part of an
12998 -- assignment and the target is the return object of an extended return
12999 -- statement, because in that case the accessibility check takes place
13000 -- after the return.
13002 elsif Is_Access_Subprogram_Type (Target_Type)
13004 -- Note: this test of Opnd_Type is there to prevent entering this
13005 -- branch in the case of a remote access to subprogram type, which
13006 -- is internally represented as an E_Record_Type.
13008 and then Is_Access_Type (Opnd_Type)
13009 then
13010 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
13011 and then Is_Entity_Name (Operand)
13012 and then Ekind (Entity (Operand)) = E_In_Parameter
13013 and then
13014 (Nkind (Parent (N)) /= N_Assignment_Statement
13015 or else not Is_Entity_Name (Name (Parent (N)))
13016 or else not Is_Return_Object (Entity (Name (Parent (N)))))
13017 then
13018 Conversion_Error_N
13019 ("illegal attempt to store anonymous access to subprogram",
13020 Operand);
13021 Conversion_Error_N
13022 ("\value has deeper accessibility than any master "
13023 & "(RM 3.10.2 (13))",
13024 Operand);
13026 Error_Msg_NE
13027 ("\use named access type for& instead of access parameter",
13028 Operand, Entity (Operand));
13029 end if;
13031 -- Check that the designated types are subtype conformant
13033 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
13034 Old_Id => Designated_Type (Opnd_Type),
13035 Err_Loc => N);
13037 -- Check the static accessibility rule of 4.6(20)
13039 if Type_Access_Level (Opnd_Type) >
13040 Deepest_Type_Access_Level (Target_Type)
13041 then
13042 Conversion_Error_N
13043 ("operand type has deeper accessibility level than target",
13044 Operand);
13046 -- Check that if the operand type is declared in a generic body,
13047 -- then the target type must be declared within that same body
13048 -- (enforces last sentence of 4.6(20)).
13050 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
13051 declare
13052 O_Gen : constant Node_Id :=
13053 Enclosing_Generic_Body (Opnd_Type);
13055 T_Gen : Node_Id;
13057 begin
13058 T_Gen := Enclosing_Generic_Body (Target_Type);
13059 while Present (T_Gen) and then T_Gen /= O_Gen loop
13060 T_Gen := Enclosing_Generic_Body (T_Gen);
13061 end loop;
13063 if T_Gen /= O_Gen then
13064 Conversion_Error_N
13065 ("target type must be declared in same generic body "
13066 & "as operand type", N);
13067 end if;
13068 end;
13069 end if;
13071 return True;
13073 -- Remote access to subprogram types
13075 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
13076 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
13077 then
13078 -- It is valid to convert from one RAS type to another provided
13079 -- that their specification statically match.
13081 -- Note: at this point, remote access to subprogram types have been
13082 -- expanded to their E_Record_Type representation, and we need to
13083 -- go back to the original access type definition using the
13084 -- Corresponding_Remote_Type attribute in order to check that the
13085 -- designated profiles match.
13087 pragma Assert (Ekind (Target_Type) = E_Record_Type);
13088 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
13090 Check_Subtype_Conformant
13091 (New_Id =>
13092 Designated_Type (Corresponding_Remote_Type (Target_Type)),
13093 Old_Id =>
13094 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
13095 Err_Loc =>
13097 return True;
13099 -- If it was legal in the generic, it's legal in the instance
13101 elsif In_Instance_Body then
13102 return True;
13104 -- If both are tagged types, check legality of view conversions
13106 elsif Is_Tagged_Type (Target_Type)
13107 and then
13108 Is_Tagged_Type (Opnd_Type)
13109 then
13110 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
13112 -- Types derived from the same root type are convertible
13114 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
13115 return True;
13117 -- In an instance or an inlined body, there may be inconsistent views of
13118 -- the same type, or of types derived from a common root.
13120 elsif (In_Instance or In_Inlined_Body)
13121 and then
13122 Root_Type (Underlying_Type (Target_Type)) =
13123 Root_Type (Underlying_Type (Opnd_Type))
13124 then
13125 return True;
13127 -- Special check for common access type error case
13129 elsif Ekind (Target_Type) = E_Access_Type
13130 and then Is_Access_Type (Opnd_Type)
13131 then
13132 Conversion_Error_N ("target type must be general access type!", N);
13133 Conversion_Error_NE -- CODEFIX
13134 ("add ALL to }!", N, Target_Type);
13135 return False;
13137 -- Here we have a real conversion error
13139 else
13140 -- Check for missing regular with_clause when only a limited view of
13141 -- target is available.
13143 if From_Limited_With (Opnd_Type) and then In_Package_Body then
13144 Conversion_Error_NE
13145 ("invalid conversion, not compatible with limited view of }",
13146 N, Opnd_Type);
13147 Conversion_Error_NE
13148 ("\add with_clause for& to current unit!", N, Scope (Opnd_Type));
13150 elsif Is_Access_Type (Opnd_Type)
13151 and then From_Limited_With (Designated_Type (Opnd_Type))
13152 and then In_Package_Body
13153 then
13154 Conversion_Error_NE
13155 ("invalid conversion, not compatible with }", N, Opnd_Type);
13156 Conversion_Error_NE
13157 ("\add with_clause for& to current unit!",
13158 N, Scope (Designated_Type (Opnd_Type)));
13160 else
13161 Conversion_Error_NE
13162 ("invalid conversion, not compatible with }", N, Opnd_Type);
13163 end if;
13165 return False;
13166 end if;
13167 end Valid_Conversion;
13169 end Sem_Res;